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   Abstract   Measles virus (MV) has two envelope glycoproteins, the hemaggluti-
nin (H) and fusion protein, which are responsible for attachment and membrane 
fusion, respectively. Signaling lymphocyte activation molecule (SLAM, also 
called CD150), a membrane glycoprotein expressed on immune cells, acts as 
the principal cellular receptor for MV, accounting for its lymphotropism and 
immunosuppressive nature. MV also infects polarized epithelial cells via an as 
yet unknown receptor molecule, thereby presumably facilitating transmission via 
aerosol droplets. Vaccine and laboratory-adapted strains of MV use ubiquitously 
expressed CD46 as an alternate receptor through amino acid substitutions in the 
H protein. The crystal structure of the H protein indicates that the putative binding 
sites for SLAM, CD46, and the epithelial cell receptor are strategically located in 
different positions of the H protein. Other molecules have also been implicated 
in MV infection, although their relevance remains to be determined. The iden-
tification of MV receptors has advanced our understanding of MV tropism and 
pathogenesis.    
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14 Y. Yanagi et al.

   Introduction 

 Measles virus (MV), a member of the genus  Morbillivirus  in the family  
Paramyxoviridae , is an enveloped virus with a nonsegmented negative-sense RNA 
genome (Griffin 2007). It has two envelope glycoproteins, the hemagglutinin (H) 
and fusion (F) protein, which are involved in virus entry. MV enters a cell by pH-
independent membrane fusion at the cell surface. Attachment of the H protein to a 
cell surface receptor is thought to induce the conformational change of the H pro-
tein, which in turn activates the fusion activity of the adjacent F protein, resulting in 
the fusion of the viral envelope with the host cell membrane (see the chapter by 
C. Navaratnarajah et al., this volume, for a more detailed discussion). Upon infec-
tion of susceptible cells, MV usually causes cell–cell fusion, producing syncytia. 

 Some molecules (called entry receptors) are, by themselves, capable of inducing 
the conformational changes of the H and F proteins required for membrane fusion 
and thus allowing MV entry, whereas others (called attachment receptors) only 
allow MV attachment to the cell without the ensuing membrane fusion and entry. 
While entry receptors are indispensable for entry, attachment receptors may also 
play a significant role in MV infection of certain cells by increasing the entry effi-
ciency. The presence of these viral receptors determines whether a specific cell type 
is susceptible to MV. However, for successful MV infection, the cell also has to be 
permissive for viral replication at post-entry steps, which depends on other intracel-
lular host factors. 

 MV was first isolated using the primary culture of human kidney cells (Enders 
and Peebles 1954). This first isolate is the progenitor of currently used live vac-
cines of the Edmonston lineage (see the chapter by S.L. Katz and D. Griffin and 
C.-H. Pan, this volume). In the past, Vero cells derived from the African green 
monkey kidney were widely used to isolate MV from measles patients. However, 
the isolation with Vero cells was inefficient and usually required several blind pas-
sages. Then, it was demonstrated that the Epstein-Barr (EB) virus-transformed 
marmoset B lymphoblastoid cell line B95-8 and its subline B95a are highly sus-
ceptible to MV, and that B95a cell-isolated MV strains retain pathogenicity to 
experimentally infected monkeys, unlike Vero cell-isolated strains (Kobune et al. 
1990, 1996). Thus, B95a became a standard cell line used for MV isolation, 
together with other human B cell lines (Lecouturier et al. 1996; Schneider-
Schaulies et al. 1995). These developments set the stage for the identification of 
MV receptors.  

  Overview of MV Receptors 

 Initial attempts to identify an MV receptor employed the commonly used labora-
tory-adapted MV strains of the Edmonston lineage. Naniche et al. (1992) generated 
a monoclonal antibody (mAb) that was capable of inhibiting the cell–cell fusion 
induced by the H and F proteins of the Hallé strain of MV. The mAb precipitated a 
cell-surface glycoprotein, which was subsequently identified as CD46 (also called 
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2 Measles Virus Receptors 15

membrane cofactor protein) (Naniche et al. 1993). Transfection of the human CD46 
gene conferred susceptibility to MV on resistant rodent cell lines. Dörig et al. 
(1993) independently showed that human CD46 acts as a receptor for the 
Edmonston strain of MV. CD46 is expressed on all nucleated human cells (see the 
chapter by C. Kemper and J.P. Atkinson, this volume), thus explaining the ability 
of these laboratory-adapted MV strains to grow well in most human cell lines. In 
monkeys, CD46 is also present on red blood cells, consistent with the observation 
that these strains hemagglutinate monkey red blood cells. 

 Unlike vaccine and laboratory-adapted strains, MV strains isolated in B95a or 
human B cell lines were found to grow only in some lymphoid cell lines (Kobune 
et al. 1990; Schneider-Schaulies et al. 1995; Tatsuo et al. 2000a). Furthermore, the 
H protein from B cell line-isolated MV strains neither induced downregulation of 
CD46 nor caused cell–cell fusion (upon co-expression of the F protein) in CD46-
positive cell lines (Bartz et al. 1998; Lecouturier et al. 1996; Tanaka et al. 1998). 
These observations suggested that B cell line-isolated MV strains may utilize a 
molecule other than CD46 as a receptor (Bartz et al. 1998; Buckland and Wild 
1997; Hsu et al. 1998; Lecouturier et al. 1996; Tanaka et al. 1998; Tatsuo et al. 
2000a). Using an expression cloning approach, Tatsuo et al. (2000b) isolated a 
cDNA that could render a resistant cell line susceptible to B95a cell-isolated MV 
strains. The cDNA clone encoded signaling lymphocyte activation molecule 
(SLAM, also called CD150), a membrane glycoprotein expressed on immune cells 
(Cocks et al. 1995). Importantly, the Edmonston strain was found to use SLAM, in 
addition to CD46, as a receptor, indicating that SLAM acts as a receptor not only 
for B cell line-isolated MV strains but also vaccine and laboratory-adapted strains 
(Tatsuo et al. 2000b). Other groups have reached the same conclusions using differ-
ent approaches (Erlenhoefer et al. 2001; Hsu et al. 2001). 

 To determine the receptor usage of different MV strains, Erlenhöfer et al. (2002) 
examined a number of MV strains with various isolation and passage histories, and 
showed that SLAM acts as a common receptor for all MV strains tested. In fact, no 
MV strain that does not use SLAM as a receptor has ever been reported, except 
artificially generated SLAM-blind recombinant viruses (Vongpunsawad et al. 
2004). In general, B cell line-isolated strains utilize SLAM but not CD46 as a 
receptor, whereas vaccine and Vero cell-isolated strains use both SLAM and CD46 
as receptors. In an attempt to determine differential receptor usage in vivo, viruses 
in throat swabs from measles patients were plaque-titrated on Vero cells with or 
without human SLAM expression. The results showed that like B cell line-isolated 
MV strains, the great majority of viruses in vivo use SLAM but not CD46 as a 
receptor (Ono et al. 2001a). Manchester et al. (2000) reported that clinical isolates 
obtained in peripheral blood mononuclear cells (PBMCs) utilize CD46 as a recep-
tor. However, these strains replicated well in Chinese hamster ovary (CHO) cells 
expressing human SLAM (Tatsuo et al. 2000b) but failed to productively infect 
CHO cells expressing human CD46 (Manchester et al. 2000). Taken together, the 
data indicate that SLAM acts as the principal cellular receptor for MV in vivo, and 
that the use of CD46 may be the result of MV adaptation in vitro. 

 In addition to these two well-characterized receptors, there may be other mol-
ecules that can act as an MV receptor. Pathological studies with humans and 
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16 Y. Yanagi et al.

experimentally infected monkeys have shown that MV infects not only immune 
cells, but also epithelial, endothelial, and neuronal cells (Griffin 2007), all of 
which do not express SLAM. Now there is good evidence for the presence of an 
MV receptor on polarized epithelial cells (Tahara et al. 2008; Takeda et al. 2007). 
Furthermore, a ubiquitously expressed molecule(s) has been shown to allow MV 
infection, but not syncytium formation, in various types of cells from many spe-
cies at low efficiencies (Hashimoto et al. 2002). 

 Figure  1  summarizes the receptor usage of MV in vivo and in vitro. In the fol-
lowing section, the properties of MV receptors will be discussed individually, along 
with their roles in MV infection.  

  MV Receptors 

  CD46 

 CD46 acts as a receptor for vaccine and laboratory-adapted strains of MV. Its physio-
logical function is to protect cells from attack by autologous complement, by  regulating 

 Fig. 1  Receptor usage of MV in vivo and in vitro. SLAM acts as the principal receptor for MV in 
vivo, accounting for its lymphotropism and immunosuppressive nature. MV also infects polarized 
epithelial cells via an as yet unknown receptor molecule, releasing progeny infectious particles for 
transmission. Vaccine and laboratory-adapted strains of MV acquire the ability to use CD46 as an 
alternate receptor through amino acid substitutions in the H protein during in vitro culture
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2 Measles Virus Receptors 17

complement activation. Furthermore, CD46 signaling has been implicated in the regu-
lation of innate and acquired immune responses. The structure and functions of human 
CD46 are reviewed in the chapter by C. Kemper and J.P. Atkinson, this volume. 

 The ectodomain of the H protein of the Edmonston strain binds to the most 
membrane-distal short consensus repeat 1 and 2 of CD46 (Devaux et al. 1996; 
Iwata et al. 1995; Manchester et al. 1995). Analyses of the H proteins from many 
MV strains have revealed that the majority of strains using both SLAM and CD46 
as receptors have tyrosine at position 481, whereas most B cell line-isolated 
strains have asparagine at that position. An N481Y substitution in the H protein 
was shown to allow B cell line-isolated strains to use CD46 as a receptor, without 
affecting their ability to use SLAM (Bartz et al. 1996; Erlenhöfer et al. 2002; Hsu 
et al. 1998; Lecouturier et al. 1996; Nielsen et al. 2001; Shibahara et al. 1994; Xie 
et al. 1999). Furthermore, when B cell line-isolated strains were adapted to growth 
in Vero cells (SLAM-negative), an N481Y substitution of the H protein was often 
observed after several passages (Nielsen et al. 2001; Schneider et al. 2002; 
Shibahara et al. 1994). Some Vero cell-adapted strains have a serine to glycine 
substitution at position 546 of the H protein, instead of the N481Y substitution (Li 
and Qi 2002; Rima et al. 1997; Shibahara et al. 1994; Woelk et al. 2001). 

 Is a single N481Y or S546G substitution in the H protein sufficient for MV to 
use CD46 as a receptor? By using recombinant viruses, it was shown that an 
N481Y or S546G substitution in the H protein alone cannot make a B cell line-
isolated MV strain utilize CD46 as efficiently as the Edmonston strain (Seki et al. 
2006). Several additional mutations are required for the H protein to interact 
 efficiently with CD46 (Tahara et al. 2007a). This may explain why CD46-using 
viruses are seldom detected in vivo (Ono et al. 2001a). Furthermore, CD46-using 
viruses may have a growth disadvantage because they induce higher levels of type 
I interferons in PBMCs (Naniche et al. 2000). Thus, CD46-using viruses may 
emerge and grow in SLAM-negative cultured cells, but they may not expand in vivo 
because there is little selection pressure for them (the interferon system may even 
act against them). Although CD46 is the first MV receptor identified, its relevance 
in vivo remains to be proven.  

  SLAM 

 It is now well established that SLAM is the principal cellular receptor for MV. 
SLAM is a member of the SLAM family receptors that mediate important regula-
tory signals in immune cells (reviewed in Engel et al. 2003; Ma et al. 2007; 
Sidorenko and Clark 2003; Veillette 2006). SLAM is expressed on thymocytes, 
activated lymphocytes, mature dendritic cells (DCs), macrophages, and platelets in 
both humans and mice. SLAM is not expressed on monocytes (see below in this 
section for activated monocytes), natural killer cells, or granulocytes. SLAM has 
two extracellular immunoglobulin superfamily domains, V and C2, and a cytoplas-
mic tail with three tyrosine-based motifs that undergo phosphorylation and recruit 
SH2 domain-containing proteins such as SLAM-associated protein (SAP) and 
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Ewing’s sarcoma-associated transcript 2 (EAT-2) (Cocks et al. 1995; Engel et al. 
2003; Ma et al. 2007; Veillette 2006) (Fig.  2 ). SLAM functions by interacting with 
another SLAM molecule present on an adjacent cell (Mavaddat et al. 2000). 
Ligation of SLAM on CD4 +  T cells leads to its binding to SAP, which in turn 
recruits and activates the Src-related protein tyrosine kinase FynT, resulting in 
tyrosine phosphorylation of SLAM. Combined with T cell receptor engagement, 
this triggers downstream effectors, leading to upregulation of the GATA-3 tran-
scription factor and production of T helper 2 cytokines such as interleukin (IL)-4 
and IL-13 (Engel et al. 2003; Ma et al. 2007; Veillette 2006) (Fig. 2). SLAM also 
regulates lipopolysaccharide-induced production of IL-12, tumor necrosis factor 
α, and nitric oxide by macrophages in mice (Wang et al. 2004). The distribution 
and functions of SLAM provide a good explanation for the lymphotropism and 
immunosuppressive nature of MV. Indeed, a recent study of MV infection in 
macaques identified SLAM +  lymphocytes and DCs as predominantly infected cell 
types (de Swart et al. 2007). Although SLAM is reported to be a marker for the 

 Fig. 2  SLAM structure and signal transduction. SLAM has extracellular V and C2 domains and 
a cytoplasmic tail with tyrosine (Y)-based motifs. Its ligand is another SLAM present on adjacent 
cells. Ligation of SLAM on CD4 +  T cells leads to its binding to SAP, which in turn recruits and 
activates FynT, resulting in phosphorylation of SLAM. Combined with T cell receptor (TCR)-
mediated signals, this triggers downstream effectors, leading to upregulation of GATA-3 and 
production of IL-4 and IL-13. The MV H protein binds to the V domain of SLAM to initiate cell 
entry.  MHC , major histocompatibility complex
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most primitive hematopoietic stem cells in mice (Kiel et al. 2005), it is currently 
unknown whether it is also expressed on human hematopoietic stem cells, thereby 
contributing to MV pathogenesis. 

 Mouse SLAM has functional and structural similarity to human SLAM (~60% 
identity at the amino acid level), but it cannot act as a receptor for MV, partly 
explaining why mice are not susceptible to MV (Ono et al. 2001b). The V domain 
of human SLAM is necessary and sufficient for MV receptor function (Ono et al. 
2001b) (Fig. 2), and the amino acid residues at positions 60, 61, and 63 are critical 
for function (Ohno et al. 2003). Substitutions at these three positions to human-type 
residues make mouse SLAM act as an MV receptor, while introduction of changes 
at these positions compromises the receptor function of human SLAM. At present, 
it is unknown whether these residues directly bind to the H protein or, upon substi-
tutions, modulate the conformation of SLAM, thereby affecting its interaction with 
the H protein. The answer to this question awaits the elucidation of the crystal 
structure of human SLAM complexed with the MV H protein. 

 Toll-like receptor (TLR) 2, 4, and 5 ligands induce SLAM expression on mono-
cytes (Bieback et al. 2002; Farina et al. 2004; Minagawa et al. 2001). The MV 
H protein also induces SLAM expression on monocytes after binding to TLR 2 
(Bieback et al. 2002). Thus, MV may induce its own entry receptor on potential 
target cells such as TLR2 +  monocytes and DCs. 

 Vero cells stably expressing human SLAM (Vero/hSLAM) (Ono et al. 2001a) 
are now commonly used for MV isolation and propagation, replacing EB virus-
producing B95a cells for safety reasons. However, in retrospect, the introduction of 
SLAM +  B95a cells to MV research (Kobune et al. 1990) was critical for the identi-
fication of SLAM as the principal receptor for MV. Without the use of B95a cells, 
its identification would have been delayed for many years.  

  A Putative Receptor on Epithelial Cells 

 In measles patients and experimentally infected monkeys, MV antigens and syncytia 
have been identified in the epithelia of various organs, including the skin, oral cavity, 
pharynx, trachea, esophagus, intestines, and urinary bladder, as well as in lymphoid 
tissues (for references, see the paper by Takeda et al. 2007). However, epithelial cells 
do not express SLAM, and B cell line-isolated MV strains, unlike vaccine and labo-
ratory-adapted strains, do not infect most epithelial cell lines. Takeuchi et al. (2003) 
reported that a B95a cell-isolated strain caused syncytium formation in primary 
human respiratory epithelial cells, which was independent of SLAM and CD46. 
Recently, a human lung adenocarcinoma cell line NCI-H358 (Takeda et al. 2007) as 
well as four human polarized epithelial cell lines (Tahara et al. 2008) were shown to 
support SLAM- and CD46-independent MV entry, replication, and syncytium for-
mation. Furthermore, analyses using anti-H protein mAbs and recombinant viruses 
possessing the mutated H proteins indicated that the receptor-binding site on the 
H protein required to infect these epithelial cell lines is different from the binding 
sites for SLAM and CD46 (see p. 22). Thus, wild-type viruses circulating in measles 
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patients appear to have an intrinsic ability to infect immune and polarized epithelial 
cells by using SLAM and an as yet unidentified molecule, respectively. (Also see the 
chapter by C. Navaratnarajah et al., this volume.)  

  Other Receptors 

 The C-type lectin DC-specific intercellular adhesion molecule 3-grabbing 
 nonintegrin (DC-SIGN) may play a role in MV infection of DCs (de Witte et al. 
2006). Both attachment and infection of DCs with MV are blocked in the presence 
of DC-SIGN inhibitors. However, stable expression of DC-SIGN cannot confer 
susceptibility to MV on CHO cells. Thus, DC-SIGN appears to act as an  attachment, 
but not entry, receptor for DCs. 

 On rare occasions, MV causes subacute sclerosing panencephalitis (SSPE), a 
persistent MV infection in the central nervous system (CNS), in which few free 
MV particles and syncytia are detected (see the chapters by V.A. Young and G. Rall 
and M.B. Oldstone, this volume). MV may spread trans-synaptically in neurons 
(Lawrence et al. 2000). It has been proposed, based on competitive inhibition stud-
ies and on experiments with knock-out mice, that neurokinin-1 (NK-1, substance 
P receptor) may promote MV entry into neurons by serving as a receptor for the 
MV F protein (Makhortova et al. 2007). However, the exact mechanism by which 
NK-1 contributes to MV spread in neurons remains to be defined. 

 Studies with recombinant MVs expressing green fluorescent protein (GFP) 
demonstrated that SLAM- and CD46-independent MV entry occurs in a variety 
of cell lines (Hashimoto et al. 2002). This mode of entry produces solitary 
infected cells, but does not usually induce syncytium formation, and its efficiency 
is 100- to 1,000-fold lower than that of SLAM-dependent entry. Such a weak MV-
receptor interaction that only allows inefficient entry may not lead to apparent 
cell–cell fusion (Hasegawa et al. 2007). This inefficient entry appears to be medi-
ated by a ubiquitously expressed molecule(s) because it occurs in almost all cul-
tured cells from various species (Hashimoto et al. 2002). It has been reported that 
B cell line-isolated MV strains effectively infect human umbilical vein and brain 
microvascular endothelial cells (Andres et al. 2003). Shingai et al. (2003) showed 
that pseudotype viruses bearing the H and F proteins of SSPE strains of MV uti-
lize SLAM, but not CD46, as a receptor, and that they can infect various SLAM-
negative cell lines independent of CD46. It remains to be determined whether MV 
infection of endothelial and neuronal cells in these instances is mediated by the 
ubiquitous inefficient receptor or a more efficient receptor(s) such as the putative 
epithelial cell receptor. 

 Even this ubiquitous inefficient receptor may allow significant MV growth after 
virus adaptation to cultured cells at post-entry step(s) of the viral life cycle. 
Recombinant chimeric viruses were generated, in which part of the genome of a B 
cell line-isolated MV strain was replaced with the corresponding genes from the 
Edmonston strain. While the parental virus could not grow in SLAM-negative Vero 
cells, the virus possessing the Edmonston H gene replicated efficiently using CD46 
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as a receptor. The recombinant virus possessing the Edmonston M or L gene also 
grew in Vero cells, although their entry efficiencies were as low as that of the 
parental virus (Tahara et al. 2005). This study provides an explanation for the pre-
vious observations that the recombinant viruses based on the Edmonston strain 
possessing the H protein of B cell line-isolated strains efficiently replicate in Vero 
cells (Johnston et al. 1999; Takeuchi et al. 2002). Other studies have also shown 
that B cell line-isolated MV strains can adapt to growth in Vero cells by substitu-
tions in other proteins than the receptor-binding H protein (Bankamp et al. 2008; 
Kouomou and Wild 2002; Miyajima et al. 2004; Takeuchi et al. 2000). The changes 
found in these proteins may enhance MV growth at post-entry step(s) by improving 
viral transcription and replication, virus assembly (Tahara et al. 2007b), and/or 
evasion of antiviral host responses, thereby compensating the inefficient entry.   

  Morbillivirus Receptors 

 MV is a member of the  Morbillivirus  genus, which also includes canine distemper 
virus (CDV), rinderpest virus (RPV), peste-des-petits-ruminants virus, cetacean 
morbillivirus, and phocine distemper virus (Griffin 2007). Morbilliviruses are lym-
photropic and cause lymphopenia and immunosuppression in respective host spe-
cies. The common tropism and pathology of these viruses prompted Tatsuo et al. 
(2001) to examine the receptor usage of several strains of CDV and RPV. That 
study showed that all CDV and RPV strains examined use dog and cow SLAM as 
a receptor, respectively. 

 Dog and ferret macrophages (Appel and Jones 1967; Poste 1971), mitogen-
stimulated dog lymphocytes (Appel et al. 1992), and the marmoset B cell line B95a 
(Kai et al. 1993) have been successfully used to isolate virulent CDV. All these 
cells presumably express SLAM. Moreover, CDV was readily isolated in Vero cells 
stably expressing dog SLAM (Vero.DogSLAMtag) from the majority of dogs with 
distemper, suggesting that CDV uses dog SLAM as the principal receptor in vivo 
(Seki et al. 2003). This is supported by the finding that a recombinant CDV unable 
to recognize SLAM is attenuated in experimental infection of ferrets (von Messling 
et al. 2006). It is currently unknown how CDV infects the cells in the CNS, one of 
the commonly affected targets. It was shown that a wild-type RPV uses cow SLAM 
as a receptor, while the Plowright vaccine strain of RPV can use heparan sulphate 
as an alternative receptor, growing in many types of cells (Baron 2005). Thus, the 
use of SLAM as a receptor may be a common property of all morbilliviruses.  

  Interaction of the MV H protein with Receptors 

 Binding of CD46 and SLAM to the MV H protein has been studied using soluble 
molecules (Hashiguchi et al. 2007; Navaratnarajah et al. 2008; Santiago et al. 2002). 
SLAM binds to the MV Edmonston (vaccine strain) and IC-B (B95a cell-isolated 
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wild-type strain) H proteins with similar affinities (dissociation constant Kd of 0.43 
vs 0.29 μM). On the other hand, CD46 binds to the Edmonston H protein (Kd of 
2.2 μM) but not to the IC-B H protein (Hashiguchi et al. 2007). 

 To identify residues in the MV H protein involved in the interaction with 
SLAM and CD46, a series of mutants of the Edmonston or Hallé H protein were 
examined for their ability to induce SLAM- or CD46-dependent cell–cell fusion 
or to downregulate SLAM or CD46 from the cell surface (Massé et al. 2002, 
2004; Navaratnarajah et al. 2008; Vongpunsawad et al. 2004). Changes of the 
relevant residues are expected to affect these functions of the H protein. The stud-
ies showed that some residues (I194, D505, D507, Y529, D530, T531, R533, 
H536, F552, Y553, and P554) interact with SLAM, and others (A428, F431, 
V451, Y452, L464, Y481, P486, I487, A527, S546, S548, and F549) interact 
with CD46. Tahara et al. (2007a) showed that substitutions at positions 390, 416, 
446, 484, and 492, in addition to N481Y, are important to allow the IC-B strain 
to use CD46 as a receptor, suggesting that amino acid residues at those positions 
may also interact with CD46. Using site-directed mutagenesis, it was recently 
shown that aromatic residues such as F483, Y541, and Y543 in the H protein are 
critical for MV to infect and cause cell–cell fusion in polarized epithelial cell 
lines (Tahara et al. 2008). (Also see the chapter by C. Navaratnarajah et al., this 
volume.) 

 The crystal structure of the MV H protein was recently determined (Hashiguchi 
et al. 2007). The receptor-binding head domain forms a disulfide-linked homodim er 
and exhibits a six-bladed β-propeller fold (β1–β6). The residues implicated in the 
interaction with SLAM, CD46 or the putative epithelial cell receptor are indi-
cated on the determined crystal structure of the MV H protein (Fig.  3 A, viewed 
from the top of the monomer). SLAM-relevant residues are mapped to the inter-
strand loops of the β5 sheet. The key residues for the interaction with CD46 span 
the β3–β5 sheets of the side face of the head domain and are mapped in different 
locations from the putative SLAM-binding site. The aromatic residues impli-
cated in the interaction with the putative epithelial cell receptor are located 
between the putative SLAM- and CD46-binding sites. Notably, the residues 
implicated in the interaction with SLAM or the putative epithelial cell receptor 
are highly conserved among morbilliviruses, whereas those shown to be impor-
tant for the interaction with CD46 are not. Thus, it is likely that many morbillivi-
ruses, including MV, CDV and RPV, use their orthologs (SLAM and an unknown 
molecule) to infect immune and epithelial cells, respectively. Importantly, resi-
dues relevant for the interaction with SLAM and the putative epithelial cell 
receptor are located upward from the viral envelope, because of the tilted orien-
tation of the molecules forming the H protein dimer (Fig. 3B, 3C). Thus, they 
may readily interact with SLAM on immune cells and the putative receptor on 
epithelial cells. On the other hand, CD46-relevant residues are accessible from 
the top of the H protein, but are located more to the side. Although most of these 
residues are expected to interact directly with the respective receptors because of 
their location on the surface of the H protein, elucidation of the crystal structures 
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of the MV H protein complexed with individual receptors are required to deter-
mine whether they indeed bind to the receptors. 

 It has been suggested that SLAM and CD46 bind to overlapping sites in the 
H protein of the Edmonston strain, based on receptor binding competition and on 
blocking of SLAM and CD46 binding with the same anti-H protein mAbs (Santiago 
et al. 2002). However, given the assumed locations of the respective receptor-bind-
ing sites, it is more likely that the observed competition and blocking occurred 
because of a mechanism of steric hindrance. Similarly, many mAbs neutralizing 
SLAM-dependent MV infection appear to do so by steric hindrance, because their 
mapped epitopes are located in different positions from the putative SLAM-binding 
sites (Bouche et al. 2002; Hashiguchi et al. 2007; Santibanez et al. 2005).  

 Fig. 3 A–C  Receptor-binding sites on the MV H protein. The receptor-binding head domain of 
the MV H protein comprises six β-sheets arranged cyclically around an axis as the blades of a 
propeller, and forms a homodimer ( A ) The head domain monomer of the H protein viewed from 
the top of the propeller-like structure (with the axis in the center) is shown by the ribbon model, 
together with residues implicated in the interaction with SLAM ( magenta ), CD46 ( cyan ), and a 
putative epithelial cell receptor ( orange ) ( B ) The H protein homodimer viewed from the side is 
shown by the ribbon model, with residues implicated in the interaction with receptors ( C ) The 
cartoon model of the H protein homodimer on the MV envelope. Residues implicated in the inter-
action with SLAM and a putative epithelial cell receptor are located upward from the viral enve-
lope because of the tilted orientation of the molecules forming the homodimer
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  MV Tropism and Pathogenesis in Relation to Receptors 

 Identification of MV receptors has led to better understanding of MV tropism 
and pathogenesis. Lymphotropism of MV is explained by infection of SLAM +  
immune cells. Polarized epithelial cells appear to express a specific cellular 
receptor for MV. Currently, it is not known how endothelial and neuronal cells 
are infected by MV. They may have their own receptors or express the same 
receptor molecule as epithelial cells. Alternatively, they may be infected by MV 
via an inefficient receptor. 

 MV is transmitted via aerosol droplets. Although respiratory epithelial cells are 
generally suspected, initial target cells are not well defined. A classical study on CDV 
infection of dogs reported that the virus was detected only in bronchial lymph nodes 
and in tonsils on the day of infection, and that it appeared in mononuclear cells of the 
blood on the 2nd and 3rd days (Appel 1969). A ferret model of CDV infection also 
showed massive lymphocyte infection in PBMCs and lymphoid organs including the 
thymus, spleen, and lymph nodes, followed by infection of epithelial cells during the 
later stages of infection (von Messling et al. 2003, 2004). In intratracheal infection of 
macaques with GFP-expressing recombinant wild-type MV, de Swart et al. (2007) 
demonstrated that SLAM +  lymphocytes and DCs are predominantly infected cell 
types, with an occasional infection of epithelial cells at the later stage. Thus, it is 
likely that the primary targets of MV are SLAM +  immune cells in the respiratory 
tract, such as lymphocytes, DCs, and macrophages, rather than epithelial cells. It is 
also possible that DC-SIGN +  DCs capture MV (without being infected) in the respi-
ratory epithelia and carry it to local lymph nodes, where the virus is transferred to 
activated (SLAM + ) lymphocytes (de Swart et al. 2007; de Witte et al. 2006, 2008). 

 These interpretations are consistent with the observation that MV infects SLAM +  
immune cells more efficiently than it does polarized epithelial cells (M. Takeda 
et al., unpublished observations). Most likely, at the later stage of infection when a 
large amount of MV is produced, infected SLAM +  immune cells may transfer the 
virus, albeit inefficiently, to epithelial cells, which in turn propagate the virus via 
the epithelial cell receptor. Since polarized epithelial cells with tight junctions cover 
the external epithelial surface, MV may not efficiently release progeny virus parti-
cles into the external surface through its ability to infect SLAM +  immune cells 
alone. Furthermore, studies showed that MV is selectively released into the apical 
(luminal) side of polarized epithelial cells (Tahara et al. 2008). Thus, the ability to 
infect epithelial cells may be necessary for MV to spread efficiently from person to 
person. This may also explain why MV is transmitted efficiently via aerosol drop-
lets, whereas human immunodeficiency virus (HIV), which shares the tropism for 
immune cells with MV, is transmitted exclusively via sexual contact or blood. 

 Two clinical observations are of particular interest, which may be understood in 
terms of the use of SLAM as a receptor by MV. First, Burkitt’s lymphoma and 
Hodgkin’s disease have been reported to regress after MV infection (Bluming and 
Ziegler 1971; Taqi et al. 1981). EB virus may be responsible for these diseases, and 
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EB virus-transformed B lymphoid cell lines have been shown to express high levels 
of SLAM (Aversa et al. 1997; Tatsuo et al. 2000b). Thus, it is likely that these EB 
virus-related tumors expressed SLAM, and MV infected and killed these tumor 
cells. Second, HIV replication is reported to be suppressed during acute measles 
(Moss et al. 2002). Although the authors propose that the finding is related to the 
ability of MV to suppress lymphocyte proliferation (Garcia et al. 2005), it is also 
likely that suppression of HIV replication occurs because MV targets the very cells 
that harbor HIV provirus and allow HIV replication. HIV resides and replicates in 
memory and activated CD4 +  T cells, which are likely to be SLAM + , and therefore 
to be infected and killed by MV. A similar mechanism may also explain in part why 
measles is more severe among people in developing countries, where chronic infec-
tion with various pathogens may increase the percentage of activated lymphocytes, 
which are SLAM +  and susceptible to MV infection. 

 Immunosuppression and lymphopenia are characteristic of measles. Infection 
and subsequent destruction of SLAM +  immune cells may account for these immu-
nological abnormalities. Furthermore, MV infection may also affect SLAM signal 
transduction of immune cells by mimicking the natural ligand, thereby leading to 
the immune dysfunction (see the chapter by D. Gerlier and H. Valentin, this vol-
ume). MV-induced immunosuppression is discussed in more detail in the chapter 
by S. Schneider-Schaulies and J. Schneider-Schaulies, this volume.  

  Conclusions 

 Although the identification of SLAM as the principal cellular receptor for MV has 
provided insight into MV tropism and pathogenesis, many problems associated 
with measles still remain to be clarified. In this regard, animal models such as 
macaques (see the chapter by R. de Swart et al., this volume) and human SLAM-
expressing mice (see the chapter by C.I. Sellin and B. Horvat et al., this volume) 
are expected to provide useful information. For example, SLAM-knock-in mice 
have been shown to reproduce MV tropism and immunosuppression seen in human 
patients (Ohno et al. 2007; S. Ohno et al., unpublished observations). Identification 
of the epithelial cell receptor is greatly desired. The mechanism by which MV 
spreads in the CNS during SSPE is almost unknown. Further studies on these sub-
jects, coupled with crystal structures of the MV H protein complexed with respec-
tive receptors, will lead to better understanding of MV pathogenesis and to novel 
strategies of the prevention and therapy of measles.   
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