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Abstract. We present efficient protocols for private set disjointness tests. We
start from an intuition of our protocols that applies Sylvester matrices. Unfor-
tunately, this simple construction is insecure as it reveals information about the
cardinality of the intersection. More specifically, it discloses its lower bound. By
using the Lagrange interpolation we provide a protocol for the honest-but-curious
case without revealing any additional information. Finally, we describe a protocol
that is secure against malicious adversaries. The protocol applies a verification
test to detect misbehaving participants. Both protocols require O(1) rounds of
communication. Our protocols are more efficient than the previous protocols in
terms of communication and computation overhead. Unlike previous protocols
whose security relies on computational assumptions, our protocols provide in-
formation theoretic security. To our knowledge, our protocols are first ones that
have been designed without a generic secure function evaluation. More impor-
tantly, they are the most efficient protocols for private disjointness tests for the
malicious adversary case.

Keywords: Private Set Disjointness, Private Matching, Secure Multi-Party
Computation.

1 Introduction

Suppose two parties, Alice and Bob, each has a private dataset of some items denoted by
A and B, respectively. Alice wishes to learn whether these two sets are disjoint, that is,
whether A ∩ B = ∅ or not. In doing so, Alice does not want to reveal any information
about her set A to Bob, who, in turn, does not wish to reveal any information about his
set B, other than whether A∩B = ∅ or not. This is called a private disjointness test [1].

A private disjointness test is a useful primitive in various online service applications.
For example, Bob is a club owner offering a special-status membership called "Super
Fun" and Alice would like to know whether she is eligible for membership. Alice has
a smart card issued by the state authority containing her resident address, her age band
(assuming that 0 for age 0−9, 1 for the age 11−19, 2 for the age 20−29 and so on), her
membership status, etc. Bob determines whether Alice is eligible for the special-status
membership based on Alice’s attribute information. For example, Bob may require that
at least one of the following three conditions holds: (1) Alice lives in the same suburb
as Bob; (2) Alice’s age band is 5; (3) Alice is the member of Good Credit Union.
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Bob considers the detail of his policy to be commercial secret and does not want to
reveal it to others. Alice is interested in this membership and would like to go forward;
however, she wants to reveal as little information about her as possible. On the other
hand, Bob wants Alice to know only whether she is eligible for the membership, but
nothing else.

There are several protocols to tackle this problem, such as Freedman, Nissim and
Pinkas (FNP) [2], Hohenberger and Weis (HW) [3] and Kiayias and Mitrofanova (KM)
[1]. The KM protocols have either high round complexity or high communication com-
plexity, while the FNP and HW protocols leak the information about the intersection
cardinality. Moreover, both FNP and KM protocols require random oracles and costly
sub-protocols that have to be secure in the presence of a malicious adversaries. The
HW protocol only considers the malicious Bob and assumes the honest Alice in order
to make the protocol efficient. This paper provides efficient protocols for private dis-
jointness tests. The protocols are unconditionally secure against malicious adversaries.

Related Work. Freedman, Nissim and Pinkas (FNP) [2] proposed a protocol for the
private computation of set disjointness. The protocol is based on the representation of
datasets as roots of a polynomial and applies oblivious polynomial evaluation tech-
niques [4]. The protocol simply lets Alice represent her dataset A = {a1, . . . , am} over

a field as a polynomial F(y) =
∏

ai∈A

(y − ai) =
∑m

i=0 αiy
i in that field. Alice then en-

crypts coefficients of F with a homomorphic cryptosystem such as Paillier’s [5]. Thus,
given encrypted coefficients of F , Bob first evaluates F(bi) for each elements bi ∈ B,
and then returns encrypted γF(bi) where γ is a random non-zero value picked by Bob.
Note that any bi ∈ A if and only if F(bi) = 0, which not only indicates the disjointness
status but also reveals the information of the intersection cardinality.

The FNP construction leads to a very efficient protocol assuming honest-but-curious
adversaries. This construction heavily influences two other related works of Kiayias and
Mitrofanova [1] and of Hohenberger and Weis [3]. To cope with malicious adversaries,
the FNP protocol employs random oracle and invokes expensive sub-protocols.

Hohenberger and Weis [3] have taken a similar approach to the one given
in [2] and designed a protocol using an oblivious polynomial evaluation. The
security proof relies on the difficulty of discrete logarithm. Assume G is a
group with the composite order n = pq where p < q are primes. Let g, u be random
generators of G and h = uq. As in the FNP protocol, Alice represents her dataset A

by the polynomial F(y) =
∑|A|

i=0 αiy
i ∈ Zq[y], chooses a random polynomial

R(x) =
∑|A|

i=0 rix
i ∈ Zp[x] and publishes n and commitments of F(y), gαihri for

i ∈ [0, . . . , |A|]. For each bj ∈ B selected in random order, Bob obliviously evaluates
vj = gF(bj)hR(bj) and sends wj = v

γj

j to Alice, where γj is a non-zero value randomly

picked from Z∗
n. Note that if bj ∈ A, then gγjF(bj) will have order p. Since h has order

p, Alice concludes A ∩ B �= ∅ if wp
j = 1 with overwhelming probability.

The protocol is efficient and secure without using the random oracle. The security,
however, is proven under the assumption that Alice is honest (but Bob can be mali-
cious). If both Alice and Bob are malicious, then the cost of the protocol is the same
as in the FNP protocol. Moreover, their security properties are the same as of the FNP
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protocol and allow Alice to discover the intersection cardinality. In our membership ex-
ample, if Alice knows the intersection cardinality, she may learn some extra information
about Bob’s business policy which is against Bob’s will.

Kiayias and Mitrofanova [1] provided three protocols for private set disjointness
tests. The first protocol assumed that the domain is relatively small, which is not rele-
vant to our work. Our work is related to their second and third protocols, denoted by
KM−2 and KM−3, respectively. KM−2 uses a new primitive called superposed en-
cryption based on Pedersen commitments [6]. Superposed encryption is closely related
to a homomorphic ElGamal variant first used in voting schemes by Cramer et.al. [7]. In
the KM−2 protocol, Bob returns to Alice a single ciphertext of γ|A ∩ B|, where γ is
a random non-zero value. This protocol needs |B| rounds of communication between
two parties. The total communication cost is |A| · |B| if the adversary is honest but cu-
rious, but increases by a quadratic factor if either party behaves maliciously. To reduce
the high round complexity in KM−2, the authors presented the KM−3 protocol that
uses a multivariate polynomial so the task can be done in a single round. The price to

be paid is a high communication cost Θ(
(|A| + |B|

|B|
)

) for the honest-but-curious case.

The disadvantage of those two protocols is obvious. It is unlikely for causal clients
to use such online services which require either extensive network communication or
numerous interactions.

Kissner and Song [8] presented FNP-inspired schemes for various private set oper-
ations such as set intersection, set union, threshold cardinality of the set intersection,
and multiplicity tests. The problem of secure computation of the subset relation of two
private datasets is a variant of the private set intersection problem where the intersec-
tion content is one party’s whole dataset. This operation can be computed by extending
the FNP protocol. The applications of the subset relation were discussed in [9, 10].
Protocols for private equality tests are a special case of the private disjointness tests,
where each party has a single element in the dataset. These protocols were proposed in
[11, 4, 12]. The distributed case of private equality tests and various private set opera-
tions were considered in [13, 14].

Secure determinant computation by multiple parties is discussed in [15]. The secure
shares computation and distribution of a matrix are based on the Lagrange interpola-
tion. Using similar technique, Mohassel and Franklin [16] proposed a multi-party com-
putation protocol to securely test whether two shared polynomials are coprime. Their
construction applies Sylvester matrices [17] construction.

Our Results: We present two disjointness test protocols. Each protocol takes O(1)
rounds. The second protocol that provides verifiability, is secure against malicious ad-
versaries, and the parties learn nothing more than the desired result. In our construction,
we build two polynomials g and h whose roots are representing the datasets A and B of
the two parties, respectively. The polynomials are next used to form a Sylvester matrix.
The determinant of the matrix tells us whether g and h share any root and therefore
allows us to ascertain if the intersection of the datasets is empty or not.

We first give an intuition of our protocols that applies a Sylvester matrix directly.
However, this simple construction is not secure as Alice can learn the intersection car-
dinality by computing the rank of the matrix. Note, this is allowed in [2, 3].
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To reduce the amount of information leaking about the intersection of sets, we can
modify the simple construction as the following. We let two parties cooperate to multi-
ply the Sylvester matrix and its transpose. In such a way that Alice still knows whether
the determinant of the related Sylvester matrix is zero. Consequently, this improved
version reveals the lower bound of the intersection cardinality only.

To achieve no information leaks apart from the fact that whether A ∩ B = ∅ or
not, we utilize a secure determinant evaluation scheme in a multi-party computation
setting developed by Cramer and Damgard [15]. In this protocol, Bob randomly picks
|A| + |B| + 1 distinct indexes and forwards them to Alice along with the shares of
his dataset. Alice then constructs the corresponding |A|+ |B|+ 1 shares of the masked
Sylvester matrix associated with g and h. Using the Lagrange interpolation, Alice is able
to test if the determinant of the masked Sylvester matrix is zero or not. This approach
requires O((|A|+ |B|)2) communication cost and O((|A|+ |B|)3.697) field operations.

We then further employ a verification test to detect misbehaving participants. The
test is going to double the communication cost.

The advantage of our solution is that our protocols are conceptually simple. Com-
paring to the previous work, our protocols are very efficient. In particular, our solution
can deal with malicious Bob and malicious Alice at same time. Unlike the previous
solutions, our schemes provide unconditional security. Our approach is of a great ad-
vantage, where the communication facilities are in a short supply and consequently,
protocols with small number of rounds are preferred. Our protocols do not leak any
information apart from whether A ∩ B = ∅ or not.

Our paper is organized as follows. In Section 2, we introduce the notations, Sylvester
matriices and some techniques that will be used in this paper. In Section 3, we discuss
the adversary model and define the problem in hand. A general description of a simple
and insecure protocol that is based on Sylvester matrices is presented in Section 4. In
Section 5, we show our main protocols for the private disjointness test of two datasets
based on the Sylvester matrix construction and demonstrate its security. We also analyze
the efficiency of our protocols in this section. Finally, we give concluding remarks in
Section 6.

2 Preliminaries

Throughout this paper, let GLn(K) ⊂ Kn,n denote the group of n × n non-singular
matrices over an arbitrary finite field K . We assume that the number of elements in the
field q = |K| is much larger than the dimension n.

2.1 Sylvester Matrix

Given two polynomials g(x) =
∑m

i=0 αix
i ∈ Zq[x] and h(x) =

∑n
i=0 βix

i ∈ Zq[x] of
degrees m and n, respectively. The Sylvester matrix S associated with g and h is then
the (m + n) × (m + n) matrix obtained as follows:

– The first row is: (αm, αm−1, . . . , α0, 0, . . . , 0).
– The next row is obtained from the previous one by shifting it one position (column)

to the right and putting zero in the first position.
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– This process is repeated n − 2 times.
– The (n + 1)th row is (βn, βn−1, . . . , β0, 0, . . . , 0).
– Next m−1 rows are created in the same way as for the first row. The only difference

is the number of rows.

For example, the Sylvester matrix S associated with g and h for m = 4 and n = 3 is:

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α4 α3 α2 α1 α0 0 0
0 α4 α3 α2 α1 α0 0
0 0 α4 α3 α2 α1 α0

β3 β2 β1 β0 0 0 0
0 β3 β2 β1 β0 0 0
0 0 β3 β2 β1 β0 0
0 0 0 β3 β2 β1 β0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, the determinant of the associated Sylvester matrix is defined by the two as-
sociated polynomials g and h. Consequently, two polynomials do not share a common
root if and only if the determinant of the Sylvester matrix is non-zero value. If the deter-
minant of the Sylvester matrix is zero, then the rank of the Sylvester matrix determines
the degree of the greatest common divisor of g and h. That is:

deg(gcd(g, h)) = m + n − rank(S).

2.2 Building Blocks

In general, any secret sharing scheme can be used in our protocol. Since there are only
two parties involved in our protocol, we assume that (2-out-of-2)-Shamir secret sharing is
used. The computations in this paper are carried out over a finite field K . The two parties
are Alice and Bob. We frequently use the following building blocks from [18] and [15].

Secure Inversion of Shared Field Elements and Matrices is a protocol that accepts
a list of shares of an invertible field element or matrix as its input and generates a list
of shares of the inverse. We denote this secure computation of shares of the inverse
by [x−1]i = [x]−1

i , and [M−1]i = [M ]−1
i respectively for an element x and a ma-

trix M , where [x−1]i’s are shares of the inverse, [x]−1
i ’s are the inverse of shares, and

i ∈ {A, B} in our protocol. In our protocols, we slightly modify the original protocol
to let only one party compute such inverses as the following.

Input: Shares [x]A, [x]B of the element x.
Output: Shares [x−1]A, [x−1]B of the inverse element x−1.
Protocol:

1. Compute shares [ρ]A, [ρ]B of an element ρ ∈ K that is random and non-zero,
2. Compute [σ]A = [ρ]A · [x]A and [σ]B = [ρ]B · [x]B ,
3. Calculate σ from the shares [σ]A and [σ]B ,
4. Find [x−1]A = σ−1 · [ρ]A and [x−1]B = σ−1 · [ρ]B .

Note that the other party i, who receives the pair [x]i and [x−1]i, cannot find any
information about x. This is also true for the matrix M . For simplicity, we denote
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[σ]i = [ρ]i · [x]i in Step 2. Actually, the computation of [σ]i is not simple and we
need to employ an appropriate sub-protocol such as the one presented in Section 1.1
of [18]. Although the secure computation of [σ]i is not required in this protocol, but
it is necessary in the next protocols where the appropriate sub-protocol is applied. A
constant-round sub-protocol between Alice and Bob might be also needed if a secure
computation of [σ]i is expected.

Secure Multiplication of Shared Field Elements is a protocol that produces a share
of the product of two shared field elements [x ·y]A, [x ·y]B of x and y. The protocol can
be successfully run if all shares are invertible. It proceeds according to the following
steps:
Input: Alice and Bob hold their shares of two elements x and y, i.e. Alice has [x]A, [y]A
and Bob owns [x]B and [y]B .
Output: Alice gets the shares [x · y]A, [x · y]B .
Protocol:

1. Alice
(a) generates shares [ρ1]A, [ρ1]B of ρ1, and [ρ2]A, [ρ2]B of ρ2 independently at

random from all non-zero values.
(b) computes [σ1]A = [x]A · [ρ1]A, and [σ2]A = [ρ1]−1

A · [y]A · [ρ2]A,
(c) sends [ρ1]B, [ρ2]B, [ρ1]−1

B , [σ1]A, [σ2]A to Bob.
2. Bob

(a) computes [σ1]B = [x]B · [ρ1]B , and [σ2]B = [ρ1]−1
B · [y]B · [ρ2]B ,

(b) constructs σ1, σ2 from computed shares,
(c) sends (σ1 · σ2) to Alice.

3. Alice computes [x · y]A = σ1 · σ2 · [ρ2]−1
A and [x · y]B = σ1 · σ2 · [ρ2]−1

B .

Note that only Alice could compute [x · y]A and [x · y]B . Consequently, Alice learns
the result of x · y. This is allowed in our protocol. The security requirement of our
protocol is that Alice learns x · y without knowing the value of x and/or y.

In general, if one of the inputs is zero, then Ben-Or and Cleve showed in [19] how to
modify the protocol given above.

Secure Shared Matrix Multiplication is a protocol that securely generates shares
[M · M ′]A, [M · M ′]B for Alice and Bob respectively, from shares [M ]A, [M ]B of
a matrix M , and [M ′]A, [M ′]B of M ′, where [M ]A, [M ′]A are held by Alice and
[M ]B, [M ′]B are possessed by Bob. This protocol works in an obvious way follow-
ing the previous Secure Multiplication of Shared Field Elements protocol.

Secure Determinant Evaluation (SDE) computes the determinant of a matrix
M ∈ Kn,n from a list of related non-singular matrices. Let z0, . . . , zn are distinct
and random integers selected from K . We simplify the technique of secure determinant
evaluation in the multiparty computation model introduced by Cramer and Damgard
[15], and we use the following equation

det(M) = (−1)n ·
n∑

i=0

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

∏

0≤j≤n

j �=i

zj

zi − zj

⎞

⎟
⎟
⎠ · det(ziIm+n − M)

⎞

⎟
⎟
⎠ ,
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where In denotes the n × n identity matrix. For each zi ∈ K , it holds that
(ziIn − M) ∈ GLn(K) if and only if zi is not an eigenvalue of M . Since M has
at most n eigenvalues, each matrix ziIn − M is invertible, when zi is randomly and
independently chosen, except with the probability at most n

q .

3 Model and Definition

This section formally defines our verifiable disjointness test of two private datasets. Our
construction can be described as follows. Let Alice PA and Bob PB be two probabilistic
polynomial time interactive Turing machines. Let A = {a1, . . . , am},
B = {b1, . . . , bn} be datasets owned by PA and PB, respectively. We assume that the
set cardinalities |A| and |B| are not secret. The private disjointness test checks whether
A ∩ B = ∅ or not. For sets A, B ⊂ K , define the disjointness predicate
D(A, B) = (A ∩ B = ∅), that is, D(A, B) will have value 1 if and only if A and
B are disjoint otherwise, the predicate is equal zero. The interaction between PA and
PB yields a result that is known to PA only.

In our model, an adversary can be misbehaving Bob, misbehaving Alice or both. In
particular, we cannot hope to avoid parties that (i) refuse to participate in the protocol,
(ii) substitute a correct input by an arbitrary value, and (iii) abort the protocol any time.
In our work, we do not address these issues. The way that security is dealt in this case
is by comparing the player’s views with respect to an "ideal" protocol implementation,
using a trusted third party. The reader is referred to [20] for a more complete discussion.

Definition 1. (Private Disjointness Testing) Two probabilistic polynomial time inter-
active Turing machines, PA and PB, define a Private Disjointness Testing protocol if
the following conditions hold:

Completeness. If both parties are honest, the protocol works and PA learns the dis-
jointness predicate, that is whether A ∩ B = ∅.

Soundness. For an unknown PA’s set A ⊂ K , the probability that PB will convince
PA to accept A ∩ B �= ∅ is negligible.

Security. Assume that the size of both datasets are public. With an overwhelming proba-
bility, PA does not get any extra information about PB’s dataset beyond the knowledge
of the disjointness predicate. PB learns nothing about PA’s set.

Informally, completeness means that a correct execution between two honest parties
will return the correct value of the disjointness predicate to PA. The soundness implies
that on an unknown input set A ⊂ K for PB , PA has no chance of obtaining a non-
zero result when interacting with any malicious Bob P∗

B. That is, unless P∗
B actually

knows a value in PA’s set, PA will not be fooled into thinking otherwise. As pointed
out in [3], both FNP and KM protocols are not sound according to this definition. In
those schemes, PA will believe that there is an intersection if it receives the value zero
encrypted under a public-key. P∗

B could trivially violate the soundness property by en-
crypting a zero value itself.
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In a verifiable protocol, PA’s privacy requires that no malicious Bob P∗
B can learn

anything about the set A beyond |A| from an interaction with PA. Using the same argu-
ment for a malicious Alice P∗

A, PB’s privacy ensures that P∗
A does not learn anything

about B beyond the set cardinality.

4 Intuition of Set Disjointness Test from Sylvester Matrix
Construction

Our solution is based on the Sylvester matrix construction. To test if PA’s dataset
A = {a1, . . . , am} and PB’s dataset B = {b1, . . . , bn} are disjoint, we represent two
datasets as two polynomials g(x) =

∏
ai∈A(x − ai) =

∑m
i=0 αix

i and
h(x) =

∏
bj∈B(x − bj) =

∑n
j=0 βjx

j , respectively. As in Section 2.1, we can build a
Sylvester matrix S from the polynomials g and h. Then, the determinant of S indicates
whether A and B are disjoint.

In order to protect datasets privacy, we can let PA send encrypted g to PB by using
a public-key homomorphic cryptosystem, such as Paillier’s [5], where the encrypted
g is denoted as the encryption of g’s coefficients with PA’s public key. PB then con-
structs the Sylvester matrix based on the polynomial h and encrypted polynomial g. To
protect the privacy of the polynomial h, PB randomly selects R1 ∈ GLm+n(K) and
obliviously computes R1 · S by using the homomorphic properties of the encryption
applied. After receiving the cryptogram of R1 ·S, PA decrypts it and is able to compute
det(R1 ·S). In such a way, PA learns det(R1 ·S) = 0 if and only if det(S) = 0 without
leaking any information about the polynomial g and gaining no other information apart
from the disjointness of two datasets.

However, if we apply this idea directly to construct a protocol, then PA can learn the
intersection cardinality. This is because rank(R1 · S) = rank(S). Thus,
deg(gcd(g, h)) = deg(g) + deg(h) − rank((R1 · S)) which reveals |A ∩ B|. How-
ever, with slightly bigger communication cost, we could let PA learn only the lower
bound of the intersection by securely computing det(ST · S). It is easy to see that PA
is still able to determine whether det(S) is zero or not from the computation. The fact

is that rank(ST · S) ≤ rank(S). Denote S =
(

MB

MA

)

, then,

ST · S = MT
A · MA + MT

B · MB

where MT
A · MA and MT

B · MB can be computed independently by PA and PB. The
secure computation of det(ST · S) works in the same way as the one discussed above.

5 Private Disjointness Test

In this section, we propose a solution to test the disjointness without releasing any extra
information beyond |A| and |B|. Our private computation is based on the Sylvester
matrix construction and the technique of secure determinant evaluation in the multi-
party computation model introduced by Cramer and Damgard [15]. Let polynomials g
and h represents the datasets A and B.
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5.1 Protocol without Bob-Verifiability

To secure construct a Sylvester matrix S from the polynomials g and h, and accordingly
evaluate if det(S) = 0, we employ the SDE technique. We form a list of
(deg(g) + deg(h) + 1) shares of S held by two parties in a certain way to let one
party to compute det(S) without knowing the rank(S). The protocol runs according to
the following steps.

Input: PA and PB hold the datasets A and B, respectively.
Output: PA learns if A ∩ B = ∅.
Protocol Π1

1. PA constructs the polynomial g from the dataset A, computes shares [g]A, [g]B of
g, and sends [g]B to PB.

2. PB
(a) constructs the polynomial h from the dataset B, computes shares [h]A, [h]B of

h, and forms an m × (m + n) half Sylvester matrix [MB]B related to [h]B as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[βn]B [βn−1]B . . . [β0]B 0 0 . . . 0 0 0
0 [βn]B . . . [β1]B [β0]B 0 . . . 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . [βn]B [βn−1]B [βn−2]B . . . [β0]B 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 0 0 [βn]B . . . [β2]B [β1]B [β0]B

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(b) generates shares [R]A, [R]B for a random matrix R ∈ GLm+n(K) in a certain
way that both [R]A and [R]B are invertible (the reader is refered to [15] for
more information). Let d = det(R),

(c) forms an n × (m + n) half Sylvester matrix [MA]B from received [g]B as in
Step 2(a),

(d) randomly selects distinct non-zero z0, . . . , zm+n from the field K , and assigns
[zi]A = [zi]B for each zi,

(e) sends [h]A, [R]A, d−1, [z0]A, . . . , [zm+n]A to PA.

3. PB assists PA in computing [S′
i]A = [R]A · ([zi]A · Im+n −

(
[MB]A
[MA]A

)

),

[S′
i]B = [R]B · ([zi]B · Im+n −

(
[MB]B
[MA]B

)

) separately as in Sect. 2.2, where the

matrices [MA]A, [MB]A are constructed by PA in the same way as [MA]B, [MB]B .
4. PA

(a) computes S′
i from shares [S′

i]A, [S′
i]B and further computes

det(zi ·Im+n−
(

MB

MA

)

) = det(S′
i)·d−1, where S′

i = R·(zi ·Im+n−
(

MB

MA

)

),
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(b) concludes A ∩ B �= ∅ if and only if

m+n∑

i=0

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

∏

0≤j≤m+n

j �=i

zj

zi − zj

⎞

⎟
⎟
⎠ · det(zi · Im+n −

(
MB

MA

)

)

⎞

⎟
⎟
⎠ = 0.

Theorem 1. The construction of Protocol Π1 is correct and secure with no other in-
formation revealed beyond |A| and |B| if both parties follow the protocol faithfully.

Poof. The soundness proof is irrelevant to this protocol based on Definition 1, since PB
is honest-but-curious and follows the protocol faithfully.

Completeness. The completeness of this protocol is clear. This is ensured by the

Sylvester matrix construction. det(
(

MB

MA

)

) = 0 if and only if related polynomials

g and h share common root(s), in other word A ∩ B �= ∅. The correct computation of

det(
(

MB

MA

)

) from related m + n + 1 matrices is provided by Cramel and Damgard’s

SDE scheme. The associated shares construction and computation are guaranteed by
the Shamir secret sharing scheme.

Security. The privacy of PA’s g is unconditional. It is guaranteed by the perfectness of
Shamir secret sharing, since PB only knows partial share of g owned by PA.

PB’s security ensures that PA given S′
i = R · (zi · Im+n −

(
MB

MA

)

) cannot learn

anything about B beyond |B|.
The proof of PB’s security is that an honest-but-curious P∗

A is not able to glean any

information about B from the result of R ·(zi ·Im+n−
(

MB

MA

)

) with unknown matrices

R and MB , where R ∈ GLm+n(K) is random, MB is an m × (m + n) matrix with a
half Sylvester matrix form. P∗

A can launch an attack on MB with

S′
i = R · (zi · Im+n −

(
MB

MA

)

) (1)

Denote

(
M̂B

M̂A

)

= (zi · Im+n −
(

MB

MA

)

) where MB and M̂B are same size. P∗
A

knows S′
i and M̂A, and tries to find out the matrix M̂B (really just one row of the entry,

the polynomial h). Note that

(
M̂B

M̂A

)

is non-singular, and R ∈ GLm+n(K). Therefore,

S′
i must be non-singular. By only knowing M̂A and with no knowledge about h, P∗

A

can search possible candidate polynomial, which can assure

(
M̂B

M̂A

)

be non-singular

(in other words, can satisfy Equation 1).
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Non-singular

(
M̂B

M̂A

)

means that det
(

M̂B

M̂A

)

�= 0. Let det
(

M̂B

M̂A

)

= f(β0, β1 . . . , βn) where f is a polynomial with n + 1 unknowns. For any βj by
fixing βi, 0 ≤ i ≤ n and i �= j, deg(f) = n and there are at most n solutions
for f(. . . , βj , . . .) = 0. We know that there are q possible selections for βj in the
field. Therefore, there must exists at least q − n possible choices for βj , such that
f(. . . , βj , . . .) �= 0. Since the polynomial f has n+1 unknowns, the total possible can-
didates for M̂B are (q−n)n+1. If q is large enough,P∗

A only has a negligible probability
to guess h correctly.

5.2 Verifiable Disjointness Test Protocol

In order to deal with a malicious PB, PA needs to verify whether the matrix MB as-
sociated with the shared polynomial h has the full rank as he claims to prevent the
malicious PB inserting one row zeros or two dependent rows in the matrix. In the fol-
lowing, we show how to modify our previous protocol to gain security against malicious
PB with a verification test. Assume that deg(h) is known by PA. Otherwise, PB needs
to send a single value deg(h) to PA at the beginning of the protocol. Suppose that PA
has a private and random permutation function π, which permutes each of m+n tuples.

Input: PA and PB hold the datasets A and B, respectively.
Output: PA learns if A ∩ B = ∅.
Protocol Π2

1. PA
(a) constructs the polynomial g from the dataset A, and computes n pairs of shares

{([g]1A , [g]1B ), . . . , ([g](m+n)A
, [g](m+n)B

)}, where the combination of two
shares in any pair can find g,

(b) sets an constant polynomial g′ = 1, and computes n pairs of shares as in
previous step, so she gets {([g′]1A , [g′]1B ), . . . , ([g′](m+n)A

, [g′](m+n)B
)},

(c) obtains {(e1π1(1) , e1π1(2)), . . . , (e(m+n)πm+n(1)
, e(m+n)πm+n(2)

)} by perform-

ing π{(e11 , e12), . . . , (e(m+n)1
, e(m+n)2

)}, where {(e11 , e12), . . . ,
(e(m+n)1 , e(m+n)2)} = {([g]1B , [g′]1B ), . . . , ([g](m+n)B

, [g′](m+n)B
)},

(d) sends {(e1π1(1) , e1π1(2)), . . . , (e(m+n)πm+n(1)
, e(m+n)πm+n(2)

)} to PB;

2. For each pair (eiπj(1) , eiπj(2)), the protocol runs step 2 and 3 of Protocol Π1 parallel
with the same parameters and computes

[S′
i]πj(1)A

= [R]A · ([zi]A · Im+n −
(

[MB]A
[MA]iπj (1)

A

)

)

[S′
i]πj(1)B

= [R]B · ([zi]B · Im+n −
(

[MB]B
[MA]iπj(1)

B

)

)

[S′
i]πj(2)A

= [R]A · ([zi]A · Im+n −
(

[MB]A
[MA]iπj (2)

A

)

)
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[S′
i]πj(2)B

= [R]B · ([zi]B · Im+n −
(

[MB]B
[MA]iπj(2)

B

)

)

where [MA]iπj(1) , [MA]iπj(2) are constructed from [g]i and [g′]i with the order de-
termined by the permutation πj , which is unknown to PB.

3. PA
(a) computes S′

iπj(1)
from shares [S′

i]πj(1)A
, [S′

i]πj(1)B
, and S′

iπj(2)
from shares

[S′
i]πj(2)A

, [S′
i]πj(2)B

,
(b) obtains {(S′

11
, S′

12
), . . . , (S′

(m+n)1
, S′

(m+n)2
)} by performing

π−1{(S′
1π1(1)

, S′
1π1(2)

), . . . , (S′
(m+n)πm+n(1)

, S′
(m+n)πm+n(2)

)}
(c) computes fi1 = det(S′

i1
) and fi2 = det(S′

i2
) for i ∈ {0, . . . , m + n} as in

Protocol Π1,

(d) computes det(zi · Im+n −
(

MB

M ′
A

)

) = fi2 ·d−1 for i ∈ {0, . . . , m+n}, where

M ′
A denotes a half Sylvester matrix constructed from the polynomial g′,

(e) halts if

(−1)m+n ·
m+n∑

i=0

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

∏

0≤j≤m+n

j �=i

zj

zi − zj

⎞

⎟
⎟
⎠ · det(zi · Im+n −

(
MB

M ′
A

)

)

⎞

⎟
⎟
⎠ �= 1.

(f) computes det(zi · Im+n −
(

MB

MA

)

) = fi1 · d−1 for i ∈ {0, . . . , m + n},

(g) concludes A ∩ B �= ∅ if and only if

m+n∑

i=0

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

∏

0≤j≤m+n

j �=i

zj

zi − zj

⎞

⎟
⎟
⎠ · det(zi · Im+n −

(
MB

MA

)

)

⎞

⎟
⎟
⎠ = 0.

Theorem 2. The construction of the Protocol Π2 is complete and sound against a ma-
licious adversaries. With overwhelming probability, a malicious P∗

B will be caught. In
other word, unless P∗

B actually knows a value in PA’s set, PA will not be fooled into
thinking otherwise. The security of both PA and PB is also protected based on the
shares of each polynomial are randomly selected from field, and the Secure Determi-
nant Evaluation.

Proof. The correctness proof is the same as for the Protocol Π1. The only difference is
that we use m+n pairs of shares [g]iA , [g]iB for g. The reason for doing this is to ensure
the soundness of this protocol, and will be discussed shortly. The security proof is the
similar as the one in the Protocol Π1. An adversary does not gain any extra information.
This is because of the perfectness of Shamir secret sharing and the SDE we used.

Soundness. In the given soundness definition, P∗
B is operating with an unknown dataset

A ⊂ K . From our construction, PB does not know anything about A beyond a share of

A and PA knows a share of B. PA will only accept A∩B �= ∅ when det(
(

MB

MA

)

) = 0.
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Note that [g]iA is sent along with [g′]iA for i ∈ {1, . . . , m + n}. In the setting,
[g]iA �= [g]jA and [g′]i′A �= [g′]j′A for i �= j and i′ �= j′. With the randomness of
[g]iA’s and [g′]iA ’s, P∗

B could deliberately set rank(MB) < n. This way PA will accept

A∩B �= ∅ since det(
(

MB

MA

)

) = 0. The only way for letting rank(MB) < n is to set h

be a zero polynomial in our setting. But this will be challenged by our verification test,
which PA only accepts h when

(−1)m+n ·
m+n∑

i=0

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

∏

0≤j≤m+n

j �=i

zj

zi − zj

⎞

⎟
⎟
⎠ · det(zi · Im+n −

(
MB

M ′
A

)

)

⎞

⎟
⎟
⎠ = 1.

The malicious Bob P∗
B can find the shares [h]A, [h′]B, [h]B for the polynomial h,

such that h can be reconstructed through the shares [h]A and [h]B , but the combination
of [h]A and [h′]B corresponds to a zero polynomial. P∗

B can then use [h]B for the ver-
ification test and [h′]B for disjointness test if he can guess which one of (eiπ(1) , eiπ(2))
corresponds to [g′]iA . But the chance P∗

B guesses correctly in each pair is 1
2 . Thus, the

chance P∗
B can guess correctly for all m + n pairs is 1

2m+n . If m and n are reasonable
sizes, P∗

B will be caught with an overwhelming probability.

5.3 Computation and Communication Complexity

Two protocols proposed in this paper are very simple and require only O(1) rounds of
communication. The communication cost is in terms of number of �log2 q	 bits that
are transmitted. The computation cost is measured in number of field operations. In
our calculation, the complexity of matrix multiplication is O((m + n)2.375) [21]; the
complexity of determinant computation is O((m + n)2.697) [22].

The communication complexity of the Protocol Π1 is O((m + n)2). The protocol
requires 2(m + n) matrix multiplication, and m + n determinant computations. The
overall computation complexity is O((m + n)3.697) field operations.

There is slightly more commnication cost for Protocol Π2, but complexity is still
O((m + n)2). The computation cost is only double the cost of the Protocol Π1.

6 Conclusion

We proposed protocols for private disjointness tests that are based on the polynomial
representation of datasets and Sylvester matrix construction. We first introduced the
structure of Sylvester matrices and the intuition of our protocols that applies Sylvester
matrices. To avoid revealing the intersection cardinality by directly applying Sylvester
matrices, we provided a protocol to test the set disjointness without revealing any ad-
ditional information in the honest-but-curious case. Finally, we described a protocol to
against malicious adversaries by applying a verification test.

The protocols constructed in this paper are more efficient than previous protocols
with respect to communication and computation complexity. They are all O(1) rounds,
and do not require the parties to compute exponentiations or any other kind of public
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key operations. Our protocols also provide information theoretic security, and do not
rely on any computational assumption.
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