

Lecture Notes in Computer Science 5123
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Aarti Gupta Sharad Malik (Eds.)

Computer Aided
Verification

20th International Conference, CAV 2008
Princeton, NJ, USA, July 7-14, 2008
Proceedings

13

Volume Editors

Aarti Gupta
NEC Laboratories America, Inc.
4 Independence Way, Suite 200
Princeton, NJ 08540, USA
E-mail: agupta@nec-labs.com

Sharad Malik
Princeton University
Department of Electrical Engineering
Princeton, NJ 08544-5263, USA
E-mail: malik@princeton.edu

Library of Congress Control Number: 2008930070

CR Subject Classification (1998): F.3, D.2.4, D.2.2, F.4.1, I.2.3, B.7.2, C.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-70543-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70543-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12319992 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 20th International Conference on
Computer Aided Verification (CAV) held in Princeton, New Jersey, USA, dur-
ing July 7–14, 2008. CAV is dedicated to the advancement of the theory and
practice of computer-aided formal analysis methods for hardware and software
systems. Its scope ranges from theoretical results to concrete applications, with
an emphasis on practical verification tools and the underlying algorithms and
techniques.

Overall, 2008 has been a historical year for CAV.

– It marks the 20th anniversary of CAV, which has served as a forum for ideas
whose impact is now clearly felt in research and practice.

– It celebrates the recognition received by Edmund M. Clarke, E. Allen Emer-
son and Joseph Sifakis as winners of the 2007 ACM Turing Award for their
research in model checking. CAV is proud to have been the intellectual home
for model checking over these 20 years.

– In recognition of the large body of contributions made to the field of computer-
aided verification, the CAV Award was instituted this year with the first win-
ner announced at the conference, and a citation to appear in the proceedings
of the 21st CAV.

There were 131 paper submissions, divided into 104 regular and 27 tool pa-
pers. These went through an active review process, with each submission re-
viewed by at least 3, and on average 4, members of the Program Committee. We
also sought external reviews from experts in certain areas. Authors had the op-
portunity to respond to the initial reviews during an author response period. All
these inputs were used by the Program Committee in selecting a final program
with 33 regular papers and 14 tool papers.

In addition to the reviewed papers, the program included:

– A session recognizing the Turing Award winners, with invited talks by them
on the future of model checking.

– Two invited talks:
• Edward Felten (Princeton University): Coping with Outside-the-Box

Attacks
• James Larus (Microsoft Research): Singularity: Designing Better Software

– Four invited tutorials:
• Harry Foster (Mentor Graphics): Assertion-based Verification
• John Harrison (Intel): Theorem Proving for Verification
• Peter O’ Hearn (University of London): Tutorial on Separation Logic
• Reinhard Wilhelm (Saarland University): Abstract Interpretation with

Applications to Timing Validation

VI Preface

– Reports on the results of two competitions:
• The fourth Satisfiability Modulo Theories Competition (SMT-Comp)
• The second Hardware Model Checking Competition (HWMCC)

CAV 2008 had seven affiliated workshops:

– Automated Formal Methods (AFM)
– Bit-Precise Reasoning (BPR)
– Exploiting Concurrency Efficiently and Correctly ((EC)2)
– Formal verification of Analog Circuits (FAC)
– Heap Analysis and Verification (HAV)
– Numerical abstractions for Software Verification (NSV)
– Satisfiability Modulo Theories (SMT)

We gratefully acknowledge the support to CAV 2008 from Princeton Univer-
sity through facilities and other resources, the Institute for Advanced Study for
hosting the conference banquet, and our corporate sponsors – Cadence Design
Systems, IBM, Intel, Jasper Design Automation, Mentor Graphics, Microsoft
Research, NEC Labs America, and Synopsys – for their financial contributions.

Many individuals were very generous with their time and expertise that went
into putting the conference together. We thank the Program Committee and the
external reviewers for their efforts in the assessment and evaluation needed to
put together the technical program. We thank Alan Hu and Byron Cook for their
help in organizing the tutorials and workshops, respectively. We thank the CAV
2007 Chairs and organizers – Werner Damm, Holger Hermanns, and Jüergen
Niehaus – for their help and advice. We thank Avi Wigderson for his support for
the Conference Banquet, held at the Institute for Advanced Study. We thank the
CAV Steering Committee – Ed Clarke, Mike Gordon, Bob Kurshan and Amir
Pnueli – for their help and advice.

We would especially like to thank Tara Zarillo (Conference Services, Prince-
ton University), Stacey Weber Jackson (Electrical Engineering, Princeton Uni-
versity) and Susan Olson (Institute for Advanced Study) for their help with local
arrangements; Maggie Westergaard (Communications Office, Princeton Univer-
sity) for designing the conference poster; and Nadia Papakonstantinou (NEC
Labs America) for serving as the webmaster. We thank Andrei Voronkov for
creating and supporting the invaluable EasyChair conference management sys-
tem. Finally, we thank Springer for their help in publishing the 20th Anniversary
DVD Compendium (with proceedings of CAV 1-20), and for providing a com-
plimentary copy of the proceedings of the 25MC Workshop (held at FLoC 2006)
to all CAV 2008 attendees.

July 2008 Aarti Gupta
Sharad Malik

Conference Organization

Program Chairs

Aarti Gupta (NEC Laboratories America, USA)
Sharad Malik (Princeton University, USA)

Program Committee

Rajeev Alur (University of Pennsylvania, USA)
Nina Amla (Cadence, USA)
Clark Barrett (New York University, USA)
Armin Biere (Johannes Kepler Universitat Linz, Austria)
Roderick Bloem (TU Graz, Austria)
Ahmed Bouajjani (University Paris 7, France)
Alessandro Cimatti (IRST Trento, Italy)
Werner Damm (Carl von Ossietzky Universität Oldenburg, Germany)
Steven German (IBM, USA)
Ganesh Gopalakrishnan (University of Utah, USA)
Michael Gordon (University of Cambridge, UK)
Orna Grumberg (Technion, Israel)
David Harel (Weizmann Institute, Israel)
John Harrison (Intel, USA)
Thomas Henzinger (EPFL, Switzerland)
Holger Hermanns (Universität des Saarlandes, Germany)
Pei-Hsin Ho (Synopsys, USA)
Robert Jones (Intel, USA)
Daniel Kroening (Oxford University, UK)
Orna Kupferman (Hebrew University, Israel)
Shuvendu Lahiri (Microsoft Research, USA)
Rupak Majumdar (University of California – Los Angeles, USA)
Oded Maler (Verimag, France)
Kenneth McMillan (Cadence, USA)
Kedar Namjoshi (Alcatel-Lucent Bell Labs, USA)
Corina Pasareanu (NASA, USA)
Amir Pnueli (New York University)
Andreas Podelski (University of Freiburg, Germany)
Shaz Qadeer (Microsoft Research, USA)
Koushik Sen (University of California – Berkeley, USA)
Fabio Somenzi (University of Colorado, USA)
Ofer Strichman (Technion, Israel)
Karen Yorav (IBM Haifa, Israel)
Lenore Zuck (University of Illinois, USA)

VIII Organization

Organizing Committee

Tutorials Chair: Alan J. Hu (University of British Columbia, Canada)
Workshops Chair: Byron Cook (Microsoft Research, UK)

Steering Committee

Edmund M. Clarke (Carnegie Mellon University, USA)
Michael Gordon (University of Cambridge, UK)
Robert P. Kurshan (Cadence, USA)
Amir Pnueli (New York University, USA)

Sponsors

Princeton University
Cadence Design Systems
IBM
Intel Corporation
Jasper Design Automation
Mentor Graphics
Microsoft Research
NEC Laboratories America
Synopsys

Reviewers

Yasmina Abdeddaim
Parosh Abdulla
Alfred Aho
Daphna Amit
Eli Arbel
Gilad Arnold
Tamarah Arons
Cyrille Valentin Artho
Eugene Asarin
Joanne Atlee
Domagoj Babic
Christel Baier
Gogul Balakrishnan
Gérard Basler
Gregory Batt
Jason Baumgartner
Dirk Beyer
Kunal Bindal

Jesse Bingham
Per Bjesse
Nicolas Blanc
Mihaela Gheorghiu Bobaru
Marius Bozga
Marco Bozzano
Aaron Bradley
Davide Bresolin
Angelo Brillout
James Brotherston
Robert Brummayer
Roberto Bruttomesso
Annette Bunker
Sebastian Burckhardt
Luis Cáıres
Paul Caspi
Rohit Chadha
Yury Chebiryak

Organization IX

Xiaofang Chen
Ching-Tsun Chou
Christopher Conway
Scott Cotton
Cas Cremers
Vijay D’Silva
Dennis Dams
Thao Dang
Pallab Dasgupta
Alexandre David
Aldric Degorre
James Demmel
Henning Dierks
Alexandre Donzé
Laurent Doyen
Ashvin Dsouza
Stefan Edelkamp
Christian Eisentraut
Cindy Eisner
Michael Emmi
Görschwin Fey
Bernd Finkbeiner
Alain Finkel
Dana Fisman
Check Fleckenstein
Harry Foster
Anders Franzén
Goran Frehse
Martin Fränzle
Oded Fuhrmann
Masahiro Fujita
Pierre Ganty
Yeting Ge
Amit Goel
Dan Goldwasser
Mark Greenstreet
Karin Greimel
Alberto Griggio
Jim Grundy
Colas Le Guernic
Sumit Gulwani
Anubhav Gupta
Arie Gurfinkel
Peter Habermehl
Georg Hofferek

Florian Horn
Hardi Hungar
Michael Huth
Franjo Ivančić
Christian Jacobi
Joxan Jaffar
Himanshu Jain
Geert Janssen
Susmit Jha
Ranjit Jhala
Barbara Jobstmann
Pallavi Joshi
Dejan Jovanovic
Vineet Kahlon
Gila Kamhi
Sharon Keidar-Barner
Uri Klein
Alfred Koelbl
Dmitry Korchemny
Sava Krstic
Ekaterina Kutsy
Akash Lal
Rom Langerak
Francois Laroussinie
Kim Guldstrand Larsen
Tal Lev-Ami
Jeremy Levitt
Guodong Li
Rhishikesh Limaye
Yoad Lustig
P. Madhusudan
Alexander Malkis
Freddy Mang
Panagiotis Manolios
Maria Mateescu
Paulo Mateus
Arie Matsliah
Bill McCloskey
Yael Meller
Shin-ichi Minato
In-Ho Moon
Leonardo de Moura
David Naumann
Uwe Nestmann
Ziv Nevo

X Organization

Dejan Nickovic
Rotem Oshman
Joel Ouaknine
Chang-Seo Park
SeungJoon Park
Udo Payer
Dmitry Pidan
Ingo Pill
Carl Pixley
Alberto Policriti
Mitra Purandare
Zvonimir Rakamaric
Silvio Ranise
Jean-Francois Raskin
Kavita Ravi
Arend Rensink
Marco Roveri
Amitabha Roy
Pritam Roy
Abhik Roychoudhury
Mirron Rozanov
Theo Ruys
Michael Ryabtsev
Andrey Rybalchenko
Sriram Sankaranarayanan
Jun Sawada
Julien Schmaltz
Viktor Schuppan
Roberto Sebastiani
Peter-Michael Seidel
Sanjit A. Seshia
Subodh Sharma
Natasha Sharygina
Vitaly Shmatikov
Sharon Shoham

Stephen Siegel
Mihaela Sighireanu
Eli Singerman
Vasu Singh
Oleg Sokolsky
Scott Stoller
André Sülflow
Murali Talupur
Oliver Theel
Gregory Theoduloz
Ronald Tögl
Stefano Tonetta
Tayssir Touili
Stavros Tripakis
Viktor Vafeiadis
Martin Vechev
Helmut Veith
Michael Veksler
Miroslav Velev
Yakir Visel
Willem Visser
Anh Vo
Tomas Vojnar
Bjoern Wachter
Silke Wagner
Thomas Wahl
Ou Wei
Georg Weissenbacher
Bernd Westphal
Thomas Wies
Christoph M. Wintersteiger
Verena Wolf
Jin Yang
Yu Yang
Greta Yorsh

CAV Award

An annual award, called the CAV Award, has been established:
“For a specific fundamental contribution or a series of outstanding contribu-

tions to the field of computer-aided verification.”
The cited contribution(s) must have been made not more recently than 5

years ago and not over 20 years ago. In addition, the contribution(s) should not
yet have received recognition via a major award, such as the ACM Turing or
Kanellakis Awards. (The nominee may have received such an award for other
contributions.)

The award of $10,000 will be granted to an individual or group of individuals
chosen by the Award Committee from a list of nominations. The Award Com-
mittee will select the nomination that most compellingly demonstrates a specific
fundamental contribution or a series of outstanding contributions to the field of
computer-aided verification, evidenced by its influence over the last 5–20 years,
and ratified by a majority of the Award Committee. If the Award Committee does
not so ratify any nomination, then no award shall be made in the given year.

The CAV Award shall be presented in an award ceremony at the Computer-
Aided Verification Conference.

The Award Committee will provide a detailed citation that explains the basis
of the award. This citation will be published together with selected papers from
the conference in a forthcoming Special Issue of a Journal of Record. The present
Journal of Record is the Springer journal Formal Methods in System Design.

Anyone, with the exception of members of the Award Committee, is eligible
to receive the Award.

CAV Award Process

A description of the full process governing the administration of the CAV Award
follows. This will also be published in the Journal of Record in which the citation
for the first CAV Award is given.

Nominations

Anyone can submit a nomination. The Award Committee can originate a
nomination.

A nomination must state clearly the contribution(s), explain why the con-
tribution is fundamental or the series of contributions is outstanding, and be
accompanied by supporting letters and other evidence of worthiness. Nomina-
tions should include a proposed citation (up to 25 words), a succinct (100-250
words) description of the contribution(s), and a detailed statement to justify the
nomination.

XII CAV Award

A call for nominations will be part of the CAV call for papers, with the same
deadline as for papers.

Nominations shall be sent to the Award Committee Chair.

Award Committee

The Award Committee consists of four individuals, each of whom shall have been
an author of a paper accepted by CAV within the previous five years, unless this
requirement is waived by the CAV Steering Committee. The members of the CAV
Steering Committee are not eligible to serve on the Award Committee.

Two members of the Award Committee shall hold positions in the United
States and two shall hold non-U.S. positions.

The four positions on the Award Committee are referred to as p 1, p 2, p 3
and p 4. The Steering Committee has appointed the first Award Committee to
the respective positions.

The tenure of a member in position p i will be i years.
In respective subsequent years, the member in position p 1 will retire, the

member in position p i (i > 1) will assume position p (i − 1), and the current
Award Committee will select a member to fill position p 4 in the following year,
by a majority vote of the current Award Committee.

The retiring member in position p 1 will not be selected for position p 4 in
the following year, in order to assure turn-over in the Award Committee.

The member in position p 1 will serve as Chair of the Award Committee,
with the responsibility of receiving nominations, distributing them to the other
members of the Award Committee, and overseeing the selection processes for
the Award and new member.

The Award Committee will take into account all individuals who have con-
tributed to an awarded accomplishment, as well as independent discoveries of
an awarded accomplishment, and assure that all individuals are treated fairly.

Awards will be for contributions not already honored by another major award.
The 2008 CAV Award Committee consisted of Thomas Henzinger (Chair),

Randal Bryant, Orna Grumberg, and Moshe Vardi.
The 2009 CAV Award Committee consists of Randal Bryant (Chair), Orna

Grumberg, Moshe Vardi, and Joseph Sifakis.

Rights of the Steering Committee

In the event of an unanticipated vacancy of a sitting Award Committee, the
Steering Committee will assign someone to fill the vacated position.

Any circumstances that are unaccounted for through the above process will be
resolved by the Steering Committee. The Steering Committee reserves the right
to change the amount of the award, change the Journal of Record for citations or
dissolve the Award Committee and cancel the CAV Award at any time.

The Steering Committee reserves the right to veto the selection by the Award
Committee of a member for position p 4, in which case the Award Committee
will select someone else.

Table of Contents

Invited Talks

Singularity: Designing Better Software . 1
James R. Larus

Coping with Outside-the-Box Attacks . 3
Edward W. Felten

Invited Tutorials

Assertion-Based Verification: Industry Myths to Realities 5
Harry Foster

Theorem Proving for Verification . 11
John Harrison

Tutorial on Separation Logic . 19
Peter O’Hearn

Abstract Interpretation with Applications to Timing Validation 22
Reinhard Wilhelm and Björn Wachter

Session 1: Concurrency

Reducing Concurrent Analysis Under a Context Bound to Sequential
Analysis . 37

Akash Lal and Thomas Reps

Monitoring Atomicity in Concurrent Programs . 52
Azadeh Farzan and P. Madhusudan

Dynamic Verification of MPI Programs with Reductions in Presence of
Split Operations and Relaxed Orderings . 66

Sarvani Vakkalanka, Ganesh Gopalakrishnan, and Robert M. Kirby

A Hybrid Type System for Lock-Freedom of Mobile Processes 80
Naoki Kobayashi and Davide Sangiorgi

Session 2: Memory Consistency

Implied Set Closure and Its Application to Memory Consistency
Verification . 94

Surender Baswana, Shashank K. Mehta, and Vishal Powar

XIV Table of Contents

Effective Program Verification for Relaxed Memory Models 107
Sebastian Burckhardt and Madanlal Musuvathi

Mechanical Verification of Transactional Memories with
Non-transactional Memory Accesses . 121

Ariel Cohen, Amir Pnueli, and Lenore D. Zuck

Session 3: Abstraction/Refinement

Automated Assume-Guarantee Reasoning by Abstraction Refinement . . . 135
Mihaela Gheorghiu Bobaru, Corina S. Păsăreanu, and
Dimitra Giannakopoulou

Local Proofs for Linear-Time Properties of Concurrent Programs 149
Ariel Cohen and Kedar S. Namjoshi

Probabilistic CEGAR . 162
Holger Hermanns, Björn Wachter, and Lijun Zhang

Session 4: Hybrid Systems

Computing Differential Invariants of Hybrid Systems as Fixedpoints 176
André Platzer and Edmund M. Clarke

Constraint-Based Approach for Analysis of Hybrid Systems 190
Sumit Gulwani and Ashish Tiwari

Session 5: Tools – Dynamic Verification

AutoMOTGen: Automatic Model Oriented Test Generator for
Embedded Control Systems . 204

Ambar A. Gadkari, Anand Yeolekar, J. Suresh, S. Ramesh,
Swarup Mohalik, and K.C. Shashidhar

FShell: Systematic Test Case Generation for Dynamic Analysis and
Measurement . 209

Andreas Holzer, Christian Schallhart, Michael Tautschnig, and
Helmut Veith

Session 6: Modeling and Specification Formalisms

Applying the Graph Minor Theorem to the Verification of Graph
Transformation Systems . 214

Salil Joshi and Barbara König

Conflict-Tolerant Features . 227
Deepak D’Souza and Madhu Gopinathan

Table of Contents XV

Ranking Automata and Games for Prioritized Requirements 240
Rajeev Alur, Aditya Kanade, and Gera Weiss

Session 7: Decision Procedures

Efficient Craig Interpolation for Linear Diophantine (Dis)Equations
and Linear Modular Equations . 254

Himanshu Jain, Edmund Clarke, and Orna Grumberg

Linear Arithmetic with Stars . 268
Ruzica Piskac and Viktor Kuncak

Inferring Congruence Equations Using SAT . 281
Andy King and Harald Søndergaard

Session 8: Tools – Decision Procedures

The Barcelogic SMT Solver . 294
Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras,
Enric Rodŕıguez-Carbonell, and Albert Rubio

The MathSAT 4 SMT Solver . 299
Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén,
Alberto Griggio, and Roberto Sebastiani

CSIsat: Interpolation for LA+EUF . 304
Dirk Beyer, Damien Zufferey, and Rupak Majumdar

Prover’s Palette: A User-Centric Approach to Verification with Isabelle
and QEPCAD-B . 309

Laura I. Meikle and Jacques D. Fleuriot

Session 9: Program Verification

Heap Assumptions on Demand . 314
Andreas Podelski, Andrey Rybalchenko, and Thomas Wies

Proving Conditional Termination . 328
Byron Cook, Sumit Gulwani, Tal Lev-Ami,
Andrey Rybalchenko, and Mooly Sagiv

Monotonic Abstraction for Programs with Dynamic Memory Heaps 341
Parosh Aziz Abdulla, Ahmed Bouajjani, Jonathan Cederberg,
Frédéric Haziza, and Ahmed Rezine

Enhancing Program Verification with Lemmas . 355
Huu Hai Nguyen and Wei-Ngan Chin

XVI Table of Contents

Session 10: Program and Shape Analysis

A Numerical Abstract Domain Based on Expression Abstraction and
Max Operator with Application in Timing Analysis 370

Bhargav S. Gulavani and Sumit Gulwani

Scalable Shape Analysis for Systems Code . 385
Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno,
Byron Cook, Dino Distefano, and Peter O’Hearn

Thread Quantification for Concurrent Shape Analysis 399
J. Berdine, T. Lev-Ami, R. Manevich, G. Ramalingam, and M. Sagiv

Session 11: Tools – Security and Program Analysis

The Scyther Tool: Verification, Falsification, and Analysis of Security
Protocols . 414

Cas J.F. Cremers

The CASPA Tool: Causality-Based Abstraction for Security Protocol
Analysis . 419

Michael Backes, Stefan Lorenz, Matteo Maffei, and Kim Pecina

Jakstab: A Static Analysis Platform for Binaries . 423
Johannes Kinder and Helmut Veith

THOR: A Tool for Reasoning about Shape and Arithmetic 428
Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay

Session 12: Hardware Verification I

Functional Verification of Power Gated Designs by Compositional
Reasoning . 433

Cindy Eisner, Amir Nahir, and Karen Yorav

A Practical Approach to Word Level Model Checking of Industrial
Netlists . 446

Per Bjesse

Session 13: Hardware Verification II

Validating High-Level Synthesis . 459
Sudipta Kundu, Sorin Lerner, and Rajesh Gupta

An Algebraic Approach for Proving Data Correctness in Arithmetic
Data Paths . 473

Oliver Wienand, Markus Wedler, Dominik Stoffel,
Wolfgang Kunz, and Gert-Martin Greuel

Table of Contents XVII

Application of Formal Word-Level Analysis to Constrained Random
Simulation . 487

Hyondeuk Kim, Hoonsang Jin, Kavita Ravi, Petr Spacek,
John Pierce, Bob Kurshan, and Fabio Somenzi

Session 14: Model Checking

Producing Short Counterexamples Using “Crucial Events” 491
Sujatha Kashyap and Vijay K. Garg

Discriminative Model Checking . 504
Peter Niebert, Doron Peled, and Amir Pnueli

Session 15: Space Efficient Algorithms

Correcting a Space-Efficient Simulation Algorithm 517
Rob van Glabbeek and Bas Ploeger

Semi-external LTL Model Checking . 530
Stefan Edelkamp, Peter Sanders, and Pavel Šimeček

Session 16: Tools – Model Checking

QMC: A Model Checker for Quantum Systems . 543
Simon J. Gay, Rajagopal Nagarajan, and Nikolaos Papanikolaou

T(O)RMC: A Tool for (ω)-Regular Model Checking 548
Axel Legay

Faster Than Uppaal . 552
Sebastian Kupferschmid, Martin Wehrle, Bernhard Nebel, and
Andreas Podelski

Author Index . 557

Singularity: Designing Better Software

(Invited Talk)

James R. Larus

Microsoft Research
One Microsoft Way
Redmond WA 98052
larus@microsoft.com

http://research.microsoft.com/~larus

Five years ago, frustrated by the never-ending process of finding bugs that de-
velopers had cleverly hidden throughout our software, I started a new project
with Galen Hunt to rethink what software might look like if it was written, from
scratch, with the explicit intent of producing more robust and reliable software
artifacts. The Singularity project [1] in Microsoft Research pursued several novel
strategies to this end. It has successfully encouraged researchers and product
groups to think beyond the straightjacket of time-tested software architectures,
to consider new solutions that cross the bounds of academic disciplines such as
programming languages, operating systems, and tools.

Singularity built a new operating system using a new programming language,
new software architecture, and new verification tools. The Singularity OS incor-
porates a system architecture based on software isolation of processes. Sing#,
the programming language is an extension of C# that provides pre- and post-
conditions; object invariants; verifiable, first-class support for OS communication
primitives; and strong support for systems programming and code factoring.

From its start, the Singularity project was driven by the question of what
would a software platform look like if it was designed with the primary goal of
improving the reliability and robustness of software? To this end, we adopted
three strategies. First, Singularity is almost entirely written in a safe, modern
programming language, which eliminates many serious defects such as buffer
overruns. Second, the system architecture limits the propagation of runtime er-
rors by providing numerous, inexpensive, well-defined failure boundaries, thereby
making it easier to achieve robust and correct system behavior, even in the pres-
ence of imperfect software. Finally, Singularity was designed from the start to
facilitate the widespread use of sound program verification tools, with the belief
that these tools could provide strong guarantees that entire classes of errors were
eliminated.

The success of Singularity raises the possibility that it is time to rethink the
traditional design, architecture, and construction practices for software in light
of its increasingly central role in the world and the unprecedented threats to its
security and integrity. It also poses interesting questions about today’s balance

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 1–2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 J.R. Larus

of effort between finding defects in existing software and developing the next
generation of languages and tools, which could make a qualitative improvement
in software robustness. The advent of parallel programming, occasioned by the
Multicore revolution, makes these changes even more relevant, as this sea change
opens the door for other radical changes in software.

References

1. Hunt, G., Larus, J.: Singularity: Rethinking the Software Stack. Operating System
Review 41, 37–49 (2007)

Coping with Outside-the-Box Attacks

Edward W. Felten

Department of Computer Science
and

Woodrow Wilson School of Public and International Affairs
Princeton University

There is a long history of security attacks that succeed by violating the system
designer’s assumptions about how things work. Even if a designer does everything
right—within the “obvious” model—such attacks can still succeed. How can we,
as designers and verifiers of systems, cope with these “outside-the-box” attacks?

The classic examples of assumption-violating attacks are the timing attacks
on cryptosystems first introduced by Kocher [1]. Cryptosystems are designed so
that an attacker who has black-box access to an implementation (and does not
know the secret key) cannot deduce the key. Extensive mathematical analysis of
the input-output behavior of cryptographic functions led to the belief (though
unfortunately not proof) that an attacker who can observe the input-output
behavior of cryptosystems cannot feasibly find the secret key. Kocher showed
that even if this is true, the running time of common cryptographic algorithms
does depend on the secret key. Though the dependence of running time on the
key is complex, Kocher showed how to use randomized experiments to extract
enough signal to deduce the key, at least in principle. Brumley and Boneh later
showed that such attacks are practical, even across a network[2].

Systems can be redesigned to resist Kocher-style timing attacks, and many
systems were redesigned after the attacks became known. However, any new
attack that breaks existing systems imposes significant cost and puts existing
systems at risk. Designers began to worry that more outside-the-box attacks
might be coming.

This fear turned out to be justified, as more attacks on cryptosystems were
uncovered. Kocher, Jaffe, and Jun discovered that the power consumption of
crypto implementations leaked information about their internal computations,
allowing secret keys to be discovered. Fine-grained fluctuations in power con-
sumption during a computation turned out to leak even more information [3].
Again, systems could be redesigned—though not so easily this time—but again
existing systems were vulnerable.

Cryptosystems fell victim to other outside-the-box attacks. Boneh, DeMillo,
and Lipton showed how to defeat public-key cryptosystems by inducing faults
in the cryptographic computation. Remarkably, even if the attacker couldn’t
determine exactly where, when, and how the error occurred, just knowing there
was an error and having access to the corrupted output was sufficient to deduce
the secret key in most cases [4]. Biham and Shamir found a similar result for

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 3–4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

4 E.W. Felten

symmetric cryptosystems [5]. More systems had to be redesigned, even though
they were secure under (then-)existing models.

Similar attacks worked in non-crypto settings as well. Kuhn and Anderson
showed attacks on satellite television smartcards [6]. Govindavajhala and Ap-
pel showed how to break Java virtual machine security by using heatlamps to
generate thermal errors in PC execution [7]. Several researchers showed how
to breach security barriers by observing the timing of execution. Halderman et
al. defeated operating system memory protection by cooling DRAM chips then
cutting system power [8].

The upshot of all this is that outside-the-box attacks seem to be a fact of life.
We can expect to see more attacks new unexpected attack modes. Though we
can’t predict what the attacks will be, we know they are coming. How can we,
as system designers and verifiers, cope?

We are often advised to think outside the box. While it is good to widen
our horizons and think creatively from time to time, “think outside the box” is
not really actionable advice. What we need instead is to find a better box—one
whose boundaries are not so often broken.

How exactly to do this is not a question we can answer now. One goal of
this presentation is to catalyze a discussion about how we might improve our
models, or how we might design systems to be more resilient against failures of
our models to match reality. Until we can answer this question, our systems will
remain fragile, no matter how hard we work on verifying them.

References

1. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems, 104–113 (1996)

2. Brumley, D., Boneh, D.: Remote timing attacks are practical (1996)
3. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)
4. Boneh, D., DeMillo, R., Lipton, R.: On the importance of checking cryptographic

protocols for faults. Journal of Cryptology 14(2), 101–119 (2001)
5. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:

Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

6. Anderson, R., Kuhn, M.: Tamper resistance - a cautionary note. In: Proc. USENIX
Workshop on Electronic Commerce, pp. 1–11 (November 1996)

7. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine.
In: Proc. IEEE Symposium on Security and Privacy (May 2003)

8. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot
attacks on encryption keys. In: Proc. USENIX Security Symposium (2008)

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 5–10, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Assertion-Based Verification:
Industry Myths to Realities

(Invited Tutorial)

Harry Foster

Mentor Graphics Corporation
Plano, Texas

Harry_Foster@mentor.com

Abstract. Debugging, on average, has grown to consume more than 60% of to-
day’s ASIC and SoC verification effort. Clearly, this is a topic the industry must
address, and some organizations have done just that. Those that have adopted
an assertion-based verification (ABV) methodology have seen significant re-
duction in simulation debugging time (as much as 50% [1]) due to improved
observability. Furthermore, organizations that have embraced an ABV method-
ology are able to take advantage of more advanced verification techniques, such
as formal verification, thus improving their overall verification quality and re-
sults. Nonetheless, even with multiple published industry case studies from
various early adopters—each touting the benefits of applying ABV—the indus-
try as a whole has resisted adopting assertion-based techniques. This tutorial
provides an industry survey of today’s ABV landscape, ranging from myths to
realities. Emerging challenges and possible research opportunities are dis-
cussed. The following extended abstract provides a reference on which the tuto-
rial builds.

Keywords: Assertion, Assertion-Based Verification, Debugging, Formal Veri-
fication, Functional Verification, Property Specification, Simulation.

1 Introduction

Ensuring functional correctness on RTL designs continues to pose one of the greatest
challenges for today's ASIC and SoC design teams. Very few project managers would
disagree with this statement. In fact, an often cited 2004 industry study by Collett
International Research revealed that 35 percent of the total ASIC development effort
was spent in verification [2]. In 2008, Far West Research published a study that indi-
cated the verification effort has risen to 46 percent of the total ASIC development
effort [3]. Furthermore, these industry studies reveal that debugging is the fastest-
growing component of the verification effort, and that it consumes 60 percent of the
total verification effort. Unfortunately, with this increase in verification effort, the
industry has not experienced a measurable increase in quality of results. For example,
the Collett International Research study focused on design closure and revealed that
only 29 percent of projects developing ASICs were able to achieve first silicon

6 H. Foster

success. To make matters worse, the industry is witnessing increasing pressure to
shorten the overall ASIC and SoC development cycle. Clearly, new design and verifi-
cation techniques, combined with a focus on maturing functional verification process
capabilities within an organization (and the industry as a whole), are required. Asser-
tion-based verification (ABV), although certainly not an end-all to the verification
challenge, does directly address today’s debugging problem, while providing an inte-
gration path for more advanced forms of verification into the design flow (such as
formal verification). This tutorial discussion provides a survey of today’s ABV land-
scape, ranging from assertion language standardization efforts to industry case-
studies, to common industry myths and objections that are impeding adoption, to
emerging challenges and research opportunities.

2 Background

Alan Turing made the following observation over 50 years ago [4]: “How can one
check a large routine in the sense of making sure that it's right? In order that the man
who checks may not have too difficult a task, the programmer should make a number
of definite assertions which can be checked individually, and from which the correct-
ness of the whole program easily flows.” In essence, this view is at the heart of ABV.

Informally, an assertion is a statement of design intent that can be used to specify
design behavior. Assertions may specify internal design behaviors (such as a specific
FIFO structure) or external design behavior (such as protocol rules or even higher-
level, end-to-end behavior that spans multiple design blocks). One key characteristic
of assertions is that they allow the user to specify what the design is supposed to do at
a high level of abstraction, without having to describe the details of how the design
intent is to be implemented. Thus, this abstract view of the design intent is ideal for
the verification process—whether we are specifying high-level requirements or lower-
level internal design behavior by means of assertions.

As a background for the ABV discussion, this tutorial traces events (from an indus-
try perspective) that led to the emergence of assertion-based techniques.

3 The Road to Assertion Language Standards

Assertions are certainly not a new phenomenon in either software programming or
hardware description languages. For example, languages such as Java and VHDL
have contained simple assertion constructs for years —thus providing a convenient
mechanism for ferreting out a class of bugs that can be identified by checking a Boo-
lean condition (such as referencing a NULL pointer). Today’s assertion languages,
such as the IEEE Std 1850™-2005 Standard for Property Specification Language
(PSL) and the assertion language contained within the IEEE Std 1800™-2005 Sys-
temVerilog Verification and Hardware Description Language (SVA), not only allow
the user to specify Boolean conditions, but also their relation over time using tempo-
ral logic and a generalized form of regular expressions.

The foundation for today’s assertion language standards is built on the works of
Amir Pnueli (linear time logic LTL [5]), and Ed Clarke and Allen Emerson (computa-
tion tree logic CTL [6]). Furthermore, the works of Moshe Vardi and Pierre Wolper

 Assertion-Based Verification: Industry Myths to Realities 7

provided significant contributions in that they helped improve expressiveness of LTL
through the use of regular sequences of Boolean events [7, 8, 9]. Extending the ex-
pressiveness of CTL was later demonstrated by [10].

In the early 1990’s, researchers at the IBM Haifa Research Laboratory developed
the temporal language Sugar, which was a syntactic simplification (or sugaring) of
CTL. The goal was to simplify the specification process for the RuleBase model
checker. To improve usability and expressiveness, regular expressions were added to
the language in the mid 1990’s [11]. By the late 1990’s, IBM had expanded its use of
the Sugar assertion language for simulation [1].

With a similar motive, researchers at Intel Strategic CAD Labs developed the For-
Spec property specification language, whose underlying logic is the ForSpec Tempo-
ral Logic (FTL) [12], which is based on LTL. Their decision to base FTL on LTL was
driven by a desire to combine formal verification and dynamic validation techniques
in a limited fashion. Furthermore, experience had demonstrated that mainstream veri-
fication engineers generally find branching time unintuitive—particularly since they
are familiar with dynamic validation, which is inherently linear.

In 2000, both Sugar and ForSpec, in addition to the temporal property languages
CBV from Motorola and Temporal e from Verisity, were donated to Accellera Formal
Verification Technical Committee (FVTC) as candidate languages for standardiza-
tion. The process within the committee was to establish a set of requirements for an
assertion language and select a single language from four candidates. The final selec-
tion would then form the basis for the new standard, which then would undergo modi-
fication and enhancements dictated by the language requirements identified by the
committee. For example, one of the committee’s identified requirements was that its
underlying semantics for the final standard should be based on linear time. This re-
quirement influenced the IBM team to move Sugar from its branching-time semantics
based on CTL to the linear-time semantics of LTL. In 2002, the FVTC selected Sugar
as the base language, and it was approved by Accellera in 2004. Ultimately, the IEEE
1850™-2005 Property Specification Language PSL standard, based on the Accellera
standard, was approved in October 2005 [13].

In 2002, work was underway in Accellera for the creation of a new version of Ver-
ilog, which would combine hardware description and hardware verification language
capabilities into a single language. This effort resulted in the IEEE 1800™-2005 Sys-
temVerilog – Unified Hardware Design, Specification, and Verification Language
standard, which was approved in November 2005. A major feature of this new lan-
guage was the addition of temporal assertions, referred to as SystemVerilog Asser-
tions (SVA). SVA has its roots in Open Vera Assertions (from Synopsys), ForSpec,
and PSL. SVA provides direct links to control the verification environment by using
action blocks associated with its cover and assertion directives. This capability allows
the user to create reusable verification IP that can easily communicate with other
verification components within the testbench, thus providing a separation between
verification IP detection and action. In addition, the language provides a convenient
mechanism for expressing a data integrity class of properties through the use of local
variables. An SVA local variable provides the benefit of sampling and manipulating
data in a property or sequence without requiring the property writer to define auxiliary
state machines to model the intended behavior [14].

8 H. Foster

This tutorial compares and contrasts these two new industry standards, PSL and
SVA, and then discusses future language directions for both.

3 Industry Challenges

A few industry surveys indicate that approximately 60 percent of the industry is cur-
rently employing assertion-based techniques [15]. However, these surveys are flawed
in that they were conducted at conferences with a large attendance of engineers al-
ready using advanced verification techniques. From my own experience of engaging
with a larger more diverse population of engineers in the industry, ranging from the
extremely advanced to extremely basic, I would estimate that the figure is closer to 25
percent. Hence, it is a myth that ABV is a mainstream process. Increased adoption
will only occur as organizations begin to invest in maturing their process capabilities.

In the early 1990’s, the design community moved design up a level of abstraction
from gate level to RT level. You will see evidence of this shift in Fig. 1, with the
increase in the curve representing our ability to design larger blocks [3]. Yet even
with today’s synthesis breakthroughs in design productivity, designing and synthesiz-
ing RTL entirely from scratch cannot keep pace with what we are capable of fabricat-
ing. Hence, third-party IP that moves design to the transaction level will be necessary
to increase design productivity.

Fig. 1. Productivity gap, as reported by the Collett 2004 industry study [2]

Upon further examining Fig. 1, you might be drawn to the disparity between what
we can design and what we are able to verify. Yet in many respects, the data in Fig. 1
seems to defy reality. Design teams actually do verify complex chips today, which is
obvious from the myriad new electronic products available. In fact, today’s verifica-
tion gap is not due to a lack of innovation in verification technology. What differenti-
ates a successful team from an unsuccessful team is process and adoption of new
verification methods. Unsuccessful teams tend to approach development in an ad hoc

 Assertion-Based Verification: Industry Myths to Realities 9

fashion, while successful teams employ a more mature level of methodology that is
systematic.

In this tutorial, I present multiple case studies illustrating successful integration of
ABV by more advanced verification teams. In addition, I present case studies that
illustrate multiple challenges faced by mainstream verification teams when attempting
to adopt assertion-based techniques.

4 Future Direction and Research Opportunities

The industry is currently facing a design and verification productivity crisis, as illus-
trated by Fig. 1. Today’s RTL-based flows cannot accommodate rapid iterations in
design explorations, nor can they accommodate late stage changes in design features
required by the growing consumer and wireless electronics market. Historically, in-
creases in productivity have been achieved by raising the level of design and verifica-
tion abstraction. Today, industry is just beginning to witness a shift in abstraction
level from RTL to transaction level. While the increase in abstraction offers many
advantages, there are a number of unanswered questions in terms of how to describe
design intent (that is, assertions) on transaction-level models. These unanswered ques-
tions present opportunities for future research.

In this tutorial, I present a number of ABV research opportunities, which are based
on discussions with multiple tool developers and industry experts currently applying
assertion-based techniques.

References

1. Abarbanel, Y., Beer, I., Gluhovsky, L., Keidar, S., Wolfsthal, Y.: FoCs—Automatic Gen-
eration of Simulation Checkers from Formal Specifications. In: Proc. 12th International
Conference Computer Aided Verification, pp. 414–427 (2000)

2. 2004 IC/ASIC Functional Verification Study, Industry report from Collett International
Research, p. 34 (2004)

3. EDA Market Statistics Service Report, Far West Research (2008)
4. Turing, A.: In Report of a conference on high speed automatic calculating machines, pp.

67–69, Univ. Math. Laboratory, Cambridge (1949)
5. Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symp. on Foundation of

Computer Science, pp. 46–57 (1977)
6. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using

branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS,
vol. 131, pp. 52–71. Springer, Heidelberg (1982)

7. Wolper, P.: Temporal logic can be more expressive. Information and Control 56(1/2), 72–
99 (1983)

8. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Compu-
tation 115(1), 1–37 (1994)

9. Vardi, M.Y.: Branching vs. linear time: Final showdown. In: Margaria, T., Yi, W. (eds.)
ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, Springer, Heidelberg (2001)

10. Iwashita, H., Nakata, T.: Forward Model Checking Techniques Oriented to Buggy De-
signs. In: International Conference on Computer Aided Design, ICCAD (1997)

11. Beer, I., Ben-David, S., Landver, A.: On-the-fly model checking of RCTL formulas. In:
Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 184–194. Springer, Heidelberg (1998)

10 H. Foster

12. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-
Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The ForSpec Temporal
Logic: A New Temporal Property-Specification Language. In: Katoen, J.-P., Stevens, P.
(eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 296–311. Springer, Heidel-
berg (2002)

13. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg (2006)
14. Long, J., Seawright, A.: Synthesizing SVA Local Variables for Formal Verification. In:

Proceedings of the 44th Design Automation Conference, DAC 2007, pp. 75–80 (2007)
15. Verification Census, extracted from the world-wide-web on April 16 (2008),

 http://www.deepchip.com/posts/dvcon07.html

Theorem Proving for Verification
(Invited Tutorial)

John Harrison

Intel Corporation, JF1-13
2111 NE 25th Avenue, Hillsboro OR 97124, USA

johnh@ichips.intel.com

1 The Scope of Automation

There are numerous verification techniques in active use. Traditional testing and sim-
ulation usually only provide a limited guarantee, since they can seldom exercise all
possible situations. Methods based on abstraction consciously simplify the problem to
make its complete analysis tractable, but still do not normally completely verify the ul-
timate target. We will confine ourselves here to full formal verification techniques that
can be used to prove complete correctness of a (model of a) system with respect to a
formal specification. Roughly speaking, these methods model the system and specifi-
cation in a logical formalism and then apply general methods to determine whether the
formal expressions are valid, indicating correctness of the model with respect to the
specification. Typical formalisms include:

– Propositional logic, a.k.a. Boolean algebra
– Temporal logic (CTL, LTL etc.)
– Quantifier-free combinations of first-order theories
– Full first-order logic
– Higher-order logic or first-order logic with arithmetic or set theory

This list is organized approximately in order of increasing logical generality, with
formalisms later in the list often subsuming earlier ones. But there is a price to be
paid for this generality: deciding validity in the formalisms becomes successively more
difficult.

Testing validity (tautology) for propositional logic is just [the dual of] the well-
studied propositional satisfiability problem (SAT), and even though the problem is
known to be [co-]NP-complete [15], there are many reasonable algorithms [4,17,33,59]
and some of these are implemented in practical SAT solvers with very good perfor-
mance on typical problems, e.g. [22,26,46]. Many temporal logics, even quite rich ones,
permit efficient ‘model checking’ algorithms based on explicit-state reachability analy-
sis [13,52], its symbolic refinement [7] or automata-related techniques [68]. Algorithms
for testing validity of formulas without quantifiers in combinations of common first-
order theories like linear arithmetic and lists, originating in [47] and further studied in
many recent papers [48,40], have been implemented in a series of tools now commonly
known as SMT (Satisfiability Modulo Theories) solvers [2].

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 11–18, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

12 J. Harrison

Once we reach full first-order logic, where we allow arbitrary use of the quantifiers
‘for all’ and ‘there exists’ over domain objects, the validity problem actually becomes
undecidable [12,66]. However it is at least semidecidable, and there has been an exten-
sive line of research in developing first-order provers, going right back to [18,24] and
leading to several effective search algorithms incorporating unification, most famously
resolution [54]. There are many good modern implementations of first-order proof
search, and they have even occasionally answered significant open problems [43,44].
Yet the scope in principle of first-order logic is vast: any deductive inference from the
accepted set-theoretic axioms of mathematics can in principle be found by first-order
proof search. In contrast with this, the practical scope of these methods is tiny.

As soon as we reach higher-order logic, where quantification over functions or predi-
cates is allowed, the problem is no longer even semidecidable [25,60]; in fact this holds
even if we merely ask whether first-order formulas about arithmetic are true, as distinct
from being deductive consequences of some decidable axioms. A particularly sharp
form of this result is the undecidability of Hilbert’s 10th problem [42]: there is no al-
gorithm to decide whether a multivariate polynomial equation has a solution over the
integers.

2 Interactive Theorem Proving

Traditionally, in the ‘theorem proving’ approach to verification, one works in a relatively
expressive formalism such as higher-order logic, and accepts the fact that automation
of the validity checking process is going to be impossible, or at least practically infea-
sible. Instead, one approaches the task in a more deductive way just like a traditional
mathematical proof, verifying the result by machine, but applying a sequence of logical
reasoning principles wholly or partly under human guidance. In fact, interactive theo-
rem provers in this sense only appeared some time after the first experiments with fully
automated provers, perhaps in disillusionment over their relatively limited scope. The
first interactive provers in the modern sense were probably the SAM (semi-automated
mathematics) series, whose manifesto stated [29]:

Semi-automated mathematics is an approach to theorem-proving which seeks
to combine automatic logic routines with ordinary proof procedures in such
a manner that the resulting procedure is both efficient and subject to human
intervention in the form of control and guidance. Because it makes the math-
ematician an essential factor in the quest to establish theorems, this approach
is a departure from the usual theorem-proving attempts in which the computer
unaided seeks to establish proofs.

Nowadays there is active research activity in both ‘interactive’ and ‘automated’ theo-
rem proving. Not long after the SAM project, the AUTOMATH [19,20], Mizar [64,65],
NQTHM [3] and LCF [28] proof checkers appeared, and each of them in its way has
been profoundly influential. Many of the most successful interactive theorem provers
around today are directly descended from one (or more) of these. As well as the auto-
mated methods we have already mentioned, such as SMT and first-order proving, there

Theorem Proving for Verification 13

have been some successes for more specialized automated methods, e.g. in real algebra
[14,61], polynomial ideals [5,39] and geometry [11,69].

It is desirable to make even ‘interactive’ provers as efficient as possible by incor-
porating powerful automated subsystems, so that the human can focus on the really
difficult and creative parts of the proof. One approach is simply to combine the inter-
active provers with automated external systems [36,53,56]. However, most interactive
theorem provers aim to prove theorems with a high degree of logical rigor, so relying
on external tools is not uncontroversial. One way of combining efficiency and rigor is
to use the external tool only to provide a certificate that the theorem prover can rela-
tively easily check in a rigorous fashion [32]. Indeed, one can even have the external
tool provide a complete logical proof, in the case of an automated theorem prover [34].

There are numerous interactive theorem provers in the world. The book [70] gives an
instructive survey of some of the main interactive theorem provers: HOL, Mizar, PVS,
Coq, Otter/IVY, Isabelle/Isar, Alfa/Agda, ACL2, PhoX, IMPS, Metamath, Theorema,
Lego, Nuprl, Omega, B and Minlog. In each case, a proof of the irrationality of

√
2 is

given, and some of the key features surveyed.

3 Why Theorem Proving?

Experience suggests, unsurprisingly, that highly automated techniques such as symbolic
simulation [9], symbolic trajectory evaluation [57] and model checking [7] are much
easier to learn, and often more productive to use, than methods like theorem proving
that rely more on human interaction. They therefore tend to win acceptance much more
easily, particularly in industrial practice but even in terms of academic interest. For
example, the idea of using temporal logic for program verification goes at least back
to [8,50]. Yet this attracted relatively little interest until the subsequent development
of effective decision algorithms, particularly symbolic model checking. So with this
in mind, why would one want to use theorem proving instead of model checking or
other highly automated techniques? We can think of several reasons, which we rank in
approximately decreasing order of perceived importance.

3.1 Beyond the Scope of Automated Methods

Some problems are simply not in the scope of any of the mainstream automated meth-
ods. Anything of interest about a finite-state transition system is decidable in principle,
and thanks to model checkers, quite effectively in practice. But this trivial decidability
breaks down as soon as we start to think about infinite-state systems, or even systems
of an arbitrary finite size. For example, in a multiprocessor cache system with N nodes,
we can usually model the essentials of cache coherence as a reachability problem in
a finite state transition system for any particular value of N . But we might actually
want a guarantee that such a parametrized system is correct for any (finite) value of the
parameter N , and this is not a priori within the scope of automated methods. Although
there is an extensive body of research on techniques for fully automated verification
of parametrized systems [21,23,51], methods requiring at least some human guidance
seem to be necessary in most practical applications.

14 J. Harrison

For another example, consider verifying the correctness of floating-point arithmetic
circuits. The desired specification in the IEEE Standard governing binary floating-point
arithmetic [35] is in terms of real numbers, not bitstrings. Roughly speaking, one needs
to prove that, for example, the result of a floating-point square root operation

√
x is the

closest floating-point number to the exact mathematical answer, which is in general an
irrational number. It is not at all clear how to express this in limited formalisms where
reasoning about arbitrary real numbers is impossible. One can come up with reason-
ably natural specifications for simple integer adders and multipliers in Boolean terms,
but this becomes progressively more difficult when one considers division and square
root, and seems quite impractical for transcendental functions. Thus, it is not surprising
that one of the most popular and successful application areas of theorem proving to in-
dustrial verification is in the domain of floating-point arithmetic [30,37,38,45,49,55,58].

3.2 Verification of Underlying Theory

Even if some key properties of the system can be proved automatically, a global verifica-
tion often demands deeper analysis of the underlying environment and background as-
sumptions. Many program verification techniques simply rely on extracting verification
conditions syntactically from an annotated program. Yet the connection between those
verification conditions and the correct running of the program is often not formalized
or verified. However, by starting from a formal semantics of the programming language
in a general mathematical theorem prover, such properties can be rigorously proved in
a unified way [27]. Also, some programs depend essentially on non-trivial mathemat-
ics. If one merely verifies the programming aspects, taking for granted the underlying
theory, one risks either making a mistake in the theory itself or mis-applying it. For
example, when verifying a program or circuit to perform elliptic curve cryptography,
one could prove a specification of satisfying finality by formalizing also the underlying
mathematics [63].

3.3 More Efficient

Even when something is within the scope of automated methods in principle, and de-
spite the remarkable efficiency of many modern automated tools, larger systems can be
difficult to verify in a practical amount of time. For example, going back to the example
of a parametrized system, one may find that some such system is automatically verifi-
able for each specific N , but that the state space, and hence the runtime, increases so
dramatically as N increases that one can’t get past N = 2 or N = 3. In general, tech-
niques like model checking that rely on state exploration tend to degrade in performance
as the size of the system and/or specification increases. By contrast, the more deduc-
tive style of proof that theorem provers encourage often proceeds in a more structured
way, e.g. using induction, and is largely independent of the size. Indeed, to describe
techniques like model-checking as ‘automatic’ is in some ways a bit misleading. Very
often, one needs to make significant modifications to or decompositions of the problem,
or tweak parameters of the checker such as BDD variable ordering, in order to bring it
within practical reach. Sometimes this gets so tedious and unproductive that one would
be better off just settling on a deductive proof in the first place.

Theorem Proving for Verification 15

3.4 More Intellectually Stimulating

Theorem proving encourages a style of verification where the human uses a conceptual
understanding of the system to construct a mathematical proof, rather than a ‘push-
button’ approach of waiting for a yes/no answer from a black box. Although this may
be, in a crude sense, much less productive, it can be valuable because it forces the human
to articulate dimly perceived intuitions about the system, and so perhaps gain a signifi-
cantly deeper conceptual understanding that may even help to improve the system. An
example is reported in [31], which describes the formal verification of division algo-
rithms. On formalizing one of the standard theorems [41], the author noticed that the
full strength of one of the assumptions was never used, and a sharper theorem actually
allowed the implementation of faster algorithms with the same behavior. Of course, it is
not inconceivable that a sufficiently close reading would have led to the same revelation,
but it is less likely without the level of logical rigor that a theorem prover imposes.

References

1. Aagaard, M., Harrison, J. (eds.): TPHOLs 2000. LNCS, vol. 1869. Springer, Heidelberg
(2000)

2. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories. In: Biere, A.,
van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, vol. 4. IOS Press, Amsterdam
(2008)

3. Boyer, R.S., Moore, J.S.: A Computational Logic. ACM Monograph Series. Academic Press,
London (1979)

4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions
on Computers C-35, 677–691 (1986)

5. Buchberger, B.: Ein algorithmisches Kriterium fur die Lösbarkeit eines algebraischen Gle-
ichungssystems. Aequationes Mathematicae 4, 374–383 (1970); English translation, An Al-
gorithmical Criterion for the Solvability of Algebraic Systems of Equations. In: [6], pp. 535–
545

6. Buchberger, B., Winkler, F. (eds.): Gröbner Bases and Applications. London Mathematical
Society Lecture Note Series, vol. 251. Cambridge University Press, Cambridge (1998)

7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. Information and Computation 98, 142–170 (1992)

8. Burstall, R.M.: Program proving as hand simulation with a little induction. In: Informa-
tion Processing 1974: Proceedings of IFIP Congress 1974, Stockholm, pp. 308–312. North-
Holland, Amsterdam (1974)

9. Carter, W.C., Joyner, W.H., Brand, D.: Symbolic simulation for correct machine design. In:
Proceedings of the 16th ACM/IEEE Design Automation Conference, pp. 280–286. IEEE
Computer Society Press, Los Alamitos (1979)

10. Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic De-
composition. Texts and monographs in symbolic computation. Springer, Heidelberg (1998)

11. Chou, S.-C.: An introduction to Wu’s method for mechanical theorem proving in geometry.
Journal of Automated Reasoning 4, 237–267 (1988)

12. Church, A.: An unsolvable problem of elementary number-theory. American Journal of
Mathematics 58, 345–363 (1936)

13. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131,
pp. 52–71. Springer, Heidelberg (1982)

16 J. Harrison

14. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompo-
sition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer,
Heidelberg (1975)

15. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd ACM
Symposium on the Theory of Computing, pp. 151–158 (1971)

16. Davis, M. (ed.): The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable
Problems and Computable Functions. Raven Press, NY (1965)

17. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commu-
nications of the ACM 5, 394–397 (1962)

18. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the
ACM 7, 201–215 (1960)

19. de Bruijn, N.G.: The mathematical language AUTOMATH, its usage and some of its ex-
tensions. In: Laudet, M., Lacombe, D., Nolin, L., Schützenberger, M. (eds.) Symposium on
Automatic Demonstration. Lecture Notes in Mathematics, vol. 125, pp. 29–61. Springer,
Heidelberg (1970)

20. de Bruijn, N.G.: A survey of the project AUTOMATH. In: Seldin, J.P., Hindley, J.R. (eds.) To
H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism, pp. 589–606.
Academic Press, London (1980)

21. Delzanno, G.: Automatic verification of parameterized cache coherence protocols. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68. Springer, Heidelberg
(2000)

22. Een, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

23. Fontaine, P.: Techniques for verification of concurrent systems with invariants. PhD thesis,
Institut Montefiore, Université de Liège (2004)

24. Gilmore, P.C.: A proof method for quantification theory: Its justification and realization. IBM
Journal of research and development 4, 28–35 (1960)

25. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme, I. Monatshefte für Mathematik und Physik 38, 173–198 (1931); English translation,
On Formally Undecidable Propositions of Principia Mathematica and Related Systems, I. In:
[67], pp. 592–618 or [16], pp. 4–38

26. Goldberg, E., Novikov, Y.: BerkMin: a fast and robust Sat-solver. In: Kloos, C.D., Franca,
J.D. (eds.) Design, Automation and Test in Europe Conference and Exhibition (DATE 2002),
Paris, France, pp. 142–149. IEEE Computer Society Press, Los Alamitos (2002)

27. Gordon, M.J.C.: Mechanizing programming logics in higher order logic. In: Birtwistle, G.,
Subrahmanyam, P.A. (eds.) Current Trends in Hardware Verification and Automated Theo-
rem Proving, pp. 387–439. Springer, Heidelberg (1989)

28. Gordon, M.J.C., Milner, R., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic of Com-
putation. LNCS, vol. 78. Springer, Heidelberg (1979)

29. Guard, J.R., Oglesby, F.C., Bennett, J.H., Settle, L.G.: Semi-automated mathematics. Journal
of the ACM 16, 49–62 (1969)

30. Harrison, J.: Formal verification of floating point trigonometric functions. In: Johnson, S.D.,
Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 217–233. Springer, Heidelberg
(2000)

31. Harrison, J.: Formal verification of IA-64 division algorithms. In: Aagaard and Harrison [1],
pp. 234–251

32. Harrison, J., Théry, L.: A sceptic’s approach to combining HOL and Maple. Journal of Au-
tomated Reasoning 21, 279–294 (1998)

33. Hooker, J.N.: A quantitative approach to logical inference. Decision Support Systems 4, 45–
69 (1988)

Theorem Proving for Verification 17

34. Hurd, J.: Integrating Gandalf and HOL. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin,
C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 311–321. Springer, Heidelberg
(1999)

35. IEEE. Standard for binary floating point arithmetic. ANSI/IEEE Standard 754-1985, The
Institute of Electrical and Electronic Engineers, Inc., 345 East 47th Street, New York, NY
10017, USA (1985)

36. Joyce, J.J., Seger, C.: The HOL-Voss system: Model-checking inside a general-purpose
theorem-prover. In: Joyce, J.J., Seger, C. (eds.) HUG 1993. LNCS, vol. 780, pp. 185–198.
Springer, Heidelberg (1994)

37. Kaivola, R., Aagaard, M.D.: Divider circuit verification with model checking and theorem
proving. In: Aagaard and Harrison [1], pp. 338–355

38. Kaivola, R., Kohatsu, K.: Proof engineering in the large: Formal verification of the Pentium
(R) 4 floating-point divider. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS,
vol. 2144, pp. 196–211. Springer, Heidelberg (2001)

39. Kandri-Rody, A., Kapur, D.: Algorithms for computing Gröbner bases of polynomial ideals
over various Euclidean rings. In: Fitch, J. (ed.) EUROSAM 1984 and ISSAC 1984. LNCS,
vol. 174, pp. 195–206. Springer, Heidelberg (1984)

40. Krstic, S., Goel, A.: Architecting solvers for SAT modulo theories: Nelson-Oppen with
DPLL. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 1–27.
Springer, Heidelberg (2007)

41. Markstein, P.W.: Computation of elementary functions on the IBM RISC System/6000 pro-
cessor. IBM Journal of Research and Development 34, 111–119 (1990)

42. Matiyasevich, Y.V.: Enumerable sets are Diophantine. Soviet Mathematics Doklady 11, 354–
358 (1970)

43. McCune, W.: Solution of the Robbins problem. Journal of Automated Reasoning 19, 263–
276 (1997)

44. McCune, W., Padmanabhan, R.: Automated Deduction in Equational Logic and Cubic
Curves. LNCS, vol. 1095. Springer, Heidelberg (1996)

45. Moore, J.S., Lynch, T., Kaufmann, M.: A mechanically checked proof of the correctness of
the kernel of the AMD5K86 floating-point division program. IEEE Transactions on Com-
puters 47, 913–926 (1998)

46. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an ef-
ficient SAT solver. In: Proceedings of the 38th Design Automation Conference (DAC 2001),
pp. 530–535. ACM Press, New York (2001)

47. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Transac-
tions on Programming Languages and Systems 1, 245–257 (1979)

48. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an
abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM 53,
937–977 (2006)

49. O’Leary, J., Zhao, X., Gerth, R., Seger, C.-J.H.: Formally verifying IEEE compliance
of floating-point hardware. Intel Technology Journal 1999-Q1, 1–14 (1999), http://
developer.intel.com/technology/itj/q11999/articles/art 5.htm

50. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium
on Foundations of Computer Science, pp. 46–67 (1977)

51. Pnueli, A., Ruah, S., Zuck, L.: Automatic Deductive Verification with Invisible Invariants.
In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031. Springer,
Heidelberg (2001)

52. Queille, J.P., Sifakis, J.: Specification and verification of concurrent programs in CESAR.
In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp.
195–220. Springer, Heidelberg (1982)

http://developer.intel.com/technology/itj/q11999/articles/art_5.htm
http://developer.intel.com/technology/itj/q11999/articles/art_5.htm

18 J. Harrison

53. Rajan, S., Shankar, N., Srivas, M.K.: An integration of model-checking with automated
proof-checking. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 84–97. Springer, Hei-
delberg (1995)

54. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the
ACM 12, 23–41 (1965)

55. Rusinoff, D.: A mechanically checked proof of IEEE compliance of a register-transfer-level
specification of the AMD-K7 floating-point multiplication, division, and square root instruc-
tions. LMS Journal of Computation and Mathematics 1, 148–200 (1998),
http://www.onr.com/user/russ/david/k7-div-sqrt.html

56. Seger, C., Joyce, J.J. : A two-level formal verification methodology using HOL and COS-
MOS. Technical Report 91-10, Department of Computer Science, University of British
Columbia, 2366 Main Mall, University of British Columbia, Vancouver, B.C, Canada V6T
1Z4 (1991)

57. Seger, C.-J.H., Bryant, R.E.: Formal verification by symbolic evaluation of partially-ordered
trajectories. Formal Methods in System Design 6, 147–189 (1995)

58. Slobodová, A.: Challenges for Formal Verification in Industrial Setting. In: Brim, L.,
Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006. LNCS,
vol. 4346, pp. 1–22. Springer, Heidelberg (2007)

59. Stålmarck, G., Säflund, M.: Modeling and verifying systems and software in propositional
logic. In: Daniels, B.K. (ed.) Safety of Computer Control Systems (SAFECOMP 1990),
Gatwick, UK, pp. 31–36. Pergamon Press, Oxford (1990)

60. Tarski, A.: Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica 1, 261–
405 (1936); English translation, The Concept of Truth in Formalized Languages. In: [62], pp.
152–278

61. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of Califor-
nia Press (1951); Previous version published as a technical report by the RAND Corporation
(1948); prepared for publication by McKinsey, J.C.C. Reprinted In: [10], pp. 24–84

62. Tarski, A. (ed.): Logic, Semantics and Metamathematics. Clarendon Press (1956)
63. Théry, L., Hanrot, G.: Primality proving with elliptic curves. In: Schneider, K., Brandt, J.

(eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 319–333. Springer, Heidelberg (2007)
64. Trybulec, A.: The Mizar-QC/6000 logic information language. ALLC Bulletin (Association

for Literary and Linguistic Computing) 6, 136–140 (1978)
65. Trybulec, A., Blair, H.A.: Computer aided reasoning. In: Parikh, R. (ed.) Logics of Programs,

Brooklyn. LNCS, vol. 193, pp. 406–412. Springer, Heidelberg (1985)
66. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society 42(2), 230–265 (1936)
67. van Heijenoort, J. (ed.): From Frege to Gödel: A Source Book in Mathematical Logic 1879–

1931. Harvard University Press (1967)
68. Vardi, M.: An automata-theoretic approach to linear temporal logic. In: Moller, F., Birtwistle,

G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg
(1996)

69. Wen-tsün, W.: On the decision problem and the mechanization of theorem proving in ele-
mentary geometry. Scientia Sinica 21, 157–179 (1978)

70. Wiedijk, F.: The Seventeen Provers of the World. LNCS (LNAI), vol. 3600. Springer, Hei-
delberg (2006)

http://www.onr.com/user/russ/david/k7-div-sqrt.html

Tutorial on Separation Logic

(Invited Tutorial)

Peter O’Hearn�

Queen Mary, Univ. of London

Separation logic is an extension of Hoare’s logic for reasoning about programs
that manipulate pointers. Its assertion language extends classical logic with a
separating conjunction operator A ∗ B, which asserts that A and B hold for
separate portions of memory.

In this tutorial I will first cover the basics of the logic, concentrating on
highlights from the early work [1,2,3,4].

(i) The separating conjunction fits together with inductive definitions in a way
that supports natural descriptions of mutable data structures [1].

(ii) Axiomatizations of pointer operations support in-place reasoning, where a
portion of a formula is updated in place when passing from precondition to
postcondition, mirroring the operational locality of heap update [1,2].

(iii) Notorious “dirty” features of low-level programming (pointer arithmetic,
explicit deallocation) are dealt with smoothly, even embraced [2,3].

(iv) Frame axioms, which state what does not change, can be avoided when
writing specifications [2,3].

These points together enable specifications and proofs of pointer programs that
are dramatically simpler than was possible previously, in many cases approaching
the simplicity associated with proofs of pure functional programs. I will describe
how that is, and where rough edges lie (programs whose proofs are still more
complex than we would like).

In describing these highlights I will outline how many of the points flow from
Separation Logic’s model theory, particularly an interaction between properties
concerning the local way that imperative programs operate [5], and the abstract
properties of its models, which it inherits from bunched logic [6,7] (a species of
substructural logic related to linear and relevant logics, and Lambek’s syntac-
tic calculus). Using the model theoretic perspective, I will attempt to describe
the extent to which Separation Logic’s “benefits” do and do not depend on its
language of assertions.

After the basic part, I will then discuss how these points (i)-(iv) feed into
research on mechanized verification, both for interactive proof in proof assistants
(e.g., [8,9,10,11,12]) and for automatic proof and abstract interpretation (e.g.

� Supported by the EPSRC and by a Royal Society Wolfson Research Merit Award.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 19–21, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

20 P. O’Hearn

[13,14,15,16,17,18,19,20,21,22,23]). Time permitting, I will close with more recent
highlights, on concurrency, data abstraction, and object-oriented programming
[24,25,26].

References

1. Reynolds, J.C.: Intuitionistic reasoning about shared mutable data structure. In:
Davies, J., Roscoe, B., Woodcock, J. (eds.) Millennial Perspectives in Computer
Science, Houndsmill, Hampshire, pp. 303–321. Palgrave (2000)

2. Isthiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures.
In: 28th POPL, pp. 36–49 (2001)

3. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142,
pp. 1–19. Springer, Heidelberg (2001)

4. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
17th LICS, pp. 55–74 (2002)

5. Calcagno, C., O’Hearn, P., Yang, H.: Local action and abstract separation logic.
In: 22nd LICS, pp. 366–378 (2007)

6. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bulletin of Symbolic
Logic 5(2), 215–244 (1999)

7. Pym, D., O’Hearn, P., Yang, H.: Possible worlds and resources: the semantics of
BI. Theoretical Computer Science 315(1), 257–305 (2004)

8. Yu, D., Hamid, N.A., Shao, Z.: Building certified libraries for PCC: Dynamic stor-
age allocation. In: Degano, P. (ed.) ESOP 2003 and ETAPS 2003. LNCS, vol. 2618,
pp. 363–379. Springer, Heidelberg (2003)

9. Marti, N., Affeldt, R., Yonezawa, A.: Formal verification of the heap manager of
an operating system using separation logic. In: Liu, Z., He, J. (eds.) ICFEM 2006.
LNCS, vol. 4260, pp. 400–419. Springer, Heidelberg (2006)

10. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: 34th POPL,
pp. 97–108 (2007)

11. Myreen, M.O., Gordon, M.J.C.: Hoare logic for realistically modelled machine code.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 568–582.
Springer, Heidelberg (2007)

12. Varming, C., Birkedal, L.: Higher-order separation logic in Isabelle/HOLCF. In:
24th MFPS (2008)

13. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Automatic modular assertion
checking with separation logic. In: 4th FMCO, pp. 115–137 (2006)

14. Distefano, D., O’Hearn, P., Yang, H.: A Local Shape Analysis Based on Separation
Logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS,
vol. 3920, pp. 287–302. Springer, Heidelberg (2006)

15. Magill, S., Nanevski, A., Clarke, E., Lee, P.: Inferring invariants in Separation
Logic for imperative list-processing programs. In: 3rd SPACE Workshop (2006)

16. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.: Automatic termination proofs
for programs with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

17. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In:
PLDI 2007 (2007)

18. Guo, B., Vachharajani, N., August, D.: Shape analysis with inductive recursion
synthesis. In: PLDI (2007)

Tutorial on Separation Logic 21

19. Chang, B., Rival, X., Necula, G.: Shape Analysis with Structural Invariant Check-
ers. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–401.
Springer, Heidelberg (2007)

20. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., Yang,
H.: Shape analysis of composite data structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

21. Nguyen, H.H., Chin, W.-N.: Enhancing program verification with lemmas. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 355–369. Springer,
Heidelberg (2008)

22. Magill, S., Tsai, M.-S., Lee, P., Tsay, Y.-K.: THOR: A tool for reasoning about
shape and arithmetic. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 428–432. Springer, Heidelberg (2008)

23. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

24. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoretical Computer
Science 375(1-3), 271–307 (2007); Preliminary version appeared In: O’Hearn, P.W.:
Resources, Concurrency and Local Reasoning. In: Gardner, P., Yoshida, N. (eds.)
CONCUR 2004. LNCS, vol. 3170, pp. 49–67. Springer, Heidelberg (2004)

25. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: 32nd POPL, pp.
59–70 (2005)

26. Biering, B., Birkedal, L., Torp-Smith, N.: BI-hyperdoctrines, higher-order separa-
tion logic, and abstraction. ACM TOPLAS 5(29) (2007)

Abstract Interpretation

with Applications to Timing Validation�

Invited Tutorial

Reinhard Wilhelm and Björn Wachter

Universität des Saarlandes, Saarbrücken, Germany
{wilhelm,bwachter}@cs.uni-sb.de

Abstract. Abstract interpretation is one of the main verification tech-
nologies besides model checking and deductive verification.

Abstract interpretation has a rich theory of abstraction and strong
support for the construction of abstract domains. It allows to express a
precise relation to the (concrete) semantics of the programming language
inducing a clear relation between the results of an abstract interpretation
and the properties of the analyzed program. It permits trading efficiency
against precision and offers means to enforce termination where this is
not guaranteed.

We explain abstract interpretation using examples from a particular
application domain: the determination of bounds on the execution times
of programs. These bounds are used to show reliably that hard real-time
systems satisfy their timing constraints.

The application domain requires a number of static analyses and do-
mains with different characteristics. Most domains exhibit Galois con-
nections, a few do not. Some analyses require widening to leap infinite
ascending chains and ensure termination.

1 Introduction

Abstract interpretation, the theory behind static program analysis, has its roots
in the compiler domain. From early on, compilers used static analysis to compute
invariants at program points, which would imply the applicability conditions of
optimizing transformations. First strong theoretical results about static program
analysis were obtained in the 70s [1,2]. Exactly 30 years ago, Patrick Cousot
submitted his PhD thesis [3], which contained the very rich theory of abstract
interpretation and new static program analyses. He showed that all static analy-
ses were abstractions of a suitable concrete semantics and hereby opened the way
to analyses that could be proved correct or were even correct by construction.
� Work reported herein was partially supported by the European IST Project

DAEDALUS, Validation of Critical Software by Static Analysis and Abstract Test-
ing, the German Transregional Collaborative Research Centre AVACS (Automatic
Verification and Analysis of Complex Systems) of the Deutsche Forschungsgemein-
schaft, the European Networks of Excellence ARTIST2 and ARTIST DESIGN.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 22–36, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Abstract Interpretation with Applications to Timing Validation 23

Since then, static program analysis has left the compiler domain and has be-
come a verification method in its own right providing means to automatically
prove safety properties of programs. Among the most spectacular applications
of static program analysis to real systems probably are the analysis of the rea-
sons for the failure of the Ariane5 rocket [4], the proof of the absence of run-
time errors in safety-critical avionics code in the ASTRÉE project [5], and our
method to determine reliable and precise execution-time bounds for hard real-
time systems [6,7]. Today, static analysis tools based on abstract interpretation
[8,9,10,11,12] are widely used in industry and abstract interpretation continues
to make inroads into new application domains [13,14,15].

2 Timing Analysis - The Application Domain

Hard real-time systems are subject to stringent timing constraints which are
dictated by the surrounding physical environment. We are concerned with the
problem of guaranteeing that all the timing constraints of tasks when executed
on a given processor architecture will be met (“timing validation”).

Systems show a variability of execution times depending on

The input data: This has always been so and will remain so as it is a property
of the algorithm,

The initial execution state: This is caused by modern architectural features
such as caches, pipelines, and speculation, and

Interference from the environment: Preemptions and interrupts.

The unit-time (executing an instruction always takes exactly one time unit) or
constant-time abstraction used in many approaches to timing validation is thus
rendered obsolete by the advent of modern processors.

In general, the state space of input data and initial states is too large to
exhaustively explore all possible executions and so determine the exact worst-
case and best-case execution times. Some abstraction of the execution platform
is necessary to make a timing analysis of the system feasible. These abstractions
inevitably lose information, and yet must guarantee upper bounds for worst-case
and lower bounds for best-case execution time, respectively.

The alternative to exhaustive end-to-end measurement, which was just ar-
gued to be infeasible, and non-exhaustive measurement, which is unsound in
general because it may underestimate, will be explained in this paper. It con-
sists in the computation of upper (and possibly lower) bounds on the execution
times of instructions or basic blocks and the determination of a worst-case path
through the program. However, the variability of execution times also appears
on the instruction level, even on the level of individual memory accesses and
arithmetic operations, but the problem to bound execution times is easier to
solve for instructions than for whole programs.

We can look at the execution times of an instruction as an interval, from the
best case, e.g. all memory accesses hit the cache, all needed pipeline units are
free, no branch misprediction occurs, etc., to the worst case, where memory ac-
cesses miss the cache, pipeline units are occupied, buffers to fetch from are empty

24 R. Wilhelm and B. Wachter

and buffers to write to are full, etc. Relative to the best case, we will call any
increase in execution time during an instruction’s execution a timing accident
and the number of cycles by which it increases the execution time as compared
to the fastest time the timing penalty for this accident. Timing penalties for an
instruction can add up to several hundred processor cycles. Whether the exe-
cution of an instruction encounters a timing accident depends on the execution
state, e.g., the contents of the cache(s), the occupancy of other resources, and
thus on the execution history. It is therefore obvious that the attempt to pre-
dict or exclude timing accidents needs information about the execution history.
Excluding timing accidents means decreasing the upper bounds.

The computation of worst-case bounds for a program is realized by first em-
ploying an abstract processor model to compute a cycle-level abstract semantics
of the program and, in a second phase, mapping resulting time bounds for pro-
gram portions to an Integer Linear Program (ILP) whose optimal solution yields
the final bound. This tool architecture has been successfully used to determine
precise upper bounds on the execution times of real-time programs running on
processors used in embedded systems [6,7,16,17,18]. A commercially available
tool, aiT by AbsInt, cf. http://www.absint.de/wcet.htm, was implemented
and is used in the aeronautics and automotive industries.

In this tutorial, we deal with the more compute-intensive first phase. It has
the following three constituents, which we will treat in more detail later:

1. Value analysis attempts to compute information about data accesses and
control flow, in particular it tries to identify infeasible paths, syntactically
possible paths that will never be taken because of contradictory conditions.

2. Cache-behavior prediction determines a safe and concise approximation of
the contents of caches in order to classify memory accesses as definite cache
hits or misses.

3. Pipeline-behavior prediction analyzes how instructions pass through the
pipeline taking cache-hit or miss information into account. The cache-miss
penalty is assumed for all cases where a cache hit cannot be guaranteed.
At the end of simulating one instruction, a certain set of final states has been
reached. The pipeline analysis starts the analysis of the next instruction in
all those states.

Most powerful microprocessors have so-called timing anomalies. These are
counter-intuitive influences of the (local) execution time of one instruction on
the (global) execution time of the whole program. The interaction of several pro-
cessor features can cause a locally faster execution of an instruction to lead to a
globally longer execution time of the whole program. For example, a cache miss
contributes the cache-miss penalty to the execution time of a program. It was,
however, observed for the MCF 5307 [18] that a cache miss may actually speed
up program execution if it prevents a costly branch misprediction. The existence
of timing anomalies forces the analysis to consider a rather large search space
since it has to follow not only the local worst-case transitions in the architecture.

Abstract Interpretation with Applications to Timing Validation 25

3 Abstract Interpretation

This section describes crucial program analyses in the context of timing vali-
dation. In Subsection 3.1, we introduce the theoretical foundations before we
describe constant propagation in 3.2, interval analysis in 3.3, cache analysis in
3.4 and pipeline analysis in 3.5.

3.1 The Theory

Program. A program is represented by a control flow graph which consists of a
set of program points V , an initial location vin (models program entry), and a
set of labeled control flow edges E ⊆ V ×Op×V (the elements of Op model the
operation that is executed when the edge is taken).

A program semantics consists of a (possibly infinite) set S of program states,
a set of initial states S0 ⊆ S and a semantics function �.� : Op → (S → S) that
assigns to each operation and thus to each control flow edge, a transfer function
modeling its effect on the current program state.

Concerning the operations and the semantics, we observe that the execution-
time bounds of a program cannot be determined from the source code of a
high-level language like C: executable code has to be analyzed.

For readability we employ an imperative toy language rather than an assembly
language to explain the first two example analyses. We will only regard assign-
ment statements, x ← e and the labels of the two outgoing edges of conditionals,
true(e) and false(e), for a condition e. As a semantic domain, it uses states as-
signing integer values to variables, ρ : Vars → Z. A statement op transforms the
state ρ. The semantics of the operations of the toy language is defined by:

�true (e)� ρ = ρ if �e� ρ = tt
�false (e)� ρ = ρ if �e� ρ = ff
�x ← e� ρ = ρ ⊕ {x �→ �e� ρ}

Compared to our toy language, executables have a different concept of “vari-
ables” as they employ registers defined in the instruction set architecture (ISA).
Note that the ISA is still somewhat machine independent, e.g. the PowerPC ar-
chitecture has many implementations for which the same value analysis can be
used. Machine-dependent semantics for cache and pipeline behavior prediction
are discussed in Subsection 3.4 and Subsection 3.5, respectively.

Collecting Semantics. The collecting semantics of a program assigns to each
program point the set of states that may occur at it during some execution.
The collecting semantics is expressible as the fixed point of a set of recursive
equations and is, in general, not computable and, even in the finite-state case,
not efficiently computable. To this end, the program analyses presented here
compute a safe over-approximation of the collecting semantics of a program by
computing a fixed point in a simpler domain.

26 R. Wilhelm and B. Wachter

The collecting semantics S : V → 2S is defined by the least fixpoint lfp(F) =
F ∗(λv.∅) of the functional F : (V → 2S) → (V → 2S):

F (f)(v′) =

⎧
⎨

⎩

S0 if v′ = vin
⋃

(v,op,v′)∈E

�op�(f(v)) otherwise .

Program Analysis. A program analysis A = (D, �.�
�) consists of an abstract

domain D and an abstract semantics �.�
�.

An abstract domain D = (S, A, β, γ) is defined by a complete semi-lattice
A = (A, �,

⊔
, ⊥,
), a representation function β : S → A, mapping concrete

to abstract states, and a concretization γ : A → 2S , mapping abstract states
to the set of concrete states they represent. Concretization and representation
function are required to be monotone functions with respect to set inclusion and
�, respectively, and must be consistent to each other, i.e. the representation of a
concrete state s must concretize to a set of states containing that concrete state,
i.e. s ∈ γ(β(s)).

We define an abstraction function α : 2S → A by α(S′) =
⊔{β(s) | s ∈ S′}.

Given a lattice and a concretization, there may be a plethora of admissible
representation functions with varying precision that lead to a domain, e.g. one
could map some or all values to
. To formalize the notion of optimal precision at
the level of the domain, the concept of a Galois connection was introduced. If the
concretization and the abstraction fulfill the condition α(X) � a ⇔ X ⊆ γ(a),
we shall call the pair (α, γ) a Galois connection.

The abstract semantics �.�
� : Op → (A → A) assigns abstract transfer func-

tions �op�
� : A → A to statements. We impose two requirements, first, the trans-

fer functions are monotone with respect to � and, second, they approximate (or
even equal) the best abstract transfer function �op�

�
best(a) = α(�op�(γ(a))), i.e.

�op�
�
best � �op�

� (or �op�
� = �op�

�
best).

The program analysis problem is to compute invariants S
� : V → A (in terms

of the abstract domain) for all program points v such that S(v) ⊆ γ(S�(v)).
This is solved by computing the fixpoint lfp(F �) = F �∗(λv.⊥) of the functional
F � : (V → A) → (V → A):

F �(f)(v′) =

⎧
⎨

⎩

l0 if v′ = vin
⊔

(v,op,v′)∈E

�op�
�(f(v)) otherwise

where the initial abstract state is chosen such that α(S0) � l0.

Termination. The transfer functions are required to be monotone, so that in each
fixpoint iteration the values at the program points do not decrease with respect
to �. Nontermination can only occur if the lattice exhibits infinite ascending
chains, i.e. sequences a1, a2, a3, . . . of distinct elements with increasing order
a1 � a2 � a3 � Then widening is used [19,20] to enforce termination of
fixpoint iteration. A widening operator accumulates (monotonely) increasing or

Abstract Interpretation with Applications to Timing Validation 27

decreasing values in such a way that each variable in the system of equations
will only be changed finitely many times. This will guarantee termination albeit
at the cost of a loss of precision. Widening for numerical domains has received
a lot of attention, e.g. [21,22].

In this context, we discuss the interval domain (see 3.3), a simple and yet very
useful numerical domain with infinite ascending chains.

3.2 Constant Propagation

Constant propagation attempts to find out for each program point which vari-
ables have which constant values whenever execution reaches that point. The
resulting information can be used to fold (sub-)expressions and conditions, i.e.,
compute their values at compile time.

The abstract domain of constant propagation is constructed in two steps; we
first define a partial order for the potential values of variables, the domain:

Z
� = Z ∪ {
} and x �Z� y iff y =
 or x = y

where
 is an extension of the set of integer values used to denote that the value
of a variable is unknown.

The representation function maps integers to the corresponding element in
Z
�, i.e. βZ�(z) = z. The abstraction function takes subsets M ⊆ Z of the

integers as arguments; it maps singleton sets to their element and all other sets
to unknown:

αZ�(M) =

{
z if M = {z}

 otherwise

.

The concretization is defined by

γZ�(
) = Z and γZ�(z) = {z} iff z �=
 .

In a second step, we lift the abstraction for values to an abstraction of variable
bindings (states) and consider the complete lattice:

A = (Vars → Z
�)⊥ = (Vars → Z

�) ∪ {⊥}
The new element ⊥ denotes the fact that the analysis has not yet reached this
program point. The partial order on this abstract domain, “�”, is defined as:

D1 � D2 iff ⊥ = D1 or D1 x �Z� D2 x for all x ∈ Vars

An abstract variable binding D1 is more precise than a binding D2 if D1 binds
all variables that D2 also “knows” to the same values, but possibly knows some
more values of variables. A together with this partial order is a complete lattice.

The concretization γ(⊥) of the bottom element is the empty set of variable
bindings, for all other abstract variable bindings D, it is the lifting of the con-
cretization of Z

�:

γ(D) = {s | ∀v ∈ V ars : s(v) ∈ γZ�(D(v))} .

28 R. Wilhelm and B. Wachter

The representation function is given by: β(s)(v) = βZ�(s(v)). The abstraction
function maps the empty set to the bottom element, for non-empty sets we lift
the abstraction function of Z

�:

α(S′)(v) = αZ�({s(v) | s ∈ S′})

The transfer functions of statements, �op�
� : A → A, simulate the concrete

evaluation function. They employ an abstract evaluation function for arithmetic
expressions. For a binary operator �, it is defined by:

a �� b =
{
 if a =
 or b =

a � b otherwise

The evaluation function is able to deal with unknown values of variables. It
propagates this information; the result is
 if one of the operands is unknown,
i.e., is
. The result is the same as in the concrete case for two known operands.
The transfer functions of the abstract semantics for the toy language are given
in Figure 1.

�x ← e�� D = D ⊕ {x �→ �e�� D}

�true (e)�� D =

{
⊥ if �e�� D = ff
D otherwise

�false (e)�� D =

{
⊥ if �e�� D = tt
D otherwise

Fig. 1. The abstract semantics for constant propagation

If the condition can be definitely evaluated to ff, then the true branch is
unreachable, and if it can be definitely evaluated to tt, then the false branch
is unreachable. An assignment is analyzed by evaluating the right side in the
abstract variable binding and over-writing the binding of the left side with the
resulting value, which may be
.

Constant propagation is useful for timing analysis since it transports statically
available information to relevant places. The computed information is used by
value analysis and control-flow analysis. Though of infinite size the domain is
only of finite height, i.e. there are no infinite ascending chains. Further, the
presented abstraction and concretization function form a Galois connection.

3.3 Interval Analysis

A static method for data-cache behavior prediction needs to know effective mem-
ory addresses of data, in order to determine where a memory access goes. How-
ever, effective addresses are only available at run time. Here interval analysis as
described by Cousot and Cousot [19] comes into play. It can compute intervals
for address-valued objects like registers and variables. An interval computed for
such an object at some program point bounds the set of potential values the

Abstract Interpretation with Applications to Timing Validation 29

object may have when program execution reaches this program point. Such an
analysis, as part of aiT’s value analysis, has been shown to be very effective on
disciplined code [7].

Interval analysis generalizes constant propagation by replacing the domain
Z
� for variables by that of intervals. The interval domain is given by

I = {[l, u] | l ∈ Z ∪ {−∞}, u ∈ Z ∪ {+∞}, l ≤ u}

Note that this definition admits only intervals that represent non-empty sets of
integers. The set of intervals is ordered by “�”, defined by

[l1, u1] �I [l2, u2] iff l2 ≤ l1 ∧ u1 ≤ u2

Least upper bound and greatest lower bound of two intervals are defined by:

[l1, u1] � [l2, u2] = [min{l1, l2}, max{u1, u2}]
[l1, u1] � [l2, u2] = [max{l1, l2}, min{u1, u2}], if max{l1, l2} ≤ min{u1, u2}

The representation function maps an integer to a singleton interval: βI(z) =
[z, z] and the abstraction function maps a subset M ⊆ Z of the integers to
an interval with the infimum and supremum of M as endpoints: αI(M) =
[infz∈M z, supz∈M z]. The concretization function relates concrete values and in-
tervals:

γI([l, u]) = {z ∈ Z | l ≤ z ≤ u} .

Analogous to constant propagation, the numerical abstraction for variable
values is lifted to an abstraction of variable bindings (states), i.e. we consider
the complete lattice with elements (V ars → I)⊥.

To obtain an abstract semantics, some arithmetic on intervals is defined, first
the sum of two intervals: [l1, u1] +� [l2, u2] = [l1 + l2, u1 +u2] where −∞+ =
−∞ and +∞+ = +∞ (the underscore stands for “any value”). For unary
minus, we define: −� [l, u] = [−u, −l]. Multiplication on intervals is more involved
and division yet more difficult. For this and comparisons on intervals, we refer
to [23]. The abstract semantics is the same as the one for constant propagation
(cf. Figure 1) except that it uses the expression evaluation function for intervals.

Achieving termination of interval analysis requires some extra work because
the partially ordered domain I, as opposed to Z

�, exhibits infinitely ascending
chains, e.g.

[0, 0] � [0, 1] � [0, 2] � [−1, 2] � . . .

and so does the lifted lattice (V ars → I)⊥. In order to enforce termination
of fixpoint iteration, widening is used [19,20]. In our present interval analysis,
any increasing upper bound of an interval will immediately be set to ∞, any
decreasing lower bound of an interval to −∞.

Interval analysis produces relevant information for cache analysis. The smaller
the intervals bounding potential data addresses, the more precise are the results
of cache analysis. The presented abstraction and concretization function form a
Galois connection.

30 R. Wilhelm and B. Wachter

3.4 Cache Analysis

Abstract interpretation is also used to compute invariants about cache contents
at all program points.

For brevity, we restrict our description to the semantics of fully associative
caches with LRU replacement strategy. We refer to [24,17] for descriptions of
how to deal with direct-mapped and A-way set associative caches.

In the following, we consider a (fully associative) cache as a set of cache lines
L = {l1, . . . , ln} and the store as a set of memory blocks M = {m1, . . . , mk}. To
indicate the absence of any memory block in a cache line, we introduce a new
element I; M ′ = M ∪{I}. A (concrete) cache state is a function c : L → M ′. C
denotes the set of all concrete cache states. The initial cache state cI maps all
cache lines to I. If c(l) = mi for a concrete cache state c, then i is the relative
age of the memory block.

The cache update function U : C × M → C determines the new cache state
for a given cache state and a referenced memory block. The LRU (Least-Recently
Used) strategy always makes the referenced memory block the youngest,

z
y

t
x

z
y
x

z

t
x
s z

t
x

s

s

][s

"young"

"old"

Age

Fig. 2. Update of a concrete cache

i.e. the referenced memory block moves
into l1 if it was in the cache already (cache
hit). All memory blocks in the cache that
had been used more recently than the ref-
erenced block increase their relative age
by one, i.e., they are shifted by one po-
sition to the next cache line. If the refer-
enced memory block was not yet in the
cache (cache miss), it is loaded into l1 af-
ter all memory blocks in the cache have
been shifted and the ‘oldest’, i.e., least re-
cently used memory block, has been re-
moved from the cache if the cache was full.
This is depicted in Figure 2.

In our present exposition, we assume that for each basic block, the sequence
of references to memory is known, i.e., there exists a mapping from operations
to sequences of memory blocks: L : Op → M∗. This is realistic for instruc-
tion caches. For data caches, only intervals may be available. The techniques
described here are also routinely applied to data caches. The slight adaptions
necessary to handle adress intervals can be found in [16].

We can describe the effect of such a sequence on a cache with the help of the
update function U. Therefore, we extend U to sequences of memory references by
sequential composition: U(c, 〈mx1 , . . . , mxy〉) = U(. . . (U(c, mx1)) . . . , mxy). The
cache semantics of an operation op at a control-flow edge is then �op� = U(·, Lop).

The collecting semantics would be computable, although often of enormous
size. Therefore, another step abstracts it into a compact representation, so called
abstract cache states. Note that every information drawn from the abstract cache
states allows to safely deduce information about sets of concrete cache states, i.e.,
only precision may be reduced in this two step process. Correctness is guaranteed.

Abstract Interpretation with Applications to Timing Validation 31

The abstraction consists in two analyses one computes an under- and the
other an overapproximation of the cache content as follows: To classify definite
cache hits, the must analysis determines a set of memory blocks that are in
the cache at a given program point whenever execution reaches this point. To
classify definite misses, a may analysis, not described in this paper, determines
all memory blocks that may be in the cache at a given program point.

The domains for the must analysis (and also the may analysis) consist of
abstract cache states: An abstract cache state c� : L → 2M maps cache lines to
sets of memory blocks. These sets are disjoint so that each memory block has
unique position: it is either in one of the abstract cache lines or it is not in the
cache. The position of a memory block in an abstract cache denotes, as in the
case of concrete caches, the relative age of the corresponding memory blocks. As
explained above, must analysis determines a set of memory blocks that are in
the cache at a given program point whenever execution reaches this point. The
positions of the memory blocks in the abstract cache state are thus the upper
bounds of the ages of the memory blocks in the concrete caches occurring in the
collecting cache semantics.

Good information, in the sense of being valuable for the prediction of cache
hits, is the knowledge that a memory block is in the cache. The bigger the set
the better. This is connected to the “age” of a memory block. Therefore, the
partial order � is as define follows: Take an abstract cache state c�. Elements
that are higher up with respect to � than c� in the domain, i.e., less precise, are
states where memory blocks from c� are either missing or are older than in c�.

}
}
}
}{

{
{
{ c
e
a
d

{ }a
{ }
{c
{ }d

, }f

{ }a,c

{ }
{ }

{d }

"intersection
+ maximal age"

Fig. 3. Join

Therefore, the
⊔

-operator applied to
two abstract cache states c�

1 and c�
2

will produce a state c� containing
only those memory blocks contained
in both, and will give them the max-
imum of their ages in c�

1 and c�
2 (see

Figure 3). The representation function
β : C → C� forms singleton sets from
concrete cache states it is applied to,
i.e., β(c)(li) = {mx} if c(li) = cx.
Concretization of an abstract cache
state, c�, produces the set of all con-
crete cache states, which contain all
the memory blocks contained in c� with ages not older than in c�. Cache lines not
filled by these are filled with other memory blocks. The concretization function
γ : C� → 2c is defined by γ(c�) = {c | β(c) � c�}.

The abstract semantics is defined by abstract cache update functions, denoted
U�, which describe the effects of a control flow edge on an element of the abstract
domain. An abstract cache update function (example depicted in Figure 4) is a
lifted version of the corresponding concrete update function to sets, in that the
referenced memory block goes to line l1, all younger blocks age by one.

32 R. Wilhelm and B. Wachter

"young"

"old"

Age}
}

{ }

{
{ }

y
t
x

{ }s{
{
{
{

x}
}
s, t
y}

][s

Fig. 4. Update of an abstract cache

The solution of the must analysis problem is interpreted as follows: Let c� be
an abstract cache state at some program point. If mx ∈ c�(li) for a cache line li
then mx will definitely be in the cache whenever execution reaches this program
point. A reference to mx is categorized as always hit (ah).

Termination. There are only a finite number of cache lines and for each program
a finite number of memory blocks. This means, that the domain of abstract cache
states c : L → 2M is finite. Hence, every ascending chain is finite. Additionally,
the abstract cache update functions, U�, are monotonic. This guarantees that all
the analyses will terminate.

The abstract cache-state domain is essential for the efficiency and therefore
for the feasibility of cache analysis. The results are precise enough although this
type of cache analysis loses information at merge points. More precise analyses
are possible. However, experiments have shown that the corresponding analyses
are too slow.

The domain for LRU caches fulfills the ascending chain condition and forms
a Galois connection. For other cache domains, such as for the popular Pseudo-
LRU caches, there does not exist an optimal abstraction function, and hence no
Galois connection [18].

3.5 Pipeline Analysis

Most state-of-the-art processors employed in embedded systems today have an
instruction pipeline, i.e. the execution of several instructions is overlapped. In-
structions simultaneously pass through different pipeline stages: An instruction
is first loaded from memory (fetch stage). The duration of this stage is deter-
mined by the contents of the instruction cache. The instruction is then ready to
be dispatched: it is decoded and operands are fetched. In the execution stage,
instructions compete for resources, such as execution units, buses and memory,
producing complex interdependences. Depending on the internal state of the pro-
cessor the time from fetch to completion of an instruction can vary by several
orders of magnitude.

Pipeline analysis works on executable programs and is based on an abstract
timing model for the specific processor. A timing model is a state machine whose
transitions correspond to clock cycles of the modeled processor. Technically,
pipeline analysis is a program analysis on the basic block graph1 that computes
1 A basic block is a maximal sequence of straight-line code in the program.

Abstract Interpretation with Applications to Timing Validation 33

for each basic block an invariant on the machine states that can occur at it and
an execution time bound for the number of cycles it takes to execute it whenever
execution reaches that block. The abstract semantics of a basic block computes
from the abstract processor states at entry to the block the set of processor states
on exit of the block together with the bound. To this end, the analysis runs the
abstract timing model of the processor cycle per cycle. Whenever abstraction
produces uncertainty, e.g. inability to classify a cache access as a hit or a miss,
the analysis follows all possibilities (both hit and miss case).

The structure of a timing model is determined by the different processor units
and its memory system: the pipeline stages, a model of the processor chipset, the
bus unit, the branch predictor, register files, and arithmetic units etc. Though
structurally similar to the processor, the model concentrates on timing-relevant
control components and data, e.g., it is not interested in what an arithmetic
instruction computes, but in how many cycles the instruction takes.

Value analysis can be considered as factored-out arithemtic. The pipeline tim-
ing model imports the results of the value analsysis. The memory system is con-
cisely abstracted by the chipset unit, bus unit and the cache domain described
in the previous section and similarly factored out.

Cache and pipeline analysis are integrated to reflect the interdependences
between the caches and the pipeline due to speculation and prefetching [25].

Abstract domain and transfer functions are determined by the timing model.
The pipeline analysis for a state-of-the-art processor described in [25] uses the
following domains:

– An abstract state of the timing model is a tuple (p, c�) consisting of the
pipeline state p and an abstract cache state c�. It represents a set of concrete
states of the timing model.

– From the above domain of tuples, the disjunctive completion is taken. This
results in a lattice whose elements are sets of states of the timing model.
However, rather than taking set union as a join operator, a more sophisti-
cated join is used that leverages the join operator of the cache domain. It
takes a set of sets of processor states as input and produces a set of pro-
cessor states that overapproximates the union of the input sets. Its number
of elements equals the number of distinct pipeline states in the input sets.
The join operator loses precision only on the cache side by joining abstract
cache states where abstract pipeline state is identical. In the result set, each
abstract pipeline state p is adjoined with the join of a set of abstract caches,
namely the join of the abstract caches c� such that (p, c�) appears in one of
the input sets:

⊔
{Si | i = 1, ..., k} = {(p, c) | ∃i.(p, c′) ∈ Si ∧ c =

⊔
{c′′ | (p, c′′) ∈ Sj}}

– The abstract domain results as the product of the semi-lattice of natural
numbers with the maximum as join operator and the lattice of timing model
states. The join operator is defined by:

⊔
{(ni, Si) | i = 1, ..., k} = (max

i
ni,

⊔
{Si | i = 1, ..., k}

34 R. Wilhelm and B. Wachter

An abstract state is a tuple: the first component is a time bound (a number)
and the second component a set of states of the timing model.

To evaluate the transfer function �op�
�(a) for a control flow edge (b, op, b′)

and a tuple (., S) (the first component is ignored), a finite transition system
is computed. Its initial states are all those states I ⊆ S that load at least
one instruction of basic block b. The transitions are determined by the timing
model. Its final states F are those in which all instruction within basic block b
have been completed. The transition system is acyclic and finite. Let k be the
maximal length of a path from initial to the final states, then �op��(a) = (k, F).

4 Related Approaches

Timed automata [26] (or networks thereof) have been used to express timing
constraints of real-time systems and require durations and time bounds. Timing
analysis can deliver such bounds in the form of lower and upper bounds on the
execution time for a realistic architecture.

Campos et al. [27,28,29] leverage finite-state BDD-based model checking for
timing analysis. This work is not comparable with the approach proposed in
this tutorial since results were only obtained for highly simplified architectures
without typical features of modern processors such as caches and pipelining.

The works by Logothetis, Schuele and Schneider [30,31,32] describe timing
analyses of assembler programs using symbolic simulation. This work remains
at the machine-independent level and is based on the unit-time assumption.

Metzner [33] proposed to use BDD-based model checking for cache behavior
prediction instead of abstract interpretation and reported some gain (1.5-5%)
in precision over cache analysis by abstract interpretation [34] because joins at
control-flow merge points are avoided. The experiments considered a very small
cache and an extremely simple pipeline. Scalability of the analysis to industrial-
scale benchmarks was not shown. Furthermore, the experimental results are
limited to instruction caches for which cache analysis is easier than for data
caches because the addresses are statically known and access patterns are more
regular.

5 Conclusions

A short introduction into the theory of abstract interpretation was given, and
several instances of abstract interpretations are described that are used in tim-
ing analysis. The different analyses have quite different characteristics. Constant
propagation, interval analysis, and cache analysis live on the design of the right
abstract domain. They represent sets of concrete values by single abstract val-
ues. Further, while cache and pipeline analysis employ a finite domain, constant
propagation and interval analysis exhibit infinite domains, yet only the interval
domain has infinite ascending chains and requires widening for termination.

For pipeline analysis, a suitable representation of sets of concrete pipeline
states by single abstract states has not been found and is probably hard to find.

Abstract Interpretation with Applications to Timing Validation 35

Pipeline analysis is not a typical static program analysis. It can rather be seen
as a hybrid: it employs both state traversal of the pipeline evolution and join
operations typical for static analysis.

References

1. Kildall, G.A.: A Unified Approach to Global Program Optimization. In: Proceed-
ings of the ACM Symposium on Principles of Programming Languages, Boston,
Massachusetts, pp. 194–206 (October 1973)

2. Kam, J., Ullman, J.D.: Monotone Data Flow Analysis Frameworks. Acta Infor-
matica 7(3), 305–318 (1977)

3. Cousot, P.: Méthodes itératives de construction et d’approximation de point fixes
d’opérateurs monotone sur un treilis, analyse sémantique des programmes. PhD
thesis, Université de Grenoble (1978)

4. Lacan, J., Monfort, J.N., Ribal, V.Q., Deutsch, A., Gonthier, G.: The software
reliability verification process: The Ariane 5 example. DAta Systems In Aerospace
SP-422 (1998)

5. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Proceedings of
the ACM SIGPLAN 2003 Conference on Programming Language Design and Im-
plementation (PLDI 2003), San Diego, California, USA, pp. 196–207. ACM Press,
New York (2003)

6. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a
real-life processor. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS,
vol. 2211, pp. 469–485. Springer, Heidelberg (2001)

7. Thesing, S., Souyris, J., Heckmann, R., Randimbivololona, F., Langenbach, M.,
Wilhelm, R., Ferdinand, C.: An abstract interpretation-based timing validation of
hard real-time avionics software systems. In: Proceedings of the 2003 International
Conference on Dependable Systems and Networks (DSN 2003), pp. 625–632. IEEE
Computer Society, Los Alamitos (2003)

8. Mathworks: Polyspace, http://www.polyspace.com.
9. Coverity: Coverity Prevent, http://www.coverity.com

10. Fasoo.com, Seoul University: Sparrow, http://spa-arrow.com:8000/index.htm
11. GrammaTech Inc.: Codesurfer, http://www.grammatech.com
12. AbsInt Angewandte Informatik: aiT Worst-Case Execution Time Analyzers
13. Nielson, F., Nielson, H.R., da Rosa, D.S., Priami, C.: Static analysis for systems

biology. In: Proc. of workshop on Systeomatics - dynamic biological systems infor-
matics. Computer Science Press, Trinity College Dublin (2004)

14. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Static validation
of security protocols. Journal of Computer Security 13(3), 347–390 (2005)

15. Chawdhary, A., Cook, B., Gulwani, S., Sagiv, M., Yang, H.: Ranking Abstractions.
In: Proceedings of the 17th European Symposium on Programming (to appear,
April 2008)

16. Alt, M., Ferdinand, C., Martin, F., Wilhelm, R.: Cache Behavior Prediction by
Abstract Interpretation. In: Cousot, R., Schmidt, D.A. (eds.) SAS 1996. LNCS,
vol. 1145, pp. 52–66. Springer, Heidelberg (1996)

17. Ferdinand, C., Martin, F., Wilhelm, R.: Cache Behavior Prediction by Abstract
Interpretation. Science of Computer Programming 35, 163–189 (1999)

http://www.polyspace.com
http://www.coverity.com
http://spa-arrow.com:8000/index.htm
http://www.grammatech.com

36 R. Wilhelm and B. Wachter

18. Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: The influence of proces-
sor architecture on the design and the results of WCET tools. IEEE Proceedings
on Real-Time Systems 91(7), 1038–1054 (2003)

19. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Proceed-
ings of the 4th ACM Symposium on Principles of Programming Languages, Los
Angeles, California, pp. 238–252 (1977)

20. Cousot, P., Cousot, R.: Comparison of the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In: JTASPEFL 1991, Bor-
deaux. BIGRE, vol. 74, pp. 107–110 (1991)

21. Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening operators for
convex polyhedra. Sci. Comput. Program. 58(1-2), 28–56 (2005)

22. Miné, A.: The octagon abstract domain. Higher Order Symbol. Comput. 19(1),
31–100 (2006)

23. Wilhelm, R., Seidl, H.: Übersetzerbau: Analyse und Transformation. Springer, Hei-
delberg (2008)

24. Ferdinand, C.: Cache Behavior Prediction for Real-Time Systems. PhD Thesis,
Universität des Saarlandes (September 1997)

25. Thesing, S.: Safe and Precise WCET Determination by Abstract Interpretation of
Pipeline Models. PhD thesis, Saarland University (2004)

26. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

27. Campos, S., Grumberg, O.: Selective quantitative analysis and interval model
checking: Verifying different facets of a system. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102, pp. 257–268. Springer, Heidelberg (1996)

28. Campos, S.V.A., Clarke, E.M.: Analysis and verification of real-time systems us-
ing quantitative symbolic algorithms. International Journal on Software Tools for
Technology Transfer 2(3), 260–269 (1999)

29. Hartonas-Garmhausen, V., Campos, S.V.A., Cimatti, A., Clarke, E.M.,
Giunchiglia, F.: Verification of a safety-critical railway interlocking system with
real-time constraints. Sci. Comput. Program. 36(1), 53–64 (2000)

30. Schüle, T., Schneider, K.: Exact runtime analysis using automata-based symbolic
simulation. In: MEMOCODE, pp. 153–162 (2003)

31. Schüle, T., Schneider, K.: Abstraction of assembler programs for symbolic worst
case execution time analysis. In: DAC, pp. 107–112 (2004)

32. Logothetis, G., Schneider, K.: Exact high level WCET analysis of synchronous
programs by symbolic state space exploration. In: DATE, pp. 10196–10203 (2003)

33. Metzner, A.: Why model checking can improve WCET analysis. In: Alur, R., Peled,
D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 334–347. Springer, Heidelberg (2004)

34. Ferdinand, C., Wilhelm, R.: Fast and Efficient Cache Behavior Prediction for Real-
Time Systems. Real-Time Systems 17, 131–181 (1999)

Reducing Concurrent Analysis Under a Context

Bound to Sequential Analysis�

Akash Lal1,�� and Thomas Reps1,2

1 University of Wisconsin; Madison, WI; USA
{akash,reps}@cs.wisc.edu

2 GrammaTech, Inc., Ithaca, NY, USA

Abstract. This paper addresses the analysis of concurrent programs
with shared memory. Such an analysis is undecidable in the presence of
multiple procedures. One approach used in recent work obtains decid-
ability by providing only a partial guarantee of correctness: the approach
bounds the number of context switches allowed in the concurrent pro-
gram, and aims to prove safety, or find bugs, under the given bound. In
this paper, we show how to obtain simple and efficient algorithms for the
analysis of concurrent programs with a context bound. We give a general
reduction from a concurrent program P , and a given context bound K,
to a sequential program P K

s such that the analysis of P K
s can be used to

prove properties about P . We give instances of the reduction for common
program models used in model checking, such as Boolean programs and
pushdown systems.

1 Introduction

The analysis of concurrent programs is a challenging problem. While in general
the analysis of both concurrent and sequential programs is undecidable, what
makes concurrency hard is the fact that even for simple program models, the
presence of concurrency makes their analysis computationally very expensive.
When the model of each thread is a finite-state automaton, the analysis of such
systems is PSPACE-complete; when the model is a pushdown system, the anal-
ysis becomes undecidable [18]. This is unfortunate because it does not allow
the advancements made on such models in the sequential setting, i.e., when the
program has only one thread, to be applied in the presence of concurrency.

This paper addresses the problem of automatically extending analyses for
sequential programs to analyses for concurrent programs under a bound on the
number of context switches.1 We refer to analysis of concurrent programs under
a context bound as context-bounded analysis (CBA). Previous work has shown
the value of CBA: KISS [17], a model checker for CBA with a fixed context

� Supported by NSF under grants CCF-0540955 and CCF-0524051 and by AFRL
under contract FA8750-06-C-0249.

�� Supported by a Microsoft Research Fellowship.
1 A context switch occurs when execution control passes from one thread to another.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 37–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

38 A. Lal and T. Reps

bound of 2, found numerous bugs in device drivers; a study with explicit-state
model checkers [13] found more bugs with slightly higher context bounds. It also
showed that the state space covered with each increment to the context-bound
decreases as the context bound increases. Thus, even a small context bound is
sufficient to cover many program behaviors, and proving safety under a context
bound should provide confidence towards the reliability of the program. Unlike
the above-mentioned work, this paper addresses CBA with any given context
bound and with different program abstractions (for which explicit-state model
checkers would not terminate).

The decidability of CBA, when each program thread is abstracted as a push-
down system (PDS)—which serves as a general model for a recursive program
with finite-state data—was shown in [16]. These results were extended to PDSs
with bounded heaps in [3] and to weighted PDSs (WPDSs) in [10]. All of this
work required devising new algorithms. Moreover, each of the algorithms have
certain disadvantages that make them impractical to implement.

In the sequential setting, model checkers, such as those described in [1,21,5],
use symbolic techniques in the form of BDDs for scalability. With the CBA
algorithms of [16,3], it is not clear if symbolic techniques can be applied. Those
algorithms require the enumeration of all reachable states of the shared memory
at a context switch. This can potentially be very expensive. However, those
algorithms have the nice property that they only consider those states that
actually arise during valid (abstract) executions of the model. (We call this lazy
exploration of the state space.)

Our recent paper [10] showed how to extend the algorithm of [16] to use sym-
bolic techniques. However, the disadvantage there is that it requires computing
auxiliary information for exploring the reachable state space. (We call this ea-
ger exploration of the state space.) The auxiliary information summarizes the
effect of executing a thread from any control location to any other control lo-
cation. Such summarizations may consider many more program behaviors than
can actually occur (whence the term “eager”).

This problem can also be illustrated by considering interprocedural analysis
of sequential programs: for a procedure, it is possible to construct a summary
for the procedure that describes the effect of executing it for any possible in-
puts to the procedure (eager computation of the summary). It is also possible to
construct the summary lazily (also called partial transfer functions [12]) by only
describing the effect of executing the procedure for input states under which
it is called during the analysis of the program. The former (eager) approach
has been successfully applied to Boolean programs2 [1], but the latter (lazy)
approach is often desirable in the presence of more complex abstractions, es-
pecially those that contain pointers (based on the intuition that only a few
aliasing scenarios occur during abstract execution). The option of switching
between eager and lazy exploration exists in the model checkers described in
[1,20].

2 Boolean programs are imperative programs with only the Boolean datatype (§3).

Reducing Concurrent Analysis to Sequential Analysis 39

Contributions. This paper makes two main contributions. First, we show how
to reduce a concurrent program to a sequential one that simulates all its execu-
tions for a given number of context switches. This has the following advantages:

– It allows one to obtain algorithms for CBA using different program abstrac-
tions. We specialize the reduction to Boolean programs (§3), PDSs (§4), and
symbolic PDSs (see [8]). The former shows that the use of PDS-based tech-
nology, which seemed crucial in previous work, is not necessary: standard
interprocedural algorithms [19,22,7] can also be used for CBA. Moreover,
it allows one to carry over symbolic techniques designed for sequential pro-
grams for CBA.

– The reduction introduces symbolic constants and assume statements. Thus,
any sequential analysis that can deal with these two additions can be ex-
tended to handle concurrent programs as well (under a context bound).

– For the case in which a PDS is used to model each thread, we obtain better
asymptotic complexity than previous algorithms, just by using the standard
PDS algorithms (§4).

– The reduction shows how to obtain algorithms that scale linearly with the
number of threads (whereas previous algorithms scaled exponentially).

Second, we show how to obtain a lazy symbolic algorithm for CBA on Boolean
programs (§5). This combines the best of previous algorithms: the algorithms of
[16,3] are lazy but not symbolic, and the algorithm of [10] is symbolic but not
lazy.

The rest of the paper is organized as follows: §2 gives a general reduction from
concurrent to sequential programs; §3 specializes the reduction to Boolean pro-
grams; §4 specializes the reduction to PDSs; §5 gives a lazy symbolic algorithm
for CBA on Boolean programs; §6 reports early results with our algorithms; §7
discusses related work. Additional details and proofs can be found in [8].

2 A General Reduction

This section gives a general reduction from concurrent programs to sequential
programs under a given context bound. This reduction transforms the non-
determinism in control, which arises because of concurrency, to non-determinism
on data. (The motivation is that the latter problem is understood much better
than the former one.)

The execution of a concurrent program proceeds in a sequence of execution
contexts, defined as the time between consecutive context switches during which
only a single thread has control. In this paper, we do not consider dynamic
creation of threads, and assume that a concurrent program is given as a fixed
set of threads, with one thread identified as the starting thread.

Suppose that a program has two threads, T1 and T2, and that the context
bound is 2K − 1. Then any execution of the program under this bound will
have up to 2K execution contexts, with control alternating between the two
threads, informally written as T1; T2; T1, · · · . Each thread has control for at most

40 A. Lal and T. Reps

K execution contexts. Consider three consecutive execution contexts T1; T2; T1.
When T1 finishes executing the first of these, it gets swapped out and its local
state, say l, is stored. Then T2 gets to run, and when it is swapped out, T1 has
to resume execution from l (along with the global store produced by T2).

The requirement of resuming from the same local state is one difficulty that
makes analysis of concurrent programs hard—during the analysis of T2, the local
state of T1 has to be remembered (even though it is unchanging). This forces
one to consider the cross product of the local states of the threads, which causes
exponential blowup when the local state space is finite, and undecidability when
the local state includes a stack. An advantage of introducing a context bound is
the reduced complexity with respect to the size |L| of the local state space: the
algorithms of [16,3] scale as O(|L|5), and [10] scales as O(|L|K). Our algorithm,
for PDSs, is O(|L|). (Strictly speaking, in each of these, |L| is the size of the
local transition system.)

The key observation is the following: for analyzing T1; T2; T1, we modify the
threads so that we only have to analyze T1; T1; T2, which eliminates the require-
ment of having to drag along the local state of T1 during the analysis of T2. For
this, we assume the effect that T2 might have on the shared memory, apply it
while T1 is executing, and then check our assumption after analyzing T2.

Consider the general case when each of the two threads have K execution
contexts. We refer to the state of shared memory as the global state. First, we
guess K − 1 (arbitrary) global states, say s1, s2, · · · , sK−1. We run T1 so that
it starts executing from the initial state s0 of the shared memory. At a non-
deterministically chosen time, we record the current global state s′1, change it to
s1, and resume execution of T1. Again, at a non-deterministically chosen time,
we record the current global state s′2, change it to s2, and resume execution of
T1. This continues K − 1 times. Implicitly, this implies that we assumed that
the execution of T2 will change the global state from s′i to si in its ith execution
context. Next, we repeat this for T2: we start executing T2 from s′1. At a non-
deterministically chosen time, we record the global state s′′1 , we change it to
s′2 and repeat K − 1 times. Finally, we verify our assumption: we check that
s′′i = si+1 for all i between 1 and K − 1. If these checks pass, we have the
guarantee that T2 can reach state s if and only if the concurrent program can
have the global state s after K execution contexts per thread.

The fact that we do not alternate between T1 and T2 implies the linear scal-
ability with respect to |L|. Because the above process has to be repeated for all
valid guesses, our approach scales as O(|G|K), where G is the global state space.
In general, the exponential complexity with respect to K may not be avoidable
because the problem is NP-complete when the input has K written in unary [9].
However, symbolic techniques can be used for a practical implementation.

We show how to reduce the above assume-guarantee process into one of ana-
lyzing a sequential program. We add more variables to the program, initialized
with symbolic constants, to represent our guesses. The switch from one global
state to another is made by switching the set of variables being accessed by the
program. We verify the guesses by inserting assume statements at the end.

Reducing Concurrent Analysis to Sequential Analysis 41

Program P s st ∈ Ti Checker
L1 : T s

1 ;
L2 : T s

2 ;
L3 : Checker

if k = 1 then
τ (st, 1);

else if k = 2 then
τ (st, 2);
· · ·

else if k = K then
τ (st, K);

end if
if k ≤ K and ∗ then

k ++
end if
if k = K + 1 then

k = 1
goto Li+1

end if

for i = 1 to K − 1 do
for j = 1 to n do

assume (xi
j = vi+1

j)
end for

end for

Fig. 1. The reduction for general concurrent programs under a context bound 2K − 1.
In the second column, ∗ stands for a nondeterministic Boolean value.

The reduction. Consider a concurrent program P with two threads T1 and
T2 that only has scalar variables (i.e., no pointers, arrays, or heap).3 We assume
that the threads share their global variables, i.e., they have the same set of global
variables. Let VarG be the set of global variables of P . Let 2K −1 be the bound
on the number of context switches.

The result of our reduction is a sequential program P s. It has three parts,
performed in sequence: the first part T s

1 is a reduction of T1; the second part T s
2

is a reduction of T2; and the third part, Checker, consists of multiple assume
statements to verify that a correct interleaving was performed. Let Li be the
label preceding the ith part. P s has the form shown in the first column of Fig. 1.

The global variables of P s are K copies of VarG. If VarG = {x1, · · · , xn},
then let Vari

G = {xi
1, · · · , xi

n}. The initial values of Vari
G are a set of symbolic

constants that represent the ith guess si. P s has an additional global variable
k, which will take values between 1 and K + 1. It tracks the current execution
context of a thread: at any time P s can only read and write to variables in
Vark

G. The local variables of T s
i are the same as those of Ti.

Let τ(x, i) = xi. If st is a program statement in P , let τ(st, i) be the statement
in which each global variable x is replaced with τ(x, i), and the local variables
remain unchanged. The reduction constructs T s

i from Ti by replacing each state-
ment st by what is shown in the second column of Fig. 1. The third column
shows Checker. Variables Var1

G are initialized to the same values as VarG in
P . Variable xi

j , when i �= 1, is initialized to the symbolic constant vi
j (which is

later referenced inside Checker), and k is initialized to 1.
Because local variables are not replicated, a thread resumes execution from

the same local state it was in when it was swapped out at a context switch.
The Checker enforces a correct interleaving of the threads. It checks that the

values of global variables when T1 starts its i + 1st execution context are the

3 Such models are often used in model checking and numeric program analysis.

42 A. Lal and T. Reps

same as the values produced by T2 when T2 finished executing its ith execution
context. (Because the execution of T s

2 happens after T s
1 , each execution context of

T s
2 is guaranteed to use the global state produced by the corresponding execution

context of T s
1 .)

The reduction ensures the following property: when P s finishes execution, the
variables VarK

G can have a valuation s if and only if the variables VarG in P
can have the same valuation after 2K − 1 context switches.

Symbolic constants. One way to deal with symbolic constants is to consider all
possible values for them (eager computation). We show instances of this strategy
for Boolean programs (§3) and for PDSs (§4). Another way is to lazily consider
the set of values they may actually take during the (abstract) execution of the
concurrent program, i.e., only consider those values that pass the Checker. We
show an instance of this strategy for Boolean programs (§5).
Multiple threads. If there are n threads, n > 2, then a precise reasoning for K
context switches would require one to consider all possible thread schedulings,
e.g., (T1; T2; T1; T3), (T1; T3; T2; T3), etc. There are O((n − 1)K) such schedul-
ings. Previous analyses [16,10,3] enumerate explicitly all these schedulings, and
thus have O((n − 1)K) complexity even in the best case. We avoid this ex-
ponential factor as follows: we only consider the round-robin thread schedule
T1; T2; · · · Tn; T1; T2; · · · for CBA, and bound the length of this schedule in-
stead of bounding the number of context switches. Because a thread is allowed
to perform no steps during its execution context, CBA still considers other
schedules. For example, when n = 3, the schedule T1; T2; T1; T3 will be con-
sidered by CBA only when K = 5 (in the round-robin schedule, T3 does noth-
ing in its first execution context, and T2 does nothing in its second execution
context).

Setting the bound on the length of the round-robin schedule to nK allows
CBA to consider all thread schedulings with K context switches (as well as
some schedulings with more than K context switches). Under such a bound, a
schedule has K execution contexts per thread. The reduction for multiple threads
proceeds in a similar way to the reduction for two threads. The global variables
are copied K times. Each thread Ti is transformed to T s

i , as shown in Fig. 1, and
P s calls the T s

i in sequence, followed by Checker. Checker remains the same
(it only has to check that the state after the execution of T s

n agrees with the
symbolic constants).

The advantages of this approach are as follows: (i) we avoid an explicit enu-
meration of O((n−1)K) thread schedules, thus, allowing our analysis to be more
efficient in the common case; (ii) we explore more of the program behavior with
a round-robin bound of nK than with a context-switch bound of K; and (iii) the
cost of analyzing the round-robin schedule of length nK is about the same (in
fact, better) than what previous analyses take for exploring one schedule with a
context bound of K (see §4). These advantages allow our analysis to scale much
better in the presence of multiple threads than previous analyses.

Reducing Concurrent Analysis to Sequential Analysis 43

In the rest of the paper, we only consider two threads because the extension
to multiple threads is straightforward for round-robin scheduling.

Applicability of the reduction to different analyses. Certain analysis,
like affine-relation analysis (ARA) over integers, as developed in [11], cannot
make use of this reduction. The presence of assume statements makes the ARA
problem undecidable. However, any abstraction prepared to deal with branching
conditions can also handle assume statements.

It is harder to make a general claim as to whether most sequential analyses can
handle symbolic values. One place where symbolic values are used in sequential
analyses is to construct summaries for recursive procedures. Eager computation
of a procedure summary is similar to analyzing the procedure while assuming
symbolic values for the parameters of the procedure.

3 The Reduction for Boolean Programs

Boolean Programs. A Boolean program consists of a set of procedures, repre-
sented using their control-flow graphs (CFGs). The program has a set of global
variables, and each procedure has a set of local variables, where each variable
can only receive a Boolean value. Each edge in the CFG is labeled with a state-
ment that can read from and write to variables in scope, or call a procedure. An
example is shown in Fig. 2.

n1

n4 n5

n6

x=0 x=1 y=x

n7

n8n2 n3
bar() bar()

proc foo proc bar

n9

assume(y=1)

Fig. 2. A Boolean program

For ease of exposition, we assume that all proce-
dures have the same number of local variables, and
that they do not have any parameters. Furthermore,
the global variables can have any value when pro-
gram execution starts, and similarly for the local
variables when a procedure is invoked.

Let G be the set of valuations of the global vari-
ables, and L be the set of valuations of the local
variables. A program data-state is an element of
G × L. Each program statement st can be associ-
ated with a relation [[st]] ⊆ (G × L) × (G × L) such

that (g0, l0, g1, l1) ∈ [[st]] when the execution of st on the state (g0, l0) can
lead to the state (g1, l1). For instance, in a procedure with one global vari-
able x1 and one local variable x2, [[x1 = x2]] = {(a, b, b, b) | a, b ∈ {0, 1}} and
[[assume(x1 = x2)]] = {(a, a, a, a) | a ∈ {0, 1}}.

The goal of analyzing such programs is to compute the set of data-states
that can reach a program node. This is done using the rules shown in Fig. 3
[1]. These rules follow standard interprocedural analyses [19,22]. Let entry(f)
be the entry node of procedure f, proc(n) the procedure that contains node
n, ep(n) = entry(proc(n)), and exitnode(n) is true when n is the exit node of
its procedure. Let Pr be the set of procedures of the program, which includes
a distinguished procedure main. The rules of Fig. 3 compute three types of
relations: Hn(g0, l0, g1, l1) denotes the fact that if (g0, l0) is the data state at
entry(n), then the data state (g1, l1) can reach node n; Sf is the summary relation

44 A. Lal and T. Reps

First phase Second phase

g ∈ G, l ∈ L, f ∈ Pr R0
Hentry(f)(g, l, g, l)

Hn(g0, l0, g1, l1) n
st−−→ m (g1, l1, g2, l2) ∈ [[st]] R1

Hm(g0, l0, g2, l2)

Hn(g0, l0, g1, l1) n
call f()−−−−−→ m Sf(g1, g2) R2

Hm(g0, l0, g2, l1)

Hn(g0, l0, g1, l1) exitnode(n) f = proc(n) R3
Sf(g0, g1)

g ∈ G, l ∈ L R4
Rentry(main)(g, l)

Rep(n)(g0, l0) Hn(g0, l0, g1, l1) R5
Rn(g1, l1)

Rn(g0, l0) n
call f()−−−−−→ m l ∈ L R6

Rentry(f)(g0, l)

Hn(g0, l0, g1, l1) n
call f()−−−−−→ m l2 ∈ L R7

Hentry(f)(g1, l2, g1, l2)

Hn(g0, l0, g1, l1) R8
Rn(g1, l1)

Fig. 3. Rules for the analysis of Boolean programs

for procedure f, which captures the net transformation that an invocation of the
procedure can have on the global state; Rn is the set of data states that can
reach node n. All relations are initialized to be empty.

Eager analysis. Rules R0 to R6 describe an eager analysis. The analysis pro-
ceeds in two phases. In the first phase, the rules R0 to R3 are used to saturate
the relations H and S. In the next phase, this information is used to build the
relation R using rules R4 to R6.

Lazy analysis. Let rule R′0 be the same as R0 but restricted to just the main
procedure. Then the rules R′0, R1, R2, R3, R7, R8 describe a lazy analysis. The
rule R7 restricts the analysis of a procedure to only those states it is called in.
As a result, the second phase gets simplified and consists of only the rule R8.

Practical implementations [1,20] use BDDs to encode each of the relations
H, S, and R and the rule applications are changed into BDD operations. For
example, rule R1 is simply the relational composition of relations Hn and [[st]],
which can be implemented efficiently using BDDs.

Concurrent Boolean Programs. A concurrent Boolean program consists of
one Boolean program per thread. The Boolean programs share their set of global
variables. In this case, we can apply the reduction presented in §2 to obtain
a single Boolean program by making the following changes to the reduction:
(i) the variable k is modeled using a vector of log(K) Boolean variables, and
the increment operation implemented using a simple Boolean circuit on these
variables; (ii) the if conditions are modeled using assume statements; and (iii)
the symbolic constants are modeled using additional global variables that are
not modified in the program. Running any sequential analysis algorithm, and
projecting out the values of the Kth set of global variables from Rn gives the
precise set of reachable global states at node n in the concurrent program.

Reducing Concurrent Analysis to Sequential Analysis 45

The worst-case complexity of analyzing a Boolean program P is bounded by
O(|P ||G|3|L|2), where |P | is the number of program statements. Thus, using
our approach, a concurrent Boolean program Pc with n threads, and K execu-
tion contexts per thread (with round-robin scheduling), can be analyzed in time
O(K|Pc|(K|G|K)3|L|2|G|K): the size of the sequential program obtained from
Pc is K|Pc|; it has the same number of local variables, and its global variables
have K|G|K number of valuations. Additionally, the symbolic constants can take
|G|K number of valuations, adding an extra multiplicative factor of |G|K . The
analysis scales linearly with the number of threads (|Pc| is O(n)).

This reduction actually applies to any model that works with finite-state data,
which includes Boolean programs with references [2,14]. In such models, the heap
is assumed to be bounded in size. The heap is included in the global state of
the program, hence, our reduction would create multiple copies of the heap,
initialized with symbolic values. Our experiments (§6) used such models.

Such a process of duplicating the heap can be expensive when the number of
heap configurations that actually arise in the concurrent program is very small
compared to the total number of heap configurations possible. The lazy version
of our algorithm (§5) addresses this issue.

4 The Reduction for PDSs

PDSs are also popular models of programs. The motivation for presenting the
reduction for PDSs is that it allows one to apply the numerous algorithms de-
veloped for PDSs for CBA. For instance, one can use backward analysis of PDSs
to get a backward analysis on concurrent programs.

Definition 1. A pushdown system is a triple P = (P, Γ, Δ), where P is a
set of states, Γ is a set of stack symbols, and Δ ⊆ P × Γ × P × Γ ∗ is a finite
set of rules. A configuration of P is a pair 〈p, u〉 where p ∈ P and u ∈ Γ ∗. A
rule r ∈ Δ is written as 〈p, γ〉 ↪→ 〈p′, u〉, where p, p′ ∈ P , γ ∈ Γ and u ∈ Γ ∗.
These rules define a transition relation ⇒P on configurations of P as follows: If
r = 〈p, γ〉 ↪→ 〈p′, u′〉 then 〈p, γu′′〉 ⇒P 〈p′, u′u′′〉 for all u′′ ∈ Γ ∗. The reflexive
transitive closure of ⇒P is denoted by ⇒∗P .

Without loss of generality, we restrict the PDS rules to have at most two stack
symbols on the right-hand side [21].

The standard way of modeling control-flow of programs using PDSs is as
follows: the set P consists of a single state {p}; the set Γ consists of program
nodes, and Δ has one rule per edge in the control-flow graph as follows: 〈p, u〉 ↪→
〈p, v〉 for an intraprocedural edge (u, v); 〈p, u〉 ↪→ 〈p, e v〉 for a procedure call at
node u that returns to v and calls the procedure starting at e; 〈p, u〉 ↪→ 〈p, ε〉 if
u is the exit node of a procedure. Finite-state data is encoded by expanding P
to be the set of global states, and expanding Γ by including valuations of local
variables. Under such an encoding, a configuration 〈p, γ1γ2 · · · γn〉 represents the
instantaneous state of the program: p is the valuation of global variables, γ1 has

46 A. Lal and T. Reps

For each 〈p, γ〉 ↪→ 〈p′, u〉 ∈ (Δ1 ∪ Δ2) and for all pi ∈ P, k ∈ {1, · · · , K}:
〈(k, p1, · · · , pk−1, p, pk+1, · · · , pK), γ〉 ↪→ 〈(k, p1, · · · , pk−1, p

′, pk+1, · · · , pK), u〉
For each γ ∈ Γj and for all pi ∈ P, k ∈ {1, · · · , K}:
〈(k, p1, · · · , pK), γ〉 ↪→ 〈(k + 1, p1, · · · , pK), γ〉
〈(K + 1, p1, · · · , pK), γ〉 ↪→ 〈(1, p1, · · · , pK), ej+1 γ〉

Fig. 4. PDS rules for Ps

the current program location and values of local variables in scope, and γ2 · · · γn

store the return addresses and values of local variables for unfinished calls.
A concurrent program with two threads is represented with two PDSs that

share their global state: P1 = (P, Γ1, Δ1), P2 = (P, Γ2, Δ2). A configuration of
such a system is the triplet 〈p, u1, u2〉 where p ∈ P, u1 ∈ Γ ∗1 , u2 ∈ Γ ∗2 . Define
two transition systems: if 〈p, ui〉 ⇒Pi 〈p′, u′i〉 then 〈p, u1, u〉 ⇒1 〈p′, u′1, u〉 and
〈p, u, u2〉 ⇒2 〈p′, u, u′2〉 for all u. The problem of interest with concurrent pro-
grams, under a context bound 2K − 1, is to find the reachable states under the
transition system (⇒∗1; ⇒∗2)K (here the semicolon denotes relational composi-
tion, and exponentiation is repeated relational composition).

We reduce the concurrent program (P1, P2) to a single PDS Ps = (Ps, Γs, Δs).
Let Ps be the set of all K +1 tuples whose first component is a number between
1 and K, and the rest are from the set P , i.e., Ps = {1, · · · , K}×P ×P ×· · ·×P .
This set relates to the reduction from §2 as follows: an element (k, p1, · · · , pK) ∈
Ps represents that the value of the variable k is k; and pi encodes a valuation of
the variables Vari

G. When Ps is in such a state, its rules would only modify pk.
Let ei ∈ Γi be the starting node of the ith thread. Let Γs be the disjoint union

of Γ1, Γ2 and an additional symbol {e3}. Ps does not have an explicit checking
phase. The rules Δs are defined in Fig. 4.

We deviate slightly from the reduction presented in §2 by changing the goto
statement, which passes control from the first thread to the second, into a pro-
cedure call. This ensures that the stack of the first thread is left intact when
control is passed to the next thread. Furthermore, we assume that the PDSs
cannot empty their stacks, i.e., it is not possible that 〈p, e1〉 ⇒∗P1

〈p′, ε〉 or
〈p, e2〉 ⇒∗P2

〈p′, ε〉 for all p, p′ ∈ P (in other words, the main procedure should
not return). This can be enforced for arbitrary PDSs [8].

Theorem 1. Starting execution of the concurrent program (P1, P2) from the
state 〈p, e1, e2〉 can lead to the state 〈p′, c1, c2〉 under the transition sys-
tem (⇒∗1; ⇒∗2)K if and only if there exist states p2, · · · , pK ∈ P such that
〈(1, p, p2, · · · , pK), e1〉 ⇒Ps 〈(1, p2, p3, · · · , pK , p′), e3 c2 c1〉.
Note that the checking phase is implicit in the statement of Thm. 1.

Complexity. Using our reduction, one can find the set of all reachable config-
urations of the concurrent program (P1, P2) in time O(K2|P |2K |Proc||Δ1+Δ2|),

Reducing Concurrent Analysis to Sequential Analysis 47

where |Proc| is the number of procedures in the program4 [8]. Using backward
reachability algorithms, one can verify if a given configuration in reachable in
time O(K3|P |2K |Δ1 + Δ2|). Both these complexities are asymptotically better
than those of previous algorithms for PDSs [16,10], with the latter being linear
in the program size |Δ1 + Δ2|.

A similar reduction works for multiple threads as well (under round-robin
scheduling). Moreover, the complexity of finding all reachable states under a
bound of nK with n threads, using a standard PDS reachability algorithm, is
O(K3|P |4K |Proc||Δ|), where |Δ| = Σn

i=1|Δi| is the total number of rules in the
concurrent program.

This reduction produces a large number of rules in Ps, but we can leverage
work on symbolic PDSs [21] to obtain symbolic implementations [8].

5 Lazy CBA of Concurrent Boolean Programs

In the reduction presented in §3, the analysis of the generated sequential program
had to assume all possible values for the symbolic constants. The lazy analysis
will have the property that at any time, if the analysis considers the K-tuple
(g1, · · · , gK) of valuations of the symbolic constants, then there is a single valid
execution of the concurrent program in which the global state is gi at the end
of the ith execution context of the first thread for all 1 ≤ i ≤ K.

The idea is to iteratively build up the effect that each thread can have on the
global state in their K execution contexts. Note that T s

1 (or T s
2) does not need

to know the values of Vari
G when k < i. Hence, the analysis proceeds by making

no assumptions on the values of Vari
G when i > k. When k is incremented to

k + 1 in the analysis of T s
1 , it consults a table E2 that stores the effect that

T s
2 can have in its first k execution contexts. Using that table, it figures out a

valuation of Vark+1
G to continue the analysis of T s

1 , and stores the effect that
T s

1 can have in its first k execution contexts in table E1. These tables are built
iteratively. More technically, if the analysis can deduce that T s

1 , when started
in state (1, g1, · · · , gk), can reach the state (k, g′1, · · · , g′k), and T s

2 , when started
in state (1, g′1, · · · , g′k) can reach (k, g2, g3, · · · , gk, gk+1), then an increment of k
in T s

1 produces the global state s = (k + 1, g′1, · · · , g′k, gk+1). Moreover, s can be
reached when T s

1 is started in state (1, g1, · · · , gk+1) because T s
1 could not have

touched Vark+1
G before the increment that changed k to k +1. The algorithm is

shown in Fig. 5. The entities used in it have the following meanings:

– Let G = ∪K
i=1G

i, where G is the set of global states. An element from the
set G is written as g. Let L be the set of local states.

– The relation Hj
n is related to program node n of the jth thread. It is a

subset of {1, · · · , K} × G × G × L × G × L. If Hj
n(k, g0, g1, l1, g2, l2) holds,

then each of the gi are an element of Gk (i.e., a k-tuple of global states), and
the thread Tj is in its kth execution context. Moreover, if the valuation of

4 The number of procedures of a PDS is defined as the number of symbols appearing
as the first of the two stack symbols on the right-hand side of a call rule.

48 A. Lal and T. Reps

Vari
G, 1 ≤ i ≤ k, was g0 when T s

j (the reduction of Tj) started executing,
and if the node ep(n) could be reached in data state (g1, l1), then n can be
reached in data state (g2, l2), and the variables Vari

G, i > k are not touched
(hence, there is no need to know their values).

– The relation Sf captures the summary of procedure f.
– The relations Ej store the effect of executing a thread. If Ej(k, g0, g1) holds,

then g0, g1 ∈ Gk, and the execution of thread T s
j , starting from g0 can lead

to g1, without touching variables in Vari
G, i > k.

– The function check(k, (g1, · · · , gk), (g′1, · · · , g′k)) returns g′k if gi+1 = g′i for
1 ≤ i ≤ k−1, and is undefined otherwise. This function checks for the correct
transfer of the global state from T2 to T1 at a context switch.

– Let [(g1, · · · , gi), (gi+1, · · · gj)] = (g1, · · · , gj). We sometimes write g to mean
(g), i.e., [(g1, · · · , gi), g] = (g1, · · · , gi, g).

Understanding the rules. The rules R′1, R′2, R′3, and R′7 describe intra-
thread computation, and are similar to the corresponding unprimed rules in
Fig. 3. The rule R10 initializes the variables for the first execution context of T1.
The rule R12 initializes the variables for the first execution context of T2. The
rules R8 and R9 ensure proper hand off of the global state from one thread to
another. These two are the only rules that change the value of k. For example,
consider rule R8. It ensures that the global state at the end of kth execution
context of T2 is passed to the (k+1)th execution context of T1, using the function
check. The value g returned by this function represents a reachable valuation of
the global variables when T1 starts its (k + 1)th execution context.

The following theorem shows that the relations E1 and E2 are built lazily,
i.e., they only contain relevant information. A proof can be found in [8].

Theorem 2. After running the algorithm described in Fig. 5, E1(k, (g1, · · · ,
gk), (g′1, · · · , g′k)) and E2(k, (g′1, · · · , g′k), (g2, · · · , gk, g)) hold if and only if there
is an execution of the concurrent program with 2k−1 context switches that starts
in state g1 and ends in state g, and the global state is gi at the start of the ith

execution context of T1 and g′i at the start of the ith execution context of T2. The
set of reachable global states of the program in 2K − 1 context switches are all
g ∈ G such that E2(K, g1, [g2, g]) holds.

6 Experiments

We did a proof-of-concept implementation of the eager algorithm for Boolean
programs, presented in §3, using the model checker Moped [20]. We took sequen-
tial programs and assumed that there were two copies of the program running
concurrently (except for BlueT). The input programs are obtained from a variety
of sources: BlueT is a model of a Bluetooth driver [17]; Java* are the result of
abstracting Java programs [2]; Reg* are from the regression suite of Moped; Toy
is a toy program we wrote for checking correctness. Some programs, especially
ones obtained from Java programs, have pointers and a bounded heap (which is

Reducing Concurrent Analysis to Sequential Analysis 49

Hj
n(k, g0, g1, l1, [g2, g3], l3) n

st
−−→ m (g3, l3, g4, l4) ∈ [[st]]

R
′

1
Hj

m(k, g0, g1, l1, [g2, g4], l4)

Hj
n(k, g0, g1, l1, g2, l2) n

call f()
−−−−−→ m Sf(k + i, [g2, g], [g3, g′])

R
′

2
Hj

m(k + i, [g0, g], [g1, g], l1, [g3, g′], l2)

Hj
n(k, g0, g1, l1, g2, l2) exitnode(n) f = proc(n)

R
′

3
Sf(k, g1, g2)

Hj
n(k, g0, g1, l1, g2, l2) n

call f()
−−−−−→ m l3 ∈ L

R
′

7
H

j

entry(f)(k, g0, g2, l3, g2, l3)

H1
n(k, g0, g1, l1, g2, l2) E2(k, g2, g3) g = check(g0, g3)

R8
H1

n(k + 1, [g0, g], [g1, g], l1, [g2, g], l2)

H2
n(k, g0, g1, l1, g2, l2) E1(k + 1, [g3, g2], [g0, g4])

R9
H2

n(k + 1, [g0, g4], [g1, g4], l1, [g2, g4], l2)

g ∈ G, l ∈ L, e = entry(main)
R10

H1
e (1, g, g, l, g, l)

Hj
n(k, g0, g1, l1, g2, l2)

R11
Ej(k, g0, g2)

E1(1, g0, g1), l ∈ L
R12

H2
e2

(1, g1, g1, l, g1, l)

Fig. 5. Rules for lazy analysis of concurrent Boolean programs

accounted for in the number of variables). We verified if a certain program node
was reachable by finding the set of reachable data-states at the node. In most
cases, we modified the programs to have both positive and negative instances.

Prog Inst 2K Time (s) |Prog| #gvars #lvars
Toy pos 20 0.3 12 5 0
Reg-blast1 neg 20 3.9 19 7 21
Reg-blast1 pos 20 4.1 19 7 21
Reg-slam1 pos 20 19.6 19 1 10
BlueT neg 20 7.2 30 10 1
BlueT pos 10 7.6 30 10 1
JavaMeeting neg 10 168.5 537 16 64
JavaMeeting pos 10 361.3 537 16 64
JavaChange neg 10 770.8 601 24 38
JavaChange pos 10 1134.4 601 24 38

Fig. 6. Experiments on finite-data-
state models

The results are shown in Fig. 6.
The last three columns give the total
number of CFG edges, the number of
global variables, and the maximum num-
ber of local variables in a procedure,
respectively. They show that our algo-
rithm is practical—the data-state space
of JavaChange has about 2158 possible
states. The negative cases take less time
than positive cases because of the way
we implemented the BDD operations. In
some cases, we can conclude that a set is
empty, i.e., a node is not reachable, with-

out applying all the required operations. For positive cases this never happens,
and all the operations are applied.

7 Related Work

Most of the related work on CBA has been covered in the body of the paper. A
reduction from concurrent programs to sequential programs was given in [17] for

50 A. Lal and T. Reps

the case of two threads and two context switches (it has a restricted extension to
multiple threads as well). In such a case, the only thread interleaving is T1; T2; T1.
The context switch from T1 to T2 is simulated by a procedure call. Then T2 is
executed on the program stack of T1, and at the next context switch, the stack of
T2 is popped off to resume execution in T1. Because the stack of T2 is destroyed,
the analysis cannot return to T2 (hence the context bound of 2). Their algorithm
cannot be generalized to an arbitrary context bound.

Analysis of message-passing concurrent systems, as opposed to ones having
shared memory, has been considered in [4]. They bound the number of messages
that can be communicated, similar to bound the number of contexts.

There has been a large body of work on verification of concurrent programs.
Some recent work is [6,15]. However, CBA is different because it allows for precise
analysis of complicated program models, including recursion. As future work, it
would be interesting to explore CBA with the abstractions used in the afore-
mentioned work.

References

1. Ball, T., Rajamani, S.: Bebop: A symbolic model checker for Boolean programs.
In: SPIN (2000)

2. Berger, F., Schwoon, S., Suwimonteerabuth, D.: jMoped (2005),
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/jmoped/

3. Bouajjani, A., Fratani, S., Qadeer, S.: Context-bounded analysis of multithreaded
programs with dynamic linked structures. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 207–220. Springer, Heidelberg (2007)

4. Chaki, S., Clarke, E.M., Kidd, N., Reps, T.W., Touili, T.: Verifying concurrent
message-passing C programs with recursive calls. In: Hermanns, H., Palsberg, J.
(eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 334–349. Springer,
Heidelberg (2006)

5. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
(2002)

6. Henzinger, T.A., Jhala, R., Majumdar, R.: Race checking by context inference. In:
PLDI (2004)

7. Knoop, J., Steffen, B.: The interprocedural coincidence theorem. In: CC (1992)
8. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential

analysis. Technical Report 1629, University of Wisconsin (2008)
9. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent pro-

grams under a context bound. TR-1598, University of Wisconsin (July 2007)
10. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent pro-

grams under a context bound. In: TACAS (2008)
11. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.

In: POPL (2004)
12. Murphy, B., Lam, M.: Program analysis with partial transfer functions. In: PEPM

(2000)
13. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of

multithreaded programs. In: PLDI (2007)
14. Qadeer, S., Rajamani, S.: Deciding assertions in programs with references. Tech-

nical Report MSR-TR-2005-08, Microsoft Research, Redmond (January 2005)

http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/jmoped/

Reducing Concurrent Analysis to Sequential Analysis 51

15. Qadeer, S., Rajamani, S.K., Rehof, J.: Summarizing procedures in concurrent pro-
grams. In: POPL (2004)

16. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

17. Qadeer, S., Wu, D.: KISS: Keep it simple and sequential. In: PLDI (2004)
18. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-

able. In: TOPLAS (2000)
19. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via

graph reachability. In: POPL (1995)
20. Schwoon, S.: Moped, http://www.fmi.uni-stuttgart.de/szs/tools/moped/
21. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technical Univ. of

Munich, Munich, Germany (July 2002)
22. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:

Program Flow Analysis: Theory and Applications, Prentice-Hall, Englewood Cliffs
(1981)

http://www.fmi.uni-stuttgart.de/szs/tools/moped/

Monitoring Atomicity in Concurrent Programs

Azadeh Farzan1 and P. Madhusudan2

1 Carnegie Mellon University
afarzan@cs.cmu.edu

2 Univ. of Illinois at Urbana-Champaign
madhu@cs.uiuc.edu

Abstract. We study the problem of monitoring concurrent program
runs for atomicity violations. Unearthing fundamental results behind
scheduling algorithms in database control, we build space-efficient moni-
toring algorithms for checking atomicity that use space polynomial in the
number of active threads and entities, and independent of the length of
the run monitored. Second, by interpreting the monitoring algorithm as
a finite automaton, we solve the model checking problem for atomicity of
finite-state concurrent models. This establishes (for the first time) that
model checking finite-state concurrent models for atomicity is decidable,
and remedies incorrect proofs published in the literature. Finally, we
exhibit experimental evidence that our atomicity monitoring algorithm
gives substantial time and space benefits on benchmark applications.

1 Introduction

Correct concurrent programs are way harder to write than sequential ones. Se-
quential bug-free programs are already hard to write, maintain, and test, though
the tremendous effort over the last 20 years in finding errors in programs has
yielded certain tractable approaches and tools to assure correctness. The advent
of multi-core technologies and the increasing use of threads and communicating
modules in software design has brought all concurrency issues to the forefront.
Consequently, one of the most important problems in software analysis is to un-
derstand concurrency idioms used in practice, and leverage the understanding
to build testing and verification tools.

While programming for a multicore (shared-memory) architecture to exploit
concurrency, a useful mechanism to have is the ability to parallelize tasks such
that there is controlled interaction amongst them. For instance, the proposal
of transactional memory (and software transactional memory [23]) introduces
such an atomicity construct in a programming language. Programmers writing
in current programming languages (such as Java or C with Pthreads) implicitly
need such a construct, but since it is not available, implement their own con-
currency control mechanism (say using locks) in order to mutually exclude their
threads from accessing shared data. A large number of errors in these concurrent
programs are due to mismanaged atomicity. For instance, a recent study on bug
characteristics in real-world concurrent programs revealed that more than 68%

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 52–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Monitoring Atomicity in Concurrent Programs 53

of concurrency bugs were due to atomicity violations (where blocks of code were
intended to be atomic but the mechanisms did not ensure atomicity) [16].

The above intuition motivates a remarkable generic specification (a specifi-
cation common across applications) for concurrent programs called atomicity.
Consider a concurrent program where certain blocks of code are annotated as
transaction blocks, capturing the intention of the programmer that they be atom-
ically executed. We declare an interleaved run to be atomic if it is semantically
equivalent to a serial run where the transaction blocks are scheduled one after
another, without any interleaving. The idea then is that non-atomic runs violate
programmer intentions and hence are likely to be unintended interactions that
may be concurrency errors. This notion of atomicity stems from the concept of
serializability studied in database concurrency control, and the idea of using the
notion of atomicity as a generic specification for concurrent programs (running
on non-TM platforms) was first proposed by Flanagan and Qadeer in 2003 [9].

The most well-studied, accepted and tractable notion of serializability is con-
flict serializability [20,4]. Intuitively, we declare events to be dependent if they
cannot be commuted— so, two accesses to the same variable are dependent if
one of them is a write. Two runs r and r′ are equivalent if we can obtain one
from the other by commuting independent events in the run. A run is conflict-
serializable if it has an equivalent serial run. We study only conflict-serializability
in this paper, and will henceforth refer to it as simply serializability. The terms
serializability and atomicity are synonymous in this paper.

Notice that our methodology of finding errors in programs is parameterized
with annotations of blocks of code intended to be atomic. While we can choose
natural syntactic blocks of code (such as methods in a class) to be blocks intended
to be atomic (as many papers in the literature have done), it is also possible to
learn the intended atomic blocks from positive test runs [17] (see also [27]).
Here, we are interested in building algorithms for identifying non-atomic runs,
and hence we will assume that the annotations of transactional blocks as given.

The objective of this paper is to (a) study the algorithmics of monitoring
atomicity of individual runs of concurrent programs, and (b) leverage the mon-
itoring algorithm to solve the model checking problem for checking atomicity in
concurrent Boolean programs.

A simple monitoring algorithm for serializability works by maintaining a con-
flict graph, which is a graph depicting the precedence order imposed by the run
on the transactions (blocks of code). A run is serializable if, and only if, this
graph remains acyclic. A tempting idea to minimize the conflict graph while
monitoring a run is to remove completed transactions from the conflict-graph,
replacing it with transitive edges that summarize its effect, with the intuition be-
ing that the completed transactions cannot play any role in the future. However,
this intuition is wrong. In a paper by Alur, McMillan and Peled [2], automata-
based algorithms were designed for checking serializability that overlooked this
subtlety and deleted transactions, resulting in an erroneous algorithm (confirmed
by one of its authors [1]).

54 A. Farzan and P. Madhusudan

Unearthing techniques from designs of database schedulers, we obtain sim-
ple space-efficient algorithms for monitoring runs for serializability. The main
idea is not to remove completed transactions, but rather summarize their effects
by throwing in transitive edges and absorbing their event content into active
transactions. Such algorithms are present in the database literature (see [5]),
and we have adapted these to the multithreaded software realm (especially to
the setting of threads executing multiple transactions) to provide space-efficient
monitoring. We refer the interested reader to two textbooks on database the-
ory [20,4], a paper on the combinatorics of removing completed transactions and
related deletion policies on the conflict-graph [12], and a volume on concurrency
control by Casanova [5], from which our intuitions have been gained.

The monitoring algorithm we obtain is a streaming algorithm that reads runs
of a program, and after reading a run r uses space O(k2 + k.n), where k is the
number of active threads after r and n is the number of entities accessed by r.
Furthermore, the time taken to update the information on reading an event is
only linear in this graph. Note that there is no dependence on the number of
events or transactions executed in r, and hence our algorithm scales well when
working on long executions of programs.

The monitoring algorithm, surprisingly, paves the way to decision procedures
to model check programs for atomicity violations. When there are a finite number
of threads and entities, our monitoring algorithm uses a bounded amount of
space, and hence can be seen as a deterministic finite automaton. Using this, we
prove that concurrent Boolean programs without recursion (where each thread
runs a program with a regular control structure and where all variables are
interpreted over finite domains), the model checking problem for atomicity is
decidable and is . Pspace-complete. As far as we know, this is the first time
that the decidability of model checking atomicity for finite-state programs has
been established. Note that a similar claim appears in [2], but is incorrect due
to the grave error we mentioned.

Turning to the experiments, we have implemented both the conflict-graph
based monitoring algorithm and the new monitoring algorithm based on sum-
marized conflict graphs. We evaluate these on a suite of benchmarks, and il-
lustrate the significant space (and hence time) gains our algorithm provides in
monitoring long runs of realistic concurrent benchmark programs.

Related Work: Atomicity is a new notion of correctness; the more classical
notion is race checking: a race is a pair of accesses to the same variable by
different threads, where one of the accesses is a write [19,22,6]. Data races also
signal improper synchronization in code, and are routinely used to find errors in
concurrent programs (see [22,6] for testing and runtime checking for data races
and [18] for static data race analysis). It has been suggested [10,8,26,25] that
atomicity notions based on serializability are more appropriate and yield fewer
false positives; some practical tools built for serializability demonstrate this [27].

Most work in software verification for atomicity errors are based on approxi-
mations of the concept, including Lipton transactions (a sufficient but not nec-
essary condition) that ensures serializability [15]. Type systems [10] and model

Monitoring Atomicity in Concurrent Programs 55

checkers [13] for atomicity based on Lipton transactions have been developed.
The work in [8] reports ways of exploring a run and a possible serialization of it
simultaneously and checks whether they result in the same effect. In [7], we had
proposed a slightly different notion of atomicity called causal atomicity which
can be checked using partial-order methods. The work in [17] defines access in-
terleaving invariants that are certain patterns of access interactions on variables,
learns the intended specifications using tests, and monitors runs to find errors.

The closest work to ours is a series of papers by Wang and Stoller on runtime
verification of atomicity [25,26]. In these papers, the authors consider a different
and harder problem than what we tackle: they consider a run, project the run
onto each thread, and ask whether they can be recombined in some way to
produce a non-serializable run This is significantly harder: first, recombinations
of runs may not be feasible in the original program in general, and though the
authors handle locks accurately, the runs may still be infeasible (say due to data
checks) and hence raise false alarms. Also, even abstracting the program to a set
of reads and writes as they do, the problem of checking if a non-serializable run
exists can be shown to be Np-hard. The authors provide approximate algorithms,
that are neither sound nor complete, for the settings where locks are nested
and transactions have no potential for deadlocks. The experimental results are
reported for a small number of threads (3 in most cases). Our problem however
is to simply check if the current run is itself non-serializable for which we show a
scalable algorithm and where we have tested the benchmarks for a large number
of threads (going up to 50; see Section 5 for more details).

A variant of dynamic two-phase locking algorithm [20] for detection of serial-
izability violations is used in the atomicity tool developed in [27]. As discussed
in [20], the set of runs that are detected as atomic by a two-phase locking algo-
rithm are a strict subset of the set of conflict serializable runs.

2 Preliminaries

Modeling Runs of Concurrent Programs: We consider programs that run
threads concurrently, with accesses to local and global data. We also assume that
blocks of program code are marked as transactions, with each thread running a
sequence of transactions on any run. We will check runs of programs for atomicity
violations with respect to these blocks. We first define a general notion of a run of
a concurrent program, where we assume the global accesses, the thread creations
and termination, and the beginning and ending of transactions are observable.

Let us assume an infinite but countable set of thread identifiers T ={T1, T2,. . .}.
Let us also assume a countable set of (global) entity names (or just entities)
X = {x1, x2, . . . , }. The set of actions A over X , is defined as: A = {rd(x),wr (x) |
x ∈ X}. The alphabet of events of a thread T ∈ T is

ΣT = {T :a | a ∈ A} ∪ {T :�, T :�} ∪ {BegT ,EndT }.

The events T :rd(x) and T :wr(x) correspond to thread T reading and writing to
entity x, respectively, and T :� and T :� correspond to transaction boundaries
that begin and end blocks of code in thread T , while BegT and EndT denote

56 A. Farzan and P. Madhusudan

the creation and termination of the thread T itself. Let Σ =
⋃

T∈T ΣT denote
the set of all events.

Note that the above can model dynamic memory allocation as well, provided
we observe the memory allocation/release actions. The only difference is that
the set of actions A changes during the monitoring. We can assign a fresh name
to every new piece of memory allocated (based on the desired granularity), and
maintain aliasing information to observe accesses to the location.

For any alphabet A, w ∈ A∗, let w[i] denote the i’th element of w, and w[i, j]
denote the substring from position i to position j in w. For w ∈ A∗ and B ⊆ A,
let w|B denote the word w projected to the letters in B. For a word σ ⊆ Σ∗, let
σ|T be a an abbreviation of σ|ΣT , which includes only actions of thread T .

The runs of concurrent programs, which we call schedules, are executions of
the program where actions of threads are interleaved.

Definition 1. A schedule is a word σ ∈ Σ∗ such that for each T ∈ T , σ|T is a
prefix of the word BegT · [(T :�) · {T :a | a ∈ A}∗ · (T :�)

]∗ · EndT .

In other words, the actions of thread T start with BegT and end with EndT ,
and the actions within are divided into a sequence of transactions, where each
transaction begins with T :�, is followed by a set of reads and writes, and ends
with T :�. Let Sched denote the set of all schedules.

Notice that schedules do not observe synchronization mechanisms such as
mutual exclusion using locks, semaphores, etc. as serializability of one schedule
is independent of the synchronization mechanism.

A transaction tr of thread T is a word of the form T :� w T :�, where w ∈
{T :a | a ∈ A}∗. Let TranT denote the set of all transactions of thread T , and let
Tran denote the set of all transactions.

When we refer to two particular events σ[i] and σ[j] in σ, we say they belong
to the same transaction if they belong to the same transaction block: i.e. if there
is some T such that σ[i] = T :a, σ[j] = T :a′, where a, a′ ∈ A, and there is no i′,
i < i′ < j such that σ[i′] = T :�. We refer to the transaction blocks freely and
associate (arbitrary) names to them, using notations such as tr, tr1, tr

′, etc.

Defining atomicity: We define atomicity through the notion of conflict seri-
alizability. The dependency relation D is a symmetric relation defined over the
events in Σ, and captures the dependency between (a) two events accessing the
same entity, one of them being a write, and (b) any two events of the same
thread, i.e.,

D = {(T1:a1, T2:a2) | (T1 = T2 ∧ a1, a2 ∈ A ∪ {�, �}) ∨
[∃x ∈ X such that (a1 = rd(x) ∧ a2 = wr(x)) ∨
(a1 = wr(x) ∧ a2 = rd(x)) ∨ (a1 = wr(x) ∧ a2 = wr(x))]}

Definition 2 (Equivalence of schedules). The equivalence of schedules is
defined as the smallest equivalence relation ∼ ⊆ Sched × Sched such that the
following condition holds:

if σ = ρee′ρ′, σ′ = ρe′eρ′ ∈ Sched with (e, e′) 	∈ D, then σ ∼ σ′.

Monitoring Atomicity in Concurrent Programs 57

It is easy to see that the above notion is a well-defined equivalence relation.
Intuitively, two schedules are considered equivalent if we can derive one sched-
ule from the other by iteratively swapping consecutive independent actions in
the schedule. It is also clear (given that two actions accessing an entity are in-
dependent only if both are reads), that equivalent schedules produce the same
valuation of all entities. Formally, assuming each thread has its view limited to
the entities it has read and written, we can show that no matter what the do-
main of the entries are, and what functions the individual threads may compute,
and no matter how many local variables a thread may have, the final values of
both local variables and global entities remains unchanged when executing two
equivalent schedules.

We call a schedule σ serial if all the transactions in it occur atomically: for-
mally, for every i, if σ[i] = T :a where T ∈ T and a ∈ A, then there is some j < i
such that T [i] = T :� and every j < j′ < i is such that σ[j′] ∈ ΣT . In other
words, the schedule is made up of a sequence of complete transactions from dif-
ferent threads, interleaved at boundaries only (the final transactions of a thread
may be incomplete, but even then the actions in each incomplete transaction
must occur together).

Definition 3. A schedule is serializable if it has an equivalent serial schedule.
That is, σ is a serializable schedule if there a serial schedule σ′ such that σ ∼ σ′.

The conflict-graph characterization: A simple characterization of atomic
(or conflict-serializable) schedules uses the notion of a conflict-graph, and is a
classic characterization from the database literature (this notion is so common
that many papers in database theory define conflict serializability using it).

If a transaction tr of thread T reads x and is followed by a transaction tr′

of thread T ′ that writes x, then we must schedule the (entire) transaction T
before the (entire) transaction T ′. The conflict graph [11,20,4] is a graph that
captures these constraints, and is made up of transactions as nodes, and edges
capturing ordering constraints imposed by a schedule. A schedule is serializable
iff its conflict graph represents a partial order (i.e. is acyclic).

Formally, for any schedule σ, let us give names to transactions in σ, say
tr1, . . . , trn. The conflict-graph of σ is the graph CG(σ) = (V, E, S) where V =
{tr1, . . . , trn}, S : V −→ 2Σ is a labeling of vertices such that S(tri) is precisely
the set of events that have been scheduled in tri, and E contains an edge from tr
to tr′ iff there is some event e in transaction tr and some event e′ in transaction
tr′ such that (1) the e-event occurs before e′ in σ, and (2) eDe′.

Note that transactions of the same thread are always ordered in the order
they occur (since all actions of a thread are dependent on each other to preserve
sequential consistency).

Lemma 1. A schedule σ is atomic iff the conflict graph of σ is acyclic. ��
The above lemma essentially follows from [11] (also [4,20]). The classic model
is however a database model where transactions are independent; we require
an extension of this lemma to our model where there are additional constraints

58 A. Farzan and P. Madhusudan

imposed by the fact that some transactions are executed by the same thread. The
above characterization actually happens to hold when the underlying alphabet
has any arbitrary dependence relation, and hence holds in our threaded model
since we have ensured that any two events of a thread are dependent.

If the conflict graph is acyclic, then it can be viewed as a partial order, and
it is clear that any linearization of the partial order will define a serial schedule
equivalent to σ. If the conflict-graph has a cycle, then it is easy to show that the
cyclic dependency rules out the existence of any equivalent serial schedule.

The above characterization yields a simple algorithm for serializability that
simply constructs the conflict-graph and checks for cycles. The algorithm can
process the schedule event by event, updating the graph, and finally call a cycle-
detection routine. Hence [20,4]:

Proposition 1. The problem of checking whether a singe schedule σ is atomic
is decidable in polynomial time. ��

3 Monitoring Atomicity

The goal of this section is to build a space-efficient monitoring algorithm for
checking serializability violations. Our algorithm, after reading a run r, will take
a space at most polynomial in the (maximum) number of active threads (at every
moment) in r and the number of entities accessed in r; most importantly, this
will have no dependence on the length of r itself.

Note that there is a simple algorithm that monitors serializability violations
by keeping track of the conflict graph and checking it for cycles. However, since
the conflict graph contains one node for every transaction that has ever happened
in the system, it can grow arbitrarily large, and does not result in the monitoring
algorithm we seek. We want to keep a reduced conflict graph when monitoring.

t2

t1 t3

Let us look at an example to see how to reduce the conflict
graph. Consider the following non-serializable schedule:

T1:� T1:rd(x) T2:�T2:wr (x) T2:rd(z)
T3:� T3:wr(z) T2:� T1:wr(x)

The figure on the right demonstrates the conflict graph for the above schedule
without the last event T1:wr(x) (t1, t2, and t3 are transactions of threads T1, T2,
and T3).

Now, in this graph, since the transaction t2 of T2 has finished, it is very
tempting to remove the node t2, and summarize its effect by replacing it by an
edge from t1 to t3. However, this is a serious error: for example, if we deleted t2,
then the next event T1:wr(x) does not cause a cycle. The reason is that though
t2 is a completed transaction, it may still participate in later cycles as outgoing
edges from t2 can always be introduced even after t2 has completed.

The work by Alur, McMillan and Peled [2] considers precise algorithms for
monitoring serializability violations (using automata that keep track of reduced

Monitoring Atomicity in Concurrent Programs 59

conflict-graphs on the schedule it has read). Their paper has the grave error
mentioned above, and the algorithms establishing upper bounds of checking
serializability in the paper are wrong.

In fact, the problem of when completed transactions can be deleted is a well
studied problem in database concurrency control, and there have been several
approaches to finding safe deletion policies [4,5,12]. Next, we present a way to
summarize the essential information of the conflict-graph using just a graph of
nodes formed by active threads1.

3.1 Summarized Conflict Graph for Serializability

The following notion of summarized conflict graphs is adapted from a conflict-
serializable scheduling algorithm in [5]. Intuitively, we keep the conflict graph
restricted to edges between the active transactions only (paths between active
transactions summarized as edges), and also maintain for each active transac-
tion/thread T a set C which denotes the set of events that occurred in transac-
tions that must be scheduled later than this transaction. Moreover, when keeping
track of events of completed threads, we erase the thread id from its description.

Recall that A is the set of actions of reads and writes to global entities, and
Σ includes the set {T :a | T ∈ T , a ∈ A} as well as begin and end events for
transactions and threads. In the summarized graph, each node corresponding to
an active thread T will be associated with two sets, S and C, where S ⊆ ΣT

is the set of scheduled events of the current active transaction of thread T (as
in the conflict graph), and C ⊆ Σ ∪ A is the set of conflicting events, events
that occurred in completed transactions that must be scheduled later than the
current transaction of T .

Definition 4. Let σ be a schedule and let CG(σ) be its conflict graph. The
summarized conflict graph of a schedule σ is a tuple SCGσ = (V, E, S, C), where
(V, E) is a graph and S and C are two vertex-labeling functions S : V −→ 2Σ,
C : V −→ (2Σ∪A), where

– V contains a node vi for each active thread Ti;
– E contains an edge from v to v′ (respectively associated to transactions tr

and tr′) if and only if there exists a path from the node corresponding to
tr to that corresponding to tr′ in CG(σ) which does not contain any nodes
corresponding to active transactions;

– For any vi ∈ V , if vi corresponds to active transaction tr, then S(vi) consists
of precisely the label of tr in the conflict-graph of σ, and C(vi) contains:

• the set of events T :a ∈ Σ such that T is an active thread and there is
some completed transaction tr′, reachable from tr in CG(σ), whose label
contains T :a, and

• the set of actions a ∈ A such that there is some completed transaction
tr′, reachable from tr in CG(σ), whose label contains T :a, and where T
is a thread that has already ended in σ.

1 An active thread T is a thread for where the beginT action has appeared in the
schedule, and endT has not appeared yet .

60 A. Farzan and P. Madhusudan

The above is a static definition of the summarized conflict graph, and it is easy
to see that cycles in the conflict graph manifest themselves in the summarized
conflict graph:

Lemma 2. There is a cycle in the conflict graph of σ iff there is a cycle in the
summarized cycle graph of σ′ for some σ′ that is a prefix of σ. ��
Notice that when a cycle gets formed in the summarized conflict graph, it may
get removed later (for example if all the threads that form the transactions of
the cycle end) However, since whenever a node is removed, we combine incoming
edges and outgoing edges from this node with a transitive edge, it follows that
unless all nodes in the cycle are removed, the cycle is preserved. When the cycle
is finally removed, it will be in the form of a self-loop on a transaction node that
is being deleted. Hence, when monitoring, it is sufficient to check for self-loops.

Maintaining the summarized conflict graph: Let us now turn to an algo-
rithm for maintaining the summarized conflict graph. The following set of rules
show how the summarized conflict graph can be constructed dynamically as the
schedule σ progresses. The dynamic algorithm updates the graph based on these
rules until a self-loop is created, and at which point reports a serializability
violation. The algorithm maintains a set AT of the currently active threads.

– (Rule 1): If the next event in σ is Ti:�, then create a new node vi and set
S(vi) = ∅ and C(vi) = ∅.

– (Rule 2): If the next event in σ is Ti:�, then remove vi by connecting all
its (immediate) predecessors to all its (immediate) successors. Also for every
(immediate) predecessor vk of vi, set C(vk) = C(vk) ∪ S(vi) ∪ C(vi).

– (Rule 3): If the next event in σ is Ti:a, then set S(vi) := S(vi)∪{Ti:a}. For
all vk 	= vi, if there is an event Tj:b ∈ S(vk) ∪ C(vk) such that (Tj:b, Ti:a) ∈
DΣ , add an edge (vk, vi) to E. Also, for any action b ∈ C(vk) such that
(Tk:b, Ti:a) ∈ DΣ , add an edge (vk, vi) to E.

– (Rule 4): If the next event in σ is BegTi
, then set AT = AT ∪ {Ti}.

– (Rule 5): If the next event in σ is EndTi , then set AT = AT \ {Ti}, and
replace every Ti:a in every conflict s et C by a.

The summarized conflict graph given here is derived from a similar one presented
in [4,5], but adapted to handle threads. Furthermore, for terminated threads, we
have adapted the algorithm to remove the thread id information, thereby bound-
ing the information kept at each node to the product of the number of active
threads and entities accessed only. In the case of dynamic memory allocation,
when a location is freed, it can be removed from all the label sets.

The following theorem captures the correctness of the algorithm in maintain-
ing the summarized conflict graph, and hence, by Lemma 2 and Lemma 1, is a
streaming algorithm that detects serializability violations.

Theorem 1. The algorithm presented streams events of a schedule σ, and main-
tains the summarized conflict graph. Hence, for schedules in which all started
threads end, the algorithm detects a self-loop on some node at some point in
time iff the schedule is non-serializable. ��

Monitoring Atomicity in Concurrent Programs 61

Note that if one is interested in checking a schedule that does not conform to
the above, it is always easy to add transaction end and thread end actions to
the end of the schedule to make it so.

Complexity of the algorithm: Our monitoring algorithm using the summa-
rized conflict graph simply reads events of a schedule, maintains the summarized
conflict graph, and checks if at any point a self-loop is introduced. Its space com-
plexity is as follows:

Proposition 2. For any schedule σ, the number of nodes of the summarized
conflict graph is bounded by k and the combined sizes of the sets associated
with the nodes is bounded by k.n, where k is the maximum number of active
threads during σ and n is the number of entities accessed by it. The size of the
summarized conflict graph is therefore of O(k2 + k · n). ��
While scanning the schedule σ, the algorithm spends time O(k · log n) when the
next event is a read or a write action by some thread. If the next event is an
end of a transaction, then the monitoring algorithm spends time O(n · k). The
updates for other action are performed in constant time.

4 Model Checking Atomicity for Boolean Programs

In this section, we present the second main result of the paper: a solution for the
problem of checking atomicity of concurrent Boolean programs and establishing
its complexity to be precisely Pspace-complete. The result we prove here was
claimed in [2], but as we mentioned, the proof there was wrong.

We consider succinct representations of programs with Boolean variables with
logical encodings of initial positions and the transition relation (very much akin
to how systems are described in model checking based on Boolean decision dia-
grams such as NuSMV).

Let us fix a finite set of threads T = {T1, . . . , Tk} and a finite set of entities
X = {x1, . . . , xn}. Recall the set of actions associated with these threads and
entities:

ΣT = {T :a | a ∈ A} ∪ {T :�, T :�} ∪ {BegT ,EndT }
and Σ =

⋃
T∈T ΣT . Note that Σ is a finite set.

A Boolean program over threads T and X is defined over a finite set of Boolean
variables V , where the initial set of states is described using a Boolean formula
Init(V), and for each e ∈ Σ, we have a Boolean formula Transe(V , V ′), where
V ′ = {v′ | v ∈ V}, which describes the transitions on the event e. The size of the
program is defined as |V| + |Init(V)| +

∑
e∈Σ |Transe(V , V ′)|. The semantics of

the program is the natural one.
Imperative concurrent programs with common synchronization constructs can

easily be described as a Boolean program provided there are only a finite number
of threads and entities, and the data manipulated by the program has been
abstracted into a finite domain. This model is particularly interesting in an

62 A. Farzan and P. Madhusudan

abstract-interpretation framework where data domains are abstracted, say using
predicate abstraction [3].

The key to model checking for atomicity violations of Boolean programs is
to realize that the monitoring algorithm presented in this paper maintains a
bounded graph to check atomicity, when the number of threads and entities are
bounded. We can turn this monitoring algorithm into a deterministic automaton
that checks for atomicity violations, and using the automata-theoretic method,
reduce model checking to a decidable emptiness problem on automata. We build
an automaton Ser that accepts the set of all serializable runs (of k threads and n
entities). It is easy to see that size of Ser is exponential in n and k. By building
an automaton B that accepts all the runs of the program (which will also be
exponential in the size of the program), we can model check for atomicity by
checking if L(B) ⊆ L(Ser), which can be achieved in Pspace by generating
these automata on-the-fly.

Theorem 2. The problem of checking if a Boolean program is serializable is
Pspace-complete. ��

5 Experimental Evaluation

We implemented two algorithms to monitor serializability of program runs: one
was the classic algorithm based on conflict graphs, and the other of our new
algorithm based on summarized conflict graphs. Comparing with the conflict
graph algorithm is useful since existing methods [25] use structures that are
similar to the conflict graph.

We evaluated the algorithms on a benchmark suite of 5 programs. These bench-
marks include sor (successive over-relaxation), lufact (LU factorization), and
raytracer from the Java Grande multithreaded benchmarks [14], and elevator
and tsp from [21]. sor and lufact are (data-intensive) scientific computation
programs which perform numerical computation on matrices, elevator simulates
multiple lifts in a building, tsp solves the traveling sales man problem for a given
input map, and raytracer renders a frame of an arrangement of spheres from a
given view point.

We extracted runs by manually instrumenting programs to output the accesses
to entities while executing. We have a simple automatic escape analysis unit
that excludes from the run all accesses to thread-local entities. We then run
the monitoring algorithms on these output files offline. We use the glib library
to efficiently implement set and graph operations. In the case of summarized
conflict graphs, we check for cycles by checking for self loops in the graph, and
for conflict graphs, we check the graph for cycles once at the end.

Table 1 presents the results of our evaluation. We ran each benchmark with
different input parameters such as number of threads, and input files. For each
program, we report in the table the number of lines of code (LOC) (appears be-
low the program names), number of threads used in the run and number of truly
shared entities between threads, the length of the run (number of events). The ta-
ble presents the results of running the two monitoring algorithms, conflict graph

Monitoring Atomicity in Concurrent Programs 63

Table 1. Monitoring Results (K=1000; M=1000000)

Application
(LOC)

Spec
Threads;
Entities

Length of
the Run

CG
(n, e)

CG
(time)

SCG
(n, e)

SCG
(time)

ser-viol/
bug

sor
(470)

100×100 3; 400 97M 600, 80K 118s 3, 0 0.5s no/–
100×100 10; 1800 97M 2K, 300K 8872s 6, 0 3.5s no/–
100×100 50; 10000 101M — > 8h 17, 0 30.4s no/–

lufact
(1234)

100×100 3; 10K 17M 894, 168K 1824s 3, 2 37s no/–
100×100 10; 10K 18M 3K, 617K 3940s 10, 9 55s no/–
100×100 50; 10K 22M 15K, 3M 11640s 50, 49 84s no/–

elevator
(566)

data 2; 32 7K 137, 6K 0.06s 3, 2 0 yes/no
data2 4; 32 220K 416, 26K 0.97s 5, 2 0.01s yes/no
data3 4; 200 571K 258, 10K 6.3s 5, 3 0.1s yes/no

tsp
(794)

map4 3; 15 80 6, 5 0 1, 0 0 no/–
map14 5; 40 1.4M 18, 109 2.2s 4, 3 1.0s yes/no

raytracer
(1537)

150×150 10; 1 66 10, 90 0.02s 10,9 0.02s yes/yes
200×200 10; 1 66 10, 79 0.02s 10,9 0.02s yes/yes

(CG) and summarized conflict graph (SCG) on these runs, and we report the size
of each graph (in number of nodes and edges), and the time (in seconds) consumed
to monitor each run (an entry of 0 means the time was less than 0.01 seconds).
Note that the times are for processing the run only, and not generating the run
(as that part is common to both algorithms). Finally, we report whether we found
a serializability violation (yes/no), and if yes, whether it pointed to a real bug in
the program (yes/no), the latter determined manually. All experiments were per-
formed on Linux PC with two 4GHz processors and 4GB of memory.

Our results clearly illustrate the tremendous impact of using our summarized
conflict-graph algorithm, giving orders of magnitude speedup when compared to
the classic conflict-graph algorithm. For example, for sor with 50 threads, the
CG-algorithm did not finish even after 8 hours while SCG finishes in 30s. This
is primarily due to space savings; for example, lufact with 50 threads gives a
conflict graph of 15K nodes and 3M edges, while the SCG graph never uses
more than 50 vertices (one for each thread) and 49 edges.

Note that the algorithm reported in [25] solves a harder problem, as it tries
to find serializability violations in the current run as well as all other runs that
can be inferred from this run. In fact, their technique does not scale well as
they use a graph similar to the conflict graph; they reported to us that they
get timed-out after 25 minutes while checking the sor benchmark for 50 threads
while we check the run in 30 seconds [24].

All the runs of sor and lufact that we monitored were serializable. tsp
and elevator generated non-serializable runs. But a closer investigation of the
source of non-serializability of these runs shows that they do not correspond
to real errors in the program. They both refer to interesting cases of non-trivial
thread interactions which are intended by the programmer, and we believe a pro-
grammer would find such reports of interactions useful. The non-serializable runs

64 A. Farzan and P. Madhusudan

of raytracer, however, are related to a real bug in that program. The bench-
marks, the monitoring programs, and the precise runs monitored are available
at http://www.cs.uiuc.edu/∼madhu/cav08/.

Acknowledgement. We thank Liqiang Wang and Scott Stoller for useful dis-
cussions and clarifications both theoretical and experimental.

References

1. Alur, R.: Personal communication
2. Alur, R., McMillan, K.L., Peled, D.: Model-checking of correctness conditions for

concurrent objects. Information and Computation 160(1-2), 167–188 (2000)
3. Ball, T., Rajamani, S.K.: The slam project: debugging system software via static

analysis. In: POPL, pp. 1–3 (2002)
4. Bernstein, P.A., Goodman, N.: Concurrency control in distributed database sys-

tems. ACM Comput. Surv. 13(2), 185–221 (1981)
5. Casanova, M.A.: Concurrency Control Problem for Database Systems. Springer,

New York (1981)
6. Engler, D.R., Ashcraft, K.: Racerx: effective, static detection of race conditions

and deadlocks. In: SOSP, pp. 237–252 (2003)
7. Farzan, A., Madhusudan, P.: Causal Atomicity. In: Ball, T., Jones, R.B. (eds.)

CAV 2006. LNCS, vol. 4144, pp. 315–328. Springer, Heidelberg (2006)
8. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multi-

threaded programs. In: POPL 2004, pp. 256–267 (2004)
9. Flanagan, C., Qadeer, S.: Types for atomicity. In: TLDI, pp. 1–12 (2003)

10. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: ACM SIGP-
PLAN PLDI 2003, pp. 338–349. ACM Press, New York (2003)

11. Fle, M.P., Roucairol, G.: On serializability of iterated transactions. In: PODC
1982: Proc. of ACM SIGACT-SIGOPS PODC, pp. 194–200. ACM Press, New
York (1982)

12. Hadzilacos, T., Yannakakis, M.: Deleting completed transactions. In: ACM
SIGACT-SIGMOD PODS, pp. 43–46 (1986)

13. Hatcliff, J., Robby, Dwyer, M.: Verifying atomicity specifications for concurrent
object-oriented software using model checking. In: Steffen, B., Levi, G. (eds.) VM-
CAI 2004. LNCS, vol. 2937, pp. 175–190. Springer, Heidelberg (2004)

14. Java Grand Benchmark Suite, http://www.javagrande.org/
15. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-

mun. ACM 18(12), 717–721 (1975)
16. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes — a comprehensive

study on real world concurrency bug characteristics. In: ASPLOS (2008)
17. Lu, S., Tucek, J., Qin, F., Zhou, Y.: Avio: Detecting atomicity violations via access-

interleaving invariants. In: ASPLOS (2006)
18. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for java. In:

Schwartzbach, M.I., Ball, T. (eds.) PLDI, pp. 308–319. ACM, New York (2006)
19. Netzer, R.H.B., Miller, B.P.: What are race conditions? some issues and formaliza-

tions. LOPLAS 1(1), 74–88 (1992)

http://www.javagrande.org/

Monitoring Atomicity in Concurrent Programs 65

20. Papadimitriou, C.: The theory of database concurrency control. Computer Science
Press, Inc., USA (1986)

21. von Praun, C., Gross, T.R.: Object race detection. SIGPLAN Not. 36(11), 70–82
(2001)

22. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A dy-
namic data race detector for multi-threaded programs. In: SOSP (1997)

23. Shavit, N., Touitou, D.: Software transactional memory. In: PODC, pp. 204–213
(1995)

24. Wang, L., Stoller, S.D.: Personal communication
25. Wang, L., Stoller, S.D.: Accurate and efficient runtime detection of atomicity errors

in concurrent programs. In: PPoPP, pp. 137–146 (2006)
26. Wang, L., Stoller, S.D.: Runtime analysis of atomicity for multi-threaded programs.

IEEE Transactions on Software Engineering 32, 93–110 (2006)
27. Xu, M., Bod́ık, R., Hill, M.D.: A serializability violation detector for shared-

memory server programs. SIGPLAN Not. 40(6), 1–14 (2005)

Dynamic Verification of MPI Programs with

Reductions in Presence of Split Operations and
Relaxed Orderings�

Sarvani Vakkalanka, Ganesh Gopalakrishnan, and Robert M. Kirby

School of Computing, University of Utah, Salt Lake City UT 84112, USA
http://www.cs.utah.edu/formal verification/cav08

Abstract. Dynamic verification methods are the natural choice for de-
bugging real world programs when model extraction and maintenance
are expensive. Message passing programs written using the MPI library
fall under this category. Partial order reduction can be very effective for
MPI programs because for each process, all its local computational steps,
as well as many of its MPI calls, commute with the corresponding steps of
all other processes. However, when dependencies arise among MPI calls,
they are often a function of the runtime state. While this suggests the
use of dynamic partial order reduction (DPOR), three aspects of MPI
make previous DPOR algorithms inapplicable: (i) many MPI calls are
allowed to complete out of program order; (ii) MPI has global synchro-
nization operations (e.g., barrier) that have a special weak semantics;
and (iii) the runtime of MPI cannot, without intrusive modifications, be
forced to pursue a specific interleaving because of MPI’s liberal message
matching rules, especially pertaining to ‘wildcard receives’. We describe
our new dynamic verification algorithm ‘POE’ that exploits the out of
order completion semantics of MPI by delaying the issuance of MPI
calls, issuing them only according to the formation of match-sets, which
are ample ‘big-step’ moves. POE guarantees to manifest any feasible in-
terleaving by dynamically rewriting wildcard receives by specific-source
receives. This is the first dynamic model-checking algorithm with reduc-
tions for (a large subset of) MPI that guarantees to catch all deadlocks
and local assertion violations, and is found to work well in practice.

1 Introduction

MPI [1] programs are an important class of concurrent programs used for the
distributed programming of virtually all high performance computing clusters
in the world. MPI will also be widely used for programming peta-scale super-
computers under construction [2]. Typical MPI programs are C programs (or
C++/Fortran programs) that create a fixed number of processes at inception.
These processes then perform computations in their private stores, invoking var-
ious flavors of send and receive API functions in the MPI library to exchange
� Supported in part by NSF award CNS00509379, Microsoft HPC Institute Program,

and SRC Contract 2005-TJ-1318.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 66–79, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Dynamic Verification of MPI Programs 67

data, and also invoke global synchronization operations in the MPI library. Most
MPI programs create processes that eventually terminate.

MPI programs can contain many types of errors, including deadlocks, local as-
sertion violations, resource leaks, and numerical inaccuracies. The primary goal
of our work is to develop efficient methods to detect deadlocks and local asser-
tion violations in MPI programs. Dynamic verification methods are the natural
choice for verifying MPI programs because model extraction and model main-
tenance of MPI programs can be very expensive. This paper presents the first
dynamic verification algorithm called POE (Partial Order reduction avoiding
Elusive interleavings) for MPI that guarantees soundness (within the practical
limits of runtime verification) and employs an effective partial order reduction
algorithm. Of the many features of POE, the manner in which it guarantees
coverage and implements reduction during dynamic verification are our main
contributions. A good partial order reduction approach is crucial for verifying
MPI programs because these programs mostly perform their computations in
private stores, invoking MPI operations for message exchanges, where most (but
not all) of these operations commute. Also, MPI calls occur with a high static
and dynamic frequency, thanks to the many for loops in which MPI calls occur.

In this context, our verification tool ISP that uses the POE algorithm detects
deadlocks missed by existing state-of-the-art tools. While the MPI 2.0 library
itself supports over 300 MPI functions, ISP can handle 24 of the most commonly
used MPI functions. In this paper, we describe the handling of five of these func-
tions, namely MPI_Isend, MPI_Irecv, MPI_Barrier, MPI_Wait, and MPI_Test,
and refer to them as ‘send, receive, barrier, wait, and test.’ Send and receive
are, respectively, non-blocking operations, meaning that the issuing process can
start the activity and proceed to execute later instructions while the send/receive
proceeds in the background. The primary arguments of send are the destination
process (this may not be a compile-time constant), the data being shipped, and
a ‘handle.’ (Note: We do not detail some of the function arguments allowed by
MPI calls, such as MPI ‘tags’ that affect message matching. Our implementation
handles all allowed MPI arguments.) The issuing process may wait on the han-
dle or test the handle. A wait blocks till the send operation finishes, while test
returns false unless the send has finished, at which time it returns true. A send
is deemed to have finished when the background process of copying the message
out of the memory space of the sending process has finished. The arguments
of receive are the source process ID (not necessarily a compile-time constant),
the data receipt buffer, and a handle (with a semantics similar to the send han-
dle). Instead of specifying a specific source process, receive can also mention ‘*’,
which is a wildcard receive that is open for receipt from any send that targets
the receiving process. In effect, send and receive are split operations.

When an MPI process invokes a sequence of MPI calls, some of the calls
may complete out of program order. For instance, if a process P0 invokes two
consecutive non-blocking send operations targeting P1 and P2 respectively, the
second send is allowed to finish before the first one (especially if the second send
is shipping a much smaller amount of data). However, if both sends target the

68 S. Vakkalanka, G. Gopalakrishnan, and R.M. Kirby

P0: MPI_ISend(to P1, data = 22); ...rest of P0...
P1: MPI_Irecv(*, x); if (x==22) then error1 else ...rest of P1...;
P2: MPI_ISend(to P1, data = 33); ...rest of P2...

Fig. 1. Simple MPI Example Illustrating Wildcard Receives

same process (say P1), then FIFO message ordering is required. This relaxed
program order of MPI facilitates higher performance.

Dynamic verification with persistent set based reductions was introduced in
[5]. The dynamic partial order reduction algorithm (DPOR) [6] allows these
dependencies to be accurately computed based on runtime state. This algorithm
works by generating one interleaving of the program (maintained as a stack trace)
and generating its interleaving variants. It ensures that the set of transitions
explored from a state s forms a persistent set as follows. Consider the transitions
ti and tj of processes pi and pj respectively such that i < j in the current
interleaving (this means that in the current interleaving ti is executed before
transition tj). If ti and tj are dependent (i.e., ti can either enable or disable tj
and vice versa), and ti and tj are co-enabled, then pj is added to the pre-state of
ti hoping to eventually execute tj . . . ti. This approach does not work with MPI,
as explained with the help of a short example (Figure 1).

In this example, MPI processes P0 and P2 are targeting P1 which entertains a
‘wildcard match,’ i.e., can receive from any process that has a concurrently en-
abled ISend targeting P1. As soon as one such send is chosen (say P0’s), the other
send is not eligible to match with this receive of P1 (it has to match another receive
of P1 coming later). This disabling behavior of the sends induces a dependency be-
tween them, as can be seen from the fact that the particular send that matches
may or may not cause error1 to be triggered. Consider some i < j < k, and a
trace t where the ith action of t, namely ti, is P2’s send, and similarly tj is P1’s
receive, and tk is P0’s send. In this trace, it is not necessary that P0’s receive is
matched with P2’s send just because ti is executed before tk. MPI implements its
own buffering mechanism that can cause one send to race ahead of the other send.
Formally, unlike in DPOR, MPI’s program order does not imply happens-before [7]
in an MPI program’s execution. Hence, it is possible that tj is matched with tk.
There is no way in an MPI run-time (short of making intrusive modifications to
the MPI library, which is often impossible because of the proprietary nature of the
libraries) to force a match either way (both sends matching the receive in turn)
by just changing the order of executing sends from P2 and P0.

Roadmap: Section 2 presents an overview of POE and discusses related work.
Section 3 presents POE formally. Section 4 provides a summary of experimental
results. Section 5 concludes the paper.

2 Overview of POE, and Related Work

Section 2.1 presents the barrier semantics of MPI, followed by the POE algo-
rithm. Section 2.2 presents related work.

Dynamic Verification of MPI Programs 69

P0: S0(to P1, h0) ; B0 ; W(h0) ;
P1: R (*, h1) ; B1 ; W(h1) ;
P2: B2 ; S2(to P1, h2); W(h2) ;

Fig. 2. Illustration of Barrier Semantics and the POE Algorithm

2.1 Barrier Semantics and Overview of the POE Algorithm

Barrier Semantics: No MPI process can issue an instruction past its barrier
unless all other processes have issued their barrier calls. Therefore, an MPI pro-
gram must be designed in such a way that when an MPI process reaches a barrier
call, all other MPI processes also reach their barrier calls (in the MPI parlance,
these are collective operations); a failure to do so deadlocks the execution. While
these rules match the rules followed by other languages and libraries in sup-
porting their barrier operations, in case of MPI, it is possible for a process Pi

to have an operation OPi before its barrier call, for another process Pj to have
an operation OPj after Pj ’s matching barrier call, and where OPi can observe
OPj ’s execution. This means that OPi can, in effect, complete after Pi’s barrier
has been invoked. This shows that the program ordering from an operation to a
following barrier operation need not be obeyed during execution. This is allowed
in MPI (to ensure higher performance), as shown by the example in Figure 2,
and requires special considerations in the design of POE. In this example, one
MPI_Isend issued by P0, shown as S0, and another issued by P2, shown as S2,
target a wildcard receive issued by P11. The following execution is possible:
(i) S0(to P1, h0) is issued, (ii) R(*, h1) is issued, (iii) each process fully ex-
ecutes its own barrier, (B0, B1, or B2), and this “collective operation” finishes
(all the B’s indeed form an atomic set of events), (iv) S2(to P1, h2) is issued,
(v) now both sends and the receive are alive, and hence S0 and S2 become de-
pendent, requiring a dynamic algorithm to pursue both matches. Notice that S0
can finish after B0 and R can finish after B1. (Note: Because of the placement
of this barrier that is after P0’s send and P1’s receive, but before P2’s send, we
sometimes refer to such barriers as ‘crooked barriers.’)

To recapitulate, MPI respects program ordering between any MPI operation
x ∈ {barrier, wait, test} and the MPI operation immediately following x in pro-
gram order. A dynamic verification algorithm for MPI must therefore maintain
a completes-before relation ≺ (defined in Section 3.2), and use it to determine,
at runtime, all senders that can match a wildcard receive.2

POE Algorithm: We now present an overview of POE, as implemented by our
verification scheduler (called the POE scheduler) that can intercept MPI calls
and send them into the MPI run-time as and when needed:

1 While not central to our current example, we also take the opportunity to illustrate
how the handles h0 through h2, and MPI Wait (W) are used.

2 Section 3 presents another detail of MPI which we refer to as ‘trumping,’ captured
by another relation ≺c.

70 S. Vakkalanka, G. Gopalakrishnan, and R.M. Kirby

• The POE scheduler executes C program statements along each process. All C
statements are executed in program order. When the scheduler encounters
an MPI operation, it simply records this operation, but does not execute
it. This process continues till the scheduler arrives, within each process, at
an MPI operation that is program ordered with respect to some previously
collected (but not issued) MPI operation (we call these points fences).

• While at a fence point for all processes, since all senders that match a wild-
card receive are known, rewrite the receives into specific receives. In our
example, R(*) is rewritten into R(from P0) and R(from P2).

• Form match-sets. Each match-set is either a single big-step move (as in
operational semantics) or a set of big-step moves. Each big-step move is a
set of actions that are issued collectively into the MPI run-time by the POE
scheduler (we enclose them in 〈〈. . .〉〉). In our example, the match-sets are:
− { 〈〈 S0(to P1), R(from P0) 〉〉, 〈〈 S2(to P1), R(from P2) 〉〉 }
− 〈〈 B0, B1, B2〉〉

• Execute the match-sets in priority order, with all big-step moves executed
first. The execution of a big-step move consists of executing all its constituent
MPI operations. When no more big-step moves are left, then for each re-
maining set of big-step moves, recursively explore (according to depth-first
search) all the big-step moves contained in it. In our example, this results in
the big-step move 〈〈 B0, B1, B2 〉〉 from being performed first. Subsequently,
both the big-step moves in
{ 〈〈 S0(to P1), R(from P0) 〉〉, 〈〈 S2(to P1), R(from P2) 〉〉 }
are pursued.

Thus, one can notice that POE never actually issues into the MPI run-time any
wildcard receive operations it encounters. It always dynamically rewrites these
operations into receives with specific sources, and pursues each specific receive
paired with the corresponding matching send as a match-set in a depth-first
manner.

Additional Points About Barriers: It must be observed that the code snip-
pet in Figure 1 can be verified with DPOR if the technique of dynamic rewriting
of the wildcard receives is employed. However, the code snippet in Figure 2 can-
not be verified with DPOR even with dynamic rewriting of wildcard receives
employed. Due to the presence of the barrier, the send S2 can never be exe-
cuted before the send S0, whereas in DPOR, we will need dependent actions to
be replayable in both orders. In any interleaving of this example, however, S0
will always be issued before S2. The POE algorithm overcomes this problem by
executing the big-step move 〈〈 B0, B1, B2 〉〉, and then forming the match-set
{ 〈〈 S0(to P1), R(from P0) 〉〉, 〈〈 S2(to P1), R(from P2) 〉〉 }.

2.2 Related Work

In [8], it was observed that DPOR may offer a way to determine, at runtime,
which sends and receives can match in MPI programs. However, since no dynamic
verification tool was built, the issues discussed in Section 1 pertaining to the

Dynamic Verification of MPI Programs 71

P1 P2 P3

B1,1 B2,1 B3,1

R1,2(∗, 〈1, 2〉) B2,2 S3,2(1, 〈3, 2〉)
B1,3 S2,3(1, 〈2, 3〉) B3,3

R1,4(∗, 〈1, 4〉) W2,4(〈2, 3〉) W3,4(〈3, 2〉)
W1,5(〈1, 2〉) B2,5 B3,5

W1,6(〈1, 4〉)
B1,7

Fig. 3. An Example MPI Program

difficulties of forcing specific send/receive matches were not faced. In [9], nothing
more than the standard DPOR of [6] was needed, as we handled only some of
the shared memory features of MPI for which a DPOR-like approach works.
In our 2-page tools paper [10], we actually implemented DPOR for many of
MPI’s communication commands, and in the process observed the unsoundness
resulting from our inability to force specific send/receive matches. The POE
algorithm takes advantage of our formal understanding of MPI (as captured in
an extensive TLA+ model for MPI we are building [11]), precisely builds the
completes-before relation ≺, uses it to discover potential send/receive matches
precisely, and employs dynamic rewriting to force desired matches.

While MPI-SPIN [12,13,14], which is based on SPIN [15], can detect the kinds
of errors that POE can detect, this approach inherently requires major effort on
the part of users in building, by hand, verification models of their MPI programs
in Promela [15]. Given the extensive number of C constructs and user-level li-
brary calls used in writing many MPI programs, this effort is impractical in
those cases. MPI-SPIN does provide a reduction algorithm called the Urgent
Algorithm that allows all MPI send/receive channels to be treated as rendezvous
channels. However, this algorithm applies only to programs that do not use
wildcard receives (which are extensively used by many MPI program types). In
general, MPI-SPIN relies on SPIN’s POR algorithm which, unfortunately, does
not “understand” the commuting properties of MPI calls. In its favor, MPI-SPIN
supports a symbolic execution facility to compare a sequential algorithm against
an MPI implementation of the algorithm to detect numerical inaccuracies - a
feature not supported by ISP.

Other works [16,17,18,19] do not seem to run into the problems we run into
with MPI, including out-of-order completion, barriers, split operations, or run-
time scheduling realities.

The plethora of concurrency libraries catering to ‘multicore programming’ sug-
gests that dealing with complex APIs will become important. Yet, most tools in
this area are based on the conventional ‘testing’ approach. ISP can now handle
24 MPI function types (detailed on our website). We have successfully han-
dled all 69 examples in the Umpire [4] tool distribution. These are examples for
which Umpire itself, and approaches such as Jitterbug [20] do not offer coverage
guarantees (conventional verification tools for MPI that we surveyed [21] are
unsound). Inserting randomized ‘padding’ delays to potentially perturb MPI’s

72 S. Vakkalanka, G. Gopalakrishnan, and R.M. Kirby

internal schedules (as done in ConTest [22], Jitterbug, Marmot [3], and Umpire)
is highly unreliable, and slows down testing by adding delays into computational
paths. For instance, for many of our examples containing wildcard receives pro-
vided on our website, Marmot missed generating many feasible schedules that
actually contain deadlocks.

3 Formal Presentation of POE

3.1 Abstract Syntax

Let Nat = {0, 1, 2 . . .}, Bool = {0, 1}, and Bool⊥ = {0, 1, ⊥}. Given P ∈ Nat
MPI programs, their PID (“MPI rank” of each process) set is {1 . . . P}, and
PID∗ is the set {1 . . . P} ∪ {∗} (∗ is to model ‘wildcard receives’; see below).
Let L ∈ PID → Nat be the lengths of the given programs, each program being
viewed as a sequence of instructions. For any function f , its application to any
argument i, f(i), is often written fi for brevity; for example L(1) (often written
L1) is the length of the first program. Also, a function f of two arguments can
be applied to two arguments i and j, written fi,j , or partially applied to one
argument i, and that is written fi (this partial application returns a function
which later “expects” a j). Let p ∈ PID → Nat → I (where I is the set of MPI
instructions defined in this sequel) be the programs. Thus p1 . . . pP are the P
programs, and the jth instruction of the ith program is pi,j . Let l ∈ PID → Nat
be the program counters (PC) l1 . . . lP . Let f [i ← e] be function update, i.e.
f [i ← e] = (f \ {〈i, f(i)〉}) ∪ {〈i, e〉}. Also, map f lst = {f(i) | i ∈ lst}. Let
π1〈a, b〉 = a. For a set of pairs S, let f [S] denote function update performed for
every pair in S, i.e., f [S] = (f \ {〈i, f(i)〉 | i ∈ (map π1S)}) ∪ S.

Let h ∈ PID → Nat → Bool⊥ be the handles h1 . . . hP . In our formal model,
every instruction has a handle; it is only the case that W and T (MPI wait and
test instructions defined in this sequel) happen to use this handle in a specific
way. Handle hi,j is initially ⊥. In our description of POE, we use the setting
of hi,j to 0 to model POE encountering (collecting) instruction anyi,j(. . .) in
program order, and the setting to 1 to model POE issuing (executing) this
instruction. POE will (i) set hi,j to 1 out of program order (but still correctly
so according to ≺), and (ii) dynamically rewrite the wildcards before forming
match-sets and executing them. The total system state is 〈l, h〉 (we keep track
of the PC values and the handle array status).

The set of MPI instructions I is the smallest set that include the following:
Barrier, written Bi,j , Send, written Si,j(k, 〈i, j〉), where k ∈ PID is the process
targeted, and 〈i, j〉 is the handle used to track the progress of this Send, Receive,
written Ri,j(k, 〈i, j〉) where k ∈ PID∗ is the process from which the message is
sourced (∗ means ‘wildcard receive,’ i.e., the message is sourced from any process),
and 〈i, j〉 is the handle (as with send) to track the progress of this Receive. We do
not show the data payloads for sends S and receives R; when needed in discus-
sions, they will be shown as a third argument. For S (send) and R (receive), their
handle 〈i, j〉 is used by a following W instruction, or tested by a following T in-
struction (not required to exist by the MPI standard, and we also do not require

Dynamic Verification of MPI Programs 73

the W/T to exist). I also includes Wait, written Wi,j(〈m, n〉) where 〈m, n〉 refers
to a handle. Wi,j(〈m, n〉) blocks till hm,n is set to 1. This event occurs when the
instruction which set hm,n to 0 finishes. (This earlier instruction is an S or R.) I
also includes Test, written Ti,j(〈m, n〉, l) where 〈m, n〉 refers to a handle and l is a
PC. Ti,j(〈m, n〉, l) blocks till hm,n is set to 1, and this occurs when the instruction
that set hm,n to 0 (an earlier S or R) finishes, in which case the control transfers to
the new PC l. Finally, I includes a conditional goto to model loops (space prevents
further discussion of goto and T).

Figure 3 illustrates our syntax. Process P1 has seven sequential commands, and
P2 and P3 each have five each. All proper MPI programs start with MPI_INIT,
and terminate with MPI_FINALIZE, and both these essentially have the semantics
of a barrier. Thus, the set B1,1, B2,1, and B3,1 models MPI_INIT. Likewise, the
set B1,7, B2,5, and B3,5 models MPI_FINALIZE. The set B1,3, B2,2, and B3,3 is a
‘crooked barrier’. Thus, notice that the two sends S2,3(1, 〈2, 3〉) and S3,2(1, 〈3, 2〉)
both target P1, and they can both potentially match with R1,2(∗, 〈1, 2〉).
Illustration: In this example, if R1,4(∗, 〈1, 4〉) is changed to R1,4(2, 〈1, 4〉), it is
possible that R1,2(∗, 〈1, 2〉) matches S2,3(1, 〈2, 3〉), and then S3,2(1, 〈3, 2〉) cannot
match R1,4(2, 〈1, 4〉) (this receive expects a message from P2, not P3). This
results in a deadlock. Such deadlocks cannot be detected through static analysis
alone, because in MPI, send targets (i.e., the 1 in S3,2(1, 〈3, 2〉)) and receive
sources can be computed at runtime.

3.2 Completes-before Relation of MPI

MPI guarantees process-pair-wise message delivery ordering with respect to the
issue orders of sends and receives. To illustrate this idea, consider two sends
that are issued by process i both targeting process j, and two matching receives
that are issued by process j, hoping to source from i. These sends and receives
must be carried out in program order. It is only when send operations target re-
ceive operations in different processes, or receive operations source from different
processes, that program order can be relaxed.

Specifically, suppose process i has a send Si,m(j, 〈i, m〉, d1), and another send
Si,n(j, 〈i, j〉, d2), for n > m. Here, d1 and d2 are the data payloads. Suppose
process j has a receive Rj,u(i, 〈j, u〉, x1), and another receive Rj,v(i, 〈j, v〉, x2),
for v > u. Here, x1 and x2 are j’s receive buffers, MPI guarantees FIFO message
ordering and ensure that x1 is bound to d1 and x2 to d2 during execution. The
POE algorithm must never issue these sends and receives out of order. In fact,
the POE algorithm can ‘fire and forget’ these operations in program order, and
be guaranteed that the MPI runtime will match them in this appropriate order.

Now consider a slightly different example where there are three processes i, j,
and k in the system. The receives are Rj,u(k, 〈j, u〉, x1) and Rj,v(∗, 〈j, v〉, x2),
where k �= i, and furthermore, let process k never issue a send to process j. In
this case, the first receive (which cannot match any of the offers made by i) will
be trumped by the second receive, which now goes ahead; the result will be that
x2 is bound to d1. The POE algorithm has to be aware of this ‘trumping rule.’

74 S. Vakkalanka, G. Gopalakrishnan, and R.M. Kirby

A third variant of our example is one where the sends are as above, the
receives are Rj,u(k, 〈j, u〉, x1) and Rj,v(∗, 〈j, v〉, x2), where k �= i, but now there
is a third process k which issues a send, Sk,l(j, 〈k, l〉, d3). Now, Rj,v(∗, 〈j, v〉, x2)
does not trump. The receive Rj,u(k, 〈j, u〉, x1) can indeed match the new send
Sk,l(j, 〈k, l〉, d3), thus binding x1 to d3, and x2 to d1. POE has to be aware of this
lack of trumping, as well. Thus, we note that when the sequence Rj,u(k, 〈j, u〉, x1);
. . . Rj,v(∗, 〈j, v〉, x2) appears in process j, the second receive can conditionally
complete before the first one, in a manner that depends on the runtime state of
the system.

We now define the completes-before relation, ≺. The POE algorithm pre-
sented in Section 3.4 will be based on ≺. A variant of ≺ called conditionally com-
pletes (≺c) is used to model the concept of trumping discussed earlier. We do not
discuss ≺c any more in this paper, for the sake of simplicity (it is of course incor-
porated into our implementation of POE, in forming match-sets according to ≺c).

∀i, j1, j2, k : j1 < j2 ⇒ Si,j1(k, . . .) ≺ Si,j2(k, . . .)
∀i, j1, j2, k : j1 < j2 ⇒ Ri,j1(k, . . .) ≺ Ri,j2 (k, . . .)
∀i, j1, j2, k : j1 < j2 ⇒ Ri,j1(∗, . . .) ≺ Ri,j2(k, . . .)
∀i, j1, j2 : j1 < j2 ⇒ Ri,j1 (∗, . . .) ≺ Ri,j2(∗, . . .)
∀i, j1, j2, k : j1 < j2 ⇒ Si,j1(k, 〈i, j1〉) ≺ Wi,j2(〈i, j1〉)
∀i, j1, j2, k : j1 < j2 ⇒ Ri,j1(k, 〈i, j1〉) ≺ Wi,j2 (〈i, j1〉)
∀i, j1, j2 : j1 < j2 ⇒ Bi,j1 ≺ anyi,j2(. . .)
∀i, j1, j2 : j1 < j2 ⇒ Wi,j1 (. . .) ≺ anyi,j2(. . .)

FIFO Lemma: Any MPI programexecution respecting≺∗, the transitive closure
of ≺, guarantees the required FIFO message orderings between MPI processes.

3.3 Match-Set Formation

Fence Instructions: For an instruction j ∈ I, fence(j) holds exactly when for
all succeeding instructions k ∈ I in program order, j ≺∗ k. Notice that ‘wait’ and
‘barrier’ act as fences, and depending on the MPI program, other instructions
may attain a fence status.

Ancestor Relation: The ancestor of an instruction i is some instruction j where
j ≺∗ i. The set ancestors(i) is the set of indices of i’s ancestors. To exploit the
FIFO Lemma, POE issues instruction i to the MPI system only after all its
ancestors j have been issued. POE can issue any instruction not connected by
≺∗ out of order, as the MPI system itself considers such instructions semantically
unordered (and hence may reorder them).

Match-set definitions: We now define all match-set types. The match-set type
MS∗R will be a set of big-step moves. The match-set type MSB will be one big-
step move containing all the matching barriers. Match-set type MSR will contain
exactly one send Si,u(j, . . .), and its matching non wild-card receive Sj,v(i, . . .)).
Match-set type MSW will be a big-step move of exactly one wait, and MST

will be a big-step move of exactly one test. Consider the big-step moves 〈〈. . .〉〉
themselves to be sets.

Dynamic Verification of MPI Programs 75

The main difficulty in forming match-sets is to determine which sends can
match a wildcard receive. To compute MS∗R, we start with a set containing just
the wildcard receive in question. We then seek the maximal number of additional
sends that we can add to this set, without hitting a fence. Finally we break ∗
into specific instances of PIDs. We also must make sure that for the members of
any MS, all its ancestors have been issued into the MPI system. Modeling this
requires the state of the h array.

Formal Definition of MS(l, h): We define match-sets as a function of l (the
array of PCs) and h (the array of handles). In our definitions, we often refer to
a “band” of past PC values where the MS might lie; this is what the function ρ
used below denotes:

MSB(l, h) = if ∃ρ ∈ PID → Nat : ∀x ∈ PID : 1 ≤ ρx ≤ lx
∧ ∀k ∈ PID : pk,ρk

= Bk,ρk
∧ ∀u ∈ ancestors(pk,ρk

) : hk,u = 1
∧ hk,ρk

= 0 then 〈〈Bk,ρk
| k ∈ PID〉〉 else ∅ .

MS∗R(l, h) = if ∃ρ ∈ PID → Nat s.t. ∀x ∈ PID : 1 ≤ ρx ≤ lx
∧ ∃i ∈ PID : pi,ρi = Ri,ρi(∗, . . .) ∧ ∀u ∈ ancestors(pi,ρi) : hi,u = 1
∧ hi,ρi = 0
∧ ∀k ∈ PID \ {i} : pk,ρk

= Sk,ρk
(i, . . .) ∧ ∀u ∈ ancestors(pk,ρk

) : hk,u = 1
∧ hk,ρk

= 0
then { 〈〈Ri,ρi (k, . . .), Sk,ρk

(i, . . .)〉〉 | k ∈ PID \ {i}} else {∅} .

MSR(l, h) = if ∃ρ ∈ PID → Nat s.t. ∀x ∈ PID : 1 ≤ ρx ≤ lx
∧ ∃i, j ∈ PID : pi,ρi = Ri,ρi(j, . . .) ∧ pj,ρj = Sj,ρj (i, . . .)
∧ ∀u ∈ ancestors(pi,ρi) : hi,u = 1 ∧ ∀u ∈ ancestors(pj,ρj) : hj,u = 1
∧ hi,ρi = hj,ρj = 0
then 〈〈Ri,ρi (j, . . .), Sj,ρj (i, . . .)〉〉 else ∅ .

MSW (l, h) = if ∃i ∈ PID, 1 ≤ j, k ≤ li, k < j : pi,j = Wi,j(〈i, k〉)
∧ hi,j = 0 ∧ hi,k = 1 ∧ ∀u ∈ ancestors(pi,j) : hi,u = 1
then 〈〈Wi,j(〈i, k〉)〉〉 else ∅ .

Priority Scheme: Let MS(l, h) be an abbreviation for invoking MSB(l, h),
MSR(l, h), and MSW (l, h) in some order. If this invocation returns ∅, we will
explicitly invoke MS∗R(l, h) and pursue the contents of this set, if any. The above
is the priority search scheme that POE uses (postpone wildcard receives until
all senders are discovered).

3.4 The POE Algorithm

We present the transition relation as an inference system which infers new states.
Let 〈l, h〉 ∈ Rch mean that the state 〈l, h〉 has been reached. We invariantly
maintain that hi,li = 0. In the following, hi,j is set to 1 only by match-set
moves. Non-MS moves are PC advances, and they result only in hi,j being set to
0 (the instruction is encountered but not issued). For a process i, a PC advance
move is permitted if the instruction at its current PC is not a fence, or if the
instruction has been issued (handle is set). The atomic transitions are the one

76 S. Vakkalanka, G. Gopalakrishnan, and R.M. Kirby

of the MS(l, h) moves, a PC move, or all the moves within MS∗R(l, h). Also
move(l, h, R) takes a system state 〈l, h〉, an atomic transition (set of instructions)
R, sets the handle bits at the indices of the instruction. It does not advance the
PC, as that will be done by the ‘PC move’ transition. Formally, let α ∈ I → PID
and β ∈ I → Nat be such that for instruction r ∈ I, r = pα(r),β(r). Then,
move(l, h, R) = 〈l, h[{〈〈α(r), β(r)〉, 1〉 | r ∈ R}]〉.
Init: 〈l0, h0〉 ∈ Rch, where l0 = λi.1 and h = (λij.if j = 1 then 0 else ⊥).

Step: for 〈l, h〉 ∈ Rch
// All the deterministic singleton ample-set moves
if MS(l, h) �= ∅ then move(l, h, MS(l, h)) ∈ Rch
// PC move which is also a singleton ample-set move
elseif ∃i ∈ PID : ¬fence(pi,li) ∨ (hi,li = 1)

then 〈l[i ← li + 1], hi[(li + 1) ← 0]〉 ∈ Rch
// Recursive exploration upon dependency. Ample = enabled.
elseif MS∗R(l, h) �= {∅} then (map (λr.move(l, h, r)) (MS∗R(l, h))) ⊆ Rch
else Deadlocked.

Illustration of POE: POE will form match-sets (MS) from only those in-
structions that have a handle value of 0. In system state 〈l, h〉, if there exists
a MS other than MS∗R (will be a subset of I), POE picks any such set and
invokes its operations (sets hi,j for that instruction to 1). MS∗R is a set of
subsets of I, and POE recursively invokes each member set in any order (in
the implementation, these are backtrack points). If no MS can be built in the
current system state, if possible, POE advances the PC li of some process i;
else, the system is deadlocked. In our example (Figure 3), the first MS will be
〈〈B1,1, B2,1, B3,1〉〉, and these barrier calls are issued, setting h1,1, h2,1 and h3,1

to 1. When R1,2(∗, 〈1, 2〉) from P1 is encountered, h1,2 is set to 0 (instruction
encountered, but recorded for future issue). Likewise, from P3, we encounter
S3,2(1, 〈3, 2〉), and set h3,2 = 0; we do not issue this send, as we have not carved
out the maximal MS and we have not hit a fence. The system advances the
PCs, finds the next MS 〈〈B1,3, B2,2, B3,3〉〉, and invokes it, setting the handle
bits to 1. Following this, it will encounter S2,3(1, 〈2, 3〉), setting h2,3 = 0. At this
point, further PC advancement will place P1’s PC facing R1,4(∗, . . .), which is
≺ ordered after R1,2(∗, . . .), and hence serves as a fence within P1. Now P2 en-
counters fence W2,4, and P3 encounters fence W3,4(〈3, 2〉). At this point, the set
〈〈S2,3(1, 〈2, 3〉), S3,2(1, 〈3, 2〉), R1,2(∗, 〈1, 2〉)〉〉 is promoted to an MS status. The
dynamic rewriting process produces two MSs (actually a set containing two MS
sets) 〈〈R1,2(2, 〈1, 2〉), S2,3(1, 〈2, 3〉)〉〉 and 〈〈R1,2(2, 〈1, 2〉), S3,2(1, 〈3, 2〉)〉〉, and re-
cursively invokes POE with these MSs. When the last MS-B is encountered, this
corresponds to MPI_FINALIZE. At this time, if any handle is still a 0, and no
more MS remains, an invalid end-state error is reported. In this example, no
deadlock is encountered.

Correctness of POE: The correctness of POE consists of two steps. First,
we must ensure that we abide by the FIFO Lemma in all scheduling decisions.
This follows from POE never issuing actions contrary to ≺. However, whenever

Dynamic Verification of MPI Programs 77

≺ does not hold, POE may issue actions out of order. Second, we must ensure
that we are executing according to conditions C0-C2 ([23]) of a correct partial
order reduction algorithm (we do not require C3 owing to the acyclicity of MPI’s
state space). C2 is satisfied because local assertions only observe local process
steps which are singleton ample. The priority scheme on Page 75 ensures that
all singleton ample-sets contributed to by match-sets other than MS∗R are ex-
hausted. These preserve C1. Finally, the dependencies among the sends targeting
a wildcard receive are correctly handled by doing a full recursive expansion of
the constituents of MS∗R, which also preserves C1.

4 Summary of Experimental Results

We have implemented the POE algorithm in our ISP runtime model-checker
for MPI that is downloadable, along with our examples, from our website. A
summary of our results is as follows:

• In all the 69 examples from the Umpire test suite, ISP produces the same
theoretical number of interleavings required by our formal algorithm. This
number is far smaller than the number of interleavings without reduction.

• Existing MPI program testing approaches (e.g., Umpire, Marmot) cannot
detect deadlocks with assurance on many simple examples. In all these cases,
the POE algorithm detects the deadlocks (see our webpage for the results).

• For some examples with several hundreds of lines of code that have no wild-
card receives (where the code checks for local assertions), POE requires ex-
actly one interleaving. Existing testing tools will wastefully explore multiple
interleavings where the MPI operations have no dependencies.

• POE’s setting of handle bits turns into collecting MPI operations without
issuing them. These book-keeping steps of ISP have negligible overheads.
The main overhead of ISP is that of restarting MPI for each replay. In
[10], we provide techniques that can dramatically reduce this overhead. This
technique will be integrated into our current ISP version.

• ISP supports 24 MPI functions, including many collective operations, MPI
communicators, and non-deterministic wait functions such as MPI_WAIT_ANY.
However, in a significant number of cases, we can allow an MPI program to
issue operations even outside of this set. These extra functions (such as
MPI_TYPE_CREATE) can still be issued into the MPI run-time without being
trapped by the verification scheduler of POE.

• POE’s scheduler is designed to be parallelized using MPI in future versions
of ISP. Also a static analysis package to remove computations that do not
affect control flow has been prototyped and will be integrated into ISP.

5 Concluding Remarks

We have described an algorithm for handling out of order execution and barrier
semantics in verifying MPI programs for deadlocks and local assertions. We

78 S. Vakkalanka, G. Gopalakrishnan, and R.M. Kirby

emphasize that POE works on unaltered MPI source programs. The verification
tool implementing POE works well in practice, and is sound within the practical
limits of runtime verification. An example of such a limitation is captured by the
MPI Test function. The outcome of MPI Test (true or false) depends on the speed
of computation of MPI processes. It is possible for a given MPI runtime to always
produce the true outcome, for example. We are investigating the modification
of the open source MPICH 2.0 library to overcome such limitations.

We have a formal TLA+ model of MPI 2.0 [11] (and we even have an execution
framework that takes short MPI programs and runs them against this seman-
tics [24]), we are in a position to rigorously prove the MPI semantics described
in this paper.

Acknowledgements. The authors wish to thank Rajeev Thakur of Argonne
National Labs and Bill Gropp of UIUC for their ideas and encouragement.

References

1. Snir, M., Otto, S.: MPI-The Complete Reference: The MPI Core. MIT Press,
Cambridge (1998)

2. Invited Talk by Al Geist at EuroPVM/MPI 2007, Sustained Petascale: The Next
MPI Challenge

3. Krammer, B., Bidmon, K., Müller, M.S., Resch, M.M.: Marmot: An MPI analysis
and checking tool. In: Parallel Computing 2003 (September 2003)

4. Vetter, J.S., de Supinski, B.R.: Dynamic software testing of MPI applications with
Umpire. In: Supercomputing, pp. 70–79 (2000)

5. Godefroid, P.: Model checking for programming languages using verisoft. In: POPL,
pp. 174–186 (1997)

6. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Palsberg, J., Abadi, M. (eds.) POPL, pp. 110–121. ACM, New York
(2005)

7. Lamport, L.: Time, clocks and the ordering of events in a distributed system.
Communications of the ACM 21(7), 558–565 (1978)

8. Palmer, R., Gopalakrishnan, G., Kirby, R.M.: Semantics driven dynamic partial-
order reduction of MPI-based parallel programs. In: Parallel and Distributed Sys-
tems - Testing and Debugging (PADTAD-V) (July 2007)

9. Pervez, S., Palmer, R., Gopalakrishnan, G., Kirby, R.M., Thakur, R., Gropp, W.:
Practical model checking method for verifying correctness of MPI programs. In:
EuroPVM/MPI, pp. 344–353 (2007)

10. Vakkalanka, S., Sharma, S.V., Gopalakrishnan, G., Kirby, R.M.: ISP: A tool for
model checking MPI programs. In: Principles and Practices of Parallel Program-
ming (PPoPP), pp. 285–286 (2008)

11. Li, G., DeLisi, M., Gopalakrishnan, G., Kirby, R.M.: Formal specification of the
MPI-2.0 standard in TLA+. In: Principles and Practices of Parallel Programming
(PPoPP), pp. 283–284 (2008)

12. Siegel, S.F.: Efficient Verification of Halting Properties for MPI Programs with
Wildcard Receives. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 413–
429. Springer, Heidelberg (2005)

Dynamic Verification of MPI Programs 79

13. Siegel, S.F., Avrunin, G.S.: Modeling Wildcard-free MPI Programs for Verification.
In: Proceedings of the ACM SIGPLAN Symposium on Principles and Practices of
Parallel Programming (to appear, 2005)

14. Siegel, S.F., Avrunin, G.S.: Verification of MPI-based software for scientific compu-
tation. In: Proceedings of the 11th International SPIN Workshop on Model Check-
ing Software, Barcelona, April 2004, pp. 286–303 (2004)

15. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2004)

16. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: UUCS-07-008:Runtime
Model Checking of Multithreaded C/C++ Programs. Technical report, Univer-
sity of Utah, School of Computing (2007),
http://www.cs.utah.edu/research/techreports/2007/ps/UUCS-07-008.ps

17. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Distributed dynamic partial
order reduction based verification of threaded software. In: Bošnački, D., Edelkamp,
S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 58–75. Springer, Heidelberg (2007)

18. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 446–455 (2007)

19. http://research.microsoft.com/projects/CHESS/
20. Vuduc, R., Schulz, M., Quinlan, D., de Supinski, B., Saebjornsen, A.: Improved

distributed memory applications testing by message perturbation. In: Parallel and
Distributed Systems: Testing and Debugging (PADTAD - IV) (2006)

21. Sharma, S.V., Gopalakrishnan, G., Kirby, R.M.: A survey of MPI related debuggers
and tools. Technical Report UUCS-07-015, University of Utah, School of Comput-
ing (2007), http://www.cs.utah.edu/research/techreports.shtml

22. Edelstein, O., Farchi, E., Goldin, E., Nir, Y., Ratsaby, G., Ur, S.: Framework for
testing multi-threaded Java programs. Concurrency and Computation: Practice
and Experience 15(3-5), 485–499 (2003)

23. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

24. Palmer, R., Delisi, M., Gopalakrishnan, G., Kirby, R.M.: An approach to formal-
ization and analysis of message passing libraries. In: Formal Methods for Industry
Critical Systems (FMICS), Berlin (2007)

25. DeSouza, J., Kuhn, B., de Supinski, B.R., Samofalov, V., Zheltov, S., Bratanov,
S.: Automated, scalable debugging of MPI programs with intel message checker.
In: SE-HPCS 2005, pp. 78–82 (2005)

http://www.cs.utah.edu/research/techreports/2007/ps/UUCS-07-008.ps
http://research.microsoft.com/projects/CHESS/
http://www.cs.utah.edu/research/techreports.shtml

A Hybrid Type System for Lock-Freedom of

Mobile Processes

Naoki Kobayashi1 and Davide Sangiorgi2

1 Tohoku University
2 Università di Bologna

Abstract. We propose a type system for lock-freedom in the π-calculus,
which guarantees that certain communications will eventually succeed.
Distinguishing features of our type system are: it can verify lock-freedom
of concurrent programs that have sophisticated recursive communication
structures; it can be fully automated; it is hybrid, in that it combines
a type system for lock-freedom with local reasoning about deadlock-
freedom, termination, and confluence analyses. Moreover, the type sys-
tem is parameterized by deadlock-freedom/termination/confluence
analyses, so that any methods (e.g. type systems and model checking)
can be used for those analyses. A lock-freedom analysis tool has been im-
plemented based on the proposed type system, and tested for non-trivial
programs.

1 Introduction

In this paper, we attack the problem of verifying concurrent programs that create
threads and communication channels dynamically. More specifically, we choose
the π-calculus [16] as the target language, and consider the problem of verifying
the lock-freedom property, which intuitively means that certain communications
(or synchronizations) will eventually succeed (possibly under some fairness as-
sumption). Lock-freedom is important for communication-centric computation
models like the π-calculus; indeed, in the pure π-calculus, most liveness prop-
erties can be turned into the lock-freedom property. For example, the following
properties can be reduced to instances of lock-freedom: Will the request of ac-
cessing a resource be eventually granted? In a client-server system, will a client
request be eventually received from the server? And if so, will the server even-
tually send back an answer to the client? In multi-threaded programs, can a
thread eventually acquire a lock? And if so, will the thread eventually release
the lock? The lock-freedom property has also applications to other verification
problems and program transformation, such as information flow analysis and
program slicing (dependency analysis in general). Verification of liveness prop-
erties such as lock-freedom is notoriously hard in concurrency. In formalisms for
mobile processes, such as the π-calculus, it is even harder, because of dynamic
creation of threads and first-class channels. In these formalisms, type systems
have emerged as a powerful means for disciplining and controlling the behaviors
of the processes.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 80–93, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Hybrid Type System for Lock-Freedom of Mobile Processes 81

Type systems for lock-freedom include [1,8,9,20,21]. An automatic verification
tool, TyPiCal [10], has been implemented based on Kobayashi’s system [9]. The
expressive power of such type systems is, however, very limited. This shows up
clearly, for instance, in the treatment of recursion. For example, even primitive
recursive functions cannot be expressed in Kobayashi’s lock-free type system,
since it ignores value-dependent behaviors completely.

In this paper, we tackle lock-freedom by pursuing a different route. We over-
come limitations of previous type systems by combining the lock-freedom analysis
with two other analysis: deadlock-freedom and termination. The result, therefore,
is not a “pure” type system, but one that is parametric in the techniques employed
to ensure deadlock-freedom and termination. Such techniques may themselves be
based on type systems (and indeed in the paper we indicate such type systems, or
develop them when needed), but could also use other methods (model checking,
theorem provers, etc.). The parameterization allows us to go beyond certain limits
of type systems, by appealing to other methods. For instance, a type system, as a
form of static analysis, may have difficulties in handling value-dependent behav-
iors (even very simple ones), which are more easily dealt with by other methods
such as model checking.

Roughly, we use the deadlock-freedom analysis to ensure that a system can
reduce if some of its expected communications have not yet occurred. We then
apply a termination analysis to discharge the possibility of divergence and guar-
antee lock-freedom (i.e., the expected communication will indeed occur). The
reasons for appealing to deadlock-freedom are that powerful type-based ana-
lyzers exist (notably Kobayashi’s systems [11]), and that deadlock-freedom is
a safety property, which is easier than liveness to verify in other verification
methods such as model checking.

A major challenge was to be able to apply the deadlock and termination anal-
ysis locally, to subsystems of larger systems. The local reasoning is particularly
important for termination. A result forcing a global termination analysis would
not be very useful in practice: first, valid concurrent programs may not termi-
nate (e.g., operating systems); second, even if a program is terminating, it can be
extremely hard to verify it if the program is large, particularly in languages for
mobile processes such as the π-calculus that subsume higher-order formalisms
such as the λ-calculus.

Very approximately, our hybrid rule for local reasoning looks as follows:

|=DF P |=Ter P

Δ �LT P
(*)

where |=DF P and |=Ter P indicate, respectively, that P is deadlock-free and
terminating, and Δ �LT P is a typing judgment for lock-freedom. The type
environment Δ captures conditions, or “contracts”, on the way P interacts with
its environment, of the kind “P will eventually send a message on a” and “if
P receives a message on a, then P is lock-free afterwards”. Such contracts are
necessary for the compositionality of the type system for lock-freedom (i.e., local
reasoning on lock-freedom). We use Kobayashi’s lock freedom types [9], which
refine those of the simply-typed π-calculus with channel usages, to express the

82 N. Kobayashi and D. Sangiorgi

contracts. Therefore we add rule (∗), as an “axiom”, to the rules of Kobayashi’s
lock freedom type system [9].

The contracts inΔ, however, are completely ignored—andare not guaranteed—
in the premises of rule (∗). As a consequence, the resulting type system is unsound.
In other words, knowing that P is deadlock-free and terminating is not sufficient
to guarantee compositionality and local reasoning. As an example of missing in-
formation, P being terminating ensures that P itself has no infinite reductions;
but it says nothing on the behaviour of P after it receives a message from other
components in the system. (Indeed rule (∗) is only sound if applied globally, to the
whole system.)

The first refinement we make for the soundness of rule (∗) is to replace
deadlock-freedom and termination with more robust notions, which we call, re-
spectively, robust deadlock-freedom under Δ, written Δ |=RD P , and robust termi-
nation, written |=RTer P . These stronger notions approximately mean that P is
deadlock-free or terminating after any substitution (P may be open, and there-
fore contain free variables), and any interaction with its environment; Δ |=RD P
further ensures that P fulfills certain obligations in Δ. The problems of verifying
robust deadlock-freedom and robust termination are more challenging than the
ordinary ones, due to the additional requirements (e.g., quantifications over sub-
stitutions and transition sequences). Existing type systems for deadlock-freedom,
notably [11], do meet however the extra conditions for robust deadlock-freedom.
We also show how to tune type systems for ordinary termination in a generic
manner so to guarantee the stronger property of robust termination. We should
stress nevertheless that Δ |=RD P and |=RTer P are semantic requirements: our
type system is parametric on the verification methods that guarantee them—one
need not employ type systems.

Even with the above refinement of the deadlock-freedom and termination con-
ditions, the hybrid rule (∗) remains unsound. The reason is, roughly, the same
as why assume-guarantee reasoning in concurrency often fails in the presence of
circularity. In fact, the judgment Δ �LT P can be considered a kind of assume-
guarantee reasoning, where Δ expresses both assumptions on the environment
and guarantees about P ’s behavior. To prevent circular reasoning, we add a
condition nocap(Δ) that intuitively ensures us that P is independent of its en-
vironment, in the sense that P will fulfill its obligations (to perform certain
input/output actions) without relying on its environment’s behavior. (For ex-
ample, suppose that there is an obligation to send a message on channel a. The
process a[1], which sends 1 on a, is fine, since it fulfills the obligation with no
assumption. On the other hand, the process b(x). a[x], which waits to receive a
value on b before sending x on a, is not allowed since it fulfills the obligation
only on the assumption that the environment will send a message on b.) This
leads to the following hybrid rule:

Δ |=RD P |=RTer P nocap(Δ)
Δ �LT P

(LT-Hyb)

The resulting type system guarantees that any well-typed process P is weakly
lock-free, in the sense that if an input/output action is declared in P as an action

A Hybrid Type System for Lock-Freedom of Mobile Processes 83

that should succeed, and if P −→∗ Q, then the action has already succeeded in
P −→∗ Q or there is a further reduction sequence from Q in which the action
will succeed. This is similar to the way in which success of passing a test is
defined in fair should/must testing [4] and bisimulation, (and also in accordance
with other definitions of similar forms of liveness for π-calculus such as [20]).

We have also considered a stronger form of lock-freedom, guaranteeing that
the marked actions will eventually succeed on the assumption that the scheduler
is strongly fair. We show that our type system can be strengthened to guaran-
tee the strong lock-freedom by adding a condition of partial confluence to rule
LT-Hyb above. Again, the partial confluence is only required locally; the whole
program need not be confluent.

The verification framework outlined above for lock-freedom (including an au-
tomated robust termination analysis) has been implemented as an extension of
TyPiCal program analysis tool (except the extension to strong lock-freedom;
adding this on top of the present implementation would be tedious but not diffi-
cult). We have succeeded in automatically verifying several non-trivial programs,
such as symbol tables and binary tree search. These examples are non-trivial be-
cause lists and trees are implented as networks of processes connected by chan-
nels, and they grow dynamically (both channels and processes are dynamically
created and linked). Recursive structures of the kind illustrated in these exam-
ples are common in programming languages for mobile processes (the examples
in fact, were taken or inspired from Pict programs [15]).

2 Target Language

Syntax. We write L for the set of links (also called channels), and V for the
(disjoint) set of variables. We use meta-variables a, b, c, . . . and x, y, z, . . . for
links and variables, respectively. We write N for the set L∪V ∪{true, false} of
names (sometimes called values), where true and false are the usual boolean
values. We use meta-variables u, v, w for names. The grammar is the following:

P ::= 0 | vχ[w̃]. P | vχ(ỹ). P | (P | Q) | ∗P | (νa)P | if v then P else Q

Here, χ is either ◦ or •, and w̃ abbreviates a possibly empty sequence w1, . . . , wn.
The constructs are the standard ones of the polyadic π-calculus: nil, output and
input prefixes, parallel composition, replication (∗P behaves like infinitely many
copies of P running in parallel), restriction, and a conditional. The only difference
is the annotation χ in prefixes, which indicates whether the action is expected
to succeed (symbol ◦) or not (symbol •). (In the type inference of TyPiCal these
annotations are actually inferred, in the sense that if the analysis succeed then
a set of prefixes that will eventually succeed is marked, see Section 5.) We call a
prefix marked if its annotation is ◦. We usually omit the • annotation, thus for
example a(x).P stands for a•(x). P . As usual, restriction and input prefix are
binders. A closed process has no free variables. We often omit trailing 0, and
write vχ[w̃] for vχ[w̃].0. We also write vχ.P and vχ.P for vχ[]. P and vχ(). P
respectively. In examples, we use an extension of the above language with natural
numbers, list, etc. as they are straightforward to accommodate.

84 N. Kobayashi and D. Sangiorgi

Typing. The type systems that we will propose are defined on top of the simply-
typed π-calculus (ST). The set of simple types is given by:

S ::= Bool | �[S1, . . . , Sn]

�[S1, . . . , Sn] is the type of channels that are used for transmitting tuples consist-
ing of values of types S1, . . . , Sn. A type judgment is of the form Γ �ST P . A type
environment Γ is a mapping from names to simple types, with the constraint
that true and false are mapped to Bool, and that the links are mapped to
channel types. Γ, ṽ : S̃ indicates the type environment obtained by extending Γ
with the type assignments ṽ : S̃, with the understanding that for all vi already
defined in Γ it should be Γ (vi) = Si. The standard typing rules are omitted.

Operational Semantics. We use the standard (early) labeled transition relation
P

η−→ Q for the π-calculus. Here, η, called a transition label, is either a silent ac-
tion τ (which represents an internal communication), an output action (νc̃) a [̃b],
or an input action a [̃b]. We write τ−→∗ for the reflexive and transitive closure of

τ−→; we write P
τ−→ and P

τ−→∗ if there is P ′ s.t. P
τ−→ P ′ and P

τ−→∗ P ′,
respectively.

We extend the above transition relation to a typed transition relation, to
show how a type environment evolves when a process performs a transition.
Γ �ST P

η−→ Γ ′ �ST P ′ holds if: (1) P
η−→ P ′; (2) Γ �ST P ; and (3) if η = τ then

Γ = Γ ′; otherwise if η is an output (νc̃) a [̃b] or an input a [̃b] and Γ (a) = �[S̃],
then Γ ′ = Γ, b̃ : S̃ . Note that Γ �ST P

η−→ Γ ′ �ST P ′ implies Γ ′ �ST P ′. We write
Γ0 �ST P0

η1−→ · · · ηk−→ Pk to mean that Γ0 �ST P0, and there are Γ1, ..., Γk s.t.
for all i < k it holds that Γi �ST Pi

ηi+1−→ Γi+1 �ST Pi+1.

Deadlock-Freedom and Lock-Freedom. A prefix is at top level if it is not under-
neath another input/output prefix or underneath a replication.

Definition 1 (deadlock-freedom). P is deadlock-free if, whenever P
τ−→∗ Q

and Q has at least one marked prefix at top level, then Q
τ−→.

Deadlock-freedom indicates only the possibility for the system to evolve further;
on the other hand, lock-freedom indicates the eventual success of marked actions
at top-level. In the definition of lock-freedom, we track the success of a specific
action (as several marked actions may simultaneously appear at top-level) by
tagging it. We then demand success for all possible taggings. We call tagged a
process in which exactly one unguarded and unreplicated prefix—the prefix that
we wish to track—has the special annotation � (instead of ◦ as in the marked
prefixes). Transitions of tagged processes are defined as for the untagged ones,
except that the labels of transitions emanating from the tagged prefix are also
tagged. We call a tagged τ -transition, written P

τ�

−→ P ′, a success.

Definition 2 ((weak) lock-freedom). A tagged process P is successful if

whenever P
τ−→∗ Q then Q

τ−→∗ τ�

−→. Given an untagged process P , the tagging

A Hybrid Type System for Lock-Freedom of Mobile Processes 85

of P is the set of tagged processes obtained from P by replacing the annotation
of a marked prefix at top level with �. Process P is (weakly) lock-free if whenever
P

τ−→∗ Q then all processes in the tagging of Q are successful.

A sequence of transitions τ−→ or τ�−→ is full if it is finite and ends with an
irreducible process, or if it is infinite. A sequence of transitions is strongly fair if,
intuitively, any τ -action that is enabled infinitely often will eventually succeed
(see [8, 3] for a formal definition of strong fairness in the π-calculus).

Definition 3 (strong lock-freedom). P is strongly lock-free if whenever
P

τ−→∗ Q then every full and strongly fair transition sequence of each process in
the tagging of Q contains the success transition τ�−→.

Experts in concurrency will easily recognize the difference between weak lock-
freedom and strong lock-freedom: Weak lock-freedom combines safety and live-
ness guarantees, by requiring that a system never reaches a state where a marked
action is at top-level, but there is no sequence of τ -actions in which the marked
action is consumed. On other hand, strong lock-freedom is a purely liveness prop-
erty that says that if a marked action is at top-level, the action will eventually be
consumed. The example below shows the difference between weak lock-freedom
and strong lock-freedom.

Example 1. Consider the following process P :

b◦() | a[b] | ∗a(y). (νc) (c[y] | c(y). y [] | c(y). a[y])

The rightmost subprocess (∗a(y). · · ·) receives b on a and either sends a message
on b or forwards b to itself non-deterministically. Since c is freshly created every-
time b is received from a, the strong fairness does not guarantee that a message
is eventually sent on b, and P is therefore not strongly lock-free. On the other
hand, however, after any number of forwardings, there is a chance for a message
to be sent on b; hence, P is weakly lock-free. See Example 3 for another example
of a process that is weakly lock-free but not strongly lock-free.

3 Type System for Lock-Freedom

We introduce the type systems for weak/strong lock-freedom. They are obtained
by augmenting Kobayashi’s type system [9] with hybrid rules appealing to dead-
lock/termination/confluence analyses. For lack of space, precise definitions are
often omitted; see the extended version [13].

3.1 Review of Previous Type System for Lock-Freedom

As mentioned in Section 1, to enable local reasoning about lock-freedom in terms
of deadlock and termination analyses, we need to express some contracts between
a process and its environment. We reuse the type judgments of Kobayashi’s lock-
freedom type system [9] to express the contracts. A type judgment is of the form

86 N. Kobayashi and D. Sangiorgi

Δ �LT P , where Δ is a type environment, which expresses both requirements
on the behavior of P , and assumptions on its environment. Ordinary channel
types are extended with usages, which express how each communication channel
is used. For example, �?.! [Bool] describes a channel that should be first used for
receiving a boolean once, and then for sending a boolean once. A channel of
type �? [�! [Bool]] should be first used for receiving a channel once, and then the
received channel should be used once for sending a boolean. (! and ? express an
output and an input respectively, and “.” denotes the sequential composition;)

In order to express both assumptions on the environment (like, “a process
can eventually receive a message from its environment”) and guarantees by the
process (like, “a process will certainly send a message”), each action (! or ?) in
a usage is further annotated with capability levels and obligation levels, which
range over the set of natural numbers extended with ∞. If a capability level of
an action is finite, then that action is guaranteed to succeed (in other words, its
co-action will be provided by the environment) if it becomes ready for execution
(i.e., it is at top-level). If an obligation level of an action is finite, then that
action must become ready for execution, only by relying on capabilities of smaller
levels. For example, the type judgment a : �?∞

0
[Bool], b : �!1∞ [Bool] �LT P means

that P has a capability of level 0 to receive a boolean on channel a (but not an
obligation to receive it) , and P has an obligation of level 1 to send a boolean on
b. (Here, the superscript of ! or ? is the obligation level, and the subscript is the
capability level.) Thus, P can be b[true] or a(x). b[x], but not a(x).0. Thanks
to the abstraction of process behavior by usages, the problem of checking lock-
freedom of a process is reduced to that of checking whether the usage of each
channel is consistent in the sense that, for each capability of level t, there is a
corresponding obligation of level less than or equal to t.

To understand how this kind of judgment can be used for compositional rea-
soning about lock-freedom, consider the (deadlocked) process a◦(x). b[x] | b◦(x).
a[x]. We have the following judgment for subprocesses:

a : �?0
0
[Bool], b : �!1∞ [Bool] �LT a◦(x). b[x]

a : �!1∞ [Bool], b : �?0
0
[Bool] �LT b◦(x). a[x]

For the entire process, we can simply combine both type environments by com-
bining usages pointwise:

a : �?0
0 | !1∞ [Bool], b : �!1∞ | ?0

0
[Bool] �LT a◦(x). b[x] | b◦(x). a[x]

Now, the capability level of the input on a (which is 0) is smaller than the obli-
gation level of the corresponding output on a (which is 1); this indicates a failure
of assume-guarantee reasoning (the assumption made by the left subprocess is
not met by the guarantee by the right subprocess). Thus, we know the process
may not be lock-free. On the other hand, if we replace the subprocess in the
righthand side with a[true]. b(x), then we get:

a : �?0
0 | !00 [Bool], b : �!11 | ?1

1
[Bool] �LT a◦(x). b[x] | a[true]. b◦(x)

The capability of each action is matched by the obligation of its co-action, which
implies that the process is lock-free.

A Hybrid Type System for Lock-Freedom of Mobile Processes 87

U (usages) ::= 0 | ?t1
t2

.U | !t1t2 .U | (U1 | U2) | ∗U t (levels) ∈ Nat ∪ {∞}
L (usage types) ::= Bool | �U [L̃] Δ (type environments) ::= v1 : L1, . . . , vn : Ln

Δ1 �LT P tc = ∞ ⇒ χ = •
v : �!0tc

[L̃];(Δ1 | w̃ : ↑L̃) �LT vχ[w̃]. P

Δ, ỹ : L̃ �LT P tc = ∞ ⇒ χ = •
v : �?0tc

[L̃];Δ �LT vχ(ỹ). P

∅ �LT 0

Δ1 �LT P1 Δ2 �LT P2

Δ1 | Δ2 �LT P1 | P2

Δ′ �LT P Δ ≤ Δ′

Δ �LT P

Δ �LT P

∗Δ �LT ∗P

Δ, a : �U [L̃] �LT P rel(U)

Δ �LT (νa)P

Δ �LT P Δ �LT Q

Δ | (v : Bool) �LT if v then P else Q

Fig. 1. Kobayashi’s type system for lock-freedom [9]

Figure 1 summarizes the syntax of types, and typing rules of Kobayashi’s
lock-freedom type system [9]. A type inference algorithm for the type system,
which serves as a lock-freedom verification algorithm, is discussed in [9].

3.2 Robust Deadlock-Freedom/Termination/Confluence

To enable local reasoning in the new type system for lock-freedom that we will
present, we introduce a strengthening of the notions of deadlock-freedom, ter-
mination, and confluence.

A substitution σ = [w̃/x̃] respects Γ = ṽ : S̃ if σΓ = σ̃v : S̃ is well-defined. A
substitution σ is closing for Γ if σ respects Γ and σΓ has no variables. A process
is robustly terminating if it cannot diverge, after any sequence of transition that
conforms to the base type system ST.

Definition 4 (robust termination). A process P is terminating if there is
no infinite internal transition sequence P

τ−→ P1
τ−→ P2

τ−→ · · ·. An (open)
process P is robustly terminating under Γ , written Γ |=RTer P , if Γ �ST P , and
for every closing substitution σ for Γ and for any Q, k, and η1, · · · ηk such that
σΓ �ST σP

η1−→ · · · ηk−→ Q, the derivative Q is terminating.

We say that Δ is closed if dom(Δ) ∩V = ∅. We write rel(Δ) intuitively to mean
that each capability in Δ is guaranteed by a corresponding obligation; and ob !(L)
for the level of the obligation to send a message: again, precise definitions are in
the extended version [13].

In the definition of robust deadlock-freedom below, the first condition say
that P is deadlock-free when it is executed by itself, and that P either ful-
fills its obligations or reduces further. The other conditions say that the ro-
bust deadlock-freedom is preserved by substitutions and transitions. The relation
Δ

η−→ Δ′ (see [13] for the definition) expresses the increase/decrease of capa-

bilities/obligations in Δ by the transition η. For example, a : �?0
∞

[�!1∞ [Bool]]
a[b]−→

a : �0[�!1∞ [Bool]], b : �!1∞ [Bool] holds (where the usage 0 indicates that the channel

88 N. Kobayashi and D. Sangiorgi

cannot be used at all). Thus, a : �?0
∞

[�!1∞ [Bool]] |=RD P means that P will even-
tually perform an input on a, and then send a boolean on the received channel,
unless P at some point diverges.

Definition 5 (robust deadlock-freedom). The relation Δ |=RD P is the
largest relation such that Δ |=RD P implies all of the following conditions.

1. If Δ is closed and rel(Δ), then: (i) P is deadlock-free; (ii) If ob!(Δ(a))
= ∞,

then either P
(νc̃) a [̃b]−→ or P

τ−→; and (iii) If ob?(Δ(a))
= ∞ then either P
a [̃b]−→

or P
τ−→.

2. If [v �→ a]Δ is well-defined, then [v �→ a]Δ |=RD [v �→ a]P .
3. If P

η−→ P ′ and, furthermore, when η is an input, all names received are
fresh, then Δ

η−→ Δ′ and Δ′ |=RD P ′ for some Δ′.

We say that P is robustly deadlock-free under Δ if Δ |=RD P holds.

Partial confluence means that any τ -transition commutes with any other tran-
sitions. To define the partial confluence, we assume that each prefix is uniquely
labeled (as in [3]), and extend the transition relation to

η,S−→ where S is the set of
the labels of the prefixes involved in the transition: see [13]. Robust confluence
indicates partial confluence after any sequence of transition that conforms to the
base type system ST.

Definition 6 (robust confluence). A process P is partially confluent, if when-

ever P1
τ,S1←− P

η,S2−→ P2, either η = τ ∧ S1 = S2, or P1
η,S2−→≡τ,S1←− P2. A process

P is robustly confluent under Γ , written Γ |=RConf P , if Γ �ST P and for any
closing substitution σ that respects Γ and for any Q, k, and η1, · · · ηk such that
σΓ �ST σP

η1−→ · · · ηk−→ Q, the derivative Q is partially confluent.

While termination, deadlock-freedom, and confluence are frequently discussed
in the literature, we are not aware of previous work that defines the robust
counterparts above and verification methods for them.

We have proved that robust deadlock-freedom is guaranteed by Kobayashi’s
type system for deadlock-freedom [11]. In applications of robust deadlock-freedom,
it is often the case that the environment Δ needed is of a restricted form, so that
Δ |=RD P then boils down to the verification of a few simple behavioral properties
for which other type systems and model checkers can also be used. For example,
if Δ is a : �!0∞ [Bool], then Δ |=RD P only means that P is deadlock-free and P will
eventually send a boolean on a unless it diverges. Robust confluence is guaranteed,
for instance, by types systems for linear channels [12] and race-freedom [18]; other
static analysis methods such as model checking could also be used. Verification of
robust termination is discussed in Section 4.

3.3 Hybrid Typing Rules

We now introduce the new rules LT-Hyb (for weak lock-freedom), and SLT-Hyb
(for strong lock-freedom).

A Hybrid Type System for Lock-Freedom of Mobile Processes 89

Δ |=RD P Er(Δ) |=RTer P nocap(Δ)
Δ �LT P

(LT-Hyb)

Δ |=RD P Er(Δ) |=RTer P Er (Δ) |=RConf P nocap(Δ)
Δ �SLT P

(SLT-Hyb)

Here, Er(Δ) is the simple type environment obtained from Δ by removing all
usage annotations. The condition nocap(Δ) holds if, intuitively, Δ describes a
process that fulfills its obligations without relying on the environment. As men-
tioned in Section 1, this is used to avoid circular, unsound, assume-guarantee
reasoning. The precise definition of nocap(Δ), given in [13], is subtle; for nested
channel types, the nocap condition depends on whether a channel is used for in-
put or output. For example, nocap(�?0

∞
[�!0∞ []]) holds but nocap(�!0∞ [�!0∞ []]) does

not. In the rule for strong lock-freedom, the robust confluence ensures that once a
marked prefix is enabled, it cannot be disabled by any other transitions. See Ex-
ample 3 for a non-trivial example, for which the rule LT-Hyb fails to guarantee
strong lock-freedom.

We write Δ �LT P if it is derivable by using the typing rules in Section 3.1
and LT-Hyb, and write Δ �SLT P if it is derivable by using SLT-Hyb instead of
LT-Hyb. The theorem below states the soundness of the type systems. Its proof
is non-trivial because of the presence of the hybrid rules; for instance, conditions
such as nocap(Δ) are not preserved by transitions, so in the proof we had to
refine and extend the type systems. See the extended version [13].

Theorem 1 (lock-freedom). If ∅ �LT P , then P is (weakly) lock-free. If ∅ �SLT

P , then P is strongly lock-free.

Example 2. Consider the following processes.

Clients def= ∗(νr1) (fact
◦
[rnd(), r1] | r1

◦(x).0)
Server def= (νfact it) (∗fact (n, r). fact it [n, 1, r]

| ∗fact it (n, x, r). if n = 0 then r[x] else fact it [n − 1, x × n, r])

The process Server creates an internal communication channel fact it (used for
computing factorial numbers in a tail-recursive manner), and waits on fact for
a request [n, r] on computing the factorial of n. Upon receiving a request, it
returns the result on r. Client consists of infinitely many copies of the process
that creates a fresh channel r1 for receiving a reply, sends a request [rnd(), r1]
(where rnd() creates a random number) and then waits for the result on r1.

Let Δ be fact : �∗?0
∞

[Nat, �!1∞ [Nat]]. Then, we have Δ |=RD Server , Er(Δ) |=RTer

Server , and Er (Δ) |=RConf Server with nocap(Δ). Thus, by using SLT-Hyb, we
obtain Δ �SLT Server . From this judgment and fact : �∗!∞0 [Nat, �!1∞ [Nat]] �SLT

Clients , we obtain: ∅ �SLT (νfact) (Server |Clients). This means that all the
clients can eventually receive replies. Note that the whole process diverges (since

90 N. Kobayashi and D. Sangiorgi

there are infinitely many clients), but we can derive strong lock-freedom by local
reasoning based on SLT-Hyb.

Example 3. This example shows a binary tree data structure, offering services for
inserting and searching natural numbers. Each node of the tree is implemented
as a process that has: a state, given by the integer stored in the node and
pointers to the left and right subtree and that contain, respectively, smaller and
greater integers; channels for the insert and search operations. In Figure 2, G is
a generator of new nodes, which can then grow and originate a tree, and where:
i and s will be the insertion and search channels; state stores the state of the
node. Initially the node is a leaf. TInit is the initial tree, with an empty state
and public channels insert and search to communicate with the environment.
Once received a query for an integer n, the tree lets the request ripple down the
nodes, following the order on the integers to find the right path, until either t
is found in a node, or the end of the tree is reached. There is parallelism in the
system: many requests can be rippling down the tree at the same time; in doing
so, requests can even overtake each other.

LetΔbeinsert : �∗?0
∞

[Nat, �!1∞ []], search : �∗?0
∞

[Nat, �!1∞ [Bool]].Then,wehave:

Δ |=RD TInit Er(Δ) |=RTer TInit nocap(Δ)

Thus, by using LT-Hyb, we obtain Δ �LT TInit. By applying rules for LT to
the rest of the system, we get Δ �LT Sys.

Note that SLT-Hyb is not applicable since TInit is not robustly confluent
(because, when multiple requests arrive simultaneously, there can be a race on
the channel state). Indeed, the example is NOT strongly lock-free! A search
request may never be replied if the request is overtaken by insertion requests
so often that the tree grows faster than the search request goes down the tree.
See [13] for a strongly lock-free version of binary trees.

4 Types for Robust Termination

For our analysis we need a refinement of the standard termination property, that
we call robust termination. Termination of a term means that all its reduction
sequences are of finite length. Robust termination guarantees that termination
is maintained when the process interacts with its environment. Termination is
strictly weaker than robust termination. Consider for instance the term P

def=
c[b] | c(x).(x | ∗a.x). The process P has one reduction only, and therefore it is
terminating. It is indeed typable in the simplest of the type systems in [7].
However, P is not robustly terminating. It can interact with other processes via
the input at c and, in doing so, it may receive a resulting in the non-terminating
derivative c[b] | a | ∗a.a.

A number of type systems for termination of mobile processes have appeared
in the literature [6, 7, 17, 21]. We have isolated some some abstract conditions
which allows us to turn a type system for termination into one for robust termi-
nation. For lack of space we refer the reader to [13] for the details.

A Hybrid Type System for Lock-Freedom of Mobile Processes 91

G
def
= ∗newtree(i, s).(νstate)

(
state[leaf]

| ∗i(n, r).state(x). /*** insertion ***/
match x with leaf →

(νleft i, left s, right i, right s)(
newtree[left i, left s] | newtree[right i, right s]

| state[node(n, left i, left s, right i, right s)] | r
)

||node(n1, il, sl, ir, sr) →(
state[x] | if n = n1 then r[] else if n < n1 then il [n, r] else ir [n, r]

)

| ∗s(n, r).state(x).
(
state[x] /*** search ***/

|match x with leaf → r[false]
|| node(n1, il, sl, ir, sr) →

if n1 = n then r[true] else if n < n1 then sl [n, r] else sr [n, r])
)

TInit
def
= (νnewtree) (G | newtree[insert, search])

Sys
def
= (νinsert, search)

(TInit | ∗(νr1) (insert
◦
[rnd(), r1] | r1

◦) | ∗(νr2) (search
◦
[rnd(), r2] | r2

◦(x)))

Fig. 2. A binary tree

5 Implementation

We have implemented the new weak lock-freedom analysis as a feature of TyP-
iCal Version 1.6.0 [10]. TyPiCal takes as an input a program written in the
π-calculus, and marks all input/output prefixes that are guaranteed to succeed.

The original type system for lock-freedom (reviewed in Section 3.1) had been
implemented already [11, 9]. A major challenge in the implementation of the
new system was to automate verification of the robust termination property. We
have modified the type systems of Deng and Sangiorgi [7], so that the resulting
systems can guarantee robust termination, and also so to make them more suited
for automatic verification (e.g., using heuristic and incomplete algorithms when
the original ones were NP-complete). We also integrated them with a termination
analysis based on size-change graphs [2]. See the extended version for details.

We have applied the implementation to non-trivial programs (including the
examples in Section 3), and verified them fully automatically (without any type
annotations). According to benchmark results (shown in [13]), the new compo-
nents (dealing with termination) run fast; most of the analysis time is spent by
the other components (dealing with deadlock- and lock-freedom). For the binary
tree (Example 3), the verification time was 5.47 sec., of which the time for robust
termination analysis was only 0.02 sec.

6 Related Work

Several type systems for lock-freedom (sometimes referred to by different names)
have been already proposed [8, 9, 20, 1, 19, 21]. Our type system substantially

92 N. Kobayashi and D. Sangiorgi

improves the expressiveness of previous type systems; for instance, it can handle
non-trivial recursive structures (e.g., the binary trees as in Example 3), and
value-dependent behaviors. This is possible through a parameterization that
appeals to other analyzers, in particular those for deadlock freedom (so that
more powerful analyzers make the lock-freedom type system more powerful too).
Another important point is that none of the previous type systems for lock-
freedom, except Kobayashi’s one [9], has been implemented. In fact, most of the
type systems classify channels into a few usage patterns, and prepare separate
typing rules for each of the usage patterns. Thus, verification based on those
type systems would not be possible without heavy program annotations.

Type systems for deadlock-freedom have been studied extensively. As already
mentioned, deadlock-freedom is weaker than lock-freedom, so that those type
systems alone cannot be used for lock-freedom analysis. For example, the di-
vergent process obtained by replacing fact it [n − 1, x × n, r] in Example 2 with
fact it [n, x × n, r] is deadlock-free.

The idea of reducing verification of lock-freedom to verification of robust ter-
mination is a reminiscence of Cook et al.’s work on reducing verification of live-
ness properties to that of fair termination [5]. The target language of their work
is a sequential, imperative language and is quite different from our language,
which is concurrent and allows dynamic creation of communication channels and
threads. The used techniques are also quite different; they use model checking
while we use types.

There are a number of methods for proving termination of programs, and
they have been extensively studied in the context of term rewriting systems
and sequential programs. The point of parameterizing our type system for lock-
freedom by the robust termination property was to reuse those techniques for
termination verification, instead of developing a sophisticated type system that
can reason about both termination and deadlock within the single type system.

Parameterized, or hybrid, type systems of this kind presented in this paper
are fairly rare in the literature, mainly due to the difficulties in combining the
analyses. For instance, in Leroy’s modular module system [14] a type system
for module is presented that is parametric on the type system used for the
core language. This is quite different from ours, as the world on which the two
type systems operate—modules and core languages—are stratified, hence clearly
separated.

References

1. Acciai, L., Boreale, M.: Responsiveness in process calculi. In: Proc. of 11th Annual
Asian Computing Science Conference (ASIAN 2006). LNCS, vol. 4435, pp. 136–
150. Springer, Heidelberg (2006)

2. Ben-Amram, A.M., Lee, C.S.: Program termination analysis in polynomial time.
ACM Trans. Prog. Lang. Syst. 29(1 (Article 5)) (2007)

3. Bidinger, P., Compagnoni, A.B.: Pict correctness revisited. In: Bonsangue, M.M.,
Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 206–220. Springer,
Heidelberg (2007)

A Hybrid Type System for Lock-Freedom of Mobile Processes 93

4. Brinksma, E., Rensink, A., Volger, W.: Fair testing. In: Lee, I., Smolka, S.A. (eds.)
CONCUR 1995. LNCS, vol. 962, pp. 313–327. Springer, Heidelberg (1995)

5. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving that
programs eventually do something good. In: Proc. of POPL, pp. 265–276 (2007)

6. Demangeon, R., Hirschkoff, D., Kobayashi, N., Sangiorgi, D.: On the complexity of
termination inference for processes. In: Barthe, G., Fournet, C. (eds.) Proceedings
of TGC 2007. LNCS, vol. 4912, pp. 140–155. Springer, Heidelberg (2008)

7. Deng, Y., Sangiorgi, D.: Ensuring termination by typability. Info. Comput. 204(7),
1045–1082 (2006)

8. Kobayashi, N.: A type system for lock-free processes. Info. Comput. 177, 122–159
(2002)

9. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta In-
formatica 42(4-5), 291–347 (2005)

10. Kobayashi, N.: TyPiCal: A type-based static analyzer for the pi-calculus,
http://www.kb.ecei.tohoku.ac.jp/∼koba/typical/

11. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Her-
manns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidel-
berg (2006)

12. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM
Trans. Prog. Lang. Syst. 21(5), 914–947 (1999)

13. Kobayashi, N., Sangiorgi, D.: A hybrid type system for lock-freedom of mobile
processes. An extended version (2008),
http://www.kb.ecei.tohoku.ac.jp/∼koba/papers/hybrid.pdf

14. Leroy, X.: A modular module system. J. Funct. Program. 10(3), 269–303 (2000)
15. Pierce, B.C., Turner, D.N.: Pict: A programming language based on the pi-calculus.

In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language and Interaction:
Essays in Honour of Robin Milner, pp. 455–494. MIT Press, Cambridge (2000)

16. Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

17. Sangiorgi, D.: Termination of processes. Math. Struct. Comput. Sci. 16(1), 1–39
(2006)

18. Terauchi, T., Aiken, A.: A Capability Calculus for Concurrency and Determinism.
In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 218–232.
Springer, Heidelberg (2006)

19. Sangiorgi, D.: The name discipline of uniform receptiveness. Theor. Comput.
Sci. 221(1-2), 457–493 (1999)

20. Yoshida, N.: Type-based liveness guarantee in the presence of nontermination and
nondeterminism. Technical Report 2002-20, MSC Technical Report, University of
Leicester (April 2002)

21. Yoshida, N., Berger, M., Honda, K.: Strong normalisation in the pi-calculus. Info.
Comput. 191(2), 145–202 (2004)

http://www.kb.ecei.tohoku.ac.jp/~koba/typical/
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/hybrid.pdf

Implied Set Closure and Its Application to

Memory Consistency Verification

Surender Baswana, Shashank K. Mehta, and Vishal Powar

Indian Institute of Technology, Kanpur - 208016, India
{sbaswana,skmehta,vishalp}@cse.iitk.ac.in

Abstract. Hangal et. al. [3] have developed a procedure to check if an
instance of the execution of a shared memory multiprocessor program, is
consistent with the Total Store Order (TSO) memory consistency model.
They also devised an algorithm based on this procedure with time com-
plexity O(n5), where n is the total number of instructions in the program.
Roy et. al. [6] have improved the implementation of the procedure and
achieved O(n4) time complexity.

We have identified the bottleneck in these algorithms as a graph prob-
lem of independent interest, called implied-set closure (ISC) problem. In
this paper we propose an algorithm for ISC problem and show that using
this algorithm, Hangal’s consistency checking procedure can be imple-
mented with O(n3) time complexity. We also experimentally show that
the new algorithm is significantly faster than Roy’s algorithm.

Keywords: Memory consistency model verification, Incremental transi-
tive closure, Total store order, Shared memory multi-processor.

1 Introduction

Modern processors aggressively employ chip multiprocessing and simultaneous
multi-threading to achieve high processor performance. Traditionally memory be-
ing the slower subsystem various techniques, such as hierarchical implementation
of the memory, have been employed to reduce the bottleneck. With the fast multi-
processors, modern architectures exploit new techniques to improve the memory
performance. Foremost of these techniques is executing the memory instructions
out of program-order according to a predetermined consistency model.

A memory consistency model specifies the restriction on the order in which
memory instructions may be executed. Commercial architectures support a vari-
ety of memory consistency models. The strictest of these is sequential-consistency
(SC), which requires that all the instructions of one processors must be executed
in their program-order. An execution is valid in this model if and only if the global
order of the instructions result from interleaving the processor-programs. Relax-
ing the restrictions progressively lead to Total-Store-Order (TSO) and Release
Consistency (RC), these along with further relaxed models are given in [3].

The problem of memory consistency verification is to ensure that a given
architecture always executes every program in accordance to the memory con-
sistency model adopted in its design. This problem is shown to be NP complete

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 94–106, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Implied Set Closure and Its Application to Memory Consistency Verification 95

as shown by Catlin et. al. [2]. With increasingly relaxed consistency model the
verification of compliance becomes extremely difficult. Adve and Gharachorloo
[1] discuss many issues related to these models and their implementation.

A more practical approach, adopted in industry, is to execute a test program
and then verify from its execution trace that indeed it was executed in accordance
with the consistency model. This approach can never prove that the design
is error free but a large number of tests can give significant confidence. The
test programs are multi-threaded programs of memory instructions: Store, Load,
Memorybar etc. We call each thread a processor-program.

In this paper we address the problem of analyzing the execution trace. Hangal
et. al. [3] have developed TSOtool for Sun Microsystems processors to analyze the
outcome of test programs run under TSO model. Their algorithm has O(n5) time
complexity and O(n2) space complexity, where n is the number of instructions in
the test program. The basic procedure is general enough to be applicable to mem-
ory consistency models other than TSO. Manovit and Hangal [5] have exploited
the total order among store instructions to reduce the search space. Their algo-
rithm has time complexity O(k.n3) where k is the number of processors (number
of threads in the program). But this algorithm crucially depend on the total order
of store instructions and it cannot be applied to other consistency models.

Roy et. al. [6] have developed Intel MPRIT Tool for the same task by improv-
ing the general algorithm by Hangal, reducing the time complexity to O(n4).
Once again, this algorithm can be applied to any consistency model without
change in the time complexity.

Our contribution in this paper is to identify a graph problem called implied-
set-closure(ISC) which is the abstraction of the bottleneck of the above men-
tioned general high-level algorithm. We present an efficient incremental algo-
rithm for ISC problem based on the incremental transitive closure algorithm by
Italiano [4]. The application of this algorithm reduces the time complexity of the
general memory consistency verification algorithm to O(n3), which is a signifi-
cant improvement over the O(n4) bound achieved by the previous best algorithm
of Roy et al. [6]. The space requirement of the algorithm remains Θ(n2). Other
salient feature of our algorithm is its compact and simple description and no
hidden constant, which makes it an ideal candidate to be a practical algorithm
(a quality not possessed by many theoretically efficient algorithms). We also
compared our algorithm with the algorithm of Roy et al. [6] experimentally in
an identical computing environment. In MPRIT, the algorithm of Roy et. al. is
implemented using vector instructions. For our experiment we implemented both
algorithms without vector instructions. The results show that the new algorithm
outperforms their algorithm in real time.

The remainder of the paper is organized as follows. In the following section,
we reproduce the description of the memory consistency verification problem
and its algorithm given in [3,6]. In Section 3 a graph problem, which we refer by
the name implied set closure (ISC) problem, is formally defined and its relation
to the memory consistency problem is established. In Section 4, we develop an
algorithm for ISC, and also argue about the optimality of its theoretical time

96 S. Baswana, S.K. Mehta, and V. Powar

complexity. In Section 5, experimental results comparing the performance of the
new algorithm to the previous best algorithm are presented.

2 Formal Description of TSO Model and Consistency
Verification Algorithm

We reproduce here the formal description of TSO model and the high level
consistency verification algorithm presented in [3]. The axiomatic description of
the model is originally borrowed from Sindhu et. al. [7]. The model used by [6]
is slightly generalized which will also be covered in the following discussion.

A Load instruction is considered executed when the issuing processor receives
the data, while a Store instruction is considered executed when it is visible to
all processors in the system. It is assumed that each instruction eventually gets
executed, i.e., no instruction takes infinite time to complete. The notations used
here are as follows.

Li
a a Load from location a by processor i

Si
a a Store to location a by processor i

�Li
a; Si

a� an Atomic operation to location a by processor i
V al[Li

a] the value read by Li
a

V al[Si
a] the value written by Si

a

Oi
a either a Li

a or a Si
a

S(Li
a) the store instruction Sj

a s.t. V al(Sj
a) = V al(Li

a) (it is assumed
that each Store instruction in the test program stores a
unique value so S(Li

a) is well defined.)
There are two partial-ordering relations defined over the set of all memory in-
structions: local ‘;’ and global ‘≤’. x; y iff x and y are in the same processor-
program with x before y; and x ≤ y iff it is required by TSO axioms or by the
data dependency, that instruction x must be executed before y. In the latter
ordering x and y may belong to different processor-programs. Now we present
the axioms of total-store-order (TSO) memory consistency model.

Total Store Order. ∀Si
a, Sj

b : (Sj
b ≤ Si

a ∨ Si
a ≤ Sj

b).

Atomic Operation. �Li
a; Si

a� ⇒ (Li
a ≤ Si

a) ∧ (∀Sj
b : Sj

b ≤ Li
a ∨ Si

a ≤ Sj
b).

Value Coherence. V al[Li
a] = V al[max≤[{Sj

a : Sj
a ≤ Li

a} ∪ {Si
a : Si

a; Li
a}]].

Local Ordering. This tells when the local ordering must be preserved in the
global ordering. We first present Roy et.al.’s[6] version of the axiom. If Oi

a; Oi
b

then subject to various criteria depending on the the type of the operations (load
or store) and the type of the locations a, b (write-back, write-through, write pro-
tected, uncacheable, uncacheable speculative write combine), we require Oi

a ≤
Oi

b. The criteria can be expressed by a function f : ({load, store} × {location-
types})2 → {0, 1} and state the axiom as (Oi

a; Oi
b) ∧ (f(type(Oi

a), type(a),
type(Oi

b), type(b)) = 1) ⇒ (Oi
a ≤ Oi

b).
This axiom is stated in a restricted way in [3] where a specific f is assumed,

namely, f(t1, t′1, t2, t
′
2) = 1 iff t1 �= store or t2 �= load.

Implied Set Closure and Its Application to Memory Consistency Verification 97

Axiomatic description of other memory consistency models are similarly de-
scribed in [7].

2.1 Consistency Verification Problem

TSOtool developed by Hangal et. al. [3] generates a test program, for a mul-
tiprocessor system (consisting only of memory instructions), executes it on the
system or a system simulator, and then analyzes the outcome of the run to
check if it is consistent with the axioms of the TSO model. In order to carry
out the analysis each Store instruction stores a unique value. It allows to de-
termine S(Li

a) for each Li
a unambiguously. Their main contribution is the con-

sistency checking algorithm. We will present the high level description of the
algorithm in this section. The implementation of this algorithm has O(n5) time
complexity, where n is the total number of (memory) instructions included in
all processor-programs. Roy at. al. [6] improved the implementation leading to
the time complexity O(n4). In the following sections we will show that it can be
further improved to O(n3).

Algorithm 1 analyzes the program output by computing a directed graph
(V, E) based on the outcome of the program. The nodes, V , of this graph are the
instructions of the program. An edge is placed from node O1 to O2 if O1 ≤ O2.
If the graph contains a cycle, i.e., ≤ is not found to be a partial ordering, then
we can conclude that the requirement of the consistency model must have been
violated in the execution.

We reproduce here the rules of including the edges in the graph from [3,6]
which incorporate the TSO axioms.

Static Edges: This rule is due to the local ordering axiom.
R1: If f(type(Oi

a), type(a), type(Oi
b), type(b)) = 1, then include edge (Oi

a, Oi
b).

The edges due to this rule can be determined from the program itself and
they are independent of the outcome of the run. Assuming that the function can
be evaluated in O(1) time, the static edges can be computed in O(n2) time.

Observed Edges: These rules are direct implication of the Value and the Total-
store axioms.

R2: If (S(Li
a) = Sj

a) ∧ (i �= j), then add the edge (Sj
a, Li

a).

R3: If (S(Li
a) = Sj

a) ∧ (S′ia ; Li
a), then add the edge (S′ia , Sj

a)
The first part of these conditions is decided by finding S such that V al(L) =

V al(S) for a given L. This is because each Store instruction stores a unique
value. Thus these edges can be computed only after the outcome of the run is
known. The second part of the conditions only depend on the program. Hence
it is easy to see that the observed edges can be computed in O(n2) time.

Inferred Edges: These rules are the indirect implications of Value Coherence
axiom.

R4: If (S(Li
a) = Sj

a) ∧ (S′ka ≤ Li
a) ∧ (S′ka �= Sj

a), then add the edge (S′ka , Sj
a).

R5: If (S(Li
a) = Sj

a) ∧ (Sj
a ≤ S′ka), then add the edge (Li

a, S′ka).

98 S. Baswana, S.K. Mehta, and V. Powar

The conditions in this case, unlike in the earlier cases, depend on the structure
(edges) of the graph. As the new inferred edges are added to E new pairs of
vertices S′ka , Li

a or Sj
a, S′ka may satisfy the respective precondition and be eligible

for an edge between them. Thus inferred edges need to be computed iteratively.
The computation of the inferred edges is the bottleneck in the performance of
the algorithm, so the complexity of Algorithm 1 is determined by steps 9 and
12. In Sections 3 and 4 we describe an efficient solution for these steps.

2.2 Example

We present an example borrowed from [3] to show how above described rules
detect inconsistency.

Let S[X]#n denote a store instruction which stores n in location X ; and
L[X] = n denote a load instruction which loads value n from location X . In
this example we assume that f(t1, t′1, t2, t

′
2) = 1 iff t1 �= store or t2 �= load.

Consider the following 4-thread program along with the relevant information
from an execution.

P1 P2 P3 P4

S[B]#91 S[A]#2 S[B]#92 L[B] = 92
S[A]#1 L[A] = 2 L[B] = 91
L[A] = 2 L[B] = 92

In Figure 1 we show the directed graph generated using the rules. All edges due
to rules R1, R2 and R3 are easy to deduce from the rules. Here is the explanation
for the two R4 edges. Since S[B]#91 ≤ S[A]#1 ≤ S[A]#2 ≤ L[A] = 2 ≤ L[B] =
92. So from R4 there must be an edge from S[B]#92 to S[B]#91. We also have
S[B]#92 ≤ L[B] = 92 ≤ L[B] = 91. Again from R4, there should be an edge
from S[B]#91 to S[B]#92. These edges from a cycle so we conclude that the
TSO model is violated in this execution.

S [B] # 9 1

S [A] # 1

L [A] = 2

S [A] # 2

P 1

P 2

P 3

S [B] # 9 2

L [A] = 2

L [B] = 9 2

P 4

L [B] = 9 2

L [B] = 9 1

R 1

R 3

R 4
R 2

R 1

R 4

R 1

R 2

R 2

R 2

Fig. 1. Edges due to application of rules

Implied Set Closure and Its Application to Memory Consistency Verification 99

2.3 Limitation of Algorithm 1

We have seen that a cycle in the graph implies that TSO model is violated but
the converse is not true.

The TSO requires that all Stores must be totally ordered. There may be some
cases where insufficient data dependence information is present to totally order
all the Stores. To remain true to TSO, all total orders must be considered which
are consistent with the partial order on stores determined by the data depen-
dence. This would make the worst case complexity of the algorithm exponential
[3]. The procedure chooses to ignore this lacunae in an attempt to trade off
accuracy for reasonable analysis time.

All the three algorithms that implement this procedure are designed with this
limitation. As explained above, the Store instructions do not get totally ordered
in the global ordering (as required by TSO) only when there is insufficient data
dependence. This situation arises when different threads do not have sufficient
interaction. In practice this situation can easily be resolved by having Load
instruction for each location in several threads. Therefore these algorithms are
extremely useful in spite of the incompleteness.

3 Implied-Set Closure (ISC) Problem

Definition 1. Let G = (V, E0) be a directed graph and T : V × V → powerset
(V × V). Then the implied-set closure of G is GISC = (V, EISC

0) where EISC
0 is

the smallest edge set such that
(i) E0 ⊂ EISC

0 ,
(ii) if there is a (directed) path from vertex a to vertex b in EISC

0 , then T (a, b) ⊆
EISC

0 .

If any two edge sets satisfy the above conditions, then their intersection also
satisfies the same. Therefore there is a unique smallest set satisfying the condi-
tions. Observe that if T (a, b) = {(a, b)}, then ISC problem reduces to transitive
closure problem.

3.1 Relation to Memory Consistency Verification Problem

The computation of the edges generated by the rules R4 and R5 is an instance
of the computation of implied-set closure problem as explained below.

Let E0 be the edge set E in Algorithm 1 after step 8. Define (i) T (Sk
a , Li

a) =
{(Sk

a , S(Li
a)} for every Sk

a and Li
a such that Sk

a �= S(Li
a), (ii) T (Sj

a, Sk
a) =

{(Li
a, S

k
a) : S(Li

a) = Sj
a}, (iii) T (x, y) = ∅ for all the remaining ordered pairs

(x, y). Then the final set E in Algorithm 1, computed after step 14, is EISC
0 with

respect to the given T -sets.

4 Algorithm for ISC Problem

We present an algorithm for implied-set closure problem which is based on in-
cremental algorithm for transitive closure proposed by Italiano [4].

100 S. Baswana, S.K. Mehta, and V. Powar

Data: Sequence of memory-instructions for each processor (Swap is considered
both, a Load and a Store instruction), value associated with each
Load/Store instruction. V denotes the set of all instruction

Result: It outputs true if the execution of the program obeys all TSO axioms,
else outputs false

for each L ∈ V do1

if V al[L] = V al[S] then2

S(L) = S3

end4

end5

initialize graph (V, E) to (V, ∅);6

/* R1: */
Add edges to E according to R1;7

/* R2, R3: */
Add edges to E according to R2 and R3;8

/* R4: */
while ∃L, S′ such that S′

a �= S(La) = Sa and (S′
a, La) ∈ E do9

Add edge (S′
a, Sa) to E;10

end11

/* R5: */
while ∃La, S′

a such that S′
a �= S(La) = Sa and (Sa, S′

a) ∈ E do12

Add edge (La, S′
a) to E;13

end14

if E contains a cycle then15

declare that TSO violation found;16

end17

else18

declare no violation found;19

end20

Algorithm 1. Algorithm to analyze a program output for TSO violation

4.1 An Incremental Algorithm for ISC Problem

Algorithm 2 computes the implied-set closure of a set of directed-edges E0 ⊆ V ×
V . For convenience we shall denote the existence of a directed path from a to b in
graph H , in the algorithm, by a � b and the transitive closure of H by Hc.

The correctness of the algorithm can be established by observing that at the
end of each iteration of the while-loop following four assertion are always true:
(i) E0 ⊆ H ∪ X , (ii) HC = Hc, (iii) For each pair of vertices u, v, if u � v in
H , then T (u, v) ⊆ H ∪ X , (iv) H ∪ X ⊆ EISC

0 , where EISC
0 is the implied-set-

closure of E0. Condition (iii) is equivalent to: for each pair of vertices u, v, if
(u, v) ∈ HC, then T (u, v) ⊆ H ∪ X .

The algorithm terminates since H grows monotonically. On termination, X
is empty so the loop invariant conditions imply that finally H = EISC

0 .
In the next step we will show how to efficiently compute the incremental

transitive closure of step 8 of Algorithm 2.

Implied Set Closure and Its Application to Memory Consistency Verification 101

Data: vertex set V ; edge set E0; implied-edge-sets T (a, b) for all pairs
(a, b) ∈ V × V

Result: H = EISC
0 and HC = Hc (transitive closure of H)

H ← ∅;1

HC ← ∅;2

X ← E0;3

while X �= ∅ do4

(x, y) ← Select(X);5

/* pick an arbitrary edge (a, b) from X and delete it from the set
*/

H ′ ← H ∪ {(x, y)};6

if (x, y) /∈ HC then7

HC′ ← (HC ∪ {(x, y)})c;8

end9

else10

HC′ = HC;11

end12

/* here superscript ‘c’ denotes transitive-closure */
for each (u, v) ∈ (HC′ − HC) do13

X ← X ∪ (T (u, v) − H ′);14

end15

H ← H ′;16

HC ← HC′;17

end18

return H ;19

Algorithm 2. An incremental algorithm to compute implied-set closure of E0

4.2 Improved Algorithm for ISC Problem

In order to update the transitive closure of the graph upon insertion of an edge,
the algorithm uses following observation to minimize the computation required.
Let (x, y) be an edge added to H . If y was already reachable from x, then
the transitive closure of the graph will remain unchanged. Otherwise, transitive
closure needs to be updated. In particular, we need to add the edges implied by
the transitivity in context of all those source vertices w such that w � x∧w �� y
prior to insertion of edge (x, y) because vertex reachable from y has subsequently
become reachable from w too. In order to update the transitive closure for each
such vertex w, a simple way is to scan all vertices reachable from y. This will
require O(n) work per vertex and leads to O(n4) time algorithm as designed by
Roy et al. [6]. However, note that it would suffice if we can efficiently compute
only those vertices which are reachable from y but not reachable from w (prior
to the current edge insertion). Let us denote this set by D(w, y). The following
Lemma would pave the way for its efficient computation, and hence updating
the transitive closure.

Lemma 1. For each vertex v ∈ D(w, y), and any path P from y to v, each
vertex lying on P is also present in D(w, y).

102 S. Baswana, S.K. Mehta, and V. Powar

The set D(w, y) is a subset of the set of vertices reachable from y, and we know
that the latter can be computed by performing DFS (or BFS) traversal in the
graph starting from y. In order to compute D(w, y) efficiently, it would suffice
to perform a bounded DFS traversal in the graph starting from y wherein we
extend DFS recursively only along those vertices which were not reachable from
w prior to insertion of the edge (x, y). This is because, as follows from Lemma
1, the DFS traversal pursued from a vertex already reachable from w won’t lead
to any vertex of set D(w, y), and so there is no point extending DFS traversal
beyond such vertices.

Algorithm 3 is the bounded depth-first search based procedure to update tran-
sitive closure for a vertex w upon insertion of an edge. This algorithm implicitly
computes D(w, y).

HC ← HC ∪ (w, y);1

for each (y, z) ∈ H do2

if (w, z) �∈ HC then3

bDFS(w, z);4

end5

end6

Algorithm 3. bDFS(w, y)

Based on the above discussion, it follows that we can replace Step 8 in Algo-
rithm 2 by the following step.

Step 8 for Algorithm 2:
for each w ∈ V do

if ((w, x) ∈ HC)&((w, y) �∈ HC) then bDFS(w, y); end
end

Along with this modification we also absorb the for-loop at step 13 of Algo-
rithm 2 in the bounded DFS routine. The final algorithm is given in Algorithm 4.
Here H is stored in two data-structures, adjacency-list HL as well as adjacency-
matrix HM . HL[a] points to the list of vertices to which there are edges from
a, and HM [a, b] = 1 iff (a, b) ∈ H . The transitive closure of H is stored as
adjacency matrix, where HC[a, b] = 1 iff (a, b) belongs to Hc.

4.3 Time and Space Complexity

Analysis of running time: Let the number of vertices in V be n, number of
edges in E0 be m, and m denote the number of edges in the implied-set closure
of E0.

The for-loop in Algorithm 4 runs n times in each call and while-loops iterates
m times so total time complexity of the algorithm, excluding the cost of bDFS′-
calls is O(mn).

We bound the cost due to bDFS′-calls in two parts, one for each for-loop.
Observe that the bDFS′-routine is never called again with the same argu-
ments. Therefore the cumulative cost of all calls due to the second for-loop

Implied Set Closure and Its Application to Memory Consistency Verification 103

Data: vertex set V ; edge set E0; induced-edge-sets T (a, b) for all pairs
(a, b) ∈ V × V

Result: HL is the adjacency list of the implied-set-closure, and HC stores its
transitive closure

HL ← ∅;1

HM ← ∅;2

HC ← ∅;3

X ← E0;4

while X �= ∅ do5

(x, y) ← Select(S);6

Insert y in HL[x];7

HM [x, y] ← 1;8

if HC[x, y] = 0 then9

for each w ∈ V do10

if HC[w, x] = 1 and HC[w, y] = 0 then11

bDFS′(w, y)12

end13

end14

end15

end16

return HL, HC;17

Algorithm 4. Algorithm to compute implied-set closure: Final version

HC[w, y] ← 1;1

for each (u, v) ∈ T (w, y) do2

if HM [u, v] �= 1 then3

X ← X ∪ {(u, v)}4

end5

end6

for each z ∈ HL[y] do7

if HC[w, z] = 0 then8

bDFS′(w, z);9

end10

end11

Algorithm 5. subroutine bDFS′(w, y)

is
∑

w

∑
y degH(y), where degH(y) denotes the out-degree of y in H , which is

O(mn). The contribution of the first for-loop can be estimated by observing
that each T (w, y) is scanned at most once and the membership test takes O(1)
time. So its cost is O(

∑
(w,y)∈HC |T (w, y)|). The total time complexity of the

algorithm is O(mn +
∑

(w,y)∈HC |T (w, y)|).
Note that the second component in the expression can’t be got rid of by any

algorithm of ISC problem because this is also the input size for the problem
and each algorithm has to scan it at least once. The additional cost is O(mn).
It seems quite difficult, if not infeasible, to beat this bound since the ordinary

104 S. Baswana, S.K. Mehta, and V. Powar

transitive closure problem is a special case of the ISC problem and there does not
exist any combinatorial algorithm for transitive closure problem with running
time o(mn) where m = |E0|.
Space requirement: The algorithm uses adjacency list as well as adjacency
matrix representation for the graph H which amounts to Θ(m + n2) = Θ(n2)
space. In addition we use n×n matrix HC. Thus the total space requirement of
the algorithm is Θ(n2). Hence, in addition to the input which consists of original
edge set E) and the lists T (a, b) for each (a, b) ∈ V × V , the algorithm uses only
Θ(n2) additional space.

Theorem 1. For a given graph on n vertices, a base set of edges E0, and sets
T (a, b) ∀(a, b) ∈ V × V of implied edges, there exists an algorithm which solves
the ISC problem in O(mn +

∑
a,b |T (a, b)|) time and Θ(n2) space, in addition

to the space used by input, where m is the number of edges in the implied-set
closure of E.

In Section 3 we have seen that computation of edges due to rules R4 and R5

in Algorithm 1, which dominates the time complexity, is the implied-set closure
of the edge set resulting after applications of the first three rules. Therefore the
time complexity for memory consistency verification problem is the same as that
for computing the corresponding implied-set closure.

In this ISC problem the non-empty T (a, b) sets are either of the form T (S, S′)
or T (S, L), so

∑
a,b |T (a, b)| =

∑
S,S′ |T (S, S′)| + ∑

S,L |T (S, L)| . From the def-
inition it is clear that T (S, S′) ∩ T (x, y) �= ∅ iff S = x and S′ = y. Hence∑

S,S′ |T (S, S′)| ≤ |V × V |. Again from the definition |T (S, L)| ≤ 1 so
∑

S,L |T (S, L)| ≤ ∑
S,L 1 ≤ |V × V |. This gives

∑
a,b |T (a, b)| < 2n2. We have

the following corollary.

Corollary 1. Memory consistency verification problem can be solved in O(n3)
time and O(n2) space, where n is the total number of instructions in the test
program.

5 Experimental Results

Theoretically, the new algorithm achieves a speed-up by a factor of n over the
worst case time complexity of the previous best algorithm of Roy et al. [6]. To
show that there are no hidden large constants, we compared it with the algorithm
of Roy et. al. [6] experimentally (see Table 1).

Our experiments are based on test programs with 2, 4, 6, and 8 program-
threads. In each case the number of instructions per thread were kept the same
and these varied from 100 instruction per thread to 500 instruction per thread.
Each result reported here is the average of 100 programs in each category. The
test programs were generated by Intel’s MPRIT tool [6]. Here Algorithm A refers
to the algorithm reported here and Algorithm B is that of Roy et. al. [6] .

To make a fair comparison, the algorithms were executed in an identical envi-
ronment consisting of a single processor. The experiment used implementation
of Roy et. al. [6] algorithm without vector instructions.

Implied Set Closure and Its Application to Memory Consistency Verification 105

Table 1. Experimental results

Instructions per thread
100 200 300 400 500

#threads algo A algo B algo A algo B algo A algo B algo A algo B algo A algo B

2 119 82 230 240 591 626 1216 1350 2216 2476

4 149 163 614 953 1834 3289 4198 7913 8181 16071

6 225 332 1222 2997 3926 11023 9508 27914 18593 57671

8 328 688 2082 7216 7204 28183 16846 69851 32904 146350

In each experiment the number of instructions is fixed. So n is equal to the
number of instructions-per-thread times the number of threads. As number of
threads increase, n increases and consequently performance gap increases. Be-
sides, we see that algorithm A performs significantly better compared to algo-
rithm B in case of 100 instructions per thread with 8 thread, while the gap is
insignificant when instruction per thread is 400 and threads are 2. In both the
cases n = 800, but the reason for this difference is the number of threads. The
number of inferred edges increases with more threads, and expensive computa-
tion involves the computation of these edges.

Intel’s MPRIT Tool incorporates an implementation of the algorithm of Roy
et al. [6] using vector instructions on SIMD processor which performs 128 bit
operations per instruction. This results in a significant speedup (about a factor of
100). Yet asymptotically, for large values of n, the new algorithm will outperform
even the vector-instruction aided implementation of the algorithm in [6].

5.1 Parallelization of the New Algorithm

Step 10 in Algorithm 4 involves processing for each w ∈ V . In each iteration of
the for-loop all computations exclusively depend on the HC edges of the form
(w, ∗) and the sets T (w, ∗). This implies that computations in different iterations
are mutually independent. Therefore in a multi-processor environment different
processor could be assigned different passes of this loop to be performed in parallel.

6 Conclusion

In this work we studied the memory consistency compliance algorithm of Hangal
et.al. [3] which was improved by Roy et. al. [6]. The former had O(n5) complex-
ity, while the latter was improved to O(n4). We identified the bottleneck in
these algorithms and proposed it as a graph problem called induced-set closure
problem. We proposed an efficient algorithm for this problem using Italiano’s
[4] incremental algorithm for transitive closure and showed that using this ap-
proach the memory consistency compliance algorithm can be implemented in
O(n3) time. An efficient parallel implementation of our algorithm remains a
task for the future research.

106 S. Baswana, S.K. Mehta, and V. Powar

Acknowledgment

We thank Amitabha Roy for introducing the memory consistency compliance
problem to us. We thank Mainak Chaudhuri for explaining various concepts in
the area of memory architecture. We also thank Mayur Shardul for pointing out
an error in the bound for | ∑T (S, S′)| in an earlier draft.

References

1. Adve, S.V., Gharachorloo, K.: Shared memory consistency models : A tutorial. In
Digital Western Research Laboratory Technical Report (1995)

2. Cantin, J., Lipasti, M., Smith, J.: The complexity of verifying memory coherence.
In: Proceedings of 15th Annual ACM Symposium on Parallel Algorithms and Ar-
chitectures, pp. 254–255 (2003)

3. Hangal, S., Vahia, D., Manovit, C., Lu, J.-Y.J.: TSOtool: A program for verifying
systems using the memory consistency model. In: Proceedings of the 31st annual
international symposium on computer architecture (ISCA), pp. 114–123 (2004)

4. Italiano, G.F.: Amortized efficiency of a path retrieval data structure. Theoretical
Computer Science 48, 273–281 (1986)

5. Manovit, C., Hangal, S.: Efficient algorithm for verifying memory consistency. In:
Proceedings of the 17th annual ACM symposium on Parallelism in algorithms and
architectures (SPAA 2005), pp. 245–252 (2005)

6. Roy, A., Zeisset, S., Fleckenstein, C.J., Huang, J.C.: Fast and generalized polynomial
time memory consistency verification. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 503–516. Springer, Heidelberg (2006)

7. Sindhu, P.S., Frailong, J. M., Cekleov, M.: Formal specification of memory models.
In Xerox PARC Technical Report (1991)

Effective Program Verification

for Relaxed Memory Models

Sebastian Burckhardt and Madanlal Musuvathi

Microsoft Research

Abstract. Program verification for relaxed memory models is hard. The
high degree of nondeterminism in such models challenges standard veri-
fication techniques. This paper proposes a new verification technique for
the most common relaxation, store buffers. Crucial to this technique is
the observation that all programmers, including those who use low-lock
techniques for performance, expect their programs to be sequentially con-
sistent. We first present a monitor algorithm that can detect the presence
of program executions that are not sequentially consistent due to store
buffers while only exploring sequentially consistent executions. Then, we
combine this monitor with a stateless model checker that verifies that
every sequentially consistent execution is correct. We have implemented
this algorithm in a prototype tool called Sober and present experiments
that demonstrate the precision and scalability of our method. We find re-
laxed memory model bugs in several programs, including two previously
unknown bugs in a production-level concurrency library that would have
been difficult to find by other means.

1 Introduction

Developers of performance-critical multi-threaded software often try to avoid
the overhead of traditional locking by either making direct use of hardware
primitives for atomic operations (such as interlocked exchange, or compare-and-
swap), or by employing regular loads and stores for synchronization purposes.
Unfortunately, such “low-lock” programs are notoriously hard to get right [4,20].
Subtle bugs can arise in these programs due to memory reordering caused by the
relaxed memory model of the underlying hardware [1] . These errors are hard to
find and debug as they most often show up only in specific thread interleavings
and in particular hardware configurations. On the other hand, low-lock code is
heavily used both in low-level libraries and in critical paths of a system. Because
these parts are crucial to the reliability of the entire system, it is important to
develop verification techniques.

In general, the same program may exhibit more executions on a relaxed model
than on a sequentially consistent (SC) machine [18], as illustrated in Fig. 1. Let
T Y

π denote the set of executions of program π on memory model Y . Most ex-
isting program verification tools can not verify directly whether the executions
in T Y

π are correct (unless Y = SC). A few specialized memory model sensi-
tive verification tools exist [4,13,22,25] but scalability and automation remain a
challenge.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 107–120, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

108 S. Burckhardt and M. Musuvathi

SC

TSO

390

IA-32

RMO

PPC

Initially: X = Y = 0

processor 1 processor 2

X = 1 Y = 1
r1 = Y r2 = X

Eventually: r1 = 0, r2 = 0

When the two threads run on different processors,
the stores to X and Y in the first line can possibly
be delayed by the store buffers in these processors.
Subsequent loads in the second line see the initial
values of X and Y if the store buffers have not
yet been committed.

(a) (b)

Fig. 1. (a) A comparison of various memory models [6,9,14,15,24]. (b) An execution
that is possible on TSO but not on SC.

A key observation of this paper is that programmers, even those writing low-
lock code, expect their programs to be sequentially consistent. They design their
programs to be correct for SC executions and insert memory ordering fences to
counter relaxations where necessary. In particular, any program execution that
is not SC is almost always an error, resulting either from an insufficient use of
fences or a misunderstanding of the underlying memory model.

This observation suggests that we can sensibly verify the relaxed executions
T Y

π by solving the following two verification problems separately:

1. Use standard verification methodology for concurrent programs to show that
the executions in T SC

π are correct.
2. Use specialized methodology for memory model safety verification, showing

that T Y
π = T SC

π . We say the program π is Y -safe if T Y
π = T SC

π .

In this paper, we focus on verifying memory model safety for the most common re-
laxation in modern multiprocessors, store buffers with store-load forwarding. The
corresponding memory model is historically called TSO (total store order) [24],
and we use the terms TSO-safety and store buffer safety interchangeably. Under
TSO, processors may delay the effect of a store instruction in a processor-local
FIFO buffer (to hide the memory latency). While the values of these store instruc-
tions are immediately visible to the local processor, other processors see these val-
ues only when the store buffer is committed at a later time. Fig. 1(b) shows a simple
example. We provide a rigorous characterization of TSO in Section 2.

Apart from the fact that store buffers are so common (as apparent in Fig. 1(a),
T TSO

π ⊆ T Y
π for almost all models Y), our motivation for focusing on TSO largely

arises from the need to prepare the huge body of legacy code heavily optimized to
run on x86 machines for future multicore chip generations. These processors are
likely to make increased use of store buffers but are otherwise fairly conservative
as far as the memory model is concerned [16].

Effective Program Verification for Relaxed Memory Models 109

The main contribution of this paper is a technique for checking the store buffer
safety of a program while only exploring its sequentially consistent executions,
which lets us perform the steps 1 and 2 above simultaneously. Our technique
relies on a notion of borderline execution, which is an SC execution that can be
extended into an execution in T TSO

π \ T SC
π . We establish that a program is store

buffer safe exactly if there are no borderline executions (Theorem 1). Then we
present an efficient, precise monitor for detecting borderline executions, using a
novel generalized vector clock algorithm.

We have implemented these ideas in a prototype tool called Sober. Sober com-
bines our store buffer safety monitor with the stateless model checker Chess [21]
which systematically enumerates the SC executions of a bounded concurrent test
program and checks them for errors such as null pointers or assertion violations.
In principle, Sober terminates with one of three possible outputs. First, Sober
may detect a regular program error and output an erroneous execution. Second,
Sober may report that the program is not store buffer safe. Finally, Sober may
terminate without finding an error, proving that all TSO executions of the pro-
gram are correct. In practice, exhaustive verification is too time-consuming for
most programs and we resort to iterative context-bounding [21], which provides
verification guarantees up to a specific preemption bound.

Section 4 describes our initial experiments. Using Sober we found and fixed
store buffer issues in several programs, including Dekker’s mutual exclusion pro-
tocol [2] and the Bakery protocol [17]. We got our greatest success so far when
we applied Sober to a component of a concurrency library at Microsoft. This
component implements a low-lock datastructure. Sober demonstrated two store
buffer problems that the developer immediately agreed were real errors. These
bugs were never detected during the extensive code-review and testing the com-
ponent underwent.

Related Work. Prior work has addressed the verification of programs for re-
laxed memory models using explicit state enumeration [7,13,22] and using con-
straint solving [3,4,11,26]. Our work improves upon them in scalability. To our
knowledge, this paper is the first to demonstrate the possibility of program
verification without exploring the additional nondeterminism of memory-model
relaxation. See the experiments in Huynh and Roychoudhury [13] for the state
space explosion caused by this nondeterminism even for simple programs. This
paper is definitely not the first to observe that sequential consistency is the most
natural memory model for programmers [1,12,18]. The Java Memory Model [19]
guarantees sequential consistency for a broad class of programs, namely those
which are data-race free. In contrast, our characterization of memory model
safety precisely captures those programs which behave sequentially consistent
in a memory model. In particular, a program with data-races might still be
memory-model safe. Specialized algorithms to automatically insert fences based
on static analysis [8,23] can guarantee memory-safety in principle. However,
doubts remain about their precision in the presence of aliasing, loops, and con-
ditionals and the performance implication of conservative fence insertion. Also,

110 S. Burckhardt and M. Musuvathi

the memory models considered in these algorithms assume atomic memory and
cannot model store buffers, the main emphasis of this paper.

2 Problem Formulation

We represent the relevant aspects of a program executions by a memory trace,
or just trace. A trace is a collection of events, each representing a memory access
(either a store, a load, or an interlocked operation1) by a specific processor to
a specific address. Each event has an issue index, which is a sequence number
relative to all events by the same processor. Furthermore, each event has a
coherence index, which is the sequence number of the value that is read or written
by the event, relative to the entire value sequence written to the targeted memory
location during the execution.

Formally, let Op = {st, ld, il}, let N be the set of natural numbers, let Proc =
{1, . . . , N} be a finite set of processor identifiers for some fixed bound N ∈ N, let
Adr be a finite set of memory addresses, and let N0 ⊆ Z be the set of nonnegative
integers. Then we define the set of events as Evt = Op × Proc × N × Adr × N0,
and we denote elements e ∈ Evt using the syntax o(p, i, a, c), where o ∈ Op,
p ∈ Proc, i ∈ N is the issue index, a ∈ Adr, and c ∈ N0 is the coherence index.
We use corresponding projection functions o(e), p(e), i(e), a(e), c(e) for an event
e. Given a set E ⊆ Evt of events, we define the following subsets for notational
convenience:

(commands issued by processor p) E(p) = {e ∈ E | p(e) = p}
(load events) L(E) = {e ∈ E | o(e) = ld}
(store events) S(E) = {e ∈ E | o(e) = st}

(events that write to memory) W (E) = {e ∈ E | o(e) ∈ {st, il}}
(events that read from memory) R(E) = {e ∈ E | o(e) ∈ {ld, il}}

(events that write location a) W (E, a) = {e ∈ W (E) | a(e) = a}

We call a function f : Evt → N an index function for a subset S′ ⊆ Evt if
f(S′) = {1, . . . , |S′|} (including the special case where S′ is empty).

Definition 1 (Traces). A trace is a subset E ⊆ Evt satisfying

(E1) For all p ∈ Proc, i is an index function for E(p).
(E2) For all a ∈ Adr, c is an index function for W (E, a).
(E3) For all l ∈ L(E), either c(l) = 0, or there exists a w ∈ W (E, a(l))

such that c(l) = c(w).

Define T ⊆ P(Evt) to be the set of all traces. We say a trace E is a prefix of a
trace E′ if E ⊆ E′.

1 We do not need to include memory fence operations because a full fence is se-
mantically equivalent to an interlocked operation to a location that is not accessed
anywhere else.

Effective Program Verification for Relaxed Memory Models 111

To reason about traces, we introduce binary relations →p and →c:

– We use the program order →p⊆ Evt × Evt to describe the relative order of
events by the same processor. Specifically, we define e →p e′ if and only if
p(e) = p(e′) and i(e) < i(e′). For any trace E, →p is a partial order on E
and a total order on E(p) for all p ∈ Proc.

– We use the conflict order →c⊆ Evt × Evt to describe the relative order
of conflicting accesses (where we call two accesses e, e′ ∈ Evt conflicting if
a(e) = a(e′) and {e, e′} ∩ W (Evt) �= ∅). Specifically, we define: e →c e′ if
and only if a(e) = a(e′) and either (1) o(e′) ∈ W (Evt) and c(e) < c(e′),
or (2) (e, e′) ∈ W (Evt) × L(Evt) and c(e) ≤ c(e′). The conflict order is not
actually an ’order’ in the mathematical sense because it is not transitive.

We now proceed to define the memory models SC (sequential consistency) and
TSO (total store order) using an axiomatic style. To state the definitions con-
cisely, we define the binary relation →hb, called happens-before relation, to be
the union of the program and conflict orders: →hb= (→p ∪ →c). Note that this
definition does not make →hb implicitly transitive; we will take the transitive
closure →∗hb explicitly if required by the context.

Definition 2 (SC). Define the set T SC ⊆ T of sequentially consistent traces
to consist of all traces E that satisfy the following condition:

(SC1) The relation →hb is acyclic on E.

To define TSO for any given event set E, we first define the relaxed happens-
before relation →rhb:

→rhb = →hb \ { (e, e′) | e →p e′ ∧ o(e) = st ∧ o(e′) = ld}
Thus the →rhb relation does not put a happens-before edge between a store
and a subsequent load of the same processor (even if they have the same ad-
dress). This reflects the existence of a store buffer: a store may globally commit
after subsequent loads by the same processor, and thus not globally appear as
’happening before the load’.

Definition 3 (TSO). Define the set T TSO ⊆ T of totally-store-ordered traces
to consist of all traces E that satisfy the following conditions:

(TSO1) The relation →rhb is acyclic on E.
(TSO2) never (e →p e′ ∧ e′ →c e) for any e, e′ ∈ E

The axiom (TSO2) is required to guarantee that loads correctly “snoop” the store
buffer: the coherence index of a load may not be less than that of a previous store
to the same address by the same processor. For a detailed proof that Definitions
2 and 3 are equivalent to more intuitive operational descriptions, we refer to our
technical report [5].

We now formally define the set of traces T Y
π that a program π may exhibit on

a memory model Y ∈ {SC, TSO}. To keep our formalization light, we represent

112 S. Burckhardt and M. Musuvathi

a program π abstractly by a function nextπ : T ×Proc → P(Op×Adr). The set
nextπ(E, p) describes what instructions (combinations of operation and address)
may possibly be issued by processor p next, after having executed E. For a
trace E, let last(E, p) be the element e ∈ E(p) such that i(e) is maximal, or
undefined if E(p) = ∅. We say that a program π is locally deterministic if for
all (E, p) ∈ domnextπ, we have (1) |nextπ(E, p)| ≤ 1, and (2) for all prefixes
E′ ⊆ E such that last(E′, p) = last(E, p), we have nextπ(E, p) = nextπ(E′, p).
In the following, we will assume without further mention that all programs are
locally deterministic. For a trace E ∈ T , define the set of possible successor
events under program π as

succπ(E) = {e ∈ (Evt \ E) | (E ∪ {e} ∈ T) and nextπ(E, p(e)) = (o(e), a(e))}.

Definition 4 (Program Traces). For a program π and memory model Y ∈
{SC, TSO}, define the set of traces T Y

π inductively as the smallest set satisfying
(i) ∅ ∈ T Y

π , and (ii) for all E ∈ T Y
π and e ∈ succπ(E) such that E ∪ {e} ∈ T Y ,

we have E ∪ {e} ∈ T Y
π .

Definition 5 (Store Buffer Safety). The program π is called store buffer safe
if and only if T TSO

π = T SC
π .

3 Solution

We now describe how we can check store buffer safety by exploring T SC
π only.

The idea is to look for borderline traces which are defined as follows.

Definition 6 (Borderline Trace). A sequentially consistent trace E ∈ T SC
π

of a program π is called a borderline trace if there exists an e ∈ succπ(E) such
that E ∪ {e} ∈ (T TSO

π \ T SC
π).

Theorem 1. A program π is store buffer safe if and only if it has no borderline
traces.

Proof. If E ∈ T SC
π is a borderline trace, then there exists a trace E ∪ {e} ∈

(T TSO
π \ T SC

π) implying T SC
π �= T TSO

π . Conversely, assume T SC
π �= T TSO

π . Because
T SC

π ⊆ T TSO
π , there must exist E ∈ (T TSO

π \ T SC
π). By construction of T TSO

π ,
there exist traces E0, . . . , En ∈ T TSO

π and events e1, . . . , en such that E0 = ∅,
{ek} = Ek \ Ek−1, and En = E. Because En /∈ T SC

π but E0 ∈ T SC
π , there exists

a minimal k such that Ek /∈ T SC
π . This implies that Ek−1 ∈ T SC

π and Ek−1 is a
borderline trace (because Ek−1 ∪ {ek} ∈ (T TSO

π \ T SC
π)).

The following cycle characterization lemma provides an efficient method to
detect borderline traces. For a trace E, let lastR(E, p) be the element e ∈
E(p) ∩ R(E) such that i(e) is maximal, or be undefined if (E(p) ∩ R(E)) = ∅;
and let write(E, a, c) denote the element e ∈ W (E, a) such that c(e) = c if it
exists, or be undefined otherwise.

Effective Program Verification for Relaxed Memory Models 113

Lemma 1 (Cycle Characterization). Let E ∈ T SC
π be a sequentially consis-

tent trace of π, and let e = o(p, i, a, c) ∈ succπ(E). Let E′ = E ∪ {e}. Then:

(1) E′ /∈ T SC
π if and only if o = ld and write(E, a, c + 1) →∗hb last(E, p).

(2) E′ /∈ T TSO
π if and only if o = ld and either

(i) write(E, a, c + 1) →∗rhb lastR(E, p), or
(ii) there exists c′ > c such that p(write(E, a, c′)) = p.

Proof. (1⇐). If o = ld and write(E, a, c + 1) →∗hb last(E, p), then

e →c write(E, a, c + 1) →∗hb last(E, p) →p e

which forms a →hb-cycle, implying E′ /∈ T SC by (SC1), and thus E′ /∈ T SC
π .

(2⇐). either (i) or (ii) must hold; if (i) holds, we proceed as in case (1⇐): we
use e →c write(E, a, c + 1) and lastR(E, p) →p e to construct a cycle (this time,
a →rhb-cycle) which implies E′ /∈ T TSO by (TSO1), and thus E′ /∈ T TSO

π . If (ii)
holds, then either write(E, a, c′) →p e or e →p write(E, a, c′); but the latter is
impossible because both E and E′ are traces (specifically, because i is an index
function on both E(p) and E′(p)). Therefore, write(E, a, c′) →p e. Along with
e →c write(E, a, c′) we conclude E′ /∈ T TSO by (TSO2), and thus E′ /∈ T TSO

π .
(1⇒). Assume E′ /∈ T SC

π . Then E′ /∈ T SC (by Def. 4(ii)), which means (SC1)
does not hold: specifically, E ∪{e} has a →hb-cycle. Because →hb is acyclic on E
(because E ∈ T SC), it must be of the form e →hb e1 →hb . . . →hb en →hb e where
all ek ∈ E and n ≥ 1. Now, e →hb e1 by definition implies that either e →p e1 or
e →c e1. As reasoned earlier, it can not be the case that e →p e1 (because E and
E′ are both traces), thus e →c e1. This implies that o = ld (because c is an index
function on both W (E, a) and W (E′, a)). Because e is a load and e →c e1, we
know o(e1) ∈ {st, il}, a(e1) = a and c(e1) > c, and thus either write(E, a, c+1) =
e1 or write(E, a, c+1) →c e1. Therefore write(E, a, c+1) →∗hb en. Now, it can not
be the case that en →c e (otherwise en →∗c e1 which creates a →hb-cycle within
E, contradicting E ∈ T SC

π), thus en →p e. Therefore, either en = last(E, p) or
en →p last(E, p). We can thus conclude that write(E, a, c + 1) →∗hb last(E, p) as
desired. (2⇒). If E′ /∈ T TSO

π then E′ /∈ T TSO (by Def. 4(ii)). Thus either (TSO1)
or (TSO2) must be violated. First, assume that E′ does not satisfy (TSO1). Just
as in (1⇒) (but using the relation →rhb⊆→hb), we conclude that there exists
a cycle of the form e →rhb e1 →rhb . . . →rhb en →rhb e, that e →c e1, that
o = ld, that write(E, a, c + 1) →∗rhb en, and that en →p e. The latter implies
that o(en) �= st (otherwise not en →rhb e), and therefore either en = lastR(E, p)
or en →rhb lastR(E, p). Thus condition (i) is satisfied. Next, assume that E′ does
not satisfy (TSO2). Because E does, and because we know that not e →p e′ for
any e′ ∈ E (because E and E′ are both traces), there must exist an e′ ∈ E
such that e′ →p e and e →c e′. This implies o(e) = ld (because c is an index
function on both W (E, a) and W (E′, a)). Because e is a load and e →c e′, we
know o(e′) ∈ {st, il}, a(e′) = a and c(e′) > c. Thus, condition (ii) is satisfied
with c′ = c(e′).

114 S. Burckhardt and M. Musuvathi

1 function is_store_buffer_safe(e1e2 . . . en) returns boolean {
2 var k,p,a,c : N; var E : T ;
3 E := ∅;
4 for (k := 1; k <= n; k++) {
5 if (o(ek) = ld) {
6 p := p(ek); a := a(ek); c := c(ek);
7 while (c > 0) {
8 if (p = i(write(E,a,c)))
9 break;

10 if (write(E,a,c) →∗
rhb lastR(E,p))

11 break;
12 if (write(E,a,c) →∗

hb last(E,p))
13 return false;
14 c := c - 1;
15 }
16 }
17 E := E ∪ ek;
18 }
19 return true;
20 }

Fig. 2. Our algorithm to monitor store buffer safety in a given interleaving

3.1 Monitor Algorithm

Fig. 2 shows our implementation of a monitor that can monitor store buffer
safety in any interleaved execution of the program. It processes the events in
the sequence in order (and can thus be used online or offline) and reports any
detected borderline traces. We now qualify the soundness and completeness of
this monitor. For a sequence w = e1 . . . en ∈ Evt∗ of events, let Ew = {e1, . . . en}.
The sequence w is called an interleaving of a program π if (1) the ek are pairwise
distinct, (2) Ew ∈ T SC

π , (3) ex →hb ey =⇒ x < y, and (4) nextπ(Ew, p) = ∅ for
all p ∈ Proc.

Theorem 2 (Soundness). If an an interleaving w of program π is reported
unsafe by our monitor, then π is not store buffer safe.

Proof. Assume is_store_buffer_safe(w) returns false for w = e1 . . . en. Let
E, k, p, i, a and c′ be the values of the program variables E, k, p, i, a, and
c at the time of the return, respectively. Then E = {e1, . . . , ek−1}, and ek =
ld(p, i, a, c) for some c. Let e = ek, and let e′ = ld(p, i, a, c′ − 1). We now argue
that E′ = E ∪ {e′} ∈ (T TSO

π \ T SC
π), which implies that E is a borderline trace

and thus T SC
π �= T TSO

π by Theorem 1 as desired. First, note that e′ ∈ succπ(E)
because E ∪ {e} ∈ T SC

π implies E ∪ {e′} ∈ T and (o, a) ∈ nextπ(E, p) (using
that π is locally deterministic). We can thus enlist the help of Lemma 1 to show
E′ ∈ (T TSO

π \ T SC
π). First, because the program returned at line 13, we know

write(E, a, c′) →∗hb last(E, p), which implies E′ /∈ T SC
π by Lemma 1, part (1).

Second, because the program did not break at line 11 right before returning on
line 13, we know that not (write(E, a, c′) →∗rhb lastR(E, p)). Moreover, because

Effective Program Verification for Relaxed Memory Models 115

the while loop was not broken at line 9, we know that p(write(E, a, c′′)) �= p for
all c′′ ≥ c′. By Lemma 1, part (2) we conclude that E′ ∈ T TSO

π .

As for completeness, we clearly cannot detect all borderline traces by looking at
a single interleaving w only. However, it is possible to detect them reliably by
checking a sufficient set of interleavings. Specifically, we call a set of interleav-
ings I ⊆ Evt∗ representative for program π if for all E ∈ T SC

π there exists an
interleaving w ∈ I such that E ⊆ Ew and there are no →hb-edges from Ew \ E
into E.

Theorem 3 (Completeness). Let I be a representative set of interleavings of
a program π. Then, if π is not store buffer safe, our monitor will detect it on
some interleaving w ∈ I.

Proof. By Theorem 1, we know that T SC
π �= T TSO

π implies that there exists a
borderline trace E ∈ T SC

π . Thus there exists an element e = o(p, i, a, c) ∈ Evt
such that E′ = (E ∪ {e}) ∈ T TSO

π \ T SC
π . Because I is representative, it must

contain an interleaving w = e1 . . . en such that E ⊆ Ew is a prefix. Because
(o(e), a(e)) ∈ nextπ(E, p), there must be a k such that p(ek) = p and i(ek) = i
(otherwise last(Ew , p) = last(E, p) and thus nextπ(E, p) = nextπ(Ew, p), con-
tradicting nextπ(Ew, p) = ∅). We now claim that if the algorithm reaches the
k-th iteration, it must return false (if it returns prior to that, it also returns false
and we are satisfied). Let Ek = {e1, . . . , ek−1}. By Lemma 1, part (1), we know
that write(E, a, c+1) →∗hb last(E, p) within E. Now, by the choice of k, we know
E(p) = Ek(p), thus last(E, p) = last(Ek, p), and because w is an interleaving (re-
spects →hb), this implies write(Ek, a, c+1) →∗hb last(Ek, p) within Ek. Moreover,
we know that c(ek) ≥ (c+1) because w is an interleaving and write(Ek, a, c+1)
appears before ek in w. Thus, the while loop (which assigns c(ek) to the vari-
able c initially, and then keeps decrementing it) must eventually return true at
line 13 unless it is broken at either line 9 or line 11. But that is not possible,
for the following reasons. First, suppose line 9 breaks. Let c′ be the value of the
variable c at that time; then c+1 ≤ c′ ≤ c(ek) and p(write(Ek, a, c′)) = p. Now,
because E(p) = Ek(p), we know write(Ek, a, c′) ∈ E. Thus, write(E, a, c′) =
write(Ek, a, c′), implying p(write(E, a, c′)) = p which in turn implies E′ /∈ T TSO

π

by Lemma 1, part (2ii), contradicting the assumption. Next, suppose line 11
breaks. Let c′ be the value of the variable c at that time; then c+1 ≤ c′ ≤ c(ek)
and write(Ek, a, c′) →∗rhb lastR(Ek, p) within Ek. Now, because E(p) = Ek(p),
lastR(Ek, p) = lastR(E, p). Because there are no →hb-edges (and thus no →rhb-
edges) from Ew into E, this implies that write(E, a, c′) →∗rhb lastR(E, p). Be-
cause c + 1 ≤ c′, this implies write(E, a, c) →∗rhb lastR(Ek, p), which in turn
implies E′ /∈ T TSO

π by Lemma 1, part (2i), contradicting the assumption.

A stateless model checker (such as Verisoft [10] or Chess[21]) can provide us
with a representative set of interleavings if the program is bounded (we call a
program bounded if there exists a number M ∈ N such that |E| < M for all
E ∈ T SC

π). The following theorem (proved in [5]) clarifies that this is true even
if partial order reduction is employed. We call a set of interleavings I ⊆ Evt∗

116 S. Burckhardt and M. Musuvathi

1 type timestamp: array[2*N] of N0;
2 var lc: array[Proc] of timestamp;
3 sc: array[Proc] of timestamp;
4 mc1: array[Proc][Adr] of timestamp;
5 mc2: array[Adr] of timestamp;
6 initially lc[*][*] = sc[*][*] = mc1[*][*][*] = mc2[*][*] = 0;
7 function merge(ts1, ... tsn : timestamp) returns timestamp {
8 return (maxi(tsi[1]), ... , maxi(tsi[N*2]));
9 }

10 function process_event(e : Evt) returns timestamp {
11 match e with
12 ld(p,i,a,c) ->
13 ts := merge(lc[p], mc1[p][a]);
14 ts[2*p] := ts[2*p] + 1; // advance load count for p
15 lc[p] := merge(lc[p], ts);
16 mc2[a] := merge(mc2[a], ts);
17 st(p,i,a,c) ->
18 ts := merge(sc[p], lc[p], mc2[a]);
19 ts[2*p+1] := ts[2*p+1] + 1; // advance store count for p
20 forall q �= p do
21 mc1[q][a] := merge(mc1[q][a], ts);
22 mc2[a] := merge(mc2[a], ts);
23 sc[p] := merge(sc[p], ts);
24 il(p,i,a,c) ->
25 ts := merge(sc[p], lc[p], mc2[a]);
26 ts[2*p] := ts[2*p] + 1; // advance load count for p
27 ts[2*p+1] := ts[2*p+1] + 1; // advance store count for p
28 forall q ∈ Proc do
29 mc1[q][a] := merge(mc1[q][a], ts);
30 mc2[a] := merge(mc2[a], ts);
31 lc[p] := merge(lc[p], ts);
32 sc[p] := merge(sc[p], ts);
33 return ts;
34 }

Fig. 3. A vector clock for tracking the transitive closure →∗
rhb

a partial-order-complete set for program π if for all interleavings w of π, there
exists a w′ in I such that Ew = Ew′ .

Theorem 4. If I is a partial-order-complete set of interleavings for a bounded
program π, then it is representative for π.

3.2 Vector Clocks

The pseudocode in Fig. 2 does not detail how to decide the conditions on lines
10 and 12. While it is well known how to use vector clocks to compute the
transitive closure →∗hb for a given interleaving of length n in time O(nN), it is
not immediately clear how to do the same for →∗rhb. We solved this problem
by generalizing vector clocks (Def. 7 below) and by engineering a vector clock
instance (Fig. 3) that can compute the transitive closure →∗rhb in time O(nN2).

Effective Program Verification for Relaxed Memory Models 117

Theorem 5. Let w = e0 . . . en be an interleaving of some program π, and let
t1, . . . , tn be the timestamps returned by the corresponding sequence of calls to
process_event (Fig. 3). Then ei →∗rhb ej if and only if i ≤ j and ti[k] ≤ tj [k]
for all k ∈ {1, . . . , 2N}.
We now describe informally how this vector clock works (for a detailed proof of
the theorem see [5]). Our vector clock uses timestamps of a fixed width (here
2N , where N is the maximal number of processors) and maintains a number of
clocks (defined as global variables in Fig. 3). The computation of each timestamp
follows the following pattern: (1) some of the clocks are read and merged, (2)
some positions of the resulting vector are incremented to form the timestamp,
and (3) the timestamp is merged back into some of the clocks. The following
definition clarifies the conditions that underly this general mechanism (in(e)
and out(e) represent the clock sets in step (1) and (3), respectively, and gps(e)
represents the set of positions in step (2)).

Definition 7 (General Vector Clock). Let Σ be a set of events, and let
→ be a binary relation on Σ. A general vector clock for (Σ, →) is a tuple
(C, G, in , out , gps) where C is a set of clocks, G is a set of groups, in, out are
functions Σ → P(C), and gps is a function Σ → P(G) such that the following
conditions are satisfied:

(VC1) for all σ ∈ Σ, gps(σ) �= ∅.
(VC2) for all g ∈ G, → is a total order on {σ ∈ Σ | g ∈ gps(σ)}.
(VC3) for all σ, σ′ ∈ Σ, we have (out(σ) ∩ in(σ′) �= ∅) ⇔ (σ → σ′).

4 Experiments

We present experimental results for four C# programs (Fig. 4(a)). The largest
one (takequeue) implements a low-lock datastructure and is part of a concurrency
library at Microsoft. For all programs, Sober (1) falsified the original version
(found that it is not store buffer safe), and (2) verified a fixed version (which we
obtained by adding more memory fences whenever Sober showed us a borderline
trace) up to some bound on the number of preemptions [21] (column 2).

We make two observations. First, a large percentage of interleavings trip the
monitor (columns 3,4). Therefore, a violation is found quickly (column 5). This
indicates that our monitor may be useful for falsification even in a plain testing
setup (without doing exhaustive space exploration). Second, when verifying a
correct program, the number of interleavings and the verification time increase
dramatically with the context bound as usual [21]; however, the overhead by the
store buffer safety monitor is fairly low in practice (columns 6,7), indicating that
it makes sense to turn it on by default within the Chess tool.

Figure 4(b) describes a memory model bug that we found in a production
level concurrency library at Microsoft [5]. The program uses two flags isIdling
and hasWork as well as a condition variable to synchronize between consumers
and producers. An idle consumer waits on the condition variable if hasWork is

118 S. Burckhardt and M. Musuvathi

volatile bool isIdling;
program context time volatile bool hasWork;

name bound total borderline [s] SoBeR CHESS
Fig. 1(b) 10 4 < 0.1 < 0.2 < 0.2 //Consumer thread
dekker 1 5 4 < 0.1 < 0.2 < 0.2 void BlockOnIdle(){
(2 threads, 2 36 23 < 0.1 0.39 0.37 lock (condVariable){
2 crit-sec) 3 183 50 < 0.1 1.9 1.8 isIdling = true;
(loc 82) 4 1,219 124 < 0.1 13.2 13.0 if (!hasWork)

5 8,472 349 < 0.1 106.0 100.6 Wait(condVariable);
bakery 0 1 1 < 0.1 < 0.2 < 0.2 isIdling = false;
(2 threads, 1 25 20 < 0.1 0.47 0.43 }
3 crit-sec) 2 742 533 < 0.1 10.3 9.8 }
(loc 122) 3 12,436 8,599 < 0.1 189.0 181.0
takequeue 0 3 0 n.a. < 0.3 < 0.3 //Producer thread
(2 threads, 1 47 14 0.34 0.72 0.69 void NotifyPotentialWork(){
6 ops) 2 402 189 0.43 5.2 4.9 hasWork = true;
(loc 374) 3 2,318 1,197 0.74 28.9 27.8 if (isIdling)

4 9,147 5,321 0.84 125.5 118.9 lock (condVariable) {
5 29,821 17,922 0.86 481.5 461.6 Pulse(condVariable);

 }
}

(a) (b)

interleavings ver. time [s]

Fig. 4. (a) Experiments on a 2.2GHz Intel Core Duo laptop running Windows Vista.
(b) An example of a store buffer safety bug we found in a production-level C# program.

false, but only after setting isIdling to true. To optimize for the common case
in which there are no idle consumers, the producer acquires the lock only when
isIdling is true. Also, to account for a possible race on the isIdling flag, the
producer sets hasWork to true before checking the isIdling flag. We can see
that in all sequentially consistent executions the producer correctly wakes up the
idle consumer, if any. However, in the presence of store buffers, a store can be
delayed past a subsequent load.2 In particular, the consumer can read hasWork
before its write to isIdling is visible to the producer. Thus, the producer may
erroneously believe that no consumer is idling, not perform a signal, and leave
the consumer waiting forever.

5 Conclusions and Future Work

We have presented a novel method to verify store buffer safety using a non-
intrusive monitor that is run alongside sequentially consistent executions of the
program. We have demonstrated that this method is scalable, automatic and
precise enough to find store-buffer-related bugs in realistic low-lock code, such
as concurrency libraries.

As future work, we consider including memory model relaxations other than
store buffers, and we plan to apply our monitor to larger execution traces.

2 Note that unlike Java, the C# memory model does not guarantee a sequentially
consistent ordering of volatile accesses.

Effective Program Verification for Relaxed Memory Models 119

References

1. Adve, S., Gharachorloo, K.: Shared memory consistency models: a tutorial. Com-
puter 29(12), 66–76 (1996)

2. Ben-Ari, M.: Principles of Concurrent Programming. Prentice Hall, Englewood
Cliffs (1982)

3. Burckhardt, S., Alur, R., Martin, M.: Bounded verification of concurrent data types
on relaxed memory models: A case study. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 489–502. Springer, Heidelberg (2006)

4. Burckhardt, S., Alur, R., Martin, M.: CheckFence: Checking consistency of con-
current data types on relaxed memory models. In: PLDI, pp. 12–21 (2007)

5. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. Technical Report MSR-TR-2008-12, Microsoft Research (2008)

6. Compaq Computer Corporation. Alpha Architecture Reference Manual, 4th edn.
(January 2002)

7. Dill, D., Park, S., Nowatzyk, A.: Formal specification of abstract memory mod-
els. In: Symposium on Research on Integrated Systems, pp. 38–52. MIT Press,
Cambridge (1993)

8. Fang, X., Lee, J., Midkiff, S.: Automatic fence insertion for shared memory multi-
processing. In: ICS, pp. 285–294 (2003)

9. Frey, B.: PowerPC Architecture Book v2.02. IBM Corporation (2005)

10. Godefroid, P.: Model checking for programming languages using Verisoft. In: POPL
1997: Principles of Programming Languages, pp. 174–186 (1997)

11. Gopalakrishnan, G., Yang, Y., Sivaraj, H.: QB or not QB: An efficient execution
verification tool for memory orderings. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 401–413. Springer, Heidelberg (2004)

12. Hill, M.: Multiprocessors should support simple memory-consistency models. IEEE
Computer 31(8), 28–34 (1998)

13. Huynh, T., Roychoudhury, A.: A Memory Model Sensitive Checker for C#. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 476–
491. Springer, Heidelberg (2006)

14. IBM Corporation. z/Architecture Principles of Operation, 1st edn. (2000)

15. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual,
vol. 3A (November 2006)

16. Intel Corporation. Intel 64 Architecture Memory Ordering White Paper (August
2007)

17. Lamport, L.: A new solution of dijkstra’s concurrent programming problem. Com-
munications of the ACM 17(8), 453–455 (1974)

18. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comp. C-28(9), 690–691 (1979)

19. Manson, J., Pugh, W., Adve, S.: The Java memory model. In: Principles of Pro-
gramming Languages (POPL), pp. 378–391 (2005)

20. Morrison, V.: Understand the impact of low-lock techniques in multithreaded apps.
MSDN Magazine 20(10) (October 2005)

21. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI, pp. 446–455 (2007)

22. Park, S., Dill, D.L.: An executable specification, analyzer and verifier for RMO
(relaxed memory order). In: SPAA, pp. 34–41 (1995)

120 S. Burckhardt and M. Musuvathi

23. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share
memory. ACM Trans. Program. Lang. Syst. 10(2), 282–312 (1988)

24. Weaver, D., Germond, T.: The SPARC Architecture Manual Version 9. PTR Pren-
tice Hall, Englewood Cliffs (1994)

25. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: Memory-model-sensitive data race
analysis. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS,
vol. 3308, pp. 30–45. Springer, Heidelberg (2004)

26. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Nemos: A framework for
axiomatic and executable specifications of memory consistency models. In: IPDPS
(2004)

Mechanical Verification of Transactional Memories with
Non-transactional Memory Accesses�

Ariel Cohen1, Amir Pnueli1, and Lenore D. Zuck2

1 New York University,
{arielc,amir}@cs.nyu.edu
2 University of Illinois at Chicago,

lenore@cs.uic.edu

Abstract. Transactional memory is a programming abstraction intended to sim-
plify the synchronization of conflicting memory accesses (by concurrent threads)
without the difficulties associated with locks. In a previous work we presented a
formal framework for proving that a transactional memory implementation sat-
isfies its specifications and provided with model checking verification of some
using small instantiations. This paper extends the previous work to capture non-
transactional accesses to memory, which occurs, for example, when using legacy
code. We provide a mechanical proof of the soundness of the verification method,
as well as a mechanical verification of a version of the popular TCC implemen-
tation that includes non-transactional memory accesses. The verification is per-
formed by the deductive temporal checker TLPVS.

1 Introduction

Transactional Memory [5] is a simple solution for coordinating and synchronizing con-
current threads that access the same memory locations. It transfers the burden of con-
currency management from the programmers to the system designers and enables a safe
composition of scalable applications, we well as efficiently utilizes the multiple cores.
Multicore and many-core processors, which require concurrent programs in order to
gain a full advantage of the multiple number of processors, has become the mainstream
architecture for microprocessor chips and thus many new transactional memory imple-
mentations have been proposed recently (see [9] for an excellent survey).

A transactional memory (TM) receives requests from clients and issues responses.
The requests are usually part of a transaction that is a sequence of operations starting
with a request to open a transaction, followed by a sequence of read/write requests,
followed by a request to commit (or abort). The TM responds to requests. When a
transaction requests a successful “commit,” all of its effects are stored in the memory.
If a transaction is aborted (by either issuing an abort request or when TM detects that
it should be aborted) all of its effects are removed. Thus, a transaction is a sequence of
atomic operations, either all complete successfully and all its write operations update
the memory, or none completes and its write operations do not alter the memory. In

� This research was supported in part by ONR grant N00014-99-1-0131 and NSF grants CCF-
0742686 and CNS-0720525.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 121–134, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

122 A. Cohen, A. Pnueli, and L.D. Zuck

addition, committed transaction should be serializable – the sequence of operations
belonging to successful transactions should be such that it can be reordered (preserving
the order of operations in each transaction) so that the operation of each transaction
appear consecutive, and a “read” from any memory location returns the value of the last
“write” to that memory location.

TMs are often parameterized by their properties. These may include the conflicts they
are to avoid, when are the conflicts detected, how they are resolved, when is the memory
updated, whether transactions can be nested, etc. (see [9] for a list of such properties).
Each set of parameters defines a unique set of sequences of events that can occur is a TM
so to guarantee atomicity and serializability. We refer to the set of sequences of events
allowed by a TM as its sspecifications. A particular implementation does not necessarily
generate all allowed sequences, but should only generate allowed sequences. The topic
of this paper (as well as [3]) is to formally verify that a TM implementation satisfies its
specification that is uniquely defined by its parameters.

Such parameters were given in [12]’s widely-cited paper, which was the first to char-
acterize transactional memory in a way that captured and clarified the many semantic
distinctions among the most popular implementations of TMs. Scott’s ([12]) approach
is to begin with classical notions of transactional histories and sequential specifications,
and to introduce two important notions. The first is a conflict function which specifies
when two overlapping (concurrent) transactions cannot both succeed (a safety condi-
tion). The second is an arbitration function which specifies which of two transactions
must fail (a liveness condition). Scott’s work went a long way towards clarification of
the semantics of TMs, but did not facilitate mechanical verification of implementations.

The work in [3] (co-authored by the authors of this paper) took a first step towards
modeling TMs, accordingly to [12]’s parameters, so to as allow for mechanical veri-
fication of their implementations. There, a specification of a TM is represented by a
fair state machine that is parameterized by a set of admissible interchanges — a set of
rules specifying when a pair of consecutive operations in a sequence of transactional
operations can be safely swapped without introducing or removing a conflict. All the
conflicts described in [12] can be cast as admissible sets. The specification machine
takes a stream of transactional requests as inputs, and outputs a serializable sequence of
the input requests and their responses. The fairness is used to guarantee that each trans-
action is eventually closed (committed or aborted) and, if committed, appears in the
output. Some proof rules are given to show that a TM implementation satisfies its spec-
ification. The applicability of the approach is demonstrated on several well-known TM
implementations. Small instantiations of each of the case study were shown to specify
their specification using the model checker TLC [8].

This paper extends the work of [3] in two directions. The first is to add another pa-
rameter to the system — non-transactional memory accesses. Unlike their transactional
counterparts, non-transactional accesses cannot be aborted. While atomicity and serial-
izability requirements remain, where a non-transaction operation is cast as a singleton,
successfully committed, transaction. The second direction is a framework that allows
for a mechanical formal verification that TM implementations satisfy their specifica-
tions. The tool we use is TLPVS [11], which embeds temporal logic and its deductive
frame-work within the theorem prover PVS [10]. Using TLPVS entailed some changes to

Mechanical Verification of Transactional Memories 123

the [3] proof rules that establish that an implementation indeed refines its specification.
In fact, the rule presented here is more general than its predecessor. Using TLPVS also
entailed restricting to interchange rules that can be described by temporal logics (which
still covers all of [12]’s conflicts). For simplicity, we chose to restrict to interchanges
whose temporal description uses only past temporal operators (i.e., depend only on the
history leading to the interchange), which rules out [12]’s mixed invalidation conflict.

We make here a strong assumption on non-transactional accesses, namely, that the
transactional memory is aware that non-transactional accesses, as soon as they occur.
While the TM cannot abort such accesses, it may use them in order to abort transactions
that are under its control. It is only with such or similar assumption that total consistency
or coherence can be maintained.

We demonstrate the new framework by presenting TLPVS proofs that some TM im-
plementations with non-transactional accesses satisfy their specifications, given an ad-
missible interchange.

To the best of our knowledge, the work presented here is the first to employ a theo-
rem prover for verifying correctness of transactional memories and the first to formally
verify an implementation that handles non-transactional memory accesses.

The rest of the paper is organized as follows: Section 2 provides preliminary def-
initions related to transactional memory, and defines the concept of admissible inter-
changes. Section 3 provides a specification model of a transactional memory. Section 4
discusses a proof rule for verifying implementations. Section 5 presents a simple im-
plementation of transactional memory that handles non-transactional memory accesses.
Section 6 shows how to apply deductive verification using TLPVS to verify this imple-
mentation. Section 7 provides some conclusions and open problems.

2 Transactional Sequences and Interchanges

We extend the [3] to support non-transactional memory accesses and separate each ac-
tion into a request/response pair, as well as give a temporal definition for interchanges.

2.1 Transactional Sequences

Assume n clients that direct requests to a memory system, denoted by memory. For
every client p, let the set of non-transactional invocations by client p consists of:

– ιRnt
p (x) – A non-transactional request to read from address x ∈ N.

– ιWnt
p (y, v) – A non-transactional request to write value v ∈ N to address y ∈ N.

Let the set of transactional invocations by client p consists of:

– ι�p – An open transaction request.
– ιRt

p(x) – A transactional read request from address x ∈ N.
– ιW t

p(y, v) – A transactional request to write the value v ∈ N to address y ∈ N.
– ι�p – A commit transaction request.
– ι ��p – An abort transaction request.

124 A. Cohen, A. Pnueli, and L.D. Zuck

The memory provides a response for each invocation. Erroneous invocations (e.g., a
ι �p while client p has a pending transaction) are responded by the memory returning
an error flag err . Non-erroneous invocations, except for ιRt and ιRnt are responded
by the memory returning an acknowledgment ack . Finally, for non-erroneous ιRt

p(x)
and ιRnt

p (x) the memory returns the (natural) value of the memory at location x. We
assume that invocations and responses occur atomically and consecutively, i.e., there
are no other operation that interleave an invocation and its response.

Let Ent
p : {Rnt

p (x, u), Wnt
p (x, v)} be the set of non-transactional observable events,

Et
p : {�p, R

t
p(x, u), W t

p(x, v), �p, ��p} be the set of transactional observable events
and Ep = Ent ∪ Et, i.e. all events associated with client p. We consider as ob-
servable events only requests that are accepted, and abbreviate the pair (invocation,
non-err response) by omitting the ι-prefix of the invocation. Thus, W t

p(x, v) abbre-
viates ιW t

p(x, v), ack p. For read actions, we include the value read, that is, Rt
p(x, u)

abbreviates ιRt(x), ρR(u). When the value written/read has no relevance, we write the
above as W t

p(x) and Rt
p(x). When both values and addresses are of no importance, we

omit the addresses, thus obtaining W t
p and Rt

p (symmetric abbreviations and shortcuts
are used for the non-transactional observable events). The output of each action is its
relevant observable event when the invocation is accepted, and undefined otherwise.
Let E be the set of all observable events over all clients, i.e., E =

⋃n
p=1 Ep (similarly

define Ent and Et to be the set of all non-transactional and the set of all transactional
observable events, respectively).

Let σ : e0, e1, . . . , ek be a finite sequence of observable E-events. We say that the
sequence σ̂ over Et is σ’s transactional sequence, where σ̂ is obtained from σ by re-
placing each Rnt

p and Wnt
p by �p Rt

p �p and �p W t
p �p, respectively. That is, each

non-transactional event of σ is transformed into a singleton committed transaction in
σ̂. The sequence σ is called a well-formed transactional sequence (TS for short) if the
following all hold:

1. For every client p, let σ̂|p be the sequence obtained by projecting σ̂ onto Et
p. Then

σ̂|p satisfies the regular expression T ∗p , where Tp is the regular expression �p (Rt
p+

W t
p)∗(�p + ��p). For each occurrence of Tp in σ̂|p, we refer to its first and last

elements as matching. The notion of matching is lifted to σ̂ itself, where �p and
�p (or ��p) are matching if they are matching in σ̂|p;

2. The sequence σ̂ is locally read-write consistent: for any subsequence of σ̂ of the
form 〈W t

p(x, v) η Rt
p(x, u)〉 where η contains no �p, ��p, or W t

p(x) events, u = v.

We denote by T the set of all well-formed transactional sequences, and by pref (T) the
set of T ’s prefixes. Note that the requirement of local read-write consistency can be
enforced by each client locally. To build on this observation, we assume that, within
a single transaction, there is no Rt

p(x) following a W t
p(x), and there are no two reads

or two writes to the same address. With these assumptions, the requirement of local
read-write consistency is always (vacuously) satisfied. A TS σ is atomic if:

1. σ̂ satisfies the regular expression (T1 + · · · + Tn)∗. That is, there is no overlap
between any two transactions;

2. σ̂ is globally read-write consistent: namely, for any subsequence W t
p(x, v)η

Rt
q(x, u) in σ̂, where η contains �p, which is not preceded by ��p, and contains

no event W t
k(x) followed by event �k, it is the case that u = v.

Mechanical Verification of Transactional Memories 125

2.2 Interchanging Events

The notion of a correct implementation is that every TS can be transformed into an
atomic TS by a sequence of interchanges which swap two consecutive events. This
definition is parameterized by the set A of admissible interchanges which may be used
in the process of serialization. Rather than attempt to characterize A, we choose to
characterize its complement F , the set of forbidden interchanges. The definition here
differs from the one in [3] in two aspects: There, in order to characterize F , we allowed
arbitrary predicates over the TS, here, we restrict to temporal logic formulae. Also,
while [3] allowed swaps that depend on future events, here we restrict to swaps whose
soundness depends only on the history leading to them. This restriction simplifies the
verification process, and is the one used in all TM systems we are aware of. Note that
it does not allow to express [12]’s mixed invalidation conflict. In all our discussions,
we assume strict serializability which implies that while serializing a TS, the order of
committed transactions has to be preserved.

Consider a temporal logic over E using the past operators � (previously), � (some-
times in the past), and S (since). Let σ be a prefix of a well-formed TS over Et (i.e.,
σ = σ̂). We define a satisfiability relation |= between σ and a temporal logic for-
mula ϕ so that σ |= ϕ if at the end of σ, ϕ holds. (The more standard notation is
(σ, |σ| − 1) |= ϕ, but since we always interpret formulae at the end of sequences we
chose the simplified notation.)

Some of the restrictions we place in F are structural. For example, the formula
p �= q∧ �p ∧ � �q forbids the interchange of closures of transactions belonging to
different clients. This guarantees the strictness of the serializability process. Similarly,
the restriction up ∧ � vp, where up, vp ∈ Ep, forbids the interchanges of two events
belonging to the same client. Other formulas may guarantee the absence of certain con-
flicts. For example, following [12], a lazy invalidation conflict occurs when committing
one transaction may invalidate a read of another, i.e., if for some transactions Tp and
Tq and some memory address x, we have Rp(x), Wq(x) ≺�q≺�p (where “ei ≺ ej”
denotes that ei precedes ej). Formally, the last two events in σ cannot be interchanged
when for some p �= q,

σ |= �q ∧ � (Rp(x) ∧ (¬ �q)S Wq(x)) (1)

Similarly, we express conflicts by TL formulae that determine, for any prefix of a TS
(that includes only Et events), whether the two last events in the sequence can be safely
interchanged without removing the conflict. For a conflict c, the formula that forbids in-
terchanges that may remove instances of this conflict is called the maintaining formula
for c and is denoted by mc. Thus, Formula 1 is the maintaining formula for the conflict
lazy invalidation. See [2] for a list of the maintaining formulae for each[12]’s conflicts
(expect for mixed invalidation that requires future operators).

Let F be a set of forbidden formulae characterizing all the forbidden interchanges,
and let A denote the set of interchanges which do not satisfy any of the formulas in
F . Assume that σ = a0, . . . , ak. Let σ′ be obtained from σ by interchanging two
elements, say ai−1 and ai. We then say that σ′ is 1-derivable from σ with respect to A
if (a0, . . . , ai) �|= ∨ F . Similarly, we say that σ′ is derivable from σ with respect to A
if there exist σ = σ0, . . . , σ� = σ′ such that for every i < �, σi+1 is 1-derivable from
σi with respect to A.

126 A. Cohen, A. Pnueli, and L.D. Zuck

A TS is serializable with respect to A if there exists an atomic TS that is derivable
from it with respect to A. The sequence σ̆ is called the purified version of TS σ if σ̆ is
obtained by removing from σ̂ all aborted transactions, i.e., removing the opening and
closing events for such a transaction and all the read-write events by the same client
that occurred between the opening and closing events. When we specify the correctness
of a transactional memory implementation, only the purified versions of the implemen-
tation’s transaction sequences will have to be serializable.

3 Specification and Implementation

Let A be a set of admissible interchanges which we fix for the remainder of this sec-
tion. We next describe SpecA , a specification of transactional memory that generates
all sequences whose corresponding TSs are serializable with respect to A. The process
SpecA is described as a fair transition system. In every step, it outputs an element in
E⊥ = E ∪ {⊥}. The sequence of outputs it generates, once the ⊥ elements are pro-
jected away, is the set of TSs that are admissible with respect to A. Spec

A
uses the

following data structures:

• spec mem : array N
→ N — A persistent memory. Initially, spec mem[i] = 0 for
all i ∈ N;

• Q : list over Et ∪ ⋃
p{markp} — A queue-like structure, to which elements are

appended, interchanged, deleted, and removed. The sequence of elements removed
from this queue-like structure defines an atomic TS that can be obtained by seri-
alization of SpecA ’s output with respect to A. For each client p, it is assumed that
markp �∈ Ep is a new symbol. Initially, Q is empty;

• spec out : scalar in E⊥ = E ∪ {⊥} — An output variable, initially ⊥;
• spec doomed : array [1..n]
→ bool — An array recording which pending transac-

tions are doomed to be aborted. Initially spec doomed[p] = F for every p.

Fig. 1 summarized the steps taken by Spec
A

. The first column describes the value of
spec out with each step; it is assumed that every step produces an output. The second
column describes the effects of the step on the other variables. The third column de-
scribes the conditions under which the step can be taken. The following abbreviations
are used in Fig. 1:

• A client p is pending if spec doomed[p] = T or if Q|p is not empty and does not
terminate with �p;

• a client p is unmarked if Q|p does not terminate with markp;
• a p-action a is locally consistent with Q if Q|p, a is a prefix of some locally consis-

tent p-transaction;
• a transaction T is consistent with spec mem if every Rt(x, v) in T is either pre-

ceded by some W t(x, v), or else v = spec mem[x];
• the update of spec mem by a transaction T is spec mem′ where for every location

x for which T has no W t(x, v) actions, spec mem′[x] = spec mem[x], and for
every memory location x such that T has some W t(x, v) actions, spec mem′[x] is
the value written in the last such action in T ;

Mechanical Verification of Transactional Memories 127

spec out other updates conditions

�p append �p toQ p is not pending
Rt

p(x, v) append Rt
p(x, v) toQ p is pending, unmarked and spec doomed[p] = F;

R(x, v) is locally consistent withQ
Rt

p(x, v) none p is pending, unmarked and spec doomed[p] = T

W t
p(x, v) append W t

p(x, v) toQ p is pending, unmarked and spec doomed[p] = F

W t
p(x, v) none p is pending, unmarked and spec doomed[p] = T

��p delete p’s pending transaction fromQ; p is pending
set spec doomed[p] to F

�p update spec mem by p’s pending transaction; p has a consistent transaction at the front ofQ
remove p-pending transaction fromQ that ends with markp (p is pending and marked)

Rnt
p (x, v) append �p, Rt

p(x, v), �p toQ p is not pending
W nt

p (x, v) append �p, W t
p(x, v), �p toQ p is not pending

⊥ set spec doomed[p] to T; p is pending and spec doomed[p] = F

delete all pending p-events fromQ
⊥ apply aA-valid transformation toQ none
⊥ append markp toQ p is pending and unmarked
⊥ none none

Fig. 1. Steps of Spec
A

• an A-valid transformation to Q is a sequence of interchanges of Q’s entries that is
consistent with A. To apply the transformations, each markp is treated as if it is �p.

The role of spec doomed is to allow SpecA to be implemented with various arbitra-
tion policies. It can, at will, schedule a pending transaction to be aborted by setting
spec doomed[p], by so “dooming” p’s pending transaction to be aborted. The variable
spec doomed[p] is reset once the transaction is actually aborted (when SpecA outputs
��p). Note that actions of doomed transactions are not recorded on Q.

We assume a fairness requirement, namely, that for every client p = 1, . . . , n, there
are infinitely many states of SpecA where Q|p is empty and spec doomed[p] = F. This
implies that every transaction eventually terminates (commits or aborts). It also guaran-
tees that the sequence of outputs is indeed serializable. Note that unlike the specification
described in [3] where progress can always be guaranteed by aborting transactions, here,
because of the non-transactional accesses, there are cases where Q cannot be emptied.

While SpecA resembles its counterpart in [3], the treatment of non-transactional ac-
cesses entailed numerous changes: Roughly speaking, each transactional access is ap-
pended to the queue, and removed from it when the transaction commits, aborts, or is
doomed to abort. When a transaction attempts to commit, a special marker markp is ap-
pended to the queue, and, if there are admissible interchanges that move the whole trans-
action into the head of the queue, its events are removed from the queue and it commits.
Thus, the queue never contains �-events, and it contains at most one mark -event. A
non-transactional p-access ant

p (that can only be accepted when p-has no pending trans-
action) is treated by appending �p, a

t
p, �p to the queue. (Note that the non-transactional

event is replaced by its transactional counterpart.) Hence, here the queue may have �-
events. The transactions (or, rather, non-transaction) corresponding to them cannot be
“doomed to abort” since such a transaction is, by definition (see below), not pending.
The liveness properties require that all transaction are eventually removed from the
queue. As a consequence, unlike its [3] version, Spec

A
does not support “eager ver-

sion management” that eagerly updates the memory with every W t-action (that doesn’t

128 A. Cohen, A. Pnueli, and L.D. Zuck

conflict any pending transaction) which is reasonable since eager version management
and the requirement to commit each non-transactional access are contradictory.

A sequence σ over E is compatible with SpecA if it can be obtained by the sequence
of spec out that SpecA outputs once all the ⊥’s are removed. We then have:

Claim. For every sequence σ over E, σ is compatible with SpecA iff σ̂ is serializable
with respect to A.

An implementation TM : (read, commit) of a transactional memory consists of a pair
of functions read : pref (TS) × [1..n] × N → N and commit : pref (TS) × [1..n] →
{ack, err} For a prefix σ of a TS, read(σ, p, x) is the response (value) of the memory to
an accepted ιRnt

p (x)/ιRt
p(x) request immediately following σ, and commit(σ, p) is the

response (ack or err) of the memory to a ι�p request immediately following σ.
A TS σ is said to be compatible with the memory TM if:

1. For every prefix ηRnt
p (x, u) or ηRt

p(x, u) of σ, read(η, p, x) = u.
2. For every prefix η�p of σ, commit(η, p) = ack .

An implementation TM : (read, commit) is a correct implementation of a transactional
memory with respect to A if every TS compatible with TM is also compatible with
SpecA.

4 Verifying Implementation Correctness

We present a proof rule for verifying that an implementation satisfies the specification
Spec. The rule is adapted [7], which, in turn is based on [1]’s abstraction mapping. In
addition to being case in a different formal framework, and ignoring compassion (which
is rarely, if ever, used in TMs), the rule generalizes on the two given in [3] by allowing
for general stuttering equivalence.

To apply the underlying theory, we assume that both the implementation and the
specifications are represented as OPFSs (see [2] for details). In the current application,
we prefer to adopt an event-based view of reactive systems, by which the observed
behavior of a system is a (potentially infinite) set of events. Technically, this implies
that one of the system variables O is designated as an output variable. The observation
function is then defined by O(s) = s[O]. It is also required that the observation domain
always includes the value ⊥, implying no observable event. In our case, the observation
domain of the output variable is E⊥ = E ∪ {⊥}.

Let η : e0, e1, . . . be an infinite sequence of E⊥-values. The E⊥-sequence η̃ is called
a stuttering variant of the sequence η if it can be obtained by removing or inserting
finite strings over {⊥} at (potentially infinitely many) different positions within η.

Let σ : s0, s1, . . . be a computation of OPFS D, that is, a sequence of states where
s0 satisfies the initial condition, each state is a successor of the previous one, and
for every justice (weak fairness) requirement, σ has infinitely many states that satisfy
the requirement. The observation corresponding to σ (i.e., O(σ)) is the E⊥ sequence
s0[O], s1[O], . . . obtained by listing the values of the output variable O in each of the
states. We denote by Obs(D) the set of all observations of system D.

Mechanical Verification of Transactional Memories 129

Let D
C

be a concrete system whose set of states is Σ
C

, set of observations is E⊥,
observation function is O

C
, initial condition is Θ

C
, transition relation is ρ

C
, and justice

requirements are ∪f∈F
C

J (f). Similarly, let D
A

be an abstract system whose set of
states, set of observations, observation function, initial condition, transition relation,
and justice requirements are Σ

A
, E⊥, O

A
, Θ

A
, ρ

A
, and ∪f∈F

A
J (f) respectively. (For

simplicity, we assume that neither system contains compassion requirements.) Note
that we assume that both systems share the same observations domain E⊥. We say that
system D

A
abstracts system D

C
(equivalently D

C
refines D

A
), denoted D

C
� D

A

if, for every observation η ∈ Obs(D
C
), there exists η̃ ∈ Obs(D

A
), such that η̃ is

a stuttering variant of η. In other words, modulo stuttering, Obs(D
C
) is a subset of

Obs(D
A
). We denote by s and S the states of D

C
and D

A
, respectively.

Rule ABS-REL in Fig. 2 is a proof rule to establish that D
C

� D
A

. The method
advocated by the rule assumes the identification of an abstraction relation R(s, S) ⊆
ΣC × ΣA . If the relation R(s, S) holds, we say that the abstract state S is an R-image
of the concrete state s.

R1. ΘC (s) → ∃S : R(s, S) ∧ ΘA (S)
R2. DC |= � (R(s, S) ∧ ρC (s, s′) → ∃S′ : R(s′, S′) ∧ ρA(S, S′))
R3. DC |= � (R(s, S) → OC (s) = OA (S))
R4. DC |= � � (∀S : R(s, S) → J (f)(S)), for every f ∈ FA

DC � DA

Fig. 2. Rule ABS-REL

Premise R1 of the rule states that for every initial concrete state s, it is possible to
find an initial abstract state S |= Θ

A
, such that R(s, S) = T.

Premise R2 states that for every pair of concrete states, s and s′, such that s′ is a ρ
C

-
successor of s, and an abstract state S which is a R-related to s, there exists an abstract
state S′ such that S′ is R-related to s′ and is also a ρA -successor of S. Together, R1
and R2 guarantee that, for every run s0, s1, . . . of D

C
there exists a run S0, S1, . . . , of

D
A

, such that for every j ≥ 0, Sj is R-related to sj . Premise R3 states that if abstract
state S is R-related to the concrete state s, then the two states agree on the values of
their observables. Together with the previous premises, we conclude that for every σ a
run of D

C
there exists a corresponding run of D

A
which has the same observation as

σ. Premise R4 ensures that the abstract justice requirements hold in any abstract state
sequence which is a (point-wise) R-related to a concrete computation. Here, � is the
(linear time) temporal operator for “henceforth”, � the temporal operator for “even-
tually”, thus, � � means “infinitely often.” It follows that every sequence of abstract
states which is R-related to a concrete computation σ and is obtained by applications
of premises R1 and R2 is an abstract computation whose observables match the ob-
servables of σ. This leads to the following claim which was proved using TLPVS (see
Section 6):

Claim. If the premises of rule ABS-REL are valid for some choice of R, then D
A

is an
abstraction of D

C
.

130 A. Cohen, A. Pnueli, and L.D. Zuck

5 An Example: TCC with Non-transactional Accesses

We demonstrate our proof method by verifying a TM implementation which is essen-
tially TCC [4] augmented with non-transactional accesses. Its specifications is given
by Spec

A
where A is the admissible set of events corresponding to the lazy invalidation

conflict described in Subsection 2.2.
In the implementation, transactions execute speculatively in the clients’ caches.

When a transaction commits, all pending transactions that contain some read events
from addresses written to by the committed transaction are “doomed.” Similarly, non-
transactional writes cause pending transactions that read from the same location to be
“doomed.” A doomed transactions may execute new read and write events in its cache,
but it must eventually abort.

Here we present the implementation, and in Section 6 explain how we can verify
that it refines its specification using the proof rule ABS-REL in TLPVS. We refer to the
implementation as TM. It uses the following data structures:

• imp mem : N → N — A persistent memory. Initially, for all i ∈ N, imp mem[i] = 0;
• cache : array[1..n] of list of Et — Caches of clients. For each p ∈ [1..n], cache[p],

initially empty, is a sequence over Et
p that records the actions of p’s pending trans-

action;
• imp out: scalar in E⊥ = E ∪ {⊥} — an output variable recording responses to

clients, initially ⊥;
• imp doomed : array [1..n] of booleans — An array recording which transactions

are doomed to be aborted. Initially imp doomed[p] = F for every p.

TM receives requests from clients, to each it updates its state, including updating the
output variable imp out, and issues a response to the requesting client. The responses
are either a value in N (for a ιRt or ιRnt requests), an error err (for ι � requests that
cannot be performed), or an acknowledgment ack for all other cases. Fig. 3 describes
the actions of TM, where for each request we describe the new output value, the other
updates to TM’s state, the conditions under which the updates occur, and the response
to the client that issues the request. For now, ignore the comments in the square brackets
under the “conditions” column. The last line represents the idle step where no actions
occurs and the output is ⊥.

Comment: For simplicity of exposition, we assume that clients only issue reads for
locations they had not written to in the pending transaction.

The specification of Section 3 specifies not only the behavior of the Transactional
Memory but also the combined behavior of the memory when coupled with a typical
clients module. A generic clients module, Clients(n), may, at any step, invoke the next
request for client p, p ∈ [1..n], provided the sequence of Ep-events issued so far (in-
cluding the current one) forms a prefix of a well-formed sequence. The justice require-
ment of Clients(n) is that eventually, every pending transaction issues an ack -ed ι� or
an ι ��p.

Combining modules TM and Clients(n) we obtain the complete implementation,
defined by:

Imp : TM ‖| Clients(n)

Mechanical Verification of Transactional Memories 131

Request imp out Other Updates Conditions Response

ι�p �p append �p to cache[p] [cache[p] is empty] ack
ιRt

p(x) Rt
p(x, v) append Rp(x, v) to cache[p] v = imp mem[x]; imp mem[x]

[cache[p] is empty]
(see comment)

ιW t
p(x, v) W t

p(x, v) append Wp(x, v) to cache[p] [cache[p] is not empty] ack
ι ��p ��p set cache[p] to empty; [cache[p] is not empty] ack

set imp doomed[p] to F

ι�p �p set cache[p] to empty; imp doomed[p] = F; ack
for every x and q �= p such that [cache[p] is not empty]
W t

p(x) ∈ cache[p] and
Rt

p(x) ∈ cache[q]
set spec doomed[q] to T;

update imp mem by cache[p]

ι�p ⊥ none imp doomed[p] = T; err
[cache[p] is not empty]

ιRnt
p (x) Rnt

p (x, v) none v = imp mem[x]; imp mem[x]
[cache[p] is empty]

ιW nt
p (x, v) W nt

p (x, v) set imp mem[x] to v; [cache[p] is empty] ack
for every q such that
Rt(x) ∈ cache[q]
set imp doomed[q] to T

none ⊥ none none none

Fig. 3. The actions of TM

where ‖| denote the synchronous composition operator defined in [6]; This composition
in combines several of the actions of each of the modules into one.

The actions of Imp can be described similarly to the one given by Fig. 3, where the
first and last column are ignored, the conditions in the brackets are added. The justice
requirements of Clients(n), together with the observation that both ι �� and an ack -
ed ι � cause the cache of the issuing client to be emptied, imply that Imp’s justice
requirement is that for every p = 1, . . . , n, cache[p] is empty infinitely many times.

The application of rule ABS-REL requires the identification of a relation R which
holds between concrete and abstract states. In [3], we used the relation defined by:

spec out = imp out ∧ spec mem = imp mem
∧ spec doomed = imp doomed

∧ ∧n
p=1 imp doomed[p] −→ (Q|p = cache[p])

however, there the implementation did not support non-transactional accesses. In
Section 6 we provide the relation that was applied when proving the augmented im-
plementation using TLPVS.

6 Deductive Verification in TLPVS

In this section we describe how we used TLPVS [11] to verify the correctness of the
implementation provided in Section 5. TLPVS was developed to reduce the substantial

132 A. Cohen, A. Pnueli, and L.D. Zuck

manual effort required to complete deductive temporal proofs of reactive systems. It em-
beds temporal logic and its deductive framework within the high-order theorem prover,
PVS [10]. It includes a set of theories defining linear temporal logic (LTL), proof rules
for proving soundness and response properties, and strategies which aid in conduct-
ing the proofs. In particular, it has a special framework for verifying unbounded sys-
tems and theories. See [10] and [11] for thorough discussions for proving with PVS and
TLPVS, respectively. In [3] we described the verification of three known transactional
memory implementations with the (explicit-state) model checker TLC. This verification
involved TLA+ [8] modules for both the specification and implementation, and abstrac-
tion mapping associating each of the specification’s variables with an expression over
the implementation’s variables.

This effort has several drawbacks: The mapping does not allow for abstraction re-
lations between states, but rather for mappings between variables. We therefore used
a proof rule that is weaker than ABS-REL and auxiliary structures. For example, for
Q|p = cache[p], which cannot be expressed in TLA+, we used an auxiliary queue that
can be mapped into Q and that records the order in which events are invoked in the im-
plementation. And, like any other model checking took, TLC can only be used to verify
small instantiations, rather than the general case. A full deductive verification requires
a theorem prover.

Our tool of choice is TLPVS. Since, however, TLPVS only supports the model of PFS,
we formulate OPFS in the PVS specification language. We then defined a new theory that
uses two OPFSs, one for the abstract system (specification) and another for the concrete
system (implementation), and proved, in a rather straightforward manner, that the rule
ABS-REL is sound.

We then defined a theory for the queue-like structures used in both specification
and implementation. This theory required, in addition to the regular queue operations,
the definition of the projection (|) and deletion of projected elements, which, in turn,
required the proofs of several auxiliary lemmas.

Next all the components of both OPFS’s defining the abstract and concrete systems
were defined. To simplify the TLPVS proofs, some of the abstract steps were combined.
For example, when a Spec

A
commits a transaction, we combined the steps of interchang-

ing events, removing them from Q, and setting spec out to �. This restricts the set of
Spec

A
’s runs but retains soundness. Formally, TM � S̃pecφli

implies that TM � Specφli
,

where S̃pecφli
is the restricted specification

The abstraction relation R between concrete and abstract states was defined by:
rel : RELATION = (LAMBDA s c, s a :
s c‘out = s a‘out AND s c‘mem = s a‘mem AND
s c‘doomed = s a‘doomed AND
FORALL(id : ID) : (NOT s c‘doomed(id)) IMPLIES

project(id,s a‘Q) = s c‘caches(id) AND
FORALL(id : ID) : (empty(s c‘caches(id))) IMPLIES

empty(project(id,s a‘Q)))

Here, s c is a concrete state and s a is an abstract state. The relation R equates the
values of out, mem and doomed in the two systems. It also states that if the transaction
of a client is not doomed, then its projection on the abstract Q equals to the concrete

Mechanical Verification of Transactional Memories 133

client’s cache, and if the concrete cache is empty then so is the projection of the abstract
Q on the client’s current transaction. An additional invariant, stating that each value read
by a non-doomed client is consistent with the memory was also added.

In order to prove that TM � Specφli
, D

C
and D

A
of ABS-REL were instantiated

with TM and Specφli
, respectively, and all the premises were verified. The proofs are in

http : //cs.nyu.edu/acsys/tlpvs/tm.html .

7 Conclusion and Future Work

We extended our previous work on a verification framework for transactional memory
implementations against their specifications, to accommodate non-transactional mem-
ory accesses. We also developed a methodology for verifying transactional memory
implementations based on the theorem prover TLPVS that provides a framework for ver-
ifying parameterized systems against temporal specifications. We obtained mechanical
verifications of both the soundness of the method and the correctness of an implemen-
tation which is based on TCC augmented with non-transactional accesses.

Our extension for supporting non-transactional accesses is based on the assumption
that an implementation can detect such accesses. We are currently working on weaken-
ing this assumption. We are also planning to study liveness properties of transactional
memory.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Computer Sci-
ence 82(2), 253–284 (1991)

2. Cohen, A., Pnueli, A., Zuck, L.D.: Verification of transactional memories that support non-
transactional memory accesses. In: TRANSACT 2008 (February 2008)

3. Cohen, A., O’Leary, J.W., Pnueli, A., Tuttle, M.R., Zuck, L.D.: Verifying correctness of
transactional memories. In: Proceedings of the 7th International Conference on Formal Meth-
ods in Computer-Aided Design (FMCAD), November 2007, pp. 37–44 (2007)

4. Hammond, L., Wong, W., Chen, M., Carlstrom, B.D., Davis, J.D., Herzberg, B., Prabhu,
M.K., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional memory coherence and con-
sistency. In: Proc. 31st annu. Int. Symp. on COmputer Architecture, p. 102. IEEE Computer
Society, Los Alamitos (2004)

5. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data
structures. In: ISCA 1993: Proceedings of the 20th annual international symposium on Com-
puter architecture, San Diego, California, United States, pp. 289–300. ACM Press, New York
(1993)

6. Kesten, Y., Pnueli, A.: Verification by augmented finitary abstraction. Inf. Comput. 163(1),
203–243 (2000)

7. Kesten, Y., Pnueli, A., Shahar, E., Zuck, L.D.: Network invariants in action. In: Brim, L.,
Jančar, P., Křetı́nský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 101–115.
Springer, Heidelberg (2002)

8. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley, Reading (2002)

134 A. Cohen, A. Pnueli, and L.D. Zuck

9. Larus, J.R., Rajwar, R.: Transactional Memory. Morgan & Claypool Publishers (2007)
10. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS System Guide. Computer

Science Laboratory, SRI International, Menlo Park, CA (September 1999)
11. Pnueli, A., Arons, T.: Tlpvs: A pvs-based ltl verification system. In: Dershowitz, N. (ed.) Ver-

ification: Theory and Practice. LNCS, vol. 2772, pp. 596–625. Springer, Heidelberg (2004)
12. Scott, M.L.: Sequential specification of transactional memory semantics. In: Proc. TRANS-

ACT the First ACM SIGPLAN Workshop on Languages, Compiler, and Hardware Suppport
for Transactional Computing, Ottawa (2006)

Automated Assume-Guarantee Reasoning by
Abstraction Refinement

Mihaela Gheorghiu Bobaru1,2, Corina S. Păsăreanu1, and Dimitra Giannakopoulou1

1 PSGS and RIACS, NASA Ames Research Center,
Moffett Field, CA 94035, USA

2 Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada
mg@cs.toronto.edu,

{corina.s.pasareanu,dimitra.giannakopoulou}@nasa.gov

Abstract. Current automated approaches for compositional model checking in
the assume-guarantee style are based on learning of assumptions as deterministic
automata. We propose an alternative approach based on abstraction refinement.
Our new method computes the assumptions for the assume-guarantee rules as
conservative and not necessarily deterministic abstractions of some of the compo-
nents, and refines those abstractions using counterexamples obtained from model
checking them together with the other components. Our approach also exploits
the alphabets of the interfaces between components and performs iterative refine-
ment of those alphabets as well as of the abstractions. We show experimentally
that our preliminary implementation of the proposed alternative achieves similar
or better performance than a previous learning-based implementation.

1 Introduction

Despite impressive recent progress in the application of model checking to the verifi-
cation of realistic systems, the essential challenge in model checking remains the well-
known state-space explosion problem [8]. Compositional techniques attempt to tame
this problem by applying verification to individual components and merging the results
without analyzing the whole system. In checking components individually, it is often
necessary to incorporate some knowledge of the context in which each component is
expected to operate correctly. Assume-guarantee reasoning [13,15] addresses this is-
sue by using assumptions that capture the expectations that a component makes about
its environment. Assumptions have traditionally been developed manually, which has
limited the practical impact of assume-guarantee reasoning.

In recent work, automation has been achieved through learning-based techniques [10].
The L* learning algorithm [2] is used to generate the assumptions needed for the assume-
guarantee rules. The simplest such rule checks if a system composed of components
M1 and M2 satisfies a property P by checking that M1 under assumption A satisfies P
(Premise 1) and discharging A on the environment M2 (Premise 2). For safety proper-
ties, Premise 2 amounts to checking that A is a conservative abstraction of M2, i.e., an
abstraction that preserves all of M2’s execution paths. This rule is also represented as
follows, where the notation is described in more detail in Section 2.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 135–148, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

136 M. Gheorghiu Bobaru, C.S. Păsăreanu, and D. Giannakopoulou

(Premise 1) 〈A〉 M1 〈P 〉
(Premise 2) 〈true〉 M2 〈A〉

〈true〉 M1 ‖ M2 〈P 〉
(1)

Learning-based assume-guarantee verification is an iterative process, during which L*
makes conjectures in the form of automata that represent intermediate assumptions.
Each conjectured assumption A is used to check the two premises of Rule 1. The pro-
cess ends if A passes both premises of the rule, in which case the property holds in the
system, or if it uncovers a real violation. Otherwise, a counterexample is returned and
L* modifies the conjecture. Similar approaches are proposed in [1,4,17]; the work in
[12] uses sampling rather than L* to learn the assumptions in a similar way.

In this paper we propose an alternative approach, AGAR (Assume-Guarantee Ab-
straction Refinement), that automates assume-guarantee reasoning by iteratively com-
puting assumptions as conservative abstractions of the interface behavior of M2, i.e.,
the behavior that concerns the interaction with M1. In each iteration, the computed as-
sumption A satisfies Premise 2 of the Rule 1 by construction and it is only checked for
Premise 1. If the check is successful, we conclude that M1 ‖ M2 satisfies the property;
if the check fails, we get a counterexample trace that we analyze to see if it corresponds
to a real error in M1 ‖ M2 or it is spurious due to the over-approximation in the ab-
straction. If it is spurious, we used it to refine A and then repeat the entire process.
Unlike learning-based assumption generation, AGAR does not constrain assumptions
to be deterministic. Therefore the assumptions constructed with AGAR can be (po-
tentially) exponentially smaller than those obtained with learning, resulting in smaller
verification problems.

To reduce the assumption sizes even further, we also combine the abstraction re-
finement with an orthogonal technique, interface alphabet refinement, which extends
AGAR so that it starts the construction of A with a small subset of the interface alphabet
and adds actions to the alphabet as necessary until the required property is shown to hold
or to be violated in the system. Actions to be added are discovered also by counterex-
ample analysis. We introduced alphabet refinement in [11] for learning-based assume-
guarantee reasoning; we adapt it here for AGAR1. We have implemented AGAR with
alphabet refinement in the explicit state model checker LTSA [14] and performed a se-
ries of experiments that demonstrate that it can achieve better performance than L* for
Rule 1 above.

Related work. AGAR is a variant of the well-known CEGAR (Counter Example-
Guided Abstraction Refinement) [7] with the notable differences that the computed
abstractions keep information only about the interface behavior of M2 that concerns
the interaction with M1 while it abstracts away its internal behavior, and that the coun-
terexamples used for the refinement of M2’s abstractions are obtained in an assume-
guarantee style by model checking the other component, M1.

CEGAR has been used before in compositional reasoning in [5]). In that work, a
conservative abstraction of every component is constructed and then all the resulting
abstractions are composed and checked. If the check passes, the verification concludes
successfully, otherwise the resulting abstract counterexample is analyzed on every

1 Note that [6] introduced a related alphabet minimization technique for L* as well.

Automated Assume-Guarantee Reasoning by Abstraction Refinement 137

a) b)

Input:

Output:

π

0 2

ack

sendinput

send output

send

output

input

inputoutput

0 1

0 1 2

ack

1

Fig. 1. (a) Example LTSs; (b) Order property

abstraction that is refined if needed. The work does not use assume-guarantee reasoning,
it does not address the reduction of the interface alphabets and it has not been compared
with learning-based techniques.

A comparison of learning and CEGAR-based techniques has been performed in [3]
but for a different problem: the ”interface synthesis” for a single component whose
environment is unknown. In our context, this would mean generating an assumption
that passes Premise 1, in the absence of a second component against which to check
Premise 2. The interface being synthesized by the CEGAR-based algorithm in [3] is
built as an abstraction of M1. The work does not apply reduction to interface alphabets,
nor does it address the verification of the generated interfaces against other components,
i.e., completing the assume-guarantee reasoning.

2 Preliminaries

Labeled Transition Systems (LTSs). We model components as finite-state labeled
transition systems (LTSs), as considered by LTSA. Let U be the universal set of ob-
servable actions and let τ denote a special action that is unobservable.

An LTS M is a tuple 〈Q, Σ, δ, q0〉, where: Q is a finite non-empty set of states;
Σ ⊆ U is the alphabet of M ; δ ⊆ Q × (Σ ∪ {τ})×Q is a transition relation, and q0 is
the initial state. We write (q, a, q′) ∈ δ as q

a→ q′. An LTS M is non-deterministic if it
contains τ -transitions or if ∃(q, a, q′), (q, a, q′′) ∈ δ such that q′
= q′′. Otherwise, M is
deterministic. π denotes an error state with no outgoing transitions, and Π denotes the
LTS 〈{π},U, ∅, π〉. Let M = 〈Q, Σ, δ, q0〉 and M ′ = 〈Q′, Σ′, δ′, q′0〉; M transits into
M ′ with action a, denoted M

a→ M ′, if (q0, a, q′0) ∈ δ and either Q = Q′, Σ = Σ′,
and δ = δ′ for q′0
= π, or, in the special case where q′0 = π, M ′ = Π .

Parallel Composition. Parallel composition “‖” is a commutative and associative op-
erator such that: given LTSs M1 = 〈Q1, Σ1, δ

1, q1
0〉 and M2 = 〈Q2, Σ2, δ

2, q2
0〉,

M1 ‖ M2 is Π if either one of M1, M2 is Π . Otherwise, M1 ‖ M2 is an LTS
M = 〈Q, Σ, δ, q0〉 where Q = Q1 × Q2, q0 = (q1

0 , q2
0), Σ = Σ1 ∪ Σ2, and δ is

defined as follows (the symmetric version also applies): M1 ‖ M2
a→ M ′

1 ‖ M2 if
M1

a→ M ′
1, a /∈ Σ2, and M1 ‖ M2

a→ M ′
1 ‖ M ′

2 if M1
a→ M ′

1, M2
a→ M ′

2, a
= τ .

138 M. Gheorghiu Bobaru, C.S. Păsăreanu, and D. Giannakopoulou

As an example [10], consider a simple communication channel that consists of two
components whose LTSs are shown in Fig. 1(a).

Paths and traces. A path in an LTSs M = 〈Q, Σ, δ, q0〉 is a sequence p of alternating
states and (observable or unobservable actions) of M , p = qi0 , a0, qi1 , a1, . . . , an−1, qin

such that for every k ∈ {0, . . . , n − 1} we have (qik
, ak, qik+1) ∈ δ.

The trace of path p, denoted σ(p) is the sequence b0, b1, . . . , bl of actions along p,
obtained by removing all τ from a0, . . . , an−1. A state q reaches a state q′ in M with

a sequence of actions t, denoted q
t⇒ q′, if there exists a path p from q to q′ in M

whose trace is t, i.e., σ(p) = t. A trace of M is the trace of a path in M starting
from q0. The set of all traces of M forms the language of M , denoted L(M). For any
trace t = a0, a1, . . . , an−1, a trace LTS can be constructed whose only transitions are

q0
a0→ q1

a1→ q2 . . .
an−1→ qn. We sometimes abuse the notation and denote by t both a

trace and its trace LTS. The meaning should be clear from the context. For Σ′ ⊆ Σ,
t↓Σ′ is the trace obtained by removing from t all actions a /∈ Σ. Similarly, M↓Σ′ is an
LTS over Σ obtained from M by renaming to τ all the action labels not in Σ. Let t1, t2
be two traces. Let Σ1, Σ2 be the sets of actions occurring in t1, t2, respectively. By the
symmetric difference of t1 and t2 we mean the symmetric difference of sets Σ1 and Σ2.

Safety properties. A safety LTS is a deterministic LTS not containing π. A safety prop-
erty P is a safety LTS whose language L(P) defines the acceptable behaviors over ΣP .

An LTS M = 〈Q, Σ, δ, q0〉 satisfies P = 〈QP , ΣP , δP , qP
0 〉, denoted M |= P , iff

∀t ∈ L(M) · t↓ΣP ∈ L(P). For checking a property P , its safety LTS is completed
by adding error state π and transitions on all the missing outgoing actions from all
states into π so that the resulting transition relation is (left-)total (when seen as in (Q ×
(Σ ∪ {τ})) × Q) and deterministic; the resulting LTS is denoted by Perr. LTSA checks
M |= P by computing M ‖ Perr and checking if π is reachable in the resulting LTS.

For example, the Order property in Fig. 1(b) states that inputs and outputs come in
matched pairs, with the input always preceding the output. The dashed arrows represent
transitions to the error state that were added to obtain Ordererr.

Assume-guarantee triples. An assume-guarantee triple 〈A〉M〈P 〉 is true if whenever
component M is part of a system satisfying assumption A, the system must also guar-
antee property P . In LTSA, this reduces to checking whether A ‖ M |= P .

Learning assumptions with L*. Previous work [10] uses the L* algorithm [2] to it-
eratively learn the assumption A for Rule 1, as a deterministic finite state automaton.
L* needs to interact with a teacher that answers queries and validates conjectures. For
membership queries on string s, the teacher uses LTSA to check 〈s〉 M1 〈P 〉; if true,
then s ∈ L(A) and the Teacher returns “true”. Otherwise, the answer to the query
is “false”. The conjectures returned by L* are intermediate assumptions; the teacher
implements two oracles to validate these conjectures: Oracle 1 guides L* towards a
conjecture that makes 〈A〉 M1 〈P 〉 true and then Oracle 2 is invoked to discharge A
on M2. If this is also true, then the assume guarantee rule ensures that P holds on
M1 ‖ M2; the teacher returns “true” and the computed assumption A. If model check-
ing returns “false”, the returned counterexample is analyzed to determine if P is indeed
violated in M1 ‖ M2 or if A is imprecise due to learning, in which case A is modified

Automated Assume-Guarantee Reasoning by Abstraction Refinement 139

and the process repeats. If A has n states, L* makes at most n−1 incorrect conjectures.
The number of membership queries made by L* is O(kn2 + n log m), where k is the
size of A’s alphabet and m is the length of the longest counterexample returned when a
conjecture is made.

Interface alphabet. When reasoning in an assume-guarantee style, there is a natural
notion of the complete interface between M1 and M2, when property P is checked.
Let M1 = 〈Q1, Σ1, δ

1, q1
0〉 and M2 = 〈Q2, Σ2, δ

2, q2
0〉 be LTSs modeling two compo-

nents and let P = 〈QP , ΣP , δP , qP
0 〉 be a safety property. The interface alphabet ΣI is

defined as ΣI = (Σ1 ∪ ΣP) ∩ Σ2.

3 Motivating Example

We motivate our approach using the input-output example from Section 2. We show
that even on this simple example AGAR leads to smaller assumptions in fewer iter-
ations than the learning approach, and therefore it potentially leads faster to smaller
verification problems.

Let M1 = Input, M2 = Output, and P = Order. As mentioned, we aim to automati-
cally compute an assumption according to Rule 1. Instead of “guessing” an assumption
and then checking both premises of the rule, as in the learning approaches, we build
an abstraction that satisfies Premise 2 by construction. Therefore, all that needs to be
checked is Premise 1.

The initial abstraction A of Output is illustrated in Figure 2(a). Its alphabet consists
of the interface between Input and the Order property on one side, and Output on the
other, i.e., the alphabet of A is ΣI = {(ΣInput ∪ ΣOrder) ∩ ΣOutput. The LTS A is con-
structed simply by mapping all concrete states in Output to the same abstract state 0
which has a self-loop on every action in ΣI and no other transitions. By construction,
A is an overapproximation of M2, i.e., L(M2↓ΣI) ⊆ L(A), and therefore Premise 2
〈true〉 M2 〈A〉 holds. Checking Premise 1 of the assume-guarantee rule using A as the
assumption fails, with abstract counterexample: 0, output, 0. We simulate this coun-
terexample on M2 and find that it is spurious (i.e., it does not correspond to a trace in
M2), therefore A needs to be refined so that the refined abstraction no longer contains
this trace. We split abstract state 0 into two new abstract states: abstract state 0, repre-
senting concrete states 0 and 2 that do not have an outgoing output action, and abstract
state 1, representing concrete state 1 that has an outgoing output action, and adjust the
transitions accordingly. The refined abstraction A′, shown in Figure 2(a), is checked
again for Premise 1 and this time it passes, therefore AGAR terminates and reports that
the property holds.

The sequence of assumptions learned with L* is shown in Figure 2(b). The assump-
tion computed by AGAR thus has two states fewer than that obtained from learning and
is computed in two fewer iterations.

4 Assume-Guarantee Abstraction Refinement (AGAR)

The abstraction refinement presented here is an adaptation of the CEGAR framework
of [7], with the following notable differences: 1) abstraction refinement is performed

140 M. Gheorghiu Bobaru, C.S. Păsăreanu, and D. Giannakopoulou

A:

A0:

A3:A2:

A1:

A′:

(a) (b)

1

ackoutput
send

2

send

sendack

10

ack

send
output

send

10

send
outputack

0

0 1

send

output

ack
send

ack

0

2

ack

outputsend

3

ackoutput
send

sendack
send

send

0
output

Fig. 2. Assumptions computed (a) with our algorithm and (b) with L*

in the context of LTSs; abstract transitions for LTSs are computed using closure with
respect to actions that are not in their interface alphabet, and 2) counterexample analy-
sis is performed in an assume-guarantee style: a counterexample obtained from model
checking one component is used to refine abstractions of a different component.

In this section, we start by describing, independently of the assume-guarantee rule,
abstraction refinement as applied to LTSs. We then describe how we use this abstrac-
tion refinement in an iterative algorithm (AGAR) that computes assumptions for Rule 1.
Later on, we combine AGAR with an orthogonal algorithm that performs iterative re-
finement of the interface alphabet between the analyzed components.

4.1 Abstraction Refinement for LTSs

Abstraction. Let C = 〈QC , ΣC , δC , qC
0 〉 be an LTS that we refer to as concrete. Let al-

phabet ΣA be such that ΣA ⊆ ΣC . An abstraction A of C is an LTS 〈QA, ΣA, δA, qA
0 〉

such that there exists a surjection α : QC → QA, called the abstraction function, that
maps each concrete state qC ∈ QC to an abstract state qA ∈ QA; qA

0 must be such that
α(qC

0) = qA
0 . The concretization function γ : QA → 2QC is defined for any qA ∈ QA

as γ(qA) = {qC ∈ QC | α(qC) = qA}. Note that γ induces a partition on QC , namely
{γ(qA) | qA ∈ QA}.

To define the abstract transition relation δA, we first introduce the notion of reach-
ability with respect to a subset alphabet. For qC ∈ C, a ∈ ΣC , we define the set
ReachableC(qC , a, ΣA) of concrete states qC

i reachable from qC on action a, under the
transitive closure of δC over actions in (ΣC \ ΣA) ∪ {τ}:

ReachableC(qC , a, ΣA) = {qC
i ∈ C|∃t, t′ ∈ ((ΣC \ΣA)∪{τ})∗ · qC t⇒ qC

i or qC t,b,t′
⇒ qC

i }.

Automated Assume-Guarantee Reasoning by Abstraction Refinement 141

Algorithm 1. CEGAR for LTSs with respect to subset alphabets
Inputs: Concrete LTS C, its abstraction A, and an abstract counterexample p =

qA
0 , a1, q

A
1 , a2, . . . , an, qA

n in A.
Outputs: a concrete counterexample t, if p is not spurious, or a refined abstraction A′ without

path p, if p is spurious.
1: i ← 0
2: S0 ← {qC

0 }
3: while Si �= ∅ ∧ i ≤ n − 1 do
4: i ← i + 1
5: Si ← γ(qA

i) ∩ ReachableC(Si−1, ai, ΣA)
6: end while
7: if Si = ∅ then
8: split qA

i−1 into two new abstract states xA
i−1, z

A
i−1 s.t. γ(xA

i−1) = γ(qA
i−1) ∩ {qC |

ReachableC(qC , ai, ΣA) ∩ qA
i �= ∅}, γ(zA

i−1) = γ(qA
i−1) \ γ(xA

i−1)
9: build new abstraction A′ with QA′ = QA \ {qA

i−1} ∪ {xA
i−1, z

A
i−1}

10: change only incoming and outgoing transitions for qA
i−1 in A to/from {xA

i−1, z
A
i−1} in

refined abstraction A′, according to Definition 2
11: return A′

12: else
13: return concrete trace t ← σ(p)
14: end if

We define the abstraction to be existential, but using ReachableC instead of the usual
transition relation of C [7]: ∃(qA

i , a, qA
j) ∈ δA iff

∃qC
i , qC

j ∈ C · α(qC
i) = qA

i , α(qC
j) = qA

j , and qC
j ∈ ReachableC(qC

i , a, ΣA) (2)

From the above definition and that of weak simulation [16], it follows that the abstrac-
tion defines a weak simulation relation between C↓ΣA and A. It is known that weak
simulation implies trace inclusion [16]. We therefore have the following:

Proposition 1. Given concrete LTS C and and its abstraction A defined as above,
L(C↓ΣA) ⊆ L(A), and consequently 〈true〉 C 〈A〉 hold.

The CEGAR algorithm for LTSs is defined by Algorithm 1. It takes as inputs a concrete
system C, an abstraction A (as defined above), and an abstract counterexample path p
(in A). The algorithm analyzes the counterexample (lines 1–6) to see if it is real, in
which case it is returned (line 13) or spurious, in which case it is used to refine the
abstraction (lines 7–11). The refined abstraction A′ is such that it no longer contains p.
We discuss Algorithm 1 in more detail below.

Analysis of abstract counterexamples. Suppose we have obtained an abstract coun-
terexample in the form of a path p = qA

0 , a1, q
A
1 , a2, . . . , an, qA

n in the abstraction A of
C. We want to determine if it corresponds to a concrete path in C. For this we need to
“play” (i.e. symbolically simulate) p in C from the initial state qC

0 . We do so considering
that ΣA ⊆ ΣC and thus we use ReachableC again.

We first extend ReachableC to sets: for S ⊆ QC , ReachableC(S, a, ΣA) = {qC
j ∈

C | ∃qC
i ∈ S.qC

j ∈ Reachable(qC
i , a, ΣA)}. We play the abstract counterexample p

142 M. Gheorghiu Bobaru, C.S. Păsăreanu, and D. Giannakopoulou

following [7]. We start at step 0 with the set S0 = {qC
0 } of concrete states, and the first

transition qA
0

a1→ qA
1 from p. Note that S0 = {qC

0 }∩γ(qA
0). At each step i ∈ {1, . . . , n},

we compute the set Si = γ(qA
i) ∩ ReachableC(Si−1, ai, ΣA). If, for some i ≤ n, Si is

empty, the abstract counterexample is spurious and we need to refine the abstraction to
eliminate it. Otherwise, the counterexample corresponds to a concrete path.

Abstraction refinement. The abstraction refinement is performed in lines 8–10 of Al-
gorithm 1: p is spurious because abstract state qA

i−1 does not distinguish between two
disjoint, non-empty sets of concrete states [7]: (i) those that reach, with action ai, states
in the concretization of qA

i (these are the states defined as γ(xA
i−1) in line 8) and (ii)

those reached so far from qC
0 with the prefix a1, a2, . . . , ai−1, i.e., the states in Si−1.

To eliminate the spurious abstract path, we need to refine A by splitting its state
qA
i−1 into (at least) two new abstract states that separate the (concrete) states of types

(i) and (ii) (line 9). We split qA
i−1 into xA

i−1 where γ(xA
i−1) contains the set of states in

(i) and zA
i−1 where γ(zA

i−1) contains the set of states in (ii) and any remaining states
in γ(qA

i−1). Note that this results in a finer partition of the concrete states. After the
splitting, we update the abstract transitions in line 10. The refined abstraction A′ has
the same transitions as A except for those incoming or outgoing for the split state qA

i−1:
they are readjusted to point to or from the states xA

i−1, z
A
i−1 according to condition 2.

We therefore can conclude that:
Lemma 1. If a counterexample p input to Algorithm 1 is spurious, the returned ab-
straction A′ results in a strictly finer partition than A and does not contain p.

4.2 The AGAR Algorithm

The pseudocode that combines Algorithm 1 with Rule 1 is given in Algorithm 2. Recall
that ΣI denotes the alphabet (ΣM1 ∪ ΣP) ∩ ΣM2 of the interface between M1 and
M2, with respect to P . The algorithm checks that M1 ‖ M2 satisfies P using Rule 1.
It builds abstractions A of M2 in an iterative fashion (while loop at lines 2–15); these
abstractions are used to check Premise 1 of the assume guarantee rule using model
checking (lines 3–5). If the check is successful, then, according to the rule (and since
A satisfies Premise 2 by construction), P indeed holds in M1 ‖ M2 and the algorithm
returns ”true”. Otherwise, a counterexamplep is obtained from model checking Premise
1 (line 7) and Algorithm 1 is invoked to check if p corresponds to a real path in M2 (in
which case it means p is a real error in M1 ‖ M2 and this is reported to the user in line
11). If p is spurious, Algorithm 1 returns a refined abstraction A′ for which we repeat
the whole process starting from checking Premise 1.

Obtaining an abstract counterexample. As mentioned, we use counterexamples from
failed checks of Premise 1 (that involves checking component M1) to refine abstractions
of M2. Obtaining an abstract counterexample involves several steps (lines 7–9). First,
a counterexample from line 4 is a path o = q0, b1, q1, b2, . . . , bl, ql in A ‖ M1 ‖ Perr.
Thus, for every i ∈ {0, l}, qi is a triple of states (qA

i , q1
i , pi) from A × M1 × Perr. We

first project every triple on A to obtain the sequence o′ = qA
0 , b1, q

A
1 , b2, q

A
2 , . . . , blq

A
l ;

o′ is not yet a path in A as it may contain actions from M1 and Perr that are not observ-
able to A; those actions have to be between the same consecutive abstract states in the

Automated Assume-Guarantee Reasoning by Abstraction Refinement 143

Algorithm 2. AGAR: assume-guarantee verification by abstraction-refinement
Inputs: Component LTSs M1, M2, safety property LTS P , and alphabet ΣA = ΣI .
Outputs: true if M1 ‖ M2 satisfies P , false with a counterexample, otherwise.
Uses: Algorithm 1
1: Compute initial abstraction A of M2, with a single state qA

0 having self-loops on all actions
in ΣA

2: while true do
3: Check Premise 1: 〈A〉 M1 〈P 〉
4: if successful then
5: return true
6: else
7: Get counterexample o = q0, b1, q1, b2, . . . , bl, ql from line 3, where each qi =

(qA
i , q1

i , pi)
8: Project o on A to get o′ = qA

0 , b1, q
A
1 , b2, q

A
2 , . . . bl, q

A
l

9: Project o′ on ΣA to get abstract counterexample p = qA
0 , a1, q

A
1 , . . . , an, qA

n in A.
10: end if
11: Call Algorithm 1 with inputs: M2, A, p
12: if Algorithm 1 returned real counterexample t then
13: return false with counterexample t
14: else
15: A = A′

16: end if
17: end while

sequence, since they do not change the state of A; we eliminate from o′ those actions
and the duplicate abstract states that they connect, and finally obtain p that we pass to
Algorithm 1.

Theorem 1. Our algorithm (AGAR) computes a sequence of increasingly refined ab-
stractions of M2 until both premises of Rule 1 are satisfied, and we conclude that the
property is satisfied by M1 ‖ M2, or a real counterexample is found that shows the
violation of the property on M1 ‖ M2.

Proof. Correctness The algorithm terminates when Premise 1 is satisfied by the current
abstraction or when a real counterexample is returned by Algorithm 1. In the former
case, since the abstraction satisfies Premise 2 by construction (Proposition 1), Rule 1
ensures that M1 ‖ M2 indeed satisfies P , so AGAR correctly returns answer ”true”.
In the latter case, the counterexample returned by Algorithm 1 is a common trace of
M1 and of M2 that leads to error in Perr. This shows that property P is violated on
M1 ‖ M2 and in this case again AGAR correctly returns answer ”false”.

Termination. AGAR continues to refine the abstraction until a real counterexample is
reported or the property holds. Refining the abstraction always results in a finer partition
of its states (Lemma 1), and is thus guaranteed to terminate since in the worst case it
converges to M2 which is finite-state. ��

If M2 has n states, AGAR makes at most n refinement iterations, and in each iteration,
counterexample analysis performs at most m closure operations, each of cost O(n3),

144 M. Gheorghiu Bobaru, C.S. Păsăreanu, and D. Giannakopoulou

Algorithm 3. AGAR with alphabet refinement
Inputs: Component LTSs M1, M2, safety property LTS P , and alphabet ΣA ⊆ ΣI .
Outputs: true if M1 ‖ M2 satisfies P , false with a counterexample, otherwise.
Uses: Algorithm 2
1: while true do
2: Call Algorithm 2 with M1, M2, P, ΣA.
3: if Algorithm 2 returned true then
4: return true
5: else
6: Obtain counterexample t = a1, . . . , an from Algorithm 2 and trace s = σ(o′) from

line 8 of Algorithm 2.
7: Check if error reachable in serr↓ΣI ‖ M2 where serr↓ΣI is the trace-LTS ending with an

extra transition into error state π
8: if error reached then
9: return false with counterexample s↓ΣI

10: else
11: Compare t to s↓ΣI to find difference action set Σ
12: ΣA ← ΣA ∪ Σ
13: end if
14: end if
15: end while

where m is the length of the longest counterexample analyzed. This bound is not very
tight as the closure steps are done on-the-fly to seldom exhibit worst-case behavior, and
actually involve only parts of M2’s transition relation as needed.

4.3 AGAR with Interface Alphabet Refinement

In [11] we introduced an alphabet refinement technique to reduce the alphabet of the
assumptions learned with L*. This technique improved significantly the performance
of compositional verification. We show here how alphabet refinement can be similarly
introduced in AGAR. Instead of the full interface alphabet ΣI , we start AGAR from a
small subset ΣA ⊆ ΣI . A good strategy is to start from those actions in ΣI that appear
in the property to be verified, since the verification should depend on them. We then
run Algorithm 2 with this small ΣA. Alphabet refinement introduces an extra layer of
approximation, due to the smaller alphabet being used.

The pseudocode is in Algorithm 3. This algorithm adds an outer loop to AGAR
(lines 1–15). At each iteration, it invokes AGAR (line 2) for the current alphabet ΣA.
If AGAR returns ”true”, it means that alphabet ΣA is enough for proving the property
(and ”true” is returned to the user). Otherwise, the returned counterexample needs to be
further analyzed (lines 5–13) to see if it corresponds to a real error (which is returned to
the user in line 9) or it is spurious due to the approximation introduced by the smaller
interface alphabet, in which case it is used to refine this alphabet (lines 11–12).

Additional counterexample analysis. As explained in [11], when ΣA ⊂ ΣI , the coun-
terexamples obtained by applying Rule 1 may be spurious, in which case ΣA needs to
be extended. Intuitively, a counterexample is real if it is still a counterexample when

Automated Assume-Guarantee Reasoning by Abstraction Refinement 145

Table 1. Comparison of AGAR and learning for 2 components, with and without alphabet
refinement

No alpha. ref. With alpha. ref.
Case

k AGAR Learning AGAR Learning Sizes
|A| Mem. Time |A| Mem. Time |A| Mem. Time |A| Mem. Time |M1 ‖ Perr| |M2|

Gas Station 3 16 4.11 3.33 177 42.83 – 5 2.99 2.09 8 3.28 3.40 1960 643
4 19 37.43 23.12 195 100.17 – 5 22.79 12.80 8 25.21 19.46 16464 1623
5 22 359.53 278.63 45 206.61 – 5 216.07 83.34 8 207.29 188.98 134456 3447

Chiron, 2 10 1.30 0.92 9 1.30 1.69 10 1.30 1.56 8 1.22 5.17 237 102
Property 2 3 36 2.59 5.94 21 5.59 7.08 36 2.44 10.23 20 6.00 30.75 449 1122

4 160 8.71 152.34 39 27.1 32.05 160 8.22 252.06 38 41.50 180.82 804 5559
5 4 55.14 – 111 569.23 676.02 3 58.71 – 110 – 386.6 2030 129228

Chiron, 2 4 1.07 0.50 9 1.14 1.57 4 1.23 0.62 3 1.06 0.91 258 102
Property 3 3 8 1.84 1.60 25 n jmj 4.45 7.72 8 2.00 3.65 3 2.28 1.12 482 1122

4 16 4.01 18.75 45 25.49 36.33 16 5.08 107.50 3 7.30 1.95 846 5559
5 4 52.53 – 122 134.21 271.30 1 81.89 – 3 163.45 19.43 2084 129228

MER 2 34 1.42 11.38 40 6.75 9.89 5 1.42 5.02 6 1.89 1.28 143 1270
3 67 8.10 247.73 335 133.34 – 9 11.09 180.13 8 8.78 12.56 6683 7138
4 58 341.49 – 38 377.21 – 9 532.49 – 10 489.51 1220.62 307623 22886

Rover Exec. 2 10 4.07 1.80 11 2.70 2.35 3 2.62 2.07 4 2.46 3.30 544 41

considered with ΣI . For counterexample analysis, we modify Algorithm 2 to also out-
put the trace s = σ(o′) of actions along the intermediate path o′ obtained at its line 8.
Since p is a path obtained from o′ by eliminating transitions labeled with actions from
ΣI \ ΣA (See Section 4.2) and t = σ(p), it follows that s is an “extension” of t to ΣI .

We check whether s↓ΣI is a trace of M2 by making it into a trace LTS ending with
the error state π, and whose alphabet is ΣI (line 7). Since M2 does not contain π, the
only way to reach error is if s↓ΣI is a trace of M2; if we reach error, the counterexample
t is real. If s↓ΣI is not a trace of M2, since t is, we need to refine the current alphabet
ΣA. At this point we have two traces, s↓ΣI and t that agree with respect to ΣA and
only differ on the actions from ΣI \ ΣA; since one trace is in M2 and the other is not,
we are guaranteed to find in their symmetric difference at least an action that we can
add to ΣA to eliminate the spurious counterexample t. We include the new action(s)
and then repeat AGAR with the new alphabet. Termination follows from the fact that
the interface alphabet is finite.

5 Evaluation

We implemented AGAR with alphabet refinement for Rule 1 in the LTSA tool. We
compared AGAR with learning based assume guarantee reasoning, using a similar ex-
perimental setup as in [11]. The case studies are: Gas Station (with 3 . . . 5 customers),
Chiron – a model of a GUI (with 2 . . . 5 event handlers), and two NASA models: MER
resource arbiter (with 2 . . . 4 threads competing for a common resource) and Rover,
with an executive and an event monitoring component. We first used the same two-
way decompositions of these models as described in [11]. For Gas Station and Chiron,
these decompositions were demonstrated to be the best for the performance of learning
(without alphabet refinement) among all possible two-way decompositions [9].

146 M. Gheorghiu Bobaru, C.S. Păsăreanu, and D. Giannakopoulou

Table 2. Comparison of AGAR and learning for balanced decompositions

No alpha. ref. With alpha. ref.
Case

k AGAR Learning AGAR Learning Sizes
|A| Mem. Time |A| Mem. Time |A| Mem. Time |A| Mem. Time |M1 ‖ P | |M2|

Gas Station 3 10 3.35 3.36 294 367.13 – 5 2.16 3.06 59 11.14 81.19 1692 1942
4 269 174.03 – 433 188.94 – 10 15.57 191.96 5 9.25 4.73 4608 6324
5 7 47.91 184.64 113 82.59 – 2 47.48 – 15 52.41 71.29 31411 32768

Chiron, 2 41 2.45 5.46 140 118.59 395.56 9 1.91 3.89 17 2.73 13.09 906 924
Property 2 3 261 81.24 710.1 391 134.57 – 79 39.94 663.53 217 36.12 – 6104 6026

4 54 7.11 37.91 354 383.93 – 45 9.55 121.66 586 213.78 – 1308 1513
5 402 73.74 – 112 90.22 – 33 19.66 157.35 46 30.05 686.37 11157 11748

Chiron, 2 2 0.98 0.37 40 5.21 8.30 2 1.02 0.49 3 1.04 0.91 168 176
Property 3 3 88 15.45 102.93 184 284.83 – 46 41.40 115.77 3 5.97 2.26 4240 4186

4 2 5.60 2.65 408 222.54 – 2 6.14 11.90 20 9.33 7.44 4156 4142
5 79 44.16 405.03 179 104.25 – 42 42.04 430.47 3 21.94 7.00 16431 16840

MER 4 9 27.62 – 311 104.72 – 2 27.60 – 10 65.42 35.78 10045 66230

All experiments were performed on a Dell PC with a 2.8 GHz Intel Pentium 4 CPU
and a 1.0 GB RAM running Linux Fedora Core 4 and Sun’s Java SDK version 1.5.
We report the maximum assumption size (i.e., number of states) reached (”|A|”), the
memory consumed (”Mem.”) in MB, the time (”Time”) in seconds, and the numbers of
states on each side of the two-way decomposition: ”|M1 ‖ Perr|” and ”|M2|”. A ”–”
indicates that the limit of 1G of memory or 30 minutes has been exceeded. For those
cases, the other quantities are shown as they were when the limit was reached. We also
highlight in bold font the best results.

The results for the first set of experiments are shown in Table 1. Overall, AGAR
shows similar or better results than learning in more than half of the cases. From the
results, we noticed that the relative sizes of M1 ‖ Perr and M2 seem to influence the
performance of the two algorithms; e.g., for Gas Station, where M2 is consistently
smaller, AGAR is consistently better, while for Chiron, as the size of M2 becomes much
larger, the performance of AGAR seems to degrade. Furthermore, we observed that the
learning runs exercise more the first component, whereas AGAR exercises both. We
therefore considered a second set of experiments were we tried to compare the relative
performance of the two approaches for two-way system decompositions that are more
balanced in terms of number of states.

We generated off-line all the possible two-way decompositions and chose those min-
imizing the difference in number of states between M1 ‖ Perr and M2. The rest of the
setup remained the same. The results for these new decompositions are in Table 2 (for
MER, in only one case we found a more balanced partition than previously). These
results show that with these new decompositions AGAR is consistently better in terms
of time (14/21 cases), memory (16/21 cases) and assumption size (16/21 cases)2. The
results also indicate that the benefits of alphabet refinement are more pronounced for
learning. The results are somewhat non-uniform as k increases because for each larger
value of k we re-computed balanced decompositions independently of those for smaller
values. This is why we even found smaller components for larger parameter, as for Ch-
iron, Property 2, k = 3 vs. k = 4.

2 We did not count the cases when both algorithms ran out of limits.

Automated Assume-Guarantee Reasoning by Abstraction Refinement 147

6 Conclusions and Future Work

We have introduced an assume-guarantee abstraction-refinement technique (AGAR) as
an alternative to learning-based approaches. Our preliminary results clearly indicate
that the alternative is feasible. We are currently extending AGAR with the following
rule (for reasoning about n components).

(Premise 1) 〈A1〉 M1 〈P 〉
(Premise 2) 〈A2〉 M2 〈A1〉

. . .
(Premise n) 〈true〉 Mn 〈An−1〉

〈true〉 M1 ‖ M2 ‖ . . . ‖ Mn 〈P 〉

(3)

In previous work [11], learning with this rule overcame the intermediate state ex-
plosion related to two-way decompositions (i.e., when components are larger than the
entire system). That helped us demonstrate better scalability of compositional vs. non-
compositional verification which we believe to be the ultimate test of any compositional
technique. We expect to similarly achieve better scalability for AGAR.

The implementation of AGAR for Rule 3 involves the creation of n − 1 instances
ARi of our abstraction-refinement code for computing each Ai as an abstraction of
Mi+1 ‖ Ai+1, except for An−1 which abstracts Mn . Counterexamples obtained from
(Premise 1) are used to refine the intermediate abstractions A1, . . . , An−1. When Ai is
refined, all the abstractions A1, . . . , Ai−1 are refined as well to eliminate the spurious
trace. In the future, we also plan to explore extensions of AGAR to liveness properties.

Acknowledgements. We thank Moshe Vardi and Orna Grumberg for helpful sugges-
tions and the CAV reviewers for their comments.

References

1. Alur, R., Madhusudan, P., Nam, W.: Symbolic Compositional Verification by Learning As-
sumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 548–
562. Springer, Heidelberg (2005)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. and Comp. 75(2),
87–106 (1987)

3. Beyer, D., Henzinger, T.A., Singh, V.: Algorithms for Interface Synthesis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 4–19. Springer, Heidelberg (2007)

4. Chaki, S., Clarke, E.M., Sinha, N., Thati, P.: Automated Assume-Guarantee Reasoning
for Simulation Conformance. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 534–547. Springer, Heidelberg (2005)

5. Chaki, S., Ouaknine, J., Yorav, K., Clarke, E.: Automated Compositional Abstraction Refine-
ment for Concurrent C Programs: A Two-Level Approach. ENTCS 89(3) (2003)

6. Chaki, S., Strichman, O.: Optimized L*-Based Assume-Guarantee Reasoning. In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 276–291. Springer, Heidelberg
(2007)

7. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Abstraction
Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–
169. Springer, Heidelberg (2000)

148 M. Gheorghiu Bobaru, C.S. Păsăreanu, and D. Giannakopoulou

8. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT, Cambridge (2000)
9. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking Up is Hard to Do: An Investigation

of Decomposition for Assume-Guarantee Reasoning. In: Proc. of ISSTA 2006, pp. 97–108.
ACM, New York (2006)

10. Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning Assumptions for Compo-
sitional Verification. In: ETAPS 2003 and TACAS 2003. LNCS, vol. 2619, pp. 331–346.
Springer, Heidelberg (2003)

11. Gheorghiu, M., Giannakopoulou, D., Pasareanu, C.S.: Refining Interface Alphabets for Com-
positional Verification. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 292–307. Springer, Heidelberg (2007)

12. Gupta, A., McMillan, K.L., Fu, Z.: Automated Assumption Generation for Compositional
Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 420–432.
Springer, Heidelberg (2007)

13. Jones, C.B.: Specification and Design of (Parallel) Programs. In: Inf. Proc. 1983: Proc. of
IFIP 9th World Congress, pp. 321–332. North Holland, Amsterdam (1983)

14. Magee, J., Kramer, J.: Concurrency: State Models & Java Programs. John Wiley & Sons,
Chichester (1999)

15. Pnueli, A.: In Transition from Global to Modular Temporal Reasoning about Programs. Logic
and Models of Conc. Sys. 13, 123–144 (1984)

16. Milner, R.: Communication and Concurrency. Prentice-Hall, New York (1989)
17. Sinha, N., Clarke, E.M.: SAT-Based Compositional Verification Using Lazy Learning. In:

Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 39–54. Springer, Heidel-
berg (2007)

Local Proofs for Linear-Time Properties of

Concurrent Programs

Ariel Cohen1 and Kedar S. Namjoshi2

1 New York University
arielc@cs.nyu.edu

2 Bell Labs, Alcatel-Lucent
kedar@research.bell-labs.com

Abstract. This paper develops a local reasoning method to check linear-
time temporal properties of concurrent programs. In practice, it is often
infeasible to model check over the product state space of a concurrent
program. The method developed in this paper replaces such global rea-
soning with checks of (abstracted) individual processes. An automatic
refinement step gradually exposes local state if necessary, ensuring that
the method is complete. Experiments show that local reasoning can hold
a significant advantage over global reasoning.

1 Introduction

Model Checking [5,34] has been singularly successful at automating (in)correct-
ness proofs of programs. On the other hand, the standard model checking method
suffers from a serious state explosion problem [6]. For concurrent programs, state
explosion is caused by an exponential growth of the global state space with
increasing number of components. It is often necessary to use abstraction and
compositional reasoning methods to break up a model checking question into a
series of local questions.

This paper develops just such a local reasoning method, for analyzing linear
temporal properties of asynchronously composed, concurrent programs. In the
first step, a split invariant (a vector of local, per-process assertions whose con-
junction is a program invariant) is calculated, as shown in [30,9]. The next step
is to construct abstractions of individual processes, based on the split invari-
ant. Finally, liveness properties are checked individually on each abstraction. A
contribution of this work is the derivation of this method from a deductive rea-
soning rule similar to that of Owicki and Gries [31]. The deductive rule is based
on user-supplied rank functions: the derivation shows how to replace these with
model checking.

Local reasoning is inherently incomplete: informally speaking, each process
abstraction can view only part of the behavior of the other processes, which
may not suffice to establish a property. Both Owicki and Gries, and Lamport
[28] propose ways to resolve this problem. Owicki and Gries suggest introduc-
ing auxiliary (typically unbounded, “history”) variables, while Lamport suggests

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 149–161, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

150 A. Cohen and K.S. Namjoshi

making some local state globally visible. In essence, both methods expose infor-
mation about the internal behavior of the component processes.

History variables, which are often valuable for a deductive proof, complicate
model checking, as the generic construction turns a finite-state problem into
an infinite-state one. Lamport’s proposal retains the finite-state nature of the
problem, but it is not clear how to choose the local state to be exposed. (Exposing
all local state results in a global model checking problem.) A second contribution
of this work is a systematic refinement scheme, which is based on an analysis of
counter-examples produced for the abstracted processes.

This combination of local reasoning with refinement is sound for all programs,
and is shown to be complete for finite-state programs. I.e., for a finite-state pro-
gram, a property is eventually proved or disproved. The combined method is
simple to implement in terms of BDD manipulations. Experiments with an im-
plementation based on TLV [33] show that local reasoning can have a significant
advantage over global reasoning. Full proofs and more experiments are in [10].

2 Motivating Example

Figure 1(a) shows a simple mutual exclusion protocol. It satisfies mutual exclu-
sion (a safety property), and the weak progress property: “infinitely often x = 0”,
i.e., infinitely often, some process is in its critical section. It does not satisfy the
stronger individual progress property “every waiting process eventually enters
its critical section”. In the following, consider a 2-process instance.

x : boolean initially x = 1 x: boolean initially x = 1

N

‖
i=1

P [i] ::

loop forever do
⎡

⎢
⎣

l0 : Non-Critical
l1 : request x
l2 : Critical
l3 : release x

⎤

⎥
⎦

P [θ, i] :: P [i] ‖ x := {0, 1}

a: protocol mux-sem b: abstracted form of process P [i]

Fig. 1. Example Illustrating the Local Reasoning Method

The first step of the local method is to compute the strongest split invariant,
θ, which is the strongest vector of local, per-process assertions whose conjunction
is an inductive program invariant. (The reachable states form the strongest global
inductive invariant.) This computation, by the fixpoint method in [30], results
in θi = true, for all i.

The second step uses θ to compute an over-approximation P [θ, i] of each pro-
cess Pi. For process i, the transition relation of P [θ, i] is the disjoint union of
(a) the transition relation, Ti, of Pi and (b) for every other process, a transition
relation which summarizes its effect on the shared state, under the constraint θ.
The contribution for process Pj (j �= i) is computed by quantifying out the local
variables of process Pj (both current and next-state) from the formula θj ∧ Tj .

Local Proofs for Linear-Time Properties of Concurrent Programs 151

For this protocol, the summary for Pj allows x to change arbitrarily, leading to
the abstract process shown in Figure 1(b).

The final step is to check using a standard model checker whether, for all i,
the abstraction P [θ, i] satisfies a weakening of the original progress property:
that there is no execution on which a Büchi automaton for the negated original
property accepts infinitely often from Ti transitions. This check succeeds for both
abstract processes, which proves the original property for the original program.

It is interesting to note that the abstract form of process P1 does fail the
original property, as the summary transition for process P2 can ensure that x is
“stuck” at 1 forever. However, in this execution, a T1 transition does not appear
infinitely often, so it does not represent a failure for the weaker property defined
above.

The particular form of these checks arises from the derivation that follows.
In broad brush, however, the steps can be seen as: (1) constraining the globally
reachable states with a split invariant, (2) computing an over-approximation of
the behavior of each component process, restricted by the split invariant and (3)
checking a weakened property on these over-approximations. In each step, the
method avoids computing with the global product state space.

Although it is not the case for this protocol, it is possible that the abstraction
of step (2) is too weak, resulting in false error reports in step (3). Exposing more
local information strengthens the split invariant at the next iteration and, con-
sequently, tightens the process summaries computed in step (2). This eventually
results in the elimination of false errors.

Finally, for this protocol, the local proof for the 2-process instance suffices to
show that the property holds for all instances (i.e., in a parameterized sense).
This is true as both the split invariant θ = true, and the abstract process P [θ, 1]
are unchanged for larger instances, and P [θ, j] is identical to P [θ, 1] by symmetry.
We do not explore such parameterized proofs further in this paper.

3 The Local Reasoning Method

This section defines the computational model, and presents the derivation of the
local reasoning method. Some of the preliminary definitions are taken from [30],
and are repeated here for convenience.

3.1 Basic Definitions

Programs and Composition. A program is defined as a tuple (V, I, T), where
V is a set of (typed) variables, I(V) is an initial condition, and T (V, V ′) is a
transition condition, where V ′ is a fresh set of variables in 1-1 correspondence
with V .

Programs need not be finite-state. The local reasoning method is sound in
general, but we show completeness only for finite-state programs.

The semantics of a program is given by a transition system, which is defined by
a triple (S, S0, R), where S is the state domain defined by the Cartesian product
of the domains of variables in V , S0 = {s : I(s)}, and R = {(s, t) : T (s, t)}.

152 A. Cohen and K.S. Namjoshi

We assume that T is left-total, i.e., every state has a successor. A state predicate
(or assertion) is a Boolean expression over the program variables. The value
of a variable w at state s is denoted by w(s). The truth value of a predicate
p at a state s, denoted by p(s), is defined as usual by induction on formula
structure.

Given a non-empty, finite, set of programs, {Pi}, their asynchronous composi-
tion, written as (||i :: Pi), is the program P = (V, I, T), with components defined
as follows. Let V = (

⋃
i :: Vi) and I = (

∧
i :: Ii). The shared variables, denoted

X , are those that belong to Vi ∩ Vj , for a distinct pair (i, j). For simplicity,
we assume that X ⊆ Vi, for all i. The local variables of Pi, denoted Li, are the
non-shared variables in Vi (i.e., Li = Vi \ X). We assume that the local variables
of distinct processes are disjoint. The set of local variables is L = (

⋃
i :: Li).

The transition condition Ti of program Pi is constrained to leave local vari-
ables of other processes unchanged. Define T̂i as Ti(Vi, V

′
i) ∧ unch(L \ Li), where

unch(W), for a set of variables W , is defined as (∀w : w ∈ W : w′ = w). Then T
is defined simply as (

∨
i :: T̂i).

Inductiveness and Invariance. A state predicate ϕ is an invariant of program
P = (V, I, T) if it holds at all reachable states of P . A state assertion ξ is an
inductive invariant for P if it is initial (1) and inductive (2).

[I ⇒ ξ] (1)
[ξ ⇒ wlp(T, ξ)] (2)

Notation: wlp is the weakest liberal precondition transformer introduced by Dijk-
stra in [14]. The notation [ψ], from [15], is read as “ψ is valid”. For P = (||i :: Pi),
it is the case that [wlp(T, ϕ) ≡ (

∧
i :: wlp(T̂i, ϕ))].

Split Invariance. A local assertion, θi, is defined over the variables of Pi. Thus,
θi is defined over Li and X , but does not refer to other local variables. A split
assertion for a composition (||i :: Pi) is a vector of local assertions, one for
each process. A split assertion, θ, is a split invariant if the conjunction (∧ i ::
θi) is an inductive invariant for the composition. To simplify notation, θ refers
indifferently either to the vector or to the conjunction of its components, with
the interpretation clear from the context. In [30], it is shown that the strongest
split invariant can be computed as the (simultaneous) least fixpoint of the set
of equations below, one for each i.

[θi ≡ (∃L \ Li :: I ∨ (∨ j :: sp(T̂j , θ)))]

Here, sp is the strongest post-condition operator (also known as “post”). The
expression takes successors of θ (i.e., of (∧ i :: θi)) for each T̂j, adds the initial
states, and quantifies out non-Pi local variables, to ensure that the result is
a local assertion for Pi. For finite-state programs, these calculations are easily
implemented with standard BDD operations.

Local Proofs for Linear-Time Properties of Concurrent Programs 153

3.2 Background: Proofs of Linear-Time Properties

The automata-theoretic approach to model checking [37] is followed here. Linear-
time properties are specified by a finite-state automaton over infinite words for
the complemented property. The derivations below rely on a few assumptions.

1. Programs are deadlock-free. As the transition relation of each component
is left-total, the program as a whole never gets stuck. As in the UNITY
model [3], however, “deadlock” may be defined as a state where the only
transition is a self-loop. Deadlock-freedom is thus a safety property, which
can be checked locally using the method from [9].

2. The property is defined by a non-deterministic Büchi automaton for its com-
plement, and refers only to the shared variables. This enables the automaton
transitions to be inserted into the program, synchronously with each com-
ponent transition. The predicate accept , on the shared state, indicates that
the automaton is in an accepting state.

3. Fairness constraints are enforced by the automaton. Liveness properties often
depend on fairness assumptions about execution schedules. For simplicity,
we assume that any fairness conditions are part of the automaton; i.e., the
automaton accepts an execution if it is fair but fails the property.

Under these assumptions, the following non-compositional proof rule can be
used to prove a linear-time property for a program P = (V, I, T). The proof rule
requires an assertion θ, and a rank function ρ, a partial map from states to a
well-founded domain, (W, ≺), which satisfy the conditions below.

[I ⇒ θ] (3)
[θ ⇒ wlp(T, θ)] (4)
[θ ⇒ domain(ρ)] (5)

∀k : k ∈ W : [θ ∧ (ρ = k) ⇒ wlp(T, ρ k)] (6)
∀k : k ∈ W : [θ ∧ accept ∧ (ρ = k) ⇒ wlp(T, ρ ≺ k)] (7)

Theorem 1. The proof rule is sound and relatively complete.

3.3 Localizing the Proof Rule

Consider now the case where P is a composition (||i : Pi). The goal is to localize
the reasoning rule given previously. To this end, a first change is to make θ a
split invariant. A second change is to let ρ be a vector of local functions, with
ρi defined over the variables Vi of Pi, with a well-founded domain, (Wi, ≺i), as
its range. The local proof rule is as follows.

[I ⇒ θ] (8)
[θ ⇒ wlp(T, θ)] (9)

∀i : [θ ⇒ domain(ρi)] (10)
∀i, k : k ∈ Wi : [θ ∧ (ρi = k) ⇒ wlp(T, ρi i k)] (11)

∀i, k : k ∈ Wi : [θ ∧ accept ∧ (ρi = k) ⇒ wlp(T̂i, ρi ≺i k)] (12)

154 A. Cohen and K.S. Namjoshi

Theorem 2. The local proof rule is sound.

Proof Sketch.The first two conditions ensure that θ is a (split) inductive in-
variant. Define a global rank function ρ by ρ(s) = (vec i :: ρi(si)), where si is s
restricted to Vi. Global rank vectors are compared point-wise. From (10)-(12), it
follows that the pair (θ, ρ) satisfies the hypotheses of the previous proof rule, en-
suring soundness by Theorem 1. �

Condition (11) ensures that ρi is not adversely affected by any transition of P .
This is one of the “non-interference” properties defined by Owicki and Gries in
[31]. The local formulation has the following interesting consequence.

Theorem 3. If the local proof rule is applicable, it can be applied with θ being
the strongest split invariant.

Proof. Suppose that the local proof rule is applicable for some θ. Let θ∗ represent
the strongest split invariant. Conditions (8) and (9) are satisfied by θ∗ by defini-
tion. The other conditions are anti-monotone in θ; as θ∗ is stronger than θ, they
hold also for θ∗. �

This theorem provides the first hint for mechanizing the local proof rule, as
it eliminates one part of the guesswork: one can let θ be the strongest split
invariant. The next section shows how to replace the rank function requirements
with model checking.

3.4 Guessing Ranks through Model Checking

In this section, we consider a fixed split invariant, θ. The goal is to replace the
reasoning about rank functions with a local model checking procedure. First,
note that by the conjunctivity of wlp for asynchronous composition, conditions
(11) and (12) are equivalent to saying that, for each i, each j, and k ∈ Wi,

[θ ∧ (ρi = k) ⇒ wlp(T̂j , ρi i k)] (13)

[θ ∧ accept ∧ (ρi = k) ⇒ wlp(T̂i, ρi ≺i k)] (14)

These conditions are rewritten below, exploiting locality. In these deriva-
tions, we do not explicitly write the variable dependencies, to avoid clut-
ter. For reference, they are: θ(X, L), θi(X, Li), ρi(X, Li), T̂i(X, L, X ′, L′), and
Ti(X, Li, X

′, L′i). We write ρ′i to refer to ρi(X ′, L′i). The calculations make exten-
sive use of the following fact: [p(x, y) ⇒ q(y)] is equivalent to [(∃x :: p(x, y)) ⇒
q(y)].

For each i, each j, and k ∈ Wi,

[θ ∧ (ρi = k) ⇒ wlp(T̂j , ρi i k)]
≡ { definition of wlp }

[θ ∧ (ρi = k) ∧ T̂j ⇒ ρ′i i k]
≡ { by locality, as the consequent is independent of L \ Li and L′ \ L′i }

[(∃L \ Li, L
′ \ L′i :: θ ∧ (ρi = k) ∧ T̂j) ⇒ ρ′i i k]

Local Proofs for Linear-Time Properties of Concurrent Programs 155

≡ { pushing quantifiers inwards }
[(∃L \ Li :: θ ∧ (∃L′ \ L′i :: T̂j)) ∧ (ρi = k) ⇒ ρ′i i k]

For j �= i, the term (∃L′ \ L′i :: T̂j) simplifies to (∃L′j :: Tj) ∧ unch(Li). As θ
is really (∧ i :: θi), the final implication simplifies to

[(∃L \ Li :: θ) ∧ (∃Lj : θj ∧ (∃L′j :: Tj)) ∧ unch(Li) ∧ (ρi = k) ⇒ ρ′i i k] (15)

This has a shape similar to that of the condition (6) from the non-local rule,
with (∃L \ Li :: θ) playing the role of the invariant assertion, and the term
“(∃Lj : θj ∧ (∃L′j :: Tj)) ∧ unch(Li)” playing the role of a transition relation.
This observation leads to the following definition.

Definition 1. Define Tj [θ, i] as (∃Lj :: θj ∧ (∃L′j :: Tj)) ∧ unch(Li), for j �= i,
and as Ti, for j = i. With free variables (X, Li, X

′, L′i), this is a transition term
for Pi.

Similarly transforming the other conditions, one obtains for any i, and any j,

[(∃L \ Li :: I) ⇒ (∃L \ Li :: θ)] (16)
[(∃L \ Li :: θ) ⇒ wlp(Tj[θ, i], (∃L \ Li :: θ))] (17)

[(∃L \ Li :: θ) ⇒ domain(ρi)] (18)
∀k : k ∈ Wi : [(∃L \ Li :: θ) ∧ (ρi = k) ⇒ wlp(Tj [θ, i], ρi i k)] (19)

∀k : k ∈ Wi : [(∃L \ Li :: θ) ∧ accept ∧ (ρi = k) ⇒ wlp(Ti, ρi ≺i k)] (20)

The implications (16)-(20) suggests the definition of an abstract process.

Definition 2. The abstraction of process Pi relative to θ is a process denoted
P [θ, i], with variables Vi, initial condition (∃L \ Li :: I), and transition relation
formed by the terms Ti and Tj [θ, i], for j : j �= i, combined disjunctively.

Conditions (19) and (20) lead to the following theorem.

Theorem 4. For fixed θ: if there is a rank function vector which satisfies the
local proof conditions then, for any i, P [θ, i] satisfies the property “for all exe-
cutions, it is not the case that Ti occurs infinitely often from states satisfying
accept”.

The contrapositive of this theorem implies that, for a given θ, if the check fails
for one of the abstract processes, there is no rank function vector which can
satisfy the local proof rule (for the same θ). This forces a refinement of the split
invariant in order to rule out false errors, as described in the next section. On the
other hand, if the check succeeds for all of the abstract processes, the property
must hold of the original program.

156 A. Cohen and K.S. Namjoshi

Theorem 5. For any split invariant θ: if, for every i, P [θ, i] satisfies the prop-
erty “for all executions, it is not the case that Ti occurs infinitely often from
states satisfying accept”, then the original property is true of the composition
(||i :: Pi).

3.5 The Local Reasoning Algorithm

The algorithm is now easily stated. Given P = (||i :: Pi), with an embedded
Büchi automaton for a negated property, and acceptance condition accept .

1. Compute a split invariant θ of P , ideally the strongest split invariant.
2. For each i, define the abstract program P [θ, i] (Def. 2). Form the product

of the abstract program with the property automaton. Check the property
stated in Theorem 4.

3. If each check succeeds, by Theorem 5, the property holds of P .

These operations have complexity polynomial in the number of processes, the
size of each process, and the size of the automaton. (Compare this with the
exponential complexity in the number of processes for a global model check.)

What if the check fails for some i? By Theorem 3, if the strongest split invari-
ant was used, it is either the case that the property is false, or that a refinement
step is needed to expose more of the local state and rule out a false counter-
example.

3.6 Modifications

Quantified Properties. For parameterized protocols, it is common to have quanti-
fied liveness properties (e.g., “every waiting process eventually enters its critical
section”). Fortunately, such protocols typically have a high degree of symme-
try. Under symmetry, a composition (||i :: Pi) satisfies a quantified property
(∀i :: ϕ(i)) if, and only if, it satisfies ϕ(1) [16]. Hence, making the local variables
of P1 part of the shared state suffices to meet the requirement that the property
is defined over the shared variables. Symmetry can also be exploited to reduce
the computations for the split invariance calculation, and to reduce the number
of checks needed in step 2 above to the abstract processes for P1 and P2.

Fairness. For an unconditional fairness assumption, it suffices to annotate each
transition with the index of the process making the transition. These indices
are carried over to the abstract processes. To express stronger fairness assump-
tions, it is necessary to shadow the local predicates mentioned in the fairness
assumption with auxiliary shared variables.

4 A Refinement Strategy

The local reasoning algorithm defined above is necessarily incomplete. If the
property cannot be proved, a local proof requires exposing more of the local

Local Proofs for Linear-Time Properties of Concurrent Programs 157

state. We describe a simple, yet effective, strategy to choose the portions of the
local state to be exposed. This strategy is based on examining counter-example
executions for those abstract processes which fail to model-check.

A failure for P [θ, i] implies that there is a finite, “lasso” shaped counter-
example: a path ending in a cycle which contains at least one Ti transition
from an accept state. By construction, in P [θ, i], the Ti transitions are exact,
while the transitions of other processes may be approximate. Recall that the
definition of Tj[θ, i] (Def. 1) has an ∃Lj∃L′j form. In terms of language used in
branching-time abstraction methods [12], this is a may-transition. It is a must -
transition if, for every value of Lj that satisfies θj, there is a Tj transition from
(X, Lj) to (X ′, Lj). The distinction between may- and must-transitions is useful
in determining whether a counterexample lasso represents a real execution.

Theorem 6. Let π be a counterexample for P [θ, i]. If every abstract transition
along π is also a must-transition, there is an induced global counterexample for
the full program P .

This theorem leads to the refinement procedure below.

1. If, for some abstract program P [θ, i], the transitions on a counterexample
path, π, meet the condition of Theorem 6, HALT(“the property is false”),
and provide the induced global path as a counterexample.

2. Otherwise, let t = (u, Tk[θ, i], v) be a non-must transition on π. Define pk by

pk(Lk) := θk(X(u), Lk) ∧ ¬(∃L′k :: Tk(X(u), Lk, X(v), L′k))

For local state a of Pk, pk(a) is true if a is an obstacle to forming a must-
transition, since there is no transition to X(v) from (X(u), a) in Pk. Pred-
icate pk is non-trivial: it is not valid, as t is a may transition; neither is it
unsatisfiable, as t is not a must transition. As required for local reasoning,
pk is a local assertion for Pk. A shared boolean variable, bk, is added to
the program, such that bk ≡ pk(Lk) is an invariant, and the local reasoning
algorithm is repeated for the augmented program. The initial value of bk is
the initial value of pk; the constraint (b′k ≡ pk(L′k)) is conjoined to Tk, and
(b′k ≡ bk) to Tj , for j �= k.

Theorem 7. For finite-state programs, this procedure eventually terminates.

Proof. First, we show that each refinement step discovers at least one new
predicate. Existing predicates are preserved by the split invariance calculation
(Lemma 1 of [9]). Thus, any existing predicates have the same value for all local
states a of Pk that satisfy θk(X(u), a); and this is not true of pk by its definition.
As there are a bounded number of predicates, the refinement process cannot con-
tinue forever. �

Theorem 8. The combination of local reasoning with refinement is complete for
finite-state programs.

158 A. Cohen and K.S. Namjoshi

Proof. Consider first the case where the property holds. Thus, any counterex-
amples are not real, so the hypothesis of Theorem 6 does not apply, and the
procedure will not terminate with an incorrect answer. As termination is guar-
anteed by Theorem 7, the procedure must terminate with success.

Next, consider the case where the property does not hold. By the contrapos-
itive of Theorem 5, at every stage, at least one of the abstract processes fails
the check. Thus, the procedure cannot terminate with success. As termination is
guaranteed by Theorem 7, the procedure must terminate with failure. �

While the termination argument relies on exhausting the set of available predi-
cates, the hope is that, in most cases, termination occurs before the problem is
transformed back into a global model checking question. It is important to note
that the procedure is sound—but not necessarily terminating—for all programs.

5 Experiments

We implemented our method in tlv [33], a bdd-based model checker. The ex-
periments use parameterized protocols, as the global state space can be varied
simply by altering the number of processes. We do not use symmetry to optimize
the calculations, as the intent is to compare local with global reasoning, as rep-
resented by algorithm temp entail, based on [27]. The experiments show that
local reasoning can have significantly better performance than global reasoning.

Table 1. Test results for the property � � x = 0

Method Processes BDDs Time (sec) BDDs [variant] Time (sec) [variant]
Local Reasoning 2 433 0 7.6k 0
Global Reasoning 2 440 0 6.2k 0
Local Reasoning 10 10k 0.1 19k 1.3
Global Reasoning 10 10k 0.05 248k 294
Local Reasoning 20 15k 1.28 62k 4.6
Global Reasoning 20 23k 1.53 - >2hrs
Local Reasoning 50 88k 21.7 330k 46.8
Global Reasoning 50 141k 53.5 - >2hrs

We checked two different properties for mux-sem, the motivating example
of Figure 1(a). For the first property, � � x = 0 (“infinitely often x = 0”),
our method does not require any refinement step. Compared to temp entail,
it runs significantly faster and requires nearly half the amount of bdds (Table
1). A variant of the protocol models the situation where there is some state
irrelevant to the property (in this case, a counter in each process). The locality
of the analysis results in this excess state being eliminated from the abstract
processes. The effect is shown in the two final columns of Table 1.

The second property is � (P [1].at l1 → � P [1].at l2) (“if process P [1] is at
location 1 it eventually enters its critical section”), which is not satisfied by mux-
sem under unconditional fairness. Expressing the property requires exposing
the location variable of P [1]. The method detects a counter example after one

Local Proofs for Linear-Time Properties of Concurrent Programs 159

Table 2. Test results for the property � (P [1].at l1 → � P [1].at l2).

Method Processes BDDs Time (sec) Refinements New Variables
Local Reasoning 3 2.6k 0.02 1 1
Global Reasoning 3 1.6k 0.01 - -
Local Reasoning 10 10k 0.22 1 8
Global Reasoning 10 16k 0.13 - -
Local Reasoning 20 37k 1.2 1 18
Global Reasoning 20 66k 1.46 - -
Local Reasoning 50 215k 13.5 1 48
Global Reasoning 50 414k 30.6 - -
Local Reasoning 100 852k 382 1 98
Global Reasoning 100 1.6M 586 - -

refinement step, during which one bit of information per process (whether the
process is waiting) is exposed. The results are provided in Table 2.

6 Related Work and Conclusions

Compositional reasoning about concurrency has a long history, going back 30
years to the seminal papers of Owicki and Gries, and Lamport. Early work
focuses on deductive proof methods for safety [4,26] and liveness [32,13]. Tools
such as Cadence SMV support guided compositional proofs [29,25]. “Thread-
modular” reasoning[18,19,24,23] uses per-process transition relations to prove
safety, but the method is incomplete. The split invariance method was introduced
in [30], with completeness obtained by a refinement method [9].

The new contribution here is the mechanization of an Owicki-Gries style proof
rule for liveness properties, coupled with a refinement procedure. The procedure
is fully automatic, and complete for finite-state processes. It has a simple im-
plementation, and the experimental results support the hypothesis that local
reasoning is often significantly faster than global reasoning. To the best of our
knowledge, this is the first fully automated and complete method of its type for
checking linear-time properties of asynchronous programs.

Recent work [22,11] has shown that local reasoning can be effective for proving
termination properties. However, the algorithms do not include a mechanism to
expose additional local state, which is necessary for completeness.

In [35], Shoham and Grumberg propose a complete compositional method,
coupled with refinement, for proving mu-calculus properties. Our methods have
several points of commonality, including the use of the may-must distinction for
refinement, but also some important differences: the method in [35] operates on
synchronous compositions, rather than the asynchronous compositions consid-
ered here, and has as a key step the global analysis of a composition of abstract
processes, which differs from the separate analysis of individual abstract pro-
cesses in our method. Earlier work [1] uses per-process invariants to constrain
abstractions (in the synchronous setting) as is done in Definitions 1 and 2.

Automata learning algorithms have been used for compositional analysis
of safety properties [21,36,20,2], and recently extended to liveness properties
[17]. The algorithms are complete, but can be expensive in practice [8]. Our

160 A. Cohen and K.S. Namjoshi

completion procedure is based on a form of counter-example guided refinement
[7], which may be viewed as a process of learning from failure.

Acknowledgements. This research was supported in part by the National Sci-
ence Foundation under grant CCR-0341658.

References

1. Alur, R., de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: Automating Modular Ver-
ification. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664,
pp. 82–97. Springer, Heidelberg (1999)

2. Chaki, S., Clarke, E.M., Sinha, N., Thati, P.: Automated assume-guarantee rea-
soning for simulation conformance. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 534–547. Springer, Heidelberg (2005)

3. Mani Chandy, K., Misra, J.: Parallel Program Design: A Foundation. Addison-
Wesley, Reading (1988)

4. Chandy, K.M., Misra, J.: Proofs of networks of processes. IEEE Transactions on
Software Engineering 7(4) (1981)

5. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131. Springer, Heidelberg (1982)

6. Clarke, E.M., Grumberg, O.: Avoiding the state explosion problem in temporal
logic model checking. In: PODC, pp. 294–303 (1987)

7. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

8. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: an inves-
tigation of decomposition for assume-guarantee reasoning. In: ISSTA, pp. 97–108
(2006)

9. Cohen, A., Namjoshi, K.S.: Local proofs for global safety properties. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 55–67. Springer, Heidelberg
(2007)

10. Cohen, A., Namjoshi, K.S.: Local proofs for linear-time temporal properties of
concurrent programs. Technical report, Bell Labs (2008), Available at:
http://www.cs.bell-labs.com/who/kedar

11. Cook, B., Podelski, A., Rybalchenko, A.: Proving thread termination. In: PLDI,
pp. 320–330. ACM, New York (2007)

12. Dams, D., Grumberg, O., Gerth, R.: Abstract interpretation of reactive systems.
TOPLAS 19(2) (1997)

13. de Roever, W.-P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel,
M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Non-
compositional Proof Methods. Cambridge University Press, Cambridge (2001)

14. Dijkstra, E.W.: Guarded commands, nondeterminacy, and formal derivation of
programs. CACM 18(8) (1975)

15. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer, Heidelberg (1990)

16. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. In: Courcoubetis, C.
(ed.) CAV 1993. LNCS, vol. 697. Springer, Heidelberg (1993)

17. Farzan, A., Chen, Y., Clarke, E.M., Tsan, Y., Wang, B.: Extending automated
compositional verification to the full class of omega-regular languages. In: Rama-
krishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 2–17. Springer,
Heidelberg (2008)

http://www.cs.bell-labs.com/who/kedar

Local Proofs for Linear-Time Properties of Concurrent Programs 161

18. Flanagan, C., Freund, S.N., Qadeer, S., Seshia, S.A.: Modular verification of mul-
tithreaded programs. Theor. Comput. Sci. 338(1-3), 153–183 (2005)

19. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)

20. Giannakopoulou, D., Pasareanu, C.S.: Learning-based assume-guarantee verifica-
tion (tool paper). In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 282–287.
Springer, Heidelberg (2005)

21. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: ASE, pp. 3–12 (2002)

22. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In:
PLDI, pp. 266–277. ACM, New York (2007)

23. Henzinger, T.A., Jhala, R., Majumdar, R.: Race checking by context inference. In:
PLDI, pp. 1–13 (2004)

24. Henzinger, T.A., Jhala, R., Majumdar, R., Qadeer, S.: Thread-modular abstraction
refinement. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 262–274. Springer, Heidelberg (2003)

25. Jhala, R., McMillan, K.L.: Microarchitecture verification by compositional model
checking. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102,
pp. 396–410. Springer, Heidelberg (2001)

26. Jones, C.B.: Development methods for computer programs including a notion of
interference. PhD thesis, Oxford University (1981)

27. Kesten, Y., Pnueli, A., Raviv, L., Shahar, E.: Model checking with strong fairness.
Formal Methods in System Design 28(1), 57–84 (2006)

28. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Soft-
ware Eng. 3(2) (1977)

29. McMillan, K.L.: A compositional rule for hardware design refinement. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, Springer, Heidelberg (1997)

30. Namjoshi, K.S.: Symmetry and completeness in the analysis of parameterized sys-
tems. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 299–313.
Springer, Heidelberg (2007)

31. Owicki, S.S., Gries, D.: Verifying properties of parallel programs: An axiomatic
approach. Commun. ACM 19(5), 279–285 (1976)

32. Pnueli, A.: In transition from global to modular reasoning about programs. In:
Logics and Models of Concurrent Systems, NATO ASI Series (1985)

33. Pnueli, A., Shahar, E.: A platform for combining deductive with algorithmic verifi-
cation. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 184–195.
Springer, Heidelberg (1996), www.cs.nyu.edu/acsys/tlv

34. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in CE-
SAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,
vol. 137, Springer, Heidelberg (1982)

35. Shoham, S., Grumberg, O.: Compositional verification and 3-valued abstractions
join forces. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp.
69–86. Springer, Heidelberg (2007)

36. Tkachuk, O., Dwyer, M.B., Pasareanu, C.S.: Automated environment generation
for software model checking. In: ASE, pp. 116–129 (2003)

37. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: IEEE Symposium on Logic in Computer Science (1986)

www.cs.nyu.edu/acsys/tlv

Probabilistic CEGAR�

Holger Hermanns, Björn Wachter, and Lijun Zhang

Universität des Saarlandes, Saarbrücken, Germany
{hermanns,bwachter,zhang}@cs.uni-sb.de

Abstract. Counterexample-guided abstraction refinement (CEGAR)
has been en vogue for the automatic verification of very large systems
in the past years. When trying to apply CEGAR to the verification of
probabilistic systems, various foundational questions arise. This paper
explores them in the context of predicate abstraction.

1 Introduction

Probabilistic behavioral descriptions are widely used to analyze and verify sys-
tems that exhibit “quantified uncertainty”, such as embedded, networked, or bio-
logical systems. The semantic model for such systems often are Markov chains or
Markov decision processes. We here consider homogeneous discrete-time Markov
chains (MCs) and Markov decision processes (MDPs). Properties of these sys-
tems can be specified by formulas in temporal logics such as PCTL [1], where for
instance quantitative probabilistic reachability (“the probability to reach a set
of bad states is at most 3%”) is expressible. Model checking algorithms for such
logics have been devised mainly for finite-state MCs [1] and MDPs [2], and effec-
tive tool support is provided by probabilistic model checkers such as Prism [3] or
Mrmc [4]. Despite its remarkable versatility, the approach is limited by the state
explosion problem, aggravated by the cost of numerical computation compared
to Boolean CTL model checking.

Predicate abstraction [5] is a method for creating finite abstract models of
non-probabilistic systems where symbolic expressions, so-called predicates, in-
duce a partitioning of its (potentially infinite) state space into a finite number of
regions. For automation, it is typically coupled [6,7] with counterexample-guided
abstraction refinement (CEGAR) [8] where an initially very coarse abstraction
is refined using diagnostic information (predicates) derived from abstract coun-
terexamples, until either the property is proved or refuted.

In this paper, we discuss how counterexample-guided abstraction refinement
can be developed in a probabilistic setting. Predicate abstraction without ab-
straction refinement has been presented in [9] for a guarded command language
whose concrete semantics maps to MDPs – more precisely, to probabilistic au-
tomata [10]. This is the natural basis for our present work. We restrict our

� This work is supported by DFG as part of the Transregional Collaborative Research
Center SFB/TR 14 AVACS and by the NWO-DFG bilateral project VOSS.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 162–175, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Probabilistic CEGAR 163

treatment to probabilistic reachability and aim to determine if the probability
to reach a set of bad states exceeds a given threshold.

The core challenge of developing probabilistic CEGAR lies in the notion and
analysis of counterexamples. In the traditional setting, an abstract counterex-
ample is a single finite path (to some bad state) and counterexample analysis
consists in checking if the concrete model exhibits a corresponding error path.
In contrast, a counterexample to a probabilistic reachability property can be
viewed as a finite, but generally cyclic, Markov chain [11]. Due to these cycles,
probabilistic counterexample analysis is not directly amenable to conventional
methods. We circumvent this problem, by preprocessing the abstract counterex-
ample using the strongest evidence idea of [12]: We generate a finite set afp of
abstract finite paths that together carry enough abstract probability mass, and
formulate the problem of computing the realizable probability mass of afp in
terms of a weighted MAX-SMT problem [13]. The set afp is built incremen-
tally in an on-the-fly manner, until either enough probability is realizable, or
afp cannot be enriched with sufficient probability mass to make the probability
threshold realizable, in which case the counterexample is spurious.

These ingredients result in a theory for probabilistic CEGAR. We have evalu-
ated the approach on various case studies. Indeed, CEGAR entirely mechanizes
the verification process: predicates are added mechanically on demand based on
counterexample analysis. To this end, our implementation employs interpola-
tion [14] to generate new predicates from spurious paths.

Related Work. Aljazzar & Hermanns [15] and Katoen & Han [12] introduced
concepts and algorithms to deal with probabilistic counterexamples. However,
both papers do not consider counterexamples in the context of abstraction.

We are not aware of previous work that combines abstraction refinement
with predicate abstraction for probabilistic systems. Up to now different ab-
straction refinement approaches for finite-state probabilistic models have been
proposed: among those [16,17,18,19] do not exploit counterexamples, while Chat-
terjee et. al [11] apply CEGAR to finite probabilistic two-player game struc-
tures. Although finite MDPs are a special case of these game structures, our
work differs from [11] since it considers infinite-state models, stays more in
the classical predicate abstraction realm, and is supplemented with a running
implementation.

Outline. We briefly review our previous work on predicate abstraction for prob-
abilistic programs in Section 2. The contributions of this paper, counterexample
analysis and abstraction refinement for probabilistic programs, are presented in
Section 3. Experimental results are presented in Section 4.

2 Preliminaries

Probabilistic Programs. We consider probabilistic programs in a guarded com-
mand language [9] which is inspired by the PRISM [3] input language, but
supports infinite data domains. We fix a finite set of program variables X and

164 H. Hermanns, B. Wachter, and L. Zhang

a finite set of actions Act. Variables are typed in a definition such as i : int.
We denote the set of expressions over the set of variables V by ExprV and the
set of Boolean expression over V by BExprV . An assignment is a total function
E : X → ExprX from variables x ∈ X to expressions E(x). Given an expression
e ∈ ExprX and an assignment E, we denote by e[X/E(X)] the expression obtained
from e by substituting each occurrence of a variable x with E(x).

A guarded command c consists of an action a, a guard g ∈ BExprX and as-
signments Eu1 , ..., Euk

weighted with probabilities p1, ..., pk where
∑k

i=1 pi = 1.
We denote by X′ = E the simultaneous update E of variables X. With the i-th
update of c, we associate a unique update label ui ∈ U. Updates are syntacti-
cally separated by a “+”: [a] g → p1 : X′=Eu1 + . . . + pk : X′=Euk

. If the guard
is satisfied, the i-th update will be executed with probability pi. For c, we write
ac for its action, gc for its guard. If c is clear from the context, we write a, g
and ui instead. We define the weakest liberal precondition of an expression with
respect to an update as follows: WPEu(e) = e[X/Eu(X)].

A program P = (X, I, C) consists of a Boolean expression I ∈ BExprX that
defines the set of initial states and a set of guarded commands C. The program
has distinctly labeled guarded commands – two different commands have distinct
actions and update labels.

Probabilistic Automata. The semantics of a probabilistic program is a proba-
bilistic automaton. To enable reconstruction of commands and updates from
the semantics, automata are decorated with labels from two alphabets: an ac-
tion alphabet Act for commands, and an update alphabet U for probabilistic
choices. A simple distribution π over Σ is a function π : Σ → [0, 1] such that
∑

s∈Σ π(s) = 1. Let DistrΣ denote the set of all simple distributions over Σ.
We decorate the distribution with the alphabet U as follows: an (update-

labeled) distribution π over U × Σ is a distribution π : U × Σ → [0, 1] such
that (i) the update alphabet is right-unique, i.e., π(u, s) > 0 and π(u, s′) implies
that s = s′ and (ii)

∑
u∈U

∑
s∈Σ π(u, s) = 1. Let Distr(U,Σ) denote the set of

update-labeled distributions over U × Σ. For π ∈ Distr(U,Σ), we call the set of
states Supp(π) = {(u, s) | π(u, s) > 0} the support of π.

A probabilistic update automaton M is a tuple (Σ, I, Act, U, R) where Σ is
a set of states, I ⊆ Σ is a set of initial states, Act is the action alphabet, U
is the update alphabet, and R ⊆ Σ × Act × Distr(U,Σ) the probabilistic tran-
sition relation. M is called finite if Σ is finite. A finite path is a finite se-
quence (s0, a0, u0, π0), (s1, a1, u1, π1), . . . sn such that s0 ∈ I, (si, ai, πi) ∈ R, and
(ui, si+1) ∈ Supp(πi) for all i = 0, . . . , n−1. Let Pathfin(M) denote the set of all
finite paths over M. We write σ ≤ σ′, if the finite path σ is a prefix of σ′. A finite
path σ is maximal if σ ≤ σ′ implies that σ = σ′. An infinite path σ is an infinite
sequence (s0, a0, u0, π0), (s1, a1, u1, π1), . . . starting with an initial state s0 ∈ I,
(si, ai, πi) ∈ R, and (ui, si+1) ∈ Supp(πi) for all i = 0, 1, Let Path(M)
denote the set of all infinite or maximal paths over M. For σ ∈ Pathfin , let
C(σ) = {σ′ ∈ Path(M) | σ ≤ σ′} denote the cylinder set for σ. For σ ∈ Path,
let σ[i] = si denote the i + 1-th state of σ.

Probabilistic CEGAR 165

Our definition of probabilistic update automata adds labels at probabilis-
tic choices to the probabilistic automata of [10]. This does not give additional
modeling power, it rather allows us to develop the Cegar approach succinctly.
Dropping the labels of the distributions, M induces a probabilistic automaton
ind(M) in the style of [10] as follows: replace every update-labeled distribution
π by its induced distribution ind(π), defined by ind(π)(s) =

∑
u∈U π(u, s). If the

context is clear, we use M and ind(M) interchangeably.
An adversary is a resolution of non-determinism. In general, an adversary A of

an automaton M is a function from paths to pairs of actions and distributions.
We let Dδ denote the Dirac distribution defined by: Dδ(δ) = 1 where δ is a special
symbol for termination. An adversary A is called simple if it only looks at the last
state in a path, i.e. if it is a function A : Σ → (Act×DistrΣ)∪{Dδ}. Note that if
A(s) = Dδ, the adversary A decides to stop at state s. For a given state s ∈ Σ and
an adversary A, let PA

s denote the corresponding probability measure [20] over
Path(M). Given a probabilistic automaton M, a simple adversary A induces
an MC MA = (Σ, I, Act, RA) where RA = {(s, a, π) ∈ R | A(s) = (a, π)}. Note
s has no outgoing transitions if A(s) = Dδ.

MCs and MDPs are special cases of probabilistic automata. An MC is a
deterministic probabilistic automaton, i.e. an automaton where for every state s
there is at most one transition (s, a, π) ∈ R. An MDP is an action-deterministic
probabilistic automaton, i.e. an automaton where for every pair s ∈ Σ and
a ∈ Act, there exists at most one π with (s, a, π) ∈ R.

Program Semantics. A state over variables X is a type-consistent total function
from variables in X to their semantic domains. We denote the set of states by Σ(X)
or Σ for short and a single state by s. For an expression e ∈ ExprX, we denote by
�e�s its valuation in state s. The valuation of a Boolean expression e is a value
�e�s ∈ {0, 1} (0 for “false”, 1 for “true”). For a Boolean expression e and a state
s, we write s � e iff �e�s = 1. Semantic brackets around a Boolean expression e
without a subscript denote the set of states fulfilling e, i.e. �e� = {s ∈ Σ | s � e}.

The semantics of a program P = (X, I, C) is the probabilistic update automaton
M = (Σ, I, Act, R) with set of states Σ = Σ(X), set of initial states I = �I�, set of
actions Act = {ac | c ∈ C}, and transitions induced by the guarded commands
R =

⋃
c∈C�c� where (s, a, π) ∈ �c� if s � g and π such that π(ui, s

′) = pi if
s′(x) = �Eui

(x)�s for all x ∈ X.

Properties. In this paper, we consider probabilistic reachability properties which
we write as Reach≤p(e) where p ∈ [0, 1] is a probability value, and the Boolean
expression e ∈ BExprX describes the states to be reached. For a state s and
an adversary A, let pA

s (�e) = PA
s ({σ ∈ Path(M) | ∃i ∈ N σ[i] � e}) be the

probability of set of paths reaching an e-state. Then, Reach≤p(e) is satisfied by
s if pA

s (�e) ≤ p for all adversary A, and it is satisfied by the model if it is sat-
isfied by all initial states. Algorithmically, it is sufficient to only consider simple
adversaries [2], as extremal probabilities are already attained among them.

Predicate Abstraction. Predicates are Boolean expressions over the program vari-
ables. A predicate ϕ stands for the set of states satisfying it, namely �ϕ�. We fix

166 H. Hermanns, B. Wachter, and L. Zhang

a set of predicates P = {ϕ1, ..., ϕn}. The set P partitions the states into disjoint
sets characterized by which predicates hold and which not. An equivalence class
can therefore be represented by a bit vector of length n. We call such a bit-
vector an abstract state and denote the set of abstract states by Σ�. We define
a state-abstraction function by: hP(s) = (�ϕ1�s, ..., �ϕn�s). For a given s� ∈ Σ�,
we call the corresponding equivalence class the concretization of s� and denote it
by γ(s�). The concretization of s� is characterized by a Boolean expression F (s�)
such that γ(s�) = �F (s�)�. F (s�) is exactly the conjunction containing satisfied
predicates as positive literals and unsatisfied ones as negated literals.

We recall predicate abstraction of probabilistic programs [9]: The state ab-
straction hP induces a quotient automaton, denoted by M� = (Σ�, I�, Act, U, R�)
with the set of initial states I� = {h(s) | s ∈ I}, and transitions R� =
{(h(s), a, h(π)) | (s, a, π) ∈ R} where h(π) = {(u, h(s)) : p | π(u, s) = p}. If
the reachability property is satisfied by the quotient automaton M�, we can
safely conclude that it holds for the original model M as well. The soundness
follows from the fact that the quotient automaton M� simulates M.

3 Refinement

In this section, we present a novel refinement scheme for probabilistic programs
based on CEGAR (counterexample-guided abstraction refinement). The plain
CEGAR approach is the obvious strategy also to follow in the probabilistic case:
start with a coarse abstraction and successively refine it using predicates learned
from spurious counterexamples until either a realizable counterexample is found
or the abstract model is precise enough to establish the property. However, in
order to put refinement to work for probabilistic models, several questions of
both principal and practical nature need to be answered. We (i) need to identify
what an abstract counterexample constitutes, (ii) lift it to the concrete system,
(iii) decide if it is spurious, and (iv) identify appropriate predicates to refine the
abstract quotient automaton.

Counterexamples for Quotient Automata. Intuitively, a counterexample
is a pair of an initial state and an adversary that violates the property to be
checked. This pair induces an MC in the abstract setting. In the sequel, we fix the
probabilistic update automaton M and the reachability property Reach≤p(e).
Let M� be the quotient automaton of M.

Definition 1. A counterexample for Reach≤p(e) is a pair (s�, A�) where s� ∈ I�

is an initial state and A� is an adversary such that PA�

s� (�e) > p. In this case,
A� is called a counter-adversary.

Spurious Counterexamples. In the non-probabilistic setting, a counterexam-
ple is a path, which is called spurious if there does not exist a corresponding con-
crete path. We now introduce the notion of spurious counterexamples for prob-
abilistic automata based on the concretization of an abstract counter-adversary
and an abstract counterexample.

Probabilistic CEGAR 167

Concretization of Counter-adversaries. For a counter-adversary A� in the quo-
tient M�, its concretization γ(A�) is an adversary in M defined by: γ(A�)(s)
equals (ac, π) if A�(s�) = (ac, π�) with s� = h(s) and π� = h(π), otherwise Dδ.

In case of γ(A�)(s) = Dδ, the adversary A� has chosen (ac, π�) from s�, how-
ever s does not satisfy the guard gc associated with c. Thus, we let γ(A�) stop
at state s, as no corresponding concretization exists. Recall that the program
has distinctly labeled guarded commands, thus we can choose at most one cor-
responding outgoing concrete transition. For illustration, consider the fragment
of a probabilistic automaton and its corresponding quotient automaton in the
figure below. If the adversary A� chooses ac2 at state s�

2, the concretization γ(A�)
chooses also action ac2 at state s.

.8.8
u1, .2

s�
1

s�
3s�

2

ac2 ac2

ac1

ac1

s
u2, .3

u3, .5

u1, .2
u4, .2u4, .2

u3, .5
u1, .3

ac0 ac0

Concretization of Counterexamples. Now consider a counterexample (s�, A�). Its
concretization, denoted γ(s�, A�), is the set: {(s, A) | A = γ(A�)∧s ∈ (I∩γ(s�))}.
Directly linked to the cardinality of the initial state set, the concretization can
contain many (even infinitely many) elements, and thus induce many MCs. The
reachability probability P (�e) may differ from element to element. A counterex-
ample (s�, A�) is spurious if its concretization does not contain a pair (s, A) such
that the probability threshold is exceeded. In other words, a spurious counterex-
ample does not induce any concrete MC for which the probability measure of
reaching concrete e-states exceeds the specified threshold.

Definition 2. Let (s�, A�) be a counterexample for Reach≤p(e) in M�. Then,
(s�, A�) is called realizable if there exists (s, A) ∈ γ(s�, A�) such that PA

s (�e) >
p. Otherwise we say that the counterexample is spurious.

Checking Counterexamples. Checking realizability of counterexamples is a
key element of the refinement procedure: If a counterexample turns out to be
realizable, the property is refuted with A playing the role of a counter-adversary
in the concrete model, which can be used for debugging purposes. Otherwise,
the abstract model is too coarse and additional predicates will need to be added
to eliminate the false negative.

Overall Idea. In the non-probabilistic setting, an abstract counterexample is a
single finite abstract path σ� starting in an abstract initial state. Its concretiza-
tion is a set of corresponding paths in the concrete model each of which starts
in some concrete initial state and respects the concrete transition relation. This
set might potentially be infinite. If it is empty, the counterexample is spurious.
It is common practice to check emptiness of the concretization by expressing the
behavior enforced on the concrete program by the abstract path implicitly by
a formula and checking the satisfiability of that formula [6,7]. If the formula is
satisfied, then the concretization is non-empty, and we have found a concrete

168 H. Hermanns, B. Wachter, and L. Zhang

counterexample violating the property. In this case, the counterexample is real-
izable. Otherwise, it is spurious, and additional predicates can be extracted from
the path σ� for refinement.

In the probabilistic setting, however, the situation is much more involved.
What makes the counterexample (s�, A�) realizable is a concrete initial state
s ∈ (I ∩ γ(s�)) and adversary A such that the probability of reaching an e-state
in the thus induced concrete MC exceeds the given threshold p. All candidates
(s, A) are contained in γ(s�, A�) but this set might be infinite. We preprocess the
abstract counterexample using the strongest evidence idea of Katoen & Han [12].
They have devised a method that, for a given MC, can be used to construct the
smallest set of paths reaching e-states with an accumulated probability measure
above p. This fits well to our needs.

As the abstract counterexample (s�, A�) induces an abstract MC, we can ap-
ply the algorithm from [12] yielding a finite set of finite paths in the quotient au-
tomaton starting from state s�, such that the probability measure exceeds p. To
check if the counterexample is spurious, our goal is then to compute how much
measure out of this set of paths can be reproduced in M with respect to any
(s, A) ∈ γ(s�, A�). If that is indeed larger than the threshold p for some (s, A), we
have found a realizable counterexample. Otherwise we may be able to conclude
that it is spurious, or conclude that more work is needed, as we will explain below.

Spuriousness of Abstract Paths. Before coming to adversaries, we first explain
how to check if a single abstract path is realizable or spurious. Let (s�, A�) be
a counterexample and let σ� = (s�

0, a0, u0, π
�
0) (s�

1, a1, u1, π
�
1) . . . s�

k be a path in
M�

A� where s�
0 = s� and s�

k satisfies e. The concretization γ(σ�) of an abstract
path σ� is a set of finite paths in M with consistent states, and the same update
and action labels, i.e. γ(σ�) = {(s0, a0, u0, π0) . . . sk | (s0, . . . , sk) � TF (σ�)}
where TF (σ�) is the trace formula which is defined by:

TF (σ�) = I(X0) ∧
k∧

i=0

F (s�
i)(Xi) ∧

k−1∧

i=0

(
gci

(Xi) ∧ Xi+1 = Eui(Xi)
) ∧ e(Xk) .

WP(σ� = (s�
0, ac0 , u0, π

�
0) . . . s�

k)

1: expσ� ← F (s�
k) ∧ e

2: for (j = k .. 0) do
3: expσ� ← gcj

∧F (s�
j)∧WPuj

(expσ�)
4: end for
5: return expσ� ∧ I

Fig. 1. WP of an abstract path σ�

The measure of σ� under (s�, A�)
is

∏k−1
i=0 π�

i (ui, s
�
i+1). Note that the

paths in the concretization of σ� share
the same measure. The path σ� is
called realizable if its concretization
is non-empty, γ(σ�) �= ∅, otherwise
it is called spurious. As for the non-
probabilistic setting [7,6], an abstract
path is realizable if its trace formula
is satisfiable or, equivalently, its weakest precondition. The weakest precondition
of an abstract path is formalized in Figure 1 as the repeated application of the
standard syntactic weakest precondition WPE(e) where WPE(e) := e[X/E(X)] for
an expression e and an update X′=E.

Probabilistic CEGAR 169

Lemma 1. For an abstract path σ�, the following statements are equivalent: (i)
The weakest precondition WP(σ�) of path σ� is satisfiable. (ii) The trace formula
TF (σ�) of σ� is satisfiable. (iii) The path σ� is realizable, i.e. γ(σ�) �= ∅.
Checking Spuriousness. The counterexample (s�, A�) is guaranteed to be real-
izable if it has a concretization with sufficiently high measure. We assume a
nonempty set afp of abstract paths respecting (s�, A�). Note that corresponding
concrete paths may start in different initial states, so that the probability in the
concrete model is possibly lower. Let us consider an abstract path σ�. For all
σ ∈ γ(σ�) with σ = (s0, a0, u0, π0) . . . sk, the measure of the cylinder set C(σ)
under (s, A) ∈ γ(s�, A�) is given by

∏k−1
i=0 πi(ui, si+1) if s = s0, which is the same

as
∏k−1

i=0 π�
i (ui, s

�
i+1). For a set afp of abstract path we let γ(afp) =

⋃
σ�∈afp γ(σ�)

denote the union of the concretizations. Now an interesting issue arises: what
is the maximal probability measure of the set γ(afp) under some concretization
of γ(s�, A�). For illustration, consider the figure below where afp consists of two
disjoint abstract paths σ�

1, σ
�
2, but the intersection is empty: expσ�

1
∧ expσ�

2
= ∅,

hence only the maximum of both can be achieved.

s�
4

u2, .8

a

u1, .2

u1, .2
a u2, .8 s�

1

a

s�
2

s�
3

u1, .2

u2, .8

We resolve this problem by using weakest preconditions of abstract paths. Given
an abstract path σ�, the backwards algorithm in Figure 1 computes its weakest
precondition, i.e. those initial states in which a path from the concretization
of σ� starts. We use these weakest preconditions to obtain subsets of the given
set of abstract paths sharing a common concrete initial state. The subset with
maximal probability gives us the actual measure in the concrete model.

For afp = {σ�
1, . . . , σ

�
n}, let exp1, . . . , expn denote the weakest preconditions

returned by WP(σ�
i). Moreover, for each of them the probability measure of

path σ�
i is given as a weight, denoted by pi, which corresponds to the prob-

ability of the set γ(σ�
i) starting from some initial state in expi. We now for-

mulate the problem of computing the realizable probability mass of a set of
abstract paths in terms of a weighted MAX-SMT [13] problem, which con-
sists in finding an assignment of X such that the total weight of the satisfied
expression is maximal. Formally, it is defined by: MaxSmt(exp1, . . . , expn) =
max

{∑n
i=1�expi�s · pi | s ∈ �I ∧ F (s�)�

}
.

Lemma 2. Let (s�, A�) be a counterexample for Reach≤p(e), and let afp =
{σ�

1, . . . , σ
�
n} be a set of abstract paths with measure greater than p. It holds:

(i) MaxSmt(exp1, . . . , expn) > p implies that (s�, A�) is realizable,
(ii) MaxSmt(exp1, . . . , expn)+PA�

s� (�e)−PA�

s� (afp) ≤ p implies that the coun-
terexample (s�, A�) is spurious.

170 H. Hermanns, B. Wachter, and L. Zhang

Let ε = PA�

s� (�e) − PA�

s� (afp) denote the probability of the set of abstract
paths which violate the property Reach≤p(e), but are not part of the set afp.
The lemma indicates that the decision algorithm is only partial: if the value
MaxSmt(exp1, . . . , expn) lies in the interval (p − ε, p], we are not sure whether
the counterexample (s�, A�) is spurious or realizable. By enlarging the set afp,
the ε can be made arbitrarily small. We will see later how this is exploited for
the CEGAR algorithm.

Obtaining Predicates. There are two sources of potential imprecision: spurious
abstract paths or a too coarse abstraction of the initial states.

Predicates to Remove Spurious Paths. Let (s�, A�) be a counterexample in M�
A� .

Let σ� = (s�
0, a0, u0, π

�
0)(s

�
1, a1, u1, π

�
1) . . . s�

k be a path such that s�
0 = s� and

σ� satisfies �e. Assume that σ� is spurious. Our goal is to find predicates to
eliminate the spurious abstract path. The abstract path resolves both nondeter-
ministic choice between different commands, and probabilistic choice between
different updates. That enables us to use standard techniques developed in the
non-probabilistic setting to find predicates. Here we employ interpolation and
apply it to the trace formula of the abstract path along the lines of [21].

Predicates to Separate Initial States. Observe the case where no path in afp is
spurious but the realizable probability of the paths is lower than the probability
threshold p, i.e., MaxSmt(exp1, . . . , expn) ≤ p. In this case, the initial state s�

may be too coarse. To this end, we choose the maximal solution obtained from
MaxSmt. Let ψ− denote the conjunction of non-satisfied expi, and ψ+ denote
the conjunction of satisfied expi. Obviously, ψ− ∧ ψ+ is not satisfiable. Hence,
interpolants can be found to refine the abstraction of the initial states. Note
that this is a heuristic choice and does not guarantee removal of the abstract
counterexample.

CEGAR Algorithm. At the start of each iteration of the CEGAR loop, a quo-
tient automaton M� is built using the current set of predicates. We submit the
quotient automaton and the property to a probabilistic model checker. Due to
soundness of the abstraction, we can safely report success if the property is sat-
isfied in M�. Otherwise the model checker produces an abstract counterexample
(s�, A�) which is passed to the counterexample analysis phase.

Counterexample analysis constitutes the next phase: Along the ideas of
strongest evidence [12], we maintain a sequence η = 〈σ1, σ2, ..., σn〉 of abstract
paths reaching an e-state in the MC induced by (s�, A�), an additional set afp ⊆ η
contains realizable paths in η. As illustrated in the diagram below, sequence η

spurious ProbA�

s� (afp)

σ2 σ3 σ4 σ5

ProbA�

s� (�e)

ProbA�

s� (η)

σ1

Probabilistic CEGAR 171

i>N

0.1

s�
0 : i=0

!bad s�
1 : i<N

!bad0.9

N : int;
invar : N>2;
bad : bool;

module loop

i : int;
[a] !bad & i<N ->
0.9: (i’=i+1) +
0.1: bad’=(i=N-1)

end module
init !bad & i=0 endinit

0.1

0.9

0.9, 0.1

0.9, 0.1

s�
2 : bad

0<i<N

s�
3 : !bad

Fig. 2. Cycle program and the quotient automaton with respect to i=0,bad,i<N

is ordered by decreasing probability mass – a longer bar means higher probabil-
ity measure of the path; η is computed incrementally by a variant of best first
search [22] in a weighted graph obtained from the MC. Initially η contains only
the path with the highest probability, path σ1.

First we check if path σ1 is realizable using Lemma 1 (in the diagram we
assume σ1 is spurious), and, if so, we add σ1 to the set of confirmed paths afp. If
enough “alleged” probability mass has already accumulated in afp to exceed the
threshold, i.e. PA�

s� (afp) > p, we check how much of that probability is actually
realizable using Lemma 2. If the realizable probability mass exceeds the thresh-
old, the property is refuted, since we can report a realizable counterexample.
Otherwise we repeat the process with path σ2 that has the second highest prob-
ability: we add it to η, and check if it is realizable. If realizable, we add σ2 to afp.
We continue in this way until either we can refute the property or n−|afp| = C,
in which case we proceed to phase three. C is a verification parameter set by the
user, in the diagram we have C = 2.

In the third phase predicates are generated from spurious paths or from weak-
est preconditions. Then the next iteration of the algorithm commences.

Toy example. Consider the program Cycle shown in the left part of Fig-
ure 2. The right part shows the quotient automaton with respect to pred-
icates i=0,bad,i<N where we omitted the actions and updates. Assume we
want to check Reach≤0 .3 (bad). In the quotient automaton, the probability of
reaching the bad state is 1.0. Let u0 denote the update i’=i+1. We start with
the abstract path with (highest) probability 0.81 (distributions are omitted):
σ� = (s�

0, a, u0)(s
�
1, a, u0)s

�
2. Obviously, this path is not realizable as witnessed

by the unsatisfiability of its trace formula ψ (see Lemma 1). Taking C = 1,
we apply Lemma 2 from which we conclude that we have a spurious counterex-
ample. To remove the spurious path σ�, we apply interpolation to the trace
formula ψ, i.e. we compute a simplification of its prefix ψ−1 := N > 2 ∧ i0 =
0 ∧ ¬bad0 ∧ i1 = i0 + 1 ∧ bad1 = bad0 ∧ i1 < N ∧ ¬bad1 that is disjoint with its
postfix ψ+

1 := i2 = i1 + 1 ∧ bad2 = bad1 ∧ i2 ≥ N ∧ bad2. As an interpolant we
obtain i < N −1, add it as a fresh predicate and restart. In the ensuing iteration,
the property is established.

172 H. Hermanns, B. Wachter, and L. Zhang

4 Experimental Results

We have implemented a prototype of probabilistic CEGAR within the predicate
abstraction tool PASS [9]. It is is written in C++ and interfaces to the SMT
solver Yices [23] which also supports MAX-SMT. PASS uses CEGAR to ob-
tain predicates based on the interpolant-generating theorem prover FOCI [24].
Experiments were run on a PentiumTM IV 2.6 GHz with 1.5 GB RAM.

Table 1. Statistics. Shown on the left are model parameters and properties studied. On
the right we display, apart from reachable state numbers, number of transitions (non-
zero entries in transition matrix), and computation time, the number of iterations of
the CEGAR loop (refs), of predicates generated (preds), and of abstract paths analyzed
(paths). The number of states and transitions are given in thousands, i.e. 34K means
34,000.

Case study
(parameters)

Conventional Abstraction
Property states trans time states trans refs predspaths time

5 315 k=3 5,195K 11,377K 93 34K 36K 9 120 604 72
WLAN 6 315 k=3 12,616K 28,137K 302 34K 42K 9 116 604 88

(BOFF T) 6 315 k=6 12,616K 28,137K 2024 771K 113K 9 182 582 306
6 9500 k=6 – – TO 771K 113K 9 182 582 311
3 p1 41K 52K 10 1K 2K 8 58 28 9

CSMA/CD 4 p1 124K 161K 56 6K 9K 14 100 56 38
(BOFF) 3 p2 41K 52K 10 0.5K 0.9K 12 41 28 10

4 p2 124K 161K 21 0.5K 1.5K 12 41 44 11
16 3 p1 2K 3K 5.4 2K 3K 9 46 41 9

BRP 32 5 p1 5K 7K 12 5K 7K 9 64 111 21
(N MAX) 64 5 p1 10K 14K 26 10K 14K 8 95 585 91

>16 3 p4 ∞ – – 0.5K 0.9K 7 26 17 3
>16 4 p4 ∞ – – 0.6K 1K 7 27 17 4
>16 5 p4 ∞ – – 0.7K 1K 8 28 18 5

SW goodput ∞ – – 5K 11K 3 40 7 87
timeout ∞ – – 27K 44K 3 49 6 89

We consider a selection of case studies summarized in Table 1. Time is mea-
sured in seconds. The timeout limit was set to two hours (timeout is indicated
by TO). We have analyzed the finite-state models with PRISM 3.1.1 (column
“Conventional”) in comparison with PASS (column “Abstraction”). PRISM is
the leading finite-state probabilistic model checker. All models except for the
Sliding Window protocol are taken from the PRISM web repository and can
be scaled via different parameters. Unconstrained parameters yield infinite-state
models (denoted by “∞”). Surprisingly, although our method only guarantees
upper bounds on probabilities in general, probabilities obtained for all case stud-
ies are tight upper bounds: they agree with those of PRISM for finite models.

IEEE 802.11 Wireless LAN Protocol (WLAN). The protocol is parameterized
with an exponential back-off counter limit BOFF and a maximal package send
time of T μs. We checked the property: ”The maximum probability that either
station’s back-off counter reaches k” for k=3 and k=6. As shown in Table 1,
increasing BOFF from 5 to 6 leads to an exponential increase in model size and
running time in PRISM, while in PASS the row is identical for BOFF=5 and
BOFF=6. This is because states with back-off counter higher than three can

Probabilistic CEGAR 173

reach a goal state (via a reset), however they do not lie on paths with maximal
probability. Hence refinement never splits abstract states with respect to back-
offs beyond three. Similarly, for fixed value of BOFF, PASS scales much better
in comparison to PRISM with respect to different values of T.

IEEE 802.3 CSMA/CD Protocol (CSMA/CD). Similar to the WLAN protocol,
CSMA/CD is parameterized with an exponential back-off counter limit BOFF.
We analyzed the properties: (p1): ”The maximum probability that both stations
deliver”, and (p2): ”The message of any station eventually delivered before 1
backoff”. For both properties, as shown in the table, the abstract state space
is significantly smaller. Consider property p2. Similar to the WLAN protocol,
the size of the abstraction does not change with respect to the size of BOFF.
However, the number of paths explored increases with BOFF. The reason is that
for greater values of BOFF, there is more branching in the probabilistic model,
thus in the abstraction there are more abstract paths being explored.

Bounded Retransmission Protocol (BRP). The BRP protocol has two parame-
ters: N denotes the length of the file to be transmitted, and MAX denotes the
maximal number of retransmissions. We have studied “Property 1” and “Prop-
erty 4” (p1 and p4 in the table). On p1, PRISM outperforms PASS. It appears
that this is due to little opportunity for abstraction as, seemingly, a lot of model
detail is relevant and has to be discovered by refinement. On the other hand,
p4 can be analyzed for an infinite parameter range with PASS, since it is an
invariant property with respect to the file length N . Thus the constraint N > 16
allows us to verify the property for any possible file length greater than 16.

Sliding Window (SW). This is the standard protocol with lossy channels over an
unbounded domain of sequence numbers. Thus the model is infinite and hence we
have no comparison to PRISM. We checked goodput properties which consider
the difference between the number of sent and received packages. We want to
know the probability that the number of sent packages exceeds the number of
received packages by a particular constant. PASS checked that, at any time, the
probability of the difference exceeding three is at most three percent for windows
size four. The second property concerns the probability of a protocol timeout.

Initial Predicates. Probabilistic CEGAR leaves the choice of the initial set of
predicates as a parameter. Predicates appearing in the property under study are
the minimal option and generally a good one (BRP, CSMA). Further, control
locations of the program might also be part of the initial abstraction to avoid non-
determinism between commands in the abstraction. Thus adding predicates from
the initial condition (WLAN) or additionally from guards (SW) can improve
running times. PASS features several automatic modes; Table 1 contains data
obtained via the respective best mode.

Discussion. To compete with PRISM on finite models, the benefit of state
space reduction has to offset the cost of repeating the CEGAR loop. On infinite
or very large models only PASS can be used. We observe that abstraction for

174 H. Hermanns, B. Wachter, and L. Zhang

WLAN and CSMA/CD, PASS is superior to the conventional approach, due to
the significantly smaller abstract state space. Notably the analysis of BRP for
N > 16 can be considered a parametric analysis: p4 is proven for any such N .

5 Conclusion

This paper explores fundamental questions and pragmatic issues of probabilistic
abstraction refinement. The main contribution lies in our treatment of abstract
counterexamples which are finite Markov chains, instead of finite paths. Spuri-
ous counterexamples are analyzed with interpolation-based predicate inference,
leading to a refined model which closes the CEGAR loop. The resulting theory
and tool work smoothly, as shown by our experimental evaluation. Our next goal
is to enable model checking of full PCTL.

Acknowledgements. Thanks to E. Moritz Hahn for helping us with the imple-
mentation, and to the anonymous reviewers for their valuable comments.

References

1. Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. For-
mal Asp. Comput. 6, 512–535 (1994)

2. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

3. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A Tool for Au-
tomatic Verification of Probabilistic Systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg
(2006)

4. Katoen, J.P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In:
QEST, pp. 243–244 (2005)

5. Graf, S., Sáıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

6. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL, pp. 1–3 (2002)

7. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70 (2002)

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

9. Wachter, B., Zhang, L., Hermanns, H.: Probabilistic Model Checking Modulo The-
ories. In: QEST, pp. 129–138 (2007)

10. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nord.
J. Comput. 2, 250–273 (1995)

11. Chatterjee, K., Henzinger, T.A., Majumdar, R.: Counterexample-Guided Planning.
In: UAI (2005)

12. Han, T., Katoen, J.P.: Counterexamples in probabilistic model checking. In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 72–86. Springer,
Heidelberg (2007)

Probabilistic CEGAR 175

13. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Syst. Sci. 43, 425–440 (1991)

14. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

15. Aljazzar, H., Hermanns, H., Leue, S.: Counterexamples for timed probabilistic
reachability. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829,
pp. 177–195. Springer, Heidelberg (2005)

16. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reduction and Refine-
ment Strategies for Probabilistic Analysis. In: Hermanns, H., Segala, R. (eds.)
PROBMIV 2002, PAPM-PROBMIV 2002, and PAPM 2002. LNCS, vol. 2399, pp.
57–76. Springer, Heidelberg (2002)

17. de Alfaro, L., Roy, P.: Magnifying-lens abstraction for markov decision processes.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 325–338.
Springer, Heidelberg (2007)

18. Kwiatkowska, M., Norman, G., Parker, D.: Game-based Abstraction for Markov
Decision Processes. In: QEST, pp. 157–166 (2006)

19. Fecher, H., Leucker, M., Wolf, V.: Don’t Know. In: Valmari, A. (ed.) SPIN 2006.
LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006)

20. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Chichester (1994)

21. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL, pp. 232–244 (2004)

22. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality
af A*. J. ACM 32, 505–536 (1985)

23. Dutertre, B., de Moura, L.M.: A Fast Linear-Arithmetic Solver for DPLL(T). In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Hei-
delberg (2006)

24. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345, 101–
121 (2005)

Computing Differential Invariants of Hybrid

Systems as Fixedpoints

André Platzer1 and Edmund M. Clarke2

1 University of Oldenburg, Department of Computing Science, Germany
2 Carnegie Mellon University, Computer Science Department, Pittsburgh, PA

{aplatzer,emc}@cs.cmu.edu

Abstract. We introduce a fixedpoint algorithm for verifying safety prop-
erties of hybrid systems with differential equations whose right-hand
sides are polynomials in the state variables. In order to verify nontrivial
systems without solving their differential equations and without numeri-
cal errors, we use a continuous generalization of induction, for which our
algorithm computes the required differential invariants. As a means for
combining local differential invariants into global system invariants in a
sound way, our fixedpoint algorithm works with a compositional veri-
fication logic for hybrid systems. To improve the verification power, we
further introduce a saturation procedure that refines the system dynamics
successively with differential invariants until safety becomes provable. By
complementing our symbolic verification algorithm with a robust version
of numerical falsification, we obtain a fast and sound verification proce-
dure. We verify roundabout maneuvers in air traffic management and
collision avoidance in train control.

Keywords: verification of hybrid systems, differential invariants, verifi-
cation logic, fixedpoint engine.

1 Introduction

Reachability questions for systems with complex continuous dynamics are among
the most challenging problems in verifying embedded systems. Hybrid systems [1,
2, 3, 4] are models for these systems with interacting discrete and continuous
transitions, with the latter being governed by differential equations. For simple
systems whose differential equations have solutions that are polynomials in the
state variables, quantifier elimination [5] can be used for verification [3,6,7,8,9].
Unfortunately, this symbolic approach does not scale to systems with compli-
cated differential equations whose solutions do not support quantifier elimination
(e.g., when they are transcendental functions) or cannot be given in closed form.

Numerical or approximation approaches [10, 11, 12] can deal with more gen-
eral dynamics. However, numerical or approximation errors need to be handled
carefully as they easily cause unsoundness [11]. More specifically, we have shown
previously that even single image computations of fairly restricted classes of hy-
brid systems are undecidable by numerical computation [11]. Thus, numerical
approaches can be used for falsification but not (ultimately) for verification.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 176–189, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computing Differential Invariants of Hybrid Systems as Fixedpoints 177

In this paper, we present an approach that combines the soundness of
symbolic approaches [3, 7, 8, 9] with support for nontrivial dynamics that is clas-
sically more dominant in numerical approaches [10, 11, 12]. During continuous
transitions, the system follows a solution of its differential equation. But for non-
trivial dynamics, these solutions are much more complicated than the original
equations. Solutions quickly become transcendental even if the differential equa-
tions are linear. To overcome this, we handle continuous transitions based on their
vector fields, which are described by their differential equations. We use differen-
tial induction [13], a continuous generalization of induction that works with the
differential equations themselves instead of their solutions. For the induction step,
we use a condition that can be checked easily based on differential invariants [13],
i.e., properties whose derivative holds true in the direction of the vector field of
the differential equation. The derivative is a directional derivative in the direc-
tion of (the vector field generated by) the differential equation, and we generalize
derivatives from functions to formulas appropriately. For this to work in practice,
the most crucial steps are to find sufficiently strong local differential invariants for
differential equations and compatible global invariants for the hybrid system.

To this end, we introduce a sound verification algorithm for hybrid systems
that computes the differential invariants and system invariants in a fixedpoint
loop. We follow the invariants as fixedpoints paradigm [14] using a verifica-
tion logic that is generalized to hybrid systems accordingly [8,9]. For combining
multiple local differential invariants into a global invariant in a sound way, we
exploit the closure properties of the underlying verification logic [8, 9] by form-
ing appropriate logical combinations of multiple safety statements. In addition,
we introduce a differential saturation process that refines the hybrid dynamics
successively with auxiliary differential invariants until the safety statement be-
comes an invariant of the refined system. Finally, each fixedpoint iteration of our
algorithm can be combined with numerical falsification to accelerate the overall
symbolic verification in a sound way [15]. We validate our algorithm by verifying
aircraft roundabout maneuvers [16, 11] and train control applications [17].

The major contribution in this work is the fixedpoint algorithm for computing
differential invariants coupled with a differential saturation process. We show
that it can verify realistic applications that were out of scope for related invariant
approaches [18,19,20] or [1,3,6], both for theoretical reasons [9,13] and scalability.

2 Hybrid Programs and Differential Dynamic Logic

As operational models for hybrid systems, we use hybrid programs (HP), a pro-
gram notation for hybrid automata (HA) [1]. HP can be decomposed syntac-
tically into fragments : subprograms which correspond to partial executions of
only a part of the full HP (programs are easier to split structurally into parts
than graphs, because handling dangling edges between graph fragments is com-
plicated). This is important as our verification algorithm recursively decomposes
an HP into fragments α1, . . . , αn (e.g., to find local invariants for each αi) and
recombines corresponding correctness statements about these fragments αi later.

178 A. Platzer and E.M. Clarke

on
x′ = 1
x ≤ 9

off
x′ = −1

x ≥ 5

x := x + 1

x ≤ 2

q := on; /* initial location is on */(
(?q = on; x′ = 1 ∧ x ≤ 9)

∪ (?q = on ∧ x ≥ 5; x := x + 1; q := off)
∪ (?q = off; x′ = −1)

∪ (?q = off ∧ x ≤ 2; q := on; ?x ≤ 9)
)∗

Fig. 1. Natural hybrid program rendition of hybrid automaton (simple water tank)

Hybrid Programs. In order to represent HA [1] textually as an HP, we represent
each discrete and continuous transition as a sequence of statements, with a
nondeterministic choice (∪) between these transitions. For instance, the second
line in Fig. 1 represents a continuous transition. It tests (denoted by ?q = on) if
the current location q is on, and then follows a differential equation restricted to
invariant region x ≤ 9 (i.e., the conjunction x′ = 1 ∧ x ≤ 9). The third line tests
the guard x ≥ 5 when in state on, resets x by a discrete assignment, and then
changes location q to off. The ∗ at the end indicates that the transitions of a HA
repeat indefinitely. Alternatively, the resulting HP in Fig. 1 can be considered as
the essential part of a program exported from Stateflow/Simulink enriched with
differential equations for the continuous dynamics. Every safety property that
this HP satisfies is fulfilled for all deterministic implementation refinements.

Formally, let V be a set of state variables of the system and auxiliary vari-
ables. As terms we allow polynomials over Q with variables in V . To make
a structural decomposition of HP into fragments possible, each operation of a
HP only has a single effect. There are separate classes of program statements
with purely discrete effect, purely continuous effect, and statements for regu-
lating their interaction. Hybrid programs (HP) are built with the statements
in Tab. 1. The effect of x := θ is an instantaneous discrete jump assigning θ
to x. Instead, x := random randomly assigns any real value to x by a nondeter-
ministic choice. During a continuous evolution x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ H , all
conjuncts need to hold. Its effect is a continuous transition controlled by the dif-
ferential equation x′1 = θ1, . . . , x

′
n = θn that always satisfies the arithmetic con-

straint H (thus remains in the region described by H). This directly corresponds
to a continuous evolution mode of a HA. The effect of state check ?H is a skip
(i.e., no change) if H is true in the current state and that of abort, otherwise.

Table 1. Statements and (informal) effects of hybrid programs (HP)

notation statement effect

x := θ discrete assignment assigns term θ to variable x ∈ V
x := random nondet. assignment assigns any real value to x ∈ V
x′

1 = θ1 ∧ . . .
continuous evolution

diff. equations for xi ∈ V and terms θi,
· · · ∧ x′

n = θn ∧ H with arithmetic constraint H (domain)
?H state check test formula H at current state
α; β seq. composition HP β starts after HP α finishes
α ∪ β nondet. choice choice between alternatives HP α or β
α∗ nondet. repetition repeats HP α n-times for any n ∈ N

Computing Differential Invariants of Hybrid Systems as Fixedpoints 179

Non-deterministic choice α ∪ β expresses alternatives in the behavior of the hy-
brid system. Sequential composition α; β expresses a behavior in which β starts
after α finishes (as usual, β never starts if α continues indefinitely). Non-deter-
ministic repetition α∗, repeats α an arbitrary number of times, possibly zero.

Formulas of dL. Our verification algorithm repeatedly decomposes and recom-
bines HP. As a logical framework where these operations are sound, we use a
logic in which simultaneous correctness properties about multiple subsystems are
expressible. The differential dynamic logic dL [8,9] is an extension of first-order
logic over the reals with modal formulas like [α]φ, which is true iff all states
reachable by following the transitions of HP α satisfy property φ (safety).

Definition 1 (dL formulas). The formulas of dL are defined by the following
grammar (where θ1, θ2 are terms, ∼ ∈ {=, ≤, <, ≥, >}, φ, ψ are formulas, x ∈ V ,
and α is an HP built from the statements in Tab. 1):

Fml ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | ∀xφ | ∃xφ | [α]φ .

A Hoare-triple {ψ}α{φ} can be expressed as ψ → [α]φ, which is true iff all
states reachable by HP α satisfy φ when starting from an initial state that
satisfies ψ. Unlike Hoare-logics, dynamic logics are closed under logical con-
nectives [21]. Hence, we can express simultaneous correctness statements about
multiple fragments αi using conjuncts [α1]φ1 ∧ [α2]φ2. With this, a proof for [α]φ
can be decomposed soundly into [α1]φ1 ∧ [α2]φ2, when [α]φ and [α1]φ1 ∧ [α2]φ2

are equivalent for appropriate fragments αi of α and subproperties φi of φ. In
turn, if the verification algorithm with input [αi]φi yields φ̃i, these can be re-
combined soundly to the verification result φ̃1 ∧ φ̃2 for [α]φ. By the semantics
of dL, this process gives a sound way of combining local invariants required in
the respective subgoals [αi]φi to a global system invariant. Finally, dL and its
proof techniques are closed under quantification, which we use to quantify over
parameter choices of local invariants. For example, ∃p ([α1]φ1 ∧ [α2]φ2) can be
used to determine if there is a common choice for parameter p that makes both
subgoals [αi]φi true. The semantics of dL and HP is a Kripke semantics [8, 9].

3 Inductive Verification by Combining Local Fixedpoints

For verifying safety properties of hybrid systems without having to solve their
differential equations, we use a continuous form of induction. In the induction
step, we use a condition on directional derivatives in the direction of the vector
field generated by the differential equation. The resulting properties are invari-
ants of the differential equation (whence called differential invariants [13]). The
crucial step for verifying discrete systems by induction is to find sufficiently
strong invariants (e.g., for loops α∗). Similarly, the crucial step for verifying
dynamical systems (which correspond to a single continuous mode of a hybrid
system) by induction is to find sufficiently strong invariant properties of the dif-
ferential equation. Consequently, for verifying hybrid systems inductively, local

180 A. Platzer and E.M. Clarke

invariants need to be found for each differential equation and a global system
invariant needs to be found that is compatible with all local invariants.

To compute the required invariants and differential invariants, we combine
the invariants as fixedpoints approach from [14] with the lifting of verification
logics to hybrid systems from [8, 9]. We introduce a verification algorithm that
computes invariants of a system as fixedpoints of safety constraints on subsys-
tems. We exploit the fact that HP can be decomposed into subsystems and that
dL can combine safety statements about multiple subsystems simultaneously.

A safety statement corresponds to a dL formula ψ → [α]φ with an HP α, a
safety property φ about its reachable states, and an arithmetic formula ψ that
characterizes the set of initial states symbolically. Validity of formula ψ → [α]φ
(i.e., truth in all states) corresponds to φ being true in all states reachable by
HP α from initial states that satisfy ψ [9]. Our verification algorithm defines the
function prove(ψ → [α]φ) for verifying this safety statement recursively.

3.1 Verification by Symbolic Decomposition

The cases of prove where dL enables us to verify a property of an HP directly by
decomposing it into a property of its parts [9] are shown in Fig. 2. For a concise
presentation, the case in line 1 introduces an auxiliary variable x̂ to handle dis-
crete assignments by substituting x̂ for x in φx̂

x: E.g., x ≥ 2 → [x := x − 1]x ≥ 0
is shown by proving x ≥ 2 ∧ x̂ = x − 1 → x̂ ≥ 0. Our implementation uses opti-
mizations to avoid auxiliary variables [9]. State checks ?H are shown by assum-
ing the test succeeds, i.e., H holds true (line 3), nondeterministic choices split
into their alternatives (line 4), sequential compositions are proven using nested
modalities (line 6), and random assignments by universal quantification (line 7).

The base case in line 8, where φ is a formula of first-order real arithmetic,
can be proven by real quantifier elimination [5]. Despite its complexity, this can
remain feasible, because the formulas resulting from our algorithm do not depend
on the solutions of differential equations but only their right-hand sides. Using
a temporary form of Skolemization together with Deskolemization, quantifier
elimination can be lifted to eliminate quantifiers from dL formulas [9].

The algorithm in Fig. 2 recursively reduces safety of HP to properties of
continuous evolutions or of repetitions, which we verify in the next sections.

3.2 Discrete and Differential Induction, Differential Invariants

In the sequel, we present algorithms for verifying loops by discrete induction
and continuous evolutions by differential induction, which is a continuous form
of induction. In either case, we prove that an invariant F holds initially (in the
states characterized symbolically by ψ, thus ψ → F is valid) and finally entails
the postcondition φ (i.e., F → φ). The cases differ in their induction step.

Definition 2 (Discrete induction). Formula F is a (discrete) invariant of
ψ → [α∗]φ iff the following formulas are valid: ψ → F (induction start), and
F → [α]F (induction step). An invariant is sufficiently strong if F → φ is valid.

Computing Differential Invariants of Hybrid Systems as Fixedpoints 181

1 function prove (ψ → [x := θ]φ) :

2 return prove (ψ ∧ x̂ = θ → φx̂
x) where x̂ i s a new aux i l i a r y v a r i ab l e

3 function prove (ψ → [?H]φ) : return prove (ψ ∧ H → φ)
4 function prove (ψ → [α ∪ β]φ) :
5 return prove (ψ → [α]φ) and prove (ψ → [β]φ) /∗ thus ψ → [α]φ ∧ [β]φ∗/
6 function prove (ψ → [α; β]φ) : return prove (ψ → [α][β]φ)
7 function prove (ψ → [x := random]φ) : return prove (ψ → ∀x φ)
8 function prove (ψ → φ) where i sF i r s tOrde r (φ) :
9 return Quant i f i e rE l im ina t i on (ψ → φ)

Fig. 2. dL-based verification by symbolic decomposition

Definition 3 (Continuous invariants). Let D be a differential equation. For-
mula F is a continuous invariant of ψ → [D ∧ H]φ iff the following formulas are
valid: ψ ∧ H → F (induction start), and F → [D ∧ H]F (induction step). Again,
a continuous invariant is sufficiently strong if F → φ is valid.

To prove that F is a continuous invariant, it is sufficient to check a condition on
the directional derivatives of all terms of the formula, which expresses that no
atomic subformula of F changes its truth-value along the dynamics of the differ-
ential equation [13]. This condition is much easier to check than a reachability
property (F → [D ∧ H]F) of a differential equation. Applications like aircraft
maneuvers need invariants with mixed equations and inequalities. Thus, we gen-
eralize directional derivatives from functions to logical formulas.

Definition 4 (Differential induction). Let the differential equation system D
be x′1 = θ1 ∧ · · · ∧ x′n = θn. Formula F is a differential invariant of ψ → [D ∧ H]φ
iff the following formulas are valid: ψ ∧ H → F and H → ∇DF , where ∇DF is
defined as the conjunction of all directional derivatives of atomic formulas in F
in the direction of the vector field of D (the partial derivative of b by xi is ∂b

∂xi
):

∇DF ≡
∧

(b∼c)∈F

((
n∑

i=1

∂b

∂xi
θi

)

∼
(

n∑

i=1

∂c

∂xi
θi

))

for ∼ ∈ {=, ≥, >, ≤, <}.

Proposition 1 (Principle of differential induction [13]). All differential
invariants are continuous invariants.

F
¬F

Fig. 3. Differen-
tial invariant F

See [13] for the theory of differential invariants and [15] for
specific proofs. The region corresponding to a differential in-
variant F is illustrated in Fig. 3. Formula ∇DF is a direc-
tional derivative of F in the direction of the dynamics of D.
Intuitively, formula ∇DF is true if the gradient arrows are
pointing inside the (possibly unbounded) region consisting of
the points where F is true. In Sections 3.4–3.6, we present
algorithms for finding differential invariants for differential
equations, and for finding global invariants for repetitions.

182 A. Platzer and E.M. Clarke

a. b.

x

y

c

c.

x1

x2

y1

y2

d

ω e

ς

�

Fig. 4. Roundabout maneuvers for air traffic collision avoidance

3.3 Example: Flight Dynamics in Air Traffic Collision Avoidance

Aircraft collision avoidance maneuvers resolve conflicting flight paths, e.g., by
roundabout maneuvers [16], see Fig. 4a–b. Their nontrivial dynamics makes safe
separation of aircraft difficult to verify [16, 22, 23, 24, 11, 25]. The parameters of
two aircraft at (planar) position x = (x1, x2) ∈ R

2 and y = (y1, y2) with angular
orientation ϑ and ς are illustrated in Fig. 4c (with ϑ = 0). Their dynamics is
determined by their linear speeds v, u ∈ R and angular speeds ω, � ∈ R, see [16]:

x′1 = v cosϑ x′2 = v sin ϑ ϑ′ = ω y′1 = u cos ς y′2 = u sin ς ς ′ = � (1)

In safe flight configurations, aircraft are separated by at least distance p:

(x1 − y1)2 + (x2 − y2)2 ≥ p2 (2)

To handle the transcendental functions in (1), we axiomatize sin and cos by
differential equations and reparametrize the system using a linear velocity vec-
tor d = (d1, d2) := (v cosϑ, v sinϑ) ∈ R

2, which describes both the linear velocity
‖d‖ :=

√
d2
1 + d2

2 = v and orientation of the aircraft in space, see Fig. 4c:
[

x′1 = d1 x′2 = d2 d′1 = −ωd2 d′2 = ωd1 t′ = 1
y′1 = e1 y′2 = e2 e′1 = −�e2 e′2 = �e1 s′ = 1

]

(F)

Equations (F) and (1) are equivalent up to reparameterization [13]. We add clock
variables t, s that we need for synchronizing collision avoidance maneuvers [15].
By a simple computation, d2

1 + d2
2 ≥ a2 is a differential invariant of (F):

∇F (d2
1 + d2

2 ≥ a2) ≡ ∇(d′
1=−ωd2∧d′

2=ωd1)(d
2
1 + d2

2 ≥ a2)

≡ ∂(d2
1 + d2

2)
∂d1

(−ωd2) +
∂(d2

1 + d2
2)

∂d2
ωd1 ≥ ∂a2

∂d1
(−ωd2) +

∂a2

∂d2
ωd1

≡ 2d1(−ωd2) + 2d2ωd1 ≥ 0 .

3.4 Local Fixedpoint Computation for Differential Invariants

Fig. 5 depicts the fixedpoint algorithm for constructing differential invariants
for each continuous evolution D ∧ H with a differential equation system D. The
algorithm in Fig. 5 (called Differential Saturation) successively refines the do-
main H by differential invariants until saturation, i.e., H accumulates enough

Computing Differential Invariants of Hybrid Systems as Fixedpoints 183

1 function prove (ψ → [D ∧ H]φ) :
2 i f prove (∀cl(H → φ)) then return true /∗ proper ty proven ∗/
3 for each F ∈Candidates (ψ → [D ∧ H]φ , H) do
4 i f prove (ψ ∧ H → F) and prove (∀cl(H → ∇DF)) then
5 H := H ∧ F /∗ r e f i n e by d i f f e r e n t i a l i n va r i an t ∗/
6 goto 2 ; /∗ repea t f i x e d p o i n t loop ∗/
7 end for
8 return ”not provab le us ing cand idat e s”

Fig. 5. Fixedpoint algorithm for differential invariants (Differential Saturation)

information to become a strong invariant that implies postcondition φ (line 2).
If domain H already entails φ, then ψ → [D ∧ H]φ is proven (line 2). Other-
wise, the algorithm considers candidates F for augmenting H (line 3). If F is a
differential invariant (line 4), then H can soundly be refined to H ∧ F (line 5)
without affecting the states reachable by D ∧ H (Proposition 2 below). Then,
the fixedpoint loop repeats (line 6). At each iteration of this fixedpoint loop, the
previous invariant H can be used to prove the next level of refinement H ∧ F
(line 4). The refinement of the dynamics at line 5 is correct by the following
proposition, using that the conditions in line 4 imply that F is a differential
invariant and, thus, a continuous invariant by Proposition 1, see proofs [15,13].

Proposition 2 (Differential saturation). If F is a continuous invariant of
ψ → [D ∧ H]φ, then ψ → [D ∧ H]φ and ψ → [D ∧ H ∧ F]φ are equivalent.

This progressive differential saturation turns out to be crucial in practice. For
instance, the aircraft separation property (2) cannot be proven until (F) has
been refined by invariants for d and e, because these determine x′ and y′.

Function Candidates determines candidates for induction (line 3) depending
on transitive differential dependencies, as will be explained in Section 3.5. When
these are insufficient for proving ψ → [D ∧ H]φ, the algorithm fails (line 8, with
improvements in subsequent sections). Finally, ∀clφ denotes the universal closure
of φ. It is required in lines 2 and 4, because the respective formulas need to hold
in all states (that satisfy H), see [15] for improvements.

3.5 Dependency-Directed Induction Candidates

In this section, we construct likely candidates for differential induction (func-
tion Candidates). Later, we use the same procedure for finding global loop
invariants. We construct two kinds of candidates in an order induced by
differential dependencies. Our algorithm enriches ψ successively with more
precise information about the symbolic prestate as obtained by the symbolic
decompositions and proof steps in Fig. 2 and 5. We first look for invariant
symbolic state information in ψ and φ by selecting subformulas that are not yet

184 A. Platzer and E.M. Clarke

�

e1

y1

e2

y2

s ω

d1

x1

d2

x2

t

m
o
re

d
ep

en
d
en

ci
es

cluster {x2, d2, d1, ω}
cluster {x1, d1, d2, ω}
cluster {d2, d1, ω}
cluster {t}

Fig. 6. Differential dependencies (arrows) and (triangular) variable clusters of (F)

contained in H . In practice, this gives good candidates for highly parametric
hybrid systems.

Secondly, we generate parametric invariants. Let V = {x1, . . . , xn} be a set of
variables. We choose fresh names a

(l)
i1,...,in

for formal parameters of the invariant
candidates and build polynomials p1, . . . , pk of degree d with variables V using
formal parameters as symbolic coefficients: pl :=

∑
i1+···+in≤d a

(l)
i1,...,in

xi1
1 . . . xin

n

for 1 ≤ l ≤ k. We define the set of parametric candidates (operator ∨ is similarly):

ParaForm(k, d, V) :=

{
i∧

l=1

pl ≥ 0 ∧
k∧

l=i+1

pl = 0 | 0 ≤ i ≤ k

}

.

For instance, the parametric candidate a0,0 + a1,0d1 + a0,1x2 = 0 yields a dif-
ferential invariant of (F) for the choice a0,0 = 0, a1,0 = 1, a0,1 = ω. By simple
combinatorics, ParaForm contains k+1 candidates with k

(
n+d

d

)
formal parame-

ters a
(l)
i1,...,in

, which are existentially quantified. Existence of a common satisfying

instantiation for these parameters can be expressed by adding ∃a
(l)
i1,...,in

to the
resulting dL formulas. For this to be feasible, the number of parameters is crucial,
which we minimize by respecting (differential) dependencies.

To accelerate the differential saturation process in Section 3.4, it is crucial to
explore candidates in a promising order from simple to complex, because the al-
gorithm in Fig. 5 uses successful differential invariants to refine the dynamics,
thereby simplifying subsequent proofs: E.g., (2) is only provable after the dynam-
ics has been refined with invariants for d and e. We construct candidates in a
natural order based on variable occurrence that is consistent with the differential
dependencies of the differential equations. For a differential equation D, variable x
depends on variable y according to the differential equation system D if y occurs on
the right-hand side for x′ (or transitively so). The resulting set depend(D) of de-
pendencies is the transitive closure of {(x, y) | (x′ = θ) ∈ D and y occurs in θ}.
From the differential equation system (F), we determine the differential depen-
dencies indicated as arrows (pointing to the dependent variables x) in Fig. 6.

From these dependencies we determine an order on candidates. The idea
is that, as the value of x1 depends on that of d1, it makes sense to look for
invariant expressions of d1 first, because refinements with these help differential

Computing Differential Invariants of Hybrid Systems as Fixedpoints 185

saturation in proving invariant expressions involving also x1. Thus, we order
variables by differential dependencies, which resembles the back substitution
order in Gaussian elimination (if, in triangular form, x1 depends on d1 then
equations for d1 must be solved first). Now we call a set V of variables a clus-
ter of the differential equation D iff V is closed with respect to depend(D), i.e.,
variables of V only depend on variables in V . The resulting variable clusters for
system (F) are marked as triangular shapes in Fig. 6. Finally, we choose candi-
dates from ψ and ParaForm(k, d, V) starting with candidates whose variables lie
in small clusters V . Thus, the differential invariant d2

1 + d2
2 ≥ a2 of Section 3.3

within cluster {d2, d1, ω} can be discovered before invariants like d1 = −ωx2 that
involve x2, because x2 depends on d2.

3.6 Global Fixedpoint Computation for Loop Invariants

With the uniform setup of dL, we can adapt the algorithm in Fig. 5 easily
to obtain a fixedpoint algorithm for loops (ψ → [α∗]φ) in place of continuous
evolutions (ψ → [D ∧ H]φ): In line 4 of Fig. 5, we replace the induction step from
Def. 4 by the step for loops (Def. 2). As an optimization, invariants H of previous
iterations can be exploited as refinements of the hybrid system dynamics:

Proposition 3 (Loop saturation). If H is a discrete invariant of ψ → [α∗]φ,
H ∧ F is a discrete invariant iff ψ → F and H ∧ F → [α](H → F) are valid.

See [15] for a proof. The induction step from Proposition 3 can generally be
proven faster, because it is a weaker property than that of Def. 2.

To adapt our approach from Section 3.5 to loops, we use discrete data-flow
and control-flow dependencies of α. There is a direct data-flow dependency with
the value of x depending on y, if x := θ or x′ = θ occurs in α with a term θ
that contains y. Accordingly, there is a direct control-flow dependency, if, for
any term θ, x := θ or x′ = θ occurs in α after a ?H containing y.

3.7 Interplay of Local and Global Fixedpoint Loops

The local and global fixedpoint algorithms jointly verify correctness properties
of HP. Their interplay needs to be coordinated with fairness. If the local fixed-
point algorithm in Fig. 5 does not converge, stronger invariants may need to
be found by the global fixedpoint algorithm which result in stronger precondi-
tions ψ for the local algorithm. Thus, the local fixedpoint algorithm should stop
when it cannot prove its postcondition, either because of a counterexample or
because it runs out of candidates for differential invariants. As in the work of
Prajna [20], the degrees of parametric invariants, therefore, need to be bounded
and increased iteratively. As in [20], there is no natural measure for how these
degrees should be increased. Instead, here, we exploit the fact that the candi-
dates of Candidates are independent and we explore them in parallel with fair
time interleaving.

186 A. Platzer and E.M. Clarke

Table 2. Experimental results

Case study Time(s) Memory(MB) Proof steps Dimension

tangential roundabout (2 aircraft) 14 8 117 13
tangential roundabout (3 aircraft) 387 42 182 18
tangential roundabout (4 aircraft) 730 39 234 23
tangential roundabout (5 aircraft) 1964 88 317 28
bounded speed roundabout entry 20 34 28 12
flyable roundabout entry (simplified) 6 10 98 8

ETCS-kernel safety 41 28 53 9
ETCS safety 183 87 169 15
ETCS train controllability 1 6 17 5
ETCS RBC controllability 1 7 45 16

3.8 Soundness

Theorem 1 (Soundness). The verification algorithm in Section 3 is sound,
i.e., whenever prove(ψ → [α]φ) returns “ true”, the dL formula ψ → [α]φ is
true in all states, i.e., all states reachable by α from states satisfying ψ satisfy φ.

See [15] for a proof. Since reachability of hybrid systems is undecidable, our al-
gorithm must be incomplete. It can fail to converge when the required invariants
are not expressible in first-order logic (yet, they are always expressible in dL [9]).

4 Experimental Results: Aircraft Roundabout Maneuver

c

x
entry

exi
t

y

Fig. 7. Flyable aircraft
roundabout

As an example with nontrivial dynamics, we ana-
lyze aircraft roundabout maneuvers [16]. Curved flight
as in roundabouts is challenging for verification, be-
cause of its transcendental solutions. The maneuver in
Fig. 4a from [16] and the maneuver in Fig. 4b from [11,
13] are not flyable, because they still involve a few in-
stant turns. A flyable roundabout maneuver without
instant turns is depicted in Fig. 7. We verify safety prop-
erties for most (but not yet all) phases of Fig. 7 and
provide verification results in Tab. 2, see [15]. Finally,
note that the required invariants for the roundabout
maneuver cannot even be found from Differential Gröbner Bases [26].

Verification results for roundabout aircraft maneuvers [16, 24, 11, 13, 15] and
the European Train Control System (ETCS) [17] are in Tab. 2. Results are from
a 2.6GHz AMD Opteron with 4GB memory. Memory consumption of quantifier
elimination is shown in Tab. 2, excluding the front-end. The results are only
slightly worse on a 1.7GHz Pentium M laptop with 1GB. We handle all variables
symbolically. The dimension of the continuous state space is indicated.

Computing Differential Invariants of Hybrid Systems as Fixedpoints 187

5 Related Work

Other authors [18,19,20] already argued that invariant techniques scale to more
general dynamics than explicit reach-set computations or techniques that require
solutions for differential equations [3, 6, 8]. However, they cannot handle hybrid
systems with inequalities in initial sets or switching surfaces [18,19], which occur
in most real applications like aircraft maneuvers. Barrier certificates [20] only
work for inequalities, but invariants of roundabout maneuvers require mixed
equations and inequalities [13]. Prajna et al. [20] search for barrier certificates of
a fixed degree by global optimization over the set of all proof attempts for the
whole system at once, which is infeasible: Even with degree bound 2, it already
requires solving a 5848-dimensional optimization problem for ETCS [17] and a
10005-dimensional problem for roundabouts with 5 aircraft.

Tomlin et al. [16] derive saddle solutions for aircraft maneuver games using
Hamilton-Jacobi-Isaacs partial differential equations and propose roundabout
maneuvers. Their exponential state space discretizations for PDEs, however,
do not scale to larger dimensions (they consider dimension 3) and can be un-
sound [11]. Differential invariants, instead, work for 28-dimensional systems.

Straight-line aircraft maneuvers have been analyzed by geometrical meta-level
reasoning [23,25]. We directly verify the hybrid flight dynamics, including curved
roundabout maneuvers instead of straight-line maneuvers with non-flyable in-
stant turns. A few approaches [22, 24] have been undertaken to Model Check
if there are orthogonal collisions in discretizations of roundabout maneuvers.
However, the counterexamples found by our model checker in previous work [11]
show that non-orthogonal collisions can happen in these maneuvers.

Tools like HyTech, PHAVer, CheckMate, or other approaches [1, 3, 6] cannot
handle our applications with nonlinear switching, nonlinear discrete and contin-
uous dynamics, and high-dimensional state spaces.

6 Conclusions and Future Work

We have presented a sound algorithm for verifying hybrid systems with nontrivial
dynamics. It handles differential equations using differential invariants instead
of requiring solutions of the differential equations, because the latter quickly
yield undecidable arithmetic. We compute differential invariants as fixedpoints
using a verification logic for hybrid systems. In the logic we can decompose the
system for computing local invariants and we obtain sound recombinations into
global invariants. Moreover, we introduce a differential saturation procedure that
verifies more complicated properties by refining the system dynamics successively
in a sound way. We validate our algorithm on challenging roundabout collision
avoidance maneuvers for aircraft and on collision avoidance protocols for trains.

Our algorithm works particularly good for highly parametric hybrid systems,
because their parameter constraints can be combined faster to find invariants
than for systems with a single initial state, where simulation is more appropri-
ate. Our decompositional approach exploits locality in system designs. Thus, it

188 A. Platzer and E.M. Clarke

probably performs worse for systems that violate locality principles. We want to
validate this in further experiments and analyze scalability.

References

1. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE,
Los Alamitos (1996)

2. Davoren, J.M., Nerode, A.: Logics for hybrid systems. Proc. IEEE 88(7) (2000)

3. Fränzle, M.: Analysis of hybrid systems. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.)
CSL 1999. LNCS, vol. 1683, pp. 126–140. Springer, Heidelberg (1999)

4. Alur, R., Pappas, G.J. (eds.): HSCC 2004. LNCS, vol. 2993. Springer, Heidelberg
(2004)

5. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput. 12(3), 299–328 (1991)

6. Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algo-
rithmic algebraic model checking I: Challenges from systems biology. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 5–19. Springer, Heidel-
berg (2005)

7. Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimi-
nation. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001.
LNCS, vol. 2034, pp. 63–76. Springer, Heidelberg (2001)

8. Platzer, A.: Differential dynamic logic for verifying parametric hybrid systems.
In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 216–232.
Springer, Heidelberg (2007)

9. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning
(2008)

10. Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using
conservative approximation. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS,
vol. 2623, pp. 20–35. Springer, Heidelberg (2003)

11. Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model
checking. In: [27], pp. 473–486

12. Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: [27], pp.
174–189

13. Platzer, A.: Differential algebraic dynamic logic for differential algebraic programs
(submitted, 2007)

14. Clarke, E.M.: Program invariants as fixedpoints. Computing 21(4), 273–294 (1979)

15. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as
fixedpoints. Technical Report CMU-CS-08-103, Carnegie Mellon University (2008)

16. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management:
a study in multi-agent hybrid systems. IEEE T. Automat. Contr. 43(4) (1998)

17. Platzer, A., Quesel, J.D.: Logical verification and systematic parametric analysis
in train control. In: Egerstedt, M., Mishra, B. (eds.) HSCC. LNCS, vol. 4981, pp.
646–649. Springer, Heidelberg (2008)

18. Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid
systems. In: [4], pp. 539–554

19. Rodŕıguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for hybrid
systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 590–
605. Springer, Heidelberg (2005)

Computing Differential Invariants of Hybrid Systems as Fixedpoints 189

20. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic
safety verification using barrier certificates. IEEE T. Automat. Contr. 52(8) (2007)

21. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press, Cambridge (2000)
22. Massink, M., Francesco, N.D.: Modelling free flight with collision avoidance. In:

ICECCS, pp. 270–280. IEEE Computer Society, Los Alamitos (2001)
23. Dowek, G., Muñoz, C., Carreño, V.A.: Provably safe coordinated strategy for dis-

tributed conflict resolution. In: AIAA Conference Proc. AIAA-2005-6047 (2005)
24. Damm, W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification of

LTL properties of non-linear robust discrete time hybrid systems. In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 99–113. Springer, Heidelberg
(2005)

25. Hwang, I., Kim, J., Tomlin, C.: Protocol-based conflict resolution for air traffic
control. Air Traffic Control Quarterly 15(1) (2007)

26. Mansfield, E.L.: Differential Gröbner Bases. PhD thesis, University Sydney (1991)
27. Bemporad, A., Bicchi, A., Buttazzo, G. (eds.): HSCC 2007. LNCS, vol. 4416.

Springer, Heidelberg (2007)

Constraint-Based Approach for Analysis of

Hybrid Systems�

Sumit Gulwani1 and Ashish Tiwari2

1 Microsoft Research, Redmond, WA 98052
sumitg@microsoft.com

2 SRI International, Menlo Park, CA 94025
tiwari@csl.sri.com

Abstract. This paper presents a constraint-based technique for discov-
ering a rich class of inductive invariants (boolean combinations of poly-
nomial inequalities of bounded degree) for verification of hybrid systems.
The key idea is to introduce a template for the unknown invariants and
then translate the verification condition into an ∃∀ constraint, where the
template unknowns are existentially quantified and state variables are
universally quantified. The verification condition for continuous dynam-
ics encodes that the system does not exit the invariant set from any point
on the boundary of the invariant set. The ∃∀ constraint is transformed
into ∃ constraint using Farkas lemma. The ∃ constraint is solved using a
bit-vector decision procedure. We present preliminary experimental re-
sults that demonstrate the feasibility of our approach of solving the ∃∀
constraints generated from models of real-world hybrid systems.

1 Introduction

The model checking problem seeks to determine if a given system satisfies a
given property. For several interesting classes of systems (and properties), the
model checking problem is theoretically intractable. As a result, techniques have
been developed that are relatively complete for either verification or falsifica-
tion. Predicate abstraction and abstract interpretation are examples of the for-
mer, while bounded model checking (BMC) is an example of the latter. An
attractive feature of BMC is that it reduces the search for (bounded) falsi-
fication to a single constraint that can be solved using powerful satisfiabil-
ity modulo theories (SMT) solvers. One analog of BMC for verification is k-
induction. The other analog, which we pursue in this paper in the context of
hybrid systems, is an approach based on using templates to search for inductive
invariants.

Inductive invariants are at the core of any general approach for verification. In
the case of hybrid systems, initial work on discovering inductive invariants was
based on using iterative fixed-point computation based approaches like abstract

� Research supported in part by the National Science Foundation under grant CNS-
0720721 and by NASA under Grant NNX08AB95A.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 190–203, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Constraint-Based Approach for Analysis of Hybrid Systems 191

interpretation or model checking [6, 11, 2]. Recently, constraint-based approaches
have been proposed that search for invariants of some given form by reducing
the problem to constraint solving over the unknowns in the templates [22, 17].
Constraint-based techniques offer two main advantages over fixed-point compu-
tation based techniques. First, they are goal-directed and hence have the po-
tential to be more efficient. Second, they do not require the use of widening
heuristics that lead to an uncontrollable loss of precision in fixed-point based
techniques. Furthermore, constraint-based techniques can search for “deep” in-
variants of a known form, whereas the other techniques are more suited for
“simple” invariants of (relatively speaking) an unknown form. Since hybrid sys-
tems typically have “deep” invariants of (a small number of) known simple
forms, constraint-based technique are quite appealing. Even though they have
demonstrated some success in the form of discovering equational invariants [22]
and conservatively discovering conjunctions of polynomial inequalities [17],
constraint-based techniques have not yet achieved their full potential in veri-
fication of hybrid systems.

In this paper, we develop the constraint-based approach further and show that
it can be applied to discovering a rich class of inductive invariants for verification
of hybrid systems. In particular, our constraint-based technique can be used for
discovering invariants that involve disjunctions of polynomial inequalities. One
part of the challenge here is in formulating the inductiveness requirement—if I
holds in the current state x and there is a transition from x to x′, then I holds
in the state x′—for the continuous dynamics. The key insight here is that this
requirement can be captured precisely as a universally quantified formula, just
as it can be done for discrete transitions. In the continuous case, inductiveness is
equivalent to requiring that the vector field points “inwards” on the “boundary”
of the invariant set I.

The key steps of our constraint-based approach for verification are

(1) introduce a template for the unknown inductive invariant and express the
verification conditions as satisfiability of a ∃∀ formula over the reals, where
the existential quantification is over the template variables and the universal
quantification is over the state variables (Section 3);

(2) use a generalization of Farkas’ Lemma to eliminate the ∀ quantifiers and
convert the ∃∀ formula to an ∃ formula (over the reals) (Section 4.1); and

(3) use the bit-vector theory in SMT solvers to search for solutions of the ∃
formula in a bounded range (Section 4.2).

We start by defining continuous dynamical systems and hybrid systems in
Section 2. We then show that the problem of discovering invariants and verify-
ing safety can be reduced to solving ∃∀ constraints over the reals (Section 3).
We present our approach for solving these constraints in Section 4. We present
several nontrivial examples of continuous dynamical systems and hybrid systems
that were successfully analyzed using our approach (Section 5). We compare with
related work in Section 6 before concluding.

192 S. Gulwani and A. Tiwari

2 Continuous Dynamical and Hybrid Systems

A continuous dynamical system is a tuple 〈X, Init, Inv, f〉 where X is a finite set
of variables interpreted over the reals R, X = R

X is the set of all valuations of the
variables X , Init ⊆ X is the set of initial states, Inv ⊆ X is the state invariant,
and f : X �→ X is a vector field that specifies the continuous dynamics (as ẋ =
f(x)). We assume that f satisfies the standard assumptions for existence and
uniqueness of solutions to ordinary differential equations. The set Inv specifies
the domain where the system is defined. The semantics of a continuous dynamical
system are standard.

Example 1. Consider the following adaptive cruise controller where a car is fol-
lowing a leading car maintaining a safe distance [9, 19]. Let d , vf , v, and a
respectively represent the gap between the two cars, the velocity of the leading
car, and the velocity and acceleration of the rear car. The system dynamics are
given by the following differential equations [19]:

v̇ = a, ȧ = −3a − 3(v − vf) + (d − (v + 10)), ḋ = vf − v, v̇f = af

where af is the acceleration of the leading car and an input in this model.
Formally, we have a linear continuous dynamical system 〈X, Init, Inv, f〉 where
X = {v, vf , a, d , af}, f is defined by the right-hand sides of the above differential
equations, Inv = {v ≥ 0, vf ≥ 0, −2 ≤ a ≤ 5, −2 ≤ af ≤ 5}, Init = {d =
5, v = vf , a = 0}. The invariant Inv captures the physical constraints that the
cars do not move backwards and that the acceleration of the two cars is bounded
from above and below. The initial states indicate when the above control law
may be invoked. The problem is to verify that the rear car would never collide
with the car in front, i.e., always d > 0. We note that reachability is decidable
for certain classes of linear dynamical systems [13], but this example does not
fall in these decidable classes. ��
A hybrid system HS = (Q, X, Init, Inv, t, f) consists of a finite set of modes Q, a
finite set X of variables — that together define the state space Q×X := Q×R

X

of the system — a mapping Init : Q �→ 2X that defines the initial states (in
each mode), a mapping Inv : Q �→ 2X that defines the state invariant of each
mode, a mapping f : Q �→ (X �→ X) that specifies the continuous dynamics in
each mode, and a mapping t : Q×Q �→ 2X that specifies the discrete transitions.
Specifically, for any two modes q, q′ ∈ Q, the system can jump from a state (q,x)
to any state (q′,x) if x ∈ t(q,q′). Note that, for simplicity of presentation, we
are forcing the discrete transitions to have identity reset maps (that is, x is not
updated), but our method works in the other case as well. Hence, t(q,q′) is just
the guard, or switching condition, for going from mode q to mode q′. We assume
that the semantics of hybrid systems and the set of reachable states are defined
in the standard way, see [1].

Example 2. We consider a model of adaptive cruise control coupled with trans-
mission from [25]. The hybrid system here is described by 〈Q, X, Init, Inv, t, f〉

Constraint-Based Approach for Analysis of Hybrid Systems 193

where Q := {1st , 2nd , 3rd , 4th} × {cc, acc} × {normal ,maxbrake,maxacc} and
X := {d , v, vf , af}. Thus, the hybrid system has 24 modes depending on the
gear of the rear car (1st, 2nd, 3rd, 4th), its cruise control mode (regular cruise
control cc, or adaptive cruise control acc), and its mode of operation (normal,
max-braking, or max-acceleration). The dynamics in the 24 modes of the adap-
tive cruise control model is defined as follows:

ḋ = vf − v, in all modes
v̇ = −3.5, in all maxbraking modes
v̇ = 6 − i, in all max-acceleration and i-th gear modes
v̇ = 0.9(vdes − v), in all normal, regular cruise control (cc) modes, and
v̇ = −0.66v + 0.08d − 0.4 + 0.26vf , in all normal, adaptive (acc) modes

where vdes is a parameter set to the desired velocity in the cruise control mode.
The set Inv(q) is the conjunction of all the following applicable facts:

−3.5 ≥ −0.66v + 0.08d − 0.4 + 0.26vf maxbrake, acc, all gears
−3.5 ≤ −0.66v + 0.08d − 0.4 + 0.26vf ≤ 6 − i normal, acc, i-th gear
−0.66v + 0.08d − 0.4 + 0.26vf ≥ 6 − i maxacc, acc, i-th gear
−3.5 ≥ 0.9(vdes − v) maxbrake, cc, all gears
−3.5 ≤ 0.9(vdes − v) ≤ 6 − i normal, cc, i-th gear
0.9(vdes − v) ≥ 6 − i maxacc, cc, i-th gear
0 ≤ vf ≤ 60, −3.5 ≤ af ≤ 5, d ≤ 40 acc
d ≥ 38 cc
0 ≤ v ≤ 6.7 1st gear
6.7 ≤ v ≤ 14.2 2nd gear
14.2 ≤ v ≤ 29.8 3rd gear
29.8 ≤ v ≤ 60 4th gear

All discrete transitions have identity reset maps (that is, the continuous variables
do not change values on discrete transitions). The guard t(q, q′) of a discrete
transition from mode q to q′ is given by Inv(q)∩Inv(q′). For example, there is a
transition from normal, acc, 1st-gear to normal, acc, 2nd-gear if v = 6.7∧−3.5 ≤
−0.66v + 0.08d − 0.4 + 0.26vf ≤ 5. For more details, see [25]. ��
The notation K[X] denotes the set of polynomials with coefficients in K and
variables in X . We use Q and Z (Z+) to denote the set of rationals and (positive)
integers respectively.

3 Verification of Hybrid Systems

Given a hybrid system HS = (Q, X, Init, Inv, t, f), and a safety property S :
Q → 2X, the problem of hybrid system verification is to determine if the set of
reachable states of the hybrid system in each mode q ∈ Q is a subset of S(q).

The classical approach for solving the verification problem involves finding an
inductive invariant map I : Q → 2X such that the following constraints, referred
to as the verification condition, hold for each mode q ∈ Q.

194 S. Gulwani and A. Tiwari

A1. (Initial Constraint) Init(q) ⊆ I(q).
A2. (Transition Constraint) For all modes q′ ∈ Q, I(q) ∩ t(q, q′) ⊆ I(q′).
A3. (Safety Constraint) I(q) ⊆ S(q).
A4. (Inductive Constraint) If the system is in a state from the set I(q)∩Inv(q),

then it continues to be in the set I(q), provided it also remains in Inv(q),
at any time in the future as per the dynamics f(q).1

In this section, we present a constraint-based technique for discovering an
inductive invariant map that maps different modes to closed semi-algebraic in-
variants of the form

∧
i

∨
j pij ≥ 0, where pij ∈ Q[X] are polynomials of bounded

degrees over X . We further assume that the initial conditions Init(q), the safety
conditions S(q), and the transition conditions t(q, q′) are semi-algebraic, and that
the flow f is given by polynomials. This class of polynomial hybrid systems is
very general and covers a wide variety of examples.

The key idea of our technique is to translate the verification condition into a ∃∀
constraint over real variables. (Section 4 then describes how to solve such formu-
las using Farkas lemma.) This is achieved by choosing a template, I : Q �→ 2U,X,
for the inductive invariant I, where U is a finite set of new template parame-
ters and I(q) :=

∧
i

∨
j p′ij ≥ 0 with p′ij ∈ Q[U, X]. The first three constraints

in the verification condition can be easily translated into a ∃∀ constraint over
real variables by simply substituting the invariant template I(q) in place of I(q)
and replacing ⊆ relation by ⇒ relation. (This is because the existence of I gets
translated to existence of the unknown parameters U .) The challenge is to do
this for the invariant constraint (A4). For that, we make use of continuity to
obtain the following critical (necessary and sufficient) verification condition for
continuous dynamical systems.

Proposition 1. Let 〈X, Init, Inv, f〉 be a continuous dynamical system and I
be a set such that

∧n
i=1(

∨m
j=1 pij ≥ 0) is the conjunctive normal form (CNF) of

Inv ⇒ I. The set I satisfies Constraint A4 for the continuous dynamical system
iff for all i ∈ {1, . . . , n} and all non-empty subsets J ⊆ {1, . . . , m}:

I(x) ∧
∧

j∈J

(pij(x) = 0) ∧
∧

j �∈J

(pij(x) < 0) ∧ Inv(x) ⇒
∨

j∈J

(
dpij(x)

dt
≥ 0) (A4’)

Here dp
dt denotes the time derivative of p, also called the Lie derivative of p, in

the vector field defined by f ; that is, dp
dt :=

∑
x∈X

∂p
∂x

dx
dt :=

∑
x∈X

∂p
∂xfx.

Proposition 1 essentially says that the vector field should point “inwards” on the
boundary of the set Inv ∪ I. The boundary of

∨m
j=1 pij ≥ 0 is contained in the

union (over all subsets J) of the sets
∧

j∈J pij = 0∧∧
j �∈J pij < 0. For each set in

this disjoint union, we have a formula in Constraint A4’ stating that the vector
field is pointing inwards. For instance, consider the set p1 ≥ 0∨p2 ≥ 0. Choosing
J = {1}, we get the boundary points p1 = 0∧p2 < 0. On these boundary points,
the vector field points inwards iff the Lie derivative, dp1

dt , of p1 is non-negative.

1 If I(q) is a positive invariant set [5], then it also satisfies our condition. In general,
our condition is weaker than that of positive invariant sets.

Constraint-Based Approach for Analysis of Hybrid Systems 195

HS2ExistsForall(HS,S,I) =
// Inputs: HS := (Q, X, Init, Inv, t, f), Safety property S : Q → 2X,

Template I : Q → 2U,X, where I(q) :=
∧n

i=1

∨m
j=1 pij ≥ 0, pij ∈ Q[U, X]

ans := true
for all q ∈ Q do

ans := ans ∧ (Init(q) ⇒ I(q)) ∧ (I(q) ∧ Inv(q) ⇒ S(q))
for all q′ ∈ Q do ans := ans ∧ (I(q) ∧ t(q, q′) ⇒ I(q′))
for all i ∈ {1, . . . , n}, j ∈ {1, . . . , m} do

Lp :=
∑

x∈X

∂pij

∂x
fx(q)

ans := ans ∧ (I(q) ∧ Inv(q) ∧ pij = 0 ∧
∧k=m

k=1,k �=j pik ≤ 0 ⇒ Lp ≥ 0)

return(∃U∀Xans)

Fig. 1. Translating safety verification to satisfiability of an ∃∀ formula

The Lie derivatives, dp
dt , in Equation A4’ get reduced to polynomials as dp

dt :=
∑

x∈X
∂p
∂x

dx
dt , and this summation simplifies into a polynomial if p is a polyno-

mial and dx
dt := f(x) contains only polynomials. Since Constraints A1, A2, A3,

and A4’ are expressible in the first-order theory of reals, it follows from the decid-
ability of this theory [26] that the problem of discovering bounded-size inductive
invariants for polynomial hybrid systems over the class of positive boolean com-
bination of (non-strict) polynomial inequalities of bounded degree is decidable.
However, our interest is in obtaining a more practical technique for generating
invariants. Figure 1 shows the construction of the ∃∀ formula over real variables
using the Constraints A1, A2, and A3, and Constraint A4’. Since the number
of constraints in A4’ is exponential in m, Figure 1 uses a stronger variant of
Constraint A4’ that contains only a linear number of constraints, but that is
usually sufficient in practice. In the next section we present our approach for
solving these constraints.

Example 3 (Verification to ∃∀ Constraint). Consider the dynamical system from
Example 1 and the verification problem stated therein. Let us assume a template
that searches for linear invariants:

I := (αvf + βv + γa + δd ≥ ε) ∧ (d ≥ 0)

where U := {α, β, γ, δ, ε}. Since Constraint A3 is trivially satisfied, the safety of
the adaptive cruise control law reduces to the satisfiability of the following ∃∀
constraint which essentially says that I is an inductive invariant.

∃U∀X : ((d = 5 ∧ v = vf ∧ a = 0 ⇒ I) (A1)
∧(I ∧ Inv ∧ αvf + βv + γa + δd = ε ⇒ p ≥ 0) (A4’)
∧(I ∧ Inv ∧ d = 0 ⇒ vf − v ≥ 0)) (A4’)

where p is the Lie derivative of αvf +βv+γa+ δd − ε and is equal to αv̇f +βv̇+
γȧ + δḋ = αaf + βa − 3γa − 3γv + 3γvf + γd − γv − 10γ + δvf − δv. Similarly,
vf − v is the Lie derivative of d . Note that X, Inv are defined in Example 1. ��

196 S. Gulwani and A. Tiwari

ExistsForall2Exists(φ) =

// Input: φ := ∃U∀X
Vn

i=1(
Wm

j=1 pij ≤ 0 ∨
Wl

k=1 p′
ik < 0), where pij , p

′
ik ∈ Q[U, X]

V := ∅, ans := true
for i = 1 to n do

V := V ∪ {μi} ∪ {μij : j = 1, . . . , m} ∪ {νik : k = 1, . . . , l}
ans := ans∧ ElimX(μi +

Pm
j=1 μijpij +

Pl
k=1 νikp′

ik = 0) ∧ (μi > 0 ∨
Wm

j=1 μij > 0)

return(∃U∃V ans)

ElimX(p = 0) = // Input p ∈ Q[U, X]
Let p :=

P
α pαXα, where pα ∈ Q[U] are the coefficients of p in (Q[U])[X]

return(
V

α pα = 0)

Fig. 2. Translating ∃∀ formula to an ∃ formula

4 Solving ∃∀ Formulas

We check for satisfiability of the ∃∀ formula in two steps. First we eliminate
the inner universal quantifier and next we check for satisfiability of the resulting
existential formula over a finite domain using a satisfiability modulo theories
(SMT) solver.

4.1 Step 1: Eliminating Universal Quantification

The inner universal quantifier from the ∃∀ formula is eliminated using the fol-
lowing variant of Farkas Lemma.

Lemma 1. For polynomials pj , rk ∈ Q[X], the formula
∧

j∈J pj > 0 ∧∧
k∈K rk ≥ 0 is unsatisfiable (over the reals) if there exist non-negative con-

stants μ, μj (j ∈ J), and νk, (k ∈ K) such that μ+
∑

j∈J μjpj +
∑

k∈K νkrk = 0
and at least one of μj , μ is strictly positive.

If polynomials pj, rk are linear (more generally, linear only in the universal vari-
ables; for example, see the constraint in Example 3), then the condition above
is both necessary and sufficient. However, the condition is not necessary for un-
satisfiability when pj , rk are arbitrary nonlinear polynomials.2 After applying
Lemma 1, the universal variables can be eliminated by just equating the coeffi-
cients of each of the power products in the following expression to zero.

μ +
∑

j∈J

μjpj +
∑

k∈K

νkrk

We can convert any universally quantified arithmetic formula ∀X : φ into an
existentially quantified formula using the above lemma, as shown in Figure 2.3

We illustrate this on our running example below.
2 There is a generalization of Farkas Lemma for arbitrary polynomials, called Posi-

tivstellensatz [15], obtained by replacing the multipliers μj , νk by sum of squares of
polynomials, but we did not use it in our experiments.

3 This is achieved by converting φ into conjunctive normal form
∧

i(
∨

j pij ≥ 0 ∨
∨

k rik > 0) and noting that ∀X : φ ≡
∧

i ∀X(
∨

j pij ≥ 0 ∨
∨

k rik > 0) ≡
∧

i(¬(
∨

j pij ≥ 0 ∨
∨

k rik > 0) is unsatisfiable) ≡
∧

i((
∧

j −pij > 0 ∧
∧

k −rik ≥ 0) is unsatisfiable). We can now use Lemma 1 on each conjunct.

Constraint-Based Approach for Analysis of Hybrid Systems 197

Example 4. Consider the ∃∀ formula in Example 3. To avoid clutter, we illustrate
the ∀ elimination on a simpler subformula from that formula:

∃U∀X : (αvf + βv + γa + δd ≥ ε ∧ d = 0 ∧ 2a ≥ −7 ⇒ vf − v ≥ 0)

Using Lemma 1, the validity of the above formula is equivalent to the existence
of constants V := {ν1, λ, ν2, μ1, μ2} such that

ν1(αvf + βv + γa + δd − ε) + λd + ν2(2a + 7) + μ1(v − vf) + μ2 = 0,

and ν1, μ1, μ2 ≥ 0 and at least one of the μ’s is strictly positive. By equating the
coefficients to 0, we get the following existentially quantified formula,

∃U∃V : ν1α − μ1 = 0 ∧ ν1β + μ1 = 0 ∧ ν1γ + 2ν2 = 0 ∧ ν1δ + λ = 0 ∧
μ2 − ν1ε + 7ν2 = 0 ∧ ∧

i μi ≥ 0 ∧ ∧
i νi ≥ 0 ∧ (μ1 > 0 ∨ μ2 > 0)

A possible solution is

ν1 = 2, λ = −2, ν2 = 1, μ1 = 2, μ2 = 1, α = 1, β = −1, γ = −1, δ = 1, ε = 4.

Note that μ1 is strictly positive. This corresponds to the inductive invariant
vf − v − a + d ≥ 4. We remark here that the full example contains additional
constraints, but the above solution for U continues to be a solution and it is the
solution computed by our tool. ��

We now state the correctness of our approach as follows.

Theorem 1. Let HS be a hybrid system and S a safety property. For any tem-
plate I, if the constraint ExistsForall2Exists(HS2ExistsForall(HS, S, I)) is
satisfiable, then for every reachable state (q, x) of HS, it is the case that x ∈ S(q).

4.2 Step 2: Solving the ∃ Constraint Using an SMT Solver

We have reduced the verification problem to the satisfiability of some (existen-
tially quantified) nonlinear constraints. The important point to note here is that
we are interested in finding solutions, rather than showing unsatisfiability, of the
generated existential formula.

We search for solutions of the nonlinear constraints using the bit-vector deci-
sion procedure of an SMT solver. The translation of ∃Y : φ to bit-vectors is ob-
tained in several steps. First polynomials in Q[Y] that occur in φ are converted
to polynomials in Z[Y] by multiplying suitably by positive integer constants.
Next we pick an integer lower bound l and an integer upper-bound u for the
variables Y . Finally, we search for integer solutions for Y in the chosen finite
range by searching for the bit-level representation. We choose a size for the bit-
vectors by conservatively estimating the number of bits that would be required
to evaluate the polynomials in φ over the range l ≤ Y ≤ u. The pseudo-code for
the translator is given in Figure 3.

198 S. Gulwani and A. Tiwari

Exists2BitVector(∃Y : φ, l, u) =
// Inputs:Y := {y1, . . . , yn}, φ :=

∧
i

∨
j pij ∼ij 0, pij ∈ Z[Y], ∼ij∈ {≥, =, >}

l, u ∈ Z
n given lower- and upper-bounds for Y

forall i, j: mij := estimate max #bits reqd to evaluate pij when l ≤ Y ≤ u
Let m be the maximum of mij’s
ans := declare each yi to be a bit-vector of size m
return(ans ,

∧
i

∨
j E2BVA(pij ∼ij 0) ∧ E2BVA(Y ≥ l) ∧ E2BVA(u ≥ Y))

E2BVA(p1 ∼ p2) = // p1, p2 ∈ Z
+[Y]

return(p′
1 ∼′ p′

2) where p′
1 ∼′ p′

2 is obtained by replacing ∗, +, ≥, >, = by
corresponding bit-vector operations in p1 ∼ p2

Fig. 3. Converting satisfiability checking to bit-vector satisfiability problem. The bit-
vector instance searches for all bounded integer solutions for Y in the range l ≤ Y ≤ u
that satisfy φ.

4.3 Discussion

Comparing the overall approach to bounded model checking, we note that both
approaches translate the analysis problem into a constraint satisfiability prob-
lem. In the case of BMC, the generated constraint encodes existence of a counter-
example, whereas here the generated constraint encodes existence of a proof.

When verifying a large hybrid system, we start by applying our technique to
a small component of the system using linear and quadratic templates. If we find
an invariant for the smaller subsystem, we use it as a starting point to construct
refined templates for the full system (Example 6).

Our constraint-based technique for verification can be used for solving in-
stances of the synthesis problem as well. The technique uniformly treats the en-
tities of the verification condition, which includes both the inductive invariants
and the description of the system. It does not matter whether the invariants are
unknown or parts of the system are unknown or both of them are unknown. As
long as there is sufficient information in the system description, the constraint-
based approach can potentially find a solution for the unknown quantities.

Example 5. Consider the classical thermostat example, which is a hybrid system
with two modes: in the “on” mode, temperature x increases as dx/dt = 100−x,
and in the “off” mode, it decreases as dx/dt = −x. We want to synthesize the
control logic that determines when to switch modes. Assume initially mode is
“off” and x = 78. The goal is to ensure 75 ≤ x ≤ 80 always. For simplicity,
assume that the specified safety property, 75 ≤ x ≤ 80, is also an inductive
invariant (and we do not guess a template for the invariant). Assume that we
guess that the guard for the transition from heater-on to heater-off mode is of
the form x ≥ α and that the guard for the reverse transition is x ≤ β. We can
now write the verification conditions as follows:

∃α, β : ∀x : (x = 75 ∧ x > β ⇒ −x ≥ 0) ∧ (x = 80 ∧ x > β ⇒ −x ≤ 0)∧
(x = 75 ∧ x < α ⇒ 100 − x ≥ 0) ∧ (x = 80 ∧ x < α ⇒ 100 − x ≤ 0)∧
(x = 78 ⇒ x > β)

Constraint-Based Approach for Analysis of Hybrid Systems 199

One solution returned by our constraint solver was α = β = 76. However, this
solution leads to zeno behavior. We can add additional constraints (not described
in this paper) that capture the requirement that the switching logic be most
liberal, in which case we get β = 75 and α = 79. ��

5 Experimental Results

The approach described in this paper has been partially implemented in the
form of two separate components. The first component takes an ∃∀ formula
(over arbitrary nonlinear polynomials) and returns an ∃ formula. The second
component takes the ∃ formula and creates a Yices [8] formula over bit-vectors.
The implementation is in Lisp. The bit-vector decision procedure of Yices is used
to finally search for solutions. The front-end step of generating the ∃∀ formula
from a hybrid system description has not been automated yet.

All examples presented in this paper were analyzed automatically using the
above tools. Some results are reported in Table 1.

Example 6 (Adaptive Cruise Control with Transmission). Consider the cruise
control model from Example 2. The safety property to establish is that inter-
vehicle separation remains positive; specifically, d ≥ 5. We assume that initially
the rear car is in the mode normal, acc, 4-th gear satisfying v = vf ∧ −3.5 ≤
−0.66v + 0.08d − 0.4 + 0.26vf ≤ 2 ∧ 29.8 ≤ v ≤ 60. We want to prove the
safety property assuming that the velocity vf of the leading car remains bounded
between 30 ≤ vf ≤ 60.

Our tools prove the safety by generating the following invariant for each of
the acc modes:

Invariant Modes
2d − 2v + vf − 2 ≥ 0, d ≥ 5 normal, acc, all gears
−350 ≤ −66v + 8d − 40 + 26vf normal, acc, all gears
false max-braking, acc, all gears
2d − 2v + vf − 2 ≥ 0, d ≥ 5 max-acceleration, acc, all gears

Note that the max-braking mode is not reachable from the chosen initial
states. We did not generate the invariants for all modes in one step. We first
generated invariants for single modes and that gave us an idea of the form of
invariants and helped refine our template. Using a refined template, we generated
invariants for all the acc-modes simultaneously. ��
Example 7 (Human Blood Glucose Metabolism). We consider the model of in-
sulin metabolism in the body of a Type-I diabetic patient [24, 14]. For purposes
of modeling insulin concentration in the human body, the body is divided into
six compartments – brain (B), heart (H), gut (G), lungs (L), kidney (K), and pe-
riphery (P) – and each state variable represents the insulin concentration in one
such compartment (there are two variables for the “periphery” compartment).

200 S. Gulwani and A. Tiwari

Table 1. Experimental Results. We report the number of continuous variables (Dim)
in the example, the size of the Yices formulas generated by the example in terms of
the number of variables (Vars), the size of bit-vectors (Bits), and number of assertions
(Assertions), and the time (Time) taken by Yices to find a model on a 64-bit Pentium
3.4GHz cpu with 2MB cache.

Example Dim Vars Bits Assertions Time

disjunction Ex. 9 2 14 6 50 7ms

delta-notch 4 34 8 120 30ms

plankton Ex. 8 3 31 8 110 56ms

thermostat 1 29 20 126 .45s

thermostat synthesis Ex. 5 1 21 20 75 1.2s

ACC Ex. 1 5 28 12 95 1.3s

acc-transmission Ex. 2 4 35 24 122 4.7s

insulin Ex. 7 7 66 18 180 18s

The dynamics of the system are given as follows, see also [24]:

dIB/dt = −45/26IB + 45/26IH

dIH/dt = 45/99IB − 312/99IH + 90/99IL + 72/99IK + 105/99IPV + u

dIG/dt = 72/94IH − 72/94IG

dIL/dt = 18/114IH − 720/10000IH + 72/118IG − 2880/10000IG − 90/118IL

dIK/dt = 72/51IH − 72/51IK − 2160/10000IK

dIPV /dt = 105/74IH − 105/74IPV − 674/1480IPV + 674/1480IPI

dIPI/dt = 1/20IPV − 1/20IPI − 21231/51580IPI

The control input u in this case is the insulin injected into the body by an
external insulin pump. Since we assume a Type-I diabetic, there is no pancre-
atic insulin release and hence no feedback from the glucose metabolism model.
Assuming that the input u is bounded between 20 and 25, we can compute
bounds or ranges for insulin concentrations in different body compartments. As
remarked earlier, we can easily invert the analysis and ask for acceptable bounds
on insulin injection rate that will ensure bounded insulin concentration levels in
the body. ��
Example 8. Consider the following Phytoplankton Growth Model (see [3] and
references therein): ẋ1 = 1 − x1 − x1x2

4 , ẋ2 = (2x3 − 1)x2, ẋ3 = x1
4 − 2x2

3, where
x1 denotes the substrate, x2 the phytoplankton biomass, and x3 the intracellular
nutrient per biomass. For this nonlinear dynamical system, we can immediately
generate the following invariant: 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1/2. ��
Example 9 (Disjunctive Invariants). Our technique can be used to generate dis-
junctive invariants. Consider the system dx/dt = −y, dy/dt = −x with initial
states given by x ≥ 3. Using the template x ≥ α ∨ y ≥ β, we can generate the
invariant x ≥ 0 ∨ y ≥ 0. ��

Constraint-Based Approach for Analysis of Hybrid Systems 201

6 Related Work

The approach of using templates and generating invariants of a specific form for
hybrid systems was introduced simultaneously by Sankaranarayanan et. al. [22]
and Prajna et. al. [16, 17, 18]. In all such approaches, an ∃∀ formula is generated,
although this may not be explicitly stated. The various approaches differ in the
form of the invariants considered, the technique used to generate the ∃∀ formula,
and the approach for solving it. Templates are restricted to polynomial equations
in [22] and Proposition 1 is not required there. The approach for solving the
∃∀ constraints is based on Gröbner basis computation. Polynomial inequality
templates are used in [17], but a much weaker variant of Proposition 1 is used
there. The constraint solving method in [17] is based on convex optimization and
sum-of-squares computation and is, in essence, a slightly more general form of
Lemma 1 inspired by Positivstellensatz. We build upon these works and explore
a more precise translation into ∃∀ constraints and the use of SMT solvers as the
backend engine.

Tiwari [27] generated linear inductive invariants for linear systems. Rodriguez-
Carbonell and Tiwari [20] showed that the best (strongest) possible polynomial
equational invariant was computable for hybrid systems with linear dynamics
in each mode. Pappas et al. have also considered the problem of computing
invariants, but only for linear systems, using interesting techniques [28, 29].

In software program analysis, constraint based techniques have been success-
fully applied for discovering linear arithmetic invariants [7, 21, 23, 10], non-linear
polynomial invariants [12] and invariants in the combined theory of linear arith-
metic and uninterpreted functions [4].

7 Conclusion

The verification technique based on guessing the form of inductive invariant and
searching for invariants of that form using SMT solvers is a potent approach
for verifying hybrid systems. Its extension to solving the synthesis problem is
left for future work. Using efficient nonlinear constraint solvers directly could
also significantly improve the performance of our approach and remains to be
explored.

References

[1] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(3), 3–34 (1995)

[2] Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.J.: Discrete abstractions of
hybrid systems. Proceedings of the IEEE 88(2), 971–984 (2000)

[3] Bernard, O., Gouze, J.-L.: Global qualitative description of a class of nonlinear
dynamical systems. Artificial Intelligence 136, 29–59 (2002)

202 S. Gulwani and A. Tiwari

[4] Beyer, D., Henzinger, T., Majumdar, R., Rybalchenko, A.: Invariant Synthesis
for Combined Theories. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS,
vol. 4349, pp. 378–394. Springer, Heidelberg (2007)

[5] Blanchini, F.: Set invariance in control. Automatica 35, 1747–1767 (1999)
[6] Chutinan, A., Krogh, B.H.: Verification of Polyhedral-Invariant Hybrid Automata

Using Polygonal Flow Pipe Approximations. In: Vaandrager, F.W., van Schuppen,
J.H. (eds.) HSCC 1999. LNCS, vol. 1569. Springer, Heidelberg (1999)

[7] Colón, M., Sankaranarayanan, S., Sipma, H.: Linear Invariant Generation Using
Non-linear Constraint Solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

[8] Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for dpll(t). In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006), http://yices.csl.sri.com/

[9] Godbole, D., Lygeros, J.: Longitudinal control of the lead car of a platoon. IEEE
Transactions on Vehicular Technology 43(4), 1125–1135 (1994)

[10] Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solv-
ing. In: Proc. PLDI (2008)

[11] Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer 1, 110–122 (1997)

[12] Kapur, D.: Automatically generating loop invariants using quantifier elimination.
In: Deduction and Applications (2005)

[13] Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computations for
families of linear vector fields. J. Symbolic Computation 32(3), 231–253 (2001)

[14] Parker, R.S., Doyle, F.J., Peppas, N.A.: A model-based algorithm for blood glu-
cose control in type I diabetes patients. IEEE Trans BioMed Eng. 46(2) (1999)

[15] Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometric
methods in robustness and optimization. PhD thesis, California Inst. of Tech.
(2000)

[16] Prajna, S.: Barrier certificates for nonlinear model validation. In: Proc. IEEE
Conference on Decision and Control (2003)

[17] Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier cer-
tificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp.
477–492. Springer, Heidelberg (2004)

[18] Prajna, S., Jadbabaie, A., Pappas, G.: A framework for worst-case and stochastic
safety verification using barrier certificates. IEEE Trans. Aut. Control (2005)

[19] Puri, A., Varaiya, P.: Driving safely in smart cars. In: Proceedings of the 1995
American Control Conference (1995)

[20] Rodriguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for hybrid
systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 590–
605. Springer, Heidelberg (2005)

[21] Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation
using gröbner bases. In: POPL 2004 (2004)

[22] Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid
systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–
554. Springer, Heidelberg (2004)

[23] Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable Analysis of Linear Sys-
tems Using Mathematical Programming. In: Cousot, R. (ed.) VMCAI 2005.
LNCS, vol. 3385, pp. 25–41. Springer, Heidelberg (2005)

[24] Sorensen, J.T.: A physiologic model of glucose metabolism in man and its use
to design and assess improved insulin therapies for diabetes. PhD thesis, Dept.
Chem. Eng., Massachusetts Inst. Technology (MIT), Cambridge (1985)

http://yices.csl.sri.com/

Constraint-Based Approach for Analysis of Hybrid Systems 203

[25] Stursberg, O., Fehnker, A., Han, Z., Krogh, B.H.: Verification of a cruise control
system using counterexample-guided search. Control Engineering Practice 12(10),
1269–1278 (2004)

[26] Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn.
University of California Press (1948)

[27] Tiwari, A.: Approximate reachability for linear systems. In: Maler, O., Pnueli, A.
(eds.) HSCC 2003. LNCS, vol. 2623, pp. 514–525. Springer, Heidelberg (2003)

[28] Yazarel, H., Pappas, G.J.: Geometric programming relaxations for linear system
reachability. In: Proc. 2004 American Control Conference (2004)

[29] Yazarel, H., Prajna, S., Pappas, G.J.: S.O.S. for safety. In: Proc. 43rd IEEE Con-
ference on Decision and Control (2004)

AutoMOTGen: Automatic Model Oriented Test

Generator for Embedded Control Systems�

Tool Paper

Ambar A. Gadkari, Anand Yeolekar, J. Suresh,
S. Ramesh, Swarup Mohalik, and K.C. Shashidhar

General Motors R&D - India Science Lab, Bangalore
{ambar.gadkari,anand.yeolekar,suresh.jeyaraman,
ramesh.s,swarup.mohalik,shashidhar.kc}@gm.com

1 Introduction

We present AutoMOTGen, a tool for automatic test case generation (ATG)
from MATLAB Simulink/Stateflow (SL/SF) models [6] for testing automotive
controllers. Our methodology is based on model checking [2]. The main highlights
of the tool are:

1. Enhanced coverage of the model elements as well as high-level requirements.
2. A modular design for plug-and-play of different model checkers, test data

generators and coverage analysis tools for enhancing the test suite quality.
3. Implements sampling time abstraction to generate tests with lesser number

of (discrete) steps in the intermediate model.
4. Implements coverage dependent instrumentation of the model for the struc-

tural coverage criteria.
5. Capability to handle SL/SF blocks commonly used in automotive controllers

(including blocks such as integrator, delay, multiplication/division, look-up
tables, triggered subsystems and hierarchical and parallel charts).

The current implementation of AutoMOTGen uses SAL [8] as an intermediate
representation and uses associated tools such as sal-atg, sal-bmc and sal-smc
for generation of test data and proving the unreachability of some of the coverage
goals. AutoMOTGen is implemented in Java and C++ (.NET framework) and
uses MATLAB scripting language for extracting the relevant information from
SL/SF models required for the purpose of test generation.

2 Motivation

Model checking, besides formal verification, has also been shown to provide an
efficient technique to automatically derive test sequences from transition sys-
tem models [1,4,5]. This approach for ATG relies on capabilities of the model
� The opinions expressed in this article are those of the authors, and do not necessarily

reflect the opinions or positions of their employers, or other organizations.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 204–208, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

AutoMOTGen for Embedded Control Systems 205

checkers to generate traces for counter-examples of properties that do not hold
in the model. Test suites are usually derived to satisfy certain coverage criteria
of a model. The coverage criteria are mostly based on structural coverage of the
transition system model such as state and transition coverage. The structural
elements (states and transitions) are typically associated with Boolean variables
called trap variables. Structural coverage of a model element is then reduced to
model checking the reachability of the state where the associated trap variable
is true. Model checking based ATG strives to find the most efficient test suite
using directed search techniques. The main advantage of this approach is that
one can achieve a systematic coverage of undischarged goals by using various
model checking engines employing techniques such as explicit model checking,
bounded model checking (based on SAT/SMT solvers), symbolic model check-
ing and others in combination with various model slicing and reduction tech-
niques for covering the deeper goals. Also, whenever certain goals cannot be
covered the model checking engines can be invoked to prove the unreachabil-
ity of those goals. Various other model abstraction techniques such as counter-
example guided abstraction refinement, predicate-based abstraction and others
can be explored to enhance the coverage, efficiency and scalability. Compared to
other techniques such as random generation or guided-simulation used by most
of the current commercial ATG tools [9,7] used in automotive controller devel-
opment, the model checking based approach for ATG holds a greater promise in
covering the deep-rooted coverage goals. This motivated the work on develop-
ment of AutoMOTGen two years back. It serves as an experimental testbed for
evaluating various technologies for test generation using industrial case studies.
Recently, The Mathworks has introduced a toolbox, Simulink Design Verifier [6]
which has ATG capability based on Prover’s SAT-solver technology. We believe
that our tool with its unique capability to provide an integrated environment for
generation of test cases with plug-n-play of diverse tools and combining various
techniques can help in addressing the needs of industrial scale designs. Results
from our case studies have been encouraging in this regard.

3 Overview of Test Generation Flow

We describe here the generic flow of AutoMOTGen as shown in Figure 1. There
are three inputs, namely, SL/SF models, high-level requirements and test spec-
ifications including different coverage goals. The output is a test suite of timed
input-output sequences that can be used for testing the implementation. The test
specification includes different coverage goals based on various structural criteria
defined over SL/SF models. The test specification and high-level requirements
are translated into formal properties using a subset of Linear Temporal Logic
(LTL) by the property generator module. The SL/SF model is translated into
a formal language which can be fed to the model checking engine. The model
checking engine then verifies the formal model. The generated counter-example
traces are converted into test cases consisting of timed input-output sequences.

206 A.A. Gadkari et al.

Fig. 1. AutoMOTGen architecture Fig. 2. AutoMOTGen back-end flow

4 AutoMOTGen Implementation

The current implementation of AutoMOTGen uses SAL as an intermediate lan-
guage. This enables use of associated tools such as sal-atg, sal-bmc, sal-smc, etc.
The back-end flow for model translation and test case generation is shown in
Figure 2. The translator extracts the relevant information from SL/SF models
through scripts built using MATLAB APIs. The SL/SF models are simulated
using the generated test data and the corresponding outputs are stored as ref-
erence for testing the implementation. During simulation the model coverage
information is obtained to assess the completeness of the generated test data.
The translation of SL/SF to SAL is non-trivial and involves various steps such
as time discretization, type abstractions and captures the simulation semantics
of SL/SF. The SAL model is structured such that it retains the hierarchy in-
formation and allows the mapping of structural coverage of SL/SF model to
the coverage goals. Additionally, monitors are inserted to cover the high-level
requirements specified in the form of temporal logic properties. The continuous
blocks in Simulink are approximated using linear interpolation. The step-size
used for sampling is taken as a user input during the translation step. The user
can modify the step-size depending on the coverage information. The trap vari-
ables are selectively introduced into the SAL model based upon the user selected
coverage options. The use of model-checker such as sal-bmc requires that all the
variables should be of type bounded integers. The model-checker sal-inf-bmc can
be used in cases where real datatypes are present in the model, however, it puts
restrictions on the arithmetic operations which result in nonlinear constraints. In
these cases the real variables are approximated by use of look-up-tables for arith-
metic operations. The tool provides a capability to easily modify the variable
types and their ranges before selecting the appropriate model-checking engine.
The uncovered goals are checked for proving unreachability and the results are

AutoMOTGen for Embedded Control Systems 207

reported in the test generation logs. The unreachability of conditions or states
in SAL model does not always imply unreachability in the SL/SF model. The
tool provides a simple and intuitive GUI.

5 Case Studies

Our methodology has been evaluated using automotive controller case studies
viz., Automatic Transmission Controller (ATC) and Adaptive Cruise Controller
(ACC). The test results were compared with those obtained from a commer-
cial tool that uses random test data generation techniques. The tests using our
method were found to be more efficient in terms of providing model coverage
with less number of input injections thus significantly reducing the test execu-
tion time, by almost factor of 10 in some cases. Results from these case studies
based on a very preliminary implementation with a semi-automated flow are
presented in [3]. In AutoMOTGen the entire end-to-end methodology has been
fully automated. We have been able to handle various medium-sized controller
models (corresponding RTW generated C code ranging between 2000-3000 lines)
from real automotive subsystems. Recently, a larger case study has been initi-
ated using controller modules from StabiliTrakTM project (Electronic Stability
Control system).

6 Conclusion

We have presented AutoMOTGen for automatic test case generation from SL/SF
models of automotive controllers. It uses model checking for efficient generation
of test data. It is designed to be modular to enable plug-and-play of different
model checkers, test data generators and coverage analysis tools for obtaining
efficient test suites. The tool has been evaluated using automotive controller ex-
amples and the comparative results with respect to other commercially available
tools have been encouraging. Various enhancements are being carried out in the
tool such as counter-example based abstraction refinement and other techniques
to address scalability issues arising in larger industrial designs. HybridSAL is
also being explored as one of the approaches for discretization.

References

1. Ammann, P., Black, P.E., Majurski, W.: Using model checking to generate tests
from specifications. In: ICFEM, p. 46 (1998)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (2000)

3. Gadkari, A., Mohalik, S.K., Shashidhar, K.C., Yeolekar, A., Suresh, J., Ramesh, S.:
Automatic generation of test-cases using model checking for SL/SF models. In: 4th
International Workshop on Model Driven Engineering, Verification and Validation
(MoDeVVa 2007) (2007)

208 A.A. Gadkari et al.

4. Gargantini, A., Heitmeyer, C.L.: Using model checking to generate tests from re-
quirements specifications. In: ESEC / SIGSOFT FSE, pp. 146–162 (1999)

5. Hamon, G., deMoura, L., Rushby, J.: Generating efficient test sets with a model
checker. In: 2nd International Conference on Software Engineering and Formal
Methods, Beijing, China, September 2004, pp. 261–270. IEEE Computer Society,
Los Alamitos (2004)

6. The Mathworks, Inc., http://www.mathworks.com
7. Reactis, Reactive Systems, Inc., http://www.reactive-systems.com
8. SAL homepage, http://sal.csl.sri.com/
9. Safety Test Builder, TNI-Software, http://www.tni-software.com

http://www.mathworks.com
http://www.reactive-systems.com
http://sal.csl.sri.com/
http://www.tni-software.com

FSHELL: Systematic Test Case Generation for Dynamic
Analysis and Measurement�

Tool Paper

Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut Veith

Technische Universität Darmstadt, Germany

Abstract. Although the principal analogy between counterexample generation
and white box testing has been repeatedly addressed, the usage patterns and per-
formance requirements for software testing are quite different from formal verifi-
cation. Our tool FSHELL provides a versatile testing environment for C programs
which supports both interactive explorative use and a rich scripting language.
More than a frontend for software model checkers, FSHELL is designed as a
database engine which dispatches queries about the program to program analysis
tools. We report on the integration of CBMC into FSHELL and describe architec-
tural modifications which support efficient test case generation.

1 Introduction

This paper introduces our prototype tool FSHELL which supports both interactive and
scripted test case generation for real-world C code. We have consciously designed
FSHELL in analogy to a database engine; FSHELL uses a query language tailored for
program analysis, and dispatches queries about program paths to software analysis tools.
The query language is built around the concept of a test job, i.e., a specification of program
paths along with coverage requirements and other parameters, and provides the system
engineer with convenient primitives for test job management and test job execution.

In the first iteration of the project, we have integrated CBMC [1] as model check-
ing backend. We are using SAT enumeration techniques to generate families of test
cases subject to coverage criteria in a single run of the model checker. We note that the
program-as-database metaphor has been previously used in the BLAST project [2]. The
query language of BLAST [3,4], however, is tailored towards model checking, and test-
ing activities focus on basic block coverage only [5]. Other tools using model checkers
for test case generation are Java PathFinder [6] and SAL2 [7]. Unlike FSHELL, neither
of them supports full C semantics. Conversely, the CUTE toolkit implements concolic
testing [8], which results in a tool that uses directed testing to form a model checker.

2 Features of the FSHELL Environment

The FSHELL environment assists the user to create, manage and execute test jobs. With
each source file, the tool automatically associates a generic test job which the user

� Supported by DFG grant FORTAS – Formal Timing Analysis Suite for Real Time Programs
(VE 455/1-1).

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 209–213, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

210 A. Holzer et al.

annotates and modifies for the purpose at hand: On the one hand, structural constraints
restrict the test job to program paths matching a regular expression over program lo-
cations annotated by program predicates. To this end, FSHELL provides convenient
primitives for structural notions of C programs such as function headers, labels etc.
Internally, FSHELL represents structural constraints as path automata. On the other
hand, quality constraints require the set of test cases generated by a test job to meet
minimal requirements such as basic block coverage, condition coverage or predicate
coverage (cf. [9]). Importantly, different quality constraints can be enforced locally
in the program. An example of the representation of these requirements is given in
Sec. 3.

Additional commands for test job management enable the user to maintain and de-
velop multiple test jobs for complex applications. Thus, test jobs are viewed as ob-
jects which are loaded, stored, duplicated, merged, etc. When a test job is prepared,
the user invokes test case generation commands to compute a test suite which satisfies
the constraints expressed by the test job. FSHELL also provides support for test case
execution to observe non-functional properties not only on desktop machines, but also
on embedded devices. Fig. 1 presents an example session of FSHELL. We show the
query used to generate a test suite with predicate coverage for bubble.c for an array of
size 20.

1 void bubble(int a[], int N) {
2 int i, j, t;
3 for (i = N - 1; i >= 0; i--)
4 for (j = 1; j <= i; j++)
5 if (a[j - 1] > a[j])
6 SWAP(a[j - 1], a[j]);
7 }
8 void main() {int a[20]; bubble(a, 20);}

> ADD_SOURCE(bubble.c);
> GENERATE_TC(COVERAGE(ENTRY(main),

EXIT(main), PREDICATE)) AS tc1;
> SHOW(tc1);
IN: a={0,1128267777,...,1465438334}
IN: a={0,-2139095040,...,1709483866}

Fig. 1. Source code of bubble.c and corresponding FSHELL session

3 Tool Architecture

We chose CBMC 2.4 as the first backend for FSHELL because (1) it supports full C
syntax and semantics, (2) BMC is conceptually closer to testing than an abstraction/re-
finement approach, (3) the source code is available, and (4) it is well engineered and
offers a very clean design and a stable code base. FSHELL is, like CBMC, implemented
in C++ and accounts for 13k lines of code.1

The design of FSHELL is based on three main layers. The frontend handles user in-
teractions with a command line interface. There, job control commands, such as loading
source files into the test job, and constraint specifications are entered by the user. The
management layer implements control commands and redirects queries to the appro-
priate backend. The backend performs the actual path feasibility analysis and test case

1 Visit http://code.forsyte.cs.tu-darmstadt.de/fshell to follow development.

http://code.forsyte.cs.tu-darmstadt.de/fshell

FSHELL: Systematic Test Case Generation 211

generation. Both the management and the backend access a single shared cache. This
cache stores all queries and their respective results. Fig. 2 gives an overview of the
collaboration of components. Dashed rectangles represent parts reused from CBMC.
Both path feasibility analysis and test case generation follow a bounded model checking

BMC steps derived

from CBMC

codebase

Frontend

Management

Cache

CBMC C

parser

Path analysis
Test case

generation

SAT solver

Query, Result

Command/Query

AST w/

automaton

GOTO

conversion

Boolean

equation

Feasibility

Path analysis

AST w/

automaton

SAT solver

Testcases

Counterex.

analysis

Control flow

graph

Test case

generation

Query, ASTQuery, AST

Test case

generation

AST

Formula +

assumptions

Fig. 2. Main components of FSHELL

workflow. In path analysis, the
CBMC modules in use are unmod-
ified and only invoked from within
our code. Test case generation, how-
ever, requires an additional control
flow graph analysis. To this end,
we collect conditions along possible
control flow paths and identify the
relevant literals used in the SAT en-
coding. Further, to allow for highly
efficient test case generation of large
test suites, the SAT solver is in-
voked in an incremental fashion, re-
taining the conflict clause database.
In this process, we use both block-
ing clauses and assumptions in a way
that guarantees the conflict clause
database to remain consistent. By the
design of our procedure, the resulting SAT solver invocation returns UNSAT only if
there is no further matching test case, i.e., all coverage criteria are satisfied.

As an example, consider decision coverage. In the test job the user specifies a seg-
ment of the program where all reachable branches have to be covered. From the AST
and the CNF formula, FSHELL obtains a set B0 of Boolean variables which correspond
to the branches to be taken, and thus characterize the coverage criterion. Initially, we
add B0 as a clause, thus requiring that at least one of the variables is set to true, i.e., at
least one of the branches is taken within the critical segment of code. Subsequently we
compute clause Bi+1 from Bi by removing already satisfied variables from Bi, and add
the respective clause to the SAT instance. This incremental SAT solving process ends if
either Bi+1 = /0 or the instance is found to be unsatisfiable. In this case, Bi+1 marks the
set of infeasible branches.

4 Experimental Results

In our experiments, we first analyzed an industrial engine controller which was auto-
generated from a MATLAB/Simulink model. The resulting C source code of 2033
LLOC2 was, without applying any abstraction, tested for basic block coverage. FSHELL

achieved coverage with only five test cases, taking 18.18 seconds on a 3.2 GHz Intel P4
equipped with 3 GB of RAM.

2 logical lines of code, i.e., number of occurrences of ‘;’

212 A. Holzer et al.

Table 1. Results on device drivers

BLAST FSHELL Speed-
Source file LLOC #cases Time[s] #cases Time[s] up

kbfiltr.i 4879 39 300 66 17 17.9
floppy.i 6435 111 1500 288 1305 1.1
cdaudio.i 8022 85 1500 159 748 2.0
parport.i 20698 213 5460 312 1999 2.7
parclass.i 45283 219 2520 716 1511 1.7

As the concepts im-
plemented in FSHELL

are related to both di-
rected testing and model
checking, we chose
BLAST as benchmark-
ing reference. Still, it
should be noted that
BLAST is a full fledged
model checker and is
not as optimized towards testing as FSHELL is. Their set of benchmarks, presented
in [5], is well documented and all source files are publicly available. To achieve equiv-
alent test goals, we generated test suites with full basic block coverage. Apart from
parclass.i, in the tests of Table 1 FSHELL was run on the P4 system mentioned
above. The file parclass.i required a cleanup of conflicting typedef’s and more than
the addressable 2 GB of main memory. On a 3.0 GHz AMD64 system we succeeded
with a memory usage of 2.3 GB. The results for BLAST are taken literally from [5],
because the version of BLAST performing test case generation is currently unavailable.
The hardware used, however, is very similar. We observe that FSHELL typically returns
a higher number of test cases to achieve basic block coverage, but it takes less time to
do so. We believe that these performance improvements outweigh the larger test sets.
Nevertheless we plan to include minimization strategies in FSHELL.

Additionally, we generated test suites for sorting algorithms literally taken from [10].
The experiments are parameterized by the size of the array to be sorted. In Table 2,

Table 2. Speedup for basic block/condition coverage

Source File 5 10 15 20

bubble.c 1.88/1.98 1.86/1.89 1.96/1.58 1.74/1.26
insertion.c 1.63/1.95 1.56/2.19 0.95/1.39 0.98/2.13
selection.c 2.13/1.76 1.41/2.01 1.38/1.97 0.99/2.27

we present the speedup
achieved by generating
covering test suites in a
single test job, compared to
naı̈ve iterative invocations
of the model checker. Note
that in the latter case, cov-
erage constraints are not
even considered. For each algorithm and each array size, we show the speedup for
basic block- and condition coverage.

Conclusion. We presented FSHELL as an environment to facilitate white-box testing of
C programs. By design, FSHELL treats a C program as a database to be queried by the
user. FSHELL serves as a framework which integrates multiple program analysis back-
ends. Our experimental results confirm the practical feasibility and relative efficiency
of our approach.

Acknowledgments. We are grateful to Raimund Kirner, Sven Bünte, Ingomar Wenzel,
and Michael Zolda for discussions on the topic of this paper. Further we thank Dirk
Beyer for his help with BLAST.

FSHELL: Systematic Test Case Generation 213

References

1. Clarke, E.M., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg
(2004)

2. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software Verification with BLAST. In:
Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 235–239. Springer, Heidel-
berg (2003)

3. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: The BLAST Query Lan-
guage for Software Verification. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp.
2–18. Springer, Heidelberg (2004)

4. Beyer, D., Noack, A., Lewerentz, C.: Simple and Efficient Relational Querying of Software
Structures. In: WCRE, pp. 216–225 (2003)

5. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating Tests from
Counterexamples. In: ICSE, pp. 326–335 (2004)

6. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with java PathFinder. In:
ISSTA, pp. 97–107 (2004)

7. Hamon, G., de Moura, L.M., Rushby, J.M.: Generating Efficient Test Sets with a Model
Checker. In: SEFM, pp. 261–270 (2004)

8. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: FSE, pp.
263–272 (2005)

9. Ntafos, S.C.: A comparison of some structural testing strategies. IEEE Trans. Software
Eng. 14(6), 868–874 (1988)

10. Sedgewick, R.: Algorithms in C. Addison-Wesley Publishing Company, Inc., Reading (1990)

Applying the Graph Minor Theorem to the

Verification of Graph Transformation Systems�

Salil Joshi1 and Barbara König2

1 Indian Institute of Technology, Delhi, India
2 Abteilung für Informatik und Angewandte Kognitionswissenschaft,

Universität Duisburg-Essen, Germany

Abstract. We show how to view certain subclasses of (single-pushout)
graph transformation systems as well-structured transition systems, which
leads to decidability of the covering problem via a backward analysis. As
the well-quasi order required for a well-structured transition system we
use the graph minor ordering. We give an explicit construction of the back-
ward step and apply our theory in order to show the correctness of a leader
election protocol.

1 Introduction

In a series of seminal papers Robertson and Seymour have shown that graphs
are well-quasi-ordered with respect to the minor ordering [7,8]: in any (infinite)
sequence of graphs G0, G1, G2, . . . there are always two indices i < j such that
Gi is a minor of Gj . This means that Gi can be obtained from Gj by deleting
and contracting edges and by deleting isolated nodes.

The theorem has far-reaching consequences. It guarantees that every set of
graphs that is upward-closed with respect to the minor ordering can be repre-
sented by a finite number of minimal graphs. Similarly, any downward-closed
set of graphs (e.g., planar graphs, forests, graphs embeddable in a torus) can be
characterized by a finite set of forbidden minors. A well-known special case are
(undirected) planar graphs which are characterized by two forbidden minors: the
complete graph with five nodes (K5) and the complete bipartite graph with six
nodes (K3,3), a fact which is known as Kuratowski’s theorem.

Well-quasi-orders (wqo’s) also play a fundamental role in the analysis of a
class of (infinite-state) transition systems, so called well-structured transition
systems (WSTS) [4]. States in a WSTS are well-quasi-ordered and the standard
analysis method shows whether some state in an upward-closed set is reachable
from an initial state by performing backward analysis. The well-quasi-ordering
guarantees that upward-closed sets are finitely representable, that the set of pre-
decessors is also upward-closed and that the technique terminates after finitely
many steps.

One important example for WSTS are Petri net transition system, where a
marking m1 is considered larger than or equal to m2 if it contains at least as
� Research partially supported by the DFG project SANDS.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 214–226, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Applying the Graph Minor Theorem 215

many tokens in every place. Other examples are string rewrite systems, basic
process algebra and communicating finite state machines. A transition system
that can not be naturally viewed as a WSTS can often be turned into one by
introducing some notion of “lossiness”. For instance an unreliable channel may
lose messages and a suitable wqo considers the content c1 of a channel as greater
than c2 if c2 can be obtained from c1 by dropping some messages.

The graph minor ordering fits well with this intuition of “lossiness” and
seems to be applicable to networks where edges (connections or processes) may
disappear—possibly due to faults—and where edges can be contracted. The lat-
ter phenomenon appears if a process leaves a network by connecting its prede-
cessor and successor, something which typically happens in rings.

Here we show how to view certain graph transformation systems (GTS) as
WSTS with respect to the minor ordering. GTS are an intuitive formalism,
well-suited to model concurrent and distributed systems. In general GTS are
Turing-complete and due to undecidability issues it is hard to imagine a useful
wqo for the general case. However, if the GTS exhibits features as described
above it can be successfully verified.

GTS are typically defined by means of category theory, which makes the
definition of rewriting steps less tedious. Graph rewriting is defined via pushouts
in a suitable category of graph morphisms and in the rest of this paper we will
exploit certain well-known properties of pushouts. The relation of a graph G to its
minor H can be represented by a partial graph morphism with specific properties.
Since the theory requires the handling of partial morphisms, we have decided to
work in the single-pushout approach (SPO) which uses partial morphisms [5,3].

The paper is organized as follows: Section 2 introduces the basic definitions.
In Section 3 we consider classes of GTS that can be seen as WSTS, and introduce
the techniques for their analysis. In Section 4 we will look at a leader election
protocol and show how the analysis method works in practice.

2 Preliminaries

Here we introduce some of the basic notions needed in the paper, especially well-
quasi-orders, well-structured transition systems, graph transformation systems
and minors.

2.1 Well-Quasi-Order

Definition 1 (wqo). A well-quasi-order (wqo) is any quasi-ordering1 ≤ (over
some set X) such that, for any infinite sequence x0, x1, x2,. . . in X, there exist
indices i < j with xi ≤ xj.

An upward-closed set is any set I ⊆ X such that y ≥ x and x ∈ I entail y
∈ I. A downward-closed set can be analogously defined.

For an element x ∈ I, we define ↑ x = {y | y ≥ x}. Then, a basis of an
upward-closed set I is a set Ib such that I =

⋃
x∈Ib ↑x.

1 Note that a quasi-order is the same as a preorder.

216 S. Joshi and B. König

Lemma 2

1. If ≤ is a well-quasi-ordering then any upward-closed I has a finite basis.
2. If ≤ is a wqo and I0 ⊆ I1 ⊆ I2 ⊆ . . . is an infinite increasing sequence of

upward-closed sets, then there exists an index k ∈ N such that Ik = Ik+1 =
Ik+2 = . . .

2.2 Well-Structured Transition Systems

Definition 3 (WSTS). A well-structured transition system (WSTS) is a tran-
sition system T = (S, ⇒, ≤), where S is a set of states and ⇒ ⊆ S × S, such
that the following conditions hold:

1. Well quasi ordering: ≤ is a well-quasi-ordering on S.
2. Compatibility: For all s1 ≤ t1 and a transition s1 ⇒ s2,

there exists a sequence t1 ⇒∗ t2 of transitions such that
s2 ≤ t2.

t1
∗�� t2

≤ ≤

s1 �� s2

Given a set I ⊆ S of states we denote by Pred(I) the set of direct predecessors
of I, i.e., Pred(I) = {s ∈ S | ∃s′ ∈ I: s ⇒ s′}. Furthermore Pred∗(I) is the set
of all predecessors.

Let (S, ⇒, ≤) be a WSTS. Consider a set of states I ⊆ S. Backward reacha-
bility analysis involves the computation of Pred∗(I) as the limit of the sequence
I0 ⊆ I1 ⊆ I2 ⊆ . . . where I0 = I and In+1 = In ∪ Pred(In). However, in gen-
eral this may not terminate. For WSTS, if I is upward-closed then it can be
shown that Pred∗(I) is also upward-closed (compatibility condition) and that
termination is guaranteed (Lemma 2).

Definition 4 (Effective pred-basis). A WSTS has an effective pred-basis if
there exists an algorithm accepting any state s ∈ S and returning pb(s), a finite
basis of ↑Pred(↑s).

Now assume that T is a WSTS with effective pred-basis. Pick a finite basis Ib

of I and define a sequence K0, K1, K2, . . . of sets with K0 = Ib and Kn+1 =
Kn ∪ pb(Kn). Let m be the first index such that ↑ Km =↑ Km+1. Such an m
must exist by Lemma 2 and we have ↑Km = Pred∗(I). Finally, note that due to
Lemma 2 every set Kn can be represented by a finite basis.

The covering problem is to decide, given two states s and t, whether starting
from a state s it is possible to cover t, i.e. to reach a state t′ such that t′ ≥ t.
From the previous argument follows the decidability of the covering problem.

Theorem 5 (Covering problem). The covering problem is decidable for a
WSTS with an effective pred-basis and a decidable wqo ≤.

Thus, if T is a WSTS and the “error states” can be represented as an upward-
closed set I, then it is decidable whether any element of I is reachable from the
start state.

Applying the Graph Minor Theorem 217

2.3 Graphs and Graph Transformation

Definition 6 (Hypergraph). Let Λ be a finite set of labels. A (Λ-)hypergraph
is a tuple (VG, EG, cG, lG) where VG is a finite set of nodes, EG is a finite set
of edges, cG: EG → V ∗G is a connection function and lG: EG → Λ is the labelling
function for edges.

Directed labelled graphs are a special case of hypergraphs where every sequence
cG(e) is of length two.

Definition 7 (Partial hypergraph morphism). Let G, G′ be (Λ-)hyper-
graphs. A partial hypergraph morphism (or simply morphism) ϕ: G ⇀ G′ con-
sists of a pair of partial functions (ϕV : VG ⇀ VG′ , ϕE : EG ⇀ EG′) such that
for every e ∈ EG it holds that lG(e) = lG′(ϕE(e)) and ϕV (cG(e)) = cG′(ϕE(e))
whenever ϕE(e) is defined. Furthermore if a morphism is defined on an edge, it
must be defined on all nodes adjacent to it. (This condition need not hold in the
other direction.)

Total morphisms are denoted by an arrow of the form →.

In the following we will drop the subscripts and write ϕ instead of ϕV and ϕE .
Gluing of graphs along a common subgraph is done via pushouts in the cate-

gory of partial graph morphisms.

Definition 8 (Pushout)
Let ϕ: G0 ⇀ G1 and ψ: G0 ⇀ G2 be two partial
graph morphisms. The pushout of ϕ and ψ consists
of a graph G3 and two graph morphisms ψ′: G1 ⇀
G3, ϕ′: G2 ⇀ G3 such that ψ′ ◦ ϕ = ϕ′ ◦ ψ and
for every other pair of morphisms ψ′′: G1 ⇀ G′3,
ϕ′′: G2 ⇀ G′3 such that ψ′′ ◦ ϕ = ϕ′′ ◦ ψ there exists
a unique morphism η: G3 ⇀ G′3 with η ◦ ψ′ = ψ′′

and η ◦ ϕ′ = ϕ′′.

G0

ϕ
�

ψ �
G2

ϕ′

� ϕ′′

�

G1
ψ′

�

ψ′′ �

G3 η

�

G′3

It is known that pushouts of partial graph morphisms always exist, that they
are unique up to isomorphism and that they can be constructed as follows. The
intuition behind the construction is that G1, G2 are glued together along a
common interface G0 and that an element is deleted if it is deleted by either ϕ
or ψ.

Proposition 9 (Construction of pushouts). Let ϕ: G0 ⇀ G1, ψ: G0 ⇀ G2

be partial hypergraph morphisms. Furthermore let ≡V be the smallest equivalence
on VG1 ∪ VG2 and ≡E the smallest equivalence on EG1 ∪ EG2 such that ϕ(x) ≡
ψ(x) for every element x of G0.

An equivalence class of nodes is called valid if it does not contain the image
of a node x for which ϕ(x) or ψ(x) are undefined. Similarly a class of edges
is valid if the analogous condition holds and furthermore all nodes adjacent to
these edges are contained in valid equivalence classes.

218 S. Joshi and B. König

Then the pushout G3 of ϕ and ψ consists of all valid equivalence classes [x]≡
as nodes and edges, where lG3([e]≡) = lGi(e) and cG3([e]≡) = [v1]≡ . . . [vk]≡ if
e ∈ EGi and cGi(e) = v1 . . . vk.

It can be seen that the pushout of two total morphisms (in the category of
partial morphisms) always results in two total morphisms. Furthermore it is
equal to their pushout in the category of total morphisms. However ϕ total and
ψ partial does not necessarily imply that ϕ′ is total. This is due to so-called
deletion/preservation conflicts where two elements x0, x

′
0 of G0 are mapped to

the same element of G1, i.e., ϕ(x0) = ϕ(x′0), while ψ(x0) is defined, whereas
ψ(x′0) is undefined. The construction above suggests that then ϕ′(ψ(x0)) must
be undefined, i.e., ϕ′ is not total. If no such elements x0, x

′
0 can be found, then

ϕ is said to be conflict-free with respect to ψ and in this case ϕ′ is always total.

Definition 10 (Graph rewriting). A rewriting rule is a partial morphism
r: L ⇀ R, where L is called left-hand side and R right-hand side.

A match (of r) is a total morphism m: L → G which is conflict-free wrt. r.
Given a rule and a match, a rewriting step or an application of the rule to

the graph G, resulting in H, is a pushout diagram as shown in Fig. 1 on the left.
In this case we write G ⇒ H.

L
r �

m

��

R

��
G

�
H

1

2

3

1 2

1

2

4

4

5

5

1 2

3

3

1 2

⇀

⇀

3

2

1

1

1

↓

1

1

↓

1

2

3

1,2

1,2

1 2

3

3

1 2

3

2

↓
1

↓
⇀

⇀

Fig. 1. Single-pushout graph rewriting (pushout diagram and example rewriting steps)

Intuitively, we can think of this as follows: L is a subgraph of G, all items of L
whose image is undefined under r are deleted, the new items of R are added and
connected as specified by r. Note that whenever a node is deleted, all adjacent
edges will be deleted as well.

Fig. 1 shows two examples for graph rewriting steps. In the middle pushout
a binary hyperedge generates another (unary) hyperedge, whereas in the right
pushout an edge is contracted. The way in which the morphisms map nodes
and edges is indicated by the small numbers next to the edges. These specific
rewriting rules will also play a role in our application (see Section 4).

In the context of this paper a graph transformation system (GTS) consists of
a finite set R of rewriting rules. Sometimes we will fix an initial graph or start
graph.

Applying the Graph Minor Theorem 219

2.4 Minors and Minor Morphisms

We will now review the notion of a graph minor.

Definition 11 (Minor). A graph Ĝ is a minor of a graph G, if Ĝ can be
obtained from G by (repeatedly) performing the following operations on G:

1. Deletion of an edge.
2. Contraction of an edge, thereby merging all nodes adjacent to the edge.
3. Deletion of an isolated node.

The Robertson-Seymour Theorem [7] says that the minor order is a well-quasi-
order. In fact, this theorem is true even if the edges and vertices of the graphs
are labelled from a well-quasi-ordered set, and also for hypergraphs and directed
graphs (see [8]).

Now, if we could show that a GTS satisfies the compatibility condition of
Definition 3 (with respect to the minor ordering), we could analyze it using
the theory of WSTS. But before we characterize such GTS we first need the
definition of minor morphisms and their properties. A minor morphism is a
partial morphism that identifies a minor of a graph.

Definition 12 (Minor morphism). A partial morphism μ : G ⇀ Ĝ is a minor
morphism (written μ : G �→ Ĝ) if

1. it is surjective,
2. it is injective on edges and
3. whenever μ(v) = μ(w) = z for some v, w ∈ VG and z ∈ VĜ, there exists a

path between v and w in G. If e is an edge on this path then μ(e) is undefined,
and all nodes in cG(e) are mapped to z.

In [8] a different way to characterize minors is proposed: a function, going in the
opposite direction, mapping nodes of Ĝ to subgraphs of G. This however can not
be seen as a morphism in the sense of Definition 7 and we would have problems
integrating it properly into the theory of graph rewriting.

One can show the following facts about minor morphisms.

Lemma 13. Ĝ is a minor of G iff there exists a minor morphism μ : G �→ Ĝ.

Lemma 14. Pushouts preserve minor morphisms in the following sense: If
f : G0 �→ G1 is a minor morphism and g : G0 → G2 is total, then the mor-
phism f ′ in the pushout diagram below is a minor morphism.

G0

g

��

� f �� G1

g′

�

G2
� f ′

�� G3

220 S. Joshi and B. König

3 GTS as WSTS!

As observed earlier, a GTS can be seen as a WSTS with the minor relation as
the well-quasi-ordering, provided the GTS satisfies the compatibility condition
introduced in Definition 3.

3.1 Characterization

We will first give a sufficient condition that allows us to view a GTS as a WSTS.
Note that the fundamental problem is that whenever a minor of G contains a
left-hand side, then G might contain a “disconnected” copy of the left-hand side.

Proposition 15 (GTS as WSTS). Let R be a GTS that satisfies the following
condition: For every rule (r: L ⇀ R) ∈ R, every minor morphism μ: G �→ Ĝ and
every match m: L → Ĝ (see diagram on the left) there exists a graph G′ such
that G ⇒∗ G′, there is a minor morphism μ′: G′ �→ Ĝ and there exists a match
m′: L → G′ such that m = μ′ ◦ m′ (see commuting diagram below on the right).
Then R is a WSTS.

G�

μ

��

L

m

��
Ĝ

G
∗�����

���

���
����

μ

��

L
m′

��
m

��

G′�
μ′

��
Ĝ

With this characterization we can now identify suitable types of GTS that are
WSTS:

– Context-free graph grammars, where the left-hand side of every rule consists
of a single hyperedge. Here G must always contain a match of L that makes
the above diagram commute and no intermediate graph G′ is needed.

– GTS where the left-hand sides of the rules consist of disconnected edges.
The argument is analogous to the case above.

– Any arbitrary GTS can be transformed into a WSTS with the addition of
an edge contraction rule for every edge label. Now, if Ĝ contains a subgraph
which is isomorphic to a left-hand side, the pre-image of this subgraph under
μ is present in G, but it might possibly be disconnected. The minor morphism
μ makes the elements of L adjacent by contracting paths and the same can
be done by applying the additional edge contraction rules.

3.2 Backward Analysis

Let R be a set of graph transformation rules which satisfies the compatibility
condition. Now we consider the question of performing a backward reachability
analysis on R which requires a method for computing an effective pred-basis
pb(S) for a given graph S.

Applying the Graph Minor Theorem 221

Our method will involve the backwards application of an SPO rewriting rule.
This requires the completion of a diagram of the form L ⇀ R → H by a graph
G and morphisms L → G ⇀ H such that the square is a pushout. Then G is a
so-called pushout complement. Pushout complements are well-studied for total
morphisms since they are an essential ingredient in double-pushout rewriting.
For partial morphisms they have been studied to a lesser extent.

We will first demonstrate some issues that can arise with pushout comple-
ments: for instance, the two total morphisms L ⇀ R → H shown in Fig. 2 (left)
(edges and nodes are unlabelled, morphisms are indicated by numbers 1, 2) have
five different pushout complements. Note also that each pair of total morphisms
has only finitely many pushout complements (up to isomorphism).

1 2 ��

��

1, 2

��

? �� 1, 2

?:
1 2 2 1

2

1

2

1

1, 2

1 2 �

��

1

��

?
� 1

?:
1 2 1 2 1 2

1 2 1 2
. . .

Fig. 2. Left: Two total morphisms with five pushout complements. Right: A partial
and a total morphism with infinitely many pushout complements.

While the existence of multiple pushout complements is a feature that will be
needed to determine the pred-basis, the situation for partial morphisms is more
involved. Consider the diagram in Fig. 2 (right) where the morphism from L to
R is partial. Here we have infinitely many pushout complements. Note however
that the first graph is a minor of all other pushout complements. This suggests
that only the computation of minimal pushout complements is needed.

Now we will give a high-level description of the procedure for computing pb(S)
for a given graph S. A more detailed account will be given in Section 3.3 where
we will also argue that the procedure is indeed effective.

1. For each rule (r : L ⇀ R) ∈ R, let MR be the (finite) set of all minor
morphisms with source R.

2. For each (μ: R �→ M) ∈ MR consider the rule μ ◦ r: L ⇀ M .
3. For each total match m′: M → S compute all minimal2 pushout complements

X such that m: L → X below is total and conflict-free wrt. r.
2 “Minimimal” means “minimal wrt. the well-quasi ordering ≤”.

222 S. Joshi and B. König

L

m

��

μ◦r �
M

m′

��
X

�
S

4. The set pb(S) contains all graphs X obtained in this way.

That is, we use all minors of R as right-hand sides for the backward step. This
is needed since S represents an upward-closed set and not all items of R must
be present in S itself. We can now show the correctness of the procedure pb(S),
where the proof depends crucially on Lemma 14.

Theorem 16. The procedure pb(S) computes a finite subset of Pred(↑S).

In order to prove that pb(s) generates every member of the pred-basis, we first
prove a general result in the category of graphs and partial morphisms.

Lemma 17. Let ψ1: L → G be total and conflict-free wrt. ψ2. If the diagram
below on the left is a pushout and μ: H �→ S a minor morphism, then there exist
minors M and X of R and G respectively, such that

1. the diagram below on the right commutes and the outer square is a pushout.
2. the morphisms μG ◦ ψ1 : L → X and ϕ1 : M → S are total and μG ◦ ψ1 is

conflict-free wrt. ψ2.

L
ψ2 �

ψ1

��

R

ψ′
1

��
G

ψ′
2 �

H�
μ

	��
��

��
��

S

L
ψ2 �

ψ1

��

R

ψ′
1

��

� μR �� M

ϕ1

��

G
ψ′

2 �
�

μG

��

H 	
μ

	

X
ϕ2 �

S

The lemma above says that whenever S is a minor of H and G is a predecessor
of H , then we can make a backwards step for S and obtain X , a minor of G.
Using this lemma we can now state the completeness of the procedure pb(S).

Theorem 18. The set generated by pb(S) is a pred-basis of S.

3.3 Computing Minimal Pushout Complements

Now we consider the question of how to construct pushout complements when
some (but not all) of the morphisms involved may be partial. Hence consider
a diagram L

ϕ
⇀ L̃ → X̃ . The idea is to split L

ϕ
⇀ L̃ = L ⇀ dom(ϕ) → L̃

where dom(ϕ) → L̃ is total and L ⇀ dom(ϕ) is an inverse injection, i.e., a
morphism which is injective, surjective, but not necessarily total. Now the task
of computing pushout complements can be divided into two subtasks.

Applying the Graph Minor Theorem 223

Lemma 19. Let L and L̃ be graphs, ϕ1 : L ⇀ L̃ be an inverse injection, and
ψ2 : L̃ → X̃ be a total morphism. Now construct a specific pushout complement
X ′ with morphisms ψ′1: L → X ′, ϕ′2: X ′ ⇀ X̃ as follows:

1. Take a copy of the graph X̃, and let ψ′1 be ψ2 ◦ ϕ1. The morphism ϕ′2 is the
identity.

2. Let Y be the set of elements of L the image of which is undefined under ϕ1.
Add a copy of Y to this copy of X̃, and extend ψ′1 by mapping Y into this
set. Furthermore ϕ′2 is undefined on all elements of the copy of Y .

3. Now merge these new elements (originally contained in Y) in all possible
combinations, i.e., factor through all appropriate3 equivalences. The mor-
phisms ψ′1 and ϕ′2 are modified accordingly.

The set of graphs obtained in this way is denoted by P. Each
element X ′ of P is a pushout complement of ϕ1, ψ2 and the cor-
responding morphisms ψ′1: L → X ′ are total. Any other pushout
complement X where ψ1 : L → X is total (see diagram on the
right) has some graph X ′ ∈ P as a minor.

L

ψ1

��

ϕ1 �
L̃

ψ2

��
X

ϕ2 �
X̃

Finally, if ψ1: L → X is conflict-free wrt. to a rule r : L ⇀ R, then there
exists a pushout complement X ′ ∈ P with ψ′1: L → X ′ conflict-free wrt. r, such
that X ′ ≤ X.

In order to do backwards application of rules in order to obtain pb(s), we con-
struct pushout complements (with total conflict-free matches) as follows:

Proposition 20. Let r: L ⇀ R be a fixed rule. Furthermore let L, M and S be
graphs, with a partial morphism ϕ1 : L ⇀ M and a total morphism ψ2 : M → S.
Then, if we apply the following procedure we only construct pushout complements
X ′ of ϕ1, ψ2 and any other pushout complement X (with ψ1: L → X where ψ1

is total and conflict-free wrt. r) has one of them as a minor.

1. Split ϕ1 into two morphisms as follows: let ϕ′1 : L ⇀ dom(ϕ1) be an inverse
injection and let ϕ′′1 : dom(ϕ1) → M be total.

2. Now consider the total morphisms ϕ′′1 : dom(ϕ1) → M , and ψ2 : M → S.
Construct all their pushout complements as usual for total morphisms.4

3. Let X̃ be any such pushout complement with η: dom(ϕ1) → X̃.
4. For ϕ′1, η use the construction of Lemma 19 in order to obtain the minimal

pushout complements X ′ (with total and conflict-free ψ′1).
5. Finally, from all such pushout complements X ′ take the minimal ones.

The situation is depicted in the diagram below.

L
ϕ′

1 �

ψ′
1��

dom(ϕ1)
ϕ′′

1 ��

η
��

M

ψ2
��

X ′
�
X̃ �� S

3 Here “appropriate” means that whenever two edges are in the equivalence relation,
all their adjacent nodes must be pairwise equivalent.

4 We do not describe this construction here, but it is well-known that there are only
finitely many such pushout complements and that they can be constructed effectively.

224 S. Joshi and B. König

4 Example: Leader Election

As an example, we shall apply this technique to a typical leader election protocol,
to verify its correctness. The rules for this leader election protocol are shown in
Fig. 3. We start with a ring containing processes, each with a unique natural
number as ID. These processes can generate messages containing their ID, which
are forwarded whenever the ID of the message is smaller than the ID of the
process which receives it. A process becomes the leader if it receives a message
containing its own ID. Non-leader processes may also choose to leave the system
at any time, connecting its predecessor and successor. We will prove that such
a system can never create two leaders in the ring.

It can be seen that these rules satisfy the compatibility condition. The rule
for edge contraction can be interpreted as a process leaving the system. Note
that we do not need to add a rule for contracting messages (since messages are
unary hyperedges), or for edge deletion in order to ensure compatibility.

All forbidden minors (which we computed manually) are shown in Fig. 4.
We start with the first of these as the error state, and performing the backward
analysis we obtain the rest of the forbidden minors. We consider natural numbers
up to a certain bound, in order to keep the label and rule sets finite. Here, i, j
or k as a label indicates “any number” (except where a constraint is indicated).
Thus, the entire process has been fully parametrized, so that these forbidden
minors are valid for a start graph with an arbitrarily large number of processes
in the ring. Since the given start graph does not have any of these forbidden
graphs as a minor, we can conclude that the leader election protocol is correct,
i.e., it can never create two leaders.

3

1 2

(a) Start graph

1 2 1 2
i i

i

11 22

i < j

j

i

j

i

11 22
i L

i

1 2 1,2
i

Fig. 3. Leader election (start graph and rewriting rules)

Applying the Graph Minor Theorem 225

L

L

(a) Error graph

i

L

i

i i

L

i

j

i

j

i i

L

i

j

i

j

i

i

L j

i

i

j

L

ii

j

ii

j

i

i

j

j

j

i

j

i < j

i

i

i

k

j

i < j < k

j

i

L i < j

Fig. 4. Leader election (forbidden minors)

Note that since our technique can handle infinite state spaces, we could use
the expressive power of graph transformation to extend the example in such a
way that the ring is extended by new processes during runtime.

5 Conclusion

We have shown how to view subclasses of graph transformation systems as WSTS
which gives us a decision algorithm for the covering problem. Currently we are
working on an implementation which will help us to get a better insight into
efficiency issues. Specifically it will help us to answer how many backward steps
usually have to be taken and how many forbidden minors are generated. Al-
though the worst case behaviour of this technique will certainly be bad, it might
be feasible for many practical applications. We are also working on a more ex-
tended case study involving a termination detection protocol.

Another issue is the treatment of negative application conditions that have
so far posed many problems in the analysis of GTSs. As already observed in [9]

226 S. Joshi and B. König

backward techniques seem to have fewer problems with negative application con-
ditions than forward techniques which have so far mainly been studied. We also
believe that such application conditions can be integrated with our technique.

Additional future work will be the investigation of partial order techniques
(as in [1]) and the combination with (approximative) forward techniques (as
described in [2,6]) in order to eliminate states which are not reachable from the
start graph early on. In addition we work on a related technique which allows to
show whether certain invariants (represented by forbidden minors) are preserved
by graph transformation rules.

Acknowledgements. We would like to thank Javier Esparza for his suggestion
to explore the relation between WSTS and graph transformation.

References

1. Abdulla, P.A., Jonsson, B., Kindahl, M., Peled, D.: A general approach to partial
order reductions in symbolic verification. In: Y. Vardi, M. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 379–390. Springer, Heidelberg (1998)

2. Baldan, P., Corradini, A., König, B.: A static analysis technique for graph trans-
formation systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS,
vol. 2154, pp. 381–395. Springer, Heidelberg (2001)

3. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.:
Algebraic approaches to graph transformation—part II: Single pushout approach
and comparison with double pushout approach. In: Rozenberg, G. (ed.) Handbook
of Graph Grammars and Computing by Graph Transformation, ch. 4, vol. 1: Foun-
dations, World Scientific, Singapore (1997)

4. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
retical Computer Science 256(1–2), 63–92 (2001)

5. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science 109, 181–224 (1993)

6. Rensink, A., Distefano, D.: Abstract graph transformation. In: Proc. of SVV 2005
(3rd International Workshop on Software Verification and Validation). ENTCS,
vol. 157.1, pp. 39–59 (2005)

7. Robertson, N., Seymour, P.: Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B 92(2), 325–357 (2004)

8. Robertson, N., Seymour, P.: Graph minors. XXIII. Nash-Williams’ immersion con-
jecture (2006) (submitted for publication),
http://www.math.princeton.edu/∼pds/papers/GM23/GM23.pdf

9. Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and verification
of ad hoc routing protocols. In: Proc. of TACAS 2008. LNCS, vol. 4963, pp. 18–32.
Springer, Heidelberg (2008)

http://www.math.princeton.edu/~pds/papers/GM23/GM23.pdf

Conflict-Tolerant Features�

Deepak D’Souza and Madhu Gopinathan

Indian Institute of Science,
Bangalore, India

{deepakd,gmadhu}@csa.iisc.ernet.in

Abstract. We consider systems composed of a base system with mul-
tiple “features” or “controllers”, each of which independently advise the
system on how to react to input events so as to conform to their in-
dividual specifications. We propose a methodology for developing such
systems in a way that guarantees the “maximal” use of each feature.
The methodology is based on the notion of “conflict-tolerant” features
that are designed to continue offering advice even when their advice has
been overridden in the past. We give a simple priority-based composition
scheme for such features, which ensures that each feature is maximally
utilized. We also provide a formal framework for specifying, verifying,
and synthesizing such features. In particular we obtain a compositional
technique for verifying systems developed in this framework.

1 Introduction

In this paper we consider systems that are composed of a base system along
with multiple “features” or “controllers,” each of which are meant to advise the
system on how to adhere to their individual feature specifications. Such system
models are common in software intensive domains such as telecommunications
and automotive electronic control. One of the problems faced in integrating var-
ious features in such systems is that the system may reach a point of “conflict”
between two (or more) features, where the features do not agree on a common
action for the system to perform [1,2]. Such conflicts can be resolved by redesign-
ing one of the features to satisfy a relaxed specification. However redesigning
existing features is often not feasible in practice [3]. Redesign would also defeat
the purpose of software product lines [4], which aim to improve software reuse
by composing features to derive multiple products from a family of features.
Another resolution technique is to suspend the feature with lower priority, and
continue with the advice of the higher priority feature. However the issue now
is how and when to “resume” the suspended feature so as to maximize its use.

In this paper we propose a formal framework for developing such systems in a
way that overcomes some of these problems. The framework is based on a notion
of “conflict-tolerance”, which simply requires features to be “resilient” or “toler-
ant” with regard to violations of their advice due to conflicts with other features.
� This research was partially supported by a grant from India Science Lab, General

Motors Corporation.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 227–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

228 D. D’Souza and M. Gopinathan

Thus, unlike a classical feature, a conflict-tolerant feature observes that its ad-
vice has been overridden, takes into account the violating event, and proceeds
to offer advice for subsequent behavior of the system. Our methodology includes
a way of specifying features, as well as a compositional verification technique for
checking whether a feature implementation satisfies its specification.

The starting point in this framework is the notion of a conflict-tolerant specifi-
cation of a feature. A classical specification (which we will assume in this paper
to be safety specifications of linear-time behavior) can be viewed as a prefix-
closed language of finite words containing all the system behaviors which are
considered “safe”. This can be pictured as a safety “cone” in the tree represent-
ing all possible behaviors, as shown in Fig. 1 (a). A conflict-tolerant specification
on the other hand can be viewed as an “advice function” that specifies for each
behavior w of the base system, a safety cone comprising all future behaviors that
are considered safe, after the system has exhibited behavior w (Fig. 1 (b)).

w

(a) (b)

Fig. 1. The conflict-tolerant specification on the right advises on how to extend w even
though its advice has been overridden (dashed line) in the past when generating w

To illustrate how a conflict-tolerant specification can capture a specifier’s in-
tent more richly than a classical specification, consider a feature that is required
to release (by the event “rel”) a single unit of medication in response to a
“timer” event from the environment. A classical specification for this feature
may be given by the transition system shown in Fig. 2 (a). The transition sys-
tems shown in Fig. 2 (b) and (c) denote conflict-tolerant specifications that both
induce the same classical specification shown in (a). The dashed transitions are
to be read as “not-advised”, and their role is to keep track of events that violate
the advice at a given state. Thus in specification (b), after an initial timer event,
the advised action is rel; however, if the event no-rel occurs against its advice,
the specification moves to the lightly shaded copy where on receiving another
timer event it advises the action rel-double. The second specification thus at-
tempts to maintain a unit average in every window of two cycles (it may, for
example, be releasing oxygen), while the third specification does not attempt to
do this (it may be releasing doses of insulin).

A conflict-tolerant feature implementation can be viewed as a transition sys-
tem with transitions annotated as “advised” and “not-advised”, similar to the
conflict-tolerant specifications described above. A feature implementation is now
said to satisfy a conflict-tolerant specification (with respect to a given base sys-
tem), if after every possible behavior w of the base system, the behaviors of the
base system that are according to the advice of the feature implementation, are
all contained in the safety cone prescribed by the specification for w.

Conflict-Tolerant Features 229

timer

rel rel
rel-double

no-rel

no-rel

rel-double, no-reltimer
timer
rel

timer timer

relno-rel

rel-double

rel

rel-double

(a) (b) (c)

Fig. 2. The specification (a) is a classical specification whereas (b) and (c) are conflict-
tolerant specifications. If “release double” (event rel-double) occurs against the advice
of specification (b), it moves to the darkly shaded copy and advises “no release” (event
no-rel) in the next cycle; if no-rel occurs against its advice, it moves to the lightly
shaded copy and advises rel-double in the next cycle.

We give decision procedures to solve the natural synthesis and verification
problems in this setting. In particular, we give a procedure to check whether a
finite-state implementation satisfies a given finite-state conflict-tolerant specifi-
cation, with respect to a given base system.

An important aspect of our framework is the fact that conflict-tolerant fea-
tures admit a simple and effective composition scheme based on a prioritization
of the features being composed, which can also be viewed as a conflict resolution
technique. The composition scheme ensures that the resulting system always
satisfies the specification of the highest priority feature. Additionally, it follows
the advice of all other features F , except at points where each action in the
advice of F conflicts with the advice of a higher priority feature. It is in this
sense that each feature is “maximally” utilized. Together with our verification
procedure, this gives us a compositional way of verifying the composed system,
since once the individual features have each been verified to conform to their
specifications, the composed system is guaranteed to be correct (in the sense
above) “by construction.”

Related Work. In [5], it is argued that system verification must be decomposed
by features as every feature naturally has an associated property to be verified.
There are several approaches in the literature where features are specified as
state machines and a conflict is detected by checking whether a state, in which
the features advise conflicting system actions, is reached. For a survey, see [1].
The problem of conflict detection is addressed in [6], where features are specified
using temporal logic and conflict is detected automatically at the specification
stage.

We now focus on previous work addressing conflict resolution. Our approach of
viewing features as discrete event controllers [7] follows that of [8,9]. In both these
works, the main issue addressed is that of resuming the advice of a controller
once it has been overridden due to conflict with a higher priority controller.
In [8] (see also [10]), when the lower priority controller (say C2) is suspended,
the behavior of the base system is masked from C2. The resolution mechanism
resumes C2 when it determines that the base system has reached a state (based
on language equivalence) from which it is safe to accept the advice of C2. The
drawback of this scheme is that the base system may never reach a state from

230 D. D’Souza and M. Gopinathan

which the advice of C2 can be accepted, and even if such a state was reached
eventually, the utility of the controller is lost during the period of suspension.

The work of [9] is closer to ours, in that the specifications are designed to
anticipate conflict by having two kinds of states: in-spec and out-of-spec. When
a controller’s specification is violated, it transitions to an out-of-spec state from
where it passively observes the system behavior, till it sees a specified event that
brings it back to an in-spec state. Thus, unlike our controllers, these controllers
are designed to work with only certain anticipated conflicts, and moreover do
not offer any useful advice in out-of-spec states.

In [11], a rule-based feature model and composition operators for resolving
conflicts based on prioritization is presented. Their work is closest to ours in that
it implicitly contains the notion of conflict-tolerance with a similar resolution
mechanism. However the notion of a conflict-tolerant specification (as against
the feature implementation itself) is absent in their work, while it is central in
ours. In the absence of a specification one cannot address the important problems
of verification and synthesis. With respect to their notion of “weak” (in a sense
conflict-tolerant) invariants of features, the feature model is not obliged to offer
advice on how to restore the invariant in case of violations.

The rest of the paper is structured as follows: After preliminary definitions,
in Sect. 3 we view features as controllers and illustrate conflict between features.
We then introduce the notion of conflict-tolerance in Sect. 4 and address the
synthesis and verification problems in Sect. 5. Finally in Sect. 6, we describe
our composition scheme and provide a precise formulation of the claim that the
controllers are maximally utilized.

2 Preliminaries

Let Σ be a finite alphabet of events and let Σ∗ denote the set of finite words
over Σ. We denote the empty word by ε. A language over Σ is a subset of Σ∗.
We write v · w (or simply vw) to denote the concatenation of two words v and
w. Let L be a language over Σ and let v be a word over Σ. We define the set of
extensions of v in L to be extv(L) = {w ∈ Σ∗ | v · w ∈ L}.

A transition system T over Σ is a tuple (Q, s, →), where Q is a set of states, s ∈
Q is the start state, and →⊆ Q×Σ×Q is a Σ-labeled transition relation. A run of
T on a word w = a0a1 · · ·an starting from a state q, is a sequence q0, q1, . . . , qn+1

of states in Q such that q0 = q, and for each i ∈ {0, . . . , n}, we have qi
ai→ qi+1.

The language generated by T , denoted L(T), is the set of all words w on which
T has a run starting from s. The language generated by T starting from a state
q ∈ Q, denoted by Lq(T), is the set of all words on which T has a run starting
from q. We say the transition system T is complete (respectively deterministic)
if for each q ∈ Q and a ∈ Σ, there exists (respectively, exists at most one) q′ such
that q

a→ q′. For a deterministic transition system T and a word w on which T
has a run, let q be the unique state reached in T after generating w. Then, we
define Lw(T) = Lq(T).

Conflict-Tolerant Features 231

Finally, for transition systems T1 = (Q1, s1, →1) and T2 = (Q2, s2, →2) over
Σ, we define the synchronized product of T1 and T2, denoted T1‖T2, to be the
transition system (Q1 × Q2, (s1, s2), →) over Σ, where (p1, p2)

a→ (q1, q2) iff
p1

a→1 q1 and p2
a→2 q2.

3 Features as Controllers

In this section we elaborate on the view of features as modular discrete event
controllers [7], as proposed in [9,8].

In this paper, we focus on “safety” specifications. A safety specification over
an alphabet Σ is a prefix-closed language over Σ. A safety specification can also
be viewed as an “advice function” as defined below. This view will be useful
when we introduce the notion of conflict tolerance in Sect. 4.

Definition 1 (Advice Function). An advice function over Σ is a function
f : Σ∗ → 2Σ∗

such that f(ε) is prefix-closed language, and is consistent in the
sense that for all vw ∈ f(ε) we have f(vw) = extw(f(v)).

A safety specification L over Σ induces an advice function fL given by fL(v) =
extv(L). Conversely, an advice function f induces a safety language Lf given by
Lf = f(ε). An advice function f induces in a natural way an immediate advice
function f i : Σ∗ → Σ given by

f i(v) = {a ∈ Σ | ∃w ∈ Σ∗ : aw ∈ f(v)}.

We say a finite word w is according to an immediate advice f i if for each prefix
va of w, we have a ∈ f i(v). A deterministic transition system T over Σ induces
an advice function fT given by fT (w) = Lw(T) for all w ∈ L(T), and ε oth-
erwise. We will say a safety specification L over Σ is regular if it is given by a
deterministic finite-state transition system S over Σ.

We now define the notion of a base system. Let Σ be an alphabet which is
partitioned into “environment events” Σe and “system events” Σs. We model
systems over Σ by viewing their executions as a repeated cycle in which an
environment event is sampled and a system event is performed in response to
it. For simplicity we assume that exactly one environment action is sampled in
each cycle.

Definition 2 (Base System). A base system (or plant) over Σ is a determin-
istic finite-state transition system B over Σ, which is

– alternating in that L(B) ⊆ (Σe · Σs)∗ ∪ ((Σe · Σs)∗ · Σe).
– non-blocking in that whenever w ∈ L(B) there exists c ∈ Σ such that

wc ∈ L(B).

Definition 3 (Controller). Let B be a base system over Σ. A controller (or
feature implementation) for B is a deterministic transition system over Σ. A
controller C for B is valid if

232 D. D’Souza and M. Gopinathan

– C is non-restricting: If w ∈ L(B‖C) and w · e ∈ L(B) for some environment
event e ∈ Σe, then w · e ∈ L(C). Thus the controller must not restrict any
environment event e enabled in the base system after any controlled behavior w.

– C is non-blocking: If w ∈ L(B‖C), then wc ∈ L(B‖C) for some c ∈ Σ. Thus
the controller must not block the base system after any controlled behavior w.

We carry over the notions of advice function fC and corresponding immediate
advice function f i

C for a controller C.
Let B be a base system and L a safety specification over Σ. We say a controller

C for B satisfies L if L(B‖C) ⊆ L.
As a running example, we consider a lift system (in a building of only two

floors – floor 0 and floor 1) and two of its features, adapted from a case study in
[12]. Figure 3 shows the base system model. We denote the environment events in
italics and system events in bold. In order to avoid clutter, we use a Statechart-
like notation. An arrow from a box (dashed rectangle) to another box represents
arrows between states with the same label in the two boxes. For example, the
arrow labeled open represents two arrows: one between states labeled 1, and
another between states labeled 0 in the boxes C and O . We use the conven-
tion that self-loops on states are labeled with all events in Σ, excluding those
on which there is an outgoing transition from the state, and those events a for
which the self-loop has a label ∼ a. Thus the state 0 in box C has a transi-
tion to itself on the system event nops and on all environment events except
ttfull and ttnotfull . The initial state is shown by an incoming arrow. To keep
the figure simple we have not shown the base system as generating alternat-
ing environment and system events. However, we consider only the alternating
behaviors.

The event fpress i occurs when a user presses the button on floor i and the
event cpressi occurs when a user presses the car button for floor i inside the lift.
The event ttfull indicates that the lift is two-thirds full and the event ttnotfull in-
dicates that the lift is not two-thirds full. The events nope and nops respectively
denote that the environment and the system has not performed any action.

The base system is typically run with several controllers including a “vanilla”
controller which would keep track of the current direction of travel and require
the base system to service all pending requests from floors and from within the
lift along that direction before changing direction. However, we will focus on
a controller for “executive floor” feature which requires that the requests from
the “executive floor” (say, floor 1) must be serviced before other floor requests.
Figure 4 shows a possible specification SE for this requirement. The transition
system simply keeps track of the current floor in its state. When it receives a
fpress1 event, it transitions to the same state in the box P indicating that an
executive floor request is pending. It prohibits open on floor 0 and down on
floor 1 so that the executive floor request is serviced before other floors. We take
SE , with the additional constraint that nops is not allowed from the states in
box P , as a valid controller CE for the base system B.

Conflict-Tolerant Features 233

up down

0

1

0

1
open

close

OC~ttfull, ~ttnot full,
~close, ~up

~ttfull,~ttnot full,
~close, ~down

~open, ~up, ~down

~open, ~up, ~down

Fig. 3. Lift base system B. The set Σe is {fpress i, cpress i, ttfull , ttnotfull , nope}. The
events ttfull and ttnotfull can occur only when the lift door is open (in box O). The
set Σs is {open, close, up,down,nops}. The lift can move up or down only when its
door is closed.

1

up

open

fpress1
1

0

up down

~ down

~ open
0

N P

Fig. 4. Executive Floor Specification SE . Controller CE is the same as SE except that
it does not advise nops from the states in box P .

Consider adding a feature called “two-thirds-full” which requires that the
requests from within the lift should be serviced before requests from floors when
the lift is two-thirds full. Thus, when the system receives a ttfull event, the lift
should not service requests from floors as long as there are pending car requests.
When the ttnotfull event occurs, the lift can go back to its normal functioning.
Figure 5 shows a possible specification ST for this feature. We take ST , with
the additional constraint that nops is not allowed when the lift is two-thirds
full and a car request is pending, as a valid controller CT for B. Note that a
controller could impose additional constraints such as choosing open over up at
floor 0 when car requests from both floors are pending.

We now illustrate the notion of conflict between controllers.

Definition 4 (Conflict). Let C1 and C2 be valid controllers for a base system
B. The controllers C1 and C2 are in conflict with respect to B, if there exists
a behavior w in L(B‖C1‖C2) such that extw(L(B‖C1‖C2)) is empty. In other
words, there exists a behavior w ∈ L(B) which is according to both C1 and C2,
but f i

B(w) ∩ f i
C1(w) ∩ f i

C2(w) = ∅.
Thus C1 and C2 are in conflict with respect to B if C1‖C2 is blocking with respect
to B. Consider the behavior

fpress1 · up · nope · open · ttfull · close · cpress0 · down · fpress1

from the initial state of B. The system events allowed by B are up, open and
nops. However, the controlled system is blocked as CE does not advise open
and nops while CT does not advise up and nops.

234 D. D’Souza and M. Gopinathan

1 1 1

u d

ttfull

ttnot full

cpress0

open

0 0 0

u d u d u d

cpress1

N

0

1

cpress0

cpress1

open

open open

1 1 1

u d

cpress0

open

0 0 0

d u u d

cpress1

F

0

1

cpress0

cpress1

open

open open

~open

~up ~open

~down

Z O ZO Z O ZO

Fig. 5. Two-Thirds Full Specification ST . In box Z (O), car request for floor 0 (respec-
tively 1) is pending and in box ZO , car requests for both floors are pending. Controller
CT is the same as ST except that it does not advise nops when the lift is two-thirds
full (box F) and a car request is pending.

4 Conflict-Tolerant Controllers

In this section we introduce our notion of conflict-tolerance. Analogous to the
notion of specification as an advice function given in Sect. 3, a conflict-tolerant
safety specification over an alphabet Σ is a conflict-tolerant advice function in
the following sense:

Definition 5 (Conflict-Tolerant Advice Function). A conflict-tolerant ad-
vice function over an alphabet Σ is a function f : Σ∗ → 2Σ∗

which assigns a
prefix-closed language f(v) to every finite word v ∈ Σ∗, and is consistent in the
sense that for all vw ∈ Σ∗ with w ∈ f(v), we have f(vw) = extw(f(v)).

A conflict-tolerant transition system (or CTTS) over Σ is a tuple T ′ = (T , N),
where T = (Q, s, →) is a deterministic transition system over Σ and N ⊆→ is a
subset of transitions designated as “not-advised.” The language generated by T ′
starting from a state q in Q, denoted Lq(T ′), is defined to be simply Lq(T). The
constrained language generated by T ′, denoted Lc

q(T ′), is defined to be Lq(T̂)
where T̂ is the transition system obtained from T by deleting all not-advised
transitions (i.e. transitions in N). Let w ∈ L(T), and let q be the unique state
reached by T on w. Then by Lc

w(T ′) we mean Lc
q(T ′). We say T ′ is complete

with respect to a language L ⊆ Σ∗ if L ⊆ Lε(T ′).
The CTTS T ′ induces a natural conflict-tolerant advice function fT ′ given

by, for all w ∈ Σ∗, f(w) = Lc
w(T ′). We say a conflict-tolerant advice function is

regular if it is given by a finite-state CTTS over Σ.
We define the synchronized product of a transition system T1 and a CTTS

T ′2 = (T2, N2) to be the CTTS (T1‖T2, N
′
2) which is complete with respect to

L(T1) and N ′2 is the set of joint transitions where the T2 transitions are not-
advised (thus T1‖T ′2 inherits the not-advised transitions of T ′2).

In the definitions below let B be a base system over a partitioned alphabet Σ.

Definition 6 (Conflict-Tolerant Controller). A conflict-tolerant controller
for B is a CTTS over Σ that is complete with respect to L(B). The controller C′
for B is valid if

Conflict-Tolerant Features 235

– C′ is non-restricting: If w · e ∈ L(B) for some environment event e ∈ Σe,
then e ∈ Lc

w(C′) (or equivalently e ∈ f i
C′(w)). Thus the controller must not

restrict any environment event e enabled in the base system after any system
behavior w.

– C′ is non-blocking: If w ∈ L(B), then Lc
w(B‖C′) �= ∅ (equivalently f i

C′(w) ∩
f i
B(w) �= ∅). Thus the controller must not block the system after any system

behavior w.

Definition 7 (C′ satisfies f). Let f be a conflict-tolerant specification over
Σ. A conflict-tolerant controller C′ for B satisfies f if for each w ∈ L(B),
Lc

w(B‖C′) ⊆ f(w). Thus after any system behavior w, if the base system follows
the advice of C′, the resulting behavior conforms to the safety language f(w).

We now illustrate these definitions with our running example. Figure 6 shows
a conflict-tolerant specification S′E for the “executive floor” feature. The not-
advised transitions are shown using dashed transitions. By ignoring the dashed
transitions, we get back the conventional specification in Fig. 4. The dashed tran-
sitions in a conflict-tolerant specification indicate the obligation on a controller
when the specification is overridden to meet the requirements of a higher priority
specification. In S′E , open from state 0 of box P and down from state 1 of box
P are not advised. However, even if the door opens at floor 0 when a request
from floor 1 is pending, S′E requires the controller’s subsequent advice to be
such that the request from floor 1 is serviced. Figure 7 shows a conflict-tolerant
specification for the “two-thirds-full” feature.

5 Synthesis and Verification

In this section we address the natural synthesis and verification problems for
conflict-tolerant controllers. Let Σ be a partitioned alphabet.

Theorem 1 (Synthesis). Given a base system B over Σ, and a regular
conflict-tolerant specification S′ over Σ, we can check if there exists a conflict-
tolerant controller for B that satisfies S′, and if so, synthesize a finite-state one.

Proof. We claim that there exists a controller for B satisfying S′ iff in the syn-
chronized product B‖S′ there does not exist a state (b, q) which is reachable
from the start state and satisfies one of the conditions

1. (b, q) is “restricting” in the sense that there is an environment event e enabled
at b in B, but is not advised at q in S′.

2. (b, q) is “blocking” in that there is no event advised at (b, q) in B‖S′.
If no such (b, q) exists in B‖S′, then clearly S′ itself is a valid finite-state con-
troller for B that satisfies S′. Conversely, if there is a valid controller C′ for B
satisfying S′, then again it is easy to see that no such (b, q) must exist in B‖S′
(recall that the base system is always non-blocking). These conditions can be
checked in time linear in the product of the sizes of B and S′. �

236 D. D’Souza and M. Gopinathan

1

up

open

fpress1
1

0

up down down

0

N P

open

Fig. 6. Tolerant Executive Floor Specification S ′
E . Tolerant Controller C′

E is the same
as S ′

E except that nops is not advised from states in box P .

1 1 1

u d

ttfull

ttnot full

cpress0

open

0 0 0

u d u d u d

cpress1

N

0

1

cpress0

cpress1

open

open open

1 1 1

u d

cpress0

open

0 0 0

d u u d

cpress1

F

0

1

cpress0

cpress1

open

open open

open

open

Z O ZO Z O ZO

u d

Fig. 7. Tolerant Two-Thirds Full Specification S ′
T . Tolerant Controller C′

T is the same
as S ′

T except that it does not advise nops when the lift is two-thirds full and a car
request is pending.

Note that even if a state (b, q) as above exists, a classical controller [7] may still
exist if it has a strategy to avoid reaching such a state.

Theorem 2 (Verification). Given a base system B over Σ, a regular conflict-
tolerant specification S′, and a finite-state conflict-tolerant controller C′, we can
check whether C′ is a valid conflict-tolerant controller for B, that satisfies S′.

Proof. It is easy to see that a necessary and sufficient condition for C′ to be
a valid controller for B and satisfying S′, is to check that in the synchronized
product B‖C′‖S′ there does not exist a state (b, p, q) which is reachable from the
initial state and satisfies one of the following conditions:

1. (C′ is restricting) there exists an event e ∈ Σe enabled at b in B, but is not
advised at p in C′.

2. (C′ is blocking) there is no event c which is both enabled at b in B and
advised at p in C′.

3. (C′ does not satisfy S′) there is an event c which is both enabled at b in B
and advised at p in C′, but not advised at q in S′.

This check can be carried out in time linear in the product of the sizes of B, C′,
and S′. �

Conflict-Tolerant Features 237

6 Composition

We now give a way of composing conflict-tolerant controllers based on a priori-
tization of the controllers. The composition guarantees that the advice of each
controller is used in a “best possible” way.

Let B = (B, r0, →) be a base system over an alphabet Σ. Let C′1 = (Q1, s1, →1,
N1) and C′2 = (Q2, s2, →2, N2) be valid conflict-tolerant controllers for B. Let P
be a priority ordering between C′1 and C′2, and say P assigns a higher priority to
C′1, denoted by C′2 <P C′1. Then:

Definition 8 (Prioritized Composition). The P -prioritized composition of
the controllers C′1 and C′2 w.r.t. B, is the conflict-tolerant transition system C′,
denoted by ‖P,B(C′1, C′2), and defined as

C′ = (Q1 × Q2 × B, (s1, s2, r0), ⇒, N)

where ⇒ is given by (p1, p2, r)
a⇒ (q1, q2, t) iff p1

a→1 q1, p2
a→2 q2, and r

a→ t;
and the set of not-advised transitions N is defined as follows. With each transi-
tion u = (p1, p2, r)

a⇒ (q1, q2, t), we associate a bit-string (in this case of length
2) which denotes which of the controllers has advised this transition. Thus the as-
sociated bit-string for the transition above is b1b2 where bi is 1 iff pi

a→i qi �∈ Ni.
Let the “rank” of u be the number represented by this string in binary notation.
Then the transition u is advised (i.e. not in N) iff there is no transition of higher
rank going out of the state (p1, p2, r).

Figure 8 show how the ranks and “advised” status of transitions are calculated
(assuming that the base system allows all the events shown). Thus from state
(p, p′) only the transition on d is advised, while all others are not advised.

Lemma 1. The CTTS C′ = ‖P,B(C′1, C′2) defined above is a valid (i.e. non-
restricting and non-blocking) conflict-tolerant controller for B. In addition, the
immediate advice function f i

C′ it induces is given as follows. For each w ∈ L(B):

f i
C′(w) =

{
f i
B(w) ∩ f i

C′
1
(w) ∩ f i

C′
2
(w) if f i

B(w) ∩ f i
C′
1
(w) ∩ f i

C′
2
(w) �= ∅

f i
B(w) ∩ f i

C′
1
(w) otherwise.

�
We can now generalize this prioritized composition to any number of controllers.
Let C′1, . . . , C′n be valid conflict-tolerant controllers for a base system B. Let P
be a priority that induces a total ordering <P on the controllers. Then the
P -prioritized composition of C′1, . . . , C′n (wrt B) is denoted ‖P,B(C′1, . . . , C′n) and
defined similarly as above. Let S′1, . . . , S′n be conflict-tolerant specifications, and
suppose each C′j individually satisfies the specification S′j w.r.t. B.

Theorem 3. The conflict-tolerant transition system C′ = ‖P,B(C′1, . . . , C′n) is a
valid conflict-tolerant controller for B. Further, C′ satisfies each of the specifica-
tions S′1, . . . , S′n in the following “maximal” sense: Each w ∈ L(B‖C′) is always

238 D. D’Souza and M. Gopinathan

C'2
||

00
01

10 11

(C'1,C'2)

a
b c d a

b c d a b c d
p

q r s t

p'

q' r' s' t'

pp'

qq' rr' ss' tt'

C'1

Fig. 8. Computation of ranks in the prioritized composition

according to the immediate advice of S′j, except at the points where C′j is in con-
flict with the advice of higher-priority controllers, in that for each a in f i

C′
j
(w),

there is a controller C′k such that C′k >P C′j and a /∈ f i
C′

k
(w)∩f i

B(w). In particular,
the highest priority specification S′1 is always satisfied. �
Consider the base system behavior

fpress1 · up · nope · open · ttfull · close · cpress0 · down · fpress1

which we used to illustrate conflict in Sect. 3. With the priority order C′T > C′E ,
the conflict is resolved such that one possible extension is

open · ttnotfull · close · nope · up · nope · open

– i.e. the door is opened at floor 0 violating the advice of C′E . As passengers go
out at floor 0, the lift is not two-thirds full and the system immediately follows
the advice of C′E to service the executive floor. We emphasise that the same
controllers can be composed with the priority C′E > C′T , to obtain a system in
which conflicts will be resolved in favor of C′E , while maximally utilizing the
advice of C′T .

7 Discussion

We note that conflict-tolerant specifications are somewhat stronger than classical
specifications, and may not always admit a conflict-tolerant controller even when
the induced classical specifications admit a classical controller. See [13] for an
example. Nonetheless, whenever the conflict-tolerant specifications are realizable,
our framework provides a flexible way of composing the controllers to obtain
systems with guarantees on the usage of each controller.

We have considered extensions of this framework to include combinations
of safety and liveness specifications [13], as well as real-time features [14] with
similar results.

Our framework is also amenable to more flexible priority schemes like ac-
cording priority dynamically based on history of events. Gößler and Sifakis [15]
consider transition systems with priorities specified by predicates under which
one action is prioritized over another. They provide conditions under which the
predicates are consistent in that the prioritized system is non-blocking. Our com-
position scheme can be thought of as synthesizing consistent priority predicates
from possibly inconsistent predicates obtained from individual controllers.

Conflict-Tolerant Features 239

References

1. Keck, D.O., Kühn, P.J.: The feature and service interaction problem in telecom-
munications systems. a survey. IEEE Trans. Software Eng. 24(10), 779–796 (1998)

2. Hall, R.J.: Feature interactions in electronic mail. In: FIW, pp. 67–82 (2000)
3. Jackson, M., Zave, P.: Distributed feature composition: A virtual architecture for

telecommunications services. IEEE Trans. Software Eng. 24(10), 831–847 (1998)
4. Software Engineering Institute: Software product lines,

http://www.sei.cmu.edu/productlines
5. Fisler, K., Krishnamurthi, S.: Decomposing verification by features. In: IFIP Work-

ing Conference on Verified Software: Theories, Tools, Experiments (2006)
6. Felty, A.P., Namjoshi, K.S.: Feature specification and automated conflict detection.

ACM Trans. Softw. Eng. Methodol. 12(1), 3–27 (2003)
7. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proc. of

the IEEE 77, 81–98 (1989)
8. Wong, K.C., Thistle, J.G., Hoang, H.H., Malhamé, R.P.: Supervisory control of

distributed systems: Conflict resolution. In: Conf. on Decision and Control, pp.
416–421. IEEE, Los Alamitos (1995)

9. Chen, Y.L., Lafortune, S., Lin, F.: Modular supervisory control with priorities
for discrete event systems. In: Conf. on Decision and Control, pp. 409–415. IEEE
Computer Society Press, Los Alamitos (1995)

10. Wong, K.C., Thistle, J.G., Hoang, H.H., Malhamé, R.P.: Supervisory control of
distributed systems: Conflict resolution. In: Conf. on Decision and Control, pp.
3275–3280. IEEE, Los Alamitos (1998)

11. Hay, J.D., Atlee, J.M.: Composing features and resolving interactions. In: SIG-
SOFT Found. of Softw. Engg., pp. 110–119 (2000)

12. Plath, M., Ryan, M.: Feature integration using a feature construct. Sci. Comput.
Program 41(1), 53–84 (2001)

13. D’Souza, D., Gopinathan, M.: Conflict-tolerant features. Technical Report IISc-
CSA-TR-2007-11, Computer Science and Automation, Indian Institute of Science,
India (2007), http://archive.csa.iisc.ernet.in/TR/2007/11/

14. D’Souza, D., Gopinathan, M., Ramesh, S., Sampath, P.: Conflict-detection and
resolution for real-time features (manuscript in preparation)

15. Gößler, G., Sifakis, J.: Priority Systems. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 314–329. Springer,
Heidelberg (2004)

http://www.sei.cmu.edu/productlines
http://archive.csa.iisc.ernet.in/TR/2007/11/

Ranking Automata and Games

for Prioritized Requirements

Rajeev Alur, Aditya Kanade, and Gera Weiss

University of Pennsylvania

Abstract. Requirements of reactive systems are usually specified by
classifying system executions as desirable and undesirable. To specify
prioritized requirements, we propose to associate a rank with each exe-
cution. This leads to optimization analogs of verification and synthesis
problems in which we compute the “best” requirement that can be satis-
fied or enforced from a given state. The classical definitions of acceptance
criteria for automata can be generalized to ranking conditions. In par-
ticular, given a mapping of states to colors, the Büchi ranking condition
maps an execution to the highest color visited infinitely often by the
execution, and the cyclic ranking condition with cycle k maps an execu-
tion to the modulo-k value of the highest color repeating infinitely often.
The well-studied parity acceptance condition is a special case of cyclic
ranking with cycle 2, and we show that the cyclic ranking condition can
specify all ω-regular ranking functions. We show that the classical char-
acterizations of acceptance conditions by fixpoints over sets generalize to
characterizations of ranking conditions by fixpoints over an appropriately
chosen lattice of coloring functions. This immediately leads to symbolic
algorithms for solving verification and synthesis problems. Furthermore,
the precise complexity of a decision problem for ranking conditions is no
more than the corresponding acceptance version, and in particular, we
show how to solve Büchi ranking games in quadratic time.

1 Introduction

A requirement ϕ of a reactive system M can be formally described as a set Lϕ

of finite or infinite words over system states (or observations) [14]. Verification
of the system M with respect to the requirement ϕ corresponds to checking
whether there exists an execution of M that does not belong to Lϕ. When the
system has only finitely many states, and the requirement can be captured as an
ω-regular language, the verification problem can be solved algorithmically using
decision procedures for ω-automata [18]. When the choices within the system M
are partitioned into controllable and uncontrollable, then synthesis with respect
to the requirement ϕ corresponds to checking whether there exists a strategy to
resolve the controllable choices to ensure that the resulting execution belongs to
Lϕ. For the finite-state case, the synthesis question can be solved by algorithms
for solving games with ω-regular winning conditions [15,17].

In this paper, we propose a framework for specification, verification, and syn-
thesis of prioritized requirements. Given a sequence ϕ0, . . . ϕk of requirements,

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 240–253, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Ranking Automata and Games for Prioritized Requirements 241

listed in increasing order of importance, we want to find the best requirement
that can be satisfied. For example, in Section 2, we describe a scheduling case
study which employs several identical buffers to ensure uninterrupted flow of
input messages, and using large buffers is expensive. We can specify prioritized
requirements ϕ0, . . . ϕk, where ϕi states that the maximal buffer size required
infinitely often during the execution is i or less. There are other potential sce-
narios where words can be naturally associated with ranks. For example, given
multiple requirements, the priority of a word can be the number of requirements
it satisfies. For software verification, we can associate different costs with differ-
ent types of bugs, and have the analysis tool compute a classification of program
statements grouped according to the worst bug that can manifest from them.

The optimization questions concerning prioritized requirements ϕ0, . . . ϕk can,
of course, be answered by solving k verification (or synthesis) questions sepa-
rately, one for each requirement ϕi, using known techniques. However, as we
establish in this paper, there is a better way of formulating and solving such
questions. We formalize a prioritized requirement as a ranking function r that
maps each word to a rank in an ordered set. We will focus only on ω-regular
ranking functions, namely, functions that use only finitely many ranks such that
the set of words with the same rank is an ω-regular language. For the case of
two ranks, these notions coincide with the classical definitions of ω-regular sets.

Automata with different types of acceptance conditions (such as final-state,
Büchi, Rabin, parity) are commonly used to specify ω-regular sets. To generalize
acceptance to ranking, we consider deterministic automata in which each state
is assigned a color. Then, given a run ρ of the automaton over a word w, the
reachability ranking condition maps w to the highest color appearing in ρ. It is
well-known that the set of states from which a target set can be reached can
be computed as a least-fixpoint computation over sets of states starting with
the target set. We show that this computation can be naturally generalized to
fixpoints over functions that assign a color to each state (coloring functions). If
the number of states is n and the number of colors (which captures the number of
disjoint prioritized reachability requirements) is k, then, even though the number
of iterations of the fixpoint computation is nk, we show that existing algorithm
for solving reachability games (see [5]) can be adopted to solve the reachability
ranking games in linear time.

Given a mapping of states to colors, the Büchi ranking condition maps a
word to the highest color that repeats infinitely often in the corresponding run.
The classical nested fixpoint characterization of Büchi acceptance [6] can now be
generalized to an analogous fixpoint over coloring functions, and this allows us to
compute the value of the corresponding verification/synthesis question at every
state. We show that the number of iterations of the outer greatest-fixpoint loop
is independent of the number of ranks. This gives us a quadratic-time algorithm
for solving games with respect to Büchi ranking conditions.

Our final set of results concerns generalizing parity acceptance to cyclic rank-
ing condition. Given an assignment of colors to states, the cyclic ranking con-
dition with cycle k maps a word to the modulo-k value of the highest color

242 R. Alur, A. Kanade, and G. Weiss

that repeats infinitely often in the corresponding run. The well-studied parity
acceptance is a cyclic ranking condition with cycle 2. It is known that parity
acceptance can specify all ω-regular sets. We prove an analogous result: every
ω-regular ranking condition can be captured by a cyclic ranking condition. We
also show that the winning strategy in games with cyclic ranking condition is
memoryless, and the corresponding decision problem is in NP ∩ coNP.

Related Work. In scheduling literature, priorities are usually assigned with
tasks, and are used to make local decisions [3]. Our definition allows associ-
ating priorities with global executions, and can potentially be used to capture
high-level quality-of-service goals. In verification literature, various quantitative
generalizations of verification and synthesis questions have been studied, typi-
cally involving real-time and/or probabilities, and are orthogonal to our notion
of rankings. Parametric temporal logic allows capturing some versions of op-
timization problems, but the corresponding model checking problem has very
different technical flavor [1]. Lattice automata [12,13] generalize the notions of
initialization, transitions, and acceptance from the Boolean case to a lattice, and
can be used to associate ranks with words. However, it does not consider the
problem of computing the optimum values of games, central to our motivation.
While the decision procedures studied in [12,13] can be used for optimization, we
propose a faster algorithm. Similar to our result for reachability ranking games,
[4] proposes a linear-time algorithm for weak parity games. Finally, the games
literature considers models with costs associated with each state or transition.
The most widely studied ranking function for runs is the mean-payoff cost [20],
which is not ω-regular, and does not capture prioritization of requirements. The
work in [9] considers real valued ranking functions for stochastic games.

2 A Motivating Example

Our example is based on a case study in which scheduling policies are determined
for a signal processing board [8,19]. We show that the problem of synthesizing
an optimal scheduler is naturally modeled as a ranking question.

A block diagram of the signal processing board is depicted in Fig. 1. The
board processes the two input streams shown at the top left and produces the
two output streams shown at the bottom left. As depicted in the figure, data is
stored in memory and is brought back when needed. The memory can only be
accessed via a shared bus that transports data in quantities of 128 bits. Nine
identical buffers are designed to allow uninterrupted flow of data when the bus is
not available. The main objective of the case study is to analyze and to design an
arbiter that schedules the use of the shared bus. A valid schedule must guarantee
that, after a finite initialization phase, none of the data streams are interrupted.
The optimal schedule is the one which minimizes the buffer size (the number of
bits per buffer).

A schedule for bus arbitration is represented by a word over the alphabet
Σ = {0, 1, . . . , 9}. If the ith letter of the word is B, the bus is used to transfer

Ranking Automata and Games for Prioritized Requirements 243

Buffer 1
128 bit8 bit

Buffer 2
128 bit8 bit

Buffer 3
128 bit8 bit

Buffer 4
128 bit16 bit

Buffer 5
128 bit8 bit

Buffer 6
128 bit8 bit

Buffer 7
128 bit16 bit

Buffer 8
128 bit16 bit

Buffer 9
128 bit16 bit

Memory

Arbiter

Function 1

Function 2

Fig. 1. A signal processing board

data to or from the Bth buffer at the ith clock cycle. Zero at the ith letter of
the word means that the bus is idle at the ith clock cycle. Our goal is to form
an automaton that accepts a word if and only if it represents a valid schedule
(no overflows or underflows). The automaton will also be used to assign ranks
(payoffs) to schedules and analyzed to determine the optimal schedule.

The automaton for the language of valid schedules is constructed as a composi-
tion of nine automata, one for each buffer. The automaton for a buffer B is as fol-
lows. Let M be an upper bound on the size of the buffer and r ∈ {−16, −8, 8, 16}
denote the inflow to the buffer (negative if B buffers a stream from memory to
a functional block). These parameters can be read from Fig. 1. The states of
the automaton are the numbers Q(B) = {0, |r|, 2|r|, . . . , m} where m ≤ M and
m + |r| > M for the quantum of flow r associated with buffer B.

We define two types of transitions. First, if the buffer is not scheduled to use
the bus, it gets or loses a quantum of flow. This is modeled by δ(q, b) = q + r
if q + r ∈ Q(B) and b ∈ Σ \ {B}. Second, if the buffer is scheduled to use the
bus, it loses or gets 128 bits. This is modeled by δ(q, B) = q − 128 sgn(r) + r if
q − 128 sgn(r) + r ∈ Q(B) (where sgn(r) := r/|r|). All other transitions go to an
implicit sink which is the only non-accepting state. The initial state is q0 = 0.

Now, we use the product construction to get an automaton for the intersection
of the languages of the nine automata. Clearly, a word is accepted by the resulting
automaton if and only if it is a valid schedule. Note that the intersection may
be empty, in which case we would take a larger M and recompute.

To analyze the schedules, we assign with a state q = (q1, . . . , q9) ∈ Q(1) ×
· · · × Q(9) a number c(q) = max{q1, . . . , q9}. We call this number the color of
the state and c the coloring function. Let the rank of an infinite word w ∈ Σω be

244 R. Alur, A. Kanade, and G. Weiss

the maximal color visited infinitely often when the automaton reads the word.
The rank of a word is thus the maximal buffer size needed for valid execution of
the bus arbitration schedule identified by the word. The optimal buffer size thus
identified could be smaller than the buffer size required during the initialization
phase of the board (a finite prefix of a valid schedule). The potential loss of data
(overflow) during the initialization phase is acceptable in the case study.

To get an optimal schedule, we need to search for a word with the minimal
rank. A näıve approach is to solve this (quantitative) problem by solving a
series of (qualitative) decision problems. In particular, let Li be the set of valid
schedules where no state with color higher than i is visited infinitely often.
Then, one can check non-emptiness of Li to identify whether the buffer size i
is sufficient; until the minimal bound is found. In this paper we first study this
iterative approach and then present a direct and more efficient algorithm.

We also analyze the more general setting of games. In games, nondeterminism
is split into controllable and uncontrollable choices. The synthesis of an optimal
schedule for the signal processing board, in its full generality, requires game
based analysis. The memory needs to be refreshed periodically and this is not
in the control of the arbiter. The chip decides the refresh timings and, during
a memory refresh, the memory is not available. Specifically, the time between
consecutive refreshes varies nondeterministically between 100 and 200 clocks
and each refresh takes 10 clocks. Using the algorithms presented in this paper,
we can find an optimal schedule even in the presence of memory refreshes, by
considering the refresh mechanism as adversarial and finding the best strategy
against its worst-case behavior. Note that games are essential here since the
refresh mechanism is nondeterministic and the worst possible refresh (from the
perspective of the arbiter) cannot be identified independently.

3 Ranking Functions and Games

We introduce a generalization of ω-regular languages called ω-regular ranking
functions. Intuitively, languages specify qualitative properties of words by giving
the set of accepted words whereas rankings specify quantitative properties by
assigning numbers to words.

Definition 1. An ω-regular ranking function over a finite alphabet Σ is a func-
tion r : Σω → N with a finite range and {w : r(w) = n} is an ω-regular language
for every n in the range.

Note that the characteristic function of an ω-regular language is an ω-regular
ranking function with range {0, 1}.

A (deterministic) finite state automaton is a tuple (Q, Σ, δ, q0) where Q is
a set of states, Σ is an alphabet, δ : Q × Σ → Q is a transition function, and
q0 ∈ Q is an initial state. Define δ∗ : Σ∗ → Q, inductively, by δ∗(σ1 · · · σl) =
δ(δ∗(σ1 · · · σl−1), σl) and δ∗(ε) = q0 (where ε is the empty word). For w ∈ Σω,
define InfA(w) := {q ∈ Q : δ∗(w′) = q for infinitely many prefixes w′ of w}.

Ranking Automata and Games for Prioritized Requirements 245

We introduce cyclic ranking conditions. A cyclic ranking condition with cycle
k maps a word to the modulo-k value of the highest color repeating infinitely
often. A parity acceptance condition is a cyclic ranking condition with k = 2.

Definition 2. A cyclic ranking condition for a finite automaton A = (Q, Σ, δ, q0)
is a pair (c, k) where c : Q → N is a coloring function and k ∈ N is the num-
ber of ranks. The corresponding ranking function is given by CyclicA,c,k(w) :=
max{c(q) : q ∈ InfA(w)} modulo k.

Analogous to the known result that parity acceptance conditions can capture
all ω-regular languages, we show that cyclic ranking conditions can capture all
ω-regular ranking functions.

Proposition 3. [Expressive completeness of cyclic ranking conditions] A ranking
function r : Σω → N is an ω-regular ranking function if and only if there is a
deterministic finite automaton A and a cyclic ranking condition (c, k) such that
CyclicA,c,k(w) = r(w), for all w ∈ Σω.

Proof. The if direction is straightforward. For the only-if direction, let the ω-
regular language {w : r(w) = s} be specified by a deterministic Muller automaton
As = (Qs, Σ, δs, q0s , Fs) where s ∈ S and S is the range of r. For simplicity, let
S = {0, . . . , k−1}. Let AM = (QM , Σ, δM , q0M) be the product of the automata
As, s ∈ S. For F ⊆ QM , let projs(F) = {qs ∈ Qs : ∃q = 〈. . . , qs, . . .〉 ∈ F}.
Consider a Muller ranking function MulAM : 2QM → N defined as MulAM (F) :=
max({s : projs(F) ∈ Fs} ∪ {0}).

Consider a ranking function rM : Σω → N where rM (w) = MulAM (InfAM (w)).
Suppose for an infinite word w ∈ Σω, r(w) = i. Clearly, InfAi(w) ∈ Fi and for
j �= i, InfAj (w) �∈ Fj . Thus rM (w) = MulAM (InfAM (w)) = i.

Using the latest appearance record (LAR) [10,11] we construct an automaton
A = (Q, Σ, δ, q0) which simulates AM as follows:

Q = QM ! × |QM | where QM ! is the set of all permutations of QM

q0 = ((p1, . . . , pn), 1) for some permutation (p1, . . . , pn) ∈ QM ! for p1 = q0M

δ(((p1, . . . , pn), h), σ) = ((δM (p1, σ), p1, . . . , ph′−1, ph′+1, . . . , pn), h′)
with h′ as the index for (p1, . . . , pn) called hit position s.t. δM (p1, σ) = ph′ ,

if δM (p1, σ) is defined.

Consider a cyclic ranking condition (c, k) where k = |S| and a coloring func-
tion c : Q → N defined as follows:

c(((p1, . . . , pn), h)) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

kh if {p1, . . . , ph} ∈ Mul−1
AM

(0)

kh + 1 if {p1, . . . , ph} ∈ Mul−1
AM

(1)
...
kh + k − 1 if {p1, . . . , ph} ∈ Mul−1

AM
(k − 1)

Let hmax be the maximal hit position occurring infinitely often on the run of A
on w. Eventually for any state ((p1, . . . , pn), h), h ≤ hmax and {p1, . . . ,

246 R. Alur, A. Kanade, and G. Weiss

phmax} = InfAM (w). If rM (w) = i then {p1, . . . , phmax} ∈ Mul−1
AM

(i). Thus the
maximal color occurring infinitely often on the run of A on w is khmax + i. Hence
CyclicA,c,k(w) = i = rM (w) = r(w). �
Similarly, we generalize reachability, Büchi, and coBüchi acceptance conditions
to reachability, Büchi, and coBüchi ranking conditions as follows.

Definition 4. Reachability, Büchi, and coBüchi ranking conditions for a finite
automaton A = (Q, Σ, δ, q0) are expressed by coloring functions c : Q → N. The
corresponding ranking functions are defined as follows:

ReachA,c(w) := max{c(δ∗(w′)) : w′ is a prefix of w}
BuchiA,c(w) := max{c(q) : q ∈ InfA(w)}

coBuchiA,c(w) := min{c(q) : q ∈ InfA(w)}
Next, we extend ω-win-lose games to ω-ranking games. A game automaton is
a triplet (A, Q0, Q1) where A = (Q, Σ, δ, q0) is a finite state automaton and
(Q0, Q1) is a partition of Q into Player 0 and Player 1 states, respectively. In
figures, following the usual drawing convention, we use © to denote states in Q0

and � to denote states in Q1.

Definition 5. An ω-regular ranking game is a pair G = (A, r) where A is a
game automaton and r : Σω → N is an ω-regular ranking function (rewards for
Player 0, penalties for Player 1).

A strategy for a player p ∈ {0, 1} in an ω-regular ranking game is a function
sp : {w ∈ Σ∗ : δ∗(w) ∈ Qp} → Σ. The letter sp(w) models the move of player p
after observing w. Let Sp(G) be the set of all strategies for player p ∈ {0, 1}.

A pair of strategies (s0, s1) ∈ S0(G)×S1(G) induces an infinite word w whose
(i + 1)th letter is given by wi+1 := s0(w1..i) if δ∗(w1..i) ∈ Q0 and s1(w1..i) if
δ∗(w1..i) ∈ Q1, where w1..i is the prefix of length i of w and w1..0 = ε. We denote
this word by wG(s0, s1). The outcome of a pair of strategies is defined to be the
rank of this word and the value of the game is defined accordingly, as follows.

Definition 6. The value of a strategy s0 ∈ S0(G) in a game G = (A, r) is
defined by valG(s0) = min{r(wG(s0, s1)) : s1 ∈ S1(G)}. The value of the game is
defined by val(G) = max{valG(s0) : s0 ∈ S0(G)}.
If we think of Player 0 as the system and Player 1 as the environment, the above
definition captures the objective of Player 0 which is to maximize the outcome
against the worst-case behavior of Player 1.

4 Algorithms for Ranking Games

We analyze algorithms for solving ω-regular ranking games. In our context, solv-
ing means for each state of the automaton, determining the value of the game
starting at it and synthesizing a strategy that achieves these values.

Ranking Automata and Games for Prioritized Requirements 247

4.1 Solving Ranking Games as a Series of Win-Lose Games

In this section we propose a simple scheme for solving ranking games as a series
of appropriately defined win-lose games. In lattice games (cf. [2,13]), a similar
decomposition to join-irreducible elements is used but it only gives a sufficiency
condition. We show that for Büchi games such decomposition is also neces-
sary. We focus on Büchi games for simplicity. Generalization to other games is
straightforward.

For a game automaton A and a set of states B, let Buchi(A, B) be an al-
gorithm for win-lose Büchi games [11] which computes the states from which
Player 0 can force visiting B infinitely often (the winning region for Player 0).

Consider a game automaton whose set of states is Q, and a coloring function
c : Q → N that maps the states to colors. Algorithm 1 computes the function
r : Q → N where r(q) is the maximal color such that Player 0 can force infinitely
many visits to states with color r(q), starting at q. In the first iteration, the
algorithm computes all the states from which Player 0 can force infinitely many
visits to the highest color. Then, it removes these nodes from the graph and
proceeds to the second highest color and the process is repeated.

Algorithm 1. IteratedMaxBuchi(A, c)
foreach q ∈ Q do mark r(q) as undefined1

foreach γ ∈ {c(q) : q ∈ Q} in decreasing order do2

Qγ := {q ∈ Q : r(q) is undefined}3

Aγ := the automaton A restricted to the states in Qγ4

Bγ := {q ∈ Qγ : c(q) ≥ γ}5

foreach q ∈ Buchi(Aγ , Bγ) do r(q) := γ6

return r7

Remark 7. For a color γ, it is necessary to also include the states (if any)
with color > γ from the set Qγ in the Büchi set Bγ. For example, consider the
following game automaton:

1

1 23

Player 0 cannot force infinite visits to color 3. Player 0 also cannot force infinite
visits to color 2. However, the objective of Player 1 is to minimize the value and
hence Player 1 will not choose color 3 over color 2. Hence the value that Player 0
can achieve starting from any state is 2. In terms of Büchi win-lose games, the
winning set corresponding to color 2 is identified correctly only if the Büchi set,
B2, contains states with colors 2 as well as 3.

248 R. Alur, A. Kanade, and G. Weiss

Complexity analysis. For k, n ∈ N, consider the game automaton:

1 . . . k k . . . k 0

all k colors
z }| {

n−k−1 times
z }| {

As the value for each state is 0, Algorithm 1 takes k iterations. Assuming the
standard implementation of Buchi, it can be verified that each iteration runs in
time O(|Bγ | · |δ|) (Buchi(Aγ , Bγ) starts with Bγ and, in its ith iteration, removes
the states from which Player 0 cannot force at least i visits to Bγ ; each iteration
takes O(|δ|)). Further, from Remark 7, |Bγ | =

∑k
i=γ |c−1(i)| and

∑1
γ=k |Bγ | is

O(k · |Q|). Hence the worst-case execution time of Algorithm 1 is O(k · |Q| · |δ|)
which is k times the worst-case execution time for solving a Büchi win-lose game.

Remark 8. Denote the leftmost state in the above automaton by q0. If we only
need to compute the value of q0, we can use binary search as follows. Check
if q0 ∈ Buchi(Ak/2, Bk/2) then if q0 ∈ Buchi(Ak/4, Bk/4) and so on until we
find that q0 ∈ Buchi(A0, B0). As only the last query is answered positively, the
algorithm takes log k steps. The total execution time is O(log k · |Q| · |δ|).
Remark 7 shows that in case of Büchi games, the decomposition to join-irreducible
elements (with respect to the order 1 ≤ . . . ≤ k) is necessary but the complexity
of the resulting algorithm is not optimal as shown by the example above. In
Section 4.4, we generalize the algorithm for solving Büchi win-lose games to
solve Büchi ranking games without any increase in complexity. The advantage
of the above algorithm, however, is that existing algorithms for Büchi games can
be directly used for solving Büchi ranking games.

4.2 Fixpoints over Coloring Functions

The solutions of win-lose games are typically defined as fixpoints of functions over
the lattice of the power-set of the set of states of the game automaton, ordered
by inclusion. For ranking games, we use coloring functions as a generalization of
sets of states and define the following lattice.

Definition 9. For a set Q, N
Q is the set of all functions that map elements of Q

to natural numbers (coloring functions). Consider the lattice (NQ, �) where r1 �
r2 if r1(q) ≤ r2(q) for all q ∈ Q. The join and meet operations of the lattice are
(r1r2)(q) = max{r1(q), r2(q)} and (r1�r2)(q) = min{r1(q), r2(q)}, respectively.

The lattice of coloring functions is infinite. However, the range of a coloring
function used for defining a ranking condition is a finite subset of the set of
natural numbers. We therefore identify a finite sub-lattice defined below.

Definition 10. For a coloring function c : Q → N, let Lat(c) be the lattice
(R(c)Q, �) where R(c) = {c(q) : q ∈ Q}. It is easy to verify that Lat(c) is closed
under join and meet, so it is a complete finite sub-lattice of (NQ, �). The bottom
of the lattice is ⊥ = Q × {min R(c)} and the top is � = Q × {maxR(c)}.

Ranking Automata and Games for Prioritized Requirements 249

In the following subsections, we give fixpoint characterizations for ranking games.
It can be easily verified that the functions whose extremal fixpoints determine
the solutions of the games are monotonic and closed over the lattice defined
above. By finiteness of the lattice and by the Knaster–Tarski fixpoint theorem,
we know that the extremal fixpoints of the functions can be computed.

4.3 Solving Reachability Ranking Games in Linear Time

For a game automaton A and a coloring function c, let the solution of the
reachability ranking game be given by the function rA,c

Reach that maps each state
q to the maximal color i such that Player 0 can force a visit to a state in
{q′ ∈ Q : c(q′) ≥ i}, starting from q. Let succ(q) := {δ(q, σ) : σ ∈ Σ} and
pred(q) := {q′ : q ∈ succ(q′)}.

The fixpoint formulation of rA,c
Reach is given in Proposition 11 as the least

fixpoint (LFP) of the function f which assigns to a state q the highest color that
Player 0 can force in one step (or less) from q. Let apred(r)(q) := max{r(q′) : q′ ∈
succ(q)} for q ∈ Q0 and apred(r)(q) := min{r(q′) : q′ ∈ succ(q)} for q ∈ Q1.

Proposition 11. rA,c
Reach = LFP(f) where f : Lat(c) → Lat(c) is given by f(r) :=

r apred(r) c.

The function apred can be computed in time O(|δ|), where δ is the transition
function of the game automaton. Hence, the function f can also be computed
in time O(|δ|). Further, f is defined such that if, starting at a state q, Player 0
can force a visit to a color ≥ γ (with respect to a coloring function r) within
i steps, it can do so within max{0, i − 1} steps with respect to the coloring
function f(r). Since the length of an acyclic path in A can be at most |Q| − 1,
the effective height of the lattice Lat(c) for f is |Q| − 1. The overall complexity
of computing the fixpoint appears to be quadratic. However, we now specify a
suitable traversal of the automaton and also propose to keep a record of the
transitions already processed. This ensures that any transition of the automaton
is processed only once and we get a linear-time algorithm.

With each state q ∈ Q1 associate a number count(q) = | succ(q)|. Also let all
states be marked as not visited. Consider the following evaluation order: Starting
with the highest color, for each color γ, perform a preorder backwards traversal
starting with the states with color γ that are not marked as visited. Let q be the
state being processed. If q ∈ Q0 and not marked as visited then its color is set to
γ and is marked as visited. Let q ∈ Q1. If count(q) = 1 then all other outgoing
transitions of q have been explored during processing of colors > γ. Hence the
minimal color that Player 1 can force is γ. Set the color of q to γ and mark it
as visited. Otherwise, set count(q) to count(q) − 1.

Theorem 12. Reachability ranking games can be solved in O(|δ|) time, where
δ is the transition function of the game automaton.

Remark 13. The memoryless optimal winning strategy for Player 0 can be
identified during the computation of values described above. If q ∈ Q0 has color

250 R. Alur, A. Kanade, and G. Weiss

γ and is not marked as visited until the processing of color γ then the value at
q is γ, that is, its own color. Thus the strategy for Player 0 at q is to select the
label of any outgoing transition. Otherwise, the strategy is to select the label of
the outgoing transition of q that lead to q being marked as visited (note that the
game automaton is deterministic).

4.4 An Efficient Quadratic-Time Algorithm for Büchi Ranking
Games

For a game automaton A and a coloring function c, the solution to the Büchi
ranking problem is a function rA,c

Buchi that maps each state q to the maximal
color i such that Player 0 can force infinitely many visits to {q′ ∈ Q : c(q′) ≥ i},
starting from q. We present a fixpoint formulation of the solution function and
show that it can be computed in quadratic-time. Its complexity is independent
of the number of colors, as opposed to Algorithm 1.

The fixpoint formulation of rA,c
Buchi is given in Proposition 14. The function g

identifies for each state q the maximal color that Player 0 can force to visit at
least once, starting at q. The greatest fixpoint (GFP) of g computes for each
state q the maximal color (less than or equal to c(q)) that Player 0 can force to
visit infinitely many times. Finally, the solution of the reachability ranking for
the coloring function given by GFP(g) determines the solution rA,c

Buchi.

Proposition 14. rA,c
Buchi = r

A,GFP(g)
Reach where g : Lat(c) → Lat(c) is defined by

g(r) = r � c � LFP(fr) and fr : Lat(r) → Lat(r) is defined by fr(r′) = r′
apred(r′ r).

Note that the function fr is defined analogously to the function f given in
Proposition 11 but considers states reachable in one or more steps instead of
zero or more steps. From Theorem 12, we can deduce that LFP(fr) can be
computed in time O(|δ|). Consequently, the function g can be computed in time
O(|δ|).

Complexity analysis. We now show that in each iteration of the fixpoint
computation GFP(g), at least one additional state gets its final color. Thus, the
fixpoint computation GFP(g) takes no more than |Q| steps. This gives quadratic-
time complexity for solving Büchi ranking games.

Let r0 = c and r0 � r1 � · · · � rl be the sequence of functions computed in
the fixpoint computation GFP(g). Let Wj(ri) := {q ∈ Q : ri(q) = j > rl(q)} be
the set of states whose color in the ith iteration (given by coloring function ri)
is j which is larger than their final color given by coloring function rl.

In Lemma 15, we show that if Wj(ri) �= ∅ then, in the next iteration, at least
one state from

⋃k
j′=j Wj′ (ri) gets a color smaller than j or is assigned to its final

color; and this is true for each color j.

Lemma 15. If Wj(ri) �= ∅ then
⋃k

j′=j Wj′ (ri) \ ⋃k
j′=j Wj′ (ri+1) �= ∅.

Ranking Automata and Games for Prioritized Requirements 251

Proof. Since Wj(ri) �= ∅ there exists a state q such that ri(q) = j > rl(q).
Because rl(q) is the final color of q and r0 = c, Player 0 cannot force infinitely
many visits to {q′ : r0(q′) > rl(q)} starting from q. Since r0 � ri and ri(q) >
rl(q), we have r0(q) ≥ ri(q) > rl(q). Thus, Player 0 cannot force infinitely many
visits to S := {q′ : ri(q′) ≥ ri(q)}, starting at q. Because q ∈ S, there exists at
least one ‘exit’ state q′ ∈ S from which Player 1 cannot be forced to visit S
again. In particular, Player 0 cannot force visiting S starting at q′ which means
that LFP(fri)(q′) < j ≤ ri(q′). Since ri+1(q′) = min{ri(q′), LFP(fri)(q′)} we
get that ri+1(q′) < j ≤ ri(q′). �
In Lemma 16, we show that if Wj(ri) = ∅ then in the next iteration, no state
gets color j unless it is its final color.

Lemma 16. If Wj(ri) = ∅ then Wj(ri+1) = ∅.
Proof. Assume that Wj(ri+1) �= ∅, that is there exists a state q such that
ri+1(q) = j > rl(q). Let S := {q′ ∈ Q : ri(q′) = ri+1(q)}. By the definition
of LFP(fri), there is S′ ⊆ S that Player 0 can force visiting, starting from q.
Consider also the set S′′ = {q′ ∈ S′ : rl(q′) = ri+1(q)}. If S′′ = S′, starting
at q, Player 0 can force infinite visits to S′ which contradicts our assumption
that ri+1(q) > rl(q). Therefore, there exists q′ ∈ S′ \ S′′. As q′ ∈ {q′′ : ri(q′′) >
rl(q′′) = j}, we can infer that Wj(ri) �= ∅. �
Theorem 17. Büchi ranking games can be solved in O(|Q| · |δ|) time, where Q
is the set of game states and δ is the transition function.

Proof. The function g can be computed in time O(|δ|). We show that the number
of iterations of the fixpoint computation GFP(g) is bounded by |Q| by proving
that in each iteration at least one additional state gets its final color.

For an iteration i, let j = min{j′ : Wj′ (ri) �= ∅}. By Lemma 15,
⋃k

j′=j Wj′ (ri)\
⋃k

j′=j Wj′ (ri+1) �= ∅. By minimality of j,
⋃j−1

j′=0 Wj′ (ri) = ∅. By Lemma 16,
⋃j−1

j′=0 Wj′ (ri+1) = ∅. Therefore we have
⋃k

j′=j Wj′ (ri) \ ⋃k
j′=0 Wj′ (ri+1) �= ∅.

This means that at least one state whose color in ri was not its final color gets
its final color in ri+1. �
Remark 18. The memoryless optimal winning strategy for Player 0 can be
identified during the computation of values described above. In the final reacha-
bility computation with the coloring function as GFP(g), if q ∈ Q0 has color γ
and is not marked as visited until the processing of color γ then the strategy for
Player 0 at q is same as the strategy determined in the last LFP(fr) step (a one
or more step reachability computation). Otherwise, the strategy is to select the
label of the outgoing transition of q that lead to q being marked as visited in the
reachability computation for the coloring function GFP(g).

4.5 Cyclic Ranking Games

For a cyclic ranking game, consider the following decision problem. Given a
number i ∈ N, determine if Player 0 can force a word with rank ≥ i.

252 R. Alur, A. Kanade, and G. Weiss

Proposition 19. The decision problem is in NP ∩ coNP.

Proof. Assume that the game is defined by the automaton A and the pair (c, k)
where c : Q → N is a coloring function and k ∈ N is the number of ranks.
Consider a parity game over A using the coloring function

c′(q) = 2 · �c(q)/k� +
{

1 if c(q) ≥ i(modulo k)
0 if c(q) < i(modulo k).

Player 0 wins if the maximal color appearing infinitely often is odd. Clearly,
Player 0 can force a win in this game if and only if the answer to the decision
problem is affirmative. The proof follows from the known result that deciding
the winner of a parity game is in NP∩ coNP [7]. �
Using the above reduction, we can determine the value of a game with a cyclic
ranking condition by repeated queries. Once we know the value, any strategy
that wins the parity game also assures the value in the cyclic game. Since parity
games have memoryless optimal strategies, we get the following proposition.

Proposition 20. Cyclic ranking games have memoryless optimal strategies.

5 Conclusions

We have proposed a framework for specifying prioritized requirements by asso-
ciating ranks with executions and shown how to generalize classical automata-
theoretic notions of acceptance to rankings. The resulting optimization analogs
of verification and synthesis problems can naturally be solved by adopting sym-
bolic fixpoint algorithms to an appropriately chosen lattice of coloring functions.
In particular, we have identified the cyclic ranking condition as a means of spec-
ifying all ω-regular ranking functions, and shown that Büchi ranking games
can be solved in quadratic time. Implementation using binary decision diagrams
(BDDs) and algebraic decision diagrams (ADDs) [16] is planned for future work.

Acknowledgments. This research was partially supported by NSF grants 0541149
and 0524059, and by General Motors India Science Lab.

References

1. Alur, R., Etessami, K., Torre, S.L., Peled, D.: Parametric temporal logic for “model
measuring”. ACM Trans. Comput. Log 2(3), 388–407 (2001)

2. Bruns, G., Godefroid, P.: Model Checking with Multi-valued Logics. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
281–293. Springer, Heidelberg (2004)

3. Buttazzo, G.: Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. Kluwer Academic Publishers, Boston, USA (2000)

4. Chatterjee, K.: A linear-time algorithm for weak parity games. Technical Report
UCB/EECS-2006-153, University of California, Berkeley (2006)

Ranking Automata and Games for Prioritized Requirements 253

5. Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the
alternation-free modal mu-calculus. In: Proc. 3rd Conference on Computer Aided
Verification, pp. 48–58 (1991)

6. Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier Science Publishers,
Amsterdam (1990)

7. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model checking for the μ-calculus and
its fragments. Theor. Comput. Sci 258(1-2), 491–522 (2001)

8. Ernits, J.P.: Memory arbiter synthesis and verification for a radar memory interface
card. Nord. J. Comput 12(2), 68–88 (2005)

9. Gimbert, H., Zielonka, W.: Perfect information stochastic priority games. In: Arge,
L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596,
pp. 850–861. Springer, Heidelberg (2007)

10. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proc. 14th Annual
ACM Symposium on Theory of Computing, pp. 60–65 (1982)

11. Büchi, J.R.: State-strategies for games in Fσδ ∩Gσδ. Journal of Symbolic Logic 48,
1171–1198 (1983)

12. Kupferman, O., Lustig, Y.: Lattice automata. In: Proc. 8th Int. Conf. on Verifica-
tion, Model Checking, and Abstract Interpretation, pp. 199–213 (2007)

13. Kupferman, O., Lustig, Y.: Latticed simulation relations and games. In: Proc. 5th
symp. on Aut. Technology for Verification and Analysis, pp. 316–330 (2007)

14. Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symposium on
Foundations of Computer Science, pp. 46–77 (1977)

15. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th ACM
Symposium on Principles of Programming Languages (1989)

16. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,
Somenzi, F.: Algebraic Decision Diagrams and Their Applications. In: Proc. 9th
International Conference on CAD, pp. 188–191 (1993)

17. Thomas, W.: On the synthesis of strategies in infinite games. In: Proc. 12th Symp.
on Theoretical Aspects of Computer Science, pp. 1–13 (1995)

18. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Com-
put. 115(1), 1–37 (1994)

19. Weiss, G.: Optimal scheduler for a memory card. Research report, Dep. of Com-
puter Science and Applied Mathematics, The Weizmann Institue of Science (2002)

20. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor.
Comput. Sci. 158(1-2), 343–359 (1996)

Efficient Craig Interpolation for Linear Diophantine
(Dis)Equations and Linear Modular Equations�

Himanshu Jain1, Edmund Clarke1, and Orna Grumberg2

1 School of Computer Science, Carnegie Mellon University
2 Department of Computer Science, Technion - Israel Institute of Technology

Abstract. The use of Craig interpolants has enabled the development of pow-
erful hardware and software model checking techniques. Efficient algorithms
are known for computing interpolants in rational and real linear arithmetic. We
focus on subsets of integer linear arithmetic. Our main results are polynomial
time algorithms for obtaining interpolants for conjunctions of linear diophantine
equations, linear modular equations (linear congruences), and linear diophantine
disequations. We show the utility of the proposed interpolation algorithms for
discovering modular/divisibility predicates in a counterexample guided abstrac-
tion refinement (CEGAR) framework. This has enabled verification of simple
programs that cannot be checked using existing CEGAR based model checkers.

1 Introduction

The use of Craig interpolation [8] has led to powerful hardware [14] and software [9]
model checking techniques. In [14] the idea of interpolation is used for obtaining over-
approximations of the reachable set of states without using the costly image computa-
tion (existential quantification) operations. In [9,11] interpolants are used for finding the
right set of predicates in order to rule out spurious counterexamples. An interpolating
theorem prover performs the task of finding the interpolants. Such provers are available
for various theories such as propositional logic, rational and real linear arithmetic, and
equality with uninterpreted functions [6,11,12,13,15,19,21].

Efficient algorithms are known for computing interpolants in rational and real linear
arithmetic [6,15,19]. Linear arithmetic formulas where all variables are constrained to
be integers are said to be formulas in (pure) integer linear arithmetic or LA(Z), where
Z is the set of integers. There are no known efficient algorithms for computing inter-
polants for formulas in LA(Z). This is expected because checking the satisfiability of
conjunctions of atomic formulas in LA(Z) is itself NP-hard. We show that for various
subsets of LA(Z) one can compute interpolants efficiently.

Informally, a linear equation where all variables are integer variables is said to be
a linear diophantine equation (LDE). A linear modular equation (LME) or a linear
congruence over integer variables is a type of linear equation that expresses divisibil-
ity relationships. A system of LDEs (LMEs) denotes conjunctions of LDEs (LMEs).

� This research was sponsored by the Gigascale Systems Research Center (GSRC), the Semicon-
ductor Research Corporation (SRC), the Office of Naval Research (ONR), the Naval Research
Laboratory (NRL), the Army Research Office (ARO), and the General Motors Lab at CMU.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 254–267, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Craig Interpolation for Linear Diophantine (Dis)Equations 255

Both LDEs and LMEs arise naturally in program verification when modeling assign-
ments and conditional statements as logical formulas. These subsets of LA(Z) are
also known to be tractable, that is, polynomial time algorithms are known for decid-
ing systems of LDEs and LMEs. We study the interpolation problem for LDEs and
LMEs.

Given formulas F, G such that F ∧ G is unsatisfiable, an interpolant for the pair
(F, G) is a formula I(F, G) with the following properties: 1) F implies I(F, G), 2)
I(F, G) ∧ G is unsatisfiable, and 3) I(F, G) refers only to the common variables of F
and G. This paper presents the following new results.

• F, G denote a system of LDEs: We show that I(F, G) can be obtained in polyno-
mial time by using a proof of unsatisfiability of F ∧G. The interpolant can be either
a LDE or a LME. This is because in some cases there is no I(F, G) that is a LDE.
In these cases, however, there is always an I(F, G) in the form of a LME. (Sec. 3)

• F, G denote a system of LMEs: We obtain I(F, G) in polynomial time by using a
proof of unsatisfiability of F ∧ G. We can ensure that I(F, G) is a LME. (Sec. 4)

• Let S denote an unsatisfiable system of LDEs. The proof of unsatisfiability of S
can be obtained in polynomial time by using the Hermite Normal Form of S (rep-
resented in matrix form) [20]. A system of LMEs R can be reduced to an equi-
satisfiable system of LDEs R′. The proof of unsatisfiability for R is easily obtained
from the proof of unsatisfiability of R′. (Sec. 5)

• Let S denote a system of LDEs. We show that if S has an integral solution, then ev-
ery LDE that is implied by S, can be obtained by a linear combination of equations
in S. We show that S is convex [17], that is, if S implies a disjunction of LDEs,
then it implies one of the equations in the disjunction. In contrast, conjunctions of
atomic formulas in LA(Z) are not convex due to inequalities [17]. These results
help in efficiently dealing with linear diophantine disequations (LDDs). (Sec. 6)

• Let S = S1 ∧S2, where S1 is a system of LDEs, while S2 is a system of LDDs. We
say that S is a system of LDEs+LDDs. We show that S has no integral solution if
and only if S1∧S2 has no rational solution or S1 has no integral solution. This gives
a polynomial time decision procedure for checking if S has an integral solution. If
S has no integral solution, then the proof of unsatisfiability of S can be obtained in
polynomial time. (Sec. 6)

• F, G denote a system of LDEs+LDDs: We show I(F, G) can be obtained in poly-
nomial time. The interpolant can be a LDE, a LDD, or a LME. (Sec. 6)

• We show the utility of our interpolation algorithms in counterexample guided ab-
straction refinement (CEGAR) based verification [7]. Our interpolation algorithm
is effective at discovering modular/divisibility predicates, such as 3x + y + 2z ≡
1 (mod 4), from spurious counterexamples. This has allowed us to verify programs
that cannot be verified by existing CEGAR based model checkers.

Polynomial time algorithms are known for solving (deciding) a system of LDEs [20,5]
and LMEs (by reduction to LDEs) over integers. We do not give any new algorithms
for solving a system of LDEs or LMEs. Instead we focus on obtaining proofs of unsat-
isfiability and interpolants for systems of LDEs, LMEs, LDEs+LDDs. We only consider

256 H. Jain, E. Clarke, and O. Grumberg

conjunctions of LDEs, LMEs, LDEs+LDDs. Interpolants for any (unsatisfiable)
Boolean combinations of LDEs can also be obtained by calling the interpolation algo-
rithm for conjunctions of LDEs+LDDs multiple times in a satisfiability modulo theory
(SMT) framework [6]. However, computing interpolants for Boolean combinations of
LMEs is difficult. This is due to linear modular disequations (LMDs). We can show that
even the decision problem for conjunctions of LMDs is NP-hard. The extended version
of the paper [10] contains all proofs.

Related Work. It is known that Presburger arithmetic (PA) augmented with modulus
operator (divisibility predicates) allows quantifier elimination. Kapur et al. [12] show
that a recursively enumerable theory allows quantifier-free interpolants if and only if it
allows quantifier elimination. The systems of LDEs, LMEs, LDEs+LDDs are subsets
of PA. Thus, the existence of quantifier-free interpolants for these systems follows from
[12]. However, quantifier elimination for PA has exponential complexity and does not
immediately yield efficient algorithms for computing interpolants. We give polynomial
time algorithms for computing interpolants for systems of LDEs, LMEs, LDEs+LDDs.

Let S1, S2 denote conjunctions of atomic formulas in LA(Z). Suppose S1 ∧ S2 is
unsatisfiable. Pudlak [18] shows how to compute an interpolant for (S1, S2) by us-
ing a cutting-plane (CP) proof of unsatisfiability. The CP proof system is a sound and
complete way of proving unsatisfiability of conjunctions of atomic formulas in LA(Z).
However, a CP proof for a formula can be exponential in the size of the formula. Pudlak
does not provide any guarantee on the size of CP proofs for a system of LDEs or LMEs.
Our results show that polynomially sized proofs of unsatisfiability and interpolants can
be obtained for systems of LDEs, LMEs and LDEs+LDDs.

McMillan [15] shows how to compute interpolants in the combined theory of ratio-
nal linear arithmetic LA(Q) and equality with uninterpreted functions EUF by using
proofs of unsatisfiability. Rybalchenko and Sofronie-Stokkermans [19] show how to
compute interpolants in combined LA(Q), EUF and real linear arithmetic LA(R) by
using linear programming solvers in a black-box fashion. The key idea in [19] is to use
an extension of Farkas lemma [20] to reduce the interpolation problem to constraint
solving in LA(Q) and LA(R). Cimatti et al. [6] show how to compute interpolants in
a satisfiability modulo theory (SMT) framework for LA(Q), rational difference logic
fragment and EUF . By making use of state-of-the-art SMT algorithms they obtain sig-
nificant improvements over existing interpolation tools for LA(Q) and EUF . Yorsh and
Musuvathi [21] give a Nelson-Oppen [17] style method for generating interpolants in a
combined theory by using the interpolation procedures for individual theories. Kroen-
ing and Weissenbacher [13] show how a bit-level proof can be lifted to a word-level
proof of unsatisfiability (and interpolants) for equality logic.

To the best of our knowledge the work in [15,21,19,13,6] is not complete for com-
puting interpolants in LA(Z) or its subsets such as LDEs, LMEs, LDEs+LDDs. That is,
the work in [15,21,19,13,6] cannot compute interpolants for formulas that are satisfiable
over rationals but unsatisfiable over integers. Such formulas can arise in both hardware
and software verification. We give sound and complete polynomial time algorithms for
computing interpolants for conjunctions of LDEs, LMEs, LDEs+LDDs.

Efficient Craig Interpolation for Linear Diophantine (Dis)Equations 257

2 Notation and Preliminaries

We use capital letters A, B, C, X, Y, Z, . . . to denote matrices and formulas. A matrix
M is integral (rational) iff all elements of M are integers (rationals). For a matrix
M with m rows and n columns we say that the size of M is m × n. A row vector
is a matrix with a single row. A column vector is a matrix with a single column. We
sometimes identify a matrix M of size 1 × 1 by its only element. If A, B are matrices,
then AB denotes matrix multiplication. We assume that all matrix operations are well
defined in this paper. For example, when we write AB without specifying the sizes of
matrices A, B, it is assumed that the number of columns in A equals the number of
rows in B.

For any rational numbers α and β, α|β if and only if, α divides β, that is, if and
only if β = λα for some integer λ. We say that α is equivalent to β modulo γ written
as α ≡ β (mod γ) if and only if γ|(α − β). We say γ is the modulus of the equation
α ≡ β (mod γ). We allow α, β, γ to be rational numbers. If α1, . . . , αn are ratio-
nal numbers, not all equal to 0, then the largest rational number γ dividing each of
α1, . . . , αn exists [20], and is called the greatest common divisor, or gcd of α1, . . . , αn

denoted by gcd(α1, . . . , αn). We assume that gcd is always positive.

Basic Properties of Modular Arithmetic: Let a, b, c, d, m be rational numbers.
P1. a ≡ a (mod m) (reflexivity).
P2. a ≡ b (mod m) implies b ≡ a (mod m) (symmetry).
P3. a ≡ b (mod m) and b ≡ c (mod m) imply a ≡ c (mod m) (transitivity).
P4. If a ≡ b (mod m), c ≡ d (mod m), and x, y are integers, then ax + cy ≡ bx +
dy (mod m) (integer linear combination).
P5. If c > 0 then a ≡ b (mod m) if, and only if, ac ≡ bc (mod mc).
P6. If a = b, then a ≡ b (mod m) for any m.

Example 1. Observe that x ≡ 0 (mod 1) for any integer x. Also observe from P5 (with
c = 2) that 1

2x ≡ 0 (mod 1) if and only if x ≡ 0 (mod 2).

A linear diophantine equation (LDE) is a linear equation c1x1 + . . . + cnxn = c0,
where x1, . . . , xn are integer variables and c0, . . . , cn are rational numbers. A variable
xi is said to occur in the LDE if ci �= 0. We denote a system of m LDEs in a matrix
form as CX = D, where C denotes an m × n matrix of rationals, X denotes a column
vector of n integer variables and D denotes a column vector of m rationals. When we
write a (single) LDE in the form CX = D, it is implicitly assumed that the sizes of
C, X, D are of the form 1 × n, n × 1, 1 × 1, respectively. A variable is said to occur in
a system of LDEs if it occurs in at least one of the LDEs in the given system of LDEs.

A linear modular equation (LME) has the form c1x1 + . . . + cnxn ≡ c0 (mod l),
where x1, . . . , xn are integer variables, c0, . . . , cn are rational numbers, and l is a ra-
tional number. We call l the modulus of the LME. Allowing l to be a rational number
leads to simpler proofs and covers the case when l is an integer. We abbreviate a LME
t ≡ c (mod l) by t ≡l c. A variable xi is said to occur in a LME if l does not divide ci.

A system of LDEs (LMEs) denotes conjunctions of LDEs (LMEs). If F, G are a
system of LDEs (LMEs), then F ∧ G is also a system of LDEs (LMEs).

258 H. Jain, E. Clarke, and O. Grumberg

2.1 Craig Interpolants

Given two logical formulas F and G in a theory T such that F ∧ G is unsatisfiable in
T , an interpolant I for the ordered pair (F, G) is a formula such that

(1) F ⇒ I in T
(2) I ∧ G is unsatisfiable in T
(3) I refers to only the common variables of A and B.

The interpolant I can contain symbols that are interpreted by T . In this paper such
symbols will be one of the following: addition (+), equality (=), modular equality for
some rational number m (≡m), disequality (�=), and multiplication by a rational number
(×). The exact set of interpreted symbols in the interpolant depends on T .

3 System of Linear Diophantine Equations (LDEs)

In this section we discuss proofs of unsatisfiability and interpolation algorithm for
LDEs. The following theorem from [20] gives a necessary and sufficient condition for
a system of LDEs to have an integral solution.

Theorem 1. (Corollary 4.1(a) in Schrijver [20]) A system of LDEs CX = D has no
integral solution for X , if and only if there exists a rational row vector R such that RC
is integral and RD is not an integer.

Definition 1. We say a system of LDEs CX = D is unsatisfiable if it has no integral
solution for X . For a system of LDEs CX = D a proof of unsatisfiability is a rational
row vector R such that RC is integral and RD is not an integer.

Example 2. Consider the system of LDEs CX = D and a proof of unsatisfiability R:

CX = D :=

⎡

⎣
1 1 0
1 −1 0
0 2 2

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ =

⎡

⎣
1
1
3

⎤

⎦
R = [12 , − 1

2 , 1
2]

RC = [0, 2, 1]
RD = 3

2

Example 3. Consider the system of LDEs CX = D and a proof of unsatisfiability R:

CX = D :=
[
1 −2 0
1 0 −2

]
⎡

⎣
x
y
z

⎤

⎦ =
[
0
1

] R = [12 , 1
2]

RC = [1, −1, −1]
RD = 1

2

The above examples will be used as running examples in the paper. In section 5 we
describe how a proof of unsatisfiability can be obtained in polynomial time for an un-
satisfiable system of LDEs.

Definition 2. (Implication) A system of LDEs CX = D implies a (single) LDE AX =
B, if every integral vector X satisfying CX = D also satisfies AX = B.

Similarly, CX = D implies a (single) LME AX ≡m B, if every integral vector X
satisfying CX = D also satisfies AX ≡m B.

Efficient Craig Interpolation for Linear Diophantine (Dis)Equations 259

Lemma 1. (Linear combination) For every rational row vector U the system of LDEs
CX = D implies the LDE UCX = UD. Note that UCX = UD is simply a linear
combination of the equations in CX = D. The system CX = D also implies the LME
UCX ≡m UD for any rational number m.

Example 4. The system of LDEs CX = D in Example 3 implies the LDE [12 , 1
2]CX =

[12 , 1
2]D, which simplifies to x − y − z = 1

2 . The system CX = D also implies the
LME x − y − z ≡m

1
2 for any rational number m.

3.1 Computing Interpolants for Systems of LDEs

Let F ∧ G denote an unsatisfiable system of LDEs. The following example shows that
an unsatisfiable system of LDEs does not always have a LDE as an interpolant.

Example 5. Let F := x − 2y = 0 and G := x − 2z = 1. Intuitively, F expresses
the constraint that x is even and G expresses the constraint that x is odd, thus, F ∧ G
is unsatisfiable. We gave a proof of unsatisfiability of F ∧ G in Example 3. Observe
that the pair (F, G) does not have any quantifier-free interpolant that is also a LDE. The
problem is that the interpolant can only refer to the variable x. We can show that there
is no formula I of the form c1x + c2 = 0, where c1, c2 are rational numbers, such that
F ⇒ I and I ∧ G is unsatisfiable (see [10] for proof).

As shown by the above example it is possible that there exists no LDE that is an in-
terpolant for (F, G). We show that in this case the system (F, G) always has a LME
as an interpolant. In the above example an interpolant will be x ≡2 0. Intuitively, the
interpolant means that x is an even integer.

We now describe the algorithm for obtaining interpolants. Let AX = A′, BX = B′

be systems of LDEs, where X = [x1, . . . , xn] is a column vector of n integer variables.
Suppose the combined system of LDEs AX = A′ ∧ BX = B′ is unsatisfiable. We
want to compute an interpolant for (AX = A′, BX = B′). Let R = [R1, R2] be a
proof of unsatisfiability of AX = A′ ∧ BX = B′ such that

R1A + R2B is integral and R1A
′ + R2B

′ is not an integer.

Recall that a variable is said to occur in a system of LDEs if it occurs with a non-
zero coefficient in one of the equations in the given system of LDEs. Let VAB ⊆ X
denote the set of variables that occur in both AX = A′ and BX = B′, let VA\B ⊆ X
denote the set of variables occurring only in AX = A′ (and not in BX = B′), and
let VB\A ⊆ X denote the set of variables occurring only in BX = B′ (and not in
AX = A′).

We call the LDE R1AX = R1A
′ a partial interpolant for (AX = A′, BX = B′).

It is a linear combination of equations in AX = A′. The partial interpolant R1AX =
R1A

′ can be written in the following form
∑

xi∈VA\B

aixi +
∑

xi∈VAB

bixi = c (1)

where all coefficients ai, bi and c = R1A
′ are rational numbers. Observe that the partial

interpolant does not contain any variable that occurs only in BX = B′ (VB\A).

260 H. Jain, E. Clarke, and O. Grumberg

Lemma 2. The coefficient ai of each xi ∈ VA\B in the partial interpolant R1AX =
R1A

′ (Equation 1) is an integer.

Lemma 3. The partial interpolant R1AX = R1A
′ satisfies the first two conditions in

the definition of an interpolant. That is,

1. AX = A′ implies R1AX = R1A
′

2. (R1AX = R1A
′) ∧ BX = B′ is unsatisfiable

If ai = 0 for all xi ∈ VA\B (equation 1), then the partial interpolant only contains the
variables from VAB . In this case the partial interpolant is an interpolant for (AX =
A′, BX = B′). (The proof is given in [10].)

Example 6. Consider the system of LDEs CX = D in Example 2. A proof of unsat-
isfiability for this system is R = [12 , − 1

2 , 1
2]. Let AX = A′ be the first two equations

in CX = D, that is, x + y = 1 ∧ x − y = 1 (in matrix form). Let BX = B′ be the
third equation in CX = D, that is, 2y + 2z = 3. Observe that VA\B := {x}, VAB :=
{y}, VB\A := {z}. In this case R1 = [12 , − 1

2]. The partial interpolant for the pair
(AX = A′, BX = B′) is y = 0, which is also an interpolant because y ∈ VAB .

The following example shows that a partial interpolant need not be an interpolant.

Example 7. Consider the system CX = D in Example 3. A proof of unsatisfiability
for this system is R = [12 , 1

2]. Let AX = A′ be the first equation in CX = D, that is,
x − 2y = 0. Let BX = B′ be the second equation in CX = D, that is, x − 2z = 1.
Observe that VA\B := {y}, VAB := {x}, VB\A := {z}. In this case R1 = [12]. Thus,
the partial interpolant for the pair (AX = A′, BX = B′) is 1

2x − y = 0. Observe
that the partial interpolant is not an interpolant as it contains the variable y, which does
not occur in VAB . This is not surprising since we have already seen in Example 5 that
(x − 2y = 0, x − 2z = 1) cannot have an interpolant that is a LDE.

We now intuitively describe how to remove variables from the partial interpolant that
are not common to AX = A′ and BX = B′. In example 7 the partial interpolant is
1
2x − y = 0, where y /∈ VAB . We show how to eliminate y from 1

2x − y = 0 in order
to obtain an interpolant. We use modular arithmetic in order to eliminate y. Informally,
the equation 1

2x − y = 0 implies 1
2x − y ≡ 0 (mod γ) for any rational number γ. Let

α denote the greatest common divisor of the coefficients of variables (in 1
2x − y = 0)

that do not occur in VAB . In this example α = 1 (gcd of the coefficient of y). We know
1
2x− y = 0 implies 1

2x− y ≡ 0 (mod 1). Since y is an integer variable y ≡ 0 (mod 1).
We can add 1

2x − y ≡ 0 (mod 1) and y ≡ 0 (mod 1) to obtain 1
2x ≡ 0 (mod 1)

(note that y is eliminated). Intuitively, the linear modular equation 1
2x ≡ 0 (mod 1) is

an interpolant for (x − 2y = 0, x − 2z = 1). By using basic modular arithmetic this
interpolant can be written as x ≡ 0 (mod 2).

We now formalize the above intuition to address the case when the partial interpolant
contains variables that are not common to AX = A′ and BX = B′.

Theorem 2. Assume that the coefficient ai of at least one xi ∈ VA\B in the partial
interpolant (Equation 1) is not zero. Let α denote the gcd of {ai|xi ∈ VA\B}.
(a) α is an integer and α > 0.

Efficient Craig Interpolation for Linear Diophantine (Dis)Equations 261

(b) Let β be any integer that divides α. Then the following linear modular equation Iβ

is an interpolant for (AX = A′, BX = B′).

Iβ :=
∑

xi∈VAB

bixi ≡ c (mod β)

Observe that Iβ contains only variables that are common to both AX = A′ and BX =
B′. It is obtained from the partial interpolant by dropping all variables occurring only
in AX = A′ (VA\B) and replacing the linear equality by a modular equality.

The complete proof can be found in [10]. Lemma 3 and Theorem 2 give us a sound and
complete algorithm for computing an interpolant for unsatisfiable systems of LDEs (see
[10] for algorithm pseudocode). In theorem 2, I1 is always an interpolant for (AX =
A′, BX = B′). For α > 1 theorem 2 allows us to obtain multiple interpolants by
choosing different β. For any β that divides α, Iα ⇒ Iβ and Iβ ⇒ I1.

4 System of Linear Modular Equations (LMEs)

In this section we discuss proofs of unsatisfiability and interpolation algorithm for
LMEs. We first consider a system of LMEs where all equations have the same mod-
ulus l, where l is a rational number. We denote this system as CX ≡l D, where C
denotes an m×n rational matrix, X denotes a column vector of n integer variables and
D denotes a column vector of m rational numbers. The next theorem gives a necessary
and sufficient condition for CX ≡l D to have an integral solution.

Theorem 3. The system CX ≡l D has no integral solution for X if and only if there
exists a rational row vector R such that RC is integral, lR is integral, and RD is not
an integer. (The proof uses reduction to LDEs and is given in [10].)

Definition 3. We say a system of LMEs CX ≡l D is unsatisfiable if it has no integral
solution X . A proof of unsatisfiability for a system of LMEs CX ≡l D is a rational
row vector R such that RC is integral, lR is integral, and RD is not an integer.

Example 8. Consider the system of LMEs CX ≡8 D and a proof of unsatisfiability R:

CX ≡8 D :=

⎡

⎣
2 2
2 1
4 0

⎤

⎦

[
x
y

]

≡8

⎡

⎣
4
4
4

⎤

⎦

R = [14 , − 1
2 , − 1

8]
RC = [−1, 0]
lR = [2, −4, −1]
RD = − 3

2

Intuitively, CX ≡8 D is unsatisfiable because we can take an integer linear combina-
tion of the given equations using lR to get a contradiction 0 ≡8 −12.

Definition 4. (Implication) A system of LMEs CX ≡l D implies a LME AX ≡l B,
if every integral vector X satisfying CX ≡l D also satisfies AX ≡l B.

Lemma 4. For every integral row vector U the system of LMEs CX ≡l D imply
UCX ≡l UD.

262 H. Jain, E. Clarke, and O. Grumberg

4.1 Computing Interpolants for Systems of LMEs

Let AX ≡l A′ and BX ≡l B′ be two systems of LMEs such that AX ≡l A′ ∧
BX ≡l B′ is unsatisfiable. We show that (AX ≡l A′, BX ≡l B′) always has a LME
as an interpolant. Let R = [R1, R2] denote a proof of unsatisfiability for the system
AX ≡l A′ ∧ BX ≡l B′ such that R1A + R2B is integral, lR = [lR1, lR2] is integral,
and R1A

′ + R2B
′ is not an integer. The following theorem shows that we can take

integer linear combinations of equations in AX ≡l A′ to obtain interpolants.

Theorem 4. We assume l �= 0. Let S1 denote the set of non-zero coefficients of xi ∈
VA\B in R1AX . Let S2 denote the set of non-zero elements of row vector lR1. If S2 = ∅,
then the interpolant for (AX ≡l A′, BX ≡l B′) is a trivial LME 0 ≡l 0. Otherwise,
let S2 �= ∅. Let α denote the gcd of numbers in S1 ∪ S2. (a) α is an integer and α > 0.
(b) Let β be any integer that divides α. Let U = l

β R1. Then UAX ≡l UA′ is an
interpolant for (AX ≡l A′, BX ≡l B′). (The proof is given in [10].)

Example 9. Consider the system of LMEs CX ≡l D in Example 8. Let AX ≡l A′

denote the first two equations in CX ≡l D and BX ≡l B′ denote the last equation
in CX ≡l D. Observe that VA\B := {y}, VAB := {x}, VB\A := ∅. A proof of
unsatisfiability for CX ≡l D is R = [14 , − 1

2 , − 1
8]. We have R1 = [14 , − 1

2], lR1 =
[2, −4], R1AX is − 1

2x, S1 = ∅, S2 = {2, −4}, α = 2. We can take β = 1 or
β = 2 to obtain two valid interpolants. For β = 1, U = [2, −4] and the interpolant
UAX ≡l UA′ is −4x ≡8 −8 (equivalently x ≡2 0). For β = 2, U = [1, −2] and the
interpolant UAX ≡l UA′ is −2x ≡8 −4 (equivalently x ≡4 2).

4.2 Handling LMEs with Different Moduli

Consider a system F of LMEs, where equations in F can have different moduli. In or-
der to check the satisfiability of F , we obtain another equivalent system of equations
F ′ such that each equation in F ′ has the same modulus. This is done using a stan-
dard trick. Let m1, . . . , mk represent the different moduli occurring in equations in F .
Let m denote the least common multiple of m1, . . . , mk. We multiply each equation
t ≡mi c in F by m

mi
to obtain another equation m

mi
t ≡m

m
mi

c. Let F ′ represent the
set of new equations. All equations in F ′ have same modulus m. Using basic modu-
lar arithmetic one can show that F and F ′ are equivalent. Suppose F is unsatisfiable.
Then the interpolants for any partition of F can be computed by working with F ′ and
using the techniques described in the previous section. For example, let F represent the
following system of LMEs x ≡2 1 ∧ x + y ≡4 2 ∧ 2x + y ≡8 4. One can work with
F ′ := 4x ≡8 4 ∧ 2x + 2y ≡8 4 ∧ 2x + y ≡8 4 instead of F .

5 Algorithms for Obtaining Proofs of Unsatisfiability

Polynomial time algorithms are known for determining if a system of LDEs CX = D
has an integral solution or not [20]. We review one such algorithm that is based on the
computation of the Hermite Normal Form (HNF) of the matrix C.

Efficient Craig Interpolation for Linear Diophantine (Dis)Equations 263

Using standard Gaussian elimination it can be determined if CX = D has a rational
solution or not. If CX = D has no rational solution, then it cannot have any integral
solution. In the discussion below we assume that CX = D has a rational solution.
Without loss of generality we assume that the matrix C has full row rank, that is, all
rows of C are linearly independent (linearly dependent equations can be removed).

The HNF of an m × n matrix C with full row rank is of the form [E 0] where 0
represents an m × (n − m) matrix filled with zeros and E is a square m × m matrix
with the following properties: 1) E is lower triangular 2) E is non-singular (invertible)
3) all entries in E are non-negative and the maximum entry in each row lies on the
diagonal. The HNF of a matrix can be obtained by three elementary column operations.
1) Exchanging two columns. 2) Multiplying a column by -1. 3) Adding an integral
multiple of one column to another column. Each column operation can be represented
by a unimodular matrix. A unimodular matrix is a square matrix with integer entries and
determinant +1 or -1. The product of unimodular matrices is a unimodular matrix. The
inverse of a unimodular matrix is a unimodular matrix. The conversion of C to HNF
can be represented as follows CU = [E 0], where U is a unimodular matrix, the sizes
of C, U, E are m × n, n × n, m × m, respectively and 0 represents an m × (n − m)
matrix filled with zeros (n ≥ m because C has full row-rank). The following result
shows the use of HNF in determining the satisfiability of a system of LDEs.

Lemma 5. (Corollary 5.3(b) in [20]) For C, X, D, E defined as above, CX = D has
no integral solution if and only if E−1D is not integral. (E−1 denotes the inverse of E.)

Example 10. For the system of LDEs CX = D in example 3 we have the following:

[
1 −2 0
1 0 −2

]

︸ ︷︷ ︸
C

⎡

⎣
1 2 −2
0 1 −1
0 0 −1

⎤

⎦

︸ ︷︷ ︸
U

=
[

1 0 0
1 2 0

]

︸ ︷︷ ︸
[E 0]

[
1 0
−1
2

1
2

]

︸ ︷︷ ︸
E−1

[
0
1

]

︸︷︷︸
D

=
[

0
1
2

]

︸︷︷︸
not integral

5.1 Obtaining a Proof of Unsatisfiability for a System of LDEs

If a system of LDEs CX = D is unsatisfiable, then we want to compute a row vector R
such that RC is integral and RD is not an integer. The following corollary shows that
the proof of unsatisfiability can be obtained by using the HNF of C.

Corollary 1. Given CX = D where C, D are rational matrices, and C has full row
rank. Let [E 0] denote the HNF of C. If CX = D has no integral solution, then E−1D
is not integral. Suppose the ith entry in E−1D is not an integer. Let R′ denote the ith

row in E−1. Then (a) R′D is not an integer and (b) R′C is integral. Thus, R′ serves as
the required proof of unsatisfiability of CX = D.

In example 10 the second row in E−1D is not an integer. Thus, the proof of unsatisfia-
bility of CX = D is the second row in E−1 which is [− 1

2 , 1
2].

Proofs of Unsatisfiability for LMEs: Let CX ≡l D be a system of LMEs. Each
equation ti ≡l di in CX ≡l D can be written as an equi-satisfiable LDE, ti + lvi = di,

264 H. Jain, E. Clarke, and O. Grumberg

where vi is a new integer variable. In this way we can reduce CX ≡l D to an equi-
satisfiable system of LDEs C′Z = D. The proof of unsatisfiability of C′Z = D is
exactly a proof of unsatisfiability of CX ≡l D (see the proof of theorem 3 in [10]).

If a system of LDEs or LMEs is unsatisfiable, then we can obtain a proof of unsat-
isfiability in polynomial time. This is because HNF computation, matrix inversion, and
matrix multiplication can be done in polynomial time in the size of input [20].

6 Handling Linear Diophantine Equations and Disequations

We show how to compute interpolants in presence of linear diophantine disequations.
A linear diophantine disequation (LDD) is of the form c1x1 + . . . + cnxn �= c0,
where c0, . . . , cn are rational numbers and x1, . . . , xn are integer variables. A system
of LDEs+LDDs denotes conjunctions of LDEs and LDDs. For example, x + 2y =
1 ∧ x + y �= 1 ∧ 2y + z �= 1 with x, y, z as integer variables represents a system of
LDEs+LDDs. We represent a conjunction of m LDDs as

∧m
i=1 CiX �= Di, where Ci is

a rational row vector and Di is a rational number. The next theorem gives a necessary
and sufficient condition for a system of LDEs+LDDs to have an integral solution.

Theorem 5. Let F denote AX = B ∧ ∧m
i=1 CiX �= Di. The following are equivalent:

1. F has no integral solution
2. F has no rational solution or AX = B has no integral solution.

The proof of (2) ⇒ (1) in Theorem 5 is easy. The proof of (1) ⇒ (2) is involved and
relies on the following lemmas (see full proof in [10]). The first lemma shows that if a
system of LDEs AX = B has an integral solution, then every LDE that is implied by
AX = B, can be obtained by a linear combination of equations in AX = B.

Lemma 6. A system of LDEs AX = B implies a LDE EX = F if and only if AX = B
is unsatisfiable or there exists a rational vector R such that E = RA and F = RB.

We use the properties of the cutting-plane proof system [20,5] in order to prove lemma
6. The next lemma shows that if a system of LDEs implies a disjunction of LDEs, then
it implies one of the LDEs in the disjunction (also called convexity [17]).

Lemma 7. A system of LDEs AX = B implies
∨m

i=1 CiX = Di if and only if there
exists 1 ≤ k ≤ m such that AX = B implies CkX = Dk.

We use a theorem from [20] that gives a parametric description of the integral solutions
to AX = B in order to prove lemma 7. Let F denote AX = B ∧ ∧m

i=1 CiX �= Di.
Using Theorem 5 we can determine whether F has an integral solution in polynomial
time. This is because checking if AX = B has an integral solution can be done in
polynomial time [20,5]. Checking whether the system F has a rational solution can be
done in polynomial time as well [17].

6.1 Interpolants for LDEs+LDDs

We say a system of LDEs+LDDs is unsatisfiable if it has no integral solution. Con-
sider systems of LDEs+LDDs F := F1 ∧ F2 and G := G1 ∧ G2, where F1, G1 are

Efficient Craig Interpolation for Linear Diophantine (Dis)Equations 265

Example Preds/Interpolants VINT2
ex1 y ≡2 1 2.72s
ex2 x + y ≡2 0 0.83s
ex4 x + y + z ≡4 0 0.95s
ex5 x ≡4 0, y ≡4 0 1.1s
ex6 4x + 2y + z ≡8 0 0.93s
ex7 4x − 2y + z ≡222 0 0.54s
forb1 x + y ≡3 0 -

(a)

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

H
N

F
 (

se
co

nd
s)

Yices Black-box Use (seconds)

(b)

Fig. 1. (a) Table showing the predicates needed and time taken in seconds. (b) Comparing Hermite
Normal Form based algorithm and black-box use of Yices for getting proofs of unsatisfiability.

systems of LDEs and F2, G2 are systems of LDDs. F ∧ G represents another system
of LDEs+LDDs. Suppose F ∧ G is unsatisfiable. The interpolant for (F, G) can be
computed by considering two cases (due to theorem 5):

Case 1: F ∧G is unsatisfiable because F1 ∧ F2 ∧G1 ∧G2 has no rational solution. We
can compute an interpolant for (F, G) using the techniques described in [15,19,6]. The
algorithms in [15,19,6] can result in interpolants containing inequalities. We describe
an alternative algorithm in [10] that always produces a LDE or a LDD as an interpolant.
Case 2: F ∧G is unsatisfiable because F1 ∧G1 has no integral solution. In this case we
can compute an interpolant for the pair (F1, G1) using the techniques from Section 3.
The computed interpolant will be an interpolant for (F, G). It can be a LDE or a LME.

7 Experimental Results

We implemented the interpolation algorithms in a tool called INTeger
INTerpolate (INT2). The experiments are performed on a 1.86 GHz Intel
Xeon (R) machine with 4 GB of memory running Linux. INT2 is designed for
computing interpolants for formulas (LDEs, LMEs, LDEs+LDDs) that are satisfiable
over rationals but unsatisfiable over integers. Currently, there are no other interpolation
tools for such formulas.

Use of Interpolants in Verification: We wrote a collection of small C programs each
containing a while loop and an ERROR label. These programs are safe (ERROR
is unreachable). The existing tools based on predicate abstraction and counterexam-
ple guided abstraction refinement (CEGAR) such as BLAST [9], SATABS [1] are not
able to verify these programs. This is because the inductive invariant required for the
proof contains LMEs as predicates, shown in the “Preds/Interpolants” column of Fig-
ure 1(a). These predicates cannot be discovered by the interpolation engine [15,19] used
in BLAST or by the weakest precondition based procedure used in SATABS. The in-
terpolation algorithms described in this paper are able to find the right predicates by

266 H. Jain, E. Clarke, and O. Grumberg

computing the interpolants for spurious program traces. Only one unwinding of the
while loop suffices to find the right predicates in 6 out of 7 cases.

We wrote similar programs in Verilog and tried verifying them with VCEGAR [2], a
CEGAR based model checker for Verilog. VCEGAR fails on these examples due to its
use of weakest preconditions. Next, we externally provided the interpolants (predicates)
found by INT2 to VCEGAR. With the help of these predicates VCEGAR is able to show
the unreachability of ERROR labels in all examples except forb1 (ERROR is reachable
in the Verilog version of forb1). The runtimes are shown in “VINT2” column.

Müller-Olm and Seidl [16] propose an abstraction technique that can infer linear
invariants that are sound with respect to integer arithmetic modulo a power of 2. Their
work provides an alternative way of verifying the programs listed in Figure 1(a).

Proofs of Unsatisfiability (PoU) Algorithms: We obtained 459 unsatisfiable formulas
(system of LDEs) by unwinding the while loops for C programs mentioned above.
The number of LDEs in these formulas range from 3 to 1500 with 2 to 4 variables per
equation. There are two options for obtaining PoU in INT2. a) Using Hermite Normal
Form (HNF) (Section 5.1). We use PARI/GP [4] to compute HNF of matrices. b) By
using a state-of-the-art SMT solver Yices 1.0.11 [3] in a black-box fashion (along the
lines of [19]). Given a system of LDEs AX = B we encode the constraints that RA is
integral and RB is not an integer by means of mixed integer linear arithmetic constraints
(see [10]). The SMT solver returns concrete values to elements in R if AX = B is
unsatisfiable. The comparison between (a) and (b) is shown in Figure 1(b). There is a
timeout of 1000 seconds per problem. The HNF based algorithm is able to solve all
problems, while the black-box usage of Yices cannot solve 102 problems within the
timeout. Thus, the HNF based method is superior over the black-box use of Yices.

Note that the interpolation algorithms proposed in our paper are independent of the
algorithm used to generate the PoU. Any decision procedure that can produce PoU
according to definitions 1, 3 can be used (we are not restricted to using HNF or Yices).

8 Conclusion

We presented polynomial time algorithms for computing proofs of unsatisfiability and
interpolants for conjunctions of linear diophantine equations, linear modular equations
and linear diophantine disequations. These interpolation algorithms are useful for dis-
covering modular/divisibility predicates from spurious counterexamples in a counterex-
ample guided abstraction refinement framework. In future, we plan to work on interpo-
lating theorem provers for integer linear arithmetic and bit-vector arithmetic and make
use of the satisfiability modulo theories framework.

Acknowledgment. We thank Axel Legay and Jeremy Avigad for their valuable
comments.

References

1. SATABS 1.9 website, http://www.verify.ethz.ch/satabs/
2. VCEGAR 1.3 website, http://www.cs.cmu.edu/∼modelcheck/vcegar/

http://www.verify.ethz.ch/satabs/
http://www.cs.cmu.edu/~modelcheck/vcegar/

Efficient Craig Interpolation for Linear Diophantine (Dis)Equations 267

3. Yices 1.0.11 website, http://yices.csl.sri.com/
4. PARI/GP, Version 2.3.2 (2006), http://pari.math.u-bordeaux.fr/
5. Bockmayr, A., Weispfenning, V.: Solving numerical constraints. In: Robinson, A., Voronkov,

A. (eds.) Handbook of Automated Reasoning, pp. 751–842 (2001)
6. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolation in satisfiability modulo theo-

ries. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 367–381.
Springer, Heidelberg (2008)

7. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction re-
finement for symbolic model checking. J. ACM 50(5) (2003)

8. Craig, W.: Linear reasoning. a new form of the herbrand-gentzen theorem. J. Symb.
Log. 22(3), 250–268 (1957)

9. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In:
POPL, pp. 232–244. ACM Press, New York (2004)

10. Jain, H., Clarke, E.M., Grumberg, O.: Efficient craig interpolation for linear diophantine
(dis)equations and linear modular equations. Technical Report CMU-CS-08-102, Carnegie
Mellon University, School of Computer Science (2008)

11. Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Refinement.
In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp.
459–473. Springer, Heidelberg (2006)

12. Kapur, D., Majumdar, R., Zarba, C.G.: Interpolation for data structures. In: SIGSOFT
2006/FSE-14, pp. 105–116. ACM, New York (2006)

13. Kroening, D., Weissenbacher, G.: Lifting propositional interpolants to the word-level. In:
FMCAD, pp. 85–89. IEEE, Los Alamitos (2007)

14. McMillan, K.L.: Interpolation and sat-based model checking. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

15. McMillan, K.L.: An Interpolating Theorem Prover. In: Jensen, K., Podelski, A. (eds.) TACAS
2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004)

16. Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. ACM Trans. Program. Lang.
Syst. 29(5), 29 (2007)

17. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans.
Program. Lang. Syst. 1(2), 245–257 (1979)

18. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computa-
tions. J. Symb. Log. 62(3), 981–998 (1997)

19. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. In: Cook,
B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg
(2007)

20. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, NY (1986)
21. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In: Nieuwen-

huis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 353–368. Springer, Heidelberg
(2005)

http://yices.csl.sri.com/
http://pari.math.u-bordeaux.fr/

Linear Arithmetic with Stars

Ruzica Piskac and Viktor Kuncak

School of Computer and Communication Sciences, EPFL, Switzerland

Abstract. We consider an extension of integer linear arithmetic with a
“star” operator takes closure under vector addition of the solution set of a
linear arithmetic subformula. We show that the satisfiability problem for
this extended language remains in NP (and therefore NP-complete). Our
proof uses semilinear set characterization of solutions of integer linear
arithmetic formulas, as well as a generalization of a recent result on sparse
solutions of integer linear programming problems. As a consequence of
our result, we present worst-case optimal decision procedures for two
NP-hard problems that were previously not known to be in NP. The
first is the satisfiability problem for a logic of sets, multisets (bags), and
cardinality constraints, which has applications in verification, interactive
theorem proving, and description logics. The second is the reachability
problem for a class of transition systems whose transitions increment the
state vector by solutions of integer linear arithmetic formulas.

1 Introduction

Decision procedures [1, 5, 7, 10, 15] are among key techniques that enable auto-
mated verification of infinite state systems, as, for example, in software model
checkers [2, 6, 12]. These techniques are also increasingly used to raise the level
of automation in interactive theorem provers [8, 17, 24]. We believe that an im-
portant step towards making such theorem provers even more effective is the
development of decision procedures for new classes of formulas that go beyond
the traditionally considered uninterpreted function symbols, arrays, free data
structures, and linear arithmetic. In this paper we present a decision procedure
for one such class, which introduces certain unbounded sums into linear arith-
metic. Specifically, our decision procedure solves the satisfiability problem

F0(�u) ∧ ∃N ≥ 0.∃�x1, . . . , �xN .�u =
N∑

i=1

�xi ∧
N∧

i=1

F (�xi) (1)

where F0 and F (�x) are any quantifier-free Presburger arithmetic (QFPA) for-
mulas, all variables of F are among �x, and where �u, �xi are integer vectors. Be-
cause N is not known, (1) is not immediately a QFPA formula. Using notation
A∗ = {�u | ∃N ≥ 0. ∃�x1, . . . , �xN ∈ A. �u =

∑N
i=1 �xi} for closure of a set of vectors

under addition, we denote (1) by F0(�u)∧�u ∈ {�x | F (�x)}∗. This paper shows that
the satisfiability for the class QFPA∗ of such formulas with ∗ operator (Figure 1)
is in NP, generalizing the well known NP-completeness for QFPA satisfiability.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 268–280, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Linear Arithmetic with Stars 269

QFPA∗ formulas: F0 ∧ �u ∈ {�x | F}∗ (free variables of F are among �x)
QFPA formulas:

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F1

A ::= T1 ≤ T2 | T1 = T2

T ::= k | C | T1 + T2 | C · T1 | ite(F, T1, T2)
terminals: k - integer variable; C - integer constant

Fig. 1. Quantifer-free Presburger arithmetic and our QFPA∗ extension

Previous results. We consider the satisfiability problem for QFPA∗ (Figure 1)
where variables are interpreted over non-negative integers (the version with ar-
bitrary integers reduces to this case by representing integers and their sums as
differences of non-negative integers). The satisfiability problem for QFPA∗ is de-
cidable because the set of solutions of a QFPA formula is a semilinear set [11],
and a closure of a semilinear set under star can be expressed in QFPA [16]. How-
ever, the constructions behind these decidability results do not provide good
complexity bounds because semilinear set representation can be exponentially
large. First algorithm for QFPA∗ satisfiability that avoids explicit construction of
semilinear set representation is the PSPACE algorithm in [21]. The present pa-
per is the first to establish the exact complexity of QFPA∗ satisfiability, namely
NP-completeness. To show this result, we will use bounds on solutions of integer
linear programming problems with exponentially many variables [20], bounds on
seminilinear set generators [22], and Carathéodory bounds for integer cones [9].
Our proof builds on some of the ideas previously introduced in [14, 21].

Application to reasoning about collections. Our decision procedure en-
ables reasoning about collections of objects (sets and multisets) and their cardi-
nalities, which was our original motivation for introducing it in [21]. Previously,
Zarba [25] considered decision procedures for multiset constraints but without
the cardinality operator, presenting a direct reduction to QFPA. The cardinality
operator makes the reduction in [25] inapplicable. Section 2 reviews the ap-
proach [21] to reduce multiset constraints with cardinalities to QFPA∗.

Application to reasoning about transition systems. In addition to rea-
soning about multisets, we identify another application of constraints with stars.
We consider infinite-state transitions systems whose state consists of finite con-
trol and a finite number of integer counters, and whose transitions increment
counters by a solution vector of a linear arithmetic formula given by the finite
control. We show that the reachability problem for a class of such systems re-
duces to a generalization of QFPA∗ with multiple nested star operators. We show
that our proof techniques and the NP-membership result extend to this more
general case, which gives NP-completeness of the reachability problem.

Contributions. We summarize the contributions of our paper as follows:

– We present a polynomial-time algorithm (Section 3) for reducing QFPA∗

satisfiability to QFPA satisfiability, showing NP-completeness of QFPA∗

270 R. Piskac and V. Kuncak

satisfiability. This yields an algorithm for reasoning about constraints on
multisets in the presence of cardinality operators (see Section 2);

– We generalize our reduction to multiple nested star operators. We show that
the generalized constraints enable reasoning about reachability in a class of
symbolically represented transition systems (Section 4).

2 From Multisets to Linear Arithmetic with Star

The satisfiability problem for QFPA∗ arises as the key step in checking the sat-
isfiability of constraints on multisets in the presence of a cardinality operator.
The reduction from multiset constraints to QFPA∗ is presented in [21]. We here
motivate multiset constraints and use examples to illustrate the reduction.

Uses of set and multiset constraints. Sets and multisets directly arise
in verification conditions for proving properties of programs in languages and
paradigms such as SETL [23] and Gamma [4, Page 103]. In programming lan-
guages such as Java, data abstraction can be used to show that data structures
satisfy set specifications, and then techniques based on sets become applicable
for verifying data structure clients [13, 18]. Multisets and sets are also present
in libraries of interactive provers Isabelle [19] and KIV [3]. Our results yield
decision procedures that can increase the automation within such systems. As
a simple running example, consider a verification condition for insertion of an
element represented by a singleton multiset s into a container represented by
multiset L. To prove that an integer field correctly maintains the size of a con-
tainer, we need to prove validity of the constraint |s| = 1 → |L � s| = |L| + 1,
that is, unsatisfiability of the corresponding negation |s| = 1 ∧ |L � s| 	= |L| + 1.

Representation of multisets and sets. We represent sets as well as multisets
(bags) with their characteristic functions. A multiset m is a function E → N,
where E is the universe and N is the set of non-negative integers. The value m(e)
is multiplicity (number of occurrences) of element e in multiset m. We assume
that the domain E is fixed and finite but of unknown size. We represent sets
within our formulas as special multisets m for which m(e) = 0 ∨ m(e) = 1 for
all elements e.

Operations on multisets. We consider a natural class of operations and rela-
tions on multisets that are given pointwise by linear arithmetic formulas. For a re-
lation given by QFPA formula F (x1, . . . , xk), we define the corresponding relation
on multisets m1, . . . , mk by ∀e. F (m1(e), . . . , mk(e)). For example, we define sub-
set m1 ⊆ m2 by ∀e.m1(e) ≤ m2(e), multiset sum m1 = m2 � m3 by ∀e.m1(e) =
m2(e) + m3(e), and union m1 = m2 ∪ m3 by ∀e.m1(e) = max(m2(e), m3(e)).
To define max and other operations we use if-then-else operator ite(F, t1, t2) in
QFPA, which denotes t1 when F holds and t2 otherwise. We define multiset dif-
ference m1 = m2 \ m3 by ∀e.m1(e) = ite(m2(e) ≤ m3(e), 0, m2(e) − m3(e)). In
our example verification condition, we introduce a new multiset variable y such
that y = L � s and we express this condition by ∀e. y(e) = L(e) + s(e).

Linear Arithmetic with Stars 271

Cardinality operator and sums. We also permit the cardinality operator
|m| on multisets, given by |m| =

∑
e∈E m(e). This operator turns a multiset

expression into an integer expression, and we allow arbitrary QFPA operators
on cardinalities. In our example verification condition, in addition to ∀e. y(e) =
L(e) + s(e) we have constraint |s| = 1, which becomes

∑
e∈E s(e) = 1, and the

constraint |y| 	= |L| + 1, which becomes (
∑

e∈E y(e)) 	= (
∑

e∈E L(e)) + 1.
Without changing expressive power, we generalize the sum notation and in-

troduce expressions of the form (u1, . . . , ud) =
∑

e∈E(m1(e), . . . , md(e)) where
u1, . . . , ud are integer variables and m1, . . . , md are multiset variables. 1 By in-
troducing non-negative integer variables ui for the results of sums and grouping
multiple sums into sum of vectors, we reduce any multiset formula to form

F0 ∧
c∧

i=1

(∀e.Fi(�m(e))) ∧ �u =
∑

e∈E

�m(e) (2)

where F0, F1, . . . , Fc are QFPA formulas, �m(e) denotes (m1(e), . . . , md(e)), and
�u = (u1, . . . , ud). The negation of our example verification condition becomes

us = 1 ∧ uy 	= uL + 1 ∧
(∀e.y(e) = L(e) + s(e)) ∧ (us, uy, uL) =

∑
e∈E(s(e), y(e), L(e)) (3)

Reduction to QFPA∗. The satisfiability of the example constraint (3) is equiv-
alent to the satisfiability of the QFPA∗ constraint

us = 1 ∧ uy 	= uL + 1 ∧ (us, uy, uL) ∈ {(s′, y′, L′) | y′ = L′ + s′}∗ (4)

We prove equisatisfiability of (3) and (4); see [21, Theorem 2] for the analogous
proof for an arbitrary formulas on multisets. Suppose that (3) has a solution E =
{e1, . . . , eN}. Because functions x, y, L : E → N satisfy ∀e.y(e) = L(e)+s(e), the
vectors (s(ei), y(ei), L(ei)) for 1 ≤ i ≤ N represent N solutions of QFPA formula
y′ = L′ + s′. Consequently, the assignment to us, uy, uL is a sum of N solutions
of y′ = L′+s′, so (4) is satisfiable with the same values of us, uy, uL. Conversely,
given a solution to (4) we know that us, uy, uL is a sum of a finite number, say N ,
of solutions of y′ = L′+ s′, that is, there are N vectors (y′i, L

′
i, s
′
i) such that y′i =

L′i +s′i. We then introduce a distinct element ei for each of these N solutions, let
E = {e1, . . . , eN} and let s(ei) = s′i, y(ei) = y′i, L(ei) = L′i. We obtain a solution
of (4), as desired. Note that this proof did not depend on the structure of QFPA
formulas. In general, we obtain equisatisfiability of (2) and the QFPA∗ formula
F0 ∧ �u ∈ {�x | ∧c

i=1 Fi(�x)}∗. Therefore, to check satisfiability of an expressive
class of constraints on sets and multisets, we construct (in polynomial time)
an equisatisfiable QFPA∗ formula. We next present an algorithm for checking
QFPA∗ satisfiability.

1 We assume that the summands are multiset variables because we introduce fresh
multiset variables for subterms. However, it is easy to see that we can allow arbitrary
QFPA terms as summands without changing the expressive power, see [21].

272 R. Piskac and V. Kuncak

3 Linear Arithmetic with Star Operator Is in NP

We show how to reduce, in polynomial time, QFPA∗ satisfiability to QFPA sat-
isfiability. This will show that QFPA∗ satisfiability is in NP. QFPA and therefore
QFPA∗ subsume propositional logic, their satisfiability is therefore NP-hard, so
our results establish NP-completeness of QFPA∗ satisfiability.

Consider satisfiability of a QFPA∗ formula F0 ∧ �u ∈ {�v | F (�v)}∗. Because F
is a QFPA formula, its solution set {�v | F (�v)} is a semilinear set [11]. Therefore,
there exist finitely many generating vectors �ai, �bij whose non-negative integer
linear combination spans {�v | F (�v)}. The number of generating vectors can be
exponential, so we avoid explicitly constructing them. We instead apply [22]
to compute an upper bound on the size of generating vectors. This gives us
bounds on coefficients in an exponentially large QFPA formula equisatisfiable
with (1). We combine the following two constructions to find a polynomially
large equisatisfiable formula.

1. We apply a small model theorem for QFPA that follows from [20]. Because
the exponential QFPA formula has only polynomially many atomic formulas,
we obtain a polynomial bound on the number of bits needed for �u in the
smallest solution of (1).

2. We apply twice a theorem on the size of minimal generator of integer cone [9]
to prove that only polynomially many vectors suffice to generate �u.

Finally, we show that we can group linear combinations of generating vectors into
linear combination of polynomially many variables denoting solution vectors of
F . Despite the multiplication of variables, we can express such linear combination
as a QFPA formula because coefficients in linear combination are bounded by
the bound on �u.

Our proof builds on several non-trivial previous results, but its algorithmic
consequences are simple: we can replace (1) with a problem where N is bounded
by a polynomial function of F0 and F , and where sum over solutions of F is
replaced by an integer linear combination of solutions of F , with coefficients
of the linear combination polynomially bounded. We proceed to describe our
construction in more detail, including concrete bounds needed to implement our
algorithm.

3.1 Estimating Coefficient Bounds of Disjunctive Form

The results on which we rely are usually expressed for integer linear programming
problems, so we compute dimensions and coefficient bounds for integer linear
programming problems arising from QFPA formula.

Let F be a QFPA formula. We can convert F into an equivalent disjunction
of integer linear programming problems

∨l
i=1 Ai�x = �bi. Let mi be a number of

rows in Ai and let ni be a number of columns in Ai and let ai be a maximal
absolute value of all coefficient occurring in Ai and bi. For a given F , define
mF = maxl

i=1 mi, nF = maxl
i=1 ni and aF = maxl

i=1 ai.

Linear Arithmetic with Stars 273

Lemma 1 (Values of mF , nF and aF). Let F be a QFPA formula. If a subfor-
mula does not occur within any ite expression we say that it has positive polarity
if it occurs under an even number of negations and say it has negative polarity if
it occurs under an odd number of negations. If a subformula occurs within an ite
expression we say that it has no polarity. Let g be the number of atomic formula
occurences of the form t1 = t2 that have positive polarity in F , and let h be the
number of remaining atomic formulas. Let v be the number of variables in F
and a the maximum of absolute values of integer constants. Then mF ≤ g + h,
nF ≤ v + h, and aF ≤ a + 1.

Proof. We can transform F [ite(C, t1, t2)] into a disjunction of C ∧ F [t1] and
¬C ∧ F [t2]. Repeating this transformation we eliminate all ite expressions and
obtain disjuncts whose size is polynomial in the size of F . Let D be one of
the disjuncts after such ite elimination. The polarity of all g atomic formulas
t1 = t2 that occur positively in F remains positive in each D. Each of the
remaining h atomic formulas becomes of the form t1 ≤ t2, t1 = t2 or disjunction
t1 ≤ t2 ∨ t′1 ≤ t′2. In disjunctive normal form of D, each of the h atomic formulas
t1 ≤ t2 may require addition of at most one fresh variable to be converted into
equality t1 + x ≤ t2. The resulting number of variables is therefore bounded by
v + h whereas the total number of atomic formulas is bounded by g + h. When
transforming t1 < t2 into t1 + 1 ≤ t2 we change the constants part of t2 − t1 by
one, so aF ≤ a + 1.

3.2 Existence and Size of Solution Set Generators

This section describes the solutions of a QFPA formula F using semilinear sets,
provides bounds on the norms of vectors that represent these semilinear sets,
and uses this characterization to describe the set {�v | F (�v)}∗. Define vector set
addition by A + B = {�a +�b | �a ∈ A,�b ∈ B}.

Definition 1. Given a finite set S ⊆ N
n and �a ∈ N

n, we define the linear set
L(a; S) as {a} + S∗. We call �a the base vector, and call elements of S the step
vectors. A semilinear set is a union of finitely many linear sets.

If Z = ∪q
i=1L(ai; Si) is a representation of a semilinear set, we call the base

vectors ai and step vectors bij the generators for semilinear set. [11] showed that
the set of solutions of a QFPA formula is a semilinear, so it is given by some finite
set of generators. Morover, [22] shows that for formula F (�v) of form A�v ≤ b each
generator �g satisfies ||�g||1 ≤ (2 + ||A||1,∞ + ||�b||∞)m where A is a m × n matrix.
Combining this result with Lemma 1, we obtain the following Lemma 2:

Lemma 2. For each QFPA formula F , there exist q base vectors �ai, 1 ≤ i ≤ q,
and for each i the corresponding qi step vectors �bij for 1 ≤ j ≤ qi, all with norms
bounded by (2+2(nF +1)aF)2mF where nF , mF , aF are from Lemma 1 such that

F (�u) ⇔ ∃νij .

q∨

i=1

(�u = �ai +
qi∑

j=1

νij
�bij) (5)

274 R. Piskac and V. Kuncak

We can now express membership in the set {�v | F (�v)}∗ using QFPA formula,
using the following lemma that follows from Lemma 2 and the definition of the
star operator.

Lemma 3. Let F by a QFPA formula and �ai, �bij be from Lemma 2. Then �u ∈
{�v | F (�v)}∗ is equivalent to

∃(μi)i, (νij)ij . �u =
q∑

i=1

(μi�ai +
qi∑

j=1

νij
�bij) ∧

q∧

i=1

(μi = 0 →
qi∑

j=1

νij = 0) (6)

Because the number of �ai and �bij vectors can be exponential, Lemma 3 shows
that QFPA∗ satisfiability reduces to satisfiability of an exponentially larger QFPA
formula. Our goal is to improve the reduction and obtain a polynomial QFPA
formula.

3.3 Selecting Polynomially Many Generators

In this section we establish bounds on the number of generators needed to gen-
erate any particular solution vector �u: if �u is a linear combination of generators,
then it is also a linear combination of a polynomial subset of generators that
form a smaller semilinear set. We prove this fact using a theorem about sparse
solutions of integer linear programming problems. Given a set of vectors X and a
vector �b ∈ X∗, the following fact determines the bound on the number of vectors
sufficient for representing �b as a linear combination of vectors from X .

Fact 1 (Theorem 1 (ii) in [9]). Let X ⊆ Z
d be a finite set of integer vectors

and let �b ∈ X∗. Then there exists a subset X̃ such that �b ∈ X̃∗ and |X̃| ≤
2d log(4dM), where M = maxx∈X ||x||∞.

Fact 1 has been applied in [14] in order to establishing membership in NP for
constraints on sets with cardinality operators. However, in the case of multisets
and QFPA∗ we need to generalize this idea because of dependencies between the
base vectors and the corresponding step vectors.

Theorem 1. Let F be QFPA formula and �ai, �bij, �u, q, qi be from Lemma 3.
Then there exists sets I0, I1 ⊆ {1, . . . , q} and J ⊆ ∪q

i=1{(i, 1), . . . , (i, qi)} such
that

∃(μi)i, (νij)ij . �u =
∑

i∈I0

(�ai +
∑

(i,j)∈J

ν′ij�bij) +
∑

i∈I1

μ′i�ai (7)

and |I0| ≤ |J | ≤ B, and |I1| ≤ B, where B = 2nF (log 4nF +2mF log(2+2(nF +
1)aF)).

Proof. By assumption, �u =
∑q

i=1(μi�ai +
∑qi

j=1 νij
�bij) and

∧q
i=1(μi = 0 →

∑qi

j=1 νij = 0). Removing zero indices, assume that μi and νij are strictly
positive. Define �a =

∑
i μi�ai and �b =

∑
ij νij

�bij , so �u = �a+�b. From �b =
∑

i νij
�bij

Linear Arithmetic with Stars 275

and Fact 1 we conclude that there exists a set J of indices (i, j) and coefficients
ν′ij such that �b =

∑
(i,j)∈J ν′ij�bij and |J | ≤ B = 2nF log(4nF M) where M is

the bound on generators. To satisfy the dependencies between �bij and �ai, let
I0 = {i | ∃j.(i, j) ∈ J}. Note |I0| ≤ |J |. Let �a0 =

∑
i∈I0

�ai. Then �a0 + �b is
generated by vectors whose indices are I0 and J . It remains to generate �a − �a0.
Note that �a − �a0 =

∑
i∈I0

(μi − 1)�ai +
∑

i∈{1,...,q}\I0 μi�ai. Applying once again
Fact 1 we conclude that there exists I1 ⊆ {1, . . . , q} with |I1| ≤ B such that
�a−�a0 =

∑
i∈I1

μ′iai. Using the bound M = (2+2(nF +1)aF)2mF from Lemma 2
we obtain the desired value of B.

3.4 Grouping Generators into Solutions

In previous two sections we have shown that if �u ∈ {�v | F (�v)}∗, then �u is a
particular linear combination of polynomially many generating vectors �ai, �bij

that are themselves polynomially bounded. This suggests the idea of guessing
polynomially many bounded vectors, checking whether they are generators, and
then checking whether �u is their linear combination. We next show that we can
avoid the problem of checking whether a vector is a generator and reduce the
problem to checking whether a vector is a solution of F . The way we stated
Theorem 1 already suggests this approach.

Lemma 4. Let F be a QFPA formula and �u ∈ {�v | F (�v)}∗. Then there exist k
vectors �c1, . . . ,�ck for k ≤ 4nF (log 4nF + 2mF log(2 + 2(nF + 1)aF)) such that
∧k

i=1F (�ci) ∧ u =
∑k

i=1 λi�ci for some non-negative integers λi.

Proof. In Theorem 1 simply note that �ai +
∑

(i,j)∈J ν′ij�bij are solutions of F and
that their number is bounded by B. Similarly, �ai are solutions of F and their
number is bounded by B. The total number of solutions is bounded by 2B where
B is from Theorem 1.

3.5 NP-Algorithm

Our NP-algorithm for checking satisfiability of QFPA∗ formula F0 ∧ �u ∈ {�v |
F (�v)}∗ uses previously introduced bounds. First, using Lemma 1 we calculate
the values of mF , nF and aF . Using those values and Lemma 4 we estimate an
upper bound k = 4nF (log 4nF + 2mF log(2 + 2(nF + 1)aF)) on the number of
solution vectors �xi. We obtain equisatisfiable formula

F0 ∧ �u = λ1�x1 + . . . + λk�xk ∧
k∧

i=1

F (�xi) (8)

Note, however, that, although it is polynomial in size, (8) is not a QFPA formula
because it contains multiplication of variables λi · �xi. We address this problem
by showing that the values of λi in smallest solutions have a polynomial number
of bits, which allows us to express multiplication using bitwise expansion.

276 R. Piskac and V. Kuncak

3.6 Multiplication by Bounded Bit Vectors

To express terms λi�ci from Lemma 4 as a QFPA term, we show that the smallest
solution �u, if exists, is bounded [20]. Suppose that r′ is a bound on �u of formula
F0 ∧ �u ∈ {�v | F (�v)}∗. Because λi in formula (8) must be a non-negative integer,
λi ≤ ||�u||∞ ≤ r′, so each λi is also bounded by r′ and can be represented as a
bit-vector of size r for r = �log r′�. Let λi = λir . . . λi1λi0 =

∑r
j=0 λij2j. Then

λi�ci = (
r∑

j=0

λij2j)�ci =
r∑

j=0

2j(λij�ci) =
r∑

j=0

2j ite(λij ,�ci, 0) =

ite(λi0,�ci, 0) + 2(ite(λi1,�ci, 0) + 2(ite(λi2,�ci, 0) + . . .))

It remains to show how to compute the estimate r′.

3.7 Estimating Solution Size Bounds

Theorem 2. Let F0 be a QFPA formula. Let �u = (u1, . . . , ud) denote a d-
dimensional vector of variables ranging over non-negative integers. Let F be
a QFPA formula which does not share any variable with F0 and �u. If formula
F0 ∧ �u ∈ {�v | F (�v)}∗ is satisfiable, then there exists a non-negative solution vec-
tor �w for variables �u such that ||�w||∞ ≤ r′ = n(ma)2m+1 where n, m and a are
defined by

1. m := d + mF0

2. n := nF0 + 6d(log(4d) + 2mF log(2 + (nF + 1)aF))
3. a := max{aF0 , (2 + 2(nF + 1)aF)2mF }

Proof. We establish a bound on the size of the solution vector using two facts.
First, as shown in Lemma 3, the fact that �w is a solution of �u ∈ {�v | F (�v)}∗
implies that �w is a linear combination of generators of a semilinear set and can
be expressed as

�w =
q∑

i=1

(μi�ai +
qi∑

j=1

νij
�bij)

If we represent the above condition as form A�x = �b, the matrix A consists
of generators of semilinear set and the negative identity matrix −I, while the
vector �x consists of �u as well parameters μi and νij . The dimensions of the
matrix A are d×(nG +d), where nG is the number of generators. By Theorem 1,
nG ≤ 6d(log(4d) + 2mF log(2 + 2(nF + 1)aF)).

Next, observe that �w is a component of the solution vector of F0. This implies
that there is a matrix B with dimensions mF0 and nF0 and a vector �v such that
B �w = �v.

Combining matrices A and B we obtain a new matrix C with d + mF0 rows
and the number of columns nF0 + 6d(log(4d) + 2mF log(2 + (nF + 1)aF)). To

Linear Arithmetic with Stars 277

establish an upper bound on the maximum of absolute values in C, we use
an upper bound on the size of generating vectors in a semilinear set given by
Lemma 2. We obtain the final result by applying to C the theorem on upper
bounds of smallest solutions of integer linear programming problems [20].

Putting everything together, the bound k on the number of solutions of F and
bounds on λi enables us to generate, in polynomial time, a QFPA formula equi-
satisfiable with the original QFPA∗ formula.

4 Reachability in a Class of Transition Systems

We next show another application of satisfiability checking for extensions of
QFPA with star operators. We consider the reachability problem in systems
whose state has finite control and an unbounded integer vector, and whose tran-
sitions increase the integer vector by a solution of QFPA formula. We show that
for systems that have only one loop the problem reduces to QFPA∗ satisfiability
and is therefore NP-complete. We show that for arbitrary graphs, the prob-
lem reduces to a generalization of QFPA∗ with multiple star operators, denoted
QFPAREG. We sketch a proof that NP-completeness for QFPA∗ satisfiability ex-
tends to QFPAREG satisfiability.

A class of transition systems. Let Fd be the set of all QFPA formulas with the
set of free variables v1, . . . , vd. If F ∈ Fd is such a formula and a1, . . . , ad ∈ Z, we
write (a1, . . . , ad) |= F to denote that F is true when vi has value ai for 1 ≤ i ≤ d.
We consider transition systems described by a tuple (d, Q, E, T) where 1) d is
a non-negative integer, denoting the number of integer variables in the state; 2)
Q is a finite set, denoting control-flow graph nodes; 3) E ⊆ Q × Q, denoting
control-flow graph edges; and 4) T : E → Fd, specifies possible increments of
counters for each control-flow graph edge. Given (d, Q, E, T) we consider the set
of states S ⊆ Q × Z

d and define the transition relation R ⊆ S × S such that
(q,�a), (q′,�a′) ∈ R ⇐⇒ (q, q′) ∈ E ∧ (�a′ − �a) |= T (q, q′). We are interested in
the question of reachability in the transition systems given by relation R. 2

Single-loop systems. Consider first the case Q = {q}, E = {(q, q)}, T (q, q) =
F . Our definitions then imply that (q,�a) reaches (q,�a′) precisely when the condi-
tion (�a′−�a) ∈ {�v | F}∗ holds. Therefore, the reachability problems that test QFPA
relationship between initial �a and final �a′ state in such systems reduces QFPA∗

satisfiability.

General case. Now consider arbitrary (d, Q, E, T) and two states q, q′ ∈ Q.
Let r be a regular expression over the alphabet E describing the set of all paths
from q to q′ in graph (Q, E), represented as a set of words over language Q × Q.
For example, a path q, q1, q2, q

′ is represented by word (q, q1)(q1, q2)(q2, q
′). By

2 Note that, unlike in Turing-complete transition systems with integer counters, the
set of possible counter increments is given by formula T (q, q′) and does not depend
on the current values of integer counters �a, but only on control-flow edge (q, q′).

278 R. Piskac and V. Kuncak

conversion algorithm from finite state machines to regular expressions we can
assume that r exists and its size is polynomial in the number of elements of
Q. We map r into a “commutative” regular expression with set addition act-
ing as commutative version of concatenation and closure under vector addition
acting as Kleene star. We specify this mapping using function h, defined by:
h((q1, q2)) = {x | T (q1, q2)}, h(r1r2) = h(r1) + h(r2), h(r1 ∪ r2) = h(r1) ∪ h(r2),
h(r∗) = h(r)∗. Due to commutativity of set addition and its consequence
A∗ + B∗ = (A ∪ B)∗, we can rewrite r in polynomial time to normal form
stratified according to star height (the number of nested applications of ∗
operator). We call {v | T (q1, q2)} atomic expressions and denote them akij .
Then each commutative regular expression of star height k > 0 has the form
rk = ∪p

i=1(aki1 + ... + akini + r∗i,k−1) where ri,k−1 are expressions of star height
k − 1. If r = r1 i.e. r has no nested stars, then the reachability problem imme-
diately reduces to (1) and is solvable in NP using our algorithm.

More generally, we consider formulas, denoted QFPAREG, of the form F0 ∧ r
where rk is a regular expression over atomic expressions. We show that the
satisfiability of QFPAREG is in NP. First, the condition �u ∈ rk is equivalent to

∃(�vkij ∈ akij)kij .∃(λkij)kij .�x =
∑

k,i,j

λkij�vkij ∧
∧

k>1
i,j

(λkij = 0 ⇒
∧

i′,j′

λ(k−1)i′j′ = 0)

As in Section 3 our goal is then to show that we can select a polynomial subset
of vectors in this linear combination and still generate vector �u. The following
notion of “star modulo vector dependencies” captures conditions on coefficients
of linear combinations that arise from repeatedly applying star to semilinear sets.
If X = {�x1, . . . , �xN} ⊆ N

d is a finite set of vectors and W ⊆ X×X a dependency
graph on X , define X∗(W) = {∑N

i=1 λi�xi | ∀i, j ≤ N. λi > 0 ∧ (�xi, �xj) ∈ W ⇒
λj > 0}. The dependency graph in Theorem 1 would have an edge from each
�bij to �ai. The generalization of Fact 1 to the class of graphs W sufficient for the
more general result is the following.

Theorem 3. Let X ⊆ Z
d be a finite set of integer vectors with acyclic de-

pendency graph W ⊆ X × X such that for each node �x ∈ X the number of
nodes reachable from �x in W is bounded by a constant C. If �b ∈ X∗(W) then
there exists X̃ ⊆ X such that �b ∈ X̃∗(W) and |X̃| ≤ 2C2d log(4dM), where
M = maxx∈X ||x||∞.

Proof sketch. Let B = 2d log(4dM) from Fact 1. Consider a linear combination
�u =

∑
i λi�vi of vectors from X that satisfies the dependencies in W . Our goal is

to find a small number of vectors that generate �u. In the first step we consider
the source nodes of W , that is, vectors Y0 ⊆ X with no incoming edges in the
graph. Applying Fact 1 to �v0 =

∑
�vi∈Y0

λi�vi we obtain a subset Z0 ⊆ Y0, with
|Z0| ≤ B, such that �v0 =

∑
�vi∈Z0

λ′i�vi. To enforce the constraints in the graph
W , we then take closure of Z0 under reachability in W and obtain the set Q0 of
size at most CB. Let �u0 =

∑
�vi∈Q0

λi�vi.
We repeat the procedure on the vector �u−�u0. Only in this step we eliminate all

the sources Y0 and vertices belonging to Q0 from the graph and consider the vec-

Linear Arithmetic with Stars 279

tors that are sources in the subgraph of W induced by the remaining vectors Y1 =
X \ (Y0 ∪Q0). We repeat this procedure as long as there are nodes in the graph.
The number of times we need to repeat it is bounded by the longest path in W ,
which, by assumption, is bounded by C. At each step we select CB vectors, so
the total number of nodes that we need in the linear combination is bounded by
C2B.

Using Fact 1 we obtain a polynomial subset of vectors that satisfy given QFPA
formulas and whose linear combination is the given vector �u. We then use results
from previous sections to show that a linear combination of solutions of a QFPA
formula can be represented as a sum of a polynomial number of solutions of
this QFPA formula. This allows us to generalize results of Section 3 to formulas
that contain not just one star operator but any regular expression over solution
sets of QFPA formulas, which in turn proves that the reachability problem for
transition systems described in this section is also in NP.

Acknowledgements. We thank Nikolaj Bjørner for useful comments on a draft
of this paper and CAV 2008 reviewers for their patience and useful feedback.

References

1. Ball, T., Cook, B., Lahiri, S.K., Zhang, L.: Zapato: Automatic theorem proving
for predicate abstraction refinement. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 457–461. Springer, Heidelberg (2004)

2. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of C programs. In: Proc. ACM PLDI (2001)

3. Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal System Devel-
opment with KIV. In: Maibaum, T.S.E. (ed.) ETAPS 2000 and FASE 2000. LNCS,
vol. 1783, Springer, Heidelberg (2000)

4. Banâtre, J.-P., Métayer, D.L.: Programming by multiset transformation. Commun.
ACM 36(1), 98–111 (1993)

5. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating va-
lidity checker. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
515–518. Springer, Heidelberg (2004)

6. Basin, D., Friedrich, S.: Combining WS1S and HOL. In: FROCOS. vol. 7 of Studies
in Logic and Computation (2000)

7. de Moura, L., Bjørner, N.: Efficient E-Matching for SMT Solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007)

8. Dennis, L.A., Collins, G., Norrish, M., Boulton, R., Slind, K., Robinson, G., Gor-
don, M., Melham, T.: The PROSPER Toolkit. In: Schwartzbach, M.I., Graf, S.
(eds.) ETAPS 2000 and TACAS 2000. LNCS, vol. 1785, Springer, Heidelberg (2000)

9. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Operations
Research Letters 34(5), 564–568 (2006),
http://dx.doi.org/10.1016/j.orl.2005.09.008

10. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using
satisfiability modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 167–182. Springer, Heidelberg (2007)

http://dx.doi.org/10.1016/j.orl.2005.09.008

280 R. Piskac and V. Kuncak

11. Ginsburg, S., Spanier, E.: Semigroups, Pressburger formulas and languages. Pacific
Journal of Mathematics 16(2), 285–296 (1966)

12. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
(2002), http://doi.acm.org/10.1145/503272.503279

13. Kuncak, V.: Modular Data Structure Verification. PhD thesis, EECS Department,
Massachusetts Institute of Technology (February 2007)

14. Kuncak, V., Rinard, M.: Towards efficient satisfiability checking for Boolean Alge-
bra with Presburger Arithmetic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 215–230. Springer, Heidelberg (2007)

15. Lahiri, S.K., Seshia, S.A.: The UCLID decision procedure. In: Alur, R., Peled, D.A.
(eds.) CAV 2004. LNCS, vol. 3114, pp. 475–478. Springer, Heidelberg (2004)

16. Lugiez, D.: Multitree automata that count. Theor. Comput. Sci. 333(1-2), 225–263
(2005)

17. McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: A case study
combining HOL-Light and CVC Lite. In: PDPAR. ENTCS, vol. 144(2) (2006)

18. Nguyen, H.H., David, C., Qin, S., Chin, W.-N.: Automated verification of shape,
size and bag properties via separation logic. In: Cook, B., Podelski, A. (eds.) VM-
CAI 2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

19. Nipkow, T., Wenzel, M., Paulson, L.C., Voelker, N.: Multiset theory version 1.30
(Isabelle distribution) (2005),
http://isabelle.in.tum.de/dist/library/HOL/Library/Multiset.html

20. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4),
765–768 (1981)

21. Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality con-
straints. In: VMCAI. LNCS, vol. 4905. Springer, Heidelberg (2008)

22. Pottier, L.: Minimal solutions of linear diophantine systems: Bounds and algo-
rithms. In: Book, R.V. (ed.) RTA 1991. LNCS. vol. 488. Springer, Heidelberg (1991)

23. Schwartz, J.T.: On programming: An interim report on the SETL project. Tech-
nical report, Courant Institute, New York (1973)

24. Shankar, N.: Using decision procedures with a higher-order logic. In: Boulton, R.J.,
Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152. Springer, Heidelberg (2001)

25. Zarba, C.G.: Combining multisets with integers. In: Voronkov, A. (ed.) CADE
2002. LNCS (LNAI), vol. 2392, Springer, Heidelberg (2002)

http://doi.acm.org/10.1145/503272.503279
http://isabelle.in.tum.de/dist/library/HOL/Library/Multiset.html

Inferring Congruence Equations Using SAT

Andy King1 and Harald Søndergaard2

1 Portcullis Computer Security Limited, Pinner, HA5 2EX, UK�

2 The University of Melbourne, Victoria 3010, Australia.

Abstract. This paper proposes a new approach for deriving invariants
that are systems of congruence equations where the modulo is a power
of 2. The technique is an amalgam of SAT-solving, where a propositional
formula is used to encode the semantics of a basic block, and abstraction,
where the solutions to the formula are systematically combined and sum-
marised as a system of congruence equations. The resulting technique is
more precise than existing congruence analyses since a single optimal
transfer function is derived for a basic block as a whole.

1 Introduction

Applications in compilation, optimisation and verification have motivated anal-
yses that infer linear equality relationships [7,9,14] or linear congruence rela-
tionships [1,6,15] that hold between the variables of a program. For each point
in a program, the former analyses discover systems of affine constraints of the
form

∑n
i=1 cixi = d where c1, . . . , cn, d ∈ Z and x1, . . . , xn are the program vari-

ables. The latter infer systems of congruence constraints of the form (
∑n

i=1 cixi)
mod m = d where m ∈ Z is some modulus. These analyses accurately trace re-
lationships between variables when the assignments that arise in a program can
be modeled with a linear transformation. But this precludes meaningful analysis
of programs that use bitwise operators; whether written in Java, C, or assembly
language. The extreme approach of treating all operands of such operators as
sequences of named bits, to track all bit interrelations, does not appear attrac-
tive, owing to the large number of Boolean variables involved. However, we show
that a mixture of congruence analysis and Boolean reasoning does appear to be
both feasible and able to generate bit-level invariants of great precision.

We draw inspiration from the domain of congruent equations modulo 2w [15]
and the affinity between this domain and the finite-nature of the underlying com-
puter arithmetic, to propose an extreme-precision analysis which produces tight
invariants for programs with non-linear, including bitwise, operations. The idea
is to express the relationship between the bits in input variables and the bits of
output variables for each basic block. This technique is not new within itself [8]
and programs are now routinely reduced to very large systems of propositional
constraints in bounded model checking [3,20]. Our main novel contribution is
in the use of a SAT solver to incrementally compute a summary (affine relax-
ation) of the output variables, given a summary for the input variables. This new
� Andy King is on secondment from the University of Kent, CT2 7NF, UK

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 281–293, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

282 A. King and H. Søndergaard

approach is capable of discovering invariants even for programs that apply bit-
twiddling; programs that have thus far thwarted automatic analysis. Summaries
that are systems of congruence equations modulo 2w naturally fit into this mix of
model checking and abstract interpretation because (technically) their ascending
chain property constrains the number of times the SAT-solver can be reapplied
and (philosophically) the propositional encoding also makes assumptions about
the finite, modulo-nature of computer arithmetic. As in conventional abstract
interpretation, the summaries enable all paths through the program to be con-
sidered systematically, without enforcing a bound on depth to which loops are
explored. The approach to analysis is attractive because, quite apart from pro-
viding a bridging result between SAT solving and analysis, it can compute an
optimal transfer function for a whole basic block, even when the block contains
non-linear assignments. This is the key to the improved precision.

The paper is structured as follows: Section 2 illustrates the key ideas of the
analysis using a worked example, demonstrating how a SAT-solver can be inter-
leaved with a relaxation technique to compute a summary. This is the primary
contribution of the paper. Section 3 shows how the lattice-theoretic join of two
congruence systems can be summarised merely by syntactically rearranging ma-
trices and computing a triangular form. This is another contribution of the pa-
per. Section 4 discusses the relationship with the wider literature and Section 5
concludes.

2 Outline of the Method

In 1960 Peter Wegner [19] reported a fast bit counting algorithm. Expressed in
the language C, the method counts the number of 1-bits in a word x, leaving the
result in a variable c, as follows: y = x; for (c = 0; y; c++) y &= y - 1;
Since the method is rather devious (and the explanation pre-dates the invariant
assertion principle), one may want to derive an invariant that aids understanding
of the code. This is challenging because the bit-twiddling cannot be modeled with
a conventional affine assignment [15], that is, y is not updated with a value that
is a linear combination of the values of the program variables. Furthermore,
modeling the update as an assignment to an arbitrary value (a so-called non-
deterministic assignment [15]) is too crude to derive a useful loop invariant.

One might think that these problems are insurmountable but we show that
an invariant can be derived by modeling non-linear assignments as exact op-
erations on sequences of bits and then computing optimal congruence abstrac-
tions for a composition of bit operations. The last point warrants elaboration:
numeric analyses are usually presented in terms of programs which have al-
ready been abstracted through the use of assignments that are either affine or
non-deterministic. This is adequate when working at the granularity of whole
numbers but the best congruent abstraction of a bit-level operation, let alone a
composition of them, is somewhat less obvious. We systematise the computation
of an optimal abstraction and integrate this into the analysis itself.

Inferring Congruence Equations Using SAT 283

In the rest of this section we sketch the approach:

1. A local, bit-precise transfer function is established for each basic block.
2. These Boolean functions are then used to build a set of recursive dataflow

equations, expressing the program’s overall runtime behaviour.
3. In the context of a finite set of w-bit variables, a closed form of the dataflow

equations can be derived using Kleene iteration. In practice, however, this
iteration may need to be interleaved with steps to relax constraints, and we
propose a suitable relaxation to congruence equations.

2.1 Representing Bit-Level Semantics without Abstraction

It is possible to express the semantics of the basic blocks of a program, even to
the bit-level, using Boolean constraints that relate the bits of its inputs to those
of its outputs. But the problem is how to do so, retain tractability, and derive
loop invariants, that is, not just explore loops to a fixed depth [8].

Let us draw Wegner’s code as a flow diagram:

0
�

�

�

�
�y := x 1

�

�

�

�
�c := 0

�

�
2

�

�

�

�
�

� �

assume y �= 0

5
�

�

�

�
assume y = 0

3
�

�

�

�
�y := y&(y − 1) 4

�

�

�

�

c := c + 1 �

The program’s basic blocks are the initial code ‘y := x; c := 0’, the loop body
‘assume y �= 0; y := y&(y − 1); c := c + 1’ and the loop exit ‘assume y = 0’. The
exact semantics of these blocks can be described relationally, as systems of propo-
sitional constraints. The idea is to represent the input and output relationships
across a basic block using two systems of propositional variables x0, . . . , xw−1

and x′0, . . . , x
′
w−1 (abbreviated to x and x′) that encode the input and output

state of each integer variable x. We assume a twos complement integer repre-
sentation and let w denote the number of bits that make up an integer. The
constraints generated for the example are:

[[y := x; c := 0]]
= (

∧w−1
i=0 y′i ↔ xi) ∧ (

∧w−1
i=0 ¬c′i) ∧ (

∧w−1
i=0 x′i ↔ xi)

[[assume y �= 0; y := y&(y − 1); c := c + 1]]
= (

∨w−1
i=0 yi) ∧ (

∧w−1
i=0 y′i ↔ (yi ∧ ∨i−1

j=0 yj))
∧ (

∧w−1
i=0 c′i ↔ (ci ⊕ ∧i−1

j=0 cj)) ∧ (
∧w−1

i=0 x′i ↔ xi)

[[assume y = 0]]
= (

∧w−1
i=0 ¬yi) ∧ (

∧w−1
i=0 x′i ↔ xi) ∧ (

∧w−1
i=0 y′i ↔ yi) ∧ (

∧w−1
i=0 c′i ↔ ci)

where ⊕ denotes exclusive-or. Elsewhere [11] we explain how these constraints
can be generated automatically from the program. Suffice it to say that the
constraint for an assignment x := y + z is derived by considering a cascade of
full adders using intermediate carry bits b,

(
w−1∧

i=0

x′i ↔ yi⊕zi⊕bi)∧¬b0∧(
w−1∧

i=1

bi ↔ (yi−1∧zi−1)∨(yi−1∧bi−1)∨(zi−1∧bi−1))

284 A. King and H. Søndergaard

together with constraints to express that variables other than x do not change.
The variables b are existentially quantified, and the formula can be simplified
using standard Boolean quantifier elimination.

Compound expressions are handled by introducing temporary variables s and
t to hold intermediate results and then applying renaming. For example,

[[y := y & (y − 1)]] = ρs′,t([[s := y − 1]] ∧ [[y := y & t]])

The renaming step ρs′,t replaces the output variables s′ of the first statement
with the input variables t of the second. Again, the compound formula can be
simplified by eliminating the remaining intermediate variables s, t, t′.

2.2 Setting Up the Dataflow Equations

The relational semantics for the basic blocks allows us to derive the states that
are reachable at program points 0, 2 and 5. They are obtained as the least
(strongest) solution to the following recursive equations:

f0 = 1

f2 = ρv′,v(πv′(f0 ∧ [[y := x; c := 0]]))∨
ρv′,v(πv′(f2 ∧ [[assume y �= 0; y := y&(y − 1); c := c + 1]]))

f5 = ρv′,v(πv′(f2 ∧ [[assume y = 0]]))

where v and v′ are the input and output variables, that is, v = c · x · y and
v′ = c′ · x′ · y′. The Boolean functions f0, f2 and f5 represent sets of reachable
states, for example, a state σ = {c0 �→ 0, . . . , cw−1 �→ 0, x0 �→ 1, . . . , xw−1 �→ 0,
y0 �→ 1, . . . , yw−1 �→ 0} is considered to be reachable at program point 2 iff σ
satisfies f2. The projection operation πv′(f) = f ′ computes the Boolean function
f ′ by eliminating, by existential quantification, any propositional variable y from
f that does not occur in the system v′. For instance, π〈x1,x2〉(f) = ∃y(f) = x1 ↔
x2 when f = (x1 ↔ y) ∧ (y ↔ x2). Projection is used to derive a function that
only expresses relations between the output variables v′. The renaming operation
ρv′,v(f) = f ′ constructs a function f ′ by replacing each output variable y′ in
f with its counterpart input variable y, for example, ρv′,v(c′0 ∧ (x′1 ⊕ y′1)) =
c0 ∧ (x1 ⊕ y1). Iteration can be used to compute f2 from the predetermined
f0 = 1 and once f2 is known, f5 can be derived. For f2 the iterates start:

f0
2 = 0

f1
2 = f0

2 ∨ (
∧w−1

i=0 xi ↔ yi) ∧ (
∧w−1

i=0 ¬ci)
f2
2 = f1

2 ∨ (
∨w−1

i=0 xi) ∧ (
∧w−1

i=0 yi ↔ (xi ∧ ∨i−1
j=0 xj)) ∧ c0 ∧ (

∧w−1
i=1 ¬ci)

f3
2 = f2

2 ∨ . . .

This sequence will eventually stabilise because a bounded number (23w) of
Boolean functions are definable over v. However, the c variables will enumerate
all 2w bit patterns and therefore at least 2w iterates will be computed. This
will take an impractically long time, even for w = 16. There is also an issue
of space. A Boolean function can be represented as an ROBDD but the size of

Inferring Congruence Equations Using SAT 285

an ROBDD can be exponentially large in the number of variables (even with
dynamic variable reordering [2]), and this is a pressing issue when w proposi-
tional variables are needed to represent each integer variable. Tractability can be
recovered by approximating [17] or widening [10] an ROBDD when it becomes
intolerably large. This would replace an ROBDD with one that could be stored
more compactly and yet represented a larger set of states. The problem with
this approach is that the ROBDD widenings that have been proposed thus far
do not preserve sufficient information to infer useful loop invariants.

2.3 Abstracting Bit-Level Inputs and Outputs with Congruences

Considerations of tractability dictate that we look for principled ways of over-
approximating solutions to systems of equations of the form

f =
n∨

m=1

ρy′,y(πy′(fm ∧ f ′m)) (1)

without giving up too much bit-level information. We suggest that this can be
achieved by restricting f , as well as each fm, to a class of functions that can
be expressed as conjunctions of congruence equations modulo m, where m is a
power of 2. Each function fm summarises the inputs to one of n basic blocks
and the function f summarises all (the join of) the outputs of the n blocks.
No constraint is placed on the generality of any of the f ′m formulae. This means
that no abstraction needs to be applied to a function that describes the relational
semantics of a basic block—this description is kept bit-precise.

How to solve systems of the form (1) under the restrictions just mentioned?
The rest of this section explains the idea, based on the Wegner example. Let
x ≡2w y abbreviate x = y+k2w for some integer multiplier k. Observe that each
of the equations t ≡2w t′+t′′, t ≡2w ny, t ≡2w n and the disequation t �≡2w n can
be expressed as propositional constraints when the t variables are w-bit, y is 1-
bit and n is an integer. This is a consequence of the modulus being a power of 2.
For instance, t ≡2w ny and t �≡2w ny can be expressed as

∧w−1
i=0 ti ↔ (ni ∧y) and

∨w−1
i=0 ti ⊕ (ni ∧ y) where n ≡2w

∑w−1
i=0 2ini and t ≡2w

∑w−1
i=0 2iti. Moreover, an

equation
∑k

i=1 niyi ≡2w n can be reduced by
∑j

i=1 niyi ≡2w t,
∑k

i=j+1 niyi ≡2w

t′, t + t′ ≡2w t′′ and t′′ ≡2w n using fresh w-bit variables t, t′, and t′′, and hence
also reduced to a propositional system. Any disequation

∑k
i=1 miyi �≡2w n can

similarly be described propositionally. Henceforth let [[
∑k

i=1 niyi ≡2w n]] and
[[
∑k

i=1 niyi �≡2w n]] denote such propositional encodings.
To illustrate the value of these encodings, let w = 8 and consider comput-

ing f2
2 = f1

2 ∨ ρy′,y(πy′(f1
2 ∧ g)) where f1

2 = ρy′,y(πy′(1 ∧ [[y := x; c := 0]])) and
g = [[assume y �= 0; y := y&(y − 1); c := c + 1]]. The encodings are used to direct
the generation of truth assignments for the function f1

2 ∧ g. Truth assignments
are generated so as to incrementally derive the most precise congruence system
describing both f1

2 and ρy′,y(πy′(f1
2 ∧ g)). This system is used as the iterate,

rather than the function f1
2 itself. Since the function f0

2 = 0 can be represented

286 A. King and H. Søndergaard

as a congruence system, namely 0 ≡256 1, this construction ensures that all
iterates are congruences. The number of iterates is bounded: the length of an
increasing chain of congruences is at most 192, that is, the product of the power
w = 8 and the maximum number, 24 (3w), of variables in each system [15].

The function f1
2 falls into the class of formulae that can be represented con-

gruently. This is because the satisfying assignments of f1
2 coincide with those

of the formula (
∧7

i=0[[ci ≡256 0]]) ∧ (
∧7

i=0[[xi ≡256 yi]]) on c, x and y. Hence
computing ρy′,y(πy′(f1

2 ∧ g)) is equivalent to computing ρy′,y(πy′(g′)) where
g′ = (

∧7
i=0[[ci ≡256 0]]) ∧ (

∧7
i=0[[xi ≡256 yi]]) ∧ g. This is convenient, because it

permits the encodings to be demonstrated on a representative, non-trivial ex-
ample, namely the derivation of f2

2 . To see how the congruence system for f2
2 is

incrementally constructed, observe that any model of the Boolean function

g′ ∧ ((
7∨

i=0

[[c′i �≡256 0]]) ∨ (
7∨

i=0

[[x′i �≡256 y′i]])) (2)

defines a run of the block with an entry state that is described by f1
2 but whose

exit state is not characterised by f1
2 . For example, the truth assignment

{
c0 �→ 0, c1 �→ 0, . . . , c7 �→ 0, x0 �→ 0, . . . , x6 �→ 0, x7 �→ 1, y0 �→ 0, . . . , y7 �→ 1,
c′0 �→ 1, c′1 �→ 0, . . . , c′7 �→ 0, x′0 �→ 0, . . . , x′6 �→ 0, x′7 �→ 1, y′0 �→ 0, . . . , y′7 �→ 0

}

satisfies (2) and demonstrates that when c, x, and y assume values of 0, 128 and
128 on entry to the block, they can take values of 1, 128 and 0 on exit from the
block (assuming an unsigned representation). By construction, the output state
is not summarised by f1

2 and therefore f1
2 needs to be enlarged to accommodate

this state. Since the output state can be represented in congruence form as

c0 ≡256 1 ∧ (
7∧

i=1

ci ≡256 0) ∧ (
6∧

i=0

xi ≡256 0) ∧ x7 ≡256 1 ∧ (
7∧

i=0

yi ≡256 0) (3)

this system and that for f1
2 can be joined to obtain the summary

(
7∧

i=1

ci ≡256 0) ∧ (
6∧

i=0

xi ≡256 yi) ∧ x7 ≡256 c0 + y7 (4)

A model for the formula (2) can be found using standard techniques [16], trans-
lating the formula into an equi-satisfiable conjunctive normal form (CNF) rep-
resentation, and presenting the CNF formula to any SAT-solver. The join can
be computed by translating the two congruence systems to their sets of gen-
erators, taking the union of the two sets, then converting the union to a new
congruence system [1,6,15]. Alternatively, the join can be obtained by relaxing
a system of congruences constructed syntactically from the two input systems
(see Section 3). Either way, whether the join describes all possible output states
can be determined by solving the Boolean formula

Inferring Congruence Equations Using SAT 287

g′ ∧ ((
7∨

i=1

[[ci �≡256 0]]) ∨ (
6∨

i=0

[[xi �≡256 yi]]) ∨ [[x7 �≡256 c0 + y7]]) (5)

This formula is satisfied, for example, by a truth assignment {. . . , c′0 �→ 1, c′1 �→
0, . . . c′7 �→ 0, x′0 �→ 0, . . . x′5 �→ 0, x′6 �→ 1, x′7 �→ 0, y′0 �→ 0, . . . y′7 �→ 0} from which
the following congruence system can be derived:

c0 ≡256 1 ∧ (
7∧

i=1

ci ≡256 0) ∧ (
7∧

i=0,i�=6

xi ≡256 0) ∧ x6 ≡256 1 ∧ (
7∧

i=0

yi ≡256 0) (6)

Note that the assignments to the input variables, as well as any temporary
variables introduced in CNF conversion [16], are inconsequential for constructing
the congruence system. Disregarding these assignments amounts to projecting
onto the output variables. Notice too that the system is expressed in terms of
unprimed variables, even though it encodes an output state. Constructing the
congruence system thus involves renaming as well as projection, though both
operations are performed on truth assignments, at which level they collapse to
computationally trivial operations. Joining the previous summary (4) with the
new system (6) gives the new summary

(
7∧

i=1

ci ≡256 0) ∧ (
5∧

i=1

xi ≡256 yi) ∧ x6 + x7 ≡256 c0 + y6 + y7 (7)

Continuing this way, we obtain a sequence of Boolean formulae h0, h1, h2, . . .,
the first two of which are (2) and (5), and where, more generally, hj is

g′ ∧ ((
7∨

i=1

[[ci �≡256 0]]) ∨ (
7−j∨

i=0

[[xi �≡256 yi]]) ∨ [[
∑7

i=7−j+1xi �≡256 c0 +
∑7

i=7−j+1yi]])

Of these, h1, . . . , h6 are satisfiable, but h7 is not, so the system

(
7∧

i=1

ci ≡256 0) ∧
7∑

i=0

xi ≡256 c0 +
7∑

i=0

yi (8)

summarises all reachable output states when the input states are described by
f1
2 . The next iterate f2

2 is then assigned to this system which is the most precise
congruence system that describes the set of output states given an input state
drawn from f1

2 .
The method is not sensitive to how the relational semantics is presented. This

contrasts with previous analyses which critically depend on how the statements
of a program are translated into, say, affine assignments. This is particularly
pertinent when deriving invariants for assembler or obfuscated code [18].

Of course, thus far, only f2
2 has been derived. By repeating the above process

with an updated input state we obtain the sequence of iterates:

f3
2 = (

∧7
i=2 ci ≡256 0) ∧ ∑7

i=0 xi ≡256 c0 + 2c1 +
∑7

i=0 yi

f4
2 = (

∧7
i=3 ci ≡256 0) ∧ ∑7

i=0 xi ≡256 c0 + 2c1 + 4c2 +
∑7

i=0 yi

f6
2 = f5

2 = (
∧7

i=4 ci ≡256 0) ∧ ∑7
i=0 xi ≡256 c0 + 2c1 + 4c2 + 8c3 +

∑7
i=0 yi

288 A. King and H. Søndergaard

Interestingly, although the derivation of f2
2 requires 8 calls to a SAT-solver and

7 join computations, the iterates f3
2 , f2 and f5

2 each require just two calls to a
solver and one join. To check stability, that is, deduce f6

2 = f5
2 , requires one

call to a solver, hence 15 invocations are required in total, the largest of which
involves 4507 variables and 11648 clauses (though more compact CNF conversion
is possible [16]). Nevertheless, the longest time that it takes to solve any instance
is 0.61 ms (wall-time) using SAT4J version 1.5 [12] on a 2.4 GHz MacBook Pro.
Even without deriving f5 =

∑7
i=0 xi ≡256 c0 +2c1 +4c2 +8c3 ∧ (

∧7
i=4 ci ≡256 0),

it is now evident that Wegner’s bit-twiddling algorithm assigns to the variable c
the number of bits which are set in the variable x. As far as we aware, no other
analysis is capable of deriving such an invariant. Note that the invariant includes
coefficients of 4 and 8, and thus precision would be degraded if a modulo of 2
was employed rather than the word-level modulo of 2w.

3 Joining Congruence Equations

Section 2.1 outlined the translation of basic blocks into Boolean formulae. That
component preserves all information within a basic block, which is key to rea-
soning about non-linear operations such as bit-twiddling. We now describe the
complementary component which produces the join of two congruence systems.
It discards information, which is key to retaining tractability. The join ensures
that the summaries reside in a finite ascending chain so they cannot be weakened
forever; the maximal chain length is w2n [15], as wn (propositional) variables
are needed to represent the state of n (integer) variables of width w.

Recent work has exploited how congruence systems can be represented by
sets of generators that span the solution space of the congruence system [15].
This representation is useful because it reduces the join operation to set union.
However, our refined form of analysis relies on a translation mechanism from
an equation

∑k
i=1 niyi ≡2w n to a formula [[

∑k
i=1 niyi ≡2w n]] that becomes

more convoluted when the generator representation is adopted. Thus it is con-
venient to compute the join whilst representing the input and output systems
as a conjunction of equations. This can be achieved by reformulating the join
of two systems as a projection operation which can, in turn, be computed by
calculating a triangular form. This section explains these steps.

Basics. To state the algorithmic results of this section, it is necessary to recall
some mathematical concepts and notation. The set of congruence classes modulo
m is defined Zm = {[n] | n ∈ Z} where [n] = {n′ ∈ Z | n ≡m n′} and ≡m denotes
equivalence modulo m. Henceforth, we blur the distinction between a class [n]
and its representative element n. The 2-fold Cartesian product Z

2
m is defined

Z
2
m = Zm × Zm and the k-fold product Z

k
m is likewise defined. If S1, S2 ⊆ Z

k
m

then their (Minkowski) sum is S1 + S2 = {x ∈ Z
k
m | xi ∈ Si ∧ x ≡m x1 + x2}.

If λ ∈ Z and S ⊆ Z
k
m, then λS = {x ∈ Z

k
m | x′ ∈ S ∧ x ≡m λx′}. More-

over, the linear closure of S is linear(S) = {∑�
i=1 λixi | λi ∈ Z∧x1, . . . , x� ∈ S}.

Inferring Congruence Equations Using SAT 289

1: procedure triangular(in: S, out: t)
2: t := λ�.⊥
3: let {a1, . . . as} = S
4: for i := 1 to s do
5: � := leading(ai)
6: while (� > 0 ∧ � ∈ dom(t))
7: a′ := t(�)
8: p := power(π�(ai))
9: p′ := power(π�(a

′))
10: if p ≥ p′ then
11: ai := (π�(a

′)/2p′
)ai − 2p−p′

a′

12: else
13: t := t[� �→ ai]

14: ai := (π�(ai)/2
p)a′ − 2p′−pai

15: endif
16: � := leading(ai)
17: endwhile
18: if � > 0 then t := t[� �→ ai]
19: endfor
20: endprocedure

Fig. 1. The triangularisation method of Müller-Olm and Seidl [15]

The modules of Z
k
m are those subsets of Z

k
m that are closed under linear combina-

tion, that is, Modulek
m = {M ⊆ Z

k
m | linear(M) = M}. The affine subsets of Z

k
m

are translated modules, that is, Affinek
m = {{x}+M | x ∈ Z

k
m ∧M ∈ Modulek

m}.
The affine closure of S is the smallest affine space that encloses S and is thus
defined affine(S) =

⋂{S′ ∈ Affinek
m | S ⊆ S′}.

Example 1. Observe that ∅ and {0} are closed under linear combination, whence
∅ ∈ Modulek

m and {0} ∈ Modulek
m. As ∅ ∈ Modulek

m, we have ∅ ∈ Affinek
m.

Moreover, since {0} ∈ Modulek
m, it follows that {x} ∈ Affinek

m for all x ∈ Z
k
m.

Triangularisation. While congruence equations appear as good companions
for a bit-level relational semantics, Gaussian elimination cannot be immediately
applied to compute a triangular form for such equations because of the need to
deal with zero divisors [15]. Müller-Olm and Seidl have thus devised a triangu-
larisation algorithm that, given an input system Ax ≡2w b, computes output
system A′x ≡2w b′ where A′ = [ai,j] and ai,j = 0 whenever i > j. Figure 1 gives
the algorithm and Example 2 illustrates what the algorithm will compute for an
example. (This example will, in turn, support Example 4 which demonstrates
how join can be straightforwardly realised.) In the description of the algorithm,
leading(a) returns -1 if a = 0 and otherwise the position of the first non-zero
element of the vector a; π�(a) extracts the �’th element from a; and power(n)
returns the largest integer p such that 2p divides n.

290 A. King and H. Søndergaard

Example 2. The input and output to triangularisation procedure are Ax ≡2 b
and A′x ≡2 b′ respectively:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
0
0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A′=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b′=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
0
1
0
0
0
0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

By reasoning about upper triangular form, one can argue that any subset of Z
k
m

that is closed under affine combination, can be represented congruently:

Proposition 1. S ∈ Affinek
m iff there exists a congruence system Ax ≡m b such

that S = {x ∈ Z
k
m | Ax ≡m b}.

Projection. Quite apart from establishing this result, upper triangular form
provides a way of computing arbitrary projections. Projection onto the i’th el-
ement of a k-ary vector is defined πi(〈x1, . . . , xk〉) = xi. Single element projec-
tions can be composed so that if 1 ≤ i1 < ... < ij ≤ k then the j-ary vector
〈πi1 (x), . . . , πij (x)〉 is also a projection in that it also discards information per-
taining to certain dimensions. Projection of an affine space is also affine:

Proposition 2. Let S ∈ Affinek
m and 1 ≤ i1 < ... < ij ≤ k. Then T ∈ Affinej

m

where T = {〈πi1(x), . . . , πij (x)〉 | x ∈ S}.

If A = [ai,j] is in upper triangular form, the projection of Ax ≡m b onto a suffix
y = 〈xi, . . . , xk〉 of x is found very easily. Suppose row j is the top-most row of
A in which 〈aj,1, . . . , aj,i−1〉 = 0. Then the projection onto y is

⎡

⎢
⎣

aj,i · · · aj,k

...
...

as,i · · · as,k

⎤

⎥
⎦y ≡m

⎡

⎢
⎣

πj(b)
...

πs(b)

⎤

⎥
⎦

Example 3. Projecting Ax ≡2 b of Example 2, or equivalently the system
A(t)x ≡2 b(t), onto yi = 〈xi, . . . , x11〉 for i = 7, 9 and 10 yields:

⎡

⎣
1 0 0 0 0
0 1 1 0 0
0 0 1 1 0

⎤

⎦y7 ≡2

⎡

⎣
0
0
1

⎤

⎦
[
1 1 0

]
y9 ≡2

[
1
] [

0 0
]
y10 ≡2

[
0
]

(or 1)

Given a congruence system Ax ≡m b, it is possible to project onto any subset
of x merely by reordering the rows of A in synchronicity with the elements of b,
prior to computing the triangular form.

Inferring Congruence Equations Using SAT 291

Join. We finally show how the join can be reduced to computing a projection
(a relaxation) which, in turn, amounts to deriving an upper triangular form.

Proposition 3. Let Si = {x ∈ Z
k
m | Aix ≡m bi} and

A =

⎡

⎢
⎢
⎣

1 1 0 0 0
−b1 0 A1 0 0

0−b2 0 A2 0
0 0−I −I I

⎤

⎥
⎥
⎦ S =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ∈ Z
k
m

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∃σi ∈ Zm.∃xi ∈ Z
k
m.A

⎡

⎢
⎢
⎢
⎢
⎣

σ1

σ2

x1

x2

x

⎤

⎥
⎥
⎥
⎥
⎦

≡m

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Then S = affine(S1 ∪ S2) if S1 �= ∅ and S2 �= ∅.

If a system Aix ≡2w bi has a solution set Si, then the join of A1x ≡2w b1 and
A2x ≡2w b2 is a system whose solutions coincide with affine(S1 ∪ S2). Proposi-
tion 3 states that such a system can be obtained by rearranging A1 and A2 to
form a new matrix A and then eliminating variables.

Example 4. Consider the join of A1x ≡2 b1 and A2x ≡2 b2 where x = 〈x, y, z〉

A1 =
[
1 0 0
0 1 0

]

b1 =
[
0
1

]

A2 =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ b2 =

⎡

⎣
1
0
1

⎤

⎦

As well as minimising the size of coefficients and thereby making the presentation
of large matrices manageable, a by-product of 2w = 2 is that −I ≡2 I and
bi ≡2 −bi. Using this, the combined system of Proposition 3 is formed—it
is given below, on the left. On the right is the triangular system derived in
Example 2, and we conclude that the join is x + y ≡2 1.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ1

σ2

x1

y1

z1

x2

y2

z2

x
y
z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≡2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
0
0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ1

σ2

x1

y1

z1

x2

y2

z2

x
y
z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≡2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
0
1
0
0
0
0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

4 Discussion

Work on deriving systems of equalities [9] and inequalities [4] between program
variables dates back to the very early days of abstract interpretation. Congruence
domains were pioneered by Granger [5,6] who proposed, among other things,

292 A. King and H. Søndergaard

using sets of generators for representing congruence equations and showed that
congruence equations satisfied the ascending chain condition.

Recently there has been a resurgence of interest in inferring both linear [7,14]
and congruence relationships [1,15], mainly from the perspective of improving
efficiency, for instance, by applying randomisation [7], or fusing the domain op-
erations with the fixed-point calculations [14], or refining the conversion between
equations and generators [1], or bounding the size of the coefficients in the rep-
resentation [1,15]. An interesting twist to linear equalities was given by Leroux
[13] who has applied the disjunctive closure of this domain in model checking.

Our work revisits congruence analysis, not to enhance efficiency, but to im-
prove precision. Precision is refined by capturing the semantics of a basic block
accurately as a system of propositional constraints. These are combined with
formulae that express congruence equations that hold upon entry to the block.
The constraints that hold at the end of the block are then abstracted as a
system of optimal congruence equations. This avoids the need to construct spe-
cialised transfer functions for affine assignment, nondeterministic assignment,
etc. Instead all primitives, linear and non-linear, can be handled uniformly by
translating them into systems of propositional constraints using transformations
devised for bounded model checking [3,8,20].

An issue for future work is extending the intra-procedural analysis to inter-
procedural analysis and systematic benchmarking. In its present form, the anal-
yser consists of a Prolog and a Java component that are linked with temporary
files. The Prolog component translates basic blocks, congruence equalities and
congruence disequalities into propositional formulae and then applies CNF con-
version [16] to construct a DIMACS file for SAT4J. The Java component imple-
ments triangularisation and join. The fixed-point is under manual control since
it is both useful and pleasing to watch as the summaries converge onto a loop
invariant. However, the Prolog component needs to be extended to translate
other operations into formulae in order to deploy the analysis on other code and
particularly programs that apply bit-level programming tricks [18].

5 Conclusion

This paper shows how congruence equations, with a modulo that is a power of
two, fit elegantly with SAT solving and a relational bit-level encoding of the
behaviour of the program, to derive invariants for programs that contain non-
linear operations such as bit twiddling. The work calls for further research into
methods in which SAT solvers are applied repeatedly to infer abstractions drawn
from abstract domains that satisfy the ascending chain condition.

Acknowledgments. This work was funded by EPSRC projects EP/C015517,
EP/E033105 and EP/F012896. We thank Paul Docherty for motivating discus-
sions on reverse engineering, Neil Kettle and Axel Simon for their comments on
SAT-solving and Gift Nuka for his help with Floyd-style assertions.

Inferring Congruence Equations Using SAT 293

References

1. Bagnara, R., Dobson, K., Hill, P.M., Mundell, M., Zaffanella, E.: Grids: A Domain
for Analyzing the Distribution of Numerical Values. In: Puebla, G. (ed.) LOPSTR
2006. LNCS, vol. 4407, pp. 219–235. Springer, Heidelberg (2007)

2. Bryant, R.E.: On the complexity of VLSI implementations and graph representa-
tions of Boolean functions with application to integer multiplication. IEEE Trans-
actions on Computers 40(2), 205–213 (1991)

3. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

4. Cousot, P., Halbwachs, N.: Automatic discovery of linear constraints among vari-
ables of a program. In: Symposium on Principles of Programming Languages, pp.
84–97. ACM, New York (1978)

5. Granger, P.: Static analysis of arithmetical congruences. International Journal of
Computer Mathematics 30, 165–190 (1989)

6. Granger, P.: Static analyses of linear congruence equalities among variables of a
program. In: Abramsky, S. (ed.) CAAP 1991 and TAPSOFT 1991. LNCS, vol. 493,
pp. 167–192. Springer, Heidelberg (1991)

7. Gulwani, S., Necula, G.C.: Discovering affine equalities using random interpreta-
tion. In: Principles of Programming Languages, pp. 74–84. ACM, New York (2003)

8. Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: International
Symposium on Software Testing and Analysis, pp. 14–25. ACM, New York (2000)

9. Karr, M.: Affine relationships among variables of a program. Acta Informatica 6,
133–151 (1976)

10. Kettle, N., King, A., Strzemecki, T.: Widening ROBDDs with prime implicants. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920,
pp. 105–119. Springer, Heidelberg (2006)

11. King, A., Søndergaard, H.: Inferring congruence equations using SAT. Technical
Report 1-08, Computing Laboratory, University of Kent, CT2 7NF (2008)

12. Le Berre, D.: A satisfiability library for Java, http://www.sat4j.org
13. Leroux, J.: Disjunctive invariants for numerical systems. In: Wang, F. (ed.) ATVA

2004. LNCS, vol. 3299, pp. 93–107. Springer, Heidelberg (2004)
14. Müller-Olm, M., Seidl, H.: A Note on Karr’s Algorithm. In: Dı́az, J., Karhumäki,

J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1016–1028.
Springer, Heidelberg (2004)

15. Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. ACM Transactions on
Programming Languages and Systems 29(5) (August 2007) (Article 29)

16. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation.
Journal of Symbolic Compututation 2(3), 293–304 (1986)

17. Ravi, K., McMillan, K.L., Shiple, T.R., Somenzi, F.: Approximation and decompo-
sition of binary decision diagrams. In: Design Automation Conference, pp. 445–450.
IEEE Press, Los Alamitos (1998)

18. Warren Jr., H.S.: Hacker’s Delight. Addison Wesley, Reading (2003)
19. Wegner, P.: A technique for counting ones in a binary computer. Communications

of the ACM 3(5), 322–322 (1960)
20. Xie, Y., Aiken, A.: SATURN: A scalable framework for error detection using

Boolean satisfiability. ACM Transactions on Programming Languages and Sys-
tems 29(3) (2007) (Article 16)

http://www.sat4j.org

The Barcelogic SMT Solver�

Tool Paper

Miquel Bofill1, Robert Nieuwenhuis2, Albert Oliveras2,
Enric Rodŕıguez-Carbonell2, and Albert Rubio2

1 Universitat de Girona
2 Technical University of Catalonia, Barcelona

Abstract. This is the first system description of the Barcelogic SMT
solver, which implements all techniques that our group has been develop-
ing over the last four years as well as state-of-the-art features developed
by other research groups. We pay special attention to the theory solvers
and to functionalities that are not common in SMT solvers.

1 Introduction

The importance of propositional SAT solvers in verification applications has
been largely shown in the last few years. However, propositional logic is not
very expressive and by encoding practical problems into SAT, sometimes impor-
tant structural information is lost or substantial blow-up in the formula size is
caused. A successful alternative to SAT is to consider more expressive logics that
still have efficient solvers. For example, for reasoning about timed automata, it
is very useful to consider Difference Logic (DL), where atoms are of the form
x − y ≤ k, being x and y integer or real variables, and k a numeric constant; in
hardware verification, when one wants to abstract away the concrete behavior
of certain components, it is useful to consider the logic of Equality with Uninter-
preted Functions (EUF), where atoms are equalities between first-order terms;
similarly, for software verification, one may need to reason about concrete data
structures such as arrays, lists or queues. Hence, it becomes very natural to con-
sider satisfiability modulo these concrete theories and deal with formulas that
contain thousands of clauses like:

p ∨ x − read(A, i) ≤ y ∨ f(write(A, j, i + 2)) = read(A, j) + 1

In general, the problem known as Satisfiability Modulo Theories (SMT)
amounts to deciding the satisfiability of a typically ground formula modulo a
background theory T . To achieve this goal, similarly to what is done in most
state-of-the-art SMT solvers, Barcelogic combines a Boolean DPLL(X) engine,
very similar in nature to a SAT solver, responsible for enumerating propositional
models of the formula, with a theory solver Solver

T
, responsible for checking that

� All authors partially supported by the by the project LogicTools-2 (TIN2007-68093-
C02-01) funded by the Spanish Ministry of Science and Technology.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 294–298, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Barcelogic SMT Solver 295

these models remain consistent with the theory T . The integration of DPLL(X)
with the concrete solver Solver

T
, produces what we call a DPLL(T) system.

In order to produce our Barcelogic SMT solver we have worked, together
with some external colleagues, on developing and refining the DPLL(T) ap-
proach [NOT06, BNOT06], designing efficient solvers for distinct theories that
comply with all the requirements of a SolverT [NO07, NO05] and in extending
SMT solvers to give support for other uses rather than just checking the satis-
fiability of a formula [LNO06, NO06]. All these ideas have been incorporated in
our Barcelogic system, hence producing a very efficient and robust SMT solver,
as one can observe from its performance in previous editions of the SMT com-
petition (see http://www.smtcomp.org).

2 System Description

In this section we discuss the main components in the Barcelogic SMT solver:
the parser and preprocessor, the Boolean engine DPLL(X) and all theory solvers
that allow Barcelogic to deal with EUF, DL, Linear Arithmetic (LA) and com-
binations of these theories. Finally, we sketch some additional capabilities.

2.1 Parser and Preprocessor

Given an input formula in SMT-LIB format [TR05], Barcelogic’s parsing module
performs two tasks. One of them is to detect which is the most efficient theory
solver that is able to process all input atoms; the second task is to massage the
formula so that it can be fed to the DPLL(X) engine: convert it to CNF, abstract
all theory atoms taking into account T -equivalent atoms, apply Ackermann’s
reduction if EUF and an arithmetic theory are involved, and split the arithmetic
equality constraints into conjunctions of inequalities, to name but a few.

2.2 The Boolean Engine

The DPLL(X) engine currently used is a slight modification of our Barcel-
ogic SAT solver that took part in the 2006 SAT-Race (for detailed results,
see http://fmv.jku.at/sat-race-2006). It is competitive with state-of-the-art
SAT solvers and is indeed very similar to them, as it borrows most of the ideas
present in zChaff [MMZ+01] and MiniSAT [ES04]. Additionally, it implements
several adaptive heuristics to find the right frequency of calls to SolverT (both for
consistency checks and theory propagations) and has been extended to accom-
modate the splitting-on-demand technique presented in [BNOT06] where one
needs to add both new literals and clauses on the fly.

2.3 Theory Solvers

The EUF Solver. The theory solver for EUF is an extension of the congruence
closure algorithm presented in [NO07]. It is an incremental algorithm that pio-
neered the integration of integer offsets in a congruence closure algorithm and
the efficient computation of small explanations of inconsistency.

296 M. Bofill et al.

The DL Solver. The solver for DL is an implementation of the algorithm
proposed by Cotton and Maler in [SM06]. It is a negative-cycle-detection al-
gorithm that allows one to compute exhaustive theory propagation in a very
efficient way. In order to improve efficiency, the infinite-precision arithmetic li-
brary GMP [GMP] is only called if C++ native arithmetic types do not suffice
to ensure correctness.

The LA Solver. The solver for Linear Real Arithmetic (LRA) implements a
primal simplex algorithm based on [RS04] that allows incremental addition and
deletion of constraints. However, thanks to the work done by the preprocessor,
no (dis)equalities have to be processed, and hence the costly exhaustive implicit
equality propagation is no longer necessary. Further, as our algorithm can han-
dle linear programs in general form [Mar86], bounds are dealt with in a more
efficient way than in [RS04]. Finally, both the tableau as well as the revised im-
plementations of the algorithm are available for the solver to choose depending
on, e.g., the condition number or the density of the problem.

As regards Linear Integer Arithmetic (LIA), a branch-and-cut algorithm has
been implemented. Branching is performed by means of the cooperation of
the Boolean engine and the LRA solver following the splitting-on-demand ar-
chitecture [BNOT06], instead of splitting inside a stand-alone LIA solver. In
combination with branch-and-bound, a cutting-planes algorithm has also been
implemented along the lines of [DdM06].

Given the remarkable amount of DL literals that is typically manipulated
when solving a problem in LA, the aforementioned solvers are called in a layered
fashion [BBC+05]: a pre-filtering DL solver is used which checks the consistency
of the DL fragment of the assignment, and also propagates theory information
to DPLL(X).

2.4 Further Capabilities

Model generation. When a formula is found to be satisfiable, Barcelogic out-
puts a model as a conjunction of atoms in the SMT-LIB format. For the theories
under consideration, this amounts to (i) a truth value for each Boolean vari-
able, (ii) a concrete integer or real for each numeric variable, and (iii) a partial
mapping for each uninterpreted function symbol in the formula. Note that since
the formula is ground, only a finite number of function applications appear and
hence a partial mapping suffices to provide a model of the formula.

Predicate abstraction. Predicate abstraction is a technique for automatically
extracting finite-state abstractions for systems with potentially infinite state
space. The core operation in predicate abstraction is, given (i) a set of predicates
P that express properties of the system, and (ii) a formula F that symbolically
represents a transition system or a set of states, to compute the best approxi-
mation of F using the predicates P . In [LNO06] we showed that by means of a
careful enumeration of satisfying assignments, state-of-the-art SMT solvers can
be turned into very efficient predicate abstraction engines, obtaining important
speedups wrt. previously existing techniques.

The Barcelogic SMT Solver 297

Max-SAT and Max-SMT. In several applications, one has a set of constraints
which is known to be unsatisfiable in advance and wants to find an assignment
that satisfies the maximum number of constraints. This is the so-called Max-
SAT or Max-SMT problem, depending on whether the constraints are expressed
as SAT or SMT. A further extension is the weighted version of these problems,
where one assigns a weight, called the violation cost, to each constraint and
wants to find the assignment that minimizes the sum of the costs of the unsat-
isfied constraints. In [NO06] we showed how SMT tools can be easily adapted
to support this functionality and our Barcelogic SMT solver implements all the
techniques described there.

References

[BBC+05] Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum,
P., Schulz, S., Sebastiani, R.: The MathSAT 3 System. In: Nieuwenhuis,
R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 315–321. Springer,
Heidelberg (2005)

[BNOT06] Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on Demand
in SAT Modulo Theories. In: Hermann, M., Voronkov, A. (eds.) LPAR
2006. LNCS (LNAI), vol. 4246, pp. 512–526. Springer, Heidelberg (2006)

[DdM06] Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T).
In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94.
Springer, Heidelberg (2006)

[ES04] Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E.,
Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer,
Heidelberg (2004)

[GMP] The GNU MP Bignum Library, http://gmplib.org/
[LNO06] Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT Techniques for Fast

Predicate Abstraction. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 424–437. Springer, Heidelberg (2006)

[Mar86] Maros, I.: Computational Techniques of the Simplex Method. Kluwer’s
International Series (2003)

[MMZ+01] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff:
Engineering an Efficient SAT Solver. In: 38th Design Automation Confer-
ence, DAC 2001, pp. 530–535. ACM Press, New York (2001)

[NO05] Nieuwenhuis, R., Oliveras, A.: DPLL(T) with Exhaustive Theory Propa-
gation and Its Application to Difference Logic. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg
(2005)

[NO06] Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization
Problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 156–169. Springer, Heidelberg (2006)

[NO07] Nieuwenhuis, R., Oliveras, A.: Fast Congruence Closure and Extensions.
Information and Computation, IC 2005(4), 557–580 (2007)

[NOT06] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo
Theories: From an abstract Davis-Putnam-Logemann-Loveland procedure
to DPLL(T). Journal of the ACM, J. ACM 53(6), 937–977 (2006)

http://gmplib.org/

298 M. Bofill et al.

[RS04] Rueß, H., Shankar, N.: Solving Linear Arithmetic Constraints. Technical
Report CSL-SRI-04-01, SRI International (2004)

[SM06] Cotton, S., Maler, O.: Fast and Flexible Difference Constraint Propagation
for DPLL(T). In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 170–183. Springer, Heidelberg (2006)

[TR05] Tinelli, C., Ranise, S.: SMT-LIB: The Satisfiability Modulo Theories Li-
brary (2005), http://goedel.cs.uiowa.edu/smtlib/

http://goedel.cs.uiowa.edu/smtlib/

The MathSAT 4 SMT Solver

Tool Paper

Roberto Bruttomesso1, Alessandro Cimatti1, Anders Franzén1,
Alberto Griggio2, and Roberto Sebastiani2

1 FBK-IRST, Povo, Trento, Italy
{bruttomesso,cimatti,franzen}@fbk.eu

2 DISI, Università di Trento, Italy
{griggio,rseba}@disi.unitn.it

Abstract. We present MathSAT 4, a state-of-the-art SMT solver.
MathSAT 4 handles several useful theories: (combinations of) equal-
ity and uninterpreted functions, difference logic, linear arithmetic, and
the theory of bit-vectors. It was explicitly designed for being used in
formal verification, and thus provides functionalities which extend the
applicability of SMT in this setting. In particular: model generation (for
counterexample reconstruction), model enumeration (for predicate ab-
straction), an incremental interface (for BMC), and computation of un-
satisfiable cores and Craig interpolants (for abstraction refinement).

1 Introduction

In this paper we present MathSAT 4, a modern Satisfiability Modulo Theories
(SMT) solver. Despite its “traditional” name, MathSAT 4 has been completely
redesigned and reimplemented from scratch, and it is thus a completely new
system wrt. MathSAT 3 [3]. Unlike its predecessors, MathSAT 4 has been
explicitly designed for being used in a formal verification setting: in fact, besides
extending the set of “traditional” theories of interest with the theory of bit-
vectors [4], it also provides novel functionalities which are particularly targeted
for usage in FV. To this extent, MathSAT 4 has recently been integrated within
the NuSMV model checker [7] as a workhorse engine for formal verification of
word-level circuits and of timed and hybrid systems.

MathSAT 4 is available at its web page (http://mathsat4.disi.unitn.it),
with documentation, related papers and some performance figures.

2 Architecture

MathSAT 4 is based on the lazy integration schema used in many SMT tools
(see, e.g., [16]). The high-level architecture of the system is shown in Figure 1.
Interface. MathSAT 4 is written in C++. Interaction with MathSAT can
be performed either via files or via a rich C API. The system supports three
different input formats: a native (MSAT) one, the standard SMT-LIB one, and

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 299–303, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://mathsat4.disi.unitn.it

300 R. Bruttomesso et al.

the one used by the FOCI [13] interpolating prover. (The API supports also
the possibility to use MathSAT 4 as a Theory Context Checker (TCC) [6],
see below.) MathSAT 4 can also interface with external Boolean unsat-core
extractors by exchanging purely-Boolean CNF formulas as DIMACS files.

Preprocessor. After the input formula ϕ is parsed (or generated through the
API), a preprocessing step is performed, consisting of three parts. First, the
problem is simplified by encoding equivalent theory atoms (T -atoms) into a
unique representation, and by propagating top-level information.1 Second, the
formula is converted to CNF. Finally, MathSAT applies static learning [3], i.e. it
adds to the formula small clauses representing T -valid lemmas (e.g. transitivity
constraints) which can speed up the Boolean reasoning process.

Boolean CNF
Formulas

T -solver n

T -solver 1

DPLL Engine

Truth assignment

Model generator

Model

FOCIMSAT C API

Interpolant

Problem clauses

SMT-LIB

SAT/
UNSAT

Preprocessor

Input Formats

Unsat Core

Proof Engine

ProofsModel values

T -lemmas
New atoms

Fig. 1. MathSAT 4 architecture

DPLL Engine. The core
of the solver is the DPLL
Engine. It receives as input
the CNF conversion of the
original problem, and drives
the search by enumerating
its propositional models and
invoking the T -solver(s) to
check them for consistency,
until either a model is found
or all of them are found in-
consistent. The DPLL Engine
is based on the highly-efficient
Minisat 2 SAT solver.

Like its predecessors, Math-
SAT 4 implements most of
the techniques for optimizing
the interaction of DPLL and
T -solvers (see [16] for a sur-
vey). Notably, it implements also a novel adapting heuristic for controlling the
interleaving between DPLL steps and T -solver calls.

Theory solvers. In MathSAT 4 the T -solvers are organized as a layered hier-
archy of solvers of increasing expressivity and complexity [3,4]: if a higher-level
solver finds a conflict, then this conflict is used to prune the search at the Boolean
level; if it does not, the lower level solvers are activated. These T -solvers imple-
ment state-of-the-art procedures for the theories of equality and uninterpreted
functions and predicates (EUF) plus numeric constants and some numeric rela-
tions [14], for difference logic (DL) [10], for the theory of linear arithmetic (LA)
over the rationals (LA(R)) and over the integers (LA(Z)) [12,3], and a basic
procedure for a fragment of the theory of bit vectors (BV). 2 We are currently

1 For example, the formula x = 5 ∧ f(x) < 3 is rewritten into f(5) < 3.
2 Currently, the T -solver for bit-vectors can not be used in DTC with other theories.

The MathSAT 4 SMT Solver 301

on the way of integrating in MathSAT 4 also the T -solver for the theory of
unbounded reachability (HMP) of [15].

A T -solver gets in input a set of quantifier-free literals μ and checks whether μ
is T -satisfiable or not. In the first case, it also tries to perform deductions in the
form μ′ |=T l, where μ′ ⊆ μ and l is a literal representing a truth assignment to a
not-yet-assigned atom occurring in the input formula. In both cases, the T -solver
generates a compact explanation for the conflict or for the implication, whose
negation (a T -valid clause called T -lemma) is then used by the DPLL engine for
backjumping and learning. The T -solvers can also generate new atoms, which
allows for implementing techniques like Delayed Theory Combination (DTC) [2],
Splitting On Demand [1] or Dynamic Ackermann’s Expansion [11].

In order to handle problems expressed in a combination T1 ∪ T2 of theories,
MathSAT 4 applies the Delayed Theory Combination (DTC) procedure (see
[2]), which is more suitable than the traditional Nelson-Oppen procedure for
exploiting the synergy with the underlying DPLL engine.When T1 is the EUF
theory, an alternative approach is that of reducing to a problem in T2 only by
applying Ackermann’s expansion to all the uninterpreted function symbols. In
such cases, MathSAT 4 applies a simple but effective heuristic [5] to decide
whether to use DTC or Ackermann’s expansion.

3 Novel Functionalities

MathSAT 4 was designed primarily to be used in formal verification settings,
where very often a simple “SAT/UNSAT” answer for an SMT problem is not
enough, and extra information is required. Therefore, several extended function-
alities are provided.

Producing models. For all theories and their combination, when ϕ is satisfi-
able, MathSAT 4 returns a satisfying interpretation I on domain variables with
a congruent partial interpretation of uninterpreted functions and predicates. 3

Extracting T -unsatisfiable cores. MathSAT 4 provides two distinct tech-
niques for extracting a T -unsatisfiable subset of an input clause set (unsat core)
described in [8]. The first (“proof-based”) computes a resolution proof of T -
unsatisfiability and returns all its leaf clauses which are not T -lemmas. The
second (“lemma-lifting”) invokes an external Boolean unsat-core extractor on
the Boolean abstraction of the original clauses plus all T -lemmas computed, dis-
charging all T -lemmas from the result. This benefits from every size-reduction
techniques implemented in Boolean unsat-core extractors available off-the-shelf.

Computing Craig interpolants. MathSAT 4 allows for computing Craig
interpolants of pairs of input SMT formulas [9]. This feature include an optimized
interpolant generator for the full theory LA(R), an ad hoc interpolant generator
for DL, and an interpolant generator for combined theories based on DTC.

3 E.g., in EUF ∪LA, if ϕ is x = 5∧f(x) < 3, then I may assign x to 5 and f(5) to 2.

302 R. Bruttomesso et al.

Working incrementally. MathSAT 4 can work incrementally, that is, when
invoked in sequence on similar SMT formulas, it reuses information from one
run to the other so that to avoid restarting the search from scratch. This feature
is very important when extending to SMT SAT-based techniques like BMC or
induction-based model checking.

Enumerating all consistent assignments. MathSAT 4 implements an “All-
SMT” functionality: in case of a T -satisfiable input formula ϕ, it can enumerate
a complete set of partial assignments satisfying ϕ which are consistent with the
theory T ; this feature is useful for performing predicate abstraction in a SMT-
based Counter-Example-Guided Abstraction-Refinement (CEGAR) context [6].

Externalizing the control of Boolean search. By means of the TCC inter-
face, MathSAT 4 allows for an external control of the variable selection during
the Boolean search in DPLL. E.g, this has been used in [6] to allow an external
OBDD package for driving the enumeration of T -consistent assignments.

References

1. Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on Demand in
SAT Modulo Theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 512–526. Springer, Heidelberg (2006)

2. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Ranise,
S., Sebastiani, R.: Efficient Theory Combination via Boolean Search. Information
and Computation 204(10) (2006)

3. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Schulz,
S., Sebastiani, R.: MathSAT: Tight Integration of SAT and Mathematical Decision
Procedures. Journal of Automated Reasoning 35(1-3) (2005)

4. Bruttomesso, R., Cimatti, A., Franzen, A., Griggio, A., Hanna, Z., Nadel, A.,
Palti, A., Sebastiani, R.: A Lazy and Layered SMT(BV) Solver for Hard Industrial
Verification Problems. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 547–560. Springer, Heidelberg (2007)

5. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Santuari, A., Sebastiani,
R.: To Ackermann-ize or Not to Ackermann-ize? On Efficiently Handling Uninter-
preted Function Symbols in SMT(EUF ∪T). In: Hermann, M., Voronkov, A. (eds.)
LPAR 2006. LNCS (LNAI), vol. 4246, pp. 557–571. Springer, Heidelberg (2006)

6. Cavada, R., Cimatti, A., Franzén, A., Kalyanasundaram, K., Roveri, M., Shya-
masundar, R.: Computing Predicate Abstractions by Integrating BDDs and SMT
Solvers. In: FMCAD, IEEE Computer Society, Los Alamitos (2007)

7. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404,
Springer, Heidelberg (2002)

8. Cimatti, A., Griggio, A., Sebastiani, R.: A Simple and Flexible Way of Computing
Small Unsatisfiable Cores in SAT Modulo Theories. In: Marques-Silva, J., Sakallah,
K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 334–339. Springer, Heidelberg (2007)

9. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient Interpolant Generation in Sat-
isfiability Modulo Theories. In: TACAS. LNCS, vol. 4963, Springer, Heidelberg
(2008)

The MathSAT 4 SMT Solver 303

10. Cotton, S., Maler, O.: Fast and Flexible Difference Constraint Propagation for
DPLL(T). In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170–
183. Springer, Heidelberg (2006)

11. de Moura, L., Bjorner, N.: Model-based theory combination. In: SMT 2007 (2007)
12. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,

T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

13. McMillan, K.: An interpolating theorem prover. Theor. Comp. Sci. 345(1) (2005)
14. Nieuwenhuis, R., Oliveras, A.: Proof-Producing Congruence Closure. In: Giesl, J.

(ed.) RTA 2005. LNCS, vol. 3467, pp. 453–468. Springer, Heidelberg (2005)
15. Rakamarić, Z., Bruttomesso, R., Hu, A.J., Cimatti, A.: Verifying Heap Manipulat-

ing Programs in an SMT Framework. In: Namjoshi, K.S., Yoneda, T., Higashino,
T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 237–252. Springer, Hei-
delberg (2007)

16. Sebastiani, R.: Lazy Satisfiability Modulo Theories. Journal on Satisfiability,
Boolean Modeling and Computation, JSAT 3, 141–224 (2007)

CSIsat: Interpolation for LA+EUF�

Tool Paper

Dirk Beyer1, Damien Zufferey2, and Rupak Majumdar3

1 Simon Fraser University, BC, Canada
2 EPFL, Switzerland
3 UCLA, CA, USA

Abstract. We present CSIsat, an interpolating decision procedure for
the quantifier-free theory of rational linear arithmetic and equality with
uninterpreted function symbols. Our implementation combines the effi-
ciency of linear programming for solving the arithmetic part with the
efficiency of a SAT solver to reason about the boolean structure. We
evaluate the efficiency of our tool on benchmarks from software verifica-
tion. Binaries and the source code of CSIsat are publicly available as
free software.

1 Overview

The Craig interpolant for a pair (φ1, φ2) of formulas such that φ1 ∧ φ2 is not
satisfiable, is a formula ψ such that φ1 implies ψ, the conjunction ψ ∧ φ2 is not
satisfiable, and ψ is over symbols that are common to φ1 and φ2 [4]. Craig inter-
polants have been applied successfully in formal verification and logic synthesis.
For example, several software verification tools use Craig interpolants derived
from infeasible counterexamples to refine their abstractions.

An interpolating decision procedure extends a decision procedure in the fol-
lowing way: it takes as input a pair (φ1, φ2) of formulas and has two possible
outcomes: the procedure returns (1) with the answer sat, if the conjunction
φ1 ∧ φ2 is satisfiable, or otherwise (2) with a formula ψ that is a Craig in-
terpolant for (φ1, φ2). CSIsat 1 is a new tool that implements an interpolating
decision procedure for boolean combinations of linear-arithmetic expressions and
equality with uninterpreted function symbols (LA+EUF).

Availability. The source code, executables, and all benchmarks for CSIsat are
available online at http://www.cs.sfu.ca/∼dbeyer/CSIsat/. The tool is free soft-
ware, released under the GPLv3 license. CSIsat is the first open-source interpo-
lating decision procedure available to verification researchers. We hope that other
researchers can integrate new interpolating decision procedures into CSIsat and
that developers find it easy to integrate the tool into more applications.

� Dirk Beyer and Damien Zufferey were supported in part by the Canadian NSERC grant
RGPIN 341819-07; Rupak Majumdar was supported in part by the NSF grants CCF 0546170
and CCF 0720882.

1 Available at http://www.cs.sfu.ca/∼dbeyer/CSIsat/

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 304–308, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.cs.sfu.ca/~dbeyer/CSIsat/
http://www.cs.sfu.ca/~dbeyer/CSIsat/

CSIsat: Interpolation for LA+EUF 305

SAT Solver

Nelson Oppen

EUF LA

SMT Solver

Formulas

Interpolation

UNSAT cores
with additional
information

Interpolants
construction

EUF LA

Interpolant

Resolution
proof from
the SAT solver

Fig. 1. Architecture of CSIsat

Related Tools. So far there are two published interpolation tools: Foci and
CLPprover. McMillan’s tool Foci 2 is an interpolation procedure for boolean
combinations of linear-arithmetic expressions and equality with uninterpreted
function symbols [6]. The tool is implemented as a proof-based theorem prover.
Rybalchenko’s tool CLPprover 3 is an interpolation procedure for conjunctions
of linear-arithmetic constraints and equality with uninterpreted function sym-
bols [9]. The tool is based on linear-constraint solving and implemented on top
of the CLP(Q,R) library [5] for SICStus Prolog.

These two existing tools have different advantages over each other:
CLPprover takes advantage of linear-constraint solving and can provide an ef-
ficient solution for conjunctions of linear-arithmetic expressions, and can con-
strain interpolants to be only over particular variables, if possible. Foci, on the
other hand, handles boolean combinations efficiently. CSIsat combines the ad-
vantages of both approaches, and uses efficient SMT algorithms to provide a fast
interpolation procedure. Our experimental evaluation provides evidence of good
performance. 4

2 Architecture and Algorithm

Figure 1 illustrates the architecture of CSIsat. Our goal is to provide a tool for
computing interpolants for boolean combinations of (rational) linear-arithmetic
expressions (LA) and equality with uninterpreted function symbols (EUF). In-
terpolants for pure conjunctions of linear-arithmetic constraints can be efficiently
computed using linear programming, and therefore, CSIsat uses the algorithm

2 Available at http://www.kenmcmil.com/foci.html
3 Available at http://www.mpi-sws.mpg.de/∼rybal/clp-prover/
4 The original motive for our work was a very practical one: Until now, we had two inter-

polation tools integrated in Blast: Foci and CLPprover. To verify different programs
we had to use different command-line options: -foci by default, and -clp for programs that
require to track linear-arithmetic expressions.

http://www.kenmcmil.com/foci.html
http://www.mpi-sws.mpg.de/~rybal/clp-prover/

306 D. Beyer, D. Zufferey, and R. Majumdar

of Rybalchenko and Sofronie-Stokkermans to compute interpolants for such for-
mulas [9].

The constraint-based algorithm cannot directly handle formulas that are not
convex in their geometrical interpretation. To solve this problem, Rybalchenko
and Sofronie-Stokkermans propose to convert both formulas φ1, φ2 to disjunctive
normal form (DNF), perform multiple queries to the CLP-based algorithm and
construct the final interpolant from the results of these queries [9]. Unfortunately,
the DNF conversion can often blow up in practice.

As a solution to this problem, we chose a two-step approach. For the first
step we use an SMT solver that integrates SAT with Nelson-Oppen style theory
reasoning [7,2,8]. If the conjunction of the formulas is satisfiable, the tool stops
with answer sat and returns a satisfiable subformula that implies the conjunction
of the two input formulas. If the conjunction is not satisfiable, CSIsat collects
the unsatisfiable core and computes the interpolants from this. For this second
step, we annotate the unsatisfiable core with additional information to avoid
overhead. This information comprises the equalities deduced by theory-specific
reasoning, and is used to compute partial interpolants. In addition, the resolution
proof from the SAT solver is passed to the interpolation step. We use McMillan’s
approach to construct interpolants for the EUF part [6]; the rules were adapted
to a graph-based framework. We construct interpolants for the linear-arithmetic
specific part using the constraint-interpolation technique [9], and combine the
interpolants using the technique of Yorsh et al. [10].

The interface to our tool is taken from Foci, i.e., CSIsat uses the same syntax
for the input formulas, and the same output syntax for the interpolants, such that
we can easily substitute one tool for the other. Our implementation is based on
two domain-specific components. For the linear-constraint solving part, we use
the GNU Linear Programming Kit (GLPK) 5. Our SMT algorithm is based on
an integrated SAT solver component. We have successfully experimented with
substituting PicoSAT 6 [1] for our own SAT solver. The linear-programming
component and the SAT solver component are both integrated through a wrap-
per interface, which can easily be adapted to other linear-programming or SAT
solver components.

3 Performance Results

We show that CSIsat is competitive by comparing all three publicly available
interpolation tools on some motivating examples from the software model checker
Blast. Our experiments indicate that CSIsat can efficiently find interpolants.

All experiments were performed on a GNU/Linux x86 64 machine with an
Intel Core 2 Duo processor and 2GB RAM. We limited the processor speed
to 1 GHz, in order to emphasize the difference. We report only the consumed
User CPU Time, in order to reduce the bias from input/output operations and
overhead for process setup. For all software components in our experiments,

5 Available at http://www.gnu.org/software/glpk/
6 Available at http://fmv.jku.at/picosat/

http://www.gnu.org/software/glpk/
http://fmv.jku.at/picosat/

CSIsat: Interpolation for LA+EUF 307

Table 1. Performance evaluation on Blast verification benchmarks

Program #queries Foci CLPprover CSIsat

kbfiltr 64 0.28 s 0.14 s 0.10 s
floppy 235 1.17 s 1.55 s 0.55 s
diskperf 119 0.56 s 0.61 s 0.23 s
cdaudio 130 0.60 s 0.70 s 0.26 s
ssh 6881 29 s — 17 s
alias swap.c 8 (908) 0.07 s 13.20 s 0.06 s

we used the latest publicly available versions, as of April 21, 2008: CSIsat 1.1;
CLPprover 0.22; Foci 2003; GLPK 4.28; PicoSAT 632.

Table 1 reports the run times of the three tools on interpolation queries that
occur during verification processes of different programs. The first column iden-
tifies each program that was verified by Blast. The first four programs are
MS Windows device drivers, ssh consists of several files from the SSH software
that were instrumented for verifying different properties, and alias swap.c is
from Blast’s regression test base. During each verification run, we dumped all
interpolation queries to files. Then we ran the interpolation procedures once
again only on the queries, and the time in the table is the sum of the run times
over all queries that were dumped for a program. The ssh experiment consisted
of 19 verification tasks (program code and property), each resulting in about 350
interpolation queries. The row in the table reports the sum of the run times over
all 19 verification tasks. The ssh interpolation queries contain a high number of
subformulas of the form a �= b. CLPprover does not support disjunctions, and
transforming each such subformula to a < b ∨ a > b, and the resulting overall
formula into DNF, resulted in an intractable number of conjunctive queries. The
example alias swap.c requires interpolants for formulas with disjunctions, be-
cause it uses pointer aliases. In this case, we did the transformation to DNF in
order to feed CLPprover. These last two examples demonstrate the importance
of efficient handling of boolean combinations.

Acknowledgments. We thank Alessandro Cimatti, Alberto Griggio, and
Roberto Sebastiani for interesting discussions relating to interpolation, and a
pointer to their recent paper [3].

References

1. Biere, A.: PicoSAT essentials. JSAT (submitted, 2008)

2. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A., Ranise, S., Rossum,
P.v., Sebastiani, R.: Efficient satisfiability modulo theories via delayed theory com-
bination. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
335–349. Springer, Heidelberg (2005)

3. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in satis-
fiability modulo theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 397–412. Springer, Heidelberg (2008)

http://www.cs.sfu.ca/~dbeyer/CSIsat/
http://www.mpi-sws.mpg.de/~rybal/clp-prover/
http://www.kenmcmil.com/foci.html
http://www.gnu.org/software/glpk/
http://fmv.jku.at/picosat/

308 D. Beyer, D. Zufferey, and R. Majumdar

4. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem.
J. Symb. Log. 22(3), 250–268 (1957)

5. Holzbaur, C.: OFAI clp(q,r) Manual, Edition 1.3.3. Austrian Research Institute for
Artificial Intelligence, Vienna, TR-95-09 (1995)

6. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1),
101–121 (2005)

7. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure.
J. ACM 27(2), 356–364 (1980)

8. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

9. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint Solving for Interpolation.
In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362.
Springer, Heidelberg (2007)

10. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 353–368. Springer,
Heidelberg (2005)

Prover’s Palette: A User-Centric Approach to
Verification with Isabelle and QEPCAD-B

Tool Paper

Laura I. Meikle and Jacques D. Fleuriot

School of Informatics, University of Edinburgh, Appleton Tower, EH8 9LE
{lauram,jdf}@dai.ed.ac.uk

Abstract. We present Prover’s Palette, a general framework for formal
verification using multiple tools, centred around the user. We illustrate
the framework by describing a concrete integration of the theorem prover
Isabelle with the computer algebra system QEPCAD-B.

1 What Is New

The Prover’s Palette is a user-centric approach to integrating theorem provers
with external tools whereby the user is provided with a novel way of interacting
intelligently with the different systems. Our guiding principle is that integrations
should make external tools easy to use in the proof environment, but without
limiting the power of the tool (by cutting out functionality) and without limiting
the potential audience (by making it too difficult or intrusive). This may entail
supporting both automatic and interactive usage — allowing both black-box and
glass-box integrations and making it accessible to both novice and expert users.
These aims are similar to those of other integration frameworks, in particular
the PROSPER project [3], but recent advances in IDE systems mean these aims
can now be realized to a greater extent. We build on the Eclipse Proof General
Kit [1], a modular communications infrastructure for proof coupled with a rich
IDE in the extensive and extensible Eclipse framework. More details on the
underlying architecture and comparisons with other systems is presented in a
longer paper [5].

The focus of this paper is to illustrate our concept by describing a con-
crete integration which can be used for non-trivial formal verification tasks
involving continuous mathematics in the theorem prover Isabelle [6]. In this
setting, QEPCAD-B [2], one of the most sophisticated tools for solving prob-
lems in nonlinear algebra, is used to enhance Isabelle by relieving the user from
the burden of reasoning deductively about nonlinear arithmetic. Moreover, be-
cause the Prover’s Palette approach allows external tools to be used in a va-
riety of ways, our QEPCAD integration can provide proof guidance and loop
invariant discovery in many situations (see §2.2). It is this versatility which
distinguishes this work from other integrations with QEPCAD (e.g. the one
with PVS [7]); this will be shown by the illustrations in this paper, however
for a more comprehensive comparison see [5]. Our framework is available at
www.cognetics.org/proverspalette.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 309–313, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

310 L.I. Meikle and J.D. Fleuriot

2 What Is Possible

In the Prover’s Palette, QEPCAD is always available in the IDE (as an Eclipse
plugin, contributing a widget as shown in Fig. 1). As the prover subgoal changes,
the widget updates automatically, configuring intelligently chosen defaults so
that QEPCAD can be used with a single click of a button (and without any
previous experience with the tool). When an Isabelle problem is not completely
suitable to send to QEPCAD, e.g. because it is not in prenex normal form or
it contains incompatible types or predicates, the widget warns the user and
automatically selects the subset of assumptions and/or conclusion which can
meaningfully be sent. The user also has the option to try an automatic conver-
sion of such subgoals to ones which can be sent in their entirety to QEPCAD.
Furthermore, the user can adjust the full range of QEPCAD operating param-
eters and select how the QEPCAD result should be used in the prover. This
allows QEPCAD to be used in many different ways: as a trusted oracle, as an
untrusted assistant giving insight, or even as a stand-alone client. We illustrate
the first two uses through examples taken from our verification of Graham’s
Scan (GS) algorithm for finding convex hulls [4]. The algorithm relies heav-
ily on the notion of “left turn”, where pqr means that the point r lies to the
left of the directed line from p to q, and can be defined in terms of Cartesian
coordinates:

pqr ≡ (qx - px)(ry - py) - (qy - py)(rx - px) > 0

Fig. 1. Isabelle Eclipse Proof General with QEPCAD Proof Palette Widget

Prover’s Palette: A User-Centric Approach to Verification 311

2.1 QEPCAD as an Automated Oracle

Using Hoare Logic to verify the GS algorithm in Isabelle entailed proving many
difficult subgoals. However, using our new Isabelle/QEPCAD framework, we ob-
tain instant help. For instance, many subgoals can quickly be checked for validity,
and if the user is willing to trust QEPCAD, the integration can automatically
apply any simplified result to the current proof. As an example, consider:

tsp ∧ tsq ∧ tsr ∧ tpq ∧ tqr −→ tpr

This is well known to be true, although it is not easy to prove in Isabelle alone.
Taking t to be the origin (this is not necessary, but QEPCAD runs more quickly
with it), we get the Isabelle lemma shown in Fig. 1 (top box). Our QEPCAD
widget monitors the proof state, and whenever a subgoal looks amenable to
proof using QEPCAD, the “Finish” button is enabled, indicating to the user
that QEPCAD should be able to finish solving this subgoal. Clicking this button
sends the translated problem to QEPCAD1. When a result is found — a matter
of milliseconds in this case — the “Finish” tab is displayed (see Fig. 2). Selecting
“Oracle” will generate the appropriate Isabelle command for the result to be
trusted. In this example, the Isabelle lemma is then proved.

Fig. 2. QEPCAD Finish Tab

2.2 Formal Correctness: QEPCAD as Guide and Discoverer

For some applications, formal correctness requirements might disallow the use
of QEPCAD as an oracle. Nevertheless, it can still be a boon to the human
prover, giving insight into the problem or providing a subgoal simplification. As
an example, consider the case when there are superfluous assumptions in a goal.
These can obscure the relevant facts (a common difficulty of interactive proof).
Our QEPCAD widget can be used to find a minimal set of assumptions which
entail the conclusion of the goal. This enables many problems to be simplified
without reference to an untrusted system in the formal proof.

Our framework can also guide verifications by aiding the discovery of loop
invariants, a task generally accepted as non-trivial. From our experience in veri-
fying GS, we observed that our initial loop invariant needed several refinements
1 QEPCAD runs in the background, so a user is not blocked from using the prover.

312 L.I. Meikle and J.D. Fleuriot

– a process guided by failed proof attempts. Often, the root cause was a missing
assumption, but identifying this was hard. One lemma we encountered was:

bea ∧ abd ∧ cab ∧ ade −→ ace

Using our new framework, the QEPCAD widget quickly tells us this is false. In
this particular case, we know from the context that a subgoal similar to this
is required. By using this integration interactively, we can easily identify what
is missing. As QEPCAD eliminates bound variables from a problem, it can be
used to yield an equivalent result in terms of the free variables only: this result
may reveal useful information. By default all variables are bound when sent to
QEPCAD. There is some art in selecting which variables should be free. The
“Import” tab allows the user to do this interactively. In this example, a and b
are used the most, so we translate a to be the origin and heuristically choose to
keep b bound. With the other variables free, QEPCAD then returns:

dycx - dxcy ≥ 0 ∨ dxey - dyex ≤ 0 ∨ eycx - excy > 0

The second and third disjuncts are unenlightening (a negated assumption and
the conclusion), but the first disjunct, however, is a hitherto missing condition to
our Isabelle lemma. QEPCAD has told us that the lemma can be proven given
¬adc with a at the origin. With this new fact, the framework has therefore led
us to the discovery of a missing component in the loop invariant.

3 What Is Planned

We plan to continue to use the Prover’s Palette to verify algorithms in com-
putational geometry, and, as we discover the need, to develop new integrations
and refine existing ones. With QEPCAD, we have noticed that although it is a
powerful tool, it has one major drawback: its methods can have double exponen-
tial complexity. For some problems, performance can be improved by exploiting
symmetries to reduce the number of variables, or using QEPCAD’s specialised
quantifiers. Currently, a user can set these quantifiers manually – which we feel is
a benefit of the Prover’s Palette – but it may be more desirable to automate this.
We are identifying when these translations can be applied in a formally correct
way. We also intend to use the software to produce witnesses where applicable:
a user will then be able to use these values in a fully formal proof, even though
they come from a tool which does not provide any formal proofs of its results.

Acknowledgements. We would like to thank the reviewers for their useful
comments. This work was funded by the EPSRC grant EP/E005713/1.

References

1. Aspinall, D., Lüth, C., Winterstein, D.: A Framework for Interactive Proof. In:
Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS
2007. LNCS (LNAI), vol. 4573, pp. 161–175. Springer, Heidelberg (2007)

Prover’s Palette: A User-Centric Approach to Verification 313

2. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using
CADs. SIGSAM Bulletin 37(4), 97–108 (2003)

3. Dennis, L.A., Collins, G., Norrish, M., Boulton, R., Slind, K., Melham, T.: The
PROSPER Toolkit. Int. J Software Tools for Technology Transfer 4(2) (2003)

4. Meikle, L.I., Fleuriot, J.D.: Mechanical Theorem Proving in Computational Geom-
etry. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 1–18.
Springer, Heidelberg (2006)

5. Meikle, L.I., Fleuriot, J.D.: Combining Isabelle and QEPCAD-B in the Prover’s
Palette. In: Proceedings of Calculemus (to appear, 2008)

6. Paulson, L.C. (ed.): Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer,
Heidelberg (1994)

7. Tiwari, A.: PVS-QEPCAD, www.csl.sri.com/users/tiwari/qepcad.html

www.csl.sri.com/users/tiwari/qepcad.html

Heap Assumptions on Demand

Andreas Podelski1, Andrey Rybalchenko2, and Thomas Wies1

1 University of Freiburg
2 MPI-SWS

Abstract. Termination of a heap-manipulating program generally depends on
preconditions that express heap assumptions (i.e., assertions describing reach-
ability, aliasing, separation and sharing in the heap). We present an algorithm
for the inference of such preconditions. The algorithm exploits a unique inter-
play between counterexample-producing abstract termination checker and shape
analysis. The shape analysis produces heap assumptions on demand to eliminate
counterexamples, i.e., non-terminating abstract computations. The experiments
with our prototype implementation indicate its practical potential.

1 Introduction

Heap-manipulating programs are prone to termination errors [2]. Manually inferring
preconditions that exclude such errors is both tedious and hard, since the termination
reasoning must involve the shape of the heap (we use the term shape in the broad sense
to describe how heap locations and heap regions are aliased, inter-reachable, separated,
and shared). In this paper, we present an algorithm HEAPINFER that automates this
inference process. Given a heap-manipulating program, our algorithm computes a set
of conditions on the shape of initial states, e.g., at the entry point of a given code frag-
ment, that lead to terminating computations. We identify a class of regular programs for
which the algorithm HEAPINFER is complete. An evaluation on characteristic examples
practically demonstrates that the inferred preconditions are sufficiently weak.

Our algorithm iteratively applies a termination analysis to a ‘shape-free’ abstrac-
tion of the program. HEAPINFER avoids invocation of shape analysis until it finds a
counterexample in the form of a non-terminating abstract computation, i.e., it applies
shape analysis on demand. The shape analysis produces a heap assumption, which is
an assertion describing the heap shape. This assumption refines either the abstraction
or the precondition. As the result, the refinement step eliminates the counterexample.
Thus, we obtain an iterative refinement scheme that applies counterexamples to guide
the refinement of abstractions and preconditions.

The ‘shape-free’ abstraction and the demand-driven application of shape analysis
rely on several specifics of termination proofs. A termination analysis synthesizes ter-
mination arguments in the form of ranking functions (whenever possible). To define a
ranking function directly on heaps does not seem appropriate. The notion of a rank is
intimately related to numbers. Thus, an intermediate step of our algorithm is to trans-
late the input program over pointer variables, a heap program PH, into a program over
integer variables, which we call a measure program PM. This translation step from heap
to measure programs represents a low-cost and coarse ‘shape-free’ abstraction.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 314–327, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Heap Assumptions on Demand 315

The algorithm HEAPINFER applies a termination analysis to PM at the next step. We
obtain either a termination proof for PM and, hence, also for PH, or a counterexample,
i.e., an infinite trace of PM. In general, the attempt to find a termination proof for PM

fails. This is not surprising as we expect that a termination proof must involve some
amount of information that only shape analysis can compute. Shape analysis is noto-
riously expensive, however. Hence, our algorithm calls a shape analysis on demand,
i.e., for a specific, isolated task: to check the validity of an invariant assertion which
is crafted for the counterexample. Recent shape analysis tools can exploit this kind of
specificity by adapting the degree of precision, and thus keeping the practical cost of
shape analysis at a minimum [3, 25]. Furthermore, these tools can efficiently handle
series of analysis requests. They reuse results obtained for previously processed queries
when proving a new assertion, and thus avoid re-computation from scratch.

If the shape analysis proves the validity of the invariant assertion by checking a cor-
responding assert statement in PH, then HEAPINFER inserts a corresponding assume
statement into the measure program PM. Thus, it will refine the abstraction represented
by PM. The refined version of PM still represents a sound abstraction of PH, but the
previously discovered counterexample is no longer feasible in the program PM. The in-
variant assertion, which is crafted to exclude the counterexample of PM, is an expression
over integer variables. The expression can be evaluated in PM as well as in PH. Thus, it
is meaningful in the assert statement of the program PH over pointer variables as well
as in the assume statement in the program PM over integer variables.

In summary, the proposed algorithm HEAPINFER exploits a unique interplay be-
tween failed abstract termination proofs and shape analysis and applies an interleaving
of abstraction and precondition refinement. Thus, we obtain the (to our knowledge first)
algorithm for the inference of preconditions on the heap shape that guarantee termina-
tion of heap-manipulating programs. The experiments with our prototype implemen-
tation indicate its practical potential. We applied our implementation on characteristic
fragments of heap manipulating programs, see [19], including kernel code from an op-
erating system [17]. The inferred preconditions match the intended calling environment,
and were confirmed as such by the kernel developers.

Related Work. Our work fills a gap between two recent lines of research: termination
proofs under given preconditions (for heap-manipulating programs), and precondition
inference for correctness properties other than termination (memory safety of heap-
manipulating programs and other safety properties). Our algorithm exploits the recent
advances in the respected areas by utilizing the corresponding analyses as subpro-
cedures: shape analysis for heap-manipulating programs and termination analysis of
integer-manipulating programs.

The recent termination analyses for heap manipulating programs, e.g., [2, 5], do not
focus on precondition inference, but rather on proving termination under given precon-
ditions. They do not take advantage of lazy reasoning about the heap. Unlike [2], the
present version of our algorithm does not account for memory safety. It can be extended
to track information related to memory safety by using measures, similarly to [5, 15].

The idea of extracting ranking functions from heap-manipulating programs by trans-
lating its statements into updates of integer variables is very natural and is classical by
now. The existing transformations of heap-manipulating programs into programs over

316 A. Podelski, A. Rybalchenko, and T. Wies

integer variables in [2, 5] are sophisticated. Each transformation uses a form of shape
analysis as a preliminary step, i.e., before translating to a program over integer variables.
The shape analysis is used to eagerly infer strongest invariants for the whole program,
and is oblivious to the actual proof obligations required for termination reasoning. The
cost of the translation and the size of the resulting program over integer variables de-
pend on the number of shapes computed by the shape analysis. In contrast, our work
aims at minimizing the cost of the shape analysis by using it only for checking specially
crafted assertions. The complexity of the translation step into a measure program does
not depend on the number of shapes. It is cubic in the number of pointer variables and
linear in the number of statements of the heap program.

The recently proposed algorithm for deriving preconditions for memory safety of
list-manipulating programs [8] employs quite different technical concepts. It neither
applies shape analysis lazily, nor infers to preconditions for termination.

There is a large amount of related work on shape analysis (the synthesis of invariant
assertions about the heap). A partial selection of various approaches contains [4, 6, 12,
13,22]. Our algorithm uses shape analysis as a black box. While not requiring and being
dependent on any particular implementation of shape analysis, HEAPINFER can benefit
from shape analyses that are property-directed, e.g. [3, 25].

To the best of our knowledge, our work is the first that applies shape analysis on
demand for inferring preconditions. A graph-based heap analysis [22] can be lazily
combined with predicate abstraction [14] to improve its precision in proving safety
properties [3].

Our algorithm relies on a termination prover for programs over numerical domains.
There exist several practical methods and tools for proving termination of such pro-
grams, e.g. [7, 9, 10, 11, 16]. All these tools can be employed by our algorithm (after
adding an extension to produce counterexamples, if necessary).

2 Preconditions for Kernel Code

A major application area of termination analyses for heap manipulating programs is
low-level operating systems code [1,2]. Often the operating system kernel contains sub-
routines whose termination is an inevitable requirement for ensuring that the operating
system remains responsive.

Figure 1 presents an example of such a subroutine. It shows a fragment of the system
call handler process_kill found in the process scheduler of the operating system
VAMOS [17]. The handler kills the process with the given process ID. The handler
needs to ensure consistency of the process scheduler’s data structures, e.g. ready list.
The ready list keeps track of all processes that are ready for being scheduled. When
a process with identifier process is killed, the handler ensures that the process is
removed from the ready list (if it is contained). Furthermore, the maximal priority of the
remaining ready processes is recomputed. The outer loop in the handler code traverses
the ready list until either process is found or NULL is reached. If process is found
it is removed from the list. Furthermore, if process has maximal priority, then the
inner loop traverses the ready list once more to compute the new maximal priority of
the remaining ready processes.

Heap Assumptions on Demand 317

int process_kill(unsigned int pid) {
proc_id = pid & 127u;
process = pid2pcb(proc_id); ...
prev_elem = NULL;
ready_list_elem = ready_list;
while ((ready_list_elem != NULL) && (found == false)) {

proc_id2 = ready_list_elem->pid;
if (proc_id == proc_id2) {
if (prev_elem != NULL)

prev_elem->next = ready_list_elem->next;
else

ready_list = ready_list_elem->next;
ready_list_elem->next = NULL;
if (process->priority == max_prio) {

highest_prio = 0u;
highest_search = ready_list;
while (highest_search != NULL) {

if (highest_search->priority > highest_prio)
highest_prio = highest_search->priority;

highest_search = highest_search->next;
}
max_prio = highest_prio;

} ...
found = true;

}
prev_elem = ready_list_elem;
ready_list_elem = ready_list_elem->next;

} ...
}

Fig. 1. System call handler from the process scheduler of the VAMOS kernel [17]

The execution of the handler process_kill may diverge if we call it from an
arbitrary program state. The termination property of the code depends on the shape of
the ready list. For example, if the ready list is cyclic and does not contain process
then the outer loop does not terminate.

Our algorithm HEAPINFER automatically infers the necessary preconditions for ter-
mination: process_kill expects the ready list to be acyclic. At the first inference
step, the algorithm automatically introduces integer variables that measure the length
of paths along pointer fields in the heap. Their value may be infinity, represented by ∞,
which indicates that the corresponding path does not exist in the heap. In our exam-
ple, there are three measures that track the length of the paths following the next
link from (1) ready_list to NULL, (2) ready_list_elem to NULL, and (3)
highest_search to NULL. We refer to these measures M1, M2, and M3 respectively.

Then, HEAPINFER translates the heap program into a measure program over inte-
gers. For example, the first conjunct in the loop condition of the outer loop is translated
to the disequality test M2 �= 0, and the outer loop decrements the measure M2 if its value
is different from ∞. Next, the precondition inference process iteratively applies a termi-
nation analysis to the measure program and a shape analysis to the heap program. The
shape analysis is used to derive new facts from the heap program that rule out spurious
non-terminating computations in the measure program. Whenever such a computation
cannot be ruled out, the precondition is strengthened. Both the precondition and the fact
derived from the heap program are assertions over measures.

318 A. Podelski, A. Rybalchenko, and T. Wies

In our example, the first termination check on the measure program fails. As a coun-
terexample, it reports an infinite computation in which the measure M2 is initially ∞
and is never decremented in the outer loop. This is because M1 (and thus M2) is initially
unconstrained and might have value ∞. This computation is feasible and corresponds
to the infinite traversal of the ready list in case it is cyclic. Consequently, the infer-
ence algorithm strengthens the precondition by the assertion M1 < ∞. This rules out
any infinite iteration of the outer loop in the measure program, and, hence, of the heap
program.

Nevertheless, the next application of the termination analysis fails and produces a
counterexample that infinitely often iterates through the inner loop with the value of
measure M3 being equal to ∞. This might come as a surprise, because acyclicity of the
ready list, expressed as M1 < ∞, is preserved by the heap updates in the body of the
outer loop. Thus, the heap program maintains M3 < ∞ at entry to the inner loop. How-
ever, due to the loss of precision by the measure abstraction, this fact cannot be derived
for the measure program. Now, the inference algorithm applies the shape analysis to
check the validity of the assertion M3 < ∞ at the entry to the inner loop. This assertion
is expressible using a reachability predicate supported by the shape analysis. The shape
analysis verifies that M3 < ∞ holds. This fact is propagated to the measure program by
assuming M3 < ∞ at the inner loop entry that, in turn, makes the subsequent termina-
tion check succeed. The inference process stops and reports the precondition M1 < ∞.
It states that process_kill expects an acyclic ready list.

3 Preliminaries

We now provide necessary definitions of heap manipulating programs, their computa-
tions, and properties. To simplify presentation, we restrict ourselves to heap programs
that manipulate singly-linked lists. An extension to multi-linked lists is discussed in the
technical report [19].

Heap programs. We represent a heap program PH by a tuple (V, L, �0, T). Here, V is
a finite set of program variables. Each variable v ∈ V ranges over a set of memory
addresses. L is a finite set of control locations of the program that includes the initial
location �0. We assume a distinguished program variable pc that ranges over the control
locations L, and is includes in V . T is a finite set of program transitions. Each transi-
tion τ = (�, grd , op, �′) consists of an entry and exit locations � and �′, respectively,
a guard grd , and operation op. Guards and operations are defined by the following
grammar, where v ∈ V \ {pc} and t is a data structure link name.

exp ::= v | exp.t

grd ::= true | false | exp = exp | grd ∧ grd | ¬grd

op ::= assert(grd) | v := v | v := v.t | v.t := v | new(v)

A state s = (stack , h) of a heap program is a valuation of the program variables
stack together with the heap function h. The heap function h is a total function from
addresses to addresses. Function h models singly-linked data structures manipulated by
the program. Given a variable v ∈ V , we write s(v) for the valuation of v in the state s.

Heap Assumptions on Demand 319

We write s[v �→ e] to represent a state s′ such that s′(v) = e and for each u ∈ V \ {v}
we have s′(u) = s(u).

Each transition τ = (�, grd , op, �′) represents a transition relation ρτ that contains
pairs of states (s, s′) such that s(pc) = �, s |= grd and the following conditions apply to
s and s′. If op is an operation assert(grd), we have either s |= grd and s′ = s[pc �→ �′],
or s �|= grd and s′ = s[pc �→ �E]. For dealing with update operations, we define an
evaluation function eval that computes the value of an expression in a given state.

eval(s, exp)
def
=

{
s(v) if exp = v,

h(eval(s, exp′)) if exp = exp ′.t .

For an operation that updates a program variable v := exp, we have s′ = s[pc �→
�′, v �→ eval(s, exp)]. In case of heap update operation v.t := exp, we have s′ =
s[pc �→ �′] and the heap function h is modified at the address eval (s, v.t) to map to the
value eval (s, exp). Finally, if the update operation is an allocation operation new(v)
then s′ = s[pc �→ �′, v �→ a] and h is updated to h ∪ {a �→ a′} where a /∈ dom(h)
is a fresh address and a′ ∈ dom(h) ∪ {a}. We assume a garbage-collected heap where
we always allocate a fresh address, but we put no constraint on the value of the heap
function for that fresh address. For a state s and transition τ we denote by post(τ, s)
the set of all τ -successors of s.

A program computation is a (possibly infinite) sequence σ = s0
τ0→ s1

τ1→ . . . of
states and transitions such that s0(pc) = �0, for each pair of consecutive states si and
si+1 we have si+1 ∈ post(τi, si). If σ is finite then for its final state, say s, and for each
transitions τ ∈ T we have post(τ, s) = ∅.

Measure Programs. A measure is a term M(e1, e2) where e1 and e2 are expressions. It
denotes the length of the shortest (possibly empty) t-path in the heap from the address
denoted by e1 to the address denoted by e2, and ∞ if such a path does not exist.

We extend the evaluation function eval from expressions to measures as follows:

eval(s, M(e1, e2))
def
=

{
∞ if for all i ∈ N : s |= e1.t

i �= e2

min{ i ∈ N | s |= e1.t
i = e2 } otherwise.

Measure assertions are defined by the following grammar:

rel ::= < | > | ≤ | ≥ | =

const ::= 0 | 1 | 2 | · · · | ∞
mexp ::= const | M(exp, exp) | mexp + mexp | mexp − mexp

atom ::= true | false | mexp rel mexp

assn ::= atom | ¬assn | assn ∧ assn

A measure program PM = (M, L, �0, T) is a program whose program variables M
are the set of all measures. The set of locations L, and initial location �0 are as for
heap programs. A state of a measure program is a valuation of the pc together with
valuations of all measures. Transitions of measure programs are guarded by measure
assertions and perform simultaneous updates of all measures. Updates of measures are
expressed in terms of measure expressions mexp.

320 A. Podelski, A. Rybalchenko, and T. Wies

Memory safety. The totality of heap function h implies that in a heap program P there
exists no computation that can fail because of memory manipulation error, i.e., P is
memory safe. This assumption simplifies the presentation of our ‘shape-free’ abstrac-
tion of heap programs, and can be easily avoided in practice by using measures for
proving memory safety.

4 Algorithm

We present our algorithm HEAPINFER for the automatic inference of heap assumptions
for termination in Figure 2. It takes as input a heap program PH and a set of measures
to be tracked for proving termination of PH. The output of the algorithm is a set of
preconditions that guarantee termination of the input heap program.

HEAPINFER executes in two phases: the translation of the heap program into a mea-
sure program that simulates the heap program, and a counterexample-guided refine-
ment. The refinement phase iteratively derives two kinds of new facts. First, it computes
invariants of the heap program that eliminate spurious non-terminating computations in
the measure program. Second, it infers preconditions that exclude feasible infinite com-
putations in the heap program. In the following we describe the two phases of HEAP-
INFER in more details. Section 5 supports this description with illustrative examples.

Translation. Figure 3 presents the function Translate that is used in line 1 of HEAP-
INFER to translate a heap program PH into a measure program under a given set of
tracked measures M . The translation can be seen as a source-to-source transformation.
Each transition of the heap program is translated to a set of transitions in the measure
program. An update operation upd in the heap program is translated to a simultane-
ous update of all measures in the measure program (tracked or untracked). Tracked
measures M(e1, e2) are updated according to the update function Mupd(e1, e2), as de-
fined in Figure 3, while untracked measures are non-deterministically assigned a value
from N ∪ {∞}.

The rules in Figure 3 defining the update functions should be read in the top-down
way. The rule that matches first is applied. We only provide a detailed description for
the translation of heap updates x.t := y and omit other cases for brevity. Such heap
updates are translated into updates of measures of the form M(z.ti, w.tj). Since the
heap function t occurs in the subexpressions z.ti and w.tj of the measure, the transla-
tion needs to take into account the effect of the heap update to the denotation of these
subexpressions. The first two cases apply the rule recursively until x does neither occur
on the path from z to z.ti nor on the path from w to w.tj . Thus, eventually the third
case applies. It is divided into three subcases. The first subcase handles the situation
when x does not occur on the path from z.ti to w.tj . Here, the measure remains un-
changed. The second subcase deals with the situation when x is reachable from z.ti and
the update introduces a new path from z.ti to w.tj via x and y. Finally, the third sub-
case accounts for the update eliminating any existing paths between z.ti and w.tj . We
present a soundness proof of the translation in the extended version of the paper [19].

Note that the provided updates of measures are precise with the exception of update
expressions for new statements. Here, precision means that the evaluation of an update
expression Mop(e1, e2) in a given state s determines the value of M(e1, e2) in the post

Heap Assumptions on Demand 321

1
2
3
4
5
6
7
8
9
10
11
12

input
PH: heap program
M : set of tracked measures

vars
PM : measure program
sti : measure statement at location �i and with guard guard i

PRE: measure assertion
begin

PM := Translate(M, PH)
PRE:= true
repeat

if PM terminates then
return “termination under precondition PRE”

else
st1 . . . stm−1.(stm . . . stn)ω := choose infinite trace in PM

i := choose position in {m, . . . , n}
if under precondition PRE, PH ∪ �i : assert(¬guard i) is safe then

PM := PM ∪ �i : assume(¬guard i)
else

PRE:= PRE ∧ wlp(PH, at �i → ¬guard i)
done

end.

Fig. 2. Algorithm HEAPINFER for demand-driven inference of heap assumptions. The algorithm
uses three oracles: 1) the termination test on a measure program, 2) the safety check on the input
heap program strengthened by a measure assertion, and 3) the weakest-precondition operator on
measure assertions for the input heap program.

state of s under operation op. Update expressions of new statements are not precise in
this sense, because new statements translate into nondeterministic updates.

Each of the update functions Mupd(e1, e2) defines a set of guarded update expres-
sions of the form grd ⇒ exp with the following meaning. If grd is satisfied in the
current state of the measure program then the next value of measure M(e1, e2) is deter-
mined by exp.

Finally, the function bifurcate transforms a single transition with guarded update
expressions for each tracked measure into a set of transitions. Each of the resulting
transitions corresponds to one possible choice of picking one of the guarded update
expressions per tracked measure. The guard of each resulting transition is the translated
guard of the original transition in the heap program conjoined with the guards of the
chosen guarded update expressions.

Choosing measures to track. We determine the set of tracked measures M using a sim-
ple heuristic. Initially, we consider measures that are required for the precise translation
of loop conditions. During the translation, additional measures are lazily taken into con-
sideration if they occur in updates of existing tracked measures according to Figure 3.
To ensure that the set M remains finite we only track measures of the form M(x, y)
where x and y are program variables. Note that the precision of the inference algorithm

322 A. Podelski, A. Rybalchenko, and T. Wies

PH = (V,L, �0, �E , T)

Translate(M, PH) = (M,L, �0, �E ,
[

τ∈T

trlT(M, τ))

trlT(M, (�, g, op, �′)) = bifurcate(�, trlG(g), trlO(M, op), �′)

trlG(e1 = e2) = M(e1, e2) = 0

trlG(true) = true

trlG(false) = false

trlG(¬grd) = ¬(trlG(grd))

trlG(grd1 ∧ grd2) = trlG(grd1) ∧ trlG(grd2)

trlO(M, assert(grd)) = assert(trlG(grd))

trlO(M, upd) = [ms := trlU(M, upd ,ms) | ms ∈ M]

trlU(M, upd , M(t1, t2)) =

(
Mupd(t1, t2) if M(t1, t2) ∈ M

∗ otherwise

If op is x := y then

Mop(e1, e2)
def
= M(e1[y/x], e2[y/x])

If op is x := y.n then

Mop(x, x)
def
= 0

Mop(x.ni, x.nj)
def
= Mop(y.ni+1, y.nj+1)

Mop(e, x)
def
=

M(e, y) = ∞ ⇒ M(e, y.n)
M(e, y) < ∞

M(y, y.n) = 1
M(y.n, e) �= 0 ⇒ M(e, y) + 1
M(y.n, e) = 0 ⇒ 0

M(y, y.n) = 0 ⇒ M(e, y)

Mop(x, e)
def
=

M(y, e) = ∞ ⇒ ∞
M(y, e) < ∞

M(y, e) > 0 ⇒ M(y, e) − 1
M(y, e) = 0

M(y, y.n) = 1 ⇒ M(y.n, e)
M(y, y.n) = 0 ⇒ 0

Mop(x.ni, e)
def
= Mop(y.ni+1, e)

Mop(e, x.ni)
def
= Mop(e, y.ni+1)

Mop(e1, e2)
def
= M(e1, e2)

If op is x.n := y then
let e1 = z.ni and e2 = w.nj

Mop(e1, e2)
def
=

i > 0 ∧ M(z, x) = k ∧ k < i ⇒

Mop(y.ni−k−1, e2)
j > 0 ∧ M(w, x) = k ∧ k < j ⇒

Mop(e1, y.nj−k−1)
(i > 0 → M(z, x) ≥ M(z, e1)) ∧
(j > 0 → M(w, x) ≥ M(w, e2))

M(e1, e2) ≤ M(e1, x) ⇒ M(e1, e2)
M(e1, e2) > M(e1, x)

M(y, e2) < ∞ ∧ M(y, e2) ≤ M(y, x) ⇒
M(e1, x) + 1 + M(y, e2)

M(y, e2) = ∞∨ M(y, e2) > M(y, x) ⇒ ∞

If op is new(x) then

Mop(x, x)
def
= 0

Mop(e, x)
def
= ∞

Mop(x, e)
def
= k, k ∈ N

+ ∪ {∞}
Mop(e, x.ni)

def
= ∗

Mop(x.ni, e)
def
= ∗

Mop(e1, e2)
def
= M(e1, e2)

Fig. 3. Translation of a heap program to a measure program. We use ∗ to denote a non-
deterministically chosen element from N ∪ {∞}. Here, bifurcate creates a set of transitions for
each choice of measure updates, trlT, trlG, trlO, and trlU translate transitions, guards, operations
and updates, respectively.

Heap Assumptions on Demand 323

is monotonic with respect to M , i.e., adding more measures to the set will result in
weaker preconditions.

Refinement loop. The core of algorithm HEAPINFER is its counterexample-guided re-
finement loop. In each iteration of the algorithm a termination checker is applied to
check whether the measure program terminates under current precondition PRE. If the
termination check succeeds then HEAPINFER stops and guarantees that the heap pro-
gram is guaranteed to terminate under PRE. Otherwise, there exists a non-terminating
computation in the measure program. The algorithm non-deterministically chooses one
of these computations: st1 . . . stm−1.(stm . . . stn)ω . Now there are two possible cases.
First, the selected computation is spurious, i.e., there is no corresponding computation
in the heap program. Second, the computation is feasible in the heap program. To deter-
mine whether the counterexample is feasible, the algorithm chooses a guard grd i from
the loop segment (stm . . . stn). Then, a safety checker is called to verify whether the
negation of grd i is an invariant of the heap program at location �i under the current
precondition PRE.

If this safety check succeeds then we conclude that the found counterexample is
spurious. In this case, we strengthen the guards of all transitions that start at �i in the
measure program using the measure assertion ¬grd i, and hence eliminate the coun-
terexample from the measure program.

If the safety check fails, then the counterexample might correspond to a feasible
computation in the heap program (or some other choice of grd i will prove its spurious-
ness). The algorithm invokes an oracle that computes the weakest precondition of the
negated guard grd i and adds it to the current precondition. If the same counterexample
is produced in a later iteration of the refinement loop then the negation of guard grd i is
an invariant of the heap program at location �i under the new precondition. Thus, the
counterexample is eliminated eventually.

If there is a counterexample in the measure program that is spurious, but all guards
in its loop are reachable by some finite computation in the heap program, then the infer-
ence algorithm will produce a precondition which is too strong. In this case the safety
check in line 9 will fail on all of the loop guards and the refinement will rule out the
counterexample by strengthening the precondition. This incompleteness is deliberate.
In such a case a ranking function based on measures simply does not exist. However,
we do not expect to observe this incompleteness on program loops typically found in
low-level system code.

Weakest preconditions of measure assertions. Algorithm HEAPINFER relies on an or-
acle wlp that computes the weakest precondition for a measure assertion and a heap
program. We propose a simple solution for implementing this oracle.

Note that measure assertions are closed under weakest preconditions for loop free
heap programs. In fact, we can use the update functions from Figure 3 to compute
weakest preconditions for finite sequences of transitions. Assume that the current coun-
terexample path π in the refinement loop is of the form st1 . . . stm−1.(stm . . . stn)ω. If
the algorithm attempts to strengthen the precondition using a guard grd i from a transi-
tion of the loop segment (stm . . . stn), then we update precondition PRE as follows:

PRE := widen(PRE ∧ wlp(st1, . . . , sti−1, ¬grd i)) .

324 A. Podelski, A. Rybalchenko, and T. Wies

The operator widen is a widening operator on measure assertions. widen(F) identifies a
series of conjuncts C(x.ni), C(x.ni+1), . . . in F and replaces them by the unbounded
conjunction ∀j ≥ 0 : C(x.ri+j).

If one uses update expressions of measures to compute weakest preconditions then
the only source for nondeterministic updates are new statements. We use a simple quan-
tifier elimination procedure to eliminate the resulting universal quantifiers in weakest
preconditions.

The algorithm HEAPINFER has a solid theoretical foundation. We briefly sketched
soundness in the discussion above. Under assumption that the oracles for the termina-
tion check, safety check, and wlp computation always terminate, there exists a back-
tracking strategy on the nondeterministic choices (lines 7 and 8) such that the refine-
ment loop in algorithm HEAPINFER always terminates. Finally, we identify a class of
regular programs for which the algorithm HEAPINFER is complete. That is, it com-
putes the weakest precondition for termination of the input heap program. The details
are presented in the extended version [19].

5 Example

We illustrate the algorithm HEAPINFER on a simple, yet instructive example. The
left-hand side of Figure 4 shows program TRAVERSE which traverses a singly-linked
list. We apply algorithm HEAPINFER to program TRAVERSE with the singleton set
of tracked measures containing only M(p, q). Executing line 1 in the algorithm yields
the measure program PM shown on the right-hand side of Figure 4. For legibility, we
omit the non-deterministic updates of untracked measures. Program PM does not always
terminate. Let us assume that the non-deterministic choice in line 7 of the algorithm
HEAPINFER selects the infinite computation ε.(�[1])ω that repeatedly executes the loop
body according to case 1. There is only one position to choose in line 8 of the algorithm,
namely, the one associated with location � and guard M(p, q) = ∞. As an assertion on
states of program TRAVERSE, this guard means that q is not reachable from p. Obvi-
ously, the negated guard M(p, q) < ∞ is not an invariant of program TRAVERSE at
location �. Hence, the condition in line 9 does not hold. In this case, the weakest pre-
condition of the stem wlpε(M(p, q) < ∞) is again the assertion M(p, q) < ∞. Thus,
line 12 assigns PRE to M(p, q) < ∞.

One might expect that under the precondition that q is reachable from p the program
TRAVERSE terminates. HEAPINFER finds that it is not sufficient. The next iteration
of the algorithm produces the counterexample �[2.2.1].(�[1])ω. The loop part of this
infinite trace is the same as for the previous counterexample. Thus, we again choose
guard M(p, q) = ∞. The condition in line 9 is again false. The weakest precondition of
the negated guard wlp�[2.2.1](M(p, q) < ∞) simplifies to the assertion

M(p, q) > 0 ∨ M(p, p.n) = 0 ∨ M(p.n, q) < ∞ .

Line 12 updates the precondition PRE to:

PRE ≡ M(p, q) < ∞ ∧ (M(p, q) > 0 ∨ M(p, p.n) = 0 ∨ M(p.n, q) < ∞) .

Heap Assumptions on Demand 325

� : do
p := p.n;

while p �= q

� : do
M(p, q) :=

1 M(p, q) = ∞ ⇒ ∞
2 M(p, q) < ∞
2.1 M(p, q) > 0 ⇒ M(p, q) − 1
2.2 M(p, q) = 0
2.2.1 M(p, p.n) = 1 ⇒ M(p.n, q)
2.2.2 M(p, p.n) = 0 ⇒ 0;

while M(p, q) > 0

Fig. 4. Program TRAVERSE and its associated measure program PM

The new precondition PRE means that q is reachable from p and either (1) p is differ-
ent from q or (2) they are aliased and either (2.1) p has a self-loop or (2.2) p is on a
non-trivial cycle. We expect that the program TRAVERSE terminates under the current
precondition. Indeed, the termination test of the measure program PM under the pre-
condition PRE succeeds and the algorithm returns that the program terminates under the
precondition PRE.

In [19], we discuss additional example programs that manipulate singly- and doubly-
linked lists. These examples are inspired by code fragments found in low-level system
code, such as the example in Section 2.

6 Implementation and Experiments

We developed a prototype implementation, called BOUNCER, of our algorithm for the
demand-driven inference of heap assumptions. We applied BOUNCER to the example
programs in [19] and a scheduling routine from the VAMOS kernel [17].

BOUNCER applies the BOHNE tool for symbolic shape analysis [24] to implement
the oracle that checks assertion validity of heap programs [23,20]. For proving termina-
tion of measure programs, BOUNCER applies the ARMC tool for proving termination
of transition relations in linear arithmetic [21,18]. The oracle for wlp uses widening, as
described in Section 4.

We model the value ∞ in our translation to a measure program by a negative inte-
ger constant, say c. Our translation rewrites each measure expression according to the
following rules:

mexp = ∞ −→ mexp = c ,

mexp ≤ ∞ −→ mexp = c ∨ mexp ≥ 0 ,

mexp < ∞ −→ mexp ≥ 0 .

The rewriting step allows one to apply a termination checker for programs over numer-
ical domains as black-box.

While our implementation is preliminary, we observe that the behavior of the al-
gorithm with respect to the number of applied measures is similar to the behavior of

326 A. Podelski, A. Rybalchenko, and T. Wies

algorithms for predicate abstraction with respect to the number of predicates. We be-
lieve that local use of measures, similarly to localized abstraction [14], can make our
tool scale to larger programs.

Our experiments with process scheduling functions from the VAMOS kernel show
that BOUNCER can successfully infer preconditions for termination for interesting prac-
tical programs. In the current implementation, we had to manually abstract all non-heap
operations by non-deterministic choice. The inferred preconditions are in agreement
with the preconditions provided manually by the VAMOS developers.

Acknowledgments. Andrey Rybalchenko is supported in part by Microsoft Research
through the European Fellowship Programme. Thomas Wies is supported by a Mi-
crosoft Research European PhD Scholarship.

References

1. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang, H.: Shape
analysis for composite data structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

2. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.: Automatic Termination Proofs for Pro-
grams with Shape-Shifting Heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

3. Beyer, D., Henzinger, T.A., Théoduloz, G.: Lazy shape analysis. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 532–546. Springer, Heidelberg (2006)

4. Bogudlov, I., Lev-Ami, T., Reps, T.W., Sagiv, M.: Revamping TVLA: Making parametric
shape analysis competitive. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 221–225. Springer, Heidelberg (2007)

5. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with lists
are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 517–
531. Springer, Heidelberg (2006)

6. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree model check-
ing of complex dynamic data structures. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp.
52–70. Springer, Heidelberg (2006)

7. Bradley, A., Manna, Z., Sipma, H.: The polyranking principle. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1349–
1361. Springer, Heidelberg (2005)

8. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Footprint analysis: A shape analysis that
discovers preconditions. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp.
402–418. Springer, Heidelberg (2007)

9. Colón, M., Sipma, H.: Practical methods for proving program termination. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404. Springer, Heidelberg (2002)

10. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: PLDI
(2006)

11. Cousot, P.: Proving program invariance and termination by parametric abstraction, La-
grangian relaxation and semidefinite programming. In: Cousot, R. (ed.) VMCAI 2005.
LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)

12. Distefano, D., O’Hearn, P., Yang, H.: A local shape analysis based on separation logic. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 287–
302. Springer, Heidelberg (2006)

Heap Assumptions on Demand 327

13. Hackett, B., Rugina, R.: Region-based shape analysis with tracked locations. In: POPL
(2005)

14. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In:
POPL (2004)

15. Magill, S., Berdine, J., Clarke, E.M., Cook, B.: Arithmetic strengthening for shape analysis.
In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 419–436. Springer,
Heidelberg (2007)

16. Manolios, P., Vroon, D.: Termination Analysis with Calling Context Graphs. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 401–414. Springer, Heidelberg (2006)

17. Maus, S.: Developing an Operating System Kernel for the VAMP Processor. Diploma thesis,
Universität des Saarlandes (2005)

18. Podelski, A., Rybalchenko, A.: ARMC: The Logical Choice for Software Model Checking
with Abstraction Refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354, pp. 245–
259. Springer, Heidelberg (2006)

19. Podelski, A., Rybalchenko, A., Wies, T.: Heap assumptions on demand. Technical report,
University of Freiburg (2008),
http://www.informatik.uni-freiburg.de/ wies/papers/.
HeapAssumptionsExtended.pdf.

20. Podelski, A., Wies, T.: Boolean Heaps. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS,
vol. 3672, pp. 268–283. Springer, Heidelberg (2005)

21. Rybalchenko, A.: ARMC (2008), http://www.mpi-sws.org/∼rybal/armc
22. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM

TOPLAS (2002)
23. Wies, T.: Symbolic Shape Analysis. Diploma thesis, Universität des Saarlandes, Germany

(2004)
24. Wies, T.: The Bohne Tool (2008),

http://swt.informatik.uni-freiburg.de/wies/bohne
25. Wies, T., Kuncak, V., Zee, K., Podelski, A., Rinard, M.: Verifying complex properties using

symbolic shape analysis. In: HAV Workshop (2007)

http://www.informatik.uni-freiburg.de/~wies/papers/HeapAssumptionsExtended.pdf
http://www.informatik.uni-freiburg.de/~wies/papers/HeapAssumptionsExtended.pdf
http://www.mpi-sws.org/~rybal/armc
http://swt.informatik.uni-freiburg.de/wies/bohne

Proving Conditional Termination

Byron Cook1, Sumit Gulwani1, Tal Lev-Ami2,�,
Andrey Rybalchenko3,��, and Mooly Sagiv2

1 Microsoft Research
2 Tel Aviv University

3 MPI-SWS

Abstract. We describe a method for synthesizing reasonable underap-
proximations to weakest preconditions for termination—a long-standing
open problem. The paper provides experimental evidence to demonstrate
the usefulness of the new procedure.

1 Introduction

Termination analysis is critical to the process of ensuring the stability and us-
ability of software systems, as liveness properties such “Will Decode() always
return back to its call sites?” or “Is every call to Acquire() eventually followed
by a call to Release()?” can be reduced to a question of program termina-
tion [8,22]. Automatic methods for proving such properties are now well studied
in the literature, e.g. [1,4,6,9,16]. But what about the cases in which code only
terminates for some inputs? What are the preconditions under which the code
is still safe to call, and how can we automatically synthesize these conditions?
We refer to these questions as the conditional termination problem.

This paper describes a method for proving conditional termination. Our
method is based on the discovery of potential ranking functions—functions over
program states that are bounded but not necessarily decreasing—and then
finding preconditions that promote the potential ranking functions into valid
ranking functions. We describe two procedures based on this idea: PreSynth,
which finds preconditions to termination, and PreSynthPhase, which extends
PreSynth with the ability to identify the phases necessary to prove the termi-
nation of phase-transition programs [3].

The challenge in this area is to find the right precondition: the empty precon-
dition is correct but useless, whereas the weakest precondition [13] for even very
simple programs can often be expressed only in complex domains not supported
by today’s tools (e.g. non-linear arithmetic). In this paper we seek a method
that finds useful preconditions. Such preconditions need to be weak enough to
allow interesting applications of the code in question, but also expressible in

� Supported by an Adams Fellowship through the Israel Academy of Sciences and
Humanities.

�� Supported in part by Microsoft Research through the European Fellowship
Programme.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 328–340, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Proving Conditional Termination 329

the subset of logic supported by decision procedures, model checking tools, etc.
Furthermore, they should be computed quickly (the weakest precondition ex-
pressible in the target logic may be too expensive to compute). Since we are not
always computing the weakest precondition, in this paper we allow the reader to
judge the quality of the preconditions computed by our procedure for a number
of examples. Several of these examples are drawn from industrial applications.

Limitations. In this paper, we limit ourselves to the termination property and
to sequential arithmetic programs. Note that, at the cost of complicating the
exposition, we could use known techniques (e.g., [2] and [8]) to extend our ap-
proach to programs with heap and ω-regular liveness properties. Our technique
could also provide assistance when analyzing concurrent programs via [10], al-
though we suspect that synthesizing environment abstractions that guarantee
thread-termination is a more important problem for concurrent programs than
conditional termination.

Related work. Until now, few papers have directly addressed the problem of au-
tomatically underapproximating weakest preconditions. One exception is [14],
which yields constraint systems that are non-linear. The constraint-based tech-
nique in [5] could also be modified to find preconditions, but again at the
cost of non-linear constraints. In contrast to methods for underapproximating
weakest preconditions, techniques for weakest liberal preconditions are known
(e.g., [17, 7]). Note that weakest preconditions are so rarely considered in the
literature that weakest liberal preconditions are often simply called weakest pre-
conditions, e.g., [17].

2 Example

In this section we informally illustrate our method by applying it to several
examples. The procedures proposed by this paper are displayed in Figures 1
and 2. They will be more formally described in Section 3.

We have split our method into two procedures for presentational convenience.
The first procedure illustrates our method’s key ideas, but fails for the class of
phase-transition programs. The second procedure extends the first with support
for phase-transition programs. Note that phase-change programs and precondi-
tions are interrelated (allowing us to solve the phase-change problem easily with
our tool), as a phase-change program can be thought of as several copies of the
same loop composed, but with different preconditions.

2.1 Finding Preconditions for Programs without Phase-Change

We consider the following code fragment:

1 // @requires true;
2 while(x>0){
3 x=x+y;
4 }

330 B. Cook et al.

We assume that the program variables x and y range over integers. The initially
given requires-clause is not sufficient to guarantee termination. For example,
if x=1 and y=0 at the loop entry then the code will not terminate. The weakest
precondition for termination of this program is x ≤ 0 ∨ y < 0.

If we apply an existing termination prover, e.g., Terminator [9] or
ARMC [21], on this code fragment then it will compute a counterexample to
termination. The counterexample consists of 1) a stem η, which allows for ma-
nipulating the values before the loop is reached, and 2) a repeatable cycle ρ,
which is a relation on program states that represents an arbitrary number of
iterations of the loop.

To simplify the presentation, we represent the stem η as an initial condition θ
on the variables of the loop part. (Section 4 describes this step in more detail.)
In our example, the initial condition θ is true and the transition relation of the
loop is defined by

ρ({x, y}, {x′, y′}) ≡ x > 0 ∧ x′ = x + y ∧ y′ = y .

In order to try and prove this counterexample spurious (i.e. to prove it well-
founded, as explained in [9]), we need to find a ranking function f such that
ρ(X, X ′) ⇒ Rf (X, X ′), where Rf is the ranking relation defined by f :

Rf (X, X ′) ≡ f(X) ≥ 0 ∧ f(X ′) ≤ f(X) − 1 .

As the termination prover has returned the above relation ρ as a counterexam-
ple, we can assume that no linear ranking function f exists (note that there
could exist a non-linear ranking function, depending on the completeness of the
termination prover).

Due to the absence of a linear ranking function for ρ, we find a potential rank-
ing function, i.e., a function b such that one of the conjuncts defining Rb(X, X ′)
holds for ρ. We compute a potential ranking function for ρ by finding an expres-
sion on the variables {x, y} that is bound from below. One method for finding
such candiate functions ito consider only the domain (and not the range) of ρ,
i.e., find functions that are bounded when there is a successor. In other words,
consider ∃x′, y′. x > 0 ∧ x′ = x+ y∧ y′ = y. In practice we achieve this via a the
application of a quantifier elimination procedure, i.e., we have

QELIM(∃x′, y′. x > 0 ∧ x′ = x + y ∧ y′ = y) ≡ x > 0 .

We can normalize the condition x > 0 as x−1 ≥ 0, and thus use the function b =
x − 1. Because ρ({x, y}, {x′, y′}) ⇒ b({x, y}) ≥ 0, which is the first conjunction
required by Rb, we can use b as our potential ranking function.1

Enforcing ranking with a strengthening. The function b = x − 1 that we found
only satisfies part of the requirements for proving termination with Rb (i.e.,
1 In this simple example the result was exactly the loop condition. However, when

translating the cycle returned from the termination prover to a formula, some of the
conditions are not on the initial variables.

Proving Conditional Termination 331

b(X) ≥ 0 but not b(X ′) ≤ b(X) − 1). We need a strengthening s({x, y}) such
that

s({x, y}) ∧ ρ({x, y}, {x′, y′}) ⇒ Rb({x, y}, {x′, y′}) .

Since b is bounded, we find s({x, y}) as follows:

s({x, y}) ≡ QELIM(∀x′, y′. ρ(x, y, x′, y′) ⇒ b({x′, y′}) ≤ b({x, y}) − 1) .

We obtain s({x, y}) = x ≤ 0∨y < 0. That is, if s were an invariant (and usually
it is not), then ρ would be provably well-founded using b.

Synthesizing a precondition guaranteeing the strengthening. Recall that the orig-
inal problem statement is to find a precondition that guarantees termination of
the presented code fragment. As the strengthening s guarantees termination,
we now need to find a precondition that guarantees the validity of s on every
iteration of ρ. The required assertion is the weakest liberal precondition of s
wrt. the loop statement. We use known techniques for computing underapprox-
imations of weakest liberal preconditions to find the precondition that ensures
that after any number of iterations of the loop s must hold in the next iter-
ation. Using a tool for abstract interpretation of arithmetic programs [15], we
obtain r({x, y}) = x ≤ 0 ∨ y < 0. In summary, our procedure has discovered the
precondition proposed above.

Note that we can alternate executions of our procedure together with successive
applications of a termination prover to find a precondition that is strong enough
to prove the termination of the entire program. The interaction between the tools
is based on counterexamples for termination, which are discovered by the termi-
nation prover and are eliminated by the precondition synthesis procedure.

2.2 Finding Preconditions for Phase-Change Programs

Consider the following code fragment:

1 // @requires true;
2 while(x>0){
3 x=x+y;
4 y=y+z;
5 }

Again, the given requires-clause is not sufficient to ensure termination. For
example, if x=1, y=0, and z=0 at the loop entry then the code will not terminate.
However, this time, the weakest precondition is given by a non-linear assertion,
which is difficult to construct automatically.

Note that the precondition z < 0 guarantees that the loop terminates, but the
termination may take place after the computation passed through two phases.
The first phase is characterized by the assertion y ≥ 0. In fact, during this phase
the value of x may not decrease towards zero. Nevertheless, eventually the value
of y will decrease below zero, i.e., a phase transition takes place. At this point
x will start decreasing towards (and eventually reaching) zero.

332 B. Cook et al.

In this example, the termination prover returns a stem which is the identity
relation and cycle relation

ρ({x, y, z}, {x′, y′, z′}) ≡ x > 0 ∧ x′ = x + y ∧ y′ = y + z ∧ z′ = z .

The first step of the precondition inference repeats the procedure presented
in the previous subsection. On this example, similarly to the previous one, the
procedure computes b = x − 1 and s = x ≤ 0 ∨ y < 0. However, when com-
puting a precondition that ensures that s in an invariant, we obtain a linear
underapproximation2

x ≤ 0 ∨ x + y ≤ 0 ∨ (y < 0 ∧ x + 2 ∗ y + z ≤ 0) ∨
(y < 0 ∧ x + 3 ∗ y + 3 ∗ z ≤ 0) ∨ (y < 0 ∧ z ≤ 0) .

The first four disjuncts correspond to the cases when the loop terminates after
0, 1, 2, and 3 iterations, respectively, and in which y < 0 holds until possibly the
last iteration. The last disjunct is more interesting, as it states that if y < 0 and
z ≤ 0 then the loop terminates. The expected precondition z < 0 is not included
in the disjunction, since it does not guarantee that y < 0 from the start.

Note that each of these conditions guarantees termination when they are satis-
fied at any iteration of the loop, not necessarily at the first one. These conditions
identify phase transition points. Once they are met, x will start decreasing until
the loop terminates. The solution is to constrain the transition relation with
the negated condition. Termination of the constrained loop ensures that these
conditions are eventually met, and thus the original loop will terminate. Thus,
we call the procedure recursively with the constrained transition relation, and
disjoin the returned preconditions with the existing ones.

For example, constraining the loop with ¬(y < 0 ∧ z ≤ 0) and calling the
procedure recursively yields the additional preconditions x+ 2 ∗ y+ z ≤ 0 ∨ x+
3 ∗ y + 3 ∗ z ≤ 0 ∨ z < 0. The first two disjuncts are weakenings of the previous
preconditions for the cases in which the loop terminates after 2 or 3 iteration,
removing the condition y < 0. The last disjunct z < 0 is the more interesting,
since it ensures eventual termination.

After simplification the precondition computed by the procedure is

x ≤ 0 ∨ x + y ≤ 0 ∨ x + 2 ∗ y + z ≤ 0 ∨
x + 3 ∗ y + 3 ∗ z ≤ 0 ∨ (y < 0 ∧ z ≤ 0) ∨ z < 0 .

3 Computing Preconditions for Termination

This section formally describes the two methods for computing preconditions for
termination, PreSynth and PreSynthPhase. We first define basic concepts.
2 Any linear precondition must be an underapproximation, since the weakest liberal

precondition is non-linear.

Proving Conditional Termination 333

3.1 Preliminaries

We assume a program P = (X, θ, ρ) over a finite set of variables X . For simplic-
ity, we do not single out the program counter variable that ranges over control
locations of the program, and assume that it is included in X . The assertion
θ represents the initial condition of the program. The transition relation ρ is
represented by an assertion over the program variables X and their primed ver-
sions X ′. The primed variables refer to the values after the transition is executed.
For practicality, we assume that the initial condition and the transition relation
are represented using a logical theory for which practical quantifier elimination
procedures exist.3

We refer to valuations of program variables as program states. A program
computation is a finite or infinite sequence of program states s1, s2, . . . such
that s1 is an initial state and each pair of consecutive states si and si+1 follows
the transition relation. Formally, s1 |= θ and for each but final si in the com-
putation we have (si, si+1) |= ρ. The program terminates from a state s if there
is no infinite computation that starts at s. An assertion r is a precondition for
termination if the program P terminates from each state s that satisfies r and
the initial condition, i.e., s |= θ ∧ r.

Our procedure uses (an under-approximation of) the weakest liberal precondi-
tion operator WLP, which we define as usual. Given a transition relation ρ(X, X ′)
and an assertion over program variables ϕ(X), this transformer yields the fol-
lowing conjunction when applied on the transitive closure of ρ:

WLP(ρ∗(X, X ′), ϕ(X)) ≡
∧

n≥0

∀X ′. ρn(X, X ′) ⇒ ϕ(X ′) .

3.2 The Procedure PreSynth

Figure 1 shows the basic precondition synthesis procedure PreSynth. The input
of PreSynth consists of an initial condition θ and a transition relation ρ. Note
that in the most likely usage scenario, θ and ρ will represent a counterexample
to termination reported by a termination prover. In this case, PreSynth is
applied on a compact code fragment and not the full program, which allows one
to apply precise, automated reasoning-based techniques.

We discuss the major steps of the procedure in more detail. The procedure
takes a formula representing a set of initial states, together with a relation rep-
resenting the transitions. Line 1 in Figure 1 strengthens the transition relation
ρ with (possibly an over-approximation of) the states that are reachable from θ.
This step provides necessary precision for the subsequent computations by tak-
ing into account reachability invariants. Here, we rely on an efficient abstract
interpretation tool based on e.g., the Octagon domain [18]. Thus, we can imple-
ment line 1 using a standard abstract reachability procedure [12] as follows (we
assume that θ ⇒ θ#, ρ ⇒ ρ#, and lfp is the least fixpoint operator):
3 If necessary, we can over-approximate the initial condition and the transition relation

using assertions from such a theory.

334 B. Cook et al.

function PreSynth
input

θ(X) : initial condition
ρ(X, X ′) : transition relation

begin
0 r(X) := false
1 ρ(X, X ′) := ρ(X, X ′) ∧ QELIM(∃X0. θ(X0) ∧ ρ∗(X0, X))

2 B := Finite({b(X) | ∀X. (∃X ′. ρ(X, X ′)) ⇒ b(X) ≥ 0})

3 foreach b(X) ∈ B do
4 s(X) := QELIM(∀X ′.ρ(X, X ′) ⇒ b(X) ≥ 0 ∧ b(X ′) ≤ b(X) − 1)

5 r(X) := r(X) ∨ WLP(ρ∗(X, X ′), s(X))

6 done
7 return “precondition for termination r(X) ”

end.

Fig. 1. The procedure PreSynth synthesizes a precondition for the termination of
a transition relation ρ from initial states θ. The procedure Finite returns a selected
finite subset of its input (i.e. Finite(S) ⊆fin S). Finite may choose, for example, to
return only the linear elements of S.

ρ(X, X ′) := ρ(X, X ′) ∧ lfp(ρ#, θ#)

Line 2 of PreSynth computes a finite set of expressions B that are bounded
by the (strengthened) transition relation ρ. In theory we could generalize the set
B to include non-linear or lexicographic ranking functions, though in practice
it will be limited to linear ranking functions. We will assume that each b is a
function ranging over simple arithmetic types (i.e., N, Z, R) though in princi-
ple we could generalize the procedure to support any well-order. In practice, to
compute B we apply an existential quantifier elimination procedure to eliminate
the primed variables. Then, we consider the linear inequalities that appear in
the result. Each bound expression b(X) ∈ B is treated as a potential ranking
function, and is used to guide the search for a strengthening s(X) on the domain
of the transition relation ρ that makes ρ well-founded. PreSynth only considers
the well-foundedness arguments constructed using b(X). Line 4 uses a quanti-
fier elimination procedure to construct the strengthening s(X) by imposing the
bounded and decrease conditions

s(X) ∧ ρ(X, X ′) ⇒ b(X) ≥ 0 ∧ b(X ′) ≤ b(X) − 1 .

The assertion s(X) guarantees that b(X) is a ranking function for the given
transition relation.

The strengthening imposed by s(X) is effective if s(X) holds for all states that
are reachable from θ by applying ρ. Line 5 in Figure 1 computes the necessary
precondition that guarantees the invariance of s(X). All preconditions that are
found using the potential ranking functions are accumulated in an assertion
r(X), and reported to the programmer in line 7.

Proving Conditional Termination 335

Line 5 of PreSynth uses known abstract interpretation-based tech-
niques for under-approximating sets and relations for the computation of
WLP(ρ∗(X, X ′), s(X)). We pass the following program to the Interproc ana-
lyzer [15]:

assume θ(X ′);
while (∗) do

X=X ′;
X ′=∗;
assume ρ(X,X ′);

od
assume ¬s(X);

Using Interproc we first compute an abstract fixpoint using backwards analysis
starting from top element in the abstract domain. Then, the abstract element
at the loop entry location represents an over-approximation of the states that
fail the assertion s(X). The complement of this element, which we obtain by
negating the corresponding assertion, provides an under-approximation of the
initial set of states of the program that guarantees the invariance of s(X).

Theorem 1 (PreSynth correctness). Let r(X) be an assertion computed by
the procedure PreSynth. Then, r is a precondition for termination of a program
with the initial condition θ and the transition relation ρ.

Proof. Let r(X) be computed by PreSynth. For a proof by contradiction, we
assume that there is an infinite computation s1, s2, . . . from an initial state that
satisfies r(X). Let b(X) be a bound expression that contributed a disjunct in
r(X) that holds for the state s1, and s(X) be a corresponding strengthening.
From the definition of WLP, we have that s(X) holds for each state si, where
i ≥ 0. Thus, the value of b(X) decreases after each program step, while being
bounded from below. We reached a contradiction to the assumption that the
computation is infinite. �

3.3 The Procedure PreSynthPhase

See Figure 2. The procedure PreSynthPhase extends the applicability of the
basic procedure from Figure 1 to phase-transition programs (as described in Sec-
tion 2). It removes the condition that the computed strengthening needs to apply
immediately. Instead, we only require that the strengthening applies eventually.
PreSynthPhase implements this eventuality requirement by finding a precon-
dition for termination of an augmented transition relation that avoids visiting
states satisfying the strengthening constraint. The inferred precondition can be
enforced eventually by applying PreSynthPhase recursively.

We discuss the major steps of the procedure in more detail. Line 1 computes
an initial precondition r(X) by applying the procedure PreSynthPhase. If the
precondition r(X) is non-empty, as checked in line 2, then PreSynthPhase
weakens it by a precondition that ensures the eventuality of r(X). Here, we fol-
low a standard technique for the verification of temporal liveness properties [22],

336 B. Cook et al.

function PreSynthPhase
input

θ(X) : initial condition
ρ(X, X ′) : transition relation

begin
1 r(X) := PreSynth(θ, ρ)

2 if ∃X. r(X) then
3 ρ(X, X ′) := ρ(X, X ′) ∧ ¬r(X)

4 r(X) := r(X) ∨ PreSynthPhase(θ, ρ)

5 endif
6 return “precondition for phase termination r(X) ”

end.

Fig. 2. The procedure PreSynthPhase synthesizes a precondition for the phase termi-
nation of a transition relation ρ from initial states θ. It applies the procedure PreSynth
from Figure 1 when recursively identifying computation phases. PreSynthPhase can
be stopped at any time, e.g., by reaching a user-provided upper bound, and it will yield
a sound precondition for phase-transition termination.

and apply a translation to a termination problem. Effectively, line 3 constructs
a new transition relation from ρ that avoids r(X). Thus, we can apply PreSyn-
thPhase recursively on the new transition relation, see line 4.

Theorem 2 (PreSynthPhase correctness). Let r(X) be an assertion com-
puted by the procedure PreSynthPhase. Then, r is a precondition for termi-
nation of a program with the initial condition θ and the transition relation ρ.

Proof. Let r1(X), . . . , rn(X) be a sequence of preconditions that are computed
by applying PreSynth during the execution of PreSynthPhase. We observe
that every computation that starts in an initial state that satisfies ri(X) for i > 1
either terminates or eventually reaches ri−1(X). Hence, eventually every compu-
tation either stops or reaches r1(X). From Theorem 1 follows that the program
terminates on each state reachable from an initial state satisfying r1(X). �

4 Implementation and Experiments

We have built a prototype implementation of our method based on the following
collection of tools: for termination proving we use ARMC [21,20], for quantifier
elimination we use Cooper’s procedure [11], and for abstract interpretation we
use the Interproc analyzer [15].

See Figures 3 and 4, which contain example programs (both hand written
and drawn from industrial examples) together with the results of our tool. We
leave it to the reader to judge the usefulness of the synthesized preconditions.
The running times in the figures include the times of iterating the procedure of
Figure 2 and the termination prover. In the remainder of this section we highlight
relevant implementation details.

Proving Conditional Termination 337

Program fragment Precondition & notes

i = 0;
if (l_var >= 0) {

while (l_var < 1073741824) {
i++;
l_var = l_var << 1;

}
}

l var > 0 ∨ l var < 0 ∨ l var ≥ 1073741824

Example from an audio compression module:
We model shift by multiplication and checked
for overflow with an extra check and subtract.

Time: 22 seconds.

while (cbSrcLength >= cbHeader) {
DWORD dwHeader;
UINT cbBlockLength;
cbBlockLength = (UINT)min(cbSrcLength, nBlockAlignment);
cbSrcLength -= cbBlockLength;
cbBlockLength -= cbHeader;
dwHeader = *(DWORD HUGE_T *)pbSrc;
pbSrc += sizeof(DWORD);
nPredSample = (int)(short)LOWORD(dwHeader);
nStepIndex = (int)(BYTE)HIWORD(dwHeader);
if(!imaadpcmValidStepIndex(nStepIndex)) return 0;
*pbDst++ = (BYTE)((nPredSample >> 8) + 128);
while (cbBlockLength--) {

bSample = *pbSrc++;
nEncSample = (bSample & (BYTE)0x0F);
nSz = step[nStepIndex];
nPredSample =

imaadpcmSampleDecode(nEncSample, nPredSample, nSz);
nStepIndex =

imaadpcmNextStepIndex(nEncSample, nStepIndex);
*pbDst++ = (BYTE)((nPredSample >> 8) + 128);
nEncSample = (bSample >> 4);
nSz = step[nStepIndex];
nPredSample =

imaadpcmSampleDecode(nEncSample, nPredSample, nSz);
nStepIndex =

imaadpcmNextStepIndex(nEncSample, nStepIndex);
*pbDst++ = (BYTE)((nPredSample >> 8) + 128);

}
}

cbSrcLength < cbHeader ∨
(nBlockAlignment > 0 ∧ cbHeader > 0)

Example from another audio application.

Time: 106 seconds.

Fig. 3. Programs drawn from industrial examples, runtimes, and synthesized precon-
ditions. The runtimes include the iteration of the procedure in Figure 2 together with
the termination prover.

Simplification. Both the quantifier elimination and the abstract interpretation
tools do not give minimal formulas. In many cases the formulas have redun-
dant conjuncts or several disjuncts that imply each other. Simplification of these
formulas was important for reducing the size of the result preconditions.

Loop termination after a bounded number of iterations. The recursive call in
PreSynthPhase is problematic in the case that the precondition is the result
of a loop termination in a bounded number of iteration, say 3. The problem is
that the next call will find precondition that come from the loop terminating af-
ter 6 iteration and so on. To solve this problem, before the recursive call, we check
whether the precondition ensures termination in a fixed number of steps, and if it
does then we avoid the recursive call. That is, we unroll the relation k times (for
some threshold k) and then check to see if ρk = ∅, which implies termination.

Stems vs. initial conditions. The termination prover returns a cycle and a stem
as a counterexample. The stem is not only an initial condition, but rather a
sequence of primitive statements that manipulate variables. We use existential

338 B. Cook et al.

Program fragment Precondition & notes

// @requires true;
while(x>0){

x=x+y;
y=y+z;

}

x ≤ 0 ∨ x + y ≤ 0 ∨ x + 2y + z ≤ 0 ∨ x + 3y + 3z ≤ 0 ∨ z <
0 ∨ (z ≤ 0 ∧ y < 0)

This is the example from §2. The first four disjuncts cover
the case where the loop terminates after 0, 1, 2, or 3 iter-
ations respectively. The last two disjuncts ensure that the
loop eventually terminates. The condition z ≤ 0 ∧ y < 0
is the case in which the loop starts with y < 0 and z does
not interfere.

Time: 24 seconds.

// @requires true;
while(x<=N){

if (*) {
x=2*x+y;
y=y+1;

} else {
x++;

}
}

x > N ∨ x + y ≥ 0

An example from [3]. We find preconditions that ensure
that the loop is executed 0 times (x > N) and the precon-
dition that ensures termination as it appears in the paper
(x + y ≥ 0).

Time: 4 seconds.

// @requires true;
while(x>=0){

x= -2*x + 10;
}

x > 5 ∨ x < 0

Example (from [19]) of a terminating linear program with
no linear ranking function. Note that the program always
terminates after at least 5 iterations. Our synthesized pre-
condition provides conditions that guarantee termination
after 0 or 1 iterations.

Time: 2 seconds.

// @requires n>200 and y<9;
x = 0;
while (1) {

if (x<n) {
x=x+y;
if (x>=200) break;

}
}

y > 0

Example (from [14]) after translation that allows us to dis-
prove a safety property.

Time: 6 seconds.

while (x!=y) {
if (x>y) {

x = x - y;
} else

y = y - x;
}

}

x = y ∨ (x > 0 ∧ y > 0)

The Euclidean algorithm for GCD. Each case in the if
requires a different ranking function. Demonstrates the in-
teraction with disjunctive well foundedness.

Time: 17 seconds.

Fig. 4. Handwritten programs, runtimes, and synthesized preconditions. The runtimes
include the iteration of the procedure in Figure 2 together with the termination prover.

quantifier elimination to convert the stem into the initial condition for the proce-
dure. Because there are no control-flow constructs in the stem, a straightforward
application of WLP translates the precondition discovered by the procedure to
a precondition applicable at the beginning of the stem.

Translating paths to formulas. The cycles returned by the termination prover
often contain multiple assignments and conditions. The translation first converts

Proving Conditional Termination 339

the path to static single assignment form and then to a path formula (see [9] for
details). The extra temporaries generated are handled in the quantifier elimina-
tion as extra variables to eliminate.

Handling disjunctions. Effective dealing with disjunctions that appear in inter-
mediate formulas manipulated by our algorithm is crucial for its applicability.
Even when applied on conjunctive inputs, the procedure PreSynth creates
additional disjunctions. Its line 1 may split the transition relation ρ when re-
stricting it to reachable states. Although line 5 creates disjunction by iterating
over the set of candidate bound expressions B, they are tamed by the subsequent
negation in PreSynthPhase. On the other hand, line 5 creates a conjunction
representing the weakest liberal precondition that, after its negation in PreSyn-
thPhase, may create disjuncts. Disjunctions in the preconditions are handled by
calling the algorithm separately on each disjunct and accumulating the results.
Disjunctions in the transition relation are handled by iterating the termination
prover as explained below.

Iterating the termination prover. The constrained transition relation generated
in PreSynthPhase can be complicated. We found that calling the termination
prover on this relation and letting the PreSynthPhase only deal with the coun-
terexamples returned improves the preconditions we compute. Thus, there is a
mutual recursion between calling the termination prover and PreSynthPhase.

5 Conclusion

This paper has described an automatic method for finding sound underapproxi-
mations to weakest preconditions to termination. Using illustrative examples we
have shown that the method can be used to find useful underapproximations
(i.e. something larger than false, but in cases smaller than the often complex
weakest precondition). Beyond the direct use of proving conditional termination,
we believe that our method can also be used in several areas of program veri-
fication, including the disproving of safety properties, interprocedural analysis,
interprocedural termination proving, and distributed termination proving.

References

1. Balaban, I., Pnueli, A., Zuck, L.D.: Modular ranking abstraction. Int. J. Found.
Comput. Sci. (2007)

2. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs
with Lists Are Counter Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 517–531. Springer, Heidelberg (2006)

3. Bradley, A., Manna, Z., Sipma, H.: The polyranking principle. In: Caires, L., Ital-
iano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 1349–1361. Springer, Heidelberg (2005)

340 B. Cook et al.

4. Bradley, A., Manna, Z., Sipma, H.: Termination of polynomial programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 113–129. Springer, Heidel-
berg (2005)

5. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer,
Heidelberg (2005)

6. Bruynooghe, M., Codish, M., Gallagher, J.P., Genaim, S., Vanhoof, W.: Ter-
mination analysis of logic programs through combination of type-based norms.
TOPLAS 29(2) (2007)

7. Calcagno, C., Distefano, D., OHearn, P., Yang, H.: Footprint Analysis: A Shape
Analysis That Discovers Preconditions. In: Riis Nielson, H., Filé, G. (eds.) SAS
2007. LNCS, vol. 4634, pp. 402–418. Springer, Heidelberg (2007)

8. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.: Proving that
programs eventually do something good. In: POPL (2007)

9. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI (2006)

10. Cook, B., Podelski, A., Rybalchenko, A.: Proving thread termination. In: PLDI
(2007)

11. Cooper, D.C.: Theorem proving in arithmetic without multiplication. Machine In-
telligence (1972)

12. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

13. Dikstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer, Heidelberg (1989)

14. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: PLDI (2008)

15. Lalire, G., Argoud, M., Jeannet, B.: Interproc analyzer (2008),
http://bjeannet.gforge.inria.fr/interproc/

16. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL (2001)

17. Leino, R.: Effecient weakest preconditions. Information Processing Letters 93(6)
(2005)

18. Miné, A.: The Octagon abstract domain. Higher-Order and Symbolic Computation
(2006)

19. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004)

20. Podelski, A., Rybalchenko, A.: ARMC: the logical choice for software model check-
ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
pp. 245–259. Springer, Heidelberg (2006)

21. Rybalchenko, A.: ARMC (2008), http://www.mpi-sws.org/∼rybal/armc/
22. Vardi, M.Y.: Verification of concurrent programs: The automata-theoretic frame-

work. In: LICS (1987)

http://bjeannet.gforge.inria.fr/interproc/
http://www.mpi-sws.org/~rybal/armc/

Monotonic Abstraction for Programs with

Dynamic Memory Heaps

Parosh Aziz Abdulla1, Ahmed Bouajjani2, Jonathan Cederberg1,
Frédéric Haziza1, and Ahmed Rezine1,2

1 Uppsala University, Sweden
2 LIAFA, University of Paris 7, France

Abstract. We propose a new approach for automatic verification of pro-
grams with dynamic heap manipulation. The method is based on sym-
bolic (backward) reachability analysis using upward-closed sets of heaps
w.r.t. an appropriate preorder on graphs. These sets are represented by a
finite set of minimal graph patterns corresponding to a set of bad configu-
rations. We define an abstract semantics for the programs which is mono-
tonic w.r.t. the preorder. Moreover, we prove that our analysis always ter-
minates by showing that the preorder is a well-quasi ordering. Our results
are presented for the case of programs with 1-next selector. We provide
experimental results showing the effectiveness of our approach.

1 Introduction

Software verification needs the use of efficient algorithmic techniques for the
analysis of infinite-state models. The sources of infiniteness are multiple and
can be related to complex control such as (potentially recursive) procedure calls
and dynamic creation of processes, or to the manipulation of (unbounded-size)
dynamic data-structures and variables ranging over infinite data domains. A lot
of work has been devoted in the last decade to the design of automatic verification
techniques for infinite-state models, and several general approaches and formal
frameworks have emerged allowing either to establish decidability results and
derive verification algorithms (e.g., [20,2]), or to define generic exact/abstract
analysis procedures (e.g., [7,11,22,30]).

One of the widely adopted frameworks in this context of infinite-state verifi-
cation is based on the concept of monotonic systems w.r.t. a well-quasi ordering
[2,20]. This framework provides a scheme for proving the termination of the
(backward) reachability analysis, and it has been used for the design of verifica-
tion algorithms for various models including Petri nets, lossy channel systems,
timed Petri nets, broadcast protocols, etc. (see, e.g., [5,6,18,19]). The idea is,
given a class of models, to define a preorder � on the configuration space such
that (1) � is a simulation relation on the considered models, and (2) � is a
well-quasi ordering (WQO for short). If such a preorder can be defined, then it
can be proved that the reachability problem of an upward-closed set of config-
urations (w.r.t. �) is decidable. Indeed, (1) monotonicity implies that for any

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 341–354, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

342 P.A. Abdulla et al.

upward-closed set, the set of its predecessors is an upward-closed set, and (2) the
fact that � is a WQO implies that every upward-closed set can be characterized
by its finite set of minimal elements. Therefore, starting from an upward-closed
set of configurations U , the iterative computation of the backward reachable
configurations from U necessarily terminates since only a finite number of steps
are needed to capture all minimal elements of the set of predecessors of U . Ob-
viously, this requires that upward-closed sets can be effectively represented and
manipulated (i.e., there are procedures for, e.g., computing immediate prede-
cessors and unions, and for checking entailment). This general scheme can be
applied for the verification of safety properties since this problem can be reduced
to checking the reachability of a set of bad configurations which is typically an
upward-closed set w.r.t. the considered preorder. (For instance, mutual exclusion
is violated as soon as there are (at least) two processes in the critical section.)

Unfortunately, many systems do not fit into this framework, in the sense that
there is no nontrivial (useful) WQO for which these systems are monotonic.
Nevertheless, a natural approach to overcome this problem is, given a preorder
�, to define an abstract semantics of the considered systems which forces their
monotonicity. Basically, the idea is to consider that a transition is possible from
a configuration c1 to c2 if it is possible from any smaller configuration c′1 � c1 to
c2. This simple idea has been used recently in works concerning the verification
of parametrized networks of (finite/infinite-state) processes, and surprisingly, it
leads to quite efficient abstract analysis techniques which allow to handle fully
automatically several non-trivial examples of such systems [3,4]. This encourages
us to investigate its application to other classes of complex systems.

In this paper, our aim is to develop a framework based on the approach intro-
duced above for the verification of sequential iterative programs manipulating
dynamic memory heaps. The issue of verifying automatically such programs
has received a lot of attention in the last few years, and many approaches and
techniques have been developed including static-analysis and abstraction-based
frameworks (see, e.g., [29]), logic-based frameworks(see, e.g., [25,28]), automata-
based frameworks (see, e.g., [14,21]), etc. Here, we introduce a framework based
on symbolic (backward) reachability analysis using upward-closed sets of heap
graphs (w.r.t. some appropriate preorder). As a first step toward this frame-
work, we present in this paper the results of our investigations concerning the
case of programs manipulating heap structures with one next-selector, i.e., heaps
of programs manipulating lists with possibility of sharing and circularity.

More precisely, we consider that heaps are represented as labeled graphs,
where labels correspond to positions of program variables. We propose a preorder
� between heap graphs which corresponds basically to the following: Given two
graphs g1 and g2, we have g1 � g2 if g1 can be obtained from g2 by a sequence of
transformations consisting of either deleting an edge, a variable, or an isolated
vertex, or of contracting segments (i.e., sequence of vertices) without sharing in
the graph.

Actually, our graph representations correspond in general to sets of heaps in-
stead of a single one. They can be seen as minimal patterns (w.r.t. �), and they

Monotonic Abstraction for Programs with Dynamic Memory Heaps 343

represent all the heaps that subsume (w.r.t. �) these patterns. Therefore, our
graph representations define upward-closed sets of heap graphs.

Then, we provide procedures for computing sets of predecessors w.r.t. the ab-
stract semantics we consider (introduced above), and for checking entailment.
These procedures allow to define a simple algorithm which computes an over-
approximation of the set of backward reachable configurations starting from an
upward-closed set of heap graphs (effectively given as a finite set of minimal
elements). We show that this algorithm always terminates by proving that the
preorder we have defined on heap graphs is a WQO.

Our analysis allows to check properties such as absence of null dereferenc-
ing as well as absence of garbage creation. Moreover, it allows to check shape
(well-formedness) properties of the heaps (for instance the fact that the output
is always a list without sharing). We show indeed that these kinds of verification
problems can be reduced to the problem of reaching sets of bad configurations
corresponding to the existence in the heap graph of some minimal bad patterns.
We also provide experimental results showing the effectiveness of our approach.

Related work. As mentioned before, several approaches to the automatic anal-
ysis of programs with dynamic linked data structures have been proposed (see,
e.g., [14,17,21,29]). Shape analysis as introduced in [29] is based on the compu-
tation of abstract shape graphs using the so-called instrumentation predicates.
An automata-based approach using abstract regular model checking (ARMC)
[15] has been proposed in [13,14]. In [10,17], an automatized analysis approach
based on separation logic combined with abstraction techniques (close to widen-
ing techniques) has been proposed. With respect to these approaches, the one
we present in this paper is conceptually and technically different and simpler.
In particular, the ARMC-based approach needs the manipulation of quite com-
plex encodings of the heap graphs into words or trees (in order to represent
sets of heap encodings using finite-state automata), and use a sophisticated ma-
chinery for manipulating these encodings based on representing program state-
ments as (word/tree) transducers. In contrast, the approach presented here uses
a natural representation of heaps as graphs and employs direct procedures for
computing operations on these graphs. This direct approach has already shown
its advantages w.r.t. the approach using transducers in the context of regular
model checking for parametrized networks of processes [3]. Also, the approach
we present uses a built-in abstraction principle which is different from the ones
used in the existing approaches, and which makes the analysis fully automatic.

The existing approaches mentioned above (shape analysis, abstract regular
model checking, separation logic) can handle some classes of general heap struc-
tures (including doubly linked lists, lists of lists, trees, etc.). Although the tech-
niques presented in this paper concern the case of heap structures with 1-next
selector, our approach (based on upward-closed abstractions w.r.t. preorders on
graphs) can in principle be extended to more general classes of heaps.

Concerning the particular class of programs manipulating heaps with 1-next
selector, there are many other verification approaches which have been developed
recently (see, e.g., [8,12,13,16,23,24]). Almost all these works use the fact that in

344 P.A. Abdulla et al.

this case (1) the heap graphs are collections of reversed trees potentially having
their roots connected to a loop, and moreover (2) the number of leaves and
shared vertices in these graphs is bounded linearly in terms of the number of
program variables. For instance, in [24], these properties are used to define an
abstraction which consists of contracting all segments without sharing. In our
case, we use these properties in order to prove that the preorder we propose on
graph representations is a WQO. However, our abstraction is different from the
one proposed for instance in [24] since we can have graphs which are not minimal
w.r.t. to contraction (e.g., we can express the fact that the length of a segment is
at least some given natural number), and we can also have graphs corresponding
to a partial description of the heap where only a part of the reachable heap from
some of the program variables is constrained.

In [9,12], translations from programs with lists to counter automata have
been defined based on the representation of heap graph as its contracted version
supplied with the information about the length of each contracted sharing-free
segments. These translations allow to use various existing techniques for the anal-
ysis of counter systems in order to check safety properties involving constraints
relating the lengths of different lists, or to check termination. Such analysis in-
volving quantitative reasoning cannot be done with the techniques presented in
this paper. As said above, these techniques can handle some reasoning about
the sizes of the lists, but only concerning constraints on minimal lengths. How-
ever, extensions of our techniques to more general constraints (e.g., gap-order
constraints [27]) are possible.

Outline. In the next section, we introduce the class of programs we consider
together with their graph representations. In Section 3 we describe a set of graph
operations which we use in the subsequent sections. Section 4 introduces the
ordering on configurations. In Section 5, we introduce a relation which we use as
the basic step in the reachability algorithm. Section 6 introduces the backward
reachability algorithm, and proves its partial correctness. The termination of
the algorithm is shown in Section 7. Section 8 reports the results of applying a
prototype, based on the method, to a number of simple programs. Finally, in
Section 9 we give some conclusions.

2 Preliminaries

We consider programs that operate on data structures with one next-pointer
such as traditional singly-linked lists and circular lists (possibly sharing their
parts). We represent the store as a graph, where the vertices represent the list
cells, and the successor of a vertex represents the cell pointed to by the current
one. The graphs are of a special form in the sense that each vertex has at most
one successor. A program also uses a finite set of pointers which we call variables.
A cell is labeled by the (possibly empty) set of variables pointing to it.

For simplicity of presentation, we will treat the constant null as a variable,
with the special property that whenever a vertex is labeled by null , the successor
of the cell is undefined.

Monotonic Abstraction for Programs with Dynamic Memory Heaps 345

For a partial function f , we write f(a) = ⊥ to denote that f(a) is undefined.
For a (partial) function f , we use f [a ← b] to denote the function f ′ such that
f ′(a) = b and f ′(x) = f(x) if x �= a.

Formally, we assume a finite set X of variables including the element null . A
program P is a pair (Q, T)where Q is a finite set of control states and T is a finite set
of transitions. A transition is a triple (q1, a, q2) where q1, q2 ∈ Q are control states
and a is an action. An action is of one of the following forms x = y, x �= y, x := y
where x �= null , x.next = y where x �= null , or x := y.next where x, y �= null .
The transition corresponds to the program changing control state from q1 to q2

while performing the operation described in a on the data structure. We choose to
work with the above minimal set of operations. Other operations, e.g., x = y.next ,
x �= y.next , etc, can be expressed using the given set.

A graph g is a triple (V, succ, λ) where V is a finite set of vertices, succ is
a partial function from V to V , and λ is a partial function from X to V . Fur-
thermore, it is always the case that succ(λ(null)) = ⊥. Intuitively, the vertices
correspond to the list cells. The function succ defines the successors of the cells.
If succ(v) = ⊥, the cell represented by v has currently no successor. The func-
tion λ defines the cell to which a given variable points. If λ(x) = ⊥, the value of
variable (pointer) x is undefined.

A configuration c is a pair (q, g) where q ∈ Q is a control state and g is a graph.
We define a transition relation on configurations as follows. Let t = (q1, a, q2)
be a transition and let c = (q, g) and c′ = (q′, g′) be configurations. We write
c

t−→ c′ to denote that q = q1, q′ = q2, and g
a−→ g′, where g

a−→ g′ holds if one
of the following conditions is satisfied:

– a is of the form x = y, λ(x) �= ⊥, λ(y) �= ⊥, λ(x) = λ(y), and g′ = g.
– a is of the form x �= y, λ(x) �= ⊥, λ(y) �= ⊥, λ(x) �= λ(y), and g′ = g.
– a is of the form x := y, λ(y) �= ⊥, succ′ = succ, and λ′ = λ [x ← λ(y)].
– a is of the form x := y.next, λ(y) �= ⊥, succ(λ(y)) �= ⊥, succ′ = succ, and

λ′ = λ [x ← succ(λ(y))].
– a is of the form x.next := y, λ(x) �= ⊥, λ(y) �= ⊥, λ(x) �= λ(null), λ′ = λ,

and succ′ = succ [λ(x) ← λ(y)].

We define −→ as
⋃

t∈T
t−→ and use ∗−→ to denote the reflexive transitive closure

of −→. For sets C1 and C2 of configurations, we use C1 −→ C2 to denote that
c1 −→ c2 for some c1 ∈ C1 and c2 ∈ C2. By c1 −→ C2 we mean {c1} −→ C2.
We define c1

∗−→ C2, C1
∗−→ C2, etc in a similar manner to above.

3 Operations on Graphs

In this section, we define a number of operations on graphs which we use in the
subsequent sections. In the rest of the section, we assume a graph g = (V, succ, λ).

For v1, v2 ∈ V , we use (g.succ) [v1 ← v2] to denote the graph g′=(V ′, succ′, λ′)
where V ′ = V , λ′ = λ, and succ′ = succ [v1 ← v2]. Intuitively, we only modify
g so that v2 becomes the successor of v1. We define (g.λ) [x ← v] analogously.
That is, we make x point to v.

346 P.A. Abdulla et al.

For a vertex v ∈ V , we say that v is simple if |succ−1(v)| = 1, succ(v) �= ⊥, and
there is no x ∈ X with λ(x) = v. In other words, v has exactly one predecessor,
one successor and no label. We say that v is isolated in g if succ(v) = ⊥,
succ−1(v) = ∅, and there is no x ∈ X with λ(x) = v. In other words, v has no
successors or predecessors and it is not labeled by any variable.

Operations on vertices. For v �∈ V , we use g ⊕ v to denote the graph g′ =
(V ′, succ′, λ′) such that V ′ = V ∪ {v}, succ′ = succ, and λ′ = λ, i.e. we add a
new vertex to g. Observe that the added vertex is then isolated.

For an isolated vertex v ∈ V , we use g�v to denote the graph g′=(V ′, succ′, λ′)
such that V ′ = V − {v}, succ′ = succ, and λ′ = λ.

Operations on variables. We define g⊕x to be the set of graphs we get from g
by letting x point anywhere inside g. Formally, we define g⊕x to be the smallest
set containing each graph g′ such that one of the following conditions is satisfied:
(i) there is a v �∈ V such that g′ = ((g ⊕ v).λ) [x ← v], i.e. we add a vertex to g
and make x point to it. (ii) there is a v ∈ V such that g′ = (g.λ) [x ← v], i.e.
we make x point to some vertex in g. (iii) there are v1 ∈ V , v2 �∈ V , and graphs
gi = (Vi, succi, λi) for i = 1, 2, 3, such that succ(v1) �= ⊥, g1 = g ⊕ v2, g2 =
(g1.succ) [v2 ← succ1(v1)], g3 = (g2.succ) [v1 ← v2], and g′ = (g3.λ) [x ← v2],
i.e. we add a new vertex v2 in between v1 and its successor and make x point
to v2.

For variables x and y with λ(x) �= ⊥, we define g ⊕=x y to be the graph g′ =
(g.λ) [y ← λ(x)], i.e. we make y point to the same vertex as x. Furthermore,
we define g ⊕ �=x y to be the smallest set containing each graph g′ such that
g′ ∈ (g ⊕ y) and λ′(y) �= λ′(x), i.e. we make y point anywhere inside g except
to the vertex pointed to by x.

For variables x and y with λ(x) �= ⊥ and succ(λ(x)) �= ⊥, we use g ⊕x→ y to
denote the graph (g.λ) [y ← succ(λ(x))], i.e. we make y point to the successor
of the vertex pointed to by x. For variables x and y with λ(x) �= ⊥, we
define g ⊕x← y to be the set of graphs we get from g by letting y point to any
vertex where the successor is either undefined or pointed to by x. Formally,
we define g ⊕x← y to be the smallest set containing each graph g′ such that
one of the following conditions is satisfied: (i) there is a v �∈ V such that g′ =
((g ⊕ v).λ) [y ← v]. (ii) there is a v ∈ V such that v �= λ(null), either succ(v) = ⊥
or succ(v) = λ(x), and g′ = (g.λ) [y ← v]. That is, we place y on the vertices
without a successor or the ones whose successor is pointed to by x. (iii) there
are v1 ∈ V , v2 �∈ V , and graphs gi = (Vi, succi, λi) for i = 1, 2, 3, such that
succ(v1) = λ(x), g1 = g⊕v2, g2 = (g1.succ) [v2 ← λ(x)], g3 = (g2.succ) [v1 ← v2],
and g′ = (g3.λ3) [y ← v2]. Intuitively, we add a new vertex v2 in between the
vertex pointed by x and its predecessors and make y point to v2.

For a variable x, we use g � x to denote (g.λ) [x ← ⊥].

Operations on edges. If λ(x) �= ⊥, λ(y) �= ⊥ and λ(x) �= λ(null), we use
g � (x → y) to denote (g.succ) [λ(x) ← λ(y)], i.e. we delete the edge between
the vertex λ(x) and its successor (if any) and add an edge from λ(x) to λ(y).

Monotonic Abstraction for Programs with Dynamic Memory Heaps 347

If λ(x) �= ⊥ and λ(x) �= λ(null), we define g � (x →) to be the set of
graphs we get from g by letting x.next point anywhere inside g. Formally, we
define g � (x →) to be the smallest set containing each graph g′ such that
one of the following conditions is satisfied: (i) there is a v �∈ V such that g′ =
((g ⊕ v).succ) [λ(x) ← v]. (ii) there is a v ∈ V such that g′ = (g.succ) [λ(x) ← v].
(iii) there are v1 ∈ V , v2 �∈ V , and graphs gi = (Vi, succi, λi) for i = 1, 2, 3,
such that succ(v1) �= ⊥, g1 = g ⊕ v2, g2 = (g1.succ) [v2 ← succ1(v1)], g3 =
(g2.succ) [v1 ← v2], and g′ = (g3.succ) [λ3(x) ← v2].

If λ(x) �= ⊥, we denote g � (x →) as (g.succ) [λ(x) ← ⊥], i.e. we remove the
edge from the vertex pointed to by x and its successor (if any).

4 Ordering

In this section, we introduce an ordering on configurations. Based on the or-
dering, we will define the coverability problem which we use to check safety
properties, and define the abstract transition relation. The latter is an over-
approximation of the concrete transition relation.

Ordering. Let g = (V, succ, λ) and g′ = (V ′, succ′, λ′). We write g � g′ to
denote that one of the following properties is satisfied: (i) Variable Deletion:
g = g′ � x for some variable x, (ii) Vertex Deletion: g = g′ � v for some isolated
vertex v ∈ V ′, (iii) Edge Deletion: g = (g′.succ) [v ← ⊥] for some v ∈ V ′,
or (iv) Contraction: there are vertices v1, v2, v3 ∈ V ′ and graphs g1, g2 such
that v2 is simple, succ′(v1) = v2, succ′(v2) = v3, g1 = (g′.succ) [v2 ← ⊥], g2 =
(g1.succ) [v1 ← v3] and g = g2 � v2.

We write g � g′ to denote that there are g0�g1�g2�· · ·�gn with n ≥ 0, g0 =
g, and gn = g′. That is, we can obtain g from g′ by performing a finite sequence
of variable deletion, vertex deletion, edge deletion and contraction operations.
For configurations c = (q, g) and c′ = (q′, g′), we write c � c′ to denote that
q′ = q and g � g′.

For a configuration c, we use c↑ to denote the upward closure of c, i.e. c↑=
{c′| c � c′}. We use c↓ to denote the downward closure of c, i.e. c↓= {c′| c′ � c}.
For a set C of configurations, we define C↑ as

⋃
c∈C c↑. We define C↓ analogously.

Safety Properties. In order to analyze safety properties, we study the cover-
ability problem defined below.

Coverability
Instance:
Sets CInit and CF of configurations.
Question: Is it the case CInit

∗−→ CF↑?

Intuitively, CF ↑ represents a set of
“bad” states which we do not want
to reach during the execution of the
program. This set is represented by
a set CF of minimal elements.

In Section 8, we describe how to encode properties such as garbage generation,
dereferencing and shape violation as reachability of upward closed sets of configu-
rations represented by finite sets of minimal elements. Therefore, checking safety
with respect to these properties amounts to solving the coverability problem.

348 P.A. Abdulla et al.

Abstract Transition Relation. We write c1
t−→A c2 to denote that there is a

c3 such that c3 � c1 and c3
t−→ c2. In other words, a step of the abstract transi-

tion relation consists of first moving to a smaller configuration (wrt �) and then
performing a step of the concrete transition relation. Notice that the abstraction
corresponds to an over-approximation and therefore any safety property which
holds in the abstract system will also hold in the concrete one.

5 Computing Predecessors

The main idea behind our algorithm to solve the coverability problem, is to
perform backward reachability analysis. The basic step of the algorithm uses a
relation � defined on the set of configurations. Intuitively, c � c′ means that,
from c′, we can perform a transition and reach a configuration in the upward
closure of c. First, we give the formal definition of �, and then describe some
of its properties, and in particular how it relates to the transition relation −→.

For a graph g = (V, succ, λ), a graph g′, and an action a, we write g
a
� g′ to

denote that one of the following conditions is satisfied:
1. a is of the form x = y and one of the following conditions is satisfied:

(a) λ(x) �= ⊥, λ(y) �= ⊥, λ(x) = λ(y) and g′ = g.
(b) λ(x) �= ⊥, λ(y) = ⊥ and g′ = g ⊕=x y.
(c) λ(x) = ⊥, λ(y) �= ⊥ and g′ = g ⊕=y x.
(d) λ(x) = ⊥, λ(y) = ⊥ and g′ = g1 ⊕=x y for some g1 ∈ (g ⊕ x).
In order to be able to perform the action, the variables x and y should point
to the same vertex. If one (or both) of them are missing, then we add them
to the graph (with the restriction that they point to the same vertex).

2. a is of the form x �= y and one of the following conditions is satisfied:
(a) λ(x) �= ⊥, λ(y) �= ⊥, λ(x) �= λ(y) and g′ = g.
(b) λ(x) �= ⊥, λ(y) = ⊥ and g′ ∈ g ⊕ �=x y.
(c) λ(x) = ⊥, λ(y) �= ⊥ and g′ ∈ g ⊕ �=y x.
(d) λ(x) = ⊥, λ(y) = ⊥ and g′ ∈ g1 ⊕ �=x y for some g1 ∈ (g ⊕ x).
We proceed as in case 1, but now under the restriction that x and y point
to different vertices (rather than to the same vertex).

3. a is of the form x := y and one of the following conditions is satisfied:
(a) λ(x) �= ⊥, λ(y) �= ⊥, λ(x) = λ(y) and g′ = g � x.
(b) λ(x) �= ⊥, λ(y) = ⊥ and g′ = g1 � x where g1 = g ⊕=x y.
(c) λ(x) = ⊥, λ(y) �= ⊥ and g′ = g.
(d) λ(x) = ⊥, λ(y) = ⊥ and g′ ∈ (g ⊕ y).
In difference to case 1 is that the variable x may have had any value before
performing the assignment. Therefore, we remove x from the graph.

4. a is of the form x := y.next and one of the following conditions is satisfied:
(a) λ(x) �= ⊥, λ(y) �= ⊥, succ(λ(y)) �= ⊥, succ(λ(y)) = λ(x) and g′ = g � x.
(b) λ(x) �= ⊥, λ(y) �= ⊥, λ(y) �= λ(null), succ(λ(y)) = ⊥ and g′ = g1 � x,

where g1 = g � (y → x).
(c) λ(x) �= ⊥, λ(y) = ⊥ and there are graphs g1, g2 such that g′ = g2 � x,

g2 = g1 � (y → x) and g1 ∈ g ⊕x← y.

Monotonic Abstraction for Programs with Dynamic Memory Heaps 349

(d) λ(x) = ⊥, λ(y) �= ⊥, succ(λ(y)) �= ⊥ and g′ = g.
(e) λ(x) = ⊥, λ(y) �= ⊥, λ(y) �= λ(null), succ(λ(y)) = ⊥ and g′ ∈ g� (y →).
(f) λ(x) = ⊥, λ(y) = ⊥ and there are graphs g1, g2, g3 such that g1 ∈ g ⊕ x,

g2 ∈ g1 ⊕x← y, g3 = g2 � (y → x) and g′ = g3 � x.
Similarly to case 3 we remove x from the graph. The successor of y should be
defined and point to the same vertex as x. In case the successor is missing, we
add an edge explicitly from the vertex labeled by y to the vertex labeled by
x. Furthermore, if x is missing then the successor of y may point anywhere
inside the graph.

5. a is of the form x.next := y and one of the following conditions is satisfied:
(a) λ(x) �= ⊥, succ(λ(x)) �= ⊥, λ(y) �= ⊥, succ(λ(x)) = λ(y) and g′ =

g � (x →).
(b) λ(x) �= ⊥, succ(λ(x)) �= ⊥, λ(y) = ⊥ and g′ = g1 � (x →), where

g1 = g ⊕x→ y.
(c) λ(x) �= ⊥, succ(λ(x)) = ⊥, λ(y) �= ⊥, λ(x) �= λ(null) and g′ = g.
(d) λ(x) �= ⊥, succ(λ(x)) = ⊥, λ(y) = ⊥, λ(x) �= λ(null) and g′ ∈ g ⊕ y.
(e) λ(x) = ⊥, λ(y) �= ⊥ and g′ = g1 � (x →), where g1 ∈ g ⊕y← x.
(f) λ(x) = ⊥, λ(y) = ⊥ and there are graphs g1, g2 such that g1 ∈ g ⊕ y,

g2 ∈ g1 ⊕y← x and g′ = g2 � (x →).
After performing the action, the successor of the vertex labeled by x should
be the same vertex as the one labeled by y. Before performing the action, the
successor could have been anywhere inside the graph, and the corresponding
edge is therefore removed.

Remark. In the above definition, we assume that x and y are different variables.
It is straightforward to handle the case where they are the same variable.

For a transition t = (q1, a, q2) and configurations c = (q, g) and c′ = (q′, g′),
we write c

t
� c′ to denote that q = q1, q′ = q2 and g

a
� g′. We use c � c′

to denote that c
t

� c′ for some t ∈ T . For a set C of configurations and a
configuration c, we define Rank(C)(c) to be the smallest n such that there is
a sequence c0 � c1 � · · · � cn where c0 = c and there is a c′ ∈ C such that
cn � c′.

The following lemma states that small configurations simulate larger ones
with respect to the backward relation.

Lemma 1. For configurations c1, c2 and c3, if c1 � c2 and c3 � c1 then there
is a configuration c4 such that c3 � c4 and c4 � c2.

The following lemma relates the backward and forward transition relations.

Lemma 2. Consider configurations c1 and c2. If c1 � c2 then c2 −→ c1↑. If
c1 −→ c2↑ then c2 � c1↓.

6 Algorithm

We present here the reachability algorithm and show its partial correctness.

350 P.A. Abdulla et al.

The algorithm inputs two sets CInit and CF of configurations and checks
whether CInit

∗−→A CF ↑. The algorithm maintains two sets of configurations:
a set ToExplore, initialized to CF , of configurations that have not yet been
analyzed; and a set Explored, initialized to the empty set, of configurations
that contains information about the configurations that have already been an-
alyzed. The algorithm preserves the following two invariants: (i) CInit

∗−→A

(ToExplore
⋃

Explored)↑ implies CInit
∗−→A CF↑; and (ii) If CInit

∗−→A CF↑,
then there is c ∈ ToExplore such that both Rank(CInit)(c) < ∞ and ∀c′ ∈
Explored. Rank(CInit)(c) < Rank(CInit)(c′).

Input: Two sets CInit and CF of configurations.

Output: CInit
∗−→A CF↑?

ToExplore := CF

Explored := ∅
while ToExplore �= ∅ do

remove some c from ToExplore
if ∃c′ ∈ CInit . c � c′ then

return true
else if ∃c′ ∈ Explored. c′ � c then

discard c
else
ToExplore := ToExplore

⋃ {c′| c � c′}
Explored :=
{c} ⋃ {c′| c′ ∈ Explored∧ (c �� c′)}

end if
end while
return false

Due to the invariants, the
following two conditions
can be checked during each
step of the algorithm: (i)
From the second invari-
ant, if ToExplore becomes
empty then the algorithm
terminates with a negative
answer; and (ii) From the
first invariant and the def-
inition of −→A, if a con-
figuration in CInit ↓ is
detected then the algo-
rithm terminates with a
positive answer.

The following theorem
follows immediately from
the invariants together
with Lemmas 1 and 2.

Theorem 1. The reachability algorithm is partially correct.

7 Termination

In this section, we give an overview of the termination proof for the reachability al-
gorithm. The full details can be found in [1]. Let N

>0 denote the set of positive inte-
gers. For a set A and a preorder on A, we say that � is a well quasi-ordering (WQO)
on A if the following property is satisfied: for any infinite sequence a0, a1, a2, . . .
of elements in A, there are i, j such that i < j and ai � aj . A simple example
of a WQO is the standard ordering on natural numbers. We extend the ordering
� to an ordering �∗ on the set A∗ of finite words over A as follows: w1 �∗ w2

if there is an order-preserving injection from w1 to w2 such that each element in
w1 is mapped to an element in w2 which is larger wrt �. It is well-known that �∗
is a WQO (see e.g.[2]). Since multisets and vectors are special cases of words it

Monotonic Abstraction for Programs with Dynamic Memory Heaps 351

follows, for instance, that vectors of multisets of vectors of natural numbers are
WQO (this particular property will be used later in the proof).

Consider a graph g = (V, succ, λ). A graph b is said to be a block of g if b is a
maximal part of g which is connected. A vertex is said to be unguarded if it is
a leaf and there is no variable x ∈ X with λ(x) = v. For a graph g, we define
the degree of g, denoted deg (g), to be the number of unguarded vertices in g.
A graph is said to be compact if it does not contain simple vertices. Intuitively,
a graph is compact if it cannot be reduced due to contraction. An encoding
is a tuple e = (V, succ, λ, #) where g = (V, succ, λ) is a compact graph, and
: V ×V → N

>0 is a partial mapping such that #(v1, v2) �= ⊥ iff v2 = succ(v1).
In other words, # associates a positive integer to each edge in g.

Fix a graph g = (V, succ, λ). We define enc (g) to be the encoding we get
from g by applying contraction as much as possible (until the resulting graph
cannot be reduced any more using contraction). Furthermore, for vertices v
and v′, the value of #(v, v′) gives the number of edges between v and v′ in
g. We will define an ordering � on graphs (the formal definition of the relation
is in [1]). Consider graphs g, g′ with encodings enc (g) = (V, succ, λ, #) and
enc (g′) = (V ′, succ′, λ′, #′). Roughly speaking, g � g′ means that for each
block b in enc (g) there is an corresponding isomorphic block b′ in enc (g′) such
that such that #(v1, v2) ≤ #′(v′1, v

′
2) for all vertices v1, v2 in b and their images

v′1, v
′
2 in b′. The ordering � is a WQO on the set of compact graphs whose

degrees are bounded by some k ∈ N
>0. The reason is that in any such a graph,

there number of leaves is bounded by |X | + k, and hence there are only finitely
many types of blocks which may occur in any such graph. This means that an
encoding of such a graph can be represented by vectors of multisets of vectors
of natural numbers as follows. Suppose that there are � types of blocks. Then,
an element of the representation will be of the form (m1, . . . , m�), where each
mi is a multiset of vectors of natural numbers corresponding to one type of
block: an entry of the vector corresponds to an edge in the block; the natural
numbers correspond to the ones which appear on the edges. We need multisets
since there is no bound on the number of blocks (of a certain type) which may
appear in the graph. This means that � is a WQO. Also, g � g′ implies g � g′,
since if g � g′ then we can derive g from g′ through the application of a finite
sequence of variable deletion, vertex deletion, edge deletion, and contraction
operations. Finally, we observe that in the definition � no unguarded vertices
are introduced. This means that all the configurations which are generated in
the reachability algorithm are bounded by some k, and are therefore WQO. This
gives the following theorem.

Theorem 2. The reachability algorithm is guaranteed to terminate.

8 Experimental Results

Based on our method, we have implemented a prototype in Java. We consider
three classes of properties: null-dereferencing, well-formedness of output, and

352 P.A. Abdulla et al.

garbage creation. We consider a set of programs taken from the PALE web-
site [26]. The results, obtained on a 1.1 GHz Pentium M, are summarised below.

Prog. Prop. Time #Cons. #Iter. Prog. Prop. Time #Cons. #Iter.

Concat Deref 0.4 s 7 3 Delete Deref 0.4 s 8 4

Fumble Deref 0.3 s 3 2 Reverse Deref 0.3 s 2 1

Walk Deref 0.4 s 9 3 Zip Deref 1.9 s 206 12

Fumble Garbage 0.7 s 38 14 Reverse Garbage 0.8 s 55 24

Reverse Well-form. 1.7 s 48 20

The entry #Cons. gives the total number of minimal configurations added to
ToExplore in the analysis. The entry #Iter. is the number of iterations of the
while-loop of the algorithm.

For each of the three properties, we give a finite set of minimal configurations
violating the property. For instance, for null-dereferencing, the set contains all
configurations of the form c = (q, g) defined as follows. There is a transition of
the form (q, a, q′) where a is of one of the forms y := x.next or x.next := y. Also,
g is the graph consisting of a single vertex labeled with null and x.

9 Conclusions

We have presented a new approach for automatic verification of programs with
dynamic heaps. The proposed approach is based on a simple algorithmic prin-
ciple, and is fully automatic. The main idea is to perform an abstract (over-
approximate) reachability analysis using upward-closed sets w.r.t. a suitable
preorder on heap graphs. This preorder is shown to be a well-quasi ordering,
which guarantees the termination of the analysis.

The results of this paper concern the case of heap structures with 1-next selec-
tor. Our approach can however be generalized to heap structures with multiple
next selectors. Several extensions of our framework can be done by refining the
considered preorder (and the abstraction it induces). For instance, it could be
possible (1) to take into account data values attached to objects in the heap,
(2) to consider constraints on (and relating) the lengths of (contracted) paths,
and (3) to consider in integer program variables whose values are related to the
lengths of paths in the heap. Such extensions with arithmetical reasoning can be
done in our framework by considering preorders involving for instance gap-order
constraints.

References

1. Abdulla, P.A., Bouajjani, A., Cederberg, J., Haziza, F., Rezine, A.: Monotonic
abstraction for programs with dynamic memory heaps. Technical Report 2008-015,
Dept. of Information Technology, Uppsala University, Sweden (April 2008)

2. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Inf. Comput. 160(1-2), 109–127 (2000)

Monotonic Abstraction for Programs with Dynamic Memory Heaps 353

3. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model checking
without transducers (on efficient verification of parameterized systems). In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer,
Heidelberg (2007)

4. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized Verification of Infinite-
State Processes with Global Conditions. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)

5. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Com-
put. 127(2), 91–101 (1996)

6. Abdulla, P.A., Jonsson, B.: Model checking of systems with many identical timed
processes. Theor. Comput. Sci. 290(1), 241–264 (2003)

7. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A Survey of Regular Model
Checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170,
pp. 35–48. Springer, Heidelberg (2004)

8. Balaban, I., Pnueli, A., Zuck, L.D.: Shape analysis of single-parent heaps. In: Cook,
B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 91–105. Springer, Hei-
delberg (2007)

9. Bardin, S., Finkel, A., Lozes, É., Sangnier, A.: From pointer systems to counter
systems using shape analysis. In: Proceedings of the 5th Intern. Workshop on
Automated Verification of Infinite-State Systems (AVIS 2006) (2006)

10. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang,
H.: Shape analysis for composite data structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

11. Bouajjani, A.: Languages, rewriting systems, and verification of infinite-state sys-
tems. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 24–39. Springer, Heidelberg (2001)

12. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs
with Lists Are Counter Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 517–531. Springer, Heidelberg (2006)

13. Bouajjani, A., Habermehl, P., Moro, P., Vojnar, T.: Verifying Programs with Dy-
namic 1-Selector-Linked Structures in Regular Model Checking. In: Halbwachs, N.,
Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 13–29. Springer, Heidelberg
(2005)

14. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree
Model Checking of Complex Dynamic Data Structures. In: Yi, K. (ed.) SAS 2006.
LNCS, vol. 4134, pp. 52–70. Springer, Heidelberg (2006)

15. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract Regular Model Checking. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer,
Heidelberg (2004)

16. Distefano, D., Berdine, J., Cook, B., O’Hearn, P.: Automatic Termination Proofs
for Programs with Shape-shifting Heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

17. Distefano, D., O’Hearn, P., Yang, H.: A Local Shape Analysis Based on Separation
Logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS,
vol. 3920, pp. 287–302. Springer, Heidelberg (2006)

18. Emerson, E.A., Namjoshi, K.S.: On model checking for non-deterministic infinite-
state systems. In: LICS, pp. 70–80 (1998)

19. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
Proceedings of LICS 1999, pp. 352–359. IEEE Computer Society, Los Alamitos
(1999)

354 P.A. Abdulla et al.

20. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!
TCS 256(1-2), 63–92 (2001)

21. Jensen, J., Jørgensen, M., Klarlund, N., Schwartzbach, M.: Automatic Verification
of Pointer Programs Using Monadic Second-order Logic. In: Proc. of PLDI 1997
(1997)

22. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking
with rich assertional languages. Theor. Comput. Sci., 93–112 (2001)

23. Lahiri, S.K., Qadeer, S.: Verifying properties of well-founded linked lists. In: POPL,
pp. 115–126 (2006)

24. Manevich, R., Yahav, E., Ramalingam, G., Sagiv, M.: Predicate Abstraction and
Canonical Abstraction for Singly-Linked Lists. In: Cousot, R. (ed.) VMCAI 2005.
LNCS, vol. 3385, pp. 181–198. Springer, Heidelberg (2005)

25. O’Hearn, P.W.: Separation logic and program analysis. In: Yi, K. (ed.) SAS 2006.
LNCS, vol. 4134, p. 181. Springer, Heidelberg (2006)

26. PALE - the Pointer Assertion Logic Engine, http://www.brics.dk/PALE/
27. Revesz, P.Z.: A closed-form evaluation for datalog queries with integer (gap)-order

constraints. Theor. Comput. Sci. 116(1&2), 117–149 (1993)
28. Reynolds, J.: Separation Logic: A Logic for Shared Mutable Data Structures. In:

Proc. of LICS 2002. IEEE CS Press, Los Alamitos (2002)
29. Sagiv, S., Reps, T., Wilhelm, R.: Parametric Shape Analysis via 3-valued Logic.

TOPLAS 24(3) (2002)
30. Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state spaces.

In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer, Heidelberg
(1998)

http://www.brics.dk/PALE/

Enhancing Program Verification with Lemmas

Huu Hai Nguyen and Wei-Ngan Chin

Department of Computer Science, National University of Singapore

Abstract. One promising approach to verifying heap-manipulating programs is
based on user-defined inductive predicates in separation logic. This approach can
describe data structures with complex invariants and sound reasoning based on
unfold/fold. However, an important component towards more expressive program
verification is the use of lemmas that can soundly relate predicates beyond their
original definitions. This paper outlines a new automatic mechanism for proving
and applying user-specified lemmas under separation logic.

Keywords: Lemma Proving, Lemma Application, Program Verification, Separa-
tion Logic, Entailment.

1 Introduction

Inductive predicates based on separation logic [16,22] offer an important approach to
the specification of data structures that make extensive use of pointers and require so-
phisticated invariants. The technique brings the conveniences of algebraic data struc-
tures to the imperative settings, including precise yet simple and intuitive data structure
definitions. It also enables effective and automatic reasoning based on the folding and
unfolding of predicate definitions, and can verify programs over a wide range of inter-
esting data structures. However, there are some crucial limitations in existing automated
verification systems that rely solely on the unfold/fold mechanism. Firstly, it constrains
traversals of a data structure to links explicitly allowed by the recursively defined predi-
cates. These are typically top-down unravelling of the data structures, in that a program
first accesses the “root” of a data structure, then any of its (non-dangling) fields that
can be shown pointing to other objects or data structures. Secondly, the unfold/fold rea-
soner cannot discover auxiliary relations between predicates that may require inductive
proofs.

In this work, we propose a new mechanism that aims to address the aforementioned
shortcomings. The main idea is to explicitly state any auxiliary relations between pred-
icate definitions, so that a deductive mechanism based on unfold/fold can prove and use
them. This information is presented to the system in the form of lemmas that can be
viewed as auxiliary relations for the predicates, apart from their definitions. These aux-
iliary properties can capture different linkage patterns in the data structure. They can
also reveal complex relations between distinct but related predicates. Currently, user ef-
fort is required in stating the lemmas. Nevertheless, once stated, each of these lemmas
is automatically proven once and applied many times, without further user assistance.

As the need for lemmas in theorem proving is well-known, our contribution is not on
the lemmas per se, but rather on the mechanisms to prove and apply them for automated

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 355–369, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

356 H.H. Nguyen and W.-N. Chin

verification via separation logic. These mechanisms are non-trivial, especially for han-
dling more complex lemmas. We shall show that our procedure is sound, terminates and
is directed. Our specific contributions are:

– Alternative Traversals. Lemmas provide different ways to reason about induc-
tive predicates, which allows alternative traversals of data structures that are not
captured by the original predicate definitions.

– Complex Subsumption. Predicates are often related to one another in complex
ways (possibly involving multiple predicates from a heap state with side condi-
tions) that may require inductive proofs. Lemmas provide an explicit way to cap-
ture such complex subsumptions between heap states for use through the deductive
mechanism based on unfold/fold reasoning.

– Lemma Proving. To prove lemmas automatically, we use the same deductive
mechanism as our entailment checker, after an initial unfold on the base predicate
in the antecedent. The lemma itself can be applied during proving, when needed,
which corresponds to a cyclic proof by infinite descent [5,4]. Our proposal can be
viewed as a special case of [4] since it is based on a fragment of separation logic.
However, we have succeeded in providing an automated procedure for cyclic prov-
ing under this fragment which is highly suited for program verification via forward
reasoning.

– Lemma Application. Our program verifier can also apply the lemmas describing
auxiliary relationships between predicates by automatically coercing one predicate
to another, as needed. Coercion provides suitable transformations on formulas that
facilitate proof search to enhance the capability of automated verification. Our co-
ercion mechanism is goal-directed and terminates.

2 Examples

We now illustrate the usefulness of lemmas in program verification with an example
which shows the ability of lemmas to provide alternative unfoldings and foldings of
predicates, thereby providing different ways to reveal points-to facts not apparent in
the original definitions of predicates. Let us consider the following class and predicate
definitions.

class node { int val; node next}

class node2 { int val; node2 prev; node2 next}

root::ll〈s〉 ≡ root=null ∧ s=0 ∨ ∃r·root::node〈 , r〉 ∗ r::ll〈s−1〉 inv s≥0;

root::dsegN〈s, p, n, t〉 ≡ root=n ∧ p=t ∧ s=0 ∨
∃r·root::node2〈 , p, r〉 ∗ r::dsegN〈s−1, root, n, t〉 inv s≥0;

root::dcl〈s〉 ≡ root=null∧ s=0 ∨
∃r1, r2·root::node2〈 , r1, r2〉 ∗ r2::dsegN〈s−1, root, root, r1〉 inv s≥0;

Enhancing Program Verification with Lemmas 357

Predicate ll defines a linear-linked list of length s. Predicate dsegN, adopted from
[11], defines a doubly-linked list segment. Parameter s denotes its length, while p is the
dangling prev field of the first element, n is the dangling next field of the last element
which is also pointed to by t. The dcl predicate defines a circular list by making the
dangling pointer of the dsegN predicate point to the same distinguished root node,
thereby making a cycle.

Details of our specification language is given in Sec 3. Briefly, each predicate de-
scribes a data structure, which is a collection of objects reachable from a base pointer
denoted by root in the predicate definition. root also serves as an implicit argu-
ment of the predicate. The expression after inv keyword captures a pure, i.e. heap-
independent, formula that always holds for the given predicate. Formula p::c〈v∗〉 de-
notes either a points-to fact if c is a class name, or an instance of predicate c with p, v∗

as its arguments, where p is the actual argument for root and v∗ are arguments for the
explicit parameters.

The dsegN predicate, by its definition, favors one direction of linkage. Traversing
the list in a forward manner by following the next field is naturally supported by the
definition with unfold/fold reasoning. However, traversing the list in a backward manner
using the prev field is not as easily done. The problem manifests itself in, for example,
the following delete procedure for a circular doubly-linked list. The procedure deletes
the element pointed by x and updates x. The precondition requires the circular list to be
non-empty, and the postcondition asserts that the updated x points to a circular list with
one fewer element.

1 void delete(ref node2 x)
2 requires x::dcl〈s〉 ∧ s ≥ 1
3 ensures x’::dcl〈s−1〉;
4 {
5 if (x.next == x) x = null;
6 else {
7 // x::node2〈 , r1, r2〉 ∗ r2::dsegN〈s − 1, x, x, r1〉 ∧ s ≥ 2
8 node tmp = x.prev;
9 // x::node2〈 , r1, r2〉 ∗ r2::dsegN〈s − 1, x, x, r1〉 ∧ tmp = r1 ∧ s ≥ 2

10 tmp.next = x.next;
11 // x::node2〈 , r1, r2〉 ∗ r2::dsegN〈s − 2, x, r1, r3〉 ∗ r1::node2〈 , r3, r2〉
12 // ∧ tmp = r1 ∧ s ≥ 2
13 x.next.prev = x.prev;
14 // x::node2〈 , r1, r2〉 ∗ r1::node2〈 , r1, r2〉 ∧ r2 = r1 ∧ x = r3 ∧ s = 2 ∧ tmp = r1
15 // ∨ x::node2〈 , r1, r2〉 ∗ r2::node2〈 , r3, r4〉 ∗ r4::dsegN〈s − 3, r2, r1, r3〉
16 // ∗ r1::node2〈 , r3, r2〉 ∧ s ≥ 3
17 x = x.next ; }}

Fig. 1. Delete from circular list

For exposition purpose, intermediate program states are given as comments (after
//) in the code, though they are automatically derived from the initial precondition. To
verify the assignment to tmp.next at line 10, the program verifier requires an explicit
points-to fact tmp::node2〈 , , 〉. This is enforced by the following entailment where
ΦR is inferred.

358 H.H. Nguyen and W.-N. Chin

x::node2〈 , r1, r2〉 ∗ r2::dsegN〈s−1, x, x, r1〉 ∧ tmp=r1 ∧ s≥2

 tmp::node2〈 , , 〉 ∗ ΦR

This proof obligation is challenging for reasoning based on unfolding and folding of
inductive definitions [16], since the dsegN predicate does not explicitly state that the
parameter t points to an object when the data structure is non-empty. Fortunately, the
problem can be solved by adopting the following two-way equivalence lemma.

root::dsegN〈s, p, n, t〉∧s>0 ↔ ∃r·root::dsegN〈s−1, p, t, r〉∗t::node〈 , r, n〉 (1)

3 Specification Language

Figure 2 shows the grammar for our specification language that has been mostly adopted
from [16] except for lemma specifications. Shape predicate spred is the main specifi-
cation construct that provides data structure descriptions. Formulas are compiled to an
internal representation in which arguments for heap formulas are distinct and fresh.
Additional existentially quantified variables are introduced if necessary to obtain this
normal form.

Predicate spred ::= [root::]c〈v∗〉 ≡ Φ [inv π]
Formula Φ ::=

∨
∃v∗ · (κ ∧ π)

Pure form. π ::= γ ∧ φ
Pointer form. γ ::= v1 = v2 | v = null | v1
= v2 | v
= null | γ1 ∧ γ2

Heap form. κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2

Presburger arith. φ ::= arith | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | ∃v · φ | ∀v · φ
arith ::= a1 = a2 | a1
= a2 | a1 < a2 | a1 ≤ a2

a ::= k | v | k × a | a1 + a2 | −a | max(a1, a2) | min(a1, a2)
Lemma L ::= H ∧ G �� B

Complex Lemma L′ ::= ∀v∗ · ((H ∗ E) ∧ G → B)
Head H ::= [root::]c〈v∗〉

ExtraHeap E ::= κ
Body B ::= Φ

Guard G ::= π
�� ::= → | ← | ↔
k ∈ Integer constants

v,c ∈ Identifiers

Fig. 2. Grammar for Shape Predicates and Lemmas

Recursive shape predicate definitions need to satisfy certain syntactic restrictions,
namely well-formed and well-founded conditions, to ensure soundness and termina-
tion of static reasoning. Well-formed conditions ensure that shape predicates and for-
mulas do not admit garbage. They thus disallow predicates such as root::p〈〉 ≡ ∃x ·
root::node〈 , 〉∗x::node〈 , 〉 where x::node〈 , 〉 is garbage as it is inaccessible from
the free variables. Well-founded conditions disallow root to be passed as argument to

Enhancing Program Verification with Lemmas 359

a recursive predicate invocation. That means root either is null, dangles, or points
to an object which ensures a decreasing heap with each recursive predicate instance.

We now describe a special class of lemmas L allowed by our new specification lan-
guage. Each L lemma consists of a head H and a body B. The head H is a single
predicate. The guard G is a pure formula whose variables are solely from H , which
can be omitted if it is true. The body B is a formula in separation logic. The direction
�� of a lemma constrains its applicability. The lemmas are divided into three groups,
namely : (i) weakening lemmas using →, (ii) strengthening lemmas using ←, and (iii)
equivalence lemmas using ↔. We expect lemmas to be well-formed and well-founded,
but allows the root parameter to reference a predicate. These lemmas have a similar
format as user-defined predicates and can therefore be handled by the same unfold/fold
mechanism of our prover, except that it can be goal-directed.

However, we are also interested to support lemmas with more general LHS and with
universally quantified variables in the guard. These more complex lemmas are captured
by L′ in Fig 2 as a weakening lemma. There is no need to consider a strengthening ver-
sion of complex lemma since it can be converted to L′-form by swapping the two sides.
To illustrate the utility of complex lemma, consider a list segment predicate below:

root::lseg〈p, s〉 ≡ root=p ∧ s=0 ∨ ∃r·root::node〈 , r〉 ∗ r::lseg〈p, s−1〉 inv s≥0;

One simple L-form lemma to support list segment breaking and joining is:

root::lseg〈p, n〉 ↔ ∃a, b, r · root::lseg〈r, a〉 ∗ r::lseg〈p, b〉 ∧ n=a+b ∧ a,b≥0

However, this lemma cannot support entailment proving that requires the capture of size
properties for broken segments, such as the following:

x::lseg〈p, n〉 ∧ n=8
 ∃r · x::lseg〈r, a〉 ∗ r::lseg〈p, b〉 ∧ a=2 ∧ b=6 ∗ ΦR

To support the above entailment, we require a more general L′-form lemma where some
variables in the guard, such as a and b, are universally quantified, as follows:

∀a, b · (root::lseg〈p, n〉 ∧ n=a+b ∧ a,b≥0 → ∃r · root::lseg〈r, a〉 ∗ r::lseg〈p, b〉)

Such lemmas allow universally quantified variables to be instantiated which can cru-
cially increase the expressive power of our entailment prover. They can be provided for
the list segment with length property, but not for the list segment with bag of values
property. Furthermore, there are also lemmas with multiple predicates on the LHS. An
example of this was used in [1] for a decidable fragment of separation logic to safely
break a class of non-touching list segments. (Our thanks to Peter O’Hearn for highlight-
ing the importance of complex lemmas to us.)

4 Entailment

Given formulas Φ1 and Φ2, our entailment prover checks if Φ1 entails Φ2, that is if in
any heap satisfying Φ1, we can find a subheap satisfying Φ2. Moreover, we determine
a formula ΦR for the residue heap state which captures the frame condition. Formally,
our entailment relation is defined as follows:

360 H.H. Nguyen and W.-N. Chin

Definition 4.1 (Entailment) . A formula Φ1 entails a formula Φ2 with residue ΦR iff

∀s, h1 · s, h1 |= Φ1 ⇒ ∃h2, hR · h1 = h2 ∗ hR ∧ s, h2 |= Φ2 ∧ s, hR |= ΦR

The main features of our entailment prover are that, besides determining if the above
relation holds, it also infers the residual heap of the entailment, that is a formula ΦR

such that s, hR |= ΦR and derives the predicate parameters. These two features are
important for program verification tasks using forward analysis. The relation is formal-
ized using judgment of the form where κ denotes the consumed heap and V is the set
of existential variables encountered :

Φ1
κ
V Φ2 ∗ΦR

A sound and terminating proof system for the above entailment relation is presented
in [16]. That system relies on unfolding and folding of the predicate definitions to com-
pute the subheap of Φ1 that matches Φ2 and the residue ΦR. In the current paper, ad-
ditional proof rules that handle user-supplied lemmas shall be presented which greatly
enhances our entailment prover. We provide a re-cap on the unfold/fold mechanisms.

We apply an unfold operation on a predicate in the antecedent that matches with an
object in the consequent. For instance, when checking:

x::ll〈n〉 ∧ n>3
 (∃r · x::node〈 , r〉 ∗ r::node〈 , y〉 ∧ y �=null) ∗ ΦR
where ΦR is the residue, we unfold the x::ll〈n〉 heap formula in the antecedent twice to
match two objects in the consequent. This results in the following reductions towards a
residual state:

∃q1·x::node〈 , q1〉∗q1::ll〈n−1〉∧n>3 � (∃r·x::node〈 , r〉∗r::node〈 , y〉∧y
=null) ∗ ΦR
q1::ll〈n−1〉∧n>3 � (q1::node〈 , y〉 ∧ y
=null) ∗ ΦR
∃q2·q1::node〈 , q2〉∗q2::ll〈n−2〉∧n>3 � q1::node〈 , y〉∧y
=null ∗ ΦR
q2::ll〈n−2〉∧n>3∧q2=y � y
=null ∗ ΦR

We apply a fold operation when an object in the antecedent is aliased with a predicate
in the consequent. An example is:

x::node〈1, q1〉∗q1::node〈2, null〉∗y::node〈3, null〉
 x::ll〈n〉∧n>1 ∗ ΦR
The fold step may be recursively applied but is guaranteed to terminate for well-founded
predicates. Furthermore, the fold operation may introduce bindings for free parameters
of the folded predicate. In the above, we obtain n=2 which may be transferred to the an-
tecedent since n is free. This allows our folding step to finally derive y::node〈3, null〉∧
n=2
 n>1 ∗ ΦR from which we will obtain ΦR = y::node〈3, null〉 ∧ n=2.

5 Lemma Application

User-supplied lemmas are proved and applied to support sound proof search by the
entailment prover. Since the proof of a lemma may apply the lemma itself inductively,
we first present the proof rules that apply lemmas. Depending on whether the lemma
is applied to the antecedent or the consequent of the entailment, our entailment prover
treats it as an unfolding or folding, respectively. ← lemmas can be applied to only the
consequent of an entailment, → to only the antecedent, and ↔ to both.

Enhancing Program Verification with Lemmas 361

5.1 Weakening the Antecedent by Lemma Unfolding

A lemma H ∧ G �� B where �� is → or ↔ can be seen as an alternative way to unfold
a predicate. Its application is formalized below which says that the lemma is applied if
we can find a substitution ρ that matches H to p1::c1〈v∗1〉 and satisfies the guard.

[L−LEFT]
IsPred(c1) p1::c1〈v∗1〉 ∗ κ1 ∧ π1
 ρG

ρ = match(H, p1::c1〈v∗1〉) (ρB) ∗ κ1 ∧ π1
κ∗p1::c1〈v∗
1 〉

V (κ2 ∧ π2) ∗Φ

p1::c1〈v∗1〉 ∗ κ1 ∧ π1
κ
V (κ2 ∧ π2) ∗ Φ

where Φ
 π checks if guard π holds under Φ, and match is defined as:

match(p1::c〈v∗1〉, p0::c〈v∗0〉) def= [p1 �→ p0, v
∗
1 �→ v∗0]

For a goal-directed lemma application, we shall only apply this rule when there exists
a predicate p2::c2〈v∗2〉 ∈ κ2 in the consequent that would (subsequently) match up via
aliasing with a p2::c2〈v∗3〉 in the RHS of lemma ρB where p2 ∈ {p1, v∗1}.

We now show how a lemma can help verify the delete procedure, in particular
during an assignment to the prev field of the tmp object at line 10. As part of the
verification, the following entailment needs to be checked, where the antecedent denotes
program state at that program point.

x::node2〈 , r1, r2〉 ∗ r1::dsegN〈r3, , , r2〉 ∧ tmp = r2
∧ r3 = s − 1 ∧ s > 1
 tmp::node2〈 , , 〉 ∗ ΦR

� ([L−LEFT])
x::node2〈 , r1, r2〉 ∗ r1::dsegN〈r4, , r2, 〉 ∗ r2::node2〈 , , 〉
∧ tmp = r2 ∧ r4 = r3 − 1 ∧ r3 = s − 1 ∧ s > 1
 tmp::node2〈 , , 〉 ∗ ΦR

� ([ENT−MATCH])
Success

After the above goal-directed lemma application, we can reveal a match up between
r2::node2〈 , , 〉 (from the lemma) and tmp::node2〈 , , 〉 (from the consequent), be-
fore successfully proving the entailment.

Our proposal also handles the more complex lemma form: ∀v∗ · (H ∗ E ∧ G → B).
We have designed and implemented it as follows:

[L−LEFT−COMPLEX]
IsPred(c1) ρ = match(H, p1::c1〈v∗1〉)

κ1 ∧ π1
κ∗p1::c1〈v∗
1 〉

V ρE ∗ Φ1

ρB ∗ ([(v �→?)∗]
ρG) ∗ Φ1 ∧ π1
κ∗p1::c1〈v∗
1 〉

V (κ2 ∧ π2) ∗ Φ

p1::c1〈v∗1〉 ∗ κ1 ∧ π1
κ
V (κ2 ∧ π2) ∗ Φ

To support the above proof rule, we provide a new delayed guard ([(v �→?)∗]
ρG)
that is used to support the instantiations of v∗ when the body ρB is being matched by
our entailment procedure. Once v∗ have been instantiated, we test the guard G before
its instantiations are added to the antecedent. The use of lemmas with universal vari-
ables, where possible, allows stronger proofs to be asserted than what is possible using
corresponding lemmas with existentially quantified variables. In our approach, this is
realised by a novel instantiation mechanism from the delayed guard construct.

362 H.H. Nguyen and W.-N. Chin

5.2 Strengthening the Consequent by Lemma Folding

A lemma H ∧ G �� B where �� is ← or ↔ provides an alternative way to fold a
predicate. Its application is formalized as follows:

[L−RIGHT]
IsPred(c2) ρ = match(H, p2::c2〈v∗2〉) κ1 ∧ π1
 ρG

(Φr, κr, πr) ∈ foldLκ(κ1 ∧ π1, p2::c2〈v∗2〉, ρB)
(πa, πc) = split{v

∗
2}

V (πr) Φr ∧ πa
κr

V (κ2 ∧ π2 ∧ πc) ∗Φ

κ1 ∧ π1
κ
V (p2::c2〈v∗2〉 ∗ κ2 ∧ π2) ∗ Φ

foldL performs folding using a lemma instead of the body of a predicate.

[L−FOLD]
Wi = Vi − {v∗, p} κ ∧ π
κ′

{p,v∗} ρB ∗ {(Φi, κi, Vi, πi)}n
i=1

foldLκ′
(κ ∧ π, p::c〈v∗〉, ρB) def= {(Φi, κi, ∃Wi · πi)}n

i=1

Note that the folding function foldL uses a specialized entailment checking proce-
dure. The checker returns a set of quadruples (Φr, κr, V, πr), each being the result of a
successful folding against a disjunct of the predicate definition or the lemma body. The
meaning of each component of a triple is as following:

– Φr is the residue (frame) not consumed by the folded disjunct.
– κr is the part of the heap consumed by the folded disjunct. By definition, κr ∗ Φr

equals the heap in the first argument of foldL.
– V is the set of existential variables generated from unfoldings of the predicate

definition.
– πr is the pure constraint of the folded disjunct. It is used to obtain information,

such as bindings to values, for predicate parameters. This information is especially
useful for forward verification.

This use of a set of states can be generalized to the entire system which results in
entailment proving of the form ΦA
 ΦC ∗ S that has been implemented in our tool.
Here, S denotes a set of residual heap states that arise from proof search for successful
entailment. Failure of entailment is denoted by S={}, while multiple answers denote
alternative successful outcomes of entailment with the respective residual heaps. Proof
search (with the help of lemmas) increases the expressivity of our verifier.

5.3 An Example of Entailment with Lemma Capability

An interesting application of lemma involves the list-with-tail predicate which is de-
fined as follows:

root::ll tail〈tx, n〉 ≡ root::node〈 , null〉 ∧ n = 1 ∧ tx = root
∨ root::node〈 , r〉 ∗ r::ll tail〈tx, n− 1〉 inv n ≥ 1

The predicate captures a list of n objects, with tx pointing to the last one. It can be
coerced to a list segment, and vice versa, via the lemma:

root::ll tail〈tx, n〉 ↔ root::lseg〈tx, n− 1〉 ∗ tx::node〈 , null〉 (2)

Enhancing Program Verification with Lemmas 363

By applying this lemma, our verifier can easily prove the following specification for
the concatenation of two lists with tail pointers:

{x::ll tail〈tx, n〉 ∗ y::ll tail〈ty, m〉}
tx.next = y;
{x::ll tail〈ty, m+ n〉}

Separation logic semantics requires tx::node〈 , 〉 to be present in the program state
in order to safely perform the dereference operation via tx.next. Such an object can
be exposed via an unfolding of the ll tail predicate using the lemma, resulting in the
following program state prior to the assignment:

{x::lseg〈tx, n− 1〉 ∗ tx::node〈 , null〉 ∗ y::ll tail〈ty, m〉}
which is then updated by the assignment to:

{x::lseg〈tx, n− 1〉 ∗ tx::node〈 , y〉 ∗ y::ll tail〈ty, m〉}
The weakening on the postcondition is done via an entailment, whose proof is sketched

below. This proof is performed automatically by our system.
(

recursive entailment
described below

)

tx::node〈 , y〉 ∗ y::ll tail〈ty, m〉

 tx::lseg〈ty, m〉

∗{ty::node〈 , null〉}

(FOLD)

(
match ty with
residue from fold

)

ty::node〈 , null〉

 ty::node〈 , null〉

∗{emp}
tx::node〈 , y〉 ∗ y::ll tail〈ty, m〉

 tx::lseg〈ty, m〉 ∗ ty::node〈 , null〉 ∗ {emp}

(FOLD)

x::lseg〈tx, n− 1〉 ∗ tx::node〈 , y〉 ∗ y::ll tail〈ty, m〉

 x::lseg〈ty, m + n − 1〉 ∗ ty::node〈 , null〉 ∗ {emp}

(L−RIGHT)

x::lseg〈tx, n− 1〉 ∗ tx::node〈 , y〉 ∗ y::ll tail〈ty, m〉

 x::ll tail〈ty, m + n〉 ∗ {emp}

(L−RIGHT)

Our entailment prover first converts the list with tail pointer in the consequent to a
list segment and a node. It then breaks the list segment into two and match the first
segment with the aliased segment in the antecedent. Subsequently, it performs a fold on
a tx::lseg〈ty, m〉 predicate which invokes a recursive entailment, as follows:

(derive residue)

ty::node〈 , null〉
 emp ∗ {ty::node〈 , null〉}
y::lseg〈ty, m− 1〉 ∗ ty::node〈 , null〉

 y::lseg〈ty, m− 1〉 ∗ {ty::node〈 , null〉}

(MATCH)

y::ll tail〈ty, m〉
 y::lseg〈ty, m− 1〉 ∗ {ty::node〈 , null〉} (L−LEFT)

tx::node〈 , y〉 ∗ y::ll tail〈ty, m〉

 (∃r · tx::node〈 , r〉 ∗ r::lseg〈ty, m− 1〉) ∗ {ty::node〈 , null〉}

(MATCH)

tx::node〈 , y〉 ∗ y::ll tail〈ty, m〉

 tx::lseg〈ty, m〉 ∗ {ty::node〈 , null〉}

(FOLD)

364 H.H. Nguyen and W.-N. Chin

Such applications of lemmas are critical for automatically deriving non-trivial proofs
to support program verification.

5.4 Termination

To prevent non-termination during lemma applications, we assign a history to each heap
constraint p::c〈v∗〉 where c is a predicate name. The history is a set of predicate names
which are transitively rewritten to p::c〈v∗〉. Lemma application is possible only if it
does not rewrite a predicate to some predicate already in the former’s history. Initially
the history is empty. After each predicate application, the predicate name in the head H
is added to the history of each and every predicate p::c〈v∗〉 in the body ρB, in addition to
the history of the matching predicate instance p::c〈v∗〉. Folding and unfolding predicate
instances pass the predicate history on to the predicate instances in the body.

Theorem 5.1 (Termination). Entailment proving is terminating, even in the presence
of lemma applications.

Proof Sketch. Termination is guaranteed by the fact that only a finite number of lemma
applications can occur when proving an entailment. This is the case since there is a fi-
nite number of lemmas, and each predicate instance maintains a history of predicates
that are rewritten by lemma applications to the current predicate instance. Therefore
lemma applications cannot occur after a finite number of steps in the entailment check-
ing process. Termination is then guaranteed by the entailment checking as in [16].

6 Lemma Proving

Correctness of lemmas is automatically proved by our system via the entailment prover.
A weakening lemma is proved by showing that the predicate in the head of the lemma
entails the body. A strengthening lemma needs an entailment in the reverse direction.
An equivalence lemma needs both. During this entailment proving, the lemma being
proved can be soundly used in the proof itself as an instance of cyclic proof. Formally,
proving → and ↔ lemmas amount to discharging the following proof obligation:

unfold(H ∗ E ∧ G, root)
 B ∗ emp (3)

whereas ← and ↔ generate the following obligation:

unfold(B, root)
 (H ∗ E ∧ G) ∗ emp (4)

At the start of lemma proving, we always unfold the head predicate in the antecedent.
This ensures that infinite descent occurs for the resulting cyclic proof which guarantees
a progress condition needed for sound induction. During lemma proving, the lemma
being proved may be applied to the unfolded formulas as an instance of cyclic proving.
Furthermore, we also check that the entailment derives an empty residual heap. This
ensures that both sides of the lemma cover the same heap region.

Enhancing Program Verification with Lemmas 365

7 Implementation

We have built a prototype system using Objective Caml. The proof obligations gen-
erated by this verification system are discharged by our entailment proving procedure
with the help of Omega Calculator [21] and CVC [23]. These two arithmetic solvers
have complementary strengths. In many cases, CVC Lite is faster; but Omega is more
complete. We therefore run both of them and get the timing of the first returning prover;
or use Omega’s when CVC Lite fails.

Programs LOC Timing
with lemmas without lemmas

List with Tail verifies size/length
append 1 0.18 failed

Circular Linked List verifies size + circularity
delete first 15 0.07 0.04

count 15 0.13 failed
Doubly Linked Circular List verifies size + double links + circularity

delete 12 0.26 failed
Doubly Linked List verifies size + double links

append 26 0.16 0.12
flatten (from tree) 34 0.35 0.33

Sorted List verifies size + min + max + sortedness
delete 21 0.16 0.15

insertion sort 36 0.37 0.32
selection sort 52 0.34 0.31
bubble sort 42 0.64 failed
merge sort 105 0.61 0.56
quick sort 85 0.67 0.65

File Manager verifies directory structure
search name 18 1.71 1.49

mkdir 43 3.02 failed
remove 50 4.66 failed

copy folder 67 7.50 failed
AVL Tree verifies size + height + height-balanced

insert 169 5.06 5.00
Red-Black Tree verifies size + black-height + height-balanced

insert 167 1.53 1.39

Fig. 3. Verification Times (in seconds) for Data Structures with Arithmetic Constraints

We tested our system on a suite of examples summarized in Figure 3. These examples
are small but handle data structures with sophisticated shape and size properties such
as sorted lists, balanced trees, etc. in a uniform way. Verification time for each function
includes time to verify all functions that it calls. We compare the timings obtained with
and without lemmas. Lemma proving time is not included, since they are proven once
and applied many times. Preliminary results indicate that proof search with lemmas
does not incur much overhead due to the directed nature of search. On the other hand,

366 H.H. Nguyen and W.-N. Chin

lemmas are important to verify a number of examples that would fail otherwise. For
example, the bubble-sort algorithm requires sorted list to be coerced into an unsorted list
expected for its precondition, whenever a swap has occurred for the bubble procedure.
Also, the file manager traverses its doubly-linked lists in two directions. while circular
lists are built using list segments that may require breaking and joining.

8 Related Work and Concluding Remarks

The general framework of separation logic is highly expressive but undecidable. Thus,
in the search for a decidable fragment of separation logic, Berdine et al. [1] supports
only a limited set of lemmas and predicates without size properties, disjunctions and ex-
istential quantifiers. This fragment forms the basis of a program verifier called Small-
foot [2]. Jia and Walker [13] also identified a decidable logic but without recursive
predicates for automated reasoning of pointer programs. Preoteasa [20] showed that
separation logic rules such as the frame rule are correct with respect to the predicate
transformer semantics for a language with recursive procedures, local variables, value
and value-result parameters via the PVS theorem prover [18]. Marti et. al. [15] verifed
the heap manager of a small embedded operating system, while Feng et. al. [9] showed
how the effects of interrupts and thread preemptions can be soundly modelled through
ownership transfers. These approaches are based on separation logic but currently re-
quire hand-written Coq proofs. Separation logic has also been used to automatically
reason about heap-manipulating programs in various contexts, e.g. locality [8], termi-
nation [3], concurrency [19]. Similar to [1], most of these works only support a limited
predefined set of predicates and lemmas. Our recent work [16] allowed user-specified
inductive predicates in separation logic, which are then automatically verified via a
sound, terminating but incomplete verification system. Building on this prior work, the
current paper proposes a new mechanism based on user-specified lemmas that can be
automatically proven and applied by our program verifier. This feature can greatly en-
hance the capability of our automated program verification system, and is an important
step towards building a more complete program verifier. Compared to traditional theo-
rem provers, like Isabelle [17], our approach attained the following improvements: 1) it
is based on separation logic (not classical logic), 2) it is automatically proven (via cyclic
proof), 3) it is automatically applied (during entailment), and 4) it always terminates.
In contrast, traditional theorem prover handles lemmas (for classical logic) using either
user-specifiable tactics/heuristics or requires manual proofs, and is not guaranteed to
terminate.

On the inference front, Lee et al. [14] has formalized an intraprocedural analysis for
loop invariants using grammar approximation under separation logic. Their analysis can
handle a wide range of shape predicates with local sharing but is restricted to predicates
with two parameters and without size properties. Another work [10] has also formulated
interprocedural shape inference but is restricted to just the list segment shape predicate.
More recently, Guo et al [12] showed how fairly complex shapes can be inferred with
the help of a technique based on truncation point which can be viewed as a lemma
for cutting (or grafting) a subheap of the same predicate from (or into) a given shape.

Enhancing Program Verification with Lemmas 367

However, the presence of numerical properties makes the truncation point technique
difficult for more general user-defined predicates. The reason is that, after cutting a sub-
heap and then grafting back a piece of heap of the same shape, the shape of the original
heap is restored, but not necessarily its content or other quantitative properties. Another
recent work by Chang and Rival [6] proposes a backward unfolding technique that re-
quires an in-built (but generic) lemma for splitting inductive segments. This hardwired
use of a lemma can be viewed as a special case to our user-defined approach. While our
system does not focus on the inference aspect, we provide better support for automated
verification via an expressive data structures and lemmas specification mechanism. For
example, data structures with strong invariants, such as balanced heights, sortedness
and graph-like pointer links, are easily captured by our specification mechanism prior
to automatic verification.

To the best of the authors’ knowledge, most past works in automated program veri-
fication have not made systematic provision for user-specified lemmas that can be au-
tomatically proven and applied, so as to widen the class of programs that can be auto-
matically verified. However, the use of user-specified lemmas can be found in works
based on dependent type systems and proof checkers. An example of this is the Ap-
plied Type System (ATS) [7] that was proposed for combining programs with proofs.
In ATS, dependent types for capturing program invariants and lemmas are highly ex-
pressive, but users must supply all expected properties, associated proofs, and precisely
state where they are to be applied, with ATS playing the role of a proof-checker. On
the contrary, our proposed technique performs lemma proving and program verification
automatically, without the need for such detailed guidance.

To summarise, we have introduced a new mechanism to support user-supplied lem-
mas for automated program verification via separation logic. This approach is directed
and is guaranteed to terminate. It is directed because the lemmas are applied selec-
tively, as guided by the need for the eventual matching up of heap predicates during
entailment proving. It terminates since we use well-formed and well-founded heap
formulae for both shape predicates and lemmas, together with a cycle detection tech-
nique. One strength of our approach is that users are allowed to add relevant lemmas
to further enhance the capability of the automated program verification system. This
puts creative control back into users’ hands. Nevertheless, we provide machine sup-
port for automatically proving and then applying these given lemmas. With the appro-
priate use of universal quantifiers, these lemmas can be quite expressive. We believe
that lemmas can greatly enhance the capability of automated program verification in
general, and separation logic in particular; as they play the role of cut rules in proof
systems.

Acknowledgments. Our thanks to Shengchao Qin for providing insights on how lem-
mas should be represented, and to Cristina David for bravely carrying the mantle for
our SLEEK prover sub-system. Anonymous reviewers of CAV 2008 provided critical
but fair comments that have helped us improve the presentation of this paper. This work
is supported by an A*STAR-funded research project R-252-000-233-305 on “A Con-
structive Framework for Dependable Software”.

368 H.H. Nguyen and W.-N. Chin

References

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic Execution with Separation Logic. In: Yi,
K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidelberg (2005)

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion checking
with separation logic. In: FMCO. LNCS. Springer, Heidelberg (2006)

3. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.: Automatic termination proofs for programs
with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
386–400. Springer, Heidelberg (2006)

4. Brotherston, J.: Formalised inductive reasoning in the logic of bunched implications. In: Riis
Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 87–103. Springer, Heidelberg
(2007)

5. Brotherston, J., Simpson, A.: Complete sequent calculi for induction and infinite descent. In:
LICS, pp. 51–62 (2007)

6. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: POPL, pp. 247–260 (2008)
7. Chen, C., Xi, H.: Combining Programming with Theorem Proving. In: ICFP, Tallinn, Estonia

(September 2005)
8. Distefano, D., O’Hearn, P.W., Yang, H.: A Local Shape Analysis based on Separation Logic.

In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006)

9. Feng, X., Shao, Z., Dong, Y., Guo, Y.: Certifying Low-Level Programs with Hardware In-
terrupts and Preemptive Threads. In: PLDI, Tucson, Arizona, June 2008. ACM Press, New
York (2008)

10. Gotsman, A., Berdine, J., Cook, B.: Interprocedural Shape Analysis with Separated Heap
Abstractions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 240–260. Springer, Heidelberg
(2006)

11. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In: PLDI, pp.
266–277 (2007)

12. Guo, B., Vachharajani, N., August, D.I.: Shape analysis with inductive recursion synthesis.
In: PLDI, pp. 256–265 (2007)

13. Jia, L., Walker, D.: ILC: A Foundation for Automated Reasoning About Pointer Programs.
In: Sestoft, P. (ed.) ESOP 2006 and ETAPS 2006. LNCS, vol. 3924, pp. 131–145. Springer,
Heidelberg (2006)

14. Lee, O., Yang, H., Yi, K.: Automatic verification of pointer programs using grammar-based
shape analysis. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 124–140. Springer,
Heidelberg (2005)

15. Marti, N., Affeldt, R., Yonezawa, A.: Formal Verification of the Heap Manager of an Operat-
ing system using Separation Logic. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260,
pp. 400–419. Springer, Heidelberg (2006)

16. Nguyen, H.H., David, C., Qin, S.C., Chin, W.N.: Automated Verification of Shape and Size
Properties via Separation Logic. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS,
vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

17. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order
Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

18. Owre, S., Rushby, J.M., Shankar, N., Stringer-Calvert, D.W.J.: PVS: An experience report.
In: FM-Trends, pp. 338–345 (1998)

19. Parkinson, M., Bornat, R., O’Hearn, P.: Modular verification of a non-blocking stack. In:
POPL, Nice, France (January 2007)

Enhancing Program Verification with Lemmas 369

20. Preoteasa, V.: Mechanical verification of recursive procedures manipulating pointers using
separation logic. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085,
pp. 508–523. Springer, Heidelberg (2006)

21. Pugh, W.: The Omega Test: A fast practical integer programming algorithm for dependence
analysis. CACM 8, 102–114 (1992)

22. Reynolds, J.: Separation Logic: A Logic for Shared Mutable Data Structures. In: LICS,
Copenhagen, Denmark (July 2002)

23. Stump, A., Barrett, C.W., Dill, D.L.: CVC: A cooperating validity checker. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 500–504. Springer, Heidelberg (2002)

A Numerical Abstract Domain Based on

Expression Abstraction and Max Operator
with Application in Timing Analysis

Bhargav S. Gulavani1 and Sumit Gulwani2

1 Indian Institute of Technology, Bombay, India
bhargav@cse.iitb.ac.in

2 Microsoft Research, Redmond, US
sumitg@microsoft.com

Abstract. This paper describes a precise numerical abstract domain for
use in timing analysis. The numerical abstract domain is parameterized
by a linear abstract domain and is constructed by means of two domain
lifting operations. One domain lifting operation is based on the principle
of expression abstraction (which involves defining a set of expressions and
specifying their semantics using a collection of directed inference rules)
and has a more general applicability. It lifts any given abstract domain
to include reasoning about a given set of expressions whose semantics
is abstracted using a set of axioms. The other domain lifting operation
incorporates disjunctive reasoning into a given linear relational abstract
domain via introduction of max expressions. We present experimental
results demonstrating the potential of the new numerical abstract do-
main to discover a wide variety of timing bounds (including polynomial,
disjunctive, logarithmic, exponential, etc.) for small C programs.

1 Introduction

The oldest trick for proving termination of loops has been that of finding a rank-
ing function [25]. A ranking function for a loop is a function (over loop variables)
whose value decreases in each loop iteration and is bounded below by some finite
quantity. Earlier work on proving termination of loops focused on synthesizing
linear ranking functions [11,22]. However, not all programs have linear ranking
functions (e.g., Figure 1(a) and 2(a)). This led to more sophisticated propos-
als for proving termination like the principle of disjunctive well-foundedness of
ranking functions (which can handle Figure 1(a)), and work on a richer class of
ranking functions like lexicographic linear ranking functions [7] and polyranking
functions [8] (which can handle Figure 2(a)).

In contrast to this recent literature on multiple methodologies for proving
termination, we present a numerical abstract domain that can be used to uni-
formly prove the termination of a large class of programs (including the ones in
Figure 1 and Figure 2), and more importantly establish precise timing bounds,
a richer piece of information than simply establishing termination. Computing

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 370–384, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Numerical Abstract Domain 371

Disjunction(int x0, y, z0)
x := x0; z := z0; i := 0;
while (x < y) do

i := i + 1;
if (z > x) {

x := x + 1;
else

z := z + 1;

Sequential(int n, m)
x := 0; i := 0;
while (x < n) do

i := i + 1;
x := x + 1;

while (x < m) do
i := i + 1;
x := x + 1;

Simple(int x0, n)
x := x0; i := 0;
while (x < n) do

i := i + 1;
x := x + 1;

(a) (b) (c)

Fig. 1. Examples that illustrate the importance of the max operator in our numerical
abstract domain for both representing timing bounds as well as computing the invari-
ants required to establish timing bounds. The examples have been instrumented with
the monitor variable i. For (a) (taken from [12] which uses disjunctive well-foundedness
to prove termination), our tool computes the bound max(0, y − x0) + max(0, y − z0) on
the monitor variable i after establishing the inductive loop invariant i = (x−x0)+(z−
z0) ∧ z ≤ max(z0, y) ∧ x ≤ max(x0, y). For (b), and (c) our tool computes the bounds
max(0, n, m) and max(0, n − x0) respectively on the monitor variable i.

timing bounds is much more useful than simply proving termination in several
settings such as embedded systems and performance critical software. The basic
idea of our methodology is to instrument the program with a monitor variable
that increases in each loop iteration and then establish bounds on the monitor
variable using abstract interpretation over a numerical abstract domain. Essen-
tially, we have instrumented a candidate ranking function −i inside the loop
since the value of −i always decreases and establishing an upper bound u on
i will imply a lower bound on −i, thereby making −i a ranking function and
implying termination, but more importantly yielding a timing bound of u.

One key feature of our numerical abstract domain is that it incorporates (some
level of) disjunctive reasoning by use of max operator (which returns the largest
of its arguments). This allows our abstract domain to naturally express bounds
for loops with complex control flow inside, as is the case for the program in
Figure 1(a). (Observe that even proving termination of this program is non-
trivial; one way to prove termination of this program is to use the principle of
disjunctive well-foundedness [23], which involves splitting the termination argu-
ment into multiple ranking functions corresponding to different branches in the
program.) However, it is important to note that the presence of max operator
in our abstract domain not only caters to handling loops with complex con-
trol structure, but it is equally important to express bounds for programs even
with simple loops (which entail linear ranking functions, a simpler termination
argument), like the ones in Figure 1(b) and (c).

Another key feature of our numerical abstract domain is that it incorporates
reasoning about other operators (like multiplication, exponentiation, logarithm,
square-root etc) whose semantics is specified using some set of inference rules.
This allows our abstract domain to naturally represent bounds for loops with
inherent non-linear behavior as is the case for the program in Figure 2(a). (Ob-
serve that even proving termination of this program is non-trivial; one way to

372 B.S. Gulavani and S. Gulwani

NonLinear(int y0, n)
assume(n > 0);
x := 0; y := y0;
i := 0;
while (x < n) do

i := i + 1;
y := y + 1;
x := x + y;

ModularMultiply(int n)
i := 0;
assume(n > 0);
for j = 1 to n

for k = 1 to n
i := i + 1;
...

ModularSquare(int n)
i := 0;
assume(n > 0);
for j = 1 to n

for k = 1 to j
i := i + 1;
...

(a) (b) (c)

Fig. 2. Examples that illustrate the importance of using non-linear operators like
multiplication and square root in our numerical abstract domain for both represent-
ing timing bounds as well as computing the invariants required to establish timing
bounds. The examples have been instrumented with the monitor variable i. For (a)
(taken from [6] which uses the principle of second-order differences to establish a lexi-
cographic polyranking function for proving termination), our tool computes the bound√

2n + max(0, −2y0) + 1 on the monitor variable i after establishing the inductive loop
invariant i = y − y0 ∧ y2 ≤ y2

0 + 2x. For (b) and (c), our tool computes the bound n2

and n(n + 1)/2 respectively on the monitor variable i.

prove termination is to use lexicographic polyranking functions [7,8].) However,
it is important to note that the flexibility of using arbitrary expressions (from
a given set) allows our abstract domain to precisely represent precise bounds of
programs with simple termination arguments. For example, we can prove that
mergesort has a complexity of n log n and that Fibonacci has a complexity of
2n. It is important to note that our technique not only aims to find precise
computational complexity, but also precise constant factors. For example, it can
precisely establish the n2 complexity of the doubly nested loop used for mod-
ular multiplication and n(n + 1)/2 complexity of the doubly nested loop used
for modular squaring as shown in Figure 2(b) and (c). This difference was the
source of a real timing attack on implementations of RSA protocol [19].

Our numerical abstract domain is parameterized by a linear arithmetic nu-
merical domain like intervals, difference constraints, or polyhedron domain [13].
We present two domain lifting operations that extend the base linear arithmetic
domain to reason about the max operator and other operators whose semantics
is specified using a set of inference rules. One of the domain lifting operation
extends the linear arithmetic domain to represent linear relationships over vari-
ables as well as max-expressions (an expression of the form max(e1, . . . , en) where
ei’s are linear expressions). Another domain lifting operation lifts an abstract
domain to represent constraints not only over program variables, but also over
expressions from a given finite set of expressions S. The semantics of the opera-
tors used in constructing expressions in S is specified as a set of inference rules.
(Our abstract domain retains efficiency by treating these expressions just like
any other variable, while relying on the inference rules to achieve precision.) The
rationale behind this choice is that it is easy to specify or heuristically infer the
set of base expressions, but specifying linear combinations of those expressions
and specifying which subsets of those linear combinations should be grouped

A Numerical Abstract Domain 373

under a max operator is a cumbersome process. Fortunately, the latter process
can be automated by means of a domain lifting operation that we describe in
this paper.

This paper has three main technical contributions:

– We introduce a domain constructor operation based on the notion of expres-
sion abstraction. Given a base abstract domain A and a set of expressions
S whose semantics is specified using a set of rewrite rules, we show how to
construct a more precise abstract domain AS (Section 3).

– We introduce another domain constructor operation for linear arithmetic
domains. Given a linear arithmetic abstract domain A, we show how to
construct a new arithmetic domain Ã that can represent linear relations
over max expressions (Section 4).

– Given a linear arithmetic domain A, and a set of expressions S, we use
our domain constructor operations to construct the numerical domain ÃS

(Section 5), and show how it can be used to compute precise bounds for a
wide variety of programs (Section 6). We discuss preliminary experimental
results in Section 7.

We start with a description of the operations that need to be supported by
an abstract domain for performing abstract interpretation in Section 2.

2 Preliminaries

An abstract domain A needs to be equipped with four operators (or transfer
functions), JoinA, WidenA, EliminateA, and PostPredicateA to enable (for-
ward) abstract interpretation over the flowchart nodes of a program.

The join operator JoinA for an abstract domain A takes two abstract elements
E1 and E2 and computes the least upper bound of E1 and E2 in the abstract
domain A. In other words JoinA(E1, E2) denotes the most precise element E
in the abstract domain A such that E1 ⇒ E and E2 ⇒ E. The join operator is
used to obtain the abstract element after a join node by merging the abstract
elements before the join node.

The widen operator WidenA for an abstract domain A takes two abstract
elements E1 and E2 such that E1 ⇒ E2 and computes another element E such
that E2 ⇒ E. The sequence of widen operations converges in a bounded number
of steps, i.e., for any strictly increasing sequence E0, E1, . . . (such that Ei ⇒ Ei+1

for all i) , if we define E′0 = E0, E′1 = WidenA(E′0, E1), E′2 = WidenA(E′1, E2), . . .,
then there exists i ≥ 0 such that E′j = E′i for all j > i.

The postpredicate operator PostPredicateA takes as input an abstract ele-
ment E′ and a predicate p and computes the most precise element E expressible
in the domain A such that E′ ∧ p ⇒ E (meaning that γ(E′) ∩Sp ⊆ γ(E), where
Sp is the set of states that satisfy predicate p). The postpredicate operator is
used to incorporate the information provided by the predicate inside an assume
statement or a conditional guard.

374 B.S. Gulavani and S. Gulwani

The existential elimination operator EliminateA takes as input an abstract
element E′ and a variable x and computes the most precise element E expressible
in the domain A such that E′ ⇒ E and E does not refer to variable x. The
existential elimination operator is used to transform the abstract element E′

before an assignment statement x := e 1 to the element E as follows (assuming
that x does not occur in e 2): E = PostPredicateA(EliminateA(E′, x), x = e).

In Section 3 and Section 4 below, we show how to construct the transfer
functions for the richer abstract domains AS and Ã from the transfer functions
of the base abstract domain A.

3 Domain Lifting Using Expression Abstraction

In this section, we introduce the notion of expression abstraction and use it to
define a more precise abstract domain given any base abstract domain.

The process of expression abstraction involves defining a set of expressions S
over program variables using some operators, and defining the abstract semantics
of those operators using a set of directed inference rules R. We additionally
assume that the set S is closed under sub-expressions. (See Section 5 for an
example of S and R.) For every expression e ∈ S, we introduce a fresh variable
denoted by Ze. The elements of the abstract domain AS represent the same kind
of constraints as the abstract domain A but over an extended set of variables
that includes Ze’s. The transfer functions for the abstract domain AS (defined
in Section 3.2) make use of the Saturate operator, which we define next.

3.1 The Saturate Operator

The saturate operator Saturate takes as input an abstract element E and a set of
expressions S and returns another abstract element E′ that contains constraints
from E as well as includes constraints over expressions from S obtained by
applying the rewrite rules that define the semantics of the expressions in S. The
pseudo-code for the saturate function is shown below.

Saturate(E,S) =
1 Eold := ⊥;
2 while (E �≡ Eold) do
3 Eold := E;
4 foreach instantiation of an inference rule: P1 ⇒ P2

5 If E ⇒ P1, then E := PostPredicate(E,P2);
6 return E;

1 Without loss of generality, we can assume that all assignment statements are of the
form x := e. Memory reads and writes can be modeled using select and update
expressions, without losing any precision.

2 Without loss of generality, we can assume that x does not occur inside e since an
arbitrary assignment x := e can be split into two assignments t := e; x := t with this
property, where t is a fresh variable.

A Numerical Abstract Domain 375

The for loop in Line 4 considers all instantiations of an inference rule P1 ⇒ P2

such that all terms that occur in both P1 and P2 are from the given set of
expressions S. If the set of inference rules R has the property that the number
of applications of the inference rules is bounded in any context (i.e., given any
context, the number of applications of the inference rules that yield a predicate
not implied by the context and other derived predicates is bounded), then the
while loop in Line 2 is terminating. If not, then we simply use the heuristic of
iterating a bounded number of times.

Example 1. Let A be the polyhedron abstract domain. Let R consist of the
following useful inference rule for reasoning about the product operator. The
rule multiplies both sides of an equality by some term u.

(
∑

i

aixi = a) ⇒ (
∑

i

aiZxiu = Zau)

Let S be the set of expressions {y2, y2
0 , yy0}. Let E1 be y = y0 ∧x = 0 and E2 be

y = y0 +1∧x = y0 +1. E1 and E2 denote (part of) the abstract elements at the
loop entry and at the loop back-edge after one loop iteration for the example in
Figure 2(a). Then,

Saturate(E1, S) = (y = y0 ∧ x = 0 ∧ Zy2 = Zyy0 ∧ Zyy0 = Zy2
0
)

Saturate(E2, S) = (y = y0 + 1 ∧ x = y0 + 1 ∧ Zyy0 = Zy2
0

+ y0 ∧ Zy2=Zyy0+y)

3.2 Transfer Functions

In this section, we describe how to construct the transfer functions for the ab-
stract domain AS using the transfer functions for the base domain A. The key
idea in the construction is to simply saturate the input abstract elements using
the Saturate algorithm (described in Section 3.1) and then apply the corre-
sponding transfer function from the base abstract domain.

– Join Operator

JoinAS (E1, E2) = JoinA(Saturate(E1, S), Saturate(E2, S))

Example 2. Let E1 and E2 be the abstract elements as in Example 1. Then,

JoinAS (E1, E2) = (y0 ≤ y ≤ y0 + 1 ∧ Zy2 ≤ Zy2
0

+ 2x)

Observe that the above join operation gives us one of the desired inductive
invariants y2 ≤ y2

0 + 2x required for proving bounds in Figure 2(a). 	

– PostPredicate Operator

PostPredicateAS(E, p) = PostPredicateA(Saturate(E, S), p)

376 B.S. Gulavani and S. Gulwani

– Eliminate Operator
The eliminate operator for the new domain AS involves saturating the input
abstract element and then eliminating not only the given variable x, but also
all the variables corresponding to expressions from S that involve x.

EliminateAS (E, x) = EliminateA(Saturate(E, S), Vx)

where Vx = {x} ∪ {Ze | e ∈ S and change to x results in change to e}.
– Widen Operator

WidenAS (E1, E2) = WidenA(Saturate(E1, S), Saturate(E2, S))

4 Linear Domain Lifting Using Max Operator

In this section, we define a domain lifting operation that takes a linear arithmetic
abstract domain A that represents linear constraints over some set of variables
V , and a subset U of V , and produces a domain Ã that can represent linear
constraints over V −U as allowed by A, but allowing for a richer constant term -
one that is constructed using linear combinations of max-linear expressions over
U . A max-linear expression over U is of the form max(e1, . . , en), where each ei is
some linear expression over U . For eg., if A is the difference constraints domain,
then the domain Ã can represent constraints like v1 − v2 ≤ max(u1, 2u2 + u3),
where v1, v2 ∈ V and u1, u2, u3 ∈ U .

The transfer functions for the abstract domain Ã (defined in Section 4.2) make
use of the Witness operator, which we define next.

4.1 Witness Coefficients

Lemma 1. (Farkas Lemma) Let e, ei be some linear arithmetic expressions

without the constant term. If
(

n∧

i=1

(ei ≤ 0)
)

⇒ e ≤ 0, then it must be the case

that there exist non-negative λ’s such that e ≡
n∑

i=1

λiei.

For an implication
(

n∧

i=1

(ei ≤ 0)
)

⇒ e ≤ 0, we define Witness(
n∧

i=1

(ei ≤ 0), e ≤ 0)

to be (λ1, . . . , λn). Note that there may exist multiple witnesses but any single
witness is sufficient for soundness of the transfer functions described below.

Example 3

Witness(i ≤ 0 ∧ −x ≤ 0, i ≤ 0) = (1, 0)
Witness(i − x ≤ 0 ∧ x ≤ 0, i ≤ 0) = (1, 1)

A Numerical Abstract Domain 377

4.2 Transfer Functions

In this section, we describe how to construct the transfer functions for the ab-
stract domain Ã using the transfer functions for the base domain A. The key
idea in the construction is to remove the constant and the part correspond-
ing to variables in U from each inequality in the input(s), and then apply the
corresponding transfer function from the base domain, and then add back an
appropriate symbolic max expression to each inequality in the result.

– Join Operator.

JoinÃ(E1, E2) =
1 Let E1 be

∧

i

(ei ≤ fi) and let E2 be
∧

i

(e′
i ≤ f ′

i);

(where ei, e
′
i are linear over V -U and fi, f

′
i are max-linear over U)

2 E := 	; E′ := JoinA(
∧

i

(ei ≤ 0),
∧

i

(e′
i ≤ 0));

3 Foreach inequality e ≤ 0 ∈ E′,
4 (λi) := Witness(

∧

i

(ei ≤ 0), e ≤ 0); (λ′
i) := Witness(

∧

i

(e′
i ≤ 0), e ≤ 0);

5 f :=
∑

i

λifi; f ′ :=
∑

i

λ′
if

′
i;

6 f ′′ := ComputeMax(f, f ′);
7 if f ′′ �= 	, E := E ∧ (e ≤ f ′′);
8 return E;

The function ComputeMax(f, f ′) either returns denoting that there are too
many arguments to the max function, or returns a possibly max function.

Example 4. Let V = {i, x, x0, n} and U = {x0, n}. Let E1 be i ≤ 0 ∧
−x ≤ −x0 and E2 be i − x ≤ −x0 ∧ x ≤ n. E1 and E2 denote (part of)
the abstract elements at the loop entry and at the loop back-edge after one
loop iteration for the example in Figure 1(c.) Then, using the result of the
witness functions from Example 3, we obtain

JoinÃ(E1, E2) = i ≤ max(0, n − x0)

Observe that the above join operation provides us with the invariant i ≤
max(0, n − x0) required for computing bounds in Figure 1(a). 	

– PostPredicate Operator.

PostPredicateÃ(E, p) = PostPredicateA(E, p)
– Eliminate Operator.

EliminateÃ(E,x) =
1 Let E be

∧

i

(ei ≤ fi);

(where ei are linear over V − U and fi are max-linear over U)
2 E1 := EliminateA(

∧

i

(ei ≤ 0)); E2 := 	;

3 Foreach inequality e ≤ 0 ∈ E1:
4 (λi) := Witness(

∧

i

(ei ≤ 0), e ≤ 0);

5 f :=
∑

i

λifi;

6 E2 := E2 ∧ (e ≤ f);
7 return E2;

378 B.S. Gulavani and S. Gulwani

Note that we require the variables to be eliminated be from the set V − U .
This puts the restriction that the variables in set U are never modified in
the program.

Example 5. Let V = {i, x, x0, n} and U = {x0, n}. Let E be i − x ≤ −x0 ∧
x ≤ n. Consider computing EliminateÃ(E, x). Line 2 of the above algorithm
computes E1 as i ≤ 0. Using the witness (1, 1), we obtain the result i ≤
−x0 + n.

– Implication Operator.

ImpliesÃ(E1, E2) =
1 Let E1 be

∧

i

ei ≤ fi and let E2 be
∧

j

e′
j ≤ f ′

j;

(where ei, e
′
j are linear over V -U and fi, f

′
j are max-linear over U)

2 Let result := true;
3 Foreach inequality e′

j ≤ f ′
j ∈ E2:

4 (λi) := Witness(
∧

i

ei ≤ 0, e′
j ≤ 0); f :=

∑

i

λifi;

5 if not LessEq(f, f ′
j), result := false;

6 return result;

Let f = max(e1, . . . , en) and f ′ = max(e′1, . . . , e
′
n) be max-linear expressions.

LessEq(f, f ′) returns true iff for each ei there exists e′j such that ei ≤ e′j
is valid. For example LessEq(max(x, n), max(x + 1, n)) returns true, whereas
LessEq(max(x, n), max(x + 1, n − 1)) returns false.

– Widen Operator.
The widen operator WidenÃ(E1, E2) simply returns the conjunction of those
constraints from E1 that are also implied by E2.

5 A New Numerical Abstract Domain

In this section, we discuss the design choices made while applying the domain
lifting operators for obtaining the numerical abstract domain that we use for
timing analysis. We pick any linear relational abstract domain A and lift it us-
ing the domain lifting operation based on expression abstraction (as described
in Section 3). We use the operators multiplication (x × y), logarithm (�log x�),
square-root (�√x�), and exponentiation (2x) to construct the set S of expres-
sions. The set S of expressions involving these operators can either be provided
by the programmer 3 (since they may have a better idea of what kinds of bounds
the program may entail) or it can be constructed automatically using some ini-
tial heuristic such as we can apply the unary operators (logarithm, square-root,

3 Note that we are not requiring the programmer to provide the exact bound. We are
simply requiring the programmer to provide the base expressions and the bounds
would be automatically computed by taking linear combinations of these expressions
and additionally the expressions obtained by applying max operator. Furthermore,
computation of bounds requires establishing the inductive invariants, which are usu-
ally much harder than the bound itself.

A Numerical Abstract Domain 379

exponentiation) to all program variables once and then apply the only binary
operator (multiplication) to all pairs of resulting expressions. This will allow our
abstract domain to represent linear relationships over expressions like n × m,
n�log m�, etc. We use the following inference rules R to reason about these op-
erators. (These specific rules were chosen because they appear to capture the
reasoning required to compute bounds over the chosen set of non-linear opera-
tors for a large class of programs.) For simplicity, we overload the notation Zx

to denote x, if x is a program variable. (Recall that the notation Zx normally
denotes the special variable associated with an expression x ∈ S).

1. (Zx ≤ c) ⇒ (Z2x ≤ 2c)
2. (Zx ≤ Zy + c) ⇒ (Z2x ≤ 2c × Z2y)
3. (Zx ≤ c) ∧ (Zx > 0) ⇒ (Z�log x� ≤ �log c�)
4. (Zx ≤ c × Zy) ∧ (Zx > 0) ∧ (Zy > 0) ⇒ (Z�log x� ≤ �log c� + Z�log y�)
5. (

∑

i

aiZxi ≥ a) ∧ (Zy ≥ 0) ⇒ (
∑

i

aiZxiy ≥ ay)

6. (
∑

i

aiZxi = a) ⇒ (
∑

i

aiZxiy = aZy)

7. true ⇒ Z√x2 = max(Zx, −Zx)
8. true ⇒ Zx2 ≥ 0
9. (Zx2 ≤ ∑

i

aiZxi) ∧ ∧

i

ai ≥ 0 ∧ ∧

i

Zxi ≥ 0 ⇒ (Zx ≤ ∑

i

√
aiZ√xi

)

This rule is useful to compute an upper bound on a variable if an upper
bound has been computed on its square.

The application of the above rules requires querying the abstract domain for
constraints between a specific set of variables. These queries can be performed
by existential elimination of all variables other than the specific set of variables.

We then apply the domain construction discussed in Section 4 on the domain
AS obtained above to obtain the domain ÃS . For this purpose, we choose U to be
the set of the input variables since we are ultimately interested in finding bounds
with possibly max expressions over only the input variables. (Recall that U was
the set of variables over which the abstract domain computes max expressions.)

6 Timing Analysis

In this section, we consider the problem of computing upper bounds on the
time complexity of a program expressed as a function of the program inputs.
We assume that each atomic statement is annotated with the units of time that
it takes to execute. (To reduce cluttering in our examples, we assume that a
recursive procedure call instruction and a backward jump instruction takes unit
amount of time, while all other instructions take zero time. In other words, we
estimate a bound on the total number of loop iterations and total number of
recursive procedure call invocations).

Given a program P , we instrument the program with a monitor variable i
that keeps track of the time consumed by the program. The monitor variable i
is initialized to 0 at the beginning of the program, and is incremented by t units
after execution of any instruction that takes t units of time to execute.

380 B.S. Gulavani and S. Gulwani

Table 1. Experimental Results: Column 4 describes the upper bounds computed by
our tool on the number of loop iterations and recursive procedure call invocations.
Column 3 gives the expression set used for computing the bounds shown in Column 4.

Program Time (s) S Upper Bound

Disjunction (Fig1) 0.030 - max(0, y − x0) + max(0, y − z0)
Sequential (Fig1) 0.010 - max(0, n, m)

NonLinear (Fig2) 0.018 y2, y2
0 ,
√

n
√

2n + max(0,−2y0) + 1

ModularMultiply (Fig2) 0.105 jn, n2 n2

ModularSquare (Fig2) 0.098 j2, n2 n(n + 1)/2
Log 0.084 �log n�, �log x� �log n�
Fibonacci 0.138 2n 2n

MergeSort 0.065 n�log n� n�log n�
p1 0.141 - 41
p2 0.022 - max(0, z0)
p3 0.215 �log i�, �log max�, �log size� �log size�
p4 0.163 s2, bs, ts s2

p5 0.025 - m + 1
p6 0.031 - N

Claim. Let u1, . . , un be the upper bounds on the instrumented monitor variable
i at different locations where i is incremented, expressed as a function of program
inputs. Then, max(0, u1, . . , un) denotes an upper bound on the timing complexity
of the program. 4

Note that we simply cannot compute an upper bound on the monitor variable
i at the end of the program to obtain an upper bound on the timing complexity
of the program. For example, consider a program with a non-terminating loop.
0 is a valid upper bound on i at the end of the loop (since at an unreachable
program location, any fact holds), but does not describe an upper bound on the
timing complexity of the program.

We compute upper bounds on the monitor variable i at different program
locations by performing abstract interpretation of the program over the numer-
ical domain ÃS described in Section 5, which provides us invariants at different
program locations. An appropriate upper bound on i at a program location π is
then obtained by considering the invariant I at π and existentially quantifying
out all variables except i and the input variables from I. We can use a similar
strategy for computing lower bounds on i. (An advantage of computing lower
bounds is that they can be used as a measure of precision of our analysis for
computing upper bounds.)

7 Experiments

We have implemented a prototype of our numerical abstract domain on top of
the Apron [1] numerical abstract domains library. We have used this abstract
domain in an abstract interpreter to bound the total number of loop itera-
tions and the total number of recursive procedure calls invocations in several
4 This assumes that the input variables are not modified in the program. (If they are,

then we can create their copies and modify them instead.)

A Numerical Abstract Domain 381

C programs 5. Our abstract interpreter is implemented in ocaml and uses the CIL
infrastructure to parse input C programs. We summarize the results of running
our tool on a set of benchmarks in Table 1.

The programs p* are taken from some benchmarks (originally from Octagon
library distribution) presented in a paper that describes and compares some
state-of-the-art techniques for proving program termination[10]. Most of the re-
maining programs are presented in Section 1. Fibonacci and MergeSort are
recursive programs. Log uses a multiplicative counter for loop iteration. The
programs were analyzed using (cartesian-product) combination of polyhedra and
octagon abstract domains lifted with expression abstraction and interval domain
lifted with max operator.

For most of the programs shown in Table 1, the computed upper bounds are
precise (i.e., they match the lower bounds computed by our tool on the moni-
tor variable). These benchmarks include programs whose termination cannot be
established by simple linear ranking functions [22], but requires more sophisti-
cated techniques as in [23,7,8,10]. This shows that not only our abstract domain
is precise enough to express exact upper bounds but also that the abstract op-
erations are precise enough to compute these bounds. The number of required
input expressions is relatively small and simple heuristics (like the one described
in Section 5) can be used to infer these automatically.

Our analyzer takes for each program a set of interesting expressions to track
during the analysis. Although currently we provide these expressions manually, we
intend to use some heuristics in the future to automatically infer these expressions.

8 Related Work

Inference-rule based reasoning has often been used for building efficient (but
incomplete) decision procedures for otherwise intractable logics [18,4]. The idea
is to partially axiomatize the semantics of the underlying operators such that it
leads to efficient reasoning as well as is precise enough to capture the reasoning
required in the common case. In this paper, we show how to apply inference-
rule based reasoning in the context of abstract interpreters as opposed to simply
decision procedures. Secondly, we focus on a different domain, one that involves
numerical operators.

There has been work on extending linear arithmetic abstract domains to also
represent linear constraints over expressions constructed using uninterpreted
functions [9,14]. In contrast, our domain constructor allows extension to ex-
pressions with arbitrary operators (as opposed to only uninterpreted functions),
but represents linear constraints only over the given set of expressions.

There has been work on discovering restricted form of quadratic inequali-
ties [5], polynomial inequality invariants [2], and equality invariants [24,21] of
bounded degree. In contrast, our domain lifting operation allows for discover-
ing arbitrary polynomial inequalities as well as non-polynomial inequalities in a
uniform setting, but over a given set of expressions.
5 Available at http://www.cfdvs.iitb.ac.in/∼bhargav/timing.html

382 B.S. Gulavani and S. Gulwani

[20] describes a technique based on solving recurrences for computing a non-
negative constant that represents the number of loop iterations required for
reaching a particular error state. In contrast, we produce symbolic bounds.

There is a large body of work on estimating worst case execution time (WCET)
in the embedded and real-time systems community [3,15,16,17,26]. The WCET
research is more orthogonally focused on distinguishing between the complexity
of different codepaths and low-level modeling of architectural features such as
caches, branch prediction, instruction pipelines. For establishing loop bounds, the
WCET techniques either require user annotation, or use simple techniques based
on pattern matching or a simple interval analysis. In contrast, we present a path-
insensitive analysis, but one that automatically estimates precise (non-linear and
disjunctive) bounds on loop iterations.

For example, the AiT-WCET tool uses combination of interval-based abstract
interpretation and pattern matching. Loop bound analysis of BoundT-WCET
tool is based on Presburger arithmetics. Both these are much less precise than
our abstract domain which is not only relational but can also represent non-
linear bounds. [15] describes an interval analysis based approach (as opposed
to our more precise relational linear analysis) for automatic computation of
loop bounds. However, it analyzes single-path executions of programs (i.e., using
input data corresponding to one execution). Hence, their bounds are in real
seconds, while our bounds are symbolic and functions of inputs. The analysis
described in [16] is aimed at synchronous programs and linear hybrid systems.
The only similarity is that they model delays in such programs using simple
counters. We also use counter instrumentation; however our abstract domain
construction allows us to compute disjunctive and non-linear bounds using a
base linear abstract domain. Bagnara and Zaccagnini describe how to solve a
class of recursive equations that are used to express complexity measures in
several systems [3]. However, the class of equations that they handle are far
apart from cost relations generated from real programs.

9 Conclusion

We have presented two domain lifting operations to make linear numerical ab-
stract domains more precise. Domain lifting via expression abstraction enables
computation of non-linear invariants. Domain lifting by max expressions pro-
vides a compact representation for disjunctive bounds. The importance of these
domain lifting operations is reflected by the fact that we have been able to auto-
matically compute precise timing bounds for several benchmark programs that
have recently been used by the state-of-the-art techniques for proving termina-
tion of programs.

Acknowledgments. The first author was supported by Microsoft Corporation
and Microsoft Research India under the Microsoft Research India PhD Fellow-
ship Award.

A Numerical Abstract Domain 383

References

1. APRON. Numerical abstract domain library (2007),
http://apron.cri.ensmp.fr/library

2. Bagnara, R., Rodŕıguez-Carbonell, E., Zaffanella, E.: Generation of Basic Semi-
algebraic Invariants Using Convex Polyhedra. In: Hankin, C., Siveroni, I. (eds.)
SAS 2005. LNCS, vol. 3672, pp. 19–34. Springer, Heidelberg (2005)

3. Bagnara, R., Zaccagnini, A.: Checking and bounding the solutions of some recur-
rence relations. Quaderno 344, Università di Parma, Italy (2004)

4. Bingham, J.D., Rakamaric, Z.: A logic and decision procedure for predicate ab-
straction of heap-manipulating programs. In: Emerson, E.A., Namjoshi, K.S. (eds.)
VMCAI 2006. LNCS, vol. 3855, pp. 207–221. Springer, Heidelberg (2005)

5. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: Design and implementation of a special-purpose static program ana-
lyzer for safety-critical real-time embedded software. In: Mogensen, T.Æ., Schmidt,
D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp.
85–108. Springer, Heidelberg (2002)

6. Bradley, A., Manna, Z., Sipma, H.: Termination of polynomial programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 113–129. Springer, Heidel-
berg (2005)

7. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer,
Heidelberg (2005)

8. Bradley, A.R., Manna, Z., Sipma, H.B.: The polyranking principle. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 1349–1361. Springer, Heidelberg (2005)

9. Chang, B.-Y.E., Leino, K.R.M.: Abstract interpretation with alien expressions and
heap structures. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 147–163.
Springer, Heidelberg (2005)

10. Chawdhary, A., Cook, B., Gulwani, S., Sagiv, M., Yang, H.: Ranking abstractions.
In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 148–162. Springer,
Heidelberg (2008)

11. Colón, M., Sipma, H.: Practical methods for proving program termination. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 442–454.
Springer, Heidelberg (2002)

12. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI, pp. 415–426 (2006)

13. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL, pp. 84–97 (1978)

14. Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: PLDI, pp. 376–386
(2006)

15. Gustafsson, J., Ermedahl, A., Sandberg, C., Lisper, B.: Automatic derivation of
loop bounds and infeasible paths for wcet analysis using abstract execution. In:
RTSS, pp. 57–66 (2006)

16. Halbwachs, N., Proy, Y.-E., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. Form. Methods Syst. Des. 11(2), 157–185 (1997)

17. Healy, C.A., Sjodin, M., Rustagi, V., Whalley, D.B., van Engelen, R.: Support-
ing timing analysis by automatic bounding of loop iterations. Real-Time Sys-
tems 18(2/3), 129–156 (2000)

http://apron.cri.ensmp.fr/library

384 B.S. Gulavani and S. Gulwani

18. Jhala, R., McMillan, K.: Array abstractions from proofs. In: Damm, W., Hermanns,
H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg (2007)

19. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

20. Kroening, D., Weissenbacher, G.: Counterexamples with loops for predicate ab-
straction. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 152–165.
Springer, Heidelberg (2006)

21. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.
In: POPL, pp. 330–341 (2004)

22. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004)

23. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41. IEEE,
Los Alamitos (2004)

24. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation
using gröbner bases. In: POPL, pp. 318–329 (2004)

25. Turing, A.: Checking a large routine, pp. 70–72 (1989)
26. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,

Bernat, G., Ferdinand, C., Heckmann, R., Mueller, F., Puaut, I., Puschner, P.,
Staschulat, J., Stenström, P.: The Determination of Worst-Case Execution Times—
Overview of the Methods and Survey of Tools. ACM Transactions on Embedded
Computing Systems (TECS) (2007)

Scalable Shape Analysis for Systems Code

Hongseok Yang1, Oukseh Lee2, Josh Berdine3, Cristiano Calcagno4,
Byron Cook3, Dino Distefano1, and Peter O’Hearn1

1 Queen Mary, Univ. of London
2 Hanyang University, Korea

3 Microsoft Research
4 Imperial College

Abstract. Pointer safety faults in device drivers are one of the leading
causes of crashes in operating systems code. In principle, shape analysis
tools can be used to prove the absence of this type of error. In practice,
however, shape analysis is not used due to the unacceptable mixture
of scalability and precision provided by existing tools. In this paper we
report on a new join operation �† for the separation domain which aggres-
sively abstracts information for scalability yet does not lead to false error
reports. �† is a critical piece of a new shape analysis tool that provides an
acceptable mixture of scalability and precision for industrial application.
Experiments on whole Windows and Linux device drivers (firewire, pci-
driver, cdrom, md, etc.) represent the first working application of shape
analysis to verification of whole industrial programs.

1 Introduction

Pointer safety faults in device drivers are one of the leading causes of operating
system crashes. The reasons for this are as follows:

– The average Windows or Linux computer has numerous (i.e. >15) device
drivers installed,

– Most device drivers manage relatively complex combinations of shared
singly- and doubly-linked lists,

– Device drivers are required to respect many byzantine invariants while ma-
nipulating data structures (e.g. pieces of data structures that have been
paged out can only be referenced at low thread-priority). This results in
complex and nonuniform calling conventions, unlike typical benchmark code.

By pointer safety we mean that a program does not dereference null or a
dangling pointer, or produce a memory leak. In principle a shape analysis tool
can be used to prove the absence of pointer safety violations: shape analysis is
a heap-aware program analysis with accurate handling of deep update. Further-
more, device drivers are small (e.g. <15k LOC) and usually do not use trees or
DAGs—thus making device drivers the perfect application for shape analysis.

So, why aren’t shape analysis tools regularly applied to device drivers? The
reason is that today’s shape analysis tools are either scalable, or precise, but

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 385–398, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

386 H. Yang et al.

Table 1. Results with the �† extension of SpaceInvader on Windows and Linux device
drivers. Experiments were performed on an Intel Core Duo 2.0GHz with 2GB. Each er-
ror found was confirmed manually. Errors in the Windows device driver (t1394Diag.c)
were confirmed by the Windows kernel team. The time and space columns contain the
numbers for the analysis of fixed versions of the drivers (and so report time to find
proofs of pointer safety).

Program LOC Sec MB Memory leaks Dereference errors False error rate

scull.c 1010 0.36 0.25 1 0 0%

class.c 1983 8.21 7.62 2 1 0%

pci-driver.c 2532 0.97 1.72 0 0 0%

ll rw blk.c 5469 887.94 485.87 3 1 0%

cdrom.c 6218 103.26 71.52 0 2 0%

md.c 6635 1585.69 847.63 6 5 0%

t1394Diag.c 10240 135.05 68.81 33 10 0%

not both. Numerous papers have reported on the application of accurate shape
analysis to small examples drawn from real systems code; other papers have
reported on very imprecise analysis on large code bases. The verification of whole
industrial programs, however, requires both.

Towards the elusive goal of finding a scalable and precise analysis, in this
paper we describe a new join operation, �† , for shape analysis tools based on the
separation domain [4,10,17]. �† provides a mixture of scalability and precision
sufficient for the problem of proving pointer safety of whole industrial device
drivers. A join operation (in the terminology of abstract interpretation [9]) takes
a disjunction of two abstract states, each of which describes (in our setting) a
set of concrete heaps that may arise during program execution. �† attempts to
construct a common generalization of the states. In case the attempt succeeds (�†
is a partial join operator) the generalization subsequently replaces the original
disjunction, leading to fewer cases to consider during the shape analysis.

In order to demonstrate the scalability and accuracy of �† , we have imple-
mented it in our shape analysis tool SpaceInvader, together with an abstract
model of the operating system environment that we have developed. Then, we
have applied the resulting tool to numerous Windows and Linux device drivers.

2 Experiments

Before describing the technical details of �† , we first present the results of an
experimental evaluation that demonstrates its scalability and precision. Table 1
displays the results of experiments with the �† extension of SpaceInvader on
seven device drivers. Each of the drivers manipulates multiple, sometimes nested,
sometimes circular, linked lists. One driver, t1394Diag.c, is the IEEE 1394
(firewire) driver for the Windows operating system. The drivers pci-driver.c,
ll rw blk.c, cdrom.c and md.c are from an industrial version of Embedded
Linux, given to us by ETRI. The driver class.c is from a standard Linux

Scalable Shape Analysis for Systems Code 387

distribution, and scull.c is a Linux char driver used in the experiments in [7]1

Each of these drivers is analyzed in the context of environment code which non-
deterministically generates input data structures, and calls the driver’s dispatch
routines repeatedly. In essence, each driver is supplied with a particular pre-
condition (expressed as C code, as in [7]) but the model of system calls can be
reused from driver to driver.

During our experiments SpaceInvader was used in a stop-first configuration,
where the analyzer halts if it cannot prove that a dereferencing operator is safe or
if it cannot prove that a cell is reachable. When we encountered bugs we would
fix them, and then run our tool again. The time and space columns in Table
1 report the numbers for the analysis of our bug-fixed versions of the drivers.
Note that, during our experiments, no false errors were found. Also, note that
for the fixed drivers SpaceInvader proved pointer safety. No known tool with
scalability reported to programs up to 10k LOC can match that precision.

Caveats. Device drivers often use circular doubly-linked lists. The first caveat is
that, in several cases, we modified the examples in order to operate over singly-
linked lists, in order to aid our analysis. Pointer safety can often be proved
using singly-linked semantics even though the code is designed to operate over
doubly-linked lists (it is rare for code to actually make use of the back pointers).
Second, there is a significant caveat regarding arrays. SpaceInvader currently
presumes memory safety of arrays, by returning a nondeterministic value for any
array dereferencing. The treatment of pointer safety can still be sound under
such an assumption, and in the (slightly modified) Linux drivers our analyzer
encountered no false alarms. However, the 1394 device driver contains arrays
of pointers, which are beyond what our method can handle: we modified the
code such that those arrays have size 1 and can be treated as pointer variables.
This, of course, is just one instance of the fact that the problems of analyzing
arrays and pointers are not independent. We regard this issue as an avenue
for interesting future work. Finally, note that SpaceInvader currently only
implements shape analysis for sequential programs, whereas device drivers of
course are multi-threaded. As reported in [12], a sequential shape analysis tool
such as SpaceInvader can be used to find and then verify resource invariants
for device drivers, thereby proving pointer safety for the concurrent program.
However, we emphasize that developing a scalable, precise shape analysis for
concurrent programs is an open problem; only very recently, some interesting
ideas such as [5,12,18] have been proposed, which give promising new lines of
attack, but on which further, especially experimental, work is needed.

3 Abstract States and Setting

In this section we describe the abstract states that SpaceInvader analysis
operates over. In the next section we will describe the details of �† . Due to space

1 This is a modified version of the Linux scull driver, where arrays are assumed to be
of size 1.

388 H. Yang et al.

constraints we will assume that the reader is somewhat familiar with the basics
of program analysis and shape analysis.

SpaceInvader operates over abstract states expressed as separation logic
formulae. Following [4,10,17], we call these abstract states symbolic heaps. The
symbolic heaps q, are defined by the following grammar:

e ::= x | x′ | 0 P ::= · · ·
Π ::= Π ∧ Π | e=e | e �=e | true Σ ::= Σ ∗ Σ | emp | P | true
q ::= err | Π ∧ Σ

A symbolic heap q can be err, denoting the error state, or it has the form Π ∧Σ,
where Π and Σ describe properties of variables and the heap, respectively. The
separating conjunction Σ0 ∗ Σ1 holds for a heap if and only if the heap can be
split into two disjoint parts, one making Σ0 true and the other making Σ1 true.
emp means the empty heap, and true holds for all heaps. The primed variables
x′ in a symbolic heap are assumed to be (implicitly) existentially quantified.

P is a collection of basic predicates. One instantiation is

k ::= PE | NE P ::= (e �→ e) | ls k e e

Here, e �→ f means a heap with only one cell e that stores f . The list segment
predicate ls k e0 e1 denotes heaps containing one list segment from e0 to e1 only.
This list segment starts at cell e0 and its last cell stores e1. The list is possibly
empty if k = PE; otherwise (i.e., k = NE), the list is not empty. The meanings of
the segment predicates can be understood in terms of the definitions

ls PE e f ⇐⇒ (e = f ∧ emp) ∨ (ls NE e f),
ls NE e f ⇐⇒ (e �→ f) ∨ (∃y′. e �→ y′ ∗ ls NE y′ f).

These definitions are not within the shape domain (e.g., the domain does not
have ∨), but are mathematical definitions in the metalanguage, used to verify
soundness of operations on the predicates. Note that there is no problem with
the recursion in ls NE : the recursive instance is in a positive position, and the
definition satisfies monotonicity properties sufficient to ensure a solution.

A different instantiation of P gives us a variation on [3].2

k ::= PE | NE P ::= (e �→�f : �e) | ls k φ e e

Here, the points-to predicate (e �→�f : �e) is for records with fields �f, and φ is a
binary predicate that describes the shape of each node in a list. The definition
of the nonempty list segment here is

ls NE φ e f ⇐⇒ φ(e, f) ∨ (∃y′. φ(e, y′) ∗ ls NE y′ f)

and the φ predicate gives us a way to describe composite structures.

2 This instantiation assumes the change of the language where we have heap cells with
multiple fields, instead of unary cells.

Scalable Shape Analysis for Systems Code 389

For example, if f is a field, let φf be the predicate where φf(x, y) is x �→ f : y.
Then using φf as φ, the formula ls NE φ e f describes lists linked by the f field.
The formula

(x �→ f : y′, g : z′) ∗ ls PE φf y′ x ∗ ls PE φg z′ x

describes two circular linked lists sharing a common header, where one list uses f
for linking and the other uses g. Finally, if φ itself describes lists, as when φ(x, y)
is the predicate ∃x′. (x �→ g : x′, f : y) ∗ ls PE φg x′ 0, then ls NE φ e f describes a
nonempty linked list where each node points to a possibly empty sublist, and
where the sublists are disjoint. Combinations of these kinds of structures, nested
lists and multiple lists with a common header node, are common in device drivers.

The experiments in this paper are done using this second instantiation of P . It
is similar to the domain from [3], but uses predicates for both possibly empty and
necessarily nonempty list segments. The reader might have noticed that having
ls PE does not give us any extra expressive power: its meaning can be represented
using two abstract states, one a emp and the other a ls NE. However, having ls PE

impacts performance, as it represents disjunctive information, succinctly.
SpaceInvader implements a context sensitive, flow sensitive analysis, us-

ing a variant of the RHS interprocedural dataflow analysis algorithm [22,11]. It
employs join to make procedure summaries smaller. Following [21,23], SpaceIn-
vader also passes only the reachable portion of the heap to a procedure and
aggressively discards intermediate states. The mixture of these optimizations—
join, locality, discarding states—is key; turning off any one of the optimizations
results in the analysis using more than the 2GB RAM on at least one of the
examples, causing disk thrashing, and then leading to timeout (which we set at
90min). Thus we do not claim that �† alone is the root cause for the performance
found in Table 1, but it is a critical ingredient (c.f., §4.3).

4 A Join for Symbolic Heaps

We now discuss �† . We begin with an intuitive explanation. Later, in §4.1, we
provide a formal definition.

In the framework of abstract interpretation [9], a join operator takes two sym-
bolic states in a program analysis and attempts to find a common generalization.
To see the issue, consider the program

x=0; while (NONDET) { d=malloc(sizeof(Node)); d->next=x; x=d; }

which nondeterministically generates acyclic linked lists. When we run our ba-
sic analysis algorithm, without �† , it returns three symbolic heaps at the end:
(ls NE x 0) ∨ (x �→ 0) ∨ (x= 0 ∧ emp). (Here, for simplicity in the presentation, we
have elided the φ parameter of the ls predicates.)

Now, if you look at the first two disjuncts there is evident redundancy: If
you know that either x points to 0 or a nonempty linked list, then that is the
same as knowing you have a nonempty linked list. So, �† replaces the first two

390 H. Yang et al.

Table 2. Creation routines. Reports the number of states in the postcondition with
join turned on or off, and the base list predicates chosen to be either nonempty ls only
(NE), or both nonempty and possibly empty ls (PE).

NO JOIN JOIN
Program NE PE NE PE

onelist create.c 3 3 2 1

twolist create.c 9 9 4 1

firewire create.c 3969 3087 32 1

disjuncts with just the list segment formula, giving us (ls NE x 0) ∨ (x= 0 ∧ emp).
It is possible to take yet a further step, using the notion of a possibly empty list
segment. If you know that either you have a nonempty list, or that x= 0 ∧ emp,
then that is the same as having ls PE x 0, and �† produces this formula from the
previous two. Thus, using �† we have gone from a position where we have three
disjuncts in our postcondition, to where we have only one. The saving that this
possibly gives us is substantial, especially for more complicated programs or
more complicated data structures.

Table 2 gives an indication. onelist create.c in the table is the C program
above that nondeterministically creates a list and twolist create.c is a simi-
lar C program that creates two disjoint linked lists. firewire create.c is the
environment code we use in the analysis of the 1394 firewire driver: it creates
five cyclic linked lists, which share a common header node, with head pointers
in some of the lists, and with nested sublists.

There are two points to note. The first is just the great saving, in number of
states (e.g., from 3087 down to 1). This is particularly important with environ-
ment code, like firewire create.c, which is run as a harness to generate heaps
on which driver routines will subsequently be run. The second is the distinction
between NE and PE. In the table we keep track of two versions of our analysis,
one where ls NE is the only list predicate used by the analysis, and another where
we use both ls NE and ls PE.

This illustration shows some of the aspects of �† , but not all. In the illustration
�† worked perfectly, never losing any information, but this is not always the case.
Part of the intuition is that you generalize points-to facts by list segments when
you can. So, considering y �→ 0 ∗ (ls NE x 0) ∨ (ls NE y 0) ∗x �→ 0, �† will produce
(ls NE y 0) ∗ (ls NE x 0). This formula is less precise than the disjunction, in that it
loses the information that one or the other of the lists pointed to by x and y has
length precisely 1. Fortunately, it is unusual for programs to rely on this sort of
disjunctive information.

We have tried to keep the intuitive description simple, but the truth is that
�† must deal with disequalities, equalities, and generalization of “nothing” by
ls PE in ways that are nontrivial. It also must deal with the existential (primed)
variables specially. In the end, for instance, when �† is given

q0 ≡ x�=y ∧ (ls NE x 0 ∗ y �→ 0) and
q1 ≡ x�=y ∧ x′ �=y ∧ (x �→ x′ ∗ ls NE y x′ ∗ ls NE x′ 0),

Scalable Shape Analysis for Systems Code 391

it will produce x�=y ∧ ls NE x v′ ∗ ls NE y v′ ∗ ls PE v′ 0. Now we turn to the formal
definition.

4.1 Formal Definition

In this section, we define the (partial) binary operator �† on symbolic heaps,
considering only the simple linked lists (the first instantiation of P). The �† for
nested lists will be described in the next section.

�† works in two stages. Suppose that it is given symbolic heaps (Π0 ∧Σ0) and
(Π1 ∧Σ1) that do not share any primed variables. In the first stage, �† constructs
Σ and a ternary relation ε′ on expressions such that

∀i ∈ {0, 1}.
(∧

{ei=x′ | (e0, e1, x
′) ∈ ε′}

)
∧ Σi =⇒ Σ. (1)

Intuitively, this condition means that Σ overapproximates both Σ0 and Σ1,
and that ε′ provides witnesses of existential (primed) variables of Σ for this
overapproximation. For instance, if Σ0 ≡ (ls NE x 0 ∗ y �→ 0) and Σ1 ≡ (x �→ x′ ∗
ls NE y x′ ∗ ls NE x′ 0), then �† returns

Σ ≡ ls NE x v′ ∗ ls NE y v′ ∗ ls PE v′ 0, ε′ ≡ {(0, x′, v′)}. (2)

In this case, the condition (1) is

0=v′ ∧ (ls NE x 0 ∗ y �→ 0) =⇒ (ls NE x v′ ∗ ls NE y v′ ∗ ls PE v′ 0)
x′=v′ ∧ (x �→ x′ ∗ ls NE y x′ ∗ ls NE x′ 0) =⇒ (ls NE x v′ ∗ ls NE y v′ ∗ ls PE v′ 0).

This means that both Σ0 and Σ1 imply Σ when 0 and x′ are used as witnesses
for the (implicitly) existentially quantified variable v′ of Σ.

After constructing Σ and ε′, the �† operator does one syntactic check on ε′, in
order to decide whether it has lost crucial sharing information of input symbolic
heaps. Only when the check succeeds does �† move on to the second stage. (We
will describe the details of the first stage, including the check on ε′, later.)

In the second stage, the �† operator computes an overapproximation Π of Π0

and Π1:

Π
def=

∧
⎛

⎝
{e=f | e=f has no primed vars, it occurs in Π0 and Π1}
∪ {e �=f | e �=f has no primed vars, it occurs in Π0 and Π1}
∪ {x′ �=0 | (e0, e1, x

′) ∈ ε′ and ei �=0 occurs in Πi}

⎞

⎠ .

This definition says that �† keeps an equality or disequality in Π if it appears
in both Π0 and Π1 and does not contain any primed variables, or if it is of the
form x′ �=0 and its witness ei for the i-th symbolic heap is guaranteed to be dif-
ferent from 0. Both cases are considered here in order to deal with programming
patterns found in device drivers. For instance, x′ �=0 in the second case should
be included, because some drivers store 0 or 1 to a cell, say, x, depending on
whether a linked list y is empty, and subsequently, they use the contents of cell
x to decide the emptiness of the list y. The computed Π and the result Σ of the
first stage become the output of �† .

392 H. Yang et al.

Computation of Σ, ε′: We now describe the details of the first stage of �† . For
this, we need a judgment

Σ0, Σ1, ε � Σ, ε′, δ0, δ1

where δi is a binary relation on expressions in Σi. This judgment signifies that
Σ0 and Σ1 can be joined to give Σ and a ternary relation ε′ for witnesses.
Furthermore, the judgment ensures that ε′ extends the given ε, and that δi

records (ei, fi) of all ls k ei fi in Σi that have been generalized to a possibly
empty list during the join; these δi components are used later to decide whether
this join to Σ has lost too much information and should, therefore, be discarded.
For instance, we have

(ls NE x 0 ∗ y �→ 0), (x �→ x′ ∗ ls NE y x′ ∗ ls NE x′ 0), ∅
� (ls NE x v′ ∗ ls NE y v′ ∗ ls PE v′ 0), {(0, x′, v′)}, ∅, {(x′, 0)}.

which means that Σ0 ≡ (ls NE x 0 ∗ y �→ 0) and Σ1 ≡ (x �→ x′ ∗ ls NE y x′ ∗ ls NE x′ 0)
are joined to Σ ≡ (ls NE x v′ ∗ ls NE y v′ ∗ ls PE v′ 0). The judgment also says that v′

in Σ corresponds to 0 in Σ0 and x′ in Σ1. Note that the δ1 component of the
judgment is {(x′, 0)}, and it reflects the fact that ls NE x′ 0 in Σ1 is generalized
to a possibly empty list and results in ls PE v′ 0 in Σ.

The derivation rules of the � predicate are given in Figure 1. The first two
rules deal with the cases when emp or true appear in both Σ0 and Σ1. The third
rule has to do with generalizing two lists or abstracting a points-to to a list,
and the last two rules are about generalizing (or synthesizing) possibly empty
lists. Note that when possibly empty lists are introduced by the last two rules,
the appropriate δi component is extended with the information about the ls
predicate of Σi that supports this generalization.

The first stage of �† works as follows:

1. �† searches for Σ, ε′, δ0, δ1 for which Σ0, Σ1, ∅ � Σ, ε′, δ0, δ1 can be derived
using the rules in Figure 1. This proof search proceeds by viewing rules
backward from conclusion to premise. It searches for a rule whose conclusion
has the left hand side matching with Σ0, Σ1, ε and whose side condition is
satisfied with this matching. Once such a rule is found, the search modifies
Σ0, Σ1, ε such that they fit the left hand side of the � judgment in the
premise. The search continues with this modified Σ0, Σ1, ε, until it hits the
base case (i.e., the first rule in Figure 1). Figure 2 shows an example proof
search. If the search fails, the join fails.

2. �† checkswhether for all (e0, e1, e), (f0, f1, f) ∈ ε′ ∪{(e, e, e) | e not primed var}
and all i ∈ {0, 1},

(
ei = fi ∧ ei �= 0 =⇒ (e1−i, f1−i) ∈ eq(δ1−i)

)
,

where eq(δi) is the least equivalence relation containing δi. Intuitively this
condition amounts to the following: consider Σ0 and Σ1 viewed as graphs
with edges for �→ and ls, and then identify vertices according to the returned
δ’s, then they should be isomorphic via ε′ ∪ {(e, e, e) | e not primed var}.

Scalable Shape Analysis for Systems Code 393

A(e, f) ::= (e �→ f) | ls k e f EQ = {(e, e, e) | e is not a primed var}

PE � NE = NE � PE = PE � PE = PE NE � NE = NE

A(e, f) � A(e, f) = A(e, f) (ls k0 e f) � (ls k1 e f) = (ls (k0 � k1) e f)
(e �→ f) � (ls k e f) = (ls k e f) � (e �→ f) = ls k e f

emp, emp, ε � emp, ε, ∅, ∅
emp

Σ0 , Σ1 , ε � Σ , ε′ , δ0 , δ1

true ∗ Σ0, true ∗ Σ1, ε � true ∗ Σ, ε′, δ0, δ1
true

Σ0 , Σ1 , ext(ε, f0, f1, f) � Σ , ε′ , δ0 , δ1

A0(e0, f0) ∗ Σ0 , A1(e1, f1) ∗ Σ1 , ε � (A0(e, f) � A1(e, f)) ∗ Σ , ε′ , δ0 , δ1
match

(when (e0, e1, e) ∈ (ε ∪ EQ) ∧ combε(f0, f1)= f)

Σ0 , Σ1 , ext(ε, f0, e1, f) � Σ , ε′ , δ0 , δ1

(ls k e0 f0) ∗ Σ0 , Σ1 , ε � (ls PE e f) ∗ Σ , ε′ , δ0∪(e0, f0) , δ1
PE-left

(when (e0, e1, e) ∈ (ε∪ EQ) ∧ e1
∈ MayAlloc(Σ1) ∧ combε(f0, e1)= f)

Σ0 , Σ1 , ext(ε, e0, f1, f) � Σ , ε′ , δ0 , δ1

Σ0 , (ls k e1 f1) ∗ Σ1 , ε � (ls PE e f) ∗ Σ , ε′ , δ0 , δ1∪(e1, f1)
PE-right

(when (e0, e1, e) ∈ (ε∪ EQ) ∧ e0
∈ MayAlloc(Σ0) ∧ combε(e0, f1)= f)

Here (a) we write X∪x instead of X∪{x}; (b) ext(ε, e0, e1, e) is (ε∪(e0, e1, e))−EQ; (c)
MayAlloc(Σ) is the set of expressions that appear on the left hand side of a points-to
predicate or as a first expression argument of ls in Σ; (d) combε is a function defined as:

combε(e0, e1) =

⎧
⎨

⎩

e if (e0, e1, e) ∈ ε for some e
e0 if e0=e1 and e0 is not a primed var
x′ for some x′
∈ FV(ε, e0, e1) otherwise

Fig. 1. Rules for �

Only when the check succeeds does the first stage of �† return Σ, ε′. For
instance, given Σ0 ≡ (x �→ y) ∗ ls NE y 0 and Σ1 ≡ ls NE x 0 ∗ (y �→ 0), the proof
search in the previous step succeeds with

Σ ≡ ls NE x y′ ∗ ls NE y 0, ε′ ≡ {(y, 0, y′)}, δ0 ≡ δ1 ≡ ∅.

However, the final check on ε′ fails, since y in the Σ0 symbolic heap is related
to both 0 (by ε′) and y (by default) in Σ1. Thus, the join fails. Note that the
failure is desired in this case since Σ0 and Σ1 describe heaps with different
shapes.

4.2 Composite Structures

In order to handle composite structures, such as nested lists, we adjust the def-
inition of �† in the previous section. Specifically, we change the rules for the �
relation in Figure 1. Firstly, we modify the third rule, which is used to generalize

394 H. Yang et al.

emp , emp , ε′ � emp , ε′ , ∅ , ∅
emp

emp , (ls NE x′ 0) , ε′ � ls PE v′ 0 , ε′ , ∅ , {(x′, 0)}
PE-right

(y �→ 0) , (ls NE y x′ ∗ ls NE x′ 0) , ε′ � ls NE y v′ ∗ ls PE v′ 0 , ε′ , ∅ , {(x′, 0)} match

(ls NE x 0 ∗ y �→ 0) , (x �→x′ ∗ ls NE y x′ ∗ ls NE x′ 0) , ∅
� ls NE x v′ ∗ ls NE y v′ ∗ ls PE v′ 0 , ε′ , ∅ , {(x′, 0)}

match

Fig. 2. Example proof search, where ε′ = {(0, x′, v′)}

two ls or points-to predicates, such that it can deal with points-to predicates
with multiple fields �f and a parameterized list-segment predicate. Each of the
new rules, shown in Figure 3, corresponds to one of the four cases of A0 � A1

in the third rule of Figure 1. The first rule combines two points-to predicates
with multiple fields, by extending ε with the targets of all the fields. The other
rules generalize two list-segment predicates (the second rule) or a list segment
and its length-one instance (the third and fourth rules), by looking inside the
two available descriptions of list nodes (denoted φ0 and φ1), and chooses the
more general one (denoted φ0 � φ1). In the third rule of Figure 3, the first input
symbolic heap is decomposed into φ0(e0, f0)[�e/�x′] ∗ Σ0 using a frame inference
algorithm [4] to subtract a symbolic heap φ0(e0, f0)[�e/�x′] such that φ0 can be
�-joined with φ1, leaving Σ0 as a remainder. And similarly in the fourth rule.
Secondly, we change the remaining rules in Figure 1 such that they work with
parameterized list-segment predicates. We simply replace all unparameterized
list-segment predicates ls k e e′ in the rules by parameterized ones ls k φ e e′.

After these changes, �† works for composite structures. For instance, let
φd(x, y) ≡ (x �→ d:y), φ(x, y) ≡ ∃x′. (x �→ d:x′, f:y) ∗ (ls PE φd x′ 0), and ψ(x, y) ≡
(x �→ d:0, f:y). Given two symbolic heaps

(ls NE φx y) ∗ (y �→ d:y′, f:0) ∗ (y′ �→ d:0) ∨ (ls PE ψ xy) ∗ (ls PE φ y 0),

the �† generalizes the list segments from x to y to a possibly empty φ-shaped
list since ψ(x, y) � φ(x, y). Then, it views the two points-to facts on y and y′

as an instantiation φ′(x, y)[y′/x′] of φ′(x, y) ≡ ∃x′. (x �→ d:x′, f:y) ∗ (x′ �→ d:0),
combines these facts with the list y since φ′(x, y) � φ(x, y), and produces

ls PE φx y ∗ ls PE φ y 0.

4.3 Incorporating �† into the Analysis

SpaceInvader incorporates �† together with RHS [22], a now-standard inter-
procedural analysis algorithm. RHS associates a set of symbolic heaps with each
program point, which represents the disjunction of those heaps. �† is applied to
reduce the number of disjuncts in those sets.

Given a set of symbolic heaps at a program point, the analysis takes two
symbolic heaps in the set and applies �† to them. If the application succeeds, the

Scalable Shape Analysis for Systems Code 395

φ0 � φ1 =

⎧
⎨

⎩

φ0 if φ1(x, y) � φ0(x, y) where φ0(x, y) � φ1(x, y) denotes
φ1 if φ0(x, y) � φ1(x, y) a call to a sound theorem prover
undefined otherwise for fresh x, y

Σ0, Σ1, ext(ext(ε, f0, f1, f), g0, g1, g)� Σ, ε′, δ0, δ1

(e0 �→ f:f0, g:g0) ∗ Σ0, (e1 �→ f:f1, g:g1) ∗ Σ1, ε � (e �→ f:f, g:g) ∗ Σ, ε′, δ0, δ1
match1

(when (e0, e1, e) ∈ (ε ∪ EQ) ∧ combε(f0, f1)=f ∧ combε(g0, g1)=g)

Σ0, Σ1, ext(ε, f0, f1, f) � Σ, ε′, δ0, δ1

ls k0 φ0 e0 f0 ∗ Σ0, ls k1 φ1 e1 f1 ∗ Σ1, ε � ls (k0�k1) (φ0�φ1) e f ∗ Σ, ε′, δ0, δ1
match2

(when (e0, e1, e) ∈ (ε ∪ EQ) ∧ φ0 � φ1 is defined ∧ combε(f0, f1) = f)

Σ0, Σ1, ext(ε, f0, f1, f) � Σ, ε′, δ0, δ1

φ0(e0, f0)[�e/�x′] ∗ Σ0, (ls k φ1 e1 f1) ∗ Σ1, ε � (ls k (φ0�φ1) e f) ∗ Σ, ε′, δ0, δ1
match3

(when (e0, e1, e) ∈ (ε ∪ EQ) ∧ φ0 � φ1 is defined ∧ combε(f0, f1) = f)

Σ0, Σ1, ext(ε, f0, f1, f) � Σ, ε′, δ0, δ1

(ls k φ0 e0 f0) ∗ Σ0, φ1(e1, f1)[�e/�x′] ∗ Σ1, ε � (ls k (φ0�φ1) e f) ∗ Σ, ε′, δ0, δ1
match4

(when (e0, e1, e) ∈ (ε ∪ EQ) ∧ φ0 � φ1 is defined ∧ combε(f0, f1) = f)

Here −[�e/�x′] in φ(e, f)[�e/�x′] is the substitution of all the existentially quantified
primed variables �x′ in φ(e, f) by �e.

Fig. 3. Sample rules for �. Composite structure case.

result of the join replaces those heaps. Otherwise, those two symbolic heaps are
returned to the set.

In order to maintain precision in the analysis, we restrict the application of �†
to only those program points where controlling the number of disjuncts is cru-
cial. They are (a) the beginning of loops, (b) the end of conditional statements
when those statements are not inside loops, (c) the call sites of procedures, and
(d) the exit points of procedures. The first case accelerates the analysis of the
usual fixed-point computation for loops, and the second prevents the combina-
torial explosion caused by a sequence of conditional statements; for instance,
the procedure register cdrom in cdrom.c uses 25 conditional statements to
adjust values of a structure for cdrom, which makes the analysis without join
suffer from a serious performance problem. The other two cases aim for comput-
ing small procedure summaries; the third reduces the number of input symbolic
heaps to consider for each procedure, and the last reduces the analysis results
of a procedure with respect to each symbolic heap.

We have measured the effects of �† on the performance of SpaceInvader,
using our seven driver examples. Table 3 reports the results of our measurements.
The third and fourth columns of the table record the time of analyzing the drivers
without using �† : without �† , we cannot analyze our example drivers except the
simplest one, scull.c. The next two columns concern a pivotal design decision
for �† , looking at variations on the ls predicate; the fifth column considers the
necessarily non-empty ls predicate only, and the sixth column considers both

396 H. Yang et al.

Table 3. Experimental results on the effects of �† . Timeout (X) set at 90min. Exper-
iments run on Intel Core Duo 2.0GHz with 2GB RAM. The ”Opt. except �† ” column
records the results of the analysis runs without �† nor possibly empty ls predicates, but
with two optimizations: discarding the intermediate analysis results and passing only
the reachable portion of the heap to a procedure. The next column contains the analy-
sis time with these two optimizations and �† , but without possibly empty ls predicates.
The last column contains the analysis time with all the optimizations.

No Opt. Opt. except �† Opt. including �† , Opt. including �† ,
Program LOC (sec) (sec) with NE only (sec) with NE and PE (sec)

scull.c 1010 1.41 1.15 0.59 0.36

class.c 1983 X X 48.24 8.21

pci-driver.c 2532 X X 2.69 0.97

ll rw blk.c 5469 X X X 887.94

cdrom.c 6218 X X 193.01 103.26

md.c 6653 X X X 1585.69

t1394Diag.c 10240 X X 3415.76 135.05

the necessarily non-empty and possibly empty ls predicates. These experimental
results confirm the benefit of using the ls PE predicate in �† .

5 Related Work

Device driver verification has attracted considerable interest due to the realiza-
tion that most OS failures arise from bugs in device drivers [8,24,2]. Tools like
Slam [2] and Blast [15] have been effectively applied in verification of properties
of real device drivers, especially properties describing the calling conventions of
OS kernel APIs. Unfortunately these tools use coarse models of the heap; Slam,
for example, assumes memory safety. Other tools are known to prove memory
safety, but with the restriction that the input programs do not perform dynamic
memory allocation (e.g. ASTRÉE [6]). Proving full memory safety (which in-
cludes array bounds errors as well as what we have termed pointer safety) of
entire systems programs is thus a more difficult problem than that considered
in this paper, or in work that concentrates on array bounds errors.

Several papers report on the results of applying shape analysis to the source
code of substantial, real-world systems programs. The analysis in [14] has been
applied to non-trivial code, but the abstract domain there is purposely much less
precise than here, and it could not be used to verify pointer safety of the device
drivers that we consider. [7] includes an analysis of a restricted and modified
version of the Linux scull driver. Our analysis terminates on the modified scull
code (which they kindly supplied to us) in 0.36sec, where [7] terminated in
9.71sec when using user-supplied assertions (which we did not use) to help the
analysis along. It is also worth mentioning [13], which uses slicing to remove
heap-irrelevant statements. An earlier version of SpaceInvader [3] analyzed
several procedures from the 1394 driver used in Table 1. It timed out on an 1800
LOC subset of the driver, and this drove us to consider �† .

Scalable Shape Analysis for Systems Code 397

The very idea of a join operator is of course not novel, and many other joins
have been successfully applied in their application domain. The problem is al-
ways one of balancing precision and speed. The claim that �† does not lose too
much precision is backed up with experimental results. �† is not unrelated to
other join operators that have been proposed in shape analysis [19,1,7]. For in-
stance, Chang et al. define a partial join operator for separation logic formulas,
and Arnold [1] develops a notion of “loose embedding” in TVLA [16] which is
in an intuitive sense related to our use of predicates for possibly-empty, rather
than only nonempty, lists. However, our �† is different in its detailed formula-
tion; unlike Chang et al., we simplify symbolic heaps before applying �† , and
unlike Arnold and Manevich [19,1], our �† keeps the structure of composite data
structures precisely. The latter difference, in particular, is crucial to verifying
the drivers.

Marron et al. reports on shape analyses of several Java programs of up to 3705
LOC [20]. They use an aggressive join operator which always merges several
abstract states into one. Such a join operator would lead to many false alarms
when applied to our device drivers (for example, when dealing with exceptional
conditions), and so is too imprecise for our goal of proving pointer safety.

6 Conclusions

This paper has presented the first application of shape analysis to a real-world
industrial verification problem: proving pointer safety of entire Windows and
Linux device drivers. We have achieved this milestone by enhancing our separa-
tion domain based shape analysis tool with a sophisticated new join operation,
�† . This paper has made two contributions: �† , and a demonstration that shape
analysis can be scaled to real-world industrial verification problems. The second
contribution is, in a sense, the most important one. We hope, now that we know
that whole device drivers can be accurately handled by today’s shape analysis
tools, that future research papers on the subject will use device drivers and other
substantial systems programs as a part of their experimental evaluations.

Acknowledgments. We would like to thank Viktor Vafeiadis for helpful discus-
sions on the OCaml garbage collector. The London authors acknowledge the
support of the EPSRC. Lee was supported by Brain Korea 21. Distefano was
supported by a Royal Academy of Engineering research fellowship. O’Hearn was
supported by a Royal Society Wolfson Research Merit Award.

References

1. Arnold, G.: Specialized 3-valued logic shape analysis using structure-based refine-
ment and loose embedding. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 204–220.
Springer, Heidelberg (2006)

2. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
In: EuroSys (2006)

398 H. Yang et al.

3. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., Yang,
H.: Shape analysis of composite data structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

4. Berdine, J., Calcagno, C., O’Hearn, P.: Symbolic execution with separation logic.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidelberg
(2005)

5. Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M.: Thread quan-
tification for concurrent shape analysis. In: CAV (2008)

6. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI (2003)

7. Chang, B., Rival, X., Necula, G.: Shape analysis with structural invariant check-
ers. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–401.
Springer, Heidelberg (2007)

8. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.R.: An empirical study of
operating system errors. In: SOSP (2001)

9. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL (1977)

10. Distefano, D., O’Hearn, P., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS,
vol. 3920, pp. 287–302. Springer, Heidelberg (2006)

11. Gotsman, A., Berdine, J., Cook, B.: Interprocedural shape analysis with sepa-
rated heap abstractions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 240–260.
Springer, Heidelberg (2006)

12. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In:
PLDI (2007)

13. Guo, B., Vachharajani, N., August, D.: Shape analysis with inductive recursion
synthesis. In: PLDI (2007)

14. Hackett, B., Rugina, R.: Region-based shape analysis with tracked locations. In:
POPL (2005)

15. Henzinger, T., Jhala, R., Majumdar, R., McMillan, K.: Abstractions from proofs.
In: POPL (2004)

16. Lev-Ami, T., Sagiv, M.: TVLA: A system for implementing static analyses. In: Pals-
berg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–302. Springer, Heidelberg (2000)

17. Magill, S., Nanevski, A., Clarke, E., Lee, P.: Inferring invariants in Separation
Logic for imperative list-processing programs. In: SPACE (2006)

18. Manevich, R., Lev-Ami, T., Ramalingam, G., Sagiv, M., Berdine, J.: Heap decom-
position for concurrent shape analysis. In: SAS (2008)

19. Manevich, R., Sagiv, M., Ramalingam, G., Field, J.: Partially disjunctive heap
abstraction. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 265–279.
Springer, Heidelberg (2004)

20. Marron, M., Hermenegildo, M., Kapur, D., Stefanovic, D.: Efficient context-
sensitive shape analysis with graph based heap models. In: CC (2008)

21. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142.
Springer, Heidelberg (2001)

22. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL (1995)

23. Rinetzky, N., Bauer, J., Reps, T., Sagiv, M., Wilhelm, R.: A semantics for proce-
dure local heaps and its abstractions. In: POPL (2005)

24. Swift, M.M., Bershad, B.N., Levy, H.M.: Improving the reliability of commodity
operating systems. In: SOSP (2003)

Thread Quantification for Concurrent Shape Analysis

J. Berdine1, T. Lev-Ami2,�, R. Manevich2,��, G. Ramalingam3, and M. Sagiv2

1 Microsoft Research Cambridge
jjb@microsoft.com

2 Tel Aviv University
{tla,rumster,msagiv}@post.tau.ac.il

3 Microsoft Research India
grama@microsoft.com

Abstract. In this paper we address the problem of shape analysis for concurrent
programs. We present new algorithms, based on abstract interpretation, for auto-
matically verifying properties of programs with an unbounded number of threads
manipulating an unbounded shared heap.

Our algorithms are based on a new abstract domain whose elements represent
thread-quantified invariants: i.e., invariants satisfied by all threads. We exploit
existing abstractions to represent the invariants. Thus, our technique lifts existing
abstractions by wrapping universal quantification around elements of the base
abstract domain. Such abstractions are effective because they are thread modular:
e.g., they can capture correlations between the local variables of the same thread
as well as correlations between the local variables of a thread and global variables,
but forget correlations between the states of distinct threads. (The exact nature of
the abstraction, of course, depends on the base abstraction lifted in this style.)

We present techniques for computing sound transformers for the new abstrac-
tion by using transformers of the base abstract domain. We illustrate our tech-
nique in this paper by instantiating it to the Boolean Heap abstraction, producing
a Quantified Boolean Heap abstraction. We have implemented an instantiation
of our technique with Canonical Abstraction as the base abstraction and used it
to successfully verify linearizability of data-structures in the presence of an un-
bounded number of threads.

1 Introduction

This paper is concerned with verifying (basic safety and other functional correctness)
properties of dynamically-allocated data structures in programs with an unbounded
number of threads. For example, the techniques in this paper enable, for the first time,
automatic verification of linearizability of various implementations of concurrent data
structures even when an unbounded number of client threads manipulate these data
structures concurrently.

Our approach is based on abstract interpretation, which requires us to address the
standard two principal challenges:

� Supported by an Adams Fellowship through the Israel Academy of Sciences and Humanities.
�� This research was partially supported by the Clore Fellowship Programme.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 399–413, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

400 J. Berdine et al.

– to define a finite representation of infinite sets of program states that can concisely
and precisely express the properties of interest, and

– to compute sound transformers, which over-approximate a program’s semantics
using this representation.

Quantification-Based Abstract Domain. The basis of our approach is the use of an ab-
stract domain whose elements represent quantified invariants of the form ∀t.ϕ(t), where
the quantification is over threads. The formulas ϕ(t) correspond to an abstraction of the
program state from the perspective of a thread t. A second aspect of our approach is that
we exploit existing abstractions to capture the component ϕ(t) inside the quantifier. In-
formally, assume that we have an underlying abstraction where the abstract domain cor-
responds to a set of formulas AVoc over a vocabulary Voc. (Usually, the vocabulary cap-
tures the dependence of the abstract domain on the program being analyzed.) We refine
the abstraction and work with the set of formulas LVoc =

{∀t.ϕ(t) | ϕ(t) ∈ AVoc∪{t}
}

.
Thus, our technique may be seen as a domain constructor. The thread-quantified domain
we construct is bounded to the degree that the underlying domain is: e.g., a finite-height
base domain yields a finite-height quantified domain.

Transformers. We show how we can compute sound transformers for our new domain
using sound transformers for the base domain. We present a simple technique for com-
puting a basic sound transformer. The basic transformer works well when a thread’s
action does not (potentially) affect the invariants (or state) observed by other threads.
We also present a more sophisticated technique for computing a refined transformer,
which is useful for thread actions that affect other threads.

The basic ideas underlying the construction of such a quantified abstract domain have
appeared in various forms in recent work, see Sec. 5. One of the novel contributions
of our work is the use of such quantification for concurrent shape analysis by using
suitable shape analysis abstractions such as Canonical Abstraction [24] and Boolean
Heaps [23] as the base domain. We have implemented our technique on top of the
TVLA [16] system,1 which is based on Canonical Abstraction, and used it to verify
linearizability of fine-grained concurrency algorithms [1]. However, we illustrate our
ideas in this paper using Boolean Heaps as the base domain, as its simplicity allows us
to focus on the essence of our approach.

The thread-quantified abstract domain is a natural domain to use for reasoning about
programs with an unbounded number of threads. It permits expressing properties that
correlate a thread’s local variables with each other and with shared global state, but
not ad-hoc properties that correlate distinct, threads’ local variables. (By “ad-hoc”, we
mean properties that cannot be captured using quantification.) Note that when the under-
lying base domain is disjunctive, as is the case with Canonical Abstraction and Boolean
Heaps, the new domain permits disjunctions inside the quantifier, which is quite useful.

2 Overview

In this section, we present an informal overview of our method.

1 We actually implemented our technique in HeDec [18], which generalizes Canonical Abstrac-
tion by allowing coarser and more scalable abstractions.

Thread Quantification for Concurrent Shape Analysis 401

Object g = null; // global variable
threadProc() {

Object x = null, y = null;
[1] x = new Object();
[2] y = x;
[3] assert(x == y);

g = x;
[4]

assert(g != null);
}

Fig. 1. A simple multithreaded program. The program consists of an unbounded number of
threads executing threadProc.

A Motivating Example. Fig. 1 shows a toy concurrent program used to illustrate the
ideas in this paper. Sec. 4 reports on applying these ideas to more realistic programs.
The program satisfies a couple of very simple invariants (expressed as assertions) that
we would like to automatically infer. The first invariant is that when a thread is at
statement [3], the values of it’s x and y variables are equal. This is an example of
a thread-local invariant (which cannot be affected by the execution of other threads).
The second invariant is that when a thread is at statement [4], the global variable g
is non-null. This is an example of a non-local thread invariant, and can be affected by
the execution of other threads. In general, a non-local thread invariant could involve
global as well as thread-local variables. As an example, consider an assertion that when
a thread is at statement [4], the value of g and it’s x are equal. This is an assertion that
fails to hold for the given program (because of interaction with other threads).

Background: The Boolean Heap Abstraction. As explained in Sec. 1, our approach
is to lift an existing abstraction to produce a more precise abstraction that is suitable
for programs with an unbounded number of threads. We will illustrate our idea using
Boolean Heaps [23] as the underlying base abstraction in this paper. Boolean Heaps
are abstractions targeted at shape analysis, and describe sets of states consisting of an
unbounded number of heap objects using formulas of the form

∨
i∈I{∀v : object. ϕ′i(v)}

where v ranges over heap objects and ϕ′(v) is a quantifier-free formula, in which v
possibly occurs free, over a set of unary predicates, kept in DNF.

The Quantified Boolean Heap Abstraction. As explained earlier, the basis of our ap-
proach is to use quantified invariants of the form ∀t. ϕ(t),where the set of formulas ϕ(t)
allowed inside the invariant are determined by a base domain. Using Boolean Heaps as

Table 1. Predicates used for (Quantified) Boolean Heap Abstraction

Predicate Intended meaning
x(t, v) local variable x of thread t points to object v
y(t, v) local variable y of thread t points to object v
g(v) global variable g points to object v
null(v) v is a special null object
at[l](t) thread t is at program label l

402 J. Berdine et al.

Table 2. Part of the computed quantified invariant for the running example

∀t. ... ∨ at[4](t) ∧
∀v { x(t) ∧ y(t) ∧ g ∧ ¬null}(v) ∨ {¬x(t) ∧ ¬y(t) ∧ ¬g ∧ null}(v)

∨ ∀v { x(t) ∧ y(t) ∧ ¬g ∧ ¬null}(v) ∨ {¬x(t) ∧ ¬y(t) ∧ ¬g ∧ null}(v) ∨
{¬x(t) ∧ ¬y(t) ∧ g ∧ ¬null}(v)

∨ ∀v { x(t) ∧ y(t) ∧ g ∧ ¬null}(v) ∨ {¬x(t) ∧ ¬y(t) ∧ ¬g ∧ null}(v)

our base domain leads to the following definition of Quantified Boolean Heaps. Quan-
tified Boolean Heaps approximate sets of states by formulas of the form

∀t : thread.
∨

i∈I{∀v :object. ϕi(t, v)}

where t ranges over threads, v ranges over non-thread objects, ϕ(t, v) is a quantifier-free
formula, in which t and v possibly occur free, over a set of unary and binary predicates,
kept in DNF.2 For the running example, we will use the predicates shown in Tab. 1. We
assume that a null value is represented by a special heap object.

Notice that a quantified boolean heap is a universally quantified disjunction of stan-
dard Boolean heaps, but where some previously unary predicates have been indexed by
the universal variable. This increases the expressive power of the abstract elements.

For brevity we use the following, not disjunctive normal, form

∀t : thread.
∨

l∈Labels at[l](t) ∧ (∨
i∈I{∀v :object. ϕi(t, v)})

where Labels is the set of program labels and the predicates of the form at[l](t) are
implicitly mutually exclusive.3 We use the following notational conventions: Logical
variables {sc, t, t1, t2, . . .} range over thread objects and other logical variables range
over non-thread objects. We use {p ∧ q}(v) as shorthand for p(v) ∧ q(v) and curry
binary predicates, i.e., {p(t) ∧ q}(v) is a shorthand for p(t, v) ∧ q(v).

Tab. 2 shows the part of the Quantified Boolean Heap describing the invariant of our
running example for the threads at program location [4], as computed by our analysis.

Abstract Transformers. Computing abstract transformers is very challenging, espe-
cially in the presence of concurrency, as the execution of one thread may affect the
state observable by other threads. In Sec. 3 we present effective techniques for com-
puting sound transformers for our lifted abstractions, utilizing transformers of the base
abstraction. The main idea is to “instantiate” two symbolic threads, one for the sched-
uled thread, and one representing another arbitrary thread, and to utilize the transformer
of the underlying base domain to compute the change in the abstract state as observed
by each of these threads.

Discussion. For comparison, consider the Quantified Boolean Heaps abstraction just
described and the abstractions used by the original Boolean Heaps and 3VMC [27],
which naturally models unbounded objects and threads in a uniform fashion using

2 This is similar to Indexed Predicate Abstraction [15], except that the number of index variables
is limited to 2, and that we allow a disjunction between the quantifiers.

3 The location predicates are written outside the internal universal quantifier because they are
independent of v.

Thread Quantification for Concurrent Shape Analysis 403

Canonical Abstraction. For the set of predicates described in this section, our new anal-
ysis is capable of inferring the invariants mentioned in the program: namely, that for any
thread t at program location 3, we have x(t) = y(t), and that g is not null at the end (for
any thread’s execution). On the other hand, without adding different predicates, neither
the Boolean Heaps analysis nor 3VMC can infer the above invariants. Indeed, these
abstractions cannot even express these invariants. If a richer set of predicates is used,
especially instrumentation predicates, these abstractions can be made more expressive
and be used to prove the above invariants. An advantage of the new abstraction is that
it can reduce the need for nonstandard or program-specific predicates, or the number of
predicates, in a very natural way.

3 The Thread Quantification Domain Constructor

In this section, we describe how thread quantification can be used as a domain con-
struction operator to generate a more precise abstract domain from an existing abstract
domain. We illustrate this by applying it to the Boolean Heap domain to obtain the
Quantified Boolean Heap domain.

3.1 The Concrete Semantics

We start by defining operational concrete semantics useful for describing concurrent
programs without procedures. For simplicity of presentation, we concentrate on ref-
erence variables and fields. Let Threads and Locations (containing a distinguished
null value) be countable sets representing threads and heap locations, respectively. Let
LVars, GVars, and Fields be finite sets of local variables, global variables, and heap
fields, respectively. Finally, let Labels be a finite set of program labels. Let Σ be the
set of possible states. A state σ ∈ Σ maps the following: for each global variable g,
σ(g) ∈ Locations; for each local variable x, σ(x) : Threads → Locations; for each
field f, σ(f) : Locations → Locations; and for pc, σ(pc) : Threads → Labels.

Being interested in invariance properties, we start with a concrete powerset domain
P(Σ), for which we assume a concrete semantics of programs spost(·) : Threads →
P(Σ) → P(Σ) that maps individual threads to their semantics. This induces the se-
mantics of the overall concurrent program cpost : P(Σ) → P(Σ) by

cpost(S) =
⋃

sc∈Threads spostsc(S) .

3.2 The Base Abstraction

We present the lifted abstract interpreter as well as the base abstract interpreter as oper-
ating on formulas in a normal form. This is done for simplicity of presentation. For ex-
ample, Boolean Heaps are already presented using these terms. Details on how Canon-
ical Abstraction can be presented in such terms can be found in [29].

In Sec. 3.6 we will specify the assumptions on the abstract domain input to the thread
quantification construction, but it is useful to present in several steps.

404 J. Berdine et al.

Base Domain. Consider a base abstract domain with elements drawn from a set A
of formulas, where (P(Σ), αA, γA, A) is a Galois Connection, with meet �A and join
�A, and sound sequential transformer spost�(·) : Threads → A → A. As in the concrete

semantics, this induces the abstract concurrent semantics cpost� : A → A, which over-
approximates cpost, by

cpost�(a) =
⊔

A sc∈Threads spost�sc(a) .

Open Formulas. Abstract elements often correspond to formulas without free vari-
ables. E.g., the formula ∀v.g(v) ⇔ null(v) represents states where g is null. The first
step toward thread-quantified formulas is to permit formulas with free variables (e.g.,
∀v.x(t, v) ⇔ null(v)) as abstract domain elements.

For a set V of variables, let A[V] denote the set of formulas in normal form with free
variables contained in V . Let AssignV = V → Threads be the set of assignments of
(thread) variables in V to threads. A state σ ∈ Σ and an assignment θ ∈ AssignV satisfy
ϕ(V) ∈ A[V], denoted σ, θ |= ϕ(V), when assigning the parameters according to θ and
interpreting the predicates according to σ yields true. Define ΣV to be Σ × AssignV .

Example. The open formula ∀v.x(t, v) ⇔ null(v) represents the set of all pairs 〈σ, θ〉
such that the local variable x of thread θ(t) is null in σ, i.e., σ(x)(θ(t)) = null.

By defining γA[V] : A[V] → P(ΣV) by γA[V](ϕ(V)) = {〈σ, θ〉 | σ, θ |= ϕ(V)},
the satisfaction relation determines a Galois Connection (P(ΣV), αA[V], γA[V], A[V]).

Transformers for Open Formulas. Since the states ΣV for open formulas are related to
program states Σ simply by the first projection, the concrete semantics can be lifted to
spostV,(·) : Threads → P(ΣV) → P(ΣV) by defining

spostV,t(S) =
⋃
〈σ,θ〉∈S(spostt({σ}) × {θ}) .

The concurrent semantics cpostV : P(ΣV) → P(ΣV) is induced by spostV,(·) in the
same way as cpost is induced by spost(·):

cpostV (S) =
⋃

sc∈Threads spostV,sc(S) .

The thread quantification domain construction requires transformers for open formu-
las cpost�V : A[V] → A[V] that over-approximate cpostV . While the definition of
cpost�V from cpost� varies from one domain to another, note that Π1(cpostV (S)) =
cpost(Π1(S)) (where Π1 is the first projection of a pair, lifted pointwise to sets of
pairs), and so an abstract transformer is sound with respect to cpostV if and only if it
is sound with respect to cpost. Also note that since cpostV always leaves the thread
assignment unchanged, sound over-approximations must also. Hence the free thread
variables can be treated as constant symbols, and binary predicates such as x(t, v) can
be curried and then interpreted as unary predicates (x(t))(v), which many base domains
A directly support. In particular, assuming the base domain A can handle constant sym-
bols, a domain A[V] can be produced systematically.

We will specifically be interested in the case of formulas with a single free variable t:
i.e., the case where V = {t}. The method can be generalized to multiple free variables

Thread Quantification for Concurrent Shape Analysis 405

and thus multiple universal quantifiers. This is outside the scope of the paper. Note that
the union over all threads sc in the concrete transformer cpostV captures the effect of
a single transition performed by an arbitrary thread sc. A sound abstract transformer
cpost�{t} must handle two cases: where thread variable t is the same as the scheduled
thread sc, and where t is different from sc.

Example. We now illustrate the application of a sound transformer for the transition
corresponding to the single statement y=x on the open formula ϕ(t) = ∀v.x(t, v) ⇔
null(v). This formula represents states σ and assignments [t : t] where the local variable
x of thread t is null in σ. If thread t executes the statement y=x, the resulting state can
be described by the formula ϕ1(t) = ∀v.y(t, v) ⇔ x(t, v) ⇔ null(v). If some thread
other than t is scheduled, then the local variables of t are not affected, and the resulting
state can be described by ϕ(t) itself. We account for these two cases by taking the
disjunction ϕ1(t)∨ϕ(t), which simplifies to ϕ(t), yielding the result of the transformer.

3.3 The Lifted Abstraction (with Basic Transformers)

We define the lifted domain L = {∀t. ϕ(t) | ϕ(t) ∈ A[{t}]}, i.e., with the base domain
instantiated with V = {t}. The lifted domain inherits meet and (an over-approximation
of) join operations from A[{t}]: e.g., (∀t. ϕ1)�L(∀t. ϕ2) = ∀t. (ϕ1�A[{t}]ϕ2). Defining
γL : L → P(Σ) by

γL(∀t. ϕ(t)) =
{
σ | σ, θ |= ϕ(t) for every θ ∈ Assign{t}

}

produces a Galois Connection from P(Σ) to L. We obtain a sound transformer cpost�L :
L → L from the sound abstract transformer cpost�{t} for formulas with a free variable
t discussed earlier as follows:

cpost�L(∀t.ϕ(t)) = ∀t.cpost�{t}(ϕ(t)) .

Example. Consider the statement y=x from the example program in Fig. 1 and the
abstract state S1:

S1 = ∀t.S1a(t) ∨ S1b(t)
S1a(t) = at[1](t) ∧

∀v. { x(t) ∧ y(t) ∧ g ∧ null}(v) ∨ {¬x(t) ∧ ¬y(t) ∧ ¬g ∧ ¬null}(v)
S1b(t) = at[2](t) ∧

∀v. {¬x(t) ∧ y(t) ∧ g ∧ null}(v) ∨ { x(t) ∧ ¬y(t) ∧ ¬g ∧ ¬null}(v) ∨
{¬x(t) ∧ ¬y(t) ∧ ¬g ∧ ¬null}(v)

Applying the Boolean Heap transformer for y=x to S1a(t) leaves S1a(t) unchanged
no matter whether t was the scheduled thread or not. Applying the Boolean Heap trans-
former for y=x to S1b(t) yields the heaps S1′b1(t) for the case where t is the scheduled
thread, and leaves S1b(t) unchanged for the complementary case. The final result is
obtained by universally quantifying over t, resulting in S1′:

S1′ = ∀t.S1a(t) ∨ S1b(t) ∨ S1′
b1(t)

S1′
b1 (t) = at[3](t) ∧

∀v. {¬x(t) ∧ ¬y(t) ∧ g ∧ null}(v) ∨ { x(t) ∧ y(t) ∧ ¬g ∧ ¬null}(v) ∨
{¬x(t) ∧ ¬y(t) ∧ ¬g ∧ ¬null}(v)

406 J. Berdine et al.

Let φx==y = ∀t.at[3](t) ⇒ ∀v.x(t, v) ⇔ y(t, v) be the assertion at line [3]. Now,
S1′ |= φx==y (the only disjunct where at[3] holds is S1′b1(t), in which x and y point to
the same node). The statement y=x changes only information local to one thread and
therefore this kind of reasoning is sufficiently precise.

Let φg!=null = ∀t.at[4](t) ⇒ ∀v.¬(g(v) ∧ null(v)) be the assertion at line [4].
Now, however, consider the statement g=x and the abstract state S2:

S2 = ∀t.S2a(t)
S2a(t) = at[3](t) ∧

∀v. {¬x(t) ∧ ¬y(t) ∧ g ∧ null}(v) ∨ { x(t) ∧ y(t) ∧ ¬g ∧ ¬null}(v) ∨
{¬x(t) ∧ ¬y(t) ∧ ¬g ∧ ¬null}(v)

When t is not the scheduled thread, applying the Boolean Heap transformer to the
Boolean Heap S2a(t) yields many Boolean Heaps. This is because of the lack of in-
formation about the status of other threads, which we get by dropping the universal
quantification over t. The scheduled thread may be different from t. Thus, S2a(t) has
no information about it. In particular, S2a(t) represents a state where x and y are null
for the scheduled thread. As a result, the assignment g=x also creates the Boolean Heap
Sbad = at[4](t) ∧ ∀v.{x(t) ∧ y(t) ∧ g ∧ null}(v). Obviously, Sbad |= φg!=null and thus
the transformer is not precise enough for the purpose of our analysis.

The reason is that g=x changes a global variable. This change is visible by other
threads and thus the thread-local reasoning used above does not model the effect of the
other threads using the information captured by the Quantified Boolean Heap.

3.4 The Semantics of Non-deterministic Scheduling

In order to obtain a more precise sound transformer for our lifted abstract domain, we
exploit the internal structure of the concrete semantics and the base abstract transformer
imposed by the semantics of non-deterministic scheduling.

Recall that the concurrent semantics of a program cpost is defined in terms of spostt,
which gives the sequential semantics of the individual threads. This function indicates
the transitions a given thread t can take. The semantics of non-deterministic scheduling
of threads is captured by the union over all threads in the definition of cpost.

While the basic transformer cpost�L was defined in terms of cpost�V , for the refined
transformer we will not use the naive definition of the concurrent semantics in terms of
the sequential semantics but will instead define the refined transformer directly in terms
of the sequential abstract transformer.

In particular, we assume an abstract transformer spost�V,sc : A[V ∪ {sc}] → A[V ∪
{sc}] for sc /∈ V that over-approximates spostV,sc : P(ΣV ∪{sc}) → P(ΣV ∪{sc})
given by

spostV,sc(S) =
⋃
〈σ,θ〉∈S(spostθ(sc)({σ}) × {θ}) .

The difference between this semantics and spostV,(·) above is that spostV,sc looks up
sc in the assignment in the input state to determine which thread to execute. In essence,
we are assuming that the scheduled thread is specified as an extra parameter for the
transformer of open formulas in the base domain. Lifting the transformers of the base

Thread Quantification for Concurrent Shape Analysis 407

domain to support the scheduled thread as an extra parameter is usually straightforward.
Inducing the concrete semantics from spostV,sc by

cpostV (S)=
⋃

sc∈Threads

{〈σ′, θ′|V 〉 | 〈σ′, θ′〉 ∈ spostV,sc {〈σ,[θ|sc:sc]〉 | 〈σ,θ〉 ∈ S}}

(where θ′|V is θ′ restricted to domain V) yields the same definition of cpostV as above.
We also assume that the base abstract domain has an operation project(sc, (·)) :

A[V ∪ {sc}] → A[V] for projecting away a thread parameter sc. This is equivalent
to over-approximating existential elimination. For example, in Boolean Heaps, we can
simply throw away all literals (positive and negative) that contain sc.

Using these operations, the transformer for the overall concurrent program cpost�V :
A[V] → A[V] is defined, for sc /∈ V , by

cpost�V (ϕ(V)) = project(sc, spost�V,sc(ϕ(V))) .

Note how this definition allows an arbitrary thread to execute since sc does not occur
in ϕ(V), hence ϕ(V) does not constrain the thread assigned to sc, and hence the set of
states that satisfy ϕ(V) will include assignments that map sc to any element of Threads.

3.5 A More Precise Transformer for the Lifted Domain

We will now present a more precise sound transformer for the lifted domain. The basic
transformer presented in Sec. 3.3 transformed a quantified formula ∀t.ϕ(t) by applying
the base domain’s (open formula) transformer to ϕ(t). This leads to a loss of precision
because the base domain transformer knows only that t satisfies ϕ(t). It does not know
and cannot use the fact that both the scheduled thread sc and another arbitrary thread
t satisfy the invariant. We now show how we can incorporate this extra piece of in-
formation, while still reusing the base domain’s transformer, producing a more precise
transformer for the lifted domain.

We define the refined transformer cpost′�L : L → L by

cpost′�L(∀t.ϕ(t)) = ∀t.project(sc, spost�{t},sc(ϕ(t) �A[{t,sc}] ϕ(sc))) .

Specifically, we apply the base domain’s transformer to ϕ(t)�A[{t,sc}]ϕ(sc), exploiting
the base domain’s meet operation to “inform” the base domain’s transformer that both
ϕ(t) and ϕ(sc) are true in the input state.

Example. We demonstrate the refined transformer by computing cpost′�L(S2a(t)). The
first step of the transformer is to compute the meet of S2a(t) and S2a(sc) (where for
brevity, we have not converted the formula to DNF):

ϕ(sc, t) = S2a(t) � S2a(sc) = at[3](t) ∧ at[3](sc) ∧
∀v. {¬x(t) ∧ ¬y(t) ∧ g ∧ null}(v) ∨ {x(t) ∧ y(t) ∧ ¬g ∧ ¬null}(v) ∨

{¬x(t) ∧ ¬y(t) ∧ ¬g ∧ ¬null}(v)
∧ ∀v. {¬x(sc) ∧ ¬y(sc) ∧ g ∧ null}(v) ∨ {x(sc) ∧ y(sc) ∧ ¬g ∧ ¬null}(v) ∨

{¬x(sc) ∧ ¬y(sc) ∧ ¬g ∧ ¬null}(v)

Next, we apply the Boolean Heaps transformer spost�{t},sc to ϕ(sc, t). As explained
earlier, this is a sound transformer of a single transition taken by thread sc. As before,
we obtain the result as a disjunction of two heaps, ϕ′a(sc, t) for the case in which sc = t
and ϕ′b(sc, t) for the case in which sc = t.

408 J. Berdine et al.

ϕ′(sc, t) = ϕ′
a(sc, t) ∨ ϕ′

b(sc, t)
ϕ′

a(sc, t) = at[4](t) ∧ at[4](sc) ∧
∀v. {¬x(t) ∧ ¬y(t) ∧ ¬g ∧ null}(v) ∨ {x(t) ∧ y(t) ∧ g ∧ ¬null}(v) ∨

{¬x(t) ∧ ¬y(t) ∧ ¬g ∧ ¬null}(v)
∧ ∀v. {¬x(sc) ∧ ¬y(sc) ∧ ¬g ∧ null}(v) ∨ {x(sc) ∧ y(sc) ∧ g ∧ ¬null}(v) ∨

{¬x(sc) ∧ ¬y(sc) ∧ ¬g ∧ ¬null}(v)
ϕ′

b(sc, t) = at[3](t) ∧ at[4](sc) ∧
∀v. {¬x(t) ∧ ¬y(t) ∧ ¬g ∧ null}(v) ∨ {x(t) ∧ y(t) ∧ ¬null}(v) ∨

{¬x(t) ∧ ¬y(t) ∧ ¬null}(v)
∧ ∀v. {¬x(sc) ∧ ¬y(sc) ∧ ¬g ∧ null}(v) ∨ {x(sc) ∧ y(sc) ∧ g ∧ ¬null}(v) ∨

{¬x(sc) ∧ ¬y(sc) ∧ ¬g ∧ ¬null}(v)

We project away sc, by removing all literals containing it, which yields:

ϕ′′(t) = ϕ′′
a(t) ∨ ϕ′′

b (t)
ϕ′′

a(t) = at[4](t) ∧
∀v. {¬x(t) ∧ ¬y(t) ∧ ¬g ∧ null}(v) ∨ { x(t) ∧ y(t) ∧ g ∧ ¬null}(v) ∨

{¬x(t) ∧ ¬y(t) ∧ ¬g ∧ ¬null}(v)
ϕ′′

b (t) = at[3](t) ∧
∀v. {¬x(t) ∧ ¬y(t) ∧ ¬g ∧ null}(v) ∨ { x(t) ∧ y(t) ∧ ¬null}(v) ∨

{ g ∧ ¬null}(v) ∨ {¬x(t) ∧ ¬y(t) ∧ ¬null}(v)

The interesting observation here is that g and null are not aliased in both conjuncts of
ϕ′b(sc, t). Thus, after the projection we retain this information.

Finally, the result is universally quantified, i.e., S2
′ = ∀t.ϕ′′(t). As expected, S2

′ |=
φg!=null.

3.6 Summary of Construction

In summary, the thread quantification domain construction requires implementations of:
an abstract domain A[V] of open formulas that is in a Galois Connection with P(ΣV)
induced by the satisfaction relation; meet and join operations on A[V]; sequential trans-
formers spost�V,sc of open formulas, parameterized by the scheduled thread, which
over-approximate spostV,sc as in Sec. 3.4; and an over-approximation of existential
elimination project(sc, (·)) as in Sec. 3.4. From this the construction produces an im-
plementation of an abstract domain L of quantified formulas, which is in a Galois Con-
nection with P(Σ), with basic transformers cpost�L and refined transformers cpost′�L
for concurrent programs that over-approximate the concrete semantics cpost.

4 Case Study: Proving Linearizability

As a case study for the approach, we have verified linearizability of three well-known
concurrent data structure implementations that use fine-grained concurrency.

4.1 Implementation

We have implemented the approach on top of TVLA [16]. (Actually, we implemented
our technique in HeDec [18], which generalizes Canonical Abstraction by allowing

Thread Quantification for Concurrent Shape Analysis 409

coarser and more scalable abstractions.) The thread parameters were implemented as
unary predicates. Support for treating a binary formula of the form x(t, v) as a unary
predicate was done by adding an appropriate instrumentation predicate (i.e., predicate
defined using a formula from other predicate and automatically updated by the system).

The meet and join operations required from the base domain are already imple-
mented in TVLA. Thread projection is done by forgetting all information about the
unary predicate representing the thread and all instrumentation predicates based on it.

In TVLA, it is easier to implement separate transformers for each statement and let
the engine deal with constructing the full post operator. As a result, we are able to use
the basic transformer for some statements and the more expensive refined transformer
only for statements that require the extra precision. We use the basic transformer for
statements that modify only the local state of the scheduled thread and leave the global
state intact. In these cases the abstract state of any thread that is not the scheduled thread
is unchanged by the operation, thus the precision of the basic transformer is enough.

4.2 Proving Linearizability

Linearizability [12] is one of the main correctness criteria for implementations of con-
current data structures. Informally, a concurrent data structure is linearizable if the con-
current execution of a set of operations on it is equivalent to some sequential execution
of the same operations, in which the global order between non-overlapping operations
is preserved. The equivalence is based on comparing the arguments and results of oper-
ations (responses). The permitted behavior of the concurrent object is defined in terms
of a specification of the desired behavior of the object in a sequential setting.

Verifying linearizability is challenging because it requires correlating any concurrent
execution with a corresponding permitted sequential execution. Verifying linearizability
for concurrent dynamically allocated linked data structures is particularly challenging,
because it requires correlating executions that may manipulate memory states of un-
bounded size.

Intuitively, we verify linearizability by representing in the concrete state both the
state of the concurrent program and the state of the reference sequential program. Each
element entered into the data structure is correlated at linearization points with the
matching object from the sequential execution. The details are described in [1].

We have taken the instantiation of Canonical Abstraction presented in [1] as the
base abstraction for the analysis. That analysis was performed for a bounded number
of threads, by using specialized predicates treating each local variable of each thread
as a distinct predicate. We removed these extra predicates, instead treating the thread
local variables as binary predicates. The analysis has predicates for local and global
variables, heap fields and program labels. Finally, we use as is two extra predicates that
capture the correlation between the concurrent and sequential executions (see [1]).

4.3 Experimental Results

Tab. 3 summarizes the experimental results of running our linearizability analysis on
the algorithms. These benchmarks were run a 2.4GHz E6600 Core 2 Duo processor
with 2 GB of memory running Linux. We used two abstractions to analyze these ex-
amples. The first is vanilla canonical abstraction as described in Sec. 4.2. The second

410 J. Berdine et al.

abstraction is an extension of canonical abstraction with decomposition of the heap as
described in [18]. With this abstraction, the state space is significantly reduced, yield-
ing fewer states and better times. The adaptation of the transformer for the decomposing
abstraction was no harder than that for vanilla canonical abstraction.

Treiber’s stack algorithm [25] is lock-free, and uses a Compare And Swap (CAS)
operation for synchronization. The two-lock queue algorithm [19] has Head and Tail
pointers, each protected with its own lock. It allows benign data-races when the queue
is empty, i.e., the Head and Tail pointers are aliased. The non-blocking queue algorithm
[6] is lock-free and uses CAS for synchronization. It is more complicated than the
other two algorithms and has a much larger state space with our abstraction. Canonical
Abstraction without decomposition, on this example, resulted in state space explosion.

5 Related Work

The abstract interpretation presented in this paper inherits from, and combines, two lines
of prior work: (1) Prior work on abstract domains of quantified formulas, especially in
the context of verification of parametrized concurrent systems, and (2) Prior work on
shape analysis.

Process-Centric Abstraction. The general approach we use of reasoning about concur-
rent programs in terms of an abstraction of the program state relative to a thread is
classic in work on program logic: assertions within the code of a thread refer to the
state from that thread’s perspective, and the thread’s concurrent environment is over-
approximated by, for instance, invariants [13,21] or relations [14] on the shared state.
This idea has also been used early on for automatic compositional verification [4].
More recently, this approach has led to the notion of thread-modular verification for
model checking systems with finitely-many threads [8], and has also been applied more
closely to our present domain of heap-manipulating programs with coarse-grained con-
currency [9], and less automatically to fine-grained concurrency [2]. This general prin-
ciple has also previously been used in the context of verification of sequential programs
in the form of abstractions of program state relative to one or more non-deterministically
chosen objects (e.g., in the heap or an array) [7,28,23,26].

Abstract Interpretation with Open Formulas and Quantified Invariants. In this paper, we
realize such a reference-object-centric perspective within the framework of abstract in-
terpretation, using abstract domains consisting of formulas with free variables as a step-
ping stone toward abstract domains consisting of quantified formulas. This approach has

Table 3. Experimental results of proving linearizability for an unbounded number of threads

Canonical Abstraction with decomposition
Algorithms States secs. States secs.

Stack [25] 4,097 53 764 7
Two-lock queue [19] 4,897 47 3,415 17
Non-blocking queue [6] MemOut MemOut 10,333 252

Thread Quantification for Concurrent Shape Analysis 411

been previously formalized in the work on Indexed Predicate Abstraction [15] and also
appears in the work on Environment Abstraction [5,3]. Indices, or free variables, in the
indexed predicate abstraction work can range over anything, depending on the applica-
tion. Our use of a single variable for a reference process is similar to the approach in
Environment Abstraction. A similar quantified invariants approach has also been used
in the analysis of heap properties [23] and properties of collections [10] in sequential
programs.

Transformers for Quantified Formulas. The chief difficulty, particularly for domain con-
structions, is defining the transformers: semantics of program statements on elements
of the abstract domain. In their work on Indexed Predicate Abstraction, Lahiri et al.,
outline the idea of using quantifier instantiation to compute abstract transformers of
quantified formulas. They use a tool to generate candidate instantiations (based on the
subexpressions that appear in the predicate and next-state expressions) for this purpose.
We use a very specific and fixed quantifier instantiation strategy: namely, we instantiate
it for the reference process and for the executing process.

Concurrent Shape Analysis. One aspect of our work that distinguishes it from the prior
work referenced above is that we apply these ideas to the problem of concurrent shape
analysis. In particular, to address the heap, we use abstractions that can more readily
make distinctions that are not directly expressible in terms of the program (for instance,
the distinction between heap cells to which there are and there are not multiple in-
coming pointers). Also, the abstraction we use expresses correlations between a single
thread’s local state and the global shared state, but does not directly express relations
between the state of multiple threads. Relations between multiple threads are captured
only by the transformers, unlike in Environment Abstraction, which can additionally
use predicates that have been chosen to explicitly relate threads. In the way that our
abstractions (partially) correlate locals to globals, but not locals to locals, they exhibit a
thread-modular character, except that threads need not be entirely uncorrelated.

The most closely related prior work on concurrent shape analysis is that of Ya-
hav [27], which uses Canonical Abstraction for this purpose. The Quantified Canonical
Abstraction domain we use is more precise than Canonical Abstraction, and it allows
us to automatically verify, for the first time, linearizability of concurrent data structures
in the presence of an unbounded number of threads.

Other Related Work. Counter Abstraction [17] (which has been applied to programs in
e.g. [11]) provides a reduction from systems with unboundedly-many processes to finite
state, though does not offer much help with the abstract transformers for that finite-state
system. Invisible Invariants [22] is another technique that employs thread variables,
and works by considering systems with a small number of processes and then attempt-
ing to generalize the results to unboundedly-many processes. Work on Split Invari-
ants [20] extends Invisible Invariants using a connection with compositional techniques
(such as [21]), yielding an analysis with a process-centric abstraction that computes
universally quantified invariants using transformers that resemble ours. In particular,
if the assertion logic has a small model property with bound k, then an invariant for
unboundedly-many threads can be computed using k instantiations of the invariant. In

412 J. Berdine et al.

contrast, we define transformers that are sound (but incomplete) for unboundedly-many
threads without a small model property, and using many fewer instantiations.

6 Conclusion

In this paper, we have developed a new shape analysis for fine-grained concurrent pro-
grams with an unbounded number of threads and demonstrated that it is precise enough
to prove linearizability of useful data structure implementations. This is done by a uni-
versal lifting domain construction applied to existing shape analysis domains.

References

1. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under abstraction for
verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 477–490. Springer, Heidelberg (2007)

2. Calcagno, C., Parkinson, M.J., Vafeiadis, V.: Modular safety checking for fine-grained con-
currency. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 233–248.
Springer, Heidelberg (2007)

3. Clarke, E., Talupur, M., Veith, H.: Proving Ptolemy right: The environment abstraction
framework for model checking concurrent systems. In: Ramakrishnan, C.R., Rehof, J. (eds.)
TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer, Heidelberg (2008)

4. Clarke, E.M.: Synthesis of resource invariants for concurrent programs. TOPLAS 2(3) (1980)
5. Clarke, E.M., Talupur, M., Veith, H.: Environment abstraction for parameterized verification.

In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 126–141.
Springer, Heidelberg (2005)

6. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical lock-free
queue algorithm. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235,
pp. 97–114. Springer, Heidelberg (2004)

7. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL (2002)
8. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani, S.K. (eds.)

SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)
9. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In: PLDI

(2007)
10. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified logical

domains. In: POPL (2008)
11. Henzinger, T.A., Jhala, R., Majumdar, R.: Race checking by context inference. In: PLDI

(2004)
12. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.

TOPLAS 12(3) (1990)
13. Hoare, C.A.R.: Towards a theory of parallel programming. Operating System Techniques

(1972)
14. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress (1983)
15. Lahiri, S.K., Bryant, R.E.: Predicate abstraction with indexed predicates. TOCL 9(1) (2007)
16. Lev-Ami, T., Sagiv, M.: TVLA: A framework for implementing static analyses. In: Pals-

berg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–302. Springer, Heidelberg (2000),
http://www.cs.tau.ac.il/∼tvla/

17. Lubachevsky, B.D.: An approach to automating the verification of compact parallel coordi-
nation programs I. Acta Inf. 21 (1984)

http://www.cs.tau.ac.il/~tvla/

Thread Quantification for Concurrent Shape Analysis 413

18. Manevich, R., Lev-Ami, T., Sagiv, M., Ramalingam, G., Berdine, J.: Heap Decomposition for
Concurrent Shape Analysis. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079,
pp. 363–377. Springer, Heidelberg (2008)

19. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking concur-
rent queue algorithms. In: PODC (1996)

20. Namjoshi, K.S.: Symmetry and completeness in the analysis of parameterized systems. In:
Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 299–313. Springer, Hei-
delberg (2007)

21. Owicki, S.S., Gries, D.: Verifying properties of parallel programs: An axiomatic approach.
CACM 19(5) (1976)

22. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible invariants.
In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031. Springer,
Heidelberg (2001)

23. Podelski, A., Wies, T.: Boolean Heaps. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS,
vol. 3672, pp. 268–283. Springer, Heidelberg (2005)

24. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
TOPLAS 24(3) (2002)

25. Treiber, R.K.: Systems programming: Coping with parallelism. Technical Report RJ 5118,
IBM Almaden Research Center (1986)

26. Wachter, B., Westphal, B.: The spotlight principle. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 182–198. Springer, Heidelberg (2007)

27. Yahav, E.: Verifying safety properties of concurrent Java programs using 3-valued logic.
ACM SIGPLAN Notices 36(3) (2001)

28. Yahav, E., Ramalingam, G.: Verifying safety properties using separation and heterogeneous
abstractions. In: PLDI (2004)

29. Yorsh, G., Reps, T., Sagiv, M.: Symbolically computing most-precise abstract operations for
shape analysis. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 530–
545. Springer, Heidelberg (2004)

The Scyther Tool: Verification, Falsification,

and Analysis of Security Protocols�

Tool Paper

Cas J.F. Cremers

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
cas.cremers@inf.ethz.ch

1 Introduction

With the rise of the Internet and other open networks, a large number of security
protocols have been developed and deployed in order to provide secure commu-
nication. The analysis of such security protocols has turned out to be extremely
difficult for humans, as witnessed by the fact that many protocols were found to
be flawed after deployment. This has driven the research in formal analysis of
security protocols. Unfortunately, there are no effective approaches yet for con-
structing correct and efficient protocols, and work on concise formal logics that
might allow one to easily prove that a protocol is correct in a formal model, is
still ongoing. The most effective approach so far has been automated falsification
or verification of such protocols with state-of-the-art tools such as ProVerif [1]
or the Avispa tools [2]. These tools have shown to be effective at finding attacks
on protocols (Avispa) or establishing correctness of protocols (ProVerif).

In this paper we present a push-button tool, called Scyther, for the verification,
the falsification, and the analysis of security protocols. Scyther can be freely
downloaded, and provides a number of novel features not offered by other tools,
as well as state-of-the-art performance. Novel features include the possibility of
unbounded verification with guaranteed termination, analysis of infinite sets of
traces in terms of patterns, and support for multi-protocol analysis.

Scyther is based on a pattern refinement algorithm, providing concise repre-
sentations of (infinite) sets of traces. This allows the tool to assist in the analysis
of classes of attacks and possible protocol behaviours, or to prove correctness for
an unbounded number of protocol sessions. The tool has been successfully ap-
plied in both research and teaching.

2 The Scyther Tool

The tool provides a graphical user interface (Fig. 1), that complements the
command-line and Python scripting interfaces. The GUI is aimed at users inter-
ested in verifying or understanding a protocol. The command-line and scripting
interfaces facilitate the use of Scyther for large-scale protocol verification tests.
� This work was partially supported by the Hasler Foundation, ManCom project 2071.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 414–418, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Scyther Tool 415

Scyther combines a number of novel features with state-of-the art perfor-
mance. First, Scyther is guaranteed to terminate whilst allowing to prove cor-
rectness of protocols for an unbounded number of sessions, and can optionally
output the proof tree (by using the backend). In contrast to other unbounded
verification tools, the tool provides useful results even in the case that no attack
is found but also no unbounded correctness can be established. In such cases,
the results from Scyther have a similar interpretation as bounded verification
tools, stating that no attack exists within a certain bound.

Second, Scyther assists in protocol

Fig. 1. The graphical user interface

analysis by providing classes of proto-
col behaviour (or classes of attacks),
as opposed to just single attack traces
provided by other tools.

Third, Scyther facilitates so-called
multi-protocol analysis. In such an
analysis, the parallel composition of
two (sub)protocols is analyzed, as in
[3]. Traditionally, such an analysis has
been infeasible for protocol tools be-
cause of state-space explosion. With
the performance provided by the
Scyther tool, multi-protocol analysis
has become feasible, and can be per-
formed by simply verifying the
concatenation of multiple protocol de-
scription files.

Given the description of a protocol
in the spdl language, which is based on
the operational semantics found in [4],
the tool can be used in three ways: to
verify whether the security claims in
the protocol description hold or not;
to automatically generate appropriate

security claims for a protocol and verify these; to analyze the protocol by per-
forming complete characterization. We describe each of these modes below.

Verification of claims. The input language of Scyther allows for specification
of security properties in terms of claim events, i.e., in a role specification one can
claim that a certain value is confidential (secrecy) or certain properties should
hold for the communication partners (authentication). Scyther can be used to
verify these properties or falsify them.

Automatic claims. If the protocol specification contains no security claims,
Scyther can automatically generate claims. At the end of each role, authentica-
tion claims are added, claiming that the supposed communication partners must
have performed the protocol as expected. Similarly, secrecy claims are added for

416 C.J.F. Cremers

all locally generated values (nonces) and variables. This augmented protocol de-
scription is then analyzed by Scyther as in the previous case. This enables users
to quickly assess the properties of a protocol.

Characterization. For protocol analysis, each protocol role can be “charac-
terized”, which means that Scyther analyzes the protocol, and provides a finite
representation of all traces that contain an execution of the protocol role. In
most cases, this representation consists of a small number (1-5) of possible ex-
ecution patterns. By manually inspecting these patterns, one can quickly gain
insight in the potential problems with the protocol and modify it if necessary.
For example, given the Needham-Schroeder protocol, Scyther determines that
there are only two patterns for the responder role: one is the correct behaviour of
the protocol, and the other is the well-known man-in-the-middle attack. Hence,
there are no other possible ways of executing the responder role.

The algorithm developed for the Scyther tool extends on ideas described in [5],
and the idea of analyzing protocols in terms of trace classes was published first
in [6]. Scyther addresses the undecidability of the security problem by (1) sig-
nificantly improving and extending the class pruning theorems from [5] and (2)
introducing a parameter that limits the pattern size, ensuring termination. Even
though the pattern depth size is limited, Scyther can perform unbounded veri-
fication of the majority of protocols, as each pattern represents an infinite class
of traces. In practice, with protocols from libraries such as SPORE [7], Scyther
is known to provide in about 80 percent of cases either unbounded verification
or falsification, and in the other 20 percent provides bounded verification. Fur-
ther details about the underlying methods are given in [8]. The Scyther tool is
freely available for Windows, Linux, and Max OS X platforms. It can be down-
loaded at http://people.inf.ethz.ch/cremersc/scyther/, and comes with
a library of example protocols modeled after the SPORE library [7].

3 Performance and Applications

We have extensively investigated the performance of Scyther compared to other
state-of-the-art protocol verification tools, which is reported in [9]. In these
tests, Scyther outperformed the state-of-the-art Avispa tools [2]. Even though
no abstraction techniques are used by Scyther, it offered a level of performance
similar to the abstraction-based ProVerif tool [1]. In practice this means small
(e.g. Needham-Schroeder, Yahalom, Otway-Rees) to medium-sized (e.g. TLS,
Kerberos) protocols are usually verified in less than a second. To the best of our
knowledge, Scyther is currently the fastest protocol verification tool that does
not use approximation methods.

Scyther has been successfully used for the analysis and design of protocols,
and has also been used for theoretical research and teaching. Exploiting the
state-of-the-art performance of Scyther, we have discovered a number of pre-
viously unreported attacks, e.g. as in [10, 3]. Scyther has also been used to
verify theoretical results regarding protocol composition in [11], and was used
for finding the counterexample that led to the main theorem of [12]. The tool

http://people.inf.ethz.ch/cremersc/scyther/

The Scyther Tool 417

is currently being used for teaching purposes at several universities, includ-
ing the Eindhoven University of Technology, ETH Zurich, University of Lux-
embourg, University of Twente, and the University of Grenoble. For teaching,
the clear relation between the protocol specification and the protocol semantics
has proven useful in explaining the fundamentals of protocol design and analysis.
The concise protocol descriptions help in focussing on the protocol as opposed to
tool details, in contrast to other protocol tools, which require the specification of
error-prone scenarios for the verification of properties. For teaching purposes, a
set of example exercises for students is available at http://people.inf.ethz.
ch/cremersc/scyther/scyther-exercises.html.

In future work we aim to turn the informal Scyther proof output into a proof
object that can be verified by mechanical theorem provers. The underlying pro-
tocol model has already been modeled in Isabelle/HOL, as described in [13].

References

1. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
Proc. 14th IEEE Computer Security Foundations Workshop (CSFW), pp. 82–96.
IEEE, Los Alamitos (2001)

2. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, L.,
Drielsma, P., Heám, P., Kouchnarenko, O., Mantovani, J., Mödersheim, S., von
Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron, L.:
The AVISPA Tool for the Automated Validation of Internet Security Protocols and
Applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 281–285. Springer, Heidelberg (2005)

3. Cremers, C.: Feasibility of multi-protocol attacks. In: Proc. of The 1st Int. Conf.
on Availability, Reliability and Security (ARES), pp. 287–294. IEEE, Los Alamitos
(2006)

4. Cremers, C., Mauw, S.: Operational semantics of security protocols. In: Leue, S.,
Systä, T.J. (eds.) Scenarios: Models, Transformations and Tools. LNCS, vol. 3466,
pp. 66–89. Springer, Heidelberg (2005)

5. Song, D.: An Automatic Approach for Building Secure Systems. PhD thesis, UC
Berkeley (December 2003)

6. Doghmi, S., Guttman, J.D., Thayer, F.: Skeletons, homomorphisms, and shapes:
Characterizing protocol executions. In: Proc. of the 23rd Conf. on the Mathematical
Foundations of Programming Semantics (MFPS XXIII). ENTCS, vol. 173, pp. 85–
102. Elsevier ScienceDirect, Amsterdam (2007)

7. Security Protocols Open Repository, http://www.lsv.ens-cachan.fr/spore
8. Cremers, C.: Scyther - Semantics and Verification of Security Protocols. Ph.D.

dissertation, Eindhoven University of Technology (2006)
9. Cremers, C., Lafourcade, P.: Comparing state spaces in automatic protocol veri-

fication. In: Proc. of the 7th Int. Workshop on Automated Verification of Critical
Systems (AVoCS 2007). ENTCS (September 2007) (to appear)

10. Cremers, C., Mauw, S.: Generalizing Needham-Schroeder-Lowe for multi-party au-
thentication, CSR 06-04, Eindhoven University of Technology (2006)

http://people.inf.ethz.ch/cremersc/scyther/scyther-exercises.html
http://people.inf.ethz.ch/cremersc/scyther/scyther-exercises.html
http://www.lsv.ens-cachan.fr/spore

418 C.J.F. Cremers

11. Andova, S., Cremers, C., Gjøsteen, K., Mauw, S., Mjølsnes, S., Radomirović, S.:
A framework for compositional verification of security protocols. Information and
Computation 206, 425–459 (2008)

12. Cremers, C.: On the protocol composition logic PCL. In: Abe, M., Gligor, V.
(eds.) Proc. of the ACM Symposium on Information, Computer & Communication
Security (ASIACCS 2008), Tokyo, pp. 66–76. ACM Press, New York (2008)

13. Meier, S.: A formalization of an operational semantics of security protocols.
Diploma thesis, ETH Zurich (August 2007),
http://people.inf.ethz.ch/meiersi/fossp/index.html

http://people.inf.ethz.ch/meiersi/fossp/index.html

The CASPA Tool: Causality-Based Abstraction
for Security Protocol Analysis

Tool Paper

Michael Backes1,2, Stefan Lorenz1, Matteo Maffei1, and Kim Pecina1

1 Saarland University, Saarbrücken, Germany
2 MPI-SWS

Abstract. CASPA constitutes a push-button tool for automatically
proving secrecy and authenticity properties of cryptographic protocols.
The tool is grounded on a novel technique for causality-based abstraction
of protocol executions that allows establishing proofs of security for an
unbounded number of concurrent protocol executions in an automated
manner. We demonstrate the expressiveness and efficiency of the tool
by drawing a comparison with T4ASP, the static analyzer for secrecy
properties offered by the AVISPA tool. CASPA is capable of coping with
a substantially larger set of protocols, and excels in performance.

1 Introduction

Proofs of security protocols are known to be error-prone and, owing to the
distributed-system aspects of multiple interleaved protocol runs, awkward to do.
In fact, vulnerabilities have accompanied the design of such protocols ever since
early authentication protocols like the Needham-Schroeder protocol, to carefully
designed de-facto standards like SSL and PKCS, up to current widely deployed
products like Microsoft Passport. Formal methods have proved to be salient tools
for dealing with such flaws, by helping both to securely design and to analyze
security protocols, and even to formally establish their security properties.

A central intricacy that these tools have to tackle is to concisely treat the
potentially very large number of concurrent protocol executions. We have de-
veloped CASPA (Causality-based Abstraction for Security Protocol Analysis), a
tool for establishing formal security proofs of cryptographic protocols for an un-
bounded number of concurrent protocol executions in a mechanized manner. The
tool is grounded on a recently proposed abstract interpretation of cryptographic
protocols [3] based on causal graphs. Causal graphs are finite dependency graphs
in which nodes represent process events and edges express the causality among
events. These graphs constitute a sound abstraction of an unbounded number
of protocol executions and, interestingly, they serve as a graphical illustration of
the actual protocol behavior. A quick inspection of these graphs often suffices
to identify unintended, and possibly harmful, interactions among parties. This
facilitates protocol design and error detection even on the human level.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 419–422, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

420 M. Backes et al.

Related Work. We demonstrate the expressiveness and efficiency of our tool by
drawing a comparison with T4ASP [13,9], the static analyzer for secrecy proper-
ties offered by AVISPA [2], the well-known tool suite for security protocol analy-
sis. CASPA is capable of coping with a substantially larger set of protocols than
TA4SP, and it furthermore excels in terms of performance; moreover, CASPA is
capable of verifying both secrecy and authenticity properties in contrast to only
secrecy properties in the case of TA4SP. Note that TA4SP so far constitutes
the only tool of the AVISPA tool suite that is capable of producing proofs of
security; the remaining tools such as OFMC [5] rely on state-space exploration
techniques and are constraint to either taking into account only a limited number
of concurrent protocol executions, typically two or three, or giving up guaranteed
termination in general. The same holds for other techniques based on state-space
exploration such as Athena [16], CPSA [12], and Scyther [11]. ProVerif [6] is a
tool based on Horn-clause resolution that verifies trace-based security properties,
such as secrecy and authenticity, as well as observational equivalence of process
behavior, is very efficient, but provides guaranteed termination only for tagged
protocols [7]. The Lysa tool [8] implements a control-flow analysis that offers ter-
mination and security proofs for an unbounded number of protocol executions,
but does not support security properties based on correspondence assertions [17].

2 The CASPA Tool

Fig. 1. The CASPA Tool

CASPA is written in Objective
CAML and equipped with a
graphical user interface, as-
sisting the user in the specifi-
cation and in the analysis of
cryptographic protocols, see
Figure 1. CASPA provides an
editor for protocol specifica-
tions, offering a quick load-
ing procedure for the proto-
cols specified in underlying
protocol libraries, and a con-
venient parsing procedure for
user-defined protocol specifi-
cations. In addition, the tool
features a graph management system that automatically generates and displays
causal graphs. Finally, CASPA offers a fully mechanized analyzer that verifies
secrecy and authenticity properties on a given causal graph and displays the re-
sults. More precisely, CASPA allows for analyzing the security properties secrecy,
weak authenticity, and strong authenticity [14]: as in AVISPA, authenticity prop-
erties are specified in terms of correspondence assertions [17]. Since causal graphs
are of finite size, the analysis is assured to terminate. The analysis entails secu-
rity proofs that establish the safety of the protocol for a potentially unbounded

The CASPA Tool: Causality-Based Abstraction 421

Table 1. Protocol results, conducted on a Pentium-IV 3GHz 1GB under linux

Protocol CASPA TA4SP OFMC
CHAPv2 0,93s 10,59s 0,32s
CRAM-MD5 0,09s - 0,71s
EKE 0,81s 7,56s 0,19s
IKEv2-CHILD 0,31s - 1,19s
ISO1 0,05s × 0,02s
ISO3 1,08s × 0,04s
LPD-MSR 0,05s - 0,02s
LPD-IMSR 0,37s - 0,08s

Protocol CASPA TA4SP OFMC
NSPK 0,13s 7,56s 0,01s
NSPK-KS 28m - 1,1s
NSPK-fix 0,08s 0,98s 0,18s
NSPK-KS-fix 7m - 24,86s
SHARE 0,4s 14,38s 0,08s
UMTS-AKA 0,04s 0,51s 0,02s
APOP 0,44s × 2,94s
DHCP-DA 1,03s - 0,06s

number of protocol executions. As usual for static analysis techniques and due
to the undecidability of the security problem, false positives may occur caused
by an insufficient precision of the analysis, hence potentially classifying secure
protocols as insecure. The CASPA tool is freely available at [4].

3 Performance Evaluation of CASPA

We evaluate the performance of our tool by running it on a subset of the AVISPA
library. The facilitate our experiments, we developed a translator from the In-
termediate Format protocol language [2] that the AVISPA suite is based upon
into the dialect of the spi-calculus [1] used in our tool. The translation is only
partially automated in that it requires some manual steps, such as specifying
the owners of the keys and defining suitable correspondence assertions. These
steps were straightforward in all protocols considered so far, but they admittedly
require basic familiarity with our language and understanding of the protocol.

The results are reported in Table 1. The tool succeeded in the analysis of
safe protocols (i.e., we did not get any false positives), and it failed to estab-
lish security proofs of flawed protocols as expected. For each protocol, the table
reports the running time for CASPA and TA4SP. The performance evaluation
shows that CASPA is capable of dealing with a substantially larger set of proto-
cols than TA4SP: the symbol - means that the protocol is not supported by the
tool, while the symbol × means that the protocol guarantees only authenticity
properties, which can be verified by CASPA and not by TA4SP. In addition, the
evaluation shows that even for the protocols that are in scope of both TA4SP
and CASPA, the CASPA tool improves in terms of performance. Note that the
subset of protocols we consider comprises all protocols of the AVISPA library for
which an analysis with TA4SP succeeds. Some protocols in the AVISPA library
employ non-standard equational theories that are not supported by our tool
(e.g., NSPKxor that is based on xor) and for some other protocols the analysis
did not succeed due to memory exhaustion (e.g., SET and TSL).

For comparison, we additionally depict the running times of OFMC [5],
the most advanced model checker in the AVISPA tool, when the analysis is
constrained to three executions. In this restricted setting, OFMC shows signif-
icantly better performances. Scaling this approach to more executions rapidly
becomes infeasible, hence leaving potential attacks undetected (e.g., cf. [10,15]).

422 M. Backes et al.

References

1. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus.
Information and Computation 148(1), 1–70 (1999)

2. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, L.,
Drielsma, P., Heám, P., Kouchnarenko, O., Mödersheim, J.M.S., von Oheimb, D.,
Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron, L.: The avispa
tool for the automated validation of internet security protocols and applications.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 281–285.
Springer, Heidelberg (2005)

3. Backes, M., Cortesi, A., Maffei, M.: Causality-based abstraction of multiplicity in
cryptographic protocols. In: Proc. 20th IEEE Symposium on Computer Security
Foundations (CSF), pp. 355–369. IEEE, Los Alamitos (2007)

4. Backes, M., Lorenz, S., Maffei, M., Pecina, K.: The CASPA tool,
www.infsec.cs.uni-sb.de/caspa

5. Basin, D.A., Mödersheim, S., Viganò, L.: Ofmc: A symbolic model checker for
security protocols. IJIS 4(3), 181–208 (2005)

6. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
Proc. 14th IEEE Computer Security Foundations Workshop (CSFW), pp. 82–96.
IEEE, Los Alamitos (2001)

7. Blanchet, B., Podelski, A.: Verification of cryptographic protocols: Tagging enforces
termination. In: Gordon, A.D. (ed.) ETAPS 2003 and FOSSACS 2003. LNCS,
vol. 2620, pp. 136–152. Springer, Heidelberg (2003)

8. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Static validation
of security protocols. Journal of Computer Security 13(3), 347–390 (2005)

9. Boichut, Y., Genet, T.: Feasible trace reconstruction for rewriting approximations.
In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 123–135. Springer, Heidel-
berg (2006)

10. Chadha, R., Kremer, S., Scedrov, A.: Formal analysis of multi-party contract sign-
ing. In: Proc. 17th IEEE Computer Security Foundations Workshop (CSFW), pp.
266–279. IEEE, Los Alamitos (2004)

11. Cremers, C.: Scyther - Semantics and Verification of Security Protocols. Ph.D.
dissertation, Eindhoven University of Technology (2006)

12. Doghmi, S., Guttman, J., Thayer, F.: Searching for shapes in cryptographic pro-
tocols. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
523–537. Springer, Heidelberg (2007)

13. Genet, T., Tong, V.: Reachability Analysis of Term Rewriting Systems with Tim-
buk. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250,
pp. 695–706. Springer, Heidelberg (2001)

14. Lowe, G.: A Hierarchy of Authentication Specification. In: Proc. 10th IEEE Com-
puter Security Foundations Workshop (CSFW), pp. 31–44. IEEE, Los Alamitos
(1997)

15. Millen, J.: A necessarily parallel attack. In: Proc. of Workshop on Formal Methods
and Security Protocols (1999)

16. Song, D.X.: Athena: a new efficient automatic checker for security protocol analysis.
In: Proc. 12th IEEE Computer Security Foundations Workshop (CSFW), pp. 192–
202. IEEE, Los Alamitos (1999)

17. Woo, T.Y.C., Lam, S.S.: A lesson on authentication protocol design. Operation
Systems Review 28(3), 24–37 (1994)

www.infsec.cs.uni-sb.de/caspa

Jakstab: A Static Analysis Platform for Binaries�

Tool Paper

Johannes Kinder and Helmut Veith

Technische Universität Darmstadt, 64289 Darmstadt, Germany

Abstract. For processing compiled code, model checkers require accurate model
extractionfrombinaries.Wepresentour fullyconfigurable binary analysisplatform
JAKSTAB, which resolves indirect branches by multiple rounds of disassembly in-
terleaved with dataflow analysis. We demonstrate that this iterative disassembling
strategy achieves better results than the state-of-the-art tool IDA Pro.

Introduction. While most of today’s model checkers operate on source code, there
are various settings where we need to verify binary code. First, when source code is
not available, e.g., when a software manufacturer wants to verify the conformance of
third party modules, such as drivers or plugins, to the API specification. Second, to
be able to detect errors introduced in the compiling process [1], which is of particular
importance in the field of embedded systems, where compilers can be unreliable. Third,
binary level analysis results can supplement execution traces collected by testing and
vice versa, as demonstrated by the SYNERGY algorithm [2]. And finally, our original
motivation for this research stems from using model checking to detect malicious code
inside executables [3].

Extracting a control flow graph (CFG) from an executable is not simply a matter of
implementing a language front-end for assembly. Compiled code lacks many comfort-
able properties of structured high level languages and poses several challenges for anal-
ysis tools. Function pointers are only seldom handled by source-level verification tools,
but on assembly level, calls and jumps to pointers are too abundant to be ignored. The
treatment of function pointers requires dataflow analysis on an incomplete CFG. Thus,
the traditional sequence, in which an analyzer builds the CFG first and only then per-
forms dataflow analysis, has to be replaced by an iterative process. Another challenge is
the loss of structure in compiled code. For accurate analysis results, procedures, along
with their calling conventions, need to be explicitly detected. Compiler optimizations
and, worse, obfuscation techniques can further mangle the control flow structure of an
executable and impede correct disassembly and control flow extraction [4].

Existing disassemblers can be divided into two categories [4]: Linear sweep disas-
semblers, such as GNU objdump, simply sequentially translate machine code into as-
sembly instructions. Recursive traversal disassemblers, such as IDA Pro, follow direct
branches and decode the program by depth first search. We extend this classification by
defining an iterative disassembler as one that interleaves multiple disassembly rounds
with dataflow analysis to achieve accurate and complete CFG extraction.

� Supported by DFG grant FORTAS – Formal Timing Analysis Suite for Real Time Programs
(VE 455/1-1) and the European Commission under Contract IST-2002-507932 ECRYPT.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 423–427, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

424 J. Kinder and H. Veith

Disassembly Intermediate Representation Control Flow Graph

mov esi, [0x38498] esi := mem32[0x38498];
jmp 0x1fae2 goto L2;
push [ebp - 4] L1: mem32[esp − 4] := mem32[ebp − 4];

esp := esp − 4;
call [0x38588] esp := esp − 4;

mem32[esp] := 0x1FAE2;
goto mem32[0x38588];

lea eax, [ebp - 4] L2: eax := ebp − 4;
push eax mem32[esp − 4] := eax ;

esp := esp − 4;
push [ebp + 8] mem32[esp − 4] := mem32[ebp + 8];

esp := esp − 4;
call esi esp := esp − 4;

mem32[esp] := 0x1FAEB;
goto esi ;

cmp [ebp - 4], 0 tmp := mem32[ebp − 4] − 0;
CF := tmp@31&(!mem32[ebp − 4]@31);
OF := mem32[ebp − 4]@31&(!tmp@31);
NF := tmp@31;
if (tmp = 0) then ZF := 1 else ZF := 0;

jne 0x1fad9 if (ZF = 0) then goto L1;

[0x1faca]
%esi := mem32[0x38498]
mem32[%esp - 4] := %ebp
mem32[%esp - 12] := %esi

%esp := (%esp - 12)

[0x1fae2]
%eax := (%ebp - 4)

%esi := mem32[0x38498]
mem32[%esp - 8] := mem32[%ebp + 8]

mem32[%esp - 4] := (%ebp - 4)
mem32[%esp - 12] := 0x1faeb

%esp := (%esp - 12)

[NdisUnchainBufferAtFront@NDIS.SYS]
%esp := (%esp + 4)
%eax := nondet32
%ecx := nondet32
%edx := nondet32

%pc := mem32[%esp]

[0x1faeb]
tmp1 := mem32[%ebp - 4]

%ZF := mem32[%ebp - 4] == 0) ? 1 : 0

%ZF = 1

[0x1fad9]
mem32[%esp - 8] := 0x1fae2

mem32[%esp - 4] := mem32[%ebp - 4]
%esp := %esp - 8

%ZF = 0

[IoFreeMdl@ntoskrnl.exe]
%esp := (%esp + 8)
%eax := nondet32
%ecx := nondet32
%edx := nondet32

%pc := mem32[%esp]

L1:

L2:

Fig. 1. Part of procedure 0x1FACA in fwdrv.sys. The second call is not resolved by IDA Pro.

Our tool JAKSTAB 1 (Java toolkit for static analysis of binaries) serves as a flexible
front end to make executables accessible to static analysis and model checking. To this
end, JAKSTAB contains an iterative disassembler and a library of semantic descriptions
that translates assembly instructions to an RTL-style intermediate representation. Dis-
assembler and semantic descriptions are fully configurable to support multiple target
platforms. Using the intermediate representation, JAKSTAB iteratively creates the CFG,
calculating and resolving indirect branch targets using results from dataflow analysis.
JAKSTAB is implemented in Java and can be either used as a library or via its command
line interface, which outputs plain disassembly or the intermediate representation as a
CFG in graphviz-format. The intermediate representation, consisting of assignments,
if, and goto statements, is independent of the target hardware and provides a natural
interface to model checkers and program analysis tools.

Today’s de facto industry standard for disassembly is IDA Pro. Its heuristic matches
common prologue bytes to identify procedures and assumes that every call returns to
its original site, regardless of the call target, which can lead to erroneous fall-through
edges. Furthermore, the CFG is usually incomplete, since IDA Pro has only a very ba-
sic ability to resolve indirect branch instructions (function pointers): It propagates con-
stants just within a basic block, and decorates calls to such constants with comments
containing the actual target. While this is enough to aid human engineers, it is insuf-
ficient for automated analysis. Figure 1 shows an exemplary piece of assembly code
from a Windows driver executable (fwdrv.sys from Sunbelt Personal Firewall), where
IDA Pro (v4.7) fails to identify an indirect call to an imported function, whose address
is stored at a memory location pointed to by the register esi. Finally, even though IDA
Pro offers an (unsupported) SDK for plugin development, it is closed source software
and thus cannot be easily integrated with an analysis tool.

1 Project page online at http://www.jakstab.org

http://www.jakstab.org

Jakstab: A Static Analysis Platform for Binaries 425

To the best of our knowledge, the most successful approach to static analysis of ex-
ecutables currently is the CodeSurfer/x86 project [5]. CodeSurfer/x86 uses IDA Pro
to access binaries, and combines two program analysis algorithms, value set analy-
sis (VSA) and aggregate structure identification (ASI). In recent work, they combined
VSA with a property automaton that encodes certain usage rules for the Windows driver
API [6]. Generally, they assume a standard compilation model for binaries, which guar-
antees correct disassembly by IDA Pro. They acknowledge that IDA Pro’s output can be
incomplete and do connect missing edges from indirect calls, yet they lack a complete
loop to disassemble previously unprocessed branch targets.

Closely related to executable analysis is the idea of building a decompiler, which
transforms an executable back to source code [7,8]. Chang et al. describe an architecture
of communicating decompilers at different language levels [9]. Their implementation
propagates static analysis facts through all language levels one instruction at a time,
instead of strictly separating decompilation stages by language level. The prototype
targets assembly source files generated by a set of compilers, and thus requires access to
source code. We believe that JAKSTAB would fit nicely into this tool-chain as a provider
of well-formed CFGs from generic executables.

Control Flow Reconstruction. In most assembly languages, instructions can affect
multiple registers and status flags. The x86 architecture, which we first focused on,
features an especially rich instruction set where instructions often represent non-trivial
operation sequences. To fully capture instruction semantics and enable easy extensibil-
ity, JAKSTAB is designed to read Semantic Specification Language (SSL) files supplied
with the Boomerang decompiler, which are available for several architectures including
x86, PowerPC, 68K, and SPARC [10,8]. Figure 1 shows the intermediate representa-
tion JAKSTAB produces from the assembly snippet using SSL definitions for the x86
architecture. Mapping every assembly instruction to its semantic specification creates
a program representation with obvious pieces of dead code. In particular, most of the
status flags are not used but simply overwritten by later instructions. To reduce the pro-
gram size, our tool executes a live variable analysis and afterward removes any dead
code. In our experiments, usually about 30% of the statements are identified as dead
code and removed from the control flow graph. In the example in Figure 1, three flag
updates are removed (crossed out text), and only one relevant update remains.

JAKSTAB recreates the control flow graph in an iterative process. Starting from the
entry point of the executable, it propagates and folds constants through registers and
memory cells to resolve indirect branch targets. JAKSTAB supports indirect memory
access, which is common for local variables stored on the stack. Whenever Jakstab can-
not resolve the address of an indirect write, it currently assumes that every memory
cell can become undefined. Calls to shared libraries, which, in the Windows PE-format,
appear as indirect calls to memory locations, are handled by creating stub procedures
in the control flow graph. Constant propagation and folding is performed on all parts of
the CFG already known, which allows JAKSTAB, in contrast to IDA Pro, to successfully
recover the CFG of the example in Figure 1. Note that the results of constant propaga-
tion can theoretically be incorrect if incoming edges to existing nodes are discovered in
later iterations. In such cases, the CFG reconstruction process has to be restarted.

426 J. Kinder and H. Veith

cmd.exe dnsrslvr.dll faultrep.dll ftp.exe nmnt.sys rcp.exe svchost.exe

IDA Pro 74% 9.4s 81% 36.2s 73% 5.4s 88% 2.4s 74% 3.1s 42% 1.4s 56% 1.5s
JAKSTAB 91% 32.4s 92% 3.2s 98% 9.0s 94% 2.7s 96% 4.5s 100% 1.1s 88% 1.0s

Fig. 2. Success rates and processing times for resolving indirect branches in executables

Any target location that has been successfully resolved in one iteration is scheduled
for disassembly in the next one. Newly detected procedures are inlined to ensure correct
interprocedural results in the next round of constant propagation. Figure 1 shows the
CFG extracted from the example code, including stubs for imported library functions.
The stubs non-deterministically assign those registers which might be overwritten by
library functions (eax, ecx, edx according to the Intel application binary interface).

We compared JAKSTAB’s and IDA Pro’s capabilities in resolving indirect branches
on Microsoft Windows system binaries. The results we present in Fig. 2 clearly show
that JAKSTAB is able to provide significantly more accurate CFGs than IDA Pro at
similar, and in some cases even faster, execution speeds.

Applications and Future Work. Our goal is to use JAKSTAB as a versatile platform for
different verification tasks on binary level. Currently, we are building a bounded model
checker on top of the existing framework to allow better resolution of indirect jumps and
the extraction of all targets from jump tables. Besides the internal use of the bounded
model checker for improving the CFG, we will investigate what kind of specifications
can be verified on binary level, with particular focus on API usage specifications.

JAKSTAB, unlike IDA Pro, does not assume a standard compilation model. Therefore
it is well suited to process code protected against disassembly, in particular malicious
code. Anti-disassembly patterns that obscure the control flow of a program will thwart
traditional recursive traversal disassemblers [4]. For example, return instructions are
commonly misused as generic jumps by pushing the desired target address on the stack
immediately beforehand. Since JAKSTAB supports local constant propagation through
the stack, it can retarget disassembly correctly in these cases and is able to recover the
real control flow. A CFG extracted from such a potentially malicious program can then
be used as input to a semantic malware detector [3].

References

1. Balakrishnan, G., Reps, T., Melski, D., Teitelbaum, T.: WYSINWYX: What You See Is Not
What You eXecute. In: VSTTE, Zurich, Switzerland (2005)

2. Gulavani, B., Henzinger, T., Kannan, Y., Nori, A., Rajamani, S.: SYNERGY: a new algorithm
for property checking. In: SIGSOFT FSE 2006, pp. 117–127. ACM, New York (2006)

3. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code by model
checking. In: Julisch, K., Krügel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 174–187.
Springer, Heidelberg (2005)

4. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static disas-
sembly. In: CCS 2003, pp. 290–299. ACM, New York (2003)

5. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In: Duesterwald,
E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg (2004)

Jakstab: A Static Analysis Platform for Binaries 427

6. Balakrishnan, G., Reps, T.: Analyzing stripped device-driver executables. In: TACAS 2008.
LNCS, pp. 124–140. Springer, Heidelberg (2008)

7. Cifuentes, C.: Reverse Compilation Techniques. PhD thesis, Queensland University of Tech-
nology (1994)

8. van Emmerik, M., Waddington, T.: Using a decompiler for real-world source recovery. In:
WCRE 2004, pp. 27–36. IEEE Computer Society, Los Alamitos (2004)

9. Chang, B., Harren, M., Necula, G.: Analysis of low-level code using cooperating decompil-
ers. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 318–335. Springer, Heidelberg (2006)

10. Cifuentes, C., Sendall, S.: Specifying the semantics of machine instructions. In: International
Workshop on Program Comprehension (IWPC 1998), pp. 126–133. IEEE Computer Society,
Los Alamitos (1998)

THOR: A Tool for Reasoning about Shape and

Arithmetic�

Tool Paper

Stephen Magill1, Ming-Hsien Tsai2, Peter Lee1, and Yih-Kuen Tsay2

1 Carnegie Mellon University
2 National Taiwan University

Abstract. We describe Thor (Tool for Heap-Oriented Reasoning), a
tool based on separation logic that is capable of reasoning automatically
about heap-manipulating programs. There are several such systems in
development now. However, Thor is unique in that it provides not only
shape analysis, but also arithmetic reasoning via a novel combination
procedure. Also, considerable effort has been put into making the out-
put clear and easy to understand. Thor uses Javascript and HTML to
produce an interactive representation of the analysis results.

1 Introduction

There has been a surge of interest in the use of separation logic to automatically
prove memory safety. This has resulted in a number of program analysis tools
that use separation logic to describe program states. One such tool is under
development at Berkeley [5]. Another is the Space Invader tool [6], developed
at Queen Mary’s, which is able to scale to programs with over 10,000 lines of
code [12]. SLAyer [2], developed at Microsoft Research, also has scalability as
its primary goal and is focused on proving memory safety of large programs.

We have taken a different approach with our tool, Thor. Instead of trying to
see how far we can scale a memory safety analysis, we are interested in seeing
how precise an analysis we can develop while maintaining full automation. In
particular, we have focused on the combination of list reasoning and arithmetic.
Thor implements a shape analysis based on separation logic that is capable of
reasoning about doubly-linked lists. It then adds support for arithmetic reasoning
involving stack-based integers, integers in the heap, and the lengths of lists. This
arithmetic support is provided by utilizing an “off-the-shelf” arithmetic analysis
tool as described in [9]. This is interesting for two reasons. First, it provides very
robust arithmetic reasoning, since the precision of the combination improves with
the precision of the arithmetic tool being used. Secondly, the integer programs
produced by the shape analysis phase provide a new source of test programs
for arithmetic analysis tools. And our experiments indicate that the arithmetic
programs produced by our method pose a challenge for some existing tools.
� This work was partially supported by the iCAST project sponsored by the National

Science Council, Taiwan, under the Grant No. NSC96-3114-P-001-002-Y.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 428–432, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

THOR: A Tool for Reasoning about Shape and Arithmetic 429

1 int i = malloc(sizeof(int));

2 List *curr = NULL; *i = 0;

3 while(*i < n) {

4 t = (List*) malloc(sizeof(List));

5 t->next = curr;

6 curr = t;

7 *i = *i + 1;

8 }

9 free(i); int j = 0;

10 while(j < n) {

11 t = curr->next;

12 free(curr);

13 curr = t;

14 j++;

15 }

Fig. 1. Example showing motivation for
combined shape and arithmetic reasoning

1 int a = 0;

2 int k = 0;

3 while(a < n) {

4 a = a + 1;

5 k = k + 1;

6 }

7 int j = 0;

8 while(j < n) {

9 if(k = 0)

10 goto ERROR;

11 else

12 k = k - 1;

13 j++;

14 }

Fig. 2. Arithmetic counterexample
program produced by the shape
analysis

Figure 1 contains an example of the sort of programs that Thor is targeting.
In this program, a list of length n is constructed and then deallocated. The
deallocation code relies on the fact that the list being freed is of length n. Proving
that this loop is memory safe involves showing that at the beginning of each loop
iteration, n - j is the length of the still-allocated portion of the list.

Ours is not the first approach to a static analysis combining shape and arith-
metic reasoning. Mutant [3] is similar in spirit to our approach but does not
output arithmetic programs and relies on weaker arithmetic invariants. Also,
Thor’s treatment of list lengths can be viewed as a realization of the connec-
tion between list programs and counter automata that Bouajjani et al. described
in [4]. However, we believe that leveraging a separation logic-based shape analy-
sis to provide the connection gives a more generally applicable method of going
from a pointer program to an arithmetic program.

2 Interacting with THOR

Thor is a command-line program written in OCaml. It takes as input a C pro-
gram and a function name. It then runs a shape analysis that proceeds by explor-
ing the state-space of the program, symbolically executing all paths through the
code. For loops, a join operator similar to that in [10] is used to ensure that the
symbolic description of the program state converges to an overapproximation of
the reachable states. If the program can be proved memory safe with only shape
reasoning, then no further processing is required. However, if safety of the pro-
gram depends on arithmetic information, as in Figure 1, then the second phase
of Thor’s combined analysis will be invoked.

This second phase translates the results of the shape analysis into a purely
arithmetic program. This translation is such that if the arithmetic program can

430 S. Magill et al.

be shown to be safe (where safety means non-reachability of a designated “error”
location), then the original program is guaranteed to be memory safe. Viewed
another way, the shape analysis implemented in Thor translates memory safety
of heap-manipulating code to assertion safety of purely stack-based code. Details
are given in [9], but we mention here two of the most interesting cases.

The first involves variables present only in the analysis, such as variables
representing the lengths of lists. If the source program contains a loop that
modifies a list during each iteration, the translation will insert a variable k into
the generated program along with initialization and update statements for k that
ensure this variable always tracks the length of the list. This allows the arithmetic
analysis tool to discover relationships involving these length variables. We can
see this occuring in the first loop in Figure 2 with the variable k.

The second interesting case involves branches on length variables. Sometimes
a command is memory safe only if length variable k is positive, indicating that a
certain list is non-empty. In such cases, a branch is inserted in the analysis and
in the generated program that tests whether k = 0. In the true branch, we go to
the error state, as this case corresponds to a memory fault. In the false branch,
we continue exploring the state space, as this case is memory safe. This is the
role of the if statement in the second loop in Figure 2.

Fig. 3. Fragment of Thor’s HTML output

By default, the arithmetic program is output as C code, so any analysis tool
capable of handling C can be used to check the arithmetic program and thus
prove memory safety of the original code. We have tried both BLAST [8] and
ARMC [11] on the C code generated by Thor. We have also implemented an
option to output the program in the FAST file format for use with that tool [1].

In addition to the arithmetic program, the tool also outputs a representation
of the execution tree that was constructed while proving the program. The tree is
represented as C-style source code. Branches in the analysis are represented as if

THOR: A Tool for Reasoning about Shape and Arithmetic 431

statements and inductive invariants are represented by gotos.1 Annotations are
inserted between every command, which is helpful both when analyzing counter-
example paths and when debugging the tool itself.

The tool can also generate graphical depictions of the program state. This
is accomplished by using the Graphviz library [7] to render “box and pointer”
diagrams that provide an intuitive view of the contents of memory. These graph-
ical renderings are linked to the textual descriptions via Javascript such that by
clicking on a memory state, the user can toggle between the text-based separa-
tion logic description and the Graphviz rendering. Figure 3 shows an example
with the first three states described using a separation logic formula and the last
two rendered as diagrams.

3 Conclusion

We have described Thor, our Tool for Heap-Oriented Reasoning. Thor is an
implementation of the combination procedure given in [9]. It provides a means
of analyzing programs that require both shape and arithmetic reasoning and
also serves as a source of interesting test programs for arithmetic tools. Thor
is available for download at http://www.cs.cmu.edu/~smagill/thor. The dis-
tribution also includes a number of example programs.

References

1. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: Fast: Fast acceleration of sym-
bolic transition systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 118–121. Springer, Heidelberg (2003)

2. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., Yang,
H.: Shape analysis for composite data structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

3. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.: Automatic termination proofs
for programs with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

4. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs
with lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 517–531. Springer, Heidelberg (2006)

5. Chang, B.-Y.E., Rival, X., Necula, G.C.: Shape analysis with structural invariant
checkers. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–
401. Springer, Heidelberg (2007)

6. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS,
vol. 3920, pp. 287–302. Springer, Heidelberg (2006)

7. Gansner, E., North, S.: An open graph visualization system and its applications to
software engineering. Software — Practice and Experience 30(11) (2000)

1 If I is an inductive invariant for the code c, then there will be a path in the output
of the form label: {I} c; goto label;

432 S. Magill et al.

8. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
2002: Principles of Programming Languages, pp. 58–70. ACM Press, New York
(2002)

9. Magill, S., Berdine, J., Clarke, E., Cook, B.: Arithmetic strengthening for shape
analysis. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 419–
436. Springer, Heidelberg (2007)

10. Magill, S., Nanevski, A., Clarke, E., Lee, P.: Inferring invariants in separation logic
for imperative list-processing programs. In: SPACE (2006)

11. Podelski, A., Rybalchenko, A.: ARMC: the logical choice for software model check-
ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
pp. 245–259. Springer, Heidelberg (2006)

12. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

Functional Verification of Power Gated Designs

by Compositional Reasoning

Cindy Eisner, Amir Nahir, and Karen Yorav

IBM Haifa Research Laboratory

Abstract. Power gating is a technique for low power design in which
whole sections of the chip are powered off when they are not needed,
and powered back on when they are. Functional correctness of power
gating is usually checked as part of system-level verification, where the
most widely used technique is simulation using pseudo-random stimuli.
We propose instead to perform a sequential equivalence check between
the power gated design and a version of itself in which power gating
is disabled. We take a compositional approach that looks for partial
equivalence of each unit under a suitable set of assumptions, guaranteed
by the neighboring units. We make use of so-called circular reasoning
rules to compose the partial equivalences proved on the individual units
back into total equivalence on the whole chip.

1 Introduction

Power consumption is an important consideration in modern chip design. A
portable device should use as little energy as possible, in order to extend battery
life, and a non-portable device should use as little energy as possible in order to
save electricity costs – the expense of powering a server farm can easily outstrip
the cost of the servers themselves. Thus design teams go to great lengths to
design systems that use as little power as possible.

Many power saving techniques are purely electrical, such as changing the type
of transistor used. Other techniques, while electrical, can be understood at the
logical level. Among them are multiple power domains, in which different areas
of the chip get different voltages; dynamic frequency/voltage scaling, in which
the frequency and/or voltage is changed while the chip is working; clock gating,
in which the clock input of a memory element is prevented from “ticking” if
a tick would be redundant; and power gating, in which whole sections of the
chip are powered off when not needed, and powered back on when they are. In
addition to the physical design challenges, i.e., getting the electronics right, each
of these techniques adds a new dimension to the functional verification problem.

In this paper we focus on power gating [2]. Power gating is one of the most
powerful techniques for saving power, as it reduces both dynamic power (the
power used when the design transitions from state to state) as well as static,
or leakage, power (the power used by the design when it is in a steady state).
Functional correctness of power gating is usually checked as part of system-level

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 433–445, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

434 C. Eisner, A. Nahir, and K. Yorav

verification, where the most widely used technique is simulation with pseudo-
random stimuli. However, because power gating is such a complicated technique,
this approach can be a real barrier to its use – either because there is not enough
confidence that the current methods can verify correctness, or because the effort
required to do so is not economically feasible. Therefore a practical methodology
to formally verify the correctness of power gating fulfills a real need.

We present a methodology that addresses functional verification of a design
in the presence of power gating, in which we break the verification task into
two parts. In the first, correct functionality of the design is checked when power
gating is disabled, using the usual techniques (formal and/or dynamic, as the
case may be). The second part is a sequential equivalence check between a version
of the design with power gating enabled and one with it disabled.

We focus on the second part, which due to the size problem is not trivial.
At the level of a single unit, we do not necessarily expect complete sequential
equivalence. Rather, we expect that the cases in which the two versions of the
unit differ are don’t cares for the neighboring units. Thus we require only partial
equivalence of each unit, and we make use of so-called circular reasoning rules
to allow us to compose the units and the partial equivalences proved on them
into total equivalence on the whole chip.

At a very high level, our method can be understood as follows: identify the
conditions under which the interface between a power gated unit and its neigh-
bors is “active”, and require that the power gated unit preserve functionality
only then. Separately, prove that the neighbors are not affected by a difference
in behavior when the interface is not active. We note that implicit in our method
is the assumption that power gating does not change the external behavior of the
chip, but this assumption does not hold in some cases – for example, pipelines
that stall when the needed unit is not available. Overcoming this limitation is
future work.

In general, compositional reasoning is difficult because of the manual effort in-
volved in coming up with appropriate assumptions, and this has severely limited
its use in industrial settings. In our case, the specification is not an arbitrary
formula but rather sequential equivalence between outputs of the (composed)
design. This simplifies the task of figuring out what the assumptions should be.
We require only that the user supply us with an observer, a piece of code that
observes the chip but does not influence its behavior. The observations that it
needs to make are of a specific and limited nature, thus manual coding of an
observer is not an unduly difficult task to expect of the user.

Related Work. In this paper we do not invent a new compositional reasoning
rule, but rather make use of the one presented in [4]. Our contribution to the
compositional reasoning community is the identification of a class of real-life
problems for which compositional reasoning is relatively easy, thus barriers to
industrial adoption of it are minimal.

As defined in [5], sequential equivalence solves the problem of deciding whether
two arbitrary designs are equivalent without knowledge of their initial states or
a reset sequence that will bring each of them to a single known (initial) state.

Functional Verification of Power Gated Designs 435

Other works (e.g., [7]) use the term sequential equivalence to describe a more
restricted problem, in which some knowledge about the initial state exists. We
use alignability equivalence to describe the more general problem examined in [5],
and sequential equivalence for the more restricted problem as described in [7].

The problem of compositional alignability equivalence is examined in [3]. In
contrast, our concern is with sequential equivalence. Like us, [3] look for a partial
equivalence, but their partial equivalence includes assumptions about the envi-
ronment of the full chip, which they do not discharge. We also allow such assump-
tions, if necessary, but the main source of partiality in our work is knowledge
about how a particular power gated design is intended to work. Furthermore,
we discharge all assumptions that are derived from such knowledge.

Sequential equivalence checking is widely used to verify the correctness of
local changes introduced by techniques such as retiming and clock gating [1].
It is used to verify that the change preserved the functionality of the original
design. We propose something similar for power gating, however our equivalence
check is complicated by the fact that the change causes non-local side effects.

To the best of our knowledge, there is no prior literature on functional verifi-
cation in the presence of power gating. Technical articles available online discuss
various limited aspects of the problem, for instance, that the power-up and
power-down sequences work as expected, that the correct parts of the state are
retained by the power retention logic, or that the power management unit it-
self functions correctly. However, no prior work has considered the problem of
functional correctness of the chip as a whole in the presence of power gating.

2 Power Gating

Recall that in power gating, a unit or a large part of it is powered off when it
is not needed, and powered back on when it is. For instance, the power to a
floating point unit may be shut off when there are no floating point instructions
to be processed, and turned back on when there is a need. The memory elements
of a power gated unit lose their memory when powered off. Thus, power gating
requires either that the power gated unit be memoryless, i.e., such that when
turned back on it is able to function with no memory of the past, or else that
there is some circuitry that takes care of state retention – remembering enough
of the state to allow the unit to function correctly when turned back on.

When a logic gate is powered off, its output should not be read by a logic
gate that is powered on, for physical design reasons that are beyond the scope of
this paper. This results in two complications. First, the inputs of a powered on
unit must be insulated from the outputs of a powered off unit. This is achieved
by inserting an isolation device, which we will term a fence, between the out-
puts of a powered-off unit and the inputs of a powered-on unit. The physical
implementation of a fence is beyond the scope of this paper. Logically, when the
fence is “up” it drives a constant value and when it is down, it simply passes
on the value of the output that it is fencing. A fence must be put up before a
power gated unit is powered off, and must be left up until the power gated unit

436 C. Eisner, A. Nahir, and K. Yorav

has been powered on and sufficient time (some number of clock cycles – the exact
number is design dependent) has passed to ensure that all outputs are reliable.

The second complication is that state retention is not simply a matter of
powering off some memory elements while leaving others powered on, because the
powered on memory elements must be fenced off from the powered off elements.
Therefore, state retention is normally accomplished by copying part of the state
to dedicated memory elements before powering off a unit, and then copying them
back after the unit has been repowered (and before it is used).

The process of raising the fences and copying a partial state to the dedicated
state retention before powering off is part of the power down sequence, while
the process of powering up the design, copying the retained state back into the
functional memory elements, and then lowering the fences is part of the power up
sequence. Triggering the power down and power up sequences is the responsibility
of the power management unit.

Conceptually, there are two parts to verifying the correct implementation of
power gating. One part is syntactic, or structural: checking that fences exist at
the right places, and checking that if the power is off, the fence is up and stays
up for a sufficient number of clock cycles to ensure the (electrical) reliability of
the gate. This is easily checked, and is orthogonal to the matter we examine
in this paper. The other part is semantic, or functional: checking whether the
implementation of power gating preserves the behavior of the chip. The latter is
the problem that we are concerned with in this paper.

3 Methodology

We first show the setup of our methodology and the inputs required from the
user, then show how we use these inputs to prove sequential equivalence between
a power gated design and a version of itself in which power gating is disabled.

Preliminaries. Given a set Σ of signals, a path is a function π : Σ ×N → {0, 1}
that assigns each signal a Boolean value at each time point. We can constrain
the behavior of signals on a path by associating a predicate with each signal.
Such a predicate can be either an input predicate, which imposes no constraint
at all, a gate predicate such that the value of signal σ ∈ Σ at time t is a function
of the values of other signals at time t (including the constant functions 0 and
1), or a latch predicate such that the value of signal σ ∈ Σ at time t is a function
of the values of other signals at time t − 1. Formally,

Definition 1 (Input, gate and latch predicates). Let σi for 1 ≤ i ≤ n be
signals, and denote the value of signal σi at time t by σi(t). Let f be an n-ary
function and let init values be a subset of {0, 1}. Then:

• p(t) ∈ {0, 1} is an input predicate.

• p(t) ∈ f(σ1(t), . . . , σn(t)) is a gate predicate

• p(t) ∈
{
init values : t = 0
f(σ1(t − 1), . . . , σn(t − 1)) : t > 0 is a latch predicate

Functional Verification of Power Gated Designs 437

pg_enable G U

Fig. 1. Partitioning of the design for power gating verification

Let Σ be the set of signals in a non-power gated design D, and describe each
signal σ ∈ Σ as an input, gate, or latch predicate pσ in the obvious way. The
set D of predicates {pσ|σ ∈ Σ} describes the design D. Note that a multiply
clocked design can be described as easily as a singly clocked design (as is usual
when building a model of a design for model checking or equivalence checking).

In a power gated design, each gate and latch has an additional input pin that
represents the state of the power supply – either on or off. Thus to describe a
power gated design, we modify the “obvious way” of the preceding paragraph as
follows. An input or gate predicate is not affected by whether the power is on or
off, whereas a latch predicate has its “normal” value when the power is on, and
a non-deterministic value otherwise. This gives us that when the power comes
back on, the entire unit is in some arbitrary state.

Although this does not completely reflect reality (to do so, we would have to
modify gate predicates as well), it is enough for our purposes assuming that each
output of the power gated domain is fenced and that the fence is guaranteed to
be up when the gate or latch driving the output is powered off. As stated in
Section 2, this is orthogonal to the issue we examine in this paper and thus we
can assume that it will be checked by other means.

Setup of Our Methodology. We partition the design as shown in Figure 1.
Here and in the rest of this paper we use the word “unit” to refer to a piece of
the design of any size that has a well-defined interface, and may or may not be
composed of other units or blocks of code. G consists of one or more power gated
units Gi plus the power management unit PM , which controls the powering on
and off of each Gi (when power is turned off to a Gi, not all other Gj ’s are
necessarily powered off). We require the existence of one specific signal in G: a
signal pg enable that is read only by PM and whose role is to enable the power
gating. For simplicity we assume that pg enable is a constant within G.

U consists of a number of Ui’s. These are every non-power gated unit in the
design that directly interfaces with G. Any part of the design that interfaces
with U but is not contained in G (call it the environment of U) exists intuitively
to the right of U in the figure. Usually it will be completely abstract – that is,
we will make no assumptions on it at all, although we may relax this slightly if
necessary. Finally, the outputs of U to the left (in the direction of G) and those
to the right (in the direction of U ’s environment) are not necessarily disjoint.

438 C. Eisner, A. Nahir, and K. Yorav

GoodG
Obs

Obs'

GoodU
V

G
pg_enable = 0

U

G'
pg_enable = 1

U'

GoodG' GoodU'
V'

Fig. 2. Setup for equivalence checking

Note that G has no interface other than with U . That is, if G receives inputs
directly from the chip interface or drives outputs directly to it, we assume for
simplicity that they are buffered (with possibly zero delay) through U .

Now, if we can show that the design G‖U is equivalent to the design G′‖U ′,
where the only difference between the primed and unprimed versions is that
pg enable = 1 in G‖U whereas pg enable = 0 in G′‖U ′, then we will have shown
that power gating does not affect the functionality of the design as a whole. Note
that this strategy as stated is not complete – it is possible to create a correct
design in which the effects of the power gating penetrate to the interface of U
with its environment, in which case our method will not be able to prove that the
design is correct. However, in such a case we can move part of U ’s environment
into U . In the worst case, G‖U will include the entire chip (recall that we assume
that power gating does not change the external behavior of the chip).

Recall that our goal is to show that G‖U is equivalent to G′‖U ′, and due to
size problems we would like to do it compositionally – that is, compare each Gi

with G′i and each Ui with U ′i . For simplicity of the explication, we first show
how to break the problem into comparing G with G′ and U with U ′, and only
afterwards how to break the problem down further.

Obviously we do not have complete equivalence – when G is powered off, its
outputs are not necessarily equivalent to those of G′. And although U and U ′

will surely behave the same if they receive the same inputs (because there is
no difference between them), in our scheme U will get its inputs from G and
U ′ from G′, thus showing equivalence between them is not trivial. Furthermore,
when comparing G with G′ we have to be careful: if the inputs of the power man-
agement unit PM “misbehave”, it might shut off some Gi at an inappropriate
time – for instance, when it is in the middle of processing a transaction. Thus
we may need some minimal assumption over the inputs that influence PM , and
we need to be able to guarantee this assumption.

We therefore ask the user to supply a simple observer, a piece of code that
monitors the interface between G and U and outputs flags that indicate prop-
erties of the interface. Each flag is used as an assumption by one of G‖G′ or
U‖U ′ and is guaranteed by the other, and the apparent circularity is broken by
induction over time. Thus the setup of our methodology is as shown in Figure 2,
where the flags are signals partitioned into sets GoodU , GoodG and V , as follows:

Functional Verification of Power Gated Designs 439

• GoodU. Each flag in this set has the value 1 as long as some assumption
about the behavior of U is preserved. These assumptions do not specify
the exact correct behavior of U on this interface, only the minimal needed
restrictions. As soon as a violation of these assumptions is detected the flag
goes to 0 and stays so forever.

• GoodG. This set is similar to goodU , but over G.

• V. Conceptually, this set contains a single flag v, which is a “valid” signal
that indicates whether the interface between G and U is active. When v = 1
we expect the outputs of G and G′ to be equivalent, and when v = 0 we
do not. For example, v could be ready ∧ transmitting, where ready is an
output of U signifying that U is ready to receive data and transmitting is
an output of G signifying that G has data ready on the bus. In fact, V is not
a single flag but a set of flags, because each Ui may have its own interface
with each Gj , and even across a single interface not all signals necessarily
follow the same protocol.

Note that the observer that generates the flags is coded manually. At first glance
this may seem to be a very complicated task, one that perhaps should be auto-
mated. However, an observer is a direct result of the interface protocol between G
and U , thus should be very easy for a human to code, and indeed all the designers
we have spoken with understand intuitively what the observer for their design
should look like. On the other hand, because it requires an understanding of the
design intent, coding an observer would be extremely difficult to automate. We
note that if the user makes incorrect assumptions that are either too strong or
too weak, then some proof obligation (that will be presented below) will fail with
a counterexample. Thus, wrong assumptions in the coding of GoodU , GoodG or
V will never lead to an incorrect claim of equivalence.

Regarding the sets GoodU and GoodG, we expect the typical user to start off
with empty sets and gradually add constraints refining them as needed. Examples
of such sets are presented in Section 4. In the general case of assume-guarantee
reasoning for functional correctness, this refinement process is difficult because
it requires some kind of semantic understanding of how the design is intended to
work. In our simplified setting, these conditions will typically be simple trans-
lations from the English specification of the interface, such as “there are no
requests during reset”. Moreover, we need much weaker assumptions than those
necessary to check functional correctness, because we don’t care if the designs
misbehave as long as the two copies (mis)behave in exactly the same way.

Note that it is possible to code a correct design in which the interface between
G and U is always active (despite the fact that G can be powered down), and
that this does not break our methodology. In such a case the fences and the state
retention logic of G will be such that the valid signal has the constant value 1,
and the equivalence between U and U ′ will be trivial.

Proving Sequential Equivalence. We base our approach on the composi-
tional reasoning rule presented by McMillan in [4], and borrow our notation

440 C. Eisner, A. Nahir, and K. Yorav

from there. Following [4], we abuse notation by using Q to denote the conjunc-
tion of all predicates in the set Q.

Let P be a set of predicates describing the design and let S be a set of
predicates defining the specification. For each predicate s ∈ S let Es ⊆ P ∪ S be
the environment of s. Intuitively, this is the set of predicates needed in order to
show that s holds. We assume a well-founded order ≺ on S that defines for each
predicate s which other predicates will be assumed up to time i when proving s
at time i (this is Zs), and which will be assumed only up to time i − 1 (this is
Z̄s, the complement of Zs). Then by [4] we can use Theorem 1 below.

Theorem 1 (McMillan [4]). Let P and S be sets of predicates, for each s ∈ S
let Es ⊆ P ∪ S, and let ≺ be a well-founded order on S. Let Zs = P ∪ {s′ ∈ S :
s′ ≺ s}, and for a predicate p let p ↑τ stand for

∧
t≤τ p(t). Then, if for all s ∈ S,

(Es ∩ Zs) ↑τ ∧(Es ∩ Z̄s) ↑τ−1⇒ s(τ)

is valid, then (∀t.P (t)) ⇒ ∀t.S(t) is valid.

Our goal is to use Theorem 1 to prove sequential equivalence between G‖U and
G′‖U ′. Since we have assumed that all outputs of G‖U are outputs of U it is
enough to show that the predicate

• EqU(t) def= {o(t) ↔ o′(t) : o is an output of U}
holds at all times t. We will need the following auxiliary sets of predicates:

• PGoodU(t) def= {s(t) = 1|s ∈ GoodU}
• PGoodG(t) def= {s(t) = 1|s ∈ GoodG}
• PV (t) def= {v(t) ↔ v′(t)|v ∈ V }
• EqG(t) def= {vo(t) → (o(t) ↔ o′(t)) : o is an output of G and

vo ∈ V is its associated valid bit}
Let G, G′, U , U ′, Ob and Ob′ be the sets of predicates describing the respective
designs of Figure 2. Let Ĝ = G ∪ G′ ∪ Ob ∪ Ob′ and Û = U ∪ U ′ ∪ Ob ∪ Ob′. Let
P = Ĝ ∪ Û , and S = PV ∪ PGoodU ∪ PGoodG ∪ EqU ∪ EqG.

To begin with, let’s assume that the relation ≺ is empty, thus for every element
s of S, we have Zs = P and Z̄s = S. Therefore proving the following

Ĝ ↑τ ∧ (EqU ∪ PGoodU) ↑τ−1 ⇒ (EqG ∪ PGoodG ∪ PV)(τ) (1)

Û ↑τ ∧ (EqG ∪ PGoodG ∪ PV) ↑τ−1 ⇒ (EqU ∪ PGoodU)(τ) (2)

will allow us to conclude that (∀t.P (t)) ⇒∀t.S(t), and in particular that (∀t.P (t))
⇒ ∀t.EqU(t), which is our goal.

In practice there will usually be some combinational paths from inputs to
outputs in one or more of G, U and Ob, in which case we will need stronger
assumptions for some of the proof obligations. That is, we will need s ↑τ as
opposed to s ↑τ−1 for some element s ∈ S used on the left-hand side of Obliga-
tion (1) or (2). Thus we will need to set an order, easily determined from the

Functional Verification of Power Gated Designs 441

topology of the design, between the elements of S. As noted by McMillan in [4],
such an order is guaranteed to exist when there are no combinatorial loops in
the design. Since a combinatorial loop is a basic structural design error, we are
guaranteed the existence of a well-founded order. Using the well-founded order,
each of the Obligations (1) and (2) will be split into a number of proof obli-
gations, one for each predicate in the conjunction on the right hand side. For
example, let one such predicate be s(t) = (vo → (o(t) ↔ o′(t))) ∈ EqG, and let
A = {s′(t)|s′ ≺ s and s′ ∈ EqU ∪ PGoodU} and B = (EqU ∪ PGoodU) \ A. The
corresponding proof obligation for s is then:

(Ĝ ∪ A) ↑τ ∧B ↑τ−1⇒ (vo → (o(τ) ↔ o′(τ))) (3)

Conceptually, it has been convenient up till now to view G and U as monolithic
units. However, in reality each will typically consist of a number of smaller units,
as shown in Figure 1. Thus we would like to decompose the verification problem
further by considering each Gi and Ui separately. For an output o of some Ui,
we would like to use only Ui rather than all of U on the left hand side of its
proof obligation. To do so, we must add the following predicates to S:

• EqIntU(t) def= {s(t) ↔ s′(t) : s is an interface signal between Ui and Uj

for some i �= j}
The situation for a single Gi is slightly more complicated: we must include the
power management unit PM together with each Gi, and the predicates that
we add for the outputs of Gi will be conditional, thus we might need to add
some new valid signals. Denote the new valid signals by Vnew . Then we add the
following additional predicates to S:
• PV new(t) def= {v(t) ↔ v′(t)|v ∈ Vnew}
• EqIntG(t) def= {vs(t) → (s(t) ↔ s′(t)) :

s is an interface signal between Gi and Gj for some i �= j and
vs ∈ {V ∪ Vnew} is its associated valid bit}

The order ≺ is easily extended to the new predicates by a topological analysis
of the design. For each output o of some Gi or Ui, we verify its proof obligation
using Ĝi or Ûi in place of Ĝ or Û , where Ĝi = PM‖Gi‖Gi

′ and Ûi = Ui‖Ui
′.

Note that the theory supports multiply clocked designs as well as singly clocked
ones. In the case of a singly clocked design, each time t is simply a tick of the
clock. In the case of a multiply clocked design, each time t is a tick of the smallest
granularity of time as seen by the verification tool (this is exactly the same as in
model checking or equivalence checking of multiply clocked designs).

4 Case Study on an Execution Unit

We applied our methodology to Calc3 [8], an RT-level implementation of a simple
execution unit. Calc3 has 4 user ports through which commands are entered. It
can process up to 4 commands from each port in parallel, supporting out-of-order
execution of commands. The unit has 16 internal 32-bit registers and supports 4

442 C. Eisner, A. Nahir, and K. Yorav

Input Port1

Dispatch

Adder

Shifter

Registers
Input Port

Input Port3

Input Port4

Output Port1

Output Port2

Output Port3

Output Port4

PM pg_ctrl

fence_ctrl G

U

pg_enable

A
rbiter

Fig. 3. The architecture of Calc3 enhanced with power gating

types of commands: load-store, branch, shift, and add-subtract commands. The
branch commands contain a condition on a register; if this condition is met then
the next command on that port is skipped.

Although Calc3 is relatively large for formal verification, it is relatively small
compared to a typical execution unit. Still, the implementation is far from trivial.
For example, some parts of the design work on the rising edge of the clock and
others on the falling edge. There is also some amount of speculative calculation in
which operations are performed before it is known whether they will be needed,
and then results are ignored if they are not. These optimizations add complexity
to the design, and of course to the verification. We chose it because it is simple
enough to serve as a first application of a new methodology but still contains
enough complications and design optimizations to make it interesting.

Figure 3 gives an overview of the internal structure of Calc3. Commands are
injected into the unit through the four input ports, and are held in the dispatch
queue until they are sent to either the adder or the shifter, depending on their
type. The results pass to an arbiter, which distributes them to the four output
ports. The adder is responsible for all add/subtract and branch commands, while
the shifter executes shift and load/store commands.

For our case study we added power gating to the adder. The new power
management unit PM keeps track of the types of commands that are in the
dispatch queue by monitoring the inputs and outputs of the dispatch. Whenever
there are no pending commands for the adder, PM initiates the power down
sequence for it, which involves fencing the outputs and one clock cycle later
powering down the adder. Whenever PM detects an incoming command destined
for the adder, it initiates the power up sequence for it, which consists of restoring
power and one cycle later lowering the fences. When powered down, most of the
adder unit is inactive, except for one block which must remain powered at all
times (this is the part that remembers that a branch command was taken and
outputs the appropriate indication towards the arbiter). The power gated version
of Calc3 has 2200 state variables, 200 input bits and 144 output bits.

Functional Verification of Power Gated Designs 443

We divided Calc3 into the G side, containing the adder and PM , and the
U side, containing the dispatch unit, the registers, and the arbiter, as shown in
Figure 3. Note that the shifter does not directly interface with G and therefore
is not part of U , but belongs to U ’s environment, as described in Section 3. We
also built an observer as described in Section 3, that outputs the required flags.

GoodU . This set contains several simple properties, as follows: interface signals
must change value only on the appropriate clock edge and no commands
enter during reset. In addition, there is a flag indicating when the outputs of
the dispatch that go to PM and those that go to the adder are inconsistent
(i.e. the adder is given a command to execute and the PM was not informed
that this command ever entered the dispatch).

GoodG. The equivalence on the U side is much easier, and does not require any
assumptions on the behavior of G. This set contains only a flag indicating
that there is no activity during reset.

V . We have two valid signals. The first is a Boolean combination of the outputs
of the adder; it is 1 iff the adder is outputting a command towards the
arbiter. The second is associated with outputs that signal whether or not
the next command should be skipped, and it is a constant ’1’.

Ĝ, Û and S are built as per the methodology described in the previous section. In
order to make the sequential equivalence work we needed a few assumptions on
the external environment: input signals must change on the correct clock edge,
no activity during reset, and no commands are injected into the unit when there
are 16 active commands inside. The last requirement was due to the fact that
illegally injecting too many commands caused internal counters in the power
management machine to overflow. We note that these properties were enough
to prove equivalence, but are not sufficient to prove even the simplest functional
properties of the design. Furthermore we note that such assumptions are common
in the world of practical equivalence checking. The equalities generated 697 proof
goals. GoodU was broken down to 4 proof goals, and GoodG had one proof
goal.

The well-founded order ≺ was defined solely by examining the topology of
the design. The full list of signals and dependencies is too large to be described
here. However, we will note that there were combinational paths from inputs
to outputs in each of the units G, U and Ob. This, of course, did not break
the well-foundedness of the order since there are no combinational loops in the
design. Overall there were 37 signal dependencies.

The required proof obligations are easily translated into model checking of
temporal logic specifications. However, as we have described, many of our pred-
icates actually describe a form of conditional sequential equivalence, thus for
reasons of capacity we would prefer to use a dedicated equivalence checking
algorithm. We therefore translated those proof obligations into sequential equiv-
alence problems. We explain the translation for the Ĝ side; the method for the
Û side is similar.

444 C. Eisner, A. Nahir, and K. Yorav

Our translation is a modification of a standard equivalence check between G
and G′. The first adjustment is that we leave the inputs of G and G′ assumed
to be equivalent up to time τ − 1 free, rather than tying them together as if
we wanted to check standard equivalence. Those assumed equivalent up to τ
are tied together as usual. Notice that a practical implication of this is that
it is useful to add additional dependencies to the order ≺ (while maintaining
well-foundedness) in addition to those resulting from the topology of the design,
because this results in more inputs tied together, which makes the equivalence
checking problem easier. We added dependencies on almost all of G’s inputs,
and many of U ’s inputs; without this, the Ĝ side would be intractable.

The second adjustment is to factor in the assumptions (including that untied
inputs should be equivalent up to time τ − 1). We define a signal mask outputs
that is asserted when an assumption is violated, and stays that way forever.
We then modify each output of G and G′ to have (the same) constant value
when mask outputs is asserted. Proving the equivalence of an output o between
the two modified versions implies that there does not exist a computation that
violates the proof obligation for o (because it implies there can not be a reachable
state such that all assumptions hold and o �= o′).

We verified Calc3 using IBM’s internal tools. Equivalences (including condi-
tional equivalences) were proven using SixthSense [1], IBM’s sequential equiv-
alence checking tool. The proof of each pair of outputs was done separately,
since this lets SixthSense utilize its optimizations to their full power. The other
properties (GoodU and GoodG) were proven using RuleBasePE [6], IBM’s model
checking tool.

The proof obligations on the U side went through relatively easily. On this
side there were 493 proof obligations, and each took between 60 to 8500 seconds
to prove. Overall the proof of the U side ran 124 hours on a 2.4GHz Opteron
dual core machine with 8GB, running Red Hat Enterprise Linux 4.1

On the G side there were only 209 proof obligations, but it was more difficult
to prove. The overall runtime was 91 hours, with a single goal taking up to 21000
seconds (1500 seconds on average). There were several measures we took in order
to reduce the problem size. For certain internal bits we were able to prove that
the fence being down implies equality between the two versions. We then wired
the two versions to use the same copy of the signal when the fence is down, and
each their own copy when the fence is up. This resulted in a significant perfor-
mance boost. Also, the tuning of SixthSense was extremely important. The first
runs ran out of memory even for the simplest goals. It took some fiddling with
parameters to be able to prove all goals.

During the verification of Ĝ we discovered three bugs in the implementation
of PM . Each resulted in traces in which the power gated version of the adder
failed to output a command when the non-power gated version did. In each trace
it was obvious that the reason was because PM failed to turn on the adder on
time, and from there it was easy to diagnose the error in PM .

1 This is the cumulative time of the whole verification effort on a non-trivial industrial
example, and is negligible compared to years of CPU time used for simulation.

Functional Verification of Power Gated Designs 445

5 Conclusions and Future Work

We have presented a methodology for the verification of power gating, based on
comparing a power gated design to a version of itself in which power gating is
disabled. In order to be able to deal with real world designs, we take a compo-
sitional approach in which we check each unit for partial equivalence across a
suitable set of assumptions. In contrast to general assume-guarantee reasoning,
which can be difficult to employ because of the manual effort involved in coming
up with appropriate assumptions, the goal of our verification effort is one specific
and simple formula – sequential equivalence – and this greatly simplifies the task
of figuring out what the assumptions should be. We have shown the feasibility
of our method by applying it to a non trivial execution unit.

Future work is to extend our methodology to designs in which power gat-
ing changes the external behavior of the chip (for instance, pipelines that stall
when the needed unit is not available), to apply it to real-life designs under
development at IBM, and to develop a tool that automates much of the work
of coming up with the assumptions (for example, those that deal with the clock
edges and activity during reset can be derived automatically) and deciding on
the well-founded order.

Acknowledgments. Thank you to Jason Baumgartner and Hari Mony of the
SixthSense team for their help in getting the equivalence check on G to run.

References

1. Baumgartner, J., Mony, H., Paruthi, V., Kanzelman, R., Janssen, G.: Scalable se-
quential equivalence checking across arbitrary design transformations. In: ICCD
2006 (October 2006)

2. Keating, M., Flynn, D., Aitken, R., Gibbons, A., Shi, K.: Low Power Methodology
Manual. Springer, US (2007)

3. Khasidashvili, Z., Skaba, M., Kaiss, D., Hanna, Z.: Theoretical framework for com-
positional sequential hardware equivalence verification in presence of design con-
straints. In: ICCAD 2004, pp. 58–65 (2004)

4. McMillan, K.L.: Verification of an implementation of Tomasulo’s algorithm by com-
positional model checking. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp.
110–121. Springer, Heidelberg (1998)

5. Pixley, C.: A theory and implementation of sequential hardware equivalence. IEEE
Trans. on CAD of Integrated Circuits and Systems 11(12), 1469–1478 (1992)

6. RuleBasePE,
http://www.haifa.ibm.com/projects/verification/RB Homepage/

7. van Eijk, C.A.J.: Sequential equivalence checking based on structural similarities.
IEEE Trans. on CAD of Integrated Circuits and Systems 19(7), 814–819 (2000)

8. Wile, B., Goss, J.C., Roesner, W.: Comprehensive Functional Verification - The
Complete Industry Cycle. Elsevier, Amsterdam (2005)

http://www.haifa.ibm.com/projects/verification/RB_Homepage/

A Practical Approach to Word Level Model

Checking of Industrial Netlists

Per Bjesse

Advanced Technology Group
Synopsys Inc.

bjesse@synopsys.com

Abstract. In this paper we present a word-level model checking method
that attempts to speed up safety property checking of industrial netlists.
Our aim is to construct an algorithm that allows us to check both
bounded and unbounded properties using standard bit-level model check-
ing methods as back-end decision procedures, while incurring minimum
runtime penalties for designs that are unsuited to our analysis. We do this
by combining modifications of several previously known techniques into
a static abstraction algorithm which is guaranteed to produce bit-level
netlists that are as small or smaller than the original bitblasted designs.
We evaluate our algorithm on several challenging hardware components.

1 Introduction

Word-level methods, which leverage design information captured at a higher
level than that of individual wires and primitive gates, are the next frontier in
hardware verification. At the word level, data-path elements and data packets
are viewed as entities in their own right as opposed to a group of bit-level signals
without any special semantics.

There has been a lot of activity lately around word-level formula decision pro-
cedures such as SMT solvers [10] and reduction-based procedures like UCLID [2]
and BAT [7]. However, as promising as this direction of research is, the use of
these procedures for model checking is inherently restricted in that they ana-
lyze formulas rather than sequential systems. This has two consequences: First
of all, sequential properties can only be checked by these procedures by re-
lying on methods such as induction and interpolation that employ bounded
checks to infer unbounded correctness. Second, these procedures do not fit into
a transformation-based approach to sequential system verification [1], where se-
quential verification problems are iteratively simplified and processed by any of
a large set of back-end model checkers.

In this paper, we introduce a method for practical word-level model checking
of both bounded and unbounded properties for hardware designs. Our aim is to
(1) not require any additional input from the user, (2) never perform worse than
a straight bit-level sequential analysis of a given netlist, and (3) to provide the
possibility of speedups when there are significant parts of the design that can
be treated on the word level. Our solution is engineered as a reduction method

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 446–458, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Practical Approach to Word Level Model Checking of Industrial Netlists 447

where the word-level netlist is abstracted to an equivalent but smaller gate-level
netlist. In the worst case, our analysis generates results that are no larger than
the gate-level version of the original design. We tune the runtime of our solution
so that it runs very quickly even on industrial size problems, and so that we
incur little penalty in the case of netlists that are not amenable to our analysis.

In order to demonstrate the utility of our approach, we analyze an academic
high-performance router and two industrial designs (a FIFO and a content ad-
dressable memory). We demonstrate significantly reduced netlists, while spend-
ing less than a second in the reduction part of our analysis.

2 Preliminaries

We assume a standard frontend flow that compiles problems into netlists by
processing a hardware design with properties and constraints into combinational
logic over a set of unconstrained inputs I, state variables S, and constants. The
top of the resulting forest of combinational logic contain next-state variables S′

and single bit outputs O. We assume that (1) the properties we are interested in
are all safety properties whose failure is signaled by some output assuming the
value false, and that (2) each state variable has a known initial state.

In Section 4 we will use an alternate way of describing netlists in terms of
three formulas Init(S), Next(I, S, S′), and Prop(S). The correspondence between
these formulas and the netlist is simple: The Init(S) formula describes the initial
states, Next(I, S, S′) describes the next-state functions, and Prop(S) captures a
particular safety property output function.

3 Netlist Reduction

We use a word-level frontend to compile a model of the given netlist problem. The
resulting data is represented as a Directed Acyclic Graph (DAG) of operators
over a set of inputs I, state variables S, and binary constant vectors. Every node
φ in the graph has an associated signal width k; we sometimes annotate nodes
with superscripts that denote the size of the bit vector they represent.

The top level nodes of the DAG are partitioned into circuit outputs O and
next-state variables S′. Internal nodes in the graph have the following form:

– φk = not(αk).
– φk = and(αk, βk).
– φk = arithOp(αk, βk) for arithOp ∈ {+, −, . . .}.
– φ1 = compOp(αk, βk) for compOp ∈ {<, ≤, =, �=, ≥, >}.
– φk = mux(α1, βk, γk).
– φk = extract(l, αm).
– φk = concat(αi

1, α
j
2, . . .).

The not and and operators are bitwise operators in the sense that bit i of the
result is generated by applying the boolean operator to bit i of the input nodes.

448 P. Bjesse

The mux node returns βk if α1 is true, and γk otherwise. The extract node
constructs a smaller bit vector by projecting out k bits from position l to l+k−1
of its operand. Finally, the concat node forms a larger signal by concatenating
its operands to form a larger bit vector. Earlier operands in the argument list
to concat become higher order bits, so concat(01, 00) = 0100.

The select signal of mux and the output of comparison operator nodes are
restricted to have bit width one. Such signals are said to be bit-level signals.
We refer to signals that are not bit level as word-level signals, and use the term
segment to denote a group of contiguous bits.

extract3(3)

s09

extract3(6) extract3(0)

i03

!=

1113
i21 i11 0003

mux3

concat9

mux3

mux3

s0'9

!=

1111111119

o01

n1

n2

n3 n4 n5
n6

n7

n10

n8 n9

n11

Fig. 1. An example word level netlist

Example 1. Consider the word-level netlist in Figure 1. The initial state for s09

is 0000000009, and the property of interest is that o01 is always true. The circuit
generates the next state for s0 by concatenating three parts. The lowest part is a
fresh input value, but only if it is not equal to 111 (otherwise we switch in 000).
The other two segments are the result of either keeping the current segment of
s0, or swapping in the low order segment 0..2 of s0 depending on the value of
two externally controlled inputs. Hence, the system is safe in that the output
can never become false. ��
Our analysis will be performed in three steps. First, we will rewrite the netlist
into a design where the datapath is completely separated from all boolean control
logic, and where word-level registers and inputs have been broken up into smaller
parts that do not intermingle control and data. Second, we will analyze the
datapath portions of the circuit, and find reduced safe sizes for all the word-
level entities. Third, we generate a smaller final netlist which can be analyzed
by standard gate-level reductions and model checking algorithms.

3.1 Selective Bitblasting

It is easy to see that every word-level netlist can be bitblasted into an equivalent
bit-level netlist by splitting all variables into single bit segments, and implement-
ing the internal nodes in terms of boolean logic. The result is a netlist where all

A Practical Approach to Word Level Model Checking of Industrial Netlists 449

signals have width one, and the only internal nodes are the two boolean opera-
tors. In the first step of our analysis we will perform selective bitblasting, with the
aim of ending up with a graph over constants, variable nodes, boolean operators
of width one, comparison operators from the set {=, �=}, and mux operators. All
other operators will be removed by a translation into bit-level constructs.

In order to perform this analysis we will annotate each node in the graph with
information on which of its segments are treated as word-level packages—units
of data that are treated uniformly. To do this, we make use of a modification of
a data flow algorithm introduced in [6]. We perform the analysis by maintaining
a partition of each node in the network into bit segments. For each bit segment
of every node, we maintain an equivalence class of other segments of nodes that
either depends on it, or that it depends on.

We make use of some primitive operations on equivalence classes and in-
tervals: registerNode(n), split(n, j), mkCompatible(n1, n2, . . .), bitblast(n) and
unionNodes(n1, n2, . . .):

– The creation operator, registerNode(n) takes a node, and constructs a sin-
gleton equivalence class containing the segment (0..k−1) if the node n has
k bits.

– The refining operators split , mkCompatible , and bitblast perform the follow-
ing functions:
1. split(n, j) finds the segment equivalence class for node n that contains

the bit j. If the bit j falls internally to the segment interval i . . . k so
that i < j < k, then the equivalence class is split into two new classes;
the first containing the j − i first bits of each segment, and the other
containing the remaining bits of each segment.

2. mkCompatible(n1, n2, . . .) applies the split operator to its operands until
their segmentations match.

3. bitblast(n) applies split to a node until it is segmented up into one bit
slices.

– The merge operator unionNodes(n1, n2, . . .) takes a number of nodes whose
segmentation match. If the nodes all have k segments, then the merge oper-
ator generates k new equivalence classes by merging the equivalence classes
for all first segments of its operands, then merging the equivalence classes
for all second segments of its operands, and so on until all k new classes have
been formed.

We will also use the following terminology: We say that the segmentation of a
signal φk is consistent with the segmentation of another signal ψk if all cuts in
ψk exists in φk. We transfer segments from φk to ψk by using split to introduce
cuts in ψk at all positions where there are cuts in φk.

Our dataflow analysis is performed in a depth first recursive manor. Each node
φk encountered is registered using registerNode, and then processed as follows:

– φk is a constant: Use split to partition the node into maximal segments
of consecutive bits of the form 00 . . . 0 and 11 . . .1. The constant 000100
generates the segments (0, 1),(2, 2), and (3, 5).

450 P. Bjesse

– φk is a variable: Do nothing.
– φk = not(αk): Bitblast φk and αk, and perform unionNodes(φk, αk).
– φk = and(αk, βk): Bitblast φk, αk, and βk. Perform unionNodes(φk, αk, βk).
– φk = arithOp(αk, βk): Bitblast φk, αk, and βk. Perform unionNodes(φk, αk,

βk).
– φ1 = compOp(αk, βk) and

• compOp ∈ {=, �=}: Perform mkCompatible(αk, βk), and unionNodes(αk,
βk).

• compOp ∈ {<, ≤, >, ≥}: Bitblast αk and βk. unionNodes(αk, βk).
– φk =mux(α1, βk, γk): Perform mkCompatible(φk, βk, γk) and unionNodes(φk,

βk, γk).
– φk = extract(l, αm): Use split to introduce cuts at bit l and l+k for αm.

Next, transfer all segment cuts in the region between bit l and l+k−1 from αm

to the corresponding positions in φk, and union the corresponding segments
of φk and αm.

– φk = concat(αi
1, α

j
2, . . .): Segment φk to match the operand borders. Then

transfer the internal segment cuts from the operands to the corresponding
points in φk, and union the corresponding segments.

When all nodes have been processed, we traverse all present-state and next-state
pairs (φk, φ′k) and perform mkCompatible(φk, φ′k) and unionNodes(φk, φ′k). We
also use split to ensure that the segmentation of each current-state node is con-
sistent with the segmentation of its initial state.

Example 2. Consider the verification problem from Example 1. Assume we tra-
verse the netlist by first visiting s0. This creates the partition information
s0 : (0..8) in a singleton equivalence class. After visiting nodes n3, n4, n5, i1,
n2, i2 and n1 we have the new segmentation s0 : (0..2), (3..5), (6..8). The equiv-
alence class of s0 : (0..2), now contain the other elements n1 : (0..2), n2 : (0..2),
n3 : (0..2), n4 : (0..2), n5 : (0..2), s0 : (3..5) and s0 : (6..8). ��
After we have performed the data flow analysis, we will have segment infor-
mation for each node, and we are assured that (1) the segmentation of current
and next-state variables is consistent, (2) the segmentation of current-state vari-
ables and initial-state variables is consistent, and (3) the segment sources of our
netlist DAG of size greater than one will only be propagated through multiplexor
networks or be compared using the operators {=, �=}.

We can now create a modified word-level netlist from the bottom up, by
converting each node in the original netlist into a list of new nodes (one per
segment). We do this as follows. If a variable or constant node has n segments,
we generate a list of n fresh nodes of appropriate type and size. Nodes of type
not, and, arithOp or comparison operators from the set {<, ≤, >, ≥} are guar-
anteed to have been bitblasted, so we just return the list of signals corresponding
to the bit-level implementation of the operator in terms of its inputs. Any re-
maining node φk is handled as follows:

– φ1 = compOp(αk, βk) and compOp ∈ {=, �=}: implement φ1 as a boolean
network of equalities over the respective segments.

A Practical Approach to Word Level Model Checking of Industrial Netlists 451

– φk = mux(α1, βk, γk): generate a list of multiplexors mux(α1, x, y). Each mul-
tiplexor takes x and y to be the resulting segment nodes generated for the
corresponding position in βk and γk.

– φk = extract(l, αm): Project out the list of new nodes generated for the
desired interval segments of αm.

– φk = concat(αi
1, α

j
2, . . .): Return the concatenation of the lists of new nodes

generated for the operands.

Example 3. Assume that a node mux32(n11, n232, n332) has been segmented as
(0..7), (8..31), and that the result of reimplementing n11 was [m11], and that the
result of reimplementing n232 and n332 was [m224, m38] and [m424, m58], respec-
tively. Then we return

[mux24(m11, m224, m424), mux8(m11, m38, m58)]

��
When we reach the top of the new DAG, we create one new next-state variable
or output per segment from the list of implementations of the feeders.

The signals in the resulting netlist graph come in two different flavors. The
first type of signal has bitwidth one, and are thus bit-level signals. These signals
get processed using standard boolean logic. The second type has bitwidth greater
than one. These word-level signals are moved around using multiplexor networks,
and generate bit-level signals using comparison operators. Note that an original
input or state variable in the design may very well be split up into several parts,
some of which are bit level, and some which are word level.

Theorem 1. The selective bitblasted netlist is equivalent to the original netlist.

Proof. Our segment analysis is the formula analysis in [6], modified to bitblast
more operators, and force consistent segmentation of current-state variables,
next-state variables, and initial-state values. Correctness follows from the cor-
rectness of [6], together with an induction over time. Due to limited space we
omit the detailed proof.

3.2 Abstraction of Word-Level Variables

The selectively bitblasted netlist now has two components: (1) A word-level com-
ponent that reads packages from the inputs and word-level registers, moves them
around using multiplexors, and performs package comparisons. (2) A bit-level
component that reads bit-level signals from the inputs, controls the multiplex-
ors (possibly based on the outputs from comparison operators), and computes
bit-level outputs.

As the word-level variables are only compared for equality and inequality and
moved around, it seems like we should be able to abstract them somehow. This
is indeed true. In a 1995 paper, Hojati and Brayton introduce a reduction for
designs they refer to as Data Comparison Controllers (DCCs) [4]. These designs

452 P. Bjesse

are partitioned into a boolean part and a datapath part that manipulates infi-
nite packets modeled as integers by moving them around and comparing them,
just like our selectively bitblasted designs. It is shown in Hojati and Brayton’s
paper that for every DCC, there always exists a finite smallest package size that
preserve the status of the properties of the design. In fact, if the system has N
infinite integer variables and M integer constant nodes, the integers can safely
be modeled using length Smin = �log2(N + M)	 bit vectors.

Unfortunately we can not apply this result directly, for two different reasons:

1. Our packages do not have infinite initial size.
2. We have more than one package size.

Let us first deal with issue 1, and momentarily assume that we have a system
where all word-level variables have a single bitwidth S.

Lemma 1. The DCC sizing theorem from [4] can be restated as follows: Any
package size S ≥ Smin bits gives the same status to all design properties.

Proof. Reducing the size of one or more variable domains can only reduce the
number of design behaviors. The number of provable properties will hence grow
monotonically. As the DCC sizing theorem implies that exactly the same prop-
erties are provable in the infinite case as for package size Smin, finite package
sizes larger than Smin proves exactly the same properties. ��

As a result of Lemma 1, as long as the initial package size S is larger than or equal
to Smin, size Smin packages will preserve the status of all properties. However, if
the original package size is smaller than Smin, we have no guarantees about what
will happen if we size them up. In order to circumvent this problem, we choose
Snew = min(S, Smin), which will guarantee safety regardless of initial package
size. Also note that in our case, M (the number of constants of a particular
length) always equals two, due to our partitioning of constants.

In order to solve the second issue, one potential solution could be to choose
our Smin based on the size of the largest package in the system. This would
clearly be conservative. However, this is not necessary: After our selective bit-
blasting, the resulting netlist has no facility for converting a size N word-level
segment into some other size segment. Segments of a different width can hence
not be compared, or registered in the same word-level register slices. Our con-
verted designs are therefore generalized DCCs, with one bit-level component,
and finite number of separate word-level components that only communicate
with each other using bit-level signals. By iterating the argument in [4] it is easy
to show that we can abstract each of these word-level components individually.
By combining this fact with Lemma 1 we arrive at our master theorem:

Theorem 2. For each S, assume that there exists NS state variable and input
segments of size S. The status of all properties of our selectively bitblasted design
D are then preserved if we resize size S segments to have min(S, �log2(NS +2))
bits.

A Practical Approach to Word Level Model Checking of Industrial Netlists 453

Example 4. Again consider the verification problem from Example 1. Our se-
lective bit blasting generated the final segmentation s0 : (0..2), (3..5), (6..9). To-
gether with the input segment i0 : (0..2), there are a total of four segments of size
three. A safe reduced bit size for these segments is hence min(3, �log2(4+2)) = 3
bits. In this case we can not perform any reduction. However, note that any larger
size system with the same structure could safely be scaled down to represent s0
with nine bits. ��

The next and final step of our analysis is to traverse all state variables of the selec-
tively bitblasted netlist and compute a tally of segment size populations. For each
segment size, we compute a new reduced size using Theorem 2. When we have
sized all word-level state variables and constants, we compute our abstracted
netlist by rewriting the word-level component of the selectively bitblasted de-
sign to use variables and constants of the new correct size, and adjusting the
width of the internal operators.

4 Impossibility Results

The reduction we presented in Section 3 forces the word-level parts of the design
to only contain multiplexors and negated and unnegated equality comparisons.
Could this be extended to allow inequalities, bit-parallel boolean operators, or
arithmetic? The answer, as we will see, is no.

Let us first investigate the extension of DCCs to allow inequality comparisons
between signals.

Theorem 3. If we allow inequality comparisons between word-level variables,
there exists a system whose smallest reduction is the system itself for any bitwidth
N . We can hence not find a static safe package size based only on the number
of word-level state variables.

Proof. Take the system to be constructed from the width N state variable v and
input i, and the output o. Let Init(v) ≡ 11 . . .1, Next(v) ≡ mux(i < v, i, 00 . . .0),
and Prop(v) ≡ v �= 00 . . . 0. For a given bitwidth N this system has a trace
where it takes 2N −1 steps before the property output becomes zero. No smaller
bitwidth will preserve this trace. ��

However, it is safe to allow inequality comparisons where one operator is a con-
stant. To see this, realize that the only constant segments that exist after our
analysis have the form 00 . . .0 and 11 . . .1. The comparison can hence be imple-
mented as a boolean network whose leaves only contain inequality comparisons
between variable segments and 00 . . . 0 and 11 . . . 1. These leaves, in turn can be
rewritten in terms of equality operators (for example xk < 00 . . .0k is equiva-
lent to false and xk < 11 . . . 1k is equivalent to xk �= 11 . . . 1k. The resulting
transformed system is a DCC, so our main theorem applies.

It is also unsafe to allow the use of bit-parallel operators in the word level
partition:

454 P. Bjesse

Theorem 4. If we allow bitwise boolean operators in our word-level component,
there exists a system whose smallest reduction is the system itself for any bitwidth
N . We can hence not find a static safe package size based only on the number
of word-level state variables.

Proof. Take the system to be constructed from the width N state variable v
and input i, and the output o. Let Init(v) ≡ 11 . . .1, Next(v) ≡ mux(v �=
and(i, v), and(i, v), 00 . . .0), and Prop(v) ≡ v �= 00 . . . 0. For a given bitwidth
N this system has a trace where it takes N − 1 steps before the property output
becomes zero. No smaller bitwidth will preserve this trace. ��
Finally, we could imagine allowing the use of arithmetic nodes in our word-level
machinery. Again, this would not be a good idea:

Theorem 5. If we allow arithmetic operators in our word-level partition, there
exists a system whose smallest reduction is the system itself for any bitwidth N .
We can hence not find a static safe package size based only on the number of
word-level state variables.

Proof. Take the system to be the system containing a single state variable v,
a single input i and the output o. Let Init(v) ≡ 00 . . . 0, Next(v) ≡ v + 1, and
Prop(v) ≡ v �=11 . . .1. For a given bitwidth N this system has a trace where it
takes 2N −1 steps before the property output becomes zero. No smaller bitwidth
will preserve this trace. ��
It is easy to modify the arguments in our impossibility theorems to work for a
system with some single other inequality between variables, a single or or xor op-
erator, or a single other arithmetic operator. In essence, our analysis hence allows
the richest word-level components possible, while still allowing a static analysis.

5 Implementing the Reduction

Our chief concern in implementing our formula reduction is to make the generation
of the reduced system as fast as possible. The worst case for the reduction is that
the design becomes completely bitblasted, which in our flow would be a necessary
precondition of further processing anyway. As long as we tune our reduction to
take a very small amount of time, we can hence always apply it safely.

In order to make the reduction as fast as possible, we must choose effective
data structures for the signal segment information and the equivalence class
information.

We maintain the segmentation information using skip lists [9], which is a prob-
abilistic data structure that allow log(N) average case insertion and deletions
of a set of ordered elements, with a better constant factor than many balanced
tree implementations. Each segment in the skip list is indexed by the start of the
segment. In each segment we store equivalence set information using standard
union-find algorithms [3], which allows equivalence class operations in close to
constant amortized time.

A Practical Approach to Word Level Model Checking of Industrial Netlists 455

In our implementation, each splitting of a segment equivalence class takes a
linear number of equivalence class and skip list operations in the size of the class.
There are systems with N nodes with word-level variables of width bounded by
M where every variable gets partitioned into one bit segments, and the equiva-
lence classes contain every signal in the system, so that O(N ∗ M) equivalence
set and skip list operations are necessary. However, our experimental experience
is that with the efficient equivalence class and segment maintenance algorithms,
processing of industrial netlists is in practice not noticeably slower than a linear
node traversal.

There are several important practical implementation details that affect the
reduction strength of our analysis. The most important detail in our implemen-
tation has to do with constant sharing: Any reasonable word-level DAG repre-
sentation for the netlists use hashing to share nodes maximally. This is a good
thing, but complicates things for our analysis in the case of constants: Constants
with multiple fanout force the merging of some equivalence classes that other-
wise would have been kept separate (if two logic cones only share a constant,
segmentation propagation from one to the other is unnecessary). In our imple-
mentation, we work around this issue by introducing fresh variable nodes on the
fly for each reference to a constant. At the end of the analysis, these variables
gets transformed back into constant nodes.

Another improvement we have found empirically important is to preprocess
the representation we get from the HDL frontend to provide an optimum starting
point for our analysis. The reason for this is that in certain designs, some or all of
the logic that moves packets is implemented by instantiating bit-level modules for
each packet bit. This means that words coming in get broken up into individual
bits, moved around in a uniform way, and then recombined into words. Such
designs will fragment segments into bit-level signals and weaken the results of
our reduction. In our experimental results, the high-performance router [8] is
such a design. Without this preprocessing no netlist reduction is possible. We
avoid this problem by sweeping the initial netlists and detecting subgraphs where
words are split up, routed, and recombined. Each such subgraph is automatically
reimplemented on the word level.

In order to cope with industrial designs, we have also implemented some
extensions to the techniques presented in Section 3. Notably, we handle symbolic
memories with abstract read and write nodes.

6 Related Work

As can be seen in Section 3, our reduction leverages a dataflow analysis for
extracting a DCC from a general word-level netlist. The basic approach used
in this analysis was introduced in [6], where it was used to perform a formula
reduction. In order to apply similar techniques on the netlist level, we have had to
change the analysis to include partitioning from initial states, and to make sure
that the current and next-state variable segmentation corresponds. Moreover,
due to the impossibility results presented in Section 4, we have to bitblast the
bit-parallel boolean operators and inequality operators which are kept in [6].

456 P. Bjesse

Rather than automatically compute the segmentation of signals into word
level and bit-level parts, we could imagine that we could let the user annotate
the design with this information. As we can compute the necessary segmentation
quickly and accurately, we believe that this is a bad proposition; in our experi-
ence, any piece of extra data that a user has to provide decrease the utility of a
given algorithm in industrial tools.

Several different word-level formula solvers such as UCLID [2] and BAT [7]
have been used for hardware verification. These procedures can in theory be
used as a foundation for induction or interpolation-based unbounded property
verification, but they do not provide a general way to leverage an arbitrary
bit-level model checker as a back-end decision oracle. Moreover, performing the
word-level reduction on netlists rather than on formulas has several benefits even
if we are focused on bounded checks only: First of all, there is no need to re-
abstract a newly unfolded formula every time the bound is increased. Second, by
performing the reduction once and for all, we can apply standard performance
optimizations in the back-end SAT solver such as incremental solving and the
reuse of conflict clauses without having to resort to special tricks.

In terms of netlist reductions, the most closely related work we are aware of
is the DCC reduction work [4] we make use of in our analysis. The chief problem
with this work as it stands is that it requires the design to be partitioned up
into a legal DCC to begin with, and this is unlikely to be true in the case of
many systems where control data is integrated into the same packets as the
word-level payload (the router we analyze in Section 7 is one such design). We
solve this problem using our selective bitblasting approach. We also modify the
DCC analysis to work with finite packets, and extend it so that it can deal with
several different package sizes in the same design.

There are approaches to data type reduction that have some similarities to the
DCC analysis, such as symmetry reduction based on the use of scalarsets [5].
For these type of reductions, it is typically up to the user to manually intro-
duce reducible data types when modeling a given design, which would be very
time consuming for industrial size netlists that intermingle control and data
information. Moreover, these reductions are generally not straight netlist trans-
formations, so they would be hard to use in a transformation-based verification
environment.

7 Experimental Results

Our aim with this work is to provide a word-level reduction method for a
transformation-based verification system. We are hence focusing on simplify-
ing the netlist problem as much as possible, and providing output that can be
processed with an interleaving of model checking methods and simplification
procedures like retiming, rewriting and reparametrization. We thus strive for
maximal reduction at minimal runtime cost.

We present results on three designs, which represent classes of problems where
our customers have found that traditional model checking provides little or no

A Practical Approach to Word Level Model Checking of Industrial Netlists 457

traction today. In all of our experiments, we use standard SAT-based bounded
model checking and BDD-based reachability analysis as our back-end engines.

The first benchmark is an industrial FIFO memory. We check that if a slot has
been written and not overwritten, the correct data is read out when the entry is
popped. We check two version of this design. The first version has 16 slots, each
16 bits wide. Before this reduction, this design can not be proved correct in one
hour of compute time using BDD-based model checking. After the reduction, this
design is proved correct in less than one minute. The second version has 75 slots,
each 32 bits wide. Before the reduction the design has 2594 registers, which is
reduced to 646 registers after analysis. The reduction takes less than .5 seconds
of compute time. Bounded model checking of the unreduced design for 18 cycles
takes 45 minutes of CPU time, whereas it takes 180 seconds after the reduction.

The second benchmark is an industrial Content Addressable Memory (CAM)
with three data ports and 48 slots each containing 20 bits of data. We are
checking that if a piece of data has been written to some particular slot in the
CAM, and has not been overwritten, the data is reported as existing in the
CAM. The original design has 1111 registers, which is reduced to 383 registers
post reduction. The transformation takes less than .5 seconds of compute time.
A bounded check of depth eight takes approximately 60000 seconds before the
reduction, compared to 1780 seconds after the reduction.

Our final benchmark is a pipelined high-performance router created at Stan-
ford [8]. The router has four port connections to adjacent routers plus an inject
node and an eject node. The router’s main crossbar is implemented on the bit
level. It has two virtual channels per port, and moves packets broken up into units
called flits that it reads from the environment ports each cycle. Each flit contains
destination data, type field control information, and data payload packed into
32 bits. We check the partial correctness property that a packet that is injected
on a port when the router is in an neutral state appears on the correct output
port within a predetermined time. The word-level netlist contains 7516 registers
before the abstraction, and is reduced to 4816 registers after the abstraction.
The total reduction analysis time is less than one second.

8 Conclusions

In this paper, we have introduced a word-level model checking approach aimed
at unbounded property checking for industrial netlists. Our approach is based
on a two-step method, where a quick analysis rewrites the netlist into a design
where the word-level datapath that manipulates packages is completely sepa-
rated from the boolean control logic. We then resize all packages using statically
computed safe lower bounds that guarantee that we preserve the properties be-
ing checked. The resulting system can be analyzed using any standard bit-level
model checking technique, or further processed using transformational verifica-
tion simplifications.

Our contributions include the combination of a modified word-level extraction
algorithm previously only used on formulas [6] with some modified lower bound

458 P. Bjesse

computation theory [4]. We have also showed that our analysis is tight in the
sense that the obvious extensions of operators allowed in the word-level part of
the circuit all preclude a static analysis. Finally, we provided key insights into
how to implement the algorithms efficiently, and demonstrated the utility of our
reduction on a number of industrial designs.

Acknowledgments. Many thanks to Tamir Heyman, who participated in dis-
cussions and helped with the work necessary to integrate our analysis into the
frontend flow.

References

1. Baumgartner, J., Gloekler, T., Shanmugam, D., Seigler, R., Huben, G.V., Mony,
H., Roessler, P., Ramanandray, B.: Enabling large-scale pervasive logic verification
through multi-algorithmic formal reasoning. In: Proc. of the Formal Methods in
CAD Conf. (2006)

2. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted functions.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78–92.
Springer, Heidelberg (2002)

3. Galler, B., Fischer, M.: An improved equivalence algorithm. Communications of
the ACM (May 1964)

4. Hojati, R., Brayton, R.: Automatic datapath abstraction in hardware systems.
In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 98–113. Springer, Heidelberg
(1995)

5. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in
System Design (August 1996)

6. Johannesen, P.: Speeding up hardware verification by automated data path scaling.
PhD thesis, Christian-Albrechts-Universität zu Kiel (2002)

7. Manolios, P., Srinivasan, S.K., Vroon, D.: BAT: The Bit-Level Analysis Tool.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 303–306.
Springer, Heidelberg (2007)

8. Peh, L.-S., Dally, W.: A delay model and speculative architecture for pipelined
routers. In: Proc. Intl. Symposium on High-Performance Computer Architecture
(2001)

9. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Communications
of the ACM (June 1990)

10. Ranise, S., Tinelli, C.: Satisfiability modulo theories. Trends and Controversies -
IEEE Intelligent Systems Magazine (December 2006)

Validating High-Level Synthesis�

Sudipta Kundu, Sorin Lerner, and Rajesh Gupta

University of California, San Diego, La Jolla, CA 92093-0404
{skundu,lerner,rgupta}@cs.ucsd.edu

Abstract. The growing design-productivity gap has made designers
shift toward using high-level languages like C, C++ and Java to do
system-level design. High-Level Synthesis (HLS) is the process of gener-
ating Register Transfer Level (RTL) design from these initial high-level
programs. Unfortunately, this translation process itself can be buggy,
which can create a mismatch between what a designer intends and what
is actually implemented in the circuit. In this paper, we present an ap-
proach to validate the result of HLS against the initial high-level program
using insights from translation validation, automated theorem proving
and relational approaches to reasoning about programs. We have imple-
mented our validating technique and have applied it to a highly paral-
lelizing HLS framework called SPARK. We present the details of our
algorithm and experimental results.

1 Introduction

While hardware designer productivity has grown at an impressive rate over the
past few decades, the rate of improvement has not kept pace with chip capacity
growth. High-Level Synthesis (HLS) [10,17,22] is often seen as a solution to bridge
the design-productivity gap. HLS is the process of generating Register Transfer
Level (RTL) design consisting of a data path and a control unit from a high-level
behavioral description of a digital system, expressed in languages like C, C++ and
Java. The synthesis process consists of several inter dependent sub-tasks such as:
specification, compilation, scheduling, allocation, binding and control generation.
HLS is an area that has been widely explored and relatively mature implementa-
tions of various HLS algorithm have started to emerge [10,17,22]. HLS tools are
large and complex software systems, often with hundreds of thousands of lines of
code, and as with any software of this scale, they are prone to logical and imple-
mentation errors. Errors in these tools lead to the synthesis of RTL designs with
bugs in them, which often have expensive ramifications if they go undetected until
after fabrication or large-scale production. Hence, correctness of these HLS tools
has always been an important concern.

Despite significant amount of work in the area of verification we are still far from
being able to prove automatically that a given optimizing HLS tool always pro-
duces target programs that are semantically equivalent to their source versions.
However, even if one cannot prove an HLS tool correct once and for all, one can try
� This research was supported in part by NSF CAREER Grant 0644306.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 459–472, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

460 S. Kundu, S. Lerner, and R. Gupta

to show, for each translation that the HLS tool performs, that the output program
produced by the tool has the same behavior as the original program. Although this
approach does not guarantee that the HLS tool is bug free, it does guarantee that
any errors in translation will be caught when the tool runs, preventing such errors
from propagating any further in the hardware fabrication process. This approach
to verification, called translation validation, has previously been applied with suc-
cess in the context of optimizing compilers [8,19,20,21,23], and for automatically
proving refinements of CSP programs [14].

The main contribution of this paper is to show how translation validation can
effectively be implemented in a previously unexplored setting: an HLS tool. In
particular, we present an algorithm for validating all the phases (except for pars-
ing, binding and code generation) of the SPARK HLS tool [10] against the initial
behavioral description. With over 4,000 downloads, and over 100 active mem-
bers in the user community, SPARK is a widely used tool. Although commercial
HLS tools exists, these tools are not available for academic experimentation –
SPARK represents the state of the art in the academic community.

Our algorithm uses a bisimulation relation approach to prove equivalence. In
particular, we automatically establish a bisimulation relation that states what
points in the specification program are related to what points in the implemen-
tation program. This bisimulation relation guarantees that for each execution
sequence in the specification, a related and equivalent execution sequence exists
in the implementation and vice versa. To deal with the parallelism introduced
by the scheduling step of SPARK, we exploit the structure of the transforma-
tions that SPARK applies during scheduling. These transformations convert
a sequential program to a program that contains instruction-level parallelism.
Our algorithm deals with this parallelism using standard techniques for comput-
ing weakest preconditions and strongest postconditions of parallel programs [4].
Furthermore, the algorithm we present also draws insights and techniques from
various areas, including translation validation [19,20], theorem proving [5], and
relational approaches to reasoning about programs [11,15].

We implemented our algorithm in a tool that validates SPARK’s HLS process.
We used our tool to verify the translation of a variety of benchmarks. Because
our verification approach works on one procedure at a time, it is modular. Fur-
thermore, our validation tool took on average 6 seconds to run per procedure,
showing that translation validation of HLS transformations can be fast enough
to be practical. Finally, in running our tool, two failed validation runs have lead
us to discover two previously unknown bugs in the SPARK tool. These bugs
cause SPARK to generate incorrect RTL for a given high-level program. This
demonstrates that translation validation of the HLS process can catch bugs that
even testing and long-term use may not uncover.

2 Overview

We start by presenting a simple example that illustrates our approach (Figure 1).
The specification is a sequential function shown in Figure 1(a) using a transition

Validating High-Level Synthesis 461

a2

a3

a4

a5

a1

i2: k = p

i1: sum = 0

i3: (k < 10) i6: ¬ (k < 10)

a6

i4: k = k + 1

i5: sum = sum + k

a0

i7: return sum

(a)

b1

b2 b3

b4

b0

j1: sum = 0
j2: k = p
j41: t = p + 1

j4: k = t
j5: sum = sum + t
j42: t = t + 1

j7: return sum

j6: ¬ (k < 10)j3: (k < 10)

+ + <Resource Alocation:

(b)

j6

b1

b3

a2

a5

sums = sumi

ks = ki ks + 1 = ti

i6

(d)

ks = ki
b1

b1

a2

a2 ks = ki
(c)

i3
i4
i5

j4
j5
j42

j3

Fig. 1. Our running example (a) Specification (b) Implementation (c) and (d) Parts
of 2nd iteration

Table 1. Iterations for computing the bisimulation relation

(l1, l2) 1st iteration 2nd iteration 3rd iteration (φ)
1. (a0, b0) ps = pi ps = pi ps = pi

(ks = ki)∧ ks = ki∧
2. (a2, b1) ks = ki (sums = sumi)∧ sums = sumi∧

((ks + 1) = ti) (ks + 1) = ti
3. (a5, b3) sums = sumi sums = sumi sums = sumi

diagram. This function takes p as input and computes the sum from (p + 1) to
10 using a loop and returns it. A parallelizing HLS tool will apply various kinds
of transformations to this sequential function, with the goal of scheduling each
operation based on some resource constraints.

Figure 1(b) shows the result of running SPARK’s HLS algorithm given re-
source constraints of 2 adders and a comparator. Instructions on the same transi-
tion edge are executed in parallel. For this example SPARK has performed several
transformations. First, it applied a loop-shifting transformation that moves the
operation i4 from the beginning of the loop body to the end of the loop body (j42),
while also placing a copy of the operation in the loop header (j41) using the tem-
porary variable t. The effect of this loop-shifting transformation is a form of soft-
ware pipelining [16]. Notice that without this pipelining transformation it would
not have been possible to schedule the operation i4 and i5 together due to data
dependence between them. In addition to loop-shifting, SPARK also performed
copy propagation of instruction j2 to j41 and instruction j4 to j42.

462 S. Kundu, S. Lerner, and R. Gupta

Bisimulation Relation. In order to show that the implementation is equiva-
lent to the specification, our approach computes a bisimulation relation between
the two programs. The goal of the bisimulation relation is to guarantee that
the specification and the implementation perform the same set of visible in-
structions. In our case, we consider visible instructions to be function calls and
return statements. Our technique thus guarantees that the specification and the
implementation perform the same sequence of function calls (with the same ar-
guments) and returns (with the same returned values).

The bisimulation relation (defined formally in Section 4) consists of a set of
entries of the form (l1, l2, φ), where l1 and l2 are locations in the specification
and implementation respectively, and φ is a predicate over variables of the spec-
ification and implementation. The pair (l1, l2) captures how the control state of
the specification is related to the control state of the implementation, whereas
φ captures how the data is related. For instance, Table 1 shows the bisimula-
tion relation for our running example. The control component of entries in the
bisimulation relation are shown in the first column and the data component in
the last column of the table.

The first entry in the bisimulation relation relates the start location of the
specification and the implementation. For this entry, the relevant data invariant
is ps = pi, which states that the value of the input argument p in the specifica-
tion is equal to the value of the input argument p in the implementation. We use
subscript s to denote variables in the specification and subscript i for variables
in the implementation. The second entry in the bisimulation relation relates the
loop head (a2) in the specification with the loop head (b1) of the implementa-
tion. This entry represent two loops that run in synchrony, one loop being in the
specification and the other being in the implementation. The invariant can be
seen as a loop invariant across the specification and the implementation, which
guarantee that the two loops produce the same effect on the visible instructions.
The control part of this entry guarantee that the two loops are in fact synchro-
nized. The last entry in the bisimulation relation relates the location a5 in the
specification with the location b3 of the implementation. The relevant invariant
for this entry is sums = sumi, since the value returned by both the program
should be same (our equivalence criterion).

The entries in the bisimulation relation must satisfy some simple local require-
ments (which are made precise in Section 4). Intuitively, for any entry (l1, l2, φ)
in the bisimulation relation, if the specification and implementation start exe-
cuting in parallel at control locations l1 and l2 in states where φ holds, and in
doing so reach another bisimulation entry (l ′1, l ′2, φ′), then φ′ must hold in the
resulting states.

Our Approach. Our technique for equivalence checking starts by finding pairs
of locations in the implementation and the specification that need to be related
in the bisimulation. This amounts to computing the first column of Table 1. In
the given example, our algorithm first adds (a0, b0) as a pair of interest, which
is the entry location of both programs. Then it moves forward simultaneously
in the implementation and the specification until it reaches a branch, a function

Validating High-Level Synthesis 463

call or a return instruction. In the example from Figure 1, our algorithm finds
that there is a branch and a return instruction that must be matched (the speci-
fication locations a2 and a5 should match, respectively, with the implementation
location b1 and b3). While finding these pairs of locations, our algorithm corre-
lates the branch in the specification and the implementation (the details of how
we establish branch correlations is explained in Section 5).

Once the related pairs of locations have been collected we define, for each pair
of locations (l1, l2), a constraint variable ψ(l1,l2) to represent the state-relating
formula that will be computed in the bisimulation relation for that pair. We then
define a set of constraints over these variables that must be satisfied in order for
the would-be bisimulation relation to in fact be a bisimulation.

There are two kinds of constraints. First, for each pair of locations (l1, l2)
that are related, we want ψ(l1,l2) to imply that any visible instructions about
to execute at (l1, l2) behave the same way. For example, ψ(a5,b3) should imply
sums = sumi, so that the returned values are the same. Such constraints guar-
antee that the computed bisimulation relation is strong enough to show that
the visible instructions behave the same way in the specification and the imple-
mentation. A second kind of constraint is used to state the relationship between
one pair of related locations and other pairs of related locations. For example,
if starting at (l1, l2) in states satisfying ψ(l1,l2), the specification and implemen-
tation can execute in parallel to reach another related pair of locations (l ′1, l

′
2),

then ψ(l′1,l′2) must hold in the resulting states. As shown in Section 5, such con-
straints can be stated over the variables ψ(l1,l2) and ψ(l′1,l′2) using the weakest
precondition operator (wp). This second kind of constraint guarantees that the
computed bisimulation relation is in fact a bisimulation.

Once the constraints are generated, we solve them using an iterative algo-
rithm that starts with all constraint variables set to true and then iteratively
strengthens the constraint variables until a theorem prover is able to show that
all constraints are satisfied. Although in general this constraint-solving algo-
rithm is not guaranteed to terminate, in practice it can quickly find the required
bisimulation relation.

The constraint solving for our example is shown in Table 1. Our algorithm
first initializes the constraint variables with the conditions that are required for
the visible instructions to be equivalent. Then it chooses any entry from the ta-
ble, say (a2, b1) and finds the entries that can reach it (i.e. (a2, b1) and (a0, b0)).
Consider the synchronized loop from (a2, b1) to (a2, b1) shown in Figure 1(c).
Our algorithm computes the weakest precondition of the formula at the bottom
(ks = ki) over the instructions in the implementation and in the specification,
which happens to be δ = [(ks < 10) ⇒ (ki < 10) ⇒ (ks + 1) = ti]. Next, it asks
a theorem prover if the condition at the top i.e. ks = ki implies δ. Since it does
not, our algorithm strengthens the condition at the top with (ks + 1) = ti which
is a stronger condition than δ. A similar pass through Figure 1(d) strengthens
the condition at (a2, b1) with (sums = sumi). Our constraint solving continues in
this manner until a fixpoint is reached.

464 S. Kundu, S. Lerner, and R. Gupta

3 Definition of Equivalence

Having illustrated our approach using a simple example, we now present a formal
description. Our approach verifies each procedure from the specification against
the corresponding procedure from the implementation. We represent each proce-
dure in the specification and the implementation using a transition diagram that
describes the control structure of the procedure in terms of program locations
and program transitions. A program location represents a point of control in the
procedure, and a transition describes how the program state changes from one
program location to another. We represent these transitions by instructions.

More formally, we define a program state to be a function VAR → VAL
assigning values to variables, where VAR denotes the set of variables and VAL
denotes the domain of values. We denote by Σ the a set of all program states.
We define an instruction to be a pair (c, f) where c : Σ → B is a predicate and
f : Σ → Σ is a state transformation function. The predicate c is the condition
under which the state transformation function f can happen. For instance, in
Figure 1(a) the instruction i3 has c = (k < 10) and f(σ) = σ, whereas the
instruction i2 has c = true and f(σ) = σ[k �→ σ(p)].

Finally a transition diagram is defined as follows.

Definition 1 (Transition Diagram). A transition diagram π is a tuple (L, I,
→, ι), where L is a finite set of locations, I is a finite set of instructions, → ⊆
L × I × L is a finite set of triples (l , a, l ′) called transitions, and ι ∈ L is the
entry location. We write l i−→ l ′ to denote (l , i, l ′) ∈ →.

Definition 2 (Semantic Step). Given a transition diagram π = (L, I, →, ι),
we define a configuration to be a pair 〈l , σ〉, where l ∈ L and σ ∈ Σ. Given
two configurations 〈l , σ〉 and 〈l ′, σ′〉, and an instruction i ∈ I, the semantic step
relation is defined as follows:

〈l , σ〉 i� 〈l ′, σ′〉 iff l
i−→ l′ and i = (c, f) and c(σ) = true and σ′ = f(σ)

Definition 3 (Execution Sequence). For a given transition diagram π = (L,
I, →, ι), an execution sequence η starting in σ0 ∈ Σ is a sequence of configura-
tions such that:

〈l0, σ0〉 i1� 〈l1, σ1〉 i2� · · · in� 〈ln, σn〉
We denote by N the set of all execution sequences.

We define ϑ to be the set of visible instructions. These are the instructions whose
semantics we would like preserved between the specification and implementation.
In our system we consider visible instructions to be function calls and returns.
For v1, v2 ∈ ϑ, we write 〈v1, σ1〉 ≡ 〈v2, σ2〉 to represent that v1 in program
state σ1 is equivalent to v2 in program states σ2. For two visible instructions to
be equivalent, they must both be returns, or both calls. Furthermore, returns
are equivalent if the returned value and the state of the memory are the same.
Two function calls are equivalent if the state of globals, the arguments and the
address of the called function are the same. This concept of equivalence for visible
instruction can be extended to execution sequences as follows.

Validating High-Level Synthesis 465

Definition 4 (Equivalence of Execution Sequences). Two execution se-
quences η1 and η2 are said to be equivalent, written η1 ≡ η2, if the two sequences
contain visible instructions that are pairwise equivalent.

Definition 5 (Equivalence of Transition Diagrams). For given initial states
σ1 ∈ Σ1 and σ2 ∈ Σ2, two transition diagrams π1 = (L1, I1, →1, ι1) and π2 =
(L2, I2, →2, ι2)are said to be equivalent if for every execution sequence ofπ1 starting
in configuration 〈ι1, σ1〉 there is an equivalent execution sequence of π2 starting in
configuration 〈ι2, σ2〉 and vice-versa.

4 Bisimulation Relation

A verification relation between two transition diagrams π1 and π2 is a set of
triples (l1, l2, φ), where l1 ∈ L1, l2 ∈ L2 and ψ is a predicate over the variables live

at locations l1 and l2. Let the set of such predicates be denoted by Φ
def
= Σ×Σ →

B. We write φ(σ1, σ2) = true to indicate that φ is satisfied in (σ1, σ2) ∈ Σ × Σ.
Simulation relations and bisimulation relations are verification relations with

a few additional properties. To define these properties, we make use of a cumu-
lative semantic step relation �∗, which works like �, except that it can take
multiple steps at once, and it accumulates the steps taken into an execution
sequence.

Definition 6 (Cumulative Semantic Step). Given configurations 〈l0, σ0〉
and 〈ln, σn〉, and an execution sequence η that contains at least one transition,
we define �∗ as follows:

〈l0, σ0〉
η

�∗ 〈ln, σn〉 iff η = 〈l0, σ0〉 i1� · · · in� 〈ln, σn〉
Definition 7 (Simulation Relation). A simulation relation R for two tran-
sition diagrams π1 = (L1, I1, →1, ι1) and π2 = (L2, I2, →2, ι2) is a verification
relation such that:

R(ι1, ι2, true)

∀(l1, l2, l ′1, σ1, σ2, σ
′
1, φ, η2) ∈ L1 × L2 × L1 × Σ × Σ × Σ × Φ × N .

[

〈l1, σ1〉
η1

�∗1 〈l ′1, σ′1〉 ∧ R(l1, l2, φ) ∧ φ(σ1, σ2) = true
]

⇒
∃(l ′2, σ

′
2, φ
′, η2) ∈ L2 × Σ × Φ × N .

[

〈l2, σ2〉
η2

�∗2 〈l ′2, σ′2〉 ∧ R(l ′1, l
′
2, φ
′) ∧ φ′(σ′1, σ

′
2) = true ∧ η1 ≡ η2

]

Intuitively, these conditions respectively state that (1) the entry location of π1

must be related to the entry location of π2; and (2) if π1 and π2 are in a pair
of related configurations, and π1 can proceed one or more steps producing an
execution sequence η1, then π2 must also be able to proceed one or more steps,
producing a sequence η2 that is equivalent to η1, and the two resulting configu-
rations must be related.

466 S. Kundu, S. Lerner, and R. Gupta

Even though in the above definition, the state-relating predicate for the entry
locations is true, dummy assignments to a procedure’s arguments allow us to
prove that the arguments in the specification are equal to those in the imple-
mentation, at the beginning of each procedure.

Definition 8 (Bisimulation Relation). A verification relation R is a bisim-
ulation relation for π1, π2 iff R is a simulation relation for π1, π2 and R−1 =
{(l2, l1, φ) | R(l1, l2, φ)} is a simulation relation for π2, π1.

The following lemma and theorem connect the definition of bisimulation with
our definition of equivalence for transition diagrams (Definition 5).

Lemma 1. If R is a bisimulation relation for π1, π2, then for each element
(l1, l2, ψ) ∈ R, all pairs of executions of π1 started at l1 and of π2 started at l2,
in states that satisfy the predicate ψ, are equivalent.

Theorem 1. If there exists a bisimulation relation for π1, π2, then π1 and π2

are equivalent.

The conditions from Definition 7 are the base case and the inductive case of
a proof by induction showing that π2 is equivalent to π1. Thus, a bisimulation
relation is a witness that two transition diagrams are equivalent.

5 Translation Validation Algorithm

Our translation validation algorithm works by inferring a bisimulation relation.
Given a transition diagram π, we define Pπ to be the set of locations for which
our approach will try to infer bisimulation entries. These include all locations
before visible events and also all locations before branch statements. To focus
our attention on only those locations for which our approach infers bisimulation
entries, we define the skipping transition relation ↪−→, which is a version of −→
that skips over all locations not in Pπ.

Definition 9 (Skipping Transition). Let π = (L, I, →, ι) be a transition di-
agram, l , l ′ ∈ Pπ, and w ∈ I∗, where w = i0 · · · in. We define ↪−→ as follows:

l
w

↪−→ l ′iff there exists l1, · · · , ln ∈ (L − Pπ) such that l i0−→ l1 · · · ln in−→ l ′

Throughout the rest of this section, we assume that π1 = (L1, I1, →1, ι1) rep-
resents the procedure in the specification whose translation we want to verify,
and π2 = (L2, I2, →2, ι2) represents the corresponding procedure in the imple-
mentation. We let P1 = Pπ1 and P2 = Pπ2 . We also let ↪−→1 and ↪−→2 be the
skipping transitions for π1 and π2 respectively.

We now define a parallel transition relation ↪−→↪−→ that essentially traverses the
two transition diagrams (specification and implementation) in synchrony.

Definition 10 (Parallel Transition). Given (l1, l2) ∈ P1 × P2, (l ′1, l ′2) ∈ P1 ×
P2, w1 ∈ I∗1 and w2 ∈ I∗2 , we define ↪−→↪−→ as follows:

(l1, l2)
(w1,w2)
↪−→↪−→ (l ′1, l

′
2) iff l1

w1
↪−→1 l ′1 and l2

w2
↪−→2 l ′2 and Rel(w1, w2, l1, l2)

Validating High-Level Synthesis 467

The predicate Rel : I∗ × I∗ × P1 × P2 → B used in the above definition is a
heuristic that tries to estimate when a path in the specification is related to a
path in the implementation. Consider for example the branch in the specification
of Figure 1 and the corresponding branch in the implementation. For any two
such branches, the Rel function uses heuristics to guess a correlation between
them: either they always go in the same direction, or they always go in opposite
direction. Using these correlations, Rel(w1, w2, l1, l2) returns true only if the paths
w1 and w2 follow branches in a correlated way. Although Rel makes guesses about
the correlation of branches, the later constraint solving phase of our approach
makes sure that these guesses are correct.

Our implementation of Rel correlates branches in two ways. First, using the
results of a strongest postcondition pre-pass over the specification and the im-
plementation, Rel tries to use a theorem prover to prove that certain branches
are correlated. If the theorem prover is not able to determine a correlation, Rel
uses the structure of the branch predicate and the structure of the instructions
on each side of the branch to guess a correlation. For instance, in the example
of Figure 1, since the strongest postcondition involves the input parameter p,
the theorem prover is unable to reason about it. However, because SPARK does
not change the structure of the branch predicate, Rel can conclude that the two
branches go in the same direction.

We now define the relation R ⊆ P1 × P2 of location pairs that will form the
entries of our bisimulation relation.

Definition 11 (Pairs of Interest). The relation R ⊆ P1 ×P2 is defined to be
the minimal relation that satisfies the following two properties:

R(ι1, ι2)
[

R(l1, l2) ∧ (l1, l2)
(w1,w2)
↪−→↪−→ (l ′1, l

′
2)

]

=⇒ R(l ′1, l
′
2)

The set R defined above can easily be computed by starting with the empty set,
and applying the above two rules exhaustively.

For our approach to successfully validate a translation, the computed set R
must relate locations where the instructions to be executed are similar. This is
made precise by the following definition of well-matching of R. If the computed
set R is not well-matched, then our validation approach immediately rejects the
translation from specification to implementation.

Definition 12 (Well-matching). For each (l1, l2) ∈ R, if we let i1 and i2
be the instructions to be executed after l1 and l2, respectively, then for R to be
well-matched, the following must hold: i1 is a branch iff i2 is a branch; i1 is a
function call iff i2 is a function call; and i1 is a return iff i2 is a return.

We describe our translation validation approach in terms of constraint solving. In
particular, for each (l1, l2) ∈ R we define a constraint variable ψ(l1,l2) representing
the predicate that we want to compute for the bisimulation entry (l1, l2). We de-
note by Ψ the set of all such constraint variables. Using these constraint variables,
the final bisimulation relation will have the form {(l1, l2, ψ(l1,l2)) | R(l1, l2)}.

468 S. Kundu, S. Lerner, and R. Gupta

1. function SolveConstraints(C)
2. for each (l1, l2) ∈ R do
3. ψ(l1,l2) := true
4. let worklist := C
5. while worklist not empty do
6. let [ψ(l1,l2) ⇒ f(ψ(l′1,l′2))] := worklist .Remove
7. if ATP(ψ(l1,l2) ⇒ f(ψ(l′1,l′2))) �= Valid then
8. if (l1, l2) = (ι1, ι2) then
9. Error(“Start Condition not strong enough”)
10. ψ(l1,l2) := ψ(l1,l2) ∧ f(ψ(l′1 ,l′2))

11. worklist := worklist ∪ {c ∈ C | ∃ψ, g . c = [ψ ⇒ g(ψ(l1,l2))]}

Fig. 2. Algorithm for solving constraints

To compute the predicates that the constraint variables ψ(l1,l2) stand for, we
define a set of constraints on these variables, and then solve the constraints. The
constraints are defined as follows.

Definition 13 (Constraint). A constraint is a formula of the form ψ1 ⇒
f(ψ2), where ψ1, ψ2 ∈ Ψ , and f is a boolean function.

Definition 14 (Set of Constraints). The set C of constraints is defined by:

For each (l1, l2) in R:
[
ψ(l1,l2) ⇒ CreateSeed(l1, l2)

] ∈ C
For each (l1, l2)

(w1,w2)
↪−→↪−→ (l ′1, l ′2):

[
ψ(l1,l2) ⇒ wp(w1, wp(w2, ψ(l′1,l′2)))

] ∈ C
The CreateSeed function above creates for each pair of locations (l1, l2) a formula
(which does not refer to any constraint variables) that captures the condition
under which the instructions about to execute at l1 and l2 are equivalent. Because
R is well-matched (see Definition 12), there are three cases: if the instructions
about to execute at l1 and l2 are calls, then the formula returned by CreateSeed
states that the parameters of the calls are equal; if the two instructions are
returns, then the formula states that the returned values are equal; if the two
instructions are branches, then the formula states the two branches are correlated
(either they both go in the same direction, or in opposite directions).

The other function wp used above computes the weakest precondition with
respect to w2 and then with respect to w1. When computing wp with respect to
one sequence, we treat all variables from the other sequence as constants. As a
result, the order in which we process the two sequences does not matter.

Having created a set of constraints C, our validation approach now solves
these constraints using the algorithm in Figure 2. The algorithm starts by setting
each constraint variable to true (line 3) and initializing a worklist with the set
of all constraints (line 4). Next, while the worklist is not empty, it removes a
constraint from the worklist (line 6), and checks using a theorem prover if it is
Valid (line 7). If not, then it appropriately strengthens the left-hand-side variable
of the constraint (line 10) and adds to the worklist all the constraints that have
this variable in the right-hand side (line 11).

Validating High-Level Synthesis 469

6 Evaluation

We implemented our validation algorithm on the intermediate representation
(IR) of the SPARK HLS framework [10]. SPARK is a C-to-VHDL parallelizing
high-level synthesis framework that employs a set of compiler, parallelizing com-
piler, and synthesis transformations to improve the quality of high-level synthesis
results. SPARK starts with a behavioral description in ANSI-C as input – cur-
rently with the restrictions of no pointers, no recursion, and no irregular control-
flow jumps. It converts the input program into its own IR, and then applies a
set of code transformations, including loop unrolling, loop fusion, common sub-
expression elimination, copy propagation, dead code elimination, loop-invariant
code motion, induction variable analysis, and operation strength reduction. Fol-
lowing these transformations, SPARK performs a scheduling phase using re-
source allocation information provided by the user. This scheduling phase also
performs a variety of transformations, including speculative code motion, dy-
namic renaming of variables, dynamic branch balancing, chaining of operations
across conditional blocks, and scheduling on multi-cycle operations. The schedul-
ing phase is followed by a resource binding phase and finally by a back-end code
generation pass that produces RTL VHDL.

We implemented our translation validation algorithm using the Simplify the-
orem prover [5] in a tool that validates SPARK’s HLS process. Our tool takes
as input the IR program that is produced by the parser, and the IR program
right before resource binding, and verifies that the two are equivalent. Our tool
therefore validates the entire HLS process of SPARK, except for parsing, re-
source binding and code generation. Our tool is around 7,500 lines of C++ code,
whereas SPARK’s implementation excluding the parser consists of over 125,000
lines of C++ code. Thus, with around 15 times less effort compared to SPARK’s
implementation we can build a framework that validates its synthesis process.

We tested our tool on 12 benchmarks obtained from SPARK’s test suite. Of
these benchmarks, 10 passed and 2 failed. For the ones that passed, our tool was
able to quickly find the simulation relation, taking on average around 6 seconds
per procedure, and a maximum of 27 seconds for the largest procedure (80 lines of
code). Furthermore, the computed bisimulation relations were small, ranging in
size from 6 to 29 entries, with an average of about 14. To infer these bisimulation
relations, our approach made an average of 189 calls to the theorem prover per
procedure (with a minimum of 9 and a maximum of 797). Our approach is
compositional since it works on one procedure at a time, and the above results
show that our approach can handle realistically size procedures.

As mentioned previously, two benchmarks failed our validation test. Upon
further analysis each of them lead us to discover previously unknown bugs in
SPARK. One bug occurs in a particular corner case of copy propagation for
array elements. The other bug is in the implementation of the code motion
algorithm in the scheduler. The fact that our translation validation approach
found two previously unknown bugs in a widely-used HLS framework emphasizes
the usefulness and bug-isolating capabilities of our tool.

470 S. Kundu, S. Lerner, and R. Gupta

In general, our tool will perform well when the transformations that are
performed preserve most of the program’s control flow structure. Such trans-
formations are called structure-preserving transformations [23]. The only non
structure-preserving transformation that SPARK performs is loop unrolling,
but in our examples this transformation did not trigger.

7 Related Work

Our work is related to translation validation [8,14,19,20,21,23], HLS verifica-
tion [1,6,13,18], and relational approaches to reasoning about programs
[7,3,15,2,11]. Despite long lines of work in each one of these areas, our work
distinguishes itself in the following way: it the first to show that translation val-
idation can be effective in the context of a realistic HLS tool. We now discuss
each area in more detail.

Translation Validation. The technique described in this paper is similar to
our previous translation-validation algorithm for CSP programs [14]. The algo-
rithm presented here, however, runs in the context of a realistic HLS tool, as
opposed to the more theoretical results from our previous work. Furthermore,
our current algorithm handles a more restricted form of concurrency than found
in CSP, which allows it to run more efficiently. Our work also bears similarities
to Necula’s translation-validation algorithm for inferring simulation relations
that prove equivalence of sequential programs [19]. Unlike Necula’s approach,
our algorithm must take into account statements running parallel, since one of
the main tasks that HLS tools perform is to schedule statements for parallel
execution. Furthermore our algorithm is expressed in terms of calls to a gen-
eral theorem prover, rather than using specialized solvers and simplifiers. In this
sense our algorithm is more modular, since the theorem proving part of the al-
gorithm has been modularized into a component with a very simple interface (it
takes a formula and returns Valid or Invalid).

HLS Verification. Techniques like correctness-preserving transformations [6],
formal assertions [18] and relational approaches for functional equivalence of FS-
MDs [12,13] have been used to validate the scheduling step of HLS. However,
all these techniques assume that the scheduler does not move code across basic
blocks and variable names do not change, which would prevent them from val-
idating SPARK’s HLS process. In work that is complementary to ours, model
checking was used to validate the binding step of HLS [1], which is the only
internal step of SPARK that our tool does not validate.

Relational Approaches. Relational approaches have been used for a variety of
verification tasks, including model checking [3,7], translation validation [19,20],
and reasoning about optimizations once and for all [2,15]. In this context, our
work can be seen as automating Joseph’s relational approach for proving refine-
ment of concurrent systems [11].

Validating High-Level Synthesis 471

8 Conclusion and Future Work

We have presented an algorithm for translation validation of the HLS process,
and have implemented it within the context of a HLS tool called SPARK. The
innovation in our work lies in showing that translation validation approaches
work well in the application domain of high-level synthesis. In particular, with
only a fraction of the development cost of SPARK, our algorithm can validate
the translations performed by SPARK, and it also uncovered bugs that eluded
long-term use. Moving forward, we intend to implement translation validation in
SPARK for the remaining phases: parsing, binding and code generation. We also
intend to adapt our translation validation techniques to SystemC [9] programs.

References

1. Ashar, P., Bhattacharya, S., Raghunathan, A., Mukaiyama, A.: Verification of RTL
generated from scheduled behavior in a high-level synthesis flow. In: ICCAD, pp.
517–524 (1998)

2. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: POPL 2004 (January 2004)

3. Bustan, D., Grumberg, O.: Simulation based minimization. In: McAllester, D.A.
(ed.) CADE 2000. LNCS, vol. 1831. Springer, Heidelberg (2000)

4. Chandy, K.M.: Parallel program design: a foundation. Addison-Wesley Longman
Publishing Co. Inc., Boston, MA, USA (1988)

5. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Journal of Association Computing Machinery 52(3), 365–473 (2005)

6. Eveking, H., Hinrichsen, H., Ritter, G.: Automatic verification of scheduling results
in high-level synthesis. In: DATE 1999, NY, USA (1999)

7. Fisler, K., Vardi, M.Y.: Bisimulation and model checking. Correct Hardware Design
and Verification Methods (September 1999)

8. Goldberg, B., Zuck, L., Barrett, C.: Into the loops: Practical issues in translation
validation for optimizing compilers. Electronic Notes in Theoretical Computer Sci-
ence 132(1), 53–71 (2005)

9. Grötker, T.: System Design with SystemC. Kluwer Academic Publishers, Dordrecht
(2002)

10. Gupta, S., Dutt, N., Gupta, R., Nicolau, A.: Spark: A high-level synthesis frame-
work for applying parallelizing compiler transformations. In: VLSI Design 2003
(2003)

11. Josephs, M.B.: A state-based approach to communicating processes. Distributed
Computing 3(1), 9–18 (1988)

12. Karfa, C., Mandal, C., Sarkar, D., Pentakota, S.R., Reade, C.: A formal verification
method of scheduling in high-level synthesis. In: ISQED, pp. 71–78 (2006)

13. Kim, Y., Kopuri, S., Mansouri, N.: Automated formal verification of scheduling
process using finite state machines with datapath (fsmd). In: ISQED 2004 (2004)

14. Kundu, S., Lerner, S., Gupta, R.: Automated refinement checking of concurrent
systems. In: ICCAD 2007 (2007)

15. Lacey, D., Jones, N.D., Wyk, E.V., Frederiksen, C.C.: Proving correctness of com-
piler optimizations by temporal logic. In: POPL 2002 (January 2002)

16. Lam, M.: Software pipelining: an effective scheduling technique for VLIW ma-
chines. In: PLDI 1988 (June 1988)

472 S. Kundu, S. Lerner, and R. Gupta

17. Lin, Y.-L.: Recent developments in high-level synthesis. ACM Transactions on
Design Automation of Electronic Systems 2(1), 2–21 (1997)

18. Narasimhan, N., Teica, E., Radhakrishnan, R., Govindarajan, S., Vemuri, R.: The-
orem proving guided development of formal assertions in a resource-constrained
scheduler for high-level synthesis. Form. Methods Syst. Des. 19(3), 237–273 (2001)

19. Necula, G.C.: Translation validation for an optimizing compiler. In: PLDI 2000
(June 2000)

20. Pnueli, A., Siegel, M., Singerman, E.: Translation Validation. In: Steffen, B. (ed.)
ETAPS 1998 and TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg
(1998)

21. Rinard, M., Marinov, D.: Credible compilation. In: Proceedings of the FLoC Work-
shop Run-Time Result Verification (July 1999)

22. Walker, R., Camposano, R.: A Survey of High-Level Synthesis Systems. Kluwer
Academic Publishers, Boston, MA, USA (1991)

23. Zuck, L., Pnueli, A., Fang, Y., Goldberg, B.: VOC: A methodology for the trans-
lation validation of optimizing compilers. Journal of Universal Computer Sci-
ence 9(3), 223–247 (2003)

An Algebraic Approach for Proving Data

Correctness in Arithmetic Data Paths

Oliver Wienand, Markus Wedler, Dominik Stoffel, Wolfgang Kunz,
and Gert-Martin Greuel

University of Kaiserslautern/Germany
wedler@eit.uni-kl.de

Abstract. This paper proposes a new approach for proving arithmetic
correctness of data paths in System-on-Chip modules. It complements
existing techniques which are, for reasons of complexity, restricted to
verifying only the control behavior. The circuit is modeled at the arith-
metic bit level (ABL) so that our approach is well adapted to current
industrial design styles for high performance data paths. Normalization
at the ABL is combined with the techniques of computer algebra. We
compute normal forms with respect to Gröbner bases over rings Z/ 〈2n〉.
Our approach proves tractable for industrial data path designs where
standard property checking techniques fail.

1 Introduction

Property checking has become well-established in modern design flows for
Systems-on-Chip (SoCs). Its main application domain is ensuring the correct-
ness of the individual SoC blocks. This does not only lead to high quality IP
(intellectual property) modules but also reduces the costs for system integration
and chip-level simulation. Given IP modules of provably high quality, chip-level
simulation may concentrate on true system-level aspects and is relieved from
hunting bugs in local modules. Therefore, in recent years, a lot of effort has been
made to develop sophisticated methodologies and tools for formal module verifi-
cation based on property checking. Today, formal property checking can handle
almost all types of modules that can be found in today’s SoCs. Nonetheless, a
few pathological cases remain that sometimes limit the application of property
checking in industrial practice. In particular, data paths are often a challenge
for formal techniques, especially, if not only the correctness of the control flow
but also correctness of the data is to be proved.

For complex arithmetic data paths simulation is, therefore, still prevailing
in industrial verification environments. This is due to the inability of standard
proving procedures based on satisfiability solving (SAT) or binary decision dia-
grams (BDDs) to handle arithmetic functions. Especially multiplication — as it
is part of nearly all data paths for signal processing applications — has remained
a severe problem for standard tools. This deficiency has motivated the research
community to investigate alternative proof methods with focus on arithmetic.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 473–486, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

474 O. Wienand et al.

In case the validity of a property can be proven without consideration of
the exact functionality of the data path, abstraction and refinement techniques
have shown superiority over pure Boolean SAT techniques. A survey on these
techniques can be found in [1]. However, for properties that depend on the exact
functionality of the datapath a suitable abstraction is not likely to be found.

Another direction of research investigates SAT-modulo-theory (SMT) solvers.
These solvers combine a SAT solver with specialized solvers for certain well-
selected theories. An example for such a theory is the theory of equality with
uninterpreted functions used in UCLID [2]. In case the problem at hand really
depends on the exact functionality of a datapath, as is typically the case, most
SMT solvers resort to bit blasting [1] for the corresponding problem parts. In this
case SMT solvers show the same performance limitations as pure SAT solvers as
soon as these datapaths include multiplication operations. The decision problems
in RTL-property checking could be expressed as SAT problems for formulas
of the quantifier free logic (QF-BV) and in principle be solved using solvers
such as Yices [3], MathSat[4], Z3 [5] or Spear [6]. For sophisticated datapath
implementations involving multiplication, however, our experience is that the
problems are still beyond the capacity of such solvers.

Recently, techniques from symbolic computer algebra have entered the veri-
fication arena. The authors of [7] present a procedure to determine whether a
multivariate polynomial with fixed word length operands is vanishing. By this
means a comparison of polynomial representations for bit vector functions is
feasible. This procedure is extended towards multiple word length operands in
[8,9]. However, both approaches require a word-level representation of the data-
paths under comparison. This limits their applicability in RTL property check-
ing. Due to performance and area requirements RTL designers typically design
specialized arithmetic components. These components are often designed using
bit level arithmetic circuitry to build addition trees and partial products. The
smallest entities in an addition tree can be described using half and full adders
in general. An approach for verification of such bit level implementations using
Gröbner basis theory over fields is reported in [10]. This approach requires poly-
nomial specifications for every building block in the hierarchy of the arithmetic
circuit design. After proving that a block, e.g., a CSA adder, fulfills its local spec-
ification, the polynomial representation is used to verify the block in the next
level of the hierarchy. However, as the correctness proof includes a range check
the intermediate results at the block boundary are required to have sufficient
bit width to represent every possible result. For designs implementing integer
arithmetic with fixed bit width this is often not the case.

A heuristic approach to exploit the availability of arithmetic bit level (ABL)
information in RTL designs has been reported in [11]. In this work a data struc-
ture called ABL description for representation of addition networks and bitwise
multiplication is transformed into a reduced normal form. By canceling out com-
mon addends from addition networks in the fanin of a comparator the normal-
ization approach relieves the SAT solver from reasoning in structurally different
implementations for the same arithmetic function.

An Algebraic Approach for Proving Data Correctness 475

In order to overcome the limitations of [10] we use computer algebra algo-
rithms for rings Z/

〈
2N

〉
to solve decision problems at the arithmetic bit level.

This extends the normalization approach of [11] with a clean and well-understood
mathematical foundation. We show that an ABL description [11] can directly
be transformed into a set of equivalent variety subset problems. We exploit the
observation that under certain monomial orderings the set G of polynomials
generated from the ABL components forms a Gröbner basis of the ideal I = 〈G〉
generated by these polynomials with special properties. This allows to solve the
variety subset problem and hence decide problems at the arithmetic bit level.

The remainder of the paper is organized as follows: Section 2 briefly reviews
the notion of an ABL description and describes how such a description can be
generated given a design under verification and a property. Section 3 details the
mathematical modeling for decision problems at the ABL. The proposed tech-
niques are evaluated by experiments summarized in Section 4. Finally, Section 5
concludes the paper.

2 ABL Description

Arithmetic bit level (ABL) descriptions as introduced in [11] have proven to be
useful for modeling the arithmetic parts of a property checking instance. In this
section we briefly review this notion as far as it is required for this paper. We
use the following notations:

– For a ∈ Z, b > 0 the remainder, a mod b, of the integer division a/b denotes
the smallest k ≥ 0 with k = a − mb for some m ∈ Z.

– For n > 0 and a ∈ Z the uniquely determined bit vector (an−1, . . . , a0) with
a mod 2n =

∑n−1
i=0 2iai is denoted as 〈a, n〉 = (an−1, . . . , a0), i.e., 〈a, n〉 is

the n-bit binary unsigned integer representation of a.
– B = {0, 1} ⊂ Z denotes the Boolean space.

The combinatorial transition function of an RTL circuit design is usually mod-
eled by a directed acyclic graph where the vertices are labeled with bit vector
functions. It is common practice to translate verification problems for RTL cir-
cuits into such bit vector netlists with a single output indicating whether, e.g., a
certain property holds for a design. For the arithmetic problem parts we extract
an ABL description from this netlist. This description again is a directed acyclic
graph where the vertices can be of type “partial product generator”, “addition
network” or “comparator”. These vertex types are defined as follows:

Definition 1. Let n, m ∈ N, w : {0, . . . , m} → Z and c ∈ Z. The bit vector
function r : B

m → B
n with

r(x1, . . . , xm) = 〈(c +
m−1∑

i=0

w(i) · xi), n〉

476 O. Wienand et al.

is called addition network with addend set A = {x1, . . . , xm}. n is called result
width, c is called constant offset of the network and w(i) is called weight of the
addend xi.

The bit vector function pp : B
n × B

m → B
nm with

pp(x1, . . . , xn, y1, . . . , ym) = (xi · yj|i = 1, . . . , n and j = 1, . . . , m)

is called partial product generator.
Every bit vector function cmp : B

n × B
n → B with

cmp(< x + k, n >, < y + k, n >) = cmp(< x, n >, < y, n >)

for all k ∈ Z is called comparator.

Partial product generators model bit-wise multiplication and comparators model
comparison of bit vectors. Bit level addition units like half adders (HA) or full
adders (FA) are modeled as addition networks. By construction, addition net-
works can be used to model any addition circuit ranging from HAs and FAs up
to the entire addition scheme of a multiplier or a multiply-accumulate unit. This
is true for both signed and unsigned arithmetic.

Example 1. An signed 2×2-bit multiplier can be modeled with the partial prod-
uct generator

pp(x0, x1, y0, y1) = (x0y0, x1y0, x0y1, x1y1)

and the addition network

r(p0,0, p1,0, p0,1, p1,1) = 〈p0,0 − 2p1,0 − 2p0,1 + 4p1,1, 4〉

A simple bit-level implementation of this multiplier may implement the addi-
tion network using a fulladder and two halfadders. They can be modeled by
the addition networks fa(a, b, c) =< a + b + c, 2 > and ha(a, b) =< a + b, 2 >,
respectively.

For reasons of space we omit the formal definition of ABL descriptions as a
DAG. The interested reader is referred to [11]. Basically, the nodes of the graph
are labelled with their vertex type and the edges describe the interconnections
between them. Here, we explain this concept by continuing Example 1.

Example 2. The ABL description for the comparison of the bit level multiplier
implementation discussed in Example 1 against its word level specification is
depicted in Figure 1.

The vertices of this graph are labeled with the bit vector function defined
in the previous example. The edges (v, v′) are labeled with bit vectors that
propagate the result of v to the inputs of v′. In other words, the variables are
defined by the following equations:

– (p0, p1, p2, p3) = pp(x0, x1, y0, y1) = (x0y0, x1y0, x0y1, x1y1)
– (z0, z1, z2, z3) = r(p0, p1, p2, p4) = 〈p0 − 2p1 − 2p2 + 4p3, 4〉

An Algebraic Approach for Proving Data Correctness 477

pp

r

ha

fa

ha
(p 3,p 2 ,p 1)

(c)

(s’)

(z3,z 2,z 1,z 0)

(s’’,c’’)

(p 3,p 2,p 1 ,p 0)

(p 2 ,p 1)

(x 1,x 0)

(y 1 ,y 0)
(s) (o)

(p 0)
eq

Fig. 1. ABL description for Example 1

– (s, c) = ha(p1, p2) = 〈p1 + p2, 2〉
– (s′, c′) = fa(p1, p2, p3) = 〈p1 + p2 + p3, 2〉
– (s′′, c′′) = ha(c, s′) = 〈c + s′, 2〉
– (o) = eq((z0, z1, z2, z3), (p0, s, s

′′, c′′)) = ((z0, z1, z2, z3) == (p0, s, s
′′, c′′))

This example illustrates that ABL descriptions may contain structurally dis-
similar representations for one and the same arithmetic function. To simplify
the comparison of such representations a heuristic ad-hoc algorithm called ABL
normalization was proposed in [11]. This algorithm performs a series of local
equivalence transformations on the ABL description that are based on the com-
mutative and distributive laws.

However, in the next section we will describe how to obtain a variety subset
problem that is equivalent to the decision problem resulting from the comparison
of such ABL representations. This paves the way for the application of generic
computer algebra algorithms for which efficient implementations are available.

3 Mathematical Background

Application of computer algebra techniques to ABL verification problems re-
quires ABL components to be modeled by polynomials over a unique ring. Due
to the operation mod used to specify ABL components, the ring Z/2n seems to
be the natural choice. However, the mapping of ABL descriptions on sets of poly-
nomials G ⊂ Z/2n[X] over such a ring is not trivial and will be detailed in this
section. The key observation is that the constructed set G is a Gröbner basis of
the generated ideal I = 〈G〉. This makes the proposed approach computational
feasible.

We start with a set of equations Gj , j = 1, . . . , m given by polynomials fj ∈
Z[X], X a finite set of variables, which are of the form

Gj :
nj−1∑

i=0

2ir
(j)
i = fj

(
a
(j)
1 , a

(j)
2 , . . . , a(j)

mj

)
mod 2nj .

For the variables r
(j)
i , a

(l)
k ∈ X in this equation we assume r

(j)
i �= a

(l)
k for 1 ≤

l ≤ j and all i, k. We call the variables a
(j)
i inputs and r

(j)
i outputs of Gj .

478 O. Wienand et al.

Note that the equations Gj can be easily generated from the vertices of an
ABL description and that the condition r

(j)
i �= a

(l)
k is fulfilled as the ABL de-

scription is acyclic by definition. For illustration we give a few examples.

Example 3. The partial products of a non-Booth-encoded n × m multiplier can
be modeled by the polynomial equations

Gi,k : pi,k = aibk mod 2, (k = 0, . . . , n − 1, i = 0, . . . , m − 1)

Example 4. A full adder with inputs a0, a1, a2 and outputs s and c for sum and
carry is modeled by the equation

GFA : 2c + s = a0 + a1 + a2 mod 4

Example 5. A k-bit adder with inputs a = (a0, . . . , ak−1) and b = (bi) and result
r = (ri) is modeled by

Gadder :
k−1∑

i=0

2iri =
k−1∑

i=0

2i(ai + bi) mod 2k

For every proof goal, we obtain an additional polynomial g depending on a subset
of variables {a1, . . . , at} ⊂ X and need to check whether

g(a1, . . . , at) = 0 mod 2n

for all solutions of the set of equations {Gj}.

Example 6. A k-bit comparator of operands a and b is modeled by the polynomial

g =
k−1∑

i=0

2i(ai − bi)

Denote the set of all solutions to {Gj} as V ({Gj}). Analogously let V (g) be
the set of all roots of g. Usually the equations Gj and the polynomial g are
given mod 2k for different k. We apply a number of transformations to create
an equivalent variety subset problem V ({hi}) ⊂ V (g) where hi and g are poly-
nomials over a single ring Z/2N with appropriate N , which is necessary in order
to apply computer algebra. To solve the problem we construct a Gröbner basis
and then use normal form computations with respect to this basis.

For the reader’s convenience we recall some basic facts about Gröbner basis
theory (cf. [12,13]). We need a monomial ordering <, i.e., a well ordering on the
set of monomials s.t. multiplication with a monomial respects the ordering. Here
a monomial is a power product of variables and a term is the product of a mono-
mial with a coefficient, i.e., an element of the ring Z/2N . Any polynomial f �= 0
can be written as a finite sum of terms, f = c1m1 + · · · + crmr with ci coeffi-
cients �= 0 and mi monomials s.t. m1 > m2 > · · · > mr. The largest term plays
a special role and we call LM (f) := m1 resp. LC (f) := c1 resp. LT (f) := c1m1

the leading monomial resp. the leading coefficient resp. the leading term of f .

An Algebraic Approach for Proving Data Correctness 479

Let G ⊂ Z/2N [X] be a finite set of polynomials and f ∈ Z/2N [X]. If cm
is any (non-zero) term of f and if cm is divisible by the leading term of an
element h ∈ G we say that f is reducible to f ′ := f − (cm/LT (h)) · h and
write f →

h
f ′. The transitive and reflexive closure of the relation →

h
is denoted

by ∗→
G

. If f
∗→
G

g and if g is not reducible by any h of G we call g a normal form of f

w.r.t. G. This notion is, however, only useful if G is a Gröbner basis. In order to
define a Gröbner basis we need the ideal I = 〈G〉 := {∑

h∈G fhh|fh ∈ Z/2N [X]}
generated by an arbitrary set G of polynomials. Note that for the set of solutions
we have V (I) = V (G) for any set of generators G. A set of generators G is called
a (strong) Gröbner basis (of I) if f

∗→
G

0 for all f ∈ I. If G is a Gröbner basis

then the normal form of any element g ∈ Z/2N [X] is essentially unique and
equal to 0 if and only if f ∈ 〈G〉.

3.1 Problem Formulation over a Single Ring

Instead of directly converting the equations Gj into a set of polynomials over
a single ring, we generate some additional equations. These equations are re-
dundant in the sense that they can be derived from the original equations Gj .
However, they will play an important role for the efficiency of the solution tech-
niques described in Section 3.2. More precisely, these equations ensure that the
polynomial system generated from them is a Gröbner basis of the corresponding
ideal. This will be discussed later.

For every Gj we generate nj equations

G
(t)
j :

t−1∑

i=0

2ir
(j)
i = f

(t)
j

(
a
(j)
1 , a

(j)
2 , . . . , a(j)

mj

)
mod 2t

with t = 1, . . . , nj and with f
(t)
j = fj mod 2t being the minimal polynomial [14]

representing the same polynomial function (Z/2t)mj → Z/2t as fj.
Obviously, every solution of the Gj is also a solution of the system {G

(t)
j | t =

1, . . . , nj} and vice versa.
Let S be the set of variables (signals) occurring in g saturated with respect

to the property that if r
(j)
t−1 ∈ S then all variables of G

(t)
j are also in S. For

the further course of action only the equations G
(t)
j with r

(j)
t−1 ∈ S are relevant.

The solution set for the variables in S does not change when omitting the other
equations. Note that this corresponds to a cone-of-influence reduction on the
netlist of a circuit.

Example 7. Suppose the n bit final adder of a multiply/accumulate unit is reused
for computation of an m-bit addition (m < n). In a property checking instance
for this addition only the lowermost m bits of the adder take influence on the
arithmetic result. By the above construction we only instantiate the equations

480 O. Wienand et al.

G
(t)
adder :

t−1∑

i=0

2iri =
t−1∑

i=0

2i(ai + bi) mod 2t

for t < m.

So far the equations G
(t)
j use the operation mod 2t for different t, that is, we

work over different rings Z/2t and none is contained in the other (we have only
surjections of rings Z � Z/2t′ � Z/2t if t′ ≥ t). In order to apply Gröbner
basis techniques to our problem we need to generate a set of polynomials over a
single ring.

Let N := n + max{nj | j = 1, . . . , m} with nk, n, m as above. We want to
transform every equation into an element of the polynomial ring over Z/2N . To
achieve this, we introduce new variables s

(j)
t (called slack variables) and consider

the polynomials

G̃
(t)
j :=

t−1∑

i=0

2ir
(j)
i − f

(t)
j

(
a
(j)
1 , a

(j)
2 , . . . , a(j)

mj

)
− 2ts

(j)
t .

The set of common roots for the G̃
(t)
j projected on the variables in S cor-

responds to V ({Gj}). We can omit some of the extra variables s
(j)
t if we know

that 0 ≤ f
(t)
j ≤ 2t−1 holds over Z. If this condition cannot be guaranteed and we

need to know the exact value of s
(j)
t during the computation we can replace s

(j)
t

by a polynomial in the variables a
(j)
1 , a

(j)
2 , . . . , a

(j)
mj , i.e., a subset of the inputs

of Gj . For example, the polynomial modeling a half adder r0−a0−a1+2s results
in the polynomial s = a0a1 for the slack variable. However, often it is better to
introduce the slack variables because, in general, the polynomials for the slack
variables will be very large even for small polynomials f

(t)
j .

Let G = {G̃
(t)
j | j = 1, . . . , m and t = 1, . . . , nj} and I = 〈G〉 be the ideal gen-

erated by this set. Using the language of computer algebra our decision problem
can be formulated by the following question:

Is V (I) ⊂ V (2N−ng), where V (I) and V (f) denote the set of all common
roots (in (Z/2N)k, where k is the number of variables) of the polynomials in I
and the set of roots of the polynomial 2N−ng, respectively?

In the next section we will detail how to efficiently solve this problem.

3.2 Solving Decision Problems at the ABL

The following proposition turns out to be the key for an effective solution of the
presented problem.

Proposition 2. The set G = {G̃
(t)
j } is a Gröbner basis with respect to any

monomial order refining the following partial order

r
(j)
i > every monomial in the variables a

(j)
k , s

(j)
t , r

(j)
l

for all i, k, t, j and l < i.

An Algebraic Approach for Proving Data Correctness 481

Proof. Let < be a monomial order as required in the statement. We need to
show that it is not possible to generate a polynomial from the polynomials in G
with a leading term that is not divisible by any leading term of the polynomials
in G. It is sufficient to show (cf. [15], Theorem 30)

(1) For any two polynomials f, g ∈ G the normal form of

lcm(LT (f) , LT (g))
LT (f)

f − lcm(LT (f) , LT(g))
LT (g)

g

with respect to G is zero.
(2) For any f ∈ G the normal form of 2N

LC(f)f is zero.

A slight generalization of the product criterion (cf. [15], Lemma 35) states that
(1) is fulfilled, as our polynomials have different variables in their leading terms
and these variables do not occur in any other term of the corresponding poly-
nomials. Now let f = G

(t)
j . We obtain

LT
(

2N

LC (f)
f

)

= LT
(

2N−t+1G
(t)
j

︸ ︷︷ ︸
‖

)

= LT
(︷ ︸︸ ︷

2N−t+1G
(t−1)
j

)

= 2N−t+1 LT
(
G

(t−1)
j

)

as 2N−t+1 · 2t−1r
(j)
t−1 = 0 = 2N−t+1 · 2t−1s

(j)
t−1 and 2N−t+1 · 2t−2r

(j)
t−2 �= 0, and

since the polynomials f
(t)
j appearing in G̃

(t)
j are chosen minimal. In the first step

of the normal form algorithm we will select G
(t−1)
j and this reduces 2N−t+1G

(t)
j

to zero. This shows (2).

By Lemma 3 we prove that normal form computation can be used as an effective
solution procedure for our problem at hand.

Lemma 3. Let G be a Gröbner basis of an ideal I ⊂ Z/2N [x], x = (x′,x′′),
and g a polynomial such that h, the normal form of g w.r.t. G, is in Z/2N [x′].
Assume that for all x′ there exist x′′ with f(x′,x′′) = 0 for all f ∈ G. Then h
defines the zero function if and only if V (G) ⊂ V (g).

Proof. If h defines a constant zero function the set V (h) = V (g) contains all
points and therefore V (G) ⊂ V (g) is trivial. Assume that for the variables x′

of h a valuation exists such that h is not zero. By assumption we can extend
this valuation to a valuation on all variables such that g(x) = 0, g ∈ G. It
follows V (G) �⊂ V (f).

Let g ∈ Z/2n[x] and h be the normal form of 2N−ng with respect to G, which can
be computed [15] by Algorithm 1. Since we are only interested in the function

482 O. Wienand et al.

of h on V (I) we can always replace portions of h by equivalent polynomials with
respect to V (I). In particular, we can replace every slack variable in the normal
form by a polynomial expression in the inputs of the corresponding equation Gj .
Therefore we may assume that h does not contain any slack variables. Further-
more, the output variables of the equations Gj do not occur in h as otherwise h

would be reducible by some of the generated sub-identities G
(t)
j , hence h satisfies

the assumptions of Lemma 3.
This guarantees that the variables present in h are inputs to the ABL descrip-

tion. Every valuation of these variables can be extended to a consistent valuation
for the signals of the ABL. Further we can effectively decide whether h defines the
zero function for all rings Z/m (cf. [14]) and therefore decide the ABL problem
by Lemma 3.

As already noted in Section 3.1 it is not always efficient to replace all remaining
slack variables by polynomial expressions in terms of the input variables of the
corresponding equations. Therefore we use special procedures for the practical
computations, which we do not detail here.

Require: f a polynomial, G a finite set of polynomials,
> a monomial ordering

Ensure: A normal form of f
while f �= 0 and ∅ �= G′ = {g ∈ G : LT (g) | LT (f)}
do

Select g ∈ G′

Let LT (f) = m · LT(g) with m · LC (g) �= 0
f := f − m · gi

end while
return f

Algorithm 1. Normal form algorithm

4 Experimental Results

In order to evaluate the techniques presented in the previous sections we con-
ducted a series of experiments. Except for one experiment explicitly indicated in
the sequel, all experiments were carried on a machine running Suse Linux 10.3
on a Intel Core 2 Duo E6400 with 8 GB RAM.

The algorithms presented in Section 3 have been implemented within the
framework of the general purpose computer algebra system Singular [16]. We
used the industrial formal property checker Onespin 360 MV [17] to generate bit
vector netlists for the considered verification problems. From these bit-vector
netlists we extracted an arithmetic bit level description for the arithmetic parts
of the decision problem and dumped out the resulting ABL description. The
resulting problem file is used to generate the variety subset problem that is
handed over to Singular in order to find a solution.

As a first step of the evaluation we used a number of parameterized bench-
marks to evaluate the scalability of the proposed approach with respect to the

An Algebraic Approach for Proving Data Correctness 483

bit-width of the datapath under verification. The benchmark suite consists of two
instances (distrib and commute) for word-level implementations of the functions
ab + ac and (ab)c where commutative and distributive laws have been applied
to the word level operands, a bit level implementation of an unsigned multiplier
with Booth-encoded partial products (mult ub) and a sequential implementation
for the multiplication of four values with a single multiplier (shared).

We compare the performance in terms of run-time of our solution based on
Singular against the normalization approach of [11], a SAT-based decision pro-
cedure based on bit blasting, and the SMT solver Spear v.2.0 for the theory of
fixed-size bit-vector functions (QF-BV). Note that an earlier version of Spear
showed the best performance in this category on the 2007 SMT competition.

Table 1. CPU-times(s) of scalability experiments

Instance Bit-Width Normalizer SAT SMT Singular
distrib 4 0,01 0,28 0,40 0,69

distrib 8 0,03 > 3600s > 3600s 0,66

distrib 16 0,10 > 3600s > 3600s 0,97

distrib 32 0,81 > 3600s > 3600s 2,19

distrib 64 14,33 > 3600s > 3600s 11,30

commute 4 0,02 0,55 1,01 0,69

commute 8 0,08 > 3600s > 3600s 0,67

commute 16 1,40 > 3600s > 3600s 1,09

commute 32 57,17 > 3600s > 3600s 3,56

commute 64 2794,67 > 3600s > 3600s 26,03

mult ub 4 0,02 0,02 0,15 0,66

mult ub 8 0,13 41,53 > 3600s 0,96

mult ub 16 2,21 > 3600s > 3600s 3,87

mult ub 32 53,55 > 3600s > 3600s 79,04

mult ub 64 1136,14 > 3600s > 3600s > 8 GB

shared 4 0,04 2,83 16,78 0,97

shared 8 0,46 > 3600s > 3600s 0,64

shared 16 39,79 > 3600s > 3600s 1,09

shared 32 2707,72 > 3600s > 3600s 20,25

Table 1 summarizes the results of these experiments. The table is organized
as follows. Columns one and two contain instance and operand bit-width of the
datapath. The remaining columns show the CPU times required by the particular
tool to prove the instance. In case the memory limit or timeout limit was reached
this is indicated by ”> 8 GB” and ”> 3600”, respectively.

In order to evaluate the performance of Singular with respect to other com-
puter algebra systems we also report results for solving the generated variety
subset problems with the industrial computer algebra tool Magma [18]. However,
due to license restrictions, these results were obtained using another machine,
namely an AMD Dual Opteron 2.2 GHz with 16 GB RAM running Linux. We
re-ran the Singular problems on this machine in order to allow for comparison of

484 O. Wienand et al.

Table 2. CPU-times(s) of scalability experiments

Instance Bit-Width Singular Magma
distrib 16 1,08 2,33

distrib 32 2,70 15,61

distrib 64 14,53 > 16 GB

commute 16 1,35 5,53

commute 32 4,71 46,07

commute 64 38,96 > 16 GB

mult ub 4 0,56 > 3600s

mult ub 16 4,07 > 3600s

mult ub 32 85,77 > 3600s

shared 4 0,46 1,08

shared 8 0,66 1,35

shared 16 1,37 3,09

shared 32 32,27 108,01

the run times. For the comparison we also increased the memory limit to 16GB.
Table 2 summarizes the results for this comparison.

The presented results of the scalability experiments indicate that the pro-
posed modeling and the proposed algorithms are adequate to solve verification
problems with industrial impact. To demonstrate this we investigated a property
suite originating from the verification of Infineon’s Tricore 2 processor. The pro-
cessor has advanced DSP features including a sophisticated integer pipeline that
provides a large variety of multiply and multiply/accumulate instructions. The
properties in the investigated property suite verify that every variant of these
instructions causes the integer pipeline of the processor to deliver the expected
arithmetic result according to the architectural manual. In order to obtain a
high degree of resource sharing large portions of the datapath have been im-
plemented at the arithmetic bit level and sophisticated control logic is used for
configuration according to the executed instructions.

We used the techniques of [11] to generate the decision problems at the arith-
metic bit level. All the resulting decision problems could be solved with Singular
when modeled by polynomials as presented in this paper. Table 3 shows the results
for a representative subset of the problem instances derived from the Tricore 2
property suite. It is organized as follows. The first column shows the commitment
of the property specifying the arithmetic result of the integer instruction under
verification. Columns two and three show the run-time of the normalization ap-
proach and the corresponding Singular run-time. Unless explicitly indicated all
operations are considered as signed operations on the specified bit-vectors.

In essence, all our experiments show that the presented approach outperforms
the ad-hoc normalization approach in terms of CPU time. Moreover, algorithms
and modeling rely on a well-understood mathematical foundation which opens
ample opportunities for further extensions of this framework.

However, the use of a generic computer algebra system as Singular for solving
the normalization problems is paid with a price in terms of memory consumption.

An Algebraic Approach for Proving Data Correctness 485

Table 3. Results for selected Tricore 2 properties

Datapath result Normalizer Singular
res[31:0]=op3[31:0]+(op1[31:0]*op2[31:0]); 49,94 4,42

res[31:0]=op3[31:0]+(op1[15:0]*op2[31:16]<<1); 39,72 2,28
res[63:32]=op3[63:32]+(op1[31:16]*op2[15:0]<<1);

res[31:0]=op3[31:0]+(op1[31:16]*op2[31:16]<<1); 18,39 2,47

res[15:0]=rnd16(op3[31:0]+(7FFFFFFF)); 19,90 2,46
res[31:16]=rnd16(op3[63:32]

+(op1[31:16]*op2[15:0]<<1));

res[63:0]=op3[63:0]+(op1[31:16]*op2[15:0]<<16) 31,04 8,77
-(op1[31:16]*op2[31:16]<<16)

res[63:0]=op3[31:0]-(op1[31:0]*op2[31:0]); 55,19 20,01

res[63:0]=op3[63:0]-(op1[31:16]*op2[15:0]<<16) 27,18 9,64
-(op1[15:0]*op2[15:0]<<16)

res[63:0]=op1[31:0]*op2[31:0]; (unsigned) 57,33 14,73

res[31:16]=rnd16(op1[31:16]*op2[31:16]); 17,41 2,21

Except for some of the problems where the ABL description is generated from
word-level problems Singular typically requires 3–8 GB of memory. This is caused
by the data structures used inside Singular to represent polynomials.

These data structures are not optimized with respect to the characteristics
of the problems considered here. Compared to problems typically considered in
computer algebra, we consider a large number of variables, and many polynomi-
als. On the other hand the individual polynomials have low degree and only use a
small fraction of the variables. With application-specific implementations of the
employed algorithms such as the normal form computation a great improvement
of the memory efficiency can be obtained easily.

5 Conclusion and Future Work

Decision problems at the arithmetic bit level have been modeled using polynomi-
als over rings Z/ 〈2n〉. It has been proven that the generated sets of polynomials
form a Gröbner basis with respect to certain monomial orderings that can eas-
ily be determined using the topological ordering of design signals. This allows
for utilization of the normal form algorithm to efficiently solve a variety subset
problem that is equivalent to the original decision problem.

By this means we provide a solid mathematical foundation to the ad-hoc
technique of arithmetic bit level normalization. The developed techniques have
proven to be applicable to verification problems of industrial size.

As the datastructures for polynomial representation of in-the-box computer
algebra systems do not exploit the typical characteristics of the generated poly-
nomial sets, we are working on a specialized implementation of the employed
algorithms that will dramatically reduce the memory consumption.

486 O. Wienand et al.

References

1. Kroening, D., Seshia, S.A.: Formal verification at higher levels of abstraction. In:
Proc. International Conference on Computer-Aided Design (ICCAD) (2007)

2. Seshia, S.A., Lahiri, S.K., Bryant, R.E.: A hybrid SAT-based decision procedure
for separation logic with uninterpreted functions. In: Proc. International Design
Automation Conference (2003)

3. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

4. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Hanna, Z., Nadel, A., Palti,
A., Sebastiani, R.: A lazy and layered smt({BV }) solver for hard industrial verifi-
cation problems. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 547–560. Springer, Heidelberg (2007)

5. de Moura, L.M., Bjoerner, N.: Efficient e-matching for smt solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007)

6. Spear, http://www.cs.ubc.ca/∼babic/index.htm
7. Shekhar, N., Kalla, P., Enescu, F., Gopalakrishnan, S.: Equivalence verification of

polynomial datapaths with fixed-size bit-vectors using finite ring algebra. In: Proc.
International Conference on Computer-Aided Design (ICCAD) (2005)

8. Shekhar, N., Kalla, P., Enescu, F.: Equivalence verification of arithmetic datapath
with multiple word-length operands. In: Proc. International Conference on Design,
Automation and Test in Europe (DATE) (2006)

9. Shekhar, N., Kalla, P., Enescu, F.: Equivalence verification of polynomial dat-
apaths using ideal membership testing. IEEE Transactions on Computer-Aided
Design 26(7), 1320–1330 (2007)

10. Watanabe, Y., Homma, N., Aoki, T., Higuchi, T.: Application of symbolic com-
puter algebra to arithmetic circuit verification. In: Proc. International Conference
on Computer Design (ICCD), pp. 25–32 (October 2007)

11. Wedler, M., Stoffel, D., Brinkmann, R., Kunz, W.: A normalization method for
arithmetic data-path verification. IEEE Transactions on Computer-Aided De-
sign 26(11), 1909–1922 (2007)

12. Adams, W., Loustaunau, P.: An introduction to Gröbner bases. (Graduate studies
in mathematics) AMS (2003)

13. Greuel, G.M., Pfister, G.: A SINGULAR Introduction to Commutative Algebra,
2nd edn., 705 pages. Springer, Heidelberg (2007)

14. Wienand, O.: The Gröbner basis of the ideal of vanishing polynomials (2007) arXiv:
arXiv:0709.2978v1 [math.AC]

15. Brickenstein, M., Dreyer, A., Greuel, G.M., Wedler, M., Wienand, O.: New de-
velopments in the theory of Gröbner bases and applications to formal verification.
Journal of Pure and Applied Algebra (accepted for publication)

16. Greuel, G.M., Pfister, G., Schönemann, H.: Singular 3.0.4. - A Computer Algebra
System for Polynomial Computations. Centre for Computer Algebra, University of
Kaiserslautern (2007), http://www.singular.uni-kl.de

17. Onespin Solutions GmbH Munich, Germany, www.onespin.com
18. Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user

language. J. Symb. Comput. 24(3-4), 235–265 (1997)

http://www.cs.ubc.ca/~babic/index.htm
http://www.singular.uni-kl.de
www.onespin.com

Application of Formal Word-Level Analysis to
Constrained Random Simulation

Tool Paper

Hyondeuk Kim1,2, Hoonsang Jin2, Kavita Ravi2, Petr Spacek2, John Pierce2,
Bob Kurshan2, and Fabio Somenzi1

1 University of Colorado at Boulder
2 Cadence Design Systems

Abstract. Constrained random simulation is supported by constraint solvers in-
tegrated within simulators. These constraint solvers need to be fast and memory
efficient to maintain simulation performance. Binary Decision Diagrams (BDDs)
have been successfully applied to represent constraints in this context. However,
BDDs are vulnerable to size explosions depending on the constraints they are rep-
resenting and the number of Boolean variables appearing in them. In this paper,
we present a word-level analysis tool DomRed to reduce the number of Boolean
variables required to represent constraints by reducing the domain of constraint
variables. DomRed employs static analysis techniques to obtain these reductions.
We present experimental results to illustrate the impact of this tool.

1 Introduction

Constrained random simulation is in increasing demand with hardware designers and
verification engineers. As the name indicates, it is the simulation of a design under
specified constraints. The user is required to capture the behavior of the environment
of the design as constraints and the simulation tools simulate the design under these
constraints with the aid of constraint solvers embedded in them. Commercial tools, such
as Specman, have been popular for providing this capability. To address the need for
constrained random simulation, modern hardware description languages (HDL), such
as System Verilog, have incorporated constraint specification as part of their syntax.

The overwhelming benefit of constrained random simulation over the traditional
writing of testbenches is the automation. Once the constraints are specified, the con-
straint solver in the simulator enumerates the valid scenarios instead of a human. Fur-
ther, by specifying weights on the search space, the user can indicate whether the con-
strained space should be sampled uniformly or specific areas should be focused on.

Given that constraint solving comprises the bulk of constrained random simulation
time, the efficiency and performance of constraint solvers is critical. Traditional con-
straint solving techniques, such as integer linear programming and constraint program-
ming, far lag the performance of simulators. Boolean engines, e.g., BDDs, have been
applied quite successfully to this problem[3] by taking advantage of the finite state na-
ture of HDL constraints. More recently, Kitchen and Keuhlmann[2] have provided a

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 487–490, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

488 H. Kim et al.

word-level technique based on Markov-chain Monte Carlo methods. The scalability of
this technique to industrial strength designs is yet to be proven.

In our constraint solver, ValueGen, we have incorporated both BDD and SAT-based
Boolean engines. BDDs provide the advantage of fast generation of uniformly dis-
tributed solutions. However, some constraints have very large BDDs that cause memory
explosion during simulation. SAT solvers are less vulnerable to size explosion. On the
other hand, each solution generation could be exponentially slower than BDDs.

In this paper, we present a word-level pre-processor, DomRed, that ValueGen applies
to the constraints to reduce the size of their representation in the Boolean engines. The
pre-processing is a static analysis technique that uses an SMT-like framework. Dom-
Red combines a SAT solver and a linear arithmetic solver that handles primarily integer
difference logic, with a minor extension to positive and negative coefficient inequal-
ities. The input to the tool is a Boolean combination of linear arithmetic constraints
and bit-vector constraints. The output is a set of variables and their reduced domains.
The constraints with reduced-domain variables are then passed on to the Boolean en-
gines, resulting in smaller Boolean representations for constraint solving. We present
experimental results of applying DomRed within ValueGen on our simulation testcases.

2 Constraint Solving in Simulation

Constraints are Boolean combinations of linear arithmetic and bit-vector expressions
on design variables. The expressiveness of the specified constraints is limited by the
HDL being used. For example, a System Verilog constraint is

constraint c1 {src_addr >= 0 && src_addr < 65536 &&
payload_len >= 0 && payload_len < 4096 &&
dest_addr - src_addr >= 4096 && dest_addr < 65536}

Constraint solving is the task of generating values for the design variables that satisfy
the constraints. In the above example, src addr = 512, payload len = 1024,
dest addr = 4608 is a set of legal values. Our constraint solver, ValueGen, is in-
voked dynamically during simulation i.e., every time the simulator encounters a user
call to generate new values for variables appearing in constraints, the simulator calls the
constraint solver. Tight integration is required between the two to maintain efficiency.

Constraints are typically written on the inputs of the design and may depend on some
internal design signals (state variables). During constraint solving, the solver is required
to generate values that satisfy both the constraints as well as the states values.

Each set of related HDL constraints, when encountered, is parsed by the simulator,
and sent to ValueGen through a word-level API along with the state values. Internally,
ValueGen maintains a applies several optimizations at the word-level, including parti-
tioning based on non-overlapping variable support and constant propagation. Finally, it
bit-blasts the word-level constraints and calls the Boolean engines (BDD or SAT) on
the Boolean representation.

The optimizations in ValueGen result from syntactic and very minor semantic analy-
sis of the constraints. They do not include the ability to deduce that the tightest ranges of

Application of Formal Word-Level Analysis to Constrained Random Simulation 489

dest addr and src addr in the above example. DomRed addresses exactly this de-
ficiency. It extracts a subset of invariants from semantic analysis of the constraints. If an
invariant yields variable bound reductions, then the reduced number of bits are applied
to encode the respective variables, the default number of bits are used otherwise.

3 DomRed: Technical Details

ValueGen provides DomRed with a quantifier-free first order logic formula with linear
arithmetic constraints. An LA constraint is of the form a1x1 + . . . + anxn �� c, where
��∈ {=, ≤, <, >, ≥, �=}. A difference constraint is a special case of an LA constraint
whose form is xi − xj �� c. A positive-(negative-)inequality is another special case of
an LA constraint where ∀i.ai ≥ 0, xi ≥ 0, c ≥ 0 (∀i.ai ≤ 0, xi ≤ 0, c ≤ 0). We are
working on the extension to bit-vector constriants.

As in the SMT-framework, the first order logic formula is abstracted conservatively
into a propositional formula and given to the SAT solver. The SAT solver extracts a
set of level-zero assignments, which corresponds to a set of LA constraints. From this
set, we gather difference constraints, analyze them with the Bellman-Ford algorithm
described in [1] and derive reduced bounds for the variable domains if possible. Among
the LA constraints left over, positive- and negative-coeffient inequalites may also yield
reduced upper (lower) bounds of xi equal to c/ai. The remaining LA constraints are
conservatively marked as not yielding any domain reduction.

Example: Users commonly declare design inputs as int, meaning a 32-bit finite in-
teger, causing the Boolean representation of the example in Section 2 to contain 96 bits.
In applying DomRed, the equality constraint is translated into two inequalities in the
usual manner. Inequalities are encoded with one bit each in the SAT solver. All these
bits appear in the set of level-zero assignments. Since they all correspond to difference
constraints, the Bellman-Ford algorithm yields the intervals [0, 61439] for src addr,
[0, 4095] for payload len and [4096, 65535] for dest addr. The Boolean encod-
ing will then require 16, 12 and 16 bits respectively, totalling 44 bits in the resulting
Boolean expression (more than 2X reduction).

DomRed may also indicate to ValueGen that the constraints are infeasible (over-
constrained situation) if the SAT solver or the LA solver detects it. This is of great
value to ValueGen since it can avoid building the Boolean representations altogether.

4 Experimental Results

We integrated our tool DomRed into ValueGen, which, in turn, is integrated with our
simulator. Our benchmark set includes both System-C and System Verilog examples.
The System-C examples are smaller in size; 40 out of 68 showed improvements, the
rest showed no degradation. The detailed table of results is not presented here for lack
of space. The System Verilog examples consist of industrial-strength customer bench-
marks. Of the 34 System Verilog examples that we experimented with, 11 showed im-
provement and are presented in Table1, the remaining 23 showed no degradation.

We use three parameters to measure the performance impact of applying DomRed—
number of bits, CPU times and memory used. ValueGen switches between the BDD and

490 H. Kim et al.

Table 1. Comparison Table of without and with Bound Reduction

of bits CPU (sec) MEM (Mbytes)
Design Sim. cycles without with % without with % without with %

design1 5000000 112 101 10 683.0 549.4 20 40.8 34.2 16
design2 1000000 335 321 4 325.5 319.2 2 70.6 53.9 24
design3 50000 491 301 39 412.3 333.4 19 103.1 93.5 9
design4 1000000 54 40 26 180.9 174.1 4 37.2 37.8 -2
design5 1000000 64 60 6 86.1 44.0 49 33.2 33.6 -1
design6 1000000 64 60 6 75.9 48.1 37 33.2 33.7 -1
design7 1000000 16 14 12 340.2 344.6 -1 37.0 33.8 9
design8 44000 7 5 29 967.2 966.7 0 115.0 116.4 -1
design9 400000 8484 8428 1 607.1 559.6 8 62.3 62.0 0
design10 40 160 97 39 648.5 603.3 7 809.1 756.2 7
design11 2500 374 335 10 234.6 186.3 21 370.7 282.1 24

SAT solver based on the Boolean representation size to maximize the size constraints
that can be solved and optimize the speed of constraint solving (better with BDDs).
Our experimental results show the improvement over the default optimized algorithm.
However, this makes comparing the Boolean representation sizes harder since differ-
ent solvers may be used when DomRed is applied. We are working on addressing this
problem to obtain a tighter comparison.

Column 1 of Table1 specifies the design, Column 2 shows the number of simulation
cycles, Columns 3–5 show the reduction of the number of bits in the constraints. Note
that the number of bits is measured for the constraints only and the design may have
several thousand more bits. Columns 6–8 show the CPU times and Columns 9–11 the
memory reduction. The time taken by DomRed is negligibly small and hence, not pre-
sented here. The CPU time includes simulation time only in 2/11 cases, hence the CPU
time improvement for most examples is for constraint solving alone.

The table shows that the reduction in the number of bits is sometimes substantial,
upto 39%. Smaller constraints yield better CPU times and memory reductions. Given
that DomRed takes negligible time, 11/34 examples show improvement on applying
DomRed and the remaining 23 examples are no worse off, we conclude that DomRed
is a cheap preprocessing technique and that it is always beneficial to apply it. These
results are encouraging and as part of future work, we hope to apply more powerful
static analysis to reduce the size of the Boolean representation even further.

References

[1] Kim, H., Somenzi, F.: Finite instantiations for integer difference logic. In: Formal Methods
in Computer Aided Design (FMCAD 2006), San Jose, CA, pp. 31–38 (November 2006)

[2] Kitchen, N., Kuelhmann, A.: Stimulus generation for constrainted random simulation. In:
ICCAD (2007)

[3] Yuan, J., Shultz, K., Pixley, C., Miller, H., Aziz, A.: Modeling design constraints and biasing
in simulation using bdds. In: ICCAD, pp. 584–590 (1999)

Producing Short Counterexamples Using
“Crucial Events”

Sujatha Kashyap1 and Vijay K. Garg2,�

1 ECE Department, University of Texas at Austin, Austin TX 78712, USA
kashyap@ece.utexas.edu

2 IBM India Research Lab., New Delhi, India
vijgarg1@in.ibm.com

Abstract. Ideally, a model checking tool should successfully tackle state space
explosion for complete system validation, while providing short counterexamples
when an error exists. Techniques such as partial order (p.o.) reduction [1,2] are
very effective at tackling state space explosion, but do not produce short coun-
terexamples. On the other hand, directed model checking [3,4] techniques find
short counterexamples, but are prone to state space explosion in the absence of
errors. To the best of our knowledge, there is currently no single technique that
meets both requirements. We present such a technique in this paper.

For a subset of CTL, which we call CETL (Crucial Event Temporal Logic),
we show that there exists a unique minimum set of events in each program trace
whose execution is both necessary and sufficient to lead to an error state. These
events are called “crucial events”. We show how crucial events can be used to
produce short counterexamples, while also providing state space reduction.

We have implemented the techniques presented here as an extension to the
model checker SPIN, called SPICED (Simple PROMELA Interpreter with Cru-
cial Event Detection). Experimental results are presented.

1 Introduction

Partial order reduction techniques [1,2] successfully tackle state space explosion, but
tend to produce lengthy error trails [3,5]. Short error trails greatly reduce debugging ef-
fort. Also, the ability to find errors at shorter depths can make it possible to verify larger
models, by finding the error before the model checker runs out of computational re-
sources. Recently, there has been much interest in the use of heuristic search techniques
to produce short error trails [3,4]. Heuristic search techniques calculate a cost function
for each outgoing transition from a state, then explore these transitions in the order of
increasing cost. Lower cost transitions are considered to be “closer” to the error state.
However, in the absence of errors, these techniques do not reduce state space explosion
because they only change the order in which nodes are expanded without reducing the
number of nodes to be expanded. While there has been some effort to combine heuristic
search with state space reduction techniques, the combination can interfere with the ef-
ficiency of the individual techniques[5]. To the best of our knowledge, there is currently

� Part of the work reported here was done while this author was at the Univ. of Texas at Austin.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 491–503, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

492 S. Kashyap and V.K. Garg

no single technique that achieves both objectives - state space reduction for complete
validation, while narrowing down on error states quickly to produce short error trails.
We present such a technique in this paper.

The set of reachable states in a (Mazurkiewicz) trace [6] of a program forms a lat-
tice [7]. A lattice is a partial order in which every pair of elements has a unique meet
(infimum) and join (supremum). A property is said to be meet-closed [8] in a trace if,
whenever it holds at any two states in the trace, it also holds at the state given by their
lattice meet. It was shown in [8] that, given a trace and a meet-closed property, there ex-
ists a unique minimum set of events in the trace whose execution is both necessary and
sufficient to reach a state satisfying the property. We call these events crucial events.
Executing crucial events in any order consistent with the dependency relation results in
the same state [2]. Thus, for a single trace, it is sufficient to explore any one interleaving
comprising entirely of crucial events. We call such an interleaving a crucial path. If an
error state exists, any crucial path will lead to it through the fewest possible transitions.
We show how crucial paths can be used to improve the efficiency of explicit-state model
checking, and show how crucial events can be identified.

We identify a subset of CTL, called Crucial Event Temporal Logic (CETL), which
contains only meet-closed formulae. CETL includes the existential until and release
operators of CTL, and allows conjunction. Atomic propositions are limited to process-
local variables. CETL does not allow negation, except for atomic propositions, nor does
it allow disjunction. Despite these limitations, CETL can express many reachability,
safety, liveness and response properties. In fact, of the 131 properties in the BEEM
database [9], which is a large repository of benchmarks for explicit-state model check-
ers, 101 (77%) can be expressed in CETL.

We have implemented a CETL model checker called SPICED (Simple PROMELA
Interpreter with Crucial Event Detection), using the techniques presented here. SPICED
is based on the popular model checker SPIN [10]. We provide experimental results from
a wide range of examples from the BEEM database [9], and from the SPIN distribution
[10]. We ran experiments on 75 different variations (with differences in problem sizes
and the location of errors) of 15 different models from the BEEM database. SPICED
achieved trail reduction greater than 1x in 93% of the cases, greater than 10x in 55% of
the cases, and greater than 100x in 19% of the cases. We completed verification faster
than SPIN (with p.o. reduction) in 44% of the cases, with a 10x reduction in time in 9%
of the cases. For 3 of the 15 models, we were able to verify problem sizes for which
SPIN ran out of resources. We also provide results to show that we achieve state space
reduction comparable to p.o. techniques even in the absence of errors.

Lattice theory has previously been applied to the verification of finite program traces.
A survey of these applications was presented in [11]. In [12], a logic called RCTL was
defined, which included the CTL operators EG, AG and EF . RCTL formulae were
shown to be meet-closed, and an efficient verification algorithm for RCTL formulae
was presented. However, these applications were limited to a single finite trace of a
program, and required a partial order (implicit) representation of the state space. To the
best of our knowledge, this paper is the first time these lattice theoretic concepts have
been applied to explicit-state model checking of an entire program.

Producing Short Counterexamples Using “Crucial Events” 493

This paper is organized as follows. Section 2 introduces relevant concepts and nota-
tion. In Section 3, we introduce some CTL operators that preserve meet-closure, define
the logic CETL, and introduce the notion of crucial events. In Section 4, we show how
crucial events can be used for model checking CETL formulae within a single trace of
a program, then extend this to model checking the complete program in Section 5. In
Section 6, we show how crucial events are identified. Experimental results are presented
in Section 7, followed by concluding remarks in Section 8.

2 Preliminaries

A finite-state program P is a triple (S, T, s0) where S is a finite set of states, T is a finite
set of operations, and s0 ∈ S is the initial state. The set of transitions that are executable
from a given state s ∈ S is denoted by enabled(s). A transition α ∈ enabled(s)
transforms the state s into a unique state s′, denoted by s′ = α(s). A state s is reachable
in a program P iff it can be reached from s0 by executing only enabled transitions at
each state. The full state space graph of P is a directed graph whose vertices are the
reachable states of P . An edge exists from vertex s to t iff ∃α ∈ enabled(s) such
that t = α(s). A path through the full state space graph consists of a (finite or infinite)
sequence of states. Each path has a corresponding transition sequence, consisting of the
transitions executed along the path.

An independence relation [6,1] I ⊆ T × T is a symmetric, irreflexive relation such
that (α, β) ∈ I iff for every state s ∈ S, (a) if α ∈ enabled(s), then β ∈ enabled(s)
if and only if β ∈ enabled(α(s)), and (b) if α, β ∈ enabled(s), then (α(β(s)) =
β(α(s))). Simply put, the execution of α does not affect the enabledness of β, and exe-
cuting α and β in either order results in the same state. We say that α, β are independent
iff (α, β) ∈ I . The dependency relation, D, is the reflexive, symmetric relation given
by D = (T × T) \ I . The independence relation I partitions the set of all transition
sequences (correspondingly, paths) of a program into equivalence classes called traces
[6]. Given two finite transition sequences u and v, we say that u and v are trace equiv-
alent, denoted u ≡ v, iff they have the same starting state, and v can be derived from u
by repeatedly commuting adjacent independent transitions.

Trace equivalence for infinite transition sequences is defined with the help of the
relation �. Given two (finite or infinite) transition sequences u and v, u � v iff for each
finite prefix u′ of u, there exists a prefix v′ of v, and some w such that v′ ≡ w, and u′

is a prefix of w. For infinite sequences u, v, we have u ≡ v iff u � v and v � u.
Each occurrence of a transition in a transition sequence is called an event. For ex-

ample, the transition sequence αβαβ consists of four events. We say that two events
are dependent (correspondingly, independent) iff their corresponding transitions are de-
pendent (independent). Every path of a trace starts from the same state, and consists
of the same set of events. We will use the notation σ = [s, v] to denote a trace with
starting state s, and representative transition sequence v. All paths of a trace have the
same length, and the same final state [6,1].

The concatenation of a finite trace σ1 = [s, v] with a finite or infinite trace σ2 = [t, w]
is defined when t is also the final state of σ1, and is given by σ1.σ2 = [s, vw]. We say
that σ2 = [s, v] subsumes σ1 = [s, u], denoted σ1 � σ2, iff u � v. If σ1 is finite,

494 S. Kashyap and V.K. Garg

then σ1 � σ3 iff there exists σ2 such that σ3 = σ1.σ2. If σ � σ′, then the reachable
states of σ is a subset of the reachable states of σ′. We say that a trace of a program P
is maximal iff no other trace of P subsumes it. Clearly, the set of maximal traces of a
program contains all its reachable states.

2.1 Traces, Posets and Lattices

A 1-1 correspondence exists between traces and partially ordered sets (posets)[7,6]. Let
σ = [s, v] be a trace, and E be the set of events in v. We can define a poset (E, →),
where ∀e, f ∈ E : e → f iff (e, f) ∈ D and e occurs before f in v. The relation
→ expresses causal dependence. Every transition sequence of σ is a linearization of
(E, →), and conversely every linearization of this poset is a valid transition sequence
of σ. We will use the notation σ = (E, →) for the poset corresponding to a trace σ.

The same state can be visited multiple times during the execution of a transition
sequence, for example, in the case of a cycle in the state space graph. However, each
occurrence of the state corresponds to a unique prefix of the transition sequence. If
an event e is executed as part of a transition sequence, then the events that causally
precede e must have been executed before e. A subset G ⊆ E of a poset (E, →) is
called a down-set if, whenever f ∈ G, e ∈ E and e → f , we have e ∈ G. In a trace
σ = (E, →), there exists a correspondence between occurrences of states and down-
sets. That is, an occurrence of a state in σ corresponds to executing the set of events
in some down-set of (E, →). Conversely, every state in σ can be reached by executing
the events in some down-set of (E, →). For simplicity of presentation, in this paper we
overload the term “down-set” to mean both a set of events, and an occurrence of a state.

Progress in a computation is measured by the execution of additional events from the
current state. For down-sets G and H of a trace (E, →), G ⊆ H iff H is reachable from
G in the full state space graph. The set of all down-sets of (E, →) forms a lattice under
the ⊆ relation, with the meet and join operations given by set intersection and union,
respectively [13,7]. That is, if G and H are down-sets of (E, →), so are (G ∩ H) and
(G ∪ H). We will use L(σ) to denote the lattice of down-sets of a trace σ. Note that,
while a vertex in the full state space graph corresponds to a program state, a vertex in
L(σ) corresponds to an occurrence of a state. Figure 1 illustrates these concepts.

We say that a formula (property) is meet-closed (correspondingly, join-closed) if,
whenever any two states of a trace σ satisfy the formula, the state corresponding to their
meet (correspondingly, join) in L(σ) also satisfies it. For a down-set G and formula φ,
the notation “G |= φ” means that the state corresponding to G satisfies φ.

Definition 1. Meet-closed [8]: A formula φ is meet-closed iff, for every trace σ of a
program P : ∀G, H ∈ L(σ) : [(G |= φ) ∧ (H |= φ) ⇒ (G ∩ H) |= φ].

Definition 2. Join-closed: A formula φ is join-closed iff, for every trace σ of a program
P : ∀G, H ∈ L(σ) : [(G |= φ) ∧ (H |= φ) ⇒ (G ∪ H) |= φ].

Definition 3. Regular [14]: A formula φ is regular iff it is meet- and join- closed.

In the next section, we present some CTL operators that preserve meet- and join-closure.

Producing Short Counterexamples Using “Crucial Events” 495

1

1

2

2

3

3

S0

t

2

1

3

2

1

3

S0 1

1

1

1

2

3

2

3

t

t

(a) (b) (c)

Fig. 1. (a) The full state space graph of a program P . (b) The poset corresponding to a maximal
trace σ = [s0, β(α1α2α3)

ω]. (c) The lattice L(σ), showing two occurrences of a state t.

3 Meet- and Join-Closure of CTL Operators

We consider concurrent systems, where the system is modeled as a set of processes.
Each process Pi has a set of transitions Ti, and a set of local variables Vi that can only
be changed by transitions in Ti. All the transitions in Ti are pairwise dependent, that is,
if α, β ∈ Ti, then (α, β) ∈ D. A transition in Ti can also change the values of shared
(global) variables. A formula φ is called a process-local state formula iff its truth value
is purely determined by the current values of the local variables Vi of some process Pi.
Theorems 1 and 3 in this section are proved in [15].

Theorem 1. Process-local state formulae are regular.

The following theorem was proved in [14], using set union and intersection.

Theorem 2. If φ1 and φ2 are regular, then (φ1 ∧ φ2) is regular.

On the other hand, disjunction does not preserve meet-closure [14].
Let πi denote the ith state on the path π. We consider the following CTL operators:

– s |= EG(φ) iff there exists a path π starting from s such that ∀i : i ≥ 0 : πi |= φ.
– s |= E[φ1Uφ2] iff there exists a path π starting from s such that ∃j : j ≥ 0 : πj |=

φ2, and ∀i : i < j : πi |= φ1.
– EF (φ) = E[true U φ]
– E[φ2Rφ1] = E[φ1U(φ1 ∧ φ2)] ∨ EG(φ1)

It can be shown that the existential until operator, E[φ1Uφ2], does not preserve meet-
closure [15]. However, a specific flavor of this operator does, as shown in the following
theorem. In most cases, the system specification makes it equally valid to check for
E[φ1U(φ1 ∧ φ2)] instead of E[φ1Uφ2].

Theorem 3. If φ1 and φ2 are regular, then so are E[φ2Rφ1] and E[φ1U(φ1 ∧ φ2)].

As EF (φ1) = E[true U(true ∧ φ1)], and EG(φ1) = E[false R φ1], and true and
false are trivially regular, we have:

496 S. Kashyap and V.K. Garg

Corollary 1. If φ1 is a regular formula, so are EF (φ1) and EG(φ1).

We define a logic in which every formula is regular, as are all its subformulae.

Definition 4 Crucial Event Temporal Logic (CETL). A CETL formula is one that
can be generated from the following rules:

1. The trivial propositions true and false are CETL formulae.
2. Every process-local state formula is a CETL formula.
3. If φ1 and φ2 are CETL formulae, so are (φ1∧φ2), E[φ2Rφ1], and E[φ1U(φ1∧φ2)].

We now explore the relation between meet-closure and crucial events.

3.1 Crucial Events

Let G be any down-set of a trace σ = (E, →). Let φ be some meet-closed formula, and
G �|= φ. Let G be the set of all φ-satisfying states that are reachable from G in σ. That
is, G = {H ∈ L(σ)|G ⊆ H ∧ H |= φ}. Now, G can be an infinite set. Let H be the set
of elements of G that are minimal under ⊆:

H = {H ∈ G|∀H ′ : H ⊂ H ′ ⇒ H ′ �∈ H} (1)

H is necessarily finite for finite-state programs. We now define K =
⋂

H∈HH . By the
meet-closure of φ, K |= φ. Also, G ⊆ K . That is, K is the unique and well-defined
φ-satisfying state that is reachable from G by executing the fewest events. In particular,
K \ G is the minimum set of events that must be executed along any path starting from
G, to reach a φ-satisfying state in σ. The events in K \ G are called crucial events [8].

Definition 5. Crucial event: In a trace σ, an event e is said to be crucial from a state
G with respect to a meet-closed formula φ, denoted e ∈ crucial(G, φ, σ) iff:

∀H ∈ L(σ) : (G ⊆ H) ∧ (G �|= φ) ∧ (H |= φ) ⇒ (e ∈ H \ G)

A transition sequence starting from G and comprising exactly of the events in crucial
(G, φ, σ) gives us a path of shortest length from G to a φ-satisfying state in σ. Such
a path is called a crucial path. A special case arises when H = ∅. In this case, we
define K = E (the set of all events), and any maximal path starting from G in L(σ)
constitutes a crucial path. The proof for the following theorem is straightforward.

Theorem 4. Let H be as defined in (1). If H �= ∅, then a crucial path for φ starting
from G cannot contain a cycle.

Recall that a down-set is an occurrence of a state. Suppose the down-set G is an oc-
currence of the state s. Executing the events in crucial(G, φ, σ) from s will lead to
a φ-satisfying state in the full state space graph. The state s can have multiple oc-
currences in σ (for example, in Figure 1(c), the state t occurs multiple times in σ2).
Let G′ be another down-set of σ that is also an occurrence of s. It is easy to see that
crucial(G, φ, σ) = crucial(G′, φ, σ). Thus, every occurrence of s in σ has the same
set of crucial events w.r.t. φ. Based on this observation, we define crucial(s, φ, σ) ≡
crucial(G, φ, σ), where G is any down-set of σ that is an occurrence of s.

Producing Short Counterexamples Using “Crucial Events” 497

The complexity of identifying the exact set of events that constitutes crucial(s, φ, σ)
for a given CETL formula φ is an open problem. However, we can identify a subset of
crucial(s, φ, σ) in most cases, as we shall see in Section 6.

If G is a down-set of L(σ), and H is an immediate successor of G in L(σ), we denote
this by G � H . Formally, if G, H ∈ L(σ), and ∃e �∈ G, and H = G ∪ {e}, then G � H .
The notation G�H means (G� H)∨ (G = H). The following lemmas are used in the
proofs presented in Sections 4.1 and 4.2, and are proved in [15].

Lemma 1. For a trace σ and C, D, F ∈ L(σ), if C �F and D ⊆ F , then (C ∩D)�D.

Lemma 2. For a trace σ and C, D, F ∈ L(σ), if F �C and F ⊆ D, then D�(C∪D).

We now show how the concepts presented so far can be used to prune the state space
while model checking CETL formulae. In particular, we show that it is sufficient to
explore only crucial paths in order to verify a CETL formula. For better presentation,
we start with the problem of verifying a CETL formula on a single trace of a program.
We will consider CETL model checking for the complete program in Section 5.

4 Model Checking CETL in a Program Trace

The approach we present here can be used to enhance any local, recursive CTL model
checking algorithm, such as ALMC [16]. A local model checking algorithm starts from
an initial program state and performs a state space exploration using either depth-first
or breadth-first search. Recursive means that the truth value of subformulae are deter-
mined at a state before the top formula is evaluated. In this section, we show that rather
than exploring all enabled events from a state, it is sufficient to explore only a sub-
set of these events in order to verify a CETL formula in a given trace. This explored
subset is called an “ample set” [1]. The ample set chosen at a state s while verify-
ing a CETL formula φ is denoted by ample(s, φ). In the non-reduced (baseline) case,
ample(s, φ) = enabled(s).

4.1 E[φ1U(φ1 ∧ φ2)]

Let G0 be some down-set of σ that satisfies E[φ1U(φ1 ∧φ2)]. Let π be the correspond-
ing witness path with πl = H as its final state. Then, ∀j : 0 ≤ j ≤ l : πj |= φ1, and
H |= (φ1 ∧ φ2). Let J be the set of all down-sets of σ that are reachable from G0, are
minimal under ⊆ (this ensures that J is finite), and satisfy (φ1 ∧ φ2). Define:

G =
⋂

J∈J
J (2)

Since (φ1 ∧ φ2) is regular, G |= (φ1 ∧ φ2).

Theorem 5. There exists a path from G0 to G such that every state along the path
satisfies φ1.

Proof. We will construct a path λ from G0 to G, consisting entirely of φ1-satisfying
states. We construct this path backwards, starting from λk = G, towards λ0 = G0.

498 S. Kashyap and V.K. Garg

G0

1

2

3

4

5

H = 6

1 = 2 ? 4

G = 3

2 = 3 ? 5

: satisfies 1

: satisfies ? 2

Fig. 2. Example illustrating the construction of Theorem 5

We show that, if λi |= φ1 for any 1 ≤ i ≤ k, there exists a G′�λi such that G′ |= φ1.
We can then extend λ with λi−1 = G′, and proceed with our construction. For the base
case, we have λk = G, and G |= φ1.

Let 1 ≤ j ≤ l be the least j such that λi ⊆ πj . First, we show that such a j must
exist. Recall that πl = H , and λi ⊆ G ⊆ H . Therefore, for some j ≤ l, λi ⊆ πj .
Also, π0 = λ0 = G0, so ∀i : i ≥ 1 : λi �⊆ π0. Therefore, j ≥ 1. Since j is the least
such, we have λi �⊆ πj−1. So, we have πj−1 � πj , and λi ⊆ πj . From Lemma 1, this
implies (λi ∩ πj−1)�λi. We cannot have (λi ∩ πj−1) = λi, because this would imply
λi ⊆ πj−1, which is a contradiction. Therefore, (λi ∩πj−1)�λi. Set G′ = (λi ∩πj−1).
Since λi |= φ1, and πj−1 |= φ1, by the meet-closure of φ1, G′ |= φ1. ��

Theorem 5 tells us that if G0 |= E[φ1U(φ1 ∧φ2)], then a crucial path for (φ1 ∧φ2) can
act as a witness. Since G0 |= φ1, and every state along the witness path satisfies φ1,
it is easy to see that crucial(G0, (φ1 ∧ φ2), σ) = crucial(G0, φ2, σ). The following
theorem shows how we can construct this path “forward”, that is, starting from G0.

Theorem 6. To construct the path of Theorem 5, starting from G0, at each state H we
execute a single enabled event α such that α ∈ crucial(H, φ2, σ), and H ∪ {α} |= φ1.

Proof. Let G be as in (2). From Theorem 5, there exists some path λ such that λ0 = G0,
λk = G, and ∀j : 0 ≤ j ≤ k : λj |= φ1. We need to show that we can construct such a
path by choosing, at each state, any crucial event that leads to a φ1-satisfying successor.

Clearly, if every event along our path is crucial for φ2, then our path will lead to G.
We need to show that at any state H along our constructed path, there exists a successor
J such that J |= φ1. To begin with, H = G0. Of course, our construction ends when
H = G, so any H for which a successor needs to be found must be a strict subset of G.

Let 0 ≤ i < k be the greatest i such that λi ⊆ H . We first show that such an i exists.
Note that λ0 = G0 ⊆ H . Thus, for some i ≥ 0 : λi ⊆ H . Also, λk = G, and H ⊂ G.
Therefore, λk �⊆ H , so i < k. Since i is the greatest such, we have λi+1 �⊆ H . Now,
λi � λi+1, and λi ⊆ H . By Lemma 2, H � (λi+1 ∪ H). If H = (λi+1 ∪ H), then
λi+1 ⊆ H , which is a contradiction. Therefore, H � (λi+1 ∪ H). Also, H |= φ1, and
λi+1 |= φ1, so by the join-closure of φ1, λi+1 ∪ H |= φ1. Hence, J = λi+1 ∪ H is the
required successor for H . ��

Producing Short Counterexamples Using “Crucial Events” 499

4.2 E[φ2Rφ1]

Recall that E[φ2Rφ1]
def≡ E[φ1U(φ1 ∧ φ2)] ∨ EG(φ1). Theorem 6 showed how to

construct a witness for G0 |= E[φ1U(φ1 ∧ φ2)]. The following theorem shows how to
construct a witness for G0 |= EG(φ1).

Theorem 7. Let G0 ∈ L(σ) such that G0 |= EG(φ1) in σ. We can construct a witness
path as follows. Starting from G0, at each state H , we execute a single enabled event α
such that H ∪ {α} |= φ1.

Proof. We simply need to show that, for every state H on the constructed path, there
exists a φ1-satisfying successor state. The proof is similar to that of Theorem 6. ��
Theorems 6 and 7 show that, given a formula φ of the form E[φ1U(φ1 ∧ φ2)] or
E[φ2Rφ1], and a trace σ = [s, v], we can decide if s |= φ by exploring only ample
sets satisfying the following condition:
(C0) If ample(s, φ) �= enabled(s), then ample(s, φ) = {α}, where α ∈ crucial(s,
φ2, σ), and α(s) |= φ1.

5 Model Checking CETL in a Program

Let φ be a CETL formula of the form E[φ1U(φ1 ∧φ2)] or E[φ2Rφ1]. We now consider
the problem of deciding whether a given state s satisfies φ in a program. In this case,
we need to explore a crucial path for every maximal program trace starting from s. That
is, for every maximal trace σ starting from s, ample(s, φ) must contain some event
from crucial(s, φ2, σ). In [1], it was shown that if ample(s, φ) satisfies the following
condition (C1), then it contains a successor for each maximal trace starting from s.

(C1) Along every path starting from s in the full state space graph, a transition that
is dependent on a transition from ample(s, φ) cannot be executed without a transition
from ample(s, φ) occurring first.

Theorem 8. [1] If ample(s, φ) satisfies condition (C1), then for every maximal trace
σ starting from s, there exists some α ∈ ample(s, φ) such that [s, α] � σ.

By Theorem 8, an ample set satisfying condition (C1) will generate some successor for
each maximal trace starting from s. We now need to ensure that each event in the ample
set is crucial in every trace to which it belongs.

Definition 6. Universally crucial event: An event α is said to be universally crucial
from a state s for a meet-closed formula φ2, denoted α ∈ ucrucial(s, φ2), iff for every
trace σ such that [s, α] � σ, α ∈ crucial(s, φ2, σ).

The following is a straightforward extension of condition (C0) from Section 4.
(C2) If ample(s, φ) �= enabled(s), then for each α ∈ ample(s, φ), α ∈ ucrucial(s,

φ2) and α(s) |= φ1.
The following theorem is proved in [15].

Theorem 9. To determine whether s |= φ, it is sufficient to explore ample sets satisfy-
ing (C1) and (C2).

500 S. Kashyap and V.K. Garg

To construct an ample set satisfying (C1) and (C2), we need to identify a subset of
enabled(s) that satisfies these conditions. Condition (C1) is used in p.o. reduction [1],
and we use the techniques from [17] to construct a subset of enabled(s) that satisfies
(C1). Condition (C2) requires us to identify a subset of enabled(s) that consists of uni-
versally crucial events. We now show how universally crucial events can be identified.

6 Identifying Universally Crucial Events

In the previous section, we derived the conditions for ample(s, φ), where φ is a CETL
formula of the form E[φ1U(φ1 ∧ φ2)] or E[φ2Rφ1]. Note that our construction of a
witness path for s |= φ ends with success when we encounter a state which satisfies
φ2. Therefore, we are only interested in constructing ample sets for states at which φ2

does not hold. That is, we are interested in ucrucial(s, φ2) when s �|= φ2. The problem
of identifying ucrucial(s, φ2) for a general CETL formula φ2 remains open. In this
section, we identify some cases for which we can determine universally crucial events.
Recall that Ti is the set of transitions of process Pi.

Theorem 10. If φ2 is a process-local state formula in process Pi, then Ti ∩enabled(s)
⊆ ucrucial(s, φ2).

Proof. Only transitions in Ti can change the truth value of φ2. Therefore, we must exe-
cute some transition in Ti from s in order to reach a state in which φ2 holds. Recall that
transitions from the same process are pairwise-dependent. Therefore, each transition in
Ti∩enabled(s) gives rise to a different trace. Therefore, each event α ∈ Ti∩enabled(s)
is crucial in every trace that subsumes [s, α]. Thus, Ti ∩ enabled(s) ⊆ ucrucial(s, φ).

��
Recall, from Section 4, that our approach applies to recursive model checking algo-
rithms. Thus, in the following two theorems, ψ1 and ψ2 have already been evaluated at
s before φ2 is evaluated. The proof of Theorem 11 is straightforward.

Theorem 11. Let φ2 = ψ1 ∧ ψ2. If s �|= ψ1 then ucrucial(s, ψ1) ⊆ ucrucial(s, φ2),
else ucrucial(s, ψ2) ⊆ ucrucial(s, φ2).

Theorem 12. Let φ2 be of the form E[ψ1U(ψ1 ∧ ψ2)] or E[ψ2Rψ1]. If s �|= ψ1, then
ucrucial(s, ψ1) ⊆ ucrucial(s, φ2). Else, if s |= ψ1 and ¬ψ1 is meet-closed, then
ucrucial(s, ¬ψ1) ⊆ ucrucial(s, φ2).

Proof. – Case 1: s �|= ψ1. Any state that satisfies φ2 must also satisfy ψ1. Therefore,
we first need to execute the minimum set of events that will lead to a state satisfying
ψ1. Hence, ucrucial(s, ψ1) ⊆ ucrucial(s, φ2).

– Case 2: s |= ψ1. Recall that s �|= φ2, and we are interested in reaching a state
that satisfies φ2. Assume there exists a state t, reachable from s, that satisfies φ2.
Let w be a witness for t |= φ2. Then, along every path v from s to t, there must
exist some state s′ such that s′ �|= ψ1. If not, then v.w would have been a witness
for s |= φ2. Thus, in order to reach a state that satisfies φ2, it is necessary to go
through some state that satisfies ¬ψ1. If ¬ψ1 is meet-closed, then the execution of
the events in ucrucial(s, ¬ψ1) is necessary to reach a state satisfying ¬ψ1. There-
fore, ucrucial(s, ¬ψ1) ⊆ ucrucial(s, φ2).

Producing Short Counterexamples Using “Crucial Events” 501

7 Implementation and Experimental Results

We have implemented our approach as an extension to the SPIN model checker [10],
called SPICED (Simple PROMELA Interpreter with Crucial Event Detection). Our im-
plementation incorporates the ample set selection techniques presented in this paper
into ALMC [16], a local CTL model checking algorithm based on depth-first search.
The complete algorithm can be found in [16], as well as in the technical report version
of this paper [15]. Our implementation of SPICED, along with detailed experimental
results, is available at: http://maple.ece.utexas.edu/spiced.

We ran SPICED against a large set of examples from the BEEM database [9], which
contains PROMELA (the input language for SPIN) models with errors injected into
them, and lists the properties to be verified on these models. All experiments were
performed on a 1-cpu 2.8 GHz Intel Pentium 4 machine with 512 MB RAM, running
Red Hat Enterprise Linux WS Rel 4.

Table 1. Trail reduction with SPICED, compared to SPIN with p.o. reduction

Model Tool Time
(sec)

States Memory
(MB)

Formula Trail length

phils.7
SPICED 0.01 15 3.15 EF (P0.req ∧ EG(!P0.grant)) 6

SPIN **Could not complete** ¬�(req0 ⇒ ♦grant0) -

szymanski.9
SPICED 0.02 256 3.15 EF (P0.wait ∧ EG(!P0.cs)) 43

SPIN **Could not complete** ¬�(wait0 ⇒ ♦cs0) -

fischer.18
SPICED 0.02 28 3.15 EF (P0.wait ∧ EG(!P0.cs)) 19

SPIN **Could not complete** ¬�(wait0 ⇒ ♦cs0) -

mcs.5
SPICED 0.09 30227 4.89 EF (P0.wait ∧ EG(!P0.cs)) 14

SPIN 0.03 2821 2.72 ¬�(wait0 ⇒ ♦cs0) 5646

anderson.7
SPICED 0.03 65387 7.03 EF (P0.wait ∧ EG(!P0.cs)) 82

SPIN 0.13 15692 6.63 ¬�(wait0 ⇒ ♦cs0) 31389

peterson.7
SPICED 0.09 29080 4.89 EF (P0.wait ∧ EG(!P0.cs)) 159

SPIN 0.1 9992 9.93 ¬�(wait0 ⇒ ♦cs0) 19984

lamport.7
SPICED 0.06 6850 3.45 EF (P0.wait ∧ EG(!P0.cs)) 30

SPIN 0.02 665 2.62 ¬�(wait0 ⇒ ♦cs0) 1330

at.7
SPICED 0.02 19 3.15 EF (P0.wait ∧ EG(!P0.cs)) 11

SPIN 0.01 182 2.62 ¬�(wait0 ⇒ ♦cs0) 370

bakery.6
SPICED 0.01 69 3.15 EF (P0.wait ∧ EG(!P0.cs)) 46

SPIN 0.02 896 2.62 ¬�(wait0 ⇒ ♦cs0) 856

gear.2
SPICED 0.03 4185 3.13 EF (Clutch.err open) 5056

SPIN 0.13 22386 5.5 local assert() 19396

needham.4
SPICED 0.01 27 2.72 EF (init0.fin ∧ resp0.fin) 15

SPIN 0.04 4003 3.03 ¬♦(init fin ∧ resp fin) 52

msmie.2
SPICED 0.02 83 2.72 EF (P0.wait ∧ EG(!P0.cs)) 63

SPIN 0.01 370 2.62 ¬�(wait0 ⇒ ♦cs0) 214

loyd.2
SPICED 0.19 50931 9.24 EF (Check.done) 52597

SPIN 0.63 166133 17.61 local assert() 84418

driving phils.4
SPICED 0.01 212 3.15 EF (P0.req ∧ EG(!P0.grant)) 123

SPIN 0.01 85 2.62 ¬�(req0 ⇒ ♦grant0) 170

502 S. Kashyap and V.K. Garg

Table 2. State space reduction with SPICED

Model Tool Time (sec) States Memory (MB) Formula

sort
SPIN, no reduction 1.19 107713 20.64 -
SPIN, p.o. reduction 0.1 135 2.62 -

SPICED 0.1 148 2.72 EG(!left.tstvar)

leader
SPIN, no reduction 0.17 15779 3.35 -
SPIN, p.o. reduction 0.01 97 2.62 -

SPICED 0.05 104 2.72 EG(!node[4].tstvar)

eratosthenes
SPIN, no reduction 0.52 49790 9.07 -
SPIN, p.o. reduction 0.02 3437 3.03 -

SPICED 0.02 2986 3.13 EG(!sieve[0].tstvar)

snoopy
SPIN, no reduction 0.53 81013 11.34 -
SPIN, p.o. reduction 0.06 14169 4.06 -

SPICED 0.4 58081 9.69 EF (cpu0.tstvar)

Table 1 shows the results for the largest problem sizes, for each of the verified mod-
els. A comprehensive list of results is available from our website: http://maple.
ece.utexas.edu/spiced. In our experiments, SPICED produced error trails that
were shorter than SPIN’s in 93% of the cases, with no deterioration in trail length for
the remaining 7% of cases. Our error trails were >10x shorter in 55% of the cases and
>100x shorter in 19% of the cases. For 44% of the cases, SPICED completed verifica-
tion faster than SPIN, with >10x reduction in time in 9% of the cases. Although CETL
is a branching-time logic, in these examples, the properties were in LTL ∩ CETL, so
the error trails were non-branching. The error trails were produced in the same format
as those of SPIN’s, and can be examined using SPIN’s guided simulation feature. For
SPIN, never claims were used for the verification of LTL properties, and simple assert()
statements were used for reachability detection. For SPICED, the CETL formulae were
specified a separate file, and fed directly as input to our model checking algorithm.

Table 2 shows the state space reduction achieved by SPICED, compared to SPIN
with p.o. reduction, in the absence of errors. The examples in Table 2 are from the SPIN
distribution [10], and have previously been used to showcase the effectiveness of p.o.
reduction [18]. For SPIN, no LTL properties were specified during verification, which is
optimal for maximizing the effectiveness of p.o. reduction. Since our algorithm is based
on choosing crucial events, it requires the specification of a property. For each exam-
ple, we chose a property that is never satisfied in the program, and forces exhaustive
validation. Our results show state space reduction comparable to p.o. techniques.

8 Conclusions and Future Work

We have presented a model checking technique that produces short error trails, while
achieving state space reduction. Experimental results confirm that our approach can
significantly outperform SPIN in the presence of errors, while providing state space
reduction comparable to partial order techniques. The effectiveness of our approach
depends on the ability to identify crucial events. We have shown how crucial events can
be identified in some cases. The problem of finding crucial events for a general CETL
formula is a direction for future research.

 http://maple.ece.utexas.edu/spiced
http://maple.ece.utexas.edu/spiced

Producing Short Counterexamples Using “Crucial Events” 503

References

1. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In: Dill, D.L.
(ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg (1994)

2. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems. LNCS,
vol. 1032, p. 142. Springer, New York (1996)

3. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the
validation of communication protocols. International Journal on Software Tools for Technol-
ogy Transfer 6(4) (2004)

4. Tan, J., Avrunin, G.S., Clarke, L.A., Zilberstein, S., Leue, S.: Heuristic-guided counterexam-
ple search in FLAVERS. SIGSOFT Softw. Eng. Notes 29(6), 201–210 (2004)

5. Lluch-Lafuente, A., Edelkamp, S., Leue, S.: Partial order reduction in directed model check-
ing. In: Proceedings of the 9th International SPIN Workshop on Model Checking of Soft-
ware, London, UK, pp. 112–127. Springer, Heidelberg (2002)

6. Mazurkiewicz, A.W.: Basic notions of trace theory. In: Linear Time, Branching Time and
Partial Order in Logics and Models for Concurrency, School/Workshop, London, UK, pp.
285–363. Springer, Heidelberg (1989)

7. Winskel, G.: Event structures. In: Advances in Petri nets 1986, part II on Petri nets: applica-
tions and relationships to other models of concurrency, New York, NY, USA, pp. 325–392.
Springer-Verlag New York, Inc, Heidelberg (1987)

8. Chase, C.M., Garg, V.K.: Efficient detection of restricted classes of global predicates. In:
Helary, J.-M., Raynal, M. (eds.) WDAG 1995. LNCS, vol. 972, pp. 303–317. Springer, Hei-
delberg (1995)

9. Pelanek, R.: BEEM: BEnchmarks for Explicit Model checkers (2007),
http://anna.fi.muni.cz/models/index.html

10. Holzmann, G.: On-the-fly LTL model checking with SPIN (2007),
http://spinroot.com/spin/

11. Garg, V.K., Mittal, N., Sen, A.: Applications of lattice theory to distributed computing. ACM
SIGACT Notes 34(3), 40–61 (2003)

12. Sen, A., Garg, V.K.: Detecting temporal logic predicates in distributed programs using com-
putation slicing. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144,
pp. 171–183. Springer, Heidelberg (2004)

13. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University Press,
Cambridge (1990)

14. Garg, V.K., Mittal, N.: On slicing a distributed computation. In: ICDCS 2001: Proceedings
of the The 21st International Conference on Distributed Computing Systems, p. 322. IEEE
Computer Society, Washington (2001)

15. Kashyap, S., Garg, V.K.: Producing short counterexamples using “crucial events”.
Technical Report TR-PDS-2008-002, ECE Dept, University of Texas at Austin (2008),
http://maple.ece.utexas.edu/TechReports/2008/TR-PDS-2008-
002.pdf

16. Vergauwen, B., Lewi, J.: A linear local model checking algorithm for CTL. In: Best, E. (ed.)
CONCUR 1993. LNCS, vol. 715, pp. 447–461. Springer, Heidelberg (1993)

17. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
18. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using partial order

techniques. International Journal on Software Tools for Technology Transfer (STTT) 2(3),
279–287 (1999)

http://anna.fi.muni.cz/models/index.html
http://spinroot.com/spin/
http://maple.ece.utexas.edu/TechReports/2008/TR-PDS-2008-002.pdf
http://maple.ece.utexas.edu/TechReports/2008/TR-PDS-2008-002.pdf

Discriminative Model Checking

Peter Niebert1, Doron Peled2, and Amir Pnueli3

1 Laboratoire d’Informatique Fondamentale de Marseille
CMI, 39, rue Joliot Curie, 13453 Marseille Cedex 13, France

2 Department of Computer Science, Bar Ilan University
Ramat Gan 52900, Israel

Computing Science Department, Courant Institute of Mathematical Sciences,
New York University, 251 Mercer Street,

New York, NY 10012

Abstract. Model checking typically compares a system description with
a formal specification, and returns either a counterexample or an affir-
mation of compatibility between the two descriptions. Counterexamples
provide evidence to the existence of an error, but it can still be very diffi-
cult to understand what is the cause for that error. We propose a model
checking methodology which uses two levels of specification. Under this
methodology, we group executions as good and bad with respect to satis-
fying a base LTL specification. We use an analysis specification, in CTL∗

style, quantifying over the good and bad executions. This specification
allows checking not only whether the base specification holds or fails to
hold in a system, but also how it does so. We propose a model checking
algorithm in the style of the standard CTL∗ decision procedure. This
framework can be used for comparing between good and bad executions
in a system and outside it, providing assistance in locating the design or
programming errors.

1 Introduction

A 20 years old debate in the model checking community exists between the use
of a branching or state-centric specification (e.g., CTL [3,2,13]) or using linear or
path-centric specification (e.g., LTL [11]). One can also combine the approaches
(using, e.g., CTL∗ [4]). We promote here a view where the specification of a sys-
tem is given using linear formalism, as its primary or base specification. However,
unlike the traditional linear approach, we are not satisfied with an affirmation or
a counter example. Instead, we embed the base specification in a branching anal-
ysis specification that can express how it fails. The use of an analysis specification
helps us obtain more refined information than the yes/no and counterexample
situation of traditional model checking.

The base specification ϕ is given in LTL. This is the property that we are
interested that the system (hardware or software) will satisfy. The formalism we
use for the analysis specification is termed EmCTL∗, for embedded CTL∗. This
is a CTL∗-based specification, where the path quantifiers can range over the
executions that satisfy or do not satisfy some base property. These will also be

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 504–516, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Discriminative Model Checking 505

referred to as good or bad executions, respectively. The analysis specification thus
has some past flavor in it; one needs to observe some information of the prefix
of the current execution so far in order to decide whether it can be continued
into a good or a bad execution, rather than just looking at the possible future(s)
from the current state.

We show the relation of EmCTL∗ to existing formalisms, in particular to its
closest logic mCTL∗, from which we can also obtain relevant expressiveness and
lower bound complexity results. In fact, one can use a linear translation into
mCTL∗, and from there using the transformation into alternating hesitant tree
automata with satellites word automata for model checking, presented in [8]. It
turns out that CTL∗, mCTL∗ and EmCTL∗ have the same expressive power,
although expressing the same property in the different logics may vary in form
and size.

We provide an alternative model checking algorithm in the style of standard
CTL∗ decision procedure [4]. One advantage of using our algorithm is that it can
be easily programmed as a variant of the CTL∗ algorithm. Moreover, its com-
plexity analysis takes into account the different components of the specification,
namely the base LTL part and the EmCTL∗ analysis specification. Specifically,
we show that the complexity of the model checking is in PSPACE complete w.r.t.
the analysis specification, and in EXSPACE complete w.r.t. the base property.

Our decision procedure suggests a generic method of exploiting an ability of
finitary (regular-based) encoding of the past that can be combined with a nonde-
terministic choice for the future part, in order to add past-related quantification
to branching temporal logics. We show how to use this capability in order to
extend the quantification so that one can reason not only about the executions
of a system, but also on executions that are not generated by the system, and
may or may not satisfy the given specification.

In the analysis specification we use ∀ϕ, ∃ϕ to range over the good executions,
∀¬ϕ, ∃¬ϕ to range over the bad executions, and ∀, ∃ to range over all the execu-
tions. We use �, �, U, W for eventually, always, until and unless (weak until),
respectively. Some examples follow:

Every prefix of a bad execution is also a prefix of some good execution:
(∀¬ϕ�∃ϕtrue).

A prefix of a good execution always has a point where it cannot turn bad:
(∀ϕ�¬∃¬ϕtrue).

There are always a possibility of a good and a bad execution: (∀�(∃¬ϕtrue ∧
∃ϕtrue)).

Before executing α, there are good and bad executions. Once α is executed for
the first time, there are only bad executions. In order to assert about the
execution of particular transition, we assume that the predicate Execα holds
in a state if α is the last transition executed1: ∀((¬Execα∧∃ϕtrue)W (Execα∧
∀ϕfalse)).

1 This is either a transition predicate, or a predicate on states, where the state infor-
mation includes the last executed transition, hence may separate formerly identical
states.

506 P. Niebert, D. Peled, and A. Pnueli

The paper is structured as follows: In Section 2, the syntax and semantics of
EmCTL∗ is introduced. In Section 3, we describe the model checking procedure.
More detailed applications are given in Section 4, in particular, the formalism
is extended to deal with execution sequences beyond those allowed by executing
the system. In Section 5, we give details on the relation between EmCTL∗ and
mCTL∗. Conclusions appear in Section 6.

2 Embedding LTL Properties in Branching Time
Specification

Syntax

An EmCTL∗ formula is expressed with respect to an LTL formula ϕ called
the base specification. The syntax of EmCTL∗ is similar to CTL∗, including
state formulas (ψ) and path formulas (μ). The only difference is that the path
quantifiers ∀ and ∃ may be superscripted by ϕ, referring to the base LTL formula.
(In calculating the size of an EmCTL∗ formula we do not count the size of the
superscripting formula ϕ, which is provided separately.)

ψ ::= p|ψ ∨ ψ|¬ψ|∃μ|∃ϕμ|∃¬ϕμ (1)

where p is a propositional letter over some set of propositions P .

μ ::= ψ|μ ∨ μ|¬μ|Xμ|μUμ (2)

LTL syntax is restricted to a path formula without state subformulas.

Semantics

Let M be a finite structure (S, {s0}, E, P , L) with states S, an initial state2

s0 ∈ S, edges E ⊆ S×S, set of propositions P , and labeling function L : S �→ 2P .
(We may also assume a mapping on the edges from a fixed domain of transitions
T , e.g., in order to define predicates such as Execα, used in the introduction.)
For simplicity, we assume that each state in S has a successor. This can be forced
by adding a self loop, marked with a special symbol ε that is not in T , for each
node without successors. A path in S is a finite or infinite sequence 〈g0g1g2 . . .〉,
where g0 ∈ S and for each i ≥ 0, giEgi+1. An execution is an infinite path,
starting with g0 = s0.

We denote the ith state of a path π by πi, the suffix of π from the ith state
by πi and the prefix of π up to the ith state by π̂i. The concatenation of two
paths ρ and π, where the last state of ρ is the same as first state of π, is denoted
by ρ � π. Note that 〈π0〉 � π = π, and that ρ � 〈s〉 = ρ, where s is necessarily
the last state of ρ.

2 The initial state is denoted as a singleton set for future compatibility when taking
the product with other structures.

Discriminative Model Checking 507

We first recall the LTL semantics, for the base property ϕ. The semantics is
defined for a suffix of an execution π of M as follows:
π |= p if p ∈ L(π0).
π |= μ1 ∨ μ2 if either π |= μ1 or π |= μ2.
π |= ¬μ if it is not the case that π |= μ.
π |= Xμ if π1 |= μ.
π |= μUη if there exists some i such that πi |= η and for each 0 ≤ j < i, πj |= μ.

The semantics given for an EmCTL∗ state formula is of the form M, ρ, s |= ψ,
where ρ is a finite prefix of an execution in M , leading to (i.e., ending with) the
state s. The semantics given for a path formula μ is of the form M, ρ, π |= μ,
where ρ is again finite prefix of an execution of M , leading up to a state from
which an infinite path π of M starts (thus, ρ � π is an infinite execution of M).
A path subformula μ is then evaluated in M, ρ, π |= μ according to the path π.

Intuitively, in the semantic definition of in M, ρ, s |= ψ and, similarly, in the
definition of M, ρ, π |= μ, we keep the path so far ρ, so that we can assert
whether the base property holds from the beginning of the execution or not. As
we progress with the temporal operators in time over some finite fragment of a
path, this fragment is appended to ρ and removed from π. We can either talk
about the existence of an execution path, with ∃, one that satisfies ϕ, with ∃ϕ, or
one that does not satisfy ϕ, with ∃¬ϕ. The formal semantics is given as follows.
M, ρ, s |= p if p ∈ L(s).
M, ρ, s |= ψ1 ∨ ψ2 if either M, ρ, s |= ψ1 or M, ρ, s |= ψ2.
M, ρ, s |= ¬ψ if it is not the case that M, ρ, s |= ψ.
M, ρ, s |= ∃μ if there exists a path π of M such that π0 = s and M, ρ, π |= μ.
M, ρ, s |= ∃ϕμ if there exists a path π of M such that π0 = s and M, ρ, π |= μ,
and furthermore, ρ � π |= ϕ in LTL.
M, ρ, s |= ∃¬ϕμ if there exists a path π of M such that π0 = s and M, ρ, π |= μ,
and furthermore, ρ � π |= ¬ϕ in LTL.
M, ρ, π |= ψ for a state formula ψ if M, ρ, π0 |= ψ.
M, ρ, π |= μ1 ∨ μ2 if either M, ρ, π |= μ1 or M, ρ, π |= μ2.
M, ρ, π |= ¬μ if it is not the case that M, ρ, π |= μ.
M, ρ, π |= Xμ if M, ρ � 〈π0π1〉, π1 |= μ.
M, ρ, π |= μUη if there exists some i such that M, ρ � π̂i, πi |= η and for each
0 ≤ j < i, M, ρ � π̂j , πj |= μ.
We write M |= ψ when M, 〈s0〉, s0 |= ψ.

Other operators can be obtained using equivalences, e.g., true = p ∨ ¬p,
false = ¬true, ψ1 ∧ ψ2 = ¬((¬ψ1) ∨ (¬ψ2)), μ → η = (¬μ) ∨ η, ∀ϕμ = ¬∃ϕ¬μ,
�μ = trueUμ, �μ = ¬�¬μ, μWη = (μUη) ∨ �μ, etc.

3 Model Checking

Büchi and Generalized Büchi Automata

A Büchi automaton is similar to a finite structure, with an additional component
F ⊆ S of accepting states. An accepted execution (or accepted run) must satisfy

508 P. Niebert, D. Peled, and A. Pnueli

in addition to the conditions described for an execution of a state space above,
that at least one accepting state from F appears in the execution infinitely many
times.

A generalized Büchi automaton can have multiple accepting states F1, F2,
. . . , Fm ⊆ S. An accepted execution satisfies that at least one state from each
accepting set appears on it infinitely often. Hence, this generalizes the singleton
accepting set of a Büchi automaton. The generalization does not increase the
expressive power, but makes the following presentation simpler. Translation from
generalized Büchi automata to (simple) Büchi automata is standard. We identify
the case of having no accepting set (i.e., when m = 0) with the case of having
one accepting set consisting of all the states.

The product of two generalized Büchi automata is obtained in a standard
way, where the state space consists of pairs of states that agree on their la-
beling. The acceptance is defined by taking together the accepting sets of each
automata. Define Q
� R when Q ⊆ S1, R ⊆ S2 as {(q, r)|q ∈ S1 ∧ r ∈
S2 ∧ L1|P1∩P2(q) = L2|P1∩P2(r)} (where L|P(s) = L(s) ∩ P). That is, the
set of pairs that agree on the labeling of mutual propositional values. Let
M1 = (S1, S1

0 , E1, P1, L1, F 1
1 , . . . F 1

m), M2 = (S2, S2
0 , E2, P2, L2, F 2

1 , . . . F 2
n).

Then M1 × M2 = (S1
� S2, S1
0
� S2

0 , Ê, P1 ∪ P2, L̂, F 1
1
� S2, . . . , F 1

m
�
S2, S1
� F 2

1 , . . . , S1
� F 2
n). The relation Ê is defined so that (s, q)Ê(s′, q′)

iff (s, q), (s′, q′) ∈ S1
� S2, sE1s′ and qE2q′ and L̂ is defined such that
L̂(s, q) = L1(s) ∪ L2(q).

A translation from an LTL formula ϕ into a Büchi automaton that accepts
exactly the sequences satisfying ϕ is quite standard (see, e.g., [10]).

Model Checking Algorithm

We use the following components:

– Let Aϕ be a Büchi automaton that accepts the sequences satisfying ϕ.
– Let A¬ϕ be a Büchi automaton that accepts the sequences satisfying ¬ϕ.
– Let Det(Aϕ), Det(A¬ϕ) be the determinized subset construction for Aϕ,

A¬ϕ, respectively. A state of Det(Aϕ) represents a maximal set of possible
states where control can be in Aϕ after some finite run. Note that all the
states of Aϕ that participate in one state of Det(Aϕ) agree on their labeling.
Moreover, Det(Aϕ) has no accepting component (equivalently, all its states
are accepting).

– Let Aδ be a Büchi automaton for a formula δ, where ∃δ, ∃ϕδ or ∃¬ϕδ is
a subformula of the analysis specification formula and where the maximal
state subformulas of δ are treated as new propositional variables. Note that
δ an LTL formula.

Suppose that we want to perform model checking for an analysis specification
ψ over some base LTL property ϕ. We perform model checking on several types
of automata products:

– P = M ×Det(Aϕ)×Det(A¬ϕ). Each state of P is annotated with state sub-
formulas of ψ in a recursive way to be described below. Thus, subformulas

Discriminative Model Checking 509

can be marked based on earlier marking of their subformulas. Note that there
is no acceptance component in this product (thus, all states are considered
accepting). If the analysis specification does not use positive quantification
(∃ϕ) or negative quantification (∃¬ϕ) then we may omit the product compo-
nent Det(Aϕ) or Det(A¬ϕ), respectively3.

– Pϕ,δ = P×Aϕ×Aδ. This component is designed to mark the ∃ϕδ subformulas
that hold in states of P (note that a state subformula of EmCTL∗ depends
not only on the current state of the checked structure M , but also on infor-
mation depending on the prefix of the execution, as summarized in P by the
Det(Aϕ) and Det(A¬ϕ) components). This product requires that in each of
its states, the component from Aϕ will be a member of the subset of states
in the Det(Aϕ) component. Since both Aϕ and Aδ contribute acceptance
conditions, an accepted execution will have to visit infinitely often accepting
states from both Büchi automata (this corresponds to the generalized Büchi
automata acceptance condition).

– Pϕ,¬δ = P × A¬ϕ × Aδ. This product is similar to the previous one, but the
product is with a Büchi automaton for ¬ϕ, and is designed to mark the ∃¬ϕδ
subformulas that hold in states of P .

– Pδ = P × Aδ. This product is design to mark the ∃δ subformulas in P .

The subset construction components Det(Aϕ) and Det(A¬ϕ) are used to rep-
resent the information that is needed in order to check whether a path that
starts from some given state, together with the prefix that is leading to it from
the start of the execution, satisfy or does not satisfy the base property ϕ. This
is required due to the use of the modalities ∃ϕ and ∃¬ϕ. Intuitively, for ∃ϕ it
is sufficient to find a state of Aϕ that is inside the subset construction, from
which one can continue the execution according to the automaton Aϕ. Since we
do not know which such state can be used to complete the execution into one
that satisfies ϕ, the subset construction keeps all the possibilities. In this way,
there is no need to keep the entire prefix executed so far in order to see if there
is a continuation that satisfies ϕ (or ¬ϕ, respectively).

A preparatory step before model checking, is to translate the formula to elim-
inate universal quantification ∀ϕ, ∀¬ϕ or ∀. This can be done based on the equiv-
alence ∀δ = ¬∃¬δ, which carries over also to the other two universal quantifiers.
The model checking is performed now recursively on the structure of the CTL∗

subformula ξ of the formula ψ. In each stage, we recursively mark states of P
with either ξ or, otherwise, with ¬ξ (hence in the list of cases below, there is no
separate case for a subformula starting with the negation symbol). We identify
¬¬ξ with ξ.

ξ is a propositional variable. Then mark each state in P with ξ if ξ is in the
labeling of the M component (we will, henceforce, omit mentioning repeat-
edly the fact that if we deal with ξ and a state is not marked with it, we will
mark it with ¬ξ).

3 For example, it would be beneficial to rewrite the first example in the introduction
in an equivalent form as (∀�∃ϕtrue).

510 P. Niebert, D. Peled, and A. Pnueli

ξ is a state formula of the form ψ1 ∨ ψ2. Then recursively mark P according
to ψ1 and according to ψ2, and then mark a state in P with ψ1 ∨ ψ2 if it is
marked with either ψ1 or with ψ2.

ξ = ∃ϕδ where δ is a path formula, when replacing each maximal state sub-
formula of δ by a new propositional variable (the names of these variables
can be the same as the subformulas they represent). For example consider
ξ = ∃ϕ(Xκ∧μUη) with state subformulas κ, μ and η. After the replacement,
δ becomes an LTL formula, with Büchi automaton Aδ. First, we recursively
call the marking procedure with the maximal state subformulas. We then
construct Pϕ,δ = P × Aϕ × Aδ, as described above. A state of P is marked
with ∃ϕδ if there exists a state in Pϕ,δ with first component as in P (and re-
call that the second component is in accordance with the subset construction
of Det(Aϕ) in P , as described above), and third component an initial state
of Aδ. In addition, from this state we need to be able to reach a strongly
connected component of Pϕ,δ where there is an accepting state for Aϕ and
an accepting state for Aδ (as defined in the product construction).

ξ = ∃¬ϕδ where δ is a path formula. The procedure is similar to the previous
case, replacing Pϕ,δ with P¬ϕ,δ.

ξ = ∃δ. In this case, we use the product Pδ and mark a state in P with δ if
there exists a state in the product with the same P component, and an initial
state of Aδ, from which a strongly connected component with an accepting
state of Aδ is reached.

At the end of the marking, we check whether the initial states of the product P
are marked with ψ.

The last three possibilities need an additional explanation. In order to check
that a subformula, say ∃ϕδ, holds in a state, we first mark all the states of P
recursively with the maximal state subformulas in δ, or their negation. We treat
the maximal state subformulas of δ as propositional variables, which are already
marked in P by our recursive procedure. The satisfaction ∃ϕδ depends not only
on the current state, but also on the path so far. As explained before, that
information is encapsulated in components of Det(Aϕ), which are also embedded
in the states of P . In a similar way, ∃¬ϕδ holds in a state depending on the
information embedded using Det(A¬ϕ).

We then construct the structure Pϕ,δ and look for strongly connected compo-
nents that satisfy both acceptance conditions of Aϕ and Aδ. We now seek the
states of Pϕ,δ from which such a strongly connected component is reachable with
its Aδ component being at its initial state and with P being at state s. We can
then conclude that from the corresponding P state s, there is a path that satis-
fies δ. Moreover, recall that our product construction of Pϕ,δ guarantees that the
Aϕ component agrees with one of the possible choices of Det(Aϕ). Thus, the fact
that the acceptance condition of Aϕ holds on the reachable strongly connected
component guarantees that the formula ϕ holds when prefixing this path with
the finite execution that reached s, taking care of the ∃ϕ quantification.

Discriminative Model Checking 511

Complexity

In a naive implementation, our decision procedure is exponential in the size
of the EmCTL∗ formula, and doubly exponential in the size of the embedded
LTL property ϕ in both time and space. The latter is because of the need to
determinize the Büchi automaton constructed for ϕ in order to keep track of all
the possibilities where the control can reside under the current prefix. Note that
some LTL specifications result in deterministic Büchi automata, in which case
we will not incur the additional exponential cost.

The proof of EXSPACE lower bound of mCTL∗ can be used here. In partic-
ular, the formula used in the reduction (from exponential tiling) in [8] can be
expressed in EmCTL∗ as ∀�∃ϕtrue. Encouragingly, the additional exponent of
the model checking is only in the size of the LTL base property ϕ, and not the
checked structure M or the EmCTL∗ specification analysis formula.

Achieving the EXSPACE complexity with our construction can be done with-
out constructing the automaton P explicitly, nor the components Pϕ,δ, P¬ϕ,δ, Pδ.
Instead, we perform a binary search recursively on the structure of the formula
(according to the above cases) through the state space of these components. For
a path subformula, this involves searching for a lasso shape of a bounded size.
One needs to represent in this way states of the construction, where the size
of a state of any one of the above components being exponential in the size of
the base specification (and polynomial in the size of the analysis specification).
Using the standard Savitch construction [14], one needs not represent the entire
state space.

Using Multiple Base Properties

A simple modification to the decision procedure that was described earlier in
this paper allows us to generalize our framework and quantify over different sets
of path, satisfying separate linear properties. In general, we can allow multiple
path quantifiers in an EmCTL∗ formula to be indexed by different LTL formulas,
e.g., ∃ϕ1 . . . ∃ϕm . In this case, we need in the translation to take the product of
the state space with a determinized version per each indexing property ϕi that
appears on a path.

We may also want to use multi-indexed quantifiers, e.g., ∀ϕ1,ϕ2 , which will
allow for selecting sequences satisfying several LTL conditions.4 Note that this
is not the same as ∀ϕ1∀ϕ2 , as, according to the semantic definition, the 1st
quantifier is amalgamated into the 2nd one, since the 2nd quantifier provides a
state formula, rather than a linear formula for the 1st quantifier.

In this case, we need to generalize the automata products in our construction.
That is, we need to take components of the subset construction Det(Aϕ1)
and Det(Aϕ2) in P , and take care of the acceptance conditions of both ϕ1 and ϕ2

4 Semantically, this is the same as ∀ϕ1∧ϕ2 , but it might be beneficial to separate the
subformulas, e.g., when two quantifiers share some but not all the subformulas, e.g.,
in ∀ϕ1,ϕ2ψ1 ∧ ∃ϕ1,ϕ3ψ2.

512 P. Niebert, D. Peled, and A. Pnueli

(as well as δ) in Pϕ1,ϕ2,δ. The complexity will be then doubly exponential in the
sum of the lengths of the formulas that appear together in such a quantifier.

We later show how to combine this extension with the ability to assert about
both executions inside and outside the checked system.

4 Applications

4.1 Level of Failure

In [7], an application of model checking for the generation of correct mutual
exclusion algorithms through genetic programming was described. In order to
select versions (mutations) of the code that are better than others, for creating
new mutations, one assigns a level of failure, based on model checking analysis.
Practice shows that it is not sufficient to do simple model checking with yes/no
result. In [7], a deeper analysis, based on converting the LTL property into Streett
automata, was performed. We can express such levels of failures and many others
using EmCTL∗ specification, and use the model checking algorithm described
here, instead of providing ad-hoc verification procedures. Some examples for
formulating such levels of failure are as follows:

All the executions satisfy the base LTL property ϕ. This is simply expressed
as ∀ϕ (or, just ϕ in LTL). Note that we avoid writing this as ∀¬ϕfalse , since
this would incur an exponential blowout in model checking.

There exists a finite prefix of an execution from which all the executions are
bad. ∃�∀ϕfalse .

For all bad executions, after any prefix, one can always make a decision that
would complete the behavior into a good execution. ∀¬ϕ�∃ϕtrue. (Note
again that this can be written equivalently as ∀�∃ϕtrue.) Intuitively, this
means that in order to have a bad execution, one needs to schedule infinitely
many bad choices.

Note that, as in the model checking procedure presented here, the decision
procedure in [7] also incurs an additional exponential explosion in the size of the
checked property over LTL model checking. This is due to the use of deterministic
Street automata in the analysis.

4.2 Reasoning Outside the Checked System

One of the directions for trying to locate errors in a system is based on compar-
ing related executions, e.g., similar pairs of executions such that one of them
satisfies the specification and the other does not [5,16]. This is usually done in
the context of the system’s executions. One of the examples in the introduction
already demonstrated how we can use our framework to find, e.g., the point
when the execution of a transition terminates the possibility of having further
good executions. A related approach [6] searches for the moves that forces the
system towards the error in the sense of game theory. We propose that such

Discriminative Model Checking 513

analysis for locating errors can benefit from comparing not only the executions
of the system, but also executions potentially not possible in the system.

One can use multiple indexed quantification to reason within the same formula
about executions of the system, as well as executions not belonging to the system.

The quantifiers ∀, ∃, ∀ϕ, ∃ϕ now range over both, executions within the system,
and executions leaving the system. To recover the possibility of reasoning within
the system, let new quantifiers ∀S , ∃S , ∀S,ϕ, ∃S,ϕ refer to sequences that stay in
the system.

The first step for performing model checking is to expand the state space M
to represent also executions that do not result from the execution of the checked
system, although a prefix might be possible in the system. Intuitively, once the
actual system is left, “anything is possible”. An efficient coding can be done as
follows:

– We assume a labeling of edges of the state space, according to the executed
transition.

– The state labeling function is extended to allow a conjunction of proposi-
tional variables, either negated or non-negated, which does not necessarily
includes all the propositional variables. This allows representing states in a
more compact way, i.e., one state can represent all the states that satisfy
such a given formula (e.g., as done in [10]).

– A new propositional variable r will mark nodes as reached. Its negation ¬r
will denote nodes that were not reached through an execution of the checked
system.

– We add a new sink state τ , labeled with the formula ¬r (with no reference
to the other propositional variables). The rest of the nodes of M retain their
original label, with the added conjunct r. The state τ is not initial if we want
to perform model checking with respect to the given initial state s0.

– From each state s of the structure M we add an edge from s to τ marked
with ε. There is also a self loop marked with ε from τ to itself.

It is straightforward to adapt the constructions of Section 3 to deal with
these modified quantifiers. When quantifying over executions of the system and
checking an LTL subformula, we must still have a reachable strongly connected
component satisfying all the Büchi conditions as in the algorithm before. But
now, in addition, we need such a strongly connected component also to have a
state marked with r. This is sufficient due to the monotonicity of the ¬r marking.

Safety and Liveness

As an example of properties that can be expressed and checked with quantifiers
going beyond the system specification, let us consider safety and liveness.

Halpern and Schneider formally defined the classification of properties in [1]
based on Lamport’s informal characterization as follows:

Safety. A property ϕ is a safety property if ρ |= ψ iff for any decomposition
ρ = ρ1 � ρ2 there exists a σ such that ρ1 � σ |= ϕ.

514 P. Niebert, D. Peled, and A. Pnueli

Liveness. A property ϕ a liveness property iff for any ρ there exists a σ such
that ρ � σ |= ϕ.

For properties given as Büchi automata, Alpern and Schneider moreover give
constructions for splitting a temporal property ϕ into two parts, safe(ϕ), which
is the safety part related to ϕ, and live(ϕ)¡ which is the liveness part. We can
express the liveness and safety parts in our setting as follows: safe(ϕ) states
that any finite prefix of an execution of the system can be extended (within the
system or not) to satisfy ϕ:

safe(ϕ) = ∀S�∃ϕtrue

live(ϕ) states that any system execution that does not satisfy ϕ passes through
a prefix that has no extension (in the system or not) that satisfies ϕ:

live(ϕ) = ∀S(ϕ ∨ �∀ϕfalse)

Indeed, the conjunction of �∃ϕtrue and �∀ϕfalse is contradictory so that the
conjunction of safe(ϕ) and live(ϕ) is equivalent to ∀Sϕ.

safe(ϕ) and live(ϕ) can then be directly checked using our decision proce-
dure. Thus, when a property ϕ fails to hold in a system, we can check whether
this is already due to its safety or liveness part failing to hold. Note, that our
decision procedure (the naive version) is doubly exponential in the size of ϕ.
The constructions of [1] is based on modifications of the property automaton,
but in order to do model checking, the automaton needs to be complemented –
at exponential cost. If model checking is the aim, the worst case complexity of
either the original construction of [1] or the use of our algorithm is the same.

5 Related Work and Expressiveness

The closest logic to ours, as far as we know, is mCTL∗, presented in [8]. In that
logic, quantifying is relativized to the current prefix of execution. But as opposed
to EmCTL∗, path quantification is done always with respect to the beginning
of the path. A special symbol, present , keeps track of the current state in a
prefix of an execution, from which quantification forces the subformula to be
interpreted from the initial state again. One can then refer to this symbol inside
the subformula, in order to have the ability to assert about the continuation of
that finite prefix (care should be taken, as multiple occurrences of the present
symbol may refer to different states in the same formula).

It is shown that one can translate every CTL∗ property into an mCTL∗ prop-
erty with linear blowup, where each subformula of the form ∃ϕ (where uni-
versal quantification is first eliminated) is translated into ∃�(present ∧ ϕ). A
reverse translation is also available, but may explode the formula (inherently) in
a nonelementary way [8].

We can translate each EmCTL∗ formula into mCTL∗ in the following way:
each subformula of the form ∃ϕψ will be translated into ∃(ϕ ∧ �(present ∧ ψ))

Discriminative Model Checking 515

and ∃¬ϕψ will be translated into ∃((¬ϕ) ∧ �(present ∧ ψ)). This allows one
to use the decision procedure from [8]. The translation goes via models called
alternating hesitant tree automata with satellites word automata. However, that
construction is doubly exponential in the size of the overall property.

We suggested in this paper a generalized Büchi automata based construction,
which incurs a small modification on the traditional CTL∗ model checking al-
gorithm [4], and separated the complexity analysis; the additional exponent is
only due to the LTL embedded part, and not related to the CTL∗ part (includ-
ing path subformulas appearing in the embedding analysis specification formula.
The main gain is in the cases where the embedded LTL part is rather small, or
translates efficiently into a deterministic Büchi automaton. Of course, in gen-
eral, there are cases, even for simple safety properties (take e.g., the property
that p holds some fixed number of steps before q holds), where the deterministic
automaton for the property is exponentially bigger than the nondeterministic
version [12,9].

The collection of the following three facts:

– every CTL∗ formula is in particular an EmCTL∗ formula (when not using
indexed path quantification),

– each EmCTL∗ formula is translatable to mCTL∗ (as we showed), and
– each mCTL∗ formula can be translated into CTL∗ (proved in [8]),

proves that the expressive power of the three logics is the same. Nevertheless,
this does not mean that they are interchangeable for all purposes, nor that the
naive approach of picking one formalism, translating the specification into it
and performing the model checking, is a sensible choice. One should select the
appropriate formalism according to the application (e.g., depending on ease of
expressiveness, complexity of model checking with respect to the typically used
formulas, etc).

6 Conclusions

We have outlined a specification and model checking methodology that allows to
reason in CTL∗-style about how an LTL property is satisfied (or not) by a finite
state transition system. This is achieved using a formalism we named EmCTL∗

with path quantifiers ∀ϕ, ∃ϕ limiting the quantification to system executions
that meet an LTL property ϕ. Model checking is then in EXPSPACE-complete
with respect to the indexing base formula ϕ.

We provided several examples of analysis specifications that can be used to
gain further information about the checked system. This can be interesting in
particular after model checking of the base property was performed and an error
trace was found, and thence one would like to gain some additional information
about the failure. Such an analysis requires an additional exponent in the size of
the base specification on top of ordinary LTL model checking. However, it still
in PSPACE-complete with respect to the checked system (and also in size of the
analysis specification).

516 P. Niebert, D. Peled, and A. Pnueli

We propose that even a restricted subset of our logic and decision procedure
can be a useful extension for model checking. In particular, we observe that our
choice of examples point out to such a useful subset of formulas: the nesting
of indexed quantification is at most two, and the deepest level of subformulas
is followed by the trivial state subformulas true or false. This restricted form
contains however the formula ∀�∃ϕtrue, whose model checking is in EXSPACE
complete in the size of the base property ϕ.

References

1. Alpern, B., Schneider, F.B.: Recognizing Safety and Liveness. Distributed Com-
puting 2, 117–126 (1987)

2. Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons
using Branching Time Temporal Logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

3. Emerson, E.A., Clarke, E.M.: Characterizing Correctness Properties of Parallel
Programs using Fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP
1980. LNCS, vol. 85, pp. 169–181. Springer, Heidelberg (1980)

4. Emerson, E.A., Lei, C.L.: Modalities for Model Checking. Science of Computer
Programming 8, 275–306 (1987)

5. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error Explanation with Distance
Metrics. STTT 8, 229–247 (2006)

6. Jin, H., Ravi, K., Somenzi, F.: Fate and Free Will in Error Traces. In: Katoen, J.-P.,
Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 445–459.
Springer, Heidelberg (2002)

7. Katz, G., Peled, D.: Model Checking Based Genetic Programming with an Ap-
plication to Mutual Exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008)

8. Kupferman, O., Vardi, M.Y.: Memoryful Branching Time Logic. In: LICS 2006,
Seatle, USA, pp. 265–274 (2006)

9. Kupferman, O., Vardi, M.Y.: Model Checking Safety Properties. In: Halbwachs, N.,
Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 172–183. Springer, Heidelberg
(1999)

10. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: PSTV 1995, pp. 3–18 (1995)

11. Pnueli, A.: The Temporal Logic of Programs. In: 18th IEEE Symposium on Foun-
dations of Computer Science, pp. 46–57 (1977)

12. Pnueli, A., Rosner, R.: On the Synthesis of Reactive Systems. In: POPL 1989,
Austin, Texas, pp. 179–190 (1989)

13. Quielle, J.P., Sifakis, J.: Specification and Verification of Concurrent Systems in
CESAR. In: 5th International Symposium on Programming, pp. 337–350 (1981)

14. Savitch, W.J.: Relationships between Nondeterministic and Deterministic Tape
Complexities. Journal of Computer and System Science 4, 177–192 (1970)

15. Shahar, E.: The TLV System and its Applications, M.Sc. Thesis, The Weizmann
Institute of Science

16. Sharygina, N., Peled, D.: A Combined testing and Verification Approach for Soft-
ware Reliability. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp.
611–628. Springer, Heidelberg (2001)

Correcting a Space-Efficient Simulation Algorithm�

Rob van Glabbeek1,2 and Bas Ploeger3,��

1 National ICT Australia, Locked Bag 6016, Sydney, NSW1466, Australia
2 School of Computer Science and Engineering, The University of New South Wales,

Sydney, NSW 2052, Australia
3 Eindhoven University of Technology, Design and Analysis of Systems Group,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. Although there are many efficient algorithms for calculating the simu-
lation preorder on finite Kripke structures, only two have been proposed of which
the space complexity is of the same order as the size of the output of the algo-
rithm. Of these, the one with the best time complexity exploits the representation
of the simulation problem as a generalised coarsest partition problem. It is based
on a fixed-point operator for obtaining a generalised coarsest partition as the limit
of a sequence of partition pairs. We show that this fixed-point theory is flawed,
and that the algorithm is incorrect. Although we do not see how the fixed-point
operator can be repaired, we correct the algorithm without affecting its space and
time complexity.

1 Introduction

The simulation preorder [17] is a behavioural refinement relation on concurrent sys-
tems, represented as Kripke structures or labelled transition systems, that plays a crucial
rôle in compositional verification and model checking. It preserves the existential and
universal fragments of temporal and modal logics. For CTL∗ [6] this is shown in [5],
and for the modal μ-calculus [14] it is shown in [16]. This makes it possible to combat
the state explosion problem in model checking by minimising the state space of a given
system modulo simulation equivalence before checking the validity of relevant proper-
ties within those fragments. Given that the simulation preorder is a precongruence for
parallel composition [11], components in parallel compositions can even be minimised
individually.

Simulation equivalence is also used directly in equivalence checking [15] of finite-
state processes. Often deciding the simulation preorder between processes is the most
appropriate method of showing that two systems are related by another preorder, that
may be appropriate for the task at hand. In applications where deadlock behaviour plays
a crucial rôle, the ready simulation preorder [1] is widely regarded to be an appropriate
behavioural refinement relation for matching an implementation with a specification.
Via a straightforward reduction (the computation of the initial partition ER1 in [2]),

� This is an extended abstract; all proofs are omitted. They can be found in the full version [10].
�� This author is partially supported by the Netherlands Organisation for Scientific Research

(NWO) under VoLTS grant number 612.065.410.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 517–529, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

518 R. van Glabbeek and B. Ploeger

finding a ready simulation between two processes is as hard as finding a plain simula-
tion. In applications where deadlock behaviour plays no rôle, trace inclusion is often
proposed as an appropriate refinement relation. However, deciding trace inclusion on
finite-state processes is PSPACE-hard [19], and as the simulation preorder is the coars-
est preorder included in trace inclusion that is known to be decidable in polynomial time
[2,3,8,12,18,20], establishing a simulation between two processes is a favourite way of
showing that they are related by trace inclusion.

In many crucial applications, space rather than time becomes the bottleneck as the
input graph grows [4,7,8,13]. Hence, simulation algorithms with minimal space com-
plexity are of particular interest. These are the ones by Bustan and Grumberg [3] and
by Gentilini, Piazza and Policriti [8]. For an input graph with N states, T transi-
tions and S simulation equivalence classes, the space complexity of both algorithms
is O(S2 + N log S). This can be considered minimal: O(S2) space is needed for stor-
ing the simulation preorder as a partial order on simulation equivalence classes and
O(N log S) space is needed to store for every state, the equivalence class to which it
belongs. Of these algorithms, the one by Gentilini et al. has a better time complexity:
O(S2T). A more time-efficient algorithm is the one by Ranzato and Tapparo [18], but
it is less space efficient.

The approach of Gentilini et al. represents the simulation problem as a generalised
coarsest partition problem (GCPP). According to the authors, this problem can be
solved by approximating the greatest fixed point of a decreasing operator on partition
pairs that they define in their paper. They give a partitioning algorithm to compute this
fixed point for any legal input. We recite this definition and a part of the algorithm in
Sect. 3. In Sect. 4 we show that the operator is flawed because it is not uniquely defined
for all partition pairs. We give an instance of the GCPP for which repeated application
of the operator does not lead to a unique fixed point. We also show that on this exam-
ple the partitioning algorithm irrevocably allocates two simulation-equivalent states to
different simulation-equivalence classes, and subsequently deadlocks.

In Sect. 5 we define a simple, yet inefficient fixed-point operator for which we prove
correctness. This operator is not meant to be an improvement over the original one,
but merely serves as an expedient for establishing correctness of the algorithm that we
present in Sect. 6. This algorithm is obtained from that of Gentilini et al. by means of a
few simple corrections; consequently, it benefits from the key ideas behind the original
partitioning algorithm and has the same time and space complexities. Yet its correctness
proof requires entirely new techniques and is surprisingly non-trivial. We also show that
no fixed-point operator can be defined that captures the behaviour of this algorithm.

2 Preliminaries

Partitions and relations. For any set S, a partition over S is a set Σ ⊆ P(S) such that
⋃

Σ = S and ∀α ∈ Σ . α �= ∅ ∧ ∀β ∈ Σ . α �= β ⇒ α ∩ β = ∅. For any s ∈ S we
denote by [s]Σ the block α ∈ Σ such that s ∈ α. Given two partitions Σ and Π we say
Π is finer than Σ iff for every α ∈ Π there exists an α′ ∈ Σ such that α ⊆ α′. For any
set S, we denote by I(S) the identity relation over S, i.e. I(S) = {(s, s) | s ∈ S}. For
any relation P , we denote by P+ the transitive closure of P .

Correcting a Space-Efficient Simulation Algorithm 519

Graphs. A (directed) graph is a tuple (N, →) where N is a finite set of nodes and
→ ⊆ N × N is a set of directed transitions between those nodes. A labelled graph is
a tuple (N, →, Σ) where (N, →) is a graph and Σ is a partition over N . For a graph
(N, →), a ∈ N and β ⊆ N , we write a → β if ∃b ∈ β . a → b. Moreover, we define
the relations →∃ and →∀ over P(N) as follows, for any α, β ⊆ N :

α →∃ β ⇔ ∃a ∈ α . a → β α →∀ β ⇔ ∀a ∈ α . a → β.

Simulations. For any labelled graph (N, →, Σ) a relation R ⊆ N × N is a simulation
iff for any a, b ∈ N , (a, b) ∈ R implies:

• [a]Σ = [b]Σ and

• ∀c ∈ N . a → c ⇒ ∃d ∈ N . b → d ∧ (c, d) ∈ R.

We say that a is simulated by b, denoted a ⊂→ b, iff there exists a simulation R such that
(a, b) ∈ R. It is well known and easy to check that ⊂→ is a preorder, i.e. a reflexive and
transitive relation, on N , and moreover the largest simulation. We say that a and b are
simulation equivalent, denoted a →← b, iff a ⊂→ b and b ⊂→ a.

The simulation problem. Given a labelled graph G = (N, →, Σ), the simulation prob-
lem over G consists in finding the simulation preorder ⊂→ on G.

A variant of the simulation problem asks, given a labelled graph (N, →, Σ) and two
nodes a, b ∈ N , whether a ⊂→ b. In general, no methods to solve this problem are known
that are more efficient than computing the entire relation ⊂→ ⊆ N × N and looking up
whether (a, b) ∈ ⊂→. Another variant of the simulation problem merely asks to find the
simulation equivalence relation →← rather than the preorder ⊂→ . Again, no methods to
solve that problem are known that do not amount to finding ⊂→ as well.

Typically, the simulation problem arises in the context of Kripke structures or la-
belled transition systems. It is trivial to encode a Kripke structure as a labelled graph
in such a way that the simulation preorder on the Kripke structure agrees with the one
on its labelled graph representation. Likewise, it is not hard to reduce the simulation
problem for labelled transition systems to that for labelled graphs. Alternatively one
can enrich the theory in a straightforward way to deal with transition labels as well, so
that it is applicable to labelled transition systems directly.

The generalised coarsest partition problem. Given a graph G = (N, →), a partition
pair over G is a pair 〈Σ, P 〉 where Σ is a partition over N and P ⊆ Σ×Σ is a reflexive,
acyclic relation over Σ. A partition pair 〈Σ, P 〉 is called transitive if P is transitive, and
hence a partial order. Given a partition Σ, a partition Π finer than Σ, and a relation P
over Σ, we denote by P (Π) the induced relation of P on Π :

P (Π) = {(α, β) ∈ Π × Π | ∃(α′, β′) ∈ P . α ⊆ α′ ∧ β ⊆ β′}.

We define a partial order ≤ on partition pairs by writing, for any partition pairs 〈Σ, P 〉
and 〈Π, Q〉: 〈Π, Q〉 ≤ 〈Σ, P 〉 iff Π is finer than Σ and Q ⊆ P (Π). Given a graph
G = (N, →), we say a partition pair 〈Σ, P 〉 over G is stable with respect to → [8] iff:

∀α, β, γ ∈ Σ . ((α, β) ∈ P ∧ α →∃ γ) ⇒ ∃δ ∈ Σ . (γ, δ) ∈ P ∧ β →∀ δ.

520 R. van Glabbeek and B. Ploeger

Given a graph G = (N, →) and a partition pair 〈Σ, P 〉 over G, the generalised coarsest
partition problem (GCPP) [8] consists in finding a ≤-maximal partition pair 〈Ξ, �〉
such that 〈Ξ, �〉 ≤ 〈Σ, P+〉 and 〈Ξ, �〉 is stable with respect to →.

The simulation problem as a GCPP. Let G = (N, →, Σ) be a labelled graph. Any
preorder � on N can be represented as a partition pair PP(�) := 〈Π, �〉, as follows:
Π is the set of equivalence classes of N w.r.t. the equivalence relation ≡ := � ∩ �−1

induced by �, and � is given by [a]Π � [b]Π iff a � b. Note that � is a partial order.
Moreover, if � is a simulation then PP(�) is stable w.r.t. → and PP(�) ≤ 〈Σ, I(Σ)〉.

Any partition pair 〈Π, Q〉 over the graph (N, →) can be represented as a relation
R〈Π,Q〉 ⊆ N × N as follows: (a, b) ∈ R〈Π,Q〉 iff ∃(α, β) ∈ Q . a ∈ α ∧ b ∈ β. Note
that if 〈Π, Q〉 is stable w.r.t. → and 〈Π, Q〉 ≤ 〈Σ, I(Σ)〉 then R〈Π,Q〉 is a simulation.
Moreover, 〈Π, Q〉 ≤ 〈Π ′, Q′〉 iff R〈Π,Q〉 ⊆ R〈Π′,Q′〉. Also note that RPP(
) = �.

Hence PP(⊂→) is the solution of the GCPP on (N, →) and 〈Σ, I(Σ)〉. In particular,
the GCPP, when applied to partition pairs of the form 〈Σ, I(Σ)〉 (plain partitions),
always has a unique solution 〈Ξ, �〉, in which moreover � is always a partial order.1

3 The GCPP Solution of Gentilini, Piazza and Policriti

To solve the GCPP, Gentilini, Piazza and Policriti [8] introduce the following operator:

Definition 4.11 in [8] (Operator σ). Let G = (N, →) and 〈Σ, P 〉 be a partition pair
over G. The partition pair 〈Π, Q〉 = σ(〈Σ, P 〉) is defined as follows:

(1σ) Π is the coarsest partition finer than Σ such that

(a) ∀α ∈ Π ∀γ ∈ Σ(α →∃ γ ⇒ ∃δ ∈ Σ((γ, δ) ∈ P ∧ α →∀ δ));

(2σ) Q is maximal such that Q ⊆ P (Π) and if (α, β) ∈ Q, then

(b) ∀γ ∈ Σ(α →∀ γ ⇒ ∃γ′ ∈ Σ((γ, γ′) ∈ P ∧ β →∃ γ′)) and

(c) ∀γ ∈ Π(α →∀ γ ⇒ ∃γ′ ∈ Π((γ, γ′) ∈ Q ∧ β →∃ γ′)).

They argue that applying σ iteratively on an initial partition pair 〈Σ0, P0〉 yields a se-
quence of partition pairs 〈Σi, Pi〉i≥0 with 〈Σi+1, Pi+1〉 = σ(〈Σi, Pi〉). By construc-
tion, this sequence is decreasing, in the sense that 〈Σi+1, Pi+1〉 ≤ 〈Σi, Pi〉. Hence it
will reach a fixed point 〈Σk, Pk〉 = σ(〈Σk, Pk〉). This is the solution to the GCPP.

Applying this, they give a partitioning algorithm to solve the GCPP. We have in-
cluded it here as Algorithm 1 and call it PAGPP . It takes as input a graph (N, →) and a
transitive partition pair 〈Σ, P 〉 and repeatedly calls the following functions to compute
σ until a fixed point is reached: REFINEGPP which computes the partition Π of (1σ)
and UPDATEGPP which computes the relation Q of (2σ). The boolean variable change
is set to � by REFINEGPP iff its output partition differs from its input partition. We have

1 The same reasoning extends to the GCPP applied to any partition pairs, but this requires
considering simulations on structures of the form (N, →, Σ, �) with (N, →, Σ) a labelled
graph, and � a partial order on Σ; the first clause in the definition of simulation then becomes
[a]Σ � [b]Σ .

Correcting a Space-Efficient Simulation Algorithm 521

Algorithm 1. The partitioning algorithm of [8]: PAGPP((N, →), 〈Σ, P 〉)
1: change := �; i := 0; Σ0 := Σ; P0 := P ;
2: while change do
3: change := ⊥;
4: Σi+1 := REFINEGPP(Σi, Pi, change);
5: Pi+1 := UPDATEGPP(Σi, Pi, Σi+1);
6: i := i + 1;
7: end while

Algorithm 2. The refine function of [8]: REFINEGPP(Σi, Pi, change)
1: Σi+1 := Σi;
2: for all α ∈ Σi+1 do Stable(α) := ∅; end for
3: for all γ ∈ Σi do Row(γ) := {γ′ | (γ, γ′) ∈ Pi}; end for
4: Let Sort be a reverse topological sorting of Σi w.r.t. Pi;
5: while Sort �= ∅ do
6: γ := dequeue(Sort);
7: A := ∅;
8: for all α ∈ Σi+1, α →∃ γ, Stable(α) ∩ Row(γ) = ∅ do
9: α1 := α ∩ →−1(γ);

10: α2 := α \ α1;
11: if α2 �= ∅ then change := �; end if
12: Σi+1 := Σi+1 \ {α};
13: A := A ∪ {α1, α2};
14: Stable(α1) := Stable(α) ∪ {γ};
15: Stable(α2) := Stable(α);
16: end for
17: Σi+1 := Σi+1 ∪ A;
18: Sort := Sort \ {γ};
19: end while
20: return Σi+1;

included the REFINEGPP function as Algorithm 2. In line 4 of this algorithm, a “reverse
topological sorting of Σi w.r.t. Pi” indicates an ordered listing of the elements of Σi

such that if (γ, δ) ∈ Pi then δ occurs prior to γ.

4 Incorrectness of the Fixed-Point Operator

Following the definition of σ, the authors claim that for any partition pair 〈Σ, P 〉, if
〈Π, Q〉 = σ(〈Σ, P 〉) then Q is acyclic. We give an example that counters this claim.

Counterexample 1. Consider the graph in Fig. 1(a) and the partition pair 〈Σ, P 〉 with
Σ = {α, β, γ, δ} as depicted and P = I(Σ)∪{(β,δ), (δ,γ)}. Let 〈Π, Q〉 = σ(〈Σ, P 〉),
then

Π = {α1, α2, β, γ, δ} Q = I(Π) ∪ {(α1, α2), (α2, α1), (β, δ), (δ, γ)}
where α1 = {a1} and α2 = {a2}. Q is not acyclic, which counters the claim. ��

522 R. van Glabbeek and B. Ploeger

α a1 a2

γ

c

β

b

δ

d

(a)

αa1a0 a2

γ

c

β

b

δ

d

(b)

Fig. 1. Counterexamples for (a) acyclicity of Q and (b) well-definedness of σ

This counterexample shows that applying σ to a given partition pair does not necessarily
yield another partition pair. After all, for that the resulting relation has to be acyclic.

However, a more fundamental theorem that the authors claim to have proven, turns
out not to hold. Theorem 4.13 states that for every partition pair 〈Σ, P 〉 there exists a
unique ≤-maximal partition pair 〈Π, Q〉 ≤ 〈Σ, P 〉 satisfying conditions (a), (b) and (c)
of Definition 4.11, i.e. the σ operator is well-defined, and a function. This theorem is
countered by the following example.

Counterexample 2. Consider the graph in Fig. 1(b) and the partition pair 〈Σ, P 〉 with
Σ = {α, β, γ, δ} as depicted and P = I(Σ)∪{(β, γ), (γ, δ)}. Let 〈Π, Q〉 and 〈Π ′, Q′〉
be partition pairs such that:

Π = {α0, α1, β, γ, δ} Q = I(Π) ∪ {(α0, α1), (α1, α0), (β, γ), (γ, δ)}
Π ′ = {α′0, α

′
1, β, γ, δ} Q′ = I(Π ′) ∪ {(α′0, α

′
1), (α

′
1, α
′
0), (β, γ), (γ, δ)}

where α0 = {a0, a1}, α1 = {a2}, α′0 = {a0} and α′1 = {a1, a2}. Both 〈Π, Q〉 and
〈Π ′, Q′〉 satisfy conditions (a), (b) and (c) of Definition 4.11, but neither is the ≤-
largest. The only partition pair greater than both 〈Π, Q〉 and 〈Π ′, Q′〉 and at most as
large as 〈Σ, P 〉, is 〈Σ, P 〉 itself, but 〈Σ, P 〉 does not satisfy (a). Hence, this example
counters Theorem 4.13 of [8] and shows that σ is not well-defined. ��
Following Theorem 4.13, the authors present their main fixed-point theorem which
states that the solution of the GCPP over a graph G and partition pair 〈Σ, P 〉 can be
computed by applying σ to 〈Σ, P 〉 finitely many times until a fixed point is reached
(Theorem 4.14). In this theorem, the authors demand that P be transitive. One might be
inclined to think that Counterexample 2 does not affect this theorem, as we used a non-
transitive P . We now show that this is not the case: the main theorem indeed loses its
meaning due to our counterexample for Theorem 4.13. To do so, we first give an exam-
ple in which the application of σ to a transitive partition pair produces a non-transitive
partition pair.

Example 3. Consider the graph in Fig. 2(a) and the partition pair 〈Σ, P 〉 with Σ =
{α, β, γ} as depicted and P = I(Σ). Let 〈Π, Q〉 = σ(〈Σ, P 〉), then:

Π = {α1, α2, α3, β, γ} Q = I(Π) ∪ {(α3, α1), (α1, α2)}
where α1 = {a0, a1}, α2 = {a2} and α3 = {a3}. ��

Correcting a Space-Efficient Simulation Algorithm 523

α a1a0 a2 a3

β

b

γ

c

(a)

α

a4 a5

a1a0 a2 a3

β

b

γ

c

(b)

Fig. 2. (a) Example for which σ produces a non-transitive relation Q and (b) counterexample for
correctness of σ

Our final counterexample shows that σ is not suitable for computing the solution of the
GCPP, and is constructed by embedding Counterexample 2 in Example 3, such that the
first application of σ produces a non-transitive partition pair on which σ is not well-
defined.

Counterexample 4. Consider the graph in Fig. 2(b) and the partition pair 〈Σ, P 〉 with
Σ = {α, β, γ} as depicted and P = I(Σ). Let 〈Π, Q〉 = σ(〈Σ, P 〉), then:

Π = {α1, α2, α3, β, γ} Q = I(Π) ∪ {(α3, α1), (α1, α2)}

where α1 = {a0, a1}, α2 = {a2} and α3 = {a3, a4, a5}. Now, in 〈Π, Q〉 the block α3

has to be split, because α3 →∃ α3 but ¬∃δ ∈ Π . ((α3, δ) ∈ Q ∧ α3 →∀ δ)). There
are two candidate partition pairs for σ(〈Π, Q〉): α3 can be split into either α3,0 = {a4}
and α3,1 = {a3, a5} or α′3,0 = {a4, a5} and α′3,1 = {a3}. However, neither of these is
greater than the other, so a unique ≤-maximal partition pair does not exist. ��

When splitting α3 in Counterexample 4, the REFINEGPP function of algorithm PAGPP

splits the block into α3,0 and α3,1. Observe that this is wrong: a4 and a5 should not
end up in different equivalence classes because a4

→← a5. This split also results in
UPDATEGPP’s returning a cyclic relation. In the subsequent iteration of PAGPP, the ex-
ecution of REFINEGPP then fails because there is no reverse topological sorting of the
partition w.r.t. the cyclic relation (line 4).

5 An Auxiliary Fixed-Point Operator

In this section we introduce a fixed-point operator ρ to solve the GCPP and prove its
correctness. The definition of ρ is straightforward: it is based directly on the stability
condition of Sect. 2.

We emphasise that ρ is not intended to be an improvement over the σ operator of
Sect. 3 in any way: it is a less advanced operator than σ aimed to be. The purpose of σ
was to compute the solution to the GCPP efficiently, while ρ gives rise to an algorithm

524 R. van Glabbeek and B. Ploeger

that has an inferior time complexity of O(S3T) where S is the number of equivalence
classes of the GCPP solution and T the number of transitions of the input graph.

Namely, the complexity analysis of [8] uses that, as long as no fixed point is reached,
in each refinement-update step the refinement of the partition will be non-trivial, i.e.
the number of blocks increases. As a consequence, there will be at most S refinement-
update steps before the algorithm terminates. Such an analysis is not appropriate for ρ:
applying ρ repeatedly could involve many steps in which the partition does not change.
Consequently, the number of iterations of the algorithm is bounded merely by the size
of a relation on the eventual partition, i.e. by S2.

The sole purpose of ρ is to serve as an auxiliary operator for establishing the cor-
rectness of the algorithm that we present in Sect. 6. That algorithm has the same time
complexity as PAGPP and does not correspond to any fixed-point operator, as we show
in the same section.

Definition 1 (Operator ρ). Let 〈Σ, P 〉 be a transitive partition pair over a graph
(N, →). Then ρ(〈Σ, P 〉) is the ≤-largest partition pair 〈Π, Q〉 ≤ 〈Σ, P 〉 satisfying

(1) ∀α, β ∈Π . ∀γ ∈Σ . ((α, β)∈Q∧α →∃ γ ⇒ ∃δ ∈Σ . ((γ, δ)∈P ∧β →∀ δ)).

Alternatively, ρ could be defined just like σ of Definition 4.11, but insisting that its
input partition pair is transitive, and omitting clause (c). It is not hard to check that this
definition is equivalent to the one above. The correctness of Definition 1 is ensured by
the following.

Proposition 1. Let 〈Σ, P 〉 be a transitive partition pair over a graph (N, →). Then
there exists a ≤-largest partition pair 〈Π, Q〉 ≤ 〈Σ, P 〉 that satisfies (1). Moreover, Q
is transitive.

Proposition 2. The operator ρ is monotone with respect to ≤: if 〈Σ, P 〉 and 〈Σ′, P ′〉
are transitive partition pairs with 〈Σ, P 〉 ≤ 〈Σ′, P ′〉, then ρ(〈Σ, P 〉) ≤ ρ(〈Σ′, P ′〉).
Since ρ(〈Σ, P 〉) ≤ 〈Σ, P 〉 and ≤ is a partial order on a finite set, we obtain:

Proposition 3. Let 〈Σ, P 〉 be a transitive partition pair over a graph. Then for some
n≥0, ρn+1(〈Σ, P 〉)=ρn(〈Σ, P 〉), i.e. repeated application of ρ leads to a fixed point.

The solution to the GCPP over an input graph G and an initial partition pair 〈Σ, P 〉 over
G can be obtained by repeatedly applying ρ to 〈Σ, P+〉. The following lemmata say that
as soon as a fixed point is reached, the resulting partition pair is stable. Moreover, each
of the intermediate partition pairs is larger than or equal to the solution of the GCPP. It
then follows that the obtained fixed point is in fact the solution to the GCPP.

Lemma 1. Let 〈Σ, P 〉 be a transitive partition pair over a graph (N, →).
Then ρ(〈Σ, P 〉) = 〈Σ, P 〉 if and only if 〈Σ, P 〉 is stable with respect to →.

Lemma 2. Let 〈Σ, P 〉 and 〈Π, Q〉 be partition pairs over a graph G, with Q transitive,
and let 〈Ξ, �〉 be the solution of the GCPP over G and 〈Σ, P 〉. If 〈Ξ, �〉 ≤ 〈Π, Q〉
then 〈Ξ, �〉 ≤ ρ(〈Π, Q〉).
Theorem 1. Let 〈Σ, P 〉 be a partition pair over a graph G = (N, →) and 〈Ξ, �〉 be
the solution of the GCPP over G and 〈Σ, P 〉. Let n ≥ 0 be such that ρn+1(〈Σ, P+〉) =
ρn(〈Σ, P+〉). Then ρn(〈Σ, P+〉) = 〈Ξ, �〉.

Correcting a Space-Efficient Simulation Algorithm 525

6 A Correct and Efficient Algorithm

Our repaired partitioning algorithm is called PA, see Algorithm 3. The variable change
and the input graph (N, →) have global scope: they can be accessed from any function.
Note however, that UPDATEGPP does not access change.

Algorithm 3. The repaired partitioning algorithm: PA((N, →), 〈Σ, P 〉)
1: Σ1 := REFINE(Σ,P);
2: P1 := UPDATEGPP(Σ, P, Σ1);
3: change := �; i := 1;
4: while change do
5: change := ⊥;
6: Σi+1 := REFINE(Σi, Pi);
7: Pi+1 := UPDATEGPP(Σi, Pi, Σi+1);
8: i := i + 1;
9: end while

Our corrections of the algorithm are two. Firstly, it is ensured that at least two
refinement-update steps are taken before the algorithm terminates (lines 1 and 2). The
necessity of this correction is explained in Sect. 6.1. Secondly, the most important error
— the one resulting from the incorrect σ operator — is repaired by the new REFINE

function, Algorithm 4. It contains a few minor improvements over REFINEGPP : using
list notations for variable Sort and preventing empty blocks from being added to Π .
However, the actual correction is in line 21: if for some γ ∈ Σ and α ∈ Π with
α →∃ γ we have Stable(α) ∩ Row(γ) �= ∅ then we add γ to Stable(α).

We use the ρ operator of Sect. 5 to prove correctness of PA in Sect. 6.2. Its space
and time complexities are the same as for PAGPP: no additional space is needed and
the corrections do not increase the time complexity. Finally, in Sect. 6.3 we show that
there is no fixed-point operator that captures the refinement performed by our REFINE

function.

6.1 The Correction of Another Mistake

Apart from the error in PAGPP that results from the incorrect σ operator, we found
another mistake in the algorithm. We describe it in this section and propose a solution.
The mistake is shown by the following example.

Example 5. Consider the graph G = (N, →) on the right and
the partition pair 〈Σ, P 〉 with Σ = {α, β} as depicted and
P = I(Σ) ∪ {(α, β)}. Observe that the solution to the GCPP
over G and 〈Σ, P 〉 is 〈Ξ, �〉 with Ξ = {α0, α1, β} and � =
I(Ξ) ∪ {(α1, α0)} where αi = {ai}. After the first iteration
of PAGPP(G, 〈Σ, P 〉), we have Σ1 = Σ0 = Σ and P1 =
I(Σ). The algorithm then terminates because change = ⊥, and
〈Σ1, P1〉 is its answer to the GCPP over G and 〈Σ, P 〉. Obvi-
ously 〈Σ1, P1〉 �= 〈Ξ, �〉, so this answer is wrong. ��

αa0 a1

β

b

526 R. van Glabbeek and B. Ploeger

Algorithm 4. The repaired refine function: REFINE(Σ, P)
1: Π := Σ;
2: for all α ∈ Π do Stable(α) := ∅; end for
3: for all γ ∈ Σ do Row(γ) := {γ′ | (γ, γ′) ∈ P}; end for
4: Let Sort be a reverse topological sorting of Σ w.r.t. P ;
5: while Sort �= [] do
6: γ := head(Sort);
7: A := ∅;
8: for all α ∈ Π , α →∃ γ do
9: if Stable(α) ∩ Row (γ) = ∅ then

10: α1 := α ∩ →−1(γ);
11: α2 := α \ α1;
12: Π := Π \ {α};
13: A := A ∪ {α1};
14: Stable(α1) := Stable(α) ∪ {γ};
15: if α2 �= ∅ then
16: change := �;
17: A := A ∪ {α2};
18: Stable(α2) := Stable(α);
19: end if
20: else
21: Stable(α) := Stable(α) ∪ {γ};
22: end if
23: end for
24: Π := Π ∪ A;
25: Sort := tail(Sort);
26: end while
27: return Π ;

The correctness of PAGPP hinges on the theory that whenever REFINEGPP(Π,Q,change)
returns its input partition Π , and thus fails to split any block in Π , then also the relation
Q will be unaffected by UPDATEGPP, i.e. UPDATEGPP(Π, Q, Π) returns Q. This theory
is the upshot of Theorem 4.15 in [8] and is essential in the complexity analysis of the
algorithm. However, the above example shows that it does not hold in general.

In the next section we show that this theory does hold under the condition that Q itself
is obtained as output of UPDATEGPP (Proposition 5). Therefore, this error in PAGPP

can be fixed, without violating the complexity analysis, by insisting that at least two
refinement-update steps are performed prior to termination.

6.2 Correctness of PA

From here on we will use the correctness of the function UPDATEGPP , as established by
Gentilini et al. [9]. This correctness can be summarised as follows:

Proposition 4. Let 〈Σ, P 〉 be a partition pair over a graph (N, →), and Π be a par-
tition over N that is finer than Σ. Then there exists a unique relation Q ⊆ P (Π)
satisfying condition (2σ) of Definition 4.11. Moreover, this relation is returned by
UPDATEGPP(Σ, P, Π).

Correcting a Space-Efficient Simulation Algorithm 527

Using this, we obtain the result promised in Sect. 6.1: the following proposition implies
that if a call to REFINE in the while-loop of PA does not split any blocks, then the
subsequent call to UPDATEGPP will return its input relation. The requirement that this
relation has been computed by a previous call to UPDATEGPP is guaranteed by line 2.

Proposition 5. Let 〈Σ, P 〉 and 〈Π, Q〉 be partition pairs over a graph such that Π is
finer than Σ and UPDATEGPP(Σ, P, Π) returns Q. Then UPDATEGPP(Π, Q, Π) also
returns Q.

Let 〈Σi, Pi〉1≤i≤k be the sequence of partition pairs produced by PA. The following
proposition says that every Pi is acyclic and that the sequence is decreasing. The former
implies that PA will never deadlock due to the inability to find a reverse topological
sorting (see line 4 of REFINE). The latter implies that the algorithm terminates.

Proposition 6. Let 〈Σ, P 〉 be a partition pair over a graph (N, →), REFINE(Σ, P)
return Π and UPDATEGPP(Σ, P, Π) return Q. Then 〈Π, Q〉 is a partition pair with
〈Π, Q〉 ≤ 〈Σ, P 〉.
Corollary 1. For any graph G and any partition pair 〈Σ, P 〉 over G, the algorithm
PA(G, 〈Σ, P 〉) terminates. ��
The following lemmata state that REFINE and UPDATEGPP converge towards a fixed
point at least as fast as ρ without ever diverging from the path towards the GCPP solu-
tion. In combination with the monotony of ρ (Proposition 2) this implies the correctness
of our algorithm.

Lemma 3. Let 〈Σ, P 〉 be a partition pair over a graph (N, →), REFINE(Σ, P) return
Π , and UPDATEGPP(Σ, P, Π) return Q. Then 〈Π, Q+〉 ≤ ρ(〈Σ, P+〉).
Lemma 4. Let 〈Σ, P 〉 and 〈Π, Q〉 be partition pairs over a graph G = (N, →),
〈Ξ, �〉 be the solution of the GCPP over G and 〈Σ, P 〉, and 〈Ξ, �〉 ≤ 〈Π, Q〉. Let
REFINE(Π,Q) return Π ′ and UPDATEGPP(Π,Q,Π ′) return Q′. Then 〈Ξ,�〉 ≤ 〈Π ′,Q′〉.
Theorem 2. Let 〈Σ, P 〉 be a partition pair over a graph G = (N, →). Let k be the
value of variable i upon termination of PA(G, 〈Σ, P+〉). Then 〈Σk, Pk〉 is the solution
of the GCPP over G and 〈Σ, P 〉.

6.3 No Fixed-Point Operator

We now show that there is no (functional) fixed-point operator that captures the par-
tition refinement performed by REFINE, i.e. a function π such that for any partition
pairs 〈Σ, P 〉 and 〈Π, Q〉 with 〈Π, Q〉 = π(〈Σ, P 〉), REFINE(Σ, P) returns Π . More
specifically, we show that the partition returned by REFINE is not uniquely defined, but
depends on the particular reverse topological sorting that is chosen in line 4.

Example 6. Consider the graph G = (N, →) of Fig. 3 and the partition pair 〈Σ, P 〉
with Σ = {α, β, γ, δ, ε} as depicted and P = I(Σ) ∪ {(β, δ), (δ, γ)}. Then S =
[ε, γ, δ, β, α] and S′ = [γ, δ, β, ε, α] are reverse topological sortings of Σ with respect
to P . Let Π and Π ′ be the partitions returned by REFINE(Σ, P) on sortings S and S′

respectively. Then Π = {{a0}, {a1}, {a2}} and Π ′ = {{a0, a1}, {a2}}. ��

528 R. van Glabbeek and B. Ploeger

αa1a0 a2

γ

c

β

b

δ

d

ε

e

Fig. 3. Example on which REFINE does not return a uniquely defined partition

Similar to the construction of Counterexample 4, this example can be embedded in
Example 3 to obtain an example with a transitive relation for which the partition after
the second refinement depends on the chosen reverse topological sorting.

7 Conclusions

The correspondence between the simulation problem for finite, labelled graphs and the
generalised coarsest partition problem (GCPP) for unlabelled graphs can be easily es-
tablished. We have shown that the σ operator defined by Gentilini et al. [8] to solve the
GCPP is flawed. In particular, when applied to a partition pair, the result is not neces-
sarily another partition pair or even well-defined. Moreover, when applied repeatedly to
a transitive partition pair, convergence towards a unique fixed point is not guaranteed.
Thereby we have shown that σ is not suitable for solving the GCPP. On the counterex-
ample for the latter property, the algorithm of [8] that computes σ, produces a wrong
result in which two simulation-equivalent states are put in different equivalence classes.

We have repaired this algorithm such that it correctly computes the solution of the
GCPP. Apart from correcting the error that results from the flaws in the σ operator, we
also corrected a mistake that caused premature termination of the algorithm on certain
input. Our algorithm benefits from the key ideas behind the original partitioning algo-
rithm and has the same space and time complexities. We have proven its correctness
using an auxiliary operator ρ of which we have shown that it solves the GCPP, though
inefficiently. Finally, we have shown that no operator can be defined that captures the
partition refinement performed in every iteration of our algorithm.

Another way to repair the algorithm of [8] may be to use the relation P+ instead of
P in REFINEGPP . The so obtained algorithm would converge to a fixed point slightly
slower than ours. More importantly, due to the cost of computing the transitive closure
in each iteration, the time complexity would not match that of the original algorithm.

Acknowledgements. We would like to thank Raffaella Gentilini and Carla Piazza for
answering some of our questions about their paper and providing us with their imple-
mentation of the algorithm.

References

1. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. Journal of the ACM 42(1),
232–268 (1995)

2. Bloom, B., Paige, R.: Transformational design and implementation of a new efficient solution
to the ready simulation problem. Science of Computer Programming 24(3), 189–220 (1995)

Correcting a Space-Efficient Simulation Algorithm 529

3. Bustan, D., Grumberg, O.: Simulation-based minimization. ACM Transactions on Computa-
tional Logic 4(2), 181–206 (2003)

4. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory efficient algorithms for
the verification of temporal properties. In: Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS,
vol. 531, pp. 233–242. Springer, Heidelberg (1991)

5. Dams, D., Grumberg, O., Gerth, R.: Generation of reduced models for checking fragments
of CTL. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 479–490. Springer, Hei-
delberg (1993)

6. Emerson, E.A., Halpern, J.Y.: ”Sometimes” and ”Not Never” revisited: On branching versus
linear time temporal logic. Journal of the ACM 33(1), 151–178 (1986)

7. Evangelista, S., Pradat-Peyre, J.-F.: Memory efficient state space storage in explicit software
model checking. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 43–57. Springer,
Heidelberg (2005)

8. Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation: Coarsest partition
problems. Journal of Automated Reasoning 31(1), 73–103 (2003)

9. Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation: Coarsest partition
problems. RR 12-2003, Dep. of Computer Science, University of Udine, Italy (2003)

10. van Glabbeek, R.J., Ploeger, B.: Correcting a space-efficient simulation algorithm. CS-Report
08-06, Eindhoven University of Technology (2008)

11. Groote, J.F., Vaandrager, F.W.: Structured operational semantics and bisimulation as a con-
gruence. Information and Computation 100(2), 202–260 (1992)

12. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite
graphs. In: 36th Annual Symposium on Foundations of Computer Science (FOCS 1995), pp.
453–462. IEEE Computer Society Press, Los Alamitos (1995)

13. Holzmann, G.J.: An improved protocol reachability analysis technique. Software Practice
and Experience 18(2), 137–161 (1988)

14. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science 27, 333–
354 (1983)

15. Kucera, A., Jancar, P.: Equivalence-checking on infinite-state systems: Techniques and re-
sults. Theory and Practice of Logic Programming 6(3), 227–264 (2006)

16. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving abstrac-
tions for the verification of concurrent systems. Formal Methods in System Design 6(1),
11–44 (1995)

17. Park, D.M.R.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS
1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

18. Ranzato, F., Tapparo, F.: A new efficient simulation equivalence algorithm. In: Proc. 22nd
Annual IEEE Symposium on Logic in Computer Science (LICS 2007), pp. 171–180. IEEE
Computer Society Press, Los Alamitos (2007)

19. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proc. 5th
Annual ACM Symposium on Theory of Computing (STOC 1973), pp. 1–9. ACM, New York
(1973)

20. Tan, L., Cleaveland, R.: Simulation revisited. In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and
TACAS 2001. LNCS, vol. 2031, pp. 480–495. Springer, Heidelberg (2001)

Semi-external LTL Model Checking�

Stefan Edelkamp1, Peter Sanders2, and Pavel Šimeček3

1 Faculty of Informatics, Dortmund University of Technology, Germany
2 Faculty of Informatics, University of Karlsruhe, Germany

3 Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. In this paper we establish c-bit semi-external graph algorithms, – i.e.,
algorithms which need only a constant number c of bits per vertex in the internal
memory. In this setting, we obtain new trade-offs between time and space for I/O
efficient LTL model checking. First, we design a c-bit semi-external algorithm
for depth-first search. To achieve a low internal memory consumption, we con-
struct a RAM-efficient perfect hash function from the vertex set stored on disk.
We give a similar algorithm for double depth-first search, which checks for pres-
ence of accepting cycles and thus solves the LTL model checking problem. The
I/O complexity of the search itself is proportional to the time for scanning the
search space. For on-the-fly model checking we apply iterative-deepening strat-
egy known from bounded model checking.

1 Introduction

Graph search algorithms such as breadth-first search (BFS), depth-first search (DFS),
A*, and their variants, play an important role in model checking, as well as in other
branches of computer science. All use duplicate detection in order to recognize when
the same vertex is reached via alternative paths in a graph. This traditionally involves
storing already explored vertices in random access memory (RAM) and checking newly
generated vertices against the stored vertices. However, the available amount of RAM
severely limits the range of problems that can be solved with this approach. Although
many clever memory saving techniques, such as state space reduction, abstraction, and
compression, have been developed, all are eventually limited in terms of scalability,
and many practical graph search problems are too large to be solved using any of these
techniques. Relying on the virtual memory slows down the exploration due to an ex-
cessive number of page faults. Over the past few years, several researchers have shown
that the scalability of graph search algorithms can be dramatically improved by using
external memory, such as disk, to store generated vertices for use in duplicate detection.
However, this requires different search strategies to eliminate the impact of the several
orders of magnitude difference in random access speed between RAM and disk.

External memory algorithms [20] carefully organize the access to disk. The effi-
ciency of algorithms is then measured in number of block I/O operations performed.
The frequently used I/O pattern is external file scanning, processing a stream of records

� This work has been partially supported by the Grant Agency of Czech Republic grant No.
201/06/1338, the Academy of Sciences grant No. 1ET408050503, DFG grant SA 933/3-1 and
DFG grant ED 74/4-1.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 530–542, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Semi-external LTL Model Checking 531

stored consecutively on disk. If the block size is B, the number of block accesses
(I/Os) for scanning N nodes is O(scan(N)) = O(N/B). Another important opera-
tion is external sorting. Given that the RAM can contain M nodes it has a complexity
of O(sort(N)) = O(N

B logM/B
N
B) I/Os.

Enumerative model checking is a search in an implicitly given state space graph (im-
plicit graph) G = (V, E) induced by an initial vertex s and a successor generation func-
tion succ. Vertices correspond to states and transitions to edges. The maximal size of the
vertex, vmax, depends on the encoding and denotes the length of a state vector. Reacha-
bility is one of the simplest model checking problems. If G is undirected, the complexity
of the external memory variant of BFS for solving the reachability problem is bounded
by O(sort(|E|) + scan(|V |)) I/Os [21]. For directed graphs, the complexity raises to
O(sort(|E|)+ l ·scan(|V |)) [26], where l := max{δ(s, u)−δ(s, v)+1 | (u, v) ∈ E} is
the length of the longest back-edge in the BFS graph or its locality [27]. The locality is
bounded by the length of the shortest counter-example δ∗ := min{δ(s, f) | f ∈ F} (in
case of an error) and by the eccentricity of s (max. BFS level) εs := max{δ(s, v) | v ∈
V } (in case of no error), where F ⊆ V is a set of accepting vertices.

Semi-external graph algorithms [1] are algorithms, which allocate O(|V |) machine
words in the internal memory. Thus, they can store O(vmax) ≥ O(log |V |) bits of data
per vertex. Since the internal memory is the limiting factor for such algorithms, it makes
sense to further reduce the memory requirement to a small constant number of bits per
vertex. Therefore, we define c-bit semi-external search algorithms, which take at most
c bits per vertex in the internal memory. Considering small c, with Gigabytes of RAM,
and given that state vectors in model checking are large, such algorithms allow us to
handle spaces that are orders of magnitudes larger than the main memory.

We present a semi-external solution to the LTL model checking problem, which
amounts to finding an accepting cycle in the state space graph of a Büchi automa-
ton [12]. The algorithm we present has an I/O complexity equal to the complexity of
I/O-efficient reachability. The approach relies on the I/O-efficient external construction
of a minimal perfect hash function (MPHF) [7,8], i.e., a one-to-one correspondence be-
tween V and {0, . . . , |V |− 1}. It allows compressing V to c|V | bits for small constants
c. Thereby, we solve a problem considered in a series of preceding papers [15,4,5] that
have I/O complexities higher than the reachability analysis.

The paper is organized as follows. First, we define c-bit semi-external algorithms as
needed for implicit graph search and explain the generation of space-efficient minimal
perfect hash functions. Subsequently, we illustrate our semi-external solution to the
LTL model checking problem using the constructed perfect hash function, and analyze
its I/O complexity. Afterwards, we address the problem to find the counter-example
on-the-fly. For the purpose of comparison, we give a brief overview of related work
and put our complexity results into context. And finally, we provide an experimental
comparison of existing algorithms for I/O efficient LTL model checking.

2 c-Bit Semi-external Graph Algorithms

Semi-external graph algorithms [1] allow to store O(|V |) vertices in the internal mem-
ory, thus restricting graph algorithms to store internally only information about vertices,

532 S. Edelkamp, P. Sanders, and P. Šimeček

but not about all edges. Although this definition of semi-external graph algorithms ap-
pears practical for explicit graphs, it is too general for algorithms on implicit graphs.
E.g., almost every internal memory graph algorithm on implicit graphs would be con-
sidered as semi-external, since graph edges are given implicitly and there is no need
to store them. However, due to large state vector sizes it is apparent that O(|V |) items
may easily exceed the amount of available internal memory. For this reason, we study
memory consumption in more detail. To derive exact bounds on internal memory con-
sumption, we give a definition of a subclass of semi-external graph algorithms.

Definition 1. (c-bit Semi-External Algorithm) The graph algorithm A is called c-bit
semi-external for c ∈ R

+, if for each implicit graph G = (V, E) the internal memory
requirements of A are at most O(vmax) + c · |V | bits.

O(vmax) stands for the internal memory consumed by a program code, auxiliary fixed
sized variables, and storage of a constant amount of vertices. The value c · |V | stands
for the internal memory consumed by information about vertices. Including vmax in the
complexity is necessary, since this value differs for different graphs1 – otherwise, for a
bound of O(1) + c · |V | bits, we could always find a graph requiring vmax that exceeds
the constant in O(1), which would prohibit storing even a constant number of vertices.
Including the state vector size in the definition of semi-external algorithm also takes a
lower bound of log log u+(log2 e)|V |+O(log |V |) bits [16] on the space of an MPHF
into account, where u denotes the number of all possible states (including unreachable
ones) and e is Euler’s number.

In the remainder of this section, we refer to results on memory-efficient construction
of MPHFs and give sufficient details on the space and the I/O complexity of used al-
gorithms. We introduce a c-bit semi-external depth-first search with use of MPHF. Its
I/O complexity is O(scan(|V |)) plus the complexity of the hash function construction.
There is no known external algorithm computing the DFS order with such a low I/O
complexity on general graphs. Third, we extend this DFS implementation to find ac-
cepting cycles in order to solve the LTL model checking problem with the same I/O
complexity.

2.1 Memory Efficient Minimal Perfect Hash Function

Perfect hashing is a space efficient way of associating unique identifiers with the ele-
ments of a static set V ⊆ U . A perfect hash function maps V ⊆ U to unique values
in the range {0, . . . , N − 1}, for some appropriate value of N . A minimal perfect hash
function is a perfect hash function with N = |V |. Consequently, a minimal perfect hash
function is a one-to-one correspondence between V and {0, . . . , |V | − 1}.

Surprisingly, after 23 years of research, an asymptotically space optimal, practical
algorithm for generating MPHFs was recently discovered [7]. The external memory
variant, referred to as EPH algorithm, was given in [8]. Although the I/O complexity of
this EPH algorithm is not analyzed in [8], it is clear that it is dominated by the need to

1 The binary vertex representation vmax takes obviously at least log |V | bits. In the model check-
ing case, it is usually much more.

Semi-external LTL Model Checking 533

Procedure Perform-DFS(s, succ)
V := Enumerate-BFS(s, succ)
h := Construct-MPHF(V)
Depth-First-Search(s, succ, h)

Procedure Depth-First-Search(s, succ, h)
Vars: visited : Internal Bit Array[1..n] = (0,.., 0)

dfsStack : External Stack of Vertices
visited[h(s)] := 1
dfsStack.push(s)
while (not dfsStack.empty())

u := dfsStack.top()
if ∃v ∈ succ(u). visited[h(v)] = 0 then

dfsStack.push(v)
visited[h(v)] := 1

else
dfsStack.pop()

Fig. 1. c-bit Semi-External Depth-First Search

sort all items by their hash signature in a partitioning step. MPHFs constructed by EPH
can be stored in less than 4 bits per item.2

The Heuristic EPH algorithm, published also in [8], differs from EPH in the choice
of the hash function. It results in a substantial speed-up in both construction and search
times, but incurs additional memory overhead per bucket. In our implementation, it
needs 1 additional bit per vertex, i.e., our implementation of the Heuristic EPH requires
5 bits per vertex.

2.2 Depth-First Search

The main observation for graph search is that given a perfect hash function h, algorithms
like plain DFS, BFS, and A* need only one bit per vertex storing whether it has already
been visited. The general approach applying a bit-array for tracking reached vertices in
DFS is illustrated in Fig 1 as procedure Depth-First-Search.

Our algorithm first enumerates all reachable vertices using external BFS, which per-
forms O(l·scan(|V |)+sort(|E|)) operations (Enumerate-BFS) [18,26]. Then the EPH
algorithm constructs the MPHF with I/O complexity O(sort(|V |)) (Construct-MPHF)
– this complexity follows from [8], although it is not explicitly stated there.

The stack in procedure Depth-First-Search can be stored on disk. The procedure
performs exactly |V | push operations and |V | pop operations. It is easy to implement
the stack in the way that the I/O-complexity of the procedure is O(scan(|V |)). Thus
the overall I/O complexity of the algorithm (procedure Perform-DFS), including graph
generation and hash function construction, is O(l ·scan(|V |)+sort(|E|)+sort(|V |)+
scan(|V |)) = O(l · scan(|V |) + sort(|E|) + sort(|V |)). In implicit graphs, we have

2 Although [8, Table 2] shows a value higher than 4 bits per item for n = 108, it is caused by
a poor choice of the bucket size; i.e., b = 20 causes buckets to contain less than 96 items per
bucket on average. In our implementation of EPH, we always choose a better bucket count,
which guarantees that each bucket contains at least 128 items on average. This amount assures
that the fixed cost per bucket is divided into sufficiently many items to keep the overall costs
below 4 bits per item.

534 S. Edelkamp, P. Sanders, and P. Šimeček

Procedure Perform-DDFS(s, succ)
Vars: V : Vertex Set;

h: Perfect Hash Function;
V := Enumerate-BFS(s, succ)
h := Construct-MPHF(V)
Double-Depth-First-Search(s, succ, h)

Procedure Double-Depth-First-Search(s, succ, h)
Vars: visited : Internal Bit Array[1..n] := (0,.., 0);

F : List of Accepting Vertices;
F := Depth-First-Search-1(s, succ, h)
visited := (0, ..., 0)
for each i in F do

if visited[h(i)] = 0 then
if (Depth-First-Search-2(i, succ, h))

return ’cycle found’
return ’no cycle’

Fig. 2. c-bit Semi-External Double Depth-First Search

|V | < |E|, because all vertices contained in V induced by s and succ are reachable.
Therefore the I/O complexity simplifies to O(l · scan(|V |) + sort(|E|)).

With EPH minimum perfect hashing the algorithm is 5-bit semi-external, since less
than 4 bits per vertex are needed for storing h, and 1 bit per vertex is needed for visited.

2.3 Double Depth-First Search

The LTL model checking problem amounts to detecting accepting cycles in the global
state space graph. It is possible to find an accepting cycle with the double depth-first
search algorithm [13, Algorithm A]. The algorithm performs the first DFS to find a list
F of all accepting vertices sorted in DFS postorder. The second DFS explores the graph
gradually from all vertices in F . The pseudo code of this algorithm is shown in Fig. 2.

Depth-First-Search-1 is a modified version of Depth-First-Search, which appends
an accepting vertex to F , while it is removed from dfsStack. Depth-First-Search-2 is
a modified version of Depth-First-Search, which finishes with return value true, if it
wants to add its initial vertex to dfsStack in the main loop (and so it finds a path from
the initial vertex to itself). For simplicity and memory efficiency, we assume that array
visited is shared by both procedures. The correctness of the algorithm is proven in [13].

These two modifications of Depth-First-Search have clearly the same I/O complex-
ity as the original procedure. Therefore, the overall I/O complexity of Perform-DDFS
remains at O(l · scan(|V |) + sort(|E|)). Moreover, they share the same hash function
and memory space for the visited field. As in the DFS case, with EPH the algorithm is
5-bit semi-external, since less than 4 bits per vertex are needed for storing h, and 1 bit
per vertex is needed for visited.

2.4 General Graph Search

We have shown a way to solve the LTL model checking problem using double depth-first
search with a visited vertex set represented in form of a minimum perfect hash func-
tion. We have chosen double depth-first search, because it is the most time and memory
efficient algorithm for searching accepting cycles in the internal memory and it sustains
the efficiency in semi-external setting. For example, nested depth-first search [13] has
higher memory demands and its on-the-fly nature is not a big advantage, since for MPHF
construction, the algorithm would have to enumerate the entire vertex set anyway.

Semi-external LTL Model Checking 535

Procedure General-Search
Vars: V : Vertex Set;

h: Perfect Hash Function;
V := External-BFS(s, succ)
h := Construct-MPHF(V)
Search(s, succ, h)

Fig. 3. General c-bit Semi-External Graph Search

Besides combination of MPHF and LTL model checking, we can also consider other
applications in model checking. E.g., for global CTL model checking [12], graph de-
composition to strongly connected components (SCCs) is needed, which is easy using
Kosaraju-Sharir’s algorithm (SCC decomposition using forward and backward DFS
[25]). If the implicit definition also contains backward successor generation, the al-
gorithm for SCC decomposition is straightforward. This way, employing MPHF gives
us a handle to many space efficient semi-external model checking algorithms for the
prize of single state space generation needed for MPHF construction. In fact, all such
general search algorithms on implicit graphs can follow the semi-external exploration
procedure as outlined in Fig.3.

3 On-the-Fly LTL Model Checking

The idea of an increasing depth bound to obtain short lasso shaped counter-examples as
witnesses for a falsified LTL property refers to pioneering work of [6], which searches
for a counter-example in the state space graph unrolled to a fixed depth k.

A similar iterative-deepening strategy can be easily applied to our case. Since we use
external breadth-first search to generate the state space, we can search for a counter-
example every time a new level is generated. This approach has two main advantages

– The counter-example can be found before the entire graph is generated – it is found
on-the-fly. Since graph generation is the main source of I/Os, performance can be
significantly improved on inputs with existing counter-examples.

– It can produce a shorter counter-example, since the depth for its search is limited.
However, the counter-example is not necessarily the shortest.

The algorithm is derived from the one in Section 2.3 by unwinding procedure
Enumerate-BFS and moving MPHF construction and DDFS inside BFS levels gen-
eration as shown in Fig. 4.

Every search for a counter-example in an incomplete graph applies O(sort(|V |))
I/Os, determined by the I/O complexities of Construct-MPHF and Double-Depth-First-
Search. The search for a counter-example is performed after the generation of each BFS
level (one BFS iteration). With εs := max{δ(s, v) | v ∈ V } at most εs BFS iterations
are invoked. Moreover, the generation of every BFS level requires O(scan(|V |)) I/Os.
Therefore, the overall I/O complexity of the algorithm is

O(εs · sort(|V |) + l · scan(|V |) + sort(|E|)) = O(εs · sort(|V |) + sort(|E|)).

536 S. Edelkamp, P. Sanders, and P. Šimeček

Procedure Perform-IDDFS(s, succ)
Vars: V : Vertex Set;

h: Perfect Hash Function;
nextLevel: Set of Vertices;

nextLevel := {s}
while nextLevel �= ∅ do

V := V ∪ nextLevel
h := Construct-MPHF(V)
Double-Depth-First-Search(s, succ, h)
nextLevel := succ(nextLevel) \ V

Fig. 4. On-the-fly Semi-External Double Depth-First Search

Although the I/O complexity of double DFS is only scan(|V |), in practice, due to
the efforts for generating the successors of a vertex, the run time of DFS search often
substantially exceeds the run time of hash function construction (even though its I/O
complexity is sort(|V |)). Therefore, the internal memory search for a counter-example
is too expensive to be invoked after the generation of each BFS level. For this reason,
we implemented the algorithm in such a way that it measures run times of checks for
a counter-example (including hash function generation) and tries to predict the run time
on the next level. This refined threshold determination algorithm invokes a check for
counter-examples, only if the predicted time sufficiently amortizes the time for graph
generation.

4 Related Work

Since model checking amounts to graph search, our algorithm is strongly related to
external memory graph algorithms [20,11]. Most results consider the graph to be ex-
plicitly given in the external memory. Graph algorithms on explicit graphs, however,
suffer from the storage of edges in the external memory, which causes one I/O opera-
tion each time they need to access successors of a given vertex. It brings at least |V |
additional I/Os. The situation has been slightly improved for undirected graphs, where
the I/O complexity improves to O(

√|V | · scan(|V | + |E|) + sort(|V | + |E|)) [19],
but in general, state spaces in model checking are directed.

Fortunately, practical model checking is performed on state spaces given by a system
model – i.e., implicit graph definition. Thus, it avoids the expensive fetching of edges.
However, in contrast to the explicit case, the implicit representation of edges does not
allow to store the information about explored edges, which is essential to avoid re-
exploration. For this reason, it is not trivial to make algorithms on explicit graphs work
also on implicit graphs efficiently. For example, there is no known efficient implemen-
tation of depth-first search for implicit graphs.

Therefore, algorithms refer to a breadth-first traversal through the graph and em-
ploy the delayed duplicate detection technique [18,21,26]. The search procedure has to
maintain a set of visited vertices to prevent their re-exploration. Since the graphs are
large, the visited set cannot be kept completely in main memory. Most of it is stored on
an external memory device. When a new vertex is generated, it is checked against the

Semi-external LTL Model Checking 537

visited set to avoid its re-exploration. The idea of the delayed duplicate detection tech-
nique is to postpone the individual checks and perform them together in a group, for the
price of a single scan operation. The group of vertices waiting for checking against the
visited set is called candidate set. There are two basic kinds of duplicate detection: The
one making an internal memory a buffer for candidate set and the one storing candidate
set in the external memory. The first has an advantage that no sorting is needed during
duplicates removal. The latter is better, when candidate sets are too large to fit in the
internal memory and thus, using the first approach they would have to be divided into
several pieces and checked separately. Complexities of both approaches are different,
and incomparable in general.

4.1 External LTL Model Checking

The first I/O-efficient solution for the LTL model checking problem by Edelkamp and
Jabbar [15] builds on the reduction of liveness to the safety approach by Schuppan and
Biere [24] designed for symbolic exploration with BDDs. It operates on-the-fly and
applies guidance for checking liveness properties [15] with a set of heuristic functions.

Barnat et al. proposed another I/O efficient algorithm [4] for accepting cycle de-
tection. It applies the OWCTY (One Way Catch Them Young) algorithm [23,10] – an
accepting cycle detection algorithm based on topological sort. The algorithm itself is
an off-line algorithm. It generates the whole state space and then iteratively prunes the
parts of the state space that do not lead to any accepting cycle. The underlying explo-
ration strategy is breadth-first based. Later, they also proposed an on-the-fly algorithm
[5] based on the MAP (Maximal Accepting Predecessors) algorithm [9].

All three approaches were theoretically compared, experimentally evaluated and
each of them has shown its practical applicability to a certain class of problems.

4.2 Complexity Comparison

In this section, we compare the new semi-external approach to the existing external
LTL model checking algorithms, in terms of internal memory consumption and I/O
complexity (see Table 1).

Regarding the I/O complexity, the new algorithms contributed in this paper com-
pete much better than previous work. The off-line version (DDFS) has the same I/O
complexity as the external breadth-first search, which defeats existing algorithms sub-
stantially. The on-the-fly variant (IDDFS) is worse than off-line, but it is still reasonable
compared to the rest of the algorithms. Table 1 shows I/O complexities of all algorithms
and also gives I/O complexities of their versions with candidate set stored in RAM.
Note that in this case we consider a variant of the EPH algorithm with I/O complexity
O(n/M · scan(n)) (different bound for external sort) rather than O(sort(n)), because
it simplifies resulting complexities. The existing external memory algorithms are named
after their internal memory variants: L2S [15], OWCTY [4] and MAP [5].

The disadvantage of our semi-external algorithm is that it needs Ω(|V |) bits in the
internal memory – thus we can always find a graph, on which it exceeds an available
internal memory. For example, for 5-bit semi-external search on a computer with 2 GB
RAM, the algorithm cannot handle graphs with more than 2 ·230 ·8/5 ≈ 3 ·109 vertices

538 S. Edelkamp, P. Sanders, and P. Šimeček

Table 1. I/O complexities for LTL model checking

Candidate Set on Disk Candidate Set in RAM
L2S O(l · scan(f · n) + sort(f · m)) O((l + f · m/M) · scan(f · n))
OWCTY O(τ · ((εs +ψ) · scan(n)+ sort(m))) O(τ · (εs + ψ + m/M) · scan(n))

MAP O(f ·((d+f)·scan(n)+sort(f ·m))) O(f ·((d+m/M+f)·scan(n)+sort(n)))

DDFS O(l · scan(n) + sort(m)) O((l + m/M) · scan(n))
IDDFS O(εs · sort(n) + sort(m)) O((εs + m/M) · n/M · scan(n))

m = |E| . . . number of edges, n = |V | . . . number of vertices,
f = |F | . . . number of accepting vertices, τ . . . length of the longest path in the SCC graph,
εs . . . eccentricity of the initial vertex, d . . . diameter of the graph,
l . . . locality, i.e., length of the longest back edge in breadth-first search graph
ψ . . . length of the longest path in the graph going through trivial strongly connected

components (without self-loops).

(since it stores 5 bits per vertex internally). In contrast, purely external algorithms are
limited only by the capacity of the external memory. Nevertheless, considering that
one vertex is vmax bytes long, we get that, with 2 Gigabytes of RAM our algorithm
can handle state spaces which need approximately 3 · vmax Gigabytes to be stored
externally. For practical values of vmax (20-1000 from our experience on models from
the Benchmark for Explicit Model Checkers [22]) the state space would be hundreds
or thousands of Gigabytes large. When manipulating such a large piece of data, our
algorithm takes advantage of lower I/O complexity and as a result, it can be much faster
than previous algorithms, which makes a price of 5 bits of the internal memory per
vertex quite reasonable.

5 Experimental Results

In order to obtain experimental evidence about the behavior of our algorithm in practice,
we implemented three existing external memory LTL model checking algorithms (as
introduced in Section 4) and compared their run times and allocated disk space to both
versions (DDFS and IDDFS) of the new semi-external algorithm.

All algorithms have been implemented on top of the DIVINE library [3], providing
the state space generator, and the STXXL library [14], providing the I/O primitives.
Experiments were run on a Linux workstation with 2 GHz Intel Xeon processor, the
main memory was limited to 2 GB, the disk space to 60 GB and wall clock time limit
was set to 120 hours. For compilation of sources we used GNU C++ compiler with
optimization level 2. Algorithm L2S was implemented as a procedure that performs the
graph transformation as suggested in [15] and then employs I/O efficient breadth-first
search to check for a counter-example. Note, that our implementation of L2S does not
include the A* search heuristics and, hence, can be less efficient when searching for
an existing counter-example. Algorithms DDFS and IDDFS were implemented using
Heuristic EPH [8] (for the sake of speed), thus one additional bit per vertex is allocated
in comparison to EPH.

Semi-external LTL Model Checking 539

Table 2. Experimental results for different I/O-efficient algorithms

L2S OWCTY MAP DDFS IDDFS
Experiment Time Disk Time Disk Time Disk Time Disk Time Disk
Valid Properties
Elev.2(16),P4 (OOS) 09:54 9.2 GB 07:45 16 GB 08:01 10 GB 08:03 10 GB

Lamport(5),P4 (OOS) 02:37 5.5 GB 03:16 5.7 GB 02:15 3.3 GB 02:16 3.3 GB

MCS(5),P4 (OOS) 03:27 9.8 GB 04:59 10 GB 03:42 6.2 GB 03:59 6.2 GB

Peterson(5),P4 (OOS) 18:20 26 GB 25:09 26 GB 14:19 16 GB 18:37 16 GB

Phils(16,1),P3 (OOS) 01:49 6.2 GB 02:31 7.8 GB 02:26 6.7 GB 02:54 6.7 GB

Ret.(16,8,4),P2 53:06 12 GB 07:22 3.2 GB 12:31 6.3 GB 06:26 3.4 GB 07:52 3.4 GB

Szyman.(5),P4 (OOS) 45:52 38 GB 59:35 38 GB 30:36 24 GB 34:21 24 GB

Invalid Properties
Bakery(5,5),P3 00:25 5.4 GB 68:23 38 GB <1m 16 MB 36:48 29 GB 00:01 71 MB

Szyman.(4),P2 00:00 203 MB 00:20 253 MB <1m 2 MB 00:10 237 MB <1m 8 MB

Elev.2(7),P5 00:01 130 MB <1m 6 MB <1m 2 MB <1m 4 MB <1m 6 MB

Lifts(7),P4 00:01 59 MB 00:28 475 MB <1m 4.6 MB 00:32 561 MB 00:07 239 MB

Times are given in hh:mm format, “OOS” = “out of space”, “<1m” = “below 1 minute”.

Table 3. Size of used models and internal memory used for storage of MPHF

Number MPHF Size
Model of Vertices vmax εs (bits/vertex)
Elev.2(16),P4 173,916,122 30 bytes 94 4.941
Lamport(5),P4 74,413,141 24 bytes 99 4.941
MCS(5),P4 119,663,657 28 bytes 91 4.941
Peterson(5),P4 284,942,015 32 bytes 177 4.941
Phils(16,1),P3 61,230,206 50 bytes 47 4.941
Ret.(16,8,4),P2 31,087,573 91 bytes 553 4.941
Szyman.(5),P4 419,183,762 32 bytes 223 4.941

The experimental results are listed in Tab. 2. Names of algorithms correspond to
names in Section 4. We note that just before the unsuccessful termination of L2S due to
exhausting the disk space, the BFS level size still tended to grow. This suggests that the
computation would last substantially longer if sufficient disk space would have been
available. For the same input graphs, algorithms OWCTY, MAP, DDFS and IDDFS
managed to perform the verification using a few Gigabytes of disk space only. All the
models and their LTL properties are taken from the BEEM project [22].

Measurements on models with valid properties demonstrate that DDFS is able to
successfully prove their correctness, while L2S fails. Additionally, DDFS is faster than
OWCTY on most of inputs and outperforms MAP on all inputs except for model
Elev.2(16), P4. We observe that DDFS is especially better than OWCTY on inputs
where the eccentricity of the initial vertex (Tab. 3) is high, since the first enumera-
tion phase costs almost the same time as the initial iteration of OWCTY, but the dou-
ble depth-first search is not influenced by the eccentricity, while the other iterations of
OWCTY are.

A notable weakness of DDFS is its bad performance on models with invalid proper-
ties. It does not work on-the-fly, and hence is outperformed by L2S and MAP on some
inputs. For this reason, the iterative-deepening variant (IDDFS) has been proposed in

540 S. Edelkamp, P. Sanders, and P. Šimeček

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000

st
at

e
sp

ac
e

co
ve

ra
ge

 (
in

 %
)

time (in seconds)

Swapping: Lamport(5),P4
Swapping: Phils(16,1),P3

Swapping: MCS(5),P4
I/O-efficient: Lamport(5),P4
I/O-efficient: Phils(16,1),P3

I/O-efficient: MCS(5),P4

Fig. 5. Comparison of BFS with virtual memory swapping and I/O-efficient BFS

Section 3. It is a little bit slower than DDFS on inputs with valid properties (since all
intermediate checks are useless in that case), but our measurements confirm that it is
able to find a counter-example much sooner. Actually, its run times are close to run
times of MAP, which appears to be the best choice for models with invalid properties.
In our implementation, IDDFS is designed to keep costs for intermediate checks below
20% of the run time.

We also measured the internal memory taken for MPHFs representing state spaces
(Tab. 3). Measured amounts of bits per vertex confirm theoretically achieved estima-
tions for Heuristic EPH.

Finally, to support a need for I/O-efficient algorithms, we demonstrate in Fig. 5 that
after exceeding the main memory, BFS with use of virtual memory swapping almost
stops the exploration due to excessive amount of page faults. In contrast, I/O-efficient
BFS is able to finish in reasonable time. A similar observation has been made in [2].

6 Conclusion and Discussion

With this paper we contribute c-bit semi-external DFS search for validating safety and
c-bit semi-external double DFS for validating liveness properties. For bug-hunting, we
implemented an iterative deepening variant of double DFS using the same amount of
RAM. With minimum perfect hashing with EPH, we obtained a c-value of about 5, with
Heuristic EPH used in the experiments we validated that c is less than 6.

With double DFS (DDFS) we are in many cases faster than all previous algorithms
for LTL model checking L2S [15], OWCTY [4], MAP [5] (in theory and practice).
Moreover, we saw that solving the LTL model checking problem off-line is not more
involved than state space enumeration.

As a drawback, semi-external DDFS is neither optimal, nor on-the-fly. We discussed
improvements for transforming DDFS into an on-the-fly algorithm using iterative
deepening, but currently we lack an algorithm that is linear wrt. generating the search
space. The algorithm by Edelkamp and Jabbar [15] operates on-the-fly, can be directed
towards the error, and produces optimal counter-examples, but traverses the cross-

Semi-external LTL Model Checking 541

product graph, which can be too large in many cases. MAP has a considerable I/O
complexity, and is on-the-fly only for a restricted number of properties. Another open
question is the design of optimal counter-examples providing LTL model checking al-
gorithm that is linear in the size of the search space.

A notion of c-bit semi-external algorithms makes a space consumption estimates
much closer to the theoretical lower bound [16]. An interesting question is how small
we can get the c for c-bit semi-external DFS. Both in theory and practice, we can do
somewhat better by using perfect hash functions (PHFs) with range {0, . . . , m − 1} for
m = Θ(n) rather than minimal PHFs (with m = n). We need to allocate m bits for
storing visited-bits, but we need less space for representing the hash function. Botelho et
al. [7] cites a theoretical bound of (1+(m/n−1) ln(1−n/m))n log e bits for storing the
PHF.3 Adding m and optimizing, we obtain an optimal value of m ≈ 1.302n yielding
a total space consumption of about 2.108n bits. Botelho et al. give a practical scheme
based on 3-uniform hypergraphs with m ≈ 1.23n that uses about 1.95n bits for the PHF
so that we need about 3.18n bits in total which is only about n bits off the theoretical
bound. Even for the faster and simpler construction using 2-uniform hypergraphs, we
get a slight improvement over the 5 bit solution than we obtain with MPHFs: using
m ≈ 2n, we need about 2n bits for storing the PHF yielding total space about 4n. Note
that this solution is even more computationally efficient than MPHF based schemes,
since it saves a compression step needed to construct an MPHF from a PHF.

Because of external duplicate detection, vertex enumeration is time consuming.
There are different possible approaches to tackle the problem. Given a sufficient num-
ber of file pointers, external sorting can be reduced to at most two scans over the search
space. Moreover, pipelining [14] helps a lot in reducing the number of I/Os in BFS.
Furthermore, by faster random access time, flash media might additionally reduce the
run time [17].

Due to all of these techniques, we believe that external memory model checking is
practical and can be made even more time and memory efficient.

References

1. Abello, J., Buchsbaum, A.L., Westbrook, J.: A functional approach to external graph algo-
rithms. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS,
vol. 1461, pp. 332–343. Springer, Heidelberg (1998)

2. Barnat, J.: Distributed Memory LTL Model Checking. PhD thesis, Masaryk University Brno,
Faculty of Informatics (2004)

3. Barnat, J., Brim, L., Černá, I., Moravec, P., Ročkai, P., Šimeček, P.: DiVinE – A Tool for Dis-
tributed Verification (Tool Paper). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 278–281. Springer, Heidelberg (2006)

4. Barnat, J., Brim, L., Šimeček, P.: I/O Efficient Accepting Cycle Detection. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 281–293. Springer, Heidelberg (2007)

5. Barnat, J., Brim, L., Šimeček, P., Weber, M.: Revisiting Resistance Speeds Up I/O-Efficient
LTL Model Checking. In: Proc. of TACAS. LNCS, vol. 4963, pp. 48–62. Springer, Heidel-
berg (2008)

3 For simplicity, we drop all lower order terms and arbitrarily small constants appearing in the
actual bounds.

542 S. Edelkamp, P. Sanders, and P. Šimeček

6. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

7. Botelho, F.C., Pagh, R., Ziviani, N.: Simple and space-efficient minimal perfect hash func-
tions. In: Dehne, F.K.H.A., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp.
139–150. Springer, Heidelberg (2007)

8. Botelho, F.C., Ziviani, N.: External perfect hashing for very large key sets. In: Conference on
Information and Knowledge Management (CIKM), pp. 653–662. ACM, New York (2007)

9. Brim, L., Černá, I., Moravec, P., Šimša, J.: Accepting Predecessors are Better than Back
Edges in Distributed LTL Model-Checking. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 352–366. Springer, Heidelberg (2004)

10. Černá, I., Pelánek, R.: Distributed explicit fair cycle detection. In: Ball, T., Rajamani, S.K.
(eds.) SPIN 2003. LNCS, vol. 2648, pp. 49–73. Springer, Heidelberg (2003)

11. Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter, J.S.:
External-memory graph algorithms. In: Symposium on Discrete Algorithms (SODA), pp.
139–149. Society for Industrial and Applied Mathematics (1995)

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge (1999)
13. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algorithms for

the verification of temporal properties. Form. Methods Syst. Des. 1(2-3), 275–288 (1992)
14. Dementiev, R., Kettner, L., Sanders, P.: STXXL: Standard template library for XXL data

sets. In: Proc. of ESA. LNCS, vol. 3669, pp. 640–651. Springer, Heidelberg (2005)
15. Edelkamp, S., Jabbar, S.: Large-scale directed model checking LTL. In: Valmari, A. (ed.)

SPIN 2006. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006)
16. Fredman, M.L., Komlós, J.: On the size of separating systems and families of perfect hash

functions. SIAM Journal on Algebraic and Discrete Methods 5(1), 61–68 (1984)
17. Gal, E., Toledo, S.: Algorithms and data structures for flash memories. ACM Computing

Surveys 37(2), 138–163 (2005)
18. Korf, R.E.: Delayed duplicate detection: Extended abstract. In: International Joint Confer-

ence on Artificial Intelligence (IJCAI), pp. 1539–1541 (2003)
19. Mehlhorn, K., Meyer, U.: External-memory breadth-first search with sublinear I/O. In:

Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 723–735. Springer, Hei-
delberg (2002)

20. Meyer, U.: Algorithms for Memory Hierarchies. Springer, Heidelberg (2003)
21. Munagala, K., Ranade, A.: I/O-complexity of graph algorithms. In: Symposium on Discrete

Algorithms (SODA), pp. 687–694. Society for Industrial and Applied Mathematics (1999)
22. Pelánek, R.: BEEM: Benchmarks for explicit model checkers. In: Bošnački, D., Edelkamp,

S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007)
23. Ravi, K., Bloem, R., Somenzi, F.: A Comparative Study of Symbolic Algorithms for the

Computation of Fair Cycles. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 143–160. Springer, Heidelberg (2000)

24. Schuppan, V., Biere, A.: Efficient reduction of finite state model checking to reachability
analysis. Int. Journal on Software Tools for Technology Transfer 5(2–3), 185–204 (2004)

25. Sharir, M.: A strong-connectivity algorithm and its applications in data flow analysis. Com-
puters and Mathematics with Applications 7(1), 67–72 (1981)

26. Stern, U., Dill, D.L.: Using magnetic disk instead of main memory in the Murφ verifier. In:
Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 172–183. Springer,
Heidelberg (1993)

27. Zhou, R., Hansen, E.: Breadth-first heuristic search. In: Int. Conf. on Automated Planning
and Scheduling (ICAPS) pp. 92–100. AAAI Press / The MIT Press (2004)

QMC: A Model Checker for Quantum Systems

Tool Paper

Simon J. Gay1,�, Rajagopal Nagarajan2,��, and Nikolaos Papanikolaou2,��

1 Department of Computing Science, University of Glasgow
simon@dcs.gla.ac.uk

2 Department of Computer Science, University of Warwick
{biju,nikos}@dcs.warwick.ac.uk

1 Introduction

The novel field of quantum computation and quantum information has been
growing at a rapid rate; the study of quantum information in particular has led
to the emergence of communication and cryptographic protocols with no classi-
cal analogues. Quantum information protocols have interesting properties which
are not exhibited by their classical counterparts, but they are most distinguished
for their applications in cryptography. Notable results include the unconditional
security proof [1] of quantum key distribution. This result, in particular, is one
of the reasons for the widespread interest in this field. Furthermore, the imple-
mentation of quantum cryptography has been demonstrated in non-laboratory
settings and is already an important practical technology. Implementations of
quantum cryptography have already been commercially launched and tested by
a number of companies including MagiQ, Id Quantique, Toshiba, and NEC. The
unconditional security of quantum key distribution protocols does not automati-
cally imply the same degree of security for actual systems, of course; this justifies
the need for systems modelling and verification in this setting.

The benefits of automated verification techniques are well known for classi-
cal communication protocols, especially in the cryptographic setting. Our re-
search programme is to apply these techniques to quantum protocols with the
expectation of gaining corresponding benefits. Our earlier work involved apply-
ing probabilistic model–checking techniques to such protocols (see e.g. [2]; it
became clear that existing techniques are not satisfactory for analysing quan-
tum systems. Today, while simulation tools for quantum systems abound, to our
knowledge no other authors have developed a tool directly aimed at verifica-
tion. In this paper we describe just such a tool, named QMC (Quantum Model
Checker); it allows for automated verification of properties of quantum protocols.

� Partially supported by the EPSRC grant EP/E00623X/1 (Semantics of Quantum
Computation) and EP/F004184/1 (Quantum Computation: Foundations, Security,
Cryptography and Group Theory).

�� Partially supported by the EU Sixth Framework Programme (Project SecoQC: De-
velopment of a Global Network for Secure Communication based on Quantum Cryp-
tography) and the EPSRC grant EP/E00623X/1.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 543–547, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

544 S.J. Gay, R. Nagarajan, and N. Papanikolaou

Properties to be verified by QMC are expressed using the logic QCTL [3].QMC
enables the modelling of systems which can be expressed within the quantum
stabilizer formalism; such systems are known to be simulable in polynomial time
(viz. Gottesman–Knill theorem [4]). The systems expressible in this formalism
are restricted, in the sense that the set of operations which they can perform is
not universal for quantum computation. Nevertheless, stabilizers are sufficient
to describe a number of systems of practical interest. We assume that the reader
has an understanding of the basics of quantum computation [5].

2 Tool Description

QMC is a command–line tool, implemented in Java 5, which simulates all possible
executions of a quantum protocol model, and then checks that the model satisfies
any number of specification formulae supplied by the user. We will now discuss
the modelling language of QMC, the simulation of models, the logic used for spec-
ifying properties, and the algorithms used for model–checking. We will briefly
discuss a concrete example, namely a model of quantum coin-flipping [6], the
QMC source for which is available athttp://www.dcs.warwick.ac.uk/ nikos/
downloads/case-study.qmc.

Modelling Language. Protocols are modelled using a high-level, concurrent pro-
gramming language developed especially for QMC. It is an imperative language
with lightweight concurrency, typed variables including channels, and commands
for allocating and manipulating the qubits in a global quantum state. Qubit vari-
ables are pointers to the individual quantum bits (qubits) in the global state.
The language has guarded commands, which are used to express looping and
nondeterministic choices.

QMC has a statically typed language, and variables of different types must
be declared at the beginning of a protocol model (shared variables), or at the
beginning of the process in which they are used (local variables). The classical
data types include integers (type integer), bits (type bool), and floating–point
numbers (type real). There is a channel type corresponding to each of these
base types (e.g. channel of integer). Qubit variables are references to qubits in
QMC’s internal quantum state. After declaration, these variables must be initial-
ized with the newqubit expression. A process can apply any one of the Clifford
group operators (see [5]): Hadamard (had), Controlled–not (cnot), Phase (ph)
to a given qubit, as well as perform quantum measurement with respect to the
computational basis. These are the operations allowed in the quantum stabilizer
formalism.

Simulating QMC programs. As in PROMELA, any command in QMC is either
executable or not from the current state. QMC’s process scheduler interleaves
executable statements from all process declarations in the input, resolving all
non–deterministic choices. Quantum measurement is also treated as a source of
non-determinism; a qubit in a general stabilizer state always produces one of
two possible outcomes with equal probability, and we treat these equiprobable

http://www.dcs.warwick.ac.uk/~nikos/downloads/case-study.qmc
http://www.dcs.warwick.ac.uk/~nikos/downloads/case-study.qmc

QMC: A Model Checker for Quantum Systems 545

outcomes like a non–deterministic choice. Consequently, we do not analyse the
probabilities of different execution paths; this is an area for future work. The
scheduler ensures finiteness of models.We are currently developing an operational
semantics for the QMC language. Execution of a QMC program produces a tree
of execution paths, in which the branching arises from non–determinism.

Specification Logic. The properties of a given protocol model are expressed using
the logic QCTL [3], which is a temporal logic especially designed for reasoning
about quantum systems based on CTL [7]. This logic allows us to reason about
the evolution of the global quantum state as a given protocol model is executed.
It also enables reasoning about the states of classical variables and, hence, mea-
surement outcomes. The reader is referred to [3] for full details of the syntax
of the logic, which includes classical formulae (α = ⊥ | qb | α ⇒ α), terms
(t = x | (t + t) | (tt) | Re(|�〉A) | Im(|�〉A) | ∫ φ), quantum formulae (γ = (t ≤
t) | ⊥ | (α�α)) and temporal formulae (θ = γ | θ �θ | (EXθ) | (E[θUθ]) | (AFθ)).

Interesting state formulas are those of the form
∫

φ ≤ a and [qbi, qbj], where φ
is a base formula (e.g. ¬qb0) and qbi, qbj , qb0 are qubit variables. The first
formula states that, the probability of formula φ being satisfied in the current
state is less than or equal to a. The formula [qbi, qbj] states that, in the current
state, the qubits corresponding to the variables qbi and qbj are not entangled
with the rest of the quantum system. In order to evaluate such a formula, QMC
analyses the entanglement of the current quantum state.

Verification Algorithms. QMC implements algorithms for evaluating EQPL for-
mulas over stabilizer states, which are represented internally using a matrix
representation (see [8]). In order to check the truth of a particular formula, its
truth needs to be determined for all possible valuations; the tool automatically
extracts all valuations from the internal representation. More interestingly, the
tool has been designed to explore all possible executions of a particular proto-
col arising from different measurement outcomes and non–deterministic choices.
Entanglement formulae may be checked without converting the internal repre-
sentation to the set of all valuations. In fact, it is possible to determine whether
a list of qubits qi, qi+1, . . . constitutes a partition of the global quantum state at
any point during execution using the entanglement normal forms developed by
Audenaert and Plenio [9]. Temporal formulae are checked by traversing the tree
produced by the execution of a protocol model.

An Example. We have built a QMC model for the quantum coin–flipping protocol
due to Bennett and Brassard [6] which is available online at the URL mentioned
at the beginning of Section 2. Quantum coin–flipping enables two users, Alice and
Bob, to establish a common random bit x through the transmission of a single
qubit q and its measurement. The protocol relies on the principle that, if Alice
and Bob use compatible bases for preparation and for measurement of this qubit,
their bit values will be guaranteed to match by the laws of quantum mechanics.
Incompatible bases will produce a matching bit value only with probability 1

2 ,
although in this case the protocol is repeated and the bit discarded. There are

546 S.J. Gay, R. Nagarajan, and N. Papanikolaou

various possible attacks that may be performed by an enemy, which would enable
him or her to compromise the final bit value. It is such attacks that we would
like to investigate using the QMC tool on this and related quantum protocols.
The basic property which needs to be checked at the end of the protocol is that
the bit values of Alice and Bob do indeed match, and this is only true if the
measurement basis b̂ chosen by Bob matches the preparation basis b of Alice.
Also, if Alice’s and Bob’s bits and bases are in agreement, the protocol should
not abort; this is expressed as a temporal property.

3 Conclusion and Future Work

We have described QMC, a model-checking tool for quantum protocols. As far
as we know, it is the first dedicated verification tool (as opposed to simula-
tion systems) for quantum protocols. QMC allows the modelling and verification
of properties of protocols expressible in the quantum stabilizer formalism. The
logic for expressing properties is QCTL. We have considered a simple exam-
ple illustrating the input language of the tool. It is significant to note that the
restriction to quantum stabilizer states allows QMC to simulate protocols effi-
ciently, although it limits the expressive power of the tool. There are protocols
which involve quantum states that fall outside the scope of the stabilizer for-
malism, and we are currently investigating ways of approximating such states
using techniques due to Bravyi and Kitaev [10]. Using such techniques it will
be possible to obtain an implementation which is powerful enough for the anal-
ysis of general quantum protocols and the detection of potential flaws in their
design.

References

[1] Mayers, D.: Unconditional security in quantum cryptography. Journal of the
ACM 48(3), 351–406 (2001)

[2] Gay, S.J., Nagarajan, R., Papanikolaou, N.: Probabilistic model–checking of quan-
tum protocols. In: DCM 2006: Proceedings of the 2nd International Workshop on
Developments in Computational Models (2006) arXiv:quant-ph/0504007

[3] Baltazar, P., Chadha, R., Mateus, P., Sernadas, A.: Towards model-checking quan-
tum security protocols. In: Dini, P., et al. (eds.) Proceedings of the First Workshop
on Quantum Security: QSec 2007, IEEE Press, Los Alamitos (2007)

[4] Gottesman, D.: The Heisenberg representation of quantum computers. In: Corney,
S., Delbourgo, R., Jarvis, P. (eds.) Group22: Proceedings of the XXII International
Colloquium on Group Theoretical Methods in Physics. International Press (1999)

[5] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

[6] Bennett, C.H., Brassard, G.: Quantum Cryptography: Public key distribution and
coin tossing. In: Proceedings of International Conference on Computers, Systems
and Signal Processing (1984)

QMC: A Model Checker for Quantum Systems 547

[7] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite state
concurrent system using temporal logic specifications: a practical approach. In:
POPL 1983: Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pp. 117–126. ACM, New York (1983)

[8] Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Physical
Review A 70(52328) (2004)

[9] Audenaert, K., Plenio, M.: Entanglement on mixed stabiliser states: Normal forms
and reduction procedures. New Journal of Physics 7(170) (2005)

[10] Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates
and noisy ancillas. Physical Review A 71, 1–14 (2005)

T(O)RMC:

A Tool for (ω)-Regular Model Checking

Tool Paper

Axel Legay

Carnegie Mellon University, Computer Science Department, Pittsbugh, PA
alegay@cs.cmu.edu

1 Introduction and Motivations

Within the context of the verification of infinite-state systems, “(ω)-Regular
model checking” is the name of a family of techniques in which states are rep-
resented by words, sets of states by finite automata on these objects, and tran-
sitions by finite automata operating on pairs of state encodings, i.e. finite-state
transducers. If the states are encoded by finite words, then sets of (pairs of)
states can be represented by finite-word automata. This setting can be used to
represent various classes of infinite-state systems [17], including parametric sys-
tems, FIFO-queue systems, and systems manipulating integer variables (those
defined in Presburger arithmetic). When the states are encoded by infinite words,
sets of (pairs of) states are represented by deterministic weak Büchi automata1.
This setting is mainly used to represent systems involving both integer and real
variables [4, 6], such as linear hybrid systems with a constant derivative.

It is known [7, 8] that computing the set of reachable states and verifying
linear temporal properties in this automata-based framework reduces to solving
the (ω-)regular reachability problems. Given a finite-word (resp. deterministic
weak) automaton A representing the initial states and a finite-word (resp. deter-
ministic weak) transducer T representing the transition relation, those problems
amount to computing the iterative closures T + and T +(A). This can be done
either by specific techniques that exploit the specific properties and represen-
tations of the domain being considered, or by generic techniques that consider
automata-based representations and provide algorithms that operate directly on
these representations.

In [5, 6], we have proposed a generic technique for computing T +(A) and
T + for the finite and infinite word cases. Our approach consists in computing
the limit of a possibly infinite sequence of automata. This is an undecidable
problem to which the computation of T + and T +(A) as well as several others
can be reduced. The technique has been evaluated and improved with the help of
prototypes, which have been applied on various classes of problems [5,6,8,9,12].

1 A weak Büchi automaton is a Büchi automaton whose strongly connected compo-
nents contain either only accepting or only nonaccepting states. Deterministic weak
Büchi automata are easily complementable and admit a unique minimal form.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 548–551, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

T(O)RMC: A Tool for (ω)-Regular Model Checking 549

Those prototypes predate the T(O)RMC toolset which uniforms them, and is
the subject of this paper2.

2 The Underlying Technique from [5, 6, 12]

Given a sequence S = A0, A1, A2, . . . of minimal finite-word (resp. weak) au-
tomata, the techniques computes a finite-word (resp. weak Büchi) automaton for⋃∞

i=0 Ai. The general idea is to extrapolate one of the finite sampling sequence of
S, i.e. selected automata from one of its finite prefixes. The extrapolation step
is done by comparing successive automata in the sampling sequence, trying to
identify the difference between these in the form of an increment (i.e. a difference
in their graph structures), and extrapolating the repetition of this increment by
adding loops to the last automaton of the sequence. After the extrapolation has
been built, one has to check whether it corresponds to the limit of the sequence3.
If this is the case, then the computation terminates. Otherwise, another sampling
sequence has to be chosen.

Testing whether two (or more) automata differ by the addition of increments
is decided by a combination of forward and backward language equivalences.
Choosing the sampling sequence is a rather tricky issue and there is no guarantee
that this can be done in a way that ensures that the extrapolation step can be
applied. However, there is a number of heuristics that are very effective for
obtaining a sample sequence that can be extrapolated (see Chapter 5 of [12] to
know how to choose a “good” sampling strategy for your case study). Finally,
checking safety of the extrapolation (does it include the limit?) is simple, but
checking preciseness (is it exactly the limit?) is a much more involved problem
for which only partial solutions has been developed (see Chapter 7 of [12]). In
most of cases, working with an over approximation is practically sufficient.

3 The Tool

The T(O)RMC toolset (available at [15]), builds upon the LASH toolset. LASH
[11] takes the form of a set of C functions for building and manipulating (union,
intersection, complementation, minimization, ...) both finite-word and weak
Büchi automata. The tool also provides some domain specific techniques for
solving the regular reachability problems. In addition, several compilers can be
used to make easier the construction of specific classes of automata (e.g. those
that represent solution of Presburger formulas). T(O)RMC improves LASH with
three new packages, that are (see [12] and [15] for details):

1. The transducer package that provides data structures and algorithms to ma-
nipulate transducers. The package also provides several heuristics to improve

2 States for Tool for (ω)-Regular Model Checking.
3 In practice, the user may also be satisfied with an extrapolation whose correctness

is unknown.

550 A. Legay

the efficiency of the composition between transducers (sometimes from days
to seconds!).

2. The extrapolation package for detecting increments in a sequence of au-
tomata, and extrapolating a finite sampling sequence. The tool allows the
user to precise (1) which sampling strategy has to be used, and (2) how to
build the successive elements in the infinite sequence.

3. The counter-word automata package that provides data structures and al-
gorithms to check the correctness of the extrapolation for several classes of
problems.

4 Summary of the Experiments

The T(O)RMC toolset has been evaluated over more than 100 case studies. Due
to space limitations, this section only briefly recaps the classes of problems for
which T(O)RMC has been used so far. Details about the experiments (includ-
ing performances in terms of time and memory, which vary from examples to
examples) can be found in Chapters 7 and 13 of [12] and in [8].

We first used T(O)RMC to compute an automata-based representation of
the set of reachable states of several infinite-states systems, including paramet-
ric systems, FIFO-queue systems, and systems manipulating integer variables.
Others experiments concerned the computation of the transitive closure of sev-
eral arithmetic relations. It is worth mentioning that the disjunctive nature of
some relations sometimes prevents the direct use of specific domain-based tech-
niques [10,3]. We also applied T(O)RMC to the challenging problem of analyzing
linear hybrid systems. One of the case studies consisted of computing a precise
representation of the set of reachable states of several versions of the leaking
gas burner . To the best of our knowledge, only the technique in [3] was able to
handle the cases we considered. Among the other experiments, we should also
mention the computation of the set of reachable states of an augmented version
of the IEEE Root Contention Protocol [12], which has been point out to be a
hard problem [14]. The ability of T(O)RMC to compute the limit of an infinite
sequence of automata has other applications. As an example, the tool has been
used in a semi-algorithm to compute the convex hull of a set of integer vectors [9].
T(O)RMC was also used to compute a symbolic simulation over the state-space
of an infinite-state system, with the aim of verifying temporal properties [8].

5 Conclusion

We presented T(O)RMC, a tool for computing the limit of an infinite sequence
of finite-word or deterministic weak Büchi automata.

T(O)RMC implements a very general automata sequence extrapolation tech-
nique. As such it is slower than tools that are specific to the arithmetic domain
(FAST [1], LIRA [2], LASH), but is perfectly competitive when handling other
regular model checking cases (parametric systems, FIFO systems, ...) [13, 16].

T(O)RMC: A Tool for (ω)-Regular Model Checking 551

The main goal of the tool is not performance improvement, but to allow exper-
imentation with automata sequence extrapolation in a variety of context that
goes beyond (omega-)Regular Model checking problems.

References

1. Bardin, S., Leroux, J., Point, G.: Fast extended release. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 63–66. Springer, Heidelberg (2006)

2. Becker, B., Dax, C., Eisinger, J., Klaedtke, F.: LIRA: Handling constraints of linear
arithmetics over the integers and the reals. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 307–310. Springer, Heidelberg (2007)

3. Boigelot, B., Herbreteau, F.: The power of hybrid acceleration. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 438–451. Springer, Heidelberg (2006)

4. Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for lin-
ear arithmetic over the integers and reals. ACM Transactions on Computational
Logic 6(3), 614–633 (2005)

5. Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large (extended
abstract). In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp.
223–235. Springer, Heidelberg (2003)

6. Boigelot, B., Legay, A., Wolper, P.: Omega-regular model checking. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 561–575. Springer,
Heidelberg (2004)

7. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000)

8. Bouajjani, A., Legay, A., Wolper, P.: Handling liveness properties in (omega-
)regular model checking. In: Proc. 6th Int. INFINITY. ENTCS, vol. 138(3), Else-
vier, Amsterdam (2004)

9. Cantin, F., Legay, A., Wolper, P.: Computing convex hulls by automata iteration.
In: Proc. 1th Int. AUTOMATHA (2007)

10. Finkel, A., Leroux, J.: How to compose presburger-accelerations: Applications to
broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS,
vol. 2556, pp. 145–156. Springer, Heidelberg (2002)

11. The Liège Automata-based Symbolic Handler (LASH),
http://www.montefiore.ulg.ac.be/∼boigelot/research/lash/.

12. Legay, A.: Generic Techniques for the Verification of Infinite-state Systems. Col-
lection des publications de la Faculté des Sciences Appliquées de l’Université de
Liège, Liège, Belgium (2007),
http://www.montefiore.ulg.ac.be/∼legay/papers/index

13. The regular model checking tool (RMC),
http://www.it.uu.se/research/docs/fm/apv/rmc

14. Simons, D.P.L., Stoelinga, M.: Mechanical verification of the ieee 1394a root con-
tention protocol using uppaal2k. International Journal STTT 3(4), 469–485 (2001)

15. The T(O)RMC toolset,
http://www.montefiore.ulg.ac.be/∼legay/TORMC/index-tormc.html

16. Vardhan, A., Viswanathan, M.: Lever: A tool for learning based verification. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 471–474. Springer,
Heidelberg (2006)

17. Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state spaces. In:
Y.Vardi,M. (ed.)CAV1998.LNCS, vol. 1427, pp. 88–97. Springer,Heidelberg (1998)

 http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
http://www.montefiore.ulg.ac.be/~legay/papers/index
http://www.it.uu.se/research/docs/fm/apv/rmc
http://www.montefiore.ulg.ac.be/~legay/TORMC/index-tormc.html

Faster Than UPPAAL ?
Tool Paper

Sebastian Kupferschmid, Martin Wehrle, Bernhard Nebel, and Andreas Podelski

Albert-Ludwigs-Universität Freiburg
Institut für Informatik

Freiburg, Germany
{kupfersc,mwehrle,nebel,podelski}@informatik.uni-freiburg.de

Abstract. It is probably very hard to develop a new model checker that is faster
than UPPAAL for verifying (correct) timed automata. In fact, our tool MCTA does
not even try to compete with UPPAAL in this (i. e., UPPAAL’s) arena. Instead,
MCTA is geared towards analyzing incorrect specifications of timed automata. It
returns (shorter) error traces faster.

1 Our Tool: MCTA

We present MCTA, a model checking tool for real-time specifications modeled as timed
automata. Although the tool can be used for verification, MCTA is rather optimized
for falsification, i. e., detecting violations against safety properties fast and returning
short error traces. Several types of traces can be generated, including an option to find a
(guaranteed) shortest error trace. There is also the possibility to examine MCTA’s traces
with UPPAAL’s graphical user interface.

MCTA accepts input models in the form of the UPPAAL input language (cf. [1]). So
far only a fraction thereof is supported, e. g. there is no support for urgent channels,
arrays, etc. yet. Internally, MCTA uses UPPAAL’s timed automata parser library. For
the representation of zones, MCTA uses UPPAAL’s difference bound matrices library.
Both libraries are released under the terms of the LGPL or GPL, respectively, and are
freely available at http://www.uppaal.com/. All other data structures and all
algorithms (and their implementation) used are genuine to MCTA.

MCTA is free software and also released under the terms of the GPL. Pre-compiled
Linux executables and a snapshot of the source code of our tool are also freely available
at http://www.informatik.uni-freiburg.de/˜kupfersc/mcta/.

2 The Ingredients of MCTA

MCTA accelerates the detection of error states by using the well-known directed model
checking approach [5,4]. In this approach, an abstract distance value is computed for
each state encountered during the state space traversal. The abstract distance values de-
termine the order in which the states are explored. Among possible successor states,
the ones with a lower value are preferred. There are many different strategies to explore
the state space. MCTA allows the user to choose between two strategies based on two

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 552–555, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Faster Than UPPAAL ? 553

wide-spread search methods called A∗ and greedy search. The first explores states s
with lowest value of c(s) + h(s) first, where c(s) is the length of the path from the
initial state through which s was reached. Under certain conditions on the abstract dis-
tance values, one is guaranteed a shortest error path. In the second strategy, states are
explored by increasing value of h(s). Doing so, the length of the detected error path is
not guaranteed to be as short as possible, but tends to explore less states in practice.

MCTA generates the abstract distance values fully automatically for each input given
by a timed automaton and a safety property. This is done by efficiently computing a
rather coarse abstraction (the user can choose among several kinds of abstraction, see
below) and taking the distance in the abstract state space. MCTA in addition offers the
possibility to automatically recognize which transitions should be penalized during the
state space traversal; this is a new technique presented in [8].

Monotonicity Abstraction. Currently, MCTA comes with several kinds of abstractions
as the basis for computing the abstract distance values. Here, we will only explain the
distance function which is based on the monotonicity abstraction [7]. This abstraction
is mainly an adaption of a technique from AI Planning namely ignoring delete lists [2].
The idea of the corresponding abstraction is to have every state variable, once it has
obtained a value, keeps that value forever. I. e., the value of a variable is no longer an
element, but a subset of its domain. This subset grows monotonically over transition
applications, hence the name of this abstraction.

MCTA assigns to each state encountered during the state space traversal an abstract
distance value by applying the monotonicity abstraction to the part of the state space
that is rooted in the current state, and traversing the abstract state space. The length of
the abstract error trace is the state’s abstract distance value. If there is no abstract error
path, then there is no concrete one either.

3 Results

We compare the performance of MCTA and UPPAAL for detecting error traces in in-
correct specifications of timed automata. For both tools we chose the most powerful
options. We used the current version of UPPAAL (4.0.6) with the option randomized
depth first search (rDF). The results for rDF in Table 1 are averaged over 10 runs. For
MCTA the specific options are: the strategy for the state space traversal being based on
greedy search, the abstraction for the abstract distance values being the monotonicity
abstraction, and the recognition of “useless transitions” and the state space traversal
penalizing recognized transitions [8].

The examples C1, . . . , C9 stem from an industrial case study called “Single-tracked
Line Segment” [6]. It models a distributed real-time controller for a segment of tracks
where trams share a piece of track. The examples M1, . . . , M4 and N1, . . . , N4 come
from a case study namely “Mutual Exclusion” [3]. It models a real-time protocol to
ensure mutual exclusion of states in a distributed system via asynchronous communi-
cation. Both case studies are part of the AVACS project benchmark suite.

The results in Table 1 (visualized in Fig. 1) clearly demonstrate that the algorithms
employed by our tool are useful for analyzing incorrect timed automata. In comparison

554 S. Kupferschmid et al.

Table 1. Experimental results of UPPAAL’s and MCTA’s most powerful options. The results are
computed on an Intel Xeon with 2.66 Ghz. Dashes indicate out of memory (more than 4 GB).

explored states runtime in s memory in MB trace length
Exp UPPAAL MCTA UPPAAL MCTA UPPAAL MCTA UPPAAL MCTA

M1 8343 4256 0.37 0.07 38 56 829 97
M2 27156 8186 1.53 0.10 40 57 3245 146
M3 24368 10650 1.39 0.12 40 58 2991 91
M4 70906 22412 4.93 0.24 45 64 11728 136

N1 11115 5689 0.93 0.10 38 59 607 108
N2 45998 15377 4.99 0.25 41 62 3788 152
N3 31725 16332 3.31 0.26 41 65 3302 91
N4 220262 44199 25.31 0.71 51 84 14003 118

C1 15407 1658 0.23 0.12 38 56 945 91
C2 31308 1333 0.32 0.16 39 56 820 91
C3 45443 1153 0.36 0.13 39 56 541 91
C4 366056 1001 2.90 0.19 49 57 1690 121
C5 2629269 833 23.54 0.22 120 57 2345 114
C6 21940802 833 230.08 0.29 761 57 3237 114
C7 – 829 – 0.35 – 57 – 114
C8 – 816 – 0.28 – 57 – 95
C9 – 13423 – 3.24 – 71 – 90

0.1

1

101

102

M1 M2 M3 M4 N1 N2 N3 N4 C1 C2 C3 C4 C5 C6 C7 C8 C9

MCTA
UPPAAL

Fig. 1. Comparing UPPAAL and MCTA on incorrect specifications of timed automata (“MCTA’s
arena”): runtime (in s) for detecting error traces. MCTA is orders of magnitude faster.

with UPPAAL which does not employ such algorithms (based on automatically gener-
ated abstract error distances), our tool finds the error paths faster. It explores less states
and uses less memory and thus scales to larger benchmarks. At the same time, it returns
shorter error paths.

Faster Than UPPAAL ? 555

4 Outlook

In the future, MCTA will evolve by supporting more and more language constructs for
defining (extensions of) timed automata, and by providing more and more kinds of
abstractions for computing abstract distance values. Eventually, we hope, the results
and the practical experience with MCTA for analyzing incorrect specifications will flow
into tools that were originally geared towards analyzing correct timed automata.

Acknowledgements

This work was partly supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS). See http://www.avacs.org/ for more
information.

We also thank the UPPAAL team for making their DBM and their parser library freely
available.

References

1. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F.
(eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)

2. Bonet, B., Geffner, H.: Planning as heuristic search. Artificial Intelligence 129(1–2), 5–33
(2001)

3. Dierks, H.: Comparing model-checking and logical reasoning for real-time systems. Formal
Aspects of Computing 16(2), 104–120 (2004)

4. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the val-
idation of communication protocols. International Journal on Software Tools for Technology
Transfer 5(2–3), 247–267 (2004)

5. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit model checking with HSF-Spin.
In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer, Heidelberg (2001)

6. Krieg-Brückner, B., Peleska, J., Olderog, E.-R., Baer, A.: The UniForM workbench, a uni-
versal development environment for formal methods. In: Woodcock, J.C.P., Davies, J., Wing,
J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 1186–1205. Springer, Heidelberg (1999)

7. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI planning heuristic
for directed model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 35–52.
Springer, Heidelberg (2006)

8. Wehrle, M., Kupferschmid, S., Podelski, A.: Useless transitions are useful. Reports of SFB/TR
14 AVACS 39, SFB/TR 14 AVACS (2008)

Author Index

Abdulla, Parosh Aziz 341
Alur, Rajeev 240

Backes, Michael 419
Baswana, Surender 94
Berdine, Josh 385, 399
Beyer, Dirk 304
Bjesse, Per 446
Bofill, Miquel 294
Bouajjani, Ahmed 341
Bruttomesso, Roberto 299
Burckhardt, Sebastian 107

Calcagno, Cristiano 385
Cederberg, Jonathan 341
Chin, Wei-Ngan 355
Cimatti, Alessandro 299
Clarke, Edmund M. 176, 254
Cohen, Ariel 121, 149
Cook, Byron 328, 385
Cremers, Cas J.F. 414

D’Souza, Deepak 227
Distefano, Dino 385

Edelkamp, Stefan 530
Eisner, Cindy 433

Farzan, Azadeh 52
Felten, Edward W. 3
Fleuriot, Jacques D. 309
Foster, Harry 5
Franzén, Anders 299

Gadkari, Ambar A. 204
Garg, Vijay K. 491
Gay, Simon J. 543
Gheorghiu Bobaru, Mihaela 135
Giannakopoulou, Dimitra 135
Gopalakrishnan, Ganesh 66
Gopinathan, Madhu 227
Greuel, Gert-Martin 473
Griggio, Alberto 299
Grumberg, Orna 254
Gulavani, Bhargav S. 370

Gulwani, Sumit 190, 328, 370
Gupta, Rajesh 459

Harrison, John 11
Haziza, Frédéric 341
Hermanns, Holger 162
Holzer, Andreas 209

Jain, Himanshu 254
Jin, Hoonsang 487
Joshi, Salil 214

Kanade, Aditya 240
Kashyap, Sujatha 491
Kim, Hyondeuk 487
Kinder, Johannes 423
King, Andy 281
Kirby, Robert M. 66
Kobayashi, Naoki 80
König, Barbara 214
Kuncak, Viktor 268
Kundu, Sudipta 459
Kunz, Wolfgang 473
Kupferschmid, Sebastian 552
Kurshan, Bob 487

Lal, Akash 37
Larus, James R. 1
Lee, Oukseh 385
Lee, Peter 428
Legay, Axel 548
Lerner, Sorin 459
Lev-Ami, Tal 328, 399
Lorenz, Stefan 419

Madhusudan, P. 52
Maffei, Matteo 419
Magill, Stephen 428
Majumdar, Rupak 304
Manevich, R. 399
Mehta, Shashank K. 94
Meikle, Laura I. 309
Mohalik, Swarup 204
Musuvathi, Madanlal 107

558 Author Index

Nagarajan, Rajagopal 543
Nahir, Amir 433
Namjoshi, Kedar S. 149
Nebel, Bernhard 552
Nguyen, Huu Hai 355
Niebert, Peter 504
Nieuwenhuis, Robert 294

O’Hearn, Peter 19, 385
Oliveras, Albert 294

Papanikolaou, Nikolaos 543
Păsăreanu, Corina S. 135
Pecina, Kim 419
Peled, Doron 504
Pierce, John 487
Piskac, Ruzica 268
Platzer, André 176
Ploeger, Bas 517
Pnueli, Amir 121, 504
Podelski, Andreas 314, 552
Powar, Vishal 94

Ramalingam, G. 399
Ramesh, S. 204
Ravi, Kavita 487
Reps, Thomas 37
Rezine, Ahmed 341
Rodŕıguez-Carbonell, Enric 294
Rubio, Albert 294
Rybalchenko, Andrey 314, 328

Sagiv, Mooly 328, 399
Sanders, Peter 530
Sangiorgi, Davide 80

Schallhart, Christian 209
Sebastiani, Roberto 299
Shashidhar, K.C. 204
Šimeček, Pavel 530
Somenzi, Fabio 487
Søndergaard, Harald 281
Spacek, Petr 487
Stoffel, Dominik 473
Suresh, J. 204

Tautschnig, Michael 209
Tiwari, Ashish 190
Tsai, Ming-Hsien 428
Tsay, Yih-Kuen 428

Vakkalanka, Sarvani 66
van Glabbeek, Rob 517
Veith, Helmut 209, 423

Wachter, Björn 22, 162
Wedler, Markus 473
Wehrle, Martin 552
Weiss, Gera 240
Wienand, Oliver 473
Wies, Thomas 314
Wilhelm, Reinhard 22

Yang, Hongseok 385
Yeolekar, Anand 204
Yorav, Karen 433

Zhang, Lijun 162
Zuck, Lenore D. 121
Zufferey, Damien 304

	Title Page
	Preface
	Organization
	CAV Award
	Table of Contents
	Singularity: Designing Better Software
	Coping with Outside-the-Box Attacks
	Assertion-Based Verification: Industry Myths to Realities
	Introduction
	Background
	The Road to Assertion Language Standards
	Industry Challenges
	Future Direction and Research Opportunities
	References

	Theorem Proving for Verification
	The Scope of Automation
	Interactive Theorem Proving
	Why Theorem Proving?
	Beyond the Scope of Automated Methods
	Verification of Underlying Theory
	More Efficient
	More Intellectually Stimulating

	Tutorial on Separation Logic
	References

	Abstract Interpretation with Applications to Timing Validation
	Introduction
	Timing Analysis - The Application Domain
	Abstract Interpretation
	The Theory
	Constant Propagation
	Interval Analysis
	Cache Analysis
	Pipeline Analysis

	Related Approaches
	Conclusions

	Reducing Concurrent Analysis Under a Context Bound to Sequential Analysis
	Introduction
	A General Reduction
	The Reduction for Boolean Programs
	The Reduction for PDSs
	Lazy CBA of Concurrent Boolean Programs
	Experiments
	Related Work

	Monitoring Atomicity in Concurrent Programs
	Introduction
	Preliminaries
	Monitoring Atomicity
	Summarized Conflict Graph for Serializability

	Model Checking Atomicity for Boolean Programs
	Experimental Evaluation

	Dynamic Verification of MPI Programs with Reductions in Presence of Split Operations and Relaxed Orderings
	Introduction
	Overview of POE, and Related Work
	Barrier Semantics and Overview of the POE Algorithm
	Related Work

	Formal Presentation of POE
	Abstract Syntax
	Completes-before Relation of MPI
	Match-Set Formation
	The POE Algorithm

	Summary of Experimental Results
	Concluding Remarks

	A Hybrid Type System for Lock-Freedom of Mobile Processes
	Introduction
	Target Language
	Type System for Lock-Freedom
	Review of Previous Type System for Lock-Freedom
	Robust Deadlock-Freedom/Termination/Confluence
	Hybrid Typing Rules

	Types for Robust Termination
	Implementation
	Related Work

	Implied Set Closure and Its Application to Memory Consistency Verification
	Introduction
	Formal Description of TSO Model and Consistency Verification Algorithm
	Consistency Verification Problem
	Example
	Limitation of Algorithm 1

	Implied-Set Closure (ISC) Problem
	Relation to Memory Consistency Verification Problem

	Algorithm for ISC Problem
	An Incremental Algorithm for ISC Problem
	Improved Algorithm for ISC Problem
	Time and Space Complexity

	Experimental Results
	Parallelization of the New Algorithm

	Conclusion

	Effective Program Verification for Relaxed Memory Models
	Introduction
	Problem Formulation
	Solution
	Monitor Algorithm
	Vector Clocks

	Experiments
	Conclusions and Future Work

	Mechanical Verification of Transactional Memories with Non-transactional Memory Accesses
	Introduction
	Transactional Sequences and Interchanges
	Transactional Sequences
	Interchanging Events

	Specification and Implementation
	Verifying Implementation Correctness
	An Example: TCC with Non-transactional Accesses
	Deductive Verification in TLPVS
	Conclusion and Future Work

	Automated Assume-Guarantee Reasoning by Abstraction Refinement
	Introduction
	Preliminaries
	Motivating Example
	Assume-Guarantee Abstraction Refinement (AGAR)
	Abstraction Refinement for LTSs
	The AGAR Algorithm
	AGAR with Interface Alphabet Refinement

	Evaluation
	Conclusions and Future Work

	Local Proofs for Linear-Time Properties of Concurrent Programs
	Introduction
	Motivating Example
	The Local Reasoning Method
	Basic Definitions
	Background: Proofs of Linear-Time Properties
	Localizing the Proof Rule
	Guessing Ranks through Model Checking
	The Local Reasoning Algorithm
	Modifications

	A Refinement Strategy
	Experiments
	Related Work and Conclusions

	Probabilistic CEGAR
	Introduction
	Preliminaries
	Refinement
	Experimental Results
	Conclusion

	Computing Differential Invariants of Hybrid Systems as Fixedpoints
	Introduction
	Hybrid Programs and Differential Dynamic Logic
	Inductive Verification by Combining Local Fixedpoints
	Verification by Symbolic Decomposition
	Discrete and Differential Induction, Differential Invariants
	Example: Flight Dynamics in Air Traffic Collision Avoidance
	Local Fixedpoint Computation for Differential Invariants
	Dependency-Directed Induction Candidates
	Global Fixedpoint Computation for Loop Invariants
	Interplay of Local and Global Fixedpoint Loops
	Soundness

	Experimental Results: Aircraft Roundabout Maneuver
	Related Work
	Conclusions and Future Work

	Constraint-Based Approach for Analysis of Hybrid Systems
	Introduction
	Continuous Dynamical and Hybrid Systems
	Verification of Hybrid Systems
	Solving $\exists \forall$ Formulas
	Step 1: Eliminating Universal Quantification
	Step 2: Solving the \exists Constraint Using an SMT Solver
	Discussion

	Experimental Results
	Related Work
	Conclusion

	AutoMOTGen: Automatic Model Oriented Test Generator for Embedded Control Systems
	Introduction
	Motivation
	Overview of Test Generation Flow
	AutoMOTGen Implementation
	Case Studies
	Conclusion

	FSHELL: Systematic Test Case Generation for Dynamic Analysis and Measurement
	Introduction
	Features of the FShell Environment
	Tool Architecture
	Experimental Results

	Applying the Graph Minor Theorem to the Verification of Graph Transformation Systems
	Introduction
	Preliminaries
	Well-Quasi-Order
	Well-Structured Transition Systems
	Graphs and Graph Transformation
	Minors and Minor Morphisms

	GTS as WSTS!
	Characterization
	Backward Analysis
	Computing Minimal Pushout Complements

	Example: Leader Election
	Conclusion

	Conflict-Tolerant Features
	Introduction
	Preliminaries
	Features as Controllers
	Conflict-Tolerant Controllers
	Synthesis and Verification
	Composition
	Discussion

	Ranking Automata and Gamesfor Prioritized Requirements
	Introduction
	A Motivating Example
	Ranking Functions and Games
	Algorithms for Ranking Games
	Solving Ranking Games as a Series of Win-Lose Games
	Fixpoints over Coloring Functions
	Solving Reachability Ranking Games in Linear Time
	An Efficient Quadratic-Time Algorithm for Büchi Ranking Games
	Cyclic Ranking Games

	Conclusions

	Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations
	Introduction
	Notation and Preliminaries
	Craig Interpolants

	System of Linear Diophantine Equations (LDEs)
	Computing Interpolants for Systems of LDEs

	System of Linear Modular Equations (LMEs)
	Computing Interpolants for Systems of LMEs
	Handling LMEs with Different Moduli

	Algorithms for Obtaining Proofs of Unsatisfiability
	Obtaining a Proof of Unsatisfiability for a System of LDEs

	Handling Linear Diophantine Equations and Disequations
	Interpolants for LDEs+LDDs

	Experimental Results
	Conclusion

	Linear Arithmetic with Stars
	Introduction
	From Multisets to Linear Arithmetic with Star
	Linear Arithmetic with Star Operator Is in NP
	Estimating Coefficient Bounds of Disjunctive Form
	Existence and Size of Solution Set Generators
	Selecting Polynomially Many Generators
	Grouping Generators into Solutions
	NP-Algorithm
	Multiplication by Bounded Bit Vectors
	Estimating Solution Size Bounds

	Reachability in a Class of Transition Systems

	Inferring Congruence Equations Using SAT
	Introduction
	Outline of the Method
	Representing Bit-Level Semantics without Abstraction
	Setting Up the Dataflow Equations
	Abstracting Bit-Level Inputs and Outputs with Congruences

	Joining Congruence Equations
	Discussion
	Conclusion

	The Barcelogic SMT Solver
	Introduction
	System Description
	Parser and Preprocessor
	The Boolean Engine
	Theory Solvers
	Further Capabilities

	The MathSAT 4 SMT Solver
	Introduction
	Architecture
	Novel Functionalities

	CSIsat: Interpolation for LA+EUF
	Overview
	Architecture and Algorithm
	Performance Results

	Prover’s Palette: A User-Centric Approach to Verification with Isabelle and QEPCAD-B
	What Is New
	What Is Possible
	QEPCAD as an Automated Oracle
	Formal Correctness: QEPCAD as Guide and Discoverer

	What Is Planned

	Heap Assumptions on Demand
	Introduction
	Preconditions for Kernel Code
	Preliminaries
	Algorithm
	Example
	Implementation and Experiments

	Proving Conditional Termination
	Introduction
	Example
	Finding Preconditions for Programs without Phase-Change
	Finding Preconditions for Phase-Change Programs

	Computing Preconditions for Termination
	Preliminaries
	The Procedure PreSynth
	The Procedure PreSynthPhase

	Implementation and Experiments
	Conclusion

	Monotonic Abstraction for Programs with Dynamic Memory Heaps
	Introduction
	Preliminaries
	Operations on Graphs
	Ordering
	Computing Predecessors
	Algorithm
	Termination
	Experimental Results
	Conclusions

	Enhancing Program Verification with Lemmas
	Introduction
	Examples
	Specification Language
	Entailment
	Lemma Application
	Weakening the Antecedent by Lemma Unfolding
	Strengthening the Consequent by Lemma Folding
	An Example of Entailment with Lemma Capability
	Termination

	Lemma Proving
	Implementation
	Related Work and Concluding Remarks

	A Numerical Abstract Domain Based on $Expression Abstraction$ and $Max Operator$ with Application in Timing Analysis
	Introduction
	Preliminaries
	Domain Lifting Using Expression Abstraction
	The Saturate Operator
	Transfer Functions

	Linear Domain Lifting Using Max Operator
	Witness Coefficients
	Transfer Functions

	A New Numerical Abstract Domain
	Timing Analysis
	Experiments
	Related Work
	Conclusion

	Scalable Shape Analysis for Systems Code
	Introduction
	Experiments
	Abstract States and Setting
	A Join for Symbolic Heaps
	Formal Definition
	Composite Structures
	Incorporating $\pjoin\,$ into the Analysis

	Related Work
	Conclusions

	Thread Quantification for Concurrent Shape Analysis
	Introduction
	Overview
	The Thread Quantification Domain Constructor
	The Concrete Semantics
	The Base Abstraction
	The Lifted Abstraction (with Basic Transformers)
	The Semantics of Non-deterministic Scheduling
	A More Precise Transformer for the Lifted Domain
	Summary of Construction

	Case Study: Proving Linearizability
	Implementation
	Proving Linearizability
	Experimental Results

	Related Work
	Conclusion

	The Scyther Tool: Verification, Falsification, and Analysis of Security Protocols
	Introduction
	The Scyther Tool
	Performance and Applications

	The CASPA Tool: Causality-Based Abstraction for Security Protocol Analysis
	Introduction
	The CASPA Tool
	Performance Evaluation of CASPA

	Jakstab: A Static Analysis Platform for Binaries
	THOR: A Tool for Reasoning about Shape and Arithmetic
	Introduction
	Interacting with THOR
	Conclusion

	Functional Verification of Power Gated Designs by Compositional Reasoning
	Introduction
	Power Gating
	Methodology
	Case Study on an Execution Unit
	Conclusions and Future Work

	A Practical Approach to Word Level Model Checking of Industrial Netlists
	Introduction
	Preliminaries
	Netlist Reduction
	Selective Bitblasting
	Abstraction of Word-Level Variables

	Impossibility Results
	Implementing the Reduction
	Related Work
	Experimental Results
	Conclusions

	Validating High-Level Synthesis
	Introduction
	Overview
	Definition of Equivalence
	Bisimulation Relation
	Translation Validation Algorithm
	Evaluation
	Related Work
	Conclusion and Future Work

	An Algebraic Approach for Proving Data Correctness in Arithmetic Data Paths
	Introduction
	ABL Description
	Mathematical Background
	Problem Formulation over a Single Ring
	Solving Decision Problems at the ABL

	Experimental Results
	Conclusion and Future Work

	Application of FormalWord-Level Analysis to Constrained Random Simulation
	Introduction
	Constraint Solving in Simulation
	DomRed: Technical Details
	Experimental Results

	Producing Short Counterexamples Using “Crucial Events”
	Introduction
	Preliminaries
	Traces, Posets and Lattices

	Meet- and Join-Closure of CTL Operators
	Crucial Events

	Model Checking CETL in a Program Trace
	E[1 U (1 2)]
	E[2 R 1]

	Model Checking CETL in a Program
	Identifying Universally Crucial Events
	Implementation and Experimental Results
	Conclusions and Future Work

	Discriminative Model Checking
	Introduction
	Embedding LTL Properties in Branching Time Specification
	Model Checking
	Applications
	Level of Failure
	Reasoning Outside the Checked System

	Related Work and Expressiveness
	Conclusions

	Correcting a Space-Efficient Simulation Algorithm
	Introduction
	Preliminaries
	The GCPP Solution of Gentilini, Piazza and Policriti
	Incorrectness of the Fixed-Point Operator
	An Auxiliary Fixed-Point Operator
	A Correct and Efficient Algorithm
	The Correction of Another Mistake
	Correctness of PA
	No Fixed-Point Operator

	Conclusions

	Semi-external LTL Model Checking
	Introduction
	c-Bit Semi-external Graph Algorithms
	Memory Efficient Minimal Perfect Hash Function
	Depth-First Search
	Double Depth-First Search
	General Graph Search

	On-the-Fly LTL Model Checking
	Related Work
	External LTL Model Checking
	Complexity Comparison

	Experimental Results
	Conclusion and Discussion

	QMC: A Model Checker for Quantum Systems
	Introduction
	Tool Description
	Conclusion and Future Work

	T(O)RMC: A Tool for (ω)-Regular Model Checking�
	Introduction and Motivations
	The Underlying Technique from BLW03,BLW04a,Leg07
	The Tool
	Summary of the Experiments
	Conclusion

	Faster Than UPPAAL ?
	Our Tool: Mcta
	The Ingredients of Mcta
	Results
	Outlook

	Author Index

