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Synonyms

High performance computing for atomistic simulation

Short Definition

Large-scale computing for molecular dynamics sim-
ulation combines advanced computing hardware and
efficient algorithms for atomistic simulation to study
material properties and processes encompassing large
spatiotemporal scales.

Description

Material properties and processes are often dictated
by complex dynamics of a large number of atoms.

To understand atomistic mechanisms that govern
macroscopic material behavior, large-scale molecular
dynamics (MD) simulations [1] involving multibillion
atoms are performed on parallel supercomputers
consisting of over 105 processors [2]. In addition,
special-purpose computers are built to enable long-
time MD simulations extending millisecond time
scales (or 1012 time steps using a time discretization
unit of 10�15 s) [3] (for extending the time scale, see
also �Transition Pathways, Rare Events and Related
Questions). Key enabling technologies for such large
spatiotemporal-scale MD simulations are efficient
algorithms to reduce the computational complexity and
parallel-computing techniques to map these algorithms
onto parallel computers.

Linear-Scaling Molecular-Dynamics
Simulation Algorithms

The MD approach (see also �Applications to Real
Size Biological Systems) follows the time evolution
of the positions, rN = fri ji = 1,. . . ,N g, of N atoms by
solving coupled ordinary differential equations [1]:

mi

d2

dt2
ri D � @

@ri
E
�
rN
�
; (1)

where t is the time, and ri and mi are the position and
mass of the i -th atom, respectively. Atomic force
law is mathematically encoded in the interatomic
potential energy E(rN /, and key to large-scale MD
simulations is, foremost, linear-scaling algorithms that
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Large-Scale Computing for Molecular Dynamics Simula-
tion, Fig. 1 Schematic of an embedded divide-and-conquer
algorithm [2]. (Left) The physical space is subdivided into spa-
tially localized cells, with local atoms constituting subproblems
(bottom), which are embedded in a global field (shaded) solved
with a tree-based algorithm. (Right) To solve the subproblem
in domain �˛ in the divide-and-conquer density functional

theory algorithm, coarse multigrids (gray) are used to accelerate
iterative solutions on the original real-space grid (corresponding
to the grid refinement level, l = 3). The bottom panel shows
fine grids adaptively generated near the atoms (spheres) to
accurately operate the ionic pseudopotentials on the electronic
wave functions

compute E(rN / in O.N/ time. This algorithmic and
mathematical challenge is often addressed based on
data-locality principles. An example is embedded
divide-and-conquer (EDC) algorithms, in which the
physical system is divided into spatially localized
computational cells and these cells are embedded in
a global mean field that is computed efficiently with
tree-based algorithms (Fig. 1) [2].

There exist a hierarchy of MD simulation methods
with varying accuracy and computational complex-
ity. In classical MD simulation, E(rN / is often an
analytic function EMD(frij g,frijkg,frijklg) of atomic
pair, rij , triplet, rijk , and quadruplet, rijkl , positions,
where the hardest computation is the evaluation of the
long-range electrostatic interaction between all atomic
pairs. The fast multipole method (FMM) algorithm
reduces the O.N2/ computational complexity of the
resulting N -body problem to O.N/ [4]. In the FMM,
the physical system is recursively divided into subsys-
tems to form an octree data structure, and the electro-
static field is computed recursively on the octree with
O.N/ operations, while maintaining spatial locality
at each recursion level. In addition to computing the
electrostatic potential and forces, the FMM can be
used to compute atomistic stress tensor components
based on a complex charge method [5]. Furthermore,
a space-time multiresolution MD approach [2] uti-
lizes temporal locality through multiple time step-
ping, which uses different force-update schedules for
different force components [6, 7]. Specifically, forces

from neighbor atoms are computed at every MD step,
whereas forces from farther atoms are updated less
frequently.

To simulate the breakage and formation of chemical
bonds with moderate computational costs, various re-
active molecular dynamics (RMD) simulation methods
have been developed [2]. In RMD, the interatomic po-
tential energy ERMD(rN ,fqig,fBij g) typically depends
on the atomic charges fqi j i = 1,. . . ,N g and the chemi-
cal bond ordersBij between atomic pairs (i , j /, which
change dynamically adapting to the local environment
to describe chemical reactions. To describe charge
transfer, RMD uses a charge equilibration scheme, in
which atomic charges are determined at every MD
step to minimize the electrostatic energy with the
charge-neutrality constraint. This variable N -charge
problem amounts to solving a dense linear system of
equations, which requires O.N3/ operations. A fast
RMD algorithm uses FMM to perform the required
matrix-vector multiplications with O.N/ operations
[2]. It further utilizes the temporal locality of the
solutions to reduce the amortized computational
cost averaged over simulation steps to O.N/. To
accelerate the convergence, a multilevel precondi-
tioned conjugate-gradient (MPCG) method splits the
Coulomb-interaction matrix into short- and long-range
parts and uses the sparse short-range matrix as a
preconditioner [8]. The extensive use of the sparse
preconditioner enhances the data locality and thereby
improves the computational efficiency.



Large-Scale Computing for Molecular Dynamics Simulation 767

L

In quantum molecular dynamics (QMD) simulation,
the interatomic potential energy is computed quan-
tum mechanically [9]. One approach to approximately
solve the resulting exponentially complex quantum
N -body problem is density functional theory (DFT,
see �Density Functional Theory), which reduces the
complexity toO.N3/ by solvingM one-electron prob-
lems self-consistently instead of one M -electron prob-
lem (the number of electrons M is on the order of
N/. The DFT problem can be formulated as a min-
imization of the energy functional EQMD(rN ,  M/
with respect to electronic wave functions (or Kohn-
Sham orbitals),  M (r) = f n(r) j n = 1,. . . ,M g sub-
ject to orthonormality constraints (see � Fast Methods
for Large Eigenvalues Problems for Chemistry and
�Numerical Analysis of Eigenproblems for Electronic
Structure Calculations). Various linear-scaling DFT
algorithms have been proposed [10,11] based on a data
locality principle called quantum nearsightedness [12]
(see �Linear Scaling Methods). Among them, divide-
and-conquer density functional theory (DC-DFT) [13]
is highly scalable beyond 105 processors [2]. In the
DC-DFT algorithm, the physical space is a union
of overlapping domains, � D †˛�˛ (Fig. 1), and
physical properties are computed as linear combina-
tions of domain properties that in turn are computed
from local electronic wave functions. For DFT calcu-
lation within each domain, one implementation uses
a real-space approach based on adaptive multigrids
[2] (see � Finite Difference Methods). Similar data-
locality and divide-and-conquer concepts have been
applied to design O.N/ algorithms for high-accuracy
QM methods [14], including the fragment molecu-
lar orbital method [15]. A major advantage of the
EDC simulation algorithms is the ease of codifying
error management. The EDC algorithms often have
a well-defined set of localization parameters, with
which the computational cost and the accuracy are
controlled. For example, the total energy computed
with the DC-DFT algorithm converges rapidly as a
function of its localization parameter (i.e., the depth
of the buffer layer to augment each domain for avoid-
ing artificial boundary effects). The DC-DFT-based
QMD algorithm has also overcome the energy drift
problem, which plagues most O.N/ DFT-based QMD
algorithms, especially with large basis sets (>104 un-
knowns per electron, necessary for the transferability
of accuracy) [2].

Scalable Parallel Computing

To perform large-scale MD simulations, it is neces-
sary to decompose the computation in the O.N/ MD
algorithms to subtasks and map them onto parallel
computers [1]. A parallel computer in general consists
of a number of compute nodes interconnected via a
communication network [16]. Within each node, multi-
core processors, each consisting of simpler processors
called cores, share common memory [17]. There are
several schemes for mapping MD algorithms onto
parallel computers [1]. For large granularity (i.e., the
number of atoms per processor, N /P > 102/, spatial
decomposition is optimal, where each processor is
assigned a spatial subsystem and is responsible for
the computation of the forces on the atoms within its
spatial subsystem. For finer granularity (N=P � 1),
on the other hand, force decomposition (i.e., force
computations are divided among processors) and other
hybrid decomposition schemes become more efficient
[18–20]. Parallelization schemes also include load-
balancing capability [21]. For irregular data structures,
the number of atoms assigned to each processor varies
significantly, and this load imbalance degrades the
parallel efficiency. Load balancing can be stated as an
optimization problem, in which we minimize the load-
imbalance cost as well as the size and the number of
messages.

Parallel efficiency is defined as the speedup
achieved using P processors over one processor,
divided by P . Parallel efficiency over 0.9 has been
achieved on a cluster of multicore compute nodes with
P > 105 combining a hierarchy of parallelization
schemes [22], including:
1. Internode parallelization based on message passing

[23], in which independent processes (i.e., running
programs) on different nodes exchange messages
over a network.

2. Intra-node (inter-core), multithreading paralleliza-
tion [24] on multicore central processing units
(CPUs) as well as on hardware accelerators such
as graphics processing units (GPUs) [25], in
which multiple threads (i.e., processes sharing
certain hardware resources such as memory) run
concurrently on multiple cores within each compute
node.

3. Intra-core, single-instruction multiple data (SIMD)
parallelization [16,26], in which a single instruction

http://dx.doi.org/10.1007/978-3-540-70529-1_234
http://dx.doi.org/10.1007/978-3-540-70529-1_254
http://dx.doi.org/10.1007/978-3-540-70529-1_258
http://dx.doi.org/10.1007/978-3-540-70529-1_252
http://dx.doi.org/10.1007/978-3-540-70529-1_414
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Large-Scale Computing for Molecular Dynamics Sim-
ulation, Fig. 2 Close-ups of fracture simulations for
nanocrystalline nickel without and with amorphous sulfide
grain-boundary phases, where red, blue and yellow colors
represent nickel atoms inside grains (>0.5 nm from grain

boundaries), nickel atoms within 0.5 nm from grain boundaries,
and sulfur atoms, respectively. The figure shows a transition
from ductile, transgranular tearing (left) to brittle, intergranular
cleavage (right). White arrows point to transgranular fracture
surfaces

executes on multiple operands concurrently in a
vector processing unit within each core.
A number of software packages have been devel-

oped for parallel MD simulations. Widely available
packages for MD include Amber (http://ambermd.
org), Desmond (http://www.schrodinger.com/products/
14/3), DL POLY (http://www.cse.scitech.ac.uk/ccg/
software/DL POLY), Gromacs (http://www.gromacs.
org), and NAMD (http://www.ks.uiuc.edu/Research/
namd). Parallel implementations of MD and RMD
are found in LAMMPS (http://lammps.sandia.gov).
DFT-based QMD packages include CP2K (http://
cp2k.berlios.de), Quantum ESPRESSO (http://www.
quantum-espresso.org), SIESTA (http://www.icmab.
es/siesta), and VASP (http://cms.mpi.univie.ac.at/
vasp), along with those specialized on linear-scaling
DFT approaches such as Conquest (http://hamlin.
phys.ucl.ac.uk/NewCQWeb/bin/view), ONETEP
(http://www.tcm.phy.cam.ac.uk/onetep), and OpenMX
(http://www.openmx-square.org). Finally, quantum-
chemical approaches to QMD are implemented in, e.g.,
GAMESS (http://www.msg.ameslab.gov/gamess),
Gaussian (http://www.gaussian.com), and NWChem
(http://www.nwchem-sw.org).

Large-Scale Molecular Dynamics
Applications

Using scalable parallel MD algorithms, computational
scientists have performed MD simulations involving

billion-to-trillion atoms on massively parallel super-
computers consisting of over 105 processors to study
various material processes such as instability at fluid
interfaces and shock-wave propagation [27, 28].

The largest RMD simulations include 48 million-
atom simulation of solute segregation-induced em-
brittlement of metal [29]. This simulation answers a
fundamental question encompassing chemistry, me-
chanics, and materials science: How a minute amount
of impurities segregated to grain boundaries of a ma-
terial essentially alters its fracture behavior. A prime
example of such grain-boundary mechano-chemistry
is sulfur segregation-induced embrittlement of nickel,
which is an important problem for the design of the
next-generation nuclear reactors to address the global
energy problem. Experiments have demonstrated an es-
sential role of sulfur segregation-induced grain bound-
ary amorphization on the embrittlement, but the central
question remains unsolved: Why does amorphization
cause embrittlement? The RMD simulation (Fig. 2)
establishes the missing link between sulfur-induced in-
tergranular amorphization and embrittlement [29]. The
simulation results reveal that an order-of-magnitude re-
duction of grain-boundary shear strength due to amor-
phization, combined with tensile-strength reduction,
allows the crack tip to always find an easy propagation
path. This mechanism explains all experimental obser-
vations and elucidates the experimentally found link
between grain-boundary amorphization and embrittle-
ment.

While large-scale electronic structure calcu-
lations involving over 104 atoms have been re-
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Large-Scale Computing for
Molecular Dynamics
Simulation, Fig. 3
Snapshots of the atomic
configuration during
DC-DFT-based QMD
simulation of thermite
reaction, where green, red,
and gray spheres show the
positions of Fe, O and Al
atoms, respectively. Yellow
meshes at time 0 ps show the
nonoverlapping cores used by
the DC-DFT algorithm

ported (see �Large-Scale Electronic Structure
and Nanoscience Calculations), QMD simula-
tions extending a long trajectory are usually
limited to thousands of atoms.
Examples of systems studied by large QMD simu-
lations include metals under extreme conditions [30],
reaction of nanoenergetic materials [31], and ionic con-
ductivity in batteries [32]. Chemical reactions in ener-
getic materials with nanometer-scale microstructures
(or nanoenergetic materials) are very different from
those in conventional energetic materials. For example,
in conventional thermite materials made of aluminum
and iron oxide, the combustion front propagates at
a speed of �cm/s. In nanothermites of aluminum
nanoparticles embedded in iron oxide, the combustion
speed is accelerated to �km/s. Such rapid reactions
cannot be explained by conventional diffusion-based
mechanisms. DC-DFT-based QMD simulation has
been performed to study electronic processes during
thermite reaction [31]. Here, the reactants are Al and
Fe2O3, and the products are Al2O3 and Fe (Fig. 3). The
simulation results reveal a concerted metal-oxygen flip
mechanism that enhances mass diffusion and reaction
rate at the metal/oxide interface. This mechanism
leads to novel two-stage reactions, which explain
experimental observation in thermite nanowire arrays.

Conclusions

Large-scale MD simulations to encompass large
spatiotemporal scales are enabled with scalable al-

gorithmic and parallel-computing techniques based on
spatiotemporal data-locality principles. The spatiotem-
poral scale covered by MD simulation on a sustained
petaflops computer (which can operate 1015 floating-
point operations per second) per day is estimated as
NT � 2 (e.g.,N D 2 billion atoms for T D 1 ns) [22],
which continues to increase on emerging computing
architectures.
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Synonyms

Electronic structure; Kohn-Sham equations;
Nanoscience

Definition

The electronic structure of an atomic or molecular
system can yield insights into many of the electrical,
optical, and mechanical properties of materials. Real-
world problems, such as nanostructures, are difficult to
study, however, as many algorithms do not scale well
with system size requiring new techniques better suited
to large systems.

Overview

The electronic structure of a system can be described
by the solution of a quantum many-body problem
described by the Schrödinger equation: H� D �E;

whereH is a many-body Hamiltonian operator that de-
scribes the kinetic energy and the Coulomb interaction
between electron–electron and electron–nucleus pairs,
� is a many-body wavefunction, and E is the total
energy level of the system.

One popular approach for solving these types of
problems relies on reformulating the original problem
in terms of a different basic variable, the charge den-
sity, and using single-particle wavefunctions to replace
the many-body wavefunctions. This approach is known
as Kohn-Sham density functional theory (DFT) and can
be viewed as a search for the minimizer of a certain
functional of the charge density.
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From a mathematical viewpoint, it can be shown
that the first order necessary optimality condition
(Euler-Lagrange equation) for minimizing the Kohn-
Sham energy yields the following set of nonlinear
eigenvalue equations (known as the Kohn-Sham
equations): H.�/ i D �i i ; i D 1; 2; : : : ; ne; where
H.�/ D �� C Vion C VH.�/ C Vxc.�/, Vion, VH ,
and Vxc are the ionic, electron–electron (Hartree), and
exchange-correlation potentials, and ne is the number
of electrons. Here �.r/ is the electron charge density
defined by �.r/ DPne

iD1 j i.r/j2:
Although these equations contain far fewer degrees

of freedom compared to the many-body Schrödinger
equation, they are more difficult in terms of their
mathematical structures. The most popular method to
solve the Kohn-Sham equations is the Self-Consistent
Field (SCF) iteration. The computational complexity
of most of the existing algorithms is O.n3e/, which can
limit their applicability to large nanoscience problems.
We will describe briefly some of the general strategies
one may use to reduce the overall complexity of these
algorithms and where the challenges lie in doing this.

The Kohn-ShamMap and the SCF Iteration

A useful concept for analyzing algorithms applied
to large-scale Kohn-Sham problems is the following
alternative definition of the charge density:

� D diag
h OXgˇ. O� � �/ OX�i D diag

�
gˇ.H.�/ � �/

�
;

(1)

where OX 2 Cn�n contains the full set of eigenvectors of
a discretized Kohn-Sham Hamiltonian, O� is a diagonal
matrix containing the corresponding eigenvalues of the
Hamiltonian, gˇ.	/ is the Fermi-Dirac function:

gˇ.	; �/D 2

1C exp.ˇ.	 � �//D1�tanh
�ˇ
2
.	��/

�
;

(2)

where ˇ is a parameter chosen in advance and pro-
portional to the inverse of the temperature, and �

is the chemical potential, which is chosen so that
trace

�
gˇ.H.�/ � �I/

� D ne . At zero temperature,
ˇ D 1 and (2) reduces to a step function that drops
from 1 to 0 at �.

Equation 1 defines a self-consistent map from �

to itself. This map is sometimes referred to as the
Kohn-Sham map. Because the Jacobian of this map
is difficult to compute or invert, a practical approach
for finding the fixed point of the Kohn-Sham map
is to apply a Broyden type Quasi-Newton algorithm
to solve (1) iteratively. This is generally known as
a SCF iteration. The convergence of a SCF iteration
depends largely on the choice of an effective Broyden
updating scheme for approximating the Jacobian at
each iteration. Such a scheme is known as charge
mixing in the physics literature.

The dominant cost of a SCF iteration is the eval-
uation of the Kohn-Sham map, that is, the right hand
side of (1). The most widely used technique for per-
forming such an evaluation is to partially diagonal-
ize H.�/ and compute its ne smallest eigenvalues
and the corresponding eigenvectors. For large-scale
problems, the eigenvalue problem is often solved by
an iterative method such as a Lanczos or Davidson
algorithm.

An alternative approach is to treat the eigenvalue
problem as a constrained minimization problem and
apply an iterative minimization algorithm such as the
locally optimal block preconditioned conjugate gradi-
ent (LOBPCG) algorithm [6] to minimize the trace
of X�HX subject to the orthonormality constraint
X�X D I. Because an effective preconditioner can be
used in this approach, it is often more efficient than a
Lanczos-based algorithm.

Both the Lanczos and the LOBPCG algorithms
require performing orthogonalization among at least
ne basis vectors, which for large ne incurs a cost of
O.n3e/. To reduce the frequency of orthogonalization,
one may apply a simple subspace iteration to p.k/.H/,
where p.k/.	/ is a polynomial constructed at the kth
SCF iteration to amplify the spectral components as-
sociated with the desired eigenvalues of H while
filtering out the unwanted components. Although this
algorithm may use approximately the same number of
matrix-vector multiplications as that used in a Lanczos,
Davidson, or LOBPCG algorithm, the basis orthog-
onalization cost is much lower (but not completely
eliminated) for large ne , as is shown in [20].

A recently developed method [9] for evaluating the
Kohn-Sham map without resorting to performing a
spectral decomposition of H relies on using a rational
approximation to gˇ.	 � �/ to compute the diagonal
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entries of gˇ.H � �I/ directly. The rational approxi-
mation to gˇ.	 � �/ has the form:

gˇ.	 � �/ �
npX

jD1
Im

�
!j

	 � zj

	
;

where zj and !j are carefully chosen poles and weight-
ing factors that minimize the approximation error. The
number of poles required (np) is typically less than
a hundred. Although computing gˇ.H � �I/ would
require us to compute .H � zi I /�1, which is likely
to be completely dense, for np complex poles zi, a
significant amount of savings can be achieved if we
only need the diagonal elements of gˇ.H � �I/.
Instead of computing the entire matrix .H � zi I /�1,
one only needs to compute its diagonal. This task
can be accomplished by using a special algorithm
which we refer to as selected inversion [10, 11]. The
complexity of selected inversion is O.ne/ for quasi-
1D problems (e.g., nanotubes and nanowires), O.n3=2e /

for quasi-2D problems (e.g., graphene), and O.n2e/ for
general 3D problems.

Solving the Kohn-Sham Problem
by ConstrainedMinimization

The Kohn-Sham problem can also be solved by min-
imizing the Kohn-Sham total energy directly. In this
case, we seek to find

min
X�XDIne

Etot.X/ � traceŒX�.
1

2
LC OVion/X


C1
2
�T L��C �T �xc.�/; (3)

where L 2 Rn�n and Vion 2 Rn�n are matrix repre-
sentations of finite dimensional approximations to the
Laplacian and the ionic potential operator respectively.
The matrixL� is either the inverse or the pseudoinverse
of L depending on the boundary condition imposed in
the continuous model, andX 2 Cn�ne contains approx-
imate single-particle wavefunctions as its columns.

This approach has been attempted by several re-
searchers [8, 14]. Most of the proposed methods treat
the minimization of the total energy and constraint
satisfaction separately. A more efficient direct con-
strained minimization (DCM) algorithm was proposed

in [17, 18]. In this algorithm, the search direction and
the step length are determined simultaneously from a
subspace that consists of the existing wave functions
X.i/, the gradient of the Lagrangian, and the search
direction produced in the previous iteration. A special
strategy is employed to minimize the total energy
within the search space, while maintaining the or-
thonormality constrained required for X.iC1/. Solving
the subspace minimization problem is equivalent to
solving a nonlinear eigenvalue problem of a much
smaller dimension.

Linearly Scaling Algorithms

Most of the algorithms discussed above can be
implemented efficiently on modern high-performance
parallel computers. However, for large nanoscience
problems that consist of more than tens of thousands
of atoms, many of these existing algorithms are still
quite demanding in terms of computational resources.
In recent years, there has been a growing level
of interest in developing linearly scaling methods
[1, 2, 4, 5, 12, 13, 16, 19] for electronic structure
calculations. For insulators and semiconductors, the
computational complexity of these algorithms indeed
scales linearly with respect to ne or the number of
atoms. However, it is rather challenging to develop
a linearly scaling algorithm for metallic systems for
reasons that we will give below. In general, a linear
scaling algorithm should meet the following criteria:
• The complexity for evaluating the Kohn-Sham map

must be O.ne/.
• The total number of SCF iterations must be rela-

tively small compared to ne .
While most of the existing research efforts focus ex-
clusively on the first criterion, we believe the second
criterion is equally important.

All existing linearly scaling algorithms exploit the
locality property of the single-particle wavefunctions
(orbitals) or density matrices to reduce the complexity
of the charge density (Kohn-Sham map) evaluation.
The locality property has its roots in the “nearsighted-
ness” principle first suggested by Kohn [7] and further
investigated in [15]. In mathematical terms, the locality
property implies that the invariant subspace spanned
by the smallest ne eigenvectors can be represented by
a set of basis vectors that have local nonzero support
(i.e., each basis vector has a relatively small number
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of nonzero elements.), or the density matrix D D
gˇ.H.�/ � �I/ is diagonally dominant, and the off-
diagonal entries of the matrix decay rapidly to zero
away from the diagonal. As a result, there are three
main classes of linearly scaling methods.

In the first class of methods, one relaxes the or-
thonormality constraint of the single-particle wave-
functions but requires them to have localized nonzero
support. As a result, the Kohn-Sham map can be eval-
uated by solving a sparse generalized eigenvalue prob-
lem. An iterative method such as the localized subspace
iterations (LSI) [3] can be used to compute the desired
invariant subspace. Because each basis vector of the
invariant subspace is forced to be sparse, the matrix-
vector multiplication used in such an algorithm can
be evaluated efficiently with a complexity of O.ne/.
More importantly, because such an algorithm does not
perform basis reorthogonalization, it does not incur the
O.n3e/ cost of conventional eigensolvers.

The second class of methods employs a divide-
and-conquer principle originally suggested in [19] to
divide the problem into several subproblems defined
on smaller subregions of the material domain. From a
mathematical viewpoint, these are domain decomposi-
tion methods. A similar approach is used in the recently
developed linear-scaling three-dimensional fragment
(LS3DF) method [16]. These methods require local
solutions to be patched together in a nontrivial way
to preserve the total charge and to eliminate charge
transfer between different regions.

The third class of linearly scaling methods relies
on using either polynomial or rational approximations
of D D gˇ.H � �I/ and truncation techniques
that ignore small off-diagonal entries in D to reduce
the complexity of the Kohn-Sham map evaluation to
O.ne/. It is important to note that the number of terms
used in the polynomial or rational approximation to
gˇ.H � �I/ must be small enough in order to achieve
linear scaling. For insulators and semiconductors in
which the gap between the occupied and unoccupied
states is relatively large, this is generally not difficult
to achieve. For metallic systems that have no band
gap, one may need a polynomial of very high degree
to approximate gˇ.H � �I/ with sufficient accuracy.
It is possible to accurately approximate gˇ.H � �I/
using recently developed pole expansion techniques [9]
with less than 100 terms even when the band gap is
very small. However, since the off-diagonal elements
of D decay slowly to zero for metallic systems, the

evaluation of the Kohn-Sham map cannot be performed
in O.ne/ without losing accuracy at low temperature.

Linearly scaling algorithms can also be designed to
minimize the total energy directly. To achieve linear
scaling, the total energy minimization problem is re-
formulated as an unconstrained minimization problem.
Instead of imposing the orthonormality constraint of
the single-particle wavefunctions, we require them to
have localized support. Such localized orbitals allow
the objective and gradient calculations to be performed
with O.ne/ complexity. The original version of orbital
minimization methods uses direct truncations of the
orbitals. They are known to suffer from the possibility
of being trapped at a local minimizer [4]. The presence
of a large number of local minimizers in this approach
is partially due to the fact that direct truncation tends to
destroy the invariance property inherent in the Kohn-
Sham DFT model, and introduces many local minima
in the Kohn-Sham energy landscape. This problem can
be fixed by applying a localization procedure prior to
truncation.

Cross-References

�Density Functional Theory
�Hartree–Fock Type Methods
� Schrödinger Equation for Chemistry
� Self-Consistent Field (SCF) Algorithms
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Synonyms

Lattice Boltzmann Method (LBM)

Short Definition

The lattice Boltzmann method (LBM) is a family
of methods derived from kinetic equations for
computational fluid dynamics, chiefly used for near-
incompressible flows of Newtonian fluids.

Description

The primary focus of computational fluid dynamics
(CFD) is the solution of the nonlinear Navier–Stokes–
Fourier (NSF) equations that describe mass, momen-
tum, and energy transport in a fluid. For the most
common case of incompressible flow, these reduce
to the Navier–Stokes (NS) equations for momentum
transport alone, as supplemented by an elliptic equa-
tion to determine the pressure. The NSF equations
may be derived from the Boltzmann equation of ki-
netic theory, with transport coefficients calculated from
the underlying interatomic interactions. The lattice
Boltzmann method (LBM) is distinguished by being a
discretization of the Boltzmann equation, rather than a
direct discretization of the NS equations.

Kinetic Theory and the Boltzmann
Equation

Kinetic theory describes a dilute monatomic gas
through a distribution function f .x; �; t/ for the
number density of particles at position x moving with
velocity � at time t . The distribution function evolves
according to the Boltzmann equation [2, 6]

@tf C � �rf D CŒf; f 
: (1)

The quadratic integral operator CŒf; f 
 represents bi-
nary collisions between pairs of particles. The first few
moments of f with respect to particle velocity � give
hydrodynamic quantities: the fluid density �, velocity
u, momentum flux …, and energy flux Q,
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� D
Z
f d�; �u D

Z
� f d�;

… D
Z

�� f d�; Q D
Z

��� f d�; (2)

in convenient units with the particle mass scaled to
unity. Collisions conserve mass, momentum, and en-
ergy, while relaxing f towards a Maxwell–Boltzmann
distribution

f .0/ D �.2�/�3=2 exp
��ku � �k2=.2/� : (3)

These together imply conservation of the temperature
 , given by Tr … D 3� C �kuk2 in energy units for
which

p
 is the Newtonian or isothermal sound speed.

Hydrodynamics describes near-equilibrium solu-
tions, f � f .0/, for which a linearized collision
operator is sufficient. A popular model is the
Bhatnagar–Gross–Krook (BGK) form [1]

@tf C � �rf D �1
�

�
f � f .0/

�
(4)

that relaxes f towards an equilibrium distribution f .0/

with the same �, u,  as f . This satisfies all the require-
ments necessary for deriving the NSF equations, but
the Prandtl number is fixed at unity. The more general
Gross–Jackson model [7] allows the specification of
any finite number of relaxation times in place of the
above single relaxation time � .

Moments of the Boltzmann equation (1) give an in-
finite hierarchy of evolution equations for the moments
of f . The first few are

@t �C r �.�u/ D 0; @t .�u/C r �… D 0;

@t…C r �Q D �1
�

�e… � e….0/
�
: (5)

Each evolution equation involves the divergence of the
next higher moment. The first two right-hand sides van-
ish because collisions conserve microscopic mass and
momentum. The right-hand side of the third equation
arises from the traceless part e… of the momentum flux
being an eigenfunction of the BGK collision opera-
tor and an eigenfunction of the linearized Boltzmann
collision operator for Maxwell molecules. The latter
property holds to a good approximation for other in-
teratomic potentials [2].

Temperature fluctuations are O.Ma2/ when the
Mach number Ma D kuk=p is small. It is then

convenient to impose a constant temperature 0 when
evaluating f .0/. This takes the place of an independent
energy evolution equation, and the last of (5) then
holds with … rather than the traceless part e… on the
right-hand side. A temperature evolution equation may
be reintroduced under the Boussinesq approximation
using a second distribution function [5, 10].

Derivation of the Hydrodynamic
Equations

The NSF equations describe solutions of the
Boltzmann equation that vary slowly on macroscopic
timescales �0 � � , where �0 may be a fluid eddy
turnover time. The ratio � D �=�0 may be identified
with the Knudsen number Kn. The modern Chapman–
Enskog expansion [2] seeks solutions of (1) or
(4) through a multiple-scale expansion of both the
distribution function and the time derivative:

f D
1X

nD0
�nf .n/; @t D

1X

nD0
�n@tn : (6)

This expansion of f implies corresponding expansions
of the moments:

�.n/ D
Z
f .n/d�; �u.n/ D

Z
�f .n/d�;

….n/ D
Z

��f .n/d�; Q.n/ D
Z

���f .n/d�: (7)

The expansion of @t prevents the overall expansion
from becoming disordered after long times t � �0=�,
but requires additional solvability conditions, namely,
that �.n/ D 0, u.n/ D 0 for n � 1. Equivalently,
one may expand the non-conserved moments … D
….0/ C �….1/ C � � � , Q D Q.0/ C �Q.1/ C � � � , while
leaving the conserved moments � and u unexpanded.

Evaluating (5) at leading order gives the compress-
ible Euler equations

@�0�C r �.�u/ D 0; @�0.�u/C r �….0/ D 0: (8)

The inviscid momentum flux ….0/ D �IC �uu, with
I the identity tensor, is given by the second moment of
f .0/. Evaluating the last of (5) at leading order gives

@�0…
.0/ C r �Q.0/ D � 1

�0
….1/; (9)
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where Q.0/ is known from f .0/, and we evaluate
@�0…

.0/ using the Euler equations (8). After some ma-
nipulation, �….1/ D ��� �.ru/C .ru/T

� D ���S
becomes the NS viscous stress for an isothermal fluid
with dynamic viscosity � D �� . The multiple-scale
expansion may be avoided by taking Ma D O.�/.
This so-called diffusive scaling removes the separation
of timescales by bringing the viscous term u �ru into
balance with .�=�/r2u, pushing the @�0…

.0/ term in
(9) to higher order [11].

Discrete Kinetic Theory

Discrete kinetic theory preserves the above structure
that leads to the NS equations, but restricts the particle
velocity to a finite set, � 2 f�0; : : : ; �N�1g. The
previous integral moments become sums over a finite
set fi .x; t/, one for each � i :

� DP
i fi ; �u DPi �i fi ;

… DP
i �i�i fi ; Q DPi �i�i�i fi : (10)

The discrete analogue of the linearized Boltzmann
equation is

@tfi C �i �rfi D �
P

j �ij

�
fj � f .0/

j

�
; (11)

where �ij is a constant N 	 N matrix giving a
general linear collision operator. This linear, constant-
coefficient hyperbolic system is readily discretized, as
described below.

The aim now is to choose the velocity set f�i g,
the equilibria f .0/

j .�;u/, and the collision matrix �ij

so that the moment equations obtained from (11) co-
incide with the system (5) obtained previously from
(1). The continuous Maxwell–Boltzmann equilibrium
f .0/ emerged from properties of Boltzmann’s collision
operator C Œf; f 
, but the f .0/

j .�; u/ in (11) must be

supplied explicitly. The discrete moments ….0/ and
Q.0/ should remain unchanged from continuous kinetic
theory, at least to O.Ma2/.

The discrete collision operator should conserve
mass and momentum, and … should be an eigen-
function. The simplest choice �ij D ��1ıij gives
the BGK collision operator (4), but more general
choices improve numerical stability [3] and treatment
of boundary conditions. The most common equilibria
are the quadratic polynomials [9, 14]

f
.0/
j .�;u/ D wj �



1C 3 u � �j C

9

2
.u � �j /2 �

3

2
kuk2

�
;

(12)

with weights w0 D 4=9, w1;:::;4 D 1=9, and w6;:::;9 D
1=36 for the D2Q9 lattice shown in Fig. 1. The particle
velocities �i are scaled so that �ix; �iy 2 f�1; 0; 1g and
 D 1=3. The �i thus form an integer lattice. The above
f
.0/
j may be derived from a low Mach number expan-

sion of the Maxwell–Boltzmann distribution, or as a
moment expansion in the first few of Grad’s [6] tensor
Hermite polynomials 1, �i , � i�i� I. The wi and � i are
the weights and quadrature nodes for a Gauss–Hermite
quadrature that holds exactly for polynomials of degree
5 or less. The �, u, ….0/ moments of the discrete and
continuous equilibria thus coincide exactly [9], while
the Q.0/ moment differs by an O.Ma3/ term �uuu.

J+1

J

J−1

II−1 I+1

0 1

2

3

4

56

7 8

Lattice Boltzmann Methods, Fig. 1 D2Q9 and D3Q19 lattices. The velocities �i are scaled so that �i˛ 2 f�1; 0; 1g for
˛ 2 fx; y; zg
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Space–Time Discretization

For each i , we may write the left-hand side of (11) as a
total derivative dfi=ds along the characteristic .x; t/ D
.x0 C �i s; t C s/ parametrized by s. Integrating (11)
along this characteristic for a timestep �t gives [10]

fi .x C �i�t; t C�t/ � fi .x; t/ D
� 2 ��t0

X

j

�ij

h
fj � f .0/

j

i
.x C �i s; t C s/ ds:

(13)

Approximating the remaining integral by the trape-
zoidal rule gives

fi .x C �i�t; t C�t/ � fi .x; t/ D

�1
2
�t

X

j

�ij

�
fj .x C �i�t; t C�t/C fj .x; t/

�f .0/j .x C �i�t; t C�t/ � f .0/j .x; t/


CO

�
.�t=�/3

�
:

(14)

Neglecting the error term, and collecting all terms
evaluated at t C�t to define

f i .x; t/ D fi .x; t/C
1

2
�t
X

j

�ij

�
fj � f .0/

j

�
;

(15)
leads to an explicit scheme, the lattice Boltzmann
equation (LBE), for the f i :

f i .x C � i�t; t C�t/ D
f i .x; t/ ��t

X

j

�ij

�
f j .x; t/ � f .0/

j .x; t/
�
; (16)

with discrete collision matrix � D �
IC 1

2
�t�

��1
�.

When � D ��1I this transformation reduces to replac-
ing � with �C�t=2. Taking moments of (15) gives the
conserved moments � D P

i f i and �u D P
i � if i ,

unaffected by the collision term that distinguishes f i

from fi . We may thus evaluate the f
.0/
i in (16).

However, non-conserved moments such as … must be
found by inverting (15) for the fi .

The errors involving �t from the space–time dis-
cretization of (11) are in principle entirely independent
of the O.�2/ error in the derivation of the NS equa-
tions. However, the above usage of the trapezoidal rule

requires�t 
 � to justify neglecting the error in (14).
The same restriction is needed in the reverse derivation
of partial differential equations from (16) using Taylor
expansions in �t [11]. However, the algorithm (16)
successfully captures slowly varying hydrodynamic be-
havior on macroscopic timescales �0 � �t even when
�t � � . The ratio �t=� may be identified with the
grid-scale Reynolds number Regrid D kuk�x=�, with
�x D �t in standard LB units. Stability for Regrid �
1 is essential for applying the LBM to turbulent flows.
Stable 2D simulations have been demonstrated [3] with
Regrid & 100 and a collision matrix�ij that suppresses
the oscillations with period 2�t that arise in the non-
conserved moments when Regrid > 1.

These successes do not imply that the LBE correctly
captures arbitrary solutions of the discrete Boltzmann
equation evolving on the collisional timescale � , such
as kinetic initial and boundary (Knudsen) layers [2, 6].
The LBE reproduces just enough of the true Boltz-
mann equation to capture the isothermal NS equations.
It does not capture Burnett and higher order corrections
relevant for rarefied flows at finite Knudsen numbers,
and it does not capture Knudsen boundary layers.

Wider Applications

The core lattice Boltzmann algorithm described above
has been extended into many wider applications: large
eddy simulations of turbulent flows, multiphase flows,
and soft condensed matter systems such as colloids,
suspensions, gels, and polymer solutions [4, 12]. The
LBM is commonly characterized as a second-order
accurate scheme at fixed Mach number. However, the
spatial derivatives on the left-hand side of (11) are
treated exactly in deriving (13). The only approxi-
mation lies in the treatment of the collision integral.
Comparisons with pseudo-spectral simulations for the
statistics of turbulent flows show comparable accuracy
when the LBM grid is roughly twice as fine as the
pseudo-spectral collocation grid [13].

The nonequilibrium momentum flux ….1/ is propor-
tional to the local strain rate S D .ru/C .ru/T under
the Chapman–Enskog expansion, so S may be com-
puted locally from .… �….0// at each grid point with
no spatial differentiation [15]. Adjusting the local col-
lision time � to depend on S extends the LBM to large
eddy simulations using the Smagorinsky turbulence
model, with an effective eddy viscosity �turb / jjSjj,
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and to further generalized Newtonian fluids whose
viscosities are functions of jjSjj.

The straightforward implementation of boundary
conditions by reflecting particles from solid boundaries
makes the LBM attractive for simulating pore-scale
flows in porous media and particle-scale flows of sus-
pensions. The Brownian thermal fluctuations omitted
in the Boltzmann equation, but relevant for colloids,
may be restored by adding random noise to the non-
conserved moments during collisions [4].

There are many LB formulations for multiphase
and multicomponent flows [8]. They are essentially
diffuse interface capturing schemes that use interac-
tions between neighboring grid points to mimic the
inter-particle interactions responsible for interfacial
phenomena.
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Introduction

A computational problem of primary importance in
science and engineering is to fit a mathematical model
to given observations. The influence of errors in the
observations can be reduced by using a greater num-
ber of measurements than the number of unknown
parameters. Least squares estimation was first used
by Gauss in astronomical calculations more than two
centuries ago. It has since been a standard approach in
applications areas that include geodetic surveys, pho-
togrammetry, signal processing, system identification,
and control theory. Recent technological developments
have made it possible to generate and treat problems
involving very large data sets.

As an example, consider a model described by a
scalar function f .x; t/, where x 2 Rn is an unknown
parameter vector to be determined from measurements
bi D f .x; ti /C ei ; i D 1; : : : ; m.m > n/, where ei are
errors. In the simplest case f .x; ti / is linear in x:

f .x; t/ D
nX

jD1
xj �j .t/; (1)

where �j .t/ are known basis functions. Then the mea-
surements form an overdetermined system of linear
equations Ax D b, where A 2 Rm�n is a matrix with
elements aij D �j .ti /.

It is important that the basis function �j .t/ are
chosen carefully. Suppose that f .x; t/ is to be modeled
by a polynomial of degree n. If the basis functions
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are chosen as the monomials t j , then A will be a
Vandermonde matrix. Such matrices are notoriously ill
conditioned and this can lead to an inaccurate solution.

The Least Squares Principle
In the standard Gauss–Markov linear model, it is as-
sumed that a linear relation Ax D y holds, where
A 2 Rm�n is a known matrix of full column rank, x
is a parameter vector to be determined, and y 2 Rm a
constant but unknown vector. The vector b D f C e is
a vector of observations and e a random error vector. It
is assumed that e has zero mean and covariance matrix
�2I , where �2 is an unknown constant.

Theorem 1 (The Gauss–Markov Theorem) In the
linear Gauss–Markov model, the best linear unbiased
estimator of x is the least square estimate Ox that
minimizes the sum of squares

S.x/ D kr.x/k22 D
mX

iD1
r2i ;

where r.x/ D b � Ax is the residual vector. A
necessary condition for a minimum is that the gradient
vector @S=@x is zero. This condition gives AT .b �
Ax/ D 0, i.e., r.x/ ? R.A/, the range of A. It
follows that Ox satisfies the normal equations ATAx D
AT b. The best linear unbiased estimator of any linear
functional cT x is cT Ox.

The covariance matrix of the estimate Ox is V. Ox/ D
�2.ATA/�1. The residual vector Or D b � A Ox is
uncorrelated with Ox and an unbiased estimate of �2

is given by s2 D kOrk22=.m� n/.
In the complex case A 2 Cm�n, b 2 Cm, the

complex scalar product has to be used in Gauss–
Markov theorem. The least squares estimate minimizes
krk22 D rH r , where rH denotes the complex conjugate
transpose of r . The normal equations are AHAx D
AHb. This has applications, e.g., in complex stochastic
processes.

It is easy to generalize the Gauss–Markov theorem
to the case where the error e has a symmetric positive
definite covariance matrix �2V . The least squares esti-
mate then satisfies the generalized normal equations

AT V �1Ax D AT V �1b: (2)

The covariance matrix of the least squares estimate Ox
is V. Ox/ D �2.AT V �1A/�1 and an unbiased estimate
of �2 is given by s2 D OrT V �1 Or=.m�n/. In the special
case of weighted least squares, the covariance matrix
is V D D�2, D D diag.d1; : : : ; dm/. After a diagonal
scaling this is equivalent to the scaled standard problem
minx kDb � .DA/x/k2.

Calculating Least Squares Estimates

Comprehensive discussions of methods for solving
least squares problems are found in [6] and [1]. In the
following we write the algebraic linear least squares
problems in the form minx kAx � bk2.

The singular value decomposition (SVD) is a pow-
erful tool both for analyzing and solving the linear
least squares problem. The SVD of A 2 Rm�n of
rank.A/ D n is

A D U˙V T D �U1 U2
� 
˙1

0

�
V T D U1˙1V

T ; (3)

where ˙1 D diag.�1; �2; : : : ; �n/. Here �1 � �2 �
� � � ;� �n � 0 are the singular values of A and the ma-
trices U D .u1; u2; : : : ; um/ and V D .v1; v2; : : : ; vn/

are square orthogonal matrices, whose columns are the
left and right singular vectors of A. If �n > 0 the least
squares solution equals

x D V ˙�1
1 .U T

1 b/ D
nX

iD1

ci

�i
vi ; ci D uTi b (4)

If A has small singular values, then small perturbations
in b can give rise to large perturbations in x. The ratio
�.A/ D �1=�n is the condition number of A. The
condition number of the least squares solution x can
be shown to depend also on the ratio krk2=�nkxk2 and

equals [1] �.x/ D �.A/



1C krk2

�nkxk2
�

. The second

term will dominate if krk2 > �nkxk2.
Because of the high cost of computing and modi-

fying the SVD, using the expansion (4) is not always
justified. Simpler and cheaper alternative methods are
available.

The Method of Normal Equations
If A 2 Rm�n has full column rank, the solution can
be obtained from the normal equations. The symmetric
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matrix ATA 2 Rn�n is first formed. Then the Cholesky
factorization ATA D RTR is computed, where R
is an upper triangular matrix with positive diagonal
elements. These operations requiremn2Cn3=3 floating
point operations (flops). For a right-hand side b, the
least squares solution is obtained by computing d D
AT b 2 Rn and solving two triangular systems RT z D
d and Rx D z. The residual matrix is r D b � Ax.
This requires 2n.2mC n/ flops.

The estimated covariance matrix of x is

Vx D s2.RTR/�1 D s2SST ; s2 D rT r=.m � n/;
S D R�1: (5)

The estimated variance of any linear functional � D
f T x is

V� D s2f T SST f D s2vT v; RT v D f: (6)

and can be computed without forming Vx. Setting f D
ei gives the variance of the component xi . The com-

ponents of the normalized residual Qr D 1

s
diag.Vx/

�1 Or
should be uniformly distributed random variables. This
can be used to detect and identify bad observations.

QR Factorizations and Bidiagonal Decomposition
The method of normal equations is efficient and suffi-
ciently accurate for many problems. However, forming
the normal equations squares the condition number of
the problem. This can be seen by using the SVD to
show that ATA D V ˙UT U˙V T D V ˙2

1 V
T and

hence �.ATA/ D �2.A/. Methods using orthogonal
transformations preserve the condition number and
should be preferred unless the problem is known to be
well conditioned. The QR factorization of the matrix
A 2 Rm�n of full column rank is

A D Q


R

0

�
D Q1R; (7)

where Q D �
Q1 Q2

� 2 Rm�m is orthogonal and
R 2 Rn�n upper triangular. It can be computed in
2.mn2 � n3=3/ flops using Householder transforma-
tions. The matrix Q is then implicitly represented as
Q D P1P2 � � �Pn where Pi D I � 2vivTi , kvik2 D 1.
Only the Householder vectors vi need to be stored
and saved. The least squares solution and the residual
vector are then obtained in about 8mn�3n2 flops from

QTb D Pn � � �P2P1b D


c1
c2

�
; Rx D c1;

r D P1P2 � � �Pn


0

c2

�
: (8)

Using orthogonality it follows that krk2 D kc2k2.
If the diagonal elements in the triangular factor R are
chosen to be positive, then R is uniquely determined
and mathematically (not numerically) the same as the
Cholesky factor from the normal equations. Thus, the
expression (5) for the estimated covariance matrix is
valid.

It is recommended that column pivoting is per-
formed in the QR factorization. This will yield a
QR factorization of A˘ for some permutation matrix
˘ . The standard strategy is to choose at each step
k D 1; : : : ; n, the column that maximizes the diagonal
element rkk in R. Then the sequence r11 � r22 � � � � �
rnn > 0 is nonincreasing, and the ratio r11=rnn is often
used as a rough approximation of �.A/.

A rectangular matrix A 2 Rm�n, m > n can
be transformed further to lower (or upper) bidiag-
onal form by a sequence of two-sided orthogonal
transformations

UTAV D


B

0

�
; B D

0

B
B
B
B
BB
@

˛1
ˇ2 ˛2

ˇ3
: : :

: : : ˛n
ˇnC1

1

C
C
C
C
CC
A

(9)

where U D .u1; u2; : : : ; um/, V D .v1; v2; : : : ; vn/.
This orthogonal decomposition requires 4.mn2�n3=3/
flops, which is twice as much as the QR factorization.
It is essentially unique once the first column u1 D Ue1
has been chosen. It is convenient to take u1 D b=ˇ1,
ˇ1 D kbk2. Then UT b D ˇ1e1 and setting x D Vy,
we have

UT .b �Ax/ D


ˇ1e1 � By

0

�
:

The least squares solution can be computed in O.n/
flops by solving the bidiagonal least squares prob-
lem miny kBy � ˇ1e1k2. The upper bidiagonal form
makes the algorithm closely related to the iterative
LSQR algorithm in [7]. Also, with this choice of u1
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the decomposition will terminate early with a core
subproblem if an entry ˛i or ˇi is zero ([8]].

Rank-Deficient Problems
Rank deficiency in least squares problems can arise
in different ways. In statistics one often has a large
set of variables, called the factors, that are used to
control, explain, or predict other variables. The set of
factors correspond to the columns of a matrix A D
.a1; a2; : : : ; an/. If these are highly collinear, then the
approximate rank of A is less than n and the least
squares solution is not unique. Often the rank of A is
not known in advance, but needs to be determined as
part of the solution process.

In the rank-deficient case one can seek the least
squares solution of minimum norm, i.e., solve the
problem

min
x2S kxk2; S D fx 2 Rnj kb � Axk2 D ming: (10)

This problem covers as special cases both overdeter-
mined and underdetermined linear systems. The so-
lution is always unique and called the pseudoinverse
solution. It is characterized by x 2 R.AT / and can be
obtained from the SVD of A as follows. If rank.A/ D
r < n, then �j D 0, j > r , and

x D A�b D V1˙�1
1 .U T

1 b/ D
rX

iD1

ci

�i
vi ; ci D uTi b;

(11)

i.e., it is obtained simply by excluding terms corre-
sponding to zero singular values in the expansion (4).
The matrix A� D V1˙

�1
1 U T

1 is called the pseudoin-
verse of A.

In some applications, e.g., in signal processing, one
has to solve a sequence of problems where the rank
may change. For such problems methods that use a piv-
oted QR factorization have the advantage over the SVD
in that these factorizations can be efficiently updated;
see [4]. One useful variant is the URV decomposition,
which has the form

A˘ D URV T D �U1 U2
� 
R11 R12

0 R22

�

V T
1

V T
2

�
: (12)

Here R11 is upper triangular and the entries of R12 and
R22 have small magnitudes. The orthogonal matrices

U1 and V2 approximate the range and null space of A,
respectively.

Large-Scale Problems
Many applications lead to least squares problems
where A is large and sparse or structured. In the QR
factorization of a sparse matrix, the factor Q will
often be almost full. This is related to the fact that
Q D AR�1 and even if R is sparse R�1 will have
no zero elements. Therefore, computing the factor Q
explicitly for a sparse matrix should be avoided. A QR
algorithm for banded matrices which processes rows
or block of rows sequentially is given in [6, Chap. 27].
An excellent source book on factorization of matrices
with more irregular sparsity is [3].

An efficient iterative method for solving large sparse
least squares problems is the Krylov subspace method
LSQR (see [7]). It uses a Lanczos process to generate
the vectors vi , uiC1, i D 1; 2; : : : and the columns of
the matrix B in (9). LSQR only requires one matrix-
vector product with A and AT per iteration step. If A
is rank deficient, LSQR converges to the pseudoinverse
solution.

Regularization of Least Squares Problems

In discrete approximations to inverse problems, the
singular values �i ofA cluster at zero. If the exact right-
hand side b is contaminated by white noise, this will
affect all coefficients ci in the SVD expansion (4) more
or less equally. Any attempt to solve such a problem
without restriction on x will lead to a meaningless
solution.

Truncated SVD and Partial Least Squares
If the SVD of A is available, then regularization can be
achieved simply by including in the SVD expansion
only terms for which �1 > tol, for some tolerance
tol only. An often more efficient alternative is to use
partial least squares (PLS). Like truncated SVD it
computes a sequence of approximate least squares
solutions by orthogonal projections onto lower dimen-
sional subspaces. PLS can be implemented through
a partial reduction of A to lower bidiagonal form.
It is used extensively in chemometrics, where it was
introduced in [10]. The connection to the bidiagonal
decomposition is exhibited in [2].
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Tikhonov Regularization
Tikhonov regularization is another much used method.
In this a penalty is imposed on the 2-norm of kxk2
of the solution. Given A 2 Rm�n a regularized least

squares problem minx
h
kAx�bk22C�2kxk22

i
is solved,

where the parameter � governs the balance between
a small residual and a smooth solution. In statistics
Tikhonov regularization is known as “ridge regres-
sion.” The solution x.�/ D .ATA C �2I /�1AT b can
be computed by Cholesky factorization. In terms of the

SVD expansion, it is x.�/ D
nX

iD1

ci�i

�2i C �2
vi . Methods

using QR factorization, which avoid forming the cross-
product matrix ATA, can also be used [1]. The optimal
value of � depends on the noise level in the data. The
choice of � is often a major difficulty in the solution
process and often an ad hoc method is used; see [5].

In the LASSO (Least Absolute Shrinkage and Se-
lection) method a constraint involving the one norm
kxk1 is used instead. The resulting problem can be
solved using convex optimization methods. LASSO
tends to give solutions with fewer nonzero coefficients
than Tikhonov regularization; see [9]. This property is
fundamental for its use in compressed sensing.
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The root cause for the remarkable success of early
finite element methods (FEMs) is their intrinsic con-
nection with Rayleigh-Ritz principles. Yet, many par-
tial differential equations (PDEs) are not associated
with unconstrained minimization principles and give
rise to less favorable settings for FEMs. Accordingly,
there have been many efforts to develop FEMs for such
PDEs that share some, if not all, of the attractive mathe-
matical and algorithmic properties of the Rayleigh-Ritz
setting. Least-squares principles achieve this by aban-
doning the naturally occurring variational principle in
favor of an artificial, external energy-type principle.
Residual minimization in suitable Hilbert spaces de-
fines this principle. The resulting least-squares finite el-
ement methods (LSFEMs) consistently recover almost
all of the advantages of the Rayleigh-Ritz setting over
a wide range of problems, and with some additional
effort, they can often create a completely analogous
variational environment for FEMs.

A more detailed presentation of least-squares finite
element methods is given in [1].

Abstract LSFEM theory Consider the abstract PDE
problem

find u 2 X such that Lu D f in Y; (1)

where X and Y are Hilbert spaces, L W X 7! Y is
a bounded linear operator, and f 2 Y is given data.

Sandia National Laboratories is a multiprogram laboratory op-
erated by the Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the US Department of En-
ergy’s National Nuclear Sec- urity Administration under contract
DE-AC04-94AL85000.
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Assume (1) to be well posed so that there exist positive
constants ˛ and ˇ such that

ˇkukX � kLukY � ˛kukX 8 u 2 X: (2)

The energy balance (2) is the starting point in the
development of LSFEMs. It gives rise to the uncon-
strained minimization problem, i.e., the least-squares
principle (LSP):

fJ;Xg !
�

min
u2X J.uIf /; J.uIf / D kLu � f k2Y


;

(3)
where J.u; f / is the residual energy functional.
From (2), it follows that J.�I �/ is norm equivalent:

ˇ2kuk2X � J.uI 0/ � ˛2kuk2X 8 u 2 X: (4)

Norm equivalence (4) and the Lax-Milgram Lemma
imply that the Euler-Lagrange equation of (3)

find u 2 X such that
�
Lv;Lu

�
Y
� Q.u;w/

D F.w/ � �Lv; f �
Y
8 w 2 X (5)

is well posed because Q.u;w/ is an equivalent inner
product onX	X . The unique solution of (5), resp. (3),
coincides with the solution of (1).

We define an LSFEM by restricting (3) to a family
of finite element subspaces Xh � X , h ! 0. The
LSFEM approximation uh 2 Xh to the solution u 2
X of (1) or (3) is the solution of the unconstrained
minimization problem

fJ;Xhg!
�

min
uh2Xh

J.uhIf /; J.uIf /DkLuh�f k2Y

:

(6)
To compute uh, we solve the Euler-Lagrange equation
corresponding to (6):

find uh 2 Xhsuch thatQ.uh;wh/

D F.wh/8wh 2 Xh: (7)

Let f�hj gNjD1 denote a basis for Xh so that uh D
PN

jD1 uhj �
h
j . Then, problem (7) is equivalent to the

linear system of algebraic equations

Q
hEuh D Ef h (8)

for the unknown vector Euh, where Qh
ij D

�
L�hj ;L�hi

�
Y

and Ef h
i D

�
L�i ; f

�
Y

.

Theorem 1 Assume that (2), or equivalently, (4),
holds and that Xh � X . Then:
– The bilinear form Q.�; �/ is continuous, symmetric,

and strongly coercive.
– The linear functional F.�/ is continuous.
– The problem (5) has a unique solution u 2 X that is

also the unique solution of (3).
– The problem (7) has a unique solution uh 2 Xh that

is also the unique solution of (6).
– The LSFEM approximation uh is optimally accurate

with respect to solution norm k � kX . for which (1) is
well posed, i.e., for some constant C > 0

ku � uhkX � C inf
vh2Xh

ku � vhkX (9)

– The matrix Qh of (8) is symmetric and positive
definite. �

Theorem 1 only assumes that (1) is well posed
and that Xh is conforming. It does not require L to
be positive self-adjoint as it would have to be in the
Rayleigh-Ritz setting, nor does it impose any com-
patibility conditions on Xh that are typical of other
FEMs. Despite the generality allowed for in (1), the
LSFEM based on (6) recovers all the desirable features
possessed by finite element methods in the Rayleigh-
Ritz setting. This is what makes LSFEMs intriguing
and attractive.

Practical LSFEM Intuitively, a “practical” LSFEM
has coding complexity and conditioning comparable to
that of other FEMs for the same PDE. The LSP fJ;Xg
in (3) recreates a true Rayleigh-Ritz setting for (1),
yet the LSFEM fJ;Xhg in (6) may be impractical.
Thus, sometimes it is necessary to replace fJ;Xg by a
practical discrete alternative fJ h;Xhg. Two opposing
forces affect the construction of fJ h;Xhg: a desire
to keep the resulting LSFEM simple, efficient, and
practical and a desire to recreate the true Rayleigh-Ritz
setting. The latter requires J h to be as close as possible
to the “ideal” norm-equivalent setting in (3).

The transformation of J.�; �/ into a discrete func-
tional J h.�; �/ illustrates the interplay between these
issues. To this end, it is illuminating to write the energy
balance (2) in the form

C1kSXuk0 � kSY ı Luk0 � C2kSXuk0; (10)
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where SX ;SY are norm-generating operators for X; Y ,
respectively, withL2.�/ acting as a pivot space. At the
least, practicality requires that the basis of Xh can be
constructed with no more difficulty than for Galerkin
FEM for the same PDE. To secure this property, we
ask that the domain D.SX/ of SX contains “practi-
cal” discrete subspaces. Transformation of (1) into an
equivalent first-order system PDE achieves this. Then,
practicality of the “ideal” LSFEM (6) depends solely
on the effort required to compute SY ı Luh. If this
effort is deemed reasonable, the original energy norm
jjjujjj D kSY ı Luk0 can be retained and the transition
process is complete. Otherwise, we proceed to replace
the composite operator SY ıL by a computable discrete
approximation ShY ı Lh. We may need a projection
operator �h that maps the data f to the domain of
ShY . The conversion process and the key properties of
the resulting LSFEM can be encoded by the transition
diagram

J.uIf / D kSY ı .Lu � f /k20 ! jjjujjj
# # #

J h.uhIf / D kShY ı.Lhuh� �hf /k0 ! jjjuhjjjh
(11)

and the companion norm-equivalence diagram

C1kukX � jjjujjj � C2kukX
# # #

C1.h/kuhkX � jjjuhjjjh � C2.h/kuhkX :
(12)

Because L defines the problem being solved, the choice
of Lh governs the accuracy of the LSFEM. The goal
here is to make J h as close as possible to J for the
exact solution of (1). On the other hand, SY defines the
energy balance of (1), i.e., the proper scaling between
data and solution. As a result, the main objective in the
choice of ShY is to ensure that the scaling induced by J h

is as close as possible to (2), i.e., to “bind” the LSFEM
to the energy balance of the PDE.

Taxonomy of LSFEMs Assuming that Xh is
practical, restriction of fJ;Xg to Xh transforms (3)
into the compliant LSFEM fJ;Xhg in (6). Apart
from this “ideal” LSFEM which reproduces the
classical Rayleigh-Ritz principle, there are two other
kinds of LSFEMs that gradually drift away from
this setting, primarily by simplifying the approxi-
mations of the norm-generating operator SY . Mesh-
independent C1.h/ and C2.h/ in (12) characterize the
norm-equivalent class, which retains virtually all

attractive properties of the Rayleigh-Ritz setting,
including identical convergence rates and matrix
condition numbers. A mesh-dependent norm-
equivalence (12) distinguishes the quasi-norm-
equivalent class, which admits the broadest range of
LSFEMs, but can give problems with higher condition
numbers.

Examples We use the Poisson equation for which
L D �� to illustrate different classes of LSFEMs.
One energy balance (2) for this equation corresponds
to X D H2.�/\H1

0 .�/ and Y D L2.�/:

˛kuk2 � k�uk0 � ˇkuk2:

The associated LSP

fJ;Xg !
�

min
u2X J.uIf /; J.uIf / D k�u � f k20



leads to impractical LSFEMs because finite element
subspaces of H2.�/ are not easy to construct.

Transformation of ��u D f into the equivalent
first-order system

r � q D f and ruC q D 0 (13)

can solve this problem. The spaces X D H1
0 .�/ 	

ŒL2.�/
d , Y D H�1.�/ 	 ŒL2.�/
d have practical fi-
nite element subspaces and provide the energy balance

˛.kuk1 C kqk0/ � kr � qk�1 C kruC qk0
� ˇ.kuk1 C kqk0/:

This energy balance gives rise to the minus-one norm
LSP

fJ;Xg !
(

min
.u;q/2X J.u;qIf /; J.u;qIf /

D kr � q� f k2�1 C kruC qk20
)

:

(14)

However, (14) is still impractical because the norm-
generating operator SH�1 D .��/�1=2 is not
computable in general. The simple approximation
Sh
H�1 D hI yields the weighted LSFEM
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fJ h;Xhg !
(

min
.uh;qh/2Xh

J h.uh;qhIf /; J h.uh;qhIf / D h2kr � qh � f k20 C kruh C qhk20
)

(15)

which is quasi-norm equivalent. The more accurate

approximation Sh
H�1 D hI C Kh1=2, where Kh is a

spectrally equivalent preconditioner for �� gives the
discrete minus-one norm LSFEM

fJ h;Xhg !
(

min
.uh;qh/2Xh

J h.uh;qhIf /; J h.uh;qhIf / D kr � qh � f k2�h C kruh C qhk20
)

(16)

which is norm equivalent.
The first-order system (13) also has the energy

balance

˛.kuk1 C kqkdiv/ � kr � qk0 C kruC qk0
� ˇ.kuk1 C kqkdiv/

which corresponds to X D H1
0 .�/ 	 H.div; �/ and

Y D L2.�/ 	 ŒL2.�/
d . The associated LSP

fJ;Xg !
(

min
.u;q/2X J.u;qIf /; J.u;qIf /

D kr � q� f k20 C kruC qk20
)

(17)

is practical. Approximation of the scalar u by standard
nodal elements and of the vector q by div-conforming
elements, such as Raviart-Thomas, BDM, or BDFM,
yields a compliant LSFEM which under some condi-
tions has the exact same local conservation property as
the mixed Galerkin method for (13).
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Short Definition

Levin quadrature is a method for computing highly
oscillatory integrals that does not use moments.

Description

Levin quadrature is a method for calculating integrals
of the form

I Œf 
 D
Z b

a

f .x/ei!g.x/dx;
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where f and g are suitably smooth functions,
i D p�1, and ! is a large real number.

If u satisfies the differential equation

u0.x/C i!g0.x/u.x/ D f .x/; (1)

then
I Œf 
 D u.b/ei!g.b/ � u.a/ei!g.a/:

In Levin quadrature we represent

u �
nX

kD1
ck k.x/

for some basis  1.x/; : : : ;  n.x/, typically a poly-
nomial basis such as monomials  k.x/ D xk�1 or
Chebyshev polynomials k.x/ D Tk�1.x/. The coeffi-
cients c1; : : : ; cn are determined by solving (1) using a
collocation method: for a sequence of points x1; : : : ; xn
(such as Chebyshev points), solve the linear system

nX

kD1
ck. 

0
k.x1/C i!g0.x1/ k.x1// D f .x1/; : : : ;

nX

kD1
ck. 

0
k.xn/C i!g0.xn/ k.xn// D f .xn/:

We then have the approximation

I Œf 
 � QŒf 
 D
nX

kD1
ckŒ k.b/e

i!g.b/ �  k.a/ei!g.a/
:

When g0.x/ ¤ 0 for x 2 .a; b/, a and b are includ-
ing as collocation points and f is differentiable with
bounded variation, then the error of approximating
I Œf 
 byQŒf 
 decays likeO.!�2/: If f ismC1 times
differentiable and m collocation points are clustered
like O.!�1/ near each endpoint, or if m derivatives at
the endpoints are used in the collocation system, then
the error decay improves to O.!�m�2/ [4].

The approach can be generalized to multivariate
oscillatory integrals

I Œf 
 D
Z

˝

f .x/ei!g.x/dx;

where ˝ � R
d , x 2 Rd and f; g W Rd ! R. On

rectangular domains ˝ D Œa; b
 	 Œc; d 
, this consists
of solving the PDE [1]

uxy C i!gyux C i!gxuy C .i!gxy � !2gxgy/u D f

using collocation and approximating

I Œf 
 � u.b; d/ei!g.b;d/ � u.a; d/ei!g.a;d/

�u.b; c/ei!g.b;c/ C u.a; c/ei!g.a;c/:

For other domains, the dimension of the integral can be
reduced by solving the PDE

r � uC i!rg � u D f;

where u W Cd ! C
d , so that

I Œf 
 D
Z

@˝

ei!gu � d s:

Iterating the procedure reduces the integral to a univari-
ate integral, at which point standard Levin quadrature
is applicable [5].

Levin quadrature can be generalized to other oscilla-
tors which satisfy a linear differential equation, such as
Bessel functions or Airy functions. We refer the reader
to [2, 3, 6, 7].
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Synopsis

Lie group integrators (LGIs) are numerical time in-
tegration methods for differential equations evolving
on smooth manifolds, where the time-stepping is com-
puted from a Lie group acting on the domain. LGIs are
constructed from basic mathematical operations in Lie
algebras, Lie groups, and group actions. An extensive
survey is found in [12].

Classical integrators (Runge-Kutta and multistep
methods) can be understood as special cases of Lie
group integrators, where the Euclidean space R

n acts
upon itself by translation; thus in each time step, the
solution is updated by adding an update vector, e.g.,
Euler method for Py.t/ D f .y.t//, for y; f .y/ 2 Rn

steps forwards from t to t C h as

ynC1 D yn C hf .yn/:

Consider instead a differential equation evolving on the
surface of a sphere, Pz.t/ D v.z/	 z.t/; where z; v 2 R3

and 	 denotes the vector product. Let Ov denote the hat
map, a skew-symmetric matrix given as

Ov WD
0

@
0 �v.3/ v.2/
v.3/ 0 �v.1/
�v.2/ v.1/ 0

1

A ; (1)

we can write the equation as Pz.t/ D bv.z/z.t/. By
freezing Ov at zn, we obtain a step of the exponential
Euler method as

znC1 D exp.h Ov.zn//zn:

Here exp.h Ov.zn// is the matrix exponential of a skew-
symmetric matrix. This is an orthogonal matrix which
acts on the vector zn as a rotation, and hence znC1 sits
exactly on the sphere. This is the simplest (nonclassi-
cal) example of a Lie group integrator.

In the cases where the Lie groups are matrix groups,
LGIs are numerical integrators based on matrix com-
mutators and matrix exponentials and are thus related
to exponential integrators. The general framework of
LGI may also be applied in very general situations
where Lie group actions are given in terms of differ-
ential equations. The performance of LGIs depends on
how efficiently the basic operations can be computed
and how well the Lie group action approximates the
dynamics of the system to be solved. In many cases,
a good choice of action leads to small local errors,
and a higher cost per step can be compensated by the
possibility of taking longer time steps, compared to
classical integrators.

Lie group methods are by construction preserving
the structure of the underlying manifold M . Since all
operations are intrinsic, it is not possible to drift off
M . Furthermore, these methods are equivariant with
respect to the group action, e.g., in the example of
the sphere, the methods will not impose any particular
coordinate system or orientation on the domain, and all
points in the domain are treated equivalently.

Building Blocks

Applications of LGI generally involve the following
steps:
1. Choose a Lie group and Lie group action which can

be computed fast and which captures some essential
features of the problem to be solved. This is similar
to the task of finding a preconditioner in iterative
solution of linear algebraic equations.

2. Identify the Lie algebra, commutator, and exponen-
tial map of the Lie group action.

3. Write the differential equation in terms of the in-
finitesimal Lie algebra action, as in (2) below.

4. Choose a Lie group integrator, plug in all building
blocks, and solve the problem.
We briefly review the definition of these objects and

illustrate by examples below. A group is a setG with an
identity element e 2 G and associative group product
a; b 7! ab such that every a 2 G has a multiplicative
inverse a�1a D aa�1 D e. A left group action ofG on
a set M is a map �WG 	M ! M such that e � p D p

and .ab/ � p D a � .b � p/ for all a; b 2 G and p 2 M .
A Lie group is a group G which also has the structure
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of a smooth differentiable manifold such that the map
a; b 7! a�1b is smooth. If M also is a manifold, then
a smooth group action is called a Lie group action.

The Lie algebra g of a Lie group G is the tangent
space of G at the identity e, i.e., g is the vector space
obtained by taking the derivative at t D 0 of all smooth
curves �.t/ 2 G such that �.0/ D e:

g D fV D P�.0/ W �.t/ 2 G; �.0/ D eg � TeG:

By differentiation, we define the infinitesimal Lie al-
gebra action �W g 	 M ! TM which for V 2 g and
p 2 M produces a tangent V � p 2 TpM as

V �p D @

@t

ˇ
ˇ
ˇ
ˇ
tD0

.�.t/ � p/ 2 TpM; where V D P�.0/.

The exponential map expW g ! G is the t D 1 flow
of the infinitesimal action; more precisely, we define
exp.V / 2 G as exp.V / WD y.1/, where y.t/ 2 G is
the solution of the initial value problem

Py.t/ D V � y.t/; y.0/ D e:

The final operation we need in order to define a
Lie group method is the commutator or Lie bracket,
a bilinear map Œ�; �
W g 	 g! g defined for V;W 2 g as

ŒV;W 
 D @2

@s@t

ˇ
ˇ
ˇ
ˇ
sDtD0

exp.sV / exp.tW / exp.�sV /:

The commutator measures infinitesimally the extent
to which two flows exp.sV / and exp.tW / fail to
commute. We denote adV the linear operator W 7!
ŒV;W 
W g! g.

In the important case where G is a matrix Lie
group, the exponential is the matrix exponential and
the commutator is the matrix commutator ŒV;W 
 D
V W � W V . If G acts on a vector space M by matrix
multiplication a � p D ap, then also the infinitesimal
Lie algebra action V � p D Vp is given by matrix
multiplication.

Definition

Given a smooth manifold M and a Lie group G with
Lie algebra g acting on M . Consider a differential
equation for y.t/ 2M written in terms of the infinites-
imal action as

Py.t/ D f .t; y/ � y; y.0/ D y0; (2)

for a given function f WR 	M ! g. A Lie group in-
tegrator is a numerical time-stepping procedure for (2)
which is based on intrinsic Lie group operations, such
as exponentials, commutators, and the group action
on M .

Methods (Examples)

Lie Euler: ynC1 D exp.hf .tn; yn// � yn.
Lie midpoint:

K D hf .tn C h=2; exp .K=2/ � yn/
ynC1 D exp.K/ � yn

Lie RK4: There are several similar ways of turning
the classical RK4 method into a 4 order Lie group
integrator [16,18]. The following version requires only
two commutators:

K1 D hf .tn; yn/
K2 D hf .tn=2; exp.K1=2/ � yn/
K3 D hf .tn C h=2; exp.K2=2� ŒK1;K2
=8/ � yn/
K4 D hf .tn C h=2; exp.K3/ � yn/

ynC1 D exp .K1=6CK2=3CK3=3CK4=6

�ŒK1;K2
=3 � ŒK1;K4
=12/ � yn

RKMK methods: This is a general procedure to turn
any classical Runge-Kutta method into a Lie group
integrator of the same order. Given the coefficients
aj;`; bj ; cj of an s-stage and pth order RK method, a
single step y.tn/ � yn 7! ynC1 � y.tn C h/ is given
as

Uj D
sX

`D1
aj;`K`

Fj D hf .tn C cj h; exp.Uj / � yn/
Kj D d exp�1

Uj
.Fj /

9
>>>>>=

>>>>>;

j D 1; : : : ; s

ynC1 D exp

 
sX

`D1
b`K`

!

� yn;
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where d exp�1
Uj
.Fj /DFj � 1

2
ŒUj ; Fj 
C 1

12
ŒUj ; ŒUj ; Fj 



� 1
720

ad4Uj Fj C � � � D
Pp

jD0
Bj
j Š

adjUj Fj is the inverse
of the Darboux derivative of the exponential map,
truncated to the order of the method and Bj are the
Bernoulli numbers [12, 17].

Crouch-Grossman and commutator-free methods:
Commutators pose a problem in the application
of Lie group integrators to stiff equations, since
the commutator often increases the stiffness of the
equations dramatically. Crouch-Grossman [6, 19] and
more generally commutator-free methods [5] avoid
commutators by doing basic time-stepping using a
composition of exponentials. An example of such a
method is CF4 [5]:

K1 D hf .tn; yn/
K2 D hf .tn=2; exp.K1=2/ � yn/
K3 D hf .tn C h=2; exp.K2=2/ � yn/
K4 D hf .tn C h=2; exp.K1=2/ �

exp.K3 �K1=2/ � yn/
ynC1 D exp .K1=4CK2=6CK3=6�K4=12/ �

exp .K2=6CK3=6CK4=4�K1=12/ � yn

Magnus methods: In the case where f .t; y/ D f .t/ is
a function of time alone, then (2) is called an equation
of Lie type. Specialized numerical methods have been
developed for such problems [1, 10]. Explicit Magnus
methods can achieve order 2p using only p function
evaluations, and they are also easily designed to be time
symmetric.

Lie Group Actions (Examples)

Rotational problems: Consider a differential equation
Py.t/ D v.y.t//	y.t/, where y; v 2 R2 and jjy.0/jj D
1. Since jjy.t/jj D 1 for all t , we can take M to be
the surface of the unit sphere. Let G D SO.3/ be the
special orthogonal group, consisting of all orthogonal
matrices with determinant 1. Let �.t/ 2 G be a curve
such that �.0/ D e. By differentiating �.t/T �.t/ D e,
we find that P�.0/T C �.0/ D 0, thus g D so.3/, the set
of all skew-symmetric 3	3matrices. The infinitesimal
Lie algebra action is left multiplication with a skew
matrix, the commutator is the matrix commutator, and
the exponential map is the matrix exponential. Written

in terms of the infinitesimal Lie algebra action, the
differential equation becomes Py D bv.y/y, and we
may apply any Lie group integrator. Note that for low-
dimensional rotational problems, all basic operations
can be computed fast using Rodrigues-type formu-
las [12].

Isospectral action: Isospectral differential equations
are matrix-valued equations where the eigenvalues are
first integrals (invariants of motion). Consider M D
Rn�n and the action ofG D SO.n/ onM by similarity
transforms, i.e., for a 2 G and y 2 M , we define
a � y D ayaT . By differentiation, of the action we
find the infinitesimal action for V 2 g D so.n/ as
V � y D Vy � yV ; thus for this action, (2) becomes

Py.t/ D f .t; y/ � y D f .t; y/y � yf .t; y/;

where f WR 	M ! g. See [2, 12] for more details.

Affine action: Let G D Gl.n/ Ì Rn be the affine linear
group, consisting of all pairs a; b where a 2 Rn�n is
an invertible matrix and b 2 Rn is a vector. The affine
action of G on M D R

n is .a; b/ � y D ay C b. The
Lie algebra of G is g D gl.n/ Ì Rn, i.e., g consists
of all pairs .V; b/ where V 2 Rn�n and b 2 Rn. The
infinitesimal action is given as .V; b/ � y D Vy C b.
This action is useful for differential equations of the
form Py.t/ D L.t/yCN.y/, whereL.t/ is a stiff linear
part and N is a nonstiff nonlinear part. Such equa-
tions are cast in the form (2) by choosing f .t; y/ D
.L.t/; N.y//. Applications of Lie group integrators
to such problems are closely related to exponential
integrators. For stiff equations it is important to use a
commutator-free Lie group method.

Coadjoint action: Many problems of computational
mechanics are naturally formulated as Lie-Poisson
systems, evolving on coadjoint orbits of the dual of a
Lie algebra [14]. Lie group integrators based on the
coadjoint action of a Lie group on the dual of its Lie
algebra are discussed in [7].

Classical integrators as Lie group integrators: The
simplest of all group actions is when G D M D R

n,
with vector addition as group operation and group
action. From the definitions, we find that in this case
g D Rn, the commutator is 0, and the exponential map
is the identity map from Rn to itself. The infinitesimal
Lie algebra action becomes V � y D V ; thus, (2)
reduces to Py.t/ D f .t; y/, where f .t; y/ 2 Rn. We see
that classical integration methods are special cases of
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Lie group integrators, and all the examples of methods
above reduce to well-known Runge-Kutta methods.

Implementation Issues

For efficient implementation of LGI, it is important
to employ fast algorithms for computing commutators
and exponentials. A significant volume of research
has been devoted to this. Important techniques involve
replacing the exponential map with other coordinate
maps on Lie groups [13, 20]. For special groups, there
exist specialized algorithms for computing matrix ex-
ponentials [4, 21]. Time reversible LGI is discussed
in [22], but these are all implicit methods and thus
costly. Optimization of the number of commutators and
exponentials has been considered in [3, 18].
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Notation

Throughout this work, boldface symbols denote vec-
tors or tensors. For the inner product of two vec-
tors (first-order tensors), u and v, we have u � v D
ui vi D u1v1 C u2v2 C u3v3 in three dimensions,
where Cartesian basis and Einstein index summation
notation are used. In this introduction, for clarity of
presentation, we will ignore the difference between
second-order tensors and matrices. Furthermore, we
exclusively employ a Cartesian basis. Accordingly, if
we consider the second-order tensor A D Aik ei ˝ ek ,
then a first-order contraction (inner product) of two
second-order tensors A � B is defined by the matrix
product ŒA
ŒB
, with components of AijBjk D Cik. It
is clear that the range of the inner index j must be the
same for ŒA
 and ŒB
. For three dimensions, we have
i; j D 1; 2; 3. The second-order inner product of two
tensors or matrices is defined as A W B D AijBij D
tr.ŒA
T ŒB
/.
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Kinematics of Deformations

The term deformation refers to a change in the shape
of a continuum between a reference configuration and
current configuration. In the reference configuration, a
representative particle of a continuum occupies a point
P in space and has the position vector (Fig. 1)

X D X1e1 CX2e2 CX3e3; (1)

where e1; e2; e3 is a Cartesian reference triad and
X1;X2;X3 (with center O) can be thought of as
labels for a material point. Sometimes the coordinates
or labels .X1;X2;X3/ are called the referential or
material coordinates. In the current configuration, the
particle originally located at point P (at time t D 0)
is located at point P 0 and can be also expressed in
terms of another position vector x, with coordinates
.x1; x2; x3/. These are called the current coordinates.
In this framework, the displacement is u D x�X for a
point originally at X and with final coordinates x.

When a continuum undergoes deformation (or
flow), its points move along various paths in space.
This motion may be expressed as a function of X
and t as (Frequently, analysts consider the referential
configuration to be fixed in time, thus, X ¤ X.t/.)

x.X; t/ D u.X; t/C X.t/ ; (2)

which gives the present location of a point at time
t , written in terms of the referential coordinates
X1;X2;X3. The previous position vector may be

P
P’

xX

X+dX
dX

dx

u+du

u

O

X3, x3

X1, x1

X2, x2

Linear Elastostatics, Fig. 1 Different descriptions of a deform-
ing body

interpreted as a mapping of the initial configuration
onto the current configuration. In classical approaches,
it is assumed that such a mapping is one to one
and continuous, with continuous partial derivatives
to whatever order is required. The description of
motion or deformation expressed previously is known
as the Lagrangian formulation. Alternatively, if the
independent variables are the coordinates x and
time t , then x.x1; x2; x3; t/ D u.x1; x2; x3; t/ C
X.x1; x2; x3; t/, and the formulation is denoted as
Eulerian (Fig. 1).

Deformation of Line Elements
Partial differentiation of the displacement vector u D
x � X, with respect to X, produces the following
displacement gradient:

rXu D F � 1; (3)

where

F
defD rXx

defD @x
@X
D

2

6
66
6
6
6
66
4

@x1

@X1

@x1

@X2

@x1

@X3
@x2

@X1

@x2

@X2

@x2

@X3
@x3

@X1

@x3

@X2

@x3

@X3

3

7
77
7
7
7
77
5

: (4)

F is known as the material deformation gradient.
Now, consider the length of a differential element in

the reference configuration dX and dx in the current
configuration, dx D rXx � dX D F � dX. Taking the
difference in the squared magnitudes of these elements
yields

dx � dx� dX � dX D .rXx � dX/ � .rXx � dX/

�dX � dX

D dX � .FT � F � 1/ � dX

defD 2 dX � E � dX: (5)

Equation (5) defines the so-called strain tensor:

E
defD 1

2
.FT � F � 1/

D 1

2
ŒrXuC .rXu/T C .rXu/T � rXu
: (6)



792 Linear Elastostatics

Remark 1 It should be clear that dx can be reinter-
preted as the result of a mapping F � dX ! dx
or a change in configuration (reference to current).
One may develop so-called Eulerian formulations, em-
ploying the current configuration coordinates to gen-
erate Eulerian strain tensor measures. An important
quantity is the Jacobian of the deformation gradient,

J
defD det F, which relates differential volumes in the

reference configuration (d!0) to differential volumes
in the current configuration (d!) via d! D J d!0.
The Jacobian of the deformation gradient must remain
positive; otherwise, we obtain physically impossible
“negative” volumes. For more details, we refer the
reader to the texts of Malvern [3], Gurtin [2], and
Chandrasekharaiah and Debnath [1].

Equilibrium/Kinetics of Solid Continua

The balance of linear momentum in the deformed
(current) configuration is

Z

@!

t da
„ ƒ‚ …

surface forces

C
Z

!

�b d!
„ ƒ‚ …
body forces

D d

dt

Z

!

� Pu d!
„ ƒ‚ …

inertial forces

; (7)

where ! � � is an arbitrary portion of the continuum,
with boundary @!, � is the material density, b is the
body force per unit mass, and Pu is the time derivative of
the displacement. The force densities, t, are commonly
referred to as “surface forces” or tractions.

Postulates on Volume and Surface Quantities
Now, consider a tetrahedron in equilibrium, as shown
in Fig. 2, where a balance of forces yields

t.n/�A.n/ C t.�1/�A.1/ C t.�2/�A.2/ C t.�3/�A.3/

C�b�V D ��V Ru ; (8)

where �A.n/ is the surface area of the face of the
tetrahedron with normal n and �V is the tetrahedron
volume. As the distance (h) between the tetrahedron
base (located at (0,0,0)) and the surface center goes to
zero (h ! 0), we have �A.n/ ! 0 ) �V

�A.n/
! 0.

Geometrically, we have �A.i/

�A.n/
D cos.xi ; xn/

defD ni , and
therefore t.n/ C t.�1/ cos.x1; xn/ C t.�2/ cos.x2; xn/C
t.�3/ cos.x3; xn/ D 0. It is clear that forces on the
surface areas could be decomposed into three linearly
independent components. It is convenient to introduce
the concept of stress at a point, representing the surface
forces there, pictorially represented by a cube sur-
rounding a point. The fundamental issue that must be
resolved is the characterization of these surface forces.
We can represent the surface force density vector,
the so-called traction, on a surface by the component
representation:

t.i/
defD

8
<̂

:̂

�i1

�i2

�i3

9
>=

>;
; (9)

where the second index represents the direction of
the component and the first index represents compo-
nents of the normal to corresponding coordinate plane.
Henceforth, we will drop the superscript notation of

t.n/, where it is implicit that t
defD t.n/ D � T � n, where

�
defD

2

6
4

�11 �12 �13

�21 �22 �23

�31 �32 �33

3

7
5 ; (10)

x1

x2

x3

t(n)

t(-3)t(-1)

t(-2) x1
x3

x2
σ33

σ31

σ32

σ23

σ21

σ22

σ11

σ21

σ13

Linear Elastostatics, Fig. 2 (Left) Cauchy tetrahedron: a “sectioned point” and (Right) stress at a point.
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or explicitly (t.1/ D �t.�1/, t.2/ D �t.�2/, t.3/ D
�t.�3/)

t D t.1/n1 C t.2/n2 C t.3/n3 D � T � n

D

2

6
4

�11 �12 �13

�21 �22 �23

�31 �32 �33

3

7
5

T 8
<̂

:̂

n1

n2

n3

9
>=

>;
; (11)

where � is the so-called Cauchy stress tensor.

Remark 2 In the absence of couple stresses, a bal-
ance of angular momentum implies a symmetry of
stress, � D � T, and thus the difference in notations
becomes immaterial. Explicitly, starting with an an-
gular momentum balance, under the assumptions that
no infinitesimal “micro-moments” or so-called couple
stresses exist, then it can be shown that the stress tensor
must be symmetric, i.e.,

R
@!

x	 t daCR
!

x	�b d! D
d
dt

R
!

x	� Pu d!; that is, � T D � . It is somewhat easier
to consider a differential element, such as in Fig. 2, and
to simply sum moments about the center. Doing this,
one immediately obtains �12 D �21; �23 D �32, and
�13 D �31. Consequently, t D � � n D � T � n.

Balance Law Formulations
Substitution of (11) into (7) yields .! � �/

Z

@!

� � n da
„ ƒ‚ …

surface forces

C
Z

!

�b d!
„ ƒ‚ …
body forces

D d

dt

Z

!

� Pud!
„ ƒ‚ …

inertial forces

: (12)

A relationship can be determined between the
densities in the current and reference configurations,R
!
�d! D R

!0
�Jd!0 D

R
!0
�0d!0. Therefore,

the Jacobian can also be interpreted as the ratio of
material densities at a point. Since the volume is
arbitrary, we can assume that �J D �0 holds at
every point in the body. Therefore, we may write
d
dt
.�0/ D d

dt
.�J / D 0, when the system is mass

conservative over time. This leads to writing the last
term in (12) as d

dt

R
!
� Pud! D R

!0

d.�J /

dt
Pu d!0 CR

!0
� RuJ d!0 D

R
!
� Ru d!. From Gauss’s divergence

theorem and an implicit assumption that � is
differentiable, we have

R
!
.rx � � C �b� � Ru/ d! D

0. If the volume is argued as being arbitrary, then
the integrand must be equal to zero at every point,
yielding

rx � � C �b D � Ru: (13)

The First Law of Thermodynamics:
An Energy Balance

The interconversions of mechanical, thermal, and
chemical energy in a system are governed by the
first law of thermodynamics, which states that the
time rate of change of the total energy, K C I, is
equal to the mechanical power, P , and the net heat
supplied, H C Q, i.e., d

dt
.K C I/ D P C H C Q.

Here the kinetic energy of a subvolume of material

contained in ˝ , denoted !, is K defD R
!
1
2
� Pu � Pu d!; the

power (rate of work) of the external forces acting on !

is given by P defD R
!
�b � Pu d! C R

@!
� � n � Pu da;

the heat flow into the volume by conduction is

Q defD � R
@!

q � n da D � R
!
rx � q d!, q being the

heat flux; the heat generated due to sources, such as

chemical reactions, is H defD R
! �zd!, where z is the

reaction source rate per unit mass; and the internal

energy is I defD R
! �w d!, w being the internal energy

per unit mass. Differentiating the kinetic energy yields

dK
dt
D d

dt

Z

!

1

2
� Pu � Pu d!

D
Z

!0

d

dt

1

2
.�J Pu � Pu/ d!0

D
Z

!0



d

dt
�0

�
1

2
Pu � Pu d!0

C
Z

!

�
d

dt

1

2
. Pu � Pu/ d!

D
Z

!

� Pu � Ru d!; (14)

where we have assumed that the mass in the system is
constant. We also have

dI
dt
D d

dt

Z

!

�w d! D d

dt

Z

!0

�Jw d!0

D
Z

!0

d

dt
.�0/

„ ƒ‚ …
D0

w d!0 C
Z

!

� Pw d! D
Z

!

� Pwd!:

(15)
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By using the divergence theorem, we obtain

Z

@!

� � n � Pu da D
Z

!

rx � .� � Pu/ d!

D
Z

!

.rx � � / � Pu d!C
Z

!

� W rx Pu d!:

(16)

Combining the results, and enforcing a balance of
linear momentum, leads to

Z

!

.� PwC Pu � .� Ru� rx � � � �b/

�� W rx PuCrx � q� �z/ d!

D
Z

!

.� Pw � � W rx PuCrx � q � �z/ d! D 0:
(17)

Since the volume ! is arbitrary, the integrand must
hold locally and we have

� Pw � � W rx PuCrx � q� �z D 0: (18)

When dealing with multifield problems, this equation
is used extensively.

Linearly Elastic Constitutive Equations

We now discuss relationships between the stress and
strain, so-called material laws or constitutive relations
for linearly elastic cases (infinitesimal deformations).

The Infinitesimal Strain Case
In infinitesimal deformation theory, the displacement
gradient components are considered small enough that
higher-order terms like .rXu/T � rXu and .rxu/T �
rxu can be neglected in the strain measure E D
1
2
.rXu C .rXu/T C .rXu/T � rXu/, leading to E �

�
defD 1

2
ŒrXuC .rXu/T 
. If the displacement gradients

are small compared with unity, � coincides closely to
E. If we assume that @

@X � @
@x , we may use E or

� interchangeably. Usually � is the symbol used for
infinitesimal strains. Furthermore, to avoid confusion,
when using models employing the geometrically linear
infinitesimal strain assumption, we use the symbol of
r with no X or x subscript. Hence, the infinitesimal
strains are defined by

�D1
2
.ruC .ru/T /: (19)

Linear Elastic Constitutive Laws
If we neglect thermal effects, (18) implies � Pw D
� W rx Pu which, in the infinitesimal strain linearly
elastic case, is � Pw D � W P�. From the chain rule of
differentiation, we have

� Pw D �@w

@�
W d�

dt
D � W P�) � D �@w

@�
: (20)

The starting point to develop a constitutive theory is
to assume a stored elastic energy function exists, a

function denoted W
defD �w, which depends only on

the mechanical deformation. The simplest function that
fulfills � D � @w

@� is W D 1
2
� W IE W �, where IE is the

fourth-rank elasticity tensor. Such a function satisfies
the intuitive physical requirement that, for any small
strain from an undeformed state, energy must be stored
in the material. Alternatively, a small strain material
law can be derived from � D @W

@� and W � c0 C c1 W
� C 1

2
� W IE W � C : : : which implies � � c1 C IE W

� C : : :. We are free to set c0 D 0 (it is arbitrary) in
order to have zero strain energy at zero strain, and,
furthermore, we assume that no stresses exist in the
reference state (c1 D 0). With these assumptions, we
obtain the familiar relation

� D IE W �: (21)

This is a linear relation between stresses and strains.
The existence of a strictly positive stored energy func-
tion in the reference configuration implies that the
linear elasticity tensor must have positive eigenvalues
at every point in the body. Typically, different materials
are classified according to the number of independent
components in IE. In theory, IE has 81 components,
since it is a fourth-order tensor relating 9 components
of stress to strain. However, the number of components
can be reduced to 36 since the stress and strain tensors
are symmetric. This is observed from the matrix repre-
sentation (The symbol Œ�
 is used to indicate the matrix
notation equivalent to a tensor form, while f�g is used
to indicate the vector representation.) of IE:
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8
ˆ̂̂
ˆ̂
<̂

ˆ̂̂
ˆ̂
:̂

�11
�22
�33
�12
�23
�31

9
>>>>>>=

>>>>>>;
„ƒ‚…

defDf� g

D

2

6
6
6
6
66
4

E1111 E1122 E1133 E1112 E1123 E1113
E2211 E2222 E2233 E2212 E2223 E2213
E3311 E3322 E3333 E3312 E3323 E3313
E1211 E1222 E1233 E1212 E1223 E1213
E2311 E2322 E2333 E2312 E2323 E2313
E1311 E1322 E1333 E1312 E1323 E1313

3

7
7
7
7
77
5

„ ƒ‚ …
defD ŒIE


8
ˆ̂̂
ˆ̂
<̂

ˆ̂̂
ˆ̂
:̂

�11
�22
�33
2�12
2�23
2�31

9
>>>>>>=

>>>>>>;
„ ƒ‚ …

defDf�g

: (22)

The existence of a scalar energy function forces IE to
be symmetric since the strains are symmetric; in other
words, W D 1

2
� W IE W � D 1

2
.� W IE W �/T D 1

2
�T W

IET W �T D 1
2
� W IET W � which implies IET D IE.

Consequently, IE has only 21 independent components.
The nonnegativity of W imposes the restriction that IE
remains positive definite. At this point, based on many
factors that depend on the material microstructure, it
can be shown that the components of IE may be written
in terms of anywhere between 21 and 2 independent
parameters. Accordingly, for isotropic materials, we
have two planes of symmetry and an infinite number
of planes of directional independence (two free com-
ponents), yielding

IE
defD

2

6
6
6
66
6
6
6
6
66
6
6
6
66
4

� C 4

3
� � � 2

3
� � � 2

3
� 0 0 0

� � 2
3
� � C 4

3
� � � 2

3
� 0 0 0

� � 2
3
� � � 2

3
� � C 4

3
� 0 0 0

0 0 0 � 0 0

0 0 0 0 � 0

0 0 0 0 0 �

3

7
7
7
77
7
7
7
7
77
7
7
7
77
5

: (23)

In this case, we have

IE W � D 3�
tr�

3
1C 2��0 ) � W IE W � D 9�

� tr�

3

�2

C2��0 W �0; (24)

where tr� D �ii and �0 D � � 1
3
.tr�/1 is the deviatoric

strain. The eigenvalues of an isotropic elasticity tensor
are .3�; 2�; 2�;�;�;�/. Therefore, we must have
� > 0 and � > 0 to retain positive definiteness of IE.

All of the material components of IE may be spatially
variable, as in the case of composite media.

Material Component Interpretation
There are a variety of ways to write isotropic constitu-
tive laws, each time with a physically meaningful pair
of material values.

Splitting the Strain
It is sometimes important to split infinitesimal strains
into two physically meaningful parts:

� D tr�

3
1C

�
� � tr�

3
1
�
: (25)

An expansion of the Jacobian of the deformation gra-
dient yields J D det.1 C rXu/ � 1 C trrXu C
O.rXu/ D 1C tr�C : : :. Therefore, with infinitesimal
strains, .1 C tr�/d!0 D d!, and we can write tr� D
d!�d!0
d!0

. Hence, tr� is associated with the volumetric

part of the deformation. Furthermore, since �0 defD � �
tr�
3

1, the so-called strain deviator describes distortion
in the material.

Infinitesimal Strain Material Laws
The stress � can be split into two parts (dilatational and
a deviatoric):

� D tr�

3
1C

�
� � tr�

3
1
�

defD �p1C � 0; (26)

where we call the symbol p the hydrostatic pressure
and � 0 the stress deviator. With (24), we write

p D �3 �
� tr�

3

�
and � 0 D 2� �0: (27)

This is one form of Hooke’s law. The resistance to
change in the volume is measured by �. We note that
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. tr�
3

1/0 D 0, which indicates that this part of the stress
produces no distortion.

Another fundamental form of Hooke’s law is

� D E

1C �
�
�C �

1� 2� .tr�/1
�
; (28)

and the inverse form

� D 1C �
E

� � �

E
.tr� /1 : (29)

To interpret the material values, consider an idealized
uniaxial tension test (pulled in the x1 direction induc-
ing a uniform stress state) where �12 D �13 D �23 D 0,
which implies �12 D �13 D �23 D 0. Also, we have
�22 D �33 D 0. Under these conditions, we have
�11 D E�11 and �22 D �33 D ���11. Therefore, E ,
Young’s modulus, is the ratio of the uniaxial stress to
the corresponding strain component. The Poisson ratio,
�, is the ratio of the transverse strains to the uniaxial
strain.

Another commonly used set of stress-strain forms is
the Lamé relations:

� D 	.tr�/1C 2�� or

� D � 	

2�.3	C 2�/.tr� 1/C �

2�
: (30)

To interpret the material values, consider a homoge-
neous pressure test (uniform stress) where �12 D �13 D
�23 D 0, and where �11 D �22 D �33. Under these
conditions, we have

� D 	C 2
3
� D E

3.1� 2�/ and � D E

2.1C �/ ;
(31)

and consequently,

�

�
D 2.1C �/
3.1 � 2�/ : (32)

We observe that �
�
! 1 implies � ! 1

2
and �

�
! 0

implies ) � ! �1. Therefore, since both � and �
must be positive and finite, this implies �1 < � <

1=2 and 0 < E < 1. For example, some polymeric
foams exhibit � < 0, steels � � 0:3, and some forms of
rubber have � ! 1=2. We note that 	 can be positive
or negative. For more details, see Malvern [3], Gurtin
[2], and Chandrasekharaiah and Debnath [1].
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Synonyms
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Short Definition

The Linear Programming Problem (LP) is the problem
of maximizing or minimizing a linear function of one
or more, and typically thousands of, variables subject
to a similarly large number of equality and/or inequal-
ity constraints.

Description

Although Leonid Kantorovich [3] is generally credited
with being the first to recognize the importance of
linear programming as a tool for solving many practical
operational problems, much credit goes to George
Dantzig for independently coming to this realization
a few years later (see [1, 2]). Originally, most appli-
cations arose out of military operations. However, it
was quickly appreciated that important applications
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appear in all areas of science, engineering, and business
analytics.

A problem is said to be in symmetric standard form
if all the constraints are inequalities and all of the
variables are nonnegative:

maximize cT x

subject to Ax � b
x � 0:

(1)

Here, A is an m 	 n matrix whose .i; j /-th element
is ai;j , b is an m-vector whose i -th element is bi ,
and c is an n-vector whose j -th element is cj . The
linear function cT x is called the objective function. A
particular choice of x is said to be feasible if it satisfies
the constraints of the problem.

It is easy to convert any linear programming prob-
lem into an equivalent one in standard form. For
example, any greater-than-or-equal-to constraint can
be converted to a less-than-or-equal-to constraint by
multiplying by minus one, any equality constraint can
be replaced with a pair of inequality constraints, a
minimization problem can be converted to maximiza-
tion by negating the objective function, and every
unconstrained variable can be replaced by a difference
of two nonnegative variables.

Duality
Associated with every linear programming problem is
a dual problem. The dual problem associated with (1)
is

minimize bT y

subject to AT y � c
y � 0:

(2)

Written in standard form, the dual problem is

�maximize �bT y
subject to �AT y � �c

y � 0 :

From this form we see that the dual of the dual is the
primal. We also see that the dual problem is in some
sense the negative-transpose of the primal problem.

The weak duality theorem states that, if x is feasible
for the primal problem and y is feasible for the dual
problem, then cT x � bT y. The proof is trivial: cT x �
yT Ax � yT b. The weak duality theorem is useful
in that it provides a certificate of optimality: if x is
feasible for the primal problem and y is feasible for

the dual problem and cT x D bT y, then x is optimal
for the primal problem and y is optimal for the dual
problem.

There is also a strong duality theorem. It says that,
if x is optimal for the primal problem, then there exists
a y that is optimal for the dual problem and the two
objective function values agree: cT x D bT y.

All algorithms for linear programming are based on
simultaneously finding an optimal solution for both the
primal and the dual problem (or showing that either
that the primal problem is infeasible or unbounded).
The value of the dual is that it proves that the primal
solution is optimal.

Slack Variables and Complementarity
It is useful to introduce slack variables into the primal
and dual problems so that all inequalities are simple
nonnegativities:

Primal Problem:

maximize cT x

subject to Ax C w D b
x;w � 0:

Dual Problem:

minimize bT y

subject to AT y � z D c
y; z � 0:

It is trivial to check that .c C z/T x D yT Ax D
yT .b � w/. Hence, if x and w are feasible for the
primal problem and y and z are feasible for the dual
problem and cT x D bT y, then it follows that x is
optimal for the primal, y is optimal for the dual and
zT x C yTw D 0. Since all of the terms in these inner
products are nonnegative, it follows that

zj xj D 0 for all j and yiwi D 0 for all i :

This condition is called complementarity.

Geometry
The feasible set is an n-dimensional polytope de-
fined by the intersection of n C m halfspaces where
each halfspace is determined either by one of the
m constraint inequalities, Ax � b, or one of the
n nonnegativity constraints on the variables, x �
0. Generally speaking, the vertices of this polytope
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correspond to the intersection of n hyperplanes defined
as the boundaries of a specific choice of n out of the
n C m halfspaces. Except in degenerate cases, the
optimal solution to the LP occurs at one of the vertices.

Ignoring, momentarily, which side of a hyperplane
is feasible and which is not, the n C m hyperplanes
generate up to .n C m/Š=nŠmŠ possible vertices cor-
responding to the many ways that one can choose n
hyperplanes from the n C m. Assuming that these
points of intersection are disjoint one from the other,
these points in n-space are called basic solutions. The
intersections that lie on the feasible set itself are called
basic feasible solutions.

Simplex Methods
Inspired by the geometric view of the problem, George
Dantzig introduced a class of algorithms, called sim-
plex methods, that start at the origin and repeatedly
jump from one basic solution to an adjacent basic
solution in a systematic manner such that eventually
a basic feasible solution is found and then ultimately
an optimal vertex is found.

With the slack variables defined, the problem has
n C m variables. As the slack variables w and the
original variables x are treated the same by the simplex
method, it is convenient to use a common notation:

x  �
�
x

w

	
:

A basic solution corresponds to choosing n of these
variables to be set to zero. The m equations given by

Ax C w D b (3)

can then be used to solve for the remainingm variables.
Let N denote a particular choice of n of the n C m

indices and let B denote the complement of this set
(so that B [ N D f1; : : : ; n C mg). Let xN denote
the n-vector consisting of the variables xj , j 2 N .
These variables are called nonbasic variables. Let
xB denote the m-vector consisting of the rest of the
variables. They are called basic variables. Initially,
xN D Œx1 � � � xn
T and xB D ŒxnC1 � � � xnCm
T
so that (3) can be rewritten as

xB D b �AxN : (4)

While doing jumps from one basic solution to another,
this system of equations is rearranged so that the basic
variables always remain on the left and the nonbasics
appear on the right. Down the road, these equations
become

xB D x�
B � B�1NxN (5)

whereB denotes them	m invertible matrix consisting
of the columns of the matrix ŒA I 
 associated with
the basic variables B, N denotes those columns of that
matrix associated with the nonbasic variables N , and
x�
B D B�1b. Equation (5) is called a primal dictionary

because it defines the primal basic variables in terms of
the primal nonbasic variables. The process of updating
equation (5) from one iteration to the next is called a
simplex pivot.

Associated with each dictionary is a basic solution
obtained by setting the nonbasic variables to zero and
reading from the dictionary the values of the basic
variables

xN D 0 and xB D x�
B:

In going from one iteration to the next, a single
element of N , say j �, and a single element of B, say
i�, are chosen and these two variables are swapped in
these two sets. The variable xj� is called the entering
variable and xi� is called the leaving variable.

In complete analogy with the primal problem, one
can write down a dual dictionary and read off a dual
basic solution. The initial primal/dual pair had a sym-
metry that we called the negative-transpose property.
It turns out that this symmetry is preserved by the
pivot operation. As a consequence, it follows that pri-
mal/dual complementarity holds in every primal/dual
basic solution. Hence, a basic solution is optimal if and
only if it is primal feasible and dual feasible.

Degeneracy and Cycling
Every variant of the simplex method chooses the en-
tering and leaving variables at each iteration with the
intention of improving some specific measure of a
distance either from feasibility or optimality. If such a
move does indeed make a strict improvement at every
iteration, then it easily follows that the algorithm will
find an optimal solution in a finite number of pivots
because there are only a finite number of ways to
partition the set f1; 2; : : : ; n C mg into m basic and n
nonbasic components. If the metric is always making
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a strict improvement, then it can never return to a
place it has been before. However, it can happen that
a simplex pivot can make zero improvement in one
or more iterations. Such pivots are called degenerate
pivots. It is possible, although exceedingly rare, for
simple variants of the simplex method to produce
a sequence of degenerate pivots eventually returning
to a basic solution already visited. If the algorithm
chooses the entering and leaving variables according
to a deterministic rule, then returning once implies
returning infinitely often and the algorithm fails. This
failure is called cycling. There are many safe-guards
to prevent cycling, perhaps the simplest being to add a
certain random aspect to the entering/leaving variable
selection rules. All modern implementations of the
simplex method have anti-cycling safeguards.

Empirical Average-Case Performance
Given the anti-cycling safeguards, it follows that the
simplex method is a finite algorithm. But, how fast is
it in practice? The answer is that, on average, most
variants of the simplex method take roughly order
min.n;m/ pivots to find an optimal solution. Such
average case performance is about the best that one
could hope for and accounts for much of the practical
usefulness of linear programming in solving important
everyday problems.

Worst-Case Performance
One popular variant of the simplex method assumes
that the initial primal dictionary is feasible and, at each
iteration, selects for the entering variable the non-basic
variable that provides the greatest rate of increase of
the objective function and it then chooses the leaving
variable so as to preserve primal feasibility. In 1972,
Klee and Minty [6] constructed a simple family of LPs
in which the n-th instance involved n variables and a
feasible polytope that is topologically equivalent to an
n-cube but for which the pivot rule described above
takes short steps in directions of high rate of increase
rather than huge steps in directions with a low rate of
increase and in so doing visits all 2n vertices of this
distorted n-cube in 2n�1 pivots thus showing that this
particular variant of the simplex method has exponen-
tial complexity. It is an open question whether or not
there exists some variant of the simplex method whose
worst-case performance is better than exponential.

Interior-Point Methods
For years it was unknown whether or not there existed
an algorithm for linear programming that is guaranteed
to solve problems in polynomial time. In 1979, Leonid
Khachiyan [5] discovered the first such algorithm.
But, in practice, his algorithm was much slower than
the simplex method. In 1984, Narendra Karmarkar
[4] developed a completely different polynomial time
algorithm. It turns out that his algorithm and the many
variants of it that have appeared over time are also
highly competitive with the simplex method.

The class of algorithms inspired by Karmarkar’s
algorithm are called interior-point algorithms. Most
implementations of algorithms of this type belong to
a generalization of this class called infeasible interior-
point algorithms. These algorithms are iterative algo-
rithms that approach optimality only in the limit – that
is, they are not finite algorithms. But, for any � > 0,
they get within � of optimality in polynomial time.
The adjective “infeasible” points to the fact that these
algorithms may, and often do, approach optimality
from outside the feasible set. The adjective “interior”
means that even though the iterates may be infeasible,
it is required that all components of all primal and dual
variables be strictly positive at every iteration.

Complexity
In the worst case, Karmarkar’s algorithm requires on
the order of

p
n log.1=�) iterations to get within � of

an optimal solution. But, an iteration of an interior-
point method is more computationally intensive
(order n3) than an iteration of the simplex method
(order n2). Comparing arithmetic operations, one gets
that interior-point methods require on the order of
n3:5 log.1=�) arithmetic operations in the worst case,
which is comparable to the average case performance
of the simplex method.
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Synonyms

Linear sampling method; LSM

Glossary/Definition Terms

Direct scattering problem Problem of determining
the total acoustic or electromagnetic field from the
knowledge of the geometrical and physical proper-
ties of the scatterer.

Inverse scattering problem Problem of recovering
the geometrical and physical properties of an in-
homogeneity for the knowledge of the acoustic or
electromagnetic scattered field.

Ill-posed problem In the sense of Hadamard, it is
a problem whose solution does not exist unique or
does not depend continuously on the data.

Far-field pattern In the asymptotic factorization of
the far-field pattern, it is the term depending just on
the observation angle.

Far-field operator Linear intergral operator whose
intergral kernel is the far-field pattern.

Hankel function Complex function which is a linear
combination of Bessel functions.

Far-field equation Linear integral equation relating
the far-field operator with the far-field pattern of the
field generated by a point source.

Wavenumber Real positive number given by the
ratio between 2� and the wavelength of the incident
wave.

Refractive index Complex-valued function where
the real part is proportional to the electrical
permittivity and the imaginary part is proportional
to the electrical conductivity.

Herglotz wave function Wave function which is a
weighted linear superposition of plane waves.

Tikhonov regularization Method for the solution of
linear ill-posed problems based on the minimization
of a convex functional with L2 penalty term.

L2 Hilbert space Linear space made of functions
with bounded L2 norm.

Maxwell equations The set of four equations de-
scribing classical electrodynamics.

Lippmann-Schwinger equation Integral equation at
the basis of both classical and quantum scattering.

Poynting vector Vector field provided by the outer
product between the electric and magnetic fields.

Short Definition

The linear sampling method (LSM) is a linear visual-
ization method for solving nonlinear inverse scattering
problems.

Description

Inverse Scattering Methods
Electromagnetic or acoustic scattering is a physical
phenomenon whereby, in the presence of an inhomo-
geneity, an electromagnetic or acoustic incident wave
is scattered and the total field at any point of the space
is written as the sum of the original incident field and
the scattered field. The direct scattering problem is the
problem of determining this total field starting from the
knowledge of the geometrical and physical properties
of the scatterer. On the contrary, the inverse scattering
problem is the problem of recovering information on
the inhomogeneity from the knowledge of the scattered
field. Solving inverse scattering problems is partic-
ularly challenging for two reasons. First, all inverse
scattering problems significant in applications belong
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to the class of the so-called ill-posed problems in the
sense of Hadamard [1], and therefore, any reliable
approach to their solution must face at some stage
issues of uniqueness and numerical stability. Second,
inverse scattering problems are often nonlinear, and
there are physical conditions notably significant in the
applied sciences where such nonlinearity is genuine
and cannot be linearized by means of weak-scattering
approximations.

Most computational approaches for the solution of
inverse scattering problems can be divided into three
families: (1) nonlinear optimization schemes, where
the restoration is performed iteratively from an ini-
tial guess of the position and shape of the scatterer;
(2) weak-scattering approximation methods, where a
linear inverse problem is obtained by means of low-
or high-frequency approximations; and (3) qualitative
methods, which provide visualization of the inhomo-
geneity but are not able to reconstruct the point val-
ues of the scattering parameters. The linear sampling
method (LSM) [2–4] is, historically, the first qualitative
method, the most theoretically investigated, and the
most experimentally tested. In this approach, a linear
integral equation of the first kind is written for each
point of a computational grid containing the scatterer,
the integral kernel of such equation being the far-
field pattern of the scattered field, and the right-hand
side being an exactly known analytical function. This
integral equation is approximately solved for each
sampling point by means of a regularization method
[5], and the object profile is recovered by exploiting
the fact that the norm of this regularized solution blows
up when the sampling point approaches the boundary
from inside.

The main advantages of the linear sampling method
are that it is fast, simple to implement, and not particu-
larly demanding from a computational viewpoint. The
method of course has also some disadvantages. The
main one is that it only provides a visualization of the
support of the scatterer and it is not possible to infer
information about the point values of the refractive
index.

Formulation of the Linear Sampling Method
As a test case, consider the two-dimensional scattering
problem [4, 6] of determining u D u.� I / 2 C2.R2 n
@D/ \ C1.R2/ such that

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

�u.x/C k2 n.x/ u.x/ D 0 for x2R2 n @D
u.x/ D eikx� Od C us.x/ for x 2 R2

lim
r!1

�p
r



@us

@r
� ikus

�	
D 0;

(1)
where D � R2 is a C2-domain, @D is its boundary,
Od D Od./ D .cos ; sin / is the incidence direction,

and k is the wavenumber; n.x/ is the refractive index

n.x/ WD 1

"B

�
".x/C i

�.x/

!

	
8x 2 R2; (2)

where i D p�1 and ! denote the angular frequency of
the wave and ".x/ and �.x/ are the electrical permittiv-
ity and conductivity, respectively. We assume that ".x/
is uniform in R2n ND and equal to the background value
"B > 0, while � D 0 in the same region.

For each incidence direction Od , there exists a unique
solution to problem (1) [6], and the corresponding scat-
tered field us D us.� I / has the following asymptotic
behavior (holding uniformly in all directions Ox WD
x=jxj):

us.xI /D e
ikr

p
r

u1.'I /CO
�
r�3=2� as rDjxj!1;

(3)

where .r; '/ are the polar coordinates of the obser-
vation point x and the function u1 D u1.� I / 2
L2Œ0; 2�
 is known as the far-field pattern of the
scattered field us .

Define the linear and compact far-field operator
F W L2Œ0; 2�
 ! L2Œ0; 2�
 corresponding to the
inhomogeneous scattering problem (1) as

.Fg/.'/ WD
Z 2�

0

u1.'; /g./d 8g 2 L2Œ0; 2�
:
(4)

The operator F is injective with dense range if k2 is
not a transmission eigenvalue [7].

Next consider the outgoing scalar field

ˆ.x; z/ D i

4
H
.1/
0 .kjx � zj/ 8x ¤ z; (5)

generated by a point source located at z 2 R2, where
H
.1/
0 .�/ denotes the Hankel function of the first kind

and of order zero. The corresponding far-field pattern
is given by
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ˆ1.'; z/ D ei�=4

p
8�k

e�ik Ox.'/�z;

Ox.'/ WD .cos'; sin '/ 8' 2 Œ0; 2�
: (6)

For each z 2 R2, the far-field equation is defined as

.Fgz/.'/ D ˆ1.'; z/: (7)

The linear sampling method is inspired by a general
theorem [7], concerning the existence of �-approximate
solutions to the far-field equation and their qualitative
behavior. According to this theorem, if z 2 D, then for
every � > 0, there exists a solution g�z 2 L2Œ0; 2�
 of
the inequality

��Fg�z �ˆ1.�; z/
��
L2Œ0;2�


� � (8)

such that for every z� 2 @D,

lim
z!z�

��g�z
��
L2Œ0;2�


D 1 and lim
z!z�

��vg�z
��
L2.D/

D 1;
(9)

where vg�z is the Herglotz wave function with kernel g�z .
If z … D, the approximate solution remains unbounded.

On the basis of this theorem, the algorithm of the
linear sampling method may be described as follows
[3]. Consider a sampling grid that covers a region con-
taining the scatterer. For each point z of the grid, com-
pute a regularized solution g˛�.z/ of the (discretized)
far-field equation (7) by applying Tikhonov regulariza-
tion coupled with the generalized discrepancy principle
[5]. The boundary of the scatterer is visualized as the
set of grid points in which the (discretized)L2-norm of
g˛�.z/ becomes mostly large.

Computational Issues
The main drawback of this first formulation of the LSM
is that the regularization algorithm for the solution
of the far-field equation is applied point-wise, i.e.,
a different regularization parameter must be chosen
for each sampling point z. A much more effective
implementation is possible by formulating the method
in a functional framework which is the direct sum of
many L2 spaces. The first step of this formulation
is to observe that, in real experiments, the far-field
pattern is measured for P observation angles f'igP�1

iD0
and Q incidence angles fj gQ�1

jD0 , i.e., for observation
directions f Oxi D .cos'i ; sin 'i/gP�1

iD0 and incidence di-

rections fdj D .cos j ; sin j /gQ�1
jD0 . In the following,

P D Q D N and 'i D i i D 0;N�1. These values
are placed into the far-field matrix F, whose elements
are defined as

Fij WD u1. Oxi ; dj /: (10)

In practical applications, the far-field matrix is affected
by the measurement noise, and therefore, only a noisy
version Fh of the far-field matrix is at disposal, such
that

Fh D FCH; (11)

where H is the noise matrix with kHk � h. Further-
more, for each z D r.cos ; sin / 2 Z containing the
scatterer,

˚1.z/ WD
ei �4p
8�k

�
e�ikr cos.'0� /; : : : ; e�ikr cos.'N�1� /�T

:

(12)

Therefore, the one-parameter family of linear integral
equations (7) can be replaced by the one-parameter
family of ill-conditioned square linear systems

Fhg.z/ D N

2�
˚1.z/: (13)

Then consider the direct sum of Hilbert spaces:

�
L2.Z/

�N WD L2.Z/˚ � � � ˚L2.Z/
„ ƒ‚ …

N times

; (14)

and define the linear operator Fh W
�
L2.Z/

�N !
�
L2.Z/

�N
such that

ŒFhg.�/
 .�/ WD
8
<

:

N�1X

jD0
.Fh/ij gj .�/

9
=

;

N�1

iD0

8g.�/ 2 �L2.Z/�N ; (15)

where the .Fh/ij are the elements of the noisy far-field
matrix. This allows one to express the infinitely many
algebraic systems (13) as the single functional equation
in ŒL2.Z/
N
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ŒFhg.�/
.�/ D N

2�
˚1.�/; (16)

where ˚1.�/ is the element in ŒL2.Z/
N trivially
obtained from ˚1.z/ simply regarding z as a variable
on Z instead of a fixed point in R2. The regularization
of this equation occurs in a way which is indepen-
dent of z and therefore provides a single value of
the regularization parameter (explicitly, the regularized
solution of this equation can be computed by means
of the singular system of the far-field matrix). With
this no-sampling implementation of the LSM [8] and
by means of a conventional personal computer, two-
dimensional scatterers can be visualized in few seconds
and complicated three-dimensional objects in a few
minutes.

Physical Interpretation
The far-field equation at the basis of the LSM is not an
equation of mathematical physics, in the sense that it
cannot be derived as a consequence of general physical
principles (as it happens, e.g., in the case of Maxwell
equations or of the Lippmann-Schwinger equation).
However, energy conservation can be utilized to ex-
plain the link between the approximate solution of the
far-field equation described in the general theorem and
the regularized solutions introduced in the LSM. In a
local framework,Fg�z �ˆ1.�; z/ is the far-field pattern
of the radiating field defined as

w�z .x/ WD
Z 2�

0

us.x; /g�z ./d�ˆ.x; z/ 8x2R2nD:
(17)

The (time-averaged) Poynting vector field associated
to this field and its flow lines are then considered.
It is easy to show that if these flow lines go reg-
ularly from a neighborhood of the sampling point
z up to infinity, then

�
�g�z

�
�
L2Œ0;2�


blows up when z
approaches the boundary of the scatterer from inside
and is unbounded when z is outside [9]. This holds, in
particular, for Tikhonov-regularized solutions g˛�.z/ of
the far-field equation, provided that the regularization
parameter ˛�.z/ is chosen, as is always possible, in
such a way that

�
�Fg˛�.z/ �ˆ1.�; z/

�
�
L2Œ0;2�


� �,
for a nonvanishing (but small enough) �. It must be
pointed out that this interpretation is based on an
a posteriori analysis: the performances of the LSM
are related to the behavior of the flow lines of the

Poynting vector, but such behavior is numerically ob-
served and not theoretically predicted. To provide a rig-
orous mathematical justification of the LSM, it would
be necessary to deduce the geometric properties of
these flow lines a priori, i.e., starting from the knowl-
edge of the scattering conditions.

Conclusions
The LSM represents an effective approach to inverse
scattering problems. It provides fast visualizations of
the scatterer’s profile by requiring the solution of a
functional equation (in its no-sampling implementa-
tion), and it does not need accurate initializations to
work properly. Its main applications are concerned
with nondestructive testing and medical imaging, in
the case of nonlinear prototypal diagnostic procedures
like microwave tomography. The intrinsic drawback of
the LSM is the fact that it cannot recover point values
of the physical parameters describing the scatterer.
This limitation can be overcome by integrating the
LSM with iterative schemes that are able to point-
wise reconstruct these parameters (e.g., the electrical
conductivity and permittivity in the case of electro-
magnetic scattering) and that, in order to work, need
to be initialized by means of some approximate guess
of the shape and dimension of the scatterer. In this
hybrid approach [10], the linear sampling method can
be utilized to obtain such initialization in a computa-
tionally effective way, and quantitative reconstructions
are provided by the iterative inverse scattering scheme.
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Linear Scaling Methods

Carlos J. Garcı́a-Cervera
Mathematics Department, University of California,
Santa Barbara, CA, USA

Definition

By linear scaling methods we understand numerical
methodologies that provide an approximation to the
solution of a given problem within a prescribed ac-
curacy with computational cost that scales linearly
with the number of degrees of freedom or variables in
the system. Linear scaling methods play a significant
role in large-scale scientific computing. However, it
is often the case that even linear scaling algorithms
are not computationally feasible for such large-scale
problems, and sublinear scaling methods are required.

Linear scaling methods have a long history in nu-
merical analysis, and the focus of this entry will be on
linear scaling methods as they apply to computational
chemistry and molecular modeling. We begin with a
description of some of the linear scaling methodolo-
gies developed in the context of Kohn-Sham density
functional theory (DFT). These algorithms focus on
the computation of electronic structures. These provide
the electronic density that can be used to obtain the in-
teratomic forces via the Hellmann-Feynman theorem.
The efficient evaluation of these forces requires fast
summation techniques for particle interactions. More
general linear and sublinear scaling methodologies that
have been developed for multiscale modeling will be
discussed as well.

Linear Scaling Methods
in Kohn-ShamDFT

In Kohn-Sham DFT, the energy of a system on Na
atoms, with nuclei located at Rj , j D 1; : : : ; Na, and
atomic chargeZj , is written as [1]

EKSŒ�IR
 D 1

2

NX

iD1

Z

R3

jr i j2 dxC FH Œ�
C FXC Œ�


C
Z

˝

V.x/�.x/ dxC Vnn: (1)

The first term in (1) is the kinetic energy, and the other
contributions to the energy are Hartree, exchange and
correlation, external potential energies, and interionic
interactions, respectively.

The Hartree energy describes the Coulombic inter-
actions between electrons:

FH Œ�
 D 1

2

Z

˝

Z

˝

�.x/�.y/
jx � yj dx dy: (2)

The exchange and correlation energy, FXC Œ�
, intro-
duces corrections to the energy that derive from us-
ing the noninteracting electron approximation for the
kinetic and Hartree energies. Although the expression
for the total energy in (1) is exact, FXC Œ�
 remains
unknown. A number of approximations have been
developed [2], but for illustration purposes, we will
adopt here the local density approximation (LDA) [1]:
FXC Œ�
 D

R
�".�/.

The last two terms in energy (1) are the effect
of the external potential and the interatomic energy,
respectively. In principle,

V.x/ D �
NaX

jD1

Zj

jx �Rj j ; (3)

and

Vnn D 1

2

NaX

i;jD1
i¤j

ZiZj

jRi �Rj j : (4)

However, a further reduction can be achieved by mak-
ing use of pseudopotentials [3–6]: The core electrons
and the nuclei are treated as a unit which interacts with
the valence electrons through the pseudopotential v.x/.
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In what follows � will be considered to be the density
of the valence electrons only.

Minimizing the energy (1) under the orthogonality
constraint for the orbitals leads to the Kohn-Sham
equations, the system of nonlinear eigenvalue problems



�1
2
�C VeffŒ�
I

�
 i D

NX

jD1
	ij  j ;

i D 1; 2; : : : ; N I � D
NX

iD1
j i j2; (5)

where I is the identity operator, Veff is the variational
derivative of the energy with respect to the density,

VeffŒ�
 D V.x/C
Z

�.y/
jx � yj dyC ".�/C �"0.�/; (6)

and 	ij are Lagrange multipliers associated to the
orthogonality constraints.

The traditional self-consistent approach [1] for the
solution of this eigenvalue problem consists of two
nested iterations: In the inner iteration, the orbitals
f j gNjD1 are obtained by a process of diagonaliza-
tion and orthogonalization; in the outer iteration, the
electron density is updated until self-consistency is
reached. The diagonalization and/or orthogonalization
procedure scales typically as O.N3/, which is pro-
hibitively expensive for relatively small problems.

A number of new methodologies have been pro-
posed for the solution of (6), which attempt to exploit
the locality of the problem in order to reduce the
computational complexity [7]. Locality, in quantum
mechanics, refers to the property that a small distur-
bance in a molecule only has a local effect in the
electron density, a phenomenon coined by W. Kohn as
nearsightedness [8].

Localization
The localization properties of quantum systems are
discussed in the entry � Solid State Physics, Berry
Phases and Related Issues, where representations in
terms of Bloch and Wannier functions are described.
Due to its localization properties, Wannier functions
have often been used in the development of linear
scaling methods for Kohn-Sham DFT.

One of the first implementations of Wannier func-
tions in DFT codes was carried out by Marzari and
Vanderbilt, who defined what are known as maximally
localized wannier functions (MLWF) [9]. Given a
family of Bloch functions f n;kg for 1 � n � N ,
let Vk D span fun;kg, where k 2 BZ, the first
Brillouin zone. For each space Vk, we can construct
another orthonormal basis via an orthonormal trans-
formation U k. Given this family of bases of Vk, we
can construct corresponding family of Wannier func-
tions. Marzari and Vanderbilt constructed an optimal
set of Wannier functions by minimizing the spread
of the Wannier functions associated to each family
of orthonormal transformation fUkgk2BZ , among all
possible such transformations:

fU �
k g D arg min

U

NX

nD1
< jxj2 >n;U �j < x >n;U j2:

(7)

This concept was generalized to the non-orthogonal
case in [10]: Given a linear space V D span f j gNjD1
of dimension N , and a given smooth weight function
w � 0, the optimally localized non-orthogonal wave
function e is defined as

e D arg min
�2V; k�kD1

Z

R3

w.x/j�.x/j2 dx; (8)

where w.x/ D jx � xcj2p and p is a positive integer
(the maximally localized wannier function corresponds
to the choice p D 1). In the context of the MLWFs,
this would be equivalent to considering not only or-
thonormal transformations, but any automorphism of
V: As a consequence, the admissible space is larger
and therefore the non-orthogonal wave functions have
better localization properties than orthogonal Wannier
functions.

Linear Scaling Methods for Kohn-Sham DFT
The main approaches for Kohn-Sham DFT that have
been proposed for linear scaling computations can be
divided into the following categories:
1. Density matrix-based methods:

(a) Fermi operator expansion
(b) Density-matrix minimization
(c) Optimal basis density-matrix minimization

2. Domain decomposition: divide and conquer

http://dx.doi.org/10.1007/978-3-540-70529-1_278
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3. Localized orbital minimization
4. Localized subspace iteration
A description of some of these methodologies can be
found in the entries � Fast Methods for Large Eigenval-
ues Problems for Chemistry and �Large-Scale Elec-
tronic Structure and Nanoscience Calculations. Further
details about these methods can also be found in the
recent book by Richard Martin [11] and the entry by
Jean-Luc Fattebert. We will focus here on the localized
subspace iteration.

Localized Subspace Iteration
The Kohn-Sham functional in the non-orthogonal for-
mulation is invariant under automorphisms of the space
spanned by the wave functions and the entry by Jean-
Luc Fattebert. The advantage of this viewpoint is
that the specific representation of the subspace is not
relevant, and therefore one can choose a representation
that is convenient. Linear scaling can be achieved by
choosing a representation in terms of optimally local-
ized non-orthogonal wave functions, as described in
[12]. The algorithm is similar to the subspace iteration
method of Zhou, Saad, Tiago, and Chelikowsky [13],
but by avoiding diagonalization and orthogonalization,
linear scaling is achieved.

To find the minimizing subspace, an initial subspace
of dimension N is given and this space is successively
improved by filtering out the components correspond-
ing to the unoccupied states, that is eigenvalues above
the Fermi energy. An efficient filter can be constructed
using Chebyshev polynomials. After the filtering step,
the locality of the representation needs to be reestab-
lished and this is achieved with the algorithm presented
in [10] and described earlier in the section entitled
Localization.

An important component of the algorithm is the
computation of the density, which involves the com-
putation of S�1. A number of approaches that exploit
the decay properties of the off-diagonal components of
S and S�1 have appeared in the literature [14, 15].

Fast Summations Algorithms

In ab-initio molecular dynamics, interatomic forces
are computed using Hellmann-Feynman’s formula
[16, 17] (see also the entry �Large-Scale Computing
for Molecular Dynamics Simulation).

To illustrate some of the fast summation techniques
developed for evaluating interatomic interactions, con-
sider a system of N particles at locations fRj gNjD1,
with charges fZj gNjD1, interacting with each other via
a potential of the form

˚.Rj / D
NX

iD1
i¤j

Zi

jRi �Rj j : (9)

Forces can be evaluated as

� r˚.Rj / D
NX

iD1
i¤j

Zi
Ri � Rj

jRi � Rj j3 : (10)

A direct computation of the summation for each par-
ticle scales as O.N2/ and is therefore too costly for
large-scale simulations. One of the first ideas for fast
computations of summations of the form (9) was the
treecode, introduced by Barnes and Hut [18]. The basic
idea of the algorithm is to consider clusters of particles
at different levels of spatial refinement, or scales, and to
compute the interaction between clusters that are well
separated by using an expansion in terms of multipoles.
Interaction with particles which are nearby is computed
by direct summation. By using a hierarchical decompo-
sition of clusters, the algorithm achieves O.N log2 N /
complexity.

An algorithm with linear scaling, the fast multipole
method (FMM), was introduced by Greengard and
Rokhlin [19]. The algorithm consists of an upward
pass and a downward pass. In the upward pass, mul-
tipole expansions are constructed at the finest level,
and the multipole expansions are coarser levels at
constructed by merging expansions from the next finer
level. In the downward pass, the multipole expansions
are converted into local expansions about the centers
of each box, starting from the coarsest level. These
expansions are used to construct the local expansions at
increasingly finer levels. At the finest level, the expan-
sions contain the contributions of all the sources that
are well separated from the corresponding box and are
evaluated at each target. Finally, the contributions from
nearest neighbors are evaluated by direct summation.

From an algebraic point of view, there have been
some generalizations of this algorithm that exploit the
fact that interactions between clusters that are well

http://dx.doi.org/10.1007/978-3-540-70529-1_254
http://dx.doi.org/10.1007/978-3-540-70529-1_253
http://dx.doi.org/10.1007/978-3-540-70529-1_279
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separated can be approximated well by low-rank ma-
trices [20–22].

Linear Scaling inMultiscale Modeling

Linear scaling algorithms are of particular importance
in atomistic computations, due to the large number
of degrees of freedom involved. Even though these
problems are formulated at the atomistic scale, we are
typically interested in phenomena that occur at much
larger scales. A number of algorithms and method-
ologies have been developed for specific multiscale
problems in which one takes advantage of how the
different scales interact with each other [23, 24].

One of the first attempts to develop a general
methodology for multiscale problems was carried out
by Achi Brandt as a generalization of the multigrid
idea (see [25] for a review).

The multigrid method was originally developed
as an efficient way to solve the algebraic equations
resulting from the discretization of partial differential
equations (PDEs) [26,27]. The main ingredients of the
multigrid method are:
1. A restriction operator that transfers information

from a fine grid to a coarse grid
2. A relaxation or smoothing scheme at each level that

improves the current approximation to the solution
3. An interpolation operator that transfers information

from a coarse grid to a fine grid
The speed of convergence of the multigrid method
depends on the interplay between the relaxation and
interpolation operators and relies on the ability of the
interpolation procedure to approximate the correspond-
ing approximation after relaxation. It has been shown
in a number of cases that the algorithm achieves linear
scaling [28].

The generalization of the multigrid method to multi-
scale problems introduced by Achi Brandt proceeds by
constructing a description of the problem at different
physical scales. As the original multigrid, it consists of
an equilibration scheme on each scale and interscale
operators that transfer information from fine to coarse
scales and from coarse to fine scales. By doing this,
large-scale changes in the system can be effectively
computed using a coarse grid, and the information
gathered from the coarse scales provide large-scale
corrections for the solutions on finer scales. The goal of
these algorithms is to produce a macroscopic numerical

description of the system in situations where a closed-
form differential equation is not available or even ap-
propriate. The computational cost of these procedures
depends on the ability to express the equations at the
coarser levels in terms of the coarse variables and not
in terms of finer-level variables. To achieve this, Brandt
combined the ideas of multigrid with renormalization
techniques in order to efficiently obtain a description
of the system on coarser levels. Applications to fluid
dynamics, optimal control, Monte Carlo, and image
processing among others were also discussed in [25].

For crystalline solids, Chen and Ming developed
an efficient multigrid strategy for molecular mechanics
at zero temperature that does not require the use of
renormalization techniques [29]. The main idea in
their approach is to use a Cauchy-Born (CB) elasticity
model [30] as a coarse grid operator. This is used
within a cascadic multigrid method to provide an
elastically deformed state at every grid level that can
be used as an initial guess for the molecular mechanics
model. To illustrate the approach in [29], consider a
nested sequence of triangulations T0 � T1 � : : : TL �
˝ . The associated finite element spaces Xi are also
nested: X0 � X1 � � � � � XL. The multigrid approach
proceeds as follows:
• Initialization: Let v0 D 0 be the initial guess.

Minimize the CB elasticity problem discretized on
T0 to obtain u0.

• For i D 1; : : : ; L:
– Interpolate vi D I ii�1ui�1, where I ii�1 W Xi�1 !
Xi is the interpolation operator.

– Use vi as initial guess to minimize the CB
problem discretized on Ti .

• At the finest level L, construct the initial atomic
locations by yCB D x C vL.x/ and solve the
molecular mechanics problem using yCB as initial
guess.

This method seems to bypass many local minima
and keeps the original physically relevant minimum,
and appears to be insensitive to the initial conditions
and parameters of the nonlinear solvers. The method
possesses optimal computational complexity for homo-
geneous deformations.

Sublinear Scaling Algorithms

For large-scale problems, even linear scaling algo-
rithms might not be computationally feasible. In such
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cases, it is necessary to resort to sublinear scaling
methods, that is, algorithms whose complexity scales
sublinearly with the size of the system. In fact, from
an algorithmic viewpoint, one of the main purposes of
multiscale modeling is to develop sub-linear scaling
algorithms and some general methodologies, such as
the heterogeneous multiscale method, have been devel-
oped for this purpose [31].

In the case of crystalline solids, an example of a sub-
linear scaling algorithm is the quasicontinuum (QC)
method [32], developed to study systems in which
a plastic deformation only occurs on a vanishingly
small part of the whole sample. In the original QC
method, representative atoms (rep-atoms) are intro-
duced to reduce the number of degrees of freedom in
regions where the atomic displacement is smooth; in
those regions, the energy is approximated by using a
simplified summation rule based on the Cauchy-Born
hypothesis. The methodology has been extended to
the context of orbital-free DFT [33, 34] (see the entry
�Atomistic to Continuum Coupling).

A different approach based on asymptotic analysis
was presented in [35, 36]. Algorithms in the context
of both orbital-free DFT and Kohn-Sham DFT were
presented. The leading order in the asymptotics corre-
sponds to the cauhy-born rule, but the asymptotic anal-
ysis also provides a systematic approach to improve the
accuracy of the model. The main idea is to divide the
localized orbitals of the electrons into two sets: one
set associated with the atoms in the region where the
deformation of the material is smooth (smooth region)
and an other associated with the atoms around the
defects (non-smooth region). The orbitals associated
with atoms in the smooth region can be approximated
accurately using asymptotic analysis, and the results
can then be used to find the orbitals in the non-smooth
region using a formulation of Kohn-Sham DFT for an
embedded system.
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Short Definition

Linear time-independent reaction-diffusion equations
are a class of elliptic partial differential equations in
which the highest derivative is multiplied by a small
positive parameter which can approach zero. As a
result, their solutions usually exhibit boundary layer
behavior for small values of the parameter.

Introduction

We consider the following steady-state, reaction-
diffusion boundary value problem: Find u such that

� "2r2uC bu D f in � � Rn; u D 0 on @�; (1)

where n .D 1; 2; 3/ is the dimension, " 2 .0; 1


is a given parameter, b; f are given functions of
x .D x1; : : : ; xn/, and the domain � is assumed
to be bounded with @� denoting its boundary. The
homogeneous Dirichlet boundary condition is simply
chosen for convenience; other boundary conditions
may be treated as well.

The presence of " in (1) causes the solution to, in
general, have boundary layers, especially as " ! 0.
These are rapidly varying solution components which
have support in a narrow neighborhood along @�. This
is in addition to any other “peculiarities” that might
exist due to the possible lack of smoothness in the data
and/or the domain. In order for the approximation to
be reliable and robust, all features of the solution must
be dealt with so that the accuracy is not affected (in a
negative way) as "! 0.

The approximation to the solution u of (1) may
be obtained in a variety of ways: finite differences,
spectral methods, and finite elements, to name a few.
Although we will focus on the Finite Element Method
(FEM), the guidelines given below apply to most other
methods as well.

Mesh Design Principles

Whether one uses commercial software or writes their
own subroutines, the correct mesh-degree combina-
tions are as follows: If the data is smooth and the

http://dx.doi.org/10.1090/S0065-9266-2012-00659-9
http://dx.doi.org/10.1090/S0065-9266-2012-00659-9


Linear Time Independent
Reaction Diffusion
Equations: Computation,
Fig. 1 Mesh design for a
circle. Left: Initial h-FEM
mesh or fixed p-FEM mesh.
Right: Refined h-FEM mesh,
in a piecewise uniform
fashion (referred to as
Shishkin mesh [6])

Linear Time Independent
Reaction Diffusion
Equations: Computation,
Fig. 2 Mesh design near a
reentrant corner; the
parameter � controls the
geometric ratio and in this
figure is chosen as 1/2; the
“optimal” value is � � 0:15

O(ε)

O(ε)

σO(ε)

Linear Time Independent Reaction Diffusion Equations: Computation, Fig. 3 Approximate solution to (1) with " D
0:01; b D f D 1
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domain does not contain any corners or abrupt changes
in the boundary conditions, the only feature of the
solution that needs to be resolved is the boundary layer.
For that, it suffices to construct the mesh in a way that
it includes refinement along an O."/ neighborhood of
the boundary. This is due to the fact that the boundary
layer effect is essentially one dimensional, namely, in
the direction normal to the boundary [2–7]. Figure 1
shows an example of such a minimal mesh when the
domain is a circle.

If the domain contains corners, then corner singu-
larities will also be present – this will also be the case
if there is an abrupt change in the boundary conditions
even if the boundary is smooth. The appropriate mesh
to use in this case must also include sufficient refine-
ment near each singularity in order for that feature to
be adequately resolved (as well). This can be achieved
by either the use of a nonuniform (e.g., geometric [1])
refinement near each corner or, alternatively, the use an
adaptive method. For the former, we show in Fig. 2 an
example of such a mesh near a reentrant corner.

In Fig. 3 we show the approximate solution to (1)
with " D 0:01; b D f D 1, when � is an L-
shaped domain. The approximation was obtained with
the p-FEM commercial software package StressCheck
(ESRD, St Louis, MO, USA), using polynomials of
degree p D 8. The mesh contains O."/ refinement
along the boundary as well as geometric refinement
near the reentrant corner as seen in Fig. 2. For more
theoretical and practical considerations, as well as
additional examples from solid mechanics, see [5].
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Description

A liquid represents an extremely complex system. Even
if we limit the analysis to an equilibrium picture, the
liquid can be seen as a large assembly of molecules
undergoing incessant collisions and exchanging energy
among colliding partners and among internal degrees
of freedom. The particles are disordered at large scale,
but often there is a local order that fades away. The
same description can be used also for solutions where
the collection of particles contains at least two types
of molecules, those having a higher molar fraction are
called the solvent, the others the solute. This purely
classical description implicitly contains an essential
component which is intrinsically nonclassical, namely,
the molecular interactions determining the behavior
of the liquid system. A correct description of these
interactionsshouldrequire the introductionofaquantum
mechanical (QM) picture, but it is clear that a detailed
QM description of a liquid is impossible due to the
huge number of interacting molecules to be considered
togetherwiththehugenumberofdifferentconfigurations
of these molecules to be accounted for in order to
get a statistically meaningful picture. There are two
possible strategies commonly adopted to overcome
this problem, either we go back to a fully classical
picture in which a parameterized description of the
intra- and intermolecular interactions is introduced, or
we divide the entire system into two parts, one of larger
interest (e.g., the solute) which is treated at QM level
and the remainder which can be seen as a classical
perturbation. These two strategies correspond to two
alternative computational approaches, the full classical
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Liquid-Phase Simulation: Theory and Numerics of Hy-
brid Quantum-Mechanical/Classical Approaches, Fig. 1
Example of QM/MM and QM/Continuum representations of

typical organic chromophore (Nile Red) within an ethanol
solution. In the last picture, the typical surface mesh used within
the PCM approach is shown

molecularmechanics(MM)andthehybridQM/classical
approaches. In the former, all the molecules are treated
at the same level introducing a classical force field to
represent the intra- and intermolecular interactions [1]
whereas the correct sampling can be obtained using
either a dynamical or a statistical simulation: molecular
dynamics (MD) or Monte Carlo (MC) methods are
commonly used to this scope. By contrast, in the hybrid
QM/classical approach, the solute is treated quantum-
mechanically while the remainder (thesolvent) is treated
classically either using a MM description [7, 12] or a
continuum approximation [13, 15] (see Fig. 1).

Within the continuum approximation, the micro-
scopic nature of the solvent completely disappears and
it is substituted by a macroscopic dielectric medium.
This is clearly an extreme simplification but still can
lead to accurate results of the effect of the environment
on molecular properties and processes if a correct
physical and numerical formulation is used. Moreover,
the use of a dielectric medium also automatically
solves the problem of a correct sampling. In fact,
describing the solvent in terms of its macroscopic
properties (such the dielectric permittivity) in most
cases allows to use a single configuration, that is,
the equilibrated solute within the dielectric, instead of
requiring many solute-solvent configurations as in full
MM or QM/MM formulations.

From this brief introduction, it comes out that the
simulation of the liquid phase remains a challenge.
Many alternative methodologies are available, and they
rapidly change with the progress of the computing
technology. This has the negative consequence that it
is impossible to give an exhaustive overview of the
subject but instead a preliminary choice on the range of
methods which shall be covered has to be done. Due to
the rapid increase of the computational power available
at relatively low cost and of the easiness of use and
accuracy of quantum-chemical softwares, it appears
that hybrid QM/classical methods represent today one
of the most promising strategies to simulate liquids
with the level of details required to evaluate molecular
properties and processes in condensed phase. It is
therefore on this family of methods that we shall almost
exclusively focus in the present contribution.

Hybrid QM/Classical Approaches

As said, the QM/classical strategy collects methods in
which a target subsystem defined as the “solute” is
described at QM level, and a secondary subsystem (“the
solvent”) is, on the contrary, modeled at a classical
level using either a MM force field or a macroscopic
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continuum medium with suitable properties. In both
versions, a fundamental common aspect is present: The
QM part can be modified in its electronic and nuclear
characteristics by the presence of the classical part.
This coupling between the two parts is made possible
by introducing in the QM description of the isolated
solute a new term which represents the effects exerted
by the classical part. In a QM language, this is obtained
by replacing the Hamiltonian operator representing the
solute alone with a new or effective one including an
additional solute-solvent interacting term, namely:

OHeff j� i D
� OH0 C OHenv

�
j� i D E j� i (1)

where OH0 and j� i are the Hamiltonian and the
wavefunction relative to the solute and OHenv is the
solvent induced term. As for isolated molecules,
also the effective Schrödinger equation (1) cannot
be treated without further approximations. What is
important to stress, however, is that the addition
of the new operator OHenv does not change the
formal and the numerical strategy to be used. As
a result, the most commonly used approximations
for isolated systems �Density Functional Theory,
�Quantum Monte Carlo Methods in Chemistry,
�Hartree–Fock Type Methods, �Coupled-Cluster
Methods, are still valid for the liquid phase.
However, the form of OHenv which depends on the
specific version of the QM/classical formulation
used introduces some important specificities. Here
below we briefly summarize the main ones for
each of the two selected families of solvation
methods.

QM/MM
If we adopt a microscopic description in terms of an
MM force field, the effects that the classical part of
the system exert on the QM part are of electrostatic,
repulsive, and dispersive nature. The latter terms are of
short-range character and in most combined QM/MM
methods are described by empirical potentials indepen-
dent of the QM electronic degrees of freedom, thus
not affecting the solute wavefunction. On the con-
trary, the electrostatic contribution, usually depicted in
terms of atomic charges placed on the atoms of the
solvent molecules, will explicitly affect (or polarize)
the solute wavefunction. Its effects will be introduced
in OHenv in terms of an additional one-electron term
which represents the electrostatic energy between a

set of point charges placed in the solvent and a solute
charge distribution generating an electrostatic potential
at the same points. This formulation of the QM/MM
approach, generally indicated as “electrostatic embed-
ding,” differentiates from the more approximated ver-
sion in which the QM–MM electrostatic interaction is
treated on the same footing as the MM–MM electro-
statics (“mechanical embedding”).

To make the solvent effects more complete, in addi-
tion to point charges, we can introduce induced dipoles,
describing each solvent atom (or group of atoms) in
terms of an atomic charge and an atomic polarizability.
As a result, not only the solute will be polarized by
the solvent but also the solvent will respond to the
solute so, to achieve a mutually polarized system. This
formulation of the QM/MM approach is known as
“polarized embedding.”

Within this polarizable QM/MM formulation we
get:

OHenv D OHQM=MM C OHMM (2)

OHQM=MM D OH el
QM=MM C OH pol

QM=MM

D
X

m

qm OV .rm/� 1
2

X

a

�ind
a
OEsolute
a .ra/

(3)

OHMM D OH el
MM C OH pol

MM D
X

m

X

n>m

qmqn

rmn

�1
2

X

a

�ind
a

X

m

qm.ra � rm/

jra � rmj3
(4)

where OV .rm/ and OEsolute
a .ra/ represent the electrostatic

potential and the electric field operators due to the so-
lute electrons and nuclei calculated at the MM sites. On
the other hand, in (4) OH el

MM describes the electrostatic
self-energy of the MM charges, while OH pol

MM represents
the polarization interaction between such charges and
the induced dipoles. We recall that the OH el

MM term
enters in the effective Hamiltonian only as a constant
energetic quantity, while the OH pol

MM contribution explic-
itly depends on the QM wavefunction.

Numerical Aspects of Polarizable MM Approaches
The dipoles induced on each MM polarizable site
can be obtained assuming a linear approximation,

http://dx.doi.org/10.1007/978-3-540-70529-1_234
http://dx.doi.org/10.1007/978-3-540-70529-1_247
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neglecting any contribution of magnetic character
related to the total electric field, and using an isotropic
polarizability for each selected point in the MM part of
the system. The electric field which determines such
dipoles contains a sum of contributions from the solute,
from the solvent point charges, and from the induced
dipole moments themselves. This mutual polarization
between the dipoles can be solved through a matrix
inversion approach, by introducing a matrix equation:

K�ind
c D Ec (5)

where the matrix K is of dimension 3N	 3N, N be-
ing the number of polarizable sites, and the vector
Ec collects the c-th component of the electric field
from the solute and the solvent permanent charge
distribution. The form of matrix K will be determined
uniquely by the position of the polarizable sites and the
polarizability values, namely:

Ki;i D KiCN;iCN D KiC2N;iC2N D 1=˛i
Ki;iCN D Ki;iC2N D KiCN;i D KiCN;iC2N

D KiC2N;i D KiC2N;iCN D 0
KiCmN;jCnN D T kl

i;j

with n;m D 0; 1; 2 and k; l D x; y; z
where the index i and j ¤ i run from 1 to N , and the
dipole field tensor is given by:

Ti;j D 1

r3ij
I � 3

r5ij

2

4
r2x rxry rxrz

ryrx r2y ryrz

rzrx rzry r2z

3

5 (6)

The QM/MM formalism can accommodate almost
any combination of QM and MM methods. The
choice of the QM method follows the same criteria
as in pure QM studies. Essentially, the QM code
must be able to perform the self-consistent field
(SCF) �Hartree–Fock Type Methods treatment in the
presence of the external point-charge (or dipole) field
that represents the MM charge model in the case of
electronic (or polarized) embedding. In practice, many
current QM/MM applications use density-functional
theory (DFT) �Density Functional Theory as the
QM method owing to its favorable computational-
effort/accuracy ratio. Traditionally, semiempirical QM
methods have been most popular, and they remain

important for extensions of QM/MM approaches
to molecular dynamics. The recent development of
linear-scaling for correlation methods has significantly
extended the size of systems that can be treated with
such methods, up to several tens of atoms, and has
made them a very accurate alternative to be coupled
with an MM description of the environment. As far as
the choice of MM method is concerned, all the many
force fields available in the literature can, in principle,
be coupled with a QM description.

QM/Continuum
The analysis of QM/classical methods is less straight-
forward if we adopt a continuum description. The basic
formulation of continuum models requires the solution
of a classical electrostatic problem (Poisson problem):

� Er �
h
".Er/ ErV.Er/

i
D 4��M .Er/ (7)

where �M .Er/ is the solute charge distribution and ".Er/
is the general position-dependent permittivity. If we
assume that the charge distribution is contained in a
molecular cavity C of proper shape and dimension
built within a homogeneous and isotropic solvent, ".Er/
assumes the simple form:

".Er/ D
�
1 Er 2 C
" Er … C (8)

where " is the dielectric constant of the solvent.
Using the definition (8) with the appropriate bound-

ary conditions, the electrostatic problem (7) can be
solved in terms of a potential V which is the sum of the
solute potential plus the contribution due to the reaction
of the solvent (e.g., the polarization of the dielectric),
namely V.Er/ D VM.Er/CV� .Er/. Under the assumption
that the charge distribution is entirely supported inside
the cavity C , an integral representation of the reaction
potential can be derived which introduces a fictitious
(or apparent) charge distribution � on the boundary
between the solute and the solvent, that is, the surface
of the cavity C , � D @C , namely:

V�.Er/ D
Z

�

�.Es/
ˇ
ˇEr � Esˇˇd Es (9)

The surface charge � is solution of an integral equation
on � , that is of an equation of the form [3–5]:

http://dx.doi.org/10.1007/978-3-540-70529-1_236
http://dx.doi.org/10.1007/978-3-540-70529-1_234
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.A�/.Es/ D
Z

�

kA.Es; Es 0/ �.Es 0/ d Es 0 D b�.Es/ 8Es 2 �
(10)

where kA is the Green kernel of some integral operator
A and b� depends linearly on the charge distribution
�M . This formulation has been adopted in different
continuum solvation models, the most famous ones
being the polarizable continuum model (PCM) [15]
(in its different versions) and the conductor-like screen-
ing model (COSMO) [9]. Each different formulation
corresponds to different choices for A, but in all cases,
it is obtained in terms of a specific combination of the
following kernels:

kA.Es; Es 0/ D

8
<̂

:̂

1

jEs�Es 0j
@
@ Ons

1

jEs�Es 0j
@
@ Ons0

1

jEs�Es 0j

(11)

where Ons represents the unit vector normal to the
surface at point Es and pointing toward the dielectric.

Also b� changes according to the different formula-
tion of the model. For instance, the original version of
COSMO is obtained with:

b�.Es/ D �f .�/
Z

IR3

�M .Er 0/
jEs � Er 0j d Er

0 (12)

where f .�/ D .� � 1/=.�C 0:5/.

Numerical Aspects of Polarizable Continuum
Approaches
The reduction of the source of the solvent reaction
potential to a charge distribution limited to a closed sur-
face greatly simplifies the electrostatic problem with
respect to other formulations in which the whole di-
electric medium is considered as source of the reaction
potential. In spite of this remarkable simplification,
the integration of (10) over a surface of complex
shape is computationally challenging. The solutions
are generally based on a discretization of the integral
into a finite number of elements. This discretization
of � automatically leads to a discretization of �.Es/
in terms of point-like charges, namely if we assume
that on each surface element �.Es/ does not significantly
change, its effect can be simulated with that of a point
charge of value q.Esi / D �.Esi /ai where ai is the area
of the surface element i and Esi its representative point.
This numerical method, which can be defined as P0
collocation method, is not the only possible one (e.g., a

Galerkin method could also be used); however, it is the
most natural and easiest to implement for the specific
case of apparent surface charge calculations [14].

The necessary preliminary step in the strategy is
the generation of the surface elements (i.e., the surface
mesh, see Fig. 1) as, once the mesh has been defined,
the apparent charges q are obtained by solving a matrix
equation, of the type

Qq D �RVM (13)

where q and VM are the vectors containing the N
values of the charge and the solute potential at the
surface points, respectively. Q and R are the matrix
analogs of the integral operators introduced in (10) to
obtain the apparent charge distribution � . In particular,
the different kernels reported in the (11) can be written
in terms of the following matrices:

Sij D 1

jEsi � Esj j (14)

Dij D .Esi � Esj / � Onj
jEsi � Esj j3

D�
ij D

.Esj � Esi / � Oni
jEsi � Esj j3

As concerns the diagonal elements of S, D and D�
different numerical solutions have been proposed. In
particular, those commonly used are Sii D k

p
4�=ai

andDii D �.2�CPj¤i Dij aj /=ai where the former
derives from the exact formula of a flat circular element
with k taking into account that the element is spherical,
and the latter becomes exact when the size of all the
elements tends to zero.

The approximation method described above belongs
to the class of boundary element methods (BEM) [2].
BEM follows the same lines as finite element methods
(FEM). In both cases, the approximation space is
constructed from a mesh. In the context of continuum
solvation models, FEM solves the (local) partial dif-
ferential equation (7), complemented with convenient
boundary conditions, a 3D mesh [6, 8], while BEM
solves one of the (nonlocal) integral equations derived
above, on a 2D mesh. In the former case, the resulting
linear system is very large, but sparse. In the latter case,
it is of much lower size, but full.

If we now reintroduce a QM description of the
charge distribution �M in terms of the wavefunction
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which is solution of the (1), we can rewrite the solvent
induced term OHenv as:

OHenv D OHQM=cont D
X

m

q.Esi / OV .Esi / (15)

where q are the solvent apparent charges and OV is
the electrostatic potential operator corresponding to the
solute charge distribution. By comparing (15) with (4),
it might seem that there is a perfect equivalence be-
tween the nonpolarizable part of the QM/MM method
and the QM/continuum one. As a matter of fact this
equivalence is only apparent as the apparent charges
entering in (15) are not external parameters as it is
for the MM charges but they are obtained solving a
matrix equation which depends on the solute charge
distribution. In (4), the induced dipoles �ind

a depend on
the solute charge distribution exactly as the apparent
charges.

The analogies and differences between QM/ Con-
tinuum and QM/MM approaches however are not only
on the methodological aspects of their formulation and
implementation. It is important to recall that the two
approaches also present fundamental specificities from
a physical point of view. By definition, continuum
models introduce an averaged (bulk) description of
the environment effects. This is necessarily reflected
in the results that can be obtained with these meth-
ods. While continuum models can be successfully
applied in all cases in which the environment acts
as a mean-field perturbation, solvent-specific effects
such as hydrogen bondings are not well reproduced.
By contrast, QM/MM methods can properly describe
many specific effects but, at the same time, they cannot
be applied to simulate longer-to-bulk effects if they
are not coupled to a sampling of the configurational
space of the solute–solvent system. For this, a molecu-
lar dynamics (MD) or Monte Carlo (MC) simulation
approach is needed with significant increase of the
computational cost.

Conclusions

Many alternative strategies are available to simulate the
liquid phase, each with its advantages and weaknesses.
Here, in particular, the attention has been focused on
the class of methods which combine a QM description
of the subsystem of interest with a classical one for the
remainder. This hybrid approach is extremely versatile,

we can in fact tune the boundary between the two com-
ponents of the system as well as extend the dimensions
of the classical system and change its description using
either an atomistic (MM) or a continuum approach. In
addition, both QM/MM and QM/continuum methods
can be applied to environments of increasing complex-
ity [10, 11], from standard isotropic and homogeneous
liquids, to gas–liquid or liquid–liquid interfaces and/or
anisotropic liquid crystalline phases, just to quote few.
The most important aspect of these methods, however,
is that the QM approach, even if limited to just a part
of the system, allows for a more accurate description of
all those processes and phenomena which are mostly
based on the electronic structure of the molecules
constituting the liquid. In more details, QM/classical
methods should be preferred over other fully classical
approaches when the interest is not on the properties
of the liquid itself but instead on the effects that the
liquid exerts on a property or a process which can
be localized on a specific part of the system. The
realm of (bio)chemical reactivity in solution as well
as the world of spectroscopies in condensed phase are
examples where QM/classical methods really represent
the most effective approach. Of course there are also
drawbacks; in particular, the computational cost can
increase enormously with respect to classical methods
especially when the QM/Classical approach is cou-
pled to molecular dynamics simulations. Moreover,
the choice of the specific combination of the QM
description and the classical one is not straightforward,
but it has to be carefully chosen on the basis of the
specific problem under investigation and the specific
chemical system of interest. It is however clear that
QM/classical methods represent one of the most pow-
erful approaches to combine accuracy with complexity
while still keeping a physically founded representation
of the main interactions determining the behavior of
the liquids.
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Introduction

Lobatto methods for the numerical integration
of differential equations are named after Rehuel
Lobatto. Rehuel Lobatto (1796–1866) was a Dutch
mathematician working most of his life as an advisor

for the government in the fields of life insurance and of
weights and measures. In 1842, he was appointed
professor of mathematics at the Royal Academy
in Delft (known nowadays as Delft University of
Technology). Lobatto methods are characterized by the
use of approximations to the solution at the two end
points tn and tnC1 of each subinterval of integration
Œtn; tnC1
. Two well-known Lobatto methods based on
the trapezoidal quadrature rule which are often used
in practice are the (implicit) trapezoidal rule and the
Störmer-Verlet-leapfrog method.

The (Implicit) Trapezoidal Rule
Consider a system of ordinary differential equations
(ODEs):

d

dt
y D f .t; y/ (1)

where f W R 	 Rd ! Rd . Starting from y0 at
t0 one step .tn; yn/ 7! .tnC1; ynC1/ of the (implicit)
trapezoidal rule applied to (1) is given by the implicit
relation:

ynC1 D yn C hn

2
.f .tn; yn/C f .tnC1; ynC1//

where hn D tnC1 � tn is the step size. The (im-
plicit) trapezoidal rule is oftentimes called the Crank-
Nicholson method when considered in the context of
time-dependent partial differential equations (PDEs).
This implicit method requires the solution of a sys-
tem of d equations for ynC1 2 Rd that can be
expressed as:

F.ynC1/ WD ynC1 � yn � hn
2
.f .tn; yn/

Cf .tnC1; ynC1// D 0

and which is nonlinear when f .t; y/ is nonlinear in y.
Starting from an initial guess y.0/nC1 � ynC1, the solu-
tion ynC1 can be approximated iteratively by modified
Newton iterations as follows:

y
.kC1/
nC1 D y.k/nC1 C p.k/nC1; Jnp

.k/
nC1 D �F.y.k/nC1/

using, for example, an approximate Jacobian:

Jn D Id � hn
2
Dyf .tn; yn/ � DyF.y

.k/
nC1/:
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Taking Jn D Id leads to fixed-point iterations:

y
.kC1/
nC1 D yn C

hn

2

�
f .tn; yn/C f .tnC1; y.k/nC1/

�
:

The Generalized Newton-Störmer-Verlet-
LeapfrogMethod
Consider now a partitioned system of ODEs:

d

dt
q D v.t; p; q/; d

dt
p D f .t; q; p/ (2)

where v W R 	 Rdq 	 Rdp ! Rdq and f W R 	
Rdq 	Rdp ! Rdp . Starting from .q0; p0/ at t0 one step
.tn; qn; pn/ 7! .tnC1; qnC1; pnC1/ of the generalized
Newton-Störmer-Verlet-leapfrog method applied to (2)
reads:

pnC1=2Dpn C hn

2
f .tn; qn; pnC1=2/;

qnC1Dqn C hn

2

�
v.tn; qn; pnC1=2/

Cv.tnC1; qnC1; pnC1=2/
�
; (3)

pnC1DpnC1=2 C hn

2
f .tnC1; qnC1; pnC1=2/

where hn D tnC1� tn is the step size. The first equation
is implicit for pnC1=2, the second equation is implicit
for qnC1, and the last equation is explicit for pnC1.
When v.t; q; p/ D v.t; p/ is independent of q, and
f .t; q; p/ D f .t; q/ is independent of p the method
is fully explicit. If in addition v.t; q; p/ D v.p/ is
independent of t and q, the method can be simply
expressed as:

pnC1=2Dpn C hn

2
f .tn; qn/;

qnC1Dqn C hnv.pnC1=2/;

pnC1DpnC1=2 C hn

2
f .tnC1; qnC1/:

This explicit method is often applied as follows:

pnC1=2Dpn�1=2 C 1

2
.hn�1 C hn/f .tn; qn/ ;

qnC1Dqn C hnv.pnC1=2/:

Depending on the field of applications, this method
is known under different names: the Störmer method
in astronomy; the Verlet method in molecular dy-
namics; the leapfrog method in the context of time-
dependent PDEs, in particular for wave equations.
This method can be traced back to Newton’s Principia
(1687), see [10].

Lobatto Methods
In this entry, we consider families of Runge-Kutta
(RK) methods based on Lobatto quadrature formulas
whose simplest member is the trapezoidal quadrature
rule. When applied to (1) Lobatto RK methods can be
expressed as follows:

YniDyn C hn
sX

jD1
aij f .tn C cj h; Ynj /

for i D 1; : : : ; s; (4)

ynC1Dyn C hn
sX

jD1
bj f .tn C cj h; Ynj / (5)

where the stage value s satisfies s � 2 and the coeffi-
cients aij ; bj ; cj characterize the Lobatto RK method.
The s intermediate values Ynj for j D 1; : : : ; s are
called the internal stages and can be considered as
approximations to the solution at tn C cj hn, the main
numerical RK approximation at tnC1 D tn C hn is
given by ynC1. Lobatto RK methods are characterized
by c1 D 0 and cs D 1. They can also be considered
in combination with other families of RK methods, for
example, with Gauss methods in the context of certain
systems of differential-algebraic equations (DAEs), see
the section “Lobatto Methods for DAEs” below. The
symbol III is usually found in the literature associated
to Lobatto methods, the symbols I and II being reserved
for the two types of Radau methods. The (implicit)
trapezoidal rule is the simplest member (s D 2) in the
Lobatto IIIA family. The generalized Newton-Störmer-
Verlet-leapfrog method seen above can be interpreted
as a partitioned Runge-Kutta (PRK) resulting from the
combination of the (implicit) trapezoidal rule and the
Lobatto IIIB method for s D 2, see the section “Addi-
tive Lobatto Methods for Split and Partitioned ODEs”
below.
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Families of LobattoMethods

For a fixed value of s, the various families of Lobatto
methods described below all share the same coeffi-
cients bj ; cj of the corresponding Lobatto quadrature
formula.

Lobatto Quadrature Formulas
The problem of approximating a Riemann integral:

Z tnChn

tn

f .t/dt (6)

with f assumed to be continuous is equivalent to the
problem of solving the initial value problem at t D
tn C hn:

d

dt
y D f .t/; y.tn/ D 0

since y.tn C hn/ D
R tnChn
tn

f .t/dt . The integral (6)
can be approximated by using a standard quadrature
formula:

Z tnChn

tn

f .t/dt � hn
 

sX

iD1
bif .tn C cihn/

!

with s node coefficients c1; : : : ; cs , and s weight coef-
ficients b1; : : : ; bs . Lobatto quadrature formulas, also
known as Gauss-Lobatto quadrature formulas in the
literature, are given for s � 2 by a set of nodes and
weights satisfying conditions described hereafter. The
s nodes cj are the roots of the polynomial of degree s:

ds�2

dts�2
.t s�1.1 � t/s�1/:

These nodes satisfy c1 D 0 < c2 < : : : < cs D 1. The
weights bj and nodes cj satisfy the conditionB.2s�2/
where:

B.p/ W
sX

jD1
bj c

k�1
j D 1

k
for k D 1; : : : ; p;

implying that the quadrature formula is of order 2s�2.
There exists an explicit formula for the weights

bj D 1

s.s � 1/Ps�1.2cj � 1/2 > 0

for j D 1; : : : ; s


b1 D bs D 1

s.s � 1/
�

where

Pk.x/ D 1

kŠ2k
dk

dxk

�
.x2 � 1/k�

is the kth Legendre polynomial. Lobatto quadrature
formulas are symmetric, that is their nodes and weights
satisfy:

bsC1�j D bj ; csC1�j D 1 � cj for j D 1; : : : ; s:

For s D 3, we obtain the famous Simpson’s rule:

.b1; b2; b3/D .1=6; 2=3; 1=6/; .c1; c2; c3/D .0; 1=2; 1/:

Procedures to compute numerically accurately the
nodes and weights of high order Lobatto quadrature
formulas can be found in [7] and [23]. The subroutine
GQRUL from the IMSL/MATH-LIBRARY can
compute numerically these nodes and weights.

Lobatto Families
The families of Lobatto RK methods differ only in the
values of their coefficients aij . Various equivalent def-
initions can be found in the literature. The coefficients
aij of these families can be linearly implicitly defined
with the help of so-called simplifying assumptions:

C.q/ W
sX

jD1
aij c

k�1
j D cki

k

for i D 1; : : : ; s and k D 1; : : : ; q;

D.r/ W
sX

iD1
bi c

k�1
i aij D bj

k

�
1 � ckj

�

for j D 1; : : : ; s and k D 1; : : : ; r:

The importance of these simplifying assumptions
comes from a fundamental result due to Butcher,
see [5, 9], saying that a RK method satisfying the
simplifying assumptions B.p/, C.q/, and D.r/ is of
order at least min.p; 2qC2; qCrC1/. The coefficients
aij ; bj ; cj characterizing the Lobatto RK method (4)
and (5) will be displayed below in the form of a table
called a Butcher-tableau:
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c1 D 0 a11 a12 � � � a1;s�1 a1s
c2 a21 a22 � � � a2;s�1 a2s
:::

:::
:::

: : :
:::

:::

cs�1 as�1;1 as�1;2 � � � as�1;s�1 as�1;s
cs D 1 as1 as2 � � � as;s�1 ass

b1 b2 � � � bs�1 bs

In the four main families of Lobatto methods described
below, namely Lobatto IIIA, Lobatto IIIB, Lobatto
IIIC, and Lobatto IIIC�, only one method does not
satisfy the relation C.1/, that is,

sX

jD1
aij D ci for i D 1; : : : ; s;

this is the Lobatto IIIB method for s D 2, see
below. The Lobatto IIIA, IIIB, IIIC, and IIIC�
methods can all be interpreted as perturbed collo-
cation methods [19] and discontinuous collocation
methods [11].

Lobatto IIIA
The coefficients aAij of Lobatto IIIA methods can be
defined byC.s/ (Table 1). They satisfyD.s�2/, aAsj D
bj for j D 1; : : : ; s, and aA1j D 0 for j D 1; : : : ; s.
Lobatto IIIA methods are symmetric and of nonstiff
order 2s � 2. Their stability function R.z/ is given
by the .s � 1; s � 1/-Padé approximation to ez. They
are A-stable, but not L-stable since R.1/ D .�1/sC1.
They are notB-stable and thus not algebraically stable.
They can be interpreted as collocation methods. Since
the first internal stage Yn1 of Lobatto IIIA methods is
explicit (Yn1 D yn and f .tn C c1hn; Yn1/ D f .tn; yn/)
and the last internal stage satisfies Yns D ynC1 (and
thus f .tnC1; ynC1/ D f .tn C cshn; Yns/), these meth-
ods are comparable in terms of computational work to
Gauss methods with s � 1 internal stages since they
also have the same nonstiff order 2s � 2. For s D 2,
we obtain the (implicit) trapezoidal rule which is often
expressed without its two internals stages Yn1; Yn2 since
they are respectively equal to yn and ynC1. The method
for s D 3 is sometimes called the Hermite-Simpson (or
Clippinger-Dimsdale) method and it has been used, for
example, in trajectory optimization problems [4]. This
method can be equivalently expressed in a compact
form as:

Yn2D 1
2
.yn C ynC1/

Chn
8
.f .tn; yn/� f .tnC1; ynC1//;

ynC1Dyn C hn

6

�
f .tn; yn/C 4f .tnC1=2; Yn2/

Cf .tnC1; ynC1/
�

where tnC1=2 D tn C hn=2. It can be even further
reduced by rewriting

ynC1Dyn C hn

6
.f .tn; yn/C f .tnC1; ynC1//

C2hn
3
f



tnC1=2;

1

2
.yn C ynC1/

Chn
8
.f .tn; yn/� f .tnC1; ynC1//

�
:

Lobatto IIIB
The coefficients aBij of Lobatto IIIB methods can be
defined by D.s/ (Table 2). They satisfy C.s � 2/,
aBi1 D b1 for i D 1; : : : ; s and aBis D 0 for i D 1; : : : ; s.
Lobatto IIIB methods are symmetric and of nonstiff
order 2s � 2. Their stability function R.z/ is given by
the .s � 1; s � 1/-Padé approximation to ez. They are
A-stable, but not L-stable since R.1/ D .�1/sC1.
They are not B-stable and thus not algebraically
stable. The coefficients aBij can also be obtained
from the coefficients aAij of Lobatto IIIA through the
relations:

bia
B
ij C bj aAj i � bibj D 0 for i; j D 1; : : : ; s;

or

aBij D bj � aAsC1�i;sC1�j for i; j D 1; : : : ; s:

Lobatto IIIC
The coefficients aCij of Lobatto IIIC methods can be
defined by aCi1 D b1 for i D 1; : : : ; s and C.s � 1/
(Table 3). They satisfy D.s � 1/ and aCsj D bj for j D
1; : : : ; s. Lobatto IIIC methods are of nonstiff order
2s�2. They are not symmetric. Their stability function
R.z/ is given by the .s � 2; s/-Padé approximation to
ez. They are L-stable. They are algebraically stable
and thus B-stable. They are excellent methods for stiff
problems.
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Lobatto Methods, Table 1 Coefficients of Lobatto IIIA for s D 2; 3; 4; 5

0 0 0

1
1

2

1

2

AsD2

1

2

1

2

0 0 0 0

1

2

5

24

1

3
� 1

24

1
1

6

2

3

1

6

AsD3

1

6

2

3

1

6

0 0 0 0 0

1

2
�

p
5

10

11C p
5

120

25� p
5

120

25� 13
p
5

120

�1C p
5

120

1

2
C

p
5

10

11� p
5

120

25C 13
p
5

120

25C p
5

120

�1� p
5

120

1
1

12

5

12

5

12

1

12

AsD4

1

12

5

12

5

12

1

12

0 0 0 0 0 0

1

2
�

p
21

14

119C 3
p
21

1960

343� 9
p
21

2520

392� 96
p
21

2205

343� 69
p
21

2520

�21C 3
p
21

1960

1

2

13

320

392C 105
p
21

2880

8

45

392� 105
p
21

2880

3

320

1

2
C

p
21

14

119� 3
p
21

1960

343C 69
p
21

2520

392C 96
p
21

2205

343C 9
p
21

2520

�21� 3
p
21

1960

1
1

20

49

180

16

45

49

180

1

20

AsD5

1

20

49

180

16

45

49

180

1

20

Lobatto IIIC�

Lobatto IIIC� are also known as Lobatto III methods
[5], Butcher’s Lobatto methods [9], and Lobatto IIIC
methods [22] in the literature. (The name Lobatto
IIIC� was suggested by Robert P.K. Chan in an e-
mail correspondence with the author on June 13, 1995.)
The coefficients aC

�

ij of Lobatto IIIC� methods can be

defined by aC
�

is D 0 for i D 1; : : : ; s and C.s � 1/
(Table 4). They satisfy D.s � 1/ and aC

�

1j D 0 for j D
1; : : : ; s. Lobatto IIIC� methods are of nonstiff order
2s�2. They are not symmetric. Their stability function
R.z/ is given by the .s; s�2/-Padé approximation to ez.
They are not A-stable. They are not B-stable and thus
not algebraically stable. The Lobatto IIIC� method for
s D 2 is sometimes called the explicit trapezoidal rule.
The coefficients aC

�

ij can also be obtained from the
coefficients aCij of Lobatto IIIC through the relations:

bia
C�

ij C bj aCj i � bibj D 0 for i; j D 1; : : : ; s;
or

aC
�

ij D bj � aCsC1�i;sC1�j for i; j D 1; : : : ; s:

Other Families of Lobatto Methods
Most Lobatto methods of interest found in the literature
can be expressed as linear combinations of the four
fundamental Lobatto IIIA, IIIB, IIIC, and IIIC� meth-
ods. In fact, one can consider a very general family
of methods with three real parameters .˛A; ˛B; ˛C / by
considering Lobatto coefficients of the form:

aij .˛A; ˛B; ˛C / D ˛AaAij C ˛BaBij C ˛C aCij C ˛C�aC
�

ij

(7)

where ˛C� D 1 � ˛A � ˛B � ˛C . For any choice of
.˛A; ˛B; ˛C / the corresponding Lobatto RK method is
of nonstiff order 2s�2 [13]. The Lobatto IIIS methods
presented in [6] depend on a real parameter � . They
can be expressed as:

aSij .�/ D .1��/
�
aAij C aBij

�
C


� � 1

2

��
aCij C aC

�

ij

�

for i; j D 1; : : : ; s;

corresponding to ˛A D ˛B D 1 � � and ˛C D ˛C� D
� � 1

2
in (7). These methods satisfy C.s � 2/ and
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Lobatto Methods, Table 2 Coefficients of Lobatto IIIB for s D 2; 3; 4; 5

0
1

2
0

1
1

2
0

BsD2

1

2

1

2

0
1

6
�1
6
0

1

2

1

6

1

3
0

1
1

6

5

6
0

BsD3

1

6

2

3

1

6

0
1

12

�1� p
5

24

�1C p
5

24
0

1

2
�

p
5

10

1

12

25C p
5

120

25� 13
p
5

120
0

1

2
C

p
5

10

1

12

25C 13
p
5

120

25� p
5

120
0

1
1

12

11� p
5

24

11C p
5

24
0

BsD4

1

12

5

12

5

12

1

12

0
1

20

�7� p
21

120

1

15

�7C p
21

120
0

1

2
�

p
21

14

1

20

343C 9
p
21

2520

56� 15
p
21

315

343� 69
p
21

2520
0

1

2

1

20

49C 12
p
21

360

8

45

49� 12
p
21

360
0

1

2
C

p
21

14

1

20

343C 69
p
21

2520

56C 15
p
21

315

343� 9
p
21

2520
0

1
1

20

119� 3
p
21

360

13

45

119C 3
p
21

360
0

BsD5

1

20

49

180

16

45

49

180

1

20

D.s � 2/. They are symmetric and symplectic. Their
stability function R.z/ is given by the .s � 1; s � 1/-
Padé approximation to ez. They areA-stable, but notL-
stable. They are algebraically stable and thus B-stable.
The Lobatto IIIS coefficients for � D 1=2 are given by:

aSij .1=2/ D
1

2

�
aAij C aBij

�
for i; j D 1; : : : ; s:

For � D 1 we obtain the Lobatto IIID methods [6, 13]:

aDij D aSij .1/ D
1

2

�
aCij C aC

�

ij

�
for i; j D 1; : : : ; s:

These methods are called Lobatto IIIE in [19] and
Lobatto IIIE in [22]. They satisfyC.s�1/ andD.s�1/,
and they can be interpreted as perturbed collocation
methods [19]. Another family of Lobatto RK methods
is given by the Lobatto IIID family of [19] called here
Lobatto IIINW where the coefficients for s D 2; 3

are given in Table 5. (Notice on p. 205 of [19] that
�1 D �4.2m � 1/.) These methods correspond to

˛A D 2, ˛B D 2, ˛C D �1, and ˛C� D �2 in (7).
Their stability function R.z/ is given by the .s � 2; s/-
Padé approximation to ez. These methods areL-stable.
They are algebraically stable and thus B-stable. They
are of nonstiff order 2s � 2. They are not symmet-
ric. They can be interpreted as perturbed collocation
methods [19].

Additive LobattoMethods for Split and
Partitioned ODEs

Consider a split system of ODEs:

d

dt
y D f1.t; y/C f2.t; y/ (8)

where f1; f2 W R 	 Rd ! Rd . Starting from y0 at t0
one step .tn; yn/ 7! .tnC1; ynC1/ of an additive Lobatto
RK method applied to (8) reads:
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Lobatto Methods, Table 3 Coefficients of Lobatto IIIC for s D 2; 3; 4; 5

0
1

2
�1
2

1
1

2

1

2

CsD2

1

2

1

2

0
1

6
�1
3

1

6

1

2

1

6

5

12
� 1

12

1
1

6

2

3

1

6

CsD3

1

6

2

3

1

6

0
1

12
�

p
5

12

p
5

12
� 1

12

1

2
�

p
5

10

1

12

1

4

10� 7
p
5

60

p
5

60

1

2
C

p
5

10

1

12

10C 7
p
5

60

1

4
�

p
5

60

1
1

12

5

12

5

12

1

12

CsD4

1

12

5

12

5

12

1

12

0
1

20
� 7

60

2

15
� 7

60

1

20

1

2
�

p
21

14

1

20

29

180

47� 15
p
21

315

203� 30
p
21

1260
� 3

140

1

2

1

20

329C 105
p
21

2880

73

360

329� 105
p
21

2880

3

160

1

2
C

p
21

14

1

20

203C 30
p
21

1260

47C 15
p
21

315

29

180
� 3

140

1
1

20

49

180

16

45

49

180

1

20

CsD5

1

20

49

180

16

45

49

180

1

20

Yni D yn C hn
sX

jD1
.a1;ij f1.tn C cj h; Ynj /

Ca2;ij f2.tn C cj h; Ynj //
for i D 1; : : : ; s;

ynC1 D yn C hn
sX

jD1
bj .f1.tn C cj h; Ynj /

Cf2.tn C cj h; Ynj //

where s � 2 and the coefficients a1;ij ; a2;ij ; bj ; cj
characterize the additive Lobatto RK method. Con-
sider, for example, any coefficients a1;ij and a2;ij from
the family (7), the additive method is of nonstiff order
2s � 2 [13]. The partitioned system of ODEs (2) can
be expressed in the form (8) by having d D dq C dp,
y D .q; p/ 2 Rdq 	 Rdp , and:

f1.t; q; p/ D


v.t; q; p/

0

�
;

f2.t; q; p/ D



0

f .t; q; p/

�
:

Applying for s D 2 the Lobatto IIIA coefficients
as a1;ij and the Lobatto IIIB coefficients as a2;ij , we
obtain again the generalized Newton-Störmer-Verlet-
leapfrog method (3). Additive Lobatto methods have
been considered in multibody dynamics in [13, 21].
Additive methods are more general than partitioned
methods since partitioned system of ODEs can always
be reformulated as a split system of ODEs, but the
reverse is false in general.

LobattoMethods for DAEs

An important use of Lobatto methods is for the solution
of differential-algebraic equations (DAEs). DAEs con-
sist generally of coupled systems of differential equa-
tions and nonlinear relations. They arise typically in
mechanics and electrical/electronic circuits simulation.
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Lobatto Methods, Table 4 Coefficients of Lobatto IIIC� for s D 2; 3; 4; 5

0 0 0

1 1 0
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sD2
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2

0 0 0 0

1

2

1

4
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4
0

1 0 1 0
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0 0 0 0 0
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2
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6
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1
1

6
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5
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5C p
5
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0
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sD4

1
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5
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1
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1

2
�

p
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1
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1

9
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p
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p
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0

1

2

1
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p
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p
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0

1

2
C

p
21

14

1

14

14C 3
p
21

126

13C 3
p
21

63

1

9
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7
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2

9

7
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49

180
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49

180

1

20

Lobatto Methods, Table 5 Coefficients of Lobatto IIINW for
s D 2; 3 [19]

0
1

2

1

2

1 �1
2

1

2

1

2

1

2

0
1

6
0 �1

6

1

2

1

12

5

12
0

1
1

2

1

3

1

6

1

6

2

3

1

6

Consider, for example, a system of DAEs of the
form:

d

dt
y D f .t; y; 	/; 0 D k.t; y/

where Dyk.t; y/D	f .t; y; 	/ is nonsingular. Lobatto
methods can be applied to this class of problems while
preserving their classical order of convergence [14].
For example, the application of the two-stage Lobatto
IIID method can be expressed as:

Yn1Dyn C hn

4
.f .tn; Yn1;�n1/ � f .tnC1; Yn2;�n2//;

Yn2DynC hn
4
.3f .tn; Yn1;�n1/Cf .tnC1; Yn2;�n2//;

ynC1Dyn C hn

2
.f .tn; Yn1;�n1/C f .tnC1; Yn2;�n2//;

0D 1
2
.k.tn; Yn1/C k.tnC1; Yn2//;

0Dk.tnC1; ynC1/:

For such DAEs, a combination of Gauss and Lobatto
coefficients is also considered in [18]. Consider now
overdetermined system of DAEs (ODAEs) of the form:

d

dt
q D v.t; q; p/;

d

dt
p D f .t; q; p; 	/; 0 D g.t; q/;

0 D Dtg.t; q/CDqg.t; q/v.t; q; p/ (9)

where Dqg.t; q/Dpv.t; q; p/D	f .t; q; p; 	/ is non-
singular. Very general Lobatto methods can be ap-
plied to this type of ODAEs [13]. Hamiltonian and



Lobatto Methods 825

L

Lagrangian systems with holonomic constraints can be
expressed in the form (9). For such ODAEs, the appli-
cation of Lobatto IIIA and IIIB methods can be shown
to preserve their classical order of convergence, to be
variational integrators, and to preserve a symplectic
two-form [8, 11, 12, 17]. For example, the application
of the two-stage Lobatto IIIA and IIIB method reads:

qnC1Dqn C hn

2

�
v
�
tn; qn; pnC1=2

�

Cv �tnC1; qnC1; pnC1=2
��
;

pnC1=2Dpn C hn

2
f
�
tn; qn; pnC1=2;�n1

�
;

0Dg.tnC1; qnC1/;

pnC1DpnC1=2 C hn

2
f
�
tnC1; qnC1; pnC1=2;�n2

�

0DDtg.tnC1; qnC1/

CDqg.tnC1; qnC1/v.tnC1; qnC1; pnC1/:

Gauss methods with s stages can also be applied in
combination with Lobatto methods with sC1 stages for
this type of ODAEs when f .t; q; p; 	/ is decomposed
in f .t; q; p/ C r.t; q; 	/ and they also possess these
aforementioned properties while generally requiring
less computational effort [15]. For example, the appli-
cation of the midpoint-trapezoidal method (the .1; 1/-
Gauss-Lobatto SPARK method of Jay [15]) reads:

Qn1Dqn C hn

2
v.tnC1=2;Qn1; Pn1/ D 1

2
.qn C qnC1/;

Pn1Dpn C hn

2
f .tnC1=2;Qn1; Pn1/

Chn
2
r.tn; qn;�n1/;

qnC1Dqn C hnv.tnC1=2;Qn1; Pn1/;

pnC1Dpn C hnf .tnC1=2;Qn1; Pn1/

Chn


1

2
r.tn; qn;�n1/C1

2
r.tnC1; qnC1;�n2/

�
;

0Dg.tnC1; qnC1/;

0DDtg.tnC1; qnC1/

CDqg.tnC1; qnC1/v.tnC1; qnC1; pnC1/:

LobattoMethods for Some Other Classes
of Problems

Lobatto IIIA methods have been considered for bound-
ary value problems (BVP) due to their good stability
properties [1, 2]. The MATLAB code bvp4c for BVP
is based on three-stage collocation at Lobatto points,
hence it is equivalent to the three-stage Lobatto IIIA
method [16]. Lobatto methods have also been applied
to delay differential equations (DDEs) [3]. The combi-
nation of Lobatto IIIA and IIIB methods has also been
considered for the discrete multisymplectic integration
of certain Hamiltonian partial differential equations
(PDEs) such as the nonlinear Schrödinger equation and
certain nonlinear wave equations [20].
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Logarithmic Norms
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Introduction

The logarithmic norm is a real-valued functional on
operators, quantifying the notions of definiteness for
matrices; monotonicity for nonlinear maps; and ellip-
ticity for differential operators. It is defined either in
terms of an inner product in Hilbert space, or in terms
of the operator norm on a Banach space.

The logarithmic norm has a wide range of appli-
cations in matrix theory, stability theory, and numer-
ical analysis. It offers various quantitative bounds on
(functions of) operators, operator spectra, resolvents,
Rayliegh quotients, and the numerical range. It also
offers error bounds and stability estimates in initial

as well as boundary value problems and their dis-
cretizations. Some special fields in mathematics, such
as semigroup theory, rely on notions that are strongly
related to the logarithmic norm.

Let j � j denote an arbitrary vector norm on C
d ,

as well as its subordinate operator norm on Cd�d .
The classical definition of the logarithmic norm of
A 2 Cd�d is

MŒA
 D lim
h!0C

jI C hAj � 1
h

: (1)

It is easily computed for the most common norms,
see Table 1. In Hilbert space, where the norm is
generated by an inner product jxj2 D hx; xi, one may
alternatively define the least upper bound logarithmic
norm MŒA
 and the greatest lower bound logarithmic
normmŒA
 such that for all x

mŒA
 � jxj2 � Re hx;Axi �MŒA
 � jxj2: (2)

Unlike (1), this also admits unbounded operators,
while still agreeing with (1) if A is bounded, in which
case it also holds that

mŒA
 D lim
h!0�

jI C hAj � 1
h

: (3)

The functionals MŒ�
 and mŒ�
 can further be extended
to nonlinear maps, both in a Banach and a Hilbert space
setting, so that the above definitions become special
cases for linear operators.

The logarithmic norm has a large number of useful
properties and satisfy several important inequalities.
For A;B 2 Cd�d , ˛ 2 R and z 2 C, some of the
most important are:
1. �glbŒA
 �MŒA
 � jAj
2. MŒ˛A
 D ˛MŒA
; ˛ � 0
3. MŒAC zI 
 DMŒA
C Re z
4. mŒA
 D �MŒ�A

5. MŒA
CmŒB
 �MŒAC B
 �MŒA
CMŒB


6. jMŒA
�MŒB
j � jA� Bj
7. jmŒA
�mŒB
j � jA� Bj
8. etmŒA
 � jetAj � etM ŒA
; t � 0
9. MŒA
 < 0 ) jA�1j � �1=MŒA


10. mŒA
 > 0 ) jA�1j � 1=mŒA
:
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Logarithmic Norms, Table 1 Computation of lp vector, matrix, and logarithmic norms. Here �Œ�
 and ˛Œ�
 denote the spectral
radius and spectral abscissa of a matrix, respectively (From [3])

Vector norm Matrix norm Logarithmic norm

jxj1 D P
i jxi j jAj1 D maxj

P
i jaij j M1ŒA
 D max

j

�
Re ajj C X

i¤j

jaij j�

jxj2 D pP
i jxi j2 jAj2 D p

�ŒAHA
 M2ŒA
 D ˛Œ.ACAH/=2


jxj1 D maxi jxi j jAj1 D maxi
P

j jaij j M1ŒA
 D max
i

�
Re aii C X

j¤i

jaij j�

Differential Inequalities

The logarithmic norm was originally introduced for
matrices, [3, 12], in order to establish bounds for
solutions to a linear system

Px D Ax C r: (4)

The norm of x satisfies the differential inequality

DC
t jxj �MŒA
 � jxj C jr.t/j ; (5)

where MŒA
 is the logarithmic norm of A and DC
t jxj

is the upper right Dini derivative of jxj with respect to
time. Consider first the homogeneous case r � 0; this
is akin to the Grönwall lemma. Then x.t/ D etAx.0/,
and (5) provides the matrix exponential bound

jetAj � etM ŒA
I t � 0: (6)

Thus the condition MŒA
 < 0 implies that the matrix
exponential is a contraction (semi-)group.

Consider next the case x.0/ D 0, with r ¤ 0.
By integration of (5), the solution is then bounded on
compact intervals by

jx.t/j � etM ŒA
 � 1
MŒA


krk1; (7)

where krk1 D sup� jr.�/j. If MŒA
 < 0, the bound
also holds as t !1, in which case

kxk1 � � krk1
MŒA


; (8)

showing that x depends continuously on the data r .
Finally, consider Px D Ax C r with r � const. If

MŒA
 < 0, homogeneous solutions decay to a unique
equilibrium x D �A�1r . Taking x.0/ D �A�1r ,

(8) gives jA�1r j � �jr j=MŒA
 for all r . Therefore,
even the inverse of A can be bounded in terms of the
logarithmic norm, as

MŒA
 < 0 ) jA�1j � � 1

MŒA

: (9)

This inequality is of particular importance also in
boundary value problems, where it provides a bound
for the inverse of an elliptic operator.

Spectral Bounds

For the spectrum of a general matrix A it holds that

�ŒA
 � jAj I ˛ŒA
 �MŒA
; (10)

where �ŒA
 D maxi j	i j is the spectral radius of A
and ˛ŒA
 D maxi Re	i is the spectral abscissa. The
operator norm is an upper bound for the magnitude of
the eigenvalues, while the logarithmic norm is an upper
bound for the real part of the eigenvalues. Equality is
usually not attained, except in important special cases.
For example, the Euclidean norms j � j2 and M2Œ�
 are
sharp for the entire class of normal matrices.

All eigenvalues of A are thus contained in the strip
mŒA
 � Re	 � MŒA
 (for any choice of norm). They
are also contained in the annulus glbŒA
 � j	j � jAj.
Further, from (2) it follows thatMŒA
 andmŒA
 are the
maximum and minimum of the Rayleigh quotient. This
implies that mŒA
 > 0 generalizes and quantifies the
notion of a positive definite matrix, while MŒA
 < 0

generalizes negative definiteness. Moreover,MŒA
 and
mŒA
 are also the maximal and minimal real parts,
respectively, of the numerical range of an operator [16].

Resolvents can also be bounded in half-planes.
Thus, as a generalization of (9), one has
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MŒA
 < Re z ) j.A � zI /�1j < 1

Re z �MŒA

:

A similar bound can be obtained in the half-plane
Re z < mŒA
.

While the bounds above hold for all norms, some
less obvious results can be obtained in Hilbert space.
According to the well-known spectral theory of von
Neumann, [17], if a polynomial has the property jzj �
1 ) jP.z/j � 1, then this property can be extended to
matrices and norms. Thus, if a matrix is a contraction
with respect to an inner product norm, then so is P.A/,
i.e., jAjH � 1 ) jP.A/jH � 1, where the subscript
H refers to the Hilbert space topology. This result also
holds for rational functions, as well as over half-planes
in C. Thus, if R is a rational function such that Re z �
0 ) jR.z/j � 1, then MHŒA
 � 0 ) jR.A/jH � 1.

This is of particular importance in the stability the-
ory of Runge–Kutta methods for ordinary differential
equations. When such a method is applied to the linear
test equation Px D 	x with step size h, the solution is
advanced by a recursion of the form xnC1 D R.h	/xn,
where the stability function R.z/ approximates ez. The
method is called A-stable if Re z � 0 ) jR.z/j � 1. It
then follows that every A-stable Runge–Kutta method
has the property that, when applied to a linear system
Px D Ax,

MHŒA
 � 0 ) jR.hA/jH � 1: (11)

This implies that the method has stability properties
similar to those of the differential equation, as both are
contractive when MHŒA
 < 0; by (6), we have

MHŒA
 � 0 ) jehAjH � 1: (12)

Nonlinear Maps

The theory is easily extended to nonlinear maps, both
in Banach and in Hilbert space. In Banach space, one
defines the least upper bound (lub) and greatest lower
bound (glb) Lipschitz constants, by

LŒf 
 D sup
u¤v
jf .u/� f .v/j
ju � vj I

lŒf 
 D inf
u¤v
jf .u/� f .v/j
ju� vj ; (13)

for u; v 2 D, the domain of f . The lub Lipschitz
constant is an operator semi-norm that generalizes
the matrix norm: if f D A is a linear map, then
LŒA
 D jAj. One can then define two more functionals
on D, the lub logarithmic Lipschitz constant and the
glb logarithmic Lipschitz constant, by

MŒf 
 D lim
h!0C

LŒI C hf 
 � 1
h

I

mŒf 
 D lim
h!0�

LŒI C hf 
 � 1
h

: (14)

Naturally, these definitions only apply to “bounded
operators,” which here correspond to Lipschitz maps.
In Hilbert space, however, one can also include un-
bounded operators; in analogy with (2), one then de-
fines mHŒ�
 and MHŒ�
 as the best constants such that
the inequalities

mHŒf 
 � ju� vj2H � Re hu � v; f .u/ � f .v/iH
� MHŒf 
 � ju � vj2H (15)

hold for all u; v 2 D. For Lipschitz maps, these
definitions are compatible with (14), and the linear
theory is fully extended to nonlinear problems. All
previously listed general properties of the logarithmic
norm are preserved, although attention must be paid to
the domains of the operators involved. The terminology
is also different. Thus, a map with MŒf 
 < 0 (or
mŒf 
 > 0) is usually called strongly monotone. Such
a map is one-to-one from D to f .D/ with a Lipschitz
inverse:

MŒf 
 < 0 ) LŒf �1
 � � 1

MŒf 

: (16)

This extension of (9) quantifies the Browder and Minty
theorem, also known as the Uniform Monotonicity
Theorem [13].

The special bounds that could be obtained for ma-
trices and linear operators in Hilbert space are more
restricted for nonlinear maps, due to loss of com-
mutativity. As a consequence, the result (11) does
not hold in the nonlinear case without qualification.
However, additional conditions can be imposed to
construct Runge–Kutta methods that are contractive for
problems Px D f .x/, with MHŒf 
 � 0. Thus, B-
stable Runge–Kutta methods (a subset of the A-stable
methods) have this property for nonlinear systems [1].
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Unbounded Operators in Hilbert Space

The use of logarithmic norms in infinite dimensional
spaces is possible both in Banach and in Hilbert space.
Only the latter is straightforward, but it offers adequate
tools for many problems. A standard example is the
parabolic reaction-diffusion equation

ut D uxx C g.u/ (17)

with boundary data u.t; 0/ D u.t; 1/ D 0. Consider
functions u; v 2 H1

0 \ H2 � L2Œ0; 1
 D H, with the
usual inner product and norm,

hu; viH D
Z 1

0

u.x/v.x/ dxI kuk2H D hu; uiH:
(18)

The problem (17) is then an abstract ODE Pu D f .u/ on
a Hilbert space. The logarithmic norm characterizes the
stability of u.t; �/ as t !1, as well as the equilibrium
solution, which satisfies the two-point boundary value
problem

u00 C g.u/ D 0I u.0/ D u.1/ D 0; (19)

where 0 denotes d=dx. The logarithmic norm
MHŒd2=dx2
 on H1

0 \ H2Œ0; 1
 is calculated using
integration by parts,

hu; u00iH D �hu0; u0iH D �
Z 1

0

ju0.x/j2dx

� ��2
Z 1

0

ju.x/j2dx D ��2hu; uiH:

The inequality at the center is a Sobolev inequality; it is
sharp, as equality is attained for u.x/ D sin�x. Hence

MHŒd2=dx2
 D ��2; (20)

which quantifies that �d2=dx2 is elliptic.
As MHŒ�
 is subadditive, MHŒf 
 D MHŒ@2=@x2

Cg
 �MHŒ@2=@x2
CMHŒg
 D ��2CMHŒg
. Hence
if the reaction term satisfies MHŒg
 < �2 the solution
u.t; �/ of (17) is exponentially stable.

Moreover, if MHŒg
< �2, then f D d2=dx2C g is
strongly monotone, with a Lipschitz continuous inverse
on L2Œ0; 1
, implying that (19) has a unique solution,
depending continuously on the data.

When the problem is discretized by the proper use
of any finite difference or finite element method, the
logarithmic norm of the discrete system is typically
very close to that of the continuous system, provided
that the inner products and norms are chosen in a
compatible way. This means that one obtains similar
bounds and estimates for the discrete system.

Literature

The two original, but independent, papers introducing
the logarithmic norm are [3, p. 10] and [12, pp. 57–58],
which also introduced the term “logarithmic norm.”
There are but a few surveys of the logarithmic norm
and its applications. Two early surveys, including ap-
plications, are [5, 15]. The most modern one, taking
a functional analytic approach, is [14], which also
contains many references. Further extensions can also
be found, to matrix pencils [9], and to nonlinear DAE
stability [10].

Spectral bounds and resolvent behavior are dealt
with at length in [16]. Bounds along the lines of [17],
but for nonlinear systems, are of importance in the
study of contractive methods for ODEs, see [1] for
Runge–Kutta methods, and [4] for multistep methods.
This also led to the study of “B-convergent” methods,
in which convergence proofs were derived using only a
monotonicity condition on f in Hilbert space, instead
of the usual assumption of Lipschitz continuity [6,11].
This is of particular importance for nonlinear PDE
evolutions, where the contractivity and B-convergence
of the implicit Euler method are used as standard proof
techniques for existence and uniqueness, [2]. More
recent developments for Runge–Kutta and multistep
methods are found in [7, 8].
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Short Definition

The complexity of a computational problem, originally
defined in terms of the computational resources re-
quired to solve the problem, can be characterized in
terms of the language resources required to describe

the problem in a logical system. This yields logical
characterizations of all standard complexity classes.

Description

It was realized from the beginnings of computability
theory in the 1930s that there is a close connection
between logic and computation. Indeed, various de-
grees of computability have natural characterizations
in terms of logical definability. For example, the recur-
sively enumerable sets of natural numbers are precisely
the sets definable by an existential formula of first-
order predicate logic in the language of arithmetic.

Descriptive Complexity Theory
Descriptive complexity may be viewed as a natural
continuation of these results of computability theory
in the realm of computational complexity. It provides
characterizations of most standard complexity classes
in terms of logical definability. Arguably the most
important of these characterizations are given by the
following two theorems:

Fagin’s Theorem [7]. A property of finite structures
is decidable in nondeterministic polynomial time NP
if and only if it is definable in existential second-order
logic 9SO. (Short: 9SO captures NP.)

Immerman-Vardi Theorem [12, 14]. A property of
ordered finite structures is decidable in polynomial
time P if and only if it is definable in least fixed-
point logic LFP. (Short: LFP captures P on ordered
structures.)

To explain these two theorems, we need to review
the basic framework of computational complexity the-
ory and some logic. Complexity classes are usually
defined as classes of problems that can be solved with
restricted resources such as time or space. To turn this
into a precise mathematical definition, we need to fix a
machine model and a coding scheme for representing
computational problems as inputs. Typically, multitape
Turing machines are used as machine model. Without
much loss of generality, we can focus on decision
problems (i.e., problems with a yes/no answer) and
represent them by languages over the binary alphabet
f0; 1g, i.e., as sets of strings of zeroes and ones. Obvi-
ously, complexity classes defined this way depend on
both the machine model and the representation scheme,



Logical Characterizations of Complexity Classes 831

L

but fortunately most classes are robust enough so that
they end up the same for any “reasonable” machine
model and representation.

Yet the instances of most computational problems
are not naturally modeled as strings over a finite al-
phabet, but rather by richer mathematical structures.
For example, instances of a network connectivity prob-
lem are naturally modeled as directed graphs and so
are the instances of many combinatorial optimization
problems. Boolean circuits can be modeled by la-
beled directed graphs. The standard relational database
model represents databases by a collection of finite
relations, i.e., a finite relational structure. Of course the
instances of some problems, such as problems on the
natural numbers (in binary representation) or pattern
matching problems, are most naturally described by
finite strings, but strings can also be viewed as specific
finite structures. If we adopt finite structures as flexible
models of the instances of computational problems,
then decision problems become properties of finite
structures or, equivalently, classes of finite structures
closed under isomorphism. This is the point of view
taken in descriptive complexity theory.

Logics express, or define, properties of structures.
The logics considered in descriptive complexity theory
are extensions of first-order predicate logic FO. Instead
of going through formal definitions, we give three
examples of logics and graph properties defined in
these logics.

Example 1 (First-Order Logic) The diameter of a
graph is the maximum distance between any two
vertices of the graph. The following sentence of
first-order logic in the language of graphs defines
the property of a graph having diameter at most 2:

8x8y
�
x D y _ Exy _ 9z�Exz ^ Ezy

��
:

Here the variables x; y; z range over the vertices of a
graph, and Exy expresses that the vertices interpreting
x; y are adjacent.

It has turned out that first-order logic is too weak
to express most properties that are interesting from a
computational point of view. Second-order logic SO
is much more powerful; actually it is too powerful
to stay in the realm of efficient computation. Hence
various fragments of SO are studied in the context
of descriptive complexity theory. In SO, we not only

have “individual variables” ranging over the vertices
of a graph but also “set variables” ranging over sets of
vertices and, more generally, “relation variables” rang-
ing over relations between vertices. Existential second-
order logic 9SO is the fragment of SO consisting
of all formulas that only use existential quantification
over set and relation variables and where no existential
quantifier binding a relation variable appears in the
scope of a negation symbol.

Example 2 (Existential Second-Order Logic) A graph
is 3-colorable if its vertices can be colored with three
colors in such a way that no two adjacent vertices get
the same color. The following sentence of existential
second-order logic defines the property of a graph
being 3-colorable:

9R9B9G
�
8x�Rx _ Bx _Gx

�

^ 8x8y�Exy! �:.Rx ^ Ry/ ^ :.Bx ^ By/

^ :.Gx ^ Gy/
���
:

Here the variables R;B;G are set variables represent-
ing the three colors, and x; y are individual variables.
Rx expresses that the vertex interpreting x is contained
in the set interpreting R.

Fixed-point logics are extensions of FO with a more
algorithmic flavor than SO. They allow it to formalize
inductive definitions, as illustrated by the following
example.

Example 3 (Least Fixed-Point Logic) Suppose we
want to define the transitive closure T of the edge
relation of a graphG D .V;E/. It admits the following
inductive definition: We let T1 WD E , and for all i we
let TiC1 be the set of all pairs .u; v/ of vertices such that
there is a vertex w with .v;w/ 2 Ti and .w; u/ 2 Ti .
Then T is the union of all the Ti . Equivalently, we
may define T as the least fixed point of the (monotone)
operator

X 7!
n
.v;w/

ˇ
ˇ
ˇ.v;w/ 2 E_9z�.v; z/ 2 X^.z;w/ 2 X�

o
:

In least fixed-point logic LFP, we can form a formula

lfp
�
Xxy Exy _ 9z.Xxz ^ Xzy/

�
.v;w/
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to define this least fixed point (and thus the transitive
closure). If we call this formula .v;w/, then the LFP-
sentence 8v8w

�
v D w _  .v;w/� defines connected-

ness of (undirected) graphs.

To connect the properties of structures defined in
our logics with complexity classes, we need to fix
an encoding scheme for structures. It is common to
use a generalization of the adjacency-matrix encoding
of graphs to encode structures by binary strings. Un-
fortunately, a graph has different adjacency matrices,
obtained by associating the vertices with the rows
and columns of the matrix in different orders, and
among these there is no distinguished canonical one
that we could use as “the” encoding of the structure.
This observation generalizes to arbitrary structures.
Only if a structure B comes with a linear order of its
elements, that is, it has a distinguished binary relation
�B that is a linear order of its elements, then we
can fix a canonical binary string hBi encoding B . We
call such structures ordered structures, or we say that
they have a built-in order. With each property Q of
ordered structures, we associate the language L.Q/ WD
fhBi j B has property Qg. With a structure A without
built-in order, we can only associate a language L.A/
consisting of all encodings of A. Equivalently, we may
view L.A/ as the set of all strings hBi for all ordered
expansions B of A. For a property P of structures,
we let L.P/ be the union of all L.A/ for structures
A that have property P . Now we say that a logic L
captures a complexity class K if for each property P
of structures, there is an L-sentence that defines P if
and only if L.P/ 2 K. We say that L captures K on
ordered structures if for each property Q of ordered
structures, there is an L-sentence that defines Q if and
only if L.Q/ 2 K.

Fagin’s Theorem and the Immerman-Vardi Theo-
rem give logics capturing the complexity classes NP
and P, respectively, the latter only on ordered struc-
tures. There are similar logical characterizations for
most other complexity classes (for background and ref-
erences, we refer the reader to the textbooks [6,8,13]).
For the standard space complexity classes, we have
the following characterizations: deterministic transitive
closure logic DTC captures L (“logarithmic space”) on
ordered structures, transitive closure logic TC captures
NL (“nondeterministic logarithmic space”) on ordered
structures, and partial fixed-point logic PFP captures
PSPACE (“polynomial space”) on ordered structures.

While these characterizations use various extensions
of first-order logic by fixed-point operators or similar
“generalized quantifiers,” we also have characteriza-
tions of various complexity classes by restrictions and
extensions of second-order logic: second-order logic
SO captures PH (the “polynomial hierarchy”). The
“Krom fragment” of second-order logic captures NL
on ordered structures, and the “Horn fragment” of
second-order logic captures P on ordered structures.
The extension of second-order logic with a (second-
order) transitive closure operator captures PSPACE.
There are also logical characterizations of complexity
below L, but in addition to a built-in order, these require
structures to have built-in arithmetic. For example,
first-order logic FO captures dlogtime-uniform AC0 on
structures with built-in arithmetic.

Note that for the class P and smaller classes such
as L and NL we only have logical characterizations on
ordered structures. Indeed, it is a major open problem
whether there are logical characterizations for these
classes on arbitrary (not necessarily ordered) struc-
tures. Only partial results characterizing P on restricted
classes of structures are known (the most powerful
in [9]).

Function Algebras and Implicit Computational
Complexity
An alternative way of characterizing complexity
classes is inspired by the characterizations of the
computable functions as recursive functions and by the
	-calculus. The idea is to describe the functions in a
complexity class as an algebra of functions. We extend
complexity classes K to classes of functions on binary
strings and speak of K-functions. We usually think of
K-functions as functions on the natural numbers (via
a binary encoding). The classical result in this area
is Cobham’s characterization of the polynomial time
computable functions using the following restricted
version of primitive recursion: A .k C 1/-ary function
f on the natural numbers is defined from functions
g, h0, h1, b by bounded primitive recursion on
notation if for all Nx we have f . Nx; 0/ D g. Nx/ and
f . Nx; 2y C i/ D hi . Nx; y; f . Nx; y// for i D 0; y > 0

and i D 1; y � 0, provided that f . Nx; y/ � b. Nx; y/ for
all Nx; y. The addition “on notation” refers to the fact
that this definition is most naturally understood if one
thinks of natural numbers in binary notation.
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Cobham’s Theorem [4]. The class of P-functions is
the closure of the basic functions x 7! 0 (“constant
0”), .x1; : : : ; xk/ 7! xi for all i � k (“projections”),
x 7! 2x and x 7! 2x C 1 (“successor functions”),
and .x; y/ 7! 2jxj�jyj (“smash function”), where jxj
denotes the length of the binary representation of x,
under composition and bounded primitive recursion on
notation.

Similar characterizations are known for other com-
plexity classes.

What is slightly unsatisfactory about Cobham’s
characterization of the P-functions is the explicit
time bound b in the bounded primitive recursion
scheme. Bellantoni and Cook [1] devised a refined
primitive recursion scheme that distinguishes between
different types of variables and how they may be
used and characterize the P-functions without an
explicit time bound. This is the starting point of the
area of “implicit computational complexity” ([10]
is a survey). While Bellantoni and Cook’s recursion
scheme is still fairly restrictive, in the sense that the
type system excludes natural definitions of P-functions
by primitive recursion, subsequently researchers
have developed a variety of full (mostly functional)
programming languages with very elaborate type
systems guaranteeing that precisely the K-functions
(for many of the standard complexity classes K) have
programs in this language. The best known of these
is Hofmann’s functional language for the P-functions
with a type system incorporating ideas from linear
logic [11].

Proof Theory and Bounded Arithmetic
There is yet another line of logical characterizations
of complexity classes. It is based on provability in
formal system rather than just definability. Again, these
characterizations have precursors in computability the-
ory, in particular the characterization of the primitive
recursive functions as precisely those functions that
are ˙1-definable in the fragment i˙1 of Peano arith-
metic.

The setup is fairly complicated, and we will only
be able to scratch the surface; for a thorough treat-
ment, we refer the reader to the survey [3] and the
textbook [5]. Our basic logic is first-order logic in
the language of arithmetic, consisting of the standard
symbols � (order), C (addition), � (multiplication), 0,

1 (constants 0 and 1), and possibly additional function
symbols. In the standard model of arithmetic N , all
these symbols get their standard interpretations over
the natural numbers. A theory is a set of first-order
sentences that is closed under logical consequence.
For example, Th.N / is the set of all sentences that
are true in the standard model N . It follows from
Gödel’s First Incompleteness Theorem that Th.N /
has no decidable axiom system. A decidable, yet still
very powerful, theory that contained Th.N / is Peano
arithmetic PA. It is axiomatized by a short list of
basic axioms making sure that the basic symbols are
interpreted right together with induction axioms of the
form

�
�.0/ ^ 8x.�.x/ ! �.x C 1//

� ! 8x�.x/
for all first-order formulas �. Here, we are interested
in fragments i˚ of PA obtained by restricting the
induction axioms to formulas � 2 ˚ for sets ˚ of
first-order formulas. �0 denotes the set of all bounded
first-order formulas, that is, formulas where all quan-
tifications are of the form 9x � t or 8x � t for some
term t that does not contain the variable x. Almost
everything relevant for complexity theory takes place
within �0, but let us mention that ˙1 is the set of all
first-order formulas of the form 9x�, where � is a �0-
formula.

We say that a function f on the natural numbers is
definable in a theory T if there is a formula �.x; y/
such that the theory T proves that for all x there is
exactly one y such that �.x; y/ and for all natural
numbers m; n the standard model N satisfies �.m; n/
if and only if f .m/ D n. For example, it can be
shown that the functions in the linear time hierarchy
LTH are precisely the functions that are �0-definable
in the theory i�0.

To characterize the classes P and NP and the other
classes of the polynomial hierarchy, Buss introduced a
hierarchy of very weak arithmetic theories Si2. They
are obtained by even restricting the use of bounded
quantifiers in�0-formulas, defining a hierarchy of˙b

i -
formulas within �0 but at the same time using an ex-
tended language that also contains functions symbols
like # (for the “smash” function .x; y/ 7! 2jxj�jyj) and
j j (for the binary length).

Buss’s Theorem [2]. For all i � 1, the functions ˙b
i -

definable in Si2 are precisely the˙P
i�1-functions, where

˙P
0 D P, ˙P

1 D NP, and ˙P
i are the i th level of the

polynomial hierarchy.
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History and Scope

In 1892, in his doctoral thesis The general problem of
the stability of motion (reprinted in its original form in
[33]), Lyapunov introduced several groundbreaking

concepts to investigate stability in differential
equations. These are collectively known as Lyapunov
Stability Theory. Lyapunov was concerned with the
asymptotic stability of solutions with respect to
perturbations of initial data. Among other techniques
(e.g., what are now known as first and second
Lyapunov methods), he introduced a new tool to
analyze the stability of solutions of linear time-
varying systems of differential equations, the so-
called characteristic numbers, now commonly and
appropriately called Lyapunov exponents.

Simply put, these characteristic numbers play the
role that the (real parts of the) eigenvalues play for
time-invariant linear systems. Lyapunov considered the
n-dimensional linear system

Px D A.t/x; t � 0 ; (1)

where A is continuous and bounded: supt kA.t/k<1.
He showed that “if all characteristic numbers (see
below for their definition) of (1) are negative, then
the zero solution of (1) is asymptotically (in fact,
exponentially) stable.” He further proved an important
characterization of stability relative to the perturbed
linear system

Px D A.t/x C f .t; x/ ; (2)

where f .t; 0/ D 0, so that x D 0 is a solution
of (2), and further f .t; x/ is assumed to be “small”
near x D 0 (this situation is what one expects from
a linearized analysis about a bounded solution trajec-
tory). Relative to (2), Lyapunov proved that “if the
linear system (1) is regular, and all its characteristic
numbers are negative, then the zero solution of (2)
is asymptotically stable.” About 30 years later, it was
shown by Perron in [38] that the assumption of regu-
larity cannot generally be removed.

Definition
We refer to the monograph [1] for a comprehensive
definition of Lyapunov exponents, regularity, and so
forth. Here, we simply recall some of the key concepts.

Consider (1) and let us stress that the matrix func-
tion A.t/ may be either given or obtained as the lin-
earization about the solution of a nonlinear differential
equation; e.g., Py D f .y/ and A.t/ D Df.y.t// (note
that in this case, in general,A will depend on the initial
condition used for the nonlinear problem). Now, let X
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be a fundamental matrix solution of (1), and consider
the quantities

	i D lim sup
t!1

1

t
ln jjX.t/ei jj ; i D 1; : : : ; n; (3)

where ei denotes the i th standard unit vector, i D
1; : : : ; n. When

nP

iD1
	i is minimized with respect to

all possible fundamental matrix solutions, then the
	i are called the characteristic numbers, or Lyapunov
exponents, of the system. It is customary to consider
them ordered as 	1 � 	2 � � � � � 	n. Similar
definitions can be given for t ! �1 and/or with
lim inf replacing the lim sup, but the description above
is the prevailing one. An important consequence of
regularity of a given system is that in (3) one has limits
instead of lim sups.

More Recent Theory
Given that the condition of regularity is not easy to ver-
ify for a given system, it was unclear what practical use
one was going to make of the Lyapunov exponents in
order to study stability of a trajectory. Moreover, even
assuming that the system is regular, it is effectively
impossible to get a handle on the Lyapunov exponents
except through their numerical approximation. It then
becomes imperative to have some comfort that what
one is trying to approximate is robust; in other words,
it is the Lyapunov exponents themselves that will need
to be stable with respect to perturbations of the function
A in (1). Unfortunately, regularity is not sufficient for
this purpose.

Major theoretical advances to resolve the two
concerns above took place in the late 1960s, thanks
to the work of Oseledec and Millionshchikov (e.g.,
see [36] and [34]). Oseledec was concerned with
stability of trajectories on a (bounded) attractor, on
which one has an invariant measure. In this case,
Oseledec’s Multiplicative Ergodic Theorem validates
regularity for a broad class of linearized systems; the
precise statement of this theorem is rather technical,
but its practical impact is that (with respect to the
invariant measure) almost all trajectories of the
nonlinear system will give rise to a regular linearized
problem. Millionshchikov introduced the concept of
integral separation, which is the condition needed
for stability of the Lyapunov exponents with respect to
perturbations in the coefficient matrix, and further gave

important results on the prevalence of this property
within the class of linear systems.

Further Uses of Lyapunov Exponents
Lyapunov exponents found an incredible range of ap-
plicability in several contexts, and both theory and
computational methods have been further extended to
discrete dynamical systems, maps, time series, etc. In
particular:
(i) The largest Lyapunov exponent of (2), 	1, charac-

terizes the rate of separation of trajectories (with
infinitesimally close initial conditions). For this
reason, a positive value of 	1 (coupled with com-
pactness of the phase space) is routinely taken as
an indication that the system is chaotic (see [37]).

(ii) Lyapunov exponents are used to estimate
dimension of attractors through the Kaplan-Yorke
formula (Lyapunov dimension):

DimL D k C .	1 C 	2 C � � � C 	k/=j	kC1j

where k is the largest index i such that 	1C 	2C
� � � C 	i > 0. See [31] for the original derivation
of the formula and [9] for its application to the 2-d
Navier-Stokes equation.

(iii) The sum of all the positive Lyapunov exponents
is used to estimate the entropy of a dynamical
system (see [3]).

(iv) Lyapunov exponents have also been used to char-
acterize persistence and degree of smoothness of
invariant manifolds (see [26] and see [12] for a
numerical study).

(v) Lyapunov exponents have even been used in stud-
ies of piecewise-smooth differential equations,
where a formal linearized problem as in (1) does
not even exist (see [27, 35]).

(vi) Finally, there has been growing interest also in
approximating bases for the growth directions as-
sociated to the Lyapunov exponents. In particular,
there is interest in obtaining representations for
the stable (and unstable) subspaces of (1) and in
their use to ascertain stability of traveling waves.
For example, see [23, 39].

Factorization Techniques

Many of the applications listed above are related
to nonlinear problems, which in itself is witness
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to the power of linearized analysis based on the
Lyapunov exponents. Still, the computational task of
approximating some or all of the Lyapunov exponents
for dynamical systems defined by the flow of a
differential equation is ultimately related to the linear
problem (1), and we will thus focus on this linear
problem.

Techniques for numerical approximation of
Lyapunov exponents are based upon smooth matrix
factorizations of fundamental matrix solutions X , to
bring it into a form from which it is easier to extract
the Lyapunov exponents. In practice, two techniques
have been studied: based on the QR factorization of X
and based on the SVD (singular value decomposition)
of X . Although these techniques have been adapted
to the case of incomplete decompositions (useful
when only a few Lyapunov exponents are needed)
or to problems with Hamiltonian structure, we only
describe them in the general case when the entire set
of Lyapunov exponents is sought, the problem at hand
has no particular structure, and the system is regular.
For extensions, see the references.

QRMethods
The idea of QR methods is to seek the factorization of
a fundamental matrix solution as X.t/ D Q.t/R.t/,
for all t , where Q is an orthogonal matrix valued
function and R is an upper triangular matrix valued
function with positive diagonal entries. The validity of
this factorization has been known since Perron [38] and
Diliberto [25], and numerical techniques based upon
the QR factorization date back at least to [4].

QR techniques come in two flavors, continuous
and discrete, and methods for quantifying the error
in approximation of Lyapunov exponents have been
developed in both cases (see [15–17, 21, 40]).

Continuous QR
Upon differentiating the relation X D QR and us-
ing (1), we have

AQR D Q PRC PQR or PQ D AQ �QB ; (4)

where PR D BR; hence, B must be upper triangular.
Now, let us formally set S D QT PQ and note that since
Q is orthogonal then S must be skew symmetric. Now,
from B D QTAQ � QT PQ it is easy to determine at
once the strictly lower triangular part of S (and from
this, all of it) and the entries of B . To sum up, we

have two differential equations, forQ and forR. Given
X.0/ D Q0R0, we have

PQ D QS.Q;A/ ; Q.0/ D Q0 ; (5)

PR D B.t/R ; R.0/ D R0 ;
B WD QTAQ � S.Q;A/ (6)

The diagonal entries of R are used to retrieve the
exponents:

	i D lim
t!1

1

t

Z t

0

.QT .s/A.s/Q.s//i i ds ; i D 1; : : : ; n:
(7)

A unit upper triangular representation for the
growth directions may be further determined by
limt!1 diag.R�1.t//R.t/ (see [13, 22, 23]).

Discrete QR
Here one seeks the QR factorization of the fundamental
matrix X at discrete points 0 D t0 < t1 < � � � <
tk < � � � , where tk D tk�1 C hk , hk � Oh > 0. Let
X0 D Q0R0, and suppose we seek the QR factorization
of X.tkC1/. For j D 0; : : : ; k, progressively define
ZjC1.t/ D X.t; tj /Qj , where X.t; tj / solves (1) for
t � tj , X.tj ; tj / D I , and ZjC1 is the solution of

� PZjC1 D A.t/ZjC1 ; tj � t � tjC1
ZjC1.tj / D Qj :

(8)

Update the QR factorization as

ZjC1.tjC1/ D QjC1RjC1 ; (9)

and finally observe that

X.tkC1/ D QkC1 ŒRkC1Rk � � �R1R0
 (10)

is the QR factorization of X.tkC1/. The Lyapunov
exponents are obtained from the relation

lim
k!1

1

tk

kX

jD0
log.Rj /i i ; i D 1; : : : ; n : (11)

SVDMethods
Here one seeks to compute the SVD of X : X.t/ D
U.t/†.t/V T .t/, for all t , where U and V are or-
thogonal and † D diag.�i ; i D 1 : : : ; n/, with
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�1.t/ � �2.t/ � � � � � �n.t/. If the singular values
are distinct, the following differential equations U; V;
and † hold. Letting G D UTAU , they are

PU D UH; PV T D �KV T ; P† D D†; (12)

whereD D diag.G/,HT D �H , andKT D �K , and
for i ¤ j ,

Hij D
Gij �

2
j CGji�2i
�2j � �2i

; Kij D .Gij CGji/�i�j
�2j � �2i

:

(13)

From the SVD of X , the Lyapunov exponents may
be obtained as

lim
t!1

1

t
ln �i .t/ : (14)

Finally, an orthogonal representation for the growth di-
rections may be determined by limt!1 V.t/ (see [10,
13, 22, 23]).

Numerical Implementation
Although algorithms based upon the above techniques
appear deceivingly simple to implement, much care
must be exercised in making sure that they perform as
one would expect them to. (For example, in the contin-
uous QR and SVD techniques, it is mandatory to main-
tain the factors Q;U , and V orthogonal.) Fortran
software codes for approximating Lyapunov exponents
of linear and nonlinear problems have been developed
and tested extensively and provide a combined state of
the knowledge insofar as numerical methods suited for
this specific task. See [14, 20, 24].
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