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   Abstract   Measles virus (MV) was isolated in 1954 (Enders and Peeble 1954). It is 
among the most contagious of viruses and a leading cause of mortality in children 
in developing countries (Murray and Lopez 1997; Griffin 2001; Bryce et al. 2005). 
Despite intense research over decades on the biology and pathogenesis of the virus 
and the successful development in 1963 of an effective MV vaccine (Cutts and 
Markowitz 1994), cell entry receptor(s) for MV remained unidentified until 1993. 
Two independent studies showed that transfection of nonsusceptible rodent cells 
with human CD46 renders these cells permissive to infection with the Edmonston 
and Halle vaccine strains of measles virus (Dorig et al. 1993; Naniche et al. 1993). 
A key finding in these investigations was that MV binding and infection was inhib-
ited by monoclonal and polyclonal antibodies to CD46. These reports established 
CD46 as a MV cell entry receptor. This chapter summarizes the role of CD46 in 
measles virus infection.    
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32 C. Kemper, J.P. Atkinson

   CD46 Discovery and Characterization 

 CD46 was discovered 1985 as a protein expressed on human peripheral blood 
mononuclear cells that bound C3b, the major opsonic and activation fragment of the 
complement system (Cole et al. 1985). It was initially termed gp45-70 because of 
its unusually broad, doublet, mobility pattern on SDS-PAGE. Subsequent functional 
analysis showed that gp45-70 functions as a complement regulator by serving as a 
cofactor for the plasma serine protease factor-I to cleave C3b and C4b (Seya et al. 
1986; Yu et al. 1986). The protein was therefore renamed membrane cofactor pro-
tein (MCP) with a cluster of differentiation designation CD46 (Hadam 1989). 

 The complement system is a major player in the innate immune response, where 
it functions as a first-line defense against invading pathogens (Whaley et al. 1993). 
The complement system is activated by lectins and natural antibodies upon ligand 
binding and also serves as an independent immune system with sensing and  effector 
activities (the alternative pathway). Once activated, it mediates microbial destruc-
tion by opsonizing microbes for adherence and internalization via phagocytic cells 
and through lysis (Whaley et al. 1993). It promotes the inflammatory process by the 
release of proinflammatory mediators, especially the C3a and C5a anaphylatoxins, 
which activate a wide range of cells involved in the host’s immune response (Kohl 
and Bitter-Suermann 1993; Hawlisch and Kohl 2006), including endothelial and 
epithelial cells (Whaley et al. 1993). The complement system is often called a dou-
ble-edged sword. Thus, while instrumental in fighting infections and promoting the 
immune response, it can cause damage to host tissues at a site of infection, in the 
setting of autoantibodies and immune complexes, or in acute and chronic injury 
states (Whaley et al. 1993; Walport 2001a, 2001b). To avoid undesirable damage to 
self, tight control is critical (Richards et al. 2007). Such control is achieved in part 
by two fluid-phase (factor H and C4b-binding protein) (Morgan and Harris 1999) 
and two membrane-bound (decay accelerating factor, DAF/CD55 and membrane 
cofactor protein, MCP/CD46) regulators. These proteins interact with C3 and/or C4 
activation fragments through shared structural features (Morgan and Harris 1999). 
Also, the gene locus for these complement regulators is in a cluster that occupies 
an approximately 800-kb segment at 1q32 (de Cordoba et al. 1984; Holers et al. 1985; 
Reid et al. 1986; Hourcade et al. 1989). CD46 is in this regulators-of- complement-
activation protein/gene cluster (Fig.  1 A) (Cui et al. 1993).  

  Structure and Isoforms 

 The CD46 gene consists of 14 exons and 13 introns (Hourcade et al. 1989), span-
ning about 45 kb within the RCA gene cluster (Fig. 1B). It encodes a type I trans-
membrane protein (Liszewski and Atkinson 1992). The analysis of distinct cDNAs 
derived from cDNA libraries revealed one of the intriguing features of CD46: mul-
tiple isoforms arising from a single gene by alternative splicing (Fig. 1C) (Hourcade 
et al. 1989; Liszewski and Atkinson 1993). CD46 consists of four short consensus 
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3 Measles Virus and CD46 33

 Fig. 1 (a)  The gene sizes and intergenic distances are approximately drawn to scale.  (b)  Exon 
number and protein domain. The intergenic distances are not drawn to scale. The gene comprises 
approximately 46 kb. This is approximately 15 kb of DNA between exon 9 and 10.  (c)  Diagram of 
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34 C. Kemper, J.P. Atkinson

repeats (SCRs) at its amino-terminus. These SCRs are also called complement 
control protein repeats (CCPs) or sushi domains and are independently folding 
protein modules of approximately 60 amino acids in length (Barlow et al. 1991). 
RCA members contain 4–30 CCPs and their C3 and C4 fragment binding sites 
reside within these structural units, usually requiring three CCPs to form a binding 
site. CCPs 1, 2, and 4 of CD46 are  N -glycosylated. Glycosylation of CCP2 is essen-
tial for CD46 to function as MV receptor (Maisner and Herrler 1995; Maisner et al. 
1994, 1996). The four CCPs are followed by a serine/threonine/proline (STP)-rich 
region. The STP region is encoded by three differentially spliced exons (giving rise 
to STP regions A, B, and C of 14–15 amino acids each). The STP regions are sites 
of  O -glycosylation and the number and composition of amino acids of the STP 
region determines the quantity of  O -glycosylation (Liszewski and Atkinson 1992). 
The STP region is followed by a short, juxtamembraneous 12 amino acid-long 
domain (separate exon) of yet unknown function, a transmembrane domain, an 
anchor, and one of two cytoplasmic tails, termed CYT-1 and CYT-2 (Liszewski and 
Atkinson 1992). 

 Thus, based on the observed STP splicing pattern and the distinct cytoplasmic 
tails, multiple CD46 isoforms can be generated (Fig. 1C). However, Northern and 
Western blotting and RT-PCR analyses of multiple cell lines, peripheral blood cells, 
and tissue samples demonstrate that CD46 is regularly expressed as variable 
amounts of four predominant isoforms, BC1, BC2, C1, and C2. Due to their 
 difference in  O -glycosylation, the BC1/2 isoforms show an M 

r
  of 62,000–67,000, 

and the C1/2 forms have an M 
r
  of 54,000–60,000 (Liszewski et al. 1991). The 

 expression ratio of the four main isoforms is inherited in an autosomal codominant 
fashion, with three phenotypes in the population: the majority (65%) expresses pre-
dominantly the highly  O -glycosylated BC1/2 forms, 6% express predominantly the 
less glycosylated C1/2 forms, and 29% of the population express both forms in 
roughly equal amounts (Liszewski et al. 1991; Wilton et al. 1992; Seya et al. 1999). 
All four isoforms serve as a MV receptor and binding of MV to CD46 is independ-
ent of the quantity of  O -glycosylation (Maisner and Herrler 1995; Varior-Krishnan 
et al. 1994; Iwata et al. 1994). Soluble forms of CD46, possibly shed from the cell 
surface via metalloproteinases (Hakulinen and Keski-Oja 2006), are present in low 
concentrations in plasma, seminal fluid, and tears (Hara et al. 1992; Simpson and 
Holmes 1994). Their biological significance is unknown. Similarly, a role for 
the low frequency CD46 mRNAs encoding other isoforms, identified primarily in 

Fig. 1 (Continued) CD46 structure. CD46 is a type I transmembrane glycoprotein that is expressed 
on most tissues as four major isoforms derived by alternative splicing of a single gene. The N-ter-
minus of eachisoform consists of four complement control protein repeats CCPs, and CCPs 1, 2, 
and 4 each bear one N-linked complex sugar. The CCPs are followed by a serine, threonine, and 
proline-rich (STP) region that is O-glycosylated. The STP region, a site of alternative splicing, arises 
from three separate exons, designated A, B, and C. The four major isoforms of CD46 utilize the C 
region, whereas the B region is alternatively spliced, giving rise to either a BC or C STP region. 
Isoforms containing the A exon of the STP region have been reported, but are rarely observed in 
normal human tissue. The carboxyl terminus of CD46 is also differentially spliced, giving rise to 
two distinct cytoplasmic tails, designated CYT-1 (16 amino acids) and CYT-2 (23 amino acids)
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3 Measles Virus and CD46 35

EBV-transformed lymphocytes and leukemic cell lines (ABC1/2) and in the pla-
centa (B1/2) (Hara et al. 1995; Matsumoto et al. 1992; Russell et al. 1992; Purcell 
et al. 1991; Johnstone et al. 1993), has not been identified.  

  Tissue Distribution 

 CD46 is expressed by nearly all nucleated cells (Seya et al. 1988). Human erythro-
cytes, in contrast to other primates, including the chimpanzee, do not express CD46 
(Cole et al. 1985). The inherited specific CD46 expression pattern is generally 
identical on most all cell types in an individual (Liszewski et al. 1991). There are, 
however, notable exceptions. For example, in the fetal heart, CD46 is only found in 
the C1/2 isoforms (Gorelick et al. 1995), while the salivary gland and kidney 
express the -BC forms (Johnstone et al. 1993). Interestingly, sperm, kidney, salivary 
gland, and brain only express CYT-2 (Johnstone et al. 1993; Buchholz et al. 1996; 
Riley-Vargas and Atkinson 2003). Given that both tails of CD46 transduce intracel-
lular signals upon CD46 crosslinking (see p. 42), tissue-specific expression of cer-
tain CD46 isoforms may play an important role during MV  infection. Direct proof 
of this idea is lacking and is hampered by the fact that a suitable mouse model 
accurately recapitulating human MV infection is not available (see p. 46). A con-
nection between specific CD46 isoform expression  patterns and MV infection 
pathogenesis has not been observed. Although CD46 gene polymorphisms have 
been identified (Wilton et al. 1992), an analysis of a role for CD46 polymorphisms 
in the susceptibility to subacute sclerosing panencephalitis (SSPE) after MV infec-
tion has not shown an association (Kusuhara et al. 2000).  

  Functions 

  Complement Regulation 

 CD46 is an inhibitor of complement activation. It protects host cells from comple-
ment deposition by functioning as a cofactor for the factor I-mediated proteolytic 
inactivation of C3b and C4b (Morgan and Harris 1999; Liszewski et al. 1991) 
(Fig.  2 ). The binding sites for C3b and C4b and cofactor activity have been mapped 
to CCPs 2–4 (Adams et al. 1991; Iwata et al. 1995). The importance of CD46 in 
this process is demonstrated by the observation that individuals with CD46 haploin-
sufficiency secondary to mutations compromising its expression or regulatory func-
tion are predisposed to atypical or familial hemolytic uremic syndrome (HUS) 
(Richards et al. 2003, 2008; Kavanagh et al. 2008; Zheng and Sadler 2008). 
Atypical HUS is characterized by a triad of microangiopathic hemolytic anemia, 
thrombocytopenia, and acute renal failure (Richards et al. 2008; Caprioli et al. 
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36 C. Kemper, J.P. Atkinson

2005). A partial deficiency of CD46 is thought to lead to excessive complement 
activation at the site of endothelial cell injury (Caprioli et al. 2006). The resulting 
overexuberant innate immune and inflammatory response to injury produces a 
thrombomicroangiopathy of glomerular vessels.  

  Fertilization 

 CD46 serves additional functions besides complement regulation (Riley-Vargas 
et al. 2004). A role in male fertility was initially suggested by its expression on the 
inner acrosomal membrane of spermatozoa. Variations in CD46 expression levels 
have been associated with male infertility (Kitamura et al. 1997). CD46 is  important 
during fertilization by presumably promoting the sperm/egg interaction (Riley-Vargas 
and Atkinson 2003; Riley-Vargas et al. 2004, 2005; Harris et al. 2006). Although the 
exact role of CD46 during fertilization is unclear (Riley-Vargas et al. 2004), another 

 Fig. 2  Functions of CD46. CD46 was originally identified as a C3b-binding protein and then 
shown to have cofactor activity (promotion of the degradation of C3b and C4b by factor I) ( bottom 
left ). The complement regulatory activity of CD46 resides within CCPs 2–4. CD46 also plays a 
role in fertilization at the time sperm/egg union ( top left ). Human pathogens utilize CD46 as a cell 
entry receptor ( right ) (see Table 1). Concurrent activation of the T cell receptor and CD46 on 
primary human CD4 +  T cells in the presence of IL-2 leads to the induction of IL-10 and granzyme 
B-producing regulatory T cells ( bottom )
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indication of its importance here is the CD46 expression pattern in rodents. In mice, 
rats, and guinea pigs, CD46 expression is restricted to spermatozoa (Morgan and 
Harris 1999; Riley-Vargas and Atkinson 2003; Tsujimura et al. 1998), while another, 
mouse-specific, complement regulator, Crry, takes over CD46’s regulatory function 
on somatic tissue (Kim et al. 1995; Xu et al. 2000). The disruption of mouse CD46 
causes an accelerated spontaneous acrosome reaction in sperm, suggesting that CD46 
participates in this important process (Inoue et al. 2003) (Fig. 2).  

  T Cell Regulation 

 CD46 is a costimulatory molecule during T cell receptor (TCR)-mediated activa-
tion of human CD4 +  T lymphocytes (Astier et al. 2000; Zaffran et al. 2001). 
Specifically, concurrent crosslinking of CD46 with monoclonal antibodies, C3b 
dimers or a pathogenic ligand of CD46, along with CD3 on naïve human CD4 +  
T cells induces a population of cells that is characterized by high IL-10 secretion 
(Kemper et al. 2003) and granzyme B/perforin production (Grossmann et al. 2004a, 
2004b; Kemper and Atkinson 2007). CD3/CD46-activated T cells suppress the 
activation of bystander effector T cells through the immunosuppressive action of 
IL-10 and via direct killing featuring granzyme B. These characteristics place CD3/
CD46-activated T cells in a regulatory T cell subpopulation. Similar to other IL-
10-secreting regulatory T cells, the induction of this phenotype (including cell pro-
liferation) (Meiffren et al. 2006) is highly dependent on the presence of exogenous 
IL-2 (Kemper and Atkinson 2007; Bluestone and Abbas 2003; Groux et al. 1997; 
Groux 2001; Roncarolo et al. 2001). Thus, the activation of T cells in the presence 
of complement components drives a functional phenotype distinct from that of 
 classically CD3/CD28-activated T cells (Fig. 2).  

  Pathogen Receptor 

 CD46 is used as a receptor and port of entry by multiple human pathogens. Beside 
measles virus, herpes virus 6 and several adenovirus of the species B serotype uti-
lize CD46 as cell entry receptor (Santoro et al. 1999; Cattaneo 2004; Gagar et al. 
2003; Mori et al. 2002) (Fig. 2). A number of pathogenic bacteria, including  
Streptococci pyogenes  as well as  Neisseria meningitides  and  N. gonorrhoeae , bind 
to CD46 (Cattaneo 2004). The reason for CD46 being so attractive (pathogen mag-
net) for microbes is not clear yet. Obvious possibilities are that (a) CD46 could 
protect the invading organism from complement attack or (b) the induction of a T 
cell immunomodulatory phenotype. Also, in a strategy that is probably more com-
monly employed than currently recognized,  Escherichia coli  permit sufficient C3b 
deposition so as to be able to engage CD46 on epithelial cells in the urogenital 
 system (Li et al. 2006) (Table  1 ).   

b12095599-0003ztc.indd   37 10/3/2008   9:55:40 AM



38 C. Kemper, J.P. Atkinson

Ta
bl

e 1
 P

at
ho

ge
n/

C
D

46
 in

te
ra

ct
io

ns
 a

nd
 th

ei
r 

m
aj

or
 c

el
lu

la
r/

bi
ol

og
ic

al
 c

on
se

qu
en

ce
s

Pa
th

og
en

L
ig

an
d

B
in

di
ng

 
do

m
ai

n(
s)

 
w

ith
in

 C
D

46

R
ef

M
aj

or
 c

el
lu

la
r 

co
ns

eq
ue

nc
es

R
ef

M
ea

sl
es

 v
ir

us
H

em
ag

gl
ut

in
in

 
(M

V
H

)
C

C
Ps

 1
–2

M
an

ch
es

te
r 

et
 a

l. 
20

00
D

ow
nr

eg
ul

at
io

n 
of

 I
L

-1
2 

pr
od

uc
tio

n 
by

 m
on

o-
cy

te
s/

m
ac

ro
ph

ag
es

K
ar

p 
et

 a
l. 

19
96

A
lte

ra
tio

ns
 in

 in
te

rn
al

iz
at

io
n 

pa
th

w
ay

s
C

ri
m

ee
n-

Ir
w

in
 e

t a
l. 

20
03

M
od

ul
at

io
n 

of
 T

h1
/T

h2
 

re
sp

on
se

s
M

ar
ie

 e
t a

l. 
20

02

In
du

ct
io

n 
of

 I
FN

α
/β

K
at

ay
am

a 
et

 a
l. 

20
00

; K
ur

ita
-

Ta
ni

gu
ch

i e
t a

l. 
20

00
N

ei
ss

er
ia

 (
go

no
rr

ho
ea

e 
an

d 
m

en
in

gi
ti

de
s)

Ty
pe

 I
V

 p
ilu

s
C

C
Ps

 3
–4

K
al

ls
tr

om
 e

t a
l. 

20
01

C
D

46
 c

lu
st

er
 f

or
m

at
io

n 
be

lo
w

 b
ac

te
ri

a 
at

ta
ch

m
en

t s
ite

G
ill

 e
t a

l. 
20

03

C
a2+

 f
lu

x
K

al
ls

tr
om

 e
t a

l. 
19

98
Ph

os
ph

or
yl

at
io

n 
of

 C
Y

T-
2 

C
D

46
 d

ow
nr

eg
ul

at
io

n
G

ill
 e

t a
l. 

20
03

; K
al

ls
tr

om
 e

t a
l. 

19
98

; L
ee

 e
t a

l. 
20

02
H

er
pe

sv
ir

us
 6

 (
hu

m
an

)
C

om
pl

ex
 o

f g
ly

co
-

pr
ot

ei
ns

 H
, L

 
an

d 
Q

C
C

Ps
 2

–3
Sa

nt
or

o 
et

 a
l. 

20
03

; M
or

i 
et

 a
l. 

20
03

; 
G

re
en

st
on

e 
et

 a
l. 

20
02

Su
pp

re
ss

io
n 

of
 I

L
-1

2 
C

D
46

 d
ow

nr
eg

ul
at

io
n

Sm
ith

 e
t a

l. 
20

03
Sa

nt
or

o 
et

 a
l. 

19
99

St
re

pt
oc

oc
cu

s 
py

og
en

es
M

 p
ro

te
in

C
C

Ps
 3

–4
G

ia
nn

ak
is

 e
t a

l. 
20

02
B

ac
te

ri
a 

bi
nd

in
g 

to
 h

um
an

 
T

 c
el

ls
 in

 th
e 

pr
es

en
ce

 o
f 

T
C

R
 s

tim
ul

at
io

n 
in

 -d
uc

es
 

IL
-1

0 
an

d 
gr

an
zy

m
e 

B
 

pr
od

uc
tio

n 
(r

eg
ul

at
or

y 
T

 c
el

l d
ev

el
op

m
en

t)

Pr
ic

e 
et

 a
l. 

20
05

b12095599-0003ztc.indd   38 10/3/2008   9:55:41 AM



3 Measles Virus and CD46 39

A
de

no
vi

ru
s 

(g
ro

up
s 

B
 

an
d 

D
)

Fi
be

rk
no

b 
A

d3
5

C
C

Ps
 1

–2
G

ag
ga

r 
et

 a
l. 

20
03

; 
Se

ge
rm

an
 

et
 a

l. 
20

03
; 

Fl
ei

sc
hl

i 
et

 a
l. 

20
05

D
ec

re
as

ed
 p

ro
-i

nf
la

m
m

at
or

y 
cy

to
ki

ne
 p

ro
du

ct
io

n 
by

 
PB

M
C

s 

Ia
co

be
lli

-M
ar

tin
ez

 e
t a

l. 
20

05

E
sc

he
ri

ch
ia

 c
ol

i
C

3b
 d

ep
os

ite
d 

on
 

pa
th

og
en

ic
 

E
. c

ol
i

C
C

Ps
 2

–4
L

i e
t a

l. 
20

06
U

nk
no

w
n

B
ov

in
e 

vi
ra

l d
ia

rr
he

a 
vi

ru
s

U
nk

no
w

n
C

C
P 

1
M

au
re

r 
et

 a
l. 

20
04

; K
re

y 
et

 a
l. 

20
06

V
ir

us
 e

nt
ry

M
au

re
r 

et
 a

l. 
20

04
; K

re
y 

et
 a

l. 
20

06

b12095599-0003ztc.indd   39 10/3/2008   9:55:41 AM



40 C. Kemper, J.P. Atkinson

  CD46 and Measles Virus Interaction 

  MV Hemagglutinin Binding Site Within CD46 

 The MV outer envelope consists of two glycoproteins, the fusion (F) and hemag-
glutinin (H) protein (Griffen 2001). Both are essential for host cell entry and viral 
pathogenesis (Griffen 2001). While the MVF protein plays a role in cell membrane 
penetration and syncytium formation (Wild et al. 1994), MVH is responsible for 
binding of the vaccine strains Edmonston and Halle to CD46 (Maisner et al. 1994; 
Maisner and Herrler 1995; Devaux et al. 1996) (for a detailed description of MVF 
and MVH proteins see chapter 4 by C. Navaratnarajah and R. Cattaneo, this 
 volume). MVH also binds to signaling  lymphocyte-activation molecule (SOLAM, 
CD150), which has been identified as a second MV receptor (Tatsuo et al. 2000; 
Khiman et al. 2004; Erlenhofer et al. 2002) (see the chapter by Y. Yanagi et al.) (for 
more information on MV receptor usage see chapter 2 by Yanagi and Hashiguchi, 
this volume). 

 The MVH binding site of CD46 resides within CCPs 1 and 2 (Maisner et al. 
1994; Maisner and Herrler 1995; Iwata et al. 1995; Devaux et al. 1996; Manchester 
et al. 1997). Although dispensable for the MV/CD46 interaction, CCP4 enhances 
binding of MVH to CCPs 1 and 2 (Christiansen et al. 2000). CCPs 1 and 2 each 
contain a single site for  N -glycosylation. The complex sugar linked to asparagine 
in CCP2 is critical for MVH binding, while the carbohydrate residue in CCP1 does 
not influence virus–receptor interaction. Epitope mapping employing monoclonal 
antibodies and peptides that inhibit the MVH/CD46 interaction and functional 
analysis of single amino acid substitution exchanges within CCPs 1 and 2 showed 
that amino acids 36–59 (CCP1) and 103–118 (CCP2) of CD46 are vital in 
 interaction of CD46 with MVH (Hsu et al. 1998; Buchholz et al. 1997). That single 
amino acid changes not completely abolish the CD46/MVH interaction but rather 
led to varying degrees of reduced binding suggests that several distinct regions in 
CCPs 1 and 2 cooperate in binding MVH (Casasnovas et al. 1999; Hsu et al. 1997; 
Lecoutrier et al. 1996; Mumenthaler et al. 1997). This notion is supported by the 
crystal structure and molecular modeling studies of CCPs 1 and 2 (Casasnovas 
et al. 1999; Mumenthaler et al. 1997). 

 The location of the MV-binding and the C3b-binding sites within CD46 suggest 
that the MV interaction may not interfere with CD46’s regulation of the alternative 
complement pathway (Christiansen et al. 2000a, 2000b). Although the MVH 
 recognition site partially overlaps with the C4b-binding domain of CD46 (Iwata 
et al. 1995), in vivo interference of MV with classical complement pathway activa-
tion has not been reported. 

 One specific amino acid residue of CCP1 seems to be of exceptional importance 
among those constituting the MVH binding site as mutation of the arginine in posi-
tion 59 decreases binding of MVH to CD46 by approximately 80%. This is particu-
larly interesting because the major families of New World monkeys lack CCP1 on 
somatic cells (Hsu et al. 1997). This splicing out of CCP1 may account for the 
low susceptibility of these species to MV infection (Hsu et al. 1997, 1998). The 
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 complement regulatory activity of monkey CD46 is not compromised as the domains 
for this activity reside within CCPs 2–4. In addition, the expression of CCP1 is 
retained in CD46 expressed on the sperm of New World monkeys (Riley et al. 2002). 
This manipulation of the CD46 structure by New World monkeys may represent 
deletion of CCP1 on peripheral blood cells to protect against infection by a major 
pathogen but yet conserve the vital functions of CD46 in complement regulation 
(CCPs 2–4) and fertilization (CCP1 in sperm). CCP1 of CD46 also harbors the bind-
ing sites for herpes virus 6 and for all CD46-binding adenoviruses. This raises the 
interesting question of why humans did not adapt/continue the monkey strategy and 
only retain CCP1 expression on sperm but delete it on somatic cells and suggests a 
potential yet unidentified role for CCP1 in CD46 biology besides that in sperm–egg 
interactions.  

  CD46 Binding Site Within MV Hemagglutinin 

 CD46 functions as a receptor for the MV vaccine strains Edmonston and Halle (Dorig 
et al. 1993; Naniche et al. 1993) but wild-type MV strains isolated from blood or 
throat swabs of patients generally do not bind to CD46 (Dhiman et al. 2004; Buckland 
and Wild 1997). In contrast, all known MV strains interact with SLAM (Dhiman 
et al. 2004; Yanagi et al. 2006; Kerdiles et al. 2006; Masse et al. 2004). Wild-type MV 
strains propagated in the marmoset lymphoblastic cell line B95 or Epstein-Barr virus-
immortalized human B cell lines continue to only interact with SLAM (Lecouturier 
et al. 1996; Shibahara et al. 1994). However, wild-type strains passaged through Vero 
cells (Schneider-Schaulies et al. 1994) bind both receptors, CD46 and SLAM 
(for detailed information on MV tropisms on pathogenesis in relation to receptors, 
see chapter 2 by Yanagi and Hashiguchi, this volume). 

 Analyses of the regions within MVH responsible for this difference in receptor 
usage showed that only two amino acid changes at positions 546 and/or 481 
 determine the ability of MVH to bind to CD46 and/or SLAM. MVH (Erlenhofer 
et al. 2002; Hsu et al. 1998; Seki et al. 2006; Bartz et al. 1996, 1998; Rima et al. 
1997; Takeuchi et al. 2002; Vongpunsawad et al. 2004; Li and Qi 2002) proteins 
that have a serine to glycine substitution at position 546 or a tyrosine at position 
481 interact with both CD46 and SLAM. MVH containing an asparagine at the 481 
position only binds SLAM. All strains analyzed after prolonged passage in Vero 
cells have a tyrosine at the 481 position (Yanagi et al. 2005). Because Vero cells 
express CD46 but not SLAM (Takeuchi et al. 2002; Johnston et al. 1999), MV is 
forced to adapt in Vero cell culture with the appropriate amino acid change to 
CD46 usage. It is, however, unclear how the wild-type virus with initial low 
 binding and cell-entry capability overcomes this crucial entry step to propagate 
strongly in Vero cells. 

 CD46 is ubiquitously expressed in humans, suggesting that the factors that drive 
wild-type MV strains to favor SLAM as a receptor in vivo are likely not based on 
the differences in the receptor expression profiles alone. Several studies analyzing 
the residues within MVH relevant for the binding to CD46 identified 12 amino 
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acids (A428, F431, V451, Y452, L464, Y481, P486, I487, A527, S546, S548, and 
F549) (Masse et al. 2002, 2004; Vongpunsawad et al. 2004; Santiago et al. 2002). 
Mapping of these amino acid residues onto the MVH crystal structure (Colf et al. 
2007) (see p. 23) demonstrated that the CD46 binding site is on the rim of the so-
called dead neuraminidase fold. The authors of this study also determined that the 
binding site for SLAM within MVH is approximately 35 Å removed from the C3b 
CD46 binding domain. Because of this distance, sites of these binding domains 
within MVH likely do not overlap (Colf et al. 2007) (for further reading on the 
CD46/MVH interaction, see chapter 2 by Yanagi and Hashigachi, this volume). 

 Interaction of MVH with a receptor induces conformational changes. These 
changes in MVH affect the structure of the adjacent MVF protein and trigger a 
series of events leading to the fusion of the viral envelope with the host cell mem-
brane (Wild et al. 1991). Similarly, the interaction of CD46 with a pathogenic ligand 
also affects its structure and cell surface distribution. For example, binding of the 
adenovirus type 11 knob protein profoundly alters the conformation of CD46: lig-
and-free CD46 shows a pronounced 60-degree bend between CCPs 1 and 2. Upon 
binding to the adenovirus knob protein, these CCPs realign and assume a rod-like 
shape (Persson et al. 2007). Also, the binding of pathogenic Neisseria to CD46 on 
human epithelial cells induces the formation of CD46 clusters below the bacteria 
attachment site and CD46-dependent changes in intracellular actin distribution (Gill 
and Atkinson 2004). Thus, the MV–CD46 interaction triggers a complex cascade of 
events on both the virus and the host cell side (for a detailed description of this event 
see the chapter by D. Gerlier and H. Valentin, this volume). Delineating these path-
ways and their intricate interplay most likely holds the key to understanding the MV 
pathogenesis and ultimately the improvement of MV vaccines.   

  CD46-Mediated Mechanisms of Immunosuppression 
in MV Infection 

 The mechanisms underlying the lymphopenia and immunosuppression that 
accompany MV infections are not well understood (Gerlier et al. 2006; Marie 
et al. 2004). All MV receptors so far identified produce intracellular signals upon 
their engagement (Dhiman et al. 2004; Yanagi et al. 2006; Kerdiles et al. 2006; 
Gerlier et al. 2006). Many of these signals initiate cellular events that modulate the 
immune response, seemingly in favor of the pathogen (Gerlier et al. 2006; de 
Witte et al. 2006). A first indication that CD46 activation could be beneficial for 
viral dissemination was the observation that human primary monocytes downreg-
ulate IL-12p70 and p40 upon CD46 crosslinking with MVH, anti-CD46 mono-
clonal Abs, or C3b dimers (natural ligand) (Karp et al. 1996; Karp 1999). Since 
IL-12 is essential for the generation of successful effector T cell responses, MV-
induced IL-12 downregulation provides an attractive mechanism for virus-medi-
ated immunosuppression. Suppression of IL-12 synthesis has indeed been 
observed in MV-infected patients (Atabani et al. 2001). Early CD46-mediated 
signaling events in human macrophages induce recruitment of the protein-tyrosine 
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phosphatase SHP-1 to CD46’s cytoplasmic domain and then the subsequent syn-
thesis of nitric oxide (NO) and IL-12p40 (Kurita-Taniguchi et al. 2000). The rea-
sons for these apparently contradictory findings are unclear. One possibility is that 
the developmental stage of the MV-targeted cell (monocyte vs dendritic cell) elic-
its differential responses upon CD46 activation. Also, in one study MV was uti-
lized as CD46 ligand while CD46 crosslinking antibodies were used in the other. 
Thus, signals induced upon CD46 engagement might also differ depending on the 
nature of the CD46-activating ligand. 

 MV binding to CD46 also modulates the production of another central 
cytokine, IFNα/β (Kurita-Taniguchi et al. 2000; Marie et al. 2001; Naniche et al. 
2000). MV-exposed macrophages from huCD46-transgenic mice (see p. 46) 
resist infection but produce high amounts of IFNα/β (Katayama et al. 2000). The 
in-duction of IFNα/β is dependent on CD46-mediated signaling because macro-
phages expressing tail-less forms of CD46 do not produce IFNα/β and become 
susceptible to MV infection (Hirano et al. 2002). Little is known about the effect 
of the MV/CD46 interaction on B lymphocytes, but MV binding to CD46 
expressed on B cells results in more efficient processing of MV antigens as well 
as enhanced MHC class II-restricted presentation to T cells (Gerlier et al. 1994a; 
Rivailler et al. 1998). 

 Altering the function of antigen-presenting cells such as macrophages and den-
dritic cells is a common strategy of many pathogens (de Witte et al. 2006). There 
is accumulating evidence that the MV–CD46 interaction also impacts effector T 
cell responses directly. The concurrent activation of CD3 and CD46 with mAbs on 
peripheral blood human CD4 +  T lymphocytes induces the production of high 
amounts of IL-10 and granzyme B. CD3/CD46-activated T cells acquire a pheno-
type reminiscent of Tr1 regulatory T cells and suppress the activation of bystander 
effector T cells via IL-10 and/or granzyme B (Kemper et al. 2003; Grossman et al. 
2004b). T cells with these properties are predicted to aid in the contraction of an 
effector T cell response and in the prevention of autoimmunity (Kemper and 
Atkinson 2007; Bluestone and Abbas 2003; Sakaguchi 2000). 

 Although the in vivo role of such CD46-induced regulatory T cells is not clear, 
MV strains that bind CD46 may take advantage of CD46’s T cell function modu-
latory property to perturb the protective T cell immune response and gain a foot-
hold in the host. In accordance with this hypothesis is the observation that  
Streptococci pyogenes  or the purified CD46-binding M protein of these bacteria 
indeed induce this suppressive Tr1 phenotype in primary human CD4 +  T cells 
(Price et al. 2005). 

 The notion of direct modulation of T cell responses by the MV–CD46 interac-
tion is also supported by recent studies conducted in huCD46-transgenic mice 
expressing either a CYT-1 or CYT-2-bearing human CD46 isoform (see p. 46). 
When these animals are injected with inactivated vesicular stomatitis virus (VSV) 
expressing MVH, purified CD4 +  T cells from CYT-1-expressing animals proliferate 
strongly, produce IL-10 and inhibit the contact hypersensitivity reaction after 
 concurrent TCR and CD46 activation. By contrast, CD3/CD46-activated T cells 
from CYT-2-expressing animals show weak proliferation, low IL-10 production, 
and an increased contact hypersensitivity reaction (Marie et al. 2002). The apparent 
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 difference in the signaling events induced by the two intracellular domains of CD46 
suggests first that the distinct CD46 isoform pattern observed in certain tissues (see 
p. 32 and 35) may be of importance in MV cell entry and virus spread and  second 
that the inherited isoform expression pattern might be associated with  differences 
in susceptibility of a given individual to MV infection or CD46-binding pathogens 
in general. 

 A puzzling observation is that wild-type MV strains favor SLAM over CD46 as 
their receptor despite the ubiquitous expression profile and immunomodulatory 
properties of CD46 (Dhiman et al. 2004; Yanagi et al. 2006). A possible explana-
tion is that CD4 +  T cells not only produce IL-10 but also the proinflammatory 
cytokine IFN-γ upon CD3 and CD46 engagement (Kemper et al. 2003; Sanchez 
et al. 2004). In addition, it is not known if CD46-induced regulatory T cells sup-
press both Th1 and Th2 responses. Thus, an unfavorable skewing of the effector T 
cell response by CD46-activated T cells might have driven MV receptor usage in 
vivo toward SLAM. In addition, CD46 activation by multiple ligands, including 
MV and MVH, on several cell types analyzed so far induces CD46 downregulation 
(Dhiman et al. 2004; Yanagi et al. 2006; Bartz et al. 1996; Schnoor et al. 1995; 
Galbraith et al. 1998). In fact, CD46 downregulation is used as a common marker 
for a successful or infection-propagating interaction between CD46 and MV or 
MVH (Schnoor et al. 1995). This is commonly viewed as a protective measure by 
the host, as CD46 downregulation renders MV-infected cells more vulnerable to 
complement-mediated lysis (Schnoor et al. 1995). Furthermore, Gasque et al. pro-
posed that CD46 expression provides a don’t-eat-me signal, much like MHC class-I 
(Elward et al. 2005). Loss of CD46 expression, either via CD46-activation or 
after induction of apoptosis, flags the cells with an eat-me signal for uptake by 
 phagocytes (Elward et al. 2005)  (for further reading on the impact of MV on host 
immunity, see the chapter by Gerlier and Valentin, this issue).

 CD46 activation on T cells and epithelial cells induces actin skeleton rearrange-
ments (Zaffran et al. 2001; Gill et al. 2003) and CD46 activation on T cells has been 
implicated in uropod formation (Oliaro et al. 2006). In addition, CYT-1 of CD46 
interacts with DLG-4, a protein that provides a scaffold for signaling complexes in 
epithelial cells (Ludford-Menting et al. 2002). The CD46/DLG-4 interaction results 
in the basolateral targeting of CD46 in several different epithelial cell lines. DLG4 
is also implicated in tight junction formation and membrane fusion (Ludford-
Menting et al. 2002). Thus, MV binding to CD46 possibly induces changes in the 
actin skeleton, thereby affecting the overall cellular shape or structure of the 
infected cell. Since a hallmark of MV infection is the induction of cell–cell fusion 
with the formation of multinucleated giant cells or syncytia, it would be interesting 
to address if CD46 is possibly involved in this process. 

 The existence of an unidentified additional MV receptors has been proposed 
since several groups observed MV attachment and entry to cells in a SLAM and 
CD46-independent fashion (Hashimoto et al. 2002; Andres et al. 2003; Hall et al. 
1971). The identification of this putative receptor may help to explain the charac-
teristics of MV infection that are not well accounted for by CD46’s or SLAM’s 
expression profile and function (Table  2 ).  
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  CD46-Transgenic Mouse Models 

 Nonhuman primates can be infected with MV experimentally and provide the ani-
mal model that most closely mimics the disease in humans (Hall et al. 1971; van 
Binnendijk et al. 1995). MV-infected rhesus macaques and African green monkeys 
show evidence of systemic viral replication, MV-induced immunosuppression, and 
clinical signs of disease, including maculopapular rash and conjunctivitis (Hall 
et al. 1971; van Binnendijk et al. 1995). On the other hand, nonhuman primate mod-
els are expensive and logistically challenging. In addition, they lack many of the 
advantages of small animal models, including the easy and basically unlimited 
access to tissue samples and the ability to study MV pathogenesis in gene knock out 
models. Unfortunately, the development of a successful small animal model has 
been hampered by the restricted function and/or expression of the two known MV 
receptors in rodents: mouse SLAM displays 60% structural and functional identity 
to human SLAM, but does not bind MV (Yanagi et al. 2006; Ono et al. 2001) and 
mouse CD46 is only expressed on spermatozoa (Riley-Vargas et al. 2004; Harris 
et al. 2006; Tsujimura et al. 1998). Similarly, rats including the cotton strain that was 
used in one study to analyze the function of the MV envelope outer glycoproteins in 
MV-induced immunosuppression (Niewiesk 1999) and guinea pigs do not express 
CD46 on somatic cells (Harris et al. 2006; Hosokawa et al. 1996). In addition, the 
intracellular domain of mouse and rat CD46 has no sequence or structure homology 
to either of the cytoplasmic domains of human CD46 (Hosokawa et al. 1996). 

 To study pathogen infections and immune reactions, several groups generated 
mouse strains transgenic for human CD46 (Marie et al. 2002; Mrkic et al. 1998; 
Rall et al. 1997; Horvat et al. 1996; Oldstone et al. 1999; Kemper et al. 2005). Some 
mouse strains express only one specific human CD46 isoform (Marie et al. 2002) 
and should be useful in analyzing functional differences between the distinct iso-
forms. A mouse line generated utilizing a yeast artificial chromosome that contains 
the complete CD46 gene, including the regulatory regions, mimics the CD46 
expression pattern found in humans, including several tissue-specific distribution 
patterns of the four isoforms (Hourcade et al. 1990, 1992; Kemper et al. 2001). 
These mice have the obvious advantage that possible cooperative signaling events 
induced by both intracellular domains of CD46 can still occur, but it is unclear if 
the signaling platform and proper intermediates are present in rodents. 

 Intracerebral MV inoculation of mice expressing human CD46 isoforms under 
the control of a neuron-specific promotor induced disease and mortality, while 
nontransgenic control animal did not show signs of infection (Rall et al. 1997). 
In addition, injection of MV into the brain of these animals induced MV-associated 
cellular immune responses, including migration and infiltration of CD4 +  and CD8 +  
T lymphocytes (Dorig et al. 1993; Rall et al. 1997; Manchester et al. 2000a). 
However, huCD46-transgenic mice are not susceptible to MV infection when the 
virus is administered via another route (for example, the natural respiratory route) 
than cerebral injection (Manchester and Rall 2001) because MV replication is lim-
ited (Oldstone et al. 1999; Horvat et al. 1996; Niewiesk et al. 1997; Thorley et al. 
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1997) by the host’s antiviral response. Crossing huCD46-trangenice mice with 
mice deficient in the type I IFN receptor (IFNAR1) (Mrkic et al. 1998) or the tran-
scription factor STAT1 (Shingai et al. 2005) improved this model because respira-
tory inoculation of the virus resulted in enhanced virus spread and lung tissue 
inflammation (Oldstone et al. 1999). However, even in these animals, late-stage 
virus replication is inefficient and virus spread and MV pathogenesis only partially 
mimics the human disease (Peng et al. 2003). 

 The more limited expression of the protein in mice transgenic for human SLAM 
is thought to be one reason for the failure to obtain systemic MV infection in 
huSLAM-transgenic animals (Hahm et al. 2003, 2004). huSLAM/huCD46 double-
transgenic mice, either with or without IFNAR1 expression, have been generated 
recently (Shingai et al. 2005). MV infection of huSLAM/huCD46 double-trans-
genic mice with a functional IFNAR did not induce systemic infection or disease. 
However, systemic infection occurred in huSLAM/huCD46/IFNAR1 –/–  animals or 
in huSLAM/huCD46/IFNAR1 +/+  mice injected with MV-infected DCs (Shingai 
et al. 2005). Thus, this study establishes that DCs and likely IFN production by 
these cells play a critical role in MV infection in mouse models. This is in agree-
ment with the previous finding that MV-induced activation of CD46 expressed on 
human macrophages alters their cytokine profile (Karp et al. 1996) (see p. 42). It 
will be interesting to now delineate the roles of CD46 and SLAM in this process, 
specifically in the interplay between T lymphocytes and DCs. 

 In 2002, a study suggested an interaction between human toll-like receptor 
(TLR)2 and MV (Bieback et al. 2002). Wild-type MVH activates TLR2 on macro-
phages and monocytic cells, resulting in the production of IL-6 (Bieback et al. 
2002). Given the essential role of TLRs in the recognition of pathogens (Medzhitov 
et al. 1997), MV infection likely triggers danger signals within this protein family. 
Thus, TLR knock-out mice should be considered in the generation of animal 
 models studying MV pathogenesis. 

 Taken together, a number of mouse models are available to study certain aspects 
of MV pathogenesis. A model faithfully recapitulating the human disease does not 
exist. We anticipate the discovery of at least one additional human MV receptor. 
It does seem though that the mouse went through much effort to rid itself of MV 
cell entry receptors on somatic tissue. Thus, other murine factors important for viral 
RNA synthesis and virus assembly may also not support MV infection (Table  3 ).  

  Future Outlook 

 Successful immune defense is increasingly visualized as a process in which the 
innate part plays vital roles in instructing and guiding the adaptive system. That so 
many important human pathogens utilize CD46 as receptor attests to its central role 
at this important interface and communication between innate and adaptive immu-
nity. Although we have learned much about CD46’s functions as a measles virus 
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receptor, its role during MV infections remains largely enigmatic. Thus, delineating 
the cellular mechanisms that drive the diverse CD46–pathogen interactions in the 
context of the immune response model systems will be key to improving our under-
standing of MV pathogenesis.   
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