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Preface

This volume presents the papers contributed to ΔEON 2008, the 9th Interna-
tional Conference on Deontic Logic in Computer Science, held in Luxembourg,
July 16–18, 2008. This biennial conference series is designed to promote inter-
national cooperation amongst scholars who are interested in deontic logic and
its use in computer science. The scope of the conference is interdisciplinary, and
includes research that links the formal-logical study of normative concepts and
normative systems with computer science, artificial intelligence, philosophy, or-
ganization theory, and law. The ΔEON website, http://www.deonticlogic.org,
contains links to previous conferences and their papers. This history reveals a
vibrant interdisciplinary research program.

Papers for these conferences might address such general themes as the de-
velopment of formal systems of deontic logic and related areas of logic, such
as logics of action and agency, or the formal analysis of all sorts of normative
concepts, such as the notions of rule, role, regulation, authority, power, rights,
responsibility, etc., or the formal representation of legal knowledge. They might
also be concerned with applications, such as the formal specification of nor-
mative multiagent systems, the specification of systems for the management of
bureaucratic processes in public or private administration, or the specification
of database integrity constraints or computer security protocols, and more. Of
particular interest is the interaction between computer systems and their users.

In addition to these general themes, the 2008 meeting focused also on the
special topic of logical approaches to deontic notions in computer science in
the area of security and trust, encompassing applications in e-commerce as well
as traditional areas of computer security. Topics of interest in this special the-
me encompass digital rights management, electronic contracts, including service
level agreements and digital media licenses, authorization, access control, secu-
rity policies, privacy policies, business processes and regulatory compliance. The
special theme embraced both theoretical work (formal models, representations,
specifications, logics, verification) and implementation-oriented work (architec-
tures, programming languages, design models, simulations, prototype systems)
on these specific topics.

The 16 papers printed here were selected for presentation at the conference
after a thorough process of review and revision of 28 submitted papers. All are
original and presented here for the first time. The titles themselves demonstrate
commitment to the themes of the conference. In addition to these peer-reviewed
papers, we present abstracts or papers of the talks of our four invited speakers,
Martin Abadi (UC Santa Cruz and Microsoft Research, USA), Ross Anderson
(University of Cambridge, UK), Nuel Belnap (University of Pittsburgh, USA),
and Dov Gabbay (King’s College London, UK).



VI Preface

We are grateful to all who contributed to the success of the conference, to
our invited speakers, to all the authors of the presented papers, and to all who
participated in discussion. Special thanks go to the members of the Program
Committee for their service in reviewing papers and advising us on the program
and to the members of the Organization Committee for taking care of all the
countless details that a conference like this requires, especially Gabriella Pigozzi
and Martin Caminada for all local arrangements of the conference, Mathijs de
Boer for setting up and maintaining the DEON 2006 website and Davide Grossi
for setting up deonticlogic.org. Thanks too to Richard van de Stadt, whose Cy-
berChairPRO system was a very great help to us in organizing the papers from
their initial submission to their final publication in this volume.

The previous edition of the ΔEON conference in Utrecht had as its special to-
pic artificial normative systems, their theory, specification and implementation,
such as electronic institutions, norm-regulated multiagent systems and artificial
agent societies generally. Here too the concern is both with theoretical work,
such as the design of formal models and representations, and also work more
oriented toward implementation, such as architectures, programming languages,
design models, simulations, etc. For the first time, the ΔEON conference in Lu-
xembourg was co-located with a workshop on normative multiagent systems.
Thanks to Guido Boella (Università di Torino), Gabriella Pigozzi (University of
Luxembourg), Munindar P. Singh (North Carolina State University) and Harko
Verhagen (Royal Institute of Technology and Stockholm University) for organi-
zing the NORMAS 2008 workshop in Luxembourg.

We are also very grateful to the Fonds National de Recherche du Luxembourg
(FNR) and strategic priority P1 on security and reliability of the University of
Luxembourg for their essential financial support. Finally, we wish to express our
appreciation to Springer for publishing these proceedings in their LNCS/LNAI
series. This is the third such volume in this series. We hope these volumes may
continue into the future to provide a record of research in this rich and growing
field.

April 2008 Ron van der Meyden
Leendert van der Torre
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Norms in Branching Space-Times

Nuel Belnap

University of Pittsburgh

The idea of norms presupposes agency, and agency presupposes an indeterminis-
tic causal order (so that “ought” does not imply “is”). So much can be modeled
in “branching time with agents and choices” (BTAC). The seriously ontological
independence of agentive choices, however, requires, as a necessary condition, a
causal order permitting space-like separation of those choices in a sense de fin able
in “branching space-times with agents and choices” (BSTAC). Let us idealize
an agent, when restricted to a single space-time, as a kind of spatio-temporal
“worm” in the familiar way, representing the life of the agent in that space-time.
Then a representation of “the agent,” since it must include representation of
seriously objective choices, must look like a tree with two kinds of branching. In
both kinds of branching, there is a single past-pointing worm-like representation
of the past-life of the agent up to the branching, and an entire assemblage of dis-
tinct worm-like representations of the possible future-life of the agent subsequent
to the branching, one for each history in which the life of the agent continues.
The first kind of branching occurs at choice-points for the agent. According to
BSTAC, such branching will involve a last point of agent’s-choice-not-yet-made
(say, a last point of deliberation), but no first point of agent’s-choice-has-been-
made in any possible future-life of the agent. In the second kind of branching, the
agent is passive, having two or more possible future-lives due to space-like-related
choices by other agents, or by metaphorical “choices” by some space-like-related
element of Nature. In this case, BSTAC says that there will be no last point of
the past-life of the agent, but instead a first point for each of the agent’s possible
future-lives.

This representation of agency presupposes continuity of each space-time. How
best to represent agents-in-branching-space-times discretely, as is perhaps re-
quired for computer applications, is open for research. But just as computer
representations of real arithmetic must in some way answer to “real” real arith-
metic, so any such discrete representation must in the end answer to Our World
as a BSTAC.

BSTACN (BSTAC with norms) postulates generated norms, that is, norms
that are generated by a particular localized act of an agent. This might be the
making of a promise, the laying on of an obligation, the issuing of an invitation,
etc. Say that the norm has been issued. Such an act need not be a speech act,
but it is technically convenient to suppose that each norm is issued as if by the
use of a declarative core in direct speech. For example, at a point-event e0, Jack
promises Sarah with the following words. I promise you as follows:

If it rains in Chicago before x, I will see to it that I pay you $5 before x, (1)

R. van der Meyden and L. van der Torre (Eds.): DEON 2008, LNAI 5076, pp. 1–2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 N. Belnap

(where “x” names an event-type such that in each history to which e0 belongs,
there is a single occurrence of that type in the causal future of e0). (1) is called
the declarative core of the promise-event occurring at e0.

The promise has an interesting semantics that seems to require indeterministic
BSTACN as background. It seems essential that at the point event e0, (1) is
neither settled true nor settled false. (Don’t say that it is neither true nor false;
if you do, you will miss the point.) To say that the promise made at e0 has been
carried out at a certain later point event e1 means (roughly) that the conditional
(1) is true with respect to every point-history pair e0/h, for every history h to
which (not e0) but e1 belongs, and relative to speaker = Jack, auditor = Sarah,
and point of utterance = e0. In other words, at e1 it is settled true that (1) was
true (not settled true) at the point, e0, at which the promise was issued. This
recipe invokes what Facing the future calls a “double time reference,” and which
MacFarlane describes in branching time by saying that (1) is “true” with respect
to moment of utterance e0 and moment of assessment, e1.

A description of the norm involved requires more than just double time ref-
erences. A satisfying—though hardly unique—representation of the normative
content of the promising is as a strategy in a world of branching space-times.
Suppose the promissor has arrived at a point event e1. If at e1 it is settled that
(1) was true at e0, the norm has been satisfied, and there is nothing more to do.
If, however, it is settled that (1) was false at e0, then the norm has been violated,
and appropriate sanctions are due. If whether (1) was true at e0 is open (histor-
ically contingent), then the norm calls for the promissor to do something, at the
very least to make a choice that keeps the satisfaction of the promise possible,
and, if possible, to choose so as to guarantee satisfaction of the promise. (This
is a “world-to-words” fit.)

Other sorts of norms call for related descriptions in branching space-times.
The apparatus also suggests consideration of joint agency and message passing.
These themes, common in computer science, take on an interesting flavor when
put against the background of branching space-times.



Changing Legal Systems: Abrogation and Annulment
Part I: Revision of Defeasible Theories

Guido Governatori1 and Antonino Rotolo2,�

1 School of ITEE, The University of Queensland, Australia
guido@itee.uq.edu.au

2 CIRSFID/Law School, University of Bologna, Italy
antonino.rotolo@unibo.it

Abstract. In this paper we investigate how to model legal abrogation and annul-
ment in Defeasible Logic. We examine some options that embed in this setting,
and similar rule-based systems, ideas from belief and base revision. In both cases,
our conclusion is negative, which suggests to adopt a different logical model.

1 Introduction

Mainly inspired by [1], most formal models of norm change usually focus on the dy-
namics of obligations and permissions. However, as rightly noted on the occasion of
a recent workshop on this topic1, “these systems did not explicitly refer to possible
changes in the underlying norms [. . . ]”. In fact, “new norms may be created and old
norms may need to be retracted. In this dynamic setting, it is essential to distinguish
norms from obligations and permissions as studied by deontic logic, to understand the
formal properties specific for the dynamics of norms, and to describe how such objects
can be manipulated [. . . ]”. Unfortunately, “a formal model that captures the relevant
features of norm change is still lacking”.

The aim of our work is to make some steps in this direction by investigating the
notion of legal modification. Legal modifications are the ways through which the law
implements norm dynamics [10]. Modifications can be either explicit or implicit. In the
first case, the law introduces norms whose peculiar objective is to change the system
by specifying what and how other existing norms should be modified. In the second
case, the legal system is revised by introducing new norms which are not specifically
meant to modify previous norms, but which change in fact the system because they are
incompatible with such existing norms. The most interesting case is when we deal with
explicit modifications, which permit to classify a large number of modification types.

In general, we have different types of modifying norms, as their effects (the resulting
modifications) may concern, for example, the text of legal provisions, their scope, or
their time of force, efficacy, or applicability [10,8,9]. Derogation is an example of scope
change: a norm n supporting a conclusion P and holding at the national level may be
derogated by a norm n′ supporting a different conclusion P′ within a regional context.

� Supported by the EU project ESTRELLA (IST-2004-027655).
1 http://icr.uni.lu/normchange07/

R. van der Meyden and L. van der Torre (Eds.): DEON 2008, LNAI 5076, pp. 3–18, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



4 G. Governatori and A. Rotolo

Hence, derogation corresponds to introducing one or more exceptions to n. Temporal
changes impact on the target norm in regard to its date of force (the time when the norm
is “usable”), date of effectiveness (when the norm in fact produces its legal effects)
or date of application (when conditions of norm applicability hold). An example of
change impacting on time of force is when a norm n is originally in force in 2007 but a
modification postpones n to 2008. Substitution replaces some textual components of a
provision with other components. For example, some of its applicability conditions are
replaced by other conditions.

We are interested here in studying the concepts of abrogation and annulment.
Annulment is usually seen as a kind of repeal, as it makes a norm invalid and removes

it from the legal system. Its peculiar effect applies ex tunc: annuled norms are prevented
to produce all their legal effects, independently of when they are obtained. The nature
of abrogation is most controversial. In some cases, it is important to see whether the
abrogation is the result of judicial review, legislation, or referenda. But again, despite
domestic peculiarities, abrogations, too, are seen as a type of norm removal, even though
they are different from annulments; the main point is usually that abrogations operate
ex nunc and so do not cancel the effects that were obtained before the modification. If
so, it seems that abrogations cannot operate retroactively. However, this is not always
true. Even where retroactive abrogations are prohibited (such as in the Italian system),
the problem is open in some contexts. Suppose an ordinary court is called upon to
decide a case in which a norm n applies, but the court argues that n infringes some
fundamental rights and so it suspends the trial proceedings referring to the constitutional
court to decide on the illegitimacy and abrogation of n. Constitutional court’s decision
and abrogation of n is necessarily posterior to the case. Hence, what is the difference
between these modifications?

Suppose that a norm n1 in force in 2006 states that, if your annual income is less
than 5,000 euros, you are a needy person and norm n2 says that a needy person has
the right to live for free in a council house. If n is retroactively annuled in 2007, this
counts as n’s removal since 2006, and all its effects are blocked. Imagine now that
two norms n3 and n4 are added in 2007 stating that needy people’s income is less than
3,000 euros and that needy people are eligible for medical aid. Even if n is retroactively
abrogated in 2007, jurists may argue that its indirect effect (obtained via n2: right to
house) should not be estinguished in 2007, whereas the propagation of the qualification
“needy person” (with an income of less than 5,000 euros) cannot propagate from 2006
to 2007, since this would make n4 applicable. Note that, in other cases, indirect effects
should propagate whereas the direct effect should be blocked, or all past effects should
propagate, or, again, norm removal should apply after in 2007 and only blocking some
effects retroactively holds. In fact, jurists [10] say that abrogations can at most block
some, but not all, past effects (otherwise, we would have annulments).

To sum up, and independently of terminological issues, what we have to bear in
mind is that here the law implements different reasoning patterns: in one case norms
are removed with all their effects, whereas in other cases norms are removed but some
or all their effects propagate if obtained before the modification.

How to model these scenarios? Clearly, a temporal representation may help, but
the point is whether we can abstract from this aspect and move to a general analysis
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(e.g., based on theory revision) where time is not considered. We address this issue
using Defeasible Logic (DL) [12,2], but analogous considerations can be extended to
other nonmonotonic (sceptical) rule-based systems. Although other options are avail-
able, rule-based systems seem a natural way to represent legal systems: legal norms are
usually viewed as rules specifying some applicability conditions and a legal effect.

In this paper we discuss whether it is possible to adjust belief and theory revision in
DL to capture abrogation and annulment. The layout is as follows. Section 2 provides an
overview of DL. Section 3 considers an immediate method to adjust revision of belief
sets in DL in order to capture annulment. Section 4 examines a possible alternative in
which all operations, including contraction, are captured by only adding a suitable set
of new rules. Even though this second option is better for modelling abrogation and
annulment, some basic problems remain unsolved. Section 5 takes advantage of some
ideas from the previous section and discusses how base revision in DL can be applied
to capture norm removals. However, also this approach is not fully satisfactory, which
suggests to adopt a different conceptual model, whose general features are illustrated in
Section 6. This is the new model we have used for our initial investigation on modelling
norm changes in DL [8,9].

2 Overview of Defeasible Logic

DL is based on a logic programming-like language and it is a simple, efficient but
flexible non-monotonic formalism capable of dealing with many different intuitions
of non-monotonic reasoning. An argumentation semantics exists [7]. DL has a linear
complexity [11] and also has several efficient implementations [3]. In addition, some
preliminary works on legal modifications in DL have been recently proposed [8,9].

A defeasible theory D is a structure (F,R,�) where F is a finite set of facts, R a
finite set of rules, and � an acyclic superiority relation on R. Facts are represented
as literals and are indisputable statements. A rule expresses a relationship between a
set of premises and a conclusion. We have in DL three types of rules conveying the
strength of the relationships: strict rules, defeasible rules and defeaters. A strict rule
has the form A1, . . . ,An → B and states the strongest kind of relationship since its con-
clusion always holds when the premises are indisputable. Defeasible rules have the
form A1, . . . ,An ⇒ B and cover the case when the conclusion normally holds when the
premises tentatively hold; defeaters have the form A1, . . . ,An � B and consider a sit-
uation where the premises do not warrant the conclusions: in defeaters the premises
simply prevent another rule to support the opposite.

Accordingly, a conclusion can be labelled either as definite or defeasible. A definite
conclusion is an indisputable conclusion, while a defeasible conclusion can be retracted
if additional premises become available. DL is based on a constructive proof theory for
conclusions. Hence, we can say that a derivation for a conclusion exists and that it is
not possible to give a derivation for a conclusion. Based on these two ideas conclusions
will be tagged according to their strength and type of derivation:

– +ΔB, meaning that we have a definite proof for B (a definite proof is a proof where
we use only facts and strict rules);

– −ΔB, meaning that it is not possible to build a definite proof for B;
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– +∂B, meaning that we have a defeasible proof for B;
– −∂B, meaning that it is not possible to give a defeasible proof for B.

Provability is based on the concept of a derivation (or proof) in D = (F,R,�). A
derivation is a finite sequence P = (P(1), . . . ,P(n)) of tagged literals satisfying four
conditions (which correspond to inference rules for each of the four kinds of conclu-
sion). P(1..i) denotes the initial part of the sequence P of length i.

Proof conditions for strict derivations are here omitted. Strict proofs are just deriva-
tions based on detachment for strict rules. Given a strict rule A1, . . . ,An → B, where we
have definite proofs for all Ai’s, we can deduce B (+ΔB).

DL is a sceptical non-monotonic formalism: with a possible conflict between two
conclusions (i.e., one is the negation of the other), DL refrains to take a decision and
we deem both as not provable unless we have some more pieces of information that can
be used to solve the conflict. One way to solve conflicts is to use a superiority relation
over rules. The superiority relation gives us a preference over rules with conflicting
conclusions. In case we have a conflict between two rules we prefer the conclusion of
the strongest of the two rules. The superiority relation is applied in defeasible proofs.

Some notational conventions before presenting proof conditions for defeasible
derivations. Each rule is identified by a unique label. A(r) denotes the set of antecedents
of a rule r, while C(r) denotes its consequent. If R is a set of rules, Rs is the set of all
strict rules in R, Rsd the set in R of strict and defeasible rules, Rd the set of defeasible
rules, and Rd f t the set of defeaters. R[B] denotes the set of rules in R with consequent
B. If B is a literal, ∼B denotes the complementary literal (if B is a positive literal C then
∼B is ¬C; and if B is ¬C, then ∼B is C).

Defeasible proofs proceed in three phases: we first look for an argument supporting
the conclusion we want to prove (an applicable rule for the conclusion). Second, we
look for arguments for the opposite of what we want to prove. Third, we rebut the coun-
terarguments. This can be done by showing that the counterargument is not founded
(i.e., some of the premises do not hold), or by defeating the counterargument, i.e., the
counterargument is weaker than an argument for the conclusion we want to prove. For-
mally,

+∂ : If P(i+1) = +∂B then either
(1) +ΔB ∈ P(1..i) or
(2.1) ∃r ∈ Rsd[B]∀A ∈ A(r) : +∂A ∈ P(1..i) and
(2.2) −Δ∼B ∈ P(1..i) and
(2.3) ∀s ∈ R[∼B] either

(2.3.1) ∃A ∈ A(s) : −∂A ∈ P(1..i) or
(2.3.2) ∃t ∈ Rsd [B] such that

∀A ∈ A(t) : +∂A ∈ P(1..i) and t � s.

−∂ : If P(i+1) =−∂B then
(1) −ΔB ∈ P(1..i) and
(2.1) ∀r ∈ Rsd [B] ∃A ∈ A(r) : −∂A ∈ P(1..i) or
(2.2) +Δ∼B ∈ P(1..i) or
(2.3) ∃s ∈ R[∼B] such that

(2.3.1) ∀A ∈ A(s) : +∂A ∈ P(1..i) and
(2.3.2) ∀t ∈ Rsd [B] either

∃A ∈ A(t) : −∂A ∈ P(1..i) or t 
� s.

3 Revising Extensions of Normative Systems

In the remainder of this paper we address the problem of how to embed in DL some
ideas from belief and base revision in order to capture annulment and abrogation. We
attack two different problems raised by these modifications: (i) how to block either
some or all norm effects; (ii) how to model norm removals in legal systems. As we
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argued, even though such modifications have a temporal flavour, we move to a general
analysis where time is not considered.

We assume that a defasible theory can represent the basic logical structure of a legal
system [8,9]. It is a general tenet in the literature that one reason why legal reasoning
is defeasible depends on the fact that, in may cases, norm conclusions can be obtained
only if we do not have stronger norms attacking them [14]. DL theories consist of a
set of rules (which may be defeasible), a set of facts, and a set of priorities over rules
(which establish their relative strength). In this perspective, rules naturally correspond
to legal norms, while priorities represent the criteria used to solve legal conflicts. Hence,
a general picture like this provides a standard for capturing the basics of legal systems
[13]. With this said, let us begin with our discussion on annulment and abrogation.

Approaches based on AGM usually assume that a belief set B is a theory, i.e., a set of
formulas closed under a logical consequence relation, thus B = Cn(B). Let us consider
the equivalent of this notion in DL.

Let HBT be the Herbrand Base for a Defeasible Theory T . In [2], the extension of a
Defeasible Theory T is defined as the 4-tuple

E(T ) = (Δ+(T ),Δ−(T ),∂+(T ),∂−(T )),

where #±(T ) = {p|p ∈ HBT ,T � ±#p}, # ∈ {Δ ,∂}.

Definition 1. Let T = (F,R,�) be a Defeasible Theory. We define another Defeasible
Theory T ′ = ( /0,R′, /0) such that R′ is the smallest set satisfying the following conditions

– if p ∈ Δ+(T ), then → p ∈ R′;
– if p ∈ ∂+(T ), then ⇒ p ∈ R′;
– if p /∈ Δ+(T )∪Δ−(T ), then

p → p ∈ R′s;

– if p ∈ Δ−(T ), then R′s[p] = /0;
– if p ∈ ∂−(T ), then R′d [p] = /0;
– if p /∈ ∂+(T )∪∂−(T ), then

p ⇒ p ∈ R′.

We will say that T ′ is the theory generated by the extension of T.

Proposition 1. Let T be a defeasible theory. For every p∈HBT , T � #± p iff T ′ � #± p.

The above result gives us an immediate way to define contraction for revision based on
belief sets. We define T

c = T ′ such that E(T ) = (Δ+(T ),Δ−(T ),∂+(T ),∂−(T )) and
T ′ is the theory generated by the extension

(Δ+(T )−{c},Δ−(T ),∂+(T )−{c},∂−(T )).

It is easy to verify that the above way to define contraction satisfies all AGM postulates.
The meaning of the result in Proposition 1 is that for every theory (and so every set of
conclusions), we can generate a new equivalent theory without looking at the structure
of the original theory: In fact, classically two theories are equivalent if they have the
same extension (the same set of conclusions).

How can the procedure described in Definition 1 be used to cover abrogation and
annulment?

Let examine annulment. When we annul a norm in a legal system, this means that
all (direct and indirect) legal effects deriving from it must be cancelled as well. For
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example, if we have a normative system T containing only the rules A ⇒ B and B⇒C,
then the annulment of the former rule (assuming the fact A) should block both B and C.
Intuition suggests that contraction is the right operation to capture annulment. Hence,
the question is how to use contraction in this case. What one could do here is simply
to remove the consequent of the rule. However, the (positive defeasible) extension of
T (i.e., ∂+(T )) is {A,B,C},2 and contracting B leaves C in the extension. Hence, this
immediate use of contraction is not representative of legal annulment. As we said, we
have to consider all consequences of the formula to be contracted. In the above example,
C can only be derived if B does. Accordingly, annulment of any rule A1, . . . ,An ⇒ B
could be defined as follows. Let T = (F,R,�) be a Defeasible Theory. Then

T
A1,...,An⇒B =

{
T if A1, . . . ,An ⇒ B 
∈ R or {A1, . . .An} 
⊆ ∂+

(F ′,R′,�′) otherwise

such that

(F ′,R′,�′) is the theory generated by E(T )−E(T ′)
and T ′ =(F = {B},R,�).

(1)

The contraction operation reflecting annulment is defined by “removing” the conse-
quent of the rule. In addition, the theory T ′ generates all consequences of B with respect
to T . Then T

A⇒B is the theory generated by the extension E(T )−E(T ′). However, let
us consider another example.

Example 1. Assume to work with the following theory:

T = (F = {A},R = {A⇒ B, B ⇒C, A ⇒C}, /0).

Thus,
T ′ = (F = {B},R = {A ⇒ B, B ⇒C, A ⇒C}, /0).

Hence, (∂+(T ) = {A,B,C})− (∂+(T ′) = {B,C}) = {A}, and this leads (by applying
Definition 1) to obtain that T

A⇒B corresponds to

T ′′ = ( /0,R = {⇒ A}, /0).

This procedure is not satisfactory unless more sophisticated measures are added. Ex-
ample 1 shows that the procedure does not properly work, as C has multiple causes (B
and A): with T ′′ we exclude A⇒ B by dropping B (and its consequences), but this leads
to drop, too, C and so to exclude A ⇒C, which is too much.

In addition, the above procedure requires to change the set of facts, which seems to
us meaningless. Why cannot we change the set of facts? The facts of a theory are only
those pieces of evidence in a case used to apply rules (norms) and not to change them:
hence they should not be considered when one modifies norms. Accordingly, if norms
are represented as rules, then reasoning only on the consequences of a theory is not rep-
resentative of norm change. For example, the norm HighIncome ⇒ TopMarginalRate

2 From now on, whenever clear from the context, we will use the term ‘extension of a the-
ory’ as either the positive defeasible extension of it or the full extension of the theory (see
Definition 1).
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says that if the income of a person is in excess of the threshold for high income, then
the top marginal rate must be applied. If it is a fact that Nino exceeded the threshold
(i.e., HighIncome ∈ F) then he has to pay the top marginal rate. Thus the extension
is {HighIncome,TopMarginalRate}; contracting with HighIncome results in the theory
just consisting in ⇒ TopMarginalRate, namely in a rule stating that, no matter what
your income is, you will have to pay taxes at the top marginal rate. Thus, revising the
evidence on which a case is based results in a change in the legislation, which seems a
non-sense when applied to real legal systems.

The idea behind Definition 1 and (1) is that we have to generate a new normative
system from the revised extension of corresponding source normative system. However,
there are at least three reasons why Definition 1 and (1) do not seem satisfactory:

1. they may change the set of facts, and so do not differentiate between norms and
instances of cases;

2. they revise theories regardless of the logical structure of the source theories;
3. they do not correctly account for ex tunc modifications, such as annulment.

Changing facts or generating new theories whose structure does not reflect the theories
from which they have been obtained trivialise the concept of legal change. Indeed, it
is crucial in the law to establish what rules generate which effects. Therefore, the con-
traction function defined in this section does not offer a suitable method for modelling
annulment (and, in general, norm changes), even if it satisfies all AGM postulates.

4 Revising Normative Systems by Adding Exceptions

The difficulties under points 1 and 2 above can be alleviated by adopting in DL the
approach proposed in [4] to deal with belief revision of rule-based non-monotonic for-
malisms, where change operators are not applied to the set of facts and are all im-
plemented by adding new rules and changing priorities. This permits to incrementally
modify the legal system, taking into account the logical structure of the source theory.
Let us briefly recall the basic features of this approach.

Let us examine expansion. Following [6], expansion adds a formula A to ∂+(T )
only if ¬A 
∈ ∂+(T ). Hence, the case where ¬A ∈ ∂+(T ) is irrelevant. However AGM
decided to also add A in this case. In [4] T is kept unchanged, following [6] rather than
[1]. Let c = P1, . . .Pn be the formulas to be added. Expansion can be defined as follows:

T +
c =

{
T if ∼Pi ∈ ∂+(T ) or ∼Pi = Pj for some i, j ∈ {1, . . . ,n}
(F,R′,�′) otherwise

where

R′ =R∪{⇒ P1, . . . ,⇒ Pn}
�′ =(� ∪ {⇒ Pi � r | i ∈ {1, . . . ,n},r ∈ R[∼Pi]})−

{r �⇒ Pi | i ∈ {1, . . . ,n},r ∈ R[∼Pi]}.

(2)

Thus, rules are added that prove each of the literals Pi, and it is ensured that these are
strictly stronger than any possibly contradicting rules.
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Let us examine contraction, which seems the right candidate to capture at least some
aspects of abrogation and annulment3:

T−
c =

{
T if P1, . . . ,Pn 
∈ E(T )
(F,R′,�′) otherwise

where

R′ =R∪{P1, . . . ,Pi−1,Pi+1, . . . ,Pn � ∼Pi | i ∈ {1, . . . ,n}}
�′ = �− {s � r | r ∈ R′ −R}.

(3)

Intuitively, (3) aims to prevent the proof of all the Pis. To achieve this it is ensured that
at least one of the Pis will not be proven. The new rules in R′ ensure that if all but one
Pi have been proven, a defeater with head ∼Pj will fire. Having made the defeaters not
weaker than any other rules, the defeater cannot be “counterattacked” by another rule,
and Pj will not be proven, as an inspection of the condition +∂ in Section 2 shows.

This approach slightly deviates from the AGM postulates, in particular from those for
contraction. The second AGM postulate states that we contract a formula only by delet-
ing some formulas, but not by adding new ones. This postulate cannot be adopted here
because it contradicts the sceptical nonmonotonic nature of DL. To see this, suppose
that we know A, and we have rules ⇒ B and A ⇒ ¬B. Then A is sceptically provable
and B is not. But if we decide to contract A, B becomes sceptically provable. Note that
this behaviour is not confined to DL but holds in any sceptical nonmonotonic formal-
ism [4]. Another peculiarity of this approach is the clear distinction between facts and
rules and that facts are indisputable and cannot be changed. Thus, the negation of facts
correspond to contradictions, and contracted facts are still included in the extension of
the theory.

The advantages of [4]’s proposal are clear, as legal systems are changed by only
adding new rules. In this sense, even though it works on theory extensions (suitable
new rules ensure that some literals are included in extensions, or are excluded from
them), this approach seems closer to base revision (see Section 5). But, independently
of this question, one problem is still open: how to adjust this approach to account for
legal modifications? A legal system T is modified by selecting, as a target, one or more
norms of T , whereas [4]’s proposal parametrises operations to sets of literals. Let us
bear in mind these points and proceed with our discussion.

5 Revising Normative Bases

The main problem with revision based on belief sets is that this approach does not mimic
how the law implements norm changes, since “new” rules are generated to reflect the
changes. Legal effects of rules can be used to guide how norms should be changed, but
they should not determine what and how rules are changed. Therefore the alternative
to revision based on belief sets is base revision. As is well-known, base revision does
not operate on the extension of a theory, but rather applies to the theory “generators”
(i.e., the non-logical axioms of the theory). This idea can be naturally coupled with

3 For space reasons, [4]’s treatment of revision is omitted.



Changing Legal Systems: Abrogation and Annulment 11

partitioning the elements of a theory into “facts” and “rules”, where the former cannot
be revised (unless update is used), while the latter may be subject to revision.

Usually, belief revision operations are defined as contraction followed by expansion
(according to Levi’s Identity). Therefore, revision often results in some rules to be re-
moved from the base of a theory. Base revision allows us to adopt different strategies,
namely, to modify rules. In the law there are different types of norm changes: some
directly correspond to the removal of rules (e.g., abrogation and annulment), while oth-
ers amount to introducing new rules (e.g., derogation), and finally some are the result
of partial modifications of provisions. In this perspective, assuming a rule-based rep-
resentation of norms, revision on bases using modification techniques seems closer to
the legal practice in so far as it allows for the conceptual distinction of these types of
changes. In addition, as argued e.g. in [5], base revision results in theories that are closer
to the structure of the theory to be revised.

Let us consider an example to introduce the idea of modification of bases. Suppose
we want to revise a theory with a rule r1 : A ⇒ B and contract B when C is the case (let
us say that C implies ¬B). The revision of the rule is r′1 : A,¬C ⇒ B. This means that we
have modified the original rule taking into account the exception provided by C. DL has
an elegant mechanism to deal with exceptions. An exception is simply implemented by
a rule capturing the connection between the exceptional antecedent and the conclusion
to be blocked. Thus, in the example above, instead of changing r1 into r′1, we may
simply add a new rule such as r2 : C ⇒¬B or r2 : C � ¬B, and state that r2 � r1. As we
have seen in Section 4, this idea has been originally proposed for DL in [4], but there
was still the open problem of how to set change operations in such a way to parametrise
them with respect to the proper target of legal modifications, namely, legal rules.

Let us see how to adjust [4]’s definitions for norm changes, and in particular for
annulment and abrogation. Let T be a theory and A1, . . . ,An ⇒ B be the rule to be
removed. For annulment:

T annul1
A1,...,An⇒B = T−

B (4)

Hence, the annulment of a rule is the contraction of the head of the rule. This solution
directly applies (3) to the head of the rule to be annulled. However, (4) is too strong
since it forces the removal of B from the extension (unless B is a fact). If we have two
different (and independent) rules applicable at the same time and with the same head,
and we just annul one of them, the other should still be able to produce its effect. But (4)
affects the second rule as well. Thus, we have to give an alternative annulment operation
based on a variant of the contraction operation.

T annul2
r:A1,...,An⇒B =

{
T if B /∈ ∂+(T )
(F,R′,�′) otherwise

where

R′ =R∪{r′ : �∼B}
�′=� ∪{(r′,r)}∪{(s,r′)|s ∈ R[B]−{r}}

(5)

Consider the following examples.
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Example 2. Let us consider the following theory:

T = (F = {A},R = {r1 : A ⇒ B, r2 : B ⇒C}, /0).

Clearly, ∂+(T ) = {B,C}. Hence,

T ′annul2
r1:A⇒B = (F,R∪{r′1 :� ¬B}, /0).

In the resulting theory we prove−∂B, which makes r2 inapplicable, thus preventing the
positive conclusion of C.

Example 3. Let us consider again the theory in Example 1:

T = (F = {A},R = {r1 : A ⇒ B, r2 : B ⇒C, r3 : A ⇒C}, /0).

The annulment of r1 still amounts to adding r′1 :� ¬B to R, which prevents the conclu-
sion of all literals depending only on B. Accordingly, C will be in the extension, as it is
obtained through r3. In addition, if r4 : ⇒ B were in R, r4 would be stronger than r−,
thus obtaining B.

In general this approach is closer to the legal practice, as it precisely focuses on mod-
ifications of norms and not on the modification of the normative positions (effects) of
norms. First, it does not depend on facts. Second, it offers a seamless solution to ex
tunc modifications. However, things can be viewed from a different perspective. Even
though this approach can simulate ex tunc modification like annulment (since it allow
us to block norm effects), the actual operation fails to remove norms. (Hence, this ap-
proach is appealing for modifications corresponding essentially to exceptions, such as
derogations: see Section 1.) When a norm is annulled, it is “removed” from the legal
system, whereas here we just remove the effects of the norm and its consequences.

Accordingly, we can simply remove the rule to be annulled from the set of rules:

T annul3
r = (F,R−{r},�) (6)

But, then, we have another problem: How to deal with ex nunc modifications, such
as abrogations? In this case, the modification of a rule should not necessarily prevent
the derivation of its conclusions. Let us consider Example 2 and assume that the
abrogation of r1 does not prevent the derivation of B and C. This means that, if B and
C were derivable before the modification, then they should remain in the extension of
the revised theory. Here, we have two options. First, we can argue, as done above with
annulment, that when a norm is abrogated, it is “removed” from the legal system. But,
if r1 is removed following a similar procedure to that stated in (6), the extension of the
revised theory will not contain B as well as C, whereas abrogations can also admit cases
where both conclusions should be maintained. Thus, a second option does not remove
the rule, but adds a suitable set of new rules which allow to derive what should not be
blocked. However, what can we do in this case if both B and C should not be dropped?
It seems hard to adjust (5) in order to maintain both B and C. At most, what we can do
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is preventing the derivation of B and maintaining C. Only in this case, if T = (F,R,�)
is a defeasible theory, then the abrogation of a norm r : A1, . . . ,An ⇒ B runs as follows:

T abr
r:A1,...,An⇒B =

{
T if r /∈ R

(F,R′,�′) otherwise

where

R′ = R∪{r− : � ¬B, r′ : ⇒ B′}
∪{t ′ : (A(t)−{B})∪{B′} →C(t)|t ∈ Rs and B ∈ A(t)}
∪{t ′ : (A(t)−{B})∪{B′} ⇒C(t)|t ∈ Rd and B ∈ A(t)}
∪{t ′ : (A(t)−{B})∪{B′}� C(t)|t ∈ Rd f t and B ∈ A(t)}

�′=�∪{(w,r−)|w ∈ R[B]−{r}}∪{(t ′,s)|(t,s) ∈�}∪{(s, t ′)|(s,t) ∈�}

(7)

where B′ is a new literal not appearing in T .

Proposition 2. Given a theory T and a rule r : A1, . . . ,An ⇒ B, for every C ∈ HBT −
{B}, T �C iff T abr

r �C.

Example 4. Consider the following theory:

T = (F = {A,D},R = {r : A ⇒ B, t : B ⇒C, s : D ⇒¬C, w : E ⇒ B},(t,s) ∈�)

Hence, according to (7), T abr
r:A1,...,An⇒B is as follows:

T abr
r:A1,...,An⇒B = (F = {A,D}

R = {r : A ⇒ B, t : B ⇒C, s : D ⇒¬C, w : E ⇒ B

r− :� ¬B, r′ :⇒ B′, t ′ : B′ ⇒C}
�= {(t,s),(t ′,s),(w,r−)})

The fact A makes r applicable, but the introduction of r− blocks the derivation of B
using r. However, C is derived via r′ and t ′ (which is stronger than s). Note that (7) is
such that the defeater r− attacks only r (we are abrogating rule r only): hence, if E were
in F , B would be obtained from w.

In sum, we have the following possibilities:

– We omit to model annulments and abrogations as corresponding to rule removals.
Hence, we represent them working only on rule conclusions and so adopt (5) and
(7). However, (7) is partially satisfactory, as it blocks the derivation of the head of
the abrogated rule; but an abrogation may remove only norms and not the already
obtained effects of the norms to be abrogated.

– We address the issue that annulments and abrogations correspond to rule removals.
Thus, (6) works for annulments, but it seems quite hard to find an adequate coun-
terpart for abrogation.

– We do not care whether annulments and abrogations correspond to rule removals
and are free to adopt, together with (7), either (5) or (6). But, as we said, (7) is
problematic.
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Of course, we do not exclude that the above problems can be settled. For example,
some limits of (7) can avoided by combining the introduction of exceptions and the
removal of the abrogated rule. This can be done by applying the idea in (6) and sub-
sequently reinstate the conclusions that should not be blocked. This can be done by
simply using expansion + as defined in (2). More precisely, suppose c = C1, . . .Cn are
the consequences of the rule to be abrogated which we want to maintain.

Definition 2. Let T = (F,R,�) be a Defeasible Theory such that r : A1, . . . ,An ⇒B∈R.
Then

T abr′
r:A1,...,An⇒B = (T ′)+c

such that T ′ = (F,R−{r},�) and c = C1, . . .Cn ∈ E(T ′′), where

– T ′′ = (F = {B},R,�);
– for every Ck, 1 ≤ k ≤ n, Ck 
∈ E(T ′).

But, even in that case, another difficulty arises when we have to deal with retroactive
modifications: as we already mentioned, retroactivity is a typical feature of legal modi-
fications. This problem is discussed in the following section.

6 A Temporal Model for Legal Systems and Norm Change

6.1 Revision and Retroactivity

A norm modification is an operation such that a normative system (consisting of norms
and the consequences of cases) is transformed into a different normative system. Ac-
cordingly, dynamics of a normative system are described by a sequence of operations.

Suppose we have a system, let us call it T0, in which we introduce a new rule r and
subsequently we remove another rule, let us say s. The system obtained from the first
operation is T1, while the final system is T2. Thus T2 = ((T0)+r )−s . So far so good. But
let us suppose that that the removal of s is retroactive. How can we model this case?
The idea is that every time we have a retroactive modification we should reconstruct
the normative system at the time when the retroactive modification is effective. For
example, if the modification is effective since yesterday, we have to recover the system
as it was yesterday by undoing the operations leading to the normative system we have
today, then we have to apply the retroactive modification and finally redo the other
modifications. So, if in the example above s is a retroactive modification effective from
T0, the sequence of modifications still adds r and removes s, but the sequence of theories
is T ′

1 = (T0)−s and T2 = ((T0)−s )+r . Is this procedure in agreement with the intuition
behind retroactive legal modifications? Our answer is negative. The point is that it is
possible to define transformations moving from one normative system Ti to Ti+1 where
the transformation is effective at Ti itself, thus the system to be changed is not the target
of the modification but the source of it. Let us consider the following example. The
normative system T0 is just the fact A. T1 is obtained from T0 by retroactively adding two
rules A⇒ B and B⇒C and these rules are effective in T0. Then the next transformation,
leading to T2 is the removal of A ⇒ B from T0. But then we have two different versions
of T0. Analogous considerations apply when we work on rule consequences and model
modifications adding defeaters.
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The reason why we have multiple versions of a normative system is that norms have
different temporal dimensions: the time of validity of a norm (when the norm enters
in the normative system) and the time of effectiveness (when the norm can produce
legal effects). Thus, if one wants to model norm modifications, then normative systems
must be modelled by more complicated structures. In particular, a normative system is
not just the set of norms valid in it, but it should also consider the normative systems
where the norms are effective. Accordingly, a normative system is a structure Ni =
(Ti,〈T0,T1, . . . 〉), where Ti is the theory modelling the set of norms/rules and facts valid
in the normative system Ni, and 〈T0,T1, . . . 〉 is the sequence of theories encoding the
effective norms for all “versions” of the normative system.

A revision of a legal system is an operation that transforms a normative system into
another normative systems by ‘changing’ the rules in it. In particular, the operation
should specify what rules are to be changed and when they are changed, and when the
changes are effective. Thus a norm change can be seen as a transaction from a normative
system Ni = (Ti,〈T i

0 ,T i
1 , . . . 〉) to a normative system Ni+1 = (Ti+1,〈T i+1

0 ,T i+1
1 , . . . 〉),

where there exists some j such that T i+1
j = change(Ti

j ) for some change operation.

For example, the abrogation of a rule r may be modeled as T i+1
i+1 = (T i

i )
abr
r , and the

retroactive annulment of r, as T i+1
j = (T i

j )
annul
r for j < i. In addition, in general, once

a norm has been introduced in a normative system the norm continues to be in the
normative system unless it is explicitly removed. This means that the norm must be
included in all theories succeeding the theory in which it has been first introduced.
Accordingly, it could be very cumbersome to keep track of the changes and where
the changes have to been applied. In real normative systems norms are introduced at
a particular time, they are effective at a particular time, and so are changes –changes
are norms themselves. Thus, to obviate the issue of keeping track of the changes, and
at the same time to offer a conceptual model of norm changes, we have proposed in
[8,9] an extension of DL with time, where we consider the two temporal dimensions of
relevance for norm change (effectiveness and validity). This is done by labelling rules
with two time values, one for the validity time of the norms, and the other for their
effectiveness time; furthermore the labels indicate whether these ‘changes’ persist or
not. The idea that changes are norms themselves is captured by the notion of meta-
rule, i.e., a rule whose elements can be rules themselves and not only literals. The next
section offers the conceptual background of the proposal presented in [8,9].

6.2 Inner and Outer Time of Legal Systems

t0

t0 t0

t ′ t ′′ t ′ t ′′

t ′

LS(t ′)

t ′′

LS(t ′′)

Fig. 1. Legal System at t ′ and t ′′

The above discussion suggests that the dynam-
ics of a legal system LS are more correctly cap-
tured by a time-series LS(t1),LS(t2), . . . ,LS(t j)
of its versions. Each version of LS is called a
norm repository [8,9]. The passage from one
repository to another is effected by legal mod-
ifications or simply by persistence [9]. But dy-
namics of norm change and retroactivity need
to introduce another time-line within each ver-
sion of LS (see Figure 1). Clearly, retroactivity
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(b) Conclusion Persistence
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(c) Abrogation
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(d) Annulment

does not imply that we can really change the past, but it rather requires that we have to
reason on the legal system from the viewpoint of its current version as it were revised in
the past: when we change some LS(i) retroactively, this does not mean that we modify
some LS(k), k < i, but that we move back from the perspective of LS(i). Hence, we
can “travel” to the past along this inner time-line, i.e. from the viewpoint of the current
version of LS where we modify norms.

Elements contained in, or derived from, theories can propagate across these time-
lines. Hence, propagation concerns the derived conclusions of rules (when some con-
sequent P holds), the rules themselves, and also derivations (i.e., queries: +∂P). This
introduces several options regarding how modifications affect a legal system over time:

– conclusions may persist within a certain repository or across different repositories;
– derivations may persist within a certain repository or across different repositories;
– rules may persist within a certain repository or across different repositories.

For example, Figure 2(a) shows how rule persistence works. A persistent rule r enacted
at time t ′ and in force at t ′′′ carries over from the legal system LS(t ′) to the legal system
LS(t ′′), where it is still in force at t ′′′. Figure 2(b) illustrates conclusion persistence:
a conclusion A persists from LS(t ′) to LS(t ′′) even if the rules used to derive it are
no longer effective in LS(t ′′). Figure 2(c) presents a case of abrogation: in LS(t ′) rule
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r, in force from tv onwards, produces a persistent effect A. The effect carries over by
persistence to LS(t ′′) even if the rule r is abrogated at tm and is no longer in force to
produce the effect. Finally, Figure 2(d) illustrates a case of annulment: in LS(t ′) rule r,
in force since tv, is applied and produces a persistent effect A. Since the rule is annulled
in LS(t ′′) at tm, the effect of A must be undone as well. While the intuition in Figures
2(c) and 2(d) seems clear, its precise implementation in DL is not simple and only a
partial solution was offered in [9]. The development of a complete DL temporal model
for abrogation and annulment is a matter of future work.

7 Summary

In this paper we investigated how to model in DL legal abrogation and annulment. Ter-
minology may vary from one legal system to another, but, despite this, it is possible
to identify in general two different reasoning patterns: in one case norms are removed
with all their effects, whereas in other cases norms are removed but all or some of their
effects propagate if obtained before the modification. We examined some ways to cap-
ture these intuitions in DL using techniques from revision based on belief sets and from
base revision. We concluded that abrogation and annulment can only be partially rep-
resented in these settings. In addition, we argued that it is hard, if not impossible, to
simulate retroactivity, which clearly refers to the temporal dimension. Hence, we illus-
trated a different conceptual starting point from which the problem can be addressed.
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11. Maher, M.J.: Propositional defeasible logic has linear complexity. Theory and Practice of

Logic Programming (6), 691–711 (2001)
12. Nute, D.: Defeasible reasoning. In: Proceedings of 20th HICSS. IEEE press, Los Alamitos

(1987)
13. Prakken, H.: Logical Tools for Modelling Legal Argument. Kluwer, Dordrecht (1997)
14. Sartor, G.: Legal Reasoning. Springer, Dordrecht (2005)



R. van der Meyden and L. van der Torre (Eds.): DEON 2008, LNAI 5076, pp. 19–33, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Acting, Events and Actions 

Mark A. Brown 

Philosophy Department 
Syracuse University 
Syracuse, NY 13244 

USA 
mabrown@syr.edu 

Abstract. A logic of action is essential for many treatments of normative con-
cerns, but most treatments either ignore the role of agents, as in PDL, or omit 
all possibility of naming actions, as in various versions of stit theory. Moreover, 
most treatments of either type do not attempt to provide an account of what ac-
tions are, in a way that would distinguish actions from other processes or 
events. In this paper, I explore an account of actions as a species of events, with 
events interpreted against a background of the logic of branching time. This 
opens a new approach to exploring the relations between logics of personal ac-
tion (e.g. Belnap’s and Horty’s stit theories) and impersonal logics of actions 
such as PDL, and offers some prospect of a deontic logic which integrates tun-
sollen (ought to do) into a system of seinsollen (ought to be). 

1   Introduction 

The literature on the logic of action provides us with two quite different styles of 
treatment. On the one hand, we have a family of systems—let’s call them Delta-
systems—in each of which some general-purpose non-normal modal operator Δ is 
made available1. In such systems a formula of the general form ΔaA can be used to 
express the claim that the agent a  sees to it (or has seen to it) that the claim expressed 
by A is true. On the other hand we have systems of dynamic logic2, each with several 
(possibly infinitely many) designations for processes3, several operators for combin-
ing processes to form other processes, and the capacity to form a normal modal opera-
tor [α] for each such process α. In such languages, any of the modal operators can be 
used in a formula of the general form [α]A to express the claim that at the completion 
of any application of the process named by α, the claim expressed by A will be true. 

There are several conspicuous points of contrast, many of which grow out of a ba-
sic difference: Delta-systems are aimed at exploring what it means for a human being 
to act, while systems of dynamic logic are (at least initially) aimed at examination of 

                                                           
1 This class of systems includes ones proposed by Pörn [11], Kanger, Belnap [1–3], Horty [8], 

[9], Carmo, and others. 
2 This  class of systems is based on original work by Pratt, Fisher, and Ladner. Applications to  

deontic logic have been explored in a number of works, notably including [6], [7], and [10].  
3 In the original interpretation, each process would be the running of a computer program. 
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computer programs, treated as “actions”. As a result Delta-systems have designations 
for agents, and can express the claim that an agent has acted, or is acting, with a cer-
tain effect, but do not designate the action(s) involved; dynamic logics have designa-
tions for actions, viewed as processes, but not for agents, there being only one  tacit 
“agent” involved, namely the computer. The Delta-systems can differentiate actions 
only by their results and their agents; dynamic logics directly designate processes, and 
thus can differentiate actions without  regard to whether or not they are performed by 
the same agent and whether or not they have the same outcome. Delta-systems can 
readily consider multi-agent situations, while dynamic logics normally cannot. 

Each of these kinds of system has its advantages and its disadvantages as a logic of 
action. Delta-systems are typically embedded in a rich temporal logic, and thus enable 
us to keep track of temporal relations. Moreover, Delta-systems are designed to dif-
ferentiate between actions of agents and mere happenings and accidents; in contrast, 
in their interpretation as logics of action dynamic logics have to simply stipulate that 
all basic processes for which designations are provided are actions, but cannot differ-
entiate the results that are genuinely due to the action from those that are accidental or 
unavoidable. This shows up most strikingly in the fact that if t is any logically true 

formula, [α]t will be logically true in dynamic logic, whereas Δat will be logically 
false in most Delta-systems. Thus most Delta-systems specifically reject the notion 
that any agent is responsible for the truth of necessary truths, while dynamic systems 
consider all logical truths to be the doing of the tacit agent. 

Because agents are explicitly represented in Delta-systems, these systems are par-
ticularly suitable for incorporation into deontic logics, where we will wish to relate 
agents’ actions to their responsibilities; dynamic logics can be augmented with indices 
for agents, but the result seems a bit unnatural. Moreover, the explicit mention of 
agents makes it possible for Delta-systems to consider cooperation among agents, 
delegation of responsibility, influence, prevention, etc., in a multi-agent setting, 
whereas typically in dynamic logics this is impossible. 

Dynamic logics of action do have their own advantages, however, chiefly arising 
from the fact that they directly represent actions, not just agents and the results of 
their acting. Dynamic logics can express and examine the results of various operations 
on actions, including catenation; in contrast, Delta-systems normally have no way to 
express catenation of actions. Attempts to accomplish something of the sort by iterat-
ing Delta operators give us nothing satisfying: for example, ΔaΔaA is just equivalent to 
ΔaA in some of the most prominent members of this class of systems, while ΔaA ∧ 
ΔaB will report simultaneous actions, rather than successive ones. About the best we 
can do rather directly is to interpose a future tense operator and a possibility operator 
between two delta operators, to assert that the agent brings it about that it will eventu-
ally be possible for the agent to bring it about that A, but this will still fall short of 
expressing the claim that the agent actually does follow through with the second ac-
tion. Because dynamic logics of action can represent catenations α;β of actions α  and 
β (and other combinations, such as their nondeterministic union α ∪ β, corresponding 
to disjunction), they can be used rather naturally to examine means/ends relation. We 
find it more natural to think that picking up the hammer is a means to pounding the 
nail into the board than that the hammer’s being in my hand is a means to the nail’s 
being in the board. 
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These two kinds of treatment share a deficiency: neither attempts to give an ac-
count of what an action is, and derive the logic of action from the nature of this ac-
count.4 Delta-systems content themselves with giving an account of what it means for 
an agent to act, or to have acted, with a certain result, but do not attempt an account of 
just what the action was that produced the result. They attempt to provide an account 
of when it is accurate to say that the agent has performed an action whose result was 
that the door is shut, for example, but do not attempt to give an account of what that 
action was. How did the agent shut the door? By kicking it? leaning against it? throw-
ing something at it? …?5 Systems of dynamic logic simply assume a stock of actions, 
but without giving any account of what it is about them that makes them actions, 
rather than mere events or mere processes.  

Surveying the complementary advantages and disadvantages of these two styles of 
treatment rather naturally arouses a desire to develop some more comprehensive sys-
tem that will combine the advantages of each of these approaches, and if possible 
overcome the defects they hold in common. Some recent work6 has hinted at one pos-
sible way to get started towards such a goal, by introducing action names into Delta-
systems. The present paper pushes that effort a bit further along: in contrast with other 
approaches, here we attempt to work from a Delta-system in the direction of including 
features like those of dynamic logic, by first introducing actions as constructs within a 
branching time framework. 

The starting point will be to view an action as a special kind of event7, or process, 
in branching time, one that intimately involves choices on the part of the agent. 

2   Branching Time, Transitions and Events 

The classic works on stit theory, [1–3], [8], [9], begin with the observation in Pörn 
[11] that what we do is not merely something that happens. This shows up in one way 
when we attribute responsibility. I am not responsible for the fact that it is raining—
that just happens, and I have no choice about it. But I am responsible for the fact that I 
left my umbrella at home—that didn’t just happen: I had, and made, some choice in 
the matter. Genuine action, as contrasted with mere occurrence of some event, re-
quires some exercise of freedom of choice on the part of the agent involved. But the 
availability of genuine choices implies indeterminism about the future: if I genuinely 
have a choice about whether to take my umbrella with me or not, then there are details 

                                                           
4 More precisely, PDL does give an account of what it means by ‘action’ (namely a function 

from states to states) but can’t distinguish genuine actions from mere happenings. 
5 In his logic of the dstit operator, Horty [8] applies the word ‘action’ to any choice an agent 

makes. However this is at best a very limited sense of action. It will count the agent’s choos-
ing to start to shut the door as an action, but not the agent’s shutting the door. The only ac-
tions recognized in this system are ones whose outcomes are instantaneous.  

6 Brown [4]. 
7 Some authors use the term ‘event’ to denominate a momentary occurrence, unextended in 

time. As I use the term, I mean a process which extends through an interval of time. A con-
cert, for example, counts as an event, in my terminology. I suggest that, as we normally use 
the term ‘action’, human actions extend over time, and thus are events in this sense. 
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of the future that depend on which choice I make; and when such choices are freely 
available, the course of the future is correspondingly undetermined. 

When we reflect on how this view of the freedom of agents, we find it natural to 
represent time as branching into the future, with branching occurring at those mo-
ments when agents have genuine choices8, and with different branches corresponding 
to the different courses which history will take, depending on the agent’s choice. On 
one branch, having  chosen to leave my umbrella behind, I get wet. On another, hav-
ing chosen to bring it with me, I remain dry. Accordingly, Belnap and Horty make the 
logic of branching time the foundation of their work in the study of action, ability and 
events. So let us turn to a brief presentation of the essentials of the logic of branching 
time, and more specifically, to its semantics. 

By a forward-branching back-connected temporal frame, I mean a structure 〈T, <〉 
such that (with ≤ defined in terms of < in the obvious way): 

(1) T is a non-empty set (of moments of time); 
(2) < is a strict partial ordering (antisymmetric and transitive) on T; 
(2.1) (∀m, m1, m2 ∈ T)[m1 < m ∧ m2 < m ⇒ m1 ≤ m2 ∨ m2 ≤ m1]; 
(2.2) (∀m, m′ ∈ T)(∃m0 ∈ T)[m0 ≤ m ∧ m0 ≤ m′]. 

A history through a moment m is any complete, non-back-tracking path through T, 
i.e. any subset h of T satisfying the conditions9 

(i) m ∈ h      (through m), 
(ii) (∀m1, m2 ∈ h)[m1 ≤ m2 ∨ m2 ≤ m1]  (connected), 
(iii) ¬(∃mω ∈ T)(∀m ∈ h)[m < mω]   (complete forwards), 

(iv) (∀m ∈ h)(∀m0 ∈ T)[m0 < m ⇒ m0 ∈ h]  (complete backwards). 

Given any moment m in such a frame, and any history h through m, we let H be 
the set of all histories and let H(m) be the set of all histories through m; i.e.  

 H(m) =df {h ⊆ T: h satisfies constraints i–iv above} 
 H =df ∪m ∈ T H(m). 

Formulas will be evaluated at moment/history pairs m/h in which m ∈ h. This is 
essential10, because at the moment at which I must choose whether or not to take my 
umbrella, it cannot yet be said to be true, without qualification, that I will get wet, nor 
yet that I won’t. It depends on my choice, and thus along some histories I will get wet, 
while along others I won’t. Without specifying the history in question, as well as the 
moment, we cannot expect to get an evaluation of the claim that I will get wet.  

From here on, whenever I use the notation m/h it is to be understood that m ∈ h.  

                                                           
8 And perhaps also at certain moments at which genuinely random events, such as the radioac-

tive decay of a radon atom, occur. 
9 No constraint is imposed on the order type of the arrangement of moments within histories. 

They might be discretely, densely, or continuously arranged, or they might be irregularly ar-
ranged. Because discrete orderings seem out of keeping with physics, I tend to assume in my 
informal thinking that the moments along a history are at least densely ordered. However, no 
such assumption is being built into the formalism at this juncture. 

10 See Thomason [12] for a full discussion of this point. 
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A frame becomes a model M when it is supplemented by a valuation V assigning, at 
each moment m, to each sentential constant S, a truth value V(m, S) ∈ {t, f}. (Thus 
the presumption is that sentential constants convey claims whose truth may change 
from moment to moment but which, at a given moment, do not vary in truth value 
from history to history. At bottom, this is the presumption that sentential constants 
will not be used to convey claims that in any way involve other moments than the 
moment of evaluation.) 

Now we can give satisfaction conditions for the usual temporal operators as well as 
for temporal possibility and necessity operators. 

Given any moment m and any classes K and L of moments, we extend our use of 
the relation < in a natural way, so that 

 m < K iff (∀n ∈ K)[m < n], 
 K < m iff (∀n ∈ K)[n < m],  

and K < L iff (∀m ∈ K)(∀n ∈ L)[m < n]. 

Belnap has also introduced the notion of a transition into the discussion of time, 
and Ming Xu [13] has shown ways in which this notion can be useful in our analysis 
of events, causation, and actions. We turn now to the development of these notions. 

By a past, we mean any class p of moments such that: 

• p is nonempty, i.e. p ≠ ∅; 
• p is linear, i.e. there is some history h with p ⊂ h; and 
• p is closed pastwards, i.e. whenever m < n ∈ p, we have m ∈ p. 

By an outcome, we mean any class F of moments such that: 

• F is nonempty, i.e. F ≠ ∅; 
• F is pastwards connected, i.e. whenever m, n ∈ F,  
 there is some k ∈ F such that k ≤ m and k ≤ n; and 
• F is closed futurewards, i.e. whenever m > n ∈ F, we have m ∈ F. 

Note that an outcome will be a tree and so usually will not be linear. In general it 
might or might not have a first moment. 

By a transition τ, we mean a pair τ = 〈p, F〉 consisting of a past p, called its pro-
logue and an outcome F, such that p < F, i.e. such that whenever m ∈ p and n ∈ F, 
we have m < n. Note that this definition leaves room for various special cases.  

 immediate transitions there is no moment m such that p < m < F; 
 singleton transitions there is a unique moment m such that p < m < F; 
 extended transitions all other transitions. 

Each transition τ uniquely determines an associated interval which I shall call its 
interval, consisting of the moments between its prologue and its outcome. However 
the converse is not true; i.e., an interval does not in general uniquely determine an 
associated transition. We can have two (or more) transitions with the same interval. 
There certainly can be different immediate transitions, for example, even though im-
mediate transitions will by definition determine the empty interval. This is illustrated 
in Figure 1, below (with earlier moments represented here as to the left of later ones). 
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There are less trivial ways that distinct transitions can determine the same interim 
interval. Figure 2 below illustrates one such. Here the transitions 〈p, F1〉 and 〈p, F2〉 
both determine the interim consisting of the two moments depicted on the same hori-
zontal line as p. We could vary the situation to make it more exotic. F1 could remain 
as depicted, but F2 be altered to have no first moment; or the interval might have no 
first or last moment; or the prologue p might have no last moment; there might be 
even more than two transitions determining the same interim interval, etc. 

      

                              Fig. 1.                                                                           Fig. 2. 

There are less trivial ways that distinct transitions can determine the same interim 
interval. Figure 2 above illustrates one such. Here the transitions 〈p, F1〉 and 〈p, F2〉 
both determine the interim consisting of the two moments depicted on the same hori-
zontal line as p. We could vary the situation to make it more exotic. F1 could remain 
as depicted, but F2 be altered to have no first moment; or the interval might have no 
first or last moment; or the prologue p might have no last moment; there might be 
even more than two transitions determining the same interim interval, etc. 

The fact that two transitions—even two non-immediate transitions—can determine 
the same interim interval makes transitions more sensitive than intervals as a means 
for representing processes. We might well wish to associate a given process with one 
transition, yet not associate it with another transition whose interval is the same, be-
cause we might want the outcome of the process to be one of its identifying features. 
A fortiori, transitions are more sensitive than moments by themselves would be.  

Most events extend over a period of time. For such events, there will be associated 
extended transitions, with the prologue, or past, of the transition corresponding to that 
period of time before the event has occurred, the interval between corresponding to 
that portion of time during which the event is occurring, and the outcome correspond-
ing to that portion of time by which the event has already occurred. Other events, such 
as choices, may well occur instantaneously, perhaps marking the boundary between 
times at which A is true and times at which it is not; such instantaneous events will be 
associated with immediate transitions. 

We might consider letting events be represented by single transitions. But it of-
ten—indeed usually—seems reasonable to say that under slightly altered circum-
stances, the same event would have occurred. For example, I recently closed the door. 
Suppose I try to represent that event by a single transition, with a unique prologue 
leading up to my closing it, a unique interval during which I was closing it, and a 
unique outcome within which it could be said truly that I had closed it. But shortly 
before I began to close the door, someone in Brunei was exercising his free will, 
choosing what to have for a midnight snack, and thus affecting the course of history. 
Various branches of time result from various choices he might make, and some of 
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those branches deviate from the prologue of my favored transition. Are we to say that 
if he had made a different choice than in fact he did, then this event of my closing the 
door would not have occurred? We could say that, of course, and maintain that al-
though I might still have closed the door, the event of doing so would have been a 
different event, though of a similar (or even the same) kind.  

But this seems far more fine-grained than our ordinary discourse would suggest 
was appropriate. Moreover, as Xu points out, we sometimes wish to say that under 
certain conditions an event may become inevitable, and would not want to retract this 
because of causally irrelevant co-occurrent circumstances. Sitting in my office, I drop 
a book. Under the local conditions, it becomes inevitable that the book will fall to the 
floor. We do not want to retract this judgment because of the possibility that a radium 
atom on the moon might decay just as the book begins to slip from my hand, or that 
someone in Brunei might at that moment be freely choosing something for a snack. If 
we want to say that this event, and not just that an event of this kind, was (under the 
circumstances) inevitable then we must be prepared to accept that various transitions 
would count equally as occurrences of this same event. 

We say that a transition τ = 〈p, F〉 occurs in history h iff h runs through τ, i.e. iff 
h ∩ F ≠ ∅. Note that in any such case p ⊂ h, but that this is not enough to assure that 
h runs through τ, since there can be other transitions with the same prologue p. 

Assume for the moment that an event η is, or is associated with, a class of transi-
tions. For simplicity of expression, let’s just speak of the event as consisting of the set 
of associated transitions. Then it is natural to say that event η occurs in history h iff h 
runs through some transition in η. 

Xu [13] proposes that an event is (or at least corresponds to) a class of transitions, 
but that there are limitations on what classes of transitions can count as corresponding 
to a single event. In particular, a single event (as contrasted with events of a given 
kind) cannot occur twice in the same history. We can capture that requirement by say-
ing that the collection of transitions corresponding to a single event must be such that 
no history runs through two different transitions of the collection. I propose to accept 
this for now and just identify an event with a class of transitions meeting this con-
straint. Note that this is akin to taking propositions to be classes of points of evalua-
tion. No doubt this is too coarse-grained an approach to serve all purposes, but it is 
good enough to serve a surprisingly large range of purposes.   

Thus far, I have simply reported work done by others, sometimes altering termi-
nology and notation to suit my own tastes and convenience. But now let me introduce 
terminology for discussing special kinds of events which will be of interest later on.  

When a past has a last moment, I will call it a definite past. Each moment m de-
termines a unique past pm of which it is the last moment. Similarly, by a definite out-
come, I will mean an outcome with a first moment. Any moment n will determine a 
unique definite outcome Fn of which n is the first moment. 

We will have a special interest in transitions of the form 〈pm, Fn〉 for moments m, 
n. I will call such a transition a definite transition. A definite transition will determine 
a closed interval [m, n], with m ≤ n, and each such interval will uniquely determine a 
definite transition. We will speak of the moment m as the moment of initiation of the 
transition, and the moment n as the outcome moment of the transition  〈pm, Fn〉. If an 
event consists entirely of definite transitions, I will call it a definite event. 
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It can happen that all of the transitions in a given event η  have the same prologue 
p. When this happens, for a given prologue p and a given event η, I will call η a p-
event. If all the transitions in a p-event η are immediate transitions, I will call η an 
immediate p-event. When the prologue in question is the prologue pm determined by 
a moment m, we can have an immediate pm-event. Since in general there can be many 
immediate transitions with the same prologue, a given prologue pm will not usually 
determine a unique immediate pm-event. We will define E(pm) to be the class of all 
immediate pm-events. When all the transitions in a pm-event  are extended transitions, 
we will call it an extended pm-event. 

Processes, unlike events, are repeatable, but each occurrence of a process is an 
event.11 This makes it natural to identify processes with kinds of events, i.e. with 
classes of events. Probably a careful analysis of the notion of a process will reveal 
ways in which we should constrain this notion somewhat. For example, in order for 
two events to count as examples of the same process, perhaps it is important that their 
prologues bear some natural similarity to one another, and that their outcomes like-
wise have something in common. Possibly, instead, there should be constraints on the 
intervals associated with the member events. I suspect it will be a delicate matter to 
say what, if any, constraints we should impose for the final account of processes. For-
tunately, I don’t think it will matter much for our present work. So we will count 
every set of events as a process, with an occurrence of any of the member events 
counting as one occurrence of the process, and the occurrence of more than one mem-
ber event counting as more than one occurrence of the same process. 

We will then take actions to be processes of a special sort. But to characterize that 
sort, we will need first to look at some sample logics of action from which we can 
take guidance. 

3   The Basic stit Theories of Action 

To make it possible to discuss the actions of specific agents, we must augment our 
models for branching time in at least two ways: We need to represent the agents in the 
model, and we need to have a way to indicate which options each agent has at any 
given juncture in history. Accordingly, we now introduce the notion of a choice 
frame, gotten by inserting a class A of agents, and a choice-function C into our for-
ward-branching back-connected temporal frames. 

By a choice frame, then, I mean a structure 〈T, <, A, C〉 in which 〈T, <〉 is a for-
ward-branching back-connected temporal frame, and  

(3) A is a non-empty set (of agents); and 
(4) C (the choice function) provides, for each agent a and each moment m,  
 a partition C(a, m) of H(m) such that: 
(4.1) if c is any function on A × T such that for each a ∈ A and each m ∈ T,   

 c(a, m) ∈  C(a, m), then for each m ∈ T:  ∩{c(a, m): a ∈ A} ≠ ∅; 

                                                           
11 I construe a process as something which has occurrences, rather than as a more abstract plan, 

or recipe, for events. Those who may be uncomfortable with this usage can substitute ‘kinds 
of event’ where I use the term ‘processes’. 
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(4.2) (∀m ∈ T)(∀h1, h2 ∈ H(m)) [(∃m′ ∈ h1 ∩ h2)[m < m′] ⇒  

 (∀a ∈ A)(∀c ∈ C(a,m))[h1 ∈ c ⇒ h2 ∈ c]]. 

Condition 4.1 expresses the independence of agents, and condition 4.2 expresses that 
there can be no choice between undivided histories. 

The action operator introduced by Jeff Horty, which he has called the dstit, or de-
liberative stit operator, deals with present actions (ones which culminate at the very 
moment of deliberation, i.e. the very moment of choice), rather than with actions ini-
tiated earlier and culminating now or actions initiated now and culminating latter. I 

will use the notation daA as a more compact12 substitute for his notation [a dstit: A]. 
We can given satisfaction conditions for such formulas as follows: 

 m/h, M  = daA iff  
  (the positive condition: reliability) 
 (+) (∃c ∈ C(a, m): h ∈ c)(∀h′ ∈ c)[m/h′, M  = A ] 

and  (the negative condition: freedom) 
 (–) (∃h″ ∈ H(m))[m/h″, M  ≠ A ]. 

The condition +, the positive condition, says in effect that the choice, from among 
the choices available to a at the moment m, within which history h falls (and which 
may therefore be deemed the choice α actually makes at moment m, from the point of 
view of history h) is one which leads reliably to the truth of A, because A is true along 
each history in that choice. The condition –, the negative condition, says in effect that 
there really was a free choice about the matter, because there was at least one other 
choice available which would not have assured the truth of A. The negative condition 
is what rules out an agent’s claiming credit for the fact that 2 + 2 = 4, for example, 
because with respect to that matter the agent had effectively no freedom of choice.  

Figure 3 below gives a depiction of a typical situation in which a formula dαA 
turns out to be true at a point of evaluation m/h in a choice model. 

A ¬AA

c1 c2 c3

1h h2 h3

m

h

 

Fig. 3. 
                                                           
12 This is indeed a more compact notation; but the chief reasons for preferring this notation are 

(1) that it presents this claim more clearly as a claim involving a parameterized sentential op-
erator and (2) that in this notation each distinct element of the syntax makes a distinct contri-
bution to the semantics (in contrast, for example, to the ‘s’ and the ‘t’ in ‘astit’, not to men-
tion the colon). 
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Here time is depicted as flowing upwards. At the moment m, agent a has, say, 
three choices (two would be sufficient to illustrate my point, more would not interfere 
with the outcome). If a adopts choice c1, then (depending on circumstances not under 
a’s control) time will either continue as in history h, or else as in history h1, but in 
either case A is true. On the other hand, choice c3 is also available, and if it is adopted 
history will continue as in h3, in which case A is false. The middle choice is, for our 
purposes, irrelevant, and there could be additional alternative histories issuing from 
c3, without affecting matters. As long as all the histories issuing from c1 are ones in 

which A is true, the positive condition is met for daA to be satisfied at the point 
m/h, and as long as at least one history issuing from at least one choice, such as c3, is 
one in which A is false, the negative condition is met. So this illustrates a situation in 
which we have  

 m/h, M = daA. 

Among results which fall out fairly easily from the semantics for d, we have the 
following: 

 = daA → A;   (however: ≠A →  daA); 

 = ¬ dat. 

This last validity shows that, in the sense of action expressed by the d operator, no 
agent can take credit for seeing to it that logically true formulas are true.  

For Belnap’s version of stit theory, we need one further element in our models: an 
equivalence relation I on T whose equivalence classes are called instants. Each instant 
has exactly one element in each history, and if any moment in instant i1 precedes any 
moment in instant i2 then no moment in i2 precedes any moment in i1. Thus instants 
cut across histories, synchronizing the histories by indicating which moment in one 
history occurs “at the same time as” a given moment in another history.13  

By a synchronous choice frame, then, I mean a structure 〈T, <, A, C, I〉 in which 
〈T, <, A, C〉 is a choice frame, and  

(5) I (the instant relation) is an equivalence relation on T such that: 
(5.1) (∀m ∈ T)(∀h ∈ H)(∃!n ∈ h)Imn; 
(5.2) (∀h1,h2∈H)(∀m1,n1∈h1)(∀m2,n2∈h2)[Im1m2 ◊ In1n2 ◊ m1<n1 ⇒ m2<n2]. 

Thus in a synchronous frame moments in one history are synchronized with moments 
in other histories. We let s(m,h) be the unique moment n ∈ h such that Imn, i.e. the 
unique moment synchronic with m, but in the history h.  

The action operator introduced by Belnap, which he originally called simply the 
stit operator, but later called the astit or achievement stit operator, deals with actions 
initiated in the past and culminating in the present, and interpreted using synchronous 
choice models. Belnap uses the notation [a astit: A] to express the claim that agent a 

                                                           
13 This naturally makes one wonder whether there are problems of trans-history identity of 

times, corresponding to the much-discussed problems of trans-world identity of individuals 
and objects. However, in this case perhaps such questions can be finessed by taking sameness 
of clock-time in the different histories as our standard for sameness of instant. 
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has seen to it that A is now true, where A is any sentence of our formal language. I 

will use the more compact notation aaA to express the same claim. 
The satisfaction conditions for this operator can be given as follows: 

 m/h, M  = aaA iff for some moment m0 < m: 
  (the positive condition: reliability) 
 (+) (∃c ∈ C(a, m0): h ∈ c)(∀h′ ∈ c)[s(m,h′)/h′, M  = A ] 

and  (the negative condition: freedom) 
 (–) (∃h″ ∈ H(m0))[s(m,h″)/h″, M  ≠ A ]. 

Thus aaA at moment m, along history h, iff there is some prior moment m0 at 
which agent a made a choice which included h and, as the positive condition, along 
each history within that choice A would “now” be true, but also, as the negative con-
dition, there was at least one other history through m0, along which A would not have 
“now” been true. The positive condition assures that the agent’s choice guaranteed the 
truth of A; the negative condition assures that there were other choices available, at 
least one of which would not have guaranteed the truth of A, so that the choice really 
made a difference. 

4   Adding Terms for Actions 

With some logics of action in place, we can begin to consider the question what it is, 

in these pictures, that constitutes the action involved. Formulas such as  aaA and 
daA can be considered to report the occurrence of an action, but they do not provide 
a name for the action reported; they merely point to the agent performing the action 
and the outcome of that performance.  

Questions arise naturally: Would/Should we count it as the same action if it were 
performed by another agent? Would/Should we count it as the same action if it had a 
different result? It may well be that these questions have no canonical answer, i.e. that 
more than one of the possible combinations of answers to these questions is viable, 
with different combinations simply characterizing different, though closely related, 
notions, useful for different purposes. Let us begin, somewhat arbitrarily, by focusing 
attention on the narrowest of these notions, by treating both the agent and the result as 
essential to the identity of the action.  

On this interpretation, it will still be possible for the same action to occur more 
than once. For example, you shut the door, I enter and inadvertently leave the door 
open. You shut the door again, thus performing the same action a second time. We 
could construe the second door-shutting as a different action of the same kind, but it 
seems unlikely that this would be useful, and it would be contrary to the spirit of dy-
namic logic, in which the same action can be performed repeatedly.  

But on this account, what is the action? We begin by noting that a given perform-
ance of the action is an event, and asking ourselves what that event is? Looking  
at Figure 3, we see a situation in which the agent a has choices.14 The choice taken 
                                                           
14 The fact that, in the illustration, there are three choices is inessential. What is essential is that 

there at least two: one satisfying the positive condition and the other satisfying the negative. 
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typically includes various possible histories which may (perhaps because of simultane-
ous choices made by other agents) differ from one another in important respects even 
as regards the facts about the present moment, but which have in common a result of 
the action, namely the truth of A. Another choice available to a at that same moment 
includes at least one history with a different result: along that history A is false. 

The natural answer to the question what event takes place here is that it is the set of 
immediate transitions whose histories together make up the set of histories in the 
choice taken. But that event counts as an occurrence of an action only if there is at 
least one other history through the same prologue p—or, what comes to the same 
thing, through the same moment m of choice. 

So we let an immediate a/A action-event be an immediate pm-event η such that 

• the set of all histories through η constitutes one of a’s choices at moment m, 
• A is  true at m/h for each history h in η, 
• A is false at m/h* for some other history h*. 

Then we can define the action involved as the class of events of this type. We let 
d(a,A) be the class of all immediate a/A action-events. We can now augment our lan-
guage to include an operator δ used to form expressions such as δ(a,A), to name the 
action d(a,A). 

Whenever such an action is performed, we can now name that action. We can also 
introduce a (present-tense)15 performance verb π, and provide an interpretation for it 
that will support the equivalence 

 πδ(a,A)    ↔ daA. 

We can define Π(m,h) to be the class of immediate actions performed (by anyone, 
with any result) at the point m,h. Then we have the satisfaction condition:  

 m/h, M  = πδ(a,A) iff d(a,A) ∈ Π(m,h). 

For each action-term δ(a,A), we can now allow a modal operator [δ(a,A)].  If we 
are to construe this in a fashion that will closely mimic a modal operator from a dy-
namic logic, then we will want to use this satisfaction condition: 

 m/h, M  = [δ(a,A)]B iff (∃c ∈ C(a, m): h ∈ c)(∀h′ ∈ c)  

      [m/h′, M  =daA ∧ B]. 

As with PDL operators, this would then be a normal modal operator, with a meaning-
ful dual along the same lines as in dynamic logics, and supporting the schema K and 
the rule RN, thus assuring that the operator distributes across conditionals, but also 
that when B is a logical truth, [δ(a,A)]B will be, as well. We may consider this latter 
an unfortunate fact, but it is the price we pay for having a normal operator. We can 
make this palatable by adopting an appropriately careful interpretation of the operator: 
to say that [δ(a,A)]B is true (at m/h) is not to say that a’s performing the action 
named by [δ(a,A)] causes B to be true, but rather simply that, as it happens, this ac-
tion, performed now, reliably results in a state in which B is true. 

                                                           
15 Other tenses can be gotten by combining this with the usual tense operators defined earlier. 
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Can we catenate actions, as defined above, or combine or modify them in the other 
ways that are characteristic of dynamic logic?  Here we encounter two problems. First, 
since each such action is attributed to an agent, and different actions could be attributed 
to different agents, arbitrary catenation could lead to a sequence of events that could not 
be attributed to any one agent. That problem will arise in any treatment of action which 
permits discussion of actions by different agents and permits catenation of actions. Dis-
cussing this challenge will have to be reserved for a different paper.16  

A second problem is specific to the use of the operator d. In the satisfaction con-

ditions for the d operator, the moment of evaluation is the same moment as the mo-
ment of choice, As a result, all the actions we define directly using this operator are 
instantaneous actions, involving sets of immediate transitions. Thus it makes little 
sense to think of catenation of such actions as their sequential performance. Since 
each such action ends at the very same moment at which it starts, the “second” action 
in the catenation will start at the moment at which the “first” action ends, but that is 
also the moment at which the “first” starts, so the two are really simultaneous. On 
reflection, this suggests that the “actions” identified this way are merely instantaneous 
choices, and are a degenerate case of actions more generally. 

So let’s turn to the logic of the operator a, to see what guidance it might offer. 

Unlike the operator d, the operator a does differentiate between the moment of 
choice and the moment of evaluation. This, then, will involve a non-trivial interval of 
time between the initiation of the action by the agent’s choice, and the culmination of 
the action in the truth of the formula A.   

The action lying behind the truth of a claim of the form aaA will then be the set of 
all extended pmo

-transitions whose outcome moments are synchronous with the mo-
ment m of evaluation and whose histories all lie in the same cell of C(a, m0) as h. 

All such actions would extend over an interval of time, so it will be meaningful to 
speak of catenating them. But the restriction to cases in which the transitions all end 
at the same time seems artificial, and extremely restrictive. When I perform the action 
of shutting the door, various of the histories involved in my critical choice may differ 
from one another with respect to how quickly the door gets shut, so the defining out-
come may not (indeed, most likely will not) occur synchronously across the histories 
involved. This leads to the thought that we should drop the requirement of synchrony.  

5   Adding General Extended Actions 

Let us then make room for the ordinary kind of action whose completion requires an 
interval of time, but without imposing any special requirements about when the action 
begins or ends. With this in mind, we now recognize that some definite events should 
be considered occurrences of actions. Which ones? Guided by analogy with the satis-
faction conditions for the stit operators, we want to impose both positive and negative 
conditions on a definite event in order to count it as an occurrence of an action. Note 
that each transition τ in a definite event η will have a uniquely determined prologue. 

                                                           
16 See the forthcoming [5]. 
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Each such transition τ corresponds to a closed interval [mτ, nτ], with the moment mτ 
involved being the moment at which that transition begins. Then we can state reason-
able positive and negative conditions as follows: 

a definite event η is an occurrence of an action iff  

 for each transition τ in η, there is some agent a such that 
 (the positive condition: reliability) 
(+) there is some choice available to a at moment mτ  
 such that the set of histories in that choice is the set of all 
 histories in all transitions of η that begin at moment mτ; 

and (the negative condition: freedom) 
(–) there is at least one other choice available to a at moment mτ. 

Let us call such an event an action-event. The picture is this: there will in general 
be various clusters of transitions included in a definite event, each cluster correspond-
ing to one possible occurrence of the event. For one such cluster to correspond to the 
occurrence of an action, it must precisely correspond to one choice available to some 
agent who had at least one alternative choice available at the time. To correspond pre-
cisely to a given choice, the cluster of transitions must collectively involve all and 
only the histories through that choice. 

We can now add terms for actions to our language, without requiring that these 
terms be constructed from other portions of the language, as were the terms of the 
form δ(a,A). As before, however, actions will still be considered as kinds of events, 
rather than as single events, so that we will be able to speak of repetition of the same 
action. So let α, β, etc. be terms for designating actions. Semantically, let the valua-
tion V interpret each such term by assigning it a set of action-events. Since we are no 
longer demanding that an action be characterized by its agent or its result, we will put 
no constraints on the collections of action-events. Thus we are allowing that different 
agents could perform the same action, and that the same action could have different, 
or indeed unpredictable, results. But each occurrence of an action will be an occur-
rence of a constituent event, and consequently will be associated with a particular set 
of closed intervals with the same first moment. That first moment is the moment of 
initiation of the occurrence of the action, and the various moments which occur as 
final moments of the intervals associated with these various transitions are the mo-
ments at which the results of  this occurrence of the action are to be evaluated.  

We are now in a position to mimic a great deal of PDL. In particular, we now have 
a rich enough environment that we can readily introduce normal modal operators [α], 
[β], etc., and catenation and union of actions, in a meaningful way. In particular, cate-
nation will now be non-trivial, because actions will in general occupy a span of time, 
and one can begin at the conclusion of another. The catenated action will correspond 
to the set of transitions with the prologue of the first action and the outcomes of the 
various runnings of the second that begin at terminal moments of the various outcome 
moments of the first.  

If, however, for a given outcome moment for a transition in the occurrence of the 
first action, the second action doesn’t contain any transitions which can be initiated 
at that moment, then the catenation aborts, and the catenated expression designates 
no action. In this respect the notion of action proposed here will differ from that  
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examined in PDL. This seems to be an unavoidable result of the difference between 
human actions and executions of pieces of computer code, however. Unless the com-
puter has crashed, the execution of any piece of code can be followed by the execution 
of any other, though the results may of course be garbage. But human actions will 
normally have pre-conditions for their very performance, not just for their useful or 
meaningful performance: if the door is already closed, it is simply not possible to close 
the door, for example; if there is no hammer at hand, I cannot swing a hammer. 

Any given occurrence of an action will be attributable to at least one agent, whose 
array of choices was involved in its meeting the conditions for being an occurrence of 
an action. Consequently, we can now introduce a personalized performance operator 
πa which will apply truly to an action-term α, at a given moment, along a given his-
tory, iff one of the occurrences of that action is an occurrence at that moment, by that 
agent, and that history falls within one of its transitions. Such an operator will indicate 
that the action is being initiated. Related operators will be available to indicate that 
the action is in progress, or that it has just finished. All of these can be combined with 
the usual tense operators, and the result will be a richly expressive language. 

By now, I believe, we have established the outline of a promising merger between 
dynamic logic and Delta-systems of the logic of action. Much remains to be done, of 
course, in the way of exploring that promise, but that must await another occasion. 
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Abstract. In [1] and [2] we have introduced a novel deontic action logic
for reasoning about fault-tolerance. In this paper we present a tableaux
method for this logic; this proof system is sound and complete, and be-
cause the logic has the usual boolean operators on actions, it also allows
us to deal successfully with action complement and parallel execution
of actions. Finally, we describe an example of application of this proof
system which shows how the tableaux system can be used to obtain
(counter-) models of specifications.

Keywords: ModalLogic,DeonticActionLogic,Tableaux Systems,Fault-
tolerance, Software Specification.

1 Introduction

One of the benefits of deontic logic is the possibility of expressing normative
predicates, and therefore differentiating between “ideal situations” and “viola-
tion states”. In particular, deontic action logic (or DAL for short) is a variation
of deontic logic (introduced in [3] and related to dynamic deontic logic [4]) which
introduces normative predicates on actions. (These systems are called ought-to-
do logics.) As is pointed out in several works ([3], [5], [6] and [4]), deontic action
logics seem to be useful for application in software specification: they allow us to
express which actions are allowed (or forbidden) in a given scenario, and then to
reason about the consequences of executing a particular action, whether allowed
or not.

In particular, we are interested in specifying fault-tolerant systems, and there-
fore notions such as violations, violation recovery and correct behaviors are im-
portant for us. As we argued in [1] and [2], DALs are suitable in the context
of fault-tolerance: the basic notions detailed above can be formalized naturally
using the deontic predicates (e.g., permission, obligation and forbidden), some
examples of application can be found in [7] and [1].

On the other hand, tableaux systems ([8]) are practical proof systems which
are strongly related with automated theorem proving (see [9]). Several tableaux
systems have been proposed for variants of dynamic logics and modal logics.
In [10], a tableaux system for propositional dynamic logic is described, which
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is shown to be more efficient than other decision methods. In [11] the method
of labelled tableaux is introduced to deal with modal logic. Meanwhile, in [12],
a tableaux system that incorporates some new characteristics is introduced to
deal with dynamic logic with converse. This last system allows us to decide that
logic, and in addition to find counterexamples in the case of non-valid formulae.

In this paper we introduce a tableaux system for the deontic action logic
described in [2]; this logic uses boolean operators on actions, and therefore the
system allows us to manage action complement and parallel execution of actions
and the standard deontic operators. One of the main points to note is that, in
case of a non-valid formula, the tableaux system can be used to build counter-
examples, in such a way that the model built in this way shows which actions
are performed in each step and which actions are not. We intend to use this
proof system for the verification of fault-tolerant software, in such a way that it
allows us to verify properties or to get critical traces of executions which yield
a fault.

The paper is organized as follows. In section 2 we give a brief introduction
to our deontic action logic. In sections 3 and 4 we present the tableaux system
and some of its meta-properties (soundness and completeness). In section 5 we
describe an example to illustrate the application of the ideas presented earlier.
Finally, we discuss some further work and conclusions.

2 A Deontic Action Logic

In this section we present the basic definitions of the deontic action logic which
we use in the following sections. The interested reader can find in [1], [2] a more
extensive introduction to this logic, with some examples of applications.

The language of the logic is given by a vocabulary 〈Δ0, Φ0〉, where Δ0 is
a finite set of primitive actions (we use lower case alphabet letters to denote
them: a, b, c, d, ...), and a set Φ0 of primitive propositions, denoted by p, q, s, ....
Using these two sets we can build more complicated formulae using the standard
propositional connectives, the modal connectives, deontic predicates (permission
and obligation) and boolean operators over actions. For example: [a� b](p → q)
is a well-formed formula. The set Φ of formulae can be defined as usual by
induction. The intuition behind each formula is as follows:

– α =act β: actions α and β are identical.
– [α]ϕ: after any possible execution of α, ϕ is true.
– [α � β]ϕ: after the non-deterministic execution of α or β, ϕ is true.
– [α � β]ϕ: after the parallel execution of α and β, ϕ is true.
– [U]ϕ: after the non-deterministic choice of any possible action, ϕ is true.
– [∅]ϕ: after executing an impossible action, ϕ becomes true.
– [α]ϕ: after executing an action different from α, ϕ is true.
– P(α): every way of executing α is allowed.
– Pw(α) : some way of executing α is allowed.

We have two permission predicates: Pw(α) is called weak permission, and P(α)
is called strong permission. Both versions of permission are sometimes found in
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the deontic literature. Here we use both versions to define obligation: O(α) def⇐⇒
P(α) ∧ ¬Pw(α). That is, an action is obliged if it is allowed to be performed
in every context (strong permission), and every other action is forbidden (weak
permission). We also define a strong relationship between the two forms of per-
missions. See [2]. This definition of obligation is similar to that given in [13],
but here we use the two variants of permission to define the obligations. This
definition avoids some paradoxes, like Ross’s Paradox (see [14] for a detailed list
of deontic paradoxes).

An interesting aspect of this logic is that the interpretation of deontic pred-
icates is independent of the modal operators (in the semantic structures they
have an independient relational interpretation), whereas in other works (e.g., [4]
and [6]) the deontic operators are reduced to modal formulae, for example in [4]
permission is defined: P(α) ≡ 〈α〉¬V . That is, an action is allowed if there exists
a way to execute it without producing a violation. Note that, in this approach
the permission of an action implies that this action can be executed. We follow
the philosophy established in [15], in the sense that modal operators are used
for descriptions of components (in a pre and post-condition style), while deontic
operators are used for action prescription (i.e., to express when an action may,
or must, occur). In our view, description and prescription are different concepts,
which should be reflected in a separation of deontic and modal predicates in the
logic.

We introduce briefly the semantics of the logic with some remarks; a deeper
description of this can be found in [2].
Definition 1 (models). Given a language L = 〈Φ0, Δ0〉, an L-Structure is a
tuple: M = 〈W ,R, E , I,P〉 where:
– W, is a set of worlds.
– R, is an E-labeled relation between worlds. We require that, if (w, w′, e) ∈ R

and (w, w′′, e) ∈ R, then w′ = w′′, i.e., R is functional.
– E, is a non-empty set of (names of) events.
– I, is a function:

• For every p ∈ Φ0 : I(p) ⊆ W
• For every α ∈ Δ0 : I(α) ⊆ E.

In addition, the interpretation I has to satisfy the following properties:
I.1 For every αi ∈ Δ0: |I(αi)−

⋃
{I(αj) | αj ∈ (Δ0 − {αi})}| ≤ 1.

I.2 For every e ∈ E: if e ∈ I(αi) ∩ I(αj), where αi 
= αj ∈ Δ0, then:
∩{I(αk) | αk ∈ Δ0 ∧ e ∈ I(αk)} = {e}.

I.3 E =
⋃

αi∈Δ0
I(αi).

– P ⊆ W × E, is a relation which indicates which event is permitted in which
world.

We can extend the function I to well-formed action terms and formulae, as
follows:

-I(¬ϕ) def= W − I(ϕ) -I(α � β) def= I(α) ∩ I(β)
-I(ϕ → ψ) def= I(¬ϕ) ∪ I(ψ) -I(α) def= E − I(α)
-I(α � β) def= I(α) ∪ I(β) -I(∅) def= ∅
-I(U) def= E
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Note that here we do not follow the traditional approach of interpreting each
action as a relation (e.g., see [16]), instead we interpret each action as a set of
“events”, the events that it “produces” or “participates in” during its execution,
and then the action combinators are interpreted as the classical boolean set
operators. Note that the restrictions on models (I.1 and I.2) imply that we have
one point sets in the family of the event sets, intuitively every “event” is produced
by a combination of actions in our systems (system actions and enviromental
actions). Then, if we take a maximal set of actions, the execution of this set only
produces an event in our system; in other words, this set of actions is complete in
the sense that they describe unambiguously one event in the system execution.

This is an “open semantics” approach; for example: a component A can send
a message to a component B, and several factors (if the network is working cor-
rectly, no other component sending another message using the same connection,
and so on) will influence the result of the action. In some sense, we adopt the
view that non-determinism is caused for some reason, but sometimes we just
do not know which external actors will influence our actions. In some sense our
specifications will be always incomplete (we can add as many external actions
as we want), but we can verify specifications modulo some hypothesis (we can
restrict the number of external actions). One nice thing about this semantics
is that there is a strong connection (a kind of compactness property) relating
weak permission and strong permission: when an action is weakly allowed to be
performed in every context, then it is strongly allowed. This property is a key
axiom of the Hilbert-style Axiomatic system that we present in [2].

The definition of the relation � between worlds, models, and formulae, is as
follows.

– w, M � α =act β
def⇐⇒ I(α) = I(β)

– w, M � [α]ϕ def⇐⇒ for all w′ ∈ W and e ∈ I(α) if w
e→ w′ then w′, M � ϕ.

– w, M � P(α) def⇐⇒ for all e ∈ I(α), P(w, e) holds.
– w, M � Pw(α) def⇐⇒ there exists some e ∈ I(α) such that P(w, e)

For the standard formulae, the definition is as usual. Note that the interpre-
tation of the modalities is relative to states, a difference from the relational
interpretation; the semantics of the complement of an action is not the absolute
complement (that is, all the pairs of states that are not related by that relation-
ship), instead the complement is relative: only the states related with the actual
state are taken into account.

3 A Tableaux System

In [11], a tableaux system which uses symbols to represent worlds of the seman-
tic models is introduced (following the approach of [17]). The main idea behind
this approach is to enrich formulae with prefixes which indicate in which worlds
these formulae are true. This approach is used for many other logics, and in par-
ticular in [12], where these techniques are used to reason about dynamic logic
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with converse. When we adapt this techniques to our logic, deontic operators fit
neatly into the system; the duality between the strong and weak permission can
be used to formulate a complete (and sound) tableaux proof system. In contrast
with the work cited above, we use sequences of actions as labels in the formu-
lae; these sequences allow us to build models in the case that a formula is not
valid (counter-models). The action terms used in the labels have some particu-
lar characteristics: every one of these action terms describes the occurrence of
a maximal set of primitive actions, that is, each of these terms describes which
primitive actions are performed and which are not.

A prefixed formula has the following structure: σ : ϕ, where σ is a label made
up of a sequence of boolean (action) terms built from a given vocabulary. We use
the following notation for sequences: 〈〉 (the empty sequence), x �xs (the sequence
made of an element x followed by a sequence xs).

From here on we will consider a fixed vocabulary: V = 〈Φ0, Δ0〉. Also, we will
use some axiomatization of boolean algebras, denoted by ΦBA; note that there
exist complete and decidable axiomatizations of boolean algebras (see [18]). We
denote by Δ0/Γ the boolean terms over Δ0 modulo a set of axioms Γ ; usually,
Γ is an extension of the theory of boolean algebras, i.e., ΦBA ⊆ Γ . In this case,
we say that Γ is a boolean theory. We write Γ �BA t1 =act t2, if the equation
t1 =act t2 is provable from the boolean theory Γ using equational calculus (see
[19]). This implies that our method depends on some suitable method to decide
boolean algebras. Using this notation, we denote by At(Δ0/Γ ) the set of atoms
in the boolean algebra of terms modulo Γ (note that the boolean algebra is
atomic because the set of primitive action symbols is finite). In the same way we
denote by At�α(Δ0/Γ ) the set of atoms γ ∈ At(Δ0/Γ ) such that Γ �BA γ � α,
where � is the order of the boolean algebra of terms (and At�α(Δ0/Γ ) denotes
the strict version of this set).

Now, we can introduce the notion of tableaux.

Definition 2 (Tableaux). A tableaux is a (n-ary) rooted tree where nodes are
labelled with prefixed formulae, and a branch is a path from the root to some leaf.

Intuitively, a branch is a tentative model for the initial formulae (those whose
negation we try to prove valid). Given a branch B, EQ(B) is the set of equations
appearing in B.

We introduce the following (useful) classification of formulae. (Note that in
the literature α is used instead of A, and β instead of B; here we do not use
Greek letters to avoid confusion with action terms.)

A A1 A2 B B1 B2

σ : ϕ ∧ ψ σ : ϕ σ : ψ σ : ϕ ∨ ψ σ : ϕ σ : ψ
σ : ¬(ϕ ∨ ψ) σ : ¬ϕ σ : ¬ψ σ : ¬(ϕ ∧ ψ) σ : ¬ϕ σ : ¬ψ
σ : ¬¬ϕ σ : ϕ

We also introduce the less standard rules: (we follow the standard notation for
modal logics (see [11])), and introduce the P and N prefixed formulae (called π
and ν, respectively, in the literature).
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N N(γ) P P (γ)
σ : [α]ϕ σ � γ : ϕ σ : 〈α〉ϕ σ � γ : ϕ
σ : ¬〈α〉ϕ σ � γ : ¬ϕ σ : ¬[α]ϕ σ � γ : ¬ϕ

σ : ¬P(α) σ : ¬P(γ)
σ : Pw(α) σ : Pw(γ)

where γ ∈ At(Δ0/Γ ) (that is, γ is an atom in the term algebra) for some boolean
theory Γ . And we introduce a new classification ND (deontic necessity) for strong
permission.

ND ND(γ)
σ : P(α) σ : P(γ)
σ : ¬Pw(α) σ : ¬Pw(γ)

Using the above classification of formulae, we can introduce the rules of the
tableaux method. In figure 1 the classic rules for standard formulae can be found.
In figure 2 we show the rules for N and ND formulae: rule N is standard (see
[9]); it does not introduce new labels in the branch, but it adds new formulae
to labels already in the branch; intuitively, for all (the states denoted by) the
labels reachable from the current state, the N formula must be true. On the
other hand, rule ND for deontic necessity imposes that the corresponding action
must be allowed for all the possible contexts in the actual state.

A :
A

A1

A2

B :
B

B1 | B2

Fig. 1. Classic rules for formulae of type A and B

Rule P for modal and deontic possibility is shown in figure 3; given a P
formula, this rule creates one branch for each possible execution of the front
action in the formula. Note that, in each branch, an inequation saying that the
action must be not impossible is added, allowing us to avoid adding labels that
cannot exist in the semantics. In the same figure we can see the rule Per; this
rule says that if an action which is maximal (in the sense that it cannot have
different executions) is weakly allowed, then it is also strongly allowed. Note
that we have not shown any rule for equality; this is because equality reasoning
is implicit in our calculus. For simplicity of the presentation of the concepts,
we rule out those formulae of the form: [α](α =act β), that is, modal formulae
where equality is after a modality. This does not affect the completeness of the
method since formulae of this kind are equivalent to formulae without modalities
(see [2]). It is straightforward to extend the method described here to manage
these kinds of formulae. Now we introduce the notions of closed, boolean closed,
deontic closed and open branch. Keep in mind that a branch is a set of prefixed
formulae.
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ND :
ND

ND(γ1)
.
.
.

ND(γn)

for all γ1, ..., γn ∈ At�α(Δ0/Γ )

N :
N

N(γ1)
.
.
.

N(γn)

for all γ1, ..., γn ∈ At�α(Δ0/Γ ) already in the branch

Fig. 2. Rules for deontic and modal necessity

P :
P

P (γ1)
〈〉 : γ1 �= ∅ | ... | P (γn)

〈〉 : γn �= ∅

with {γ1, ..., γn} = At�α(Δ0/Γ )

Per :
σ : Pw(γ)

σ : P(γ)
with γ ∈ At(Δ0/Γ )

Fig. 3. Rules for possibility and permission

Definition 3 (deontic closed). Given a branch B and a boolean theory Γ , we
say that B is deontic closed with respect to Γ if it satisfies some of the following
items:

– σ : P(γ) ∈ B and σ : ¬P(γ) ∈ B, for some γ ∈ At(Δ0/Γ ), and some label σ.
– σ : Pw(γ) ∈ B and σ : ¬Pw(γ) ∈ B, for some γ ∈ At(Δ0/Γ ), and some label

σ.
– σ : ¬P(γ) ∈ B and σ : Pw(γ) ∈ B, for some γ ∈ At(Δ0/Γ ), and some label

σ.

Note that we have not included σ : P(γ) and σ : ¬Pw(γ) as being mutually
contradictory; this is because they are not contradictory when Γ �BA γ =act ∅.
This fact yields the next definition.

Definition 4 (extended boolean theory). Given a branch B, the extended
boolean theory (denoted by EQ∗(B)) of B is defined as follows:

EQ∗(B) = {(γ =act ∅) | γ ∈ At(Δ0) ∧ σ : P(γ), σ : ¬Pw(γ) ∈ B} ∪ EQ(B)
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It is useful for us to introduce the notion of boolean closed branch, intuitively
these branchs are inconsistent boolean theories. We call EQ(B) the set of equa-
tions in the set B.

Definition 5 (boolean closed branch). A branch B is boolean closed iff
EQ∗(B) ∪ ΦBA � ∅ =act U, or EQ∗(B) � α =act β and α 
=act β ∈ B

Definition 6 (closed branch). A branch is closed if either it has a proposi-
tional variable σ : p and a negation of it σ : ¬p, or it is deontic closed or boolean
closed.

An open branch is a branch which is not closed.
We describe an algorithm to build the tableaux of a given formula; using it

we can prove if a given formula is valid or not (and we prove the completeness
of the proof system in section 4.1).

Algorithm 1. Suppose that we wish to know if ϕ is valid. First, we put 〈〉 : ¬ϕ
at the root of the tree, and then we apply the rules given above as follows. At step
0 we apply rules A and B, if possible, to obtain all the equations in the formula
(if it contains any). Then at step N of the algorithm: if the tableaux is closed,
then stop. Also, if it is not possible to apply any rule, stop. Otherwise, take the
formula σ : ϕ which occurs as close to the root as possible, which has not been
used, and then apply the following steps:

– If A and B rules can be applied, then we apply them and add the formulae
at the end of the branch.

– If ND can be applied, apply it and add the resulting formulae at the end of the
branch. If this application of ND converts the actual branch to being closed
(as it can add some contradictory deontic formulae as explained above), then
close the branch and start again with another branch. Otherwise continue
with the next step.

– If we cannot apply any of the above steps, then search for a P formula, if
there is one, and consider the boolean theory ΦBA ∪EQ∗(B), where B is the
actual branch, and extend this (new version of the) branch using the P rule.

– If no P rule can be applied, then if it is possible to apply a N rule, apply it
and extend the actual branch at the end.

This finishes the step N + 1, and then we apply the procedure again. �

This method ensures that the set of equations underlying the formulae will be
obtained before starting to break down the modalities. Note that, if we have
σ : ¬Pw(γ) and σ : P(γ) and γ occurs in an existencial formula (e.g., 〈α〉ϕ),
then the branch will be closed because the equations γ 
=act ∅ and γ =act ∅ will
convert the boolean theory into a closed one.

A branch which is not closed gives us a model which is a counterexample and
we shall show an example of this later on.
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4 Soundness and Completeness

As usual, the soundness of the tableaux system is proved by a theorem which
ensures that each rule is safe (with respect to satisfiability). Towards this goal
we introduce the following definitions.

Definition 7 (Mapping). Given a set S of prefixed formulae (being F the set
of prefixes occurring in it) and a model M = 〈W ,R, E , I,P〉 over a vocabulary
〈Δ0, Φ0〉, a mapping is a function ι : F → W , such that:

– For all σ and σ � γ in F , there exists e ∈ I(γ) such that ι(σ) e→ ι(σ � γ).

Definition 8 (SAT Branch). A branch B is SAT iff there exists a model M
and an interpretation ι such that, for every σ : ϕ, it is the case that ι(σ), M � ϕ.

We say that a tableaux T is SAT if there exists a branch in T which is SAT.
Let us introduce a key theorem.

Theorem 1. If T is a SAT tableaux, then a tableaux T ′ obtained by an appli-
cation of a tableaux rule is also SAT.

Proof. Suppose that a branch B of T is SAT, and let M = 〈W ,R, E , I,P〉 be
the model and ι the interpretation for B. We prove the theorem by induction; for
the A and B rules the proof is standard.

Rule P : Suppose σ : 〈α〉ϕ ∈ B. And ι(σ), M � 〈α〉ϕ, obviously I(α) 
= ∅, and
also:

∃e ∈ I(α) : ∃w′ ∈ W : w
e→ w′ ∧ w′, M � ϕ (1)

If B ∪ {σ � γi : ϕ} is not SAT in M , and this means for all γi ∈ At(Δ0/Γ ):

∀e ∈ I(γi) : ∀w′ ∈ W : w 
 e→ w′ ∨ w′, M � ϕ
⇒
∀e ∈ I(γ1) ∪ ... ∪ I(γn) : w 
 e→ w′ ∨ w′, M � ϕ
⇔
∀e ∈ I(γ1 � ... � γn) : w 
 e→ w′ ∨ w′, M � ϕ
⇔
∀e ∈ I(α) : w 
 e→ w′ ∨ w′, M � ϕ

Contradicting 1.
If σ : Pw(α) ∈ B (we must have EQ(B) � α 
=act ∅) then ι(σ), M � Pw(α),

and this means:
∃e ∈ I(α) : P(ι(σ), e) (2)

and therefore e ∈ I(γi) for some γi ∈ At(Δ0/Γ ), and:

∃e ∈ I(γi) : P(ι(σ), e) (3)

and this means: ι(σ), M � Pw(α).
The cases ¬[α]ϕ ∈ B, ¬P(α) ∈ B are similar to the first and second case,

respectively.
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Rule N : If σ : [α]ϕ ∈ B, then ι(σ), M � [α]ϕ, this means:

∀w′ ∈ W , e ∈ I(α) : ι(σ) e→ w′ ⇒ w′, M � ϕ (4)

then, since for every γi ∈ At(α): I(γi) ⊆ I(α), it is the case that:

∀w′ ∈ W , e ∈ I(γi) : ι(σ) e→ w′ ⇒ w′, M � ϕ (5)

Now, if σ �γ is in B then we have ι(σ) e→ ι(σ �γ) (where e ∈ I(γi)) by definition,
and then ι(σ � γi), M � ϕ.

Rule ND If σ : P(α) ∈ B, then we have ι(σ), M � P(α), and this means:
∀e ∈ I(α) : P(ι(σ), e). And now if we add σ : P(γi) in B (for all γi ∈ At(α)),
then if ι(σ), M � ¬P(γi) for some i, it is not hard to see that ι(σ), M � ¬P(α),
which is a contradiction. The only possibility is that w, M � ¬Pw(γi), but this
just implies that I(γi) = ∅, and then ι(σ), M � P(γi). �

The soundness of the method follows by a standard argument.

Corollary 1. If ϕ is tableaux provable (i.e. there exists a closed tableau for ¬ϕ)
then � ϕ. �

4.1 Completeness

Towards the proof of completeness we introduce the notions of front action and
Hintikka sets :

Definition 9 (Front Action). Given a N or P formula ϕ and considering its
syntactical tree, the front action is the nearest action to the root of this tree. For
example for the formula [α]([β]ϕ ∧ 〈γ〉ψ) its front action is α.

Definition 10 (Hintikka Sets). Let S be a set of prefixed formulae and F the
set of prefixes in S. We say that S is Hintikka iff:

– S is not closed.
– If σ : P(α) and σ : ¬Pw(α) ∈ S, then EQ(S) �BA α =act ∅
– If A ∈ S, then A1 ∈ S and A2 ∈ S.
– If B ∈ S, then either B1 ∈ S or B2 ∈ S, or both.
– If N ∈ S, then N(γi) ∈ S, for all γi ∈ At�α(Δ0/EQ(S)) (where α is the

front action in N) or EQ(S) �BA α =act ∅.
– If P ∈ S, then P (γi) ∈ S, for some γi ∈ At(α) (where α is the front action

in P ) and EQ(s) �BA α =act ∅.
– If ND ∈ S, then ND(γi) for all γi ∈ At�α(Δ0/EQ(S)), or EQ(S) �BA

α =act ∅.
– If σ : Pw(γi) ∈ S for some γi ∈ At(Δ0/EQ(S)), then σ : P(α) ∈ S.

Now, we prove that any Hintikka set is SAT.
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Theorem 2. Any Hintikka set is SAT.
Proof. Given a Hintikka set S we define the following model:

– W = {σ | σ : ϕ ∈ S, for some formula ϕ}
– E = At(Δ0/Γ ), where Γ = ΦBA ∪ EQ(S).

– R = {σ [γ]→ σ � γ | σ, σ � γ ∈ W}
– p ∈ I(w) ⇔ (σ : p) ∈ S
– I(α) = At�α(Δ0/Γ )
– P = {(σ, [γ]) | (σ : P(γ)) ∈ S ∧ γ ∈ E}

We must prove that this is a model for S. We define the mapping ι as follows:
ι(σ) = σ (the identity function). Let us prove that it is really a model. The proof
is by induction.
Base Case: Obviously, if σ : p ∈ S then σ, M � p. We cannot have both p and
¬p in S, and therefore the definition for propositional variables is correct.

If σ : α =act β ∈ S, then EQ(S) �BA α =act β and therefore At(α) = At(β).
Ind.Case: We prove this by cases:

A rule: If A ∈ S then A1 and A2 are both in S, and the result follows by the
definition of our model.

B rule: Similar to the A rule case.

N rule: If (σ : [α]ϕ) ∈ S, and EQ(S) �BA α =act ∅), then At�α(Δ0/Γ ) = ∅ and
therefore σ,M � [α]ϕ. If EQ(S) �BA α =act ∅, then σ � γi : ϕ for all γi ∈ F and
γi ∈ At�α(Δ0/Γ ), and therefore ∀e ∈ I(α) : σ

e→ σγi ⇒ σ � γi � ϕ.
P rule If σ : 〈α〉ϕ ∈ S, then σ � γi : ϕ for some γi ∈ At�α(Δ0/Γ ), thus
σ � γi,M � ϕ and then σ,M � 〈α〉ϕ.

For σ : Pw(α) ∈ S, then σ : Pw(γi) for some γi ∈ At�α(Δ0/Γ ) and then by
definition of Hintikka sets σ : P(γi), which implies by definition of M: σ,M �
Pw(α).
ND rule: If σ : P(α) ∈ S, then if EQ(S) �BA α =act ∅, then At�α(Δ0/Γ ) = ∅
and therefore σ,M � P(α). Otherwise, At�α(Δ0/Γ ) 
= ∅ and then for all γi ∈
At�α(Δ0/Γ ) occurrs σ : P(γi) ∈ S, and this implies σ,M � P(α). �
Let us introduce the definition of completed branch.

Definition 11. A branch is completed if we have applied algorithm 1 to it.

Note that, given an open branch B, we can always extend it to a completed open
branch by theorem 1 (the algorithm just applies tableaux rules).

From here we can prove completeness; first we prove that a completed open
branch is a Hintikka set.

Theorem 3. If B is a completed open branch, then it is a Hintikka set.

Proof. The result follows trivially from the definition of completed open branch
and the definition of algorithm 1. �
Completeness follows, i.e, every valid formula has a closed tableau.
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5 An Example

In this section we show a simple example of an application which gives some
intuition about how to use the proof system in practice. We use a well-known
contrary-to-duty paradox: the Reagan-Gorbachov example introduced in [20].
Contrary-to-duty reasoning is inherent in fault-tolerant systems, where we have
secondary obligations arising from violations of primary norms.

One interesting aspect of deontic action logic is that several paradoxes of stan-
dard deontic logic are no longer paradoxical, or they cannot even be expressed
in DAL (see [14]). The Reagan-Gorbachov paradox is one of them: you ought not
to tell the secret to Reagan or Gorbachov ; if you tell the secret to Reagan, you
have to tell it to Gorbachov ; if you tell the secret to Gorbachov; you must tell
it to Reagan; you tell the secret to Reagan. In standard deontic logic, we get a
contradiction. But in action logics the paradox vanishes, and we can formulate
it as follows: O(r � g), [r]O(g), [g]O(r), where g and r are the obvious actions.
Note that, in the logic, we cannot express that an action is performed (we can
do it in the extension given in [1]); instead we can prove that it is possible to tell
the secret to Reagan or to Gorbachov (i.e., this action will not yield an inconsis-
tency). To do that we add the sentence 〈r∪g〉�. If we use the tableaux with these
formulae, we get a model telling us that this set of formulae is not inconsistent
(i.e., the negation (of the conjunction) of these formulae is not valid).

In figure 4 we can see the tableaux for the example; we consider s the action
of keeping the secret and we have added the following equations to the set of
formulae: r�g =act ∅ (you cannot tell Gobarchov and Reagan at the same time),
r � s =act ∅ (you cannot tell Reagan and keep the secret) and g � s =act ∅ (you
cannot tell Gorbachov and keep the secret). With these restrictions we have:
At(Δ0/Γ ) = {r � s � g, g � s � r, s � r � g}. Note that we do not put these
equations on the tableau to save space. The tableaux is built as follows: first we
put the original set of formulae in the root of the tree (labelled with the empty
sequence of actions), and after that we just use the definition of obligation and
the α rule, and we add lines 5 and 6. And then, using the rules of deontic
necessity, we obtain the rest of the formulae in the root. Therefore, we can use
rule P on line 4, obtaining the two branchs, and then we apply rule N in the
formula in line 2 of the root, this gives us the second formula of the left branch,
and after that we apply the definition of obligation, the α rule and the ND rule,
leaving the branch open. The same procedure is applied to the right branch.

By completeness, the existence of open branches implies that the set of for-
mulae is satisfable, indeed the completeness proof gives us a method to build a
model, and using it we can build the model shown in figure 5. In this graphic,
we denote with dashed lines the forbidden actions in a given world; that is, in
the state w it is forbidden to perform g or r, but if we tell the secret to Reagan
then we ought to tell the secret to Gorbachov, and vice versa. This model is
intuitively correct. The example is simple but it shows how the proof system can
be used in practice, it is useful not only for verification of properties, but also
to discover bad behaviours that can yield a faulty state.
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〈〉 : O(r � g)
〈〉 : [g]O(r)
〈〉 : [r]O(g)
〈〉 : 〈r � g〉	
〈〉 : P(r � g)
〈〉 : ¬Pw(r � g)
〈〉 : P(s � r � g)
〈〉 : ¬Pw(r � g � s)
〈〉 : ¬Pw(g � r � s)

������

������

g � r � s : 	
g � r � s : O(r)
g � r � s : P(r)
g � r � s : ¬Pw(r)
g � r � s : P(r � g � s)
g � r � s : ¬Pw(g � r � s)
g � r � s : ¬Pw(g � s � r)

r � g � s : 	
r � g � s : O(g)
r � g � s : P(g)
r � g � s : ¬Pw(g)
r � g � s : P(g � r � s)
r � g � s : ¬Pw(r � g � s)
r � g � s : ¬Pw(g � s � r)

Fig. 4. Gorbachov-Reagan example

...

w1
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��������

g�r�s

���������������
s�r�g �������� ...

w

r�g�s

���������

g�r�s

��������� ...

w2

r�g�r

���������������

g�r�s

���������
s�r�g �������� ...

Fig. 5. A model for the Gorbachov-Reagan paradox

6 Conclusions and Further Work

In this paper we have presented a tableaux system for the deontic action logic
presented in [2], we proposed this logic to reason about fault-tolerant systems
and we have described some examples in [1] and [7]. The tableaux system pre-
sented here allows us to decide the logic (obviously the decision procedure is
exponential) and also to build counter-examples. This system deals with some
classic deontic predicates (weak permission, strong permission and obligation)
and also with complement and parallel execution of actions. In the literature,



A Tableaux System for Deontic Action Logic 47

some tableaux systems have been proposed for deontic logics: in [21] a tableaux
system is provided for deontic conditional systems and in [22] a tableaux system
is described for deontic interpreted systems. It seems that no tableaux systems
have yet been proposed for deontic action logics (or dynamic deontic logics),
perhaps because of the difficulties of dealing with parallel execution of actions
and the complement of actions; in this sense the logic and the system provided
here seems to be novel.

On the other hand, as is demonstrated in the example, the logic depends on the
set of primitive actions considered, some properties may stop being valid when
the number of actions is increased (as different scenarios might be considered);
however, it is possible that, by analyzing the formulae to be proven, a bound on
the number of different actions to consider could be obtained and probably this
bound can be calculated taking into account only the possibility modalities in
these formulae. We leave this topic to further research.

Finally, we want to extend the logic to support different sorts of obligations
(in a similar way as is done in [4]), in such a way that it allows us to formalize the
notions of recovery actions, which arise in contrary-to-duty reasoning and fault-
tolerance. This extension can be done in a way that preserves the basic properties
of the logic. Also, including temporal operators in this proof system is possible;
with these extensions the proof system can be used to specify complex problems.
However, a software tool must be built to apply the method in practice.
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The economics of information security has recently become a thriving and fast-
moving discipline. As distributed systems are assembled from machines belong-
ing to principals with divergent interests, incentives are becoming as important
to dependability as technical design. The new field provides valuable insights
not just into security topics such as privacy, bugs, spam, and phishing, but into
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that is both principled and effective.
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Abstract. In this paper we present a logical model of trust in which trust is con-
ceived as an expectation of the truster about some properties of the trustee. A gen-
eral typology of trust is presented. We distinguish trust in the trustee’s action from
trust in the trustee’s disposition (motivational or normative disposition); positive
trust from negative trust. A part of the paper is devoted to the formalization of
security properties and to the analysis of their relationships with trust.

1 Introduction

Techniques of computer security have been mainly designed in the perspective of pro-
tecting a computer system with respect to attacks of ill-intentioned users who want, for
example, to access private data. To prevent these situations techniques have been devel-
oped, like cryptography, in order to reduce risks and to make that standard users trust
the computer system. However, another kind of scenario may happen where the com-
puter system has been designed to violate some regulations about privacy. For example,
private data gathered for some applications may be sold to a company for advertising
without users’ authorization. In these kinds of scenario, even if the computer system
guarantees that ill-intentioned users have no capability to violate the norms, standard
users want to trust the computer system about the fact that it will not intentionally vio-
late the norms. In this perspective, the issue is not to trust the effectiveness of computer
science techniques (like cryptography) but to trust the fact that norms are not delibera-
tively violated by the system. That was the initial motivation of the work presented in
this paper.

Since trust is a complex mental attitude, the first step was to propose a clear definition
in a logical framework which is presented in section 2. In section 3 we present a global
view of trust in order to point out several refinements of this concept. In section 4 we
focus on the trustee’s intention to do, or not to do, a certain action for the truster. Then, in
section 5, we refine this approach by analyzing the disposition of the trustee to perform
a certain action for the truster which is called willingness. In section 6 computer security
properties are defined and their normative dimension is discussed. That leads to define
in section 7 the normative dispositions of the trustee toward the truster which are called
obedience and honesty.

� This work is supported by the project “ForTrust: social trust analysis and formalization”
funded by the french Agence Nationale de la Recherche (ANR).

R. van der Meyden and L. van der Torre (Eds.): DEON 2008, LNAI 5076, pp. 50–64, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 A Logic for Trust Reasoning

The logic L we use to formalize the relevant concepts involved in our model of so-
cial trust is a multimodal logic which combines the expressiveness of a simple dy-
namic logic [13] with the expressiveness of a logic of mental attitudes [6,21] and
obligations[1,3]. The syntactic primitives of the logic L are the following:

– a nonempty finite set of agents AGT = {i, j, . . .};
– a nonempty finite set of atomic actions ACT = {α, β, . . .};
– a set of atomic formulas ATM = {p, q, . . .}.

The language of L is the set of formulas defined by the following BNF:

φ ::= p | ¬φ | φ ∨ φ | Afteri:αφ | Doesi:αφ | Beliφ | Goaliφ | Obgφ

where p ranges over ATM , α ranges over ACT and i ranges over AGT .
The operators of our logic have the following intuitive meaning. Beliφ: the agent

i believes that φ; Afteri:αφ: after agent i does α, it is the case that φ (Afteri:α⊥
is read: agent i cannot do action α); Doesi:αφ: agent i is going to do α and φ will
be true afterward (Doesi:α� is read: agent i is going to do α); Goaliφ: the agent i
wants that φ holds; Obgφ: it is obligatory that φ. The following abbreviations are given:

Cani(α) def= ¬Afteri:α⊥; Inti(α) def= GoaliDoesi:α�; Permφ
def= ¬Obg¬φ. We

write Cani(α) as an abbreviation of ¬Afteri:α⊥ in order to make explicit the fact that
¬Afteri:α⊥ stands for: agent i can do action α (i.e. i has the capacity/ability to do α).
Inti(α) stands for: the agent i intends to do α. Permφ stands for: φ is permitted.

Models of our logic are tuples M = 〈W, R, D, B, G, O, V 〉 where:

– W is a non empty set of possible worlds or states.
– R is a collection of binary relations Ri:α on W , one for every couple i:α where

i ∈ AGT and α ∈ ACT . Given an arbitrary world w ∈ W , if (w, w′) ∈ Ri:α then
w′ is a world which can be reached from world w through the occurrence of agent
i’s action α.

– D is a collection of binary relations Di:α on W , one for every couple i:α where
i ∈ AGT and α ∈ ACT . Given an arbitrary world w ∈ W , if (w, w′) ∈ Di:α then
w′ is the next world of w which will be reached from w through the occurrence of
agent i’s action α.

– B is a collection of binary relations Bi on W , one for every agent i ∈ AGT . Given
an arbitrary world w ∈ W , if (w, w′) ∈ Bi then w′ is a world which is compatible
with agent i’s beliefs at world w.

– G is a collection of binary relations Gi on W , one for every agent i ∈ AGT . Given
an arbitrary world w ∈ W , if (w, w′) ∈ Gi then w′ is a world which is compatible
with agent i’s goals at world w.

– O is a binary relation on W . Given an arbitrary world w ∈ W , if (w, w′) ∈ O then
w′ is a world which is ideal at world w.

– V : ATM −→ 2W is a valuation function.

Truth conditions for atomic formulas, negation and disjunction are entirely standard.
The following are truth conditions for the modal operators introduced before.
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– M, w |= Afteri:αφ iff M, w′ |= φ for all w′ such that (w, w′) ∈ Ri:α.
– M, w |= Doesi:αφ iff ∃w′ such that (w, w′) ∈ Di:α and M, w′ |= φ.
– M, w |= Beliφ iff M, w′ |= φ for all w′ such that (w, w′) ∈ Bi.
– M, w |= Goaliφ iff M, w′ |= φ for all w′ such that (w, w′) ∈ Gi.
– M, w |= Obgφ iff M, w′ |= φ for all w′ such that (w, w′) ∈ O.

2.1 Properties of the Operators

The operators Beli, Afteri:α, Doesi:α Goali and Obg are supposed to be normal
modal operators satisfying standard axioms and rules of inference of system K . Op-
erators for belief of type Beli are supposed to be KD45 modal operators, whilst every
operator for goal of type Goali is supposed to be a KD operator. Thus, we make as-
sumptions about positive and negative introspection for beliefs and we suppose that
beliefs and goals cannot be inconsistent. Operators for obligations of type Obg are also
supposed to be KD as in SDL (standard deontic logic) [1].1

As far as actions are concerned, we assume that actions of the same agent and actions
of different agents occur in parallel.

AltAct Doesi:αφ → ¬Doesj:β¬φ

Axiom AltAct says that: if i is going to do α and φ will be true afterward, then it cannot
be the case that j is going to do β and ¬φ will be true afterward.

We also suppose that the world is never static in our framework, that is, we suppose
that always there exists some agent i and action α such that i is going to perform α.

Active
∨

i∈AGT ,α∈ACT Doesi:α�

Axiom Active ensures that for every world w there is a next world of w which is reach-
able from w by the occurrence of some action of some agent. This is the reason why
the operator X for next of LTL (linear temporal logic) can be defined as follows.2

Xφ
def=

∨
i∈AGT ,α∈ACT

Doesi:αφ

The following Axiom IncAct relates the operator Doesi:α with the operator Afteri:α.

IncAct,PAct Doesi:αφ → ¬Afteri:α¬φ

According to IncAct,PAct, if i is going to do α and φ will be true afterward, then it is
not the case that ¬φ is true after i does α.

The following axioms relating intentions with actions seem quite natural in the case
of intentional actions.

IntAct1 (Inti(α) ∧ Cani(α)) → Doesi:α�
IntAct2 Doesi:α� → Inti(α)

1 Semantic constraints corresponding to the axioms presented in this section are given in [12].
2 Note that X satisfies the standard property Xφ ↔ ¬X¬φ.
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According to IntAct1, if i has the intention to do action α and has the capacity to do α,
then i is going to do α. According to IntAct2, an agent is going to do action α only if he
has the intention to do α. In this sense we suppose that an agent’s doing is by definition
intentional. Similar axioms have been studied in [20,19] in which a logical model of the
relationships between intention and action performance is proposed.

As far as beliefs and goals are concerned, we only suppose that the two kinds of
mental attitudes must be compatible, that is, if an agent has the goal that φ he cannot
believe that ¬φ. Indeed, the notion of goal we characterize is a notion of an agent’s
chosen goal, i.e. a goal that an agent decides to pursue. As some authors have stressed
[2], a rational agent cannot decide to pursue a certain state of affairs φ, if he believes
that ¬φ (this is called weak realism hypothesis).

WR Goaliφ → ¬Beli¬φ

In this work we also assume positive and negative introspection over (chosen) goals,
that is:

PIntr Goaliφ → BeliGoaliφ
NIntr ¬Goaliφ → Beli¬Goaliφ

The following axiom relates obligations with beliefs:

BelObg Obgφ → BeliObgφ

This axiom is based on the assumption that every agent has complete information of
what is obligatory. It is justified by the fact that if it is expected that an agent does
every action which is obligatory, he must have a complete information about what
is obligatory. Note that by Axiom BelObg, the definition of the permission operator
Perm and Axiom D for Beli, the following formula can be derived as a consequence:
BeliPermφ → Permφ. This means that in our logical framework every agent has
sound information of what is permitted.

We call L the logic axiomatized by the axioms and rules of inference presented
above. We write � ϕ if formula ϕ is a Theorem of L.

3 A Global View of Trust

In the present logical model trust is conceived as a complex configuration of mental
states in which there is a main and primary motivational component (the principal rea-
son activating the truster’s delegating behavior): the goal to achieve some state of affairs
ϕ (the trust in the trustee is always relative to some interest, need, concern, desire of
the truster); and a complex configuration of truster’s beliefs about the qualities of the
trustee. On this point we agree with Castelfranchi & Falcone [4,5] on the fact that a
model of social trust must account for the truster’s attribution process, that is, it must
account for the truster’s ascription of specific properties to the trustee (abilities, willing-
ness, dispositions, etc.) and the truster’s ascription of properties to the environment in
which the trustee is going to act (will the environmental conditions prevent the trustee
from accomplishing the task that the truster has delegated to him?). From this perspec-
tive there is a pressing need for elaborating richer models of social trust in which the
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Table 1. Typology of Trust

Trust about action Trust about disposition
Motivational Normative

Positive i trusts j to do α i trusts j to be willing i trusts j to be obedient
to do α for him to do α

Negative i trusts j not to do α i trusts j to be willing i trusts j to be honest
not to do α for him to do α

truster’s expectation and its components are explicitly modeled. To this end, we present
in the following sections a conceptual and logical model of social trust which shows
that trust is not a unitary and simplistic notion. More precisely, we assume that i’s trust
in agent j necessarily involves a main and primary motivational component which is a
goal of the truster. If i trusts agent j then necessarily i trusts j with respect to some of
his goals. Moreover, the core of trust is a belief of the truster about some properties of
the trustee, that is, if i trusts agent j then necessarily i trusts j because i has some goal
and believes that j has the right properties to ensure that such a goal will be achieved.
The aim of the following sections is to clarify the nature of such a belief of the truster.

We also claim that there is no unique definition of trust, but there are several types
of trust depending on the kinds of properties that the truster ascribes to the trustee.
The ontology of trust proposed in the following sections is organized according to two
main dimensions (see Table 1). First, we distinguish between positive trust and negative
trust. In positive trust i is focused on the domain of gains (goal achievements) whereas
in negative trust i is focused on the domain of losses (goal frustrations). The second
distinction is between trust in the trustee’s actions and trust in the trustee’s dispositions.
In the former case, i’s trust in j is based on i’s belief that j will perform (resp. refrain
from performing) a certain action α; whereas in the latter case i’s trust in j is based on
i’s belief that j is disposed to perform (resp. to refrain from performing) a certain action
α. By combining the previous two dimensions we characterize four general categories
of trust.

– i trusts j because i believes that j can help him to achieve a certain goal by per-
forming a certain action α and j is going to perform action α (i’s positive trust in
j’s action);

– i trusts j because i believes that j is in the condition to damage him (i.e. to frustrate
a goal of i) by doing a certain action α and j will refrain from performing action α
(i’s negative trust in j’s action);

– i trusts j because i believes that j can help him to achieve a certain goal by per-
forming a certain action α and j is disposed to perform action α (i’s positive trust
in j’s disposition);

– i trusts j because i believes that j is in the condition to damage him (i.e. to frustrate
a goal of i) by doing a certain action α and j is disposed to refrain from performing
action α (i’s negative trust in j’s disposition).

We introduce a further sophistication by distinguishing between motivational disposi-
tions and normative (or moral) dispositions of the trustee. Indeed, in the context of i’s
positive trust in j’s disposition (resp. i’s negative trust in j’s disposition), j’s disposition
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to perform a certain action α (resp. j’s disposition to refrain from performing a certain
action α), can be interpreted in two different ways. According to the motivational inter-
pretation, i’s belief that j is disposed to perform action α (resp. j is disposed to refrain
from performing action α) stands for i’s belief that j is willing to do action α for him
(resp. j is willing not to do action α for him). According to the normative interpretation,
i’s belief that j is disposed to perform action α (resp. j is disposed to refrain from per-
forming action α) stands for i’s belief that j will obey to the obligation of doing action
α (resp. will not perform action α if he has no permission to perform action α). Thus,
our ontology of trust gets refined in such a way that we can distinguish two different
types of i’s positive trust in j’s disposition and two different types of i’s negative trust
in j’s disposition. Namely: i’s positive trust in j’s motivational disposition, i’s nega-
tive trust in j’s motivational disposition, i’s positive trust in j’s moral disposition, i’s
negative trust in j’s moral disposition.

The concepts of positive and negative trust in the trustee’s action are studied in sec-
tion section 4. Section 5 is devoted to the analysis of positive and negative trust in the
trustee’s motivational disposition. The reader must wait until section 7 for positive and
negative trust in the trustee’s normative disposition.

3.1 Some Related Works

Our logical model of trust shares some intuitions with Castelfranchi & Falcone’s con-
ceptual and informal model of trust [4,5]. As emphasized in the previous section, we
agree with them that trust should not be seen as an unitary and simplistic notion as other
models implicitly suppose. For instance, there are computational models of trust in
which trust is conceived as an expectation sustained by the repeated direct interactions
with other agents under the assumption that iterated experiences of success strengthen
the trustor’s confidence [17]. More sophisticated models of social trust have been de-
veloped in which reputational information is added to information obtained via direct
interaction (e.g. [14]). All these trust models are in our view over-simplified since they
do not consider the indirect supports for the trust expectation. Trust is rather a complex
expectation of the truster about some properties of trustee which are relevant for the
achievement of goal of the truster.

Nevertheless, there are important difference between our model of trust and Castel-
franchi & Falcone’s model. For instance, we think that their model of trust is not suf-
ficiently clear in distinguishing trust in the trustee’s actions and trust in the trustee’s
willingness. This distinction is for us fundamental since it allows to capture two forms
of trust which have different natures. Moreover, their model only account for positive
trust and do not consider negative trust.

As far as logics of trust are concerned, we think that there is still no comprehen-
sive logical model of this social phenomenon. Indeed, logical models of trust have
been focused almost exclusively on trust in information sources (informational trust)
[18,16,10,8], or they have reduced trust to a certain kind of beliefs neglecting the mo-
tivational aspects of trust [9]. In [9] trust is defined as a truster’s sort of belief, called
“strong belief”, about some properties of the trustee. They may be epistemic properties,
like sincerity or competence, dynamic properties, like ability, or deontic properties like
obedience and honesty. From this perspective there is a pressing need for elaborating
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more general logical models of social trust in which the truster’s expectation and its
different components are explicitly modeled, and in which the motivational aspect of
trust is taken into account.

4 Trust in the Trustee’s Action

We first define the notion of positive trust in the trustee’s action. Such a notion presents
four different arguments: truster, trustee, truster’s goal, trustee’s action.

Definition 1 POSITIVE TRUST ABOUT ACTION. i trusts j to do α with regard to
his goal that φ if and only if i wants φ to be true and i believes that:3

1. j, by doing α, will ensure that φ AND
2. j has the capacity to do α AND
3. j intends to do α

Condition 1 concerns the trustee’s power to satisfy the truster’s goal that φ by means
of the performance of action α. Conditions 2 and 3 are about the trustee’s properties
which are necessary and sufficient for him to perform action α. The formal translation
of Definition 1 is:

ATrust(i, j, α, φ) def= GoaliXφ ∧Beli(Afterj:αφ ∧Canj(α) ∧ Intj(α))

In our logic the second and third condition in the definition of positive trust are together
equivalent to Doesj:α� (by Axiom IntAct2), so the definition of trust can be simplified
as follows:

ATrust(i, j, α, φ) def= GoaliXφ ∧Beli(Afterj:αφ ∧Doesj:α�)

ATrust(i, j, α, φ) is meant to stand for: i trusts j to do α with regard to to his goal
that φ.

The following theorem highlights the fact that if i trusts j to do α with regard to his
goal that φ then i has a positive expectation that φ will be true in the next state.

Theorem 1. Let i, j ∈ AGT and α ∈ ACT . Then:
� ATrust(i, j, α, φ) → BeliXφ

The dual notion of negative trust in the trustee’s action is based on the fact that, by
doing some action α, agent j can prevent i to reach his goal. In that case i expects that
j will not intend to do α. That leads to the following definition.

Definition 2 NEGATIVE TRUST ABOUT ACTION. i trusts j not to do α with regard
to his goal φ if and only if i wants φ to be true and i believes that:

1. j, by doing α, will ensure that ¬φ AND

3 In the present paper we only focus on full trust involving a certain belief of the truster. In order
to extend the present analysis to forms of partial trust, a notion of graded belief (i.e. uncertain
belief) or graded trust, as in [11], is needed.
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2. j has the capacity to do α AND
3. j does not intend to do α

The formal translation of definition 2 is given by the following abbreviation.

ATrust(i, j,¬α, φ) def= GoaliXφ ∧Beli(Afterj:α¬φ ∧ Canj(α) ∧ ¬Intj(α))

ATrust(i, j,¬α, φ) stands for: i trusts j not to do α with regard to his goal that φ.

5 Trust in the Trustee’s Disposition: The Motivational Case

The fact that agent j intends to do α may be a consequence of his willingness with
regard to i’s intention that j does α. That leads to define the more specific notions of
positive and negative trust in the trustee’s willingness. Indeed, i’s trust in j does not
necessarily depend on i’s ascription of an actual intention to j to do a certain action
α. There are forms of trust which are based on i’s ascription of a potential intention to
j. In these cases i attributes to j a positive disposition which is called j’s willingness.
More precisely, we suppose that j is willing to do the action α for i if and only if j has
the conditional goal (or conditional intention) to form the intention to perform action α
under the condition in which he believes that i wants him to do α. Thus, willingness is
interpreted here as closely related to the concept of goal adoption. In this perspective,
saying “j is willing to do everything for i” means “j wants to do whatever i wants him
to do” and saying “j is willing to do action α for i” means “j wants to do α in case i
wants him to do α”.4 The following abbreviation captures our notion of willingness in
a formal way.

Willj,i(α) def= Goalj(BeljGoaliDoesj:α� → Intj(α))∧

¬Goalj¬BeljGoaliDoesj:α�

where Willj,i(α) stands for: j is willing to do α for i. The second condition in the
definition of willingness is given in order to prevent from saying that j is willing to do
α for i, when j wants not to believe that i does not want him to do α.

We define a related concept of j’s willingness not to do α for i. According to our
definition, j is willing not to do the action α for i if and only if j has the conditional
goal that he will not have the intention to do action α unless he believes that i does not
want him not to do α.

Willj,i(¬α) def= Goalj(Intj(α) → Belj¬Goali¬Doesj:α�)∧

¬GoaljBelj¬Goali¬Doesj:α�
4 Willingness may have different natures. Agent i might be willing to do a certain action α for j

since he expects that if he does α, he will get something in return by j; or i might be willing to
do a certain action α for j since he expects that if he does not do α, j will do something bad for
him, etc. In this work we focus on the core of the concept of willingness without investigating
the more specific forms of willingness (i.e. the reasons to be willing).
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where Willj,i(¬α) stands for: j is willing not to do α for i.5 The following two theo-
rems highlight some interesting properties of our concept of willingness.

Theorem 2. Let i, j ∈ AGT and α ∈ ACT . Then:

1. � Willj,i(α) → (BeljGoaliDoesj:α� → Intj(α))
2. � Willj,i(¬α) → (Intj(α) → Belj¬Goali¬Doesj:α�)

According to Theorem 2.1, if j is willing to do α for i and j believes that i wants him
to do α, then j will adopt i’s goal in such a way that he will intend to do α. In this sense
Theorem 2.1 captures the adoptive process which leads from a j’s positive disposition
toward i to the situation in which j intends to do what i wants him to do. According to
Theorem 2.2, if j is willing not to do α for i and intends to do action α, then he has to
believe that i does not want him not to do α.

From the the concept of willingness, we can characterize the concept of i’s positive
trust in j’s willingness.

Definition 3 POSITIVE TRUST ABOUT WILLINGNESS. i trusts j about j’s will-
ingness to do α with regard to his goal that φ if and only if i wants φ to be true and i
believes that:

1. j, by doing α, will ensure that φ AND
2. j has the capacity to do α AND
3. j is willing to do α for i

Formally:

WTrust(i, j, α, φ) def= GoaliXφ ∧Beli(Afterj:αφ ∧ Canj(α) ∧Willj,i(α))

where WTrust(i, j, α, φ) stands for: i trusts j about j’s willingness to do α with regard
to his goal that φ. The following theorem highlights the relationship between the notions
of ATrust(i, j, α, φ) and WTrust(i, j, α, φ).

Theorem 3. Let i, j ∈ AGT and α ∈ ACT . Then:

1. � (BeliBeljGoaliDoesj:α� ∧WTrust(i, j, α, φ)) → BeliIntj(α)
2. � (BeliBeljGoaliDoesj:α� ∧WTrust(i, j, α, φ)) → ATrust(i, j, α, φ)

For instance, according to Theorem 3.2, if i trusts j about j’s willingness to do α with
regard to his goal that φ and i believes that j believes that i wants j to do α, then i trusts
j to do α with regard to his goal that φ.

The concept of negative trust in the trustee’s willingness can be defined as follows.

Definition 4 NEGATIVE TRUST ABOUT WILLINGNESS. i trusts j about j’s will-
ingness not to do α with regard to his goal that φ if and only if i wants φ to be true and
i believes that:

5 As for the definition of j’s willingness to do α for i, we add the condition
¬GoaljBelj¬Goali¬Doesj:α	 in order to prevent from saying that j is willing not do α
for i, when j wants to believe that i does not want that he does not do action α. The same
solution is adopted in section 7 for the definitions of obedience and honesty.
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1. j, by doing α, will ensure that ¬φ AND
2. j has the capacity to do α AND
3. j is willing not to do α for i

Formally:

WTrust(i, j,¬α, φ) def= GoaliXφ ∧Beli(Afterj:α¬φ ∧ Canj(α) ∧Willj,i(¬α))

where WTrust(i, j, α, φ) stands for: i trusts j about j’s willingness not to do α with
regard to to his goal that φ.

The following theorem highlights the relationship between negative trust about will-
ingness and negative trust about action. It says that: negative trust about willingness
entails negative trust about action in the context where i believes that j does not believe
that i does not want j not to do α.

Theorem 4. Let i, j ∈ AGT and α ∈ ACT . Then:
� (Beli¬Belj¬Goali¬Doesj:α� ∧WTrust(i, j,¬α, φ)) → ATrust(i, j,¬α, φ)

6 Norms in Computer Security

In the field of computer science the notion of security may have two different meanings:
there is no computer failure, or there is no violation of norms about computer usage. In
this paper we adopt the second meaning. Here agents may be human agents or software
agents. In the case of software agents, we talk about their mental attitudes like beliefs
or intentions and we assume that their actions are intentional actions. Moreover, we
suppose that for a software agent, performing an action means executing a program, and
a certain program is performed by the software agent only if the effects of its execution
conform to what has been specified by the designer of the program. For instance, a
software agent can inform someone about something only by performing the act inform
which is the procedure specified by the designer as a means for inducing someone to
believe something. It cannot inform someone about something by performing some
sequence of insert actions or delete actions since this is not the procedure specified by
the designer.

In this work the security properties that should be guaranteed are restricted to: in-
tegrity, availability and privacy [7]. For simplification, we have ignored properties like:
authentication or non repudiation. As a matter of simplification we have only considered
computer systems of the kind information systems (for instance a database system). A
similar analysis could be done for transmission systems (for instance Internet).

In order to study security properties we extend the logic L with the following spe-
cific actions: infj(φ) (action of informing j about φ), insj(φ) (action of inserting the
information φ in j), delj(φ) (action of deleting the information φ from j), askj(α)
(action of asking j to do action α). The following abbreviations are given for denoting

the performance of the previous special actions by an arbitrary agent i: Infi,j(φ) def=

Doesi:infj(φ)�; Insi,j(φ) def= Doesi:insj(φ)�; Deli,j(φ) def= Doesi:delj(φ)�; Aski,j

(α) def= Doesi:askj(α)�.
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The constructions Infj,i(φ), Insi,j(φ), Deli,j(φ) are used to describe the interac-
tion between an information system j and an agent i (i may be a human agent or a
software agent). Infj,i(φ) means: the information system j informs agent i about φ.
Insi,j(φ) means: agent i inserts the information φ in the information system j (or i
makes that j believes that φ). Deli,j(φ) means: agent i deletes the information φ from
the information system j (or i makes that j does not believe that φ). For human agents
or software agents the construction Aski,j(α) expresses that: agent i asks j to do the
action α. In the following sections security properties are going to be defined.

6.1 Security Properties

Definition 5 The information system j guarantees the privacy of information φ. if
and only if for every agent k, if j informs k about φ, then it is permitted that j informs
k about φ.

Formally,

Privj(φ) def=
∧

k∈AGT

(Infj,k(φ) → PermInfj,k(φ))

where Privj(φ) stands for: the information system j guarantees the privacy of infor-
mation φ.

Definition 6 The information system j guarantees the integrity of information φ. if
and only if for every agent k, if k inserts (resp. deletes) φ, then it is permitted that k
inserts (resp. deletes) φ.

Formally,

Intgj(φ) def=∧
k∈AGT

(Insk,j(φ) → PermInsk,j(φ)) ∧
∧

k∈AGT

(Delk,j(φ) → PermDelk,j(φ))

where Intgj(φ) stands for: the information system j guarantees the integrity of infor-
mation φ.

Definition 7 Agent i guarantees the availability to do the action α for j. if and only
if, if i has the right to oblige j to do α and i asks j to do α, then j does α.

Formally,

Availi,j(α) def= (Righti,j(α) ∧Aski,j(α)) → Doesj:α�

where Availi,j(α) stands for: agent i guarantees the availability to do the action α for
j, and

Righti,j(α) def= Aski,j(α) → ObgDoesj:α�
The intuitive meaning of Righti,j(α) is that by asking j to do α i “creates” the obliga-
tion for j to do α.
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7 Trust in the Trustee’s Disposition: The Normative Case

In the context of computer security the fact that agent j intends to do α may be a conse-
quence of his fulfillment of the obligation to do this action. In this case we say that j is
obedient. In a similar way, the fact that he does not intend to do α may be a consequence
of the fact that he respects the prohibition to do this action. In this case we say that j is
honest. It is worth noting that there is a deep analogy between the fact that i’s goal is
that j does α (resp. it is not the case that i’s goal is that j does not do α) and the fact
that it is obligatory that j does α (resp. it is permitted that j does α). The justification
of this analogy is that what is obligatory can be interpreted as the goal of people who
institute the norms, and what is permitted as what is possible with respect to their goal.
In the formal definitions below, this analogy is expressed by the fact that the definition
of obedience (resp. honesty) can be obtained from the definition of willingness to do
(resp. willingness not to do) given in section 5 by substituting ObgDoesj:α� (resp.
PermDoesj:α�) to GoaliDoesj:α� (resp. ¬Goali¬Doesj:α�). In the following this
analogy will be called “motivational / normative analogy”.

On the one hand we suppose that j is obedient to do the action α if and only if, j
has the conditional goal that if he believes that it is obligatory that he does α, then he
intends to do α. Formally,

Obedj(α) def= Goalj(BeljObgDoesj:α� → Intj(α))∧

¬Goalj¬BeljObgDoesj:α�

where Obedj(α) stands for: j is obedient with regard to the obligation to do the
action α.

On the other hand we suppose that j is honest to do the action α if and only if, j
has the conditional goal that if he has the intention to do α, then he believes that it is
permitted that he does α. Formally,

Honstj(α) def= Goalj(Intj(α) → BeljPermDoesj:α�)∧

¬GoaljBeljPermDoesj:α�

where Honstj(α) stands for: j is honest with regard to the permission to do the
action α.

The following two theorems highlight some interesting properties of the concepts of
obedience and honesty.

Theorem 5. Let j ∈ AGT and α ∈ ACT . Then:

1. � Obedj(α) → (BeljObgDoesj:α� → Intj(α))
2. � Honstj(α) → (Intj(α) → BeljPermDoesj:α�)

According to Theorem 5.1, if j is obedient with regard to the obligation to do the action
α and believes that it is obligatory to do α, then j will adopt such an obligation in such
a way that he will intend to do α. Theorem 5.1, which is symmetrical to Theorem 2.1
for willingness captures the adoptive process which leads from j’s obedience to the
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situation in which j intends to do what is obligatory to do. According to Theorem 5.2
(which is symmetrical to Theorem 2.2 for willingness), if j is honest with regard to the
permission to do the action α and intends to do action α, then he has to believe that it
is permitted to do action α.

We are now in the position to define a concept of i’s trust in j’s obedience which is
symmetrical to the concept of i’s positive trust in j’s willingness given in section 5.

Definition 8 TRUST ABOUT OBEDIENCE. i trusts j to be obedient in doing α with
regard to his goal that φ if and only if i wants φ to be true and i believes that:

1. j, by doing α, will ensure that φ AND
2. j has the capacity to do α AND
3. j is obedient in doing α

Formally,

OTrust(i, j, α, φ) def= GoaliXφ ∧Beli(Afterj:αφ ∧ Canj(α) ∧Obedj(α))

where OTrust(i, j, α, φ) stands for: i trusts j to be obedient in doing α with regard to
his goal that φ. The following theorems highlight the relationships between trust about
obedience and positive trust about action, and between trust about obedience and the
property of availability.

Theorem 6. Let i, j ∈ AGT and α ∈ ACT . Then:

1. � (Beli(Righti,j(α) ∧Aski,j(α)) ∧OTrust(i, j, α, φ)) → ATrust(i, j, α, φ)
2. � OTrust(i, j, α, φ) → BeliAvaili,j(α)

The intuitive meaning of Theorem 6.1 is that trust about obedience entails positive trust
about action in the context where i believes that he has the right to oblige j to do α
and he exercises his right. Theorem 6.2 means that trust about obedience entails that
i believes that the availability to do α is guaranteed by j. Notice that in this theorem
i’s goal is not Availi,j(α). The goal φ may be any situation which can be obtained by
doing α. For instance, i’s goal may be to know meteorological forecasts and the action
α is that j informs i about these expectations. Then, in that example, the theorem 6.2
says that the consequence of i’s trust in j’s obedience to do α is that i believes that j
guarantees the availability to inform him about meteorological forecasts.

We now define a concept of i’s trust in j’s honesty which is symmetrical to the
concept of i’s negative trust in j’s willingness given in section 5.

Definition 9 TRUST ABOUT HONESTY. i trusts j to be honest in doing α with regard
to his goal that φ if and only if i wants φ to be true and i believes that:

1. j, by doing α, will ensure that ¬φ AND
2. j has the capacity to do α AND
3. j is honest in doing α

Formally,

HTrust(i, j, α, φ) def= GoaliXφ ∧Beli(Afterj:α¬φ ∧ Canj(α) ∧Honstj(α))
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where HTrust(i, j, α, φ) stands for: i trusts j to be honest in doing α with regard to
his goal that φ.

We denote with IAct(ψ) the set of all actions of informing some agent about ψ. In

formal terms: IAct(ψ) def= {infz(ψ) : z ∈ AGT}. Then, the following two theorems
can be derived.

Theorem 7. Let i, j ∈ AGT and α ∈ ACT . Then:

1. � (Beli¬BeljPermDoesj:α� ∧HTrust(i, j, α, φ)) → ATrust(i, j,¬α, φ)
2. �

∧
α∈IAct(ψ)(HTrust(i, j, α, φ)) → BeliPrivj(ψ)

Theorem 7.1, which is symmetrical to Theorem 4 for negative trust about willingness,
means that trust about honesty entails negative trust about action in the context where i
believes that j does not believe that he has the permission to do α. Theorem 7.2 means
that i’s trust in j’s honesty for every action of informing an agent about ψ entails that
i believes that the privacy for ψ is guaranteed by j. Like in Theorem 6.2, in Theorem
7.2 i’s goal is not Privj(ψ). A theorem similar to Theorem 7.2 can be proved for the
property of integrity of an information system j (Intgj(φ)) since the set of permitted
actions is explicitly defined.

8 Conclusion

The logical framework which has been presented allows to give precise definitions to
several sophisticated notions of trust, going from a general one to more specific ones
which are relevant to the context of computer security. In addition, theorems have been
proved which give sufficient conditions about obedience or honesty to guarantee that an
agent can believe that security properties hold. The benefits of the logical formalization
are manyfold. It points out some facts that may look as trivialities but that may be left
implicit without the help of this formal framework. For instance, consequences that an
agent can infer from what he trusts are just beliefs not truth. That is inherent to the
notion of trust. Also, it raises some non trivial questions.

Due to the complexity of the involved concepts we had to accept strong simplifi-
cations. The first one is that our formal definition of the concept of obligation is very
crude. The second is that in some definitions entailment is formalized by a material
implication in the scope of goal modalities, while some form of conditional might be
more adequate. The same comment applies to the definition of right where a “counts
as” conditional [15] would be more appropriate than material implication. Also, secu-
rity properties have been defined for a specific proposition, while these properties are
usually expected for a set of proposition about a given topic, and a more realistic no-
tion of trust should be based on several degrees of trust. Finally, we almost ignored
the temporal dimension. In many cases trust is about a trustee’s property which is not
contingent to the current situation, but holds for some period of time. All these issues
require future investigations, but we believe that to analyze so complex problems it was
better to start with simple assumptions, even if they can be seen as oversimplifications.
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Policies: An Application of Deontic Logic
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Abstract. The security policy of an information system may include a
wide range of different requirements. The literature has primarily focused
on access and information flow control requirements and more recently
on authentication and usage control requirements. Specifying adminis-
tration and delegation policies is also an important issue, especially in
the context of pervasive distributed systems. In this paper, we are in-
vestigating the new issue of modelling intrusion detection and reaction
policies and study the appropriateness of using deontic logic for this pur-
pose. We analyze how intrusion detection requirements may be specified
to face known intrusions but also new intrusions. In the case of new
intrusions, we suggest using the bring it about modality and specifying
requirements as prohibitions to bring it about that some security objec-
tives are violated. When some intrusions occur, the security policy to be
complete should specify what happens in this case. This is what we call
a reaction policy. The paper shows that this part of the policy corre-
sponds to contrary to duty requirements and suggests an approach based
on assigning priority to activation contexts of security requirements.

1 Introduction

Current information systems have to face many threats that attempt to exploit
their vulnerabilities. Moreover, since information systems tend to be increasingly
complex, specifying their security policy is a tedious and error-prone task. In
this context, specifying consistent, relevant and complete security policies of
information systems is a major challenge for researchers.

There are many advantages of using a formal approach to specify the policy:
(1) It provides non ambiguous specification of security requirements, (2) It is
possible to develop support tools to formally analyse these requirements, (3) It
is also possible to develop support tools to assist the security administrator in the
task of automatically deploying these requirements over a security architecture.

A security policy may actually specify very different security requirements.
We first suggest a classification of these various requirements a security policy
may contain. We then focus on two sub-parts of the security policy that specify
(1) intrusion detection requirements (IDR) and (2) reaction requirements (RR).
We investigate the relevance of deontic logic to specify such requirements.

Intrusion detection has been an active research field for more than twenty
years and many intrusion detection systems (IDS) have been developed and are
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now available. However, intrusion detection requirements enforced by IDSs are
generally considered independently of the remainder of the security policy. A first
contribution of this paper is to consider that IDRs are actually a sub-part of the
access control policy. This approach has several advantages. A first advantage
is that it is then possible to formally analyse whether IDRs are consistent with
other security requirements. Another advantage is that we can integrate IDRs
into a deploying process in order to automatically configure IDSs. Finally and
as shown in this paper, this approach provides means to formally specify in a
reaction policy what should happen in case of violation of some IDRs.

Traditionally, access control requirements are modelled using permissions and
prohibitions. We show how IDRs can be specified using prohibitions. However,
we consider two different types of IDRs depending on the fact these requirements
apply to known or unknown attacks. In the case of a known attack, an intru-
sion detection requirement specifies that it is prohibited to execute the action
corresponding to this attack. Notice that the attack may actually correspond
to an elementary action or to a composition of elementary actions correspond-
ing to an attack scenario. In the case of unknown attacks, the specification of
IDRs is more complex. Our approach in this case is based on the specification
of security objectives. An IDR then corresponds to a prohibition for any subject
(or group of subjects in the case of a distributed intrusion) to bring it about
[29] that some security objective is violated. To our best knowledge, this is the
first time the bring it about operator is used in this context. We then show how
different IDRs may be deployed on different Intrusion Detection Systems (IDSs)
including misuse based detection systems, anomaly based detection systems or
correlation based detection systems.

However, the security policy must also specify what happens when an intru-
sion is detected. This is what we call a reaction policy. A reaction policy is a
set of deontic requirements specifying obligations, prohibitions and possibly per-
missions that are triggered when an intrusion is detected. We show that these
requirements may be actually viewed as contrary to duty norms (see [30,33]).

In this paper, we do not actually develop a new deontic formalism to specify
intrusion detection and reaction policies. Instead, we analyse which problems
addressed in this paper may be solved using the current state of the art in
deontic logic and which problems still require further investigation.

The remainder of this paper is organized as follows. In section 2, we infor-
mally introduce the concept of security policy and suggest a classification of
the different requirements that may be specified in a security policy. We then
focus in section 3 on a part of the security policy that corresponds to the access
control policy. The access control policy should include an intrusion detection
policy as explained in section 4. We show in section 4 how to express various
requirements of such an intrusion detection policy. When an intrusion occurs in
the information system, the security policy is violated. Thus, another part of
the security policy consists in specifying a reaction policy. This is presented in
section 5. In section 6, we discuss how to implement the approach suggested in
this paper and list some open issues. Finally, section 7 concludes the paper.
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Fig. 1. General structure of a security policy

2 What Is a Security Policy?

In the following, we shall view a security policy as a set of norms correspond-
ing to permissions, prohibitions, obligations and dispensations. In the security
literature, it is generally considered that these norms apply to users or pro-
cesses (called subjects) when they access to resources (called objects) in order
to execute services or programs (called actions).

A security policy may be structured into several sub policies (see figure 1):

– Authentication policy. Authentication is the first step to get an access to
the information system and is used to securely associate a subject with its
identity. The authentication policy specifies which authentication protocol
a subject is permitted, prohibited or obliged to use to get an access to the
system. Many authentication protocols, using password, smart cards or bio-
metric traits, have been defined in the literature. It is also possible to specify
that mutual authentication protocols such as Kerberos must be used so that
each party involved in the interaction authenticates each other. More re-
cently, authentication has included Single Sign On (SSO) functionalities.
The authentication policy may influence other downstream policies. For ex-
ample, the access control policy may condition its decisions on the kind of
authentication that has been performed by the user. The use of stronger au-
thentication protocols (loss of availability) may allow access to more sensitive
resources (increase of confidentiality).

– Access control policy. This part of the policy is also called authorization
policy in the literature and applies once subjects are authenticated. It cor-
responds to a set of permissions and prohibitions that specify which action
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a subject may or may not execute on objects. The access control policy is
further discussed in section 3.

– Usage control policy. It is a set of requirements that apply once a subject
gets an authorized access to a resource. The objective is to control how this
subject uses the resource. A usage control policy corresponds to a set of
obligations to be enforced before the access (pre usage control), during the
access (on going usage control) or after the access (post usage control). Even
if there are many interesting issues to investigate, this is not the purpose
of this paper to further address usage control. The interesting reader may
consider the following references [28,24].

– Information flow control policy. The objective here is to control how infor-
mation flows in the information system, i.e. how information is transferred
from subject to subject. A malicious subject, being permitted to access some
information, may attempt to illegally transfer this information to another
unauthorized subject. This problem is not appropriately managed by access
control requirements and specific models have been defined for this purpose
(see [3,21]). However, there are currently no security models that integrate
both access control requirements and the different forms of information flow
control requirements. Even if this is out of the scope of this paper, the inter-
esting reader may have a look at [2] for a preliminary work in this direction.

– Reaction policy. Since some requirements of the security may be violated,
a security policy would not be complete if it does not include requirements
that specify what happens in case of violation. This set of requirements is
what we call a reaction policy. How to specify a reaction policy is further
investigated in section 5.

– Administration and delegation policy. The administration policy specifies
who is permitted to define new security requirements or update existing
security requirements. Delegation also corresponds to the creation of per-
missions and obligations but generally (1) the delegator must own the per-
missions or obligations he or she delegates and (2) there is a transfer of these
permissions or obligations from the delegator to the delegatee (see [20] for a
more detailed discussion of the differences between administration and del-
egation). As suggested in the literature [19], administration and delegation
may be modelled using special speech acts. Another possibility suggested in
[15] would be to manage administration through licenses. A license is a spe-
cial object that generally represents a permission for the subject who owns
this license. In that case, the administration and delegation policies are spec-
ified by permissions to create or revoke licenses. A possible extension would
be to define another special object called duty to represent an obligation for
the subject who owns a duty and specify delegation of obligations through
the creation of new duties.

In this paper, we shall actually focus on intrusion detection and reaction policies.
However, since we view the intrusion detection policy as a sub part of the access
control policy, we shall first briefly discuss how to model an access control policy.



Specifying Intrusion Detection and Reaction Policies 69

3 Access Control Policy

3.1 Principles of Access Control

Specifying an access control policy has been investigated for more than thirty
years [23]. In many models, an access control policy is modelled as a set of per-
missions. There are no obligation and dispensation in an access control policy but
it is possible to also specify explicit prohibitions. The issue of using prohibition
in an access control policy is further investigated in section 3.2 below.

Traditionally, access control policies apply to queries corresponding to sub-
jects that ask to execute actions on objects. When a subject formulates such
a query, the access controller analyses the query to check if it is permitted, in
which case the query is accepted, else this query is rejected.

Generally, it is assumed that actions to be controlled corresponds to “elemen-
tary” actions. As a consequence, access control policies are specified using first
order logic using a predicate like is permitted(subject, action, object).

More recently, it has been suggested to use the concept of role as in the
RBAC (Role Based Access Control) model [32]. In this case, permissions are not
directly assigned to subject but to role which may be modelled using a predicate
permission(role, action, object). Subjects are assigned to role using a predicate
empower(subject, role) and we have the following derivation rule1:

permission(Role, Action, Object) ∧ empower(Subject, Role)
→ is permitted(Subject, Action, Object)

Actually, the RBAC model does not give any formal semantics to the concept
of role. This lack of formalization leads to consider in many approaches that
the concept of role is a panacea to solve every access control problems. This
leads to consider “strange” roles such as location dependent role [6] or temporal
dependent role [5].

There were several works that attempt to use deontic logic to provide formal
semantics to the role concept [10,27,18]. The central idea is that a role is an or-
ganisation dependent concept. Basically, security policies are defined for moral
authorities, called organisations. In this context, most of security requirements
do not directly apply to concrete and implementation dependent entities such
as subject, action and object. Instead, it is more appropriate to use abstract
organisation dependent concepts. As suggested by RBAC, a role is one of such
concept to create organization dependent abstraction of subjects. When an or-
ganization defines roles and assigns these roles to subjects, these subjects are no
longer acting as individuals but as subjects empowered in some roles.

The OrBAC model [1] suggests to proceed similarly for actions and objects.
For this purpose, we respectively suggest the concepts of activity and view as
abstraction of action and object (see [1] for further explanation about these
concepts). The predicate use(object, view) specifies that a given object is used
in the organization in a given view and the predicate consider(action, activity)

1 In the following, we shall assume that terms starting with a capital letter represent
variables and that all free variables in formula are implicitly universally quantified.
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specifies that a given action is considered in the organization as an implementa-
tion of a given activity2.

We also need to specify access control requirements that depend on contextual
conditions for instance:

– R1: A nurse is permitted to consult medical records in a context of urgency,
– R2: A physician is permitted to consult medical records in his or her office

during work hours.

Contexts aremodelledusing thepredicatehold(subject, action, object, context)
that specifies conditions to be satisfied to consider that a given subject executes a
given action on a given object in some context. For instance, a context in office
is specified by the following rule:
subject office(Subject, Office)∧ location(Subject, Office)

→ hold(Subject, Action, Object, in office)
Using these different concepts, an access control policy is simply defined by

a set of facts having the form: permission(Role, Activity, V iew, Context). For
instance, rules R1 and R2 are respectively modelled by the two following facts:
R1: permission(nurse, consult, med record, urgency)
R2: permission(physician, consult, med record, in office&working hours)

Notice the possibility in the second rule to combine contexts using conjunction
(negation or disjunction would be also possible).

Given an access control policy (which possibly depends on contextual condi-
tions), the objective of the access controller consists in deciding if a given subject
is actually permitted to execute some action on a given object. This is modelled
by the following rule:
permission(Role, Activity, V iew, Context) ∧
empower(Subject, Role) ∧ consider(Action, Activity) ∧
use(Object, V iew) ∧ hold(Subject, Action, Object, Context)

→ is permitted(Subject, Action, Object)

3.2 Prohibition and Management of Conflicts

In recent models, it is generally accepted that access control policies may not
only specify permissions but also prohibitions [12]. For instance, in the OrBAC
model, it is possible to specify organizational prohibitions using the predicate
prohibition(role, activity, view, context) and derive concrete prohibitions using
the predicate is prohibited(subject, action, object).

When the access control policy contains both permissions and prohibitions,
a conflict occurs when it is possible to derive both is permitted(s, a, o) and
is prohibited(s, a, o) for the same subject, action and object.

Several papers have investigated the problem of conflict detection and man-
agement (see for instance [4,12]). The solution is generally based on assigning
priorities to security requirements so that when a conflict occurs between two
requirements, the requirement with the higher priority takes precedence.
2 In OrBAC, the organization is made explicit in every predicate but here, to simplify,

the organization is left implicit since we consider always only one organization.
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This is basically the approach suggested in the OrBAC model [12]. It consists
in detecting and managing potential conflicts. A potential conflict exists between
a permission and a prohibition if these two requirements may possibly apply to
the same subject, action and object. There is no such potential conflict between
two requirements if these requirements are separated. In OrBAC, separation be-
tween requirements is defined as follows: Two requirements are separated if their
respective roles are separated, or their views are separated, or their activities are
separated, or their contexts are separated. Two roles are separated if it is im-
possible to simultaneously assign a subject to these two roles. Separations of
activities, views and contexts are similarly defined.

Since no conflict can occur between separated requirements, it is sufficient
to assign priorities between every pair of non separated permission/prohibition
requirements. This guarantees that all actual and potential conflicts are solved.

Notice that when using both permissions and prohibitions to specify an access
control policy, it is actually possible to define two different decision procedure
called open policy and closed policy. In the open policy, an access is accepted
only if it is explicitly permitted by the policy, else it is rejected. In the closed
policy, an access is rejected only if it is explicitly prohibited, else it is accepted.

Since an open policy is generally not equivalent to a closed policy, this means
that when specifying an access control policy, it is generally assumed that a
prohibition is not equivalent to a non permission3. Thus formalism based on
Standard Deontic Logic (SDL) would not be appropriate. We need a more com-
plex deontic formalism such as the one suggested in [9].

4 Intrusion Policy

The primary objective of computer security is actually to protect the information
system against intrusions. An intrusion is an action or a sequence of actions (also
called an intrusion scenario) that exploits a vulnerability.

Many intrusions actually correspond to known intrusions that exploit known
vulnerabilities. To detect known intrusions, most intrusion detection systems
(IDS) implement techniques called misuse detection to recognize a signature of
the intrusion. A signature specifies evidences that actions corresponding to the
intrusion have been executed. Current implementations work quite well when
the intrusion corresponds to an elementary action but do not provide so good
results in case of intrusion scenarios.

Detection of unknown (or new) intrusions is much more complex. Current
techniques, called anomaly detection, attempt to detect abnormal behavior that
would reveal an intrusion. However, the implemented techniques are far from
being perfect and generate many false positives (an alert is launched whereas
there is no intrusion) and also false negatives (no alert is launched whereas an
intrusion actually occurs).

3 However, conflict resolutions guarantees that prohibition implies not permission.



72 N. Cuppens-Boulahia and F. Cuppens

Even if an intrusion is generally defined as a violation of the security policy,
there is no approach that attempts to include intrusion detection requirements
in the security policy specification.

This is the purpose of this section to investigate this issue. We start investi-
gating the case of known intrusions and then move to new intrusions.

4.1 Security Policy for Known Intrusions

Since an intrusion corresponds to a malicious behavior, it seems appropriate to
specify that such malicious behaviors are prohibited. Thus an intrusion detec-
tion policy corresponds to a set of prohibition requirements. Regarding known
intrusions, the action used to exploit the vulnerability can be explicitly specified
and prohibited. The following example illustrates the approach.

– Example: The Land Attack is a known intrusion that consists in forging
illegal IP packets where the IP addresses of the source is equal to the destina-
tion. The impact of this intrusion is that it may cause a denial or service on
the server which receives such packets. This intrusion is taken into account
in the intrusion detection policy by the following prohibition:
R3: prohibition(any host, send IP packet, same source destination,
default) In this requirement, a subject is a network host and any host is
a role assigned to every network host, send IP packet corresponds to the
activity of sending packets using the IP protocol, same source destination
is a view that contains any IP packet with a source IP address equal to its
destination IP address and default is the default context which is always
active.

As mentioned in the introduction, one advantage of formally specifying such
prohibitions in the security policy is that it is then possible to analyze possible
conflicts between other security requirements. For instance, the access control
policy may include a filtering requirement specifying that hosts assigned to the
role private host are permitted to open HTTP connection with the Internet:
R4: permission(private host, open HTTP, to Internet, default)

Since it is possible to use an HTTP connection to send a Land Attack, re-
quirements R3 and R4 are conflicting. It is important to detect and solve such
conflicts and in our example, it is likely that requirement R3 should have higher
priority than R4 so that hosts from the private zone are prohibited to launch
the Land Attack using HTTP connection. The approach defined in [12] provides
means to detect and solve this kind of conflicts.

Another advantage is that it is possible to use a formal specification of the
intrusion detection policy to automatically configure IDSs, for instance we have
defined a process to automatically deploy intrusion detection requirements such
as R3 onto the Snort IDS4 [31].

Requirement R3 actually corresponds to an elementary intrusion that can
be executed by a single action. Unfortunately, many intrusions require several
4 Snort is a network intrusion detection system that uses a signature based approach.
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actions in sequence or in parallel to be executed. This is called an intrusion
scenario and many examples of such scenarios could be given such as worms like
Nimda or distributed denial of service intrusions like Trinoo [22].

It is possible to take into account known intrusion scenarios in the intrusion
detection policy by specifying prohibitions. The language presented in section
3, restricted to permissions and prohibitions that apply to elementary actions,
cannot express these intrusion scenarios. However, it can be extended, and norms
that apply to non elementary actions (sequence, parallelism, ...) have already
been extensively investigated in the deontic logic literature (see [25] for instance).

The analysis of conflicts is more complex when the policy includes security
requirements on non elementary actions corresponding to intrusion scenarios.
This problem is further discussed in section 6.

Regarding the deployment of these requirements, notice that classical IDSs
only manage intrusions corresponding to elementary actions. However, there
are research prototypes that could be used for this purpose. For instance, the
approach suggested in [26] is based on specification of chronicles to represent
intrusion scenarios so that prohibitions could be translated into chronicles to
automatically configure this prototype.

Notice that the enumeration of every known intrusion scenarios is a complex
and fastidious task. Another problem is that it is difficult to find the appropriate
level of description of the intrusion scenario. If the description is not precise
enough, then false alerts could be launched (false positive). But if the description
is too precise, then variants of the intrusion scenario could not be detected (false
negative). This is one of the issue we attempt to address in section 4.2.

4.2 Security Policy for New Intrusions

Detection of new intrusions is still a major issue of computer security. Cur-
rent approaches based on anomaly detection attempts to recognize abnormal
behavior of subjects but are far from giving perfect results. In this section,
we suggest an approach to specify security requirements associated with new
intrusions.

This approach is based on the specification of security objectives. A security
objective is a condition on the state of the information system that should be
enforced. Of course, these objectives depend on the information system to be
protected but it is generally considered that they can be classified into confi-
dentiality, integrity and availability requirements. From the point of view of the
defender, an attacker is a subject that attempts to violate a security objective.
Thus, we call an intrusion objective the negation of a security objective. We
provide examples of security objectives:

– server(h, DNS) ∧ denial of service(h)
i.e. the DNS server is in denial of service.

– get access(s, root, h) ∧ ¬(authorized access(s, root, h))
i.e. s illegally gets a root access on a given host h.
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If S is a state formula that represents an intrusion objective, then the associ-
ated security requirement specifies that it is forbidden for any subject s to bring
it about that S is true: forbidden(E(s, S))
where E represents the bring it about modality (see for instance [29])5.

The bring it about modality makes implicit the action which is executed to
get the effect S. This action may actually correspond to a new intrusion. The
interest of this approach is twofold:

1. If there are sensors that could detect that some intrusion objectives are
achieved, it is possible to infer that some (possibly new) intrusion occurs.

2. If there is a library of elementary actions modelled through their pre and
post conditions6, then the approach can be also used to detect new intrusion
scenario. This is the approach suggested in [11] in which a mechanism is
defined to correlate actions and detect when an intrusion objective can be
achieved by these correlated actions. The specification of the library of ele-
mentary actions is generally easier to manage than the explicit description
of entire intrusion scenarios suggested in section 4.1 with the advantage that
new intrusion scenarios can be detected.

5 Reaction Policy

As its name points it out, this policy is activated to react against an intrusion.
It is a set of rules that specify what happens in case of violation (or attempt
of violation) of some requirements of the security policy. According to these
(attempts of) violations and their impacts on the target information system,
new permissions, prohibitions or obligations are activated and pushed in the
appropriate security components. For instance, if an intrusion occurs, and the
alert diagnosis identifies the path of the attack or the equipments targeted by
this attack and used to reach the intrusion objectives, (1) some packet flows have
to be rejected or at least redirected or (2) some of the vulnerable equipments
used by the attack have to be stopped or at least isolated typically to contain
its spread in the whole system. As suggested in [16], a first form of reaction
would be to update the access control policy by activating and deploying new
permissions or prohibitions. For instance, a rule:
− R5: permission(private host, open TCP, to hostObelix, default),

might be replaced by a new one such as7:
− R6: prohibition(any host, open TCP, to hostObelix, syn flooding).
In the second case, a reaction requirement may be specified by means of obli-

gations. We actually consider two different kinds of obligations called server-side
5 The forbidden and prohibition operators clearly refer to the same concept. In the

following and to avoid confusion, we shall use prohibition when we refer to an explicit
action and forbidden when we refer to an implicit action through the bring it about
operator.

6 The pre condition represents the condition that must be true before executing the
action and the post condition represents the effect of executing the action.

7 Syn flooding is a denial of service attack against the TCP protocol.
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obligation and client-side obligation. A server-side obligation must be enforced
by the security components controlled by the security server and generally cor-
responds to immediate obligations. R7 is an example of such rules expressed in
the OrBAC model:
− R7: obligation(mail daemon, stop, mailserver, imap threat)

Client side obligations generally correspond to obligations that might be enforced
after some delay. Several papers have already investigated this problem and sug-
gested models to specify obligation with deadlines [7,13,8,17]. For instance, if
there is an intrusion that attempts to corrupt an application server by a Tro-
jan Horse intrusion, then this server must be quarantined by the administrator
within a deadline of 10s. R8 provides a specification of this requirement:
− R8: deadline obligation(administrator, quarantine,

application server, trojan horse threat, before(10))
where deadline obligation can be used to specify one more attribute that corre-
sponds to the deadline condition before(10).

As intrusions correspond to some implicit prohibited behaviours and actions,
the security requirements inferred by the need to react correspond to contrary to
duty requirements. Management of contrary to duty is known to cause trouble
(see “pragmatic oddity” [30]). In our approach, management of conflicts is based
on classification with respect to the context of activation. In fact, we consider
three different types of activation contexts: threat, operational and minimal.

The operational contexts aim at describing traditional operational policy [14].
They may correspond to temporal, geographical or provisional contexts (i.e.
contexts that depend on the history of previous executed actions).

Intrusion classes are associated with threat contexts and for each threat a
security rule is defined in the (reaction) policy. Threat contexts are activated
when a violation of the security policy is detected and are used to specify the
reaction policy. The activation of these contexts (hold facts, see section 3), leads
to the instantiation of the policy rules in response to the considered threat.
For instance, a Syn-flooding attack is reported by an alert with a classification
reference equal to CVE-1999-0116 (corresponding to the CVE reference of a Syn-
flooding attack), the target corresponds to some network host Host and some
service Service. Then the synflooding context is specified as follows [16]:
− IC: hold(corp, , Service, Host, synf looding) ←−

alert(T ime, Source, Target, Classification),
reference(Classification,′ CV E − 1999− 0116′),
service(Target, Service), hostname(Target, Host).

Notice that, since the intruder is spoofing (masquerading) its source address
in a Syn-flooding attack, the subject corresponding to the threat origin is not
instantiated in the hold predicate. When an attack occurs and a new alert is
launched by the intrusion detection system, new facts hold are derived for threat
context Ctx. So, Ctx is then active and the security rules associated with this
context are triggered to react to the intrusion.

Most of reaction requirements are in conflict with other access control re-
quirements, i.e. the access control policy may specify a permission whereas the
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reaction policy specifies a conflicting prohibition that applies when an intrusion
is detected. For instance, HTTP is permitted when there is no intrusion but
prohibited if an intrusion on the HTTP protocol is detected.

We suggest to solve these conflicts by assigning higher priority to the reaction
requirement than the access control requirement. Since access control require-
ments are associated with operational contexts whereas reaction requirements
are associated with threat contexts, we actually consider that threat contexts
have higher priority than operational contexts.

However, there are some security requirements such as availability require-
ments that must be preserved even if an intrusion occurs. For instance, the
access to the email server must be preserved even if some intrusions occur. This
is modelled as a minimal requirement. Minimal contexts then define high priority
exceptions in the policy, describing minimal operational requirements that must
apply even in case of characterized threat.

So, using an algebra of contexts and priority assignment to security rules,
we consider two parameters to manage conflicting situations called criticity and
specificity. A criticity parameter is used to assess context priority between the
three defined categories of contexts operational, threats and minimal. We define
an operator Lc to assess the level of criticity of contexts, so that if Ctx is a set of
well formed contexts: Lc: Ctx −→ {ope, threat, min} with ope < threat < min.
We define the criticity relation as follows: c1 <c c2 ←→ Lc1 < Lc2. We consider
also a specificity parameter that deals with inheritance and context composition,
hierarchical specificity context inheritance. For instance, we say that c2 is more
specific than c1 if sub context(c2, c1). We define specificity for contexts as follows:
c1 ≤s c2 ←→ sub context(c2, c1) and c1 <s c2 ←→ c1 ≤s c2 ∧ ¬(c1 = c2). We
have then defined two strategies to assess rule priorities in case of potential
conflicts and prove that they are not conflicting strategies, that is we never
obtain conflicting decisions when applying them (see [16]).

6 Discussion and Open Issues

As mentioned in the introduction, one of the interest of a formal specification
is that it provides means to analyze conflicts. This is not an easy task because
a security policy is an heterogeneous set of requirements. It corresponds to per-
missions, prohibitions and obligations and some requirements apply to explicit
actions whereas others correspond to unknown actions. We suggest modelling
these last requirements using the bring it about modality. This is especially
useful to specify security requirements associated to new intrusions.

The next problem is then to analyze conflicts when the policy combines such
heterogeneous requirements. Our suggested solution consists in reformulating
security requirements that apply to explicit actions into requirements that use
the bring it about modality.

For this purpose, we need a formal specification of various actions used to
specify the policy through their pre and post conditions. Then, let us assume
that a given subject s is prohibited to execute a given action a on some object o
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in a given context c and let pre(a, o) and post(a, o) be respectively the pre and
post conditions associated with the execution of action a on object o. Then this
requirement is translated into the following security requirement:
forbidden(E(s, a, post(a, o)), c&pre(a, o))
where E(s, a, p) means subject s brings it about p by executing action s and
forbidden(p, c) is a diadic modality to specify that p is forbidden in context c.

We now obtain an homogeneous set of security requirements that we can
analyze to detect conflits. Defining a complete analysis still represents further
work. However, we can already state the following principles:

– Let permitted(E(s, a, p1), c1) and forbidden(E(s, a, p2), c2) be two security
requirements. These requirements conflict if p1 implies p2 and c1 and c2 are
consistent.

– Let permitted(E(s, a, p), c) and forbidden(E(s, S)) be two security require-
ments where S is an intrusion objective. These requirements are conflicting
if p implies S.

– Let permitted(E(s, a1, p), c) and forbidden(E(s, a2, p), c) be two security re-
quirements where a1 and a2 are different actions. These requirements are not
necessarily conflicting. For instance, let a1 be the action “Authentication us-
ing a credit card” and a2 be “Authentication using a password” and p the
proposition “s is authenticated”. Then it is not conflicting to state that s
is permitted to bring it about p by executing a1 but prohibited to bring it
about p by executing a2.

– Let permitted(E(s, a1, p), c1) and forbidden(E(s, a2, p), c2) be two security
requirements where a1 is a non elementary scenario. These requirements are
conflicting if action a2 is part of scenario a1 and c1 and c2 are consistent.

We plan to develop a complete analysis as an extension of the approach sug-
gested in [9].

7 Conclusion

Specifying a security is a central issue when developing a secure information
system. Since a security policy may include very different requirements, it is
essential to use an homogeneous formal model to specify these different require-
ments and deontic logic provides such an adequate formalism.

Traditional security policy models only consider norms that apply to explicit
elementary actions. In this paper, we first focus on intrusion detection policies
and show that these traditional models are not expressive enough to specify
security requirements corresponding to the detection of known non elementary
intrusion scenarios. There are also not appropriate to specify security require-
ments that correspond to new unknown intrusions. For this last purpose, we
suggest using the bring it about modality and security requirements correspond
to prohibition to bring it about that some security objectives are violated.

The security policy would then not be complete if it does not include a re-
action policy that specifies what happens in case of violation of some security
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requirement. We show that these requirements correspond to contrary to duty
norms. Contrary to duty has been extensively investigated in the deontic logic
literature and several proposals have been suggested to solve problems such as
the Chisholm paradox or the pragmatic oddity. However, to our best knowledge,
it is the first time practical applications of these works are investigated in the
context of security policies. We suggest an approach to manage conflicts between
reaction requirements and other security requirements based on the definition
of priorities between contexts associated with the activation of these different
requirements. We consider three different types of context called operational,
threat and minimal contexts. Threat contexts are associated with reaction re-
quirements and have higher priority than operational contexts. However, since
reacting may have some negative side effects on the information system, we also
consider minimal contexts associated with security requirements that must be
preserve even when reactions are activated. Minimal contexts have higher prior-
ity than other contexts including threat contexts.

We finally address the issue of analyzing consistency of these different
requirements. Since the security policy may include heterogeneous requirements
corresponding to norms that apply to explicit actions and others to implicit
actions, our proposal consists in translating all the requirements into norms
specified using the bring it about modality. It is then possible to analyze
possible conflicts between the different requirements. This approach requires
further work to be validated and we plan to take our inspiration into [9] to
define a complete algorithm to detect and solve conflicts in this case.
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Abstract. Norms are implemented by administrative procedures. This paper ad-
dresses the delegation of control in administrative procedures. Instead of having
to check all details, a controlling actor can trust the data provided by other ac-
tors, provided they can demonstrate to be ‘in control’. In this paper we provide
a conceptual analysis of situations in which control has been delegated. The ap-
proach is based on an analysis of the dependencies between activities performed
by the actors involved and on evidence documents. To motivate and illustrate the
approach, we discuss a case study about the redesign of EU customs procedures
for collecting excise duties.

Keywords: administrative procedures, trust, evidence documents.

1 Introduction

Norms for a society are implemented by means of regulations, documents and admin-
istrative procedures. We can treat a norm as a kind of requirement, a desirable prop-
erty of a system. In principle, there are many different implementations of the same
norm, so these control procedures must be designed. This ‘design perspective’ on nor-
mative systems has recently attracted a lot of interest in the area of electronic institu-
tions, e-commerce and multi-agent systems [11,12,2,4]. However, much of this work is
theoretical, and based on legal or philosophical abstractions. Less in known about the
way in which administrative procedures develop in practice. Only when procedures are
redesigned, do we get a chance to look at the development process of control mech-
anisms. In the private sector, business process redesign is seen as a way to improve
effectiveness and efficiency of administrative processes, often by making good use of
information technology [9,6]. In government, where many administrative procedures
are maintained, it is often harder to deploy redesign techniques, because processes may
have other than operational objectives. In particular, complexity is added by the legal
issues and issues of governance and control, required when implementing a norm.

One way to reduce complexity, is to delegate part of the control activities to an-
other party, provided the party can demonstrate to be trustworthy. Such a redesign may
provide great operational benefits, but there are huge risks too. The first risk for the leg-
islator, has to do with assessing the trustworthiness of an actor to which procedures are
delegated. The second risk has to do with the general norm that is being implemented.
How can the legislator make sure that the original control objectives of the administra-
tive procedures are at least preserved? In this paper we will focus on the latter topic.

R. van der Meyden and L. van der Torre (Eds.): DEON 2008, LNAI 5076, pp. 81–95, 2008.
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When redesigning administrative procedures by delegating control, how can
we make sure that original control objectives are guaranteed or improved upon?

The possibility of delegating control may seem farfetched, but it has already found real
application. Currently the European Union is redesigning customs procedures for excise
goods, such as alcoholic beverages and tobacco. According to the European Commis-
sion, excise fraud regarding alcohol in the EU amounts to e1.5 billion yearly1. The
redesign is meant to make procedures efficient, more secure, and more transparent. The
measures cover three major changes to the Customs Code [8]: (i) require traders to
provide customs authorities with information on goods, prior to import to or export
from the European Union; (ii) provide trustworthy traders with specific trade facilities
(Authorized Economic Operator, see below); (iii) introduce a mechanism for setting
uniform risk-selection criteria for controls, supported by computerized systems.

Crucial to understanding both current and future customs procedures, is the role of
evidence documents. The general norm is that excise duties are due in the country in
which alcoholic beverages are sold. Over the years, a procedure has developed which
uses a paper document, called the Accompanying Administrative Document (AAD).
This document must prove to the customs office in the home country, that a shipment
was indeed sold to end customers abroad, so that reimbursement of the excise duties
is warranted. In practice, only about 5% of the AADs which are issued each year are
checked by the customs and tax office. How can we redesign the procedures, such that
the role of this evidence document is taken over by information technology?

Most trading companies have an ERP system in place, with details of their business
processes, including procurement, logistics, and financial reporting. When an economic
actor can demonstrate to be ‘in control’, customs need no longer check every transac-
tion. Provided that certain criteria on the internal control systems, financial solvency
and compliance behavior of the economic actor are met, the customs and tax office may
assign it the status of AEO (Authorized Economic Operator). AEOs do not have to com-
ply with regular customs procedures, but use simplified procedures. This provides great
operational benefits, improves the image of the company and provides more certainty.
In return customs retain the right to perform audits, and to access certain information
extracted from the AEO’s ERP systems [8,22]. This requires standardization of customs
regulations, and inter-operability between information systems.

We observe a general shift in the way controls are being designed: instead of check-
ing documents about all transactions, which is practically impossible, the authorities
rely on risk monitoring based on information provided by the actors themselves. The
decision which actors to trust is based on extensive auditing. In other words, there is
shift from a transaction-based control model, to a relation-based control model.

In this paper we propose an approach for understanding the redesign of controls,
using a so called actor-activity-document analysis [1,14]. For each situation, we analyze
for each of the actors involved, what the dependencies are between the activities that
they have as their goals, and subsequently, what their control needs are. Furthermore
we analyze the required evidence documents, which may be provided by other actors to
which the control is delegated.

1 EU Commission. EU coherent strategy against fiscal fraud. Retrieved 18 Oct 2007 from
http://europa.eu/rapid/pressReleasesAction.do?reference=MEMO/06/221
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The remainder of the paper is structured as follows. In Section 2 we provide a the-
oretical background of the actor-activity-document analysis, based on agency theory,
control theory and theories regarding trust. In section 2.4 we then describe how to per-
form an actor-activity-document analysis. In Section 3 we discuss the case study of
customs procedures for collecting excise duties. An actor-activity-document analysis,
shows that the redesigns make sense from a control perspective.

2 Delegation, Control and Trust

The approach is based on a combination of agency theory, control theory and theories
of transaction trust, taken from the literature on management and organization.

2.1 Agency Theory

A well known theory in sociology and management accounting is agency theory, also
called principal-agent theory. See Eisenhardt [7] for a survey. Agency theory studies
the relationship between two parties: the principal, who delegates some activity, and the
agent, to whom the activity is delegated. The theory argues that if (1) the principal and
the agent are utility maximizers with bounded rationality and (2) there is information
asymmetry in favor of the agent, the agent may behave opportunistically. Agency theory
distinguishes two types of opportunistic behavior.

The first type is caused by hidden information: the principal can not be sure that the
agent accurately presents his ability to do the work. For example, a producer (agent)
generally has better information about the product he is producing, than someone who
wants to buy the product (principal). The generally accepted control mechanism against
hidden information is screening: the principal collects information about the reliability
of the agent, before agreeing on a transaction.

The second type is caused by hidden action: the principal can not be sure whether the
agent did his work according to the contract or not. For example, the producer may use
low quality components to produce a product. As a result, the quality of the product is
lower than agreed in the contract. The generally accepted control mechanisms against
hidden action are monitoring the agent, and creating incentives to motivate the agent
not to behave opportunistically [7]. The hidden action problem arises ex-post, after the
contract is settled, but usually the contract on incentives and penalties is agreed ex-ante.

2.2 Trust

Whenever parties depend on each other, but cannot control each other, lack of trust is
likely. Trust has been defined as

“The willingness of a party to be vulnerable to the actions of another party
based on the expectation that the other party will perform a particular action
important to the trustor, irrespective of the ability to monitor or control that
other party”[15, p.712].

Without prior trust, the party who invests in a transaction, called the trustor, is uncertain
whether the other party, the trustee, will perform its part of the deal or will defect and
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behave opportunistically. In transaction cost economics, this kind of behavior is called
‘ex-post’ opportunism [23]. Legal provisions in contracts are typically meant to reduce
the chances of such opportunistic behavior.

However, trust does not have to depend on the trustor and trustee alone [20]. Insti-
tutional control measures can guarantee performance according to contract. Think of a
legal system, with general provisions against fraud. When there is no overarching legal
system, as in international trade, parties can also arrange for control measures them-
selves. An example of such a control mechanism is an Escrow service [10].

To assess the effectiveness of a control from the point of view of the trustor, we can
use a kind of game theoretic reasoning. We compare the behavior of the trustee in a
scenario in which a control mechanism applies, with behavior in a scenario without
institutional control. It is not a coincidence that the effectiveness of an Escrow service
has been shown by game theoretic means [10]. This kind of reasoning can also be
modeled by the qualitative game theory developed by Boella and Van der Torre [2].

2.3 Internal Control and International Trade Procedures

Over the years, practices have evolved for designing control mechanism. A control
mechanism prescribes how to organize business processes in order to prevent, detect
or reduce the risks posed by a control problem. A control problem is a set of related
threats, identified by auditing and risk assessment. Internal control theory is concerned
with administrative and organizational measures inside an organization [19,17], see also
frameworks like COSO and COBIT. We have also used work on inter-organizational
trade procedures [5,3].

Control measures generally consist of a verification, in which (evidence of) perfor-
mance of some operational activity is compared with a standard or norm, i.e., with some
claim about its legitimacy, quality or quantity [13]. Verification requires three inputs:
(i) the operational activity itself, possibly represented by a document to be verified,
(ii) a claim about the legitimacy or quality, i.e., the standard or norm, and (iii) one or
more supporting documents containing further evidence about the operational activity.
The result of a verification is usually a decision to perform some action or not, or else a
document stating the decision. A template of a verification activity is shown in Figure 1.
To simplify the diagrams, in the remainder of the paper, we will only show the positive
outcome of a verification activity, since the negative outcome always leads to the end
of the process.

For ex-ante controls like screening, verification is concerned with the previous be-
havior of the actor. An example is the verification of the financial solvency, compliance
record and internal control system (supporting documents) in order to acquire the status
of AEO, upon request (document to be verified). The norms are stated in customs reg-
ulations [22]. A classic example of an ex-post control, is the three-way reconciliation
used in procurement: before paying an invoice (document to be verified), delivery of
the goods at the warehouse (operational activity), is checked against the purchase order
(supporting documents) [17].

In international trade, actors are not in a position to verify an activity, because
of the different locations. So control must be delegated. Based on procurement prac-
tices, Chen [5] developed a list of principles about the use of evidence documents. For
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example, a control activity providing evidence, must directly follow the operational ac-
tivity it controls. This reduces the possibility of error or manipulation of the evidence.

By itself, verification of documents cannot provide reasonable assurance. Crucial is
the control environment: the organizational system in which the controls are embedded,
the system of internal control, and the dependencies between actors. General control
principles can be formulated as follows [16,18].

1. Separation of Duties. Critical processes or activities are divided into at least two
separate activities, execution and control, which should not be performed by the
same person or organizational unit.

2. Delegation. Delegation is an important part of any working organization. Some
work is better done by specialists. Delegation is the specification of responsibil-
ities, through which a superior transfers authority downward in the organization
along with the obligation to perform tasks. In case of delegation outside the orga-
nization(outsourcing), we get the control problems discussed in Section 2.1.

3. Supervision, Review and Audit. Supervision and review make certain that delegated
activities are carried out as required. Supervision is done by a superior position. Re-
viewing is task-specific and does not need to be performed by a superior. Auditing
must provide reasonable assurance that a control system performs its functions.

A principle that does not always hold, but that will make a control stronger, is the
principle of opposed interests. Whenever existing evidence is used in a control, such
as commercial documents, the evidence should be provided by an actor with interests
opposed to those of the actor being controlled. For example, in checking excise decla-
rations, the customs could use the invoice produced by the buyer.
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2.4 Actor-Activity-Document (A-A-D)

It is easy to detect parallels in the theories above. Usually, the principal will also be
the trustor, and when trust is not sufficient, additional control measures will have to be
taken. In that case, the principal will also be the controlling actor, unless control has
been delegated. When there is sufficient trust, the agent will also be the trustee. In case
control has been delegated, the actor who produces evidence on which the control is
based, the evidencing actor, will be different from the principal. Generally, evidence
is provided in the form of an evidence document, which plays the role of supporting
document in a verification activity.

Extracting concepts from literature mentioned above, we conclude that an effective
control procedure should enable a control actor to carry out control activities by means
of sufficient and independent documentary evidence. Yet, only exchanging documents
between actors could not ensure a seamless control; a constraint of independence needs
to be noticed. Stemming from one of the most fundamental principles of accounting
practice, segregation of duties [19], we argue that a good design of the control procedure
should include the separation of assigned duties and responsibilities in such a way that
no single actor can both perpetrate and conceal errors or irregularities.

Three elements, namely actor, activity and document can be identified. We distin-
guish three types of actor: responsible actor (agent), control actor (principal), and
evidencing actor, three types of activity: operational activity, evidencing activity and
control activity (verification), and three kinds of document: document to be verified,
supporting document and verified document (decision). The general idea is that by
separating actors with different activities and documents, effective inter-organizational
control can be designed. Because the three elements, actor, activity and document are
crucial, the approach we use is called A-A-D2.

A detailed description of the A-A-D components is given in Table 1. Based on the
principles discussed above, we developed a checklist to help domain experts identify
control problems and redesign control mechanisms. The checklist is given in Table 2.

3 Case Study: Excise Duties

The European Union is currently reshaping its customs legislation and practices, to
deal with the dilemma between increasing security, financial and health requirements,
and the need to reduce the administrative burden. The effort is based on three pillars:
(i) extensive use of information technology (e-customs), (ii) public-private partnerships
between customs and businesses, and (iii) collaboration between the national customs
administrations. The concepts introduced to deal with this challenge are Authorized
Economic Operators, explained above, and the vision of a single window, “to enable
economic operators to lodge electronically and once only all the information required
by customs and non-customs legislation for EU cross-border movements of goods”
[21]. Such a single window should replace the multiple overlapping requests for tax
and customs information, that export companies are now faced with.

2 Note the use of ‘-’ to avoid confusion with the Administrative Accompanying Document.
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Table 1. Components of the A-A-D approach

Actor An actor is a person or a group of persons, playing an organizational role, and perform-
ing activities to achieve its objectives in cooperation with other actors.

– Responsible actor: The actor who is responsible for performing an operational activity, or
for having an operational activity performed (agent).

– Control actor: The actor who has a direct interest in controlling an operational activity
executed by some other actor (principal).

– Evidencing actor: The actor who witnesses the execution of an operational activity, veri-
fies the completeness, accuracy and compliance with applicable organizational policies, and
testifies the outcome.

Activity An activity is an action or sequence of actions, mediated by resources and tools (e.g.,
documents).

– Operational activity: Basic business operations to obtain business value or achieve an op-
erational goal.

– Control activity: Reconcile and verify records, documents or messages from the responsible
actor and evidencing actor (verification).

– Evidencing activity: Witness the execution of the operational activity, verify the complete-
ness, accuracy and accordance with organizational policies and rules and testify the outcome
(witness).

Document A document contains certified information, interchanged among actors in a ad-
ministrative procedure. Documents may take different forms: paper documents, records in a
database, or electronic messages.

– To-be-verified Document. A document issued by the responsible actor to prove completion
of the operational activity.

– Supporting Document Any document containing evidence to support the control actor, if
he/she could not directly witness the performance of the operational activity.

– Verified Document The document stating the decision of the control actor after verifying or
reconciling the to-be-verified document and supporting documents, from which a conclusion
of an effective control can be drawn.

Table 2. A-A-D Checklist, largely based on audit principles of Chen [5]

P1 Does a control activity exist and directly follow the corresponding operational activity?
P2 Can the control actor directly witness the execution of the operational activity? If not, is the

evidencing activity (witnessing) delegated to an evidencing actor (trusted third party)?
P3 Is there a supporting document furnishing the evidencing activity?
P4 Is the supporting document the result of a previous evidencing activity, directly witnessing

the operational activity to be controlled?
P5 Is the supporting document directly transferred to the control actor from the evidencing actor

who witnesses the operational activity?
P6 Is the supporting document generated by an actor independent of the actor who generates

the to-be-verified document?
P7 Are the control activity and corresponding operational activity assigned to different actors?
P8 Are the actors responsible for the operational activity and its corresponding control activity

socially detached?
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The case study, called Beer Living Lab (BeerLL), is embedded in the ITAIDE project
[1]. Partners in the project are the Dutch Tax and Customs Administration (Customs
NL), Her Majesty’s Revenue and Customs (Customs UK), a large international beer
producer (BeerCo), and various technology and software providers. The study focuses
on the redesign of export procedures for excise goods. The main principle of excise
law is as follows: excise duties are due in the country in which the goods are sold to
end customers. An exporting company is exempt from excise duties, provided it can
be shown that the excise goods were indeed exported and sold abroad. How can this
norm be implemented? First we discuss the current implementation. Then, we discuss
the implementation of the norm after the redesign. Using the actor-activity-dependency
approach we demonstrate that the projected situation does indeed guarantee, or even
improve upon, the original control objectives.

3.1 Current Controls

Being an international brewery, BeerCo NL is exporting thousands of tons of beer ev-
ery day to its counterpart BeerCo UK. The current excise control is based on physical
inspections and on the AAD. The AAD performs two roles: one as export evidence
document when stamped by UK Customs; the other to identify the cargo in case of a
physical inspection en route. Also commercial shipping documents, like the waybill,
accompany a container. The ADD is stamped by Customs UK, to certify that the goods
arrived in the UK. To acquire evidence that the beer was sold to end customers, Cus-
toms UK relies on so called Excise Warehouses. These are traders with a specific status,
which gives them the authority to keep a certified administration of foreign beer sold.
So also in the current situation, part of the control has been delegated. After stamp-
ing the AAD, Customs UK sends the document back to the customs broker, which is
usually the shipping company, who will forward it back to BeerCo NL. For the beer
that BeerCo NL has claimed to have sold outside the Netherlands, excise exemption is
given by default. The legitimacy can be verified afterwards by comparing excise dec-
larations with the AADs produced, and possibly with records of physical inspections.
The current exercise procedures are listed in Figure 2 and Table 3.

Table 3. Analysis of current control in BeerLL

control objective: be exempt from excise duties provided beer is sold abroad
responsible actor: BeerCo NL
operational activity: export beer, without excise duties
control actor: Customs NL
control activities: physical inspection of shipments (random sample)

verification of excise declarations against AAD,
regular auditing

evidence actor: Customs UK, Excise Warehouse
evidence activity: testify arrival in UK, testify sale to end customers
to-be-verified document: excise declaration
supporting document: stamped AAD, evidence of inspections and audits
verified document: approved excise declaration
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Fig. 2. Partial model of current excise procedures

The current procedure has three major disadvantages:

1. Delay: transferring the paper AAD can take months, so verification is done long
after the fact, This harms the effectiveness of the control. In practice, often no
checking is done, because it is too labor intensive. As a result, BeerCo NL will
only submit AADs upon request of Customs NL.

2. Many parties: the AAD control involves many parties: BeerCo NL, BeerCo UK,
customs broker, shipping company, and Excise Warehouse. Some parties have a fi-
nancial interest in violating the control. A paper document is easily falsified. The
document is transferred back along the supply chain, so each of these parties in-
dividually, or colluded, have the opportunity to alter or hide information. If the
document is tampered with, it is difficult to prove where the alteration originated.

3. Inefficiency: physical inspections and excise declaration checks are labor intensive.
In real life only about 5% of the AADs are used to check excise declarations, and
even less then 5% of the containers are physically inspected at the border. Still,
many parties complain about the huge administrative burden resulting from paper-
work, and inspection delays.

3.2 Control Delegation Based on Inter-organizational Systems

The redesign is driven by so called inter-organizational systems (IOS), which should
enable enhanced supply chain management and systems auditing. These systems are
developed collaboratively, in a public-private partnership between the national customs
organizations and local businesses with the status of Authorized Economic
Operator (AEO). The design of the IOS relies on two innovative technologies: Tamper-
Resistant Embedded Controllers (TREC), a kind of intelligent seal to detect when a con-
tainer is opened3, and Electronic Product Code Information Services (EPCIS), a shared

3 Further information on TREC is available at http://www.zurich.ibm.com/news/05/trec.html
and http://www.zurich.ibm.com/csc/process/securetradelane.html, accessed on Oct 31, 2007.
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Fig. 3. BeerLL IOS setting

shipment data repository. A TREC device has the following features: (1) sensors inside
the container to monitor parameters including humidity, temperature, shocks and unau-
thorized container openings; (2) real-time container location tracing through continuous
satellite connection (GPS); (3) connection to information systems during transport; and
(4) ability to send messages triggered by predefined rules. For example, the TREC may
send an alert when the container arrives at a geographical location, or when the temper-
ature is lower or higher than predefined limits. TREC devices must be equipped with
encryption techniques, to ensure authenticity and integrity of the messages. The shared
data repository used in the supply chain makes use of the EPCIS non-proprietary stan-
dards4. Each partner in the supply chain can make a copy of the relevant shipment data
from its own ERP system, and publish it in a shared data repository, where it becomes
accessible to other supply chain partners as well as too government agencies. EPCIS
will use a service oriented architecture (SOA), to minimize inter-operability problems.

In the redesigned excise procedures, BeerCo will now ship its goods in containers
equipped with TREC. TREC devices can ensure shipment integrity, and enhance their
security. Each TREC device has a unique key, called Unique Consignment Reference
(UCR). By means of hand-held devices, customs officers can read the UCR off a TREC
device and obtain access to the corresponding data in the EPCIS databases of supply
chain partners. See Figure 3. Subject to periodic auditing, BeerCo will enjoy the sta-
tus of Authorized Economic Operator (AEO). This means that Customs NL can put
a higher level of trust in the information provided by BeerCo in the excise declara-
tions, and in the EPCIS repository. It also means that Customs NL can delegate part
of the control activities – the most burdensome part – to other parties. One such party

4 For further details see http://www.epcglobalinc.org, last accessed on Oct 31, 2007.
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Table 4. A-A-D Checklist applied to current and redesigned excise procedures

Principle P1 P2 P3 P4 P5 P6 P7 P8
Current 5% verification 3rd party upon request yes no yes yes yes
Redesigned yes, always 3rd party yes, always yes yes yes yes yes

will be the TREC service provider, a company who will install and maintain TREC
devices. Given the sensitive nature of the technology, the TREC service provider will
also have to be certified by the customs and tax office. Thanks to the GPS built into
the TREC devices, one can automatically witness when a container has crossed a bor-
der, and create an alert for customs NL. The electronic seal will make sure that the
container is secure en route. If anything goes wrong, alert information will be sent to
Customs NL as an extraordinary event. The original administrative burden for Customs
NL is lowered. The only remaining control activities are checking extraordinary events
and periodic auditing. This means that resources become available to enhance the level
of control.

3.3 Applying A-A-D to the Case Study

A pending issue for the redesign in this case is whether the redesigned control procedure
can still preserve or even improve the original control. Our Actor-Activity-Document
analysis, can serve as a guideline for such control validation. We first identify the A-A-
D components. For the current control procedures, the components are listed in Table 3.
Note that if some A-A-D components cannot be identified, this is already an indicator
for potential control problems. After identifying the A-A-D components, the checklist
(Table 2) is used to identify control problems. A brief summary of the results is listed
in the first column of Table 4.

In general, when assessing the effectiveness of control measures, one has to verify
the adequacy of the design, their existence in regulations, and their operational effec-
tiveness. Table 4 shows that with regard to existence and design, the current procedures
are sufficient, with a notable exception for P5, that a supporting document must be di-
rectly transferred to the control actor. The AAD is handled by all parties in the supply
chain, and can therefore be tampered with. Regarding operational effectiveness, the cur-
rent procedures are clearly lacking. In practice only about 5% of the excise declarations
are checked against the AAD. This often happens months after the shipment was made.
What is needed is reliable evidence, that the goods where indeed exported.

Does the redesigned procedure preserve or even improve on the original controls?
In the new situation, the number of parties has decreased. BeerCo UK, Excise Ware-
house and Customs UK have been removed. Customs UK can now concentrate on its
own task, of collecting excise duties within the UK. The role of evidencing actor is
played by the TREC service provider, who should be certified. The TREC alerts Cus-
toms NL when the container has left the Netherlands. Such a location alert can play the
role of supporting document. Because the message is sent directly to Customs NL, ma-
nipulation by other parties has become impossible. The redesigned system supports an
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Table 5. Analysis of redesigned control in BeerLL; changes in bold

control objective: be exempt from excise duties provided beer is sold abroad
responsible actor: BeerCo NL
operational activity: export beer, without excise duties
control actor: Customs NL
control activities: physical inspection supported by TREC and EPSIS (random sample)

verify excise declaration against EPSIS, TREC alerts

regular audit AEO, TREC service provider

evidence actor: supply chain partners (EPSIS), TREC service provider

evidence activity: testify arrival in UK, testify sale to end customers
to-be-verified document: excise declaration
supporting document: TREC alert, EPSIS

verified document: approved excise declaration

automated 100% check of excise declarations. In essence, it becomes a preventive con-
trol: excise reimbursement is only granted when the excise declaration is verified. This
is opposed to the current situation, in excise is reimbursed by default, and tax officers
perform sample tests of paper AADs.

Table 5 summarizes these changes. A graphical depiction of the new process is given
in Figure 4. Table 4 summarizes that the deficiencies of the current design, have been
removed in the new situation.

It is interesting to note that in EPSIS, shipment data is used and provided by differ-
ent supply chain partners. This increases the reliability of the shipment data, because
different partners may have opposed commercial interests. For example, if BeerCo NL
would overstate the amount of beer exported, in order to reclaim more excise duties
than due, the buyer of the beer would protest, because no such amount was delivered,
and because the buyer will have to pay excise duties in the UK for this amount.
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3.4 Discussion on Research Limitations

In this section we briefly discuss the limitations of our research, and the relevance of for-
mal specification and verification to this kind of research problem. Control procedures
are often evaluated by means of a risk assessment. The risk that a misstatement or vio-
lation goes undetected is called audit risk [17]:

audit risk = inherent risk × control risk × detection risk.

The inherent risk, is the risk that errors are made or that anyone would want to vi-
olate excise laws in the first place. This is beyond our control. The control risk, is the
risk that control procedures do not prevent, or detect and correct a violation. The de-
tection risk is the risk that remaining cases are not detected during investigation by
the auditor, e.g. by manually checking samples of transactions. Redesign of adminis-
trative procedures has the greatest impact on control risk. In our case, direct transfer
of the TREC message prevents collusion and tampering. Also the changes of detection
and correction are improved, since all excise declarations are now verified. When the
control risk is reduced, there is less reason to deal with the residual risk by random
inspections.

That means that we must demonstrate that the control procedures are ‘watertight’:
that there is a reasonable assurance that potential incidents are prevented, or detected
and corrected. For such a task formal specification of (relevant parts of) the control
mechanism, and subsequent verification of desirable properties, is possible and useful.
Formal techniques can be used in various ways. If we focus on the transfer of evidence,
the processes in Figure 2 and 4 should be translated into a formal representation, such
as a Petri net [13] for example. The crucial part for demonstrating P5, are assumptions
about access to evidence documents and the possibility of tampering. If we focus on the
motivation of actors for collusion or tampering with evidence, a much more elaborate
model would be needed. One candidate would be the qualitative game theory, developed
by Boella and Van der Torre [2]. In our opinion, deontic logic itself would not be a
good candidate to verify these control procedures. The properties we want to show (no
tampering; no collusion) are not themselves normative. However, together with other
properties of the system, these properties help to assure that a norm – the excise law –
is implemented in a effective and efficient way.

In this paper however, we have not used formal specification and verification tech-
niques. The research is still in an initial stage. Detailed protocols for e.g. communication
with TREC devices do not yet exist. For the ‘proof of concept’ needed at this stage of
the project, an informal argument is more appropriate. In future research we plan to
further analyze the reasoning of an auditor when they are auditing procedure redesigns
such as was done in the BeerLL. For this we will apply formal modeling techniques.
The aim is to discover the underlying rules and principles that guide the auditor’s de-
cision making process. These will also be used to develop an expert system that can
support the auditor in its auditing tasks.
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4 Conclusion

We have investigated the possibility of redesigning administrative procedures, by dele-
gating part of the control activities.

Generally, we observe a shift in the design of controls from transaction-based control,
where each individual transaction must be checked, to relation-based control, where
part of the control activities are delegated to trusted actors. Such a shift has a huge
potential for improving the operational efficiency and effectiveness of controls, but there
are also risks involved. In particular, one must assess which actors can be trusted to
delegate control to. Moreover, the redesigned administrative procedures must be shown
to guarantee, or improve upon, the control objectives of the original procedures.

In this paper we have proposed an analysis approach called actor-activity-document
(A-A-D), based on ideas taken from agency theory, trust, internal control and interna-
tional trade procedures. For each scenario, we first identify the actors with their objec-
tives. From an analysis of the dependencies between objectives, we can deduce which
activities need to be controlled, and what control activities and evidencing activities are
required. When the control actor (principal) is not in a position to control the activity,
control must be delegated. Finally, we analyze which documents are involved in the
control activity. Then we apply a checklist of principles about evidence and control.

We have applied the approach to a case study of the redesign of customs procedures
related to excise. In the current situation, proof that goods have been exported and are
therefore exempt from excise duties, is given by a paper document, called AAD. This
document travels along the supply chain. The current procedure is inefficient, ineffec-
tive, and insecure. In practice only about 5% of excise declarations are verified, and
parties in the supply chain can tamper with the AAD. The new situation makes use of
TREC devices, which can monitor the state of a container, provide access control, and
send alerts. In particular, TREC can send a message when the container crosses the
border. Moreover, customs officers can use TREC to get access to the EPCIS system,
which contains reliable shipment data shared by all parties in the supply chain. In the
new situation, 100 % of the excise declarations can be automatically checked.

With the actor-activity-document method we demonstrate that the design and exis-
tence of the control measures in the new situation, can guarantee the control objectives
of the original procedures, and indeed improve on them. However, it is too early to draw
any conclusions about their operational effectiveness.

The redesign of the EU customs code faces a number of challenges. First, there
are technical challenges, related to the safety and security of the TREC device, and
access control to the EPCIS systems. To help address these challenges, formal methods
can be useful. Second, there are organizational challenges related to standardization
and inter-operability of commercial systems and the customs organizations. Third, the
scenario assumes that parties in the market are willing to provide TREC-like services. A
joint venture between a technology provider and an international shipping company or
customs broker, might provide TREC services. Currently there is no evidence to support
this view. Finally, the scenario requires huge investments by supply chain partners and
AEOs. It is unclear, whether companies will have enough operational benefits from
the simplified customs procedures, to warrant becoming an AEO. These challenges are
exemplary for the challenges facing control delegation in general.
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Abstract. In this paper we investigate the design space of access con-
trol logics. Specifically, we consider several possible axioms for the com-
mon operator says. Some of the axioms come from modal logic and
programming-language theory; others are suggested by ideas from secu-
rity, such as delegation of authority and the Principle of Least Privilege.
We compare these axioms and study their implications.

1 Introduction

While access control appears in various guises in many aspects of computer
systems, it is attractive to reduce it, as much as possible, to few central concepts
and rules [17]. The development and use of general logics for access control is an
ongoing effort in this direction. In this paper, we examine and compare several
logics for access control.

The logics that we consider all have the same operators and intended applica-
tions, but they differ in their axioms and rules. They all start from propositional
logic with the says operator, which is central in several theories and systems
for access control (e.g., [1, 4, 5, 6, 8, 9, 12, 14, 16, 19, 20]). Moreover, they all
allow the definition of a “speaks for” relation [4, 16, 18] from says and quantifi-
cation: A speaks for B if, for every X , if A says X then B says X . In a formula
A says s, the symbol A represents a principal and s represents a statement (such
as a request or a delegation of authority). Intuitively, A says s means that A
supports s, whether or not A has uttered s explicitly.

Perhaps because intuitive explanations of says are invariably loose and open-
ended, the exact properties that says should satisfy do not seem obvious. The
goal of this paper is to investigate the space of options, exploring the formal
consequences and the security interpretations of several possible axiomatiza-
tions, and thus to help in identifying logics that are sufficiently strong but not
inconsistent, degenerate, or otherwise unreasonable.

Some of the axioms that we study come from modal logic [15], computational
lambda calculus [21], and other standard formal systems. Other axioms stem
from ideas in security, such as delegations of authority and the Principle of
Least Privilege [22]. For instance, we consider the hand-off axiom, which says
that if A says that B speaks for A, then B does speak for A [16]. We evaluate
these axioms in both classical and intuitionistic contexts.

More specifically, we start with the basic axioms of standard modal logic, in
particular that says is closed under consequence (if A says s1 and A says that

R. van der Meyden and L. van der Torre (Eds.): DEON 2008, LNAI 5076, pp. 96–109, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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s1 implies s2, then A says s2), together with the necessitation rule (if s is valid
then A says s). In addition, the axioms that we consider include the following:

1. The hand-off axiom, as described above, and a generalization: if A says that
s1 implies A says s2, then s1 does imply A says s2. In the special case where
s1 is B says s2, we obtain a hand-off from A to B for s2.

2. A further axiom that if A can make itself speak for B , then A speaks for B
in the first place. This axiom may be seen roughly as a dual to the hand-off
axiom.

3. The axiom that s implies A says s. This axiom is similar to the necessitation
rule but stronger, and has been considered in access control in the past. It
is also suggested by the computational lambda calculus. We call it Unit.

4. The other main axiom from the computational lambda calculus, which we
call Bind: if s1 implies A says s2, then A says s1 implies A says s2.

5. The axiom that if A says s then s or A says false. We call this axiom
Escalation, because it means that whenever A says s, either s is true or A
says anything—-possibly statements intuitively “much falser” than s.

6. An axiom suggested by the Principle of Least Privilege, roughly that if a
principal is trusted on a statement then it is also trusted on weaker state-
ments.

We obtain the following results:

– In classical logics, the addition of axioms beyond the basic ones from modal
logic quickly leads to strong and surprising properties that may not be de-
sired. Bind is equivalent to Escalation, while Unit implies Escalation.

Pictorially, we have:
Unit
⇓

Escalation
 

Bind

There are systems intermediate between the basic modal logic and Escala-
tion. For instance, one may require the standard axiom C4 from modal logic
(if A says A says s then A says s) without obtaining Escalation. However,
these intermediate systems appear quite limited in their support of delega-
tion and related concepts.

– In intuitionistic logics, we have a little more freedom. In particular, a system
that includes Unit and Bind, which we call CDD [2, Section 8], does not lead
to Escalation.

Pictorially, we have:

CDD Escalation
⇓ ⇓ ⇓

Unit Bind

Many further refinements become possible, in particular because Escalation
and Unit are independent intuitionistically.



98 M. Abadi

– The general form of the hand-off axiom (1) is equivalent to Bind.
– Unit implies axiom (2). This axiom is equivalent to Unit if there is a truth-

telling principal.
– Finally, Escalation implies axiom (6). Conversely, this axiom and C4 imply

Escalation.

In addition to occasional trickiness in proofs, the main difficulties of this
work are in identifying and formulating the results summarized above. While
some previous work also explores various axiomatizations of access control logics
(e.g., [4]), those explorations have focused on classical logics, dealing for instance
with properties of compound principals. We previously knew that Unit implies
Escalation [1], and that Bind implies the hand-off axiom [2]. All the other results
appear to be new.

Section 2 reviews the basic intuitionistic and classical logics that serve as
our starting point. Section 3 studies CDD, considering axioms (1), (2), (3), and
(4). Section 4 focuses on Escalation (axiom (5)). Section 5 considers axiom (6).
Section 6 concludes with a brief discussion.

2 Basic Logics

In this section we briefly review the basic logics on which we build.

2.1 Formulas

Formulas are given by the grammar:

s ::= true | (s ∨ s) | (s ∧ s) | (s → s) | A says s | X | ∀X. s

where A ranges over elements of a set P (intuitively the principals), and X
ranges over a set of variables. The variable X is bound in ∀X. s, and subject to
renaming.

We write false for ∀X. X . We write s1 ≡ s2 for (s1 → s2) ∧ (s2 → s1). We
write A ⇒ B as an abbreviation for

∀X. (A says X → B says X)

This formula is our representation of “A speaks for B”. We write A controls s
as an abbreviation for (A says s) → s.

2.2 Basic Axioms and Rules

All of the logics that we consider are based on second-order propositional intu-
itionistic logic. We review this logic in Appendix A. In addition, we rely on a
standard axiom (closure under consequence):
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∀X, Y. ((A says (X → Y )) → (A says X) → (A says Y ))

and a standard rule (necessitation):

s
A says s

Thus, we obtain a second-order, intuitionistic, multi-modal version of the stan-
dard logic K. It is the least system that we consider in this paper.

Sometimes we consider classical variants. In those, we use the following addi-
tional principle:

[Excluded-middle ] ∀X. (X ∨ (X → false))

Throughout the paper, we also introduce other additional axioms, as explained
in the introduction.

3 CDD

CDD arose as a simplified version of the Dependency Core Calculus (DCC) [3],
but it is similarly adequate as a logic for access control [2, Section 8]. CDD is
related to lax logic [10] and the computational lambda calculus [21]. It has been
used for language-based authorization [11], and its central rules also appear in
other systems for access control, such as Alpaca [19].

In comparison with DCC, CDD may be seen as straightforward and conserva-
tive. For instance, while DCC proves (A says B says s) → (B says A says s),
CDD does not. Although we do not discuss DCC in detail, the results of this
paper are relevant to DCC as well.

A self-contained definition of CDD is in Appendix B. In the context of the
basic intuitionistic logic presented in Section 2.2, however, CDD amounts to
adopting the following two additional axioms, Unit and Bind:

[Unit ] ∀X. (X → A says X)
[Bind ] ∀X, Y. ((X → A says Y ) → (A says X) → (A says Y ))

It is easy to show that neither of these axioms is derivable in the logic of Sec-
tion 2.2, neither intuitionistically nor classically. We prove some stronger results
below, in Section 3.1, also considering the axiom C4 mentioned in the introduc-
tion. In Sections 3.2 and 3.3, we relate Unit and Bind to formulas motivated by
security considerations.

3.1 C4 in CDD

This section is devoted to some simple results on the relation between CDD and
the axiom C4:

[C4 ] ∀X. (A says A says X → A says X)
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We can replace Bind with the simpler C4 when we have Unit:

Proposition 1. Starting from the basic logic (without Excluded-middle), we
have:

1. Bind implies C4;
2. Unit and C4 (together) imply Bind;
3. C4 does not imply Bind;
4. Unit does not imply C4 (and a fortiori not Bind).

Proof. 1. In Bind, take X to be A says Y .
2. For arbitrary X and Y , assume (X → A says Y ) and A says X . We wish

to show A says Y .
By Unit, we have (X → A says Y ) → A says (X → A says Y ).
By closure under consequence, (X → A says Y ) yields (A says X) →
(A says A says Y ). By C4, we obtain (A says X) → (A says Y ).
It follows that A says Y .

3. We prove a stronger result in Proposition 2, with Excluded-middle.
4. Mapping the logic to its fragment without says (to System F [7, 13], essen-

tially), we interpret A says s as

(XA → s) ∨XA

where XA is a distinct type variable used only for this purpose for each
principal A. This interpretation satisfies Unit. It does not satisfy C4, because

A says A says false→ A says false

translates to

((XA → ((XA → false) ∨XA)) ∨XA) → ((XA → false) ∨XA)

The left-hand side of this implication is intuitionistically provable, and the
right-hand side is not, so the implication is not.

Bind does not imply Unit in the basic logic. We do not state it explicitly in
the intuitionistic case (in Proposition 1, above) because it is a corollary from
a stronger result in the classical case (Proposition 2, below). Conversely, Bind
implies C4 in the classical case, but we do not state explicitly there because it
follows from a stronger result in the intuitionistic case.

Proposition 2. Starting from the basic logic plus Excluded-middle, we have:

1. C4 implies neither Bind nor Unit.;
2. Unit implies C4 (and therefore Bind);
3. Bind does not imply Unit.

Proof. 1. We consider a Kripke model with two possible worlds w and w′,
with the accessibility relation {w, w′}× {w′} associated with A. This model
satisfies C4. It does not satisfy the instance of Bind
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(X → A says false) → (A says X) → (A says false)

for a proposition X that holds in w′ but not in w (so A says X holds in w).
It does not satisfy the instance of Unit X → A says X for a proposition X
that holds in w but not in w′.

2. In classical logic, we assume A says A says X in order to prove A says X .
We proceed by cases on A says X , using Excluded-middle. If A says X
holds, we are done. On the other hand, if (A says X) → false holds, Unit
yields A says ((A says X) → false), and closure under consequence yields
A says false, and then A says X .
That Unit implies Bind follows from Proposition 1, which says that Unit
and C4 together imply Bind.

3. This part follows from Theorem 4.

3.2 Hand-Off in CDD

In CDD, we obtain the hand-off axiom as a theorem:

[Hand-off ] A controls (B ⇒ A)

A slight generalization of the hand-off axiom is also interesting and also a
theorem:

[Generalized-hand-off ] ∀X, Y. A controls (X → A says Y )

Theorem 1. Starting from the basic logic: Bind is equivalent to Generalized-
hand-off.

Proof. First we establish that Bind implies Generalized-hand-off. In order to
prove that, for all X and Y , we have A controls (X → A says Y ), we assume
X and A says (X → A says Y ) in order to prove A says Y . By Bind, we have:

((X → A says Y ) → A says Y )
→

A says (X → A says Y ) → A says Y

Since we have A says (X → A says Y ), we obtain:

((X → A says Y ) → A says Y )
→

A says Y

Since we also have X , and hence (X → A says Y ) → A says Y , we conclude
A says Y .

For the converse, let us assume that A controls (X → A says Y ) in order
to prove that (X → A says Y ) → (A says X) → (A says Y ). So let us assume
that X → A says Y and A says X in order to prove A says Y . If A says X ,
by closure under consequence we have A says ((X → A says Y ) → A says Y )
since X → ((X → A says Y ) → A says Y ) is valid. By Generalized-hand-off,
we obtain (X → A says Y ) → A says Y . Applying this to X → A says Y , we
conclude A says Y .
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3.3 The Limits of Hand-Off in CDD

Suppose that a principal A is trusted on whether it speaks for another principal B
on every statement. In CDD, it follows that A must speak for B in the first place,
whether it says so or not. If A does not wish to speak for B , it should reduce
its authority, for instance by adopting an appropriate role [16, Section 6.1]. This
result might be seen as a reassuring characterization of who can attribute the
right to speak for B ; it may also be seen as a dual or a limitation of hand-off in
the context of CDD.

More precisely, we define:

[Authority-shortcut ] (∀X. A controls (A says X → B says X)) → (A ⇒ B)

We obtain:

Theorem 2. Unit implies Authority-shortcut.

Proof. Suppose that, for all X , A controls (A says X → B says X) and
suppose that, for some particular X , we have A says X . We wish to derive
B says X .

Because A says X , Unit implies A says B says X . (Here we apply Unit
under says.) Then by closure under consequence we have A says (A says X →
B says X).

By our assumption that, for all X , A controls (A says X → B says X), we
obtain A says X → B says X .

Combining A says X → B says X with A says X , we obtain B says X , as
desired.

The proof is peculiar, not least because the hypothesis A says X is used twice
in different roles.

A small variant of the proof of Theorem 2 shows that Unit also implies:

∀X. ((A controls (A says X → B says X)) → (A says X → B says X))

In other words, writing A ⇒X B for A says X → B says X [18], we have that
Unit implies:

∀X. ((A controls (A ⇒X B)) → (A ⇒X B))

The converse of Theorem 2 is almost true. Suppose that there is a truth-
telling principal A, that is, a principal for which ∀X.X ≡ (A says X). Applying
Authority-shortcut to this principal, we can derive s → B says s by proposi-
tional reasoning, for every B and s. In other words, given such a truth-teller, we
obtain Unit.

Nevertheless, the converse of Theorem 2 is not quite true. All basic axioms
plus rules, plus Authority-shortcut, hold when we interpret A says s as true, for
every A and s. Unit does not hold under this interpretation.

In addition, we can prove that Authority-shortcut does not follow from other
axioms (such as Bind), even in classical logic. In other words, Authority-shortcut
appears to be very close to Unit, and can be avoided by dropping Unit.
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4 Escalation

As indicated in the introduction, Escalation is the following axiom:

[Escalation ] ∀X, Y. ((A says X) → (X ∨ (A says Y )))

Equivalently, Escalation can be formulated as:

∀X, Y. ((A says X) → (X ∨ (A says false)))

Escalation embodies a rather degenerate interpretation of says. At the very
least, great care is required when Escalation is assumed. For instance, suppose
that two principals A and B are trusted on s, and that we express this as
(A controls s) ∧ (B controls s); with Escalation, if A says B says s then s
follows. Formally, we can derive:

(A controls s) ∧ (B controls s) → ((A says B says s) → s)

This theorem may be surprising. Its effects may however be avoided: A should
not say that B says s unless A wishes to say s. As a result, though, the logic
loses flexibility and expressiveness.

On the whole, we consider that Escalation is not a desirable property. Un-
fortunately, it can follow from the combination of properties that may appear
desirable in isolation, as we show.

Theorem 3. Starting from the basic logic (without Excluded-middle),

1. Unit and Bind (together) do not imply Escalation (in other words, Escalation
is not a theorem of CDD);

2. Escalation implies Bind (and therefore C4).

Proof. 1. Following Tse and Zdancewic [23], we can interpret CDD in System
F [7, 13]. We map A says s to XA → s, where XA is a distinct type variable
used only for this purpose. If s is provable in CDD, then its translation is
provable in System F.
The translation of Escalation is:

∀X, Y. ((XA → X) → (X ∨ (XA → Y )))

This formula is not provable in System F.
2. Suppose that X → A says Y and that A says X . We wish to prove

A says Y .
By Escalation, A says X implies X ∨ A says Y . Combining this with
X → A says Y , we obtain A says Y ∨ A says Y , that is, A says Y .

Theorem 4. Starting from the basic logic plus Excluded-middle, we have:

1. Unit implies Escalation (and therefore Bind);
2. Escalation (and a fortiori Bind) does not imply Unit;
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3. Bind implies Escalation;
4. C4 does not imply Escalation.

Proof. 1. Suppose A says X . If X is true, then we are done, as we obtain
X ∨ (A says Y ). If X is false, that is, X → false is true, then Unit
yields A says (X → false), and by closure under consequence we obtain
A says false and then A says Y for any Y , and then X ∨ (A says Y ).

2. Escalation (and a fortiori Bind) is true in a Kripke model with two possible
worlds w and w′, in which every principal is mapped to the universal acces-
sibility relation {w, w′} × {w, w′}. This Kripke model does not satisfy the
instance of Unit X → A says X for a proposition X that holds in w but
not in w′.

3. We prove Escalation by cases on whether X is true or not. If it is true,
then Bind yields X vacuously, and hence Escalation. If it is false, then that
means X → false, which entails X → A says false, and applying Bind
with false for Y we obtain (A says X) → (A says false).

4. The Kripke model described in part 1 of Proposition 2 does not satisfy
Escalation: A says X at w means that X is true in w′, while X may be false
in w and A says false is false in w.

Going further, in classical logic Unit implies that each principal A is either a
perfect truth-teller or says false. In the former case, A speaks for any other
principal; in the latter case, any other principal speaks for A. Formally, we can
derive (A ⇒ B) ∨ (B ⇒ A). While this conclusion does not represent a logical
contradiction, it severely limits the flexibility and expressiveness of the logic:
policies can describe only black-and-white situations. This point is a further
illustration of the fact that usefulness degrades even before a logic becomes
inconsistent.

5 On the Monotonicity of Controls

The monotonicity of controls means that, if a principal controls a formula X ,
then it controls every weaker formula Y . Formally, we write:

[Control-monotonicity ] ∀X, Y.

⎛
⎝ (X → Y )

→
((A controls X) → (A controls Y ))

⎞
⎠

This monotonicity property may seem attractive. In particular, it may make
it easier to comply with the Principle of Least Privilege. This principle says [22]:

Every program and every user of the system should operate using the
least set of privileges necessary to complete the job.

The monotonicity of controls implies that, if A wants to convince a reference
monitor of Y , and it can convince it of a stronger property X , then A should
be able to state Y directly, rather than the stronger property X . For instance,
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suppose that Y is the statement that B may access a file f1, and that X is the
statement that B may access both f1 and another file f2. When A wishes to
allow B to access f1, it should not have to state also that B may access f2. The
monotonicity of controls allows A to say only that B may access f1.

Nevertheless, the monotonicity of controls has questionable consequences.

Proposition 3. Starting from the basic logic (without Excluded-middle), Con-
trol-monotonicity implies:

A controls s1 → A says s2 → (s1 ∨ s2)

Proof. We obtain A controls s1 → A says s2 → (s1 ∨ s2) from Control-
monotonicity, as follows: Let X be s1 and Y be s1 ∨ s2. We have X → Y .
Suppose that A controls s1. Control-monotonicity yields A controls (s1∨s2).
If A says s2, then we obtain A says (s1 ∨ s2), and hence s1 ∨ s2.

In Proposition 3, the formulas s1 and s2 may be completely unrelated. For
instance, suppose that A controls whether B may access a file f1, and A says
that B may access another file f2; curiously, we obtain that B may access f1 or
B may access f2, by Proposition 3.

In fact, the monotonicity of controls is equivalent to Escalation in the pres-
ence of C4. (Intuitionistically, C4 is strictly required for this equivalence.)

Theorem 5. Starting from the basic logic (without Excluded-middle), the fol-
lowing are equivalent:

– Escalation,
– C4 and Control-monotonicity.

However, neither Control-monotonicity nor C4 implies the other, not even in
combination with Unit.

Proof. – Escalation implies C4, by Theorem 3.
– Escalation implies Control-monotonicity:

Suppose X → Y and A controls X . We wish to prove A controls Y , so
we assume A says Y in order to derive Y .
By Escalation, we obtain Y ∨ A says X . Since A controls X , it follows
that Y ∨X . Since X → Y , it follows that Y , as desired.

– C4 and Control-monotonicity together imply Escalation:
We have A controls A says false by C4, and (A says false) → (Y ∨
A says false) by propositional reasoning, so Control-monotonicity yields
A controls (Y ∨ A says false).
Since A says Y implies A says (Y ∨ A says false) by propositional rea-
soning and closure under consequence, we obtain that A says Y implies
Y ∨ A says false.

– C4 does not imply Control-monotonicity, even in combination with Unit, by
Proposition 1 (which says that Bind implies C4) and Theorem 3 (which says
that Unit and Bind do not imply Escalation).
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– Starting from the basic logic (without Excluded-middle), Control-mono-
tonicity and Unit (together) do not imply C4, and therefore not Bind nor
Escalation.

We construct an interpretation of the logic that satisfies the basic axioms,
Unit, and Control-monotonicity, but not C4.

In this interpretation, each formula is mapped to an open set in the Sier-
pinski space, that is, to one of the sets ∅, {1}, and {0, 1}. These open sets form
a Heyting algebra with the usual inclusion ordering, so they provide a model
for intuitionistic logic. In this model, ∅ corresponds to false. Importantly
{1} → false is ∅ (and not {0}, since this is not an open set). Quantification
works as a finite conjunction. For every A, we let the meaning of A says s
be {1} if the meaning of s is ∅, and {0, 1} otherwise.

This interpretation satisfies Unit, since the meaning of s is always con-
tained in the meaning of A says s. A fortiori, it also satisfies necessitation.

Since says is monotonic, we have that A says ((X → Y )∧X) → A says Y .
Moreover, since the inclusion ordering is linear, monotonicity implies that says
distributes over conjunctions, so ((A says (X → Y )) ∧ (A says X)) →
A says ((X → Y ) ∧X). Closure under consequence follows.

These definitions also imply that the meaning of A controls s is the
same as the meaning of s:
• for s = ∅, A controls s is {1} → ∅, that is, ∅;
• for s = {1}, A controls s is {0, 1} → {1}, that is, {1};
• for s = {0, 1}, A controls s is {0, 1} → {0, 1}, that is, {0, 1}.

Therefore, controls is monotonic.
The meaning of A says false is {1}. The meaning of A says A says false
is {0, 1}. So we do not have C4.

Although Control-monotonicity does not imply C4 in intuitionistic logic, it does
in classical logic, as the following theorem implies:

Theorem 6. Starting from the basic logic plus Excluded-middle, the following
are equivalent:

– Escalation,
– Control-monotonicity.

Proof. By Theorem 5, Escalation implies Control-Monotonicity. Conversely, we
instantiate Control-monotonicity in the case the stronger propositions (X) is
false; we obtain a formula that is classically equivalent to Escalation.

The theorems of this section should not be construed as a criticism of the Prin-
ciple of Least Privilege. Formulations weaker than Control-monotonicity might
be viable and less problematic.

6 Discussion

Overall, the results of this paper indicate that, while in a classical setting we
may want to stay close to basic modal logic, in an intuitionistic setting we may
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adopt CDD. This move may be attractive, in particular, because CDD supports
hand-off. These results also suggest that a great deal of caution should be applied
in selecting axioms, considering both their formal properties and their security
implications.

We do not argue that the use of a particular set of axioms is required for
writing good security policies. It is possible that reasonable security policies
and other assertions can be formulated in many different systems, with different
underlying logics. However, understanding the properties and consequences of
these logics is essential for writing appropriate formulas reliably.

The literature contains models for some of these axioms (e.g., [4]), and we
are currently developing others (in collaboration with Deepak Garg). Semantics
can be helpful in providing a different perspective on axiomatizations. In this
paper, we employ semantics as a tool in some of the proofs; more extensive uses
of semantics remain attractive but a subject for further research.
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Appendix

A Second-Order Propositional Intuitionistic Logic

The axioms are:

– true
– s1 → (s2 → s1)
– (s1 → (s2 → s3)) → ((s1 → s2) → (s1 → s3))
– (s1 ∧ s2) → s1

– (s1 ∧ s2) → s2

– s1 → s2 → (s1 ∧ s2)
– s1 → (s1 ∨ s2)
– s2 → (s1 ∨ s2)
– (s1 → s3) → ((s2 → s3) → ((s1 ∨ s2) → s3))
– (∀X. s) → s[t/X ]
– (∀X. (s1 → s2)) → (s1 → ∀X. s2) where X is not free in s1
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The rules are modus ponens and universal generalization:

s1 s1 → s2

s2

s
∀X. s

B CDD

The rules of CDD are:

[Var ] Γ, s, Γ ′ � s [Unit ] Γ � true

[Lam]
Γ, s1 � s2

Γ � (s1 → s2)
[App]

Γ � (s1 → s2) Γ � s1

Γ � s2

[Pair ]
Γ � s1 Γ � s2

Γ � (s1 ∧ s2)

[Proj 1 ]
Γ � (s1 ∧ s2)

Γ � s1
[Proj 2 ]

Γ � (s1 ∧ s2)
Γ � s2

[Inj 1 ]
Γ � s1

Γ � (s1 ∨ s2)
[Inj 2 ]

Γ � s2

Γ � (s1 ∨ s2)

[Case]
Γ � (s1 ∨ s2) Γ, s1 � s Γ, s2 � s

Γ � s

[TLam]
Γ � s

Γ � ∀X. s
(X not free in Γ ) [TApp]

Γ � ∀X. s
Γ � s[t/X ]

[UnitM ]
Γ � s

Γ � A says s

[BindM ]
Γ � A says s Γ, s � A says t

Γ � A says t

As is typical for type systems, the rules are presented in a sequent-calculus for-
mat, rather than as a Hilbert system. In this definition, though, we simply omit
all the terms, as well as declarations for variables. An environment Γ denotes a
list of formulas. In the case where Γ is empty, we write � s, and say that s is a
theorem, when � s is derivable by these rules.
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Abstract. This paper considers the problem of checking whether an organiza-
tion conforms to a body of regulation. Conformance is cast as a trace checking
question – the regulation is represented in a logic that is evaluated against an ab-
stract trace or run representing the operations of an organization. We focus on a
problem in designing a logic to represent regulation.

A common phenomenon in regulatory texts is for sentences to refer to others
for conditions or exceptions. We motivate the need for a formal representation
of regulation to accomodate such references between statements. We then extend
linear temporal logic to allow statements to refer to others. The semantics of the
resulting logic is defined via a combination of techniques from Reiter’s default
logic and Kripke’s theory of truth.

1 Introduction

Regulations, laws, and policies that affect many aspects of our lives are represented
predominantly as documents in natural language. For example, the Food and Drug Ad-
ministration’s Code of Federal Regulations [1] (FDA CFR) governs the operations of
American bloodbanks. The CFR is framed by experts in the field of medicine, and reg-
ulates the tests that need to be performed on donations of blood before they are used. In
such safety-critical scenarios, it is desirable to assess formally whether an organization
(bloodbank) conforms to the regulation (CFR).

There is a growing interest in using formal methods to assist organizations in com-
plying with regulation [2,3,4]. Assisting an organization in compliance involves a num-
ber of tasks related to the notion of a violation. For example, it is of interest to detect or
prevent violations, assign blame, and if possible, recover from violations. In this paper,
we focus on conformance checking which involves detecting the presence of violations.

We cast conformance checking as a trace-checking question. The regulation is trans-
lated to statements in a logic which are evaluated against a trace or run representing
the operations of an organization. The result of evaluation is either an affirmative an-
swer to conformance, or a counterexample representing a subset of the operations of
the organization and the specific law that is violated.
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There are two important features of regulatory texts that need to be accomodated
by a representation in logic. First, regulations convey constraints on an organization’s
operations, and these constraints can be obligatory (required) or permitted (optional).
Second, statements in regulation refer to others for conditions or exceptions. An orga-
nization conforms to a body of regulation iff it satisfies all the obligations. However,
permissions provide exceptions to obligations, indirectly affecting conformance. Our
formulation of obligations and permissions follows the theory of Ross [5], and we will
discuss the relationship to other theories (cf. [6]) in Section 3.1.

The central focus of this work is the function of regulatory sentences as conditions
or exceptions to others. This function of sentences makes them dependent on others for
their interpretation, and makes the translation to logic difficult. We call this the problem
of references to other laws. In Section 2, we argue that a logic to represent regulation
should provide mechanisms for statements to refer to others. We provide motivation
using examples from the FDA CFR. We discuss how these sentences can be represented
in a logic without references, and conclude that this would make the translation difficult.

We then turn to the task of defining a logic that lets statements refer to and rea-
son about others. In Section 3.1, we define a trace or run-based representation for the
operations of an organization, and a predicate-based linear temporal logic (PredLTL)
to make assertions about runs. PredLTL is extended to express two kinds of normative
statements (obligations and permissions), leading to a formal definition of conformance.

In Sections 3.2 and 3.3, we extend PredLTL to allow references between laws thereby
making permissions relevant to conformance. Specifically, we introduce an inference
predicate, whose interpretation is determined by inferences from laws. The justifica-
tions in default logic [7] can be cast as an instance of this predicate. Default logic has
been used in computing extensions to a theory, in the manner of logic programs [8,9].
In conformance checking, we need to separate two uses of statements: (a) extending a
theory (the regulation), and (b) determining facts about an organization. This separa-
tion is achieved using the inference predicate. Statements are evaluated using the fixed
points of an appropriate function, based on a technique used in Kripke’s theory of truth
[10]. An axiomatization is discussed in Section 3.4.

Section 4 concludes with a discussion of related and future work.

2 Motivation

In this section, we argue that a logic to represent regulation should provide a mechanism
for sentences to refer to others. We discuss shortened versions of sentences from the
CFR Section 610.40, which we will use as a running example throughout the paper.
Consider the following sentences:

(1) Except as specified in (2), every donation of blood or blood component must be
tested for evidence of infection due to Hepatitis B.

(2) You are not required to test donations of source plasma for evidence of infection
due to Hepatitis B.

Statement (1) conveys an obligation to test donations of blood or blood component
for Hepatitis B, and (2) conveys a permission not to test a donation of source plasma
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(a blood component) for Hepatitis B. To assess an organization’s conformance to (1)
and (2), it suffices to check whether “All non-source plasma donations are tested for
Hepatitis B”. In other words, (1) and (2) imply the following obligation:

(3) Every non-source plasma donation must be tested for evidence of infection due
to Hepatitis B.

There are a variety of logics in which one can capture the interpretation of (3), as
needed for conformance. Now suppose we have a sentence that refers to (1):

(4) To test for Hepatitis B, you must use a screening test kit.

The reference is more indirect here, but the interpretation is: “If (1) requires a test,
then the test must be performed using a screening test kit”. A bloodbank is not prevented
from using a different kind of test for source plasma donations. (4) can be represented
by first producing (3), and then inferring that (3) and (4) imply the following:

(5) Every non-source plasma donation must be tested for evidence of infection due
to Hepatitis B using a screening test kit.

It is easy to represent the interpretation of (5) directly in a logic. However, (5) has a
complex relationship to the sentences from which it was derived, i.e., (1), (2) and (4).
The derivation takes the form of a tree:

(5)

(3)

(1) (2)

(4)

To summarize, if one wishes to use a logic with no support for referring to other
sentences, derived obligations must be created manually. We argue that the manual cre-
ation of derived obligations is impractical in terms of the amount of effort involved. We
give two (pragmatic) reasons. First, the derived obligation can become very complex.
The full version of statement (1) in the CFR contains six exceptions, and these excep-
tions in turn have statements that qualify them further. It is difficult to inspect a derived
obligation, and determine if it captures the intended interpretation of the sentences from
which it came. Second, references between laws are frequent, amplifying the effort in
creating a logic representation. In [11], we discuss lexical statistics which suggest that
references are a common way of establishing relationships between sentences in the
CFR, and [12,3] point out their frequency in other bodies of regulation.

We advocate an approach that allows us to introduce references into the syntax of
the logic, and resolve references during evaluation.

3 Representing Regulatory Documents in Logic

In this section, we extend linear temporal logic (LTL) to distinguish between obligations
and permissions, and allow references between statements. We begin, in Section 3.1, by
representing a bloodbank as a run or trace. LTL is extended to distinguish between
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obligations and permissions, leading to definitions of conformance. We then extend
the logic to allow sentences to refer to others. Section 3.2 gives an informal example-
driven account, and Section 3.3 provides a formal account. In Section 3.4, we discuss
an axiomatization.

Sections 3.1 is intended as background, in which we discuss several underlying as-
sumptions. Our goal is to focus on the problem of references, and to treat the represen-
tation of obligations and permissions as an important but orthogonal issue.

3.1 Predicate-Based Linear Temporal Logic (PredLTL)

Representing regulated operations: Given the need to demonstrate conformance to
the regulation in case of an audit, regulated organizations such as bloodbanks keep
track of their operations in a database, for example, donor information and the tests they
perform. Such a system can be thought of abstractly as a relational structure evolving
over time. At each point in time (state), there are a set of objects (such as donations and
donors) and relations between the objects (such as an association between a donor and
her donations). The state changes by the creation, removal or modification of objects.
We represent this as a run.

Definition 1 (A Run of a System). Given a set O (of objects) and countable sets
Φ1, ..., Φn (where Φj is a set of predicate names of arity j), a run of a system R(O,
Φ1, ..., Φn), abbreviated as R, is a tuple (r, π1, ..., πn) where:

– r : N → S is a sequence of states. N is the set of natural numbers, and S is a set
of states.

– πj : Φj × S → 2Oj

is a truth assignment to predicates of arity j. Given p ∈ Φj ,
we will say that p(o1, ..., oj) is true at state s iff (o1, ..., oj) ∈ πj(p, s).

Given a run R and a time i ∈ N , the pair (R, i) is called a point (statements in linear
temporal logic are evaluated at points). Given the predicate names (Φ1, ..., Φn), the
corresponding space of runs is denoted by R(Φ1, ..., Φn), abbreviated as R.

Conceivably, we could construct a state-transition diagram representing all possible
behaviors of the system and explore conformance from the model checking perspective
(e.g., [13]). We chose to restrict our attention to traces for two reasons. First, checking
of traces is easier to explain, and all interesting theoretical and algorithmic aspects that
we explore in this paper manifest themselves in trace checking. Second, many parts
of the operations of an organization, such as a bloodbank, do not involve computers.
A complete model of operations has to include a model of human users, which is a
research problem in its own right that is well beyond the scope of this paper. However,
if a finite-state model of an organization can be created, the propositional version of the
logic developed here can be adapted to work with available model-checkers.

Representing the regulation: The logic that we define in this section is a restricted
fragment of first-order modal logic. The restriction is that we allow formulas with free
variables, but no quantification over objects. Formulas will be interpreted using the uni-
versal generalization rule, i.e., over all assignments to free variables. The restrictions are
similar in spirit to the logic programing approaches to regulation [8,9]. PredLTL is less
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expressive than the variants of first-order logic used by [2,4]. However, when references
are added, the logic becomes more expressive than first-order logic (Section 3.3).

Definition 2 (Syntax). Given sets Φ1, ..., Φn (of predicate names) and a set of variables
X , the language L(Φ1, ..., Φn, X), abbreviated as L, is the smallest set such that:

– p(y1, ..., yj) ∈ L where p ∈ Φj and (y1, ..., yj) ∈ Xj .
– If ϕ ∈ L, then ¬ϕ ∈ L and �ϕ ∈ L. If ϕ, ψ ∈ L, then ϕ ∧ ψ ∈ L.

Disjunction ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) and implication ϕ ⇒ ψ = ¬ϕ ∨ ψ are derived
connectives. The temporal operator is understood in the usual way: �ϕ (ϕ holds and
will always hold (globally)). �ϕ (ϕ will eventually hold) is defined as ¬�¬ϕ.

We now extend the syntax to express normative statements in a body of regulation,
by distinguishing between obligations and permissions.

Definition 3 (Syntax of Regulation). Given a finite set of identifiers ID, a body of
regulation Reg is a set of statements such that for each id ∈ ID, there exist ϕ, ψ ∈ L
such that either: id.o: ϕ � ψ ∈ Reg, or id.p: ϕ � ψ ∈ Reg

id.o: ϕ � ψ (id.p: ϕ � ψ) is read as: “it is obligated (permitted) that the precondition ϕ
leads to the postcondition ψ”. The distinction between preconditions and postconditions
corresponds to the distinction between input and output in input-output logic [14].

Definition 4 (Semantics). Given a run R = (r, π1, ..., πn), i ∈ N , ϕ ∈ L, and an
assignment v : X → O, the relation (R, i, v) |= ϕ is defined inductively as follows:

– (R, i, v) |= p(y1, ..., yj) iff (o1, ..., oj) ∈ πj(p, r(i)) where ok = v(yk) if yk ∈ O.
– The semantics of conjunction and negation is defined in the usual way.
– (R, i, v) |= �ϕ iff for all k ≥ i : (R, k, v) |= ϕ

We extend the semantic relation to regulatory statements. We take |= to stand for
“conforms to”:

– (R, i, v) |= id.o: ϕ � ψ iff (R, i, v) |= ϕ ⇒ ψ (⇒ is implication)
– (R, i, v) |= id.p: ϕ � ψ. Runs vacuously conform to permissions. Permissions will

become relevant when references from obligations are present (Section 3.2).

Consider again our example from Section 2. We use three predicates defined as follows.
d(x) is true iff x is a donation. sp(x) is true iff x consists of source plama. test(x) is
true iff x is tested for Hepatitis B. Statement (3) is represented as:

3.o: d(x) ∧ ¬sp(x) � �test(x)
Statement (2) is be represented as: 2.p: d(y)∧ sp(y) � ¬�test(y). However, state-

ment (1) cannot be represented directly.
We will now define conformance, and then discuss the various definitions in the

context of related work. Given a run R, let V (R) denote the set of variable assignments.
Conformance is defined using the notion of validity. A formula ϕ is valid at the point
(R, i), denoted (R, i) |= ϕ, iff for all v ∈ V (R): (R, i, v) |= ϕ. A formula ϕ is valid
on R iff it is valid at all points, that is, R |= ϕ iff for all i ∈ N : (R, i) |= ϕ.
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Definition 5 (Run Conformance). Given a body of regulation Reg and a run R rep-
resenting the operations of an organization, we say that R conforms to the regulation
iff for all obligations id.o: ϕ � ψ ∈ Reg, we have R |= id.o: ϕ � ψ.

Discussion: The deontic concepts of obligation and permission are treated as properties
of sentences. Only obligations matter for conformance. If a non-source plasma donation
is not tested, there is a problem. On the other hand, a bloodbank may choose to test a
donation of source plasma or not. In assessing conformance, the function of a permis-
sion is to serve as an exception to an obligation, and in this indirect manner it becomes
relevant. We will give a semantics to this function of permissions in Section 3.2. Such
a treatment of permissions has its basis in the legal theory of Ross [5].

Ross’ approach to permission is by no means the only one. Theories have distin-
guished between various kinds of permission (cf. [6]), the most common distinction
being that of positive and negative permission. We discuss the analysis by Makinson
and van der Torre [15]. ϕ is said to positively permitted iff it is explictly permitted by
the laws, and ϕ is negatively permitted iff it is not forbidden. The key issue is whether
positive permissions can give rise to violations. In regulations phrased exclusively in
terms of permissions, it is desirable to say that if ϕ denotes a “relevant” condition
which is not explicitly permitted, then it should not hold in conforming implementa-
tions. While this has been analysed as a property of permission, following Ross, we
take such violations as arising from an implicit obligation, i.e., the italicized clause.
This implicit obligation can be represented using the techniques we discuss in Section
3.2, provided that the relevance of the condition is known.

In the formulation here, obligations and permissions are top-level operators and can-
not be negated. This restriction can be removed by treating obligation and permission
as KD modalities (c.f. [16]), and using a many-valued interpretation to decide if a run
belongs to the set of ideal runs. However, we avoid this to simplify presentation. A
more crucial restriction is that iterated deontic constructs cannot be expressed directly,
i.e., sentences of the form “required to allow x” or “allowed to require x.”. One has to
decide what top-level obligations or permissions are implied by these constructs. To our
knowledge, handling iterated constructs is an open problem in deontic logic [17].

3.2 References to Other Laws – An Informal Description

In this section, we give an informal account of reference logic (RefL), which is used
to handle references. We extend the syntax of PredLTL with an inference predicate
byId(ϕ), where Id is a set of identifiers. byId(ϕ) is read as “by the laws in Id, ϕ holds”.
There are two restrictions: (a) ϕ is a statement in PredLTL (Definition 2) and (b) the
predicate byId(ϕ) can appear only in preconditions of laws. These restrictions are sim-
ilar to those that apply to justifications in default logic [7].

Consider again our example statements (1) and (2), which are represented in RefL
as follows:

– 1.o: d(x) ∧ ¬by{2}(ϕ(x)) � �test(x), and
– 2.p: d(y) ∧ sp(y) � ¬�test(y)

In the obligation above, the subformula by{2}(ϕ(x)) is understood as “by the law (2)
the formula ϕ(x) holds”. It remains to define the formula ϕ(x). Intuitively, this should
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Table 1. A run and its annotations

Time Objects Predicates Annotations
1 o1 d(o1), sp(o1), ¬test(o1) 2: ¬�test(o1)

2 o1 d(o1), sp(o1), ¬test(o1) 2: ¬�test(o1)
o2 d(o2), ¬sp(o2), ¬test(o2) 1: �test(o2)

3 o1 d(o1), sp(o1), test(o1) 2: ¬�test(o1)
o2 d(o2), ¬sp(o2), ¬test(o2) 1: �test(o2)

be the negation of the postcondition of (1). In other words, if ¬�test(x) follows from
(2), then the postcondition of (1) need not hold. This gives us:

1.o: d(x) ∧ ¬by{2}(¬�test(x)) � �test(x)
We interpret the predicate by{2}(¬�test(x)), by letting formulas have output. In

other words, when the precondition of an obligation or permission is true at a point, the
point is annotated with the postcondition.

Table 3.2 shows a run of a bloodbank augmented with annotations. First, an object
o1 is entered into the system. o1 is a donation of source plasma (d(o1) and sp(o1) are
true). When a donation is added, its test predicate is initially false. Then, an object o2

is added, which is a donation but not of source plasma. In the third step, the object o1

is tested. At this point, unless the run is extended to test o2 as well, it does not conform
with the regulation. We now discuss how the annotations are arrived at and used to
assess the regulation.

We begin by defining an annotation. Given a run R, an assignment v ∈ V (R), and
ϕ ∈ L, v(ϕ) is the formula obtained by replacing all variables x by the unique name for
the object v(x). We assume that all variables are free. Note that v(ϕ) is equivalent to
a propositional LTL formula, as the variables have been replaced by constant symbols.
An annotation, id: v(ϕ), is a propositional LTL formula associated with an identifier.

Given a point (R, i) and an assignment v ∈ V (R), first we consider the permission
2.p: d(y) ∧ sp(y) � ¬�test(y). If (R, i, v) |= d(y) ∧ sp(y), then (R, i) is annotated
with 2: v(¬�test(y)). Otherwise, there is no annotation.

Since the precondition of statement (2) is true for the assignment of y to o1, we have
the annotation 2: ¬�test(o1) at all points. However, since o2 is not a donation of source
plasma, there is no correponding annotation.

Now consider the formula by{2}(¬�test(x)). This is evaluated as follows. We eval-
uate 2.p: d(y)∧ sp(y) � ¬�test(y) at (R, i) w.r.t. all variable assignments. Let ψ2 be
the conjunction of the annotations produced by the formula for (2).

(R, i, v) |= by{2}(¬�test(x)) iff |= ψ2 ⇒ v(¬�test(x))
Notice that this requires a validity check in propositional LTL, which can be decided

in space polynomial in the size of the formula [18].
Returning to the run in Table 3.2, the states are annotated with 2: ¬�test(o1) and |=

¬�test(o1) ⇒ ¬�test(o1), since ϕ ⇒ ϕ is a propositional tautology. So (R, i, v) |=
by{2}(¬�test(x)) when v(x) = o1.

We can evaluate 1.o: d(x) ∧ ¬by{2}(¬�test(x)) � �test(x) similarly by anno-
tating states with �test(x) if the precondition holds. In Table 3.2, this results in an
annotation of 1: �test(o2) on the appropriate states. If o2 is never tested, the run will
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be declared non-conforming (by Definition 5), but the annotation will remain. This lets
a law which depends on (1) draw the correct inference.

3.3 Reference Logic (RefL)

The semantic evaluation outlined in Section 3.2 works only when the references are
acyclic, since an order of evaluation needs to be defined. To handle cycles, we adopt
a fixed-point technique from Kripke’s theory of truth [10]. The idea is to move to a
three-valued logic where the third (middle) value stands for ungrounded. Initially, all
statements are ungrounded and there are no annotations. Using an inflationary func-
tion, we add annotations until a fixed point in reached. In this section, we define this
inflationary function and show that it has least and maximal fixed points. We begin by
extending the syntax described in Section 3.1:

Definition 6 (Syntax of Preconditions). Given sets Φ1, ..., Φn (of predicate names), a
set of variables X , and a finite set of identifiers ID, the language L′(Φ1, ..., Φn, X, ID),
abbreviated as L′, is the smallest set such that:

– p(y1, ..., yj) ∈ L′ where p ∈ Φj and (y1, ..., yj) ∈ Xj .
– If ϕ ∈ L′, then ¬ϕ ∈ L′ and �ϕ ∈ L′. If ϕ, ψ ∈ L′, then ϕ ∧ ψ ∈ L′

– If Id ⊆ ID and ϕ ∈ L(Φ1, ..., Φn, X) (Definition 2), then byId(ϕ) ∈ L′

The syntax of regulatory statements (Definition 3) is modified so that the preconditions
of laws are statements from L′. We use id.x : ϕ � ψ to stand for a normative statement
(either obligation or permission). We now define an annotation:

Definition 7 (Annotation). Given a run R, a set of identifiers ID, a body of regulation
Reg and v ∈ V (R), an annotation is a statement id: v(ψ) such that id ∈ ID and id.x :
ϕ � ψ ∈ Reg. The set of annotations is denoted by A(R, ID, Reg), abbreviated A.

Definition 8 (Annotation Function). Given a run R, an annotation function α : N →
2A assigns a set of annotations to each point. We use α.Id(i) to denote the set of
annotations id: ψ ∈ α(i) such that id ∈ Id.

We will formalize the semantics using the fixed point technique outlined in [10]. Before
we turn to the formal definitions, we sketch some of the key ideas involved.

Let us assume as given a run R. Statements in L′ and Reg are divided into three
classes corresponding to true (T(i, v)), false (F(i, v)) and ungrounded (U(i, v)) for all
times i ∈ N and assignments v ∈ V (R). Intuitively, U(i, v) is the set of statements
that are waiting for the evaluation of another statement.

As we discussed in Section 3.2, to determine whether byId(ϕ) ∈ T(i, v), we need
to check if there is a set of annotations which imply v(ϕ). We construct the annotation
function α such that for all assignments v, we have id: v(ψ) ∈ α(i) iff ϕ ∈ T(i, v) for
some id.x : ϕ � ψ ∈ Reg and id ∈ Id. We will say that byId(ϕ) ∈ T(i, v) only if
α.Id(i) ∪ {v(¬ϕ)} is not satisfiable.

To determine whether byId(ϕ) ∈ F(i, v), we need to ensure that there is no un-
grounded statement that could make it true. To check this condition, we construct the
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annotation function α′ such that id: v(ψ) ∈ α′(i) iff ϕ ∈ T(i, v) ∪U(i, v) for some
id.x : ϕ � ψ ∈ Reg and id ∈ Id. The condition for falsity w.r.t. α′ is simply the
negation of the condition for truth w.r.t. α. More formally, byId(ϕ) ∈ F(i, v) only if
α′.Id(i) ∪ {v(¬ϕ)} is satisfiable.

When there are circular references, one cannot always evaluate a statement to be true
or false. The Nixon-diamond problem (introduced in [7]) is a well-known example. We
rephrase it in “legalese”:

(6) Except as otherwise specified, Quakers must be pacifists.

(7) Except as otherwise specified, Republicans must not be pacifists.

These statements can be represented in RefL as follows:
6.o: q(x) ∧ ¬by{6,7}(¬p(x)) � p(x), and
7.o: r(x) ∧ ¬by{6,7}(p(x)) � ¬p(x)

Suppose we are given a state with an individual n (for Nixon), who is both quaker and
republican, i.e., q(n) and r(n) hold. How should we evaluate the statements above? [10]
suggests two answers to this question: (A) The statements are neither true or false (they
are ungrounded). This corresponds to skeptical reasoning in non-monotonic logic. (B)
Exactly one of by{6,7}(p(n)) and by{6,7}(¬p(n)) is true, which leads us to conclude
p(n) (by (6)) or ¬p(n) (by (7)) resply. This corresponds to credulous reasoning in non-
monotonic logic.

In the semantics we give below, different answers correspond to different fixed points.
We refer the reader to [10] for examples and discussion of the various possibilities with
regard to fixed points. The choice of what to do when there are multiple fixed points
depends on the application, and we discuss this issue further at the end of this section.

Definition 9 (Evaluation). Given a run R and a body of regulation Reg, an evaluation
is a tuple E = (T,F,U), where T, F and U are functions of the form N × V (R) →
2L+

, where L+ = Reg ∪ L′. Furthermore, for all i ∈ N and v ∈ V (R), we have
T(i, v) ∩ F(i, v) = ∅ and U(i, v) = 2L+ − (T(i, v) ∪ F(i, v)).

Given an evaluation E, αE is the annotation such that for all i ∈ N and id ∈ ID,
we have id: v(ψ) ∈ αE(i) iff ϕ ∈ T(i, v), where id.x : ϕ � ψ ∈ Reg. Similarly, α′

E

is the annotation such that id: v(ψ) ∈ α′
E(i) iff ϕ ∈ T(i, v) ∪U(i, v).

Definition 10 (Consistent Evaluation). An evaluation E is consistent iff for all i ∈ N
and v ∈ V (R), T(i, v) = F(i, v) = ∅, or T(i, v) and F(i, v) are sets such that:

1. p(x1, ..., xj) ∈ T(i, v) iff (v(x1), ..., v(xj)) ∈ πj(p, r(i))
p(x1, ..., xj) ∈ F(i, v) iff (v(x1), ..., v(xj)) 
∈ πj(p, r(i))

2. If φ ∈ T(i, v) and ψ ∈ T(i, v), then φ ∧ ψ ∈ T(i, v)
If φ ∈ F(i, v) or ψ ∈ F(i, v), then φ ∧ ψ ∈ F(i, v)
and similarly for negation and temporal operators

3. If ϕ ⇒ ψ ∈ T(i, v), then id.o: ϕ � ψ ∈ T(i, v)
If ϕ ⇒ ψ ∈ F(i, v), then id.o: ϕ � ψ ∈ F(i, v)
id.p: ϕ � ψ ∈ T(i, v). Runs vacuously conform to permissions.

4. If byId(ϕ) ∈ T(i, v), then αE .Id(i) ∪ {v(¬ϕ)} is not satisfiable.
If byId(ϕ) ∈ F(i, v), then α′

E .Id(i) ∪ {v(¬ϕ)} is satisfiable.
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The set of all consistent evaluations for a run R and regulation Reg is denoted by
E(R, Reg), abbreviated E .

Observe that in consistent evaluations, if byId(ϕ) ∈ T(i, v), then αE .Id(i) ∪ {v(¬ϕ)}
is not satisfiable (Clause 4 in Definition 10). The converse need not be true.

Definition 11 (Partial Order). Given evaluations E1 = (T1,F1,U1) and E2 =
(T2,F2,U2, α2), we say that E1 ≤ E2 iff for all i ∈ N and v ∈ V (R), T1(i, v) ⊆
T2(i, v) and F1(i, v) ⊆ F2(i, v).

The pair (E ,≤), where E is the set of consistent evaluations is a partially ordered
set (poset).

We now define the inflationary function whose fixed points we will be interested in.

Definition 12 (Inflationary function). Given (E ,≤), the function I : E → E is defined
as follows. Given a consistent evaluation E1 = (T1,F1,U1), I(E1) is the smallest
consistent evaluation E2 = (T2,F2,U2) such that E1 ≤ E2, for all i ∈ N and
v ∈ V (R), T2(i, v) 
= ∅, F2(i, v) 
= ∅, and E2 extends E1.

We say that E2 extends E1 iff for all i ∈ N and assignments v ∈ V (R):
If αE1(i) ∪ {v(¬ϕ)} is not satisfiable, then byId(ϕ) ∈ T2(i, v)
If α′

E1
(i) ∪ {v(¬ϕ)} is satisfiable, then byId(ϕ) ∈ F2(i, v)

It remains to show that I is well-defined, has maximal fixed points and a unique least
fixed point. We give a brief sketch here, and refer the reader to [19] for detailed proofs.

Proposition 1. Given (E ,≤) and E1 ∈ E , let E2 ⊆ E be the set of consistent evalua-
tions such that E2 ∈ E2 iff E1 ≤ E2, for all i and v, T2(i, v) 
= ∅, F2(i, v) 
= ∅, and
E2 extends E1. Then, E2 has a smallest element.

The existence of fixed points is established using Zorn’s lemma, which applies to chain-
complete posets. Given the poset (E ,≤), a set E ′ ⊆ E is called a chain (totally ordered
set) iff for all E1, E2 ∈ E ′, we have E1 ≤ E2 or E2 ≤ E1. A poset is chain complete
iff every chain has a supremum. The following can be shown:

Proposition 2. (E ,≤) is a chain-complete poset.

Lemma 1 (Zorn (c.f. [20])). Every chain complete poset has a maximal element

The existence of maximal fixed points is immediate from Zorn’s lemma and the fact
that I is inflationary, i.e., E ≤ I(E). Let E∗ be a maximal element in E , since E∗ is
maximal and E∗ ≤ I(E∗) it follows that E∗ = I(E∗).

To show the existence of a least fixed point, as [10] notes, we will need the obser-
vation that I is monotonic, i.e., if E1 ≤ E2 then I(E1) ≤ I(E2). This can be shown
by an argument similar to the proof of Proposition 1. With monotonicity, we obtain the
following corollary to Zorn’s lemma:

Corollary 1. Given E1 ∈ E , let σ(E1) be the smallest set such that: (a) E1 in E , (b)
if E ∈ σ(E1) then I(E) ∈ σ(E1), and (c) if C ⊆ σ(E1) is a non-empty chain, then
Esc ∈ σ(E1), where Esc is the supremum of C w.r.t. E . Then:
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1. σ(E1) is a chain whose supremum is a fixed point of I
2. σ(E1) contains a unique fixed point
3. If E1 ≤ E2, then Es1 ≤ Es2, where Es1 and Es2 are the suprema of σ(E1) and

σ(E2) resply., and
4. I has a unique least fixed point.

The first claim follows from a technique to prove Zorn’s lemma [20]. The second and
third claims follow from the first using monotonicity. And, for the last claim, consider
the evaluation E0 = (T0,F0,U0), where for all i ∈ N , v ∈ V (R), T0(i, v) =
F0(i, v) = ∅, and U0(i, v) = 2L+

. Since E0 ≤ E for all E ∈ E , it follows from the third
claim that σ(E0) is the least fixed point. The results are summarized in the following
theorem, which provides a base for extending RefL with other inference predicates. We
discuss the need for other predicates at the end of this section, and in Section 4.

Theorem 1. Given the poset of consistent evaluations (E ,≤) and a function I : E → E
which is inflationary and monotonic, I has a least fixed point and a maximal fixed point.

We mention the upper and lower bounds for the complexity of conformance checking
w.r.t. the least fixed point. Given a run R and regulation Reg, we say that R |= Reg iff
all obligations are valid in R at the least fixed point. R is assumed to be finite in two
ways: (a) The set of objects O is finite, and (b) There exists n, such that for all j ≥ n,
r(n) = r(j), i.e., R eventually reaches a stable state.

Lemma 2 (Upper Bound). Given a finite run R and regulation Reg, R |= Reg can
decided in EXPSPACE (space exponential in the size of Reg)

The upper bound is obtained by turning Corollary 1 into a decision procedure. We
start with the evaluation E0, and apply I until a fixed point is reached. The worst-case
size of the satisfiability tests are exponential in the size of the regulation. Since testing
satisifiablity for propositional LTL is PSPACE-complete [18], applying I requires EX-
PSPACE. For the fragment of LTL discussed in this paper (using only �) satisfiability
is NP-complete [18], and R |= Reg can be decided in EXPTIME.

Lemma 3 (Lower Bound). Given a finite run R and regulation Reg, R |= Reg is hard
for EXPTIME (time exponential in the size of Reg)

The lower bound is shown by a reduction from first order logic enriched with a least
fixed point predicate (the system YF in [21]). With circular references, we can encode
reachability computations that cannot be expressed in first order logic.

Discussion: We now discuss some options in defining conformance, depending on the
needs of the application. The sections of the FDA CFR that we have examined can be
formalized so that there is a unique fixed point, and conformance is simply the satisfac-
tion of obligations at this fixed point.

However, examples discussed in the literature suggest that it may not be desirable
to always have a unique fixed point. A well-known example is that of contrary-to-duty
(CTD) obligations (c.f. [16]). CTD obligations are those that arise when other obliga-
tions have been violated. Prakken and Sergot [16] point out an inflexibility in casting
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CTD structures as an instance of non-monotonic reasoning. We outline how this inflex-
ibility can be avoided, using alternate definitions of conformance. Consider the follow-
ing example from [14] (similar to one in [16]): The cottage must not have a fence or a
dog. If it has a dog, then it must have both a fence and a warning sign. The question is
what are the obligations when the cottage has a dog. We discuss two possible solutions.

The first solution is to treat the CTD norm as an exception to the first:
1.o: ¬by{2}(f ∨ d) � ¬(f ∨ d) and 2.o: d � f ∧ w
The propositions f , d and w correpond to the cottage having a fence, dog and warn-

ing sign resply. Since there is a dog, the precondition of the second law is true, and
this leads to the precondition of the first law being false. So if f ∧ w holds, there is no
violation. However, as [16] points out, it may be useful to detect that the situation is
worse than the one in which there is no dog. In the second solution, we represent the
laws as excluding each other, i.e., we conjoin ¬by{1}(¬(f ∧w)) to the precondition of
the second law. At the least fixed point, both obligations are ungrounded, and we get
two maximal fixed points – one in which ¬(f ∨d) is obligated, and one in which f ∧w
is obligated. Since d holds, there is a violation w.r.t. the former fixed point. In a scenario
where there is no dog, a unique fixed point is obtained.

Our analysis of CTD structures achieves the same effect as the analyses in [16,14].
However, [16,14] characterize the CTD norm as presupposing the violation of the other,
and then revising the situation. In future work, we plan to investigate predicates that
capture this presuppositional analysis more directly.

3.4 Axiomatization

As we discussed in the context of Lemma 3, RefL contains first order logic enriched
with a least fixed point predicate. It can be shown that the validity problem is Π1

1 -hard,
and as a result, it cannot be recursively axiomatized. In this section, we briefly discuss
an axiomatization of the propositional fragment of L′ (the language of preconditions).

We assume as given a fixed finite domain of quantification, and replace variables by
identifiers for domain elements. Given a set of identifiers ID, a propositionalized body
of regulation has one or more statements of the form id.x : ϕ � ψ for each id ∈ ID.
For example, the presence of id.x : ϕ1 � ψ1 and id.x : ϕ2 � ψ2 corresponds to
different assignments to the variables.

To simplify presentation, we will assume that the references in the regulation are
acyclic. This lets us obtain a unique fixed point and restrict attention to a two-valued
logic. We discuss the general case at the end of this section.

A1 All substitution instances of propositional tautologies
A2 �(ϕ ⇒ ψ) ⇒ (�ϕ ⇒ �ψ)
A3 �ϕ ⇒ ϕ ∧ ��ϕ
R1 From � ϕ ⇒ ψ and � ϕ, infer � ψ
R2 From � ϕ infer � �ϕ

We characterize the inference predicate by the laws it refers to. To axiomatize
byId(ϕ), we need to reason about provability in the language L (propositional LTL).
We say that ϕ ∈ L is is provable (denoted �L ϕ) iff it is an instance of the axioms A1-
A3, or follows from the axioms using the rules R1 and R2. Crucially, we will use the
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negation of provability in the premise of a rule. Similar mechanisms have been used to
axiomatize default logic, e.g., in [22], satisfiability is used in the premise of a rule, and
in [23], a modal language is augmented with an operator for satisfiability.

We begin by developing some notation. Given a set of regulatory statements F =
{id1.x : ϕ1 � ψ1, ..., idn.x : ϕn � ψn}, let Fpre = {ϕ1, ..., ϕn} be the set of pre-
conditions, Fpost = {ψ1, ..., ψn} be the set of postconditions, and Fid = {id1, ..., idn}
be the set of identifiers. Given a finite set of formulas Γ , we denote the conjunction by∧

Γ . The conjunction of the empty set is identified with � (a tautology). We use two
rules for the inference predicate:

R3 For all F ⊆ Reg with Fid ⊆ Id, from �L

∧
Fpost ⇒ φ, infer�

∧
Fpre ⇒ byId(φ)

R4 For all ψ ∈ L′, if for all F ⊆ Reg with Fid ⊆ Id, either 
�L

∧
Fpost ⇒ φ, or

� ψ ⇒ ¬
∧

Fpre, then infer � ψ ⇒ ¬byId(φ).

Informally, R3 says that byId(φ) is true, if there exists a set of laws whose post-
conditions imply φ, and whose preconditions are true. R4 says that byId(φ) is false, if
one of the preconditions is false for all sets of laws whose postconditions imply φ. In
particular, if 
�L

∧
Fpost ⇒ φ for all appropriate subsets, then � � ⇒ ¬byId(φ), and

using R1, � ¬byid(φ).
The rules have an equivalent axiomatic characterization, which is important in es-

tablishing completeness. Given φ ∈ L, let F(Id,φ) be the set of subsets (F ⊆ Reg
with Fid ⊆ Id) such that F ∈ F iff �L

∧
Fpost ⇒ φ. Let Γ(Id,φ) be the set such

that ¬
∧

Fpre ∈ Γ(Id,φ) iff F ∈ F(Id,φ). Finally, let Δ(Id,φ) be the set such that∧
Fpre ∈ Δ(Id,φ) iff F ∈ F(Id,φ).

Proposition 3. The following are provable:

1. �
∧

Γ(Id,φ) ⇒ ¬byId(φ)
2. � byId(φ) ⇒

∨
Δ(Id,φ)

The first claim is an immediate consequence of R4. And, the second claim follows from
the first by propositional reasoning. It is easy to show that the axioms A1-A3, together
with Proposition 3, and the rules R1 and R2 imply the rules R3 and R4. The inference
predicate behaves like a modality:

Proposition 4. � byId(ϕ ⇒ ψ) ⇒ (byId(ϕ) ⇒ byId(ψ))

Completeness is be established by a standard pre-model construction (see [19] for de-
tails). We now discuss the general case, i.e., when there are circular references and
multiple fixed points. In the presence of multiple fixed points, we can define validity
w.r.t. all fixed points, the least fixed point, or maximal fixed points. The axioms and
rules discussed here can be adapted to characterize valdity w.r.t. all fixed points [19].
However, we have not obtained a direct characterization of validity w.r.t. the least or
maximal fixed points. [22] provides an axiomatization of these three notions of validity
for default logic, by translating the default rules into an autoepistemic logic. A question
of interest is whether the the translation procedure in [22] can be adapted for RefL.
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4 Conclusions and Future Work

We have motivated and described a logic (RefL) that accomodates references between
laws. RefL separates two uses of statements – drawing inferences from regulation, and
determining facts about an organization. We believe that this separation is crucial to the
application of conformance checking.

The inference predicate blends two ideas from logic programming. First, the Kripke-
Kleene-Fitting semantics [24], which uses three values for negation in logic programs.
In RefL, we place the burden on a predicate, rather than on negation. The advantage is
that connectives can behave as they do in a many valued logic. Second, contextual logic
programs [25] use operations to restrict the context from which inferences are derived.
Referring to specific laws (via identifiers) gives us a fine-grained control of context.

RefL provides a staring point in bringing the advantages of non-monotonic reasoning
to systems such as [2,4]. [2] represents business contracts as SQL queries, and [4] uses
first-order logic augmented with real time operators. The inference predicate can be
added to these systems, provided that the existential quantification is relativized to ei-
ther the preconditions or the postconditions. However, restrictions are needed to ensure
that the satisfiability tests remain decidable. [3] discusses the importance of anlayzing
references, but do not provide a formalization.

In this work, we have considered references to laws that appear in preconditions.
There is also the need for references in postconditions. An obvious case is for laws
that cancel obligations and permissions given by another, e.g., if a donation is not used
for transfusion, exemption (3) no longer applies. A more speculative case can be made
for iterated deontic constructs [17], e.g., “required to allow x”. We suggest that the
semantics will involve representing agents who introduce laws that reason about each
other, e.g., You are required to (introduce laws that) allow a patient to see his records.

On the computational side, our goal is to be able to scale up to runs with a large
number of objects, and incorporate RefL into a runtime checking framework for LTL.
In a companion paper [26], we identify a fragment of RefL motivated by a case study
of the FDA CFR. The fragment assumes that byId(ϕ) can be evaluated by using at most
one of the laws referred to. This assumption allows us to replace satisfiability tests with
tests of lower complexity, and lets us scale up to runs with a large number of objects. In
this paper, we have focussed on formally characterizing the semantics and complexity
of RefL, and in [26], we focus on optimizations that are needed in practice.
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Abstract. Åqvist’s paradox of epistemic obligation can be solved, if we use
knowledge-wh instead of knowledge-that in specifications of the ‘need to know’:
the knowledge which an agent in a certain organisational role is required to have.
Knowledge-wh is knowledge of an answer to a question, which depends on the
context. We show how knowledge-wh can be formalised in a logic of questions,
which is combined with standard deontic logic to represent epistemic obligations.
We demonstrate that under the new interpretation, the paradox can no longer be
derived. The resulting logic is useful for representation of access control policies.

1 Introduction

Many types of computer systems require a way to specify the knowledge which agents
in an organisational role need or need not have. Consider an access control policy for
a distributed database. Access is regulated by rules, which indicate who may access
which documents for what purpose. In police records, for example, only those officers
who are working on a specific case, and who therefore have the ‘need to know’, are au-
thorised to access the case files. Managing access control policies is becoming increas-
ingly complex. One must demonstrate that a set of rules satisfies certain properties, such
as consistency, least privilege, or segregation of duties. A declarative representation of
access control rules can be managed by a so called trust management system, and be
used to assist in formal specification and verification [3]. To help develop a conceptual
model for such specifications, a logic could be useful. Which logics are appropriate?

Traditionally, norms are studied in deontic logic, see e.g. [18]. Permissions and obli-
gations are expressed by formulas of the form Pϕ and Oϕ, respectively. Standard De-
ontic Logic (SDL) has axioms, which make it a normal modal logic. This means among
other things that obligations can be distributed over implication, and that necessitation
can be used as a derivation rule. The logic of knowledge and information is called epis-
temic logic [14, 6]. Knowledge of an agent i is expressed by formulas of the form Kiϕ.
Knowledge is characterised by modal logic S5, which means among other things, that
knowledge is supposed to be true. To specify a ‘need to know’, the obvious thing to do
is to combine deontic and epistemic logic, and study the resulting epistemic obligations,
expressed as OKiϕ. However, the combination is not as straightforward as it may seem.
There are various problems and paradoxes related to the combination of deontic and
epistemic logic [17]. In this paper, we discuss one such problem: Åqvist’s paradox of
epistemic obligation [2].
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The problem is the following: by combining the truth axiom of knowledge with the
distribution axiom and the necessitation derivation rule of standard deontic logic, we
can derive from the fact that someone needs to know some facts, that these facts are
true. This is counterintuitive, as illustrated by the following example.

(1) The bank is being robbed.
It ought to be the case that Jones (the guard) knows that the bank is being
robbed.
So, it ought to be the case that the bank is being robbed.

In this paper, we want to demonstrate that the paradox can be avoided, if only we would
specify epistemic obligations in a different way. Instead of specifying that agents in
some organisational role need to know that some information is true, the designer of
a system should specify what an agent needs to know, or whether some information is
true or not. Such knowledge-wh corresponds to knowing the answer to some question.
Note that the answer to a question crucially depends on the context, but that at design
time, the true answer is often not yet known. In the example above, Jones, the guard,
ought to know whether the bank is being robbed or not. In other words, if the bank is
being robbed, Jones should know that this is the case, and if not, not.

The approach can be made precise using the logic of questions and answers devel-
oped by Groenendijk and Stokhof [12]. This logic can express an entailment relation
between questions, as well as relationships between questions and propositions, such
as the answerhood relation. The answerhood relation states under what circumstances
a proposition is said to give a complete answer to a question. Because the semantics is
expressed in terms of sets of possible worlds, the logic of questions can be combined
relatively easily with epistemic logic. We use formulas of the form Ki?ϕ to express that
agent i has knowledge of an answer to the question ?ϕ, i.e., whether ϕ is true or not.

Epistemic obligations with embedded questions have a great potential beyond the
paradox. Modern information systems require specification of the knowledge which
agents enacting a specific role in an organisation must possess, or are not allowed to
possess. Examples of such specifications are found in work-flow management systems,
information systems security, electronic institutions, or web-service applications. Be-
cause the future is unknown, the legislator or designer of a system is generally not in a
position to specify the actual knowledge of an agent for all situations. Instead, a legis-
lator should specify to which (kinds of) questions an agent in a certain organisational
role ought to know – or not know – the answer. Consider examples (2) and (3).

(2) Passwords should only be known by their owner.

(3) Jones (the guard) should know which key fits on which door.

The remainder of the paper is structured as follows. In section 2 we present deontic
logic and epistemic logic, and show how the paradox arises. In section 3 we present
a logic of questions, and show how it can be used to express knowledge-wh. We also
show how to combine this logic with epistemic logic and standard deontic logic. In
section 4 we demonstrate that, if we would use the knowledge-wh representation of
Jones’ job description, the paradox no longer arises. Finally, in section 5 we consider
some applications of the logic.
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2 Åqvist’s Paradox

To show how the paradox can be derived, we first need to characterise the base logics:
Standard Deontic Logic and epistemic logic.

We want a logical language to express knowledge Kiϕ, obligations Oϕ and per-
missions Pϕ as well as epistemic obligations of the form OKiϕ. We also want to say
something about other relations between knowledge and obligations, for instance, the
property that obligations are known: � Oϕ → KiOϕ. So the language should allow
knowledge and obligation to be embedded both ways.

Definition 1 (Syntax). Let P = {p, q, ...} be a set of proposition variables, and let
A = {i, j, ...} be a set of agents, then language L is characterised by:
ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | (ϕ → ψ) | Kiϕ | Oϕ | Pϕ.

As usual we define (ϕ → ψ) ≡ ¬(¬ϕ ∧ ψ) and Pϕ ≡ ¬O¬ϕ.
Regulations and norms are studied in deontic logic [18]. Standard Deontic Logic is

characterised by the following axioms and derivation rules [17].

P All tautologies of proposition logic.
K � O(ϕ → ψ) → (Oϕ → Oψ)
D � Oϕ → Pϕ

MP If � ϕ and � ϕ → ψ, then � ψ.
Nec If � ϕ, then � Oψ.

The K axiom expresses the usual distribution requirement for a modal logic; the D
axiom guarantees consistency. Together with P this means SDL is a normal modal logic.
MP is the rule of Modus Ponens, and Nec is the necessitation rule, applied to obligation.

The logic of knowledge and information is called epistemic logic [6]. Epistemic logic
originates with Hintikka [14]. Usually, the logic of knowledge is taken to be S5. It is
characterised by the following axioms and derivation rules.

P All tautologies of proposition logic.
K � Ki(ϕ → ψ) → (Kiϕ → Kiψ)
T � Kiϕ → ϕ
4 � Kiϕ → KiKiϕ
5 � ¬Kiϕ → Ki¬Kiϕ

MP If � ϕ and � ϕ → ψ, then � ψ.
Nec If � ϕ, then � Kiψ.

In addition to P, K, MP and Nec, for knowledge we also have T, the truth axiom, which
expresses that knowledge is veridical: when we say that someone knows something,
this knowledge is presupposed to be true. This feature distinguishes knowledge from
belief, among other things. Axioms 4 and 5 represent positive and negative introspection
respectively: when someone knows or doesn’t know something, he is supposed to know
that he does or doesn’t know. Although the S5 axioms are usually not true for humans,
who have bounded rationality, they are true for idealised situations, like databases or
the statements collected in a dispute.

Regarding the interaction between knowledge and obligation, we consider the fol-
lowing positive and negative introspection axioms for obligation.
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O4 � Oϕ → KiOϕ
O5 � ¬Oϕ → Ki¬Oϕ

These are strong assumptions. Although it is strong, we believe that axiom O4 is not
more idealised than positive and negative introspection of knowledge itself, or the fact
that knowledge is closed under deduction. Axiom O5 however, is too strong. This can be
seen more easily, by taking the contraposition: � MiOϕ → Oϕ, where Miϕ ≡ ¬Ki¬ϕ
is the dual of knowledge. Now it reads: “when i considers it possible that ϕ is obliged,
ϕ is indeed obliged”, which is clearly wrong.

In general O4 is a nice property: one should know the rules. But getting to know the
rules takes time and effort. An agent caught not knowing the rules, would be a violation;
not a failure. So for resource bounded applications this principle is better represented
by a specific norm, like M |= O(Oϕ → KiOϕ), rather than an axiom.

Regarding the converse interaction, about being obliged or forbidden to know some-
thing, we do not want to impose any axioms. To the contrary, we might consider a
‘freedom of thought’ axiom, � Kiϕ → PKiϕ, to exclude the definition of ‘thought
crimes’, as in Orwell’s 1984. However, such an axiom goes against the purpose of ac-
cess control policies. In some cases there is good reason to specify or restrict what may
be known.

Finally, we could consider an interaction axiom comparable to feasibility in BDI
logic. This would come out as � Oϕ → Kiϕ, which is wrong, or else as � Oϕ → Miϕ.
The contraposition, � Kiϕ → Pϕ, indicates that this suggestion is wrong too.

2.1 Semantics

The semantics of epistemic logic is traditionally given in terms of Kripke structures,
with accessibility relations Ri, for agents i. The semantics is sound and complete
with respect to S5, when the accessibility relation Ri is an equivalence relation [6].
Relation Ri is interpreted as indistinguishability: two worlds are related when they
are indistinguishable with respect to the knowledge of agent i. The set of worlds ac-
cessible from w, denoted by Ri(w), characterises the information state of agent i:
Ri(w) = {v | Ri(w, v)}.

Standard Deontic Logic has a possible worlds semantics too. Here the accessibility
relation I represents an ideal situation with respect to compliance. The set of ideal
worlds is denoted by I(w) = {v | I(w, v)}. We require that I is serial: for all w there
is at least one ideal world v. This will ensure the consistency axiom D. It is well known
that this semantics is sound and complete with respect to SDL [17].

What about the interaction between deontic and epistemic logic? To ensure O4, pos-
itive introspection for obligation, we require the following frame property, which looks
a bit like transitivity. A similar property is known from KB-logic, which studies the
interaction of knowledge and belief [15].

If Ri(w, v) and I(v, u), then I(w, u). (RI-transitive)

Incidently, negative introspection for obligations O5 would correspond to frames being
RI-Euclidean: if Ri(w, v) and I(w, u), then I(v, u). However, we already decided
that O5 is not a desirable property.
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Definition 2 (Semantics L). Let M = 〈W, A, {Ri}i∈A, I, V 〉 be a model consisting
of a set of possible worlds W , a set of agents A, a set of reflexive, symmetric and
transitive accessibility relations Ri ⊆ W × W for each agent i, a serial accessibility
relation I ⊆ W ×W , which together are RI-transitive, and a valuation function V .
Define the satisfaction relation ‘|=′ as follows:
M, w |= p iff V (w)(p) = 1
M, w |= ¬ϕ iff M, w 
|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= Kiϕ iff M, v |= ϕ, for all v such that Ri(w, v).
M, w |= Oϕ iff M, v |= ϕ, for all v such that I(w, v).

Now we should prove soundness and completeness. For the two base logics, this is
already well known [6, 17]. What remains to be shown is the correspondence between
O4 and frames being RI-transitive.

Proposition 1 (Correspondence)
A frame 〈W, A, {Ri}i∈A, I〉 is RI-transitive iff � Oϕ → KiOϕ is valid. Proof.

(⇒) Suppose the frame isRI-transitive. We prove the contraposition:� MiPψ → Pψ.
Take any valuation V such that M, w |= MiPψ, for some w. By definition 2 there
is some v such that Ri(w, v) and M, v |= Pψ. Again by definition 2, there is
some u such that I(v, u) and M, u |= ψ. Because the frame is RI-transitive, we
have I(w, u). So by Def 2 we have M, w |= Pψ.

(⇐) Suppose � Oϕ → KiOϕ is valid. Let Ri(w, v) and I(v, u) for arbitrary w, v, u.
To be shown: I(w, u). This is the case when M, w |= Oϕ implies M, u |= ϕ for
all ϕ. Take a valuation V such that M, w |= Oϕ. By O4 M, w |= KiOϕ. So by
definition 2 M, v |= Oϕ, and M, u |= ϕ.

That completes our presentation of a framework to express epistemic obligations.

2.2 Paradox of Epistemic Obligation

What about the paradox? Åqvist’s [2] Paradox derives from the combination of two as-
sumptions, which are plausible in isolation [17]. The first is the assumption that knowl-
edge is veridical, expressed by the truth axiom. The second assumption is known as
RM and follows from necessitation (Nec) and distribution for obligations (K).

RM If � ϕ → ψ, then Oϕ → Oψ

Let us reconsider the example from the introduction. The following account of the para-
dox is based on [17].

(1) 1. The bank is being robbed. robbed
2. It ought to be the case that Jones

knows that the bank is being robbed.
OKj robbed

3. Kj robbed→ robbed (T)
4. OKj robbed→ O robbed (3,RM)
5. It ought to be the case that the bank

is being robbed.
O robbed (2,4,MP)
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Suppose that a bank is being robbed. Jones is the guard of the building. It is part of his
job description to know that the bank is being robbed. We can formalise these assump-
tions in premise 1 and 2. Premise 3 is an instantiation of the truth axiom. In premise 4
and 5 we derive the counterintuitive result that it ought to be the case that the bank is
being robbed. Note that we do not really need premise 1 in the derivation. In the general
discussion it is used to support premise 2, but it does re-enter in the formal version of
the paradox. We will come back to this observation later.

Usually, when discussing the paradox, people blame Standard Deontic Logic, and
there are many different ways of changing the logic to avoid this paradox [17]. Most of
these attack the RM principle, because it also leads to other paradoxes, in particular to
Ross’ Paradox and The Good Samaritan paradox. In this paper however, we will attack
the truth axiom for knowledge, or to be more precise, the way the job description of
Jones, the guard, is represented in the logic. We believe that Jones’ job description –
or epistemic obligations in general – should take the form of an embedded question. It
is his job to know whether the bank is being robbed or not, not that the bank is being
robbed. In other words, it is Jones’ job to know the answer to a question. This answer
crucially depends on the context. The context dependency in our approach is compatible
with other solutions of deontic paradoxes, which stress the conditional nature of obli-
gations: if the bank is being robbed, then Jones ought to know that. See Tomberlin [21]
for a critical evaluation of such approaches.

3 Questions and Answers

There are different kinds of knowledge. Traditionally, knowledge-how is contrasted
with knowledge-that. But there is yet another type: knowledge-wh. In school, for ex-
ample, you learn what the capital of France is. Should we express such knowledge as
a proposition? Should we require for all pupils i, that OKi capital(Paris, France)?
But what about the capital of Guatemala? Or knowing who is the current president?
In other words, what if those who specify the required knowledge, do not know these
things themselves? In such cases, it seems more natural to require that pupils know the
answer to the question, regardless of the answer at the time of specification.

In linguistics, Groenendijk and Stokhof [11, 12] have developed a logic of inter-
rogative expressions, in particular questions. Like propositions, questions stand in en-
tailment relations, and there is a logical relation between propositions and questions,
called answerhood. Crucially, questions can express the embedded content of verbs like
‘wonder’, ‘doubt’ and ‘know’. In this paper we use the ‘update’ version of the logic
of interrogatives [10]. This version has been given a sound and complete axiomatisa-
tion [5]. Initially, we only present a propositional logic version. In Section 5 we discuss
a predicate logic version, to cover examples like (3) and (2).

First, we define a logical language, which only contains questions.

Definition 3 (Syntax). Let L be as in Definition 1. Then L′ = {?ϕ | ϕ ∈ L}.

What about the interpretation? An answer is a proposition: a set of possible worlds. A
question is a specification of the possible answers to the question, one for each possible
world. Therefore it is a set of sets of worlds. It turns out that this set of propositions
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forms a partition: the answer sets are disjoint and together cover the whole space of
possibilities [11]. Technically, a partition corresponds to an equivalence relation. This
relation can also be interpreted as an indistinguishability relation: two worlds are con-
nected whenever they agree on their specific answer to the question.

Definition 4 (Interpretation). Let M be a model as in Definition 2. For any ϕ ∈ L
and ?ψ ∈ L′ define interpretation [[.]] as follows:
[[ϕ]] = {w | M, w |= ϕ}
[[?ψ]] = {〈w, v〉 | M, v |= ψ iff M, w |= ψ}
Groenendijk [10] interprets an information exchange as a dynamic process. Questions
raise distinctions between different possible alternatives. Answers provide information
to eliminate some alternatives. The semantics of questions and answers is therefore
most naturally given in terms of the changes they bring to an information state. This is
called update semantics [24]. The idea is illustrated by the following exchange.

(4) A: Should I bring my umbrella?
B: Well, it is raining.

Here, B answers A’s question with what is strictly speaking the answer to a different
question. This makes sense, when the two questions are related: when A and B both
know that one should bring an umbrella whenever it is raining.

rain.umbr rain.umbr

rain.umbr

rain.umbr rainumbr

rain.umbr

rain.umbr

S S[?umbr] S[?umbr; rain]

Fig. 1. Information exchange as a process of asking questions and giving answers

An information state S consists of a set of possible worlds F , structured by an equiv-
alence relation Q. Worlds in F are compatible with the information of an agent. Adding
information, will eliminate all worlds that are incompatible with it. The equivalence re-
lation Q models which distinctions are considered relevant. Adding a question makes
the distinctions more fine grained. All pairs of worlds that cut across a distinction,
are eliminated. To illustrate this idea, the dialogue of example (4) is shown in Fig-
ure 1. Suppose S represents the common ground, which already contains the fact that
rain → umbr, so world rain.umbr has been eliminated. When we ask ?umbr we di-
vide the set into two parts: umbrella and no umbrella. Adding the information rain
removes the not-rain worlds, and therefore also answers the original question.

Definition 5 (Auxiliary Notation). Let X, Y be any set and let R ⊆ X × X be an
equivalence relation. Define the following notation:
R ↓ Y = {〈x, y〉 ∈ R | x ∈ Y, y ∈ Y } restriction of R to Y
(x)R = {y ∈ X | R(x, y)} equivalence class induced by R
Y/R = {(x)R | x ∈ Y } partition induced by R
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Definition 6 (Update Semantics). Let S = 〈F, Q〉 be an information state, F ⊆ W
and Q ⊆ F × F an equivalence relation. Define an update function [.] as follows:
〈F, Q〉[ϕ] = 〈F ∩ [[ϕ]], Q ↓ [[ϕ]]〉
〈F, Q〉[?ϕ] = 〈F, Q ∩ [[?ϕ[[〉

Update semantics employs a content dependent notion of entailment [24]. The idea is
that an information states supports some information χ, written S � χ, when an update
with it does not add any information. This holds for both propositions and questions.

Definition 7. For all χ1, ...χn, ψ ∈ L ∪ L′ and information states S, define:
S � ψ iff S[ψ] = S.
χ1, ...χn �S ψ iff S[χ1], ...[χn] � ψ.
χ1, ...χn � ψ iff χ1, ...χn �S ψ, for any S.

For propositions, one can prove that this notion of entailment corresponds to the regular
one: ϕ1, ..., ϕn � ψ iff [[ϕ1]] ∩ ... ∩ [[ϕn]] ⊆ [[ψ]]. For questions, this entailment can
be explained by reducing a question to its answerhood conditions. So ?ϕ implies ?ψ
when all answers to ?ϕ also qualify as answers to ?ψ. This is the case when the distinc-
tions made by ?ϕ are more fine grained than those made by ?ψ. So one can prove that
?ϕ1, ..., ?ϕn �?ψ iff [[?ϕ1]] ∩ ... ∩ [[?ϕn]] ⊆ [[?ψ]] So question “Does John come and
does Mary come too?” implies the question “Does John come?”, but not vice versa.

A crucial notion for the logic of questions is answerhood. A proposition qualifies as
an answer to a question , when the corresponding set of worlds is subsumed in one of
the equivalence classes of the partition, induced by the question [12]. It turns out that
this is a special case of the notion of support, where the consequent is a question [10].

Definition 8 (Answerhood). For any information state S, ϕ ∈ L and ?ψ ∈ L′, we say
that ϕ provides an an answer to ?ψ in S, written ϕ �S?ψ, whenever S[ϕ] �?ψ.
Moreover, ϕ � ?ψ in general, whenever ϕ �S ?ψ, for any S.

This definition means, for instance, that ¬p � ?p or that (p∧ q) � ?p, but p 
� ?(p∧ q).
In Figure 1 we have rain �S ?umbr for example, but ¬rain 
�S ?umbr.

We show that this version of answerhood corresponds to the original intuition.

Proposition 2. ϕ � ?ψ iff there is an X ∈ W/[[?ψ]] and [[ϕ]] ⊆ X .
Proof sketch (⇒) Let ϕ � ?ψ, so S[ϕ][?ψ] = S[ϕ], for any S. Let S0 = 〈W, W ×W 〉.
By Def 6 S0[ϕ] = 〈[[ϕ]], [[ϕ]]×[[ϕ]]〉. Adding [[?ψ]] = {〈w, v〉 | M, w |= ψ iff M, v |= ψ}
does not make any changes. So for all w, v ∈ [[ϕ]] either both w, v ∈ [[ψ]] or w, v 
∈ [[ψ]].
In the first case X = [[ψ]], in the second X = [[¬ψ]].
(⇐) Let [[ϕ]] ⊆ X , for some X ∈ W/[[?ψ]]. Because ψ is propositional, there are two
candidates: X = [[ψ]] or X = [[¬ψ]]. In the first case, ϕ |= ψ and in the second case
ϕ |= ¬ψ. In both cases, by Def 8 ϕ � ?ψ.

Defined in this way, answerhood is a rather weak constraint on responses. Inconsis-
tencies and tautologies also qualify as answers. Therefore Groenendijk [10] defines
some pragmatic constraints on answerhood, inspired by Grice. In particular, answers
should be consistent, informative, and relevant to some question, and should not be
over-informative. This means that answers may only eliminate complete equivalence
classes from the partition induced by the question.
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This logic of questions, and in particular the notion of answerhood, has been given
an axiomatisation [5]. Intuitively, this works by a syntactic characterisation of the an-
swerhood relation, based on Beth’s definability theorem. We return to this in Section 5.

3.1 Questions and Knowledge

Issues can be embedded under the verb ‘to know’. In linguistics, it turns out that ‘to
know’ is one of a class of verbs that express epistemic states that answer some implicit
question or resolve some open issue: discover, tell, guess, etc. These verbs are called
resolutive by Ginzburg [9], in contrast to other verbs, like wonder, doubt or consider,
which can also embed a question, but do not require resolution. Formula Ki?ϕ is a
proposition, in L, which expresses that agent i knows an answer to question ?ϕ.

Definition 9 (Syntax ). Extend L in Definition 1 with {Ki?ϕ | ?ϕ ∈ L′}.

The definition of answerhood can be adapted quite straightforwardly to epistemic logic.
See [8] for a different suggestion of how to do this.

Definition 10 (Semantics ). Extend Definition 2 with the following clause:
M, w |= Ki?ψ iff there is ϕ such that ϕ �?ψ and M, w |= Kiϕ.

This definition is a bit unsatisfactory. It would be nicer to have a characterisation of
Ki?ϕ directly in terms of Ri. And indeed, we can prove the following.

Proposition 3 (Knowledge-wh). M, w |= Ki?ψ iff Ri(w) ⊆ X for an X ∈ W/[[?ψ]].
Proof. Suppose M, w |= Ki?ψ. By Def 10 M, w |= Kiϕ for some ϕ. So by Def 2
M, v |= ϕ for all v ∈ Ri(w), so by Def 4 Ri(w) ⊆ [[ϕ]]. Moreover ϕ �?ψ, so [[ϕ]] ⊆ X
for some X ∈ W/[[?ψ]] (Prop 8). By transitivity of ⊆ we have Ri(w) ⊆ X .

We can derive a number of properties to characterise Ki?ϕ. Proposition 4 states that
knowledge-that implies knowledge-wh. The converse does not hold, but if the answer
happens to be true, we can get the converse (Proposition 6). Moreover, we can reduce
knowledge-wh to a disjunction of knowledge-that statements (Proposition 5).

Proposition 4. |= Kiϕ → Ki?ϕ, |= Ki¬ϕ → Ki?ϕ
Proof. Suppose M, w |= Ki¬ϕ. Then by Def 4 Ri(w) ⊆ [[¬ϕ]]. Take X = [[¬ϕ]]. Verify
that X ∈ W/[[?ϕ]] and apply Prop 3. Similar for M, w |= Kiϕ.

Proposition 5. |= Ki?ϕ ↔ (Kiϕ ∨ Ki¬ϕ).
Proof. (⇒) For question ?ϕ, there are two possible answers: ϕ and¬ϕ. By proposition 3
either Ri(w) ⊆ [[ϕ]] or Ri(w) ⊆ [[¬ϕ]]. Apply Def 2.
(⇐) Suppose M, w |= (Kiϕ ∨ Ki¬ϕ). So either M, w |= Kiϕ or M, w |= Ki¬ϕ. In
both cases by Prop 4 M, w |= Ki?ϕ.

Proposition 6. |= ϕ ∧ Ki?ϕ ↔ Kiϕ, |= ¬ϕ ∧ Ki?ϕ ↔ Ki¬ϕ.
Proof. (⇒) Let |= ϕ∧Ki?ϕ. By Prop 5 |= ϕ∧(Kiϕ∨¬Kiϕ), so by T and propositional
logic M, w |= Kiϕ. (⇐) By Prop 4 and T.

Predicate logic versions of these properties also exist. In those cases, proposition ϕ and
¬ϕ above, are replaced by some substitution expression ϕ{c/x}, to characterise one of
the appropriate answers to the question ?xϕ. See also Section 5.
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4 Analysis of the Paradox

To get back to the Åqvist case, we reconsider (1), but now we represent Jones’ job
description by OKj?robbed: Jones must know whether the bank is being robbed.

(5) 1. The bank is being robbed. robbed
2. It ought to be the case that Jones

knows whether the bank is being
robbed.

OKj?robbed

One of the causes of the paradox is the truth axiom. But also to know-wh is veridical: to
know-wh something is to know a true answer to the question. By proposition 6 we have
that if the bank is being robbed, Jones knows this, and if the bank is not being robbed,
Jones knows that. We can put this into premise 3.

3. If the bank is robbed Jones knows
that the bank is robbed.

robbed∧ Kj?robbed→Kjrobbed

If the bank is not robbed Jones
knows that it is not robbed.

¬robbed ∧ Kj?robbed→Kj¬robbed

Is this enough to re-generate the paradox? Note that this conditional veridicality is much
weaker than the truth axiom. We really need premise 1. Lets try to find an analogue of
premise 4. We recognise an implication. So by RM, we derive the following.

4. O(robbed ∧ Kj?robbed) → OKjrobbed
O(¬robbed ∧ Kj?robbed) → O(Kj¬robbed)

If we now try an analogous step to 5, it fails. We require Orobbed ∧ OKj?robbed,
which begs the question. This shows that a similar derivation of the paradox is blocked.
To get a proper proof that the paradox is blocked, we need a counter example.

Proposition 7. 
|= O?Kiϕ → Oϕ.
To be shown for some M and w: M, w |= OKj?robbed , but M, w 
|= Orobbed.
Proof. The model in Figure 2 has worlds w, u, and v such that V (w)(robbed) = 1,
V (v)(robbed) = 1 and V (u)(robbed) = 0, Rj(v, v), Rj(u, u), I(w, v), I(w, u),
I(v, v), I(u, u). We verify that Ri is an equivalence relation, and that I is serial.
We observe that M, v |= Kirobbed and M, u |= Ki¬robbed, so by Proposition 4
M, v |= Ki?robbed and M, u |= Ki?robbed and by Definition 2 we get indeed
M, w |= OKi?robbed. We verify that, although M, w |= robbed, M, w 
|= Orobbed,
because there is a world u such that I(w, u) but M, u 
|= robbed.

I

robbed

robbed

I

robbed−

IR I R

v u

w

Fig. 2. Counter Example
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Like many other deontic paradoxes, also this paradox has to do with contextual obliga-
tions, and how they should be represented. Many obligations are implicitly contextual.
The general rule expressed in premise 3 can be rephrased as: in the context of robbed,
Jones must know that robbed. Suppose we would have conditional obligation, like
proposed for instance in [22], we could represent such a rule as follows:

(6) O(Kjrobbed|robbed) ∧O(Kj¬robbed|¬robbed)

However, such a solution would mean that we would have to specify all possible an-
swers that must be known, in advance. By contrast, if we use questions embedded under
know, we can delegate finding the answers to the person who must know them.

5 Applications of Epistemic Obligations

The main point of this story, is to show the relevance of the following empirical ob-
servation: almost all epistemic obligations are most naturally formulated in terms of
knowledge-wh. The reason is simple: the legislator can specify what kind of knowledge
a person must have, but since this knowledge may concern the future, the legislator
can not know what this knowledge is at specification time. In some cases, the legisla-
tor is himself not even allowed to know what the knowledge is, such as in the case of
passwords. We have already seen some examples of that in the introduction.

To deal with such examples, the language can be extended to a version of epistemic
predicate logic. For questions that involve words like who, what, where or when, we
use formulas of the form ?xϕ, where variable x occurs free in formula ϕ. We also allow
questions with multiple variables. “What is the capital of which country?” is represented
by ?xycapital(x, y). When we ask about a closed formula, with no free variables, we
get a ‘whether-question’ as before. So ?rain expresses the question whether it is raining
or not, and “Does France have a capital?” is represented by ?∃xcapital(x, France).

We use notation x̄ for a sequence of zero or more variables, so x̄ = x1, ..., xn, where
n ≥ 0. When n = 0 the vector x̄ is the empty sequence, and we get a whether-question.

Definition 11 (Syntax). Let P be a predicate symbol, x, x1, ..., xn variables, and c a
constant, then define terms T , propositions L2 and questions L′

2 as follows
T t ::= x | c
L2 ϕ ::= t1 = t2 | P (x1, ..., xn) | ¬ϕ | ϕ ∧ ψ | ∀xϕ | Ktϕ | Kt?x̄ϕ | Oϕ
L′

2 χ ::= ?x̄ϕ (ϕ ∈ L2; ?x̄ϕ ∈ L′
2)

With this language we can express the motivational examples from the introduction.
Example (9) is added to illustrate epistemic obligations for roles.

(7) Passwords ought to be known only by the owner.
O(∀xyKx?w.password of(y, w) → y = x))

(8) Jones (the guard) ought to know which key fits on which door.
role(j, guard) ∧ OKj(?kd.key(k) ∧ door(d) → fit(k, d))

(9) Generally, guards ought to know who is allowed to enter.
∀x(role(x, guard) → OKx?y.Penter(y))
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Epistemic operators and quantification make for a complex combination. To
express the examples we need to be able to quantify over agents. So we require A ⊆ D
and allow variables as subscripts to modal operators. This gives rise to technical is-
sues about epistemic predicate logic, which are outside the scope of this paper. For an
introduction to modal predicate logic and some related philosophical problems, we
refer to [7] and [6, Ch 3.7]. We assume one domain is shared by all worlds and
constants are rigid designators: they denote the same individual in all possible
worlds.

Definition 12 (Semantics L2). Let M be a model as in Definition 2, and let D be a
domain, shared by all possible worlds. Let G = {g, h, ...} be a set of assignments from
variables to entities in D. Let g[x/d] the assignment that is just like g, except that it
assigns d to x. V is re-interpreted as a function from constants and predicates to sets
of tuples of entities from D, such that for all w, v we have V (w)(c) = V (v)(c).
For all w and g the interpretation of terms is defined as follows:
Vg(w)(t) = V (w)(t), if t is a constant
Vg(w)(t) = g(t), if t is a variable.
The satisfaction relation ‘|=’ is re-interpreted as follows:
M, w, g |= P (t1, ..., tn) iff 〈Vg(w)(t1), ..., Vg(w)(tn)〉 ∈ Vg(w)(P )
M, w, g |= x = t iff Vg(w)(x) = Vg(w)(t1)
M, w, g |= ¬ϕ iff M, w, g 
|= ϕ
M, w, g |= ϕ ∧ ψ iff M, w, g |= ϕ and M, w |= ψ
M, w, g |= ∀xϕ iff M, w, g[x/d] |= ϕ, for all d ∈ D
M, w, g |= Ktϕ iff M, v, g |= ϕ, for all v such that RVg(w)(t)(w, v).
M, w, g |= Kt?x̄ϕ iff M, w, g |= Ktψ and ψ �?x̄ϕ, for some formula ψ
M, w, g |= Oϕ iff M, v, g |= ϕ, for all v such that I(w, v).

Also the interpretation of questions needs to be adapted.

Definition 13 (Interpretation). Letϕ∈ L′
2 be any formula with free variables x1, ..., xn.

Now define the extension of a formula as follows:
Vg(w)(ϕ) = {〈d1, ..., dn〉 | M, w, g[x1/d1, ...., xn/dn] |= ϕ}
[[?x̄ϕ]]g = {〈w, v〉 |= Vg(w)(ϕ) = Vg(v)(ϕ)}

Again, the meaning of a question is seen as an indistinguishability relation. Two worlds
are connected, whenever they agree on their answer to the question, which is modelled
here by an extension, a set of tuples of entities. For example, the question “Who will
come to the party?”, is represented by a formula ?xcome to party(x). Given that John
and Mary are the only feasible party goers in the context, the question would induce a
partition consisting of the following answers: “No one will come”, “John will come”,
“Mary will come” and “John and Mary will come”.

The way the model has been set up, it is difficult to express information about ’values
of variables’, such as questions like “Who is he?”, represented by ?x(x = y). After all,
such information is stored in assignments g, rather than possible worlds. In dynamic
logic, in particular [10], information states are defined over indices: pairs of worlds and
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assignments. Adding the information that ‘he’ is actually Jones, eliminates all assign-
ments incompatible with that information.

The dynamic version of the logic of questions [10] has been given a sound and com-
plete axiomatisation [5]. It is based on a syntactic characterisation of the answerhood
relation. The main theorem is repeated here in simplified form, without proof.

Proposition 8 (Theorem 3.2 [5]). Entailment ϕ1, ..., ϕn �?ψ holds iff the set of propo-
sitions {ϕ1, .., ϕn} implicitly defines an answer ψ in terms of {x = c | c a constant}.

The theorem uses the notion ‘implicitly defines’, which has to do with Beth’s definabil-
ity theorem. Beth’s Definability is the proposition that a set of formulas Σ implicitly
defines ψ in terms of Γ iff there is a development χ of Γ with the same free variables
x̄ as ψ has, so that Σ |=fol ∀x̄(ψ ↔ χ). Here ‘|=fol’ stands for first order logic entail-
ment. A development is essentially a syntactic reformulation of an answer. Formally, a
development of a set of formulas Σ is defined as a formula that is built up from elements
of Σ and formulas of the form (x = y) using ¬,∧,→, ∀.

Given a syntactic characterisation of answers, it is likely that we can prove predicate
logic versions of Proposition 4, 5 and 6.

6 Related Research

To our knowledge, a combination of questions and knowledge with deontic logic is new,
although the notion of ‘knowledge-whether’ has been around for some time.

Regarding the combination of epistemic logic and questions, we would like to men-
tion Gerbrandy and Groeneveld [8]. They too take answerhood as the core. Balder ten
Caste and Chung-Chieh Shan [5] have developed an axiomatisation of the answerhood
relation, which also works for the predicate logic version. In a different tradition, Hart,
Heifetz and Samet [13] demonstrate that it is much easier to trace dependencies between
the knowledge of different agents, when you use a notion of knowledge-whether.

It is interesting that Åqvist himself also published about the semantics of ques-
tions [1]. In his theory, a question is interpreted as a request for knowledge: “Bring
it about that I know whether...”. This instrumental view would not solve the paradox.

A combination of knowledge and obligation is addressed in a recent paper by Pacuit,
Parikh and Cogan [19]. They focus on the way in which the obligations to which an
agent is subjected, depend on what the agent knows. Lomuscio and Sergot [16] also
combine epistemic and deontic notions. They use interpreted systems to give a com-
putationally feasible semantics of the knowledge that an agent is permitted to have, or
the knowledge that an agent ideally must have, given that the system behaves accord-
ing to some protocol. Among logics for expressing more practical problems regarding
confidentiality and security, one of the best known ones is BAN logic [4].

How does our work compare to solutions of other paradoxes? The central point is
that knowing an answer to a question depends on the context. This context dependency
makes our solution similar to approaches which have also stressed the conditional na-
ture of the obligation: “If the bank is being robbed, Jones ought to know that”. Such a
conditional solution also works for another paradox that is a victim of the RM rule: The
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Good Samaritan paradox1. Interestingly, both paradoxes involve a presupposition. The
verb ‘to know’ presupposes, rather than entails, its complement. In a similar way, a
definite description like ‘the man who is robbed’ presupposes that there is a robbed
man. Linguistic theory suggests that presupposition inferences do not ‘escape’ from a
conditional [20]. “If a man is robbed, the robbed man ought to be assisted” does not
presuppose that there is a robbed man. In those cases, the presupposition is said to be
bound by the antecedent of the conditional.

7 Conclusions

In this paper we have discussed Åqvist’s paradox of epistemic obligation, which results
from a combination of Standard Deontic Logic axioms, and the truth axiom of knowl-
edge. From the fact that someone is obliged to know some facts, we can derive that
those facts are also obliged. The paradox can be solved, when epistemic obligations,
expressions of some ‘need to know’, are represented by obligations over knowledge of
the answer to a question. Such knowledge is crucially dependent on the context, so the
paradox can no longer be derived. In general, descriptions of what someone ought to
know, should be specified by an embedded question, because the system designer may
not have the required knowledge available at design time.

Why bother with the O operator at all? Why not simply specify the knowledge re-
quired by agents in epistemic logic, if needed extended with questions? The usual reply
to such remarks is that deontic logic allows one to reason explicitly about violations. For
some applications, especially those dealing with the human aspect of confidentiality, we
prefer to see a broken secret as a violation, rather than a system failure.

In future research we plan to further investigate the ‘interaction axioms’, like O4
and O5. We also need to look more at the details of quantification in epistemic predi-
cate logic. In particular, the use of quantifiers to express properties of agents, is useful.
The high expressivity of our logic comes at a price however. The nice computational
properties of modal logic are lost, when the complexity of quantification is added. Re-
member however that our language is primarily used as a way to develop conceptual
models of access control; not necessarily to prove formal properties.

Before you start thinking that our logic is rather farfetched, and far removed from
practical applications, please consider the similarity between the logic of questions and
database query languages like SQL. Moreover, there is a similarity between the seman-
tics of relational databases, and possible worlds semantics. A set of possible worlds
– a proposition – can be compared to a set of tuples in the Carthesian product of all
tables (relations)[23]. A query specifies which sets of tuples would count as an appro-
priate answer. Which answers are true, depends on the current state of the database. So
a query specifies a set of sets of tuples: a partition. So the main message of the paper is
that one should use query languages inside the specification of access control policies.
Further practical research will have to point out wether this idea is indeed being used in
practice, and how such query-based access control rules would look like.

1 “The man who is robbed ought to be assisted” implies “There ought to be a robbed man”,
because of RM and the fact that “the man who is robbed” implies that a man is robbed.
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A Logical Analysis of the Interaction between
‘Obligation-to-do’ and ‘Knowingly Doing’

Jan Broersen

Department of Information and Computing Sciences, Utrecht University,
The Netherlands

Abstract. Within a STIT framework, this paper presents a logical study
of the interaction between ‘ought-to-do’, and an epistemic notion of ‘know-
ingly doing’. We start out with some motivating examples concerning the
interaction between action, obligation and knowledge. Then we present
a complete temporal STIT logic including operators for action, obligation
and knowledge. We use the logic to analyze the examples and discuss open
problems.

1 Introduction

This paper investigates some new problems that are introduced by considering
epistemic modalities within a deontic STIT logic. In particular we will focus on
epistemic modalities that are directly applied to (STIT) actions. The resulting
concept is one of ‘knowingly doing’, or maybe even ‘consciously doing’. Several
new and fascinating question arise by introducing this notion. For instance, the
concept presupposes that things can also be done ‘unknowingly’ or ‘unawarely’.
And what are the implications for the conditions under which obligations are
violated? For instance, are violations also avoided if agents comply with an obli-
gation unknowingly? And, are violations resulting from unknowingly performed
actions excusable? We further elaborate on some of these questions by first con-
sidering some motivating examples.

2 Examples and Questions

The first example is one designed by John Horty [1]. Consider the following three
scenarios:

The first scenario is as follows. There are two agents, α and β. β puts
money in box 1 and leaves box 2 empty. α, not having seen in which box
the money has been put, has to make a choice between the two boxes.
It knows β has put the money in one of the boxes, but it does not know
that it is box 1. The right thing to do for the agent is then to pick box
1. So, α knows that one of its choices is the right thing to do. α might
take a gamble, but it cannot do the right thing knowingly, since it does
not know in which box the money is.
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In the second scenario, α first chooses between one of the two boxes.
After α has chosen, β, who does not know which box is selected by α,
puts the money in one of the two boxes. Now both choices for α seem
equally good, since we assume there is no communication between the
agents, which means that α cannot know beforehand in which box β is
going to put the money.

The third scenario is where both agents choose simultaneously. From
the perspective of agent α this is equivalent to the second scenario. It
cannot know what β chooses, so by no means there is a right thing to
do for the agent.

Question 1: The first question is whether or not, in the first scenario, the agent
has an obligation to pick the right box or not. On the one hand indeed there
‘exists’ a right thing to do. But on the other hand, the agent will not be able to
(knowingly) guarantee that its action will comply with the obligation.
Question 2: For the second scenario, we are much less inclined to say that the
agent is obliged to put the money in the right box. But why exactly is that?
After all the only difference between both scenario’s is the order of choosing.

A second example is about the issue of violation. The question is whether or
not an agent violates an obligation when it performs the obliged action unknow-
ingly.

Imagine a (doctor) agent is obliged to see to it that a patient is cured.
The agent injects the patient with a drug the agent believes cures the
patient. However, the agent is mistaken, because the drug it believes
to inject, in fact does not cure the patient. But then, coincidentally,
without the doctor agent knowing it, it turns out that another drug is
in the hypodermic, and this drug is indeed the right drug to cure the
patient. So, the doctor unknowingly cures the patient.

Question 3: Now, does the (doctor) agent violate his obligation to cure the
patient or not?
Question 4: What concepts do we need to formalize, to express the differences
between the three scenario’s in the boxes example and to explain the hesitation
in the doctor’s example? Can we give such a formalization?

In the next section we start by defining a logic that we think answers this
final question affirmatively. Then, in section 6 we will come back to the other
questions and examples of the present section, using the insights obtained from
defining the formal logic.

3 A Temporal Epistemic STIT Logic

In this section we define a complete STIT logic with operators for knowledge. The
present STIT logic is a little different from the one in [2] since it encompasses an
axiom for uniformity of strategies. With respect to the predecessor STIT logics in
[3] and [4], the differences are bigger. In particular, the present logic drops some of
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the axioms in [4], and adds new ones, most prominently some for the interactions
of action and knowledge. Also we define a two dimensional semantics, closer
to the STIT semantics in the philosophical literature. Furthermore, we obtain
completeness for several intuitive properties concerning the interaction of time,
action and knowledge.

One of the distinguishing features of the present STIT logic is that actions
only take effect in ‘next’ states, where ‘next’ refers to immediate successors of
the present state. This distinguishes the present STIT logic not only from the
STIT variants in the above mentioned papers, but also from any STIT-logic in
the (philosophical) literature. However, there are very good reasons for taking
this approach. The first reason is that it can be shown (see [5]) that the logics
of the multi-agent versions of, what we might call, the standard ‘instantaneous’
STIT, are undecidable. The second reason is that the view that actions only
take effect in some immediate next state, is the standard view in formal models
of computation in computer science. And finally, also from a philosophical per-
spective, the choice can be advocated. Given that acting always seems associated
with some effort or process, and given that these take time, we may conclude
that actions take place ‘in’ time.

For the extension of this framework with an operator for ‘ought-to-do’, we
adapt the approach taken by Bartha [6] who introduces Anderson style ([7])
violation constants in STIT theory. The approach with violation constants is
very well suited for theories of ought-to-do, witness the many logics based on
adding violation constants to dynamic logic [8,9]. However, we believe that the
STIT setting is even more amenable to this approach. Some evidence for this
is found in Bartha’s article ([6]), which shows that many deontic logic puzzles
(paradoxes) are representable in an intuitive way. And a clear advantage in
the present approach is that since our base STIT logic is complete, defining
obligation as a reduction using violation constants guarantees that completeness
is preserved under addition of the obligation operator.

Besides the usual propositional connectives, the syntax of the logic comprises
an operator Kaϕ for knowledge of individual agents a, an operator �ϕ for his-
torical necessity, which plays the same role as the well-known path quantifiers in
logics such as CTL and CTL∗ [10], an operator [A xstit]ϕ for ‘agents A jointly
see to it that ϕ in the next state’, and finally, a violation constant V denoting
that a violation occurs. Given a countable set of propositions P , the violation
constant V , and a finite set Ags of agent names, formally the language can be
described as:

Definition 1. Given a propositional constant V and a countable set of proposi-
tions P and p ∈ P , and given a finite set Ags of agent names, and a ∈ Ags and
A ⊆ Ags, formally the language can be described as:

ϕ, ψ, . . . := p | V | ¬ϕ | ϕ ∧ ψ | Kaϕ | �ϕ | [A xstit]ϕ

We define operators for ‘next’ Xϕ, and several operators for obligation as ab-
breviations in the language. In this section we only give the definition for the
‘next’ because the explanation of the definition of the obligation operators can
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better be done after the formal semantics of the base operators is given. We
define the ‘next’ operator as the current action performed by the complete set of
agents Ags:

Definition 2

Xϕ ≡def [Ags xstit]ϕ

The view that the complete set of agents uniquely determines the next state
is a common one. Not only it can be found in the multi-agent STIT logics in
the philosophical literature [11], but also in related computer science formalisms
such as ATL [12,13]. For the relation between STIT formalisms and ATL and
Coalition Logic [14], see [15,16]. In the description of the models below, we will
actually use terminology from Coalition Logic, and call the relations interpreting
the STIT operator ‘effectivity’ relations.

Definition 3. A frame is a tuple F = 〈H, S, R�, {RA | A ⊆ Ags}, {∼a| a ∈
Ags}〉 such that:

– H is a non-empty set of histories. Elements of H are denoted h, h′, etc.
– S is a non-empty set of states. Elements of S are denoted s, s′, etc.
– R� is a ‘historical necessity’ relation over the elements of H × S such that
〈h, s〉R�〈h′, s′〉 if and only if s = s′

– The RA are ‘effectivity’ relations over the elements of H × S such that:
• RAgs is a ‘next time’ relation such that if 〈h, s〉RAgs〈h′, s′〉 then h = h′,

and RAgs is serial and deterministic (the next state is completely deter-
mined by the choice made by the complete set of agents). So, histories
‘contain’ linearly ordered sets of states.

• R� ◦RAgs ⊆ R∅ (the empty set of agents is ineffective)
• RA ⊆ R� ◦ RAgs for any A (an action undertaken by A in the present

state ensures the next state is element of a specific subset of all possible
next states)

• RAgs ◦ R� ⊆ RA for any A (no actions constitute a choice between
histories that are undivided in next states)

• RA ⊆ RB for B ⊂ A (super-groups are at least as effective)
• if 〈h, s〉(R� ◦RA)〈h′, s′〉 and 〈h, s〉(R� ◦RB)〈h′′, s′′〉 and A∩B = ∅ then

there is a 〈h, s〉R�〈h′′′, s〉 such that both 〈h′′′, s〉RA〈h′, s′〉 and 〈h′′′, s〉RB

〈h′′, s′′〉 (independence of agency)
– The ∼a are epistemic equivalence relations over the elements of H × S such

that:
• ∼a ◦Ra ⊆∼a ◦RAgs (agents cannot know what choices other agents per-

form concurrently)
• RAgs◦ ∼a⊆∼a ◦Ra (agents recall the effects of the actions they knowingly

perform themselves)
• if 〈h, s〉R�〈h′, s′〉 and 〈h, s〉 ∼a 〈h′′, s′′〉 then there is a 〈h′′′, s′′′〉 for

which 〈h′, s′〉R�〈h′′′, s′′′〉 and if 〈h′′′, s′′′〉Ra〈h′′′′, s′′′′〉 then 〈h′, s′〉Ra

〈h′′′′, s′′′′〉 (uniformity of conformant action)
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Definition 4. A frame F = 〈H, S, R�, {RA | A ⊆ Ags}, {∼a| a ∈ Ags}〉 is
extended to a model M = 〈H, S, R�, {RA | A ⊆ Ags}, {∼a| a ∈ Ags}, π〉 by
adding a valuation π of atomic propositions:

– π is a valuation function π : P −→ 2H×S assigning to each atomic proposi-
tion the set of history/state pairs in which they are true.

The truth conditions for the semantics of the operators on these models is stan-
dard for a two-dimensional modal logic [17].

Definition 5. ValidityM, 〈h, s〉 |= ϕ, of a formula ϕ in a history/state pair 〈h, s〉
of a model M = 〈H, S, R�, {RA | A ⊆ Ags}, {∼a| a ∈ Ags}, π〉 is defined as:

M, 〈h, s〉 |= p ⇔ 〈h, s〉 ∈ π(p)
M, 〈h, s〉 |= ¬ϕ ⇔ not M, 〈h, s〉 |= ϕ
M, 〈h, s〉 |= ϕ ∧ ψ ⇔M, 〈h, s〉 |= ϕ and M, 〈h, s〉 |= ψ
M, 〈h, s〉 |= Kaϕ ⇔ 〈h, s〉 ∼a 〈h′, s′〉 implies that M, 〈h′, s′〉 |= ϕ
M, 〈h, s〉 |= �ϕ ⇔ 〈h, s〉R�〈h′, s′〉 implies that M, 〈h′, s′〉 |= ϕ
M, 〈h, s〉 |= [A xstit]ϕ ⇔ 〈h, s〉RA〈h′, s′〉 implies that M, 〈h′, s′〉 |= ϕ

Satisfiability, validity on a frame and general validity are defined as usual.

While the semantics is very standard from a (two-dimensional) modal logic per-
spective, the relation with standard STIT semantics deserves some explanation.
In the conditions on the frames we recognize standard STIT properties like
‘no choice between undivided histories’ and properties that are specific for the
present STIT version, like ‘actions take effect in successor states’. Actually, the
frames can easily be pictured as trees where histories branch in states, like in
standard STIT theory. The main difference is that states are not partitioned into
choice sets. The choice sets appear here (implicitly) as sets of possible next states
(like in Coalition Logic). From a given ‘actual’ history/state pair, we reach these
choice sets by first jumping (along R�) to another history through the same
state, and then looking (along RA) what next states are reachable through the
choice made by agents on that history.

One aspect of the present semantics needs extra clarification. Like in stan-
dard STIT semantics, history/state pairs for the same state can have different
valuations of atomic propositions. In standard STIT formalisms this is actu-
ally needed to give semantics to the instantaneous effects of actions. But here,
as said, the effects are not instantaneous. Therefore, in the present logic, the
fact that different histories through the same state can have different valuations
of non-temporal propositions, does not carry much meaning. Of course, in the
logic we can talk about atomic propositions being true or not in other histories
through the same state. For instance, the formula "�p" expresses that all the
histories through the present state have in common that the atomic proposition
p holds on them. But the point is that one might think that actually we should
impose on the models that all histories through a state come with identical val-
uations of atomic propositions. That would induce the property ϕ → �ϕ for



A Logical Analysis of the Interaction 145

ϕ any ‘STIT-operator-free’ formula (in [4] a system involving such an axiom is
given). However, this would complicate establishing a completeness result, and
does not strengthen the logic in any essential or interesting way. We think there
is no need at all to impose such a condition. Since actions only take effect in next
states, alternative valuations for atomic propositions on other histories through
the same state are just not relevant for the semantics of the STIT fragment of
our logic.

Now we go on to the axiomatization of the logic. Actually, axiomatization is
fairly easy. The approach we have taken for constructing this logic is to build
up the semantic conditions on frames and the corresponding axiom schemes
simultaneously, while staying within the Sahlqvist class. This ensures that the
semantics cannot give rise to more logical principles than can be proven from
the axiomatization.

Definition 6. The following axiom schemas, in combination with a standard
axiomatization for propositional logic, and the standard rules (like necessitation)
for the normal modal operators, define a Hilbert system:

S5 for �
KD for each [A xstit]

(C-Mon) [A xstit]ϕ → [A ∪B xstit]ϕ
(Indep) ♦[A xstit]ϕ ∧ ♦[B xstit]ψ → ♦([A xstit]ϕ ∧ [B xstit]ψ) for A ∩B = ∅
(Det) ¬X¬ϕ → Xϕ
(Ineff-∅) [∅ xstit]ϕ → �Xϕ
(X-Eff) �Xϕ → [A xstit]ϕ
(n-c-u-h) [A xstit]ϕ → X�ϕ

S5 for each Ka

(Know-X) KaXϕ → Ka[a xstit]ϕ
(Rec-Eff) Ka[a xstit]ϕ → XKaϕ
(Unif-Str) ♦Ka[a xstit]ϕ → Ka♦[a xstit]ϕ

Theorem 1. The Hilbert system of definition 6 is complete with respect to the
semantics of definition 5.

Proof. The axioms correspond one-to-one to the semantic conditions defined on
the frames (proofs omitted1). Also the axioms are all within the Sahlqvist class.
This means that the axioms are all expressible as first-order conditions on frames
and that they are complete with respect to the defined frame classes, cf. [18, Th.
2.42].

As part of the above axiomatization, we recognize Ming Xu’s axiomatization
for multi-agent STIT logics (see the article in [19]). Xu’s axiomatization is for
the standard, instantaneous STIT variant. But, it should not come as a surprise
that the same axioms apply to the present logic. The central property in Xu’s

1 Thanks to Heleen Booy for finding the correspondence of the uniform strategy axiom
using the Sahlqvist algorithm.
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axiomatization is the ‘independence of agency’ property. But the issue of inde-
pendence of choices of different agents does not depend on the condition that
effects are instantaneous or occur in next states.

As a proposition we list some theorems. Derivation of these is just a little
exercise in normal modal logic. The last theorem in the list below is the well
known ‘perfect recall’ or ‘no forgetting’ axiom, known from the literature on the
interaction between epistemic and temporal modalities.

Proposition 1. The following are derivable:

[A xstit]ϕ ∧ [B xstit]ψ → [A ∪B xstit](ϕ ∧ ψ)
�Xϕ → X�ϕ
[A xstit]ϕ → Xϕ
X¬ϕ → ¬Xϕ
�Xϕ ↔ [∅ xstit]ϕ
KaXϕ ↔ Ka[a xstit]ϕ
KaXϕ → XKaϕ

Pauly’s Coalition logic [14] is a logic of ability that is very closely related to
STIT formalisms. In particular, in [15] it is shown that Coalition Logic can be
embedded in STIT logic. Since in Coalition Logic actions also take effect in next
states, restricting the STIT formalism by only allowing effects in next state, as
in the logic of this paper, does not inhibit definability of Coalition Logic. See [2]
for some more details.

Finally a word on the ‘deliberative’ STIT. The kind of STIT operator we
defined above has often been criticized for properties like [A xstit]�. The idea is
that agents should not be able to bring about things that are true inevitably,
but only things that without their intervention might not become true. If we
want an operator that takes this into account we can easily define a deliberative
version of the STIT operator, as follows:

[A dxstit]ϕ ≡def [A xstit]ϕ ∧ ¬�Xϕ

An interesting question is how deliberateness of actions relates to the concept
of ‘knowingly doing’. We leave this aside as an opportunity for future research.

4 The Concept of ‘Knowingly Doing’

Because the notion is central to the present paper, in this section we elaborate
on the notion of ‘knowingly doing’. We explain what it means to do something
(un)knowingly. In the previous section we gave a semantics in terms of models
with epistemic equivalence sets (information sets) containing history/state pairs.
An agent knowingly does something if its action ‘holds’ for all the history/state
pairs in the epistemic equivalence set containing the actual history/state pair.

Several closure conditions apply. The first one says that epistemic equiva-
lence sets are closed under choices2. The corresponding axiom, is KaXϕ →
2 An extreme case is where the information sets are exactly the choices in each state.

In that case an agent knows all the consequences of his actions.
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Ka[a xstit]ϕ (this property does not hold if the STIT operator is replaced by a
deliberative STIT oparator). This property ensures that an agent cannot know
that two histories belonging to the same choice are different, or, in other words,
for any agent the histories within its own choices are indistinguishable. This
means that agents cannot knowingly do more then what is affected by the choices
they have. In particular, the property KaXϕ → Ka[a xstit]ϕ says that agents
can only know things about the (immediate) future if they are the result of an
action they themselves knowingly perform. Then, an agent unknowingly does
everything that is (1) true for all the history/state pairs belonging to the actual
choice it makes in the actual state, but (2) not true for all the history/state pairs
it considers possible. In general the things an agent does unknowingly vastly out-
number the things an agent knows it does. For instance, by sending an email, we
may enforce many, many things we are not aware of, which are nevertheless the
result of me sending the email. All these things we do unknowingly by knowingly
sending the email.

Another, equivalent way of interpreting the property KaXϕ → Ka[a xstit]ϕ is
to say that it expresses that agents cannot know what actions other agents per-
form concurrently. This is because the independence property (Indep) guarantees
that choices of other agents always refine the choices of the agent we consider.
Then, knowing the choice of the other would mean that the agent would be able
to know more about the future state of affairs then is guaranteed by his own
action.

A second constraint on the interaction between knowledge and action is the
one expressed by the axiom Ka[a xstit]ϕ → XKaϕ. The issue here is that if
agents knowingly see to it that a condition holds in the next state, in that same
next state they will recall that the condition holds.

Finally, we discuss the interaction property ♦Ka[a xstit]ϕ → Ka♦[a xstit]ϕ. It
says that if an agent can knowingly see to it that ϕ, then it knows that among its
repertoire of choices there is one ensuring ϕ. This property is the STIT version
of the constraint concerning ‘uniform strategies’ game theorists talk about. In
game theory, uniform strategies require that agents have the same choices in
all states within information sets. Since in game theory the choices are given
names, a constraint is formulated saying that each state within the information
set should have choices of the same type (that is, choices with the same name). In
the present STIT setting, we do not have names. But the intuition that the same
choices should be possible in different states of an information set, still applies.
The property ♦Ka[a xstit]ϕ → Ka♦[a xstit]ϕ exactly captures this intuition. It
says that if an agent can knowingly see to it that ϕ, then at least one of its
choices in the states it considers possible actually ensures ϕ (that is, a ϕ-action
is possible in all states of the information set). The axiom can thus be said to
express that ‘true ability’ obeys the property of uniformity of strategies.

In section 3 we already mentioned that recent computer science formalisms like
Alternating Time Temporal Logic (ATL) [12], its epistemic extension ATEL [20],
and Coalition Logic (CL) [14] are closely related to STIT formalisms. That STIT
is the right formalism to solve the many conceptual problems raised for AT(E)L
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is clearly demonstrated by the properties on ‘knowingly doing’ we discuss in this
section. Actually, the STIT operators enable us to axiomatize properties that also
play a prominent role in the discussions surrounding ATEL and its derivatives,
but that hitherto have not been characterized in these logics. The first example is
the property that agents cannot know what actions are concurrently performed
by other agents. This is also a basic assumption in ATL, ATEL, etc. However, in
these logics, this assumption does not correspond directly with a property of the
logic. In the present logic, it corresponds with the axiom KaXϕ → Ka[a xstit]ϕ.
The second witness is the property for uniformity of strategies. In ATEL it is
impossible to give an axiom that corresponds with this constraint on the models.
This is clear right away, since in ATEL models the uniformity property is defined
in terms of the names given to actions, while there are no explicit actions in the
object language. This means that dropping the uniformity constraints for ATEL
models does not change the logic ATEL (which prompts the question why in
the semantics of this logic the uniformity assumption is made in the first place).
The same holds for all extensions and adaptations of ATEL meant to solve
the problem without making the actions explicit in the object language (e.g.
[21,22]). Finally, also in formalisms that do have the actions symbolized in the
object language under an assumption of uniformity of strategies, like [23], logical
properties resulting from this uniformity, let alone an axiom characterizing it,
are lacking.

5 Defining Deontic Modalities

To define an operator for ‘obligation to do’, we adapt the approach of Bartha [6]
to the present situation where actions only take effect in next states. The intu-
ition behind the definition is straightforward: an agent is obliged to do something
if and only if by not performing the obliged action, it performs a violation. As
said, the difference with Bartha’s definition is that the effect of the obliged action
can only be felt in next states, which is why also violations have to be properties
of next states. Formally, our definition is given by:

O[a xstit]ϕ ≡def �(¬[a xstit]ϕ → [a xstit]V )

First note that we slightly abuse notation by denoting [{a} xstit]ϕ as [a xstit]ϕ.
Also note that ¬[a xstit]ϕ expresses that A do not see to it that ϕ, which is the
same as saying that A ‘allow’ a choice for which ¬ϕ is a possible outcome. The
definition then says that all such choices do guarantee that a violation occurs.

The � operator in the definition ensures that obligations are ‘moment deter-
minate’. This means that their validity only depends on the state, and not on
the history (see [11] for a further explanation of this concept). We think that
this is correct. But see [24] for an opposite opinion.

The above defined obligation is a ‘personal’ one. If, by ‘coincidence’, ϕ oc-
curs, apparently due the action of other agents, while the agent bearing the
obligation did not make a choice that ensured that ϕ would occur, a violation
is guaranteed. So agents do not escape an obligation by having other agents do
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the work for them. But, although the definition states the agent itself should
perform the action to avoid violation, it does not state that the agent should
knowingly perform the action to guarantee that the violation does not occur. It
can be that the agent is not even aware that actually it performs an action that
ensures the obligation is complied to. However, there is good reason to say that
that should also lead to a violation. We can view this as making the obligation
even more ‘personal’: the agent should perform the action ‘knowingly’ to avoid
violation. It simply does not count if the agent only complies ‘coincidentally’.
The corresponding definition is:

OK[a xstit]ϕ ≡def �(¬Ka[a xstit]ϕ → [a xstit]V )

Note that this obligation is stronger than the previous one, because unknow-
ingly complying to the obligation now also counts as a violation.

Finally, we discuss a third variant for the obligation operator. For the above
two variants, nothing is said about whether or not the agent actually knows
whether or not it has the obligation. We associate awareness of an obligation
directly with the awareness of the act of bringing about a violation in case the
agent does not comply. We incorporate this by adapting the previous definition
as follows:

KOK[a xstit]ϕ ≡def �(¬Ka[a xstit]ϕ → Ka[a xstit]V )

In this definition also violations are knowingly brought about. This expresses
that the agent bearing the obligation actually knows about the obligation, that
is, the agent will knowingly bring about a violation if it does not comply with
the obligation.

Of course, looking at the formal structure of the above definitions, a fourth
definition suggests itself: one where it is not necessary to perform the obliged
action knowingly, while at the same time, in case of non-compliance, the violation
is brought about knowingly. But it seems clear right away that this combination
is absurd. We cannot knowingly bring about a violation by unknowingly failing
to comply with an obligation.

6 Back to the Examples

We now go back the the examples and question of section 2. First we answer
the questions raised for the example with the boxes. We take the perspective of
agent α and analyze its position using the logic defined in section 3.

In the first scenario, agent α faces the situation where agent β has already
put money in one of the boxes (which in fact is in box 1), and where it has
to choose the right box to collect the money. Its problem is that it does not
know in which of the two boxes β has put the money. Now does it hold that
O[α xstit]CollectFrom1? Yes. There is a right thing for the agent to do, and not
doing that right thing, will lead to a violation, independent of what the agent
knows it is doing and not doing. It seems interesting to investigate whether
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or not it would make a difference for this analysis whether or not we adopt
the ‘ought implies can’ principle. ‘Ought implies can’ for the weak notion of
obligation simply means that the agent should be able to perform the action
unknowingly, which indeed is the case. In the example, agent α can choose the
right box unknowingly: ♦[α xstit]CollectFrom1, but it cannot do it knowingly:
¬♦Kα[α xstit]CollectFrom1.

Now, in the first scenario do we also have the stronger obligation saying that
OK[α xstit]CollectFrom1? The first part of our answer is: not if to this form of
obligation, where the agent can only escape a violation if it knowingly sees to it
that it collects the money, we apply the ‘ought implies can’ principle. The problem
is of course, that it cannot knowingly do that, because it misses the information
saying in which box the money is. So if for this type of obligation, where the agent
should knowingly collect the money from the right box, we require ‘ought implies
can’, and thus that the agent should be able to knowingly collect the money from
the right box, the agent does not have an obligation. The second part of the answer
is: if we do not adopt the ‘ought implies can’ principle for this type of obligation,
then it depends on the intention behind the obligation, which is something that
is not made explicit in the description of the example. In particular, it depends
on whether or not the agent issuing this obligation accepts that the agent being
subject to the obligation may coincidentally pick the right box or not.

Finally, for the first scenario, we ask whether or not the agent is aware of its
obligation. And if so, what type of obligation is it aware of? This question is
difficult to answer, again due to under-specification of the example. A possible in-
terpretation is that the agent has the obligation in the stronger sense where it has
to comply knowingly, and that it also knows this: KOK[α xstit]CollectFrom1.
Then, if the agent takes the gamble of choosing a box, it knows it is violating
its obligation. Another possible interpretation is that the obligation is of the
weaker form, where the agent is allowed to comply unknowingly, and that the
agent does not know whether it has the obligation O[α xstit]CollectFrom1 or
the obligation O[α xstit]CollectFrom2, while it knows that it has one of the two:
Kα(O[α xstit]CollectFrom1∨O[α xstit]CollectFrom2). More interpretations are
possible. Of course, one of the good things of having a formalization is that we
can use it to actually talk and reason about these different interpretations.

We now turn to the question why in scenario 2 we are not inclined to say
agent α has an obligation at all. In the first scenario, the obligation can be said
to be conditional on agent β’s previous action. And in the example, in fact β
has put the money in box 1. This could thus in principle be known to agent
α. But agent α does not know. However, in the second scenario the obligation
is conditional on a future choice of agent β. So, the obligation is conditional
on something that is a priori not knowable (agents only can know the future if
that future is knowingly brought about by these same agents presently: axiom
KaXϕ → Ka[a xstit]ϕ). That is a possible explanation for why we are inclined
to say that in the second case, indeed, the agent does not have an obligation.

We view the third scenario as analogous to the second one. Also here the
agent cannot be said to be obliged to pick the right box, because what is the
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right box, has not been settled yet: it depends on an action of the other agent
that takes place simultaneously.

Finally a brief word on the doctor’s example. The problem is here that we
hesitate between saying that the doctor fulfilled his obligation and that it did not.
The difference is expressed by the first two notions of obligation. Either we have
that O[α xstit]CureThePatient or we have that OK[α xstit]CureThePatient.
Which one is the case is under-specified in the example.

7 Related Work

In [25] a logic is presented whose semantics shares several features with ours.
In particular, the logic has epistemic indistinguishability relations ranging over
history/state pairs. However, actions are omitted. In [23] actions are added to
this framework by using action names in the models and the object language. So,
the authors take a, what we might call ‘dynamic logic view’ on action. The work
focusses on so called ‘knowledge based obligations’. The central idea is that when
agents get to know more, there are less histories they consider possible, which
in turn may induce that the subset of deontically optimal histories, may give
rise to new obligations. So the phenomenon being studied is that new knowledge
may induce new obligations.

In our setting the phenomenon of getting more obligations by an increase in
knowledge can occur in different ways. One way is simply by becoming aware of
an obligation, that is, getting to know that one knowingly performs a violation
by not performing some obliged action. Another route to enabling that obliga-
tions arise as the result of new knowledge, is by adopting the ‘ought implies can’
principle for the stronger variants of our obligation operator. If agents get to
know how to do something knowingly, they might incur an obligation that pre-
viously did not apply due to ‘ought implies can’. This demonstrates that there
seems to be more sides to the problem of ‘knowledge based obligation’.

Another well-known interaction between epistemic and deontic modalities is
Åqvist’s puzzle of ‘the knower’ [26]. If knowledge is modeled using S5 and obliga-
tion using KD (SDL [27]), from OKϕ we derive Oϕ, which is clearly undesirable
in an ought-to-be reading. However, this problem does not arise in the present
logic, because obligation is strictly limited to apply to actions. In particular,
if in Åqvist’s example, for ϕ we substitute a STIT action [α xstit]ϕ, then we
can read the derivation as ‘the obligation to knowingly see to something implies
the obligation to see to that same something’. This actually comes down to our
second, stronger notion of obligation implying the first, weaker one. In section 5
we mentioned this not as a problem, but as a desirable property.

8 Future Research

The logic we presented in section 3 asks for extension in several ways. Note
first that while the operators for agency are group operators, the operators for
knowledge and obligation only refer to single agents. Actually, there are many
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open questions about how to generalize these operators to group operators. As is
well-known, there are several notions of group-knowledge, such as ‘shared knowl-
edge’, ‘common knowledge’ and ‘distributed knowledge’. Which ones combine
with which interaction properties for knowledge and group-action is yet unclear.
Likewise we can consider generalizing the obligation operator to a group oper-
ator. Given the definitions of section 5 this actually hinges on providing group
operators for the knowledge modalities.

Another issue concerns the violation constants. According to the present def-
initions, they are not relativized to agents or sets of agents. This corresponds
to a ‘consequentialist’s’ view on obligation, as in [11], where deontic optimality
is determined according to an ordering of all possible histories. We could also
take the view, like in [28], that deontic optimality orderings should be relative
to agents or groups of agents. For our setting, using violation constants, that
would mean that we introduce a violate constant for each agent or each group.

Related to this we want to discuss one final issue. We can also analyze the
boxes example as a coordination problem. That is, we no longer take the view-
point of agent α alone, but see the task as one where α and β have to coordinate
their actions such that the money is transferred from β to α. This is a ‘coop-
erative’ view on the problem. The agents have to bring about the right thing,
together. In particular, both agents should choose the same box: one puts the
money in one of the boxes, the other collects it from that same box. But for
coordination, we need communication. And that is absent from the example,
since the agents do not know each other’s choices.

Let us, for the moment, assume that we have a notion of strategic STIT, as in
[29]. In strategic STIT, actions possibly involve series of choices. We denote the
associated operator by [C strat]ϕ, with C a group of agents, and ϕ the action
result. Let us also assume that we have a notion of strategic ‘ought-to-do’. We
denote the associated operator by O[C strat]ϕ. There are many options for the
semantics of such an operator. Here we assume we have fixed one. Finally, we
assume that there is also a ‘some time in the future’ operator, denoted by Fϕ,
with the standard interpretation. Now, all three scenarios satisfy (in the initial
state) the following formulas:

�(Kα¬AlphaHasTheMoney ∧Kβ¬AlphaHasTheMoney)
O{α,β}[{α, β} strat]F (AlphaHasTheMoney)

Kα♦[α strat]F (AlphaHasTheMoney) , ¬♦Kα[α strat]F (AlphaHasTheMoney)
Kβ♦[β strat]F (AlphaHasTheMoney) , ¬♦Kβ [β strat]F (AlphaHasTheMoney)

Of course the issues surrounding the transfer of money could be modeled in
much more detail, using propositions like MoneyInBox1, etc. But that is not
important. What is important is that the key properties concerning knowledge,
ability, obligation and time that are common to all three scenarios are captured
by these formulas. In particular: the formulas express that there is a way in
which α and β might succeed in transferring possession of the money from β
to α, thereby obeying their joint obligation, but there is no way in which they
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can knowingly do that because they are not allowed to communicate or observe
each other’s behavior. This shows that from a more abstract perspective, where
we use a strategic version of the STIT operator, we can also view the models
associated to the three scenario’s as semantically equivalent.

9 Conclusions

This paper presents an epistemic temporal STIT formalism that is complete with
respect to a standard two-dimensional Kripke semantics. It introduces the new
notion of ‘knowingly doing’ and discusses some of its possible properties. Using
this notions, new ‘epistemic’ variants of operators for ‘ought-to-do’ are defined.
The logic encompassing these new concepts is used to analyze some intriguing
examples concerning the interaction of knowledge and obligation. Clearly this
paper is not the last word on the issue of introducing both epistemic and deontic
modalities in STIT logic. But it is a good start, and it contains some promising
directions for further research.

References

1. Horty, J.: Personal communication (2007)
2. Broersen, J.M.: A complete STIT logic for knowledge and action, and some of

its applications. In: Baldoni, M., Son, T.C., Riemsdijk, M.B.v., Winikoff, M. (eds.)
Proceedings Workshop on Declarative Action Languages and Technologies (DALT)
2008. LNCS. Springer, Heidelberg (to appear, 2008)

3. Herzig, A., Troquard, N.: Knowing How to Play: Uniform Choices in Logics of
Agency. In: Weiss, G., Stone, P. (eds.) 5th International Joint Conference on Au-
tonomous Agents & Multi Agent Systems (AAMAS 2006), Hakodate, Japan, May
8-12, pp. 209–216. ACM Press, New York (2006)

4. Broersen, J., Herzig, A., Troquard, N.: A normal simulation of coalition logic and an
epistemic extension. In: Proceedings Theoretical Aspects Rationality and Knowl-
edge (TARK XI), Brussels

5. Balbiani, P., Gasquet, O., Herzig, A., Schwarzentruber, F., Troquard, N.: Coalition
games over Kripke semantics: expressiveness and complexity. In: Dègremont, C.,
Keiff, L., Rückert, H. (eds.) Festschrift in Honour of Shahid Rahman. College
Publications (to appear, 2008)

6. Bartha, P.: Conditional obligation, deontic paradoxes, and the logic of agency.
Annals of Mathematics and Artificial Intelligence 9(1-2), 1–23 (1993)

7. Anderson, A.: A reduction of deontic logic to alethic modal logic. Mind 67, 100–103
(1958)

8. Meyer, J.J.: A different approach to deontic logic: Deontic logic viewed as a variant
of dynamic logic. Notre Dame Journal of Formal Logic 29, 109–136 (1988)

9. Broersen, J.: Modal Action Logics for Reasoning about Reactive Systems. PhD the-
sis, Faculteit der Exacte Wetenschappen, Vrije Universiteit Amsterdam (February
2003)

10. Emerson, E.: Temporal and modal logic. In: Leeuwen, J.v. (ed.) Handbook of The-
oretical Computer Science. Formal Models and Semantics, vol. B, pp. 996–1072.
Elsevier Science, Amsterdam (1990)



154 J. Broersen

11. Horty, J.: Agency and Deontic Logic. Oxford University Press, Oxford (2001)
12. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. In: Pro-

ceedings of the 38th IEEE Symposium on Foundations of Computer Science,
Florida (October 1997)

13. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. Journal
of the ACM 49(5), 672–713 (2002)

14. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and
Computation 12(1), 149–166 (2002)

15. Broersen, J., Herzig, A., Troquard, N.: From coalition logic to STIT. In: Proceed-
ings LCMAS 2005. Electronic Notes in Theoretical Computer Science, vol. 157, pp.
23–35. Elsevier, Amsterdam (2005)

16. Broersen, J., Herzig, A., Troquard, N.: Embedding Alternating-time Temporal
Logic in strategic STIT logic of agency. Journal of Logic and Computation 16(5),
559–578 (2006)

17. Gabbay, D., Kurucz, A., Wolter, F., Zakharyachev, M.: Many-Dimensional Modal
Logics: Theory and Applications. Elsevier, Amsterdam (2003)

18. Blackburn, P., Rijke, M.d., Venema, Y.: Modal Logic. Cambridge Tracts in Theo-
retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

19. Belnap, N., Perloff, M., Xu, M.: Facing the future: agents and choices in our inde-
terminist world, Oxford (2001)

20. Hoek, W.v.d., Wooldridge, M.: Cooperation, knowledge, and time: Alternating-
time temporal epistemic logic and its applications. Studia Logica 75(1), 125–157
(2003)

21. Jamroga, W., Hoek, W.v.d.: Agents that know how to play 63(2) (2004)
22. Jamroga, W., Ågotnes, T.: Constructive knowledge: what agents can achieve under

incomplete information. Technical Report IfI-05-10, Institute of Computer Science,
Clausthal University of Technology, Clausthal-Zellerfeld (2005)

23. Pacuit, E., Parikh, R., Cogan, E.: The logic of knowledge based obligation. Knowl-
edge, Rationality and Action a subjournal of Synthese 149(2), 311–341 (2006)

24. Wansing, H.: Obligations, authorities, and history dependence. In: Wansing, H.
(ed.) Essays on Non-classical Logic, pp. 247–258. World Scientific, Singapore (2001)

25. Parikh, R., Ramanujam, R.: A knowledge based semantics of messages. Journal of
Logic, Language and Information 12(4), 453–467 (2003)

26. Åqvist, L.: Good samaritans contarary-to-duty imperatives and epistemic obliga-
tions. NOUS 1, 361–379 (1967)

27. Wright, G.v.: Deontic logic. Mind 60, 1–15 (1951)
28. Kooi, B.P., Tamminga, A.M.: Conflicting obligations in multi-agent deontic logic.

In: Goble, L., Meyer, J.-J.C. (eds.) DEON 2006. LNCS (LNAI), vol. 4048, pp.
175–186. Springer, Heidelberg (2006)

29. Broersen, J., Herzig, A., Troquard, N.: A STIT-extension of ATL. In: Fisher,
M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI),
vol. 4160, pp. 69–81. Springer, Heidelberg (2006)



Reactive Kripke Models and Contrary to Duty
Obligations

Dov M. Gabbay

King’s College London
Version 1: 31 March 08

This is an intuitive description of our approach to modelling contrary to duty obliga-
tions. We shall describe our ideas through the analysis of typical problematic examples
taken from Carmo and Jones [6], L. van der Torre [14] and Prakken and Sergot [5].

1 Preliminary Discussion

Contrary to duties (CTD) are dealt with in the framework of standard deontic logic
(SDL), and ordinary Kripke possible world models. Given a world t, one associates
statically a non-empty set I(t) of ideal worlds for t and t � Oq (q is obligatory for t) if q
holds in all the worlds of I(t).

This is a static perception of obligation. If we have to list as�t the set of all obligations
for the world t then I(t) would be the set of all models of �t. The contrary to duty ex-
amples have some implicit dynamics in them. It is therefore not surprising that there are
problems with the formalisation of various CTD examples within SDL. There are cur-
rently in the literature various proposals for solutions, however all are still largely within
the STL possible world semantics approach or its extensions, with additional operators
or preferential ordering. See footnote 2 below and references [18], [15] and [13].

Reactive Kripke models is a stronger version of possible world semantics, a�ording
the semantic characterisation of more modal systems (this is a theorem in [1]. They
have a dynamic dimension to them. Therefore using this new semantics might simplify
existing solutions to CTD problems as well as o�er new sharper solutions.

Note that this new approach does not necessarily abandon or challenge any of the
existing solutions, since ordinary Kripke models are a special case of reactive Kripke
models. This is an important point to bear in mind. We can proceed on two fronts.

1. Take an existing solution, say the Carmo and Jones model of [6] and view it in the
context of the richer reactive Kripke semantics and maybe simplify the models or
sharpen the semantics, etc.

2. O�er a new solution of our own, maybe disagree with existing proposals but make
our case using the stronger tool of reactive Kripke models.

Either way all benefit and we are in a win–win situation.
Our plan is to give some examples in detail to familiarise the reader with our ideas,

leaving the formal machinery and the extensive discussion to the full version of thepaper.1

1 We illustrate in this outline how CTD problems can be solved but we do not commit that our
examples are the final solution. In the full paper we will o�er some final solutions after looking
at the problems more thoroughly. The spirit of this paper is correct but the details may change.

R. van der Meyden and L. van der Torre (Eds.): DEON 2008, LNAI 5076, pp. 155–173, 2008.
c� Springer-Verlag Berlin Heidelberg 2008
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2 Reactive Kripke Models

Example 1 (A Reactive Kripke Model). Figure 1 shows such a model.
The single arrows show accessibility relation R. So in this figure we have aRc,

aRb� bRd and cRd.
The double arrows are connections which can deactivate accessibility (we can use

triple arrows to activate). We have

aR(c� d) double arrow from a to the connection (c� d).
(a� c)R(b� d) a double arrow from the connection (a� c) to the connection (b� d).

The best way to explain how evaluation works in such a model is by actually
doing it.

So assume our model is (S �R� h), where

S � �a� b� c� d�
R � �(a� b)� (a� c)� (b� d)� (c� d)� (a� (c� d))� ((a� c)� (b� d))�

If Q is the set of atomic sentences, then h is the assignment. For each q � Q and
s � S � h(s� q) is a truth value.

The language contains the usual classical connectives and �.
Let us evaluate

a � ��q� q atomic

We need to start at point a and move two steps through the accessibility relation and
land at a point x � q. We can either make our first step to b or to c.

First observe that the minute we leave point a the double arrow from a to (c� d) will
cancel the connection cRd. So if we leave a to go to c, then when we get to c the point
d will no longer be accessible to c. Furthermore, to go to c we pass along the arc (a� c).
The minute we pass through (a� c) the double arrow from (a� c) to (b� d) will cancel the
connection bRd.

So when we get to c the model will have changed. Figure 2 shows the model as it is
when we go to c from a.
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On the other hand, if we go from a to b, the connection (c� d) will be cancelled, but
the connection bRd is still on and so we can continue to point d.

Figure 3 shows the model as it is when we get to d through the path a� b� d.
If indeed d � q, then a � ��q.
By the way, we have also shown that a � ���, because starting from a going to c

we get c � �� as in Figure 2. Note that we need to know how we get to c in order to
evaluate at c.

So the correct evaluation metapredicate should be

(x� y) � A

where there is a unique path from x to y and we are evaluating A at y.
So y is our current evaluation point and x is our starting point. (We assume there is a

unique path from x to y, otherwise we have to specify the path.) So we should write:

(a� a) � ��q
(a� b) � ��
(a� b� d) � q�

Note that (a� c� d) is not a path. so really (a� b� d) is a unique path to d.
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Before we go on to contrary to duties, let us highlight the “take a walk” point of view
of the evaluation. We imagine ourselves as agents standing at point a of Figure 1 and
given a formula to evaluate or trying to reach a world (say get to d). We move along
the arcs towards our goal worlds and evaluate along the way. Connections change as we
walk up the arcs.

The logic is determined by the nature of the connections we allow and by the algo-
rithm which tells us how to walk and evaluate. This point of view is dynamic, not static,
and is very compatible with the semantic view of ideal worlds as objects to aspire for
and contrary to duties. If we want to satisfy an obligation we must move towards an
ideal world. If we deviate we might go in a direction which strays away from the ideal
in which case some double arrows will change the connections and steer us in the di-
rection of other subideal worlds. This view is very intuitive. It has implicit dynamics in
it even though the model itself is static.

So given a world t and the obligations �t for t, we do not just use semantics to
describe �t, i.e. use the set of ideal world I(t) to characterise �t. We actually think of
I(t) as worlds spread inside the possible world model and expect our agent to move
along the accessibility relation to one of the worlds I(t).

This is an action possible world model. The people at world t take action to move
towards an ideal world. In this context contrary to duties become natural.

We must warn the reader that in any model there may be three types of movement.

1. Virtual movement towards the ideal world which is not temporal at all2

2. Temporal movement. See, e.g. [12]
3. A combination of (1) and (2).

There are CTD examples of all the above types. In fact some papers solved CTD puzzles
of type (2) exploiting temporal operators. See [16] and the thesis of J. Broersen [17] (his
use of ‘reactive’ is not the same as ours).

The model of Figure 1 is by no means the most general reactive model. We can
allow double arrows with specific tasks, either to switch on a connection or to switch
o� a connection. We can also annotate connections and arrows as on or o�.

Figure 4 is an example. Double arrows switch connections o�. Triple arrows switch
connections on.

The annotations ‘on’, ‘o�’ say which arrows, double arrows and triple arrows are
active at the start position before we move out of a. So, for example, (b� d) is o� and
((a� b)� (b� d)) is on, and (a� b) is on.

We start at a. Moving out of a to b the double arrow from a to (c� d) switches (c� d)
o�. The triple arrow from (a� b) to (b� d) switches (b� d) on.

If we carry on from b to d then the double arrow from (b� d) to the double arrow
(a� (c� d)) switches it o�. We also see that triple or double arrows can go to other triple
or double arrows, etc.

2 Some CTD examples are completely static and do not involve time. Still the CTD aspect of
the problem does involve movement towards the ideal worlds. How can this be? How can
we give a static (non-temporal) model which still involves virtual movement? Well, we have
such examples in classical mechanics. We solve a static distribution of forces in a structure by
imagining a slight movement. This is called the principle of virtual work. For reference look
up “virtual work” in Wikipedia.
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We can have suitable modal operators for walking along the arcs in any suitable way.
The next section gives a specific reactive semantics suitable for some analysis of

CTD.

3 Contrary to Duty Models

We consider a reactive model of the form (S �R� I� h), where R is a relation say as in
Figure 1 (no triple arrows) and I is the ideal world function giving for each s � S a
non-empty set of ideal worlds I(s) � S . So actually (S � I(s)� h) is an SDL model for O,
R gives us the reactivity. We assume two additional modalities. � evaluated as above,
taking into account the e�ect of the double arrows and �� which is an ordinary modality
which ignores the double arrows. So for ��, Figure 1 becomes Figure 5.

Consider now the model in Figure 6. Its points are

S ��a� b� c�w��w�� f ��is as in Figure 6, which also indicates the meaning of the worlds
R � �(a� b)� (a� c)� (c� f �)� (b�w�)� (b�w�)�(a� (c� f �))� ((a� b)� (b�w�))�

The function I satisfies I(a) � � f ��. We don’t care about the other values of I.
The minute we leave point a the connection with f � is severed. This means the agent

beginning at a is not able, according to this model, to follow a path to the ideal world
f �. Note that double arrows emanating from points are local properties of the model
(which we can interpret as having to do with agent’s circumstances). Double arrows
emanating from connections are systems contrary to duties.

Thus the agent is not able to comply to his obligation and has to go for fence. He can
go to point c and get stuck there or go to point b to continue to a world with a fence. As
he passes the connection (a� b) the double arrow from (a� b) disconnects his way to the
non-white fence world and he has to go to w�.

Note that we need a starting point an an evaluation point. So the model has the form
(S �R� I� h� a� x) (we fix a as the starting point for our example of Figure 6).
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So by looking at a, w� we know the agent is not able to comply to his obligation and
has to go for fence and he has a white fence because of CTD.

So a set of CTD sentences determines a class of reactive models. Given a model we
can read from it the CTD sentences it suggests. We are saying ‘suggests’ rather than
‘holds’ because existence of double arrows suggests STD sentences, see section 5.

Let us look at the analysis of the scholarly work of Carmo and Jones [6, p. 305].

Statement of the Problem

(d1) There must be no fence
In the model this is implemented by f � being ideal world relative to a, f � � I(a)
with a as the starting point.

(d2) But if there is a fence it must be white
This is implemented by the fact that any arc in the model where there is no con-
tinuation to an ideal world has double arrows emanating from it cutting access
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to any non-white fence world ahead, i.e. in Figure 6 this is the double arrow
((a� b)� (b�w�)).
We can add

(d3) There is a fence
This is implemented by saying we are at point x � �w��w��. So, for example, the
model of Figure 6 with starting point a and evaluation point x, x � �w��w�� does
model (d1)–(d3).

Carmo and Jones [6] did not have reactive models. They added additional modalities
of actually possible and potentially possible and used them to make case analysis. We
now quote their case analysis and show how to express the cases in our reactive models.
The reader should note that we did not construct our model to simulate Carmo and
Jones. Had we done so systematically we probably would have come up with a slightly
di�erent model, which implements additional modalities using reactivity.

Case 3.1
(f1) There is no fence and it is still actually possible not to erect a fence and

actually possible to erect a fence, white or not.
In the model we look at point a without the double arrows emanating from
it, i.e. to model Case 3.1, we take a model without double arrows at all. The
starting point is a (which allows for all the possibilities) and the evaluation
point is f � (which allows for the fact that there is no fence). Alternatively,
we can say a � no fence3

Case 3.2
(f1) There is a white fence and it is actually fixed that there will be a fence, pos-

sibly white or another colour.
To model this take a as the starting point and w� as the evaluation point. The
double arrow from a makes it actually not possible to have no fence and the
double arrow ((a� b)� (b�w�)) blocks w�.

(f2) It is potentially possible to have no fence.
This is clear since there is a connection path to f �, if we ignore the double
arrows (i.e. use �� for potentially and � for actually).

Let us do another example:

Example 2 (Chisholm paradox). The following is from Carmo and Jones [6, p. 299]

(d1) It ought to be that a certain man go to help his neighbours
(d2) It ought to be that if he goes he tell them he is coming
(d3) If he does not go, he ought not to tell them he is coming
(d4) he does not go.

Consider Figure 7. (d1) is modelled by d � I(a), i.e. d is an ideal world for a. (d4) is
modelled by taking e as an evaluation point.

3 Our purpose here is not necessarily to model and simplify Carmo and Jones [6] but to show
we have the power to o�er our own models or to model other approaches. See Remark 11. In
fact, we do not need to make such a case analysis. In the full paper, we shall study in detail the
case analysis of [6] as well as the works in [12], [18] and [19].
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Modelling (d2) and (d3) is a bit challenging, because both help and tell are in the
future and tell comes before help. See Example 6 below for a discussion. To model (d2)
and (d3) first note that the double arrow from a to (b� d), triggers the system to send a
double arrow from (a� (b� d)) to (a� b) and to (c� b). This models (d3). Second note that to
model (d2) we have the double arrows (a� (c� e)) and ((a� (c� e))� (a� c)). However, putting
them both in the same model means that the man decides to block his path from going
anywhere.

The way to solve it is to split Figure 7 to Figure 8 one with the single arrows of Figure
7 and one with only the double arrows �(a� (b� d))((a� (b� d))� (c� b))� ((a� (b� d)� (a� b))�
modelling (d3) and Figure 9 with all the single arrows plus only the double arrows
�(a� (� e))� ((a� (c� e))� (a� c))�, modelling (d2).
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a

d e

cb

Fig. 9.

The actual modelling of the Chisholm paradox is the pair of reactive models done in
parallel disjunctively. See Definition 8 and also [19].

We now follow the case analysis of Carmo and Jones [6, pp. 300].

Case 1.1
(f1) The man decides not to go to help.

This is modelled by Figure 8.
(f2) It is potentially possible for the man to help and to tell and potentially pos-

sible for the man to help and not to tell
This is modelled in Figure 8 by choosing the evaluation point as a. The be-
ginning point is always a, so we have (a� a) as our pair. The decision in (f1) is
the choice of Figure 8. The potentiality comes from the fact that the man has
not started yet (evaluation point a) and he potentially can change his mind
and choose the model of Figure 9.

(f3) The man has not in fact told that he is coming to help although it is still
actually possible that he does tell and actually possible that he does not tell.
This is modelled by taking the evaluation point as point c. The man can
actually move either from c to e or from c to b and then to c.

The other cases of Carmo and Jones, namely case 1.2 and case 1.3, [6, pp. 300 and 301]
can be done similarly.

Case 1.4 contains the fact that the man helped but that it was potentially impossible
for the man to tell his neighbour. For this we need a variation of Figure 9 where there is
no connection from a to b. The man took the path a to c to d. See Figure 10.

Case 1.5 is where it is not potentially possible to help but the man does tell he is
coming but he might have not told.

This is covered by Figure 11.
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a

d e

cb

Fig. 10.

a

d e

cb

Fig. 11.

In the full version of this paper we shall analyse the Carmo and Jones examples in
detail. Note that since we are using reactive models we do not need any case analysis.
Our two diagrams 8 and 9 actually solve the paradox in principle.

4 Concluding Remarks

Remark 1 (The Idea of Reactivity). The idea of reactivity is a general one applicable
across research areas. Whenever we have a system with states and algorithms involving
these states we can turn it reactive by allowing signals from states or transitions which
are being used to some other states causing change in the other states.
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no fence

fence demolished

paintedfence not
fence painted

a

fence
white

o�

o�

on

on

on

on

on

on

on

o�

o�

o�

Fig. 12.

This change can be due to faults and overuse of the system, or feedback in the system
or object level implementation of norms regimentation in the system or just eÆciency
shortcuts embedded in the system by design. We are now systematically studying reac-
tive automata, reactive grammars, reactive conditionals, reactive proof theory and more.

Remark 2 (Proof Theory for Reactive Semantics). Proof theory can be provided for
reactive Kripke models in the methodology of LDS (Labelled Deductive Systems). This
means we can propose models for CTD systems as well as proof theory. This also means
that we can provide LDS proof theory for existing CTD systems such as, for example,
the Carmo and Jones proposals [6]. More on this in the full version of the paper.

Remark 3 (Multiple Level CTD). We have no inherent diÆculties with multiple level
contrary to duty.

For example:

1. It is obligatory to have no fence.
2. If there is a fence it should be white.
3. If it is not white it should be painted white.
4. If it cannot be painted (some plastics cannot take paint, I have some in my oÆce at

King’s) then it should be demolished.

Figure 12 illustrates a possible model.
The beginning position is that all arrows are o� except the one leading to no fence.

The arrows emanating from a block the path to no fence and clear a path to fence not
painted. The arrows from the agent’s arrows force him to demolish.

Remark 4 (Conflicting Norms). We can cope more easily with conflicting norms. The
modern world is full of them. Think of
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1. There should be no fence
2. There should be no dog
3. If there is a dog there should be a fence
4. If there is a fence it should be demolished
5. There is a dog

In the reactive model we can loop, repeatedly erecting and demolishing a fence and thus
fulfill our obligations, that is assuming we insist on a dog.

Remark 5 (Expressing Ideal Worlds using Double Arrows). The additional power of the
double arrows and triple arrows can be used to eliminate the ideal world function �tI(t).
In a model with connections capable of being on or o�, we can characterise I(t) as all
those worlds accessible to t by an active direct connection and the non-ideal worlds as
those not accessible. The minute we make our first move we can activate and deactivate
connections to bring us back to whatever connections we want. So in fact the ideal
worlds are recognised by the way we do our on and o� switches. Figure 7 becomes the
new Figure 13 below.

Here we use arrows, double arrows and triple arrows.
The starting position is that this access (on) only to the ideal world f �. The minute

we move from a, we cancel access to it and activate access in the �b�w��w�� direction.
We know f � is ideal because disconnecting access to it makes the di�erence.

There may be better ways to do the coding. We just want to illustrate the principle
involved.

Remark 6 (Solving CTD Problems using Reactive Proof Theory). Reactive proof theory
can be used directly to solve problems of CTD. The idea of reactive proof theory is that
using a rule can activate or de-activate other rules. So, for example, we may have

1. O� f . There must be no fence.
2. f 	 Ow� If there is a fence then it must be a white fence.
3. 
 w� 	 f . White fence is a fence

f � w�

c

a

b

w�

o�

o�

o�

on

on
on

o�

on
on

on

on

on

Fig. 13.
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4. f . There is a fence.
5. Reactivity rules: if we use 6.2 we cannot use item 6.1.

This is crude but e�ective.

Before the time when we understood the reactive proof theory, such rules might have
looked (to the traditional logicians) as a hack, a trick without semantical meaning. How-
ever, with reactive semantics, a competently crafted system with such rules may actually
be characterised by a class of reactive models.

The above example may be too crude and some balanced refinement may be needed,
but it does illustrate the idea. Note that the use of 6(2) as a ticket corresponds the move
from point a to point b in Figure 8. The ideal world f � is no longer accessible so 6(1)
cannot be used. Ow� is derived. This corresponds to the CTD rule.

I have studied rule cancellations and deletion in logic extensively. I assure you this
is workable. See my papers [8,9] and [10].

Remark 7 (Comparison with Dyadic Obligations OAB). We now comment on the use of
the binary operator OAB to express CTD B if A (also denoted O(B�A). Semantically this
is a powerful operator on the set of possible worlds corresponding to a binary relation
xRAy indexed by subsets (the truth set of A). If you look at Figure 8 again, you see
that the double arrow depends on a pair of points. So, for example, we formally can
write �bR(a�b)w�, i.e. R(a�b) represents the double arrow. So formally we need relations
indexed by pairs of points at the most, not all subsets. OAB is too powerful. I also think
in addition to the above technical points that OAB as a di�erent concept and should not
be used as a hacking coding ground for solving the CTD problems. We leave it at that,
more in the full paper. Note that Carmo and Jones [6] whose a dyadic connective OAB
use for it a semantical function from subsets to families of subsets of the form

ob : wS �	 22S

which is a very high level function.

Remark 8 (Input Output Logic). There is aÆnity between our reactive Kripke models
and the work of Makinson and Torre on input output logics. I refer to [11]. Given a
CTD of the form If A then obligatory that B, we can feed A as input to an input output
node and get B as output. This idea can be incorporated into reactive Kripke models if
we allow the worlds in the model to have input output facilities.

We shall elaborate on this in the full paper.

5 Technical Definitions

This section supplies the technical definitions supporting the intuitive ideas presented
in this paper.

Definition 1 (Language). Our propositional language contains a set of atomic propo-
sitions Q, the classical connectives and the modal connectives OA, OAB� �A� ��A, and
possibly more.
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Definition 2 (Reactive Arcs)

1. Let S be a non-empty set. The set � of arcs on S is defined as the smallest set �
containing S  S and closed under the following operation.

– If x � S �� and y � � then (x� y) � �.
The above condition says that we can have for example (t� (a� b)) � � but not
((a� b)� t) � �. We do not allow (x� y) � � with y � S .

2. A set �0 � � of arcs is said to be well founded if whenever (x� y) � �0, then
x � S � �0 and y � �0.

Definition 3 (Reactive Accessibility)

1. An element (x� y) � S  S is called a single arrow. We can also write x 	 y.
2. Let (x� y) � �. (x� y) can be used either as a negative switch or as a positive switch.

We regard (x� y) as a negative switch by writing it as a double arrow x � y. We
regard it as a positive switch by writing it as a triple arrow x �	 y.

3. A single arrow, double arrow or triple arrow can be either on (we put � in front of
it) or it can be o� (we put � in front of it).

4. An accessibility relation R is obtained from a well founded base of arcs �R as
follows:
(a) If (x� y) � �R and x� y � S then either �(x� y) � R or �(x� y) � R, but not both.
(b) If (x� y) � � with y � S then exactly one of the following must be in R:

either �(x � y)
or �(x � y)
or �(x �	 y)
or �(x �	 y)

5. A reactive Kripke model has the form (S � I�R� a� e� h), where S � � is the set of
possible worlds, I : S �	 (wS � �) is the ideal world function, R is a reactive
accessibility relation and a � S is the beginning world and e � S is the evaluation
world. h is the assignment to the atoms. For each q � Q� h(q) � S .

Remark 9 1. The meaning of x � y is that as we pass through x the arc y is put in an
o� position if it is on. The meaning of x �	 y is that as we pass through x the arc y
is put in an on position if it is o�.

2. An arc y is in o� position in R if �y � R. It is in an on position in R if �y � R.
The formal definition is Definition 4 below.

Example 3 Let us describe the model introduced in Figure 4.

S � �a� b� c� d�
R � ��(a� c)��(a� b)��(b� c)��(c� d)��

��(a � (c� d))��((a� c)�	 (a� (c� d)))��((a� b)�	 (b� c))��((b� d))�	 (a� (c� d))�

I is not specified in the figure, neither is h or e.

Definition 4 (Movement in a Reactive Model). Let (S �R� e) be part of a model. As-
sume �(e� e�) � R. We explain what it means to move along the arc (e� e�) from (S �R� e)
to (S �R(e�e�)� e�).
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R(e�e�) is obtained from R by executing the following actions:

1. For every �(e � y) � R such that �y � R, replace �y by �y.
2. For every �(e �	 y) � R such that �y � R, replace �y by �y.
3. For every �((e� e�) � y) � R such that �y � R replace �y by �y.
4. For every �((e� e�) �	 y) � R such that �y � R replace �y by �y.
5. R(e�e�) is the set obtained from R by doing exactly the above actions.

Define Ra as the set obtained from R by executing actions (1) and (2) only.

Definition 5 (Reachability). Let (S �R� a) be a part of a model. Let x � S . We define
the notion of 1x is reachable from a in (s�R� a)’ by induction:

1. If �(a� x) � R then x is reachable in one step from a in (S �R� a).
2. x is reachable in n � 1 steps in (S �R� a) if for some a� � S �(a� a�) � R and x is

reachable in n steps from a� in (S �R(a�a�)� a�).
3. x is reachable from a in (S �R� a) if for some n, x is reachable from a in (S �R� a) in

n steps.

Definition 6 (Contrary to Duties). Let (S � I�R� a� e) be part of a model. We now define
the contrary to duties suggested by this model relative to a.

The ideal worlds are I(a), and assume that none of I(a) is reachable from a in
(S �Ra� a)

Let a� be such that�(a� a�) � R. Let CTD(a�a�) be the points reachable from a� in
(S �R(a�a�)� a�). Let CTDa �

�
�(a�a�)�R CTD(a�a�). Then CTDa are the contrary to duty

worlds relative to a. In words:

It is obligatory to go to I(a) but if not go to CTDa.

Remark 10. The double and triple arrows emanating from a (i.e. �(a � y)) � R or
�(a �	 y) � R) can be seen to indicate the intention of the agent, or the restrictions on
the user imposed by the model (if we do not want to ascribe intentions to users).

If activated the agent will move to a model with Ra. If I(a) world are no longer
accessible then our agent is not able to execute his obligations at a. The contrary to
duties are the adjustments (activation and cancellation of arcs) firing as the agent passes
through to any a� such that �(a� a�) � R. The CTDa are the worlds which are always
accessible from any a� the agent goes to. These are the contrary to duty worlds. Note
that I(a�) are the ideal worlds of a�. This is not the same as the contrary to duties at a as
imposed from node a onto node a�.

The reader may ask what if at a� some x � I(a) is still reachable? The definition of
CTDa still works. What is the meaning of it? The answer is in the next example. We
call these preventive CTD, PCTD.

Example 4. At a world where you have a fence, it is obligatory to point the fence white
within seven days. Say after five days nothing has been done. There are two options.
Do nothing and the fence will not be painted. Hire extra hands and the fence will be
painted. A preventive contrary to duty is to put pressure on the agent by blocking some
of his moves. See Figure 14.
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e1 e2 e3 e4� � ��

Fence
demolished

Fence partially Fence not
demolished demolished

Fence demolished
at high cost

c
day 5
no work done

bday 5
some work done

Fig. 14.

It is not correct to say that a CTD is that if after five days no work is done then the
agent has a duty to bring extra workers to do the job. His duty remains to demolish the
fence within seven days and he can still do it.

So the double arrow (�((a� c)� (e� e3)) is a preventive measure, a PCTD.

Definition 7 (Evaluation of Modalities in a Model). Consider a model (S �R� I� a� e� h).
We define the notion of e � A for a w� A.

1. e � q, for q atomic, if e � h(q).
2. We adopt the usual definition for the classical connectives.
3. e � OA i� for all x � I(e)� x � A in the model (S �R� I� a� x� h).
4. e � �� A i� for some x such that �(e� x) � R� x � A in (S �R� I� a� x� h).
5. e � �A i� for some x such that �(e� x) � R� x � A in (S �R(e�x)� I� a� x� h).

Definition 8 (Suggested CTDs). A CTD multimodel is a family � of of models of the
form �i � (S � I�Ri� a� e� h) where all (S � I� a� e� h) are the same for all models and only
Ri change. The CTD rules suggested by the family are all the CTDi

a suggested by each
model Mi.

Remark 11. Note that for formulas without modalities, we have x �i A i� x � j A for
any i� j, since they all agree on (S � I� h). Write x � A if A holds in any i. So for such
formulas we can extract a syntactical CTD. Let �a � �A � x � A for all x � I(a)�.

Let �i
a � �B � y � B for all y � CTDi

a�.
Then our syntactical CTDs suggested by Mi are �a and if not then �i

a.

Example 5 (The Reykjavic Paradox). We show how to handle this paradox, see [14].
we have

1. X should not tell the secret to Reagan.
2. X should not tell the secret to Gorbachev.
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3. If X tells Reagan, then X should tell Gorbachev.
4. If X tells Gorbachev, then X should tell Reagan.
5. X tells Reagan and Gorbachev.

(1)–(5) is the paradox. It is easy to model it in our system.
So, just to add to the problem, let me add (6) as a challenge

6. If X insists on telling exactly one of them, then it should be Reagan.

Figure 15 is a model for the above.

R �G R � �G �R � negG�R �G

a

d b c

e1 e2 e3 e4

Fig. 15.

Point e4 is the ideal world for a, e4 � I(a). This models (1) and (2). Point d forces
telling Reagan. Point b forces telling Gorbachev. Point c forces telling exactly one of
them.

The double arrows are the contrary to duties. They model (3), (4) and (6). The arc to
point d for example, means X is going to point d which forces telling Reagan. We want
him to be under CTD to tell Gorbachev. So we disconnect the arc (d� e2). So we need
the double arrow �((a� d) � (d� e2)). Similarly, we need �((a� b) � (b� e3)) and also
�((a� c) � (c� e3)).

The beginning point is a, the evaluation point is e1 which models (5).

The reader may ask how did we construct the model? Well, there are some heuristics.

Remark 12 (Heuristics for Building a Reactive Model in Cases where there is no Tem-
poral Element Involved). Let A1� � � � � An be obligations. Let If �Ai then Bi� i � 1� � � � � n
be CTDs.

First let � � �X1� � � � � x22n� be the set of all Boolean combinations of �A1� � � � � An�

B1� � � � � Bn�.
The contrary to duties say that if �Ai then Bi. When we move along the arc �(a� ti),

we are getting to a point where �Ai is committed. So we must force Bi. So any t j such
that X j 
 �Ai � �Bi must be disconnected. So we include in R all double arrows of the
form �((a� ti) � (ti� e j)) such that X j 
 �Ai � �Bi.

The ideal worlds for a are all e j such that X j 

�n

i�1 Ai.
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a

e1 e2 e3 e4�

cb

H � T

� � �

H � �T �H � �T�H � T

Fig. 16.

The above construction is a Henkin-like type of construction. It works when there is
no temporal element.

Example 6 (Chisholm Paradox Revisted). Let us try and model the Chisholm paradox,
using the Henkin-like method as in the previous example 5. We get Figure 16

Figure 16 does the job but it does not take into account the temporal aspect of the
problem. See also [10] and [19].

Evaluation point is x � �e3� e4�, x � e4 if the agent complies with the CTD and x � e3

if he does not.
This solution is more appropriate if instead of ‘Tell’ we have ‘Wear his overalls’. So

(d1) It ought to be that a certain man go to help his neighbour.
(d2) It ought to be that if he goes he wear his overalls.
(d3) If he does not go he ought not wear his overalls.
(d4) He does not go.

We need to develop special methods to deal with the temporal aspects of CTD.
We can improve the situation in the Chisholm example by reading ‘T ’ as ‘T �’

T �
� having told in the past.

This would help. However, we do not get the best model. We do need to develop a
general theory for time dependence. Again I ask the reader to wait for the full paper.

Let us stop here. Full analysis in the expanded full version of the paper possibly with
more co-authors.

Acknowledgements

I am grateful to L. van der Torre and O. Rodrigues for valuable comments.



Reactive Kripke Models and Contrary to Duty Obligations 173

References

1. Gabbay, D.M.: Reactive Kripke Semantics and Arc Accessibility. In: Avron, A., Der-
showitz, N., Rabinovich, A. (eds.) Pillars of Computer Science: Essays Dedicated to Boris
(Boaz) Trakhtenbrot on the Occasion of His 85th Birthday. LNCS, vol. 4800, pp. 292–
341. Springer, Berlin (2008); Earlier version published. In: Carnielli, W., Dionesio, F.
M., Mateus, P. (eds.) Proceeding of CombLog04, Centre of Logic and Computation Uni-
versity of Lisbon, pp. 7–20 (2004), ������������	�
�����	����������
�������

���������������������
���������������	���
�����������������

2. Gabbay, D.M., Barringer, H., Rydeheard, D.: Reactive Grammars. Draft
3. Gabbay, D.M., Crochemore, M.: Reactive Automata. Draft
4. Gabbay, D.M., D’Agostino, M.: Reactive Conditionals. Draft
5. Prakken, H., Sergot, M.J.: Contrary-to-duty obligations. Studia Logica 57(1), 91–115 (1996)
6. Carmo, J., Jones, A.J.I.: Deontic Logic and Contrary-to-Duties. In: Gabbay, D.M., Guenth-

ner, F. (eds.) Handbook of Philosophical Logic, vol. 8, pp. 265–343. Springer, Heidelberg
(2002)

7. Gabbay, D.M.: Reactive Proof Theory. Draft
8. Gabbay, D.M., Rodrigues, O., Woods, J.: Belief Contraction, Anti-formulas, and Resource

Overdraft: Part I. Logic Journal of the IGPL 10, 601–652 (2002)
9. Gabbay, D.M., Rodrigues, O., Woods, J.: Belief Contraction, Anti-formulae and Resource

Overdraft: Part II. In: Gabbay, D.M., Rahman, S., Symons, J., van Bendegem, J.-P. (eds.)
Logic, Epistemology and the Unity of Science, pp. 291–326. Kluwer, Dordrecht (2004)

10. Gabbay, D.M., Reyle, U.: N-Prolog: An Extension of Prolog with Hypothetical Implications
I. Journal of Logic Programming 1, 319–355 (1984)

11. Makinson, D., van der Torre, L.: Constraints for input-output logics. Journal of Philosophical
Logic 30(2), 155–185 (2001)

12. van der Torre, L.W.N., Tan, Y.-H.: The Temporal Analysis of Chisholm’s Paradox. In: Pro-
ceedings of the Fourteenth National Conference on Artificial Intelligence and the Ninth In-
novative Applications of Artificial Intelligence Conference (1998)

13. Hansson, B.: Standard Dyadic Denotic Logic. Noûs 3, 373–398 (1969)
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Normative Consequence: The Problem of

Keeping It Whilst Giving It up
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Abstract. The problem of deriving implicit norms from explicitly given
ones is at the heart of normative reasoning. In abstracto the problem
is that of formalizing a plausible consequence relation taking norms to
norms. I argue that any such relation should allow norms to be chained,
even when the consequent of one is strictly stronger than the antecedent
of another—i. e. even if logical inference is required to complete the
chain. However, since it is commonly agreed that the set of items classi-
cally entailed by an obligatory proposition are not in general obligatory,
we are left with the following problem: How do reserve the right to reason
classically for the purpose of chaining, whilst not committing to the view
that all items entailed by a norm are obligatory in the same sense. I shall
argue that the problem can be given a natural solution with reference to
different uses of a norm in a normative system.

Keywords: Normative systems, input/output logic, dynamics.

1 Introduction

A central problem of normative reasoning is to clarify the inference from explic-
itly given norms to other norms that are, in some sense, implied. For instance a
prohibition against processing personal information under certain circumstances
intuitively entails a prohibition against processing sensitive personal information
under the same conditions. Posed in general terms the problem is that of captur-
ing, in a principled and illuminating way, the notion of normative consequence.
If there is to be a logic of norms, this is certainly one of its basic problems.

It is generally agreed, however, that the normative consequences of an obli-
gation or duty cannot be identified with the logical consequences of fulfilling it.
Ross is usually given credit for pointing this out—his well known counterexam-
ple runs as follows: “If it is obligatory to mail the letter, then it is obligatory to
mail it or to burn it”. If the two occurrences of ’obligatory’ are given the same
meaning then the logical consequences of mailing the letter are construed as
obligatory in the same sense as mailing the letter is. It follows that burning the
letter really does discharge an obligation, since it entails mailing or burning it.
The unintuitiveness of this conclusion is evident. It is more plausible therefore,
to see the second occurrence of ’obligatory’ simply as a marker for a consequence
of fulfilling the duty to mail the letter—in other words, something is obligatory
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in the second sense given that it is true upon fulfillment of a duty proper. On
this reading Ross’ example does not assert anything about the deontic status of
burning the letter. What it does say is that burning the letter will make true
something that is also made true if the letter is posted. I. e. if I ever fulfill my
obligation to mail the letter, it will at that point be true that I either mail it or
burn it [1]. One may therefore be tempted to say that logically entailed items
are not genuine duties and may therefore safely be ignored.

Consider now another candidate notion of a derived norm; namely one ob-
tained by chaining. Chains of norms are frequent in Law. It is invariably the
case, for instance, that criminal law is linked with other parts of law, say ad-
ministrative law, in the sense that legal offenders are prevented from seeking
higher office, and/or are barred from certain learning institutions educating and
licensing government officials. According to the Norwegian Criminal Code, for
instance, if a person kills another man then he or she ought to be sentenced
to imprisonment. The Norwegian Police Act in turn states that only applicants
who do not have a prior sentence ought to be admitted to the police academy.
The question, then, is; should we construe Norwegian law as containing a norm
barring anyone who is guilty of manslaughter from the police academy?

The way we have posed this question, we are not assuming that the applicant
has in fact been sentenced, only that he ought to be. The intuitiveness of the pro-
posed chaining principle, therefore, turns on the plausibility of construing the obli-
gatoriness of one state of affairs as a sufficient condition for the obligatoriness of
another—in this case; the obligatoriness of criminal punishment and the obliga-
toriness of rejecting the applicant on which the punishment ought to be inflicted.
The validity of this form of inference has been denied by several writers; Sven Ove
Hansson, for instance, argues as follows:1 Suppose that for some reason you are
morally required to come to a conference. You are also required not to come unan-
nounced. Let p denote that you stay away from the conference and q that you give
notice you will come. Then O(¬p → q) and O¬p both hold, but since you should
not notify unless you come,Oq does not hold [2, p. 155]. Although this argument is
not crystal clear, what Hansson wants to say, I think is that, if you are required to
go to a conference, and you don’t, then you are under no obligation to give notice
that you’re coming. Hansson’s argument straightforwardly extends to our moti-
vating example: If a person ought to be sentenced for manslaughter, but in fact
he is not, then the police academy is under no obligation to reject his applica-
tion. McLaughlin, to which Hansson refers, makes essentially the same point [9,
p. 400]. What makes both example tick, though, is that something is pictured as
going amiss. It seems odd to say that one is under an obligation to give notice of
coming to a conference one isn’t going to go to—agreed. However, not going to the
conference is already in breach of an obligation, and it is this transgression that is
responsible for the sense of oddity. Thus, the example makes an assumption of fact
not implicit in the norm itself. Take away such extra assumptions—i.e. picture a
world as good as can be—and a case against chaining becomes difficult to estab-
lish. Indeed, associating eligibility of police academy applicants with the absence

1 Thanks to one of the reviewers for bringing this example to my attention.
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of a prior sentence would not have much of a point were it not to say that if all
goes according to plan evil-doers in the eyes of the law will not be policemen.

What I am advocating, then, is the prima facie plausibility of chaining.
In the absence of evidence to the contrary—i.e. in the absence of defeating
circumstances—chaining should be accepted. What would otherwise be the point
of making the fulfilment of one obligation a condition for the application of an-
other (which is, after all, a standard technology of legal drafting)? Generally
speaking, a legal order, or normative system may be said to envisage an ideal
state of things where no obligation is ever neglected or unfulfillable. Such a de-
scription is almost certainly false, in the sense that it does not agree completely
with reality [10]. There are limits on what it is possible for people to do and
not to do, and it is perfectly common for people to ignore a standard of cor-
rect behaviour. Such factors, will certainly have consequences for which norms
can plausibly be said to be operative or in force—one cannot return a book by
March 18 on the 19th of March the same year. It is folly, therefore, to deny that
norms interact with facts. Nevertheless, the optimum described by the norms
themselves sans extra assumptions of fact is the standard that conduct should
be measured against. The first question of normative reasoning, then, is, in my
opinion: What are the properties of this optimum? How does the world look
according to the description implicit in the norms themselves? Answering this
question, I think, requires that we treat the initial obligations, as well as all sub-
sequently inferred ones as if they were true, in a sequence of steps that fleshes
out the theory of ideality. Of course, the theory of ideality needs, at some later
stage, to be supplemented by a theory of what turns a prima facie obligation
into an operative duty, true, but that is secondary. The very concept of failure or
deviation refers essentially to the standard of which something falls short. That
standard, then, is the primary object of study.

Returning now to the Ross problem and the status of items entailed by oblig-
atory states of affairs, it is not too difficult to see that we were to hasty when we
dismissed these items as irrelevant to the notion of normative consequence. The
reason is that chaining is often facilitated by information from the fulfillment
context (by which I shall mean the logical closure of the obligatory proposi-
tions in question). To bring this forth more clearly, let’s regiment the motivating
example. Put;

– m = i is convicted of manslaughter
– s = i is sentenced to imprisonment, and
– r = i is inadmissible to the police academy

If, for the time being, we represent the norms simply as pairs and construe the
problem as one of moving from (m, s) and (s, r) to (m, r), then all we need is
the transitivity of the relation to which the pairs belong. However, the situa-
tion is usually less clear cut than that. The punishments of criminal law are
usually specific—at least within a reasonable range— about the form, duration
and severity of the sanction, whereas the rules for admission to an institution
such as a police academy are not. Say the relevant provision in the criminal code
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states that ’he who kills another man shall be sentenced for manslaughter to
imprisonment from 5 years and into lifetime’. Clearly, being sentenced to im-
prisonment from 5 years into lifetime implies being sentenced to imprisonment,
so intuitively the provision should still make any murderer inadmissible for the
police academy. Something more is involved in this latter inference than plain
old transitivity though. Extracting the two respective patterns, we have;

Transitivity: From (m, s) and (s, r) infer (m, r), and

Mediated transitivity: From (m, s′) and (s, r) infer (m, r) whenever s′ � s

The two forms differ insofar as the second but not the first utilizes logical en-
tailment as a stepping-stone to complete the inference. Is there any reason we
should accept the first, but not the second as valid? I think not. If the obligation
to see to it that s′ is fulfilled then s is true. But, if s is true, then the norm (s, r)
is triggered. The point, then, is that upon fulfillment of one obligation the condi-
tion for the applicability of another may often be inferred. If that is the case then
we should be able to move from the former via the consequences of its fulfillment
to the latter. Stated differently, the context of fulfillment of one obligation may,
and frequently does, provide information about which other obligations are ap-
plicable. We should be able to utilize this information in an iterative detachment
of applicable duties. Fleshing out the theory of ideality requires that we treat
the initial obligation and all subsequently inferred ones as if they were fulfilled.
Whenever we do, we are relating hypothetically to a context of truth, and should
therefore be allowed to avail ourselves of the full power of classical logic. There
is a tangible tension, then, between the need to avoid the Ross problem, on the
one hand, whilst reserving the right to reason iteratively on the other: As norms
are frequently chainable (mediately), we ought to be able to reason classically
about fulfillment contexts—so logical closure is a feature. On the other hand,
as the Ross example shows, logical closure is bound to introduce an infinity of
elements that intuitively should not be given the status of obligations—so it is a
bug. Seen in this light, the closure problem is more of a problem than is usually
conceded—it is the problem of keeping what one has to give up. This metaphor
is perhaps not quite apt, though, since the key issue, described with a bit more
precision, is really when, or for what purposes or uses, to retain vs. when, or
for what purposes or uses, to discard information about the fulfillment context.
These ’whens’ should not be run together lest the problem become a dilemma.

We should forestall one important objection to this analysis: One may argue
that what is essential to a logic of norms is not so much how we identify the set
of operative obligations, but rather how we devise a criterion to tell when an
obligation is met. At the end of the day the central question for deontic logic is
’are things as they should be?’. If we can answer that question, then it may seem
that nothing remains to be said. Hence, closure under logical consequence may
appear to be only a harmless limiting case, for when an obligation is fulfilled
then so are all of its logical consequences. Perhaps, therefore, we need not worry
about whether these consequences are really duties - i. e. perhaps the problem
of keeping what one gives up is just a pseudo-problem and the tension only
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apparent. An argument of Carmo and Jones [3] suffices to refute this objection,
I think: Obligations are essentially violatable entities, they say. It is precisely
when the possibility of norm violation is kept open that deontic logic has a
potentially useful role to play [3, p. 261]. Hence, we should be able to say not
only when an obligation is fulfilled but also when it is transgressed. The closure
problem, Carmo and Jones argue, should therefore also be seen from the point
of view of violation. But then its air of harmlessness vanishes, for if I am under
an obligation to see to it that p, and I don’t, then, if we accept that the logical
consequences of p are obligatory in the same sense as p is, we must conclude that
I have violated p ∨ q whenever q happens to be false (whatever the reason may
be), but complied with p∨q whenever q happens to be true (whatever the reason
may be). In other words if the concept of obligatoriness is construed as closed
under logical consequence, then, upon violation of a primary duty, everything
is partitioned into observed and transgressed in a philosophically random way.
Ergo, the Ross problem is not harmless, and the problem of when to keep it vs.
when to give it up is a live issue.

2 A Solution in an Input/Output-ish Idiom

Recapitulating briefly, the task we have set for ourselves is essentially that of
formalizing a plausible notion of normative consequence, which in turn is the
problem of deriving implicit norms from explicitly given ones. Any such relation
should, prima facie, be closed under mediated chaining, reflecting the fact that
fulfillment contexts in general contain information that partly determines which
norms are applicable. The relation should not, however, link an obligation proper
to all classically entailed items, since it would then multiply, in an intuitively
random way, the number of items the code renders violated. There is no a priori
reason why this problem could not be solved in modal logic, say, by adopting a
modal operator closed under logical equivalence only, and adding the principle of
mediated transitivity as an axiom or rule of inference.2 Nevertheless, my idiom
of choice in this study is input/output logic (as set out in a series of papers
by Makinson and van der Torre [5], [6], [7]). With a new idiom often comes an
opportunity to view old questions in a new light. I do not believe that there
is any overriding reason why we should feel compelled to encode everything we
wish to say about a system of norms in terms of truth-sets and relations between
them. On the contrary, if such a strategy is pursued too rigorously, one runs the
risk, I think, of reducing the dynamics of a system to the static properties of
sets, thereby distorting an otherwise reasonably clear picture. The case in hand
constitutes one example (a modest one, but nevertheless): The problem of when
to retain vs. when to discard information, is most naturally solved, I think,
in terms describing how information is animated in different ways by different
components of a system. Instead of talking about what’s true where, therefore,
we view ourselves more as talking about the uses to which information may be

2 This was pointed out to me by one of the reviewers.
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put and how. Input/output logic seems well-suited to this task, and an idiom
worth exploring.

A bit of context first: In input/output logic a norm is just a pair of boolean
formulae. In other words a norm (a, x) is a logically arbitrary stipulation con-
necting an input a with an output x—it is logically arbitrary in the sense that
a pair is not a formula, so there is nothing to the norm (a, x) above and beyond
the fact that some authority requires that x be done given a. Notably, since
the pair as such has no logic, the contrapositive of a norm is not necessarily a
norm, nor is any pair of the form (a, a). A normative code G is seen simply a
set of such pairs, from whence it follows that the explicitly declared mandates,
in any given situation a according to G, can be obtained by taking the image of
G under a. The basic notion of a normative system allows implicit norms to be
derived from the explicit ones—i.e. from the ones contained in G —by accepting
logical consequences of inputs as inputs, and logical consequences of outputs as
outputs. In other words, where L is a boolean language, the basic model of a
normative system in input/output logic, is an operation out1 : 2L2 × L &→ 2L

defined as follows:

Definition 1. out1(G, a) = Cn(G(Cn(a))).

As Makinson and van der Torre observe, putting (a, x) ∈ out(G) iff x ∈ out(G, a),
one may also construe the operator out1 as a closure operator on a set of norms.
As they say, the two formulations give a rather different gestalt, and one is some-
times more convenient than the other. Since all the operators I shall introduce
are of the same type, I will switch freely between these two modes of expres-
sion. A basic result of [5] is that out1 is characterized by the following system of
axioms and rules

Definition 2. (a, x) ∈ deriv1(G) iff (a, x) is derivable from axioms (t, t)∪G by
the rules of inference,

SI
(b, x)
(a, x)

if a � b AND
(a, z), (a, y)
(a, z ∧ y)

WO
(a, z)
(a, x)

if z � x

There are various ways to modify the definition of the out1-operation, yielding
other systems satisfying more rules. One of particular interest, given our con-
cerns, is the version that allows outputs to be recycled as inputs. Adhering to
Makinson and van der Torres’ typology, this is the operation out3:

Definition 3. x ∈ out3(G, a) iff x ∈
⋂
{Cn(G(B)) : a ∈ B = Cn(B) ⊇ G(B)}.

Recycling is thus effected by taking the intersection of the outputs of out1 for all
the respective sets that include the input as well as the image of the set under
G. This yields the least operation closed under chaining. In other words out3 is
characterized by the following system:

Definition 4. (a, x) ∈ deriv3(G) iff (a, x) is derivable in the system containing
all the axioms and rules of deriv1, plus the rule of cumulative transitivity;
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(a, x), (a ∧ x, y)
CT

(a, y)

Outputs from out3 cannot straightforwardly be interpreted as obligations, since
out3 validates output weakening.3 Nevertheless, weakening of the output is often
involved in the chaining process, I have argued, for instance in derivations such
as (where we assume that x′ � x):

(a, x′)
WO

(a, x) (a ∧ x, y)
CT

(a, y)

The task that confronts us then, is essentially how to preserve this kind of
inference—as it instantiates the pattern of mediated transitivity—whilst not
allowing weakening of outputs in general. Stated differently, we want to disal-
low weakening of outputs in the last step of a derivation, whilst reserving the
right to connect the output of one norm to the input of another via the logical
consequences of the former. It seems natural therefore, to replace the rule of
cumulative transitivity with one that, for want of a better name, I have chosen
to dub mediated cumulative transitivity:

(a, x′) (a ∧ x, y)
MCT whenever x′ � x(a, y)

Mediated cumulative transitivity simulates weakening of the output in the sense
that it itself makes logical entailment sufficient for chaining. Our question now
becomes: Can we find an intuitively plausible semantics that yields a system
which has MCT but not WO? It may be helpful to make a detour through the
out1-idiom to get a hint as to what is required. Consider the following definition

Definition 5. x ∈ PN1(G, a) iff x is equivalent to a subset of G(Cn(a))

This is just like out1 except that the output is no longer closed under logical
consequence. Instead we require that an output be equivalent to the set of heads
of a subset of the explicitly given norms, since these norms can all safely be
assumed to be genuine. Hence, we think of the operation PN1 as picking out the
proper norms of G—intuitively the set of norms that stipulate genuine, violatable
duties. It is not difficult to give this notion a syntactical characterization:

Definition 6. (a, x) ∈ IN1(G) iff (a, x) is derivable from axioms (t, t) ∪ G by
the rules of inference SI, AND and

Eq
(a, x′)
(a, x)

whenever x′ ≡ x

3 The same goes for out1 of course.
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The letters IN are meant to stand for implicit norms—a notion which we think
of as the syntactical counterpart of the more semantically tainted notion of a
proper norm. Note that the rule Eq is new to the system. It allows us to pass
from any derived rule to a new rule with the same body and an equivalent head.
Due to weakening of the output Eq is a derived rule of deriv1. Since weakening of
the output is not a rule of IN1, however, Eq must be added. Now, the following
theorem—which is just a suitably modified version of observation 1 from [5]—
shows that the set of proper norms and the set of implicit norms, as the two
notions have so far been defined, coincide.

Theorem 1. PN1(G) = IN1(G).

Proof (Sketch). The right-in-left inclusion is straightforward, so we prove the
converse only: Suppose x is equivalent to a subset of G(Cn(a)). Then by com-
pactness and monotony for classical consequence there is a finite set x1, . . . , xn ∈
G(Cn(a)) with x ≡ x1 ∧ . . .∧xn. If n = 0 then x is a tautology so x ∈ IN1(G, a)
by axiom (t, t) and SI. If n 
= 0 then for each xi there is a bi ∈ Cn(a) with
(bi, xi) ∈ G. Since a � bi for each i we may apply SI to each (bi, xi) to obtain
(a, xi). We may further collect all the latter rules by AND obtaining (a,

∧n
i=1 xi),

before deriving (a, x) by one application of Eq, as desired.

The case for recycling (sans output weakening) is considerably more complex,
however, as we need to find a way of pumping outputs back as inputs. Inter-
secting images in the manner of definition 3 may work—if we close the images
under logical equivalence—but the following inductive definition gives a more
illuminating picture, I think:

Definition 7. x ∈ PN3(G, a) iff x is equivalent to a subset of
⋃ω

i=0 Ai where

– A0 = G(Cn(a)), and
– An+1 = An ∪G(Cn(An ∪ {a})).

This semantics gives a concrete example of turning away from truth-talk to-
wards the uses to which information may be put: When a norm is used to
produce an output, then its consequent—i.e. what the norm decrees to be ideal
or obligatory—is dissociated from logically weaker items so that its normative
force, so to speak, does not extend to items that are merely true upon fulfillment.
Hence all obligations generated are genuine in the sense that they correspond to
accumulations of explicitly given duties pertaining to the circumstances. On the
other hand, when an obligation is pumped back into the input, we reserve the
right to consider the context of fulfillment as such, in order to determine which
other norms are applicable. Thus, the obligation in question is used in different
ways depending on its current coordinates in the wider geography of the system.
The overall behaviour that results is captured by the system defined below:

Definition 8. (a, x) ∈ IN3(G) iff (a, x) is derivable from axioms (t, t) ∪ G by
the rules of inference SI, AND, Eq and MCT .
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The proof requires a few lemmata:

Lemma 1. Let {Ai : i < ω} be any sequence defined according to 7. Then
An ⊆ An+1 for all n < ω.

Proof. An+1 = An ∪G(Cn(An ∪ {a})) ⊇ An, so An ⊆ An+1 for any n.

When {Ai : i < ω} is the chain defining PN3(G, a) I shall say that a is an input
to the chain, and that the chain is generated by G. We have:

Lemma 2. Let {Ai : i < ω} and {Bi : i < ω} be sequences generated by G,
where a and b are the respective inputs. Then, if a ∈ Cn(Bk ∪ {b}) for some k,
then Ai ⊆ Bn for all i and some n such that k ≤ n.

Proof. Proof proceeds by induction on the sequence {Ai : i < ω}. For the
base case we reason as follows: By assumption a ∈ Cn(Bk ∪ {b}), so Cn(a) ⊆
Cn(Bk ∪ {b}), by monotony and idempotence for classical consequence, whence
G(Cn(a)) ⊆ G(Cn(Bk ∪ {b})), by the monotony of image-formation. It follows,
by general set-theory that A0 = G(Cn(a)) ⊆ Bk ∪ G(Cn(Bk ∪ {b})) = Bk+1.
For the induction step, suppose that An ⊆ Bp for some p such that k ≤ p.
Now, An+1 = An ∪ G(Cn(An ∪ {a})). Since Bk ⊆ Bp, by lemma 1, we have
a ∈ Cn(Bp ∪ {b}). By the induction hypothesis it follows that An ∪ {a} ⊆
Cn(Bp ∪ {b}). Hence An ∪ G(Cn(An ∪ {a})) ⊆ Bp ∪ G(Cn(Bp ∪ {b})), by the
same steps as for the base case. Hence An+1 ⊆ Bp+1, so the proof is complete.

Note that lemma 2 is monotony in the input in the particular case where i =
k = 0.

Lemma 3 (Cumulativity in the input). PN3(G, a ∧ b) ⊆ PN3(G, a) when-
ever b′ ∈ out(G, a) for b′ � b.

Proof. Let PN3(G, a∧b) and PN3(G, a) be defined by {Ai : i < ω} and {Bi : i <
ω} respectively. It suffices to show that a∧b ∈ Cn(Bk∪{a}) for some k, because
then we have

⋃ω
i=0 Ai ⊆

⋃ω
i=k Bi, by lemma 2, whence

⋃ω
i=0 Ai ⊆

⋃ω
i=0 Bi since⋃ω

i=k Bi ⊆
⋃ω

i=0 Bi. By assumption b′ ∈ PN3(G, a), i. e. b′ is equivalent to
a subset of

⋃ω
i=0 Bi. By compactness and monotony for classical consequence

there is thus a finite set b1, . . . , bi ⊆
⋃ω

i=0 Bi such that b1 ∧ . . . ∧ bi ≡ b′. Let Bk

be the set such that b1, . . . , bi ⊆ Bk. Since b1, . . . , bi is finite k exists. Now, b′ � b
by assumption, so b ∈ Cn(Bk) ⊆ Cn(Bk ∪ {a}), whence a ∧ b ∈ Cn(Bk ∪ {a})
as desired.

These lemmata will suffice to establish soundness:

Theorem 2. IN3(G) ⊆ PN3(G), i. e. all implicit norms are proper norms.

Proof. Suppose that PN3(G, a) is determined by the chain {Ai : i < ω}. We
prove, by induction on the length of the derivation, that x ∈ PN3(G, a) when-
ever (a, x) ∈ IN3(G, a). In the base case (a, x) is an axiom, i. e. (a, x) ∈ G or
a ≡ x ≡ t. If (a, x) ∈ G then x ∈ G(Cn(a)) = A0. If, on the other hand,
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a ≡ x ≡ t, then Cn(x) = Cn(∅) and, clearly, ∅ ⊆ G(Cn(a)) = A0. In both cases,
therefore, we have that x is equivalent to a subset of

⋃ω
i=0 Ai, so we are done. For

the induction step, suppose the theorem holds for shorter derivations, then: For
EQ, suppose (a, x) is derived from (a, x′) by EQ. Then x ≡ x′. By the induc-
tion hypothesis x′ ∈ PN3(G, a). Hence, x′ is equivalent to a subset of

⋃n
i=0 Ai,

whence, since logical equivalence is transitive, x ∈ PN3(G, a) as desired. For SI,
suppose (a, x) is derived from (b, x) by SI. Then a � b. By the induction hypoth-
esis x ∈ PN3(G, b) ⊆ PN3(G, a), by monotony in the input, so we are done. For
AND, suppose (a, x) is derived from (a, z) and (a, y) by AND. Then, by the in-
duction hypothesis, we have y, z ∈ PN3(G, a). Hence x ∧ y ∈ PN3(G, a) since
x∧ y is equivalent to {x, y}. For MCT , Suppose (a, x) is derived from (a, y′) and
(a ∧ y, x) by MCT . By the induction hypothesis we have x ∈ PN3(G, a ∧ y) and
y′ ∈ PN3(G, a). Since y′ � y, we may apply cumulativity in the input to obtain
PN3(G, a ∧ b) ⊆ PN3(G, a), so x ∈ PN3(G, a) as desired. This completes the
proof.

Theorem 3. PN3(G) ⊆ IN3(G), i. e. all proper norms are implicit norms.

Proof. Suppose PN3(G, a) is defined by the sequence {Ai : i < ω}. First we
prove that

⋃ω
i=0 Ai ⊆ IN3(G, a). Proof proceeds by induction on An. For the

base case, if x ∈ G(Cn(a)) then there is a rule (b, x) ∈ G such that a � b.
Since (b, x) is an axiom in IN3(G) it follows that x in IN3(G, a) by SI. For
the induction step suppose that Ak−1 ⊆ IN3(G, a). We need to show that
Ak = Ak−1 ∪G(Cn(Ak−1 ∪ {a})) ⊆ IN3(G, a). Suppose therefore that x ∈ Ak.
Then x ∈ Ak−1 or x ∈ G(Cn(Ak−1 ∪ {a})). The first case is covered by the
induction hypothesis. Hence we may assume that x ∈ G(Cn(Ak−1 ∪ {a})). If x
is a tautology then we immediately have x ∈ IN3(G, a) by axiom (t, t). If not,
then there is a rule (b, x) ∈ G such that b ∈ Cn(Ak−1 ∪ {a}). By compact-
ness for classical consequence there is thus a finite subset b1, ..., bi of Ak−1 with
b ∈ Cn({b1, . . . , bi} ∪ {a}), whence

∧i
j=1 bj � a → b. By the induction hypoth-

esis, each bj ∈ Ak−1 is such that bj ∈ IN3(G, a). Hence, we have the following
derivation:

(a, b1), . . . , (a, bi)
AND

(a,
∧i

j=1 bj)

(b, x)
SI

(a ∧ b, x)
SI

(a ∧ a → b, x)
MCT

(a, x)

Hence,
⋃ω

i=0 Ai ⊆ IN3(G, a). It remains to show that if x is equivalent to a
subset of

⋃ω
i=0 Ai, say x ≡

∧n
i=1 xi, then x ∈ IN3(G, a). By the induction

xj ∈ IN3(G, a) for any 1 ≤ j ≤ n, so (a, x1), . . . (a, xn) ∈ IN3(G). Hence,

(a, x1), . . . , (a, xn)
AND

(a,
∧n

i=1 xi)
Eq

(a, x)
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Summing up, I have considered two different notions of a derived norm; norms
obtained by chaining and norms obtained by weakening of the obligatory propo-
sition in question. Only the former of these, I have argued, should be recognized
as giving us a genuine notion of normative implicature. The need to retain the
former whilst discarding the latter initially pull in opposite directions, but a bal-
ance can be struck by introducing the rule of mediated cumulative transitivity
which simulates output weakening for the purposes of chaining. The problem of
when to keep vs. when to discard information is thereby given a solution—surely
not the only one conceivable—which has the additional virtue, in my opinion,
of giving the notion of consequence an operational semantics that reconstructs
the reasoning process in terms of a sequence of discrete computational steps.

3 Further Prospects: Amplification of Output

Throwing a third concept into the pot, consider now norms derived in conjunc-
tion with material dependencies.4 Say, for the sake of argument, that doctor-
assisted deaths are not approved of by a given system—i. e. killing another
person is never permitted. In other words we assume that (t,¬kill) is an ex-
plicitly given norm in the system in question. Assume further that turning off a
respirator will kill a certain patient i. Needless to say, this is just a contingent
fact about i’s physical constitution, and not a law of logic. Turning the respirator
off would not be fatal to the patient if he or she were, say, rolled over to a sunny
spot and could sustain his vital functions by photosynthesis. Since the system
in question is categorical about not killing it seems plausible to say that it also
forbids turning off the respirator. Let o → kill stand for the fact that turning
off the respirator kills i. The question now becomes; how do we bring that in-
formation to bear on the norms of the system? Where should that information
go? Obviously, the conditional o → kill is not a norm. It is not something the
system prescribes, or decrees to be ideal. Thus, putting (t, o → kill) or (o, kill) in
the code itself—even though the former would give us the desired inference—is
out, as it distorts the intuitive picture. A more principled, I think, solution is
not far to seek though. Consider again the rule of output weakening; from (a, x)
to (a, y) whenever x � y. It is natural to view the underlined side-constraint,
or auxiliary hypotheses, as an environment in which the system of norms in
question is currently deployed. The rule-of-inference format has the virtue of
factoring out this environment, making the rule plug-and-play compatible with
different ones. In our motivating example, the conditional o → kill belongs to
the environment—it is true when the norms of the system are applied. Hence it
should be regarded as an amplifier for the side-constraint—something we should
be allowed to take into consideration when computing what should or should not
be done. In other words, a solution that seems principled enough, is to replace
classical consequence with some kind of supraclassical consequence in the aux-
iliary hypothesis of the rule; from (a, x) to (a, y) whenever x �k y, let’s call the
latter rule WOK . The standard rule of output weakening WO becomes, then,
4 In [3] Henry Prakken is given credit for identifying this problem.
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just a limiting case of the amplified rule WOK—the case where K is empty,
i. e. where nothing is known about the context of deployment. Assume for the
moment—since these are simple to work with, and will do well enough for our
purposes—that the supraclassical operator in question is a pivotal-assumption
operator, in the terminology of [8]. In other words, x �K y iff x ∪ K � y, or in
terms of closure operators, CnK(x) = Cn(K ∪x). It seems intuitively clear that
amplifying the rule of output weakening corresponds to taking the closure under
CnK of the output of a given operation, viz.:

Definition 9. Put x ∈ outK3 (G, a) iff x ∈
⋂
{CnK(G(B)) : a ∈ B = Cn(B) ⊇

G(B)}.

Theorem 4. Let derivK
3 (G) be exactly like deriv3(G) except that WO is re-

placed with WOK . Then derivK
3 (G) = outK3 (G).

The proof is a straightforward modification of the completeness theorem for out3
wrt. deriv3. We leave it out of the text to keep the paper at a reasonable length.

It is worth pausing to note that derivK
3 can also be defined by leaving the

rule of output weakening unaltered whilst incorporating an axiom (t, y) for each
y ∈ K. For suppose y ∈ K then (t, y) is derivable from (t, t) by one application
of WOK . Hence any system that has WOK has (t, y). Conversely, suppose that
x ∪ K � z. By compactness for logical consequence, then, there is a finite set
k1, . . . , kn ∈ K such that x ∧

∧n
i=1 ki � z. For each ki we have assumed that

there is a corresponding axiom (t, ki) so we have:

(t, k1), . . . , (t, kn)
AND

(t,
∧n

i=1 ki)
SI

(a,
∧n

i=1 ki) (a, x)
AND

(a, x ∧
∧n

i=1 ki)
WO

(a, z)

Hence any system that has (t, y) for each y ∈ K has WOK as a derived rule.
Amplification is indeed one way of utilizing background information, for sup-

pose o → kill is true in the context described by K—i. e. suppose that o →
kill ∈ K. Then;

(t,¬kill)
WOK

(t,¬o)

Since ¬kill �K ¬o. Alternatively, by the equivalence of contextual axioms:

(t,¬kill)
(t, o → kill)

WO
(t,¬kill → ¬o)

AND
(t,¬kill ∧ (¬kill → ¬o))

WO
(t,¬o)
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Alas, what was pushed out the door now comes back in through the window.
Amplifying output in this way is clearly not coherent with our earlier efforts to
shake the Ross problem, since pivotal-assumption consequence is supraclassical.
This adds a new and interesting twist to the problem of keeping what one gives
up. It can now be seen to comprise the additional problem of how to facilitate
material inferences in spite of the fact that logical entailment is not available. A
natural way to compromise between the two, is to amplify the system of proper
norms. As before, then, we substitute logical equivalence for logical consequence,
thereby avoiding the Ross problem, but this time we define equivalence modulo the
environment, thereby absorbing information about the context of deployment:

Definition 10. Put x ∈ PNK
3 (G, a) iff x is equivalent, modulo K, to a subset

of
⋃ω

i=0 Ai where the chain {Ai : i ≤ ω} is defined exactly as in definition 7.

Theorem 5. Let INK
3 (G) be exactly like IN3(G) except that Eq is replaced

with, EqK ; from (a, x) to (a, y) whenever y ≡K x, i. e. whenever x and y are
equivalent modulo K. Then INK

3 (G) = PNK
3 (G).

Again, the proof is a simple re-run and is left out. Obviously, the concept of
material inference captured by this system is rather weak. Nevertheless, it solves
the motivating example fairly well: Since ¬kill∧(o → kill) ≡ ¬kill∧¬o we have;

(t,¬kill)
EqK

(t,¬kill ∧ ¬o)

or, since EqK too may be traded for axioms describing the context:

(t,¬kill) (t, o → kill)
AND

(t,¬kill ∧ (o → kill))
Eq

(t,¬kill ∧ (¬kill → ¬o))
Eq

(t,¬kill ∧ ¬o)

The Ross problem does not arise, since the system does not have a rule of
output weakening. A word of criticism could perhaps be directed at the fact
that the norm we are able to infer is (t,¬kill ∧ ¬o), not (t,¬o), and that the
latter cannot be derived from the former. In other words, leaving the respirator
on is not mandatory unless one simultaneously refrains from killing the patient.
Nevertheless, if we recognize the existence of a proper norm (t,¬kill ∧ ¬o) then
we do have sufficient warrant to say that the system in question prohibits turning
off the respirator. Consider the following definition of norm violation:

Definition 11. b violates (a, x) iff b � a ∧ ¬x and (a, x) is a proper norm.

The definition seems intuitive enough, once the norm acting as the standard of
conduct is a proper norm. It follows immediately from the definition that o vio-
lates (t,¬kill∧¬o) and is therefore prohibited by the code. Another potentially
problematic feature, is that contextual information becomes encoded in norms. If
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o → kill is true in the context of deployment, then the amplified system contains
(t, o → kill). Doesn’t this go against our initial determination not to represent
o → kill as something decreed by the system? Note that if it is decreed by the
system, then, presumably, it is also violatable. But should we say that a norm
has been violated if the respirator is turned off and the patient survives? The
proper response to these worries, I think, is to point to the difference between
incorporating a norm (t, o → kill) in the code itself vs. having it emerge from
context. In the former case, the norm becomes an invariant feature of the system
itself, whereas in the latter case it is part of a plug-and-playable module that
may vary from one application of the system to the next. Intuitively the ’norms’
belonging to this module are not violatable since if, say, o ∧ ¬kill is true, then
one is no longer in a context where o → kill holds, so the system no longer
yields (t, o → kill). In other words it makes no sense to suppose that the system
contains norms describing the context, which are nevertheless not fulfilled.

4 Summary

There are at least three candidate notions of a derived norm that deserve serious
study; norms derived by logical consequence, norms obtained by chaining, and
norms generated by material dependencies. I have argued that we should accept
the latter two as presenting us with genuine notions of normative implicature, but
reject the first. This is not easy to accomplish, since these needs pull in different
directions so to speak. Chaining and material inference clearly require that some
notion of logical inference be available, whilst avoiding the Ross problem depends
on logical inference being ignored. The rather delicate balancing of needs required
to solve the problem is conveniently expressed, and illuminatingly represented, I
think, by turning towards the dynamics of systems. Progress can be made if we
decompose a system into a code and a context, and look at how these sources
of information interact.
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Abstract. Åqvist’s dyadic deontic logic G, which aims at providing an
axiomatic characterization of Hansson’s seminal system DSDL3 for con-
ditional obligation, is shown to be strongly complete with respect to its
intended modelling.

Keywords: Conditional obligation, preference-based semantics, strong
completeness, DSDL3.

1 Introduction

The present study is mainly concerned with so-called preferential semantics for
conditional obligation. These rely on a binary relation, which ranks all possible
worlds in terms of comparative goodness or betterness. Structures of this sort
seem to have made their first explicit appearance in print with the paper of
Hansson [1]. There they are used to give a semantic analysis of contrary-to-duty
(or secondary) obligations, which tell us what comes into force when some other
(primary) obligations are violated. A number of researchers have followed Hans-
son’s suggestion, providing a more comprehensive investigation of the treatment
of contrary-to-duty obligations within a preference-based approach. It is not the
purpose of this paper to evaluate such a treatment. The interested reader should
consult the relevant literature (see, e.g., [2,3,4,5,6,7,8]).

In what follows, I shall focus on another long-standing problem, that of ax-
iomatizing the logic of conditional obligation as outlined by Hansson in the
aforementioned pioneering paper.1 An important step towards resolving such an
issue has been taken by Spohn [9]. There the focus is on the class of models
corresponding to the system known as DSDL3, which Hansson wished to be re-
garded as his ‘official’ one. An axiomatic characterization of the logic is given,
and proved semantically complete with respect to the model theory, in the sense
that every formula of this calculus is shown to be provable if and only if it is valid.
Metatheorems of this sort are frequently called weak completeness theorems− the
object of the present paper is to extend Spohn’s result to obtain a strong com-
pleteness theorem for dyadic deontic logic; i.e., I will show that a formula A of

1 The systems proposed by Hansson (he confidently calls them ‘dyadic standard sys-
tems of deontic’ - DSDL) are purely semantical.

R. van der Meyden and L. van der Torre (Eds.): DEON 2008, LNAI 5076, pp. 189–202, 2008.
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this calculus can be deduced from a (possibly infinite) set Γ of formulae if and
only if Γ entails A. Reference will be made to Åqvist’s axiomatic system G (see,
e.g., [10,11]). It is essentially a reformulation of the Hansson-Spohn calculus in
terms of modal logic. Unless I am mistaken, the strong completeness problem for
G has not been settled yet. It will here be answered in the affirmative. Moreover,
it will be shown that (as conjectured by Åqvist himself) G remains complete if
the assumption of a linear or total ordering among possible worlds is dropped.
It is the assumption that any pair of possible worlds are mutually comparable
under the betterness relation: either one is better than the other, or they are of
equal value. The fact that such an assumption does no work was already known
by Spohn, at least for his reconstruction of DSDL3.

The plan of this paper is as follows. In section 2, I present Åqvist’s dyadic
deontic system G, and its associated semantics. Two classes of models will be
discussed, one of them corresponding to Hansson’s system DSDL3. In section 3,
I introduce the notion of a canonical structure, and prove a number of lemmata,
which in section 4 will suffice to establish the desired completeness of the system
with respect to the two classes of models.

2 Syntax, Semantics and Proof Theory

The language of G has, in addition to a set Prop of propositional variables and
the usual Boolean sentential connectives, the following characteristic primitive
logical connectives : the alethic modal operators � (for necessity) and ♦ (for
possibility) ; and the two dyadic deontic operators ©(−/−) and P (−/−), which
may be read as ‘It ought to be that ..., given that ...’ and ‘It is permitted that ...,
given that ...’, respectively. The set L of well-formed formulae (wffs) is defined
in the usual way. There are no restrictions as to iterations of dyadic deontic
operators and modal ones.

The system comes with a possible worlds semantics à la Kripke. I begin with
the idea of an H-model (‘H’ is mnemonic for Hansson), by which I understand a
structure

M = (W,), V )
in which

(i) W 
= ∅ (W is a set of ‘possible worlds’)
(ii) )⊆ W ×W (Intuitively, ) is a betterness or comparative goodness relation;

‘x ) y’ can be read as ‘world x is at least as good as world y’.)
(iii) V : Prop → P(W ) (V is an assignment, which associates a set of possible

worlds to each propositional letter p).

I write M |=x A to mean that sentence A is true at world x in M . Such a notion
is defined in the usual way except that, for x, y ∈ W ,

M |=x �A iff ∀y (M |=y A)
M |=x ♦A iff ∃y (M |=y A)

M |=x ©(B/A) iff ∀y ( ( M |=y A & ∀z(M |=z A ⇒ y ) z) ) ⇒ M |=y B )
M |=x P (B/A) iff ∃y ( ( M |=y A & ∀z(M |=z A ⇒ y ) z) ) & M |=y B )
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The clauses for � and * are self-explanatory. These modalities are interpreted
by the relation W ×W , and thus correspond to the universal modalities further
studied by Goranko and Passy [12] among others. In fact, these modalities are
not part of Hansson’s account. Informally speaking, the evaluation rule for the
obligation operator says that ©(B/A) is true at a world x in M just in case B is
true at all among the best (according to )) worlds satisfying A. The evaluation
rule for the permission operator is obtained by replacing the universal quantifier
(ranging over the set of best A-worlds) with the existential one. It is worth
noticing that both evaluation rules are formulated in terms of what is sometimes
called optimal or last elements. These are members of S that are at least as good
as any other element of S. Formally:

y ∈ opt�(S) ⇔ y ∈ S & y ) z for all z ∈ S

A last or optimal element of S is, thus, an upper bound of S that is contained
in S.2

The comparative goodness relation ) may be constrained by suitable condi-
tions as desired. The following two classes of models will be discussed further
throughout this paper. One is the class of (Åqvist’s terminology) H3-models. In
such models, the relation ) satisfies the following restrictions:

• reflexivity:
For all x ∈ W, x ) x (δ1)

• limitedness:

If [[A]]M 
= ∅ then {x ∈ [[A]]M : (∀y ∈ [[A]]M )x ) y} 
= ∅, (δ2)

where [[A]]M is {x ∈ W : M |=x A}, the ‘truth-set’ of A in M

• transitivity:
For all x, y, z ∈ W, x ) y and y ) z entail x ) z (δ3)

The class of H3-models will henceforth be denoted H3.
The other class of structures studied in this paper is the class of (Åqvist’s

terminology) strong H3-models. This class of models corresponds to Hansson’s

2 This is a non-trivial alteration of the account initially proposed by Hansson [1,
pp. 143-6]. He works with so-called maximality under the strict order induced by �.
For a given y in S to qualify for the set of maximal elements of S, no other z in S must
be strictly better than y. Formally: y ∈ max�(S) ⇔ (y ∈ S & � ∃ z ∈ S (z � y)).
Here � denotes the ‘strengthened converse complement’ of �, defined by z � y iff
z � y and y �� z. So the previous definition can be rephrased as:

y ∈ max�(S) ⇔ y ∈ S & ∀z ∈ S ( z � y ⇒ y � z )

Clearly, opt�(S) ⊆ max�(S), but not generally the converse. In particular, the
maximal set will not necessarily match the optimal set if S is only partially ordered
by �. The notions of ‘optimality’ and ‘maximality’ are more fully discussed by
Sen [13].
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official system DSDL3. In such models, the following additional constraint is
placed on ):

• strong connectedness (totalness, or linearity) :
For all x, y ∈ W, either x ) y or y ) x (δ4)

There is, then, no more need to explicitly require ) to be reflexive. For (δ1)
follows from (δ4). The class of strong H3-models will be denoted by H3

s.
Care should be taken with the limitedness condition (δ2). Its main purpose is

to forbid infinite (ascending) sequences of ever more perfect worlds. (δ2) should
not be confused with the following condition, of which (δ4) is just a special case:

• well-orderedness:
For all X ⊆ W if X 
= ∅ then {x ∈ X : (∀y ∈ X)x ) y} 
= ∅ (δ′2)

(δ′2) entails (δ2). The converse does not hold generally, but only in special cases.
One of them is worth mentioning. It is the case where the language is generated
from a finite set of atomic propositions. Notoriously, any subset X of the set of all
valuations is, then, definable, in the following sense: for all X ⊆ W there exists
a formula A ∈ L such that X = [[A]]M .3 Using this further assumption, (δ′2) −
and, by the same way, (δ4) − can easily be derived from (δ2). The distinction
between the class of H3-models and the class of strong H3-models vanishes.

The notion of semantic consequence is used in its ‘local’ sense. A set Γ of
formulae is said to be true at a state x in M (notation: M |=x Γ ) if all members
of Γ are true at x. A formula A is said to be a (local) semantic consequence of Γ
over some class C of models (notation: Γ |=C A) if for all models M from C, and
all points x in M , if M |=x Γ then M |=x A. Finally, Γ is said to be satisfiable in
C if there is a model M from C, and a point x in M , such that M |=x Γ . Brackets
will be omitted when Γ is a singleton, i.e. a wff A will be said to be satisfiable
in C, if the set {A} is satisfiable in C.4

In Åqvist [10,11] the proof theory for G is defined as shown below:

All truth functional tautologies (PL)
S5-schemata for � and ♦ (S5)
P (B/A) ↔ ¬© (¬B/A) (DfP)
© (B → C/A) → (©(B/A) →©(C/A)) (COK)
© (B/A) → �© (B/A) (Abs)
�A →©(A/B) (CON)

3 Cf. Makinson [14, p. 62]. For an example showing that (in the infinite case) a set
may not be definable by any formula, see Schlechta [15, p. 29].

4 As mentioned, the universal modality � is not used by Hansson. It is natural to ask
whether such a modal operator can be dispensed with, by switching to the so-called
global semantic consequence. Perhaps the job done by one can equally be done by
the other. This is a topic for future research.
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�(A ↔ B) → (©(C/A) ↔©(C/B)) (Ext)
© (A/A) (Id)
© (C/A ∧B) →©(B → C/A) (C)
♦A → (©(B/A) → P (B/A)) (D	)
(P (B/A) ∧©(B → C/A)) →©(C/A ∧B) (S)
If � A and � A → B then � B (MP)
If � A then � �A (N)

A few comments on the axioms involving the deontic modalities might be in or-
der. (DfP) introduces ‘P ’ as the dual of ‘©’ in the usual way. (COK) is the con-
ditional analogue of the familiar distribution axiom K. (Abs) is the absoluteness
axiom of Lewis [16], and reflects my deliberate choice not to make the ranking
world-relative. (CON) is the deontic counterpart of the familiar necessitation
rule. (Ext) permits the replacement of equivalent sentences in the antecedent
of deontic conditionals. (Id), (C) and (S) are familiar from the literature on
non-monotonic logic. (Id) is the deontic analogue of the identity principle. The
question of whether this is a reasonable law for deontic conditionals has been
much debated. A defence of (Id) can be found in Hansson [1] and Prakken and
Sergot [5] − this line of defence is discussed in Parent [17, ch. 3]. (C) corresponds
to the so-called ‘conditionalization’ principle (also referred to as ‘the hard half
of the deduction theorem’), which is part of Kraus and colleagues’ system C for
cumulative inference relations (see [18]). Axiom (S) has been introduced into the
literature by Spohn [9]. The latter axiom is very reminiscent of the restricted
principle of strengthening of the antecedent known as ‘rational monotony’, which
is part of so-called system R (see [19]). This other principle says the following:

(P (B/A) ∧©(C/A)) →©(C/A ∧B) (RM)

It is straightforward to show that (S) and (RM) are deductively equivalent given
the rest of the system. The deontic version of (RM) is discussed in Goble [20].
(D	) is the conditional analogue of the familiar modal axiom D.

Now the usual notions of theoremhood, deducibility and consistency become
available. First, a wff A is said to be a theorem of G (written �G A) if A belongs
to the smallest subset of wffs that contains every instance of (PL)-(S), and is
closed under (MP) and (N). Next, a wff A is said to be deducible in G from
assumptions Γ (written Γ �G A) if there are sentences B1,..., Bk ∈ Γ (k ≥ 0)
such that �G (B1 ∧ ... ∧ Bk) → A. Finally, a set Γ of sentences is said to be
consistent in G if ⊥ is not deducible in G from Γ , and inconsistent otherwise.
Again, I will omit brackets when Γ is a singleton.

It may be noted that deducibility is compact, in the sense that deducibility
from a set of sentences always implies deducibility from a finite portion of that
set. This follows at once from the fact that the number of conjuncts in the
antecedent of the requisite conditional (B1∧ ...∧Bk) → A is always finite. There
is an alternative way of expressing compactness, using consistency: a set Γ of
sentences is consistent iff every finite subset of Γ is consistent. The compactness
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property in these two (equivalent) forms will be used in the completeness proof
below.

The soundness result, i.e. that

Γ �G A ⇒ Γ |=C A (where C ∈ {H3,Hs
3})

follows immediately from the definitions involved. Observe that the semantic
validity of the Spohn sentence (S) − alias (RM) − depends on (δ3) alone. This
is in contrast to the situation in non-monotonic logics, where the validity of the
principle of rational monotony is tightly connected to the assumption that the
preference relation is a total order.

The adequacy result, i.e. the converse implication

Γ |=C A ⇒ Γ �G A

takes a little bit of work. It can be established by adapting the standard modal
technique of constructing a canonical model (see, for instance, Chellas [21] or
Blackburn et al. [22]). The points of the canonical model are maximal consis-
tent sets of sentences. In the present semantical context, the main difficulty is
to define the comparative goodness relation in such a way that the semantic
truth-conditions for formulae starting with a deontic operator coincide with
the set-membership relation between formulae and maximal consistent sets.
Åqvist [10,23,11] has developed the technique of so-called systematic frame con-
stants as a solution to the latter difficulty. Such a technique provides a means
of encoding the betterness relation into the syntax, whereby enabling us to talk
and reason about the goodness of the maximal consistent sets in the canon-
ical model. The idea behind the proposed construction (which has roots in
Lewis [16]) involves extending the language with a family of propositional con-
stants, {Qi}1≤i<ω (the so-called “systematic frame constants”), which are in-
dexed by the set of positive integers. These are used to attach a “rank” (or
“level of perfection”) to every maximal consistent sets. Intuitively, Q1 refers to
an ideal situation, Q2 refers to a sub-ideal one, Q3 refers to a sub-sub-ideal one,
and so forth. The completeness of G is established indirectly, by taking a de-
tour through the system G	

q that results from the addition of suitable axiom
schemata. Some govern the behavior of all the Qi, and others their interplay
with the normative modalities. Further detail about how the latter system is
used to establish the completeness of G can be found in Åqvist [10, p. 184-91].
The basic idea is to define a canonical model for G using maximal consistency
in G	

q as the criterion for worldhood.
The following two observations have motivated my attempt to prove the com-

pleteness of G by other means. First, on Åqvist’s own admission, the desired
completeness remains conjectural, because the proposed argument rests on an
unestablished lemma. Next, it has been argued by Hansen [24, p. 130] that
Åqvist’s conjectured proof fails with respect to strong completeness. To make
his point, Hansen considers the case of an ‘infinitely bad’ set, call it Γ0. It is
made up of
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– countably many propositional letters pi (1 ≤ i < ω)
– the primary obligation ©¬p1, taken as a shorthand for ©(¬p1/�) (where
� is any tautology), and

– the sequence of ever more specific contrary-to-duty obligations

©(¬pi+1/p1 ∧ p2 ∧ ... ∧ pi) for all i such that 1 ≤ i < ω

Hansen points out that Γ0 is syntactically inconsistent in G	
q . The systematic

frame constants are indexed by the set of positive integers. Therefore, no sys-
tematic frame constants can consistently be added to Γ0, and thus no rank (or
level of ideality) can be assigned to such a set. The reason why should be obvious
to the reader. Γ0 cannot be ideal (i.e. Γ0 ∪ {Q1} �G�

q
⊥), because Γ0 violates

the primary norm ©¬p1. Neither can Γ0 be sub-ideal (i.e. Γ0 ∪ {Q2} �G�
q
⊥),

since Γ0 violates the contrary-to-duty obligation ©(¬p2/p1). Neither can Γ0

be sub-sub-ideal (i.e. Γ0 ∪ {Q3} �G�
q
⊥), since it also violates the contrary-to-

contrary-to-duty obligation ©(¬p3/p1 ∧ p2). And so on indefinitely.
The purpose of the next section is to define a canonical model for G directly,

without making reference to G	
q or to any other such system. The only notion of

consistency I shall use is consistency in G. The worlds will be ordered from the
standpoint of a given world, by just comparing the extent to which they comply
with the obligations contained there.

3 A Canonical Model for G

The following derived rule and theorems are listed for future reference:

If � B → C then � ©(B/A) →©(C/A) (RCOM)
© (B1/A) ∧ ... ∧©(Bn/A) →©(B1 ∧ ... ∧Bn/A)(n ≥ 2) (AND)
♦A → ¬© (⊥/A) (COD)
© (C/A ∨B) → (©(C/A) ∨©(C/B)) (DR)

The abbreviations RCOM and COD are taken from Chellas [21]. The proofs of
(RCOM), (AND) and (COD) are straightforward, and are omitted. (DR) is the
deontic version of the principle usually referred to as ‘disjunctive rationality’ in
the non-monotonic literature. The proof of (DR) requires a little more work.
For the details, the reader is asked to consult, e.g., Makinson [25, p. 94]. The
derivation presented there appeals to the following additional law, known as
‘cautious monotony’:

(©(B/A) ∧©(C/A)) →©(C/A ∧B) (CM)

It is perhaps easier to verify that the logic contains (CM) by breaking the argu-
ment into cases. If we have ♦A, then (CM) follows from (RM), since (D	) allows
us to weaken ©(B/A) into P (B/A). If we do not have ♦A, then (CM) follows
from (Ext), because ¬♦A implies �(A ↔ (A ∧B)).



196 X. Parent

Definition 1. Let W 	 be the set of all maximal consistent sets of sentences
(MCSs). Let w be a fixed element of W 	. The canonical model generated by w
can be defined as the triplet

M w = (W,), V )

where:

(i) W = {x ∈ W 	 : for each A, if �A ∈ w then A ∈ x}
(ii) x ) y if and only if either

(a) there is no consistent A such that {B : ©(B/A) ∈ w} ⊆ y (the vacuous
case) or

(b) there is a sentence A ∈ x ∩ y such that {B : ©(B/A) ∈ w} ⊆ x
(iii) V = the valuation function such that for all p in Prop:

V (p) = {x ∈ W : p ∈ x}

Condition (i) says that W is just the restriction of W 	 to the set of MCSs
containing all the wffs A for which �A is in the ‘generating’ world w. This is
needed to deal with the alethic modalities. Lemma 1 below clarifies the import
of (ii). Intuitively, such a lemma says that the best (according to )) MCSs
among those containing A are precisely those containing all the wffs B for which
©(B/A) is in the ‘generating’ world w.

Lemma 1. If ) is defined as in clause (ii) supra, then the following two con-
ditions are equivalent (for any x and y in W ):

(I) A ∈ x and x ) y for all y that contains the sentence A
(II) {B : ©(B/A) ∈ w} ⊆ x

Proof. From the definition of ) one sees that (II) entails (I) (given axiom Id). For
the converse direction suppose (I) holds, and let B be such that ©(B/A) ∈ w.
We need to show that B ∈ x. Consider the set Γ = {C : ©(C/A) ∈ w}. We
make the following claims:

Claim 1. Γ is consistent, and can be extended to a maximal consistent set, call
it Γ+.

Verification. The second claim follows from the first (modulo Lindenbaum’s
lemma). To prove the first claim, suppose Γ is not consistent. By compact-
ness, this means that there is some finite subset {C1, ..., Cn} of Γ such that
�G (C1 ∧ ... ∧ Cn) → ⊥. By (AND) and (RCOM), ©(⊥/A) ∈ w. By (COD)
and (S5), �¬A ∈ w so that ¬A ∈ x. Since x is consistent, A 
∈ x, contrary to
assumption. We, thus, conclude that Γ is consistent after all.

Claim 2. Γ+ belongs to W .

Verification. This follows from the fact that, in the presence of (CON), we have

{C : �C ∈ w} ⊆ {C : ©(C/A) ∈ w} ⊆ Γ+
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Claim 3. Γ+ contains the sentence A.

Verification. Follows from (Id).

We can now apply hypothesis (I) to conclude that x ) Γ+. By construction,
{C : ©(C/A) ∈ w} ⊆ Γ+. Therefore, x ) Γ+ means that there exists a sentence
D ∈ x ∩ Γ+ such that

{E : ©(E/D) ∈ w} ⊆ x (1)

But we can see that P (D/A) ∈ w. If not, then (DfP) would yield ¬D ∈ Γ+,
and thus Γ+ would be inconsistent. On the other hand, ©(B/A) ∈ w entails
©(D → B/A) ∈ w. By (S), (Ext) and (C) we conclude ©(A → B/D) ∈ w. We
can, then, apply (1) to get A → B ∈ x and, then, conclude. ��
With this established, the rest is easy. First, we lift the ‘truth = membership’
equation to arbitrary formulae:

Theorem 1 (Truth Lemma). Let w be a fixed maximal consistent set of sen-
tences, and let M w be the canonical model generated by w. Then, for any formula
A and x in W ,

M w |=x A iff A ∈ x

Proof. The proof is by induction on the complexity of A, as measured by the
number of logical operators occurring in it. The base case follows from the defi-
nition of V in the canonical model. The boolean cases are handled in the usual
way, and so are the modal cases. In the modal cases, it might be helpful first to
show that (by virtue of the S5 schemata) the relation R ⊆ W 	 ×W 	 defined by
putting xRy whenever {C : �C ∈ x} ⊆ y is an equivalence relation on the set
W 	 of all maximal consistent sets. The fact that R is symmetric, i.e.

{C : �C ∈ x} ⊆ y ⇒ {D : �D ∈ y} ⊆ x (2)

will be used in the proof of the deontic cases, to which I now turn. I shall focus
on the case where A is ©(C/B). The following is to be established:

M w |=x ©(C/B) iff © (C/B) ∈ x

For the right-to-left direction, assume ©(C/B) ∈ x and let y ∈ [[B]]M w

be such
that y ) z for all z in [[B]]M w

. By the inductive hypothesis, B ∈ y, and y ) z
for any z ∈ W such that B ∈ z. Using lemma 1, we get

{B′ : ©(B′/B) ∈ w} ⊆ y (3)

Now, in the presence of (CON), � © (C/B) ∈ x can validly be inferred from
©(C/B) ∈ x. Using (2), we then get ©(C/B) ∈ w. From this together with (3),
we obtain C ∈ y. By the inductive hypothesis, C is true at y. This shows that
©(C/B) is true at x as wished.

For the left-to-right direction, assume that ©(C/B) is true at x. Using the
truth-clause for ©, the inductive hypothesis and lemma 1, and invoking the
definition of W , we first get

∀y ∈ W 	 : ({E : �E ∈ w} ⊆ y & {D : ©(D/B) ∈ w} ⊆ y) ⇒ C ∈ y
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This itself simplifies into (see claim 2 in the proof of lemma 1 above)

∀y ∈ W 	 : {D : ©(D/B) ∈ w} ⊆ y ⇒ C ∈ y (4)

(4) says that C belongs to every maximal consistent extension of

{D : ©(D/B) ∈ w}

By the second corollary to Lindenbaum’s lemma, C is derivable from that set,
i.e.,

�G (D1 ∧ ... ∧Dn) → C

for sentences D1, ..., Dn(n ≥ 0) such that

©(D1/B), ...,©(Dn/B) ∈ w

Without loss of generality, we can assume that the number of Di is finite, given
compactness. So, using (AND), we first obtain

©(D1 ∧ ... ∧Dn/B) ∈ w

Using (RCOM), we get

©(C/B) ∈ w

By (CON),

�© (C/B) ∈ w

The definition of W , then, yields the desired conclusion ©(C/B) ∈ x.
The proof that the theorem holds when A is P (C/B) is similar in structure.

Details are omitted. ��

We can now check that the comparative goodness relation ) of the canonical
model has the required properties:

Lemma 2 (Verification Lemma). If ) is taken as in definition 1, then ) is
limited (δ2), transitive (δ3) and strongly connected (δ4).

Proof. Limitedness is easily checked. Assume A is true at some x in W . By
theorem 1, A ∈ x. Re-running the proof for the ‘(II) ⇒ (I)’ direction of lemma
1, claims 1 to 3, we get that W contains at least one y such that {A} ⊆ {B :
©(B/A) ∈ w} ⊆ y. Again, by theorem 1, A is true at y. Consider any z at which
A is true. By theorem 1, A is in z, and hence in y ∩ z. By definition 1 (ii), y ) z
as expected.

Strong connectedness can be proved by reductio ad absurdum. Assume x 
) y
and y 
) x. The former entails that there is a consistent A such that {B :
©(B/A) ∈ w} ⊆ y, whilst the latter implies that there is a consistent C such
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that {B : ©(B/C) ∈ w} ⊆ x. In virtue of (Id), A ∈ y and C ∈ x so that
A ∨C ∈ y ∩ x. Using (DR), one might then conclude that either

{B : ©(B/A ∨ C) ∈ w} ⊆ {B : ©(B/A) ∈ w} ⊆ y

or

{B : ©(B/A ∨ C) ∈ w} ⊆ {B : ©(B/C) ∈ w} ⊆ x

Either way we are done.
The proof that ) is transitive is a bit tricky. Suppose x ) y and y ) z.

Assume y ) z means that there exists a B ∈ y ∩ z such that

{B′ : ©(B′/B) ∈ w} ⊆ y (*)

(Otherwise, x ) z holds trivially.) Given this, x ) y entails that there is C ∈ x∩y
such that

{C′ : ©(C′/C) ∈ w} ⊆ x (**)

Clearly, B ∨ C ∈ x ∩ z. The following is to be established:

{D : ©(D/B ∨ C) ∈ w} ⊆ x (5)

Note that P (C/B ∨ C) ∈ w. For otherwise, using (DfP), the maximality of w
and (DR), we would have either ©(¬C/C) ∈ w or ©(¬C/B) ∈ w. None can
occur, because a direct application of (**) and (*) would yield the result that C
does not belong to the union of x and y − contradicting the assumption made
above that C belongs to their intersection. The proof of (5) is then as follows.
Assume ©(D/B ∨ C) ∈ w. By (RCOM), ©(C → D/B ∨ C) ∈ w. By (S),
©(D/(B∨C)∧C) ∈ w. By (Ext), ©(D/C) ∈ w. Using (**), we then get D ∈ x
as wished. ��

The above results are similar to Boutilier’s [26] theorem 3.36. There the focus is
on belief revision theory. Due to this shift of emphasis, my proofs are different
from those presented there.

4 Completeness

I first deal with the totally ordered case. The completeness of G with respect to
the class Hs

3 of strong H3-models follows easily from the following:

Theorem 2. Every consistent set of sentences is satisfiable in Hs
3.

Proof. Let Γ be any consistent set of sentences. By Lindenbaum’s lemma, Γ has
a maximal extension, call it Γω. Form the canonical structure generated by Γω,
i.e., the structure M Γω as defined supra. By lemma 2, M Γω belongs to Hs

3. By
theorem 1 above, we obtain in particular that for each sentence A

M Γω |=Γω A iff A ∈ Γω
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Since Γ ⊆ Γω, we thus have

M Γω |=Γω A for any A in Γ

as required. ��

Theorem 3 (Completeness, total order case). For each set of formulae Γ
and formula A, the equivalence

Γ �G A ⇔ Γ |=Hs
3

A

holds.

Proof. The left-to-right implication is just soundness, so it suffices to check out
the right-to-left implication. The argument is standard. Suppose Γ |=Hs

3
A. Then

Γ ∪ {¬A} is not satisfiable in Hs
3, and hence theorem 2 gives Γ ∪ {¬A} �G⊥.

By simple propositional manipulations, we get Γ �G A as required. ��

Theorem 3 is a strong completeness result. As already emphasized, the argument
uses compactness many times, and thus no restrictions are placed on the cardi-
nality of the premisse set Γ , at least in principle. I say ‘in principle’, because
the question of whether the above result is immune from a similar objection as
the one raised against the systematic frame constants account remains an open
problem. As mentioned, a drawback of the latter account is that it fails to as-
sign a rank to the ‘indefinitely’ bad set as described on p. 194–195. Take the
canonical structure generated from the maximal consistent extension of such a
set. It is natural to ask if the definition of ) in the canonical model does a better
job. That issue calls for further exploration, which will not be attempted in this
paper.

I now turn to the partially ordered case. In Åqvist [10, p. 182] and Åqvist [11,
p. 249], the question is raised whether G is also strongly complete with respect
to the class H3 of models. Based on our previous results we can give a positive
answer to this last question.

Corollary 1 (Completeness, partial order case). For each set of formulae
Γ and formula A, the equivalence

Γ �G A ⇔ Γ |=H3 A

holds.

Proof. We already have the soundness part. The proof of the adequacy claim
requires only two lines:

Γ |=H3 A ⇒ Γ |=Hs
3

A

⇒ Γ �G A (by th. 3)

��
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The above result shows that within the present set-up the strong connectedness
assumption (δ4) has no import, in the sense that the logic is unaffected by
imposing this requirement or not. At first, this may seem surprising. In a way,
this is not, given the following:

– H3-models include the requirement of limitedness (δ2), and (as mentioned)
in the finite case limitedness entails connectedness (δ4),

– As can easily be verified, the schema A ≥ B ∨B ≥ A is always valid as long
as limitedness is assumed. Here the relation ≥ between formulas is defined
in the usual fashion, i.e. by the rule: A ≥ B iff ♦(A ∨B) → P (A/A ∨B).

There is more to connectedness than meets the eye. Such a notion is central to,
e.g., questions about the possibility of deontic dilemmas, which are key questions
within deontic logic today (see, e.g., [27,20]). An in-depth discussion of the role
of comparability for the logic of obligation falls outside the immediate scope of
this paper, and must be postponed to another opportunity.

One reviewer suggested we start with a form of the limit assumption that does
not have the effects described above. Suppose one such form is available. Sup-
pose also we redefine H3-models by requiring they satisfy this new version of the
limit assumption, rather than the old one; the evaluation rules for the deontic
modalities are then re-phrased in terms of maximality rather than optimality. We
would certainly get a better understanding of the role of comparability within
an Hansson-type semantics, by first axiomatizing this class of models, and then
investigating the effects of adding the linearity requirement. The question of
whether there are in fact alternative forms which the limit assumption might
take, is the main focus of my current investigations. The notion of stoppered-
ness from [18] and [28] would not do, but perhaps there are alternative forms
available. Expressed in terms of maximality, the stopperedness condition says
that whenever x ∈ [[A]]M there is a maximal y ∈ [[A]]M with y ) x. Connected-
ness would still be involved in the framework being used, because stopperedness
validates the formula A ≥ B ∨B ≥ A.

Acknowledgments. I would like to thank the anonymous referees for their
helpful comments.
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Abstract. Writing a contract of a specific content is a ground for pur-
chase, purchase is a ground for ownership, ownership is a ground for
power to dispose. Also power to dispose is a consequence of ownership,
ownership is a consequence of purchase. etc. The paper presents a con-
tinuation of the authors’ previous algebraic representation on ground -
consequence chains in normative systems.The paper analyzes different
kinds of “implicative closeness” between grounds and consequences in
chains of legal concepts, in particular combinations of “weakest ground”,
“strongest consequence” and “minimal joining”. The idea of a concept’s
being intermediate between concepts of two different sorts is captured
by the technical notion of “intervenient”, defined in terms of weakest
ground and strongest consequence. A legal example concerning grounds
and consequences of “ownership” and “trust” is used to illustrate the
application of the formal theory.

Keywords: Normative system, Legal concept, Intermediate concept, In-
tervenient, Weakest ground, Strongest consequence, Intervenient mini-
mality, Ownership.

1 Introduction: Intermediate Concepts in a Normative
System

Janus, the Roman god of beginnings and endings, had two faces. Likewise, legal
concepts have two faces, one turned towards facts and description, the other
turned towards legal consequences. The ultimate grounds for there being a valid
contract are described in an essentially empirical way, as a matter of actions,
beliefs, intentions, absence of certain kinds of influence, such as violence or de-
ceit etc. The ultimate consequences of there being a valid contract are described
essentially in deontic terms as a matter of rights and duties between the parties.
One set of rules relate to the factual requirements for a valid contract, another
set of rules relate to the deontic consequences of a valid contract. Similarly
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for other legal terms such as citizenship, guardianship, ownership, possession
etc. We might say that ownership, valid contract, citizenship etc. are “inter-
mediate” between certain facts (grounds) and certain deontic positions (legal
consequences).

In a series of papers, the present authors have aimed at developing an algebraic
framework for elucidating the role of intermediate concepts in normative systems.
See [5], [6], [9], [10], [11]. Cf. [8], [12].1 In these papers, emphasis is put on
distinguishing various relations of “closeness” and “minimality”. As a first hint,
we consider the following three rules 1-3:

1. Legal rule linking descriptive concept a1 (ground) to an intermediate concept
a2: For all x, y: If a1(x, y) then a2(x, y).

2. Legal rule linking an intermediate concept a2 to deontic concept a3 (conse-
quence): For all x, y: If a2(x, y) then a3(x, y).

3. Legal rule directly linking descriptive concept a1 (ground) to deontic concept
a3 (consequence): For all x, y: If a1(x, y) then a3(x, y).

The rules 1-3 are represented by three ordered pairs 〈a1, a2〉, 〈a2, a3〉, 〈a1, a3〉
where a1, a2, a3 are considered to be of “different sorts”. For any such pair
〈u, v〉 we consider the features of “weakest ground”, “strongest consequence”
and “minimality”. Thus, if any ground for v(x, y) implies u(x, y), then u is
a “weakest” ground for v, abbreviated WG(u, v). Also, if v(x, y) implies any
consequence of u(x, y), then v is a “strongest” consequence of u, abbreviated
SC(v, u). If both WG(u, v) and SC(v, u), then the implication from u(x, y)
to v(x, y) is minimal and the pair 〈u, v〉 represents what we call a “minimal
joining”.

In our formal analysis of intermediate concepts, we make use of a technical
notion “intervenient” intended to capture essential features of what, intuitively,
can be regarded intermediate concepts in the law.2 If a1, a2, a3 are as in rules
(1)-(3) and it holds both that WG(a1, a2) and that SC(a3, a2), then a2 is called
an intervenient “corresponding” to the pair 〈a1, a3〉.

In a full-fledged formal theory, the following features of intermediate concepts
are important.

– WG, SC relationships and effective expressiveness of intermediate concepts

1 Since the framework of our analysis in these papers is algebraic, there is a need for an
algebraic framework as well for the deontic positions that are seen as ultimate legal
consequences. An algebraic framework for deontic positions developed is introduced
in [8].

2 Our basic formal framework is abstract in the sense that the main algebraic results
have other areas of applications than intermediate concepts in the law. We always
endeavour to make the algebraic results independent of any specific interpretation.
Thus, the so-called cis model (cis for “condition implication structure”) of the ab-
stract theory, envisaged in the present paper and intended as a tool e.g., for analysis
of intermediaries in legal systems, only plays the part of one of several models for
the theory.



Strata of Intervenient Concepts in Normative Systems 205

An important issue in the classical debate on intermediate concepts was how
these concepts (for example “ownership”) served to reduce the number of legal
rules needed for expressing the contents of the legal system. This feature can be
called “economy of expression”.3 An essential element in the analysis performed
by the present authors is that relations WG, SC, and minimality, as outlined
above, are decisive for how economy of expression is accomplished and for how
changes of a system can be effectively achieved. (See [5], [6], [8], [9], [11] and
cf. [12].) Other notions defined by us for this purpose are those of “base of a
system” and “base of intervenients” of a system. (See [9], [11].)

In the present paper we systematize different minimality relations, aiming at
a typology.

– Networks of Boolean structures (strata) of cognate intermediate concepts

Within the classical debate, the analysis of legal concepts as intermediate only
dealt with intermediate concepts (like “ownership”) taken singly.

In a comprehensive system of legal concepts, however, sets of intermediate
concepts constitute subsystems where the consequence-structure in one system
can be the ground-structure in another.4 Therefore, the pattern of a compre-
hensive system of legal concepts is usually that of a network of structures of
intermediate concepts. (See the middle part of Fig.1.) Legal theory and concept
formation essentially deals with the “box” between input and output. In the
box in the middle of Fig.1, each of the nodes represents a structure of several
interconnected concepts rather than a single concept.

A structure of concepts thus represented by a node is conceived by us as
a Boolean algebra of cognate concepts. Within this framework, the status of
Boolean combinations of intermediate concepts is an issue to be clarified. If,
according to some criteria, m1, m2 are appropriately seen as intermediate within
a specific system, it should be clarified whether negations not −m1, not − m2,
conjunctions m1 ∧ m2 and disjunctions m1 ∨ m2 are intermediate concepts as
well according to these criteria. (On negation, see [10], [11]. On minimality see
the theorems on “connections” in [8].)

In the present paper, we take a first step towards analyzing networks of struc-
tures of intermediate concepts.

– Openness of intermediate concepts

As is well-known, there are numerous cases where legal concepts are vague
or “open textured”, and power to interpret the concepts is conferred on judges
and other persons who apply the law. Obvious examples are such concepts as
“negligent” or “reasonable” but considerable openness also is a feature of such

3 For references to Wedberg-Ross and the early Scandinavian debate, see [5], [6], [8],
[11] For a recent contribution, cf. as well [13].

4 In some recent versions of the so-called “Counts-as” theory, the concepts dealt with
can be thought of as constituting a chain. See [11] cf. [2].



206 L. Lindahl and J. Odelstad

I nterconnected
nodes represen-
ting structures of
legal concepts

Normative
Output

Input of
facts

Fig. 1.

concepts as “public interest”, “contract” and “ownership”.5 Often the vague
concepts occur within a chain or network, and, to arrive at deontic consequences,

5 We recall that, at the end of the 18th century, Jeremy Bentham launched an attack on
the traditional legal conceptual apparatus as used by the legal profession. According
to Bentham, a large part of the legal terms in use were “impostor words”. He dreamt
of a “complete legal code” and envisaged a reformulation of legal rules in a language
where clear commands are stated by the legislator or can be derived from such
commands. In this way the influence of the inclinations and biases of lawyers applying
the law should be minimized. The different deontic (“imperational”) modes should
be structured by “imperational logic”. See, for example [3].

However, as clearly understood already by Aristotle, it is not possible to create a
complete legal code without incurring into error by oversimplifying matters:

... all law is universal but about some things it is not possible to make a
universal statement which shall be correct. In those cases, then, in which it
is necessary to speak universally, but not possible to do so correctly, the law
takes the usual case, though it is not ignorant of the possibility of error. And
it is none the less correct; for the error is in the law nor in the legislator but in
the nature of the thing, since the matter of practical affairs is of this kind from
the start. When the law speaks universally, then, and a case arises on it which
is not covered by the universal statement, then it is right, where the legislator
fails us and has erred by oversimplicity, to correct the omission-to say what
the legislator himself would have said had he been present, and would have
put into his law if he had known. Hence the equitable is just, and better than
one kind of justice-not better than absolute justice but better than the error
that arises from the absoluteness of the statement. And this is the nature of
the equitable, a correction of law where it is defective owing to its universality.
In fact this is the reason why all things are not determined by law, that about
some things it is impossible to lay down a law, so that a decree is needed. For
when the thing is indefinite the rule also is indefinite, like the leaden rule used
in making the Lesbian moulding; the rule adapts itself to the shape of the
stone and is not rigid, and so too the decree is adapted to the facts. Aristotle,
Nicomachean Ethics, EN 1137b.
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deduction must be combined with step by step interpretative decisions for the
concepts in the chain or network. The occurrence of “open” legal concepts is
a strong argument against any reductionist idea that legal reasoning might in
general proceed directly from facts to deontic consequences so as to dispense with
intermediate concepts. (Cf. [11].) In previous papers [5], [9], [10], [11], the present
authors have dealt algebraically with the problem of “open” legal intermediaries.
If there is a chain or network of open concepts, the algebraic analysis will be
very complex. In the present paper, we do not deal specifically with “open”
intermediaries.

The paper is organized as follows. In Section 2, the formal framework is in-
troduced, with an overview and some explicit definitions of basic theoretical
tools. Section 3, which is the main part of the paper, starts with a legal example
(ownership and trust), a small network intended to illustrate the formal results.
Subsequently in this section, a number of results on weakest grounds, strongest
consequences, minimality and intervenients are presented. Moreover, the case
of a chain of more than three structures is analyzed. The section ends with a
systematization of different kinds of minimality, summed up in a rudimentary
typology. In Section 4, which is the conclusion, some suggestions are made with
a view to future work.

2 The Basic Framework

The basic framework of our analysis is purely algebraic (abstract) but is devel-
oped with a preferred model in view.6 This model, called “condition implication
structure” (cis), has limitations. In our view, however, the model provides means
for seeing and formulating distinctions and features that elucidate the different
character of various kinds of concepts in actual normative systems. In this section
we describe the formal framework in terms of the cis-model.

The cis-model consists of different strata B1,B2, ..., called “Boolean quasi-
orderings” (Bqo’s) where, for Bi = 〈Bi,∧,′ , Ri〉, it is assumed that 〈Bi,∧,′ 〉 is a
Boolean algebra and Ri is a quasi-ordering on Bi.7 The indifference part of Ri

is denoted Qi and the strict part is denoted Si. The elements of the (domains
of the) Bqo’s are called “conditions” and are assumed to be concepts such that
elements ai and aj of two Bqo’s Bi and Bj are of “different kinds”.8

Within one and the same Bqo Bi, conditions ai, bi, ci, ... are connected by an
implicative relation relation Ri. The relation Ri between conditions ai, bi, ci, ...
within a Bqo Bi, is thought of as representing logical or otherwise highly stable
relationships, immune to changes. Two conditions ai, aj from two different Bqo’s

6 For an extensive presentation of the formal theory, the reader is referred to [11] with
further references.

7 The formal definition of a Bqo requires, that (i) aRib and aRic implies aRi(b ∧ c),
(ii) aRib implies b′Ria

′, (iii) (a∧ b)Ria, (iv) not 	Ri⊥, where ⊥ is the zero element
and 	 is the unit element.

8 Note our notation where Bi is a Bqo and Bi the domain of Bi. Sometimes we speak
of “element of a Bqo Bi” in the sense of element of the domain of Bi.
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Bi and Bj can be connected by an implicative relation Ji,j . These implications
(called “joinings”) between conditions in two Bqo’s Bi and Bj are thought of as
the prescriptions (the normative content) of the system. Changes of a system
are thought of as changes of the joinings between elements of two Bqo’s rather
than of the relations Ri within a Bqo Bi. A triple 〈Bi,Bj, Ji,j〉 consisting of two
Bqo’s Bi,Bj interconnected by a set Ji,j of joinings (implications) between their
elements, is called a “Boolean joining system” (Bjs).9

If Ji,j is the set of joinings from Bi to Bj, then min Ji,j , i.e., the subset of
minimal joinings from Bi to Bj, is of special importance for characterizing the in-
terrelation between Bi and Bj .10 A pair 〈ai, aj〉 belongs to min Ji,j if, in Bi there
is no weaker ground for aj than ai and, in Bj, there is no stronger consequence
of ai than aj . If for any pair 〈bi, bj〉 ∈ Ji,j , there is a pair 〈ai, aj〉 ∈ min Ji,j

such that 〈bi, bj〉 “encloses” 〈ai, aj〉, then we say that Ji,j satisfies connectiv-
ity.11 Thus, in the figure below, if 〈a1, a2〉 ∈ min J1,2, the pair 〈b1, b2〉, belonging
to J1,2 encloses 〈a1, a2〉 in the sense that b1R1a1 and a2R2b2.12

The various Bqo’s of a normative system and the various implicative relations
are seen against a background of the general framework of a Boolean algebra B
9 The formal definition of a Bjs presupposes the following definition: The narrowness-

relation determined by the quasi-orderings 〈B1, R1〉 and 〈B2, R2〉 is the binary rela-
tion � on B1 × B2 such that 〈a1, a2〉 � 〈b1, b2〉 if and only if b1R1a1 and a2R2b2.
〈B1, B2, J〉 is a Bjs if (i) for all b1, c1 ∈ B1 and b2, c2 ∈ B2, 〈b1, b2〉 ∈ J and
〈b1, b2〉 � 〈c1, c2〉 implies 〈c1, c2〉 ∈ J , (ii) for any C1 ⊆ B1 and b2 ∈ B2, if 〈c1, b2〉 ∈ J
for all c1 ∈ C1, then 〈a1, b2〉 ∈ J for all a1 ∈ lubR1C1, (iii) for any C2 ⊆ B2 and
b1 ∈ B1, if 〈b1, c2〉 ∈ J for all c2 ∈ C2, then 〈b1, a2〉 ∈ J for all a2 ∈ glbR2C2. (Note
that the definitions of least upper bound (lub) and greatest lower bound (glb) for
partial orderings are easily extended to quasi-orderings, but the lub or glb of a subset
of a quasi-ordering is not necessarily unique but can consist of a set of elements.)

10 A minimal joining is minimal with respect to the narrowness-relation.
11 See [11], Section 2.2 for conditions on a Bjs that imply connectivity.
12 By Fig.2, it is visualized that 〈b1, a2〉 belongs to the relative product R1| min J1,2,

and 〈a1, b2〉 to the relative product min J1,2|R2.
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providing the language of the whole system. The various implicative relations
(R1,R2,... J1,2,J2,3, ...and their combinations) of the system are seen as regimen-
tations of a general implicative binary relation ρ in B. Thus the most general
structure of the system is expressed by what we call a supplemented Boolean
algebra or sBa 〈B,∧,′ , ρ〉.13 This sBa is all-embracing to the system, and its
relation ρ, in a sense, is what constitutes the system.

In a comprehensive representation of a normative system as reconstructed
within our framework, its structure is conceived of as a net-like pattern where
the Bqo’s represent the nodes and the joinings represent the links between nodes.
Minimal joinings play an essential part for characterizing a normative system as
so represented and for effectively describing changes made in such a system.

Fig.1 above might provide a first glimpse of the net-like pattern, supposing
that the nodes are thought of as Bqo’s and the links between nodes as joinings.
As appears from the middle part of Fig.1, systems of legal concepts internal
to the system can be thought of as Bqo’s belonging to various strata of the
normative system, these Bqo’s being interrelated by joinings of the system (lines
between the nodes). Some of the elements of the Bqo’s in this middle part of
the system can be called “intervenients”, in the sense of that which “comes in
between” the concepts for facts and the deontic concepts.

If a condition m is an intervenient between two strata Bi and Bj , then there
is an intro-condition for m in Bi and an elim-condition for m in Bj . The intro-
condition is the weakest ground in Bi for m, and the elim-condition is the
strongest consequence in Bj of m. Thus one can derive m from conditions in
Bi only via the intro-condition, and one can derive conditions in Bj from m
only via the elim-condition. The concept of minimality for joinings between two
strata, as well as the concept of intervenient between two strata, is defined in
terms of weakest ground and strongest consequence. Thus the concepts of mini-
mal joining and intervenient are interrelated. The present paper is much devoted
to investigating these interrelations.

In the formal part of [11], we focused on systems consisting of one algebra of
grounds and one algebra of consequences and a system of intervenients between
these algebras. In the present paper, we further analyze the definitional require-
ments on intervenients, prove a number of results, and exhibit a rudimentary
typology. Also, we take a step towards extending the theory so as to incorporate
series of systems of intervenients. In such a series, the consequence-structure in
one system can be the ground-structure in another, and the intervenients in one
system can be grounds or consequences in another.

3 Development of the Theory

3.1 A Legal Example

In this section and the next we will present a number of results on weakest
grounds, strongest consequences, minimality, and intervenients. These will be
13 In a sBa the partial ordering determined by the Boolean algebra is a subset of ρ.
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illustrated by specific figures 3A-J, but as well by a legal example concerning
ownership and trusteeship, pictured as a rudimentary network (see Fig.3). The
legal rules in this example are expressed in terms of joinings between Bqo’s
B1, B2, B4, B5 for ownership, and between B3, B4 and B5 for trusteeship.14

Both of B2 and B4 are intermediate structures, where B4 is supposed to contain
the intervenients ownership and trusteeship and B2 the intervenients purchase,
barter, inheritance, occupation, specification, expropriation (for public purposes
or for other reasons), which are grounds for ownership. B1 contains grounds for
the conditions in B2, such as making a contract for purchase or barter respec-
tively, having particular kinship relationship to a deceased person, appropriating
something not owned, creating a valuable thing out of worthless material, get-
ting a verdict on disappropriation of property, either for public purposes or for
other reasons. B3 contains different grounds for trusteeship. B5 contains the le-
gal consequences of ownership and trusteeship, respectively, in terms of powers,
permissions and obligations.
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Fig. 3.

14 Trust is where a person (trustee) is made the nominal owner of property to be held
or used for the benefit of another. Trusteeship is the legal position of a trustee.
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3.2 Weakest Grounds and Strongest Consequences

Definition 1. A Bqo Bi = 〈Bi,∧,′ , Ri〉 lies within an sBa 〈B,∧,′ , ρ〉 if 〈Bi,∧,′ 〉
is a subalgebra of 〈B,∧,′ 〉 and ρ|Bi = Ri. A Bjs 〈B1,B2, J〉 lies within an sBa
S if B1 and B2 lie within S, B1 ∩B2 ⊆ {�,⊥} and ρ| (B1 ×B2) = J .

Suppose that S = 〈B,∧,′ , ρ〉 is an sBa and that 〈B1,B2, J1,2〉 is a Bjs lying
within S. That a1 ∈ B1 is one of the weakest grounds in B1 of a2 with respect
to S is denoted WGS (a1, a2, B1), and that a2 ∈ B2 is one of the strongest
consequences of a1 in B2 with respect to S is denoted SCS (a2, a1,B2). When
there is no risk of ambiguity, we omit the subscript S.

Definition 2

WGS (a1, a2, B1) iff 〈a1, a2〉 ∈ J1,2 & ∀b1 ∈ B1 : 〈b1, a2〉 ∈ J1,2 −→ b1R1a1.
SCS (a2, a1, B2) iff 〈a1, a2〉 ∈ J1,2 & ∀b2 ∈ B2 : 〈a1, b2〉 ∈ J1,2 −→ a2R2b2.

A weakest ground a1of a2 is degenerated if a1ρ⊥. A strongest consequence a2 of
a1 is degenerated if �ρa2.

Proposition 1. (i) (See Fig.4A.) Suppose that 〈B1,B2, J〉 is a Bjs. Suppose
further that a1R1b1, 〈b1, b2〉 ∈ J and b2R2a2. Then 〈a1, a2〉 ∈ J .

(ii) (See Fig.4B.) Suppose that 〈B1,B2, J〉 is a Bjs and WG (a1, a2, B1) and
WG (b1, b2, B1). If a2R2b2 then a1R1b1.

(iii) If 〈B1,B2, J〉 is a Bjs, WG (a1, a2, B1) and WG (b1, a2, B1), then a1Q1b1.
(iv) (See Fig.4C.) Suppose that 〈B1,B2, J〉 is a Bjs and, that furthermore,

SC (a2, a1, B2) and SC (b2, b1, B2). If a1R1b1 then a2R2b2.
(v) If 〈B1,B2, J〉 is a Bjs, SC (a2, a1, B2) and SC (b2, a1, B2) then a2Q2b2.
(vi) If WG (a1, a2, B1) and WG (b1, b2, B1) then WG (a1 ∧ b1, a2 ∧ b2, B1).
(vii) If SC (a2, a1, B2) and SC (b2, b1, B2) then SC (a2 ∨ b2, a1 ∨ b1, B2).

Some of the statements in the proposition above are exemplified below.
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3.3 Minimality

In this section we study how the concept of minimal joining is related to the
concepts of weakest ground and strongest consequence and prove some results
on minimal joinings.

Theorem 1. (See Fig.4D.) Suppose that 〈B1,B2, J〉 is a Bjs. Then 〈a1, a2〉 ∈
min J iff WG (a1, a2, B1) and SC (a2, a1, B2).
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Definition 3. A Bjs 〈B1,B2, J〉 satisfies connectivity if whenever 〈c1, c2〉 ∈ J
there is 〈b1, b2〉 ∈ min J such that c1R1b1 and b2R2c2.

Proposition 2. Suppose that 〈B1,B2, J〉 is a Bjs which satisfies connectivity.
Suppose further that WG (a1, a2, B1). Then there is b2 ∈ B2 : 〈a1, b2〉 ∈ min J
and b2R2a2.

The above proposition shows that a weakest ground of an element is the bottom
of a minimal joining.

Proposition 3. Suppose that 〈B1,B2, J〉 is a Bjs which satisfies connectivity.
Suppose further that SC (a2, a1, B2). Then there is b1 ∈ B1 : 〈b1, a2〉 ∈ min J
and a1R1b1.

The above proposition shows that a strongest consequence of an element is the
top of a minimal joining.

Proposition 4. (See Fig.4E.) Suppose that 〈B1,B2, J〉 is a Bjs that satisfies
connectivity and 〈a1, a2〉 ∈ min J . If 〈a1, b2〉 ∈ J then a2R2b2 and if 〈b1, a2〉 ∈ J
then b1R1a1.

Corollary 1. (i) Suppose that 〈B1,B2, J〉 is a Bjs that satisfies connectivity.
If 〈a1, a2〉 , 〈b1, b2〉 ∈ min J then a1R1b1 iff a2R2b2.

(ii) (See Fig.4F.) Suppose that 〈B1,B2, J〉 is a Bjs that satisfies connectivity
and 〈a1, a2〉 ∈ min J . If 〈a1, b2〉 ∈ min J then a2Q2b2 and if 〈b1, a2〉 ∈ min J
then a1Q1b1.

Theorem 2. Suppose that 〈B1,B2, J〉 is a Bjs that satisfies connectivity. If
〈a1, a2〉 , 〈b1, b2〉 ∈ min J , then there is c2 ∈ B2, d1 ∈ B1 such that 〈a1 ∧ b1, c2〉 ∈
min J and 〈d1, a2 ∨ b2〉 ∈ min J , and, furthermore, it holds that c2R2a2 ∧ b2 and
a1 ∨ b1R1d1.

3.4 Intervenients

In this section we assume that S = 〈B,∧,′ , ρ〉 is an sBa and that 〈B1,B2, J1,2〉,
〈B2,B3, J2,3〉 and 〈B1,B3, J1,3〉 are Bjs lying within S and satisfying connectivity.
Suppose further that J1,3 = J1,2|J2,3. This means that 〈a1, a3〉 ∈ J1,3 iff there is
a2 ∈ B2 such that 〈a1, a2〉 ∈ J1,2 and 〈a2, a3〉 ∈ J2,3. We are interested in the
relation between the minimal elements in the joining spaces J1,2, J2,3 and J1,3

and, furthermore, the interplay between being an intervenient in B2 and being
a component in the minimal elements in the three joining spaces.

Definition 4. We say that a2 is an intervenient from B1 to B3 in S corre-
sponding to 〈a1, a3〉 ∈ J1,3, denoted a2 B1 �S B3 : 〈a1, a3〉, if WGS (a1, a2, B1)
and SCS (a3, a2, B3) and a1 is a non-degenerated weakest ground and a3 is a
non-degenerated strongest consequence of a2.

In many situations the sets B1 and B3 and the system S are given by the context
and we can simply write a2 � 〈a1, a3〉. Let IvS (B2, B1, B3) denote the set of
elements in B2 which are intervenients from B1 to B3 in S.
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Fig. 4.

Proposition 5. If a2 � 〈a1, a3〉 and a2 � 〈b1, b3〉 then a1Q1b1 and a3Q3b3.

Theorem 3. (See Fig.5G.) min J1,2|min J2,3 ⊆ min J1,3.

Example 2. (See Fig.3.) We have 〈a1
2 ∨ ... ∨ a7

2, a
2
4〉 ∈ min J2,4, and 〈a2

4, a
1
5 ∧ ...

∧a5
5〉 ∈ min J4,5. Hence, 〈a1

2 ∨ ... ∨ a7
2, a

1
5 ∧ ... ∧ a5

5〉 ∈ min J2,5.

Proposition 6. (See Fig.5H.) Suppose 〈a1, a2〉 ∈ min J1,2, 〈a2, a3〉 ∈ min J2,3,
not a1R1⊥ and not �R3a3. Then a2 � 〈a1, a3〉.

It does not hold generally that min J1,2|min J2,3 = min J1,3. Thus:

Theorem 4. (See Fig.5I.) Suppose that 〈a1, a3〉 ∈ min J1,3 then there is a2, b2 ∈
B2 such that 〈a1, a2〉 ∈ min J1,2 and 〈b2, a3〉 ∈ min J2,3 and a2R2b2.

Corollary 2. (See Fig.5J.) Suppose that 〈a1, a3〉 ∈ min J1,3, not a1R1⊥ and
not �R3a3. Then there is a2 ∈ B2 such that a2 � 〈a1, a3〉.
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Proposition 7. Suppose that a2 � 〈a1, a3〉 ∈ min J1,3 and b2 � 〈b1, b3〉 ∈
min J1,3 and not a1 ∧ b1R1⊥ and not �R3a3 ∨ b3. Then the following holds:

1. If 〈a1 ∧ b1, a3 ∧ b3〉 ∈ min J1,3 then a2 ∧ b2 � 〈a1 ∧ b1, a3 ∧ b3〉.
2. If 〈a1 ∨ b1, a3 ∨ b3〉 ∈ min J1,3 then a2 ∨ b2 � 〈a1 ∨ b1, a3 ∨ b3〉.

Proposition 8. If a2 � 〈a1, a3〉 ∈ min J1,3 and b2 � 〈b1, b3〉 ∈ min J1,3 and,
furthermore, not a1 ∧ b1R1⊥ and not �R3a3 ∨ b3. Then there are c2, d2 ∈ B2,
c3 ∈ B3 and d1 ∈ B1 such that

c2 � 〈a1 ∧ b1, c3〉 ∈ min J1,3 and d2 � 〈d1, a3 ∨ b3〉 ∈ min J1,3.

3.5 Chains of More Than Three Bqo’s

A step towards analyzing more general structures in the law is taking into ac-
count chains of four or more Bqo’s. Let us pay regard to Bjs ’s involving four
Bqo’s B1, B2, B3, B4 such that a2 � 〈a1, a3〉 and a3 � 〈a2, a4〉 (See Fig.6.).
Within our formal framework, we represent the intro-condition of a concept as
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a4

B1

B3

B2a2

B4

a1

a3

Fig. 6.

its weakest ground and the elim-condition as its strongest consequence. Thus a2,
a3 are intervenients such that elim-condition of a2 is a3 and the intro-condition
of a3 is a2. Expressed in terms of WG and SC this means that WG (a2, a3, B2)
& SC (a3, a2, B3). According to theorem 1, this conjunction is equivalent to
〈a2, a3〉 ∈ min J2,3. This is illustrated by the thick line in the figure.

Note that a chain of four Bqo’s can be continued at any length by
adding B5, B6, and so on. In a chain of four or more Bqo’s, the previ-
ous results for three Bqo’s and intervenients will of course hold for any pair
〈〈Bi,Bj, Ji,j〉, 〈Bj ,Bk, Jj,k〉〉 of Bjs ’s chosen from the chain.

A legal example of the result just mentioned is obtained in the case of owner-
ship shown in Fig.3 above. In this example it can plausibly be assumed that (1)
a1
2∨...∨a7

2 � 〈a1
1∨...∨a7

1, a
2
4〉 and (2) a2

4 � 〈a1
2∨...∨a7

2, a
1
5∧...∧a5

5〉. From (1) we
derive SCS

(
a2
4, a

1
2 ∨ ... ∨ a7

2, B4

)
and from (2) WGS

(
a1
2 ∨ ... ∨ a7

2, a
2
4, B2

)
. The

conjunction of these two statements is equivalent to 〈a1
2 ∨ ...∨a7

2, a
2
4〉 ∈ min J2,4.

Thus we derive that the joining from purchase or barter or inheritance ... etc.
to ownership is minimal.

3.6 The Different Kinds of Intervenient-Minimality

The previous sections illustrate the role of intervenient concepts in the represen-
tation of a normative system. Of special interest is where intervenients exhibit
different kinds of minimality. Thus in a previous paper [11] (see Section 4) we
underlined the central role of minimal joinings. One aspect of this importance
relates to the effective formulation of a system; another aspect relates to greater
facility when it comes to changing the system. Also, transitions from one norma-
tive system to another can be studied by an investigation of the formal structure
of the set of minimal joinings.

The previous sections provide tools for distinguishing between different kinds of
intervenient minimality. If a2 ∈ IvS (B2, B1, B3) and a2 � 〈a1, a3〉, we say that,

1. a2 is correspondence-minimal if 〈a1, a3〉 ∈ min J1,3,
2. a2 is ground-minimal if 〈a1, a2〉 ∈ min J1,2,
3. a2 is consequence-minimal if 〈a2, a3〉 ∈ min J2,3.
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Combining these three cases with their negations ¬1, ¬2, ¬3, a total of eight
(23) cases is obtained. In the case ¬1&¬2&¬3, the intervenient a2 will be called
non-minimal.

Not all eight cases are possible to realize. According to theorem 3, 1 is implied
by 2&3. Hence, the case ¬1&2&3 is impossible to realize.

Due to the importance of minimality emphasized above, note that the follow-
ing holds given the assumptions in section 3.4: Suppose C2 is a subset of B2

consisting of correspondence-minimal intervenients from B1 to B3 and it holds
that if 〈a1, a3〉 ∈ min J1,3 then there is c2 ∈ C2 such that c2 � 〈a1, a3〉. Then

J1,3 = {〈a1, a3〉 ∈ B1 ×B3 | ∃c2 ∈ C2 : 〈a1, c2〉 ∈ J1,2 and 〈c2, a3〉 ∈ J2,3} .

Hence, a set of correspondence-minimal intervenients can be a convenient way
for characterizing a set of joinings.15 However, intervenients can be useful even
if they are not correspondence-minimal.16

4 Conclusion

In the paper, continuing previous work on intermediate concepts, we have proved
a number of results on weakest grounds, strongest consequences, minimal joinings
and intervenients. We have taken a step towards extending the theory so as
to incorporate networks of structures of intervenients. We have distinguished
different kinds of intervenient-minimality, thereby establishing a rudimentary
typology.

Important tasks for future work is to incorporate a number of issues, dealt
with in earlier papers, into the extended framework of networks of intervenients.
These issues are: “openness” and extendability of intervenients, Boolean com-
binations of intervenients, gic-systems, bases of intervenients for a system. A
theory covering these issues is necessary for a satisfactory representation of the
network of concepts in a legal system.
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15 Cf. the fact that, since 〈B1, B2, J1,3〉 satisfies connectivity, it holds that

J1,3 = {〈a1, a3〉 ∈ B1 × B3 | ∃〈b1, b3〉 ∈ min J1,3 : 〈b1, b3〉 � 〈a1, a3〉}
16 A type worth considering is ¬1&2&¬3, i.e., where a2 is ground-minimal but neither

correspondence-minimal nor consequence-minimal. For instance, murder and high
treason can have the same legal consequence (life imprisonment) notwithstanding
that these crimes have different grounds. See also [11], Section 3.2 for the case
of “Boche” in the “Boche-Berserk” example. “Boche” and “Berserk” have different
grounds but the same consequence.

17 The paper, as well as our earlier joint papers, are the result of wholly joint work
where the order of appearance of our author names has no significance.



Strata of Intervenient Concepts in Normative Systems 217

References

1. Aristotle.: The Nichomachean Ethics, transl. by Ross, W. D., Book V,
http://classics.mit.edu/Aristotle/nicomachaen.5.v.html

2. Grossi, D.: Designing Invisible Handcuffs. Formal Investigations in Institutions
and Organizations for Multi-agent Systems. SIKS Dissertation Series No. 2007-16
(2007)

3. Lindahl, L.: Position and Change. A Study in Law and Logic. Reidel, Dordrecht
(1977)

4. Lindahl, L.: Deduction and Justification in the Law: The Role of Legal Terms and
Concepts. Ratio Juris 17, 182–202 (2004)

5. Lindahl, L., Odelstad, J.: Intermediate Concepts as Couplings of Conceptual Struc-
tures. In: Prakken, H., McNamara, P. (eds.) Norms, Logics and Informations Sys-
tems. New Studies on Deontic Logic and Computer Science. IOS Press, Amsterdam
(1999)

6. Lindahl, L., Odelstad, J.: An Algebraic Analysis of Normative Systems. Ratio
Juris 13, 261–278 (2000)

7. Lindahl, L., Odelstad, J.: Normative Systems and Their Revision: An Algebraic
Approach. Artificial Intelligence and Law 11, 81–104 (2003)

8. Lindahl, L., Odelstad, J.: Normative Positions within an Algebraic Approach to
Normative Systems. Journal Of Applied Logic 2, 63–91 (2004)

9. Lindahl, L., Odelstad, J.: Intermediate Concepts in Normative Systems. In: Goble,
L., Meyer, J.-J.C. (eds.) DEON 2006. LNCS (LNAI), vol. 4048. Springer, Heidel-
berg (2006a)

10. Lindahl, L., Odelstad, J.: Open and Closed Intermediaries in Normative Systems.
In: van Engers, T.M. (ed.) Legal Knowledge and Information Systems (Jurix 2006).
IOS Press, Amsterdam (2006b)

11. Lindahl, L., Odelstad, J.: Intermediaries and Intervenients in Normative Systems.
Journal of Applied Logic (June 29, 2007); (Article in Press, Corrected Proof),
doi:10.1016/j.jal.2007.06.010

12. Odelstad, J., Lindahl, L.: The Role of Connections as Minimal Norms in Nor-
mative Systems. In: Bench-Capon, T., Daskalopulu, A., Winkels, R. (eds.) Legal
Knowledge and Information Systems. IOS Press, Amsterdam (2002)

13. Sartor, G.: The Nature of Legal Concepts: Inferential Nodes or Ontological Cat-
egories? EUI working paper LAW No. 2007/08. European University Institute.
Department of Law (2007)

http://classics.mit.edu/Aristotle/nicomachaen.5.v.html


A Deontic Logic for Socially Optimal Norms
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“To assume that the ranking [of a fixed pair of alternative social states]
does not change with any changes in individual values is to assume [...]
that there exists an objective social good defined independently of indi-
vidual desires. [...] Such a philosophy could be and was used to justify
government by the elite, secular or religious, although we shall see below
that the connection is not a necessary one.”

(Kenneth Arrow, Social Choice and Individual Values, p.22)

Abstract. The paper discusses the interaction properties between pref-
erence and choice of coalitions in a strategic interaction. A language is
presented to talk about the conflict between coalitionally optimal and so-
cially optimal choices. Norms are seen as social constructions that enable
to enforce socially desirable outcomes.

Introduction

One fundamental issue of social choice theory [1] is how to aggregate the pref-
erences of individual agents in order to form decisions to be taken by society as
a whole. However, once we want to take into account the capabilities of agents,
as we do in Multi Agent Systems, mere social choice functions are not enough
to explain how and (especially) why individual interests are aggregated in the
way they are. In this context, norms should be seen as social constructions that
enable us to enforce socially desirable outcomes [4].

In particular there are situations in which individual preferences are not com-
patible and coalitions compete to achieve a given social order. A typical case is
that of an agent’s capability to positively or negatively affect the realization of
other agents’ preferences. In our paper we will view the enactment of norms as
aimed at the regulation of such interactions. By enacting a norm we mean the
introduction of a normative constraint on individual and collective choices in a
Multi Agent System.

We are specifically concerned with cases where the collective perspective is
at odds with the individual perspective. That is, cases where we think that
letting everybody pick their own best action regardless of others’ interest gives
a non-optimal result. The main question we are dealing with is then: how do we
determine which norms, if any, are to be imposed?

To answer this question, the paper presents a language to talk about the con-
flict between coalitionally optimal and socially optimal choices, and it expresses
deontic notions referring to such circumstances.

R. van der Meyden and L. van der Torre (Eds.): DEON 2008, LNAI 5076, pp. 218–232, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Table 1. Lying or not lying

�������Row
Column Truth Lie

Truth (3, 3) (0, 4)

Lie (4, 0) (1, 1)

Table 2. Clothing Conformity

�������Row
Column White Dress Black Dress

White Dress (3, 3) (0, 0)

Black Dress (0, 0) (3, 3)

Motivating Examples. Let us consider a situation (Table 1) in which two
players have the possibility of passing believed (truth) or disbelieved information
(lie). If both players do not lie, they share their information, being both better
off. If they both lie, they do not receive any advantage. But the worst case for a
player is the one in which he does not lie and the opponent does.

In this situation, a legislator that wants to achieve the socially optimal state
(players do not lie), should declare that lying is forbidden, thereby labeling the
combinations of moves (lie, lie), (lie, truth) and (truth, lie) as violations.

The lying matrix is nothing but a Prisoner Dilemma [8], that is an interactive
situation in which the advantages of cooperation are overruled by the incen-
tive for individual players to defect. In Prisoner Dilemmas, individually rational
players have no incentive to cooperate, because defecting is better for a player
considering all possible answers of the opponent. Note that cooperation is in the
interest of the players themselves, since they would be better off than if they
had pursued the unique Nash Equilibrium [8], ending up in the (lie, lie) state.
However it is by no means clear that players should not pursue their own inter-
est. In fact once we reach a state in which one player lies and the other does
not lie, we cannot move to any other state without one of the two players being
worse off.

Other interesting examples concern conventional norms. A type of these norms
are those in which players should conform to the other (i.e. When in Rome do as
the Romans do). Suppose you have the usual two players who have to decide what
to wear, with the goal of being conformant to the others’ choice (see Table 2).

This setting boils down to a classical ‘coordination’ game. In this game the
outcomes are good for both in case both make the same choice (e.g. they
both decide to wear white), they are bad for both otherwise (e.g. one de-
cides for white the other one for black). The preferred outcomes of the play-
ers are in fact the same. A norm helping players to reach an optimal outcome
would be one that labels as violations combinations of discordant choices. How-
ever, in this kind of game Row will never know what the best thing to choose
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is, since the choice of Column is independent from his. In order to solve the
problem a legislation should go beyond individual choice, by forcing the coalition
made of Row and Column together to form and choose an efficient outcome.

A deontic logic for efficient interactions. Once we view a deontic language
as regulating a Multi Agent System, we can say that a set of commands promote
a certain interaction, prohibiting certain others. Following this line of reasoning
it is possible, given a notion of optimality or efficiency, to construct a deontic
language that requires this notion to hold.

What we do then is to provide a deontic language for all possible interactions,
based on an underlying notion of optimality. This is quite a difference from the
legal codes that we can find in a certain society, where norms are either explicitly
and specifically formulated and written down in law books, contracts, etc., or
are left implicit in the form of promises, values or mores [4]. The obligations and
prohibitions in our system result from one general norm saying that all actions
of sub-groups that do not take into account the interests of the society as a
whole, are forbidden. Then, one way to use our logic is to derive obligations,
permissions and prohibitions from conflicting group preferences, and use these
as suggestions for norm introduction in the society.

We do not claim that the meaning of these operators, as studied in deontic
logic, corresponds to our semantics, but rather we claim that when people make
new norms they should choose those norms on the basis of the economical order
behind them.

In order to represent abilities of agents we employ coalition logic [10], and
we model an agent’s preferences as a preorder on the domain of discourse. To
model optimal social norms we introduce a generalization of the economical
notion of Strong Pareto Efficiency (see for instance [8]), described as those sets
of outcomes from which the grand coalition (i.e. the set of all agents taken
together) has no interest to deviate. Our generalization consists of the fact that
we do not make the assumption that these outcomes are singletons. In particular
(unless specified) we do not make the assumption of playability described in [10],
according to which the set of all agents can bring about any realizable outcome
of the system. We consider then the elements of the complement of the efficient
choices, i.e. all those that are not optimal, and we build the notion of obligation,
prohibition and permission on top of them.

We postpone to future work all considerations about the effectivity of the
norm, that is, all considerations about how, to what extent and in what way,
the norm influences the behaviour of the agents involved.

As system designers, our aim is then to construct efficient social procedures
that can guarantee a socially desirable property to be reached. We think that
normative system design is at last a proper part of the Social Software enter-
prise [9].

The paper is structured as follows: In the first section we introduce the notions
of effectivity and preference, discuss its relevant properties with respect to the
problem of finding optimal social norms, and introduce the notion of domination,
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Pareto Efficiency and violation. In the second part we describe the syntax, the
structures and the interpretation of our language. In the third part we discuss the
deontic and collective ability modalities and their properties, and compare them
with classical deontic and agency logics; moreover we discuss the introduction
of further constraints in the models, in particular playability of the effectivity
function. We show some examples to give the flavour of the situations we are
able to capture with our formalism. A discussion of future work will follow and
a summary of the present achievements will conclude the paper.

1 Effectivity and Preference

We start by defining some concepts underlying the deontic logic of this paper.
They concern the power and the preferences of collectives. We begin with the first
of these, by introducing the concept of a dynamic effectivity function, adopted
from [10].

1.1 Effectivity

Definition 1 (Dynamic Effectivity Function)
Given a finite set of agents Agt and a set of states W , a dynamic effectivity
function is a function E : W → (2Agt → 22W

).

Any subset of Agt will henceforth be called a coalition. For elements of W we use
variables u, v, w, . . .; for subsets of W we use variables X, Y, Z, . . .; and for sets
of subsets of W (i.e., subsets of 22W

) we use variables X ,Y,Z, . . .. The elements
of W are called ‘states’ or ‘worlds’; the subsets of Agt are called ‘coalitions’; the
sets of states X ∈ E(w)(C) are called the ‘choices’ of coalition C in state w. The
set E(w)(C) is called the ‘choice set’ of C in w. The complement of a set X or
of a choice set X are calculated from the obvious domains.

A dynamic effectivity function assigns, in each world, to every coalition a set
of sets of states. Intuitively, if X ∈ E(w)(C) the coalition is said to be able to
force or determine that the next state after w will be some member of the set X .
If the coalition has this power, it can thus prevent that any state not in X will
be the next state, but it might not be able to determine which state in X will
be the next state. Possibly, some other coalition will have the power to refine
the choice of C.

Many properties can be attributed to dynamic effectivity functions. An ex-
tensive discussion of them can be found in [10]. For what follows we do not need
all the properties that may be considered reasonable for effectivity. However the
following properties seem to be minimally required:

1. coalition monotonicity: for all X, w, C, D, if X ∈ E(w)(C) and C ⊆ D, then
X ∈ E(w)(D);

2. regularity: for all X, w, C, if X ∈ E(w)(C), then X 
∈ E(w)(C);



222 J. Broersen et al.

3. outcome monotonicity: for all X, Y, w, C, if X ∈ E(w)(C) and X ⊆ Y , then
Y ∈ E(w)(C);

4. inability of the empty coalition: for all w, E(w)(∅) = {W}

If a dynamic effectivity function has these properties, it will be called coherent.
The first property says that the ability of a coalition is preserved by enlarging

the coalition. In this sense we do not allow new members to interfere with the
preexistent capacities of a group of agents. The second property says that if a
coalition is able to force the outcome of an interaction to belong to a particular
set, then no possible combinations of moves by the other agents can prevent this
to happen. We think that regularity is a key property to understand the meaning
of ability. If an agent is properly able to do something this means that others
have no means to prevent it. The third property says that if a coalition is able
to force the outcome of the interaction to belong to a particular set, then that
coalition is also able to force the outcome to belong to all his supersets. Outcome
monotonicity is a property of all effectivity functions in coalition logic, which is
therefore a monotonic modal logic [10]. The last condition is the “Inability of
the Empty Coalition”. As notice also by [2] such properties forces the coalition
modality for the empty coalition to be universal: intuitively the empty coalition
cannot bring about non-trivial consequences.

Proposition 1. If the effectivity function is coherent then all coalitional effec-
tivity functions are nonempty and do not contain the empty set.

The last property ensures that the choice of the empty coalition is always the
largest possible one. This property imposes that for all C, w, E(w)(C) 
= ∅ (by
coalition monotonicity) and that ∅ 
∈ E(w)(C) (by regularity).

1.2 Preference

Once we have defined the notion of effectivity, we also need to make reference
to the preferences of coalitions. The notion of preference in strategic interaction
can be understood and modeled in many ways [13]. However we believe that in
strategic reasoning players need to have preferences over the possible outcomes
of the game. Thus those are the preferences that constitute our main concern.
Nevertheless we know from the properties of effectivity as described above, that
coalitions may have different abilities at different states, in particular the grand
coalition of agents may gain or lose power while changing a state: the effectivity
is actually a dynamic effectivity.

The claim is thus that agents do have a fixed ordering over the domain of
discourse (what we call desires), and that they generate their strategic preference
considering where the game may end (called domination). We are going to define
both, discussing their properties.

We start from a preference relation for individuals over states working our
way up to preferences for coalitions over sets. To do so, we start from an order
on singletons, and we provide some properties to lift the relation to sets.
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Definition 2 (Individual desires for states). A desire ordering (≥i)i∈Agt

consists of a partial order (reflexive, transitive, antisymmentric) ≥i⊆ W × W
for all agents i ∈ Agt, where v ≥i w has the intuitive reading that v is ‘at least as
nice’ as w for agent i. The corresponding strict order is defined as usual: v >i w
if, and only if, v ≥i w and not w ≥i v.

Definition 3 (Individual desires for sets of states). Given a desire order-
ing (≥i)i∈Agt, we lift it to an ordering on nonempty sets of states by means of
the following principles.

1. {v} ≥i {w} iff v ≥i w; (Singletons)
2. (X ∪ Y ) ≥i Z iff X ≥i Z and Y ≥i Z; (Left weakening)
3. X ≥i (Y ∪ Z) iff X ≥i Y and X ≥i Z. (Right weakening)

Proposition 2. The lifting preserves the partial order.

The proof is omitted for reasons of space. We do not give a comprehensive spec-
ification of the logical properties of preference relations for coalitions, because
this would not be relevant for the remainder of this paper. Different types of in-
teraction may warrant the assumption of different properties for such a relation.
Nevertheless, these are some properties that seem minimally required for calling
some relation a preference relation. The first ensures that desires are copied to
possible choices. The properties of left and right weakening ensure a lifting from
singletons to sets.

The lifting enables us to deal with desire under uncertainty or indeterminacy.
The idea is that if an agent were ever confronted with two choices X, Y he would
choose X over Y provided X >i Y . Desires do not consider any realizability
condition, they are simply basic aspirations of individual agents, on which to
construct a more realistic order on the possible outcomes of the game, which are
by definition dependent on what all the agents can do together.

Out of agents’ desires, we can already define a classical notion of Pareto
Efficiency.

Definition 4 (Strong Pareto efficiency). Given a choice set X , a choice
X ∈ X is Strongly Pareto efficient for coalition C if, and only if, for no Y ∈ X ,
Y ≥i X for all i ∈ C, and Y >i X for some. When C = Agt we speak of Strong
Pareto Optimality.

We will use the characterization of Pareto Efficiency and Optimality to refer to
the notions we have just defined, even though the classical definitions (compare
with [8]) are weaker.

The last definition is clearer when we consider the case X = E(w)(C), but it is
formulated in a more abstract way in order to smoothen the next two definitions.

Proposition 3. Given the preference relation over choices ≥i, and taking A, B
in a choice set X of a coaltion C, with PE(A) to indicate that the choice A is
Strongly Pareto Efficient in X , Strong Pareto Efficiency is monotonic, that is
A ⊆ B implies that PE(B) whenever PE(A).
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Proof. Suppose A ⊆ B and PE(A) and suppose it is not the case that PE(B).
This means that there is a choice X in the choice set X of C such that X >i B
for some i ∈ C. But being A ⊆ B this would imply that X >i A, contradicting
the assumption that PE(A).

Pareto Efficiency is usally defined disregarding the strategies of the players.
Nevertheless, once we claim that the outcome of an interaction need not be a
singleton, we need to adapt our evaluation of efficiency to such an assumption.

We now construct a preference relation on choices. To do so we first need to
look at the interaction that agents’ choices have with one another.

Definition 5 (Subchoice). If E is an effectivity function, and X ∈ E(w)(C),
then the X-subchoice set for C in w is given by EX(w)(C) = {X ∩ Y | Y ∈
E(w)(C)}.

As an example, let us take Table 1. Consider expressions of the form (LieC) to
be intended as the set of worlds that make the proposition LieC true, with the
obvious reading. In our example we have for instance the following cases:

– E(LieC)(w)(R) = {(LieC ∧ LieR), (LieC ∧ TruthR)}
– E(TruthC)(w)(R) = {(TruthC ∧ LieR), (TruthC ∧ TruthR)}

Subchoices allow us to reason on a restriction of the game and to consider
possible moves looking from a coalitional point of view, i.e. what is best for a
coalition to do provided the others have already moved.

When agents interact therefore they make choices on the grounds of their own
preferences. Nevertheless the moves at their disposal need not be all those that
the grand coalition has. We can reasonably assume that preferences are filtered
through a given coalitional effectivity function. That is we are going to consider
what agents prefer among the things they can do.

Definition 6 (Domination). Given an effectivity function E, X is undomi-
nated for C in w (abbr. X	C,w) if, and only if, (i) X ∈ E(w)(C) and (ii) for
all Y ∈ E(w)(C), (X ∩ Y ) is Pareto efficient in EY (w)(C) for C.

The idea behind the notion of domination is that if X ′ and X ′′ are both members
of E(w)(C) then, in principle, C will not choose X ′′, if X ′ dominates X ′′. This
property ensures that a preference takes into account the possible moves of
the other players. This resembles the notion of Individual Rationality in Nash
solutions [8], according to which an action is chosen reasoning on the possible
moves of the others.

Continuing our example, we have the following cases:

– (LieR)	R,w for any w.
– (LieC)	C,w for any w.
– not (LieC, LieR)	Agt,w
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The preceding three definitions capture the idea that ‘inwardly’ coalitions
reason Pareto-like, and ‘outwardly’ coalitions reason strategically, in terms of
strict domination. A coalition will choose its best option given all possible moves
of the opponents. Looking at the definition of Optimality we gave, we can see
that undomination collapses to individual rationality when we only consider
individual agents, and to Pareto efficiency when we consider the grand coalition
of agents.

Proposition 4
X	Agt,w iff X is a standard Pareto Optimal Choice in w.
X	i,w iff X is a standard Dominating Choice in w for i.

Proof. For the first, notice that since E(w)(∅) = {W} (i.e., the empty coalition
has no powers), then X is undominated for Agt in w iff it is Pareto efficient in
E(w)(Agt) for Agt (i.e., it is Pareto optimal in w). The second is due to the
restriction of undomination to singleton agents.

Nevertheless, in our framework, domination is a relation between the choice sets
of a given coalition. This approach looks different from the standard one (see
for instance Osborne and Rubinstein [8]) that considers instead domination as
a property of states.

Proposition 5. Game-theoretical domination is expressible in our framework.

It is possible to rewrite a domination of a state x over a state y as the domination
of the choice {x} over {y}, making it a particular case of our definition.

Proposition 6. Undomination is monotonic, that is for X in E(C)(w) for
some C, w, if X ⊆ Y and X	C,w then Y 	C,w.

which follows from monotonicity of Pareto Optimality for choices and outcome
monotonicity.

Violation. The fundamental idea of this work is that an efficient way to im-
pose normative constraints in a Multi Agent System is to look at the opti-
mality of the strategic interaction of such system. In particular the presence
of possible outcomes in which agents could not unanimously improve (Pareto
Efficient) can be a useful guide line for designing a new set of norms to be
imposed.

Following this line we define a set of violation sets as the set of those choices
that are not a Pareto Efficient interaction.

Definition 7 (Violation). If E is an effectivity function and C ⊆ C′, then the
choice X ∈ E(w)(C) is a violation by C towards C′ in w (X ∈ V IOLC,C′,w) iff
there is a Y ∈ E(w)(C′ \ C), s.t. (X ∩ Y ) is not undominated for C′ in w.
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In words, X is a violation if it is not safe for the other agents, in the sense that
not all the moves at their disposal yield an efficient outcome.

We indicate with V IOLC,w the set violations by C at w towards Agt1.

Proposition 7. If C=C′ then a violation is a dominated choice; If C=C′=Agt
a violation is a Pareto inefficient choice.

If we consider the Prisoner Dilemma of Table 1 the following holds:

– (LieR) = V IOLR,w for any w, since (LieR∧LieC) is not Agt- undominated;
– (LieC ∧ LieR) = V IOLAgt,w for any w, since not Pareto Efficient.

If we consider instead the Coordination Game of Table 2 the following holds:

– (WhiteR) ∈ V IOLR,w, since (WhiteR ∧BlackC) is not Agt -undominated;
– (BlackR) ∈ V IOLR,w, since (WhiteC ∧BlackR) is not Agt -undominated.

We can observe here that any choice made by a single agent is a violation.
The reason why it is so has to be found in the form of the game, that requires
the grand coalition to form for an efficient outcome to be forced.

2 Logic

We now introduce the syntax of our logic, an extension of the language of coali-
tion logic [10] with modalities for permission, prohibition and obligation, and a
modality for rational choice.

2.1 Language

Let Agt be a finite set of agents and Prop a countable set of atomic formulas.
The syntax of our logic is defined as follows:

φ ::= p|¬φ|φ ∨ φ|[C]φ|P (C, φ)|F (C, φ)|O(C, φ)|[rationalC ]φ

where p ranges over Prop and C ranges over the subsets of Agt. The other
boolean connectives are defined as usual. The informal reading of the modali-
ties is: “Coalition C can choose φ”, “It is permitted (/forbidden/obligated) for
coalition C to choose φ”, “It is rational for coalition C to choose φ”.

1 One interesting question is whether given any dynamic effectivity function and pref-
erence relation (with the above defined properties) we can always find a coalitionally
dominated action (and hence a Pareto Efficient interaction). The acquainted reader
will have noticed the resemblance of this problem with that of nonemptiness of the
Core [8]. We leave though to further work the analysis of this relation. In case there
is none, we may consider a satisfactory notion of optimal choice - as done for instance
by Horty [5] - that looks at the relation between the choices in the choice sets of
each coalition.
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2.2 Structures

Definition 8 (Models). A model for our logic is a quadruple

(W, E, {≥i}i⊆Agt, V )

where:

– W is a nonempty set of states;
– E : W −→ (2Agt −→ 22W

) is a coherent effectivity function, that associates
to each state and each coalition a set of choices.

– ≥i⊆ W ×W for each i ∈ Agt, is the desire relation, that associates to each
agent a set of pairs of states. Out of this preference relation we define the
undomination relation 	 ⊆ 2Agt ×W × 2W × 22W

as previously specified.
– V : W −→ 2Prop is a valuation function, that associates to every state a set

of atomic propositions, with the intended meaning that the atoms associated
to a state are all and only those true in that world.

2.3 Semantics

The satisfaction relation of the formulas with respect to a pointed model M, w
is defined as follows:

M, w |= p iff p ∈ V (w)
M, w |= ¬φ iff M, w 
|= φ

M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ
M, w |= [C]φ iff [[φ]]M ∈ E(w)(C)

M, w |= [rationalC ]φ iff ∀X(X	C,w ⇒ X ⊆ [[φ]]M )
M, w |= P (C, φ) iff ∃X ∈ E(w)(C) s.t. X ∈ V IOLC,w and X ⊆ [[φ]]M

M, w |= F (C, φ) iff ∀X ∈ E(w)(C)(X ⊆ [[φ]]M ⇒ X ∈ V IOLC,w)
M, w |= O(C, φ) iff ∀X ∈ E(w)(C)(X ∈ V IOLC,w ⇒ X ⊆ [[φ]]M )

In this definition, [[φ]]M =def {w ∈ W | M, w |= φ}.
The modality for coalitional ability is standard from Coalition Logic [10]. The

modality for rational action requires for a proposition φ to be rational (wrt a
coalition C in a given state w) that all undominated choices (for C in w) be in
the extension of φ. This means that there is no safe choice for a coalition that
does not make sure that φ will hold. Notice that it is still possible for a coalition
to pursue a rational choice that may be socially not rational.

The deontic modalities are defined in terms of the coalitional abilities and
preferences. A choice is permitted whenever it is safe, forbidden when it may be
unsafe (i.e. when it contains an inefficient choice), and obligated when it is the
only choice that is safe.

3 Discussion

The definition of strong permission does not allow for a permitted choice of an
agent to be refined by the other agents towards a violation. In fact we define
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permission for φ as “a φ-choice guarantees safety from violation”. A more stan-
dard diamond modality would say “ doing φ is compatible with no violation”. A
“safety” definition of permission has also been studied in [14], [11], [7], [3].

3.1 Properties

It is now interesting to look at what we can say and what we cannot say within
our system.

Some Validities
1 P (C, φ) → ¬O(C, ¬φ)
2 F (C, φ) ↔ ¬P (C, φ)
3 P (C, φ) ∨ P (C,ψ) → P (C, φ ∨ ψ)
4 O(C, φ) → ([C]φ → P (C,φ))
5 [rationalC ]φ ∧ [rationalAgt]¬φ → F (C,φ)
6 O(C, φ) ∨ O(C, ψ) → O(C, φ ∨ ψ)
7 O(C, 	)
8 F (C, φ) ∧ F (C,ψ) → F (C, φ ∧ ψ)
9 [rationalC ]φ ∧ (φ → ψ) → [rationalC ]ψ

Some non-Validities
10 ¬O(C, ¬φ) → P (C,φ)
11 P (C,φ ∨ ψ) → P (C,φ) ∨ P (C, ψ)
12 O(C, φ) ↔ ¬O(C, ¬φ)
13 [rationalC ]φ ↔ [rationalAgt]φ
14 O(C, φ) → P (C, φ)
15 O(C, φ ∨ ψ) → O(C, φ) ∨ O(C, ψ)

The first validity says that the presence of permission imposes the absence of
contrasting obligations, but the converse in not necessarily true. The second that
prohibition and permission are interdefinable. The third says that the permission
of φ or the permission of ψ implies the permission of φ or ψ. The fourth that
the obligation to choose φ for an agent plus the ability to do something entails
the permission to carry out φ. The validity number 5 says that the presence
of a safe state that is rational for the grand coalition of agents is a norm for
every coalition, even in case of conflicting preferences, i.e. in case of conflict
the interest of the grand coalition prevails. The sixth one that obligation for
φ or obligation for ψ implies the obligation for φ or ψ. Validity 7 says that
there are no empty normative systems. The next validity says that prohibition
is conjunctive. The last validity says that rational moves are monotonic. This
has interesting implications on the choices of the agents, since refraining, i.e.
choosing the biggest possible outcome, is always rational.

It is also useful to look at the non-validities: Number 10 says that if an agent
is not obliged to choose something then it is permitted to do the contrary. But of
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course an agent may not be able to do anything, or may be not able to refine the
choices “until the optimal”. The next non-validity says that a permission of choice
is not equivalent to a choice of permission. Number 11 says that a coalition can
be obliged to do contradictory choices. This situation happens when a coalition
is powerless or optimality is not possible. The next non validity says that the
rational action for a certain coalition does not necessarily coincide with that of
the grand coalition. Number 14, that ought does not imply can. The last does
not allow to detach specific obligation from obligatory choices.

Further Assumptions

Playability. Our notion of agency is more general than that of game theory. In
particular we assume that even the grand coalition of agents may not determine
a precise outcome of the interaction.

This is due to the abandonment of the property of playability of the effectivity
function, that requires, together with regularity, outcome monotonicity, coalition
monotonicity that:

– X 
∈ E(C) implies X ∈ E(C), that is any choice excluded to a coalition is
possible for the rest of the agents (maximality);

– For all X1, X2, C1, C2 such that C1 ∩C2 = ∅, X1 ∈ E(C1) and X2 ∈ E(C2)
imply that X1 ∩X2 ∈ E(C1 ∪ C2) (superadditivity)

Playability is a very strong property but it is needed to talk about games. As
proved in [10] [Theorem 2.27], strategic games correspond exactly to playable
effectivity functions 2. With playable effectivity functions, the grand coalition can
determine the exact outcome of the game and the dynamic effectivity function
for the grand coalition of agents is the same in any state.

M, w |= [Agt]φ ⇔ M |= [Agt]φ

Moreover the fact that desires do not change, induces the following stronger
invariance:

M, w |= [rationalAgt]φ ⇔ M |= [rationalAgt]φ

So not only is every outcome reachable, but any situation shares the same
social optimality. Notice that this is independent of the solution concept we may
consider.

2 The proof involves the definition of strategic game as a tuple 〈N, {Σi|i ∈ N}, o, S〉
where N is a set of players, each i being endowed with a set of strategies σi from Σi,
an outcome function that returns the result of playing individual strategies at each
of the states in S; the definition of α effectivity function for a nonempty strategic
game G, Eα

G : ℘(N) → ℘℘(S) defined as follows: X ∈ Eα
G∃σC∀σCo(σC ; σC) ∈ X.

The above mentioned theorem establishes that Eα
G = E in case E is playable and G

is a nonempty strategic game.
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Finite Domain. Another interesting assumption can be made about the finitness
of the domain of discourse. With finite W , for C being the class of our models,
we have that

Proposition 8. |=C [rationalAgt]φ
implies that there exists an efficient outcome in the class of coalition models C

Proof. Take an arbitrary world w and an arbitrary model M in the class C.
[rationalAgt]φ means that all undominated choices Y are such that Y ⊆ [[φ]]M .
Suppose that there are no such Y (if there are, the proposition is trivially true).
We know that the effectivity function of Agt is nonempty. We also know E(Agt)
has cardinality k ≤ |2W |, that by assumption is finite. There must then be
a choice Y ′ that is not undominated. This means that there is a choice Y ′′

dominating Y ′ that is in turn not undominated. But being the preference relation
> transitive and irreflexive, there must be an infinite chain of undomination
within the effectivity function of Agt, contradicting the assumption.

Another property is the following:

|=C [rationalAgt]¬φ ∧ [C]φ → F (C, φ)

(REG)
which says that any coalition has to refrain from a choice that is against an
optimal state independently of its own preferences. A corresponding propery for
obligation is instead the following:

|=C [rationalAgt]¬φ ∧ [C]¬φ → O(C,¬φ)

(REG’)

Coalitionally optimal norms. The logic can be extended to treat norms that
do not lead to a socially optimal outcome, but a coalitionally optimal outcome.
That is it is possible to construct a deontic logic that pursues the interests of a
particular coalition, independently of the other players’ welfare. This extension
is related to the work of Kooi and Tamminga on conflicting moral codes [6].

We limit the description to the obligation operator, the others are straight-
forward.

M, w |= OC′
(C, φ) iff ∀X(X 	C,w and X ∈ V IOLC,C′,w ⇒ X ⊆ [[φ]]M )

where V IOLC,C′,w is a C violation towards C′, with C ⊆ C′.
For this operator it holds that

|=C OC(C, φ) ↔ [rationalC ]φ

that is playing for oneself boils down to rational action, and

|=C OAgt(C, φ) ↔ O(C, φ)

that is, with the new operator we can express our original obligation operator.
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3.2 Examples

Norms of Cooperation. To consider forbidden all non optimal choices may seem
a very strong requirement. Nevertheless, take the example in Table 1.

It is interesting to notice how V IOL is not equivalent to the situations that
each player is forbidden to choose. This is due to the fact that each player can
only refine the choices of the other players, but cannot determine alone the
outcome of the game: a permitted choice cannot be refined by permitted choices
towards an inefficient outcome. Moreover M |= [R]¬(TR) ∧ [rationalR,C ](TR),
that by (REG) allows to conclude F (R,¬(TR)).

No agent is in fact obligated not to lie, but only permitted. Why is it so?
Because no agent can alone reach a singleton state that is only good. But of
course as a coalition {R, C} has the obligation to end up in the optimal state.

Norms of Conformity. Consider now the game of Conformity described in Table
2. What is interesting here is that players are individually permitted nothing:

M |= ¬P (R, whiteR) ∧ ¬P (R, blackR) ∧ ¬P (C, blackC) ∧ ¬P (C, blackC).
But as coalition they are:
M |= P ({R, C}, whiteR,C) ∧M |= P ({R, C}, blackR,C).
No precise indication of the choices is given by the resulting obligation:
M |= O({R, C}, (whiteR, C) ∨ (blackR,C))
Notice that we have no way of detaching from this choice a more precise com-

mand, for M 
|= O({R, C}, (whiteR,C) ∨ (blackR,C)) → O({R, C}, (whiteR,C)) ∨
O({R, C}, (blackR,C)) (as witness for invalidity 15). This is revealing of the form
of the game: no equilibrium can be achieved by the agents acting independently,
but only as a coalition.

Both the Prisoner Dilemma and the Coordination Game have rules that say
something about how coalitions should choose, and most interestingly how coali-
tions should form. While in the first game individual agents can make a permitted
choice, in the second game individually players are permitted nothing: what the
deontic statements in fact claim is that in the one case individual choice can lead
to optimality, while in the second case the grand coalition is obligated to form,
that being the only way of taking an efficient decision.

3.3 Future Work

The work here described allows for several developments. Among the most in-
teresting ones is the study of the relation between imposed outcomes and steady
states that describe where the game will actually end up (i.e. Nash Solution, the
Core etc.). Conversely another feature that is worth studying is those structures
in which Pareto Efficiency is not always present. Agents will reckon some actions
as optimal even though there is no social equilibrium that can ever be reached.
One more feature concerns the possibility of an inconsistent normative system.
Further work could be done looking at the factual obedience of the norm, and
how a norm affects preferences of agents (see for instance the work in [12]).
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4 Conclusion

In this paper we proposed a deontic logic for optimal social norms. We described
the concept of social optimality, explicitly linking it with the economical concept
of Pareto Efficiency. Moreover we generalized the notion of Pareto Efficiency to
capture those strategic interactions in which even the grand coalition of agents
is not able to achieve every outcome. Technically we did not assume playability
of the coalitional effectivity functions. It is an important question in itself to un-
derstand the class of interactions to which such effectivity function corresponds.
On top of the notion of Optimality we constructed a deontic language to talk
about a normative system resulting from the imposition of such norms. We an-
alyzed the properties of the language and discussed in details various examples
from game theory and social science.
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Abstract. Continuing prior work ([1, 2]), I integrate a simple system for per-
sonal obligation with a rich system for aretaic (agent-evaluative) appraisal. I 
then explore various relationships between definable aretaic statuses such as 
praiseworthiness and blameworthiness and deontic statuses such as obligatori-
ness and impermissibility. I focus on partitions of the normative statuses gener-
ated (cf. "normative positions" but without explicit representation of agency). In 
addition to representing and exploring traditional questions in ethical theory 
about the connection between blame, praise, permissibility and obligation, this 
allows me to carefully represent schemes for supererogation and kin. These 
controversial concepts have provided challenges to both ethical theory and de-
ontic logic, and are among deontic logic's test cases. 

Keywords: Supererogation, Offense, Praise, Blame, Obligation, Aretaic, Deon-
tic, Neutral, Indifferent. 

Introduction 

I have delineated a framework called DWE ("Doing Well Enough") in [3-7] modeling 
the logical structure of fundamental but neglected features of common sense morality 
(CSM). I have focused on deontic notions: notions used to evaluate either the things 
done by an agent or the things brought about by what an agent does. The particular 
focus in DWE is on a set of notions in the logical neighborhood of that of exceeding 
the moral minimum. However, DWE contains no resources for representing aretaic 
notions (after the Greek term, arête): notions used primarily to evaluative agents (e.g. 
praiseworthiness and blameworthiness), especially for the way in which their agency 
reflects their worth as persons. And deontic logic generally has long neglected such 
aretaic concepts. Thus there is a gap between this work and that of the traditional 
work on supererogation and kin from he mid-twentieth century forward. With no rep-
resentation of praiseworthiness or blameworthiness, there is no way to represent the 
standard analysis of supererogation, much less that of "offense" (or "suberogation"—
the purported mirror image of supererogation).  

A first step to rectify my neglect was taken in [1], and I will integrate some of that 
material with work on personal obligation from [2]. Having an integrated representa-
tion of both aretaic and deontic concepts will allow for the representation of a diversity 
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of positions in the ethical theory literature on connections often asserted to hold be-
tween these conceptual domains. Derivatively, the resulting framework allows for the 
representation of the main prior approaches to supererogation and offense other than 
my own, for example, the Chisholm-Sosa approach, the earlier Meinong-Schwartz 
approach, what Mellema calls the standard account, and Mellema’s own extension of 
the standard account. I will take up the latter three here a bit. The logical framework 
also sheds light on various issues in the traditional literature on supererogation. In the 
end I will show that the classical analysis of supererogation is fundamentally flawed in 
a way that is both illuminating and ironic.  

In section I, I introduce a simple modal logic for what is predetermined for an agent, 
and then generating a simple classical deontic fragment via a propositional constant for 
morality's demands have been met. In II, I introduce a modified version of the 
framework for aretaic appraisal in [1], which allows for the definition of a variety of 
aretaic notions. In III, I characterize some partitions these notions generate given our 
logics, leading to a 7-fold partition of normative positions generated by some of the 
aretaic concepts. In IV, I combine this aretaic partition with the deontic fragment, which 
generates a potentially 21-fold partition of normative statuses combining aretaic and 
deontic concepts. I explore two prima facia plausible bridging principles, that what is 
praiseworthy for an agent is permissible and that what is blameworthy for her is not 
obligatory, and identify the eliminations of normative positions these reductive 
principles would entail, but I also raise substantive doubts about these principles. In V, I 
turn to what I call the classical analysis of supererogation and offense, and to Mellema's 
addition of the notions of quasi-supererogation and quasi-offense, and I identify the six 
places where these fall on the prior aretaic-deontic partitions. I also briefly consider the 
Meinong-Schwartz aretaic-deontic ranking thesis, as well as Meinong's "laws of 
omission". I then examine some additional simple aretaic-deontic bridging principles, 
that whatever is praiseworthy is obligatory, and that whatever is blameworthy is 
impermissible, and show how these lead to further reductions in our 21-fold partition, 
especially with an eye to how they effect the classical analyses of supererogation and 
kin. I go on to suggest that one simple particular thesis might be behind the widespread 
skepticism about offenses even among friends of supererogation, but I also argue that 
the thesis is mistaken, however plausible it is at first blush. Indeed, I think the 
reflections challenge one long standing line of argument for rejecting offenses, to the 
benefit of ethical theory. In VI, I show that the traditional analysis of supererogation is 
fundamentally flawed. I then argue that the classical conception of supererogation 
presupposes the concept from DWE of doing more than one has to do.  

In all this, my intention is two-fold: to model neglected normative statuses, and 
correlatively to counter the deeply entrenched objection (bias?) from ethical theorists 
that deontic logic is utterly irrelevant to their enterprise and is a dismal failure in that 
regard. Indeed, I would submit that some of the work herein is ahead of the ethical 
theory curve in that regard, and that frameworks like the simple one below place 
questions in sharp relief that ought to clearly benefit ethical theorists. 

1   A Modal Framework for Predetermination and Obligation  

The main operator in our framework for predetermination is just an interpreted classical 
necessity operator:  PRp: It is (as of now) predetermined (for Jane Doe) that p. We use 
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standard Kripke structures for modeling “PR”:  CO ⊆ W × W. COij iff what happens at j 
is consistent with our agent's current abilities and disabilities at i. The truth condition for 
PR is the usual one:  M 1i PRp iff ∀j(COij → M 1j p). We introduce the dual, “it is 
consistent with our agent's abilities that p”: COp =df ¬PR¬p, and its derived truth 
condition: M 1i COp iff ∃j(COij & 1j p). We add a single constraint: CO-RFLX: COii. 
The worlds consistent with our agent's abilities at a given world, i, might then be 
thought of as the i-accessible worlds: COi  = {j: <i,j> ∈ CO}. It will also prove 
convenient to introduce a notation for the set of all propositions consistent with our 
agent’s abilities: COi = {X: X ∩ COi

  ≠ ∅}. COi contains every world consistent with 
our agent’s abilities at i, whereas COi contains the set of propositions true at some such 
world. Note that the existence of a p-world consistent with my abilities does not entail 
that p is within my abilities. Just consider any tautology, or any independent action 
someone else may or may or not perform. The well known normal modal logic, KT, for 
PR (PR-KT) is determined by the class of CO-reflexive models. 

We now add an Andersonian-Kangerian constant, d, for "The demands on Jane Doe 
are all met" (or "Jane Doe’s responsibilities are all met"). We represent the extension of 
"d" as a set of worlds, DEM, DEM ⊆ W, and we give "d"'s truth-conditions accordingly: 
M 1i d iff i ∈ DEM. We define our non-agential but personal obligation operator:  

OBp =df PR(d → p) , 

and read it as follows: OBp: it is obligatory for Jane Doe to be such that p.1 We add 
an axiom, d, governing our deontic constant: 0 COd (i.e. ¬PR¬d). "COd" says d's 
truth is consistent with Jane Doe's abilities, but it does not say it is within her abilities, for 
good reason.2  Axiom d is validated by the condition that satisfying Doe’s responsibilities 
is consistent with her abilities: ∀i∃j(COij & j ∈ DEM). Call the resulting system "PR-
KTd". It is characterized by the class of all models satisfying this constraint ([7]). 

Standard Deontic Logic (SDL) is part of the pure deontic fragment of PR-KTd:3 

    SL:        All Tautologies 
    OB-K:      OB(p → q) → (OBp → OBq)                  

  OB-NC:    OBp → ¬OB¬p 
    MP:        If 0 p and 0 p → q then 0 q 
    OB-NEC:   If 0 p then 0 OBq. 

                                                           
1 The intended reading of "OB", is developed and defended in [2]. It doesn't express the 

impersonal notion it is obligatory that p. It expresses a personal obligation our agent is under. 
Nonetheless, it does not require that she be the agent of p. We take the form of a personal 
obligation as an obligation to be such that p, and we then take an agential obligation to be a 
special case of a personal obligation, one to the effect that our agent has to be such that she 
herself brings it about that p, and thus to be a compound of a personal obligation operator 
and an agency operator. We pass over agency and agential obligations here and allow the 
personal obligation operator and our person-relative modal notions to serve.  

2 Jane Doe may have delegated the last step in her project to her assistant, and it may now be pre-
determined for Doe that her project will be completed only if the assistant completes it, which she 
will. The project‘s completion is no longer within Doe’s ability, but it is still consistent with her 
ability. Now just add that the project’s completion is equivalent to d. For more on the distinc-
tion, see [1]. 

3 In fact the stronger system that results from adding “OB(OBp → p)” to SDL corresponds to KTd. 
See [7]. 
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Plainly we are engaged in considerable idealization, but this simple familiar system allow 
first steps toward a more comprehensive integration of aretaic notions with deontic ones. 

2   Preliminary Framework for the Aretaic Appraisal of an Agent 

Aretaic Preference and Aretaic Appraisal 

We take some states of affairs to reflect favorably on people, others unfavorably, some 
more favorably than others, and some neutrally. I sketch a simple framework here that 
allows for this, simplifying and slightly modifying that in [1], which gives more details.  

We first define a world-relative ordering function, which will yield a weak or quasi-
ordering relation, ≥i,: 

≥: W →  P(W) x P(W))  [i.e. ≥i ⊆ P(W) x P(W)]. 

For each world i, and proposition pair, X and Y, X ≥i Y if and only if X reflects as 
well on our agent as Y (X is aretaically as good as Y) from the standpoint of i. We 
introduce a corresponding operator: 

M 1i p ≥ q: p M ≥i q M. 

We evaluate agents for their actions, results of their actions, motives for acting, 
intentions in acting, traits of character, etc. To allow for this variety, the relata of our 
ordering relation excludes only propositions inconsistent with our agent’s abilities: 

≥-COi Confinement: ∀i(≥i ⊆ COi x COi) 

This validates: ≥-CO Confinement:  0 p ≥ q → (COp & COq), among other things. 
We will also assume that all propositions consistent with our agent's abilities are self-

comparable, and we will assume transitivity as well: 

                         Reflexive:   ∀i∀X(X ∈ COi → X ≥i X) 
Transitive:  ∀i∀X∀Y∀Z[(X ≥i Y & Y ≥i Z) → X ≥i Z]4 

We do not endorse ≥-Connectivity, ∀i∀X∀Y[X,Y ∈ COi → (X ≥i Y ∨ Y ≥i X)], as a 
basic constraint. It is not obvious that any two propositions consistent with our agent's 
abilities must be aretaically comparable since they may involve very different grounds 
for praise or blame. However, we will need it later to explore supererogation. We 
consider further constraints below, in the context of discussing the concepts of neutral, 
positive and negative aretaic appraisal of an agent.  

The following basic schemata and rules are validated: 

   CO-Rflx(≥): 0 COp → p ≥ p 
   Trans(≥):   0 p ≥ q & q ≥ r) → p ≥ r 
   ≥-RE1:    If 0 p ↔ q then 0 r ≥ p → r ≥ q  
    ≥-RE2:    If 0 p ↔ q then 0 p ≥ r → q ≥ r 

                                                           
4 Clearly, confinement and reflexivity imply ∀i∀X(X ∈ COi ↔ ∃Y(X ≥i Y ∨ Y ≥i X). We 

might thus designate the aretaically evaluable propositions, as those comparable with some 
proposition or other, those self-comparable, or those consistent with our agent’s abilities. In 
turn, we might designate the propositions consistent with our agent's abilities as those that are 
aretaically evaluable. 
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A strong preference relation and an equi-ranking relation are definable in familiar ways: 
X >i Y =df X ≥i Y & ¬(Y ≥i X),  X =i Y  =df X ≥i Y & Y ≥i X. Similarly for the 
corresponding operators: p > q =df p ≥ q & ¬(q ≥ p) and p ≈ q =df p ≥ q & q ≥ p. 
Derivative truth-conditions for these operators are: M 1i p > q: p M >i q M and M 1i 

p ≈ q: p M =i q M.  From these axioms, rules, and our definitions, various familiar 
properties follow for > and ≈, as well as: COp ↔ p ≥ p; COp → p  ≈ p;  p ≈ q → (COp 
& COq); and p > q → (COp & COq). 

Neutrality 

We take a neutral proposition as one consistent with an agent's abilities but reflecting no 
positive or negative merit all-in-all on our agent, perhaps because it involves no positive 
or negative aretaic components at all or because it has an equal balance of positive and 
negative aretaic value, "neutralizing" the two opposing values. We take all tautological 
propositions to reflect neutrally on agents, and define aretaic neutrality accordingly: 

ANp =df p ≈ Τ. 

Since we are interested in the positive and negative aretaic appraisal of things consistent 
with our agent's ability, paving the way for linking such appraisal with the deontic 
appraisal of propositions consistent with our agent's abilities, we endorse: 

AN-CO: 0 ANp → COp, 

allowing us to derive: 0 ¬ANΥ and 0 ANp → (ANq ↔ p ≈ q).  If 0 p ↔ q then 0 ANp 
↔ ANq, follows readily from the earlier RE principles for ≥ and our definitions. 

Note however that neutrality is not indifferent to negation, 6 ANp ↔ AN¬p, for this 
would entail ANΥ, given ANΤ, and thus COΥ. But even where COp and CO¬p,  
neutrality is still not indifferent to negation: that I do not bring it about that I now do 
some wonderful thing might be consistent with my ability, as might its negation, and it 
might very well be neutral (e.g. there is nothing special about this opportunity to do 
good), but that I do bring about something wonderful right now (p) may not be neutral. 

Indifference 

Some propositions will be aretaically indifferent for our imagined agent.—whether true 
or false they will not reflect positively or negatively on her. We define this notion as: 

AIp =df ANp & AN¬p. 

As stated earlier, aretaic indifference should be stronger than mere neutrality, and by 
definition, AIp ↔ (p ≈ Τ & ¬p ≈ Τ), so given RE for ≈, we get the mark of a true 
indifference notion: AIp ↔ AI¬p. Also derivable are: AIp → ANp;  AIp & AIq → p ≈ 
q;  AIp → p ≈ ¬p; ¬AIΤ;  ¬AIΥ;  AIp → COp;  and if 0 p ↔ q then 0 AIp ↔ AIq.   

Praiseworthiness and Blameworthiness 

We take the praiseworthy (blameworthy) propositions as those ranked aretaically higher 
(lower) than neutral propositions, and this idea is captured by these concise definitions: 

PWp =df p > Τ  and  BWp =df Τ > p 
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The derivative truth conditions are: M 1i PWp iff p M >i W; M 1i BWp iff W >i 
p M.  The following principles are validated and derivable: 

                  PW/BW-CO:   0  PWp ∨ BWp → COp    
  PW-BW EXCL: 0 PWp → ¬BWp 
  PW-AN/AI EXCL:  0 PWp → ¬(ANp ∨ AIp) 
  BW-AN/AI EXCL: 0 BWp → ¬(ANp ∨ AIp) 
  PW>AN>BW:    0 (PWp & ANq & BWr) → (p > q & q > r) 

The following indifference exclusion principle is also derivable: 

AI-EXCL: 0 AIp → (COp &¬BWp & ¬BW¬p & ¬PWp & ¬PW¬p) 

The only thing that blocks the converse of AI-EXCL, 

AI-EXCL': (COp & ¬BWp & ¬BW¬p & ¬PWp & ¬PW¬p) → AIp, 

is incomparability. There may be propositions consistent with our agent's ability (and 
thus each comparable to itself), that are nonetheless not comparable to Τ, and so not 
"placed" above, below, or among the neutrals. Thus p might satisfy the left side of AI-
EXCL' merely because it is incomparable with Τ. Such propositions would presumably 
contain conflicting positive and negative aretaic components separately pulling above 
and below the neutral line in a way that doesn't allow for resolution. Likewise, we don't 
have: COp → (ANp ∨ PWp ∨ BWp). If, however, we add ≥-Connectivity: 
∀i∀X∀Y[(X,Y ∈ COi) → (X ≥i Y ∨ Y ≥i X)], we validate this and comparability: 

CO-COMP:  1  (COp & COq) → (p ≥ q ∨ q ≥ p). 

Given connectivity and CO-COMP, the following are validated and derivable: 

    CO-COMP':  0  (COp & COq) → (p > q ∨ q > p ∨ p ≈ q) 
    CO-DEF'':   0 COp ↔ (p ≥ Τ ∨ Τ ≥ p) 

          0  COp ↔ (p > Τ ∨ Τ > p ∨ p ≈ Τ) 
          0  COp ↔ (ANp ∨ PWp ∨ BWp) 
   AN-DEF':    0  ANp ↔ (COp & ¬BWp & ¬PWp) 
   AI-EXCL':  0  (COp & ¬BWp & ¬BW¬p & ¬PWp & ¬PW¬p) → AIp 
   AI-DEF':    0  AIp ↔ (COp & ¬BWp & ¬BW¬p & ¬PWp & ¬PW¬p) 

AI-DEF' is essential to the classical framework for supererogation that it is one of our 
central aims to explore here, so we will assume it henceforth.  

Do praiseworthiness and blameworthiness satisfy no conflicts principles: 

  PW-NC:  PWp → ¬PW¬p;   
  BW-NC:  BWp → ¬BW¬p? 

These seem plausible for "all-in-all" readings. For suppose you would be 
praiseworthy (all in all) for being kind or for saving the drowning child. It does not 
seem right to say that it is also possible that you would be praiseworthy (all in all) for 
the negation of these very things. Also, PW-NC and BW-NC are clearly presupposed in 
the classical conceptions of supererogation and offense. So we add these constraints: 

  PW-NC': ∀i∀X(X >i Τ → ¬(W-X) >i Τ));    
  BW-NC': ∀i∀X(Τ >i X → ¬(Τ >i W-X)). 
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PW-NC' tells us that for any world i, and proposition X, if X is ranked higher than Τ, 
then the negation of X is not ranked higher than Τ. BW-NC' gives  the mirror image. 
These two validate the following upper and lower exclusion principles: 

Τ>  EXCL: 0 p > Τ → ¬(¬p > Τ);    Τ< EXCL: 0 Τ > p → ¬(Τ > ¬p). 

These are then derivable: 

PW-NC: 1 PWp → ¬PW¬p ;    BW-NC: 1 BWp → ¬BW¬p. 

We will assume these stronger principles are operating, as they are essential for 
understanding the standard account of supererogation and they will facilitate our simple 
applications to show the fruitfulness of potential a mixed deontic-aretaic scheme. 

3   Aretaic Partitions 

It is well known that in the traditional deontic systems, all propositions are partitioned 
into three mutually exclusive and exhaustive classes, those obligatory, those imper-
missible and those optional (often mislabeled "indifferent"): 

 

Similar relationships hold for PW and BW, but first let us introduce these definitions: 

PLp =df  ¬PWp:     It is Praise-Less that p.  
POp =df ¬PWp & ¬PW¬p:  It is Praise Optional that p 
BLp =df  ¬BWp:       It is Blame-Less that p  
BOp =df ¬BWp & ¬BW¬p: It is Blame-Optional that p  

Given COMP,  the following hold, AIp ↔ (COp & BLp & BL¬p & PLp & PL¬p); 
AIp ↔ (COp & BOp & POp); and COp → [AIp ↔ (BOp & POp)]. 

For both PW and BW we get an exact analogs call it the PW-P (for "PW-Partition"): 

 

PW-P is this conjunction: a) PWp ∨ PW¬p ∨ (¬PWp & ¬PW¬p) & b) ¬(PWp & 
PW¬p) & c) ¬(PWp & (¬PWp & ¬PW¬p)) & d) ¬(PW¬p & (¬PWp & ¬PW¬p)). 
Clearly, a), c) and d) are just truth-functional tautologies. Only b) is not, and it is just No 
PW Conflicts again:  PW-NC: 0 PWp → ¬PW¬p. So PW-P is equivalent to PW-NC: 0 
PW-P ↔ PW-NC. The BW Partition (BW-P) is perfectly analogous and similarly 
reduces to No BW Conflicts principle: 0 BW-P ↔ BW-NC. 
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What happens when we consider compounding these two partitions and classify 
options in terms of both the positive and the negative operators above? This:  

 

Nine possible combinations are indicated. The two eliminations in shaded boxes 
follow from our earlier theorem, PWp → ¬BWp, which derives from our definitions 
and the plausible thesis, p > q →  ¬(q > p). Furthermore, the standard conception of 
supererogation and offense presuppose the exclusiveness of all-in-all praiseworthiness 
and blameworthiness, for else an act that was supererogatory and thus praiseworthy to 
do might nonetheless be blameworthy to do, which jars. Call the resulting 7-fold Par-
tition "PW-BW P".5 We turn now to integrating this aretaic framework with a stan-
dard deontic one. 

4   Aretaic-Deontic Partitions and Some Underlying Issues 

As we noted earlier, SDL entails an OB-Partition. What happens when we combine that 
set of deontic categories with the preceding seven aretaic ones? Ignoring the shading, 
text in parenthesis and in brackets for now, we get this 21-fold partition: 

 

                                                           
5 The partition inherits the mutual exclusiveness and exhaustiveness of the two three-fold 

schemes that generated it. The exhaustiveness of the BW-P partition entails that if PWp, then p 
must satisfy that label as well as one of the three column labels, and thus find a place in at least 
one box in the top row. Similarly for if POp, or if PW¬p. But now by the exhaustiveness of 
the PW-P partition, every p must satisfy at least one of these three antecedent conditions—it 
must satisfy one of the three row labels. So by a 3-part version of Constructive Dilemma, every 
p must fit into one of the nine boxes, and since no p fits into the two red boxes in our frame-
work, it follows that every p fits into at least one of the 7 white boxes. Similar reasoning about 
inheritance will show that no p can satisfy more than one of the labels in the boxes, for that 
would be inconsistent with the non-exclusiveness of the parent partitions, PW-P and BW-P.  
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We have already eliminated (BWp & PWp) and (BW¬p & PW¬p) in our 
framework, so there are no labels for those combinations. On top of the seven 
columns we have the seven cell labels from the aretaic partition, and left of the 
rows, we have the three prior deontic cell labels. As with the 7-fold partition, this 
21-fold partition inherits the exhaustiveness and exclusiveness of the parent parti-
tions, OB-P and PW-BW P.  

Note that we can define and identify a variety of moral concepts of interest in this 
framework. Culpable obligations--obligations one would be blameworthy to violate 
(=df OBp & BW¬p) appear in the top row second column and fifth column, and given 
IMp =df OB¬p, in the same columns of the third row as well. Similarly for non-
culpable obligations (=df OBp & BL¬p). We can then raise interesting questions such 
as "Can there be obligations of either of these kinds?", or even "Can there be obliga-
tions that are blameworthy for Jane Doe to fulfill or praiseworthy to violate?, and we 
can identify how positive answers would fit in the above scheme and explore the 
eliminative implications of negative answers. Which sorts of normative acts can exist 
is of fundamental importance in ethical theorizing, so this is a place where deontic 
logic has a greater chance of being of genuine aid. We will illustrate this in the re-
mainder of this section and the next by considering some simple theses connecting 
aretaic and deontic concepts and their impact on the above partition. 

Many would endorse two basic bridging theses at first glance: 

a) No IM-PW Conflicts: 0 ¬(IMp & PWp)  [i.e. PWp → PEp] 
b) No OB-BW Conflicts:  0 ¬(OBp & BWp) [i.e. BWp → PE¬p]  

These are reductive theses, since it is east to see that they eliminate the possibility 
of certain normative positions. The six respective eliminations (three each) these en-
tail are indicated in the shaded boxes in the top and bottom rows. (There is no impact 
on the middle row.) The result would be a reduction of deontic-aretaic statuses to a 
15-fold partition. However, having illustrated the reductions a) and b) imply, and de-
spite the fact that these are often taken for granted by friends of supererogation and 
ethical theorists generally, there are reasons to be less sure on reflection.  Doubts 
about a): It is widely thought that one can have an obligation that p and not realize it. 
For example, I can think I paid you back $20 already, but be mistaken. Furthermore, I 
can be non-culpably ignorant of certain facts and as a result not realize that p is im-
permissible. Now add that were it not for these facts of which I am ignorant, it would 
be very good that p, and I bring about p motivated by just such a belief. It seems that 
in this case, I am praiseworthy all things considered for the fact that p even though p 
is impermissible. For example, suppose  I give to a charity shortly after, unbeknownst 
to me, my savings have been lost in a stock market crash. As a result, I'm obligated to 
not give to charity, since my family will need every penny I have, but given my 
blameless ignorance at the moment, and my very good intentions at the time, I am all 
things considered praiseworthy for giving to the charity, even though doing so was 
impermissible, unbeknownst to me. Doubts about b): Similarly, suppose that I am 
subject to the same non-culpable ignorance of my sudden loss of savings and, so un-
beknownst to me, it is obligatory for me to hang onto every cent I have for my family.  
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Now add that I could help out a friend who has helped me before by giving her $20, 
and as far as I know, I could do this permissibly, and at trivial cost. Yet I refuse to do 
so for the most selfish and callous of reasons. It then seems that all things considered I 
am blameworthy for refusing even though, unbeknownst to me, my familial obliga-
tions make it overridingly obligatory to refuse.6  

Often friends of supererogation tacitly endorse a) and b) in the way they define 
such acts, but we will be more cautious. I turn to supererogation and kin now.  

5   These Partitions and the Classical Analysis of Supererogation 

The classical analyses of supererogation and of offense/suberogation are: 

SUap: PWp & ¬BW¬p & OPp 
OFap: BWp & ¬PW¬p & OPp 

Something is supererogatory (for Jane) iff it is praiseworthy, its negation is not 
blameworthy and it is (deontically) optional. In contrast something is an offense 
(suberogatory) if it is blameworthy, its negation is not praiseworthy, and it is optional. 

[8, 9] proposes extending the classical scheme by adding acts of "quasi-
supererogation" and "quasi-offense", and argues for their possible instantiation: 

QSp: PWp & BW¬p & OPp 
QOp: BWp & PW¬p & OPp 

Something is quasi-supererogatory (for Jane) iff it is praiseworthy, its negation is 
blameworthy and it is optional; something is a quasi-offense (quasi-suberogatory) if it 
is blameworthy, its negation is praiseworthy, and it is optional.  

Let us introduce only one more mixed concept--FI, for "Fully Indifferent": 

FIp =df OPp & AIp. 

These five new operators concepts are easily accommodated and are present al-
ready in our prior 21-fold partition. Since they entail deontic optionality they occur 
only in the middle row of that partition and are indicated in parenthesis near the 
bottom of each cell in that row. The result suggests that lingering behind the classi-
cal conception of supererogation is a framework with 21 potential categories, far 
more than previously articulated.7 Some of their logical features are also revealed at 
a glance, for example that the five new operators are mutually exclusive and that if 

                                                           
6 Although beyond the scope of the current paper, the two principles above perhaps look plau-

sible at first glance because we tend to conflate them with the genuinely plausible principles 
we get if we replace the partially agent-evaluative notions of blameworthiness and praisewor-
thiness with the more purely state of affairs evaluative notions of goodness and badness 
(when we call acts or results of acts “good” or “permissible” we evaluate them independent 
of our evaluation of the agent’s motives, etc., so it is plausible to expect stronger links here. I 
explore this elsewhere. 

7 [9] identifies nine, and unlike here, that is nine dependent partially on introducing action 
concepts in the scope of operators, but he also indicates he makes no claim the scheme is 
complete.  
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something is optional and not fully indifferent then it will satisfy one of the first 
four operators, and as alluded to earlier when we endorsed PW-BW Exclusion, no 
supererogatory or quasi-supererogatory option is blameworthy, and similarly, no 
offense or quasi-offense is praiseworthy.8  

In the late twentieth century, supererogation was a hotly contested concept, with 
many arguing against its existence. For example, [10] argues for the rejection of su-
pererogation by roughly endorsing the following aretaic-deontic bridging principle: 

c) PWp → OBp. 

Clearly if we add this scheme, we get 0 ¬(SUap ∨ QSp ∨ QOp). Only offenses 
remain. Note c) also entails a) PWp → PEp, given OBp → PEp, so those earlier pos-
sible eliminations would follow from c) as well. Furthermore, it is highly unlikely that 
anyone accepting PW-OB would not also endorse the following bridging principle: 

d) BWp → IMp. 

Indeed I believe that d) is more widely endorsed than c). If we add this scheme, it 
yields 0 ¬OFap, 0 ¬QSp, and 0 ¬QOp, and since d) entails our b) BWp → PE~p, 
those prior eliminations follow as well. So under either c) or d), the quasi-notions are 
eliminated, and if both c) and d) are endorsed, all of the middle row save the central 
category of aretaic indifference is eliminated (as well as those shaded in the top and 
bottom row, leaving us with 9 cells). This reduction of the middle row to one cell is 
one version of what I have called Moral Rigor (MR): 0 AIp ↔ OPp. Correlatively, 
the eliminations in the partition also reflect a version of Strong Exhaustion (SEX), 
that every option is either obligatory, impermissible or (fully) indifferent: 0 OBp ∨ 
IMp ∨ FIp. It is a far cry in its substantive import from the Traditional Exhaustion 
(TEX) formula: 0 OBp ∨ IMp ∨ OPp. MR and SEX rules out not only supererogation 
but all the non-indifferent optional concepts associated with it. If one thinks of the 
options that are neither obligatory nor impermissible as indifferent, one is a short step 
from tacitly ruling out all non-indifferent options. 

Turning back now to c) and d), I think c) has little plausibility on reflection despite 
its explicit or tacit endorsement in much early literature hostile to supererogation. It 
often rests on conflating "ought" with "must". I think d) is more attractive and still 
recently endorsed by some (e.g. [11]), but we have already tacitly rejected it in reject-
ing the prior bridging principle, b). For there  I argued that I might be blameworthy 
for refusing to help a friend, even though my circumstances have changed unbe-
knownst to me in such a way that it is indeed not only permissible but obligatory for 
me to refuse to help the friend out (else my family may starve). Here refusing appears 
to be obligatory and so permissible here, yet blameworthy.  

Still I think d) may be behind the widespread rejection of offenses. Although su-
pererogation has been a marginalized concept in ethical theory and deontic logic, it is 
nonetheless much less controversial than that of offenses (suberogation). Even the 

                                                           
8 I know of no friend of supererogation that ever felt the need to add to the definition of 

supererogation that it was also not blameworthy to do, and similarly for the definition of 
offense with respect to praiseworthiness. There is a strong presupposition in favor of PW-BW 
Exclusion in the ethical theory tradition focused on these notions.  
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staunches defenders of supererogation (see [12] and [9]) raise serious doubts about 
offenses and argue against the alleged symmetry between offense and supererogation. 
One standard line of rejection is that if you allow for a full mirror image of superero-
gation, then not only can an option be blameworthy yet permissible, but it can be 
blameworthy to the highest degree and be permissible, since a supererogatory option 
can be praiseworthy to the highest degree and be permissible to skip. But then a 
downright reprehensible action could turn out to be permissible, which is deemed 
surely false. The objection is that once you open the door to allowing permissible 
blameworthy options like offenses, it seems hard to find any principled way to put 
any limit on the degree of blameworthiness that might be permissible in some circum-
stances. [9] offers two additions (QS and QO) to mitigate against the complaints of 
some anti-supererogationists who also invariably reject offenses, and he himself 
thinks there are better reasons to doubt offenses than to doubt supererogation, but he 
there overlooks the fact that the appeal of a very simple aretaic-deontic bridge princi-
ple like d) may be motivating the especially widespread rejection of offenses, one that 
would at once lead to a rejection of both of his quasi notions. In later work, he is 
clearer about this (e.g. [13]). However, our earlier reflections on b) suggest that a per-
son can indeed be extremely blameworthy for an action that might not only be per-
missible but downright obligatory. Thus our reflections appear to suggest that this 
pathway for arguing against offenses (or Mellema's two quasi-notions) may very well 
rest on a simple though widely endorsed false presupposition. 

Schwartz and Meinong both endorsed theses that are natural errors when first re-
flecting on supererogation. The main one I will call "the Ranking Thesis" (RT)9:  

(SUap & OBq & OFar & IMs) → p > q > r > s. 

[14] makes clear the pro4blems with this view, which we here summarize by not-
ing that a small favor like lending a book you've already read to a friend might be 
supererogatory and nice but not warranting high praise, whereas sometimes our obli-
gations are truly arduous to fulfill and very tempting to shirk. Thus it will often be 
more praiseworthy to do something obligatory than to do something supererogatory. 
Similarly, if there are offenses, then there is no reason to think that these cannot 
sometimes be of such a caliber as to reflect much more poorly on an agent than shirk-
ing some very small obligation. [14] also rejects Meinong's "laws of omission", which 
we can partially illustrate here by: 

SUap  ↔ OFa¬p. 

If it is supererogatory for me to jump on a grenade to save my equally situated 
comrades, it is not ther4eby blameworthy for me to not do so. Similarly, if it is  
an offense for me to not say "hello" when passing you quickly in the hall, it is not 
supererogatory for me to do so. Behind these laws of Meinong are probably more 
fundamental aretaic mistakes (e.g. PWp ↔ BW¬p) but we will study Schwartz', Mei-
nong's, and Chisholm's schemes and the continuity requirement elsewhere.  

In the next section we show that the classical analysis of the most plausible and 
widely accepted of the first four notions defined above, is fundamentally flawed. 

                                                           
9 Really a version of what is called the "continuity requirement" [12, 9]. 
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6   A Basic Flaw in the Classical Analysis of Supererogation 

As mentioned, my prior work in DWE does not involve any aretaic operators, but I 
want to now suggest that this gap cuts both ways: that the classical conception of su-
pererogation presupposes one of the deontic non–aretaic concepts of DWE. 

First, note that an action can be obligatory and highly praiseworthy. Consider a 
solider on point. She stands her appointed ground faithfully in face of a sudden en-
emy attempt to overrun the main camp, despite extreme danger to those who stay on 
point. Second, notice that if something is obligatory, then doing the least you can do 
involves doing that thing, and sometimes the minimum you can permissibly do is 
the same as what is obligatory--there are no graded options to speak of. It follows 
from the preceding case and this DWE principle that it can be praiseworthy to do 
the minimum. Now the crucial question: Can it be praiseworthy to do the minimum 
even when one can also go beyond the call by doing more than the bare minimum? 
"Yes". Consider a minor variant of our prior case. Suppose there are now a first and 
second position on point, the second being a slightly safer fallback position but also 
slightly riskier for the camp, so the first is better all in all. Now suppose it is per-
missible to pick either spot to make a stand (for whoever is on point, by agreement 
of the group, etc.). Our soldier in good faith picks and holds the second position, 
again at great risk of death. Here the least she can do is hold the second position. 
Obviously she "could" also retreat, hide, or play dead, but not permissibly so. Still 
the temptation to take the latter sort of impermissible option might be very intense 
and such that many would do that. It can then surely be praiseworthy for her to hold 
even the second position in such circumstances. But now notice two other things 
abut this case: 1) It is deontically optional for her to hold the second position: for 
she can also hold the first position instead, thereby going beyond the call.  2) It is 
also not blameworthy for the agent to not hold the second position, for then if she 
went beyond the call by holding the first position for the best of reasons, she would 
thereby be blameworthy.  

So here we have an action that satisfies all three conditions of the classical analysis 
of supererogation, yet it is not beyond the call; indeed the action is the minimum re-
quired. When we can do more good than we have to, doing the minimum will always 
be optional, and it can't be automatically blameworthy to not do the minimum, for 
then going beyond the call would invariably entail blameworthiness. And sometimes 
our permissible choices are arduous enough that even taking the minimally permissi-
ble one is praiseworthy. The soldier's holding the 2nd point is not intuitively supere-
rogatory, and fails to fall under the classical conception of supererogation, so the clas-
sical analysis despite its pervasiveness is flawed: it does not give sufficient conditions 
for its target class of acts. In particular, the deontic condition is too weak. Focusing 
only on actions that are aretaically praiseworthy to do and not blameworthy to omit, 
and then merely adding deontic optionality is insufficient to guarantee they are of the 
intended kind. Put another way, such an act can be optional for the wrong reasons: 
because it is a surpassable minimum.  
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There is some irony in this. Supererogationists from Urmson forward accused  
deontic logic of ruling out supererogatory actions. I have argued that this is due to a 
conflation of deontic optionality with indifference by both deontic logicians and ethi-
cists, but our reflections today suggests that the classical analysis that was intended to 
break free from the constraints of deontic logic and its deontic notions can't capture its 
intended class of actions without returning to deontic logic and increasing the deontic 
notions it relies on. Of course it needs more that the deontic concept of optionality 
that SDL can provide. It also needs, at the very least, the deontic concept of doing the 
minimum that morality demands. This concept is not expressible in SDL, but it is in 
DWE, which expands considerably upon the expressive resources of SDL, allowing 
for the expression of a person's exceeding the minimum that morality demands, and 
not entailing that this need be praiseworthy, for in fact it need not be. One can do 
more than the minimum for the wrong reasons or even for bad reasons and not be 
praiseworthy at all. I would suggest that the more objective and act-evaluative notion 
of doing more than the minimum is both more fundamental to our moral scheme and 
more important to it. This suggests that in addition to developing the framework 
within, and considering weakening some of the principles for aretaic appraisal that we 
indicated were less than self-evident, linking it with DWE is in order. The result will 
be a considerably enriched system, and one which will distinguish between two 
closely related and often conflated concepts: supererogation and doing more good 
than one has to do.  
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Abstract. In this paper we define a framework to introduce gradedness
in Deontic logics through the use of fuzzy modalities. By way of example,
we instantiate the framework to Standard Deontic logic (SDL) formulas.
Given a deontic formula Φ ∈ SDL, our language contains formulas of the
form r → NΦ or r → PΦ, where r ∈ [0, 1], expressing that the preference
or probability degree respectively of a norm Φ is at least r. We present
sound and complete axiomatisations for these logics.

Keywords: Deontic Logic, Fuzzy Logic, Norms, Institutions.

1 Introduction

In their article [4], Tom R. Burns and Marcus Carson describe how agents adhere
to and implement rule and normative systems to varying degrees. Agents conform
to rule and normative systems to varying degrees, depending on their identity
or status, their knowledge of the rules, the interpretations they attribute to
them, the sanctions a group or organization imposes for noncompliance, the
structure of situational incentives, and the degree competing or contradictory
rules are activated in the situation, among other factors. Actually, the claim
that obligations come in degrees goes back to W. D. Ross in his system of
ethics, when dealing with the possibility of conflicting moral obligations (for a
reference see [23]).

In hierarchical normative systems not every norm may have the same impor-
tance. In such a case, it seems interesting that agents can attach a level or degree
of importance to each of these norms. These importance or preference degrees
may be in turn useful for resolving conflicts among norms that may arise due
to different reasons. Within a Multi-Agent System (MAS), normative conflicts
may arise due to the dynamic nature of the MAS and simultaneous agents’
actions. In a normative structure, one action can be simultaneously forbidden
and obliged. Ensuring conflict freedom of normative structures at design time is
computationally intractable as shown in [9], and thus real-time conflict resolu-
tion is required. In multi-institutional contexts, different institutions could have
contradictory norms and therefore agents that participate in these institutions
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should decide which norm they follow. Attaching a preference degree to norms
could help agents in order to take this kind of decisions.

Moreover, in hierarchical normative multi-agent systems, even if a set of norms
may have a same rank, there might be different expectations about their compli-
ance or violation by agents. In such situations, it may also be useful to represent
and reason about the probability of compliance of norms.

In this paper we would like to define a logical framework able to capture differ-
ent graded aspects of norms. Taking Standard Deontic Logic (SDL) as the basic
formalism to model normative systems as way of exemple, we present in this pa-
per preliminary steps towards defining Graded Deontic logics. We are aware that
SDL suffers from a number of paradoxes, mostly inherent in the normal modal
Kripke semantics of its operators. Thus, our proposal is not to represent graded
normative reasoning in MAS over the logic SDL. But we believe that begining
the study in this basic logic, graded SDL, could led us to a better understanding
of the main characteristics of graded normative systems in general.

Our fuzzy modal approach has been already used to define a number of un-
certainty logics (probability, possibility, belief functions [13,10] or even graded
BDI agent architectures [7]). More specifically, we define fuzzy modal languages
over SDL to reason about preference (understood as necessity, in the possibilis-
tic sense) and probability of deontic propositions. To this end we introduce two
fuzzy modal-like operators N and P that apply over SDL , in such a way that
e.g. the truth-degree of a formula NOϕ o POϕ is respectively interpreted as
the necessity degree or probability degree of ϕ being obliged. Then we use suit-
able fuzzy logics to reason about these intermediate truth-degrees, truth-degrees
which are of neither of propositions ϕ nor Oϕ (which remain two-valued) but
of fuzzy propositions NOϕ and POϕ. Namely, the language of Necessity-valued
Standard Deontic Logic NSDL will result from the union of the language of
the logic GΔ(C) (Gödel Logic expanded with the Δ operator and a finite set
C ⊂ [0, 1] of truth-constants) and the language of SDL extended with the fuzzy
unary operator N . On the other hand, the language of Probability-valued Stan-
dard Deontic Logic PSDL will result from the union of the language of Rational
Pavelka Logic RPL (�Lukasiewicz Logic expanded with rational truth-constants)
and the language of SDL extended with a fuzzy unary operator P .

The main features of the Graded Deontic Logics we introduce in this paper
are:

1. they are conservative extensions of SDL
2. they have a finite and recursive set of axioms
3. they keep classical semantics for formulas of SDL, in particular their truth-

values remain always 0 or 1
4. they have as semantics extensions of the standard Kripke frames for SDL

with necessity and probability measures over worlds respectively.
5. they contain formulas of the form r → NΦ or r → PΦ, where r ∈ [0, 1],

expressing that the necessity or probability degree respectively of a norm Φ
is at least r, where Φ is any closed formula of SDL (not only a propositional
one).
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The main objective of this article is to present the above mentioned four
variants of Graded Deontic Logics and prove soundness and completeness results.
This constitutes a purely logical study of these formalisms. Note that our purpose
is not to fuzzify Deontic Logic by providing a different interpretation to its
modalities in the sense of having fuzzy deontic modalities, see Section 6 for
a discussion. Instead we have fuzzy, many-valued modalities (of necessity and
probability) applying over classical deontic formulas.

This paper is structured as follows. In Section 2 we present some rather long
preliminaries on the GΔ(C) and RPL fuzzy logics that will be needed later.
In Section 3, Necessity-valued and Probability-valued Deontic logics are defined
over Standard Deontic logic and in Section 4 we present two small examples of
application of the two graded logics. Finally Section 5 is devoted to related and
future work.

2 Preliminaries on the GΔ(C) and RPL Fuzzy Logics

Probably the most studied and developed many-valued systems related to fuzzy
logic are those corresponding to logical calculi with the real interval [0, 1] as set of
truth-values and defined by a conjunction & and an implication → interpreted
respectively by a (left-continuous) t-norm ∗ and its residuum ⇒1, and where
negation is defined as ¬ϕ = ϕ → 0, with 0 being the truth-constant for fal-
sity. In the framework of these logics, called t-norm based fuzzy logics, each (left
continuous) t-norm ∗ uniquely determines a semantical (propositional) calculus
PC(∗) over formulas defined in the usual way from a countable set of proposi-
tional variables, connectives ∧, & and → and truth-constant 0 [13]. Evaluations
of propositional variables are mappings e assigning each propositional variable
p a truth-value e(p) ∈ [0, 1], which extend univocally to compound formulas as
follows:

e(0) = 0
e(ϕ ∧ ψ) = min(e(ϕ), e(ψ))
e(ϕ&ψ) = e(ϕ) ∗ e(ψ)

e(ϕ → ψ) = e(ϕ) ⇒ e(ψ)

Note that, by definition of residuum, e(ϕ → ψ) = 1 iff e(ϕ) ≤ e(ψ), in other
words, the implication → captures the ordering. Further connectives are defined
as follows:

ϕ ∨ ψ is ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ),
¬ϕ is ϕ → 0̄,

ϕ ≡ ψ is (ϕ → ψ)&(ψ → ϕ).

Note that, from the above defintions, e(ϕ∨ψ) = max(e(ϕ), e(ψ)), ¬ϕ = e(ϕ) ⇒ 0
and e(ϕ ≡ ψ) = e(ϕ → ψ) ∗ e(ψ → ϕ). A formula ϕ is a said to be a 1-tautology
1 Defined as x ⇒ y = max{z ∈ [0, 1] | x ∗ z ≤ y}, which always exists provided ∗ is

left-continuous.
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of PC(∗) if e(ϕ) = 1 for each evaluation e, and will be denoted as |=∗ ϕ.
The associated consequence relation is defined as usual: if T is a theory (set
of formulas), then T |=∗ ϕ whenever e(ϕ) = 1 for all evaluations e such that
e(ψ) = 1 for all ψ ∈ T . Two outstanding examples of continuous t-norm based
fuzzy logic calculi are:

Gödel logic calculus: defined by the operations

x ∗G y = min(x, y)

x ⇒G y =
{

1, if x ≤ y
y, otherwise.

�Lukasiewicz logic calculus: defined by the operations

x ∗�L y = max(x + y − 1, 0)

x ⇒�L y =
{

1, if x ≤ y
1− x + y, otherwise.

Actually, in these two calculi (and in general when ∗ is continuous) the min
operation is also definable from ∗ and ⇒ as :

min(x, y) = x ∗ (x ⇒ y)

and hence the connective ∧ can be also considered as definable. These two
fuzzy logic calculi turn out to correspond to the well-known infinitely-valued
�Lukasiewicz and Gödel logics2, already studied much before fuzzy logic was born
(see e.g. [13] for references there). If we denote by ��L and �G the provability
relations in Lukasiewicz and Gödel logics respectively, the following standard
completeness hold:

��L ϕ iff |=�L ϕ
�G ϕ iff |=G ϕ

where, for the sake of simpler notation, we have written |=�L and |=G instead
of |=∗�L and |=∗G respectively. Interestingly enough, both �Lukasiewicz and Gödel
logics have been shown to be axiomatic extensions of Hájek’s Basic fuzzy logic
BL [13] which axiomatizes the set of all common tautologies to every calculus
PC(*) with ∗ being a continuous t-nom. As a matter of fact, �Lukasiewicz logic
is the extension of BL by the axiom (�L) ¬¬ϕ → ϕ,

forcing the negation to be involutive, and Gödel logic is the extension of BL
by the axiom

(G) ϕ → (ϕ&ϕ).

2 Gödel logic is also known as Dummett logic and is the axiomatic extension of Intu-
itionistic logic with the pre-linearity axiom (ϕ → ψ) ∨ (ψ → ϕ).
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forcing the conjunction to be idempotent. The above mentioned completeness
for theorems extend to deductions from arbitrary theories in case of Gödel logic
and only to deductions from finite theories in case of �Lukasiewicz logic:

T ��L ϕ iff T |=�L ϕ, if T is finite
T �G ϕ iff T |=G ϕ

In a sense, due to the residuation property of implications, a t-norm based
fuzzy logic L as defined above can be considered as a logic of comparative truth.
In fact, a formula ϕ → ψ is a logical consequence of a theory T , i.e. if T �L

ϕ → ψ, if the truth degree of ϕ is at most as high as the truth degree of ψ
in any interpretation which is a model of the theory T . Therefore, implications
indeed implicitly capture a notion of comparative truth. This is fine, but in some
situations one might be also interested to explicitly represent and reason with
partial degrees of truth. One convenient way to allow for an explicit treatment of
degrees of truth is by introducing truth-constants into the language. In fact, if one
introduces in the language new constant symbols α for suitable values α ∈ [0, 1]
and stipulates that e(α) = α for all truth-evalutations e, then a formula of the
kind α → ϕ becomes 1-true under any evaluation e whenever α ≤ e(ϕ).

This approach actually goes back to Pavelka [21] who built a propositional
many-valued logical system PL which turned out to be equivalent to the expan-
sion of �Lukasiewicz Logic by adding into the language a truth-constant r for
each real r ∈ [0, 1], together with a number of additional axioms. The semantics
is the same as �Lukasiewicz logic, just expanding the evaluations e of proposi-
tional variables in [0, 1] to truth-constants by requiring e(r) = r for all r ∈ [0, 1].
Pavelka proved that his logic is complete for arbitrary theories in a non-standard
sense. Namely, he defined the truth degree of a formula ϕ in a theory T as

‖ϕ‖T = inf{e(ϕ) | e is a PL-evaluation model of T },

and the provability degree of ϕ in T as

|ϕ|T = sup{r ∈ [0, 1] | T �PL r → ϕ}

and proved that these two degrees coincide, i.e. ‖ϕ‖T = |ϕ|T . This kind of
completeness is usually known as Pavelka-style completeness, and strongly relies
on the continuity of �Lukasiewicz truth functions. Note that ‖ϕ‖T = 1 is not
equivalent to T �PL ϕ, but only to T �PL r → ϕ for all r < 1. Later, Hájek [13]
showed that Pavelka’s logic PL could be significantly simplified while keeping the
completeness results. Indeed, he showed that it is enough to extend the language
only by a countable number of truth-constants, one for each rational in [0, 1],
and by adding only to the logic the two following additional axiom schemata,
called book-keeping axioms:

r&s ↔ r ∗L s
r → s ↔ r ⇒L s

for all r ∈ [0, 1] ∩ Q, where ∗L and ⇒L are the �Lukasiewicz t-norm and its
residuum respectively. He called this new system Rational Pavelka Logic, RPL
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for short. Moreover, he proved that RPL is strong standard complete for finite
theories.

On the other hand, Hájek also shows that Gödel logic can be expanded with
a finite set of truth constants together with a new unary connective Δ while
preserving the strong standard completeness. Namely, let C ⊆ [0, 1] a finite
set containing 1 and 0, and introduce into the language a truth-constant r for
each r ∈ C, together with the so-called Baaz’s projection connective Δ. Truth-
evaluations of Gödel logic are extended in an analogous way to RPL as it regards
to truth constants and adding the clause

e(Δϕ) =
{

1, if e(ϕ) = 1
0, otherwise

Note that despite ϕ is many-valued, Δϕ is a two-valued formula that is to be
understood as a kind of presicification of ϕ. The introduction of the Δ is due to
technical reasons to avoid clashes with the truth-constants. Finally, the axioms
and rules of this new logic, denoted GΔ(C) are those of Gödel logic G plus the
above book-keeping axioms for truth-constants from C and the following axioms
for Δ

(Δ1) Δϕ ∨ ¬Δϕ
(Δ2) Δ(ϕ ∨ ψ) → (Δϕ ∨Δψ)
(Δ3) Δϕ → ϕ
(Δ4) Δϕ → ΔΔϕ
(Δ5) Δ(ϕ → ψ) → (Δϕ → Δψ)

plus the bookeping axioms

Δr →G 0 for each r ∈ C \ {1}

and the Necessitation rule for Δ: from ϕ derive Δϕ. Then the following strong
completeness result holds: T �GΔ(C) ϕ iff T |=GΔ(C) ϕ, for any theory T and
formula ϕ.

Notation: in the rest of the paper we will write connectives with subindexes G
or L, like ∧G, →G, →L, ¬L, etc., to differentiate whether they are from Gödel
or �Lukasiewicz logics.

3 Graded Standard Deontic Logics

As already mentioned, in this section we are going to define two logics to reason
about necessity and probability of Standard Deontic Logic formulas. Necessity
and probability measures are two outstanding families of plausibility measures
[14]. Given a Boolean algebra F , μ : F → [0, 1] is a plausibility measure if the
following holds:
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1. μ(∅) = 0
2. μ(W ) = 1
3. If X, Y ∈ F and X ⊆ Y , then μ(X) ≤ μ(Y )

A plausibility measure μ is a necessity measure if in addition μ satisfies

μ(X1 ∩X2) = min(μ(X1), μ(X2)), for all X1, X2 ⊆ F

and μ is a (finitely additive) probability measure if it satisfies

μ(X1 ∪X2) = μ(X1) + μ(X2) when X1 ∩X2 = ∅, for all X1, X2 ⊆ F

Necessity mesures are purely qualitative in the sense that the order is what
matters, and they have been widely used to model a notion of ordinal preference
[3,17]. We will mainly assume this last interpretation as intended semantics
although we do not exclude other possibilities.

3.1 Necessity-Valued Standard Deontic Logic

We define a fuzzy modal language over Standard Deontic Logic SDL to reason
about the necessity degree of deontic propositions. The language of Necessity-
valued Deontic Logic (NSDL) results from the union of the language of the logic
GΔ(C) (Gödel logic extended with the Δ operator and a finite set C ⊂ [0, 1] of
truth-constants) and the language of Standard Deontic Logic (SDL), extended
with a fuzzy unary operator N . Formulas of NSDL are of two types:

– Deontic formulas: they are the formulas of SDL, built in the usual way with
the obligation deontic modality O. � and ⊥ denote the truth-constants true
and false respectively. It is said that a formula of SDL is closed if every
propositional variable is in the scope of a modality.

– N-formulas: they are built from elementary N -formulas Nϕ, where ϕ is a
closed SDL-formula, and truth-constants r, for each rational r ∈ C ⊂ [0, 1],
using the connectives of Gödel many-valued logic:

• If ϕ ∈ SDL is closed, then Nϕ ∈ NSDL
• If r ∈ C ⊂ [0, 1] then r ∈ NSDL
• If Φ, Ψ ∈ NSDL then Φ →G Ψ ∈ NSDL and Φ ∧G Ψ ∈ NSDL (where
∧G and →G correspond to the conjunction and implication of Gödel
logic)

• If Φ ∈ NSDL then ΔΦ ∈ NSDL

Other GΔ(C) logic connectives for the N -formulas can be defined from ∧G,
→G and 0 in the way described in Section 2.

Since in Gödel Logic GΔ(C) the formula Φ →G Ψ is 1-true iff the truth value of
Ψ is greater or equal to that of Φ, formulas of the type r →G Nϕ (where ϕ is
a closed formula of SDL) express that the necessity degree of the norm ϕ is at
least r.
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In this language we can express with the formula ¬G¬GNϕ, that the necessity
degree of the norm ϕ is positive3, and with the formula ϕ ≡G r, that is exactly
of degree r. Comparisons of degrees are done by means of formulas of the form
Nϕ →G Nψ.

NSDL Semantics. The semantics of our language is given by means of
Necessity-valued Deontic Kripke models of the following form: K = (W, R, e, μ),
where (W, R, e) is an standard Kripke model of SDL, and μ is a necessity measure
on some Boolean subalgebra F ⊆ 2W such that the sets {w | e(w, ψ) = 1}, for
every closed SDL-formula ψ, are μ-measurable. Remember that in every stan-
dard Kripke model (W, R, e) of SDL, R is a serial binary relation on W (that is,
for every w ∈ W there is t ∈ W such that (w, t) ∈ R).

The truth value e(w, ϕ) of a SDL formula ϕ in a world w is defined as usual
(either 0 or 1). The truth-value of atomic N -formulas Nψ in the model K is
defined as

‖Nψ‖K = μ({w | e(w, ψ) = 1})

Then the truth-value ‖Φ‖K of compound N -formulas Φ is defined by using
GΔ(C) truth-functions. If Φ is a N -formula, we will write |=NSDL Φ when
‖Φ‖K = 1 for any model K, and if T is a set of N -formulas, T |=NSDL Φ
when ‖Φ‖K = 1 for all models K such that ‖Ψ‖K = 1 for Ψ ∈ T .

NSDL Axioms and Rules. Axioms of NSDL are:

1. Axioms of SDL (for SDL-formulas)
2. Axioms of GΔ(C) (for N -formulas)
3. Necessity Axioms (where ϕ and ψ are closed SDL formulas):

(a) N(ϕ → ψ) →G (Nϕ →G Nψ)
(b) N(ϕ ∧ ψ) ≡G N(ϕ) ∧G N(ψ)
(c) ¬GN(⊥)
(d) Nψ, for every SDL-theorem

Deduction rules for NSDL are Modus Ponens (both for → of SDL and for →G

of GΔ(C)) necessitation for the obligation deontic modality O (from ϕ derive
Oϕ, if ϕ ∈ SDL) and necessitation for Δ (from Φ derive ΔΦ, for N -formulas).
Alternatively, instead of Necessity Axiom 3 (d), one may add the rule “from φ
infer Nφ” for a closed SDL-formula, in this way one can obtain a system with
finitely-many axiom schemes and rules. We have introduced a recursive Hilbert-
style axiom system since provability in SDL is decidable. We will denote by
�NSDL the usual notion of proof from the above axioms and rules

It is worth pointing out that Necessity Axiom 3 (a) ensures that N preserves
SDL logical equivalence. Observe that the formula

N(ϕ ∨ ψ) ≡G N(ϕ) ∨G N(ψ)

3 Notice that in Gödel Logic, (x ⇒G 0) ⇒G 0 = 1 iff x > 0.
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is neither sound nor provable from the above axioms. On the other hand the
following formulas are indeed provable:

1. N(ϕ ∧ ¬ϕ) ≡G 0
2. N(ϕ ∨ ¬ϕ) ≡G 1

Soundness and Completeness Theorems of NSDL

Definition 1. A set of formulas T is a N-theory if all the formulas in T are
N-formulas.

By definition of the NSDL axioms and rules it is easy to check that for every set
of SDL of formulas Σ and every SDL-formula φ,

Σ �NSDL φ iff Σ �SDL φ.

Therefore, NSDL is a conservative extension of SDL. Moreover, observe that
every SDL-formula provable in a N -theory is a SDL-theorem.

Following Theorem 8.4.9 of [13], a N -theory T can be represented as a theory
over the propositional logic GΔ(C). For each closed SDL-formula φ we introduce
a propositional variable pφ, corresponding to the formula Nφ. We define the
following translation: (Nφ)∗ = pφ, (r)∗ = r, for each rational r ∈ C ⊂ [0, 1] and
for every N-formula φ and ϕ, (φ ∧G ϕ)∗ = φ∗∧Gϕ∗ and (φ →G ϕ)∗ = φ∗ →G ϕ∗.
Let T ∗ be the following set of GΔ(C) formulas:

– Propositional variables pφ, for each closed formula φ, theorem of SDL.
– formulas of the form ϕ∗, for each Necessity Axiom ϕ.
– α∗, for each formula α ∈ T

Lemma 2. If T is a N-theory and φ a N-formula, then

T �NSDL φ iff T ∗ �GΔ(C) φ∗

Proof. Assume that T ∗ �GΔ(C) φ∗. Let α∗
1, . . . , α

∗
k be a GΔ(C)-proof of φ∗ in

T ∗. Then the sequence α1, . . . , αk can be converted in a NSDL-proof of φ in T
by adding for each formula of the form pψ that occurs in α∗

1, . . . , α
∗
k, a proof of

ψ in SDL and then applying the rule of necessitation for N -formulas.
Conversely, assume T �NSDL φ. Then a GΔ(C)-proof of φ∗ in T ∗ can be

obtained by taking the translation of the formulas of one NSDL-proof of φ in T ,
once the SDL-formulas are deleted. Use the fact that every SDL-formula provable
in a N -theory is a SDL-theorem.

From the fact that the Necessity Axioms are 1-true in every Necessity-valued
Deontic Kripke model follows the Soundness Theorem:

Lemma 3. (Soundness) For every N-theory T over NSDL and every N-
formula φ, T �NSDL φ implies T |=NSDL φ.

Theorem 4. (Completeness) For every N-theory T over NSDL and every N-
formula φ:

T |=NSDL φ implies T �NSDL φ.
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Proof. By Lemma 2 and the Completeness Theorem of the Logic GΔ(C) it is
enough to prove that

T |=NSDL φ implies T ∗ |=GΔ(C) φ∗.

Assume T ∗ 
|=GΔ(C) φ∗. Let E be a model of T ∗, with evaluation v of the
propositional variables pψ such that v(φ∗) < 1. We show that there is a model
K of T that is not a model of φ.

Let (W, R, e) be the canonical model of SDL. Observe that for every formula
φ ∈ SDL, the canonical model satisfies:

ψ is valid in (W, R, e) iff ψ is a theorem of SDL.

Consider now the following Boolean subalgebra F ⊆ 2W :

F = {{w | e(w, ψ) = 1} : ψ is a closed formula of SDL}

let us denote by Xψ the set {w | e(w, ψ) = 1}. We define a function μ on F in
the following way: μ(Xψ) = v(pψ). Then we can show:

(i) μ is a necessity measure on F .
1. μ is a well-defined function. Proof: if Xα = Xβ, for α and β, closed SDL-

formulas, then Xα≡β = W and α ≡ β is valid in the canonical model.
Consequently, α ≡ β is a theorem of SDL. Since E is a model of T ∗,
v(pα≡β) = 1. By using the translation by the *-operation of Necessity
Axiom 3 (a), N(α → β) →G (Nα →G Nβ), we have v(pα) = v(pβ).
Thus, we can conclude that μ(Xα) = μ(Xβ).

2. It is easy to check with the same kind of argument as before that μ(∅) = 0
and μ(W ) = 1.

3. For every α and β, closed SDL-formulas
μ(Xα ∩Xβ) = min(μ(Xα), μ(Xβ))

Proof: Since E is a model of T ∗, E is also a model of the *-translation
of the Necessity Axiom 3 (b), N(α∧ β) ≡G N(α)∧G N(β). Therefore E
is a model of the formula pα∧β ≡G pα ∧G pβ and thus

v(pα∧β) = min(v(pα), v(pβ))
we can conclude that

μ(Xα ∩Xβ) = μ(Xα∧β) = min(μ(Xα), μ(Xβ))

(ii) For every N -formula Φ ∈ NSDL, ‖Φ‖K = v(Φ∗).
Proof: For this, it is enough to show that for every closed formula ϕ ∈ SDL,
‖Nϕ‖K = v(pϕ). It is easy to check by induction on the complexity of the
N -formulas and by definition of μ.

Let us denote by Mv the model (W, R, e, μ). We have just proved that Mv is a
necessity-valued deontic Kripke model of T and ‖φ‖Mv = v(φ∗) < 1.
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3.2 Probability-Valued Deontic Logic

In a quite similar way to NSDL, we define now a fuzzy modal language over
Standard Deontic Logic to reason about the probability degree of deontic propo-
sitions. The language of Probability-valued Deontic Logic PSDL is defined as
follows. Formulas of PSDL are of two types:

– Deontic formulas: Formulas of SDL.
– P-formulas: they are built from elementary P-formulas Pϕ, where ϕ is a

closed SDL-formula, and truth-constants r, for each rational r ∈ [0, 1], using
the connectives of Rational Pavelka Logic.

The semantics of our language is given by means of Probability-valued Deontic
Kripke models of the following form: K = (W, R, e, μ), where (W, R, e) is an
standard Kripke model of SDL, and μ is a finitely additive probability on some
Boolean subalgebra F ⊆ 2W such that the sets {w | e(w, ψ) = 1}, for every
closed SDL-formula ψ, are μ-measurable.

The truth value of an atomic P -formula Pψ in a model K is defined as

‖Pψ‖K = μ({w | e(w, ψ) = 1})
and the truth-value of compound P -formulas are computed from the atomic ones
using the truth-functions of �Lukasiewicz logic. Now, given a P -theory T (a set of
P -formulas) one defines the truth-degree of a P -formula Φ over T as the value

‖ φ ‖T = inf{‖ φ ‖K | K is a PSDL-model of T }
where K is a PSDL-model of T when ‖Ψ‖K = 1 for every Ψ ∈ T . We define the
provability degree of Φ over T as

| φ |T = sup{r | T �PSDL r → φ}
We introduce now a sound and recursive axiom system for PSDL. Axioms of

PSDL are:

1. Axioms of SDL (for SDL-formulas)
2. Axioms of RPL (for P-formulas)
3. Probability Axioms (where ϕ and ψ are closed SDL-formulas):

(a) P (ϕ → ψ) →L (Pϕ →L Pψ)
(b) P (ϕ ∨ ψ) ≡ Pϕ⊕ (Pψ  P (ϕ ∧ ψ))
(c) ¬LP (⊥)
(d) Pψ, for every SDL-theorem

where Φ ⊕ Ψ is a shorthand for ¬LΦ →L Ψ and Φ  Ψ is a shorthand for
¬L(Φ →L Ψ)4. Deduction rules for PSDL are Modus Ponens (both for → of
SDL and for →L of RPL) and necessitation for the obligation modality O.

We can prove in an analogous way we did with the logic NSDL that PSDL
is a conservative extension of SDL. Although a completeness theorem analogous
to the one for NSDL does not hold for PSDL, similar techniques allows us to
prove that the Pavelka-style completeness of RPL extends to PSDL.
4 Note that in �Lukasiewicz Logic (x ⇒L 0) ⇒L y = min(1, x + y) and (x ⇒L y) ⇒L

0 = max(0, x − y).
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Theorem 5. [Pavelka Completeness] Let T a P -theory and Φ a P -formula.
Then it holds that ‖Φ‖T = |Φ|T .

4 Examples

Norm preferences. Necessity-valued graded deontic logics allow to attach pref-
erence degrees to norms and this may be used to deal with conflicts among norms,
in a kind of defeasible logic approach. Consider the following example adapted
from [6]. Suppose Company A has the following norms: premium costumers of
Company A are entitled to get a discount, but costumers which place special
orders are not allowed to get such a discount. Such a policy can be described by
the theory

Γ = { PremiumCostumer(x) → ODiscount(x),
SpecialOrder(x) → O¬Discount(x) }

John is a premium costumer but has placed a special order. In this case, assuming
both norms to have the same priority level, the above policy clashes: clearly,
Γ ∪ {PremiumCostumer(John), SpecialOrder(John)} �SDL ⊥.

Let us further assume that the norm regarding special orders has a higher pri-
ority than the norm regarding premium costumers. In this case, we can describe
the company policy by the following NSDL theory

Γ ∗ = { r1 → N(PremiumCostumer(x) → ODiscount(x)),
r2 → N(SpecialOrder(x) → O¬Discount(x)) }

where r1 < r2. Now we have

Γ ∗∪{NPremiumCostumer(John), NSpecialOrder(John)} �NSDL r1 → N(⊥).

But in terms of the non-monotonic consequence relation associated to a
necessity-valued logic5 [3], this leads to

Γ ∪ {PremiumCostumer(John), SpecialOrder(John)}|∼ O¬Discount(John),

this is to say, the norm about special orders prevails.

Norm Compliance. We illustrate the use of Probability-valued Deontic Logics
by means of an example in which an agent i evaluates the probability of achieving
a certain goal g. Let agent i represent a person with disabilities. Agent i wants to
buy a certain product and he can choose between two supermarkets, A and B, for
buying the desired product. In order to take this decision, on the one hand, agent
i calculates, for each supermarket, the probability of the norm compliance by
other clients of the provision of parking places for people with disabilities. On the
other hand, he calculates the probability of norm compliance by supermarkets A
and B, of the Disability Discrimination Act (1995, extended in 2005), regarding
buildings accessibility. We could formalise in SDL sentences expressing these
norms, in a simplified way:
5 Let Γ ∗ be a theory over NSDL and let α = sup{r | Γ ∗ �SDL r → ⊥}. Then define

Γ |∼ ϕ when Γ ∗ �NSDL r → ϕ with r > α.
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– It is obligatory for supermarket A (B) to have at least one accessible entrance
route OAccA, (OAccB , respectively).

– It is prohibited to park in a place reserved for people with disabilities in
supermarket A (B) O¬ParkA (O¬ParkB , respectively)

A graded deontic language will allow us to reason about probabilities in this
context of uncertainty. Consider the following sentences of SDL:

1. OAccA ∧O¬ParkA,
2. OAccB ∧O¬ParkB

1. is equivalent to O(AccA∧¬ParkA) and 2. is equivalent to O(AccB∧¬ParkB).
Let T be a set of premises of the graded logic PSDL representing the information
we have about norm compliance in this two supermarkets. Then, if the following
holds:

T �PSDL PO(AccA ∧ ¬ParkA) →L PO(AccB ∧ ¬ParkB)

then agent i would take the decision of going to buy to supermarket B. Observe
that the formula of PSDL

PO(AccA ∧ ¬ParkA) →L PO(AccB ∧ ¬ParkB)

is 1-true in a model iff the probability degree of the norm compliance of O(AccB∧
¬ParkB) is greater or equal than the degree of norm compliance of O(AccA ∧
¬ParkA).

5 Related and Future Work

The paper [6] provides a logical analysis of conflicts between informational, moti-
vational and deliberative attitutes. The resolution of conflicts is based on Thoma-
son’s idea of prioritization, which is considered in the BOID logic [5] as the order
of derivations from different types of attitudes. Thomason’s BDP logic (see [24])
is based on Reiter’s default logic and extended in the BOID logic with conditional
obligations and intentions.

In [11] the authors follow the BOID architecture to describe agents and agent
types in Defeasible Logic. Reasoning about agents can be embedded in frame-
works based on non-monotonic logics, as one the most interesting problems con-
cerns the cases where the agent’s mental attitudes are in conflict or when they
are incompatible with obligations and other deontic provisions.

BOID specifies logical criteria (i) to retract agent’s attitudes with the changing
environment, and so (ii) to settle conflicts by stating different general policies
corresponding to the agent type considered. Intentions and beliefs are viewed as
constituting the internal constraints of an agent while obligations are its external
constraints.

More recently, in [20], M. Nickles proposes a logic-based approach based on the
notion of behavioral expectation. In his paper he presents a quantification of the
norm adherence of an agent using the measurement of norm deviance. Normative
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expectations are defined via the degree of resistance to social dynamics in the
course of time. Our approach differs from previous ones because our purpose is
not to fuzzify deontic logic giving a different interpretation to its modalities. We
want to provide a reasoning model for an agent in order to represent how he
attaches necessity or probability degrees to norms of a given institution.

Up to now we have applied our framework to SDL. However, our purpose is
to provide a general way to define a necessity-valued or probability fuzzy logic
over any given deontic logic, allowing to attach a grade to the norms described
in the deontic language. Future work will include working with other logics such
as Dynamic Logic (see [22] and [15]) Dyadic Deontic Logic (see [29] or [26]),
the KARO formalism [27], B-DOING Logic [8], the Logic of “Count-as” [12],
Normative ATL [25] or Temporal Logic of Normative Systems [1]. Since different
definitions of norm adherence or of probability of norm compliance would give
rise to a variety of formal systems, changing or adding new axioms to the basic
axiomatization we have introduced here, future work will be devoted to the study
of these notions in a multi-institutional setting.
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Abstract. The paper proposes a formal analysis of the ascriptive view of norms
as resulting from pulling together Anderson’s reductionist approach, the analysis
of counts-as, and a novel modal approach to the formal representation of lan-
guages in logic. This unifying attempt results in the definition of a new form of
reduction of deontic logic based on counts-as statements. Such result is discussed
also in the light of Jørgensen’s dilemma.
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1 Introduction

The present paper intends to pull together independent threads which have been thus far
followed by the (formal) studies of norms. Such threads are the reductionist approach
to norms started with [1, 2, 3, 19], the study of counts-as initiated in [26, 27] and first
pursued with formal means in [17], and the ascriptive view of norms first put forth in
[24] and more recently developed, among others, in [16]. According to this latter, norms
are actually ascriptions of deontic properties to actions or states of a�airs. In short, to
state norms means to create new properties, which are somehow inexistent in reality
(e.g., Anderson’s “violation”), to create new words to name them, and consequently to
predicate them of the relevant states of a�airs or actions. The paper proposes a formal
analysis of this view of norms which builds, in the first place, on Anderson’s reduction,
in the second place, on the formal analysis of counts-as developed in [11,13,12,14,10]
and, in the third place, on a formal characterization of the language creation aspect of
the ascriptive view of norms. As a result, a comprehensive formal theory of norms is
presented and formalized in modal logic.

The paper is structured as follows. Section 2 summarizes Anderson’s reduction ap-
proach and provides a contextual version of it. Part of the section consists of a summary
of the results presented in [11, 13, 12, 14, 10] and provides the ground for a counts-
as based view of Anderson’s reduction. At the end of the section the ascriptive view
of norms is exposed in more details to introduce Section 3. There, a language-based
notion of indistinguishability between propositional models is introduced and a modal
logic, first studied in [20, 21], is exposed for reasoning about it. This language-based
notion of indistinguishability will be the key for capturing the phenomenon of language

R. van der Meyden and L. van der Torre (Eds.): DEON 2008, LNAI 5076, pp. 263–277, 2008.
c� Springer-Verlag Berlin Heidelberg 2008
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creation inherent in the ascriptive view of norms. A simple example is used throughout
the exposition of the formalism. Section 4 applies the formalisms presented in Sections
2 and 3, providing a formal characterization of the ascriptive view of norms in the guise
of a new notion of counts-as. The section ends with some remarks concerning the rela-
tion between the formal analysis presented and Jørgensen’s dilemma. Finally, Section 5
draws some conclusions and sketches future research lines.

2 Anderson’s Reduction Revisited

By “Anderson’s reduction” the present paper intends, in general, the approach to de-
ontic logic which is based on the reduction of deontic notions to evaluative ones (e.g.,
‘good’, ‘ideal, ‘bad’, ‘violation’). Such approach was first systematically developed in
Anderson’s work [1, 3, 2]. In that work, the reduction of deontic statements to alethic
ones is based on the intuition according to which the fact that � is obligatory means
that �� “necessarily” implies a violation, in symbols: �(�� � �), where � is a spe-
cific atom for which it is valid that ���, i.e., that the violation is not “necessary”.
The nature of the reduction lies in how this reference to a “necessity” is formally
modeled. In the original proposal of Anderson the system chosen for the reduction
was K1. Various alternative versions of Anderson’s reduction are studied, for instance,
in [7, 20, 22].

2.1 Terminological Necessities

We start considering the form of reduction based on system S5 such as the ones studied
in [7, 20]. By interpreting the � operator occurring in the reduction expression as an
S5 necessity, formulae �(�� � �) could be soundly rephrased as: the negation of
� unconditionally implies a violation. Notice that the S5-based interpretation of the
reduction is in line with Anderson’s intuition [4] that the occurrence of a violation
follows analytically from the fact that an obligation is not fulfilled.

It is well-known that S5 is the modal logic of universal quantification since the so-
called universal modality (i.e., the modality interpreted on the W � W, where W is the
model’s domain) is an S5 modality [6]. Now, viewing the � modality in Anderson’s
reduction as the universal modality, which we denote by [u], conveys a key semantic
hint:

��w �� [u](��� �) i� �w� � W : ��w� �� ��� � (1)

i� �(��) 	 �(�) (2)

where� is a model for the modal language with universal modality [u], W is its domain
and � its evaluation function. Formulae 1 and 2 show a very precise interpretation of
Anderson’s reduction: � is obligatory means that all states (i.e., possible worlds) are

1 It might be instructive to recall that Kanger independently developed an analogous reduction
based on a constant � denoting normative ideality, or the absence of violation [19]. In this
case, the fact that � is obligatory means that � “necessarily” follows from ideality, in symbols:
�(�� �).
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such that either � is true or, if � is false, then a violation is also true. In this view,
deontic statements amount to set-theoretic relations concerning the interpretation �(�)
of the atom �.

If the deontic statements of a normative system can be represented by modal for-
mulae involving the universal modality and the violation atom, what happens if we
want to consider, under the same formalism, deontic statements belonging to several
di�erent normative systems? Technically speaking, we then look for operators that can
“locally” behave like a universal modality, but that can “globally” behave in a weaker
way allowing for the representation of di�erent and possibly inconsistent deontic state-
ments at the same time. We should find a multi-modal logic such that: a) the logic
enables as many modalities as the normative systems we intend to represent; b) these
modalities retain as many characteristics of [u] as possible; c) the logic allows for the
satisfiability of expressions such as: [i](�� � �) 
 �[ j](�� � �). To put it roughly,
we look for a modal logic by means of which to express contextual terminological
necessity.

2.2 A Modal Logic of Context

In logic, contexts have been studied as sets of models [9]. Now, if the models considered
are models of propositional languages, then contexts can be studied as sets of possible
worlds [28]. The present section exposes a logic based on this view2. The result is a
contextual version of Anderson’s reduction.

Syntax of Cxtu. The syntax of Cxtu is the syntax of a multi-modal language �Cxt [6]
where n is the cardinality of the set � of contexts and u the index of the universal modal-
ity. The alphabet of �Cxt contains: an at most countable set P of propositional atoms p;
the set of boolean connectives ���
����; a finite non-empty set � of context indexes
containing the context index u. Metavariables i� j� � � � are used to denote elements of �.
The set of well-formed formulae � of �Cxt is defined by the following BNF:

� ::� � � p � �� � �1 
 �2 � �1  �2 � �1 � �2 � [i]� � �i� ��

where i denotes elements in �.

Semantics of Cxtu. Languages�Cxt are given a semantics via the class of C��
� frames

� � �W� �Wi�i��� such that W � �Wi�i��. Leaving technicalities aside, these frames con-
sist of the domain W and of a finite number n � ��� of subsets of W among which
W itself3. Such subsets straightforwardly model the notion of context sketched above.

2 Readers are again referred to [10] for a more detailed exposition.
3 Notice that such structures are multi-sets, or bags, rather than frames. However, it is proven that

they represent secondarily universal frames which also contain one universal relation [10, Ch.
4]. An alternative more general semantics to Cxtu can be given via the class ��� of frames
satisfying the following properties: they are i-j transitive (if wRiw� and w�Rjw�� then wRjw��),
i-j euclidean (if wRiw� and wRjw�� then w�Rjw��), and they contain an equivalence relation Ru

such that for all i � �, Ri � Ru. It is proven, however, that classes C��
� and ��� are modally

equivalent (see [10, Appendix]).
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Notice that the domain W represents the global, or universal, context. Models are, as
usual, structures �� ��� where � belongs to the class C��

� and � is the valuation func-
tion � : P �� �(W).

Definition 1. (Satisfaction based on C��
� frames)

Let � be a model built on a C��
� frame.

��w �� [i]� i� � w� � Wi : ��w� �� �

where u is the universal context index, Wu � W and i ranges on the context indexes in
�. The obvious clauses for the Boolean connectives and the dual of [i] are omitted.

Notice that the [u] is the universal operator. Notice also that, while in standard modal
logic the truth of [i] and �i� formulae depends on the evaluation state, the truth of such
formulae interpreted within C��

� frames abstracts therefrom: in other words truth im-
plies validity. This is what we would intuitively expect for the contexts of normative
systems: what holds in the context of a given normative system is not determined by the
point of evaluation but just by the system as such, i.e., by its own norms.

Axiomatics of Cxtu. Logic Cxtu results from the union of the modal logic K45ij
n,

which axiomatizes contexts [10], with an S5 logic axiomatizing the behavior of the
global context u, plus the interaction axiom 	 �ui, which just states that u is the biggest
context.

(�) all tautologies of propositional calculus

(�i) [i](�1 � �2) � ([i]�1 � [i]�2)

(4i j) [i]�� [ j][i]�

(5i j) �[i]�� [ j]�[i]�

(�u) [u]�� �

(	 �ui) [u]�� [i]�

(���	) �i� �� �[i]��

(
�) I� � �1 ��� � �1 � �2 ���� � �2

(�i) I� � � ���� � [i]�

where i� j denote elements of the set of indexes � and u denotes the universal context
index in �. The interaction axiom 	 �ui states something quite intuitive concerning the
interaction of the [u] operator with all other context operators: what holds in the global
context, holds in every context. Soundness and completeness of this axiomatization
w.r.t. C��

� frames are proven in [10].

2.3 Anderson’s Reduction Contextualized

Everything has been put into place to provide a contextualization of the version of An-
derson’s reduction sketched in Section 2.1. The fact that � is ideally the case in context
i can be formalized as [i](�� � �) and read as: the negation of � necessarily implies
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a violation within context i. It becomes thus possible to express that � is obligatory in
the context i of a given normative system, while �� is permitted in the context j of a
di�erent normative system: [i](��� �) 
 � j� (�� 
 ��).

In [10] such reduction has been called a “counts-as reduction of deontic logic”.
Counts-as is the problematic locution introduced in [26, 27], and formally investigated
for the first time in [17], which Searle takes as the basic syntax of constitutive rules,
that is, of the building blocks of social reality. From a semantic point of view, such lo-
cution can acquire several di�erent meanings, some of which have been systematically
analyzed in [11, 13, 12, 14, 10]. One of these senses —the classificatory counts-as— is
there formalized as the strict implication in Cxtu:

���cl
i � :� [i](��� �) (3)

Intuitively, the negation of � counts as a violation in context i, meaning that the negation
of � is classified as a violation in context i.

Such reduction can be straightforwardly strengthened by considering stronger senses
of counts-as. One of these is the proper classificatory counts-as, also formalizable in
Cxtu:

���cl�
i � :� [i](��� �) 
 �[u](��� �) (4)

Intuitively, the negation of � counts as a violation in context i, meaning that the negation
of � is classified as a violation in context i (first conjunct of the right-hand side of
Formula 4), but the negation of � is not always classified as a violation (second conjunct
of the right-hand side of Formula 4).

2.4 Norms as Ascriptions

The reduction of deontic to counts-as statements of the type displayed in Formula 4
stresses that a state of a�airs properly determines a violation only within a context,
since outside the context that would not necessarily be the case. In [12] and [10], the
rationale behind this formal characterization was taken from Searle’s words themselves:

[. . . ] where the rule (or system of rules) is constitutive, behaviour which is
in accordance with the rule can receive specifications or descriptions which it
could not receive if the rule did not exist [26, p. 35].

Constitutive rules add something to what is already the case and proper contextual clas-
sification is a way to capture this intuition. However, there is also another way to look
at the novelty introduced by constitutive rules. In a sense, what they do is to literally
introduce new concepts, rather than just validating classifications which would other-
wise not be valid. They create new terms to be used for a further conceptualization of
reality. Such view of rules as ascriptions has a long history, starting with Pufendorf’s
notion of “impositio” [24, pp.100–101] and have been advanced in more recent times
for instance in [16]. As a matter of fact, Searle’s thesis according to which institutional
facts are construed upon brute ones [27] is an instance of this ascriptive view of social
reality.

Now, the central aspect of ascription is language creation. In order for an ascription
to take place, a new term needs to be created, which can then be used for denoting the



268 D. Grossi

desired property. If we take an ascriptive view of Anderson’s reduction, this means that
the term “violation” is introduced in order to separate desired or ideal actions or states
of a�airs from their undesired or sub-ideal counterparts. Interestingly enough, this exact
view is neatly formulated in Jørgensen’s paper which introduced his dilemma [18]:

How is a sentence of the form “Such and such is to be so and so” to be verified?
How is it for instance to be verified that all promises are to be kept? To this
question I know of no other answer than the following: The phrase “is to be
etc.” describes not a property which an action or a state of a�airs either has
or not, but a kind of quasi-property which is ascribed to an action or a state
of a�airs when a person is willing or commanding the action to be performed,
resp. the state of a�airs to be produced [18, pp. 292–293]

The following sections develop a formal analysis of this ascriptive view of norms. The
primary technical diÆculty resides in providing a suitable formal ground for the repre-
sentation of language creation. From a propositional point of view, language creation
means that new propositional atoms are somehow introduced in the language and con-
sequently evaluated in the models. Therefore, in order to model language creation in
logic, we should first be able to model, within the same logical framework, di�erent
languages. This is an aspect which, at first, might look hard to capture in a standard
logical framework since evaluation functions are typically not partial, i.e. they evaluate
all the atoms in the language.

3 “In the Beginning Was the Word”

The present section shows how modal logic o�ers an elegant way to represent di�erent
languages within one same formalism, without resorting to non-standard tools such as
partial evaluation functions.

3.1 Adam and Eve

Consider the propositional language� built from the alphabet P of propositional atoms:
�� ���	� (“the apple has been eaten”), � (“a violation has occurred”). We have of
course four possible models such that: w1 �� �� ���	� 
 �, w2 �� �� ���	� 
 ��,
w3 �� ��� ���	�
� and w4 �� ��� ���	�
��. That is, we have the state in which
the apple is eaten and there is a violation (w1), the state in which the apple is eaten but
there is no violation (w2), the state where the apple is not eaten and there is a violation
(w3), and finally the state where no apple is eaten nor there is a violation (w4).

Obviously, all these states can be distinguished from each other. But suppose now to
compare the models ignoring atom �. Models w1 and w2 would not be distinguishable
any more, nor would states w3 and w4. Which is just another way to say that, had we
used a sublanguage �i of � containing only atom �� ���	�, we would have been
able to distinguish only states w1 from w3 and w2 from w4. This latter can be considered
to be the language at disposal of Adam & Eve in their pre-moral stage, before hearing
God commanding “you shall not eat of the fruit of the tree that is in the middle of the
garden”—rather than before actually eating the apple. In fact, after hearing God’s com-
mand they were already endowed with the possibility to discern good (��� ���	�)
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from evil (�� ���	�), that is, their language was enriched and they got to distinguish
also states w1 from w2 and w3 from w4, thanks to the newly introduced notion of viola-
tion (�).

3.2 Propositional Sublanguage Equivalence

The intuitions sketched in the previous section are here made formal. Take two proposi-
tional models m and m� for a propositional language�. Models m and m� are equivalent
if they satisfy the same formulae expressible in �: m �� � i� m� �� �. If m and m� are
equivalent (m � m�) then there is no set � of formulae of � whose models contain m
but not m�, or vice versa. That is to say, the two models are indistinguishable for �.
However, two models which are not equivalent with respect to a given alphabet (a given
set of atomic propositions), may become equivalent if only a sub-alphabet (a subset of
the atomic propositions) is considered.

Definition 2. (Propositional sublanguage equivalence)
Two models m and m� for a propositional language� are equivalent w.r.t. sublanguage
�i if they satisfy the same set of formulae expressible using the alphabet of �i. For any
� � �i: m �� � i� m� �� �. If m and m� are equivalent w.r.t. �i (m �i m�) then they
cannot be distinguished by any set � of formulae of �i.

The definition makes precise the idea of two propositional models agreeing up to what
is expressible on a given alphabet. To put it another way, it formalizes the idea that
two models m and m� are equivalent modulo the alphabet in the complement ��i (i.e.,
���i) of the sublanguage considered: m is indistinguishable from m� if we disregard
the alphabet of ��i. Notice that if m �i m� and �i � � (i.e., the maximal element
in ���(�)) then �i��, that is, �i is the standard equivalence between propositional
models.

Proposition 1. (Properties of �i)
Let m and m� be two models for the propositional language�. The following holds:

1. For every sublanguage �i of �, relation �i is an equivalence relation on the set of
all models of language�.

2. For all sublanguages�i and� j of�: if �i 	 � j then � j 	 �i. It follows that for ev-
ery sublanguage�i of�: � 	 �i, that is, standard equivalence implies sublanguage
equivalence.

Proof. Claim (1) is straightforwardly proven. It is easy to see that: identity is a subre-
lation of �i for any sublanguage�i; and that �i Æ �i and ��1

i are subrelations of �i for
any sublanguage �i. Claim (2) is proven by considering that, if �i is a sublanguage of
� j and m � j m�, then for all propositions � � �i: m �� � i� m� �� �. Hence, m �i m�.

3.3 Release Logic

Propositional release logics (PRL) have been first introduced and studied in [20, 21] in
order to provide a modal logic characterization of the notion of irrelevancy. Irrelevan-
cies are, in short, those aspects which we can choose to ignore. Irrelevancy is repre-
sented via modal release operators, specifying what is relevant to the current situation
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and what can instead be ignored. Release operators are indexed by an abstract ‘issue’
denoting what is considered to be irrelevant for evaluating the formula in the scope of
the operator: ΔI� means ‘formula � holds in all states where issue I is irrelevant’, or ‘�
holds in all states modulo issue I’ or ‘� necessarily holds while releasing issue I’; �I�

means ‘formula � holds in at least one of the states where issue I is irrelevant’, or ‘�
possibly holds while releasing issue I’.

Issues can be in principle anything, but their essential feature is that they yield equiv-
alence relations which cluster the states in the model. An issue I is conceived as some-
thing that determines a partition of the domain in clusters of states which agree on
everything but I, or which are equivalent modulo I. Release operators are interpreted
on these equivalence relations. As such, propositional release logic can be thought of as
a “logic of controlled ignorance” [20]. They represent what we would know, and what
we would ignore, by choosing to disregard some issues.

Syntax of PRL. The syntax of PRL is the syntax of a standard multi-modal language
�Prl [6] where n is the cardinality of the set ��� of releasable issues. The alphabet of
�Prl contains: an at most countable set P of propositional atoms p; the set of boolean
connectives ���
����; a finite non-empty set ��� of issues. Metavariables I� J� ��� are
used for denoting elements of ���. The set of well formed formulae � of �Prl is defined
by the usual BNF:

� ::� � � p � �� � �1 
 �2 � �1  �2 � �1 � �2 � ΔI� � �I��

where I denotes elements in ���.
One last important feature of PRL should be addressed before getting to the se-

mantics. We have seen that modal operators are indexed by an issue denoting what is
disregarded when evaluating the formula in the scope of the operator. The finite set ���
of these issues is structured as a partial order, that is to say, ������� is a structure on
the non-empty set ���, where � (“being a sub-issue of”) is a binary relation on ���

which is reflexive, transitive and antisymmetric. The aim of the partial order is to in-
duce a structure on the equivalence relations denoting the release of each issue in ���:
if I � J then the clusters of states obtained by releasing J contain the clusters of states
obtained by releasing I. Intuitively, if I is a sub-issue of J then by disregarding J, I is
also disregarded. This aspect is made explicit in the models which, for the rest, are just
Kripke models.

Semantics of PRL. The semantics of PRL is given via the class ��� of frames � �

�W� �RI����� such that W is a non-empty set of states and �RI���� is a family of equiv-
alence relations such that: if I � J then RI 	 RJ. Models are, as usual, structures
� � �� ��� where � is an evaluation function � : P �� �(W) associating to each
atom the set of states which make it true. PRL models are therefore just S5n models
with the further constraint that the granularity of the equivalence relations follows the
partial order defined on the set of issues: the �-smaller is the issue released, the more
granular is the partition obtained via the associated equivalence relation. The satisfac-
tion relation is standard. Boolean clauses are omitted.
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Definition 3. (Satisfaction for PRL models)
Let � be a PRL model.

��w �� ΔI� i� � w��wRIw
� : ��w� �� �

��w �� �I� i� �w��wRIw
� : ��w� �� ��

where I � ���. As usual, a formula � is said to be valid in a model �, in symbols
� �� �, i� for all w in W, ��w �� �. It is said to be valid in a frame � (� �� �) if
it is valid in all models based on that frame. Finally, it is said to be valid on a class of
frames F (F �� �) if it is valid in every frame � in F.

Axiomatics of PRL. Finally, the axiomatics amounts to a multi-modal S5 plus the ��
(partial order) axiom:

(�) all tautologies of propositional calculus

(�) ΔI(�1 � �2) � (ΔI�1 � ΔI�2)

(�) ΔI�� �

(4) ΔI�� ΔIΔI�

(5) �I�� ΔI�I�

(��) ΔI�� ΔJ� 	� J � I

(���	) �I�� �ΔI��

(
�) I� � �1 ��� � �1 � �2 ���� � �2

(�I) I� � � ���� � ΔI�

where I� J � ���. A proof of the soundness and completeness of this axiomatics w.r.t.
to the semantics presented in Definition 3 is exposed in [21].

4 Modal Aspects of Ascriptivism

This section puts logics Cxtu and PRL at work together. Their fusion [8] Cxtu � PRL
on language �Cxt � �Prl is all we need to get the axiomatics and semantics we are
interested in. Notice that completeness will be preserved by the fusion of the axiom
systems exposed in Sections 2.2 and 3.3 w.r.t. to the fusion ��� � ��� of their classes
of frames4.

4.1 Propositional Sublanguage Equivalence as Release

Reasoning about propositional sublanguage equivalence is an instance of reasoning in
release logic.

4 Notice that the fusion ���
���� considers the semantics of Cxtu given in terms of i-j transitive

and i-j euclidean frames containing an equivalence relation including all contexts (see Footnote
3). This is necessary because C��

� frames are not closed under disjoint unions, which is a
prerequisite for preserving Kripke completeness in fusions. See [8, Ch. 4].
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Proposition 2. (Sublanguage equivalence models)
Consider a propositional language � on the set of atoms P, and a set of states W. Any
evaluation function � : P �� �(W) determines a PRL model m �

�
W� ���i�i����(�)��

�
.

Proof. It follows from the properties of �i proven in Proposition 1.

Notice that the release issues ��� are the complements ��i of the sublanguages in
���(�). In fact, what is released is just what cannot be expressed. The accessibility re-
lations should therefore be taken to be the sublanguage-equivalence relations ��i. No-
tice also that the set ��� is ordered by set-theoretic inclusion 	 between sublanguages
of �5.

To put it roughly, what the theorem says is that PRL is the logic to reason about
scenarios like the Adam & Eve one sketched in Section 3.1. Let us get back to that
example. Now it is possible to represent both the pre- and post- God’s commandment
situations, within the same formalism, by making use of the release operators of PRL.
Suppose Adam & Eve to be at state w1 in the model with domain W � �w1�w2�w3�w4�

and evaluation � as in Section 3.1. Recall that the language was built on atoms P �

��� ���	�� ��. So let us denote with ��� and ��� ���	�� the sublanguages contain-
ing only atom � and, respectively, atom �� ���	�. These sublanguages represent the
releasable issues together with the empty language 0 and the full language 1 � P. Let
� � �W� ����������� ���	����0��1���� be the resulting release model. We have that:

��w1 �� �� ���	�
 � (5)

��w1 �� Δ0(�� ���	�
 �) (6)

��w1 �� Δ����� ���	�
 �Δ���� (7)

So Formula 5 just states what holds in w1, which is the actual state where Adam &
Eve eat the apple committing a violation. Formula 6 does the same by saying that, if
you evaluate �� ���	� and � after releasing nothing, i.e., by using the full descriptive
power of the language, then both �� ���	� and � necessarily hold. In fact, in the
model at issue the set of states reachable from w1 via �0 coincides with w1 itself, since
there are no other states in W which are equivalent with w1 if all available atoms are
used in the comparison. Hence, in the model at issue, Δ0 refers to the current evaluation
state, i.e., w1. Formula 7 shows what the e�ects of releasing atom � are. In fact, by
abstracting from �, state w1 is not distinguishable any more from state w2: w1 �� w2.
Hence there exists a state w2 � W such that ��w2 �� �� ���	� 
 ��.

Formulae 7 and 6 represent Adam & Eve’s situation after and, respectively, before
God’s commandment “you shall not eat of the fruit of the tree that is in the middle of
the garden”. Such commandment introduces a further characterization of reality, exem-
plified here by the notion of violation, which was not available to Adam & Eve before
the commandment was uttered.

5 It is instructive to notice that although all models based on sublanguage equivalence relations
are PRL models, the reverse does not hold. In a sense the characterization in terms of PRL is
too liberal. Future work will try to find axiomatizations for characterizing exactly the models
based on sublanguage equivalence relations (see Section 5).
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4.2 Ascription Formalized

God’s commandment not to eat the apple is a statement �� ���	� � �. Let us
now suppose the set of all God’s commandments to be �. Such set naturally defines
a context i whose extension Wi is just the set of states satisfying �6. Since � con-
tains �� ���	� � �, such statement can be studied as a classificatory counts-as
statement pertaining to the context i of divine commands. It corresponds to the va-
lidity of strict implication [i](�� ���	� � �) in the model. To represent this, we
should add contexts to the PRL model � introduced in the previous section. Let it be
�� � �W� �W�Wi�� ����������� ���	����0��1����. Clearly, [i](�� ���	� � �) will be
valid in �� only if Wi does not contain state w2, since ���w2 �� �� ���	� 
 ��.
Leaving technicalities aside, stating [i](�� ���	� � �) in the Adam & Eve scenario
modeled in �� corresponds to setting the boundaries of the context i of divine norms
� in such a way to rule out states in which eating the apple is compatible with the non
occurrence of a violation.

We hope the simple example of Adam & Eve to have conveyed the basic ideas behind
the study of norms presented here, which builds on Anderson’s reductionist tradition,
on the analysis of counts-as presented in [10], and on the notion of propositional sub-
language equivalence. If we now pull these threads together within logic Cxtu � PRL,
a new form of reduction can be defined which is based on a sense of counts-as taking
its ascriptive aspect into account.

Definition 4. (Ascription of violation: �As
i )

“� is ascribed to �� in context i” is formalized in the logic Cxtu � PRL, on a multi-
modal language �Cxt � �Prl containing atom � and the set of issues ��� � ���(�),
with � being the non-modal fragment of �Cxt � �Prl, as follows:

���As
i � :� [i](��� �) 
 �[i]Δ���(��� �) (8)

Intuitively, the ascription of violation amounts to a classificatory counts-as7 (first con-
junct of the right-hand side of Formula 8) with the further condition (second conjunct)
that the predicated implication does not hold in context i any more if it is evaluated
releasing its consequent (in this case the violation atom �). It goes without saying
that Definition 4 can easily be generalized to cover a notion of ascriptive counts-as
�1 �

As
i �2 between any two formulae �1 and �2, where what is released in the second

conjunct of the definition is the alphabet of �2. The ascription of atom � is just a spe-
cial case of ascriptive counts-as. In the next section we briefly sketch some properties
of this counts-as operator which adds on the formal analysis of counts-as developed
in [11, 13, 12, 14, 10].

Definition 4 represents a strengthening of Anderson’s reduction along the line of
Formula 3 and 4. It is worth spending a few more words on the right-hand side of
Formula 8. Its dual version better displays the key idea behind it: ��i�(�� 
 ��) 

�i�����(��
��). By releasing the consequent � of the ascription, it becomes impossible

6 The definition of contexts by sets of norms has been thoroughly investigated in [14, 10] in
relation with constitutive rules and with the warning raised in [23]: “no logic of norms without
attention to a system of which they form part”.

7 Note that the stronger form of proper classificatory counts-as could also be used.
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to distinguish states which satisfy � from states which falsify �. Now, the definition
says that, in order for an ascription to hold, there is a state belonging to context i from
which another state w� outside of context i can be reached which is indistinguishable
from w once � is released, and which falsifies the implicative content of the counts-as
(�� 
 ��)8.

4.3 On the Properties of Ascriptive Counts-As

There is no space to exhibit a full structural analysis of the syntax of the new counts-
as connective �Asc

i . However, it is worth noticing that it is very similar, structurally
speaking, to proper classificatory counts-as �Cl�

i [12, 10]. Like proper classificatory
counts-as, it satisfies the core of the structural properties of counts-as isolated in [17]
(i.e., left and right logical equivalence, disjunction of the antecedents and conjunction
of the consequents) and it falsifies transitivity9. However, there are also two essential
di�erences.

First of all, ascriptive counts-as requires non-empty contexts: [i]� � �(�1 �
As
i �2).

The validity of the property is easily checked semantically. None of the senses of counts-
as analyzed in [11, 13, 12, 14, 10] enjoys this property. This is not surprising since the
ascription of a property to something should presuppose the existence of that something.
Secondly, contraposition, i.e., (�1 �

As
i �2) � (��2 �

As
i ��1), is not valid. It fails in

all models where a state in context i can be found which falsifies �1 � �2 by releasing
�2 but no state in i can be found which falsifies �1 � �2 by releasing �1. This typically
happens in models where i validates also �1  �2. The failure of contraposition is an
interesting aspect of �As

i since contraposition was one of the problematic properties of
the classificatory view of counts-as. Ascription seems therefore to be a fruitful develop-
ment of the classificatory perspective pursued in the series of works [11,13,12,14,10].
Further investigations in the structure of �Asc

i and in its logical relationships with the
other senses of counts-as is left for future research.

4.4 An Ascriptive Glance at Jørgensen’s Dilemma

The first of the ten philosophical problems urging today’s deontic logic according to
[15] was the problem, already formulated in [23], concerning a suitable foundation of
deontic logic in the face of Jørgensen’s dilemma:

How can deontic logic be reconstructed in accord with the philosophical posi-
tion that norms are neither true nor false? [15, p. 3]

It is our claim that the ascriptive view of noms can provide the ground for such a re-
construction. Let us sketch how this would work in the case of Adam & Eve scenario.
There, God’s commandment does three di�erent things at the same time. First, the com-
mandment defines the context i of divine norms. As such, formula �� ���	� � �

8 Typically, state w satisfies ��, that is, the antecedent of the counts-as since w and w� di�er
only in the interpretation of atom �. In the Adam & Eve scenario, for instance, w � w1 and
w�
� w2.

9 The countermodel of transitivity for �Cl�
i (see [12, 10]) works also for �Asc

i .
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defines the “logical space” [25, p. 6] of the normative system at issue, i.e., the con-
text of the system (states w1�w3�w4). Notice that, as such, �� ���	�� � is properly
speaking neither true nor false, but it is rather taken or assumed to be true, exactly
like an axiom. Second, the commandment teaches Adam & Eve how to recognize, to
say it with Searle [27], states with a certain “institutional” property (‘violation’) on the
ground of a “brute” property (‘eating the apple’). Third, the commandment increases
the granularity of Adam & Eve’s language so that they can distinguish state w1 from
state w2 (and w3 from w4) by making use of suitable “institutional” terms. This is the
aspect of language creation proper of the ascriptive view of norms. To sum up, a norm
� � � in a set of norms � works like an axiom defining the context i of the normative
system �, and defines the violation term(s) � by ascribing it to term(s) � built from
some “brute” language.

With respect to the third point, notice that the statement �� ���	� � � is nei-
ther true nor false if a “brute” language is spoken, where the “institutional” term
� is not used. In fact, in the scenario there are states in the model where neither
Δ���(�� ���	� � �) nor Δ����(�� ���	� � �) are true. That is why, to say it
with Jørgensen, norms correspond to “quasi-properties” of reality [18, pp. 292–293].
Properties, or to use Searle’s terminology again, “brute facts” hold independently of the
human ascriptive activity, while“quasi-properties” or “institutional facts” hold only as
a result of ascription, and in this sense they are in a way less true. Notice, however, that
this notion of truth is not the technical one used in Kripke semantics: the notion of truth
in Jørgensen’s dilemma (i.e., truth as what is evaluated as true given the brute language)
is not the Kripke notion of truth (i.e., truth as what is evaluated as true given the whole
language). The logic presented here generalizes this distinction to any possible partition
besides the “brute” vs. “institutional” one.

5 Conclusions and Future Work

By providing Anderson’s reduction with suÆcient modal means for supporting a notion
of context and of linguistic indistinguishability, the paper has provided an original view
of deontic statements as forms of ascriptions (Definition 4). This has been claimed to
be a sound perspective for grounding a reduction-based deontic logic in the face of
Jørgensen’s dilemma (Section 4.4).

Future work will focus on three aspects: first, a more accurate axiomatic charac-
terization of ��� frames with sublanguage equivalence relations will be pursued (see
Footnote 5); second, the logical relations between ascriptive counts-as and the other
forms of counts-as characterized in [14, 10] will be investigated; finally, the dynamic
aspect of ascription will be studied making use of some form of update logic in the
spirit of, for instance, [5].
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