
Braille-Embedded Tactile Graphics Editor
with Infty System

Toshihiro Kanahori1, Masayuki Naka1, and Masakazu Suzuki2

1 Research and Support Center on Higher Education
for the Hearing and Visually Impaired, Tsukuba University of Technology,

4-12-7 Kasuga, Tsukuba, Ibaraki 305-8521, Japan
{kanahori,naka}@k.tsukuba-tech.ac.jp

2 Faculty of Mathematics, Kyushu University,
6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

suzuki@math.kyushu-u.ac.jp

Abstract. We are developing a graphics editor to easily draw Braille-
embedded tactile graphics for scientific documents including mathemat-
ical expressions with Infty specialized system. Each graphics embedded
in a document is cut out and characters on the graphics are recognized
by InftyReader. The recognized graphics can be edited with this graphics
editor, which is based on scalable vector graphics. Since, in the editor,
ordinary texts and mathematical expressions on the recognized graphics
are presented by InftyEditor, users can easily edit them with its input
interface. After completing the edit process, all texts and mathemati-
cal expressions are automatically translated into Braille by our original
Braille translator, InftyBraille. Then, the edited graphics is output as
an EMF file. Embossing out the EMF file, users even who do not know
Braille codes can get a Braille-embedded tactile graphics.

1 Introduction

We have been developing an integrated suite, named “Infty”, specialized for sci-
entific documents including mathematical expressions. Infty mainly consists of
a document reader “InftyReader” and an authoring tool “InftyEditor” [1, 2, 3].
InftyReader recognizes scientific documents including mathematical expressions.
Its recognition results can be output as files in various accessible formats such as
MathML, LATEX and so on. They can be directly imported into InftyEditor and
can be edited with it. InftyEditor has two intuitive input interfaces for math-
ematical expressions; a handwriting interface, and a keyboard-based one. They
provide seamless environment for input between ordinary text parts and math-
ematical expressions. Edited documents with InftyEditor can be output as in
the same various formats as InftyReader. In addition they can be converted to
Japanese Braille codes. “ChattyInfty” is an accessible math-document editor de-
rived from InftyEditor, which provides aloud-reading output (Japanese/English)
interfaces for not only ordinary text parts but also mathematical expressions [1].
Visually impaired people even who do not know Braille notation for mathemat-
ical expressions can read mathematical documents written by Infty, and can

K. Miesenberger et al. (Eds.): ICCHP 2008, LNCS 5105, pp. 919–925, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

920 T. Kanahori, M. Naka, and M. Suzuki

write mathematical documents in those various formats with its speech output.
Although Braille codes that Infty can output is only Japanese in this moment,
Infty documents can be converted into UEBC, American Braille (Nemeth codes),
British Braille, French Braille, German Braille and so on by UMCL (Universal
Maths Conversion Library [4]), DBT (Duxbury Braille Translator [5]) or other
Braille translation system via LATEX or MathML.

As a next phase of our research and development for authoring accessible
scientific materials for visually impaired people, we are developing a Braille-
embedded tactile graphics editor for scientific graphics including mathematical
expressions, by applying Infty system. The process of producing tactile graphics
advances in the following steps. First, an extended version of InftyReader de-
tecting figure area of page image, cuts out texts and mathematical expressions
embedded in the graphics and outputs the recognition results in an integrated
data format of graphics editor including image data and characters. The recog-
nition results of characters and mathematical expressions can be embedded in
the graphics in either InftyEditor’s data format or directly in Braille codes by
the choice of users. If necessary, the recognized graphics can be edited by our
graphics editor to correct recognition errors and adjust the sizes of characters
and figures. Then, the characters and mathematical expressions are translated
into Braille code. In this paper, we introduce our new graphics editor and show
process for producing those graphics by using it.

2 Related Work

There are many related works about making tactile graphics (e.g. [6,7,8]). Some
of them use learning algorithms to detect and recognize characters in a figure.
Therefore they need a lot of learning data before their practical use and their
systems are often-complicated. Most of them cannot recognize mathematical
expressions.

Developing our software, we focus in easy operation for users. It based on
WYSWYG, so users can edit tactile graphics seeing what they get by OCR.
Utilizing InftyReader, it can recognize also mathematical expressions. Other sev-
eral systems are using InftyReader to recognize them. In our system, it is easy
to correct and edit text parts including mathematical expressions, because of
InftyEditor components. IVEO [7] also provides WYSWYG editor (IVEO Cre-
ator/IVEO Creator Pro [9]) for making tactile graphics. Our system is simpler
than the editor, so information which can be embedded in tactile graphics is less
than IVEO can (hidden text, links, etc.).

This system does not recognize non-text parts (lines, curves, etc.), so only
images of characters are replaced with recognized results. For non-text parts,
the original image is used as a background image of the texts. Hence, it is not
necessary to correct graphic recognition results. However, edited graphics of the
non-text parts are not necessarily smooth.

Our recognition method for characters in a figure, which is based on our char-
acter recognition method of InftyReader, does not use learning algorithms (in

Braille-Embedded Tactile Graphics Editor with Infty System 921

Section 4). Any preparations are not required to recognize figures. The method
cannot recognize rotated characters at this moment, but the several systems can
recognize them [6].

3 Outline of the Braille-Embedded Tactile Graphics
Editor

Our graphics editor is a system based on scalable vector graphics. Its functions
are very simple as follows:

– Putting 4 types of objects:
1. drawing primitive graphic objects; line segments, curves, polygonal lines,

polygons, rectangles, circles, ellipses, sector forms and arcs,
2. putting text objects, which can contain both of ordinary texts and math-

ematical expressions implemented with InftyEditor components.
3. pasting picture files (TIFF or BMP) as picture objects,
4. drawing function graphs (ex. y = sin x) as graph objects,

where styles and colors of drawing lines and painting colors of those objects
can be chosen with color palettes.

– Importing picture files (TIFF or BMP, must be black and white, binary
images scanned in either 600dpi or 400dpi) of diagrams to be recognized by
InftyReader (an outline of the recognition process in Section 4).

– Saving edited graphics into original XML files (.ipl).
– Outputting edited graphics into EMF (Enhanced Metafile).
– Directly printing out graphics to a printer.
– Primitive edit functions; cutting, copying and pasting objects, and undoing

and redoing operations.
– Selecting objects.
– Grouping objects.
– Relocating objects.
– Scaling up and down sizes of objects.
– Editing picture objects; painting, erasing, drawing lines on the picture.
– Setting paper parameters; a size, an orientation (portrait or landscape) and

color.
– Setting font parameters; a font style and a size.
– Setting grid parameters; drawing on a paper or not, distance between lines,

and color.
– Zooming up and out.

In order to write ordinary texts and mathematical expressions on graphics, Infty-
Editor component is incorporated in the graphics editor. Graphic format of the
editor has a layer structure, so that it is possible to draw primitive graphics on
the first layer and to put texts over a pasted picture (on the second layer). With
InftyEditor components, texts written on the second layer can be easily trans-
lated into Braille codes as was mentioned in the previous section by combining
UMCL or DBT. After the translation into Braille codes completes, each of the

922 T. Kanahori, M. Naka, and M. Suzuki

Fig. 1. After Braille translation, the Braille codes for f(x) = x
x2+1 can be edited in

their printed characters

original texts is replaced with Braille characters. The Braille codes can be edited
with InftyEditor component in printed characters before converted into Braille
(fig. 1). Users do not need to edit Braille codes directly.

We design the graphics editor to emboss out an edited graphics utilizing View-
Plus Tiger Embosser [9] via EMF at this moment. By this graphics editor, teach-
ers even who does not know Braille notation can make original tactile graphics
including mathematical expressions for visually impaired students using various
Braille notations.

4 Recognition Method for Characters in Figures

Our recognition method for characters in figures is done by taking the following
steps:

1. Before area segmentation, character recognition is done in order to estimate
global character features, and the features are used to segment areas. Then,
characters which are touching line segments are separated from them.

2. According to estimated sizes of gaps, areas are segmented in Manhattan
layout.

3. An area is determined as a figure area if one of these 2 conditions is satisfied;
(a) the number of small connected components which are not characters

included in the area is greater than a certain threshold,
(b) a big connected component included in the area is neither an integral

symbol, a root symbol, a parenthesis nor a horizontal line.

Braille-Embedded Tactile Graphics Editor with Infty System 923

4. A connected component is determined as a character if both of these 2 con-
ditions are satisfied;
(a) its size is close to the estimated character size,
(b) the score of character recognition of the component is greater than a

certain threshold.
5. Standard character sizes (sizes of baseline characters [10]) are estimated by

using the determined characters .
6. A connected component is determined as a character if both of these 2 con-

ditions are satisfied;
(a) the normalized size of a recognized character of the component is very

close to the estimated standard character size,
(b) the score of the character recognition is greater than a certain lower

threshold.
7. A connected component is determined as a subscript character if these 3

conditions are all satisfied;
(a) it is on a subscript position of baseline characters,
(b) the sizes of its recognized character are also close to subscript character

sizes,
(c) the recognized character is one of alphanumeric characters or Greek char-

acters.
8. A connected component is deleted if both of these 2 conditions are satisfied;

(a) its recognition result is an operator character,
(b) no characters (alphanumeric or Greek) are beside the component.

9. A small component is deleted if both of these 2 conditions are satisfied;
(a) its recognition result is a point character (comma, prime, period, etc.),
(b) there is no character whose character type and position are proper to

the point character.

After this area segmentation, character recognition is performed again for each
text area.

5 Outline of Process for Producing Tactile Graphics from
Printed Graphics in a Document

A printed material including texts, mathematical expressions and graphics is
treated in the following steps (fig. 2).

1. Scanned images of the document are recognized by the extended version of
InftyReader. InftyReader automatically detects and cut out graphics from
the documents. Embedded texts in graphics are recognized automatically.
For each detected graphics, InftyReader outputs both of recognition results
of embedded texts and an image file of the graphics. It outputs the results
together into our graphics editor data format. If the document has compli-
cated layouts, InftyReader sometimes fails extracting graphics. At that time
the graphics are supposed to be cut out by hand as image files after the
recognition process.

924 T. Kanahori, M. Naka, and M. Suzuki

Fig. 2. Outline of making tactile graphics. Clipping embedded graphics and recognizing
them are done by InftyReader. Editing each of them is done with the graphics editor.

2. The texts and mathematical expressions in the output graphics are corrected
on InftyEditor component of the graphics editor, and then converted into
Braille codes by the graphics editor.

3. Each extracted image data is pasted on the first layer of graphics editor.
Paint tool dialog is launched by double clicking on the image. On the dialog,
the image is corrected by deleting noises or smoothing lines, etc.

4. For each text on the image, the corresponding Braille string is pasted at the
appropriate position of the second layer. Its size and position can be adjusted
easily by hand. On the other hand, the text image part on the first layer is
deleted by using Paint tool dialog also by hand.

5. Sizes of the image and the Braille texts are adjusted so as to be fit for output
size as a tactile graphics. Positions of the Braille texts are fixed by hand.

6. The edited graphics is saved as EMF to be embossed out. The text part of
the document is output in LATEX or MathML for Braille translation.

6 Conclusion

Applying Infty system, we are developing a Braille-embedded tactile graphics
editor. On this editor, mathematical expressions can be put on a graphics and
translated into Braille codes by combining with UMCL or DBT, which are pow-
erful Braille translators. At this moment, this editor uses Tiger Embosser in
order to emboss out edited tactile graphics via EMF. Using this system, teach-
ers can easily make tactile graphics for visually impaired students. Because not

Braille-Embedded Tactile Graphics Editor with Infty System 925

specific Braille notation but InftyEditor components are used for putting texts
including mathematical expressions, it is possible to translate texts on a graphics
into various Braille codes via LATEX or MathML.

At this moment, InftyReader can not recognize graphic components in figures
(lines, curves, etc.) and rotated characters. Improve for those points and evalu-
ation of the recognition method for characters in figures are parts of our future
works.

References

1. Suzuki, M., Kanahori, T., Ohtake, N., Yamaguchi, K.: An Integrated OCR Software
for mathematical Documents and Its Output with Accessibility. In: Miesenberger,
K., Klaus, J., Zagler, W., Burger, D. (eds.) ICCHP 2004. LNCS, vol. 3118, pp.
648–655. Springer, Heidelberg (2004)

2. Suzuki, M., Tamari, F., Fukuda, R., Uchida, S., Kanahori, T.: Infty - an integrated
OCR system for mathematical documents. In: Grenoble, Vanoirbeek, C., Roisin,
C., Munson, E. (eds.) Proceedings of ACM Symposium on Document Engineering
2003, pp. 95–104 (2003)

3. Kanahori, T., Fujimoto, M., Suzuki, M.: Authoring Tool for Mathematical Docu-
ments - Infty -. In: 3rd International Conference MKM 2004, Bialowieja, Poland
(September 2004), http://www.activemath.org/∼paul/MathUI

4. Universal Maths Conversion Library, http://inova.snv.jussieu.fr/umcl-demo/
5. Duxbury Systems, http://www.duxburysystems.com/
6. Jayant, C., Renzelmann, M., Wen, D., Krisnandi, S., Ladner, R.E., Comden, D.:

Automated Tactile Graphics Translation: In the Field. In: Proceedings of the 9th in-
ternational ACM SIGACCESS conference on Computers and Accessibility, Tempe,
AZ, October 2007, pp. 75–82. Association for Computing Machinery (ACM) (2007)

7. Gardner, J.A., Bulatov, V.: Scientific Diagrams Made Easy with IVEOTM. In:
Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A.I. (eds.) ICCHP 2006. LNCS,
vol. 4061, pp. 1243–1250. Springer, Heidelberg (2006)

8. Crombie, D., Lenoir, R., McKenzie, N., Ioannidis, G.: The Bigger Picture: Au-
tomated Production Tools for Tactile Graphics. In: Miesenberger, K., Klaus, J.,
Zagler, W., Burger, D. (eds.) ICCHP 2004. LNCS, vol. 3118, pp. 713–720. Springer,
Heidelberg (2004)

9. ViewPlus Technologies, http://www.viewplus.com/
10. Eto, Y., Suzuki, M.: Mathematical formula recognition using virtual link network.

In: Proc. ICDAR, pp. 762–767 (2001)

http://www.activemath.org/~paul/MathUI
http://inova.snv.jussieu.fr/umcl-demo/
http://www.duxburysystems.com/
http://www.viewplus.com/

	Braille-Embedded Tactile Graphics Editor with Infty System
	Introduction
	Related Work
	Outline of the Braille-Embedded Tactile Graphics Editor
	Recognition Method for Characters in Figures
	Outline of Process for Producing Tactile Graphics from Printed Graphics in a Document
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

