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Abstract. For biomechanical simulations, the segmentation of multi-
ple adjacent anatomical structures from medical image data is often re-
quired. If adjacent structures are hardly distinguishable in image data,
automatic segmentation methods for single structures in general do not
yield sufficiently accurate results. To improve segmentation accuracy in
these cases, knowledge about adjacent structures must be exploited. Op-
timal graph searching based on deformable surface models allows for a
simultaneous segmentation of multiple adjacent objects. However, this
method requires a correspondence relation between vertices of adjacent
surface meshes. Line segments, each containing two corresponding ver-
tices, may then serve as shared displacement directions in the segmenta-
tion process. The problem is how to define suitable correspondences on
arbitrary surfaces. In this paper we propose a scheme for constructing
a correspondence relation in adjacent regions of two arbitrary surfaces.
When applying the thus generated shared displacement directions in seg-
mentation with deformable surfaces, overlap of the surfaces is guaranteed
not to occur. We show correspondence relations for regions on a femoral
head and acetabulum and other adjacent structures, as well as prelimi-
nary segmentation results obtained by a graph cut algorithm.

1 Introduction

For patient-specific biomechanical simulations, e.g. of the human lower limb, an
accurate reconstruction of the bony anatomy from medical image data is re-
quired. This particularly applies to joint regions, as simulation results heavily
depend on the location of joints. In CT data, bony tissue can usually be recon-
structed by simple thresholding. However, in joint regions, thresholding is often
not sufficient for separating adjacent individual bones from each other. Due to
large slice distances or pathological changes of the bones, the joint space may
be hard to detect even for a human observer. Fig. 1a and 1b show exemplary
situations.

We can achieve good initializations for individual (single) bony structures
(e.g. pelvis, femur) by our segmentation framework which is based on statistical
shape models (SSM) and free form models (FFM) [1]. Segmentations with SSMs
yield good initializations, but lack precision, since previously unknown patient-
specific anatomy is generally not contained in the model. With FFMs more
precise segmentations can be achieved, but they suffer from a loss of shape

F. Bello, E. Edwards (Eds.): ISBMS 2008, LNCS 5104, pp. 69–78, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



70 D. Kainmueller et al.

knowledge, causing inaccurate interpolations where the object to be segmented
cannot be distinguished from adjacent structures in image data. Furthermore,
the lack of image information may generally lead to overlapping segmentation
results when adjacent structures are segmented separately.

A basic idea for improving segmentation results and simultaneously solving
the overlap problem is to segment multiple adjacent objects at the same time
and incorporate some knowledge about their spatial relationship. The problem
we are concerned with in this paper is how to establish a suitable coupling of
two arbitrary adjacent deformable surface models (triangular meshes), assuming
that a good initialization of the two models is given. The contribution of this
work is a construction scheme for shared displacement directions for two arbi-
trary surfaces, that is, line segments along which vertices of both surfaces can
be displaced in a deformable surface segmentation framework. We used the cou-
pling realized by these shared displacement directions for fine grain multi-object
segmentation based on graph cuts. This paper presents a proof of concept with
very encouraging results.

(a) (b) (c) (d)

Fig. 1. (a) CT data of distal femur and proximal tibia, slice distance 2mm, (b) acetab-
ulum and proximal femur, slice distance 4,6mm. Joint space hardly visible in encircled
areas. (c) Acetabulum and proximal femur, slice distance 5mm, with surface model
cross-section (black) and domain of intensity profile (red). (d) Intensity profile for
domain in (c).

2 Related Work

Costa et al. [2] employ a non-overlapping constraint for coupled segmentation of
prostate and bladder with deformable models. They propose a force that drives
two models apart if intersections occur in the segmentation process. This method
principally allows for free form deformations of the models while coping with over-
lap. If present, a statistical shape model can be enforced on one of the models. If
one structure is better distinguishable from the background than the other, an
asymmetric non-overlap force can be applied. This approach yields promising re-
sults in prostate and bladder segmentation. However, displacements are not found
simultaneously for both objects: Apart from the non-overlap force which only ex-
ists if an overlap has already occurred, one object does not take into account any
knowledge about the presence of the other object in displacement computation.

Tsai et al. [3] build composite statistical shape models by applying principal
component analysis to a training set of implicit (signed distance function) rep-
resentations of multiple objects. They apply such models to the segmentation
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of subcortical brain structures and male lower abdominal structures (prostate
gland, rectum, obturator muscles). Babalola et al. [4] build a composite ac-
tive appearance model on the basis of explicit (surface-mesh) representations of
multiple subcortical brain structures. They apply this model to obtain a good
initialization of brain structure models to accurately segment the caudate in a
single object segmentation framework. Composite statistical shape models yield
a tight coupling of the deformations of multiple objects. Ideally, no overlap be-
tween adjacent objects should be possible in model space. Anyway, neither of
the two approaches allows for a fine grain free form multi-object segmentation,
as model deformation is bound to the respective shape space.

Li et al. [5] solve the overlap problem with optimal graph searching in a
deformable model segmentation framework. They apply their method to the
segmentation of bone and cartilage in 3D MRI of human ankles. Vertex nor-
mals of the bone surface are used as shared displacement directions for bone
and cartilage surfaces. Thus, one direction may be used to search for two ob-
ject boundaries, thereby allowing for a completely simultaneous segmentation
process. However, methods involving shared displacement directions have been
described for surfaces on which corresponding vertices are easily found. This
holds for height field or cylindrical surfaces in regular grids [6], or if one surface
can be obtained by displacing the other along its vertex normals [5]. To the best
of our knowledge, there is at present no way for generating shared displacement
directions on arbitrary surfaces.

3 Multi-object Segmentation with Graph Cuts

In segmentation with deformable surfaces, intensity profiles are commonly used
to guide the deformation process. Intensity profiles are intensities sampled f
image data along line segments at each vertex of the surface mesh, see Fig.
1c and 1d. Note that the term intensity profile or just profile may be used
as referring to the sampled intensities only, but here we use it to refer to the
domain of the sampling, i.e. a line segment, as well. Fig. 2a shows exemplary
profiles on a triangular surface mesh. Profiles are commonly defined to run along
vertex normals, but other directions may be chosen as well. On each profile, a
cost function is derived from image data for a number of equidistant sampling
points. The minimum cost sample point on a profile may serve as a desired
(locally optimal) position for the respective vertex.

However, graph cut algorithms allow for a global optimization of the sum of
costs for each vertex displacement while respecting hard constraints on the dis-
tance of multiple objects and on single object smoothness. The hard constraints
are realized by means of graph edges that connect sample points on profiles in
such a way that a non empty minimum closed set in the graph defines the optimal
surfaces. A smoothing constraint guarantees that new vertex positions on adja-
cent profiles are at most s sample points away from each other. If sample point i
is chosen on a profile as desired new position, sample point i-s or higher must be
chosen on adjacent profiles, as illustrated in Fig. 2b. The smaller s is chosen, the
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(a) (b) (c) (d)

Fig. 2. (a) Triangular surface mesh (red) with profiles (black). (b) Graph edges realizing
smoothing constraint. Here, s = 1. (c) Minimum distance constraint on shared profile:
Sample point i for surface A (blue) entails sample point i+min or higher for surface B
(red) on duplicated profile. Here, min = 1. (d) Maximum distance constraint: Sample
point i for surface B entails sample point i-max or higher for surface A. Here, max = 2.

smoother is the surface resulting from the optimization. Multiple surfaces can
be coupled with shared intensity profiles at individual vertices. Shared profiles
are duplicated in the graph, so that each surface is equipped with an instance
of each shared profile. Minimum and maximum distance constraints guarantee
that new vertex positions found on shared profiles by graph optimization are
at least min and at most max sample points away from each other, see Fig. 2c
and 2d. For more details on graph construction see [6]. The minimum closed set
problem can be transformed to a minimum s-t-cut problem, which is solved in
polynomial time by maximum flow algorithms [7].

4 Non-overlapping Surface Deformations

Before shared profiles can be constructed, surface models of adjacent structures
must be initialized to have a reasonable spatial relation to each other. For bony
structures of the lower limb we can achieve initializations in CT data with a
maximum surface distance of about 1cm to a manual expert segmentation. For
two such well-initialized surface models, we identify a potential overlap region
by growing each surface by a user-specified profile length, see Fig. 3a and 3b.
Our concern is to couple the surfaces with shared profiles wherever single profiles
would reach the overlap region.

4.1 Properties of Shared Intensity Profiles

Which conditions must hold on shared profiles to generally prevent any overlap
after surface deformation? Note one necessary condition posed on new vertex
positions of coupled surface meshes A and B: Let x be a vertex on A and m(x)
the corresponding vertex on B. Then the new position x∗

A of x must lie closer to A
than the new position x∗

B of m(x) in profile direction, i.e. ‖x∗
A − x‖ < ‖x∗

B − x‖
(if we disregard that surfaces can completely swap sides along shared profiles).
See Fig. 3c. In the following we assume that this condition holds.
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(a) (b) (c) (d)

Fig. 3. (a) Proximal femur and ilium with transparent isosurfaces at same distance.
(b) 2D cross-section. Thin lines: surface contours. Thick lines: isosurface contours at
the same distance. Grey region: potential overlap region. (c) Necessary condition: x∗

A

lies closer to x than x∗
B . (d) Contours A (blue) and B (red). Black lines: Intersect-

ing connections of mapped points. Dotted lines: Exemplary deformed contours with
intersection (black arrow).

In 2D, when establishing shared profiles between deformable contours A and
B, intersecting profiles can cause overlap of the deformed contours, as illustrated
in Fig. 3d. Now we examine this situation in 3D. For this purpose we consider
a bijective mapping m of piecewise continuous regions RA and RB on surfaces
A and B: Shared profiles on triangular meshes can be seen as a finite set of line
segments connecting corresponding triangle vertices x and m(x). Hence they
partially define or are embedded in such a mapping. However, during surface
deformation, not only each vertex, but each point on RA and RB is displaced
along a line segment that leads to its corresponding point. Profiles may not
intersect with each other, while other line segments that connect mapped point
pairs do. Thus we are interested in properties of mappings m and not only in
properties of shared profiles.

Overlap after surface deformation cannot occur if the mapping m satisfies
what we call non-intersection condition, i.e. no two connections of two mapped
point pairs intersect. For a proof, let R∗

A and R∗
B be the deformed regions. R∗

A is
the image of a function fA that maps each point x on RA to a point x∗

A on the
line segment {x + λ · (m(x) − x)|0 ≤ λ ≤ 1}. Each x∗

A is defined by an individual
λA(x) ∈ [0, 1]. Likewise R∗

B is the image of fB that maps each x on RA to an
x∗

B = x+λB(x) · (m(x)−x), with the additional constraint that λA(x) < λB(x)
for all x ∈ RA.

If the deformed regions intersect, we have x, y ∈ RA with fA(x) = fB(x), i.e.
x + λA(x) · (m(x) − x) = y + λB(y) · (m(y) − y). The constraint λA(x) < λB(x)
implies x �= y. This implies an intersection of the line segments [x, m(x)] and
[y, m(y)]. In reverse, if no two connections of two mapped point pairs intersect,
the deformed regions do not intersect either. Note that the non-intersection
condition also implies the continuity of m for homeomorphic regions RA and
RB, yet continuity alone is not a sufficient criterion for preventing overlap.
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4.2 Mapping of Non-empty Surface Regions

The following scheme establishes a mapping of topologically equivalent regions
on smooth, closed surfaces A and B that satisfies the non-intersection condition:

1. Compute the mid surface M as all points with the same distance to A and
B. Compute the normals n on M, wherever M is smooth.

2. Define finite length vectors v on M as follows: Scale normals n and inverse
normals −n to some length exceeding the maximum distance of any two
points x on A and y on B. Then trim the scaled normals at the skeleton of
M if they reach it. (The skeleton of a surface is the set of points that are
centers of a sphere that touches the surface in more than one point, but does
not cut it.) The resulting vectors then do not intersect with each other.

3. Iteratively map points on A and B cut by the same vector v. Start with
vectors on local minima of the signed euclidean distance function d : M →
R, x �→ d(x, A) on M . Grow the regions considered on M as long as corre-
sponding regions on A and B have the same topologies.

This results in an intersection free mapping of regions. The mapped regions are
not empty: At least all normals on M where the distance function d : M →
R, x �→ d(x, A) has a local minimum connect corresponding points. (Note that
for all x d(x, A) = d(x, B).) Such local minima exist, as we are dealing with
closed surfaces. The linear connections of the respective corresponding points
also do not contain any point of the skeleton of M.

As a proof, we first examine properties of the normals on M at local minima
of d: The connection of any point x on M to a closest point ax on A is normal on
A. (Imagine a sphere with radius d(x) around x. This sphere touches A in ax.)
This applies to closest points bx on B, accordingly. Local minima of the function
d are located at points m on M where isosurfaces of the distance transforms of A
and B touch. Let am and bm be closest points to m on A and B, respectively. As
isosurfaces with value d(m) touch in m and the distances from am to m and bm

to m are both d(m), spheres around am and bm with radius d(m) touch in m.
This implies that the connections between am and m as well as bm and m both
are perpendicular to M. The direct connection between am and bm therefore
contains m and is perpendicular to A, B and M.

Now we show that the connection g between am and bm does not meet the
skeleton of M: Assume it did. Let p be the closest point to m on g that lies on
the skeleton. Assume without loss of generality that p lies closer to am than to
bm. Then there is a circle around p that touches M in multiple points, but does
not intersect with M. Let r denote the radius of that circle R. r must be smaller
or equal to the distance ‖p − m‖, otherwise m would lie inside this circle. Let n
be one of the points that R touches, n �= m. Then the distance between n and
am is shorter than the distance between m and am. This is a contradiction to
m being the closest point to am on M. Hence, there is no point on g that lies on
the skeleton of M.
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4.3 Generating Shared Intensity Profiles

Based on the scheme for constructing an intersection-free mapping as proposed
in Section 4.2, we realize a construction algorithm for shared profiles on pairs of
adjacent triangular surfaces A and B. In the process, we modify the connectivity
of parts of the surface meshes. The one-sided surface distance of the modified
surface to the original surface is always zero. Concerning the reverse direction
of the surface distance, no general assertions can be made.

Fig. 4 shows the construction pipeline for an exemplary femur and ilium.
First, the mid surface M between the objects is computed as the zero level of
the objects’ distance transforms, subtracted from each other (Fig. 4b). M is
discretized and triangulated to form a mesh of high regularity. The skeleton of
M is approximated by uniformly displacing M along its surface normals in both
directions and identifying self intersection points, see Fig. 5. Then we identify
the region on M where its vertex normals, scaled to a user-specified maximal
length, enter both femur and ilium, without reaching the skeleton of M first
(Fig. 4c and 4d). This region is then displaced onto the surfaces of each femur
and ilium in vertex normal direction. These displaced patches are merged into
the respective surface mesh by removing the original triangles in this region and
connecting the boundary of the remaining mesh to the boundary of the patch.
The resulting surfaces are shown in Fig. 4e and 4f.

As a result, we obtain a bijective mapping of the displaced (continuous)
patches that satisfies the non-intersection condition. Thereby shared profiles
between the modified surface meshes’ vertices are defined, as shown in Fig. 4g
and 4h. We let the shared profiles reach into the surfaces until they meet the
skeleton of M, or the inner skeleton of the respective surface, or they reach

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Construction of shared profiles. (a) Proximal femur and right ilium. (b) Mid sur-
face (yellow) in region of interest. (c) Normals on mid surface entering both femur and
illium. (d) Extracted region on mid surface (red). (e,f) femoral head and acetabulum with
integrated displaced region (red). (g,h) Vectors coupling femoral head and acetabulum
(black).
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(a) (b)

Fig. 5. 2D cross-section (a) and 3D view (b) of mid surface (yellow), upper skeleton
(blue) and lower skeleton (red). For a better impression of the skeleton, the mid surface
shown here is not restricted to a region of interest.

(a) (b) (c)

Fig. 6. (a) Surface models of liver (red) and nearby ribs (yellow). (b) Mid surface in
region of interest. (c) Coupling vectors between liver and ribs.

a user-specified maximal length. As another example, Fig. 6 shows a liver model
and a model of surrounding ribs which are connected. Three regions with shared
profiles are identified here.

5 Results

In a first investigation we computed segmentations of a femoral head and ilium
and a distal femur and proximal tibia in CT data with 5mm slice distance. Single
surface models were initialized individually with SSM fitting as described in [1].
Fig. 7a shows resulting initializations. Note the overlap of the initialized models.
Shared profiles (Fig. 7b) were established as proposed in Section 4.3. A graph was
then constructed as in [6], containing these shared profiles as well as traditional
single profiles [1] in non-adjacent regions of the surfaces. As a cost function on
the profiles we used thresholding in the image data, see Fig. 7d. Costs are low
at sample points where intensities change from above to below the threshold,
and high everywhere else. We applied the graph cut algorithm proposed in [7]
to find optimal surfaces. Fig. 7c shows the resulting segmentations. The overlap
was resolved and a reasonable interpolation was found in image regions where
intensities lie above the threshold due to low image quality.
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(a) (b) (c) (d)

Fig. 7. First row: Distal femur and proximal tibia. Second row: Acetabulum and prox-
imal femur. (a) Model initialization with statistical shape models. (b) Shared profiles.
(c) Graph cuts optimization. (d) Threshold information used for model fitting.

6 Discussion

We proposed a method for coupling arbitrary adjacent surfaces by means of
shared profiles. The shared profiles are constructed in a way that they satisfy
a non-intersection condition. This property guarantees that two surfaces do not
overlap if deformed along the shared profiles. We applied the coupling method
to femur, tibia and ilium models which were initialized in exemplary CT data by
SSM fitting. Optimal graph searching on the graph obtained from the coupled
surfaces produced encouraging results.

The next task will be to evaluate segmentation results quantitatively on a set
of 3D CT datasets by comparing them to manual expert segmentations. For this
purpose, as a first step, variations among segmentations performed by different
experts must be determined. This is of particular importance here as we are deal-
ing with segmentations of adjacent objects which often are hardly distinguishable
in image data, even for human observers. Until now, simple thresholding was per-
formed for establishing a cost function. We are working on a more elaborate cost
function design that considers more information (e.g. the gradient) contained in
image data. We also plan to establish an automatic method for rough initializa-
tion of pelvis and femur models in CT datasets as starting positions for SSM
segmentation. Until now, this first initialization requires manual interaction.
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