Yi Mu
Willy Susilo
Jennifer Seberry (Eds.)

Information Security
and Privacy

13th Australasian Conference, ACISP 2008
Wollongong, Australia, July 2008
Proceedings

LNCS 5107

@ Springer




Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

5107



Yi Mu Willy Susilo Jennifer Seberry (Eds.)

Information Security
and Privacy

13th Australasian Conference, ACISP 2008
Wollongong, Australia, July 7-9, 2008
Proceedings

@ Springer



Volume Editors

Yi Mu

Willy Susilo

Jennifer Seberry

University of Wollongong

School of Computer Science and Software Engineering
Northfields Avenue, Wollongong, NSW 2522, Australia
E-mail: {ymu, wsusilo, jennie} @uow.edu.au

Library of Congress Control Number: Applied for

CR Subject Classification (1998): E.3, K.6.5, D.4.6, C.2, E4,F.2.1, K 4.1
LNCS Sublibrary: SL 4 — Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-69971-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69971-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12322725 06/3180 543210



Preface

The 13th Australasian Conference on Information Security and Privacy (ACISP
2008) was held at Wollongong, Australia, during July 7-9, 2008. The conference
was sponsored by the Centre for Computer and Information Security of the
University of Wollongong and the Research Network for a Secure Australia. The
submission and review process was run using the iChair software, written by
Thomas Baigneres and Matthieu Finiasz from EPFL, LASEC, Switzerland. We
would like to thank them for letting us use their iChair software.

The conference received 111 submissions, out of which the Program Commit-
tee selected 33 papers for presentation at the conference after a rigorous review
process. These papers are included in the proceedings. The accepted papers cover
a range of topics in information security, including authentication, key man-
agement, public key cryptography, privacy, anonymity, secure communication,
ciphers, network security, elliptic curves, hash functions, and database security.
The conference proceedings contain revised versions of the selected papers. Since
some of them were not checked again for correctness before publication, the au-
thors bear full responsibility for the contents of their papers. We would like to
thank the authors of all papers for submitting their papers to the conference.

In addition to the contributed papers, the program comprised three invited
talks. The invited speakers were Xavier Boyen (Voltage, USA), Josef Pieprzyk
(Macquarie University, Australia) and Nigel Phair (Australian High Tech Crime
Centre). We would like to express our thanks to them.

As in previous years, we selected a “best student paper.” To be eligible for
selection, a paper has to be co-authored by a postgraduate student, whose con-
tribution was more than 50%. The winner was Risto Hakala from Helsinki Uni-
versity of Technology, Finland, for the paper “Linear Distinguishing Attack on
Shannon.”

We would like to thank all the people who helped with the conference program
and organization. In particular, we heartily thank the Program Committee and
the sub-reviewers listed on the following pages for the effort and time they con-
tributed to the review process. We would like to express our thanks to Springer
for continuing to support the ACISP conference and for help in the conference
proceedings production.

Finally, we would like to thank the Organizing Committee for their excellent
contribution to the conference.

July 2008 Yi Mu
Willy Susilo
Jennifer Seberry



The 13th Australasian Conference on
Information Security and Privacy (ACISP 2008)

Sponsored by

Centre for Computer and Information Security Research,
University of Wollongong, Australia

Research Network for a Secure Australia

General Chair

Jennifer Seberry

Program Chairs

Yi Mu
Willy Susilo

University of Wollongong, Australia

University of Wollongong, Australia
University of Wollongong, Australia

Program Committee

Michel Abdalla
Masayuki Abe
Colin Boyd
Feng Bao

Lynn Batten
Ed Dawson
Dieter Gollmann
Aggelos Kiayias
Kwangjo Kim
Tanja Lange

Pil Joong Lee
Benoit Libert
Javier Lopez
Chris Mitchell
Yi Mu

Kaisa Nyberg
Eiji Okamoto
Josef Pieprzyk
Sihan Qing
Jean-Jacques Quisquater
Rei Safavi-Naini

ENS, Paris, France

NTT, Japan

QUT, Australia

Institute for Infocomm Research, Singapore
Deakin University, Australia

QUT, Australia

TU Hamburg, Germany

University of Connecticut, USA

ICU, Korea

Technische Universiteit Eindhoven, Netherlands
Pohang University of Science and Technology, Korea
UCL, Belgium

University of Malaga, Spain

RHUL, UK

University of Wollongong, Australia
Helsinki University of Technology, Finland
Tsukuba University, Japan

Macquarie University, Australia

Chinese Academy of Scineces, China

UCL, Belgium

University of Calgary, Canada



VIII Organization
Jennifer Seberry
Ron Steinfeld
Douglas Stinson
Willy Susilo
C. Pandu Rangan
Tsuyoshi Takagi
Vijay Varadharajan
Sabrina De Capitani
di Vimercati
Huaxiong Wang
Duncan S. Wong
Fangguo Zhang
Ning Zhang
Jianying Zhou

University of Wollongong, Australia
Macquarie University, Australia
University of Waterloo, Canada
University of Wollongong, Australia
Indian Institute of Technology, India
Future University, Japan

Macquarie University, Australia

University of Milan, Italy

Nanyang Technological University, Singapore
City University of Hong Kong, China

Sun Yat-Sen University, China

University of Manchester, UK

Institute for Infocomm Research, Singapore

Organizing Committee

Man Ho Au

Xinyi Huang

Shams Ud Din Qazi

Mohammad Reza
Reyhanitabar

Siamak Fayyaz
Shahandashti

Pairat Thorncharoensri

Wei Wu

Tsz Hon Yuen

External Referees

Isaac Agudo

Hadi Ahmadi

K. Ambika

Venkat Balakrishnan
Daniel J. Bernstein
Jean-Luc Beuchat
Peter Birkner

Billy Bob Brumley
S. Chandrasekar
Joo Yeon Cho
Sherman Chow
Baudoin Collard
Alex Dent

Dang Nguyen Duc
Sung Wook Eom

University of Wollongong, Australia
University of Wollongong, Australia
University of Wollongong, Australia

University of Wollongong, Australia

University of Wollongong, Australia
University of Wollongong, Australia
University of Wollongong, Australia
University of Wollongong, Australia

Reza Rezaeian Farashahi
Gerardo Fernandez
Carmen Fernandez-Gago
Georg Fuchsbauer

Juan Garay

Praveen Gauravaram
Juan Gonzalez

Satoshi Hada

Risto Hakala

Kevin Henry

Matt Henricksen

Jason Hinek

Michael Hitchens

Qiong Huang

Shaoquan Jiang

Jang Seong Kim

Sun Young Kim
Young Mok Kim
Varad Kirthane

Hoi Le

Fagen Li

Jin Li

Vo Duc Liem

Peter van Liesdonk
Joseph K. Liu
Jiqiang Lu

Mark Manulis
Krystian Matusiewicz
Antonina Mitrofanova
Cameron McDonald



Pablo Najera
Miyako Ohkubo
Vijayakrishnan P.
Arpita Patra
Angela Piper

M.R. Reyhanitabar
Rodrigo Roman
Chun Ruan

Palash Sarkar
Sharmila Devi Selvi
Jae Woo Seo
Siamak Shahandashti
Hongsong Shi

Jong Hoon Shin
Masaaki Shirase

Igor Shparlinski
Leonie Simpson
Michal Sramka

Jerry Sui

Christophe Tartary
Ronghua Tian

Tomas Toft
Mohammed A.A. Tuhin
Udaya Kiran Tupakula
Damien Vergnaud

José Villegas

Jose L. Vivas

Yongge Wang

Baodian Wei

Kenneth Wong

Organization X

Jiang Wu
Guomin Yang
Yanjiang Yang
Yeon-Hyeong Yang
Chan Yeob Yeun
Hongbo Yu

Yu Yu

Janson Zhang
Chang-An Zhao
Weiliang Zhao
Hong-Sheng Zhou
Huafei Zhu
Sebastien Zimmer



Table of Contents

New Paradigms for Password Security: Abstract from the Keynote
Lecture . o .o 1
Xavier Boyen

Enforcing User-Aware Browser-Based Mutual Authentication with
Strong Locked Same Origin Policy .......... .. .. ... .. .. ... ... 6
Sebastian Gajek, Mark Manulis, and Jorg Schwenk

Secure Biometric Authentication with Improved Accuracy............. 21
Manuel Barbosa, Thierry Brouard, Stéphane Cauchie, and
Simao Melo de Sousa

A Critical Analysis and Improvement of AACS Drive-Host
Authentication . ......... ... 37
Jiayuan Sui and Douglas R. Stinson

Comparing the Pre- and Post-specified Peer Models for Key
AGreement ... ..o 53
Alfred Menezes and Berkant Ustaoglu

Efficient One-Round Key Exchange in the Standard Model ............ 69
Colin Boyd, Yvonne Cli , Juan Gonzalez Nieto, and
Kenneth G. Paterson

On the Improvement of the BDF Attack on LSBS-RSA ............... 84
Hung-Min Sun, Mu-En Wu, Huaxiong Wang, and Jian Guo

Public-Key Cryptosystems with Primitive Power Roots of Unity ....... 98
Takato Hirano, Koichiro Wada, and Keisuke Tanaka

Relationship between Two Approaches for Defining the Standard
Model PA-NESS . ..ot 113
Isamu Teranishi and Wakaha Ogata

Distributed Verification of Mixing - Local Forking Proofs Model ....... 128
Jacek Cichof, Marek Klonowski, and Miroslaw Kutylowski

Fully-Simulatable Oblivious Set Transfer ... ........... .. ... ... .... 141
Huafei Zhu

Efficient Disjointness Tests for Private Datasets .. .................... 155

Qingsong Ye, Huaxiong Wang, Josef Pieprzyk, and Xian-Mo Zhang



XII Table of Contents

Efficient Perfectly Reliable and Secure Message Transmission Tolerating
Mobile AdVersary .. ...t
Arpita Patra, Ashish Choudhary, Madhu Vaidyanathan, and
C. Pandu Rangan

Methods for Linear and Differential Cryptanalysis of Elastic Block
CIphers . .o
Debra L. Cook, Moti Yung, and Angelos D. Keromytis

Multidimensional Linear Cryptanalysis of Reduced Round Serpent . . ...
Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg

Cryptanalysis of Reduced-Round SMS4 Block Cipher.................
Lei Zhang, Wentao Zhang, and Wenling Wu

On the Unprovable Security of 2-Key XCBC ........................
Peng Wang, Dengguo Feng, Wenling Wu, and Liting Zhang

Looking Back at a New Hash Function .......... ... ... ... ... ....
Olivier Billet, Matthew J.B. Robshaw, Yannick Seurin, and
Yiqun Lisa Yin

Non-linear Reduced Round Attacks against SHA-2 Hash Family .......
Somitra Kumar Sanadhya and Palash Sarkar

Collisions for Round-Reduced LAKE . ... ... .
Florian Mendel and Martin Schla er

Preimage Attacks on Step-Reduced MD5............ ... ... .. ... ....
Yu Sasaki and Kazumaro Aoki

Linear Distinguishing Attack on Shannon ...........................
Risto M. Hakala and Kaisa Nyberg

Recovering RC4 Permutation from 2048 Keystream Bytes if j Is

Subhamoy Maitra and Goutam Paul

Related-Key Chosen IV Attacks on Grain-vl and Grain-128 ...........
Yuseop Lee, Kitae Jeong, Jaechul Sung, and Seokhie Hong

Signature Generation and Detection of Malware Families..............
V. Sai Sathyanarayan, Pankaj Kohli, and Bezawada Bruhadeshwar

Reducing Payload Scans for Attack Signature Matching Using Rule
Classification . . ... e
Sunghyun Kim and Heejo Lee

Implicit Detection of Hidden Processes with a Feather-Weight
Hardware-Assisted Virtual Machine Monitor ........................
Yan Wen, Jinjing Zhao, Huaimin Wang, and Jiannong Cao



Table of Contents

FormatShield: A Binary Rewriting Defense against Format String
AtaCKS . oo
Pankaj Kohli and Bezawada Bruhadeshwar

Advanced Permission-Role Relationship in Role-Based Access
Control . ..
Min Li, Hua Wang, Ashley Plank, and Jianming Yong

Enhancing Micro-Aggregation Technique by Utilizing
Dependence-Based Information in Secure Statistical Databases ........
B. John Oommen and Ebaa Fayyoumi

Montgomery Residue Representation Fault-Tolerant Computation in
G2k
Silvana MedoS and Serdar Boztas

A Tree-Based Approach for Computing Double-Base Chains...........
Christophe Doche and Laurent Habsieger

Extractors for Jacobians of Binary Genus-2 Hyperelliptic Curves .. .. ...
Reza Rezaeian Farashahi

Efficient Modular Arithmetic in Adapted Modular Number System
Using Lagrange Representation ............. ... ... ... ... .. ... ....
Christophe Negre and Thomas Plantard

Author Index . .. ...

XIII



New Paradigms for Password Security
(Abstract from the Keynote Lecture)

Xavier Boyen

Voltage Inc.
xb@boyen.org

For the past several decades, cryptographers have consistently provided us with
stronger and more capable primitives and protocols that have found many ap-
plications in security systems in everyday life. One of the central tenets of cryp-
tographic design is that, whereas a system’s architecture ought to be public and
open to scrutiny, the keys on which it depends — long, utterly random, unique
strings of bits — will be perfectly preserved by their owner, and yet nominally
inaccessible to foes.

This security model works well as long as one can assume the existence of an
inviolate physical location or storage device to safeguard those keys. In client-
server scenarios, the mere delocalization of the participants suffices to enforce a
proper boundary without any further precaution. In proxy settings, one may call
upon tamper-resistant “smart cards” or hardware security modules to isolate the
keys adequately from most opponents.

Things break down when one can no longer assume that an external storage
medium is available to store our keys, and that the only option is to remember
them in our minds. The problem, of course, is a cognitive one: the human brain
is ill-equipped to remember hundreds of random bits of key material for the
long term without making any mistake. The secrets that our brain is keen on
remembering are those of our own choosing, which for all their apparent ran-
domness and unpredictability can certainly not be mistaken nor substituted for
genuine cryptographic keys. Security from purely mental secrets requires us at
the very least to compromise on key strength — this encompassing both entropy
and uniformity —, and seek the best reachable security goals based not on ideal
random keys but on passwords of sub-cryptographic quality.

Plain textual passwords and passphrases — or passtexts — have always been
the preferred form of human-memorable secret, having the benefit of medium-
independence which entails compatibility with virtually any conceivable user
interface. More exotic mental secrets — passthoughts — may be based on visual
or auditory recognition feedback; these are equivalent to passwords from a cryp-
tographic perspective, but the specialized input device they require make them
less practical. Secrets whose expression requires body action such as speech or
ocular movements — passmoves — may also be envisaged given the proper mea-
surement apparatus, with the proviso that the unavoidable measurement noise
in the analog signal will have to be dealt with; we merely mention that errors
on the post-quantization signal may be correctable using information-theoretic

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 1-[ 2008.
© Springer-Verlag Berlin Heidelberg 2008



2 X. Boyen

cryptographic tools such as reusable and robust fuzzy extractors [I] without
leaking excessive information about the secret.

Regardless of the shape of form of the secret, an important criterion for its
human memorability is that its selection ultimately be left to the human who
will have to remember it. Machines can assist in password selection, but should
not make the final choice. Because of this, it is a near-certainty that the selected
secret will not make a suitable cryptographic key, nor will it be possible to derive
one from it due to lack of entropy. Hence, specialized primitives and protocols
are needed that explicitly take into account those inherent weaknesses, and seek
to achieve the best possible security under the circumstances.

Although password-based primitives and protocols have seen much founda-
tional and implementational improvements during the last two decades, the gen-
eral philosophy of password-based offline key derivation and online key exchange
has remained essentially what it was in the early nineties. In particular, most
current approaches could better handle real-life situations where the password
are too weak for comfort and/or are recycled in part or in whole with multiple
correspondents.

The purpose of this exposé is thus to investigate what security may indeed
be attained from human-memorable passwords as they do appear in the real
world — including the weak, skewed, reused, and exceedingly long-lived ones.
The focus on literal passwords stems from tradition as much as convenience.

1 Halting Puzzles against Brute-Force Dictionary Attacks

Stand-alone — offline — uses of passwords mainly concern encryption and key
derivation applications. The prime example of this is to encrypt the contents of
a laptop so that only its owner can access it. Local authentication and device
unlocking uses may also be treated as special cases of password-based encryption.
At the core of these systems, one finds a Key Derivation Function (KDF), which
is a one-way function taking a password and an optional public random salt as
input, and producing a reproducible cryptographic key as output.

Offline applications such as those are tremendously difficult to secure with
a weak password. The threat model here is the loss of the entire ciphertext
and all associated hardware to an attacker, where only the password is being
held back. Therefore, any opponent that simply tries out all passwords in an
offline dictionary attack, e.g., by decreasing order of estimated likelihood, will
eventually stumble upon the correct one and defeat the encryption. The only
defense against such a threat is to slow down or deter the attacker by making
the attack more daunting. There are two ways to do this: by picking an unlikely
password to increase the expected number of guesses, and by making each guess
more computationally demanding to verify.

One cannot really play with the choice of the password, short of encouraging
the user to select a long and difficult one. Making the guesses hard to verify
is possible, but only within limits, as it has the side effect of increasing the
user’s legitimate access latency in the same proportion. For this reason, KDF's



New Paradigms for Password Security 3

are purposely designed to be somewhat expensive to compute, although most
implementations tend to be very conservative with the amount of slowdown that
they are willing to impose on users, and rarely offer the user any choice in the
matter. The general trend is thus to use KDFs with a slowdown parameter (often
a hash iteration count) that is conservatively chosen, once-and-for-all frozen, and
publicly disclosed as part of the KDF specification or implementation. Some
implementations support in-the-field adjustment of the KDF iteration count,
but this parameter always remains public.

This has been and continues to be the ubiquitous way in which passwords are
used for local key derivation.

In departure from this trend, we recently introduced, in [2], the notion of
Halting Key Derivation Function (HKDF), which explicitly lets the user choose
an arbitrary hardness parameter and emded it into the function in a crypto-
graphically secret manner. The idea is to encourage the user to make the HKDF
as difficult to compute as the delay he or she is willing to tolerate when seeking
access, but conceal the value of the chosen parameter from public view, and yet
not require the user to remember such value — or for that matter anything else
besides the password.

The crucial element is that, on the correct password, the HKDF function will
recognize that it succeeded and halt spontaneously after the intended computa-
tional delay; but on an incorrect password, it will continue indefinitely without
giving any feedback until manually interrupted. The only indication given to the
user that a password is incorrect will be the feeling that the key derivation is tak-
ing longer than it should. The user will naturally react by restarting the process
and reentering the password more carefully without much of an afterthought.
To an attacker, by contrast, this lack of feedback will disproportionately compli-
cate the task of mounting an offline dictionary attack. The result is an effective
security increase equivalent to two extra bits of password entropy, at virtually
no cost to the legitimate user.

The total security gains provided by HKDFs are actually much greater than
just two bits, due to a combination of factors. The main contributing factor
is that legacy KDFs tend to be parameterized very conservatively, leading to
exceedingly short delays (~ lms) that are only getting shorter as computers
are getting faster, raising obsolescence concerns. By contrast, HKDFs are pro-
grammed on a case-by-case basis, on the basis on actual clock times, with respect
to the current state of computer performance. Even at the shorter end of HKDF
delays, the “blink of an eye” (~ 1s), the jump is already substantial. It will also
keep up with technological progress, since a one-second-delay in ten years will
entail a greater number of elementary operations than a one-second-delay today.

As discussed in [2], one should expect a fairly wide spectrum of user-selected
HKDF delays to find their way in practical applications. Short delays are ap-
propriate for frequently used day-to-day passwords with a short lifespan. Longer
delays (~ 1m and more) could be used to protect longer-term backup passwords,
which may need to be simpler to be memorable over a longer period. The longest



4 X. Boyen

delays (~ 1h and more) would be reserved for last-resort disaster-recovery pass-
words, never intended to be used, but that must be available and remembered
if ever needed even after many years have lapsed. Such passwords would likely
have to be very weak to be reliably memorable over such long periods, hence the
need for very long HKDF delays to protect them from offline dictionary attacks.
Notably, the same plaintext can be encrypted under different passwords using
different delays, seamlessly, without any loss of security or usability.

2 Hardened Protocols toward Universal Authentication

Client-server — online — uses of passwords are primarily geared toward au-
thentication and key exchange. Both parties share a password, and, based on
it, try to establish a private authenticated channel over open communication
lines. The constraints on online passwords are fairly different than in the offline
case, as here the threat model typically assumes that the communicating parties
are honest and try to prevent eavesdropping and impersonation by a malicious
outsider (who controls the underlying communication channel).

Password-Authenticated Key Exchange (PAKE) is indeed a success story of
cryptographic protocol design, as there are many protocols realizing the theo-
retically optimal security requirement that the only feasible attack vector be for
the adversary to make online password guesses, one guess at a time, interactively
with one of the honest parties — who can then detect the attack and throttle it
by refusing to communicate. Secure online authentication can thus be achieved
using much weaker passwords than would be thinkable in the offline case.

Extensions of this notion have been proposed for the case where the server
itself may be viewed as an adversary, as is the case when the client wishes to reuse
the same password with other servers. Asymmetric Password-Authenticated Key
Exchange (APAKE) deals with this notion by requiring the password only on
the client side; the server is instead entrusted with a derived secret that can be
used to reach mutual authentication with the client, but not impersonate it to
another server (in particular the password should be hard to recover from this).
APAKE protocols are for this reason more desirable in practical use than PAKE,
in light of the well-documented propensity of internet users to recycle the same
few passwords with a broad variety of vendors. However, one concern remains,
which is how difficult it actually is for a malicious server to recover its clients’
passwords from the derived secrets.

The concern is that the derived secrets are typically obtained by applying a
one-way function to the password w, be it a cryptographic hash h(w) or a mod-
ular exponentiation g*. Functions like these are usually very fast to compute,
so even though they technically may be one way, they might be relatively easy
to invert in an offline dictionary attack if the user password is not already very
strong. Also, without an extra randomization step, a server can attack all of its
clients’ passwords for the price of one.

Since typical real-life users are probably going to continue reusing the same
weak passwords with many servers regardless of whether this is considered a safe



New Paradigms for Password Security 5

thing to do, it would be desirable to design a protocol that attempts to preserve
the best possible form of online and offline password security, even under reuse of
a weak password across multiple servers. The benefit from such a notion would
be safe universal authentication on the internet using a single easy-to-remember
password (for each user).

Ideally, one wish to combine the security of (A)PAKE against outside online
attackers, with the security of HKDF against malicious servers.

To this end, we are proposing, in [3], the notion of Hardened Password-
Authenticated Key Exchange (HPAKE), which offers the same security guar-
antees as regular asymmetric key exchange, and in addition allows the user to
specify an arbitrarily expensive one-way function for the mapping from client
password to server secret. This makes even relatively weak passwords infeasible
to recover by malicious servers, thereby enabling the reuse of such passwords
with arbitrarily many servers.

There are several difficulties with this. The first is a systemic one: the burden
of computing this arbitrarily expensive one-way function should befall the client
who selected it, and not the server which for scalability reasons must be able to
process many authentication requests with minimal effort. The second issue is a
technical one: since the one-way function is to be computed on the client side, the
client must obtain the necessary inputs from the server prior to authentication.
This creates a paradox, since the success of such transfer must depend on the
client’s knowledge of the password, but at the same time not reveal to either the
client or the server whether the transfer succeeded, lets it open an avenue for
offline attack to outsiders or to the server itself.

We shall discuss how these difficulties can be overcome, and how the HPAKE
framework from [3] provides a plausible and practical answer to the problem of
universal authentication from a single password.

3 Conclusion

The password schemes presented in this lecture have in common that they seek
to provide the best possible security for the password holder, in the offline and
online setting, regardless of how careless his or her use of that password may be.
The only safety rule that should never be failed, is that one’s password should
only be seized on a local trusted HKDF or HPAKE entry device, and not shared
with other less secure protocols.

References

1. Boyen, X.: Robust and Reusable Fuzzy Extractors. In: Tuyls, P., Skoric, B., Keve-
naar, T. (eds.) Security with Noisy Data, Springer, Heidelberg (2007)

2. Boyen, X.: Halting Password Puzzles — hard-to-break encryption from human-
memorable keys. In: SECURITY 2007, The USENIX Association (2007)

3. Boyen, X.: Hardened Password Authentication — mulitple mobile credentials from a
single short secret. Manuscript (2008)



Enforcing User-Aware Browser-Based Mutual
Authentication with Strong Locked Same Origin Policy

Sebastian Gajek', Mark Manulis?, and Jérg Schwenk®

! Horst Gortz Institute for IT-Security, Germany
{sebastian.gajek, joerg.schwenk}@nds.rub.de
2 UCL Crypto Group, Belgium

mark.manulis@uclouvain.be

Abstract. The standard solution for mutual authentication between human users
and servers on the Internet is to execute a TLS handshake during which the server
authenticates using a X.509 certificate followed by the authentication of the user
either with own password or with some cookie stored within the user’s browser.
Unfortunately, this solution is susceptible to various impersonation attacks such
as phishing as it turned out that average Internet users are unable to authenticate
servers based on their certificates.

In this paper we address security of cookie-based authentication using the
concept of strong locked same origin policy for browsers introduced at ACM
CCS’07. We describe a cookie-based authentication protocol between human
users and TLS-servers and prove its security in the extended formal model for
browser-based mutual authentication introduced at ACM ASIACCS’08. It turns
out that the small modification of the browser’s security policy is sufficient to
achieve provably secure cookie-based authentication protocols considering the
ability of users to recognize images, video, or audio sequences.

1 Introduction

Motivation. The browser plays an indispensable function as the user’s interface to ac-
cess the rich world of Web based services. In order to serve the purpose of an universal
client, commodity browsers have been augmented with numerous functionalities. Ex-
amples include extensions of the HTTP header to control caching and transport cookies,
or the HTML markup language to enable high-level scripting and supply technologies
like AJAX, AFLEX or SOAP. By contrast, much effort to amend the browser security
model and provide new cryptographic services has not been spent. Since its adaption
more than a decade ago [9]], the Transport Layer Security (TLS) framework is the main
pillar of browser-based protocols to provide Web applications with a security layer.
After the protocol framework has been peer-reviewed without finding any significant
vulnerabilities [25128I241272]], it has been believed to be the holy grail for secure Web
authentication. However, recent studies point out that average-skilled Internet users un-
derstand neither TLS nor its indication in commodity Web browsers at all [7I27]]. Users
tend to ignore browser’s warnings and prefer to identify Web sites on the basis of non-
technical indicators (e.g., brands, logos). This attitude provides a wrong sense of secu-
rity. An adversary may fake the site and disclose the user’s password (phishing attack).

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 6120] 2008.
(© Springer-Verlag Berlin Heidelberg 2008



Enforcing User-Aware Browser-Based Mutual Authentication 7

The advent of these large-scale fraud attacks has led to several modifications in the vi-
sualization of TLS. Unfortunately, it seems to turn out that the changes do not meet
their high expectations either [[16]].

Another line of research addresses the design of authentication protocols that provide
user-awareness. The essence of user-aware protocols is to relax the assumptions on user
behavior and provide secure authentication ceremonies. Recently, the authors of this
paper introduced a formal security model for browser-based mutual authentication
(BBMA ) between a human user and a server where the browser is modeled as the medi-
ator of the communication [11]]. Their model is an extension of the classical model for
authentication from [3]] towards consideration of user-awareness within the authentica-
tion protocols on the Internet whereby user-awareness is modeled via human percepti-
ble authenticators (HPAs) that are implied by natural human senses, such as recognition
of images, videos, and audio sequences. In addition to the model, describes a pro-
tocol called BBMA (based on the ideas of the PassMark Security Inc.’s Two-Factor-Two-
Way Authentication™) which can be implemented within the standard specification of
the TLS protocol. In this protocol the human user authenticates via password which is
typed into an HTML form only after the successful recognition of some expected HPA
sent by the server. In order to protect the disclosure of this HPA to unauthorized par-
ties, the TLS protocol uses client (possibly self-generated) certificates which serve as a
cryptographic identifier for the corresponding HPA.

Extending this line of research, we deal with user-awareness in cookie-based
authentication protocols. These protocols execute a server-only authenticated
TLS session, where the user authenticates through a cookie that has been previously
set by the server and stored in the browser’s cache. The technique has the adva-
ntage that the user is refrained from retyping the password. Further, the cookie is taken
from a sufficiently large random distribution. There is no need to expect a
“security defect” due to the use of low-entropy passwords. These simplifications of
user authentication have led to a wide adaption of cookie-based authenticated channels
in browser-based protocols and there are many protocols that build upon this technique.
Unfortunately, they have been shown to be vulnerable when taking the mature browser
security model into account (see Section 2] for more discussions). The crux is that the
browser decides on the basis of the server’s domain name whether to reveal the cookie.
The adversary is feasible to steal the cookie by spoofing the domain names and there
are many attacks allowing the adversary to do this (e.g., dynamic pharming, DNS re-
binding [T519].

To protect against the growing presence of these threats, Karlof et. al. propose re-
finements of the browser’s cookie disclosure policy [23I19]. Their contribution is to
augment the browser with some additional functionality which uses cryptographic
mechanisms to enforce restricted access policies without relying on DNS, dubbed the
strong locked same origin (SLSO) policy. In the context of cookie-based authentication
protocols over the TLS channel, the SLSO policy enforcement means that the browser
sends a cookie to the server only after the server proves the possession of a valid crypto-
graphic identifier, namely the server’s public key, i.e., the server proves the knowledge
of the corresponding private key.



8 S. Gajek, M. Manulis, and J. Schwenk

Contributions. In this paper we extend our model from [[I1]] towards cookie-based au-
thentication and consideration of the browser’s SLSO policy. Using the extended model
we analyze the security of the cookie-based version of BBMA from re-engineered
under the SLSO policy. We call the modified protocol BBMA-SLSO. It turns out that
some minor changes of the browser security model to enforce the SLSO policy—which
is a straightforward task compared to the large scale deployment of, say secure domain
name resolution protocols (DNSSEC)—turns an insecure protocol into a provably se-
cure one. Additionally, the use of SLSO policy allows us to eliminate the costly use of
the client certificates, which are essential to prove security of BBMA. In addition to the
formal security definition, BBMA-SLSO0 has additional advantages over previous cookie-
based authentication protocols. The advantages include

1. BBMA-SLSO0 is user-aware. In order to authenticate, the server sends a HPA, which
serves (i) as non-cryptographic identifier for the user to validate the server as in the
physical world where identities are provided in an easily recognizable fashion and
(i) as fail-stop mechanism to hamper that she discloses private information on a
faked site.

2. BBMA-SLSO fits into the standard TLS specification. There is no need to modify
commodity server implementations. In fact, the necessary augmentations address
browsers, more precisely their functionality to access cookies corresponding to the
SLSO policy. See [23] for more details.

We remark that the enforcement of the SLSO policy is ineligible to protect against
cross-site scripting (XSS) attacks. The anatomy of XSS attacks is to exploit weaknesses
of application servers and inject malicious scripts into the communication that enable
the adversary to invoke certain browser functionalities. Since the scripts are in the same
security context the SLSO policy does not help. Consequently, the adversary would
have access to the user’s password typing, the cookie and HPA in BBMA-SLS0. Though
we treat XSS attacks as (server) corruptions in our model and exclude them in the anal-
ysis, a work-around to make BBMA-SLSO resistant against the attacks is to completely
isolate the named security critical information and prevent that they are accessible from
the surrounding (potentially malicious) scripts. Such a feature is already available in
the Internet Explorer for cookies [21]]. The approach has to be extended for passwords
and HPAs. Since the implementation of the SLSO policy requires the modification of
the current browser’s security policy anyway, we suggest to enrich this policy with the
private/public tagging of elements. An element such as a password field tagged with a
private value shall signal the browser that any script is prevented from access, regardless
of its security context. See for more details.

Organization. The remainder sections are structured as follows. We review related
work in Section 2l In Section [3, we describe the formal security model for cookie-
based BBMA protocols under consideration of the SLSO policy. In Section H] we spec-
ify a concrete protocol called BBMA-SLSO using the high level description of the TLS
handshake in the key transport mode and prove that it is user-aware and satisfies the
defined authentication requirement. Finally, we conclude the paper in Section[3l



Enforcing User-Aware Browser-Based Mutual Authentication 9

2 Related Work

So far, few browser-based protocols have been subject to rigorous security analysis:
Kormann and Rubin show that Microsoft’s .NET passport, a Web-based realization
of the Kerberos protocol for single sign on, is susceptible to attacks where the adversary
steals the ticket granting ticket cookie. Soghoian and Jakobsson investigate the
SiteKey-protocol that displays a previously negotiated image in addition to password
forms in order to signal that the user is connected to the benign server. The authors
show the feasibility of stealing the shared secret that is stored in a cookie. GroB [12]
analyzes SAML, an alternative single sign on protocol, and shows that the protocol is
vulnerable to adaptive attacks where the adversary intercepts the authentication token
contained in the URL. By contrast, BBMA-SLS0 has formal security arguments and is
provably secure in a model which takes into account the adversarial control over the
network and attacks against the classical browser’s security policies that reveal weak
identifiers, such as cookies.

GroB et al. prove in [[14] the security of WS-Federation passive Requestor Profile—
a browser-based protocol for federated identity management. The proof is carried out
in the browser model that builds on the Reactive Simulatability framework due
to Pfitzmann and Waidner [26]. The model abstracts away the TLS-protected channel
through an ideal functionality that captures the same cryptographic task and presup-
poses ideal users who are able to identify servers based on certificates. There exists
no soundness proof that TLS is simulatable and realizes such functionality, especially
with respect to the relaxed user behavior assumptions. BBMA-SLSO takes explicitly into
account the TLS protocol and is shown to be provably secure in the Random Oracle
Model when instantiated with the widely deployed key transport cipher suite in server
authentication mode.

3 Modeling BBMA with SLSO Policy

In this section we extend our security model for browser-based mutual authentication
from [[11] towards consideration of cookie-based authentication and the SLSO policy
implemented within the browser.

3.1 Protocol Participants and Communication Model

User, Browser, Server, and their Long-Lived Keys. Let U/ denote a human user for
whom we do not make any further assumptions except for the ability to use some natu-
rally born senses. We assume that I/ remembers some (high-entropy) human perceptible
authenticator (HPA) w € W (e.g. an image or a video/audio sequence from some space
W) as its long-lived key LLy,.

To the contrary, the browser BB and the server S are modeled as PPT machines. L L
is the browser’s high-entropy long-lived key which contains (S, pks, cky) where S is
the identity (domain name) of the server, pks € {0,1}71(%) its certified public key,
and cky € {0,1}72(%) is the cookie set by S during the establishment of the security
association with the client which is denoted by C = (U, B). (Here and in the following,



10 S. Gajek, M. Manulis, and J. Schwenk

p; : N — N,4 € [1,5] is a polynomial and x € N the security parameter.) We assume
that cky contains secret information (e.g. obfuscated or cryptographically processed
password) which allows S to uniquely identify /. Similarly, L Ls contains the private
key sks € {0,1}P1(%) and the tuple (U, cky, w).

Additionally, by C we denote the traditional client given by a pair (U, B).

Communication between 53 and I/ via render-Function. Let \; : N — N, € [1, 2]
be two polynomials. B communicates to U/ through the visualization function render :
M x ¥ — M* where M € {0,1}*+(%) is the message space (space of all HTML
messages) and ¥ € {0, 1}’\2("‘) is the browser’s configuration for message processing
that may be altered by querying the browser’s DOM model.

Modeling User-Awareness via recognize-Function. Similar to we assume that
U can recognize some previously remembered high-entropy HPA w € W. The recog-
nition is handled by a boolean human perception function recognize : M* x W —
{0, 1} which on input a visualized message m* € M* and w the recognize function
outputs 1 if U recognizes w among the content of m*; otherwise the output is 0. In
this paper we assume that if m* contains w (denoted as m*|w) then recognize out-
puts 1, i.e., the ability of U/ to recognize w is perfect. On the other hand, we do not
assume that w is the only HPA for which recognize outputs 1, i.e., we do not ide-
alize U as there can be some set WW* C )V which contains HPAs that are perfectly
human-indistinguishable from U according to the following definition.

Definition 1 (Perfect Human-Indistinguishability of HPAs). Let w € W be some
given HPA. For any m* € M* and any w* € W, we say that w and w* are perfectly
human-indistinguishable, if for any human user U

| Prtd. recognize(m*|w, w) = 1] — Pril{.recognize(m*|w*, w) = 1]| = 0

where the probabilities are computed over the choices of w*. By W* C W we denote
the set of all perfectly human-indistinguishable HPAs for some given w € VW assuming
that w € W*.

The main idea in designing user-aware security protocols based on HPAs is to opt for
authenticators for which W* is sufficiently small for most of the users. In this case the
probability that an adversary chooses or guesses some HPA that cannot be distinguished
from w by U can be kept low. The ideal case would be if WW* would consist only of w.
We call w a good HPA if the size of the set W* is sufficiently small such that the
term |W*|/|W)| which is used in our proof beside other cryptography-related terms to
compute the overall probability of a successful attack is negligible.

For our protocol we assume that the HPA used by I/ in the execution of our protocol
is good. We stress that in order to identify good HPAs extensive user experiments,
possibly under consideration of specific statistic models, have to be conducted. We
conjecture that good HPAs may be found from the personal digital images, audio and
even video sequences.



Enforcing User-Aware Browser-Based Mutual Authentication 11

Protocol Sessions and Participating Instances. Participation of C = (U, B) and S
in distinct executions of IT is modeled via instances [C, sidc] and [S, sids] where
side, sids € N are respective session ids and if side = sids then the instances are
partnered — belong to the same session. We sometimes write C and S instead of their
instances when the difference is visible from the context.

Execution Stages. Once initialized with the corresponding long-lived key an instance
[C, sidc] or [S, sids] is marked as used and turns into the stand-by stage where it waits
for an invocation to execute the protocol. Upon receiving such invocation the instance
turns into a processing stage where it proceeds according to the protocol specification
until it collects enough information to decide whether the execution was successful or
not, and to terminate then. If the execution is successful then we say that the instance
accepts before it terminates; otherwise we say it aborts. The acceptance of [C, sidc]
with C = (U, B) is implied by the acceptance of U regardless of 13, as U is the ultimate
endpoint of the communication and controls the browser. However, [C, sidc] aborts if
either I/ or 5 does so.

3.2 Security Model

In the following we specify attacks and security goals for BBMA protocols from the
perspective of fixed identities S and (U, B).

Assumptions on the Initialization. We assume that the establishment of the security
association between S and (U, B) during which B receives (certified) pks and cky, and
S receives w is trusted. In practice, this can be done through the execution of the very
first TLS handshake in the key transport mode under the assumption that this first ses-
sion is not compromised. We remark that this assumption has practical substantiation.
For example, assume that the protocol should be deployed for the login access to the
online banking service of some bank U F'B (for User Friendly Bank). If some ¢/ who
does not have any online banking account at U F'B receives phishing emails with the
invitation to access some fake website of U F'B there will be no damage even if U ac-
cepts. However, after U subscribes for the corresponding online service of U F'B and
receives the user guide that usually includes information on the connection establish-
ment, it is likely that ¢/, especially if U/ is technology-unaware and has no experience in
online banking, will follow the guidelines, at least for the very first session in which the
required security association through the upload of w will be established. Thus, for a
successful attack the phishing email should be received by ¢/ in the time period between
the subscription and the registration on the site.

Assumptions on the Adversary. The PPT adversary 4 controls all communication
between the protocol parties. This implies:

- A controls the domain name resolution. This also allows .4 to mount phishing
and pharming attacks. Due to the SLSO policy we assume that the adversary can
establish security association (S', pks , cky’) with the client (U, B) for any server
identity S’ as long as it can prove the knowledge of the corresponding private key



12 S. Gajek, M. Manulis, and J. Schwenk

sks 1 Upon sending forged domain resolution responses, the adversary obtains
access to the parts of the browser’s DOM model which are not protected by the
policy. Note also that since the human recognizable authenticator is not cached, it
can not be accessed using the DOM model.

- A canissue public keys which B accepts. There is no trusted third party in the sense
of a trusted CA. Hence, a certified public key in a X.509 server certificate is treated
as a public key that can be identified by a unique identifier (i.e., hash value of the
public key).

- A is unable to corrupt B. Note that in this model we do not deal with malward]
attacks against B and S, therefore, do not consider the case where A reveals the
ephemeral and long-lived secrets stored inside . In particular this implies that
the adversary is not able to access the secure cookie cky unless its request is suc-
cessfully verified by B based on the SLSO policy. By the same token we do not
consider attacks resulting from the physical access of the adversary to the user’s
digital device running B.

- A is unable to corrupt S. Note also that in this model we do not deal with malware
attacks against the server. This means that the adversary is excluded from revealing
the ephemeral and long-lived secrets stored inside S.

Adversarial Queries. A can participate in the actual protocol execution via the fol-
lowing queries:

- Execute(C, S): A eavesdrops the execution of the new protocol session between C
and S and receives its transcript.

- Invoke(C, S): U starts the protocol execution with the new instance of S using the
associated instance of browser 53 and .4 obtains the first protocol message returned
by B (which is usually generated on some input received from U/, e.g., the entered
URL).

- Send(P, m): In an active attack A can send a message to some (instance) of P €
{U, B, S} whereby messages addressed to U are implicitly handled as messages
addressed to the associated browser B with the subsequent execution of render(m,
V) and visualization of its output to . A receives the response which P generates
after having processed m according to the specification of 17 (or an empty string if
m is unexpected).

- RevealState(B): A receives information stored within the browser’s state ¥ and
which is not protected via the SLSO policy. Additionally, it returns (S, pks), i.e., A
may learn which servers have security associations with the client, without learning
their secure cookies.

! Assuming that the initialization process is done during the trusted TLS key transport session
between (U, B) and S, the adversary must be able to decrypt messages encrypted with pks .
Under the assumption that the deployed asymmetric encryption scheme is sufficiently secure
the decryption operation can be seen as the required proof of possession.

% Consideration of malware attacks and augmentation of the proposed model with Trusted Com-
puting functionalities to model resistance against malware attacks is surely an interesting as-
pect for the future work on security of browser-based protocols.



Enforcing User-Aware Browser-Based Mutual Authentication 13

- SetCKY(B, (8, pks , cky')): With this query (which is new in comparison to [L1])
A sets up a new security association with (U, ) on behalf of some server S’ as
long as pks # pks (note that due to our assumptions that A controls the domain
name resolution and can issue certificates that 3 will accept we explicitly allow
S’ to be equal to S.) A receives the HPA w’ € W chosen by U such that it is
distinguishable from w, i.e., w’ & W* according to the Definition

Correctness and Browser-Based Mutual Authentication. The following definition
specifies the correctness requirement for BBMA protocols.

Definition 2 (Correctness). A BBMA protocol II is correct if each Execute(C,S)
query results in two instances, [C, sidc] and [S, sids] which are partnered (sidc =
sids) and accept prior to termination.

In the following we define the main security requirement of browser-based mutual au-
thentication between participating I/ and S with B acting as a mediator of the commu-
nication.

Definition 3 (Browser-Based Mutual Authentication). Let IT be a correct protocol
according to DefinitionDland Game Y™ (A, k) the interaction between the instances of
C = (U, B) and S with a PPT adversary A who is allowed to query Execute, Invoke,
Send, RevealState, and SetCKY. We say that A wins if at some point during the inter-
action:

1. Aninstance [C, sidc] accepts but there is no partnered instance [S, sidg), or
2. Aninstance [S, sids| accepts but there is no partnered instance [C, sidc).

The maximum probability of this event (over all adversaries running in time k) is de-
noted Succlt™* (A, k) = | Pr[A wins in Ga mel2™ (A, k)]|. We say that IT provides
browser-based mutual authentication if this probability is a negligible function of k.

The first requirement ensures that I/ authenticates to the matching server S. Since the
acceptance of [C, sid¢] with C = (U, B) is implied by the acceptance of U the second
requirement ensures that S authenticates to the matching user /. In both cases I3 plays
the role of the mediator of the communication and can be queried by .A4; thus, not
mentioning B in the above definition would be incorrect from the formal point of view.

4 User-Aware BBMA over TLS with the SLSO Policy

In this section we specify the BBMA-SLSO protocol which can be seen as the modifi-
cation of the BBMA protocol from towards cookie-based authentication and SLSO
policy.

4.1 Building Blocks of BBMA-SLS0

TLS Protocol. The main pillar of BBMA-SLSO0 is the server authenticated key trans-
port, where the server’s identity is a cryptographic value independent from the Internet
infrastructure. This complies with RSA-based ciphersuites as specified in [[I]]. These
suites are preferentially negotiated between standard browsers and servers.

3 Thus, we assume that users do not use same HPAs with different servers.



14 S. Gajek, M. Manulis, and J. Schwenk

Cryptographic Primitives. BBMA-SLSO uses (well-known) cryptographic primitives
that are deployed in the cryptographic key transport suites of the TLS protocol, namely:

— A pseudo-random function PRF : {0,1}73(%) x {0,1}* — {0,1}*. Note that TLS
defines PRF with data expansion s.t. it can be used to obtain outputs of a vari-
able length which becomes useful for the key extraction phase. We refer to [8]]
for the proof that the key extraction function in TLS is indeed pseudo-random. By
Advf,’g (k) we denote the maximum advantage over all PPT adversaries (running
within security parameter x) in distinguishing the outputs of PRF from those of a
random function better than by a random guess.

— A symmetric encryption scheme which provides indistinguishability under chosen
plaintext attacks (IND-CPA). The symmetric encryption operation is denoted Enc
and the corresponding decryption operation Dec. By Advz%i_cfgic) (1) we denote
the maximum advantage over all PPT adversaries (running within security param-
eter ) in breaking the IND-CPA property of (Enc, Dec) better than by a random
guess;

— An IND-CPA secure asymmetric encryption scheme whose encryption operation is
denoted £ and the corresponding decryption operation D. By Advzzg)c” “(k) we
denote the maximum advantage over all PPT adversaries (running within security
parameter k) in breaking the IND-CPA property of (£, D) better than by a random
guess; Note that the general case of RSA-OAEP encryption which is used in the
TLS key transport mode has been proven in [29]] based on the assumptions of the
Random Oracle Model [4] to satisfy indistinguishability under adaptive chosen ci-
phertext attacks (IND-CCA?2), which is stronger than IND-CPA. Also [18]] provides
such proof which is tailored specifically to the construction used in the TLS proto-
col. Still, we emphasize that for the security of BBMA-SLSO the weaker requirement
of IND-CPA which is implied by IND-CCA?2 is fully sufficient.

— A cryptographic collision-resistant hash function Hash : {0,1}* — {0, 1}P+(%) By
Succi! (1) we denote the maximum success probability over all PPT adversaries
(running within security parameter ) in finding a collision, i.e., a pair (m,m’) €
{0,1}* x {0,1}* s.t. Hash(m) = Hash(m/).

— A digital signature scheme which provides existential unforgeability under chosen
message attacks (EUF-CMA). The signing operation is denoted Sig and the corre-
sponding verification operation Ver. By Succfg{g_{}ygé (1) we denote the maximum
success probability over all PPT adversaries (runfling within security parameter &)
given access to the signing oracle in finding a forgery;

— The well-known message authentication code function HMAC which is believed
to satisfy weak unforgeability under chosen message attacks (WUF-CMA) [2.
Here we remark that security of HMAC is not relevant for the security analysis of
BBMA-SLS0. A detailed look on the protocol from the formal perspective shows
that using HMAC is redundant since all HMAC values are encrypted prior to the trans-
mission. Nevertheless, we do not omit protocol parts where HMAC is computed from
our description since this is what happens in the today’s execution of TLS.

SLSO Policy in BBMA-SLS0. During the initialization procedure which is assumed to
be trusted server S establishes a security association with the client (I, B) using the



Enforcing User-Aware Browser-Based Mutual Authentication 15

TLS protocol in key transport with its (certified) public key. For the successful verifi-
cation of the SLSO policy in subsequent connections B stores pks and the http cookie
provided by S. This cookie contains information which allows S to authenticate /. On
each connection with S, B has to make a decision whether to send cky or not. Follow-
ing the definition of the SLSO policy in [19], B decides by comparing the public key
used by the candidate server during that particular TLS handshake to the stored pks. If
the keys are equal then cky is transmitted, otherwise not. However, since the browser
is a very general piece of software that must be able to communicate with any http
server on the Internet, we design BBMA-SLSO in such a way that it does not abort the
communication if this verification fails; otherwise this would pose a lot of compatibil-
ity problems and could be seen as an impractical solution. Instead, if the verification
fails, the browser will simply continue with the protocol, by sending the empty cookie
which we consider as some constant publicly known value { € {0, 1}”2(“). In this
way the decision on whether the communication should be continued or not is miti-
gated to S, which will normally abort the communication since otherwise / remains
unauthenticated.

4.2 Protocol Description

In the following we describe the execution of the BBMA-SLSO protocol specified in
Figure [Tl Let [1, 5, I3 and I denote the publicly known labels specified in TLS for
the instantiation of PRF. (We write in parenthesis the corresponding standard TLS mes-
sages.)

Initiate the Protocol. The user U/ initiates the protocol by communicating server’s
URL to the own browser B. Upon resolving the corresponding address B chooses his
own nonce r¢ of length ps(k) at random and forwards it to S (ClientHello). In
response S chooses own random nonce rs and a TLS session identifier sid of length
ps(x) and appends it to the own certificate certs (ServerHello). We stress that sid
chosen by § is not the session identifier sids used in our security model but a value
specified in TLS.

Negotiate Key Material. B chooses a pre-master secret k,, of length p3(r) at random
and sends it to S encrypted with the received public key pks (ClientKeyExchange)
taken from the servers certificate C'erts. The pre-master secret k), is used to derive the
master secret k,, through a pseudo-random function PRF on input (I1, re—rs) with &,
as the secret seed. This key derivation is performed based on the standard TLS pseudo-
random function PRF (see [l1, Sect. 5]). The master secret is then used as a secret seed
for the instantiation of the pseudo-random function PRF on input (2, rc—s) to derive
the session keys k1 |ko used to encrypt and authenticate session messages exchanged be-
tween B and S. TLS specifies the generation of six session keys: A symmetric encryp-
tion key, a MAC key, and an IV for block ciphers only (either for client and server). For
simplicity, we denote k; as the encryption key and k- as the authentication key which
are the same for 3 and S. Here we remark that as shown later in our security analysis
the use of different keys for encryption and authentication in TLS is redundant from the
formal point of view. The reason is that each computed HMAC value is encrypted using



16 S. Gajek, M. Manulis, and J. Schwenk

Ky prior to its transmission over the network. Since the computed value k1 |k2 can be
seen as a single output of PRF the security of the applied encryption scheme is already
sufficient to achieve symmetric authentication of the encrypted message.

Session Key Confirmation. 5 confirms the session key generation, i.e., F¢ is the first
message that is authenticated via HMAC computed with k2 and encrypted via the sym-
metric encryption scheme computed with k1. F¢ is computed as output of PRF on input
(I3, h1) with k,, as the secret seed; whereby h; denotes the hash value computed over
all messages previously processed by B (ClientFinished). Further, S generates
k., and derives the session keys (k1, k2) in a similar way. S uses the own session keys
(K1, k2) to ensure that it communicates with B through the verification of F¢. If the
verification fails, S aborts the protocol. Otherwise, it confirms the negotiated session
parameters, using PRF on input (I4, ho) with k,, as secret seed; whereby ho denotes the
hash value over the received messages. The output of PRF is first authenticated via HMAC
computed with k5 and then encrypted via the symmetric encryption scheme computed
with k; (ServerFinished). The client C checks this message analogously.

Mutual Authentication between Browser and Server. The browser B now exploits
the fact that the server S has been authenticated in the previous step by showing that
he knows the private key associated with pks. This value is used as a key to the cre-
dential store of the browser, and the corresponding cookie cky is retrieved and sent to
the server, encrypted with k; together with the attached message authentication code
computed using ko.

Human Perceptible Server Authentication. The server selects the HPA w associated
with cky, and sends it (encrypted with k; together with the attached message authen-
tication code computed using ko) for display to the browser. We call the message in a
high-level description the HumanAuth message. B communicates the decrypted au-
thenticator to U/ through execution of the render function which takes as input the
authenticator w and state ¥ and outputs the visualization of w named w*. The ab-
stract human perception function recognize is used to model the ability of I/ to decide
whether the authenticator w* matches the original authenticator w which is shared with
S after the initialization stage.

Before we continue with the security analysis we reemphasize the triangular model
of authentication in BBMA-SLS0. When verifying Fs, B knows the identity of S. B re-
solves pks to look up for the corresponding cookie cky. If no matching triple (S,pks,
cky) exists, B sends an empty cookie ¢ and continues with the protocol (it is now in
responsibility of the server to abort); otherwise, I3 continues by sending cky confiden-
tially to S.

However, TLS in server authentication mode does not prevent I/ from contacting to
a rogue server in order to disclose sensitive information. When verifying w* through
the execution of recognize, U is sure to be communicating to S through 5, since S
is the only owner of w apart from U. Upon this stage, the protocol ensures that S is
authenticated to U/.



Enforcing User-Aware Browser-Based Mutual Authentication 17

Client (U, B) Server S
{LLy :=w, LLg := (S, pks, cky)} {LLs := (cky, w, sks, certs)}
get URL of S from U
rc €, {0,1}75(%)

A:=rc

rs,sid €, {0,1}75(%)
sids = rc|rs
B := rg|sid|certs

sidc = rc|rs

kp €, {0,1}73(%)

ko = PRFy,, (11, sidc)
[validate certs]

get pkg from certs

C = &y (hp)

k1 ‘kz := PRFg,, (12, sidc)

hy := Hash(A|B|C)

Fc := PRFy,,, (I3, h1)

D = Enck‘l (FC ‘HMAC;CZ (Fc))

c|D

kp := Dskg <)

ko = PRFk-p (11, Sids)
k1|ko := PRFy,, (l2, sids)
h1 := Hash(A|B|C)
Fc|pp := Decy, (D)

if Fo # PRFy,, (I3, h1)

or /ip 7 HMAC, (Fc)

then ABORT else

ho := Hash(A|B|C|Fc)
Fs := PRFy,, (14, h2)

E := Ency, (Fs |Hl"[ACk2 (Fs))

Fs|up := Decy, (E)

ho := Hash(A|B|C|Fc)

if F's # PRFy,, (l4, h2)

or pup # HMACk, (Fs)

then ABORT else

[SLSO policy test]

if pkg = pks

then F' := Ency, (cky, HMACk, (cky))
else F' := Ency, (¢, HMACk, (¢))

cky |pr := Decy, (F)

if pp 7 HMACy, (cky )

or cky # cky

then ABORT else

G := Ency, (w|HMAC, (w))
ACCEPT

wlpg = Decy, (G)

if pe # HMACk, (w)

then ABORT else

visualize w := render(w, ¥) toU

Fig. 1. Sketch of the BBMA-SLSO protocol between (U, B) and S based on the SLSO policy of 5.
Boxed messages denote the standard TLS handshake. ¢/ accepts in the protocol execution only if
U.recognize(w*,w) = 1.



18 S. Gajek, M. Manulis, and J. Schwenk

4.3 Security Analysis

In the following we argue on the security of the proposed BBMA-SLSO protocol. We
recall that the goal of the protocol is to provide mutual authentication between { and S
communicating via B according to Definition 3l

Theorem 1 (BBMA-Security). Let q denote the total number of executed protocol ses-
sions during the interaction with an adversary A participating in Gamepam® o1 <o (A, k).
If PRF is pseudo-random, Hash is collision-resistant, (Enc, Dec) and (€, D) are IND-
CPA secure and W* is sufficiently small, then BBMA-SLSO provides browser-based mu-
tual authentication in the sense of Definition[3l and

S bbma < ‘W*‘ 3q2 q2 Ad ind—cpa
UCCpps~s10 (1) < (W] + ops (k) * ops (k) + 2:02(&) Tq Vie,p) (k) +
ind—cpa T co
AgAdv (3 B (k) + dgAdvir] () + 2qSuccige (k).

Proof. For space limitations the proof appears in the full version of this paper. Its main
idea is to simulate the execution of the protocol based on the event InjPK which occurs
if A injects some public key certificate which does not contain the expected public key
pks. In this case security of BBMA-SLSO relies on the ability of ¢/ to distinguish some
HPA w* chosen by .A. However, if InjPK does not occur then the security of BBMA-SLSO
relies on the execution of the TLS handshake and the browser’s SLSO policy.

Remark 1. Although not stated in Theorem [0 explicitly, the security proof of
BBMA-SLSO based on the current TLS standard is valid in the Random Oracle Model
(ROM) [4]]. The reason is that the specification of TLS prescribes the use of the RSA
encryption according to PKCS#1 (a.k.a. RSA-OAEP) which in turn is known to provide
IND-CPA security in ROM (see and [18] for the proof of the general construction
and the TLS-specific construction, respectively). On the other hand, Theorem[Ilassumes
(€, D) to be IND-CPA secure (independent of ROM). Hence, whether BBMA-SLSO is se-
cure under standard assumptions or not heavily relies on the assumptions underlying the
security of (£, D).

Remark 2. Another look on Theorem/[Tlreveals that the success probability of the adver-
sary strongly depends on the size of W*, i.e., the set of authenticators that are perfectly
human-indistinguishable from the HPA w used in the BBMA-SLS0 protocol. In fact the
protocol is secure if the size of W* is sufficiently small such that the factor ¢|W*|/|W)|
can be seen as negligible. This happens in case that the chosen HPA is good and is
precisely what makes BBMA-SLSO user-aware.

Remark 3. As already mentioned during the description of BBMA-SLSO the HMAC con-
struction used in the standard specification of the TLS protocol, formally, does not play
any role for the security of the protocol. This is not surprisingly since every output
of HMAC is encrypted using session key k1 before being sent over the network. Since
k1|ko is treated as a single output of PRF the separation into k7 and ko can be seen as
redundant from the theoretical point of view. Note also that Krawczyk has proved the
MAC-then-encrypt construction as secure in [22]]. Though he mentions some problems
in the general construction he shows that they do not apply to TLS.



Enforcing User-Aware Browser-Based Mutual Authentication 19

5 Conclusion

Authenticating the user on the Web is an essential primitive and target to various attacks.
We have introduced and analyzed a cookie-based authentication protocol BBMA-SLSO
that makes very weak assumptions on user’s skills and requires little modifications of
the browser security model to enforce the SLSO policy in order to be provably secure.
The protocol is specifically designed for security-unaware users who wish to identify
Web sites through some easy-to-recognize indicators. The main assumption underlying
the protocol security is that good HPAs w exist for which the size of their perfectly
human-indistinguishable set YJ* remains sufficiently small (for most of the users). It
remains an open question, to find such HPAs. We have conjectured that good HPAs
might be found among images, audio and video sequences. For example, a personal
image taken during own summer vacation and extended with some additional personal
text using graphic editor might be better recognizable than an image without such text.
However, extensive usability experiments in this interesting research direction have still
to be conducted. Nevertheless, the presented protocol is another step towards bridging
the gap between protocols that are provably secure, interfaced to users who are prone
to errors, and implementable within the design constraints of standard browsers.

References

1. Allen, C., Dierks, T.: The TLS Protocol — Version 1.1. Internet proposed standard RFC 4346
(2006)

2. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among Notions and
Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000.
LNCS, vol. 1976, pp. 531-545. Springer, Heidelberg (2000)

3. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 232-249. Springer, Heidelberg (1994)

4. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. In: ACM CCS 1993, pp. 62-73. ACM Press, New York (1993)

5. Chiasson, S., van Oorschot, P.C., Biddle, R.: Graphical Password Authentication Using Cued
Click Points. In: Biskup, J., Lépez, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 359-374.
Springer, Heidelberg (2007)

6. Dhamija, R., Tygar, J.D.: The Battle against Phishing: Dynamic Security Skins. In: SOUPS
2005, pp. 77-88. ACM Press, New York (2005)

7. Dhamija, R., Tygar, J.D., Hearst, M.A.: Why Phishing Works? In: CHI 2006, pp. 581-590.
ACM Press, New York (2006)

8. Fouque, P.-A., Pointcheval, D., Zimmer, S.: HMAC is a Randomness Extractor and Applica-
tions to TLS. In: ACM ASIACCS 2008, pp. 21-32. ACM Press, New York (2008)

9. Freier, A.O., Kariton, P., Kocher, P.C.: The SSL Protocol: Version 3.0. Internet draft,
Netscape Communications (1996)

10. Gajek, S., Schwenk, S.: Revising the Mature Browser Security Model. Technical Report,
HGI TR-2008-004 (2008)

11. Gajek, S., Manulis, M., Sadeghi, A.-R., Schwenk, J.: Provably Secure Browser-Based User-
Aware Mutual Authentication over TLS. In: ACM ASIACCS 2008, pp. 300-311. ACM
Press, New York (2008)

12. Grof, T.: Security Analysis of the SAML Single Sign-on Browser/Artifact Profile. In: AC-
SAC 2003, pp. 298-307. IEEE CS, Los Alamitos (2003)



20

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

S. Gajek, M. Manulis, and J. Schwenk

GroB3, T., Pfitzmann, B., Sadeghi, A.-R.: Browser Model for Security Analysis of Browser-
Based Protocols. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS
2005. LNCS, vol. 3679, pp. 489-508. Springer, Heidelberg (2005)

GroB, T., Pfitzmann, B., Sadeghi, A.-R.: Proving a WS-Federation Passive Requestor Profile
with a Browser Model. In: SWS 2005, pp. 54-64. ACM Press, New York (2005)

Jackson, C., Barth, A., Bortz, A., Shao, W., Boneh, D.: Protecting Browsers from DNS Re-
binding Attacks. In: CCS 2007, pp. 421-431. ACM Press, New York (2007)

Jackson, C., Simon, D.R., Tan, D.S., Barth, A.: An Evaluation of Extended Validation and
Picture-in-Picture Phishing Attacks. In: FC 2007/USEC 2007. LNCS, vol. 4886, pp. 281—
293. Springer, Heidelberg (2008)

Jakobsson, M., Myers, S.: Delayed Password Disclosure. IJACT 1(1), 47-59 (2008)
Jonsson, J., Kaliski, B.S.: On the Security of RSA Encryption in TLS. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 127-142. Springer, Heidelberg (2002)

Karlof, C., Shankar, U., Tygar, J.D., Wagner, D.: Dynamic Pharming Attacks and Locked
Same-Origin Policies for Web Browsers. In: ACM CCS 2007, pp. 58-71. ACM Press, New
York (2007)

Kormann, D., Rubin, A.: Risks of the Passport Single SignOn Protocol. Computer Net-
works 33(1-6), 51-58 (2000)

Microsoft Corporation. Mitigating Cross-Site Scripting with HTTP-only Cookies (2008),
http://msdn2.microsoft.com/en-us/library/ms533046.aspx
Krawczyk, H.: The Order of Encryption and Authentication for Protecting Communications
(or: How Secure Is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 310-331.
Springer, Heidelberg (2001)

Mason, C., Baek, K.-H., Smith, S.: WSKE: Web Server Key Enabled Cookies. In: FC
2007/USEC 2007, pp. 294-306. Springer, Heidelberg (2008)

Mitchell, J.C., Shmatikov, V., Stern, U.: Finite-State Analysis of SSL 3.0. In: USENIX Se-
curity Symp., pp. 201-216 (1998)

Paulson, L.C.: Inductive Analysis of the Internet protocol TLS. ACM Trans. on Comp. and
Syst. Sec. (3), 332-351 (1999)

Pfitzmann, B., Waidner, M.: A Model for Asynchronous Reactive Systems and its Applica-
tion to Secure Message Transmission. In: IEEE S&P 2001, pp. 184-200. IEEE Computer
Society Press, Los Alamitos (2001)

Schechter, S.E., Dhamija, R., Ozment, A., Fischer, I.: The Emperor’s New Security Indica-
tors. In: IEEE S&P 2007, pp. 51-65. IEEE Computer Society Press, Los Alamitos (2007)
Schneier, B., Wagner, D.: Analysis of the SSL 3.0 protocol. In: USENIX Workshop on Elec-
tronic Commerce (1996)

Shoup, V.: OAEP Reconsidered. Journal of Cryptology 15(4), 223-249 (2002)

Soghoian, C., Jakobsson, M.: A Deceit-Augmented Ma. In: The Middle Attack Against Bank
of America’s SiteKey Service (2007), http://paranoia.dubfire.net/
2007/04/deceit-augmented-man-in-middle-attack.html

Suo, X., Zhu, Y., Owen, G.S.: Graphical Passwords: A Survey. In: Ann. Comp. Sec. Applic.
Conf. IEEE Computer Society Press, Los Alamitos (2005)

W3C. Document Object Model (DOM) (2005), http://www.w3 .org/DOM


http://msdn2.microsoft.com/en-us/library/ms533046.aspx
http://paranoia.dubfire.net/2007/04/deceit-augmented-man-in-middle-attack.html
http://paranoia.dubfire.net/2007/04/deceit-augmented-man-in-middle-attack.html
http://www.w3.org/DOM

Secure Biometric Authentication
with Improved Accuracy

Manuel Barbosa?, Thierry Brouard!,
Stéphane Cauchie®3, and Simao Melo de Sousa?

! Laboratoire Informatique de ’Université Francois Rabelais de Tours
stephane.cauchieQuniv-tours.fr
2 Departamento de Informética, Universidade do Minho
mbb@di.uminho.pt
3 Departamento de Informética, Universidade da Beira Interior
desousa@ubi.pt

Abstract. We propose a new hybrid protocol for cryptographically
secure biometric authentication. The main advantages of the proposed
protocol over previous solutions can be summarised as follows: (1) poten-
tial for much better accuracy using different types of biometric signals,
including behavioural ones; and (2) improved user privacy, since user
identities are not transmitted at any point in the protocol execution.
The new protocol takes advantage of state-of-the-art identification clas-
sifiers, which provide not only better accuracy, but also the possibility
to perform authentication without knowing who the user claims to be.
Cryptographic security is based on the Paillier public key encryption
scheme.

Keywords: Secure Biometric Authentication, Cryptography, Classifier.

1 Introduction

Biometric techniques endow a very appealing property to authentication mech-
anisms : the user is the key, meaning there is no need to securely store secret
identification data. Presently, most applications of biometric authentication con-
sist of closed self-contained systems, where all the stages in the authentication
process and usually all static biometric profile information underlying it, are
executed and stored in a controlled and trusted environment. This paper ad-
dresses the problem of implementing distributed biometric authentication sys-
tems, where data acquisition and feature recognition are performed by separate
sub-systems, which communicate over an insecure channel. This type of sce-
nario may occur, for instance, if one intends to use biometric authentication to
access privileged resources over the Internet. Distributed biometric authentica-
tion requires hybrid protocols integrating cryptographic techniques and pattern
recognition tools. Related work in this area has produced valid solutions from
a cryptographic security point of view. However, these protocols can be seen
as rudimentary from a pattern-recognition point of view. In fact, regardless of

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 21{36] 2008.
© Springer-Verlag Berlin Heidelberg 2008



22 M. Barbosa et al.

the security guarantees that so-called fuzzy cryptosystems provide, they present
great limitations on the accuracy that can be achieved, when compared to purely
biometric solutions resorting to more powerful pattern recognition techniques.

In this paper, we propose a solution which overcomes this accuracy limitation.
Our contribution is a protocol offering the accuracy of state-of-the-art pattern
recognition classifiers and strong cryptographic security. To achieve our goals
we follow an approach to hybrid authentication protocols proposed by Bringer
et al. [I]. In our solution we adapt and extend this approach to use a more
accurate and stable set of models, or classifiers, which are widely used in the
pattern recognition community in settings where cryptographic security aspects
are not considered. Interestingly, the characteristics of these classifiers allow us,
not only to achieve better accuracy, but also to improve the degree of privacy
provided by the authentication system. This is possible because we move away
from authentication classifiers and take advantage of an identification classifier.
An identification classifier does not need to know who the user claims to be,
in order to determine if she belongs to the set of valid users in the system
and determine her user identifier. An additional contribution of this paper is
to formalise the security models for the type of protocol introduced by Bringer
et al. [I]. We show that the original protocol is actually insecure and under
the original security model, although it can be easily fixed. We also extend the
security model to account for eavesdroppers external to the system, and provide
a security argument that our solution is secure in this extended security model.

The remaining of the paper is organized as follows. We first summarise related
work in Section 2] and we introduce our notational framework for distributed
biometric authentication systems in Section [Bl We propose our secure biometric
authentication protocol and security models in Sectiondl In Section [ we present
a concrete implementation based on the Support Vector Machine classifier and
the Paillier public key encryption scheme, including the corresponding security
analysis. Finally, we discuss our contributions in Section [Gl

2 Related Work

Fuzzy extractors are a solution to secure biometric authentication put forward
by the cryptographic community [2]. Here, the pattern recognition component
is based on error correction. A fuzzy extractor is defined by two algorithms. The
generation algorithm takes a user’s biometric data w and derives secret random-
ness 7. To allow for robustness in reconstructing r, the generation algorithm
also produces public data pub. On its own, pub reveals no useful information
about the biometric data or the secret randomness. The reconstruction algo-
rithm permits recovering r given a su ciently close measurement w’ and pub.
To use a fuzzy extractor for secure remote authentication, the server would store
(pub, r) during the enrolment stage. When the user wants to authenticate, the
server provides the corresponding public information pub, so that it is possible
reconstruct r from a fresh reading w’. The user is authenticated once the server
confirms that r has been correctly reconstructed; for example, r can be used to
derive a secret key.



Secure Biometric Authentication with Improved Accuracy 23

A problem with this solution is that security is only guaranteed against eaves-
droppers: the server must be authenticated and the public information transmit-
ted reliably. Additionally, Boyen [3] later showed that, even in this scenario, it
is not possible to guarantee that security is preserved if the same fuzzy extrac-
tor is used to authenticate a user with multiple servers. An adversary might
put together public information and secrets leaked from some of the servers to
impersonate the user in another server. The same author proposed improved
security models and constructions to solve this problem. Boyen et al. [4] later
addressed a different problem which arises when the channel to the server is not
authenticated and an active adversary can change the value of pub. The original
fuzzy extractor definition and security model does not ensure that such an adver-
sary is unable to persuade the user that it is the legitimate server. The authors
propose a robust fuzzy extractor that permits achieving mutual authentication
over an insecure channel.

The protocol proposed by Bringer et al. [I] uses the Goldwasser-Micali encryp-
tion scheme, taking advantage of its homomorphic properties. The protocol
performs biometric classification using the Hamming distance between fresh bio-
metric readings and stored biometric profiles. User privacy protection is ensured
by hiding the association between biometric data and user identities. For this to
be possible one must distribute the server-side functionality: an authentication
service knows the user’s claimed identity and wants to verify it, a database service
stores user biometric data in such a way that it cannot possibly determine to whom
it belongs, and a matching service ensures that it is possible to authenticate users
without making an association between their identity and their biometric profile.
These servers are assumed to be honest-but-curious and, in particular, they are
assumed to follow the protocol and not to collude to break its security.

Authentication Accuracy. In this paper we propose a protocol which im-
proves authentication accuracy while ensuring strong cryptographic security. It
is important to support our claims from a pattern recognition accuracy perspec-
tive. In the following table we present experimental results found in literature,
to compare the accuracy (Equal Error Rateﬂ) of advanced pattern recognition
classifiers (Classifier Error) with that of those adopted in existing hybrid au-
thentication protocols, or so called fuzzy cryptosystems (Fuzzy Error).

Biometric Data References Bit Length Fuzzy Error Classifier Error

Key stroke [51/16] 12 48% 1.8%
Voice /8] 46 20% 5%
Tactim 8] 16 15% 1%
Signature [10] /[T 40 28% 5%
Face [12]/[13] 120 5% 0.6%
Fingerprint [14]/[15] 128 17% 8%
Iris [16] 140 5% 5%

! Percentage of recognition errors when the biometric system is adjusted in order to
obtain the same false positive and false negative rates.



24 M. Barbosa et al.

Results are presented for both physiological (iris, face and fingerprint) and be-
havioural (key stroke, voice, tactim, signature) biometric data. From the results
in the table, one can conclude that advanced classifiers consistently outperform
simple distance-based (fuzzy) classification techniques. However, this is most im-
portant for behavioural biometry, where fuzzy techniques present significantly
worse accuracy rates. An empirical explanation for this shortcoming is that fuzzy
pattern recognition components can deal with acquisition variability but not with
the user variability, which plays a major role in behavioral biometry. From a pat-
tern recognition point of view, advanced classifiers are built on the assumption
that two users may produce close measurements. Classification focuses on the
boundaries between users, and some of them like the Support Vector Machine
(SVM) classifier [I7], can optimally minimize the error risk.

3 Biometric Systems

In this section we present a precise definition of a pattern recognition system for
biometric authentication and identification, which we will later use in the defini-
tion of our hybrid authentication protocol. We take a particular type of biomet-
ric parameter b € B, where B denotes the complete set of biometric parameters.
The basic tool associated with b is an adequate sensor, denoted by the application
pp © U — V where U is a set representing the universe of possible users and V
represents a sensor-dependent space of biometric features (usually an n-tuple of
real numbers). We will refer to the output of the sensor as a feature.

Consider a set of users U C U. The goal is to recover the pre-image of a
feature py(u), for v € U, using prior knowledge of a users profile wj; € W,
where W is a sensor-dependent set of possible users profiles, and an inversion
function called a classifier. Usually a classifier is a two-stage procedure: (1) there
is a pre-decision processing stage cl, which takes a feature and pre-established
profile information and returns classification data such as confidence intervals,
distances, etc.; and (2) a decision stage D which makes the final decision using
an appropriate criterion, for example a pre-defined threshold, majority rules, etc.
Ideally, one expects that classification satisfies

Vu € U, D(cl(py(u), wry))

U u
Yu € U/U, D(cl(pp(u), wy;)) = L

At this stage a distinction must be made between biometric authentication and
biometric identification systems. A system satisfying the previous predicate (or
a close enough relaxation that is good enough for practical applications) for a
set of users U such that |U| > 1 is called a biometric identification system.
Systems satisfying these conditions for only a single user are called biometric

2 In practice raw sensor outputs must be pre-processed using feature extraction before
classification can be performed. To be precise, we could denote the acquisition of the
raw signal by a non deterministic application ap, and feature extraction by a deter-
ministic application f. We would then have p, = ap o f.



Secure Biometric Authentication with Improved Accuracy 25

authentication systems. Note that it is possible to use a biometric authentication
system for identification, e.g. by trying all possible users in a database. However,
depending on the biometric parameter and sensor technology, the accuracy of
such a system may suffer from overlaps in user profiles. From the point of view of
cryptographic protocols, this distinction is also important. In fact, all solutions
we have encountered in literature assume that we are dealing with a biometric
authentication system, which means that the user’s claimed identity must be
transmitted over the network. If we move to a biometric identification system,
the authentication protocol can be implemented by transmitting only the user’s
biometric data. We will return to this issue in the next section.

Setting-up and operating a biometric authentication system involves two sep-
arate procedures: a set-up stage called Enrolment, and the actual operation stage
called Generalisation. We now describe these in more detail.

Enrolment. This is usually split into two steps: (1) the acquisition and feature
extraction step, and (2) the learning step. The first step constructs a reference
set of feature values py(u) (Yu € U), called a training set. The learning step
uses the training set to construct the users’ profile wy;.

Generalisation. This is also split in two steps: (1) the acquisition and feature
extraction step, and (2) the decision step. The former consists of collecting
a feature v = p,(unknown) for an unknown user. The decision step uses the
classifier ¢l and profile data w* to determine which user is unknown. More
precisely the decision check is {u € U, L} « D(cl(v, wy;)).

In this context, we define a pattern recognition system for biometric identifica-
tion I" as follows.

Definition 1. A pattern recognition system for biometric identification I" is a
5-tuple < b,U, py, D o cl, wf; >, where the tuple elements are as described above.

Remark. We stress that the concept of profile wy; usually adopted within the
pattern recognition community constitutes, in the context of our work, a security-
critical parameter. This is because it usually reveals private user information such
as a user-specific region in a sensor-dependent parameter space W. In particular,
if this information is leaked, anyone can determine whether a feature belongs to a
particular user. The vulnerability detected in the protocol proposed by Bringer et
al. is based on the fact that an attacker may recover a user profile from a protocol
trace. This means that it can perform classification itself, even thought it would
never be able to break the encryption scheme protecting the user features used
in an authentication run.

4 Proposed Authentication Protocol

In this section we propose a new authentication protocol based on the approach
in [I]. We take advantage of a biometric identification scheme implemented us-
ing a more powerful pattern recognition technique in the form of a multi-class
classifier to achieve improved accuracy and security properties.



26

M. Barbosa et al.

4.1 Participants and Their Roles

The following diagram depicts the data flow between the different participants

in

our protocol.

4: sclass

The server-side functionality is partitioned in three components to ensure that

no single entity can associate a user’s identity with the biometric data being
collected during authentication. The participants in the authentication protocol
are the following:

1.

The Sensor (S) is the only client-side component. Following the approach in
[1], we assume that the sensor is capable of capturing the user’s biometric
data, extracting it into a binary string, and performing cryptographic oper-
ations such as public key encryption. We also assume a liveness link between
the sensor and the server-side components, to provide confidence that the
biometric data received on the server-side is from a present living person.
The Authentication Service (AS) is responsible for communicating with the
user who wants to authenticate and organizing the entire server-side proce-
dure. In a successful authentication the AS will obviously learn the user’s
identity, which means that it should learn nothing about the biometric data
being submitted.

The Database Server (DB) securely stores the users’ profile (wj;) and its
job is to execute the pre-decision part of classification (cl). Since the DB is
aware of privileged biometric data, it should learn nothing about the user’s
identity, or even be able to correlate or trace authentication runs from a
given (unknown) user.

. The Verification Server (V.S) completes the authentication process by taking

the output produced by the DB server and computing the final decision (D)
step. This implies that the V'S possesses privileged information that allows
it to make a final decision, and again that it should not be able to learn
anything about the user’s real identity, or even be able to correlate or trace
authentication runs from a given (unknown) user.

4.2 Enrolment and System Set-Up

In

this section we describe the procedures that must be carried out to prepare a

system using the proposed authentication protocol for normal operation. These
include the data collection procedures associated with enrolment, the construc-
tion of the static data sets assigned to each actor in the protocol, and the security
assumptions/requirements we impose on these elements.



Secure Biometric Authentication with Improved Accuracy 27

The output of the initialisation procedure are three sets of static data (ASgata,

D Bgata and V Syata) which allow the different servers to carry out their roles:

— ASgata consists of a list U = {IDy,...,IDy} of user identities ID; € {0,1}*.

The index of the user in this list will be used as the application-specific user
identifier uid € {1...|U|}.

— D Bgata consists of biometric classification data (wj;) for the set of valid users.

This should permit computing pre-decision classification information (cl)
over authentication requests, but should be totally anonymous for the DB.
In particular, we require that the DB obtains information which permits
performing pre-classification for the |U| system users consistently with the
application-specific user identifiers assigned by the AS. However, it should
not receive any information about the user identities themselves.

— V' S4ata consists of information which will allow the V'S to obtain a verdict

from obfuscated pre-decision classification information. The need for obfus-
cation is justified by the apparently contradictory requirement that only the
V'S is capable of producing a decision verdict, but still should be unable to
learn the user’s real identity, or even trace requests by the same user.

We assume that some trusted authority is available to control the enrolment

procedure, and ensure that the static data is assigned to the servers in a secure
way: no server obtains any information concerning another server’s static data,
and no information is leaked to eavesdroppers external to the system.

4.3 Authentication Protocol Definition

The proposed authentication protocol is a five-tuple of probabilistic polynomial
time algorithms that the different participants will execute. Each server-side
participant stores corresponding static information ASgata, DSgata and V Syata-
The algorithms are:

1.

2.

Participant Algorithm
VS (params, kq) <— Gen(1")
S auth < S(vmp, params)
DB class « Classify(parans, auth, D Baata)
AS (sclass, m) < Shuffle(params, class, ASdata)
VS d «— Decide(sclass, params, kg, V Saata)
AS ID/ L « Identify(d, m, ASsata)

The key generation algorithm Gen is executed by the V.S, which stores the
secret key kg securely, and publishes a set of public parameters params.
On each authentication run, the sensor encrypts fresh biometric data vip
from a user with identity ID using algorithm S and the public parameters,
and produces the authentication request auth.

The AS receives the authentication request and passes it on to the DB
for pre-decision classification. This operation is represented by algorithm
Classify which takes also public parameters and profile information D Bgata
and returns encrypted classification information class.



28 M. Barbosa et al.

4. The AS takes class and scrambles it in order to disassociate the decision
result from previous authentication runs. This operation is represented by al-
gorithm Shuffle which outputs scrambled data sclass and a de-scrambling
key m which the AS keeps to itself.

5. The V'S uses the secret key ky; and sclass to perform the final decision
step and produces a verdict d. This operation is represented by algorithm
Decide.

6. Finally, the AS can recover the user’s real identity, or a failure symbol, from
the verdict d and the de-scrambling key 7 using algorithm Identify.

The soundness condition for our protocol is that the server-side system as
a whole, and the AS in particular, produces a correct decision on the user’s
authenticity, i.e. recognises whether a new feature belongs to a valid user, and
determines the correct identity. Formally, for soundness we require that the fol-
lowing probability yields a value sufficiently close to one for practical use as an
authentication protocol, for valid static data ASgata, D Baata and V Sgara result-
ing from a successful enrolment procedure, and for all fresh features vip:

(params, kq) < Gen(1")
auth < S(vm, params)

Pr | Identify(d, m, ASqata) = r class < Classify(params, auth, D Byata)
(sclass, m) < Shuffle(params, class, ASqata)
d «+— Decide(sclass, params, k4, V Saata)

where r = ID when ID is in the valid set of users, and r = L otherwise.

4.4 Security Model
Intuitively, the security requirements we want to impose are the following:

— Privacy. None of the services (and no passive attacker observing commu-
nications) gets enough information to reconstruct an identity /feature pair.
More precisely, none of the services can distinguish whether a particular
measurement belongs to a particular person.

— Untraceability. Except for the authentication service, none of the other
services (and no passive attacker observing communications) gets enough
information to recognize a previously authenticated user. More precisely,
the database service and the matching service cannot distinguish whether
two authentication requests belong to the same person.

We assume that the servers are honest-but-curious, namely that they do not
collude and follow the protocol rules, but may try to use the information they
obtain to subvert the previous requirements. Formally, this translates into two
security models.

Privacy: Feature Indistinguishability. The three server-side components, as
well as any eavesdropper which is able to observe the message exchanges corre-
sponding to a protocol execution, must be unable to distinguish between which



Secure Biometric Authentication with Improved Accuracy 29

of two features belongs to a particular system user. We call this requirement
feature indistinguishability (£IND). We define it using the following experiment,
which takes as input a parameter adv € {AS, DB, V'S, Eve}, and fresh readings
Vg, from valid user ID € U, and v; from any user.

Expj'° (adv, vo, v1)

(params, kq) «— Gen(1")

auth — S(vp, params)

class «— Classify(params, auth, D B4ata)

(sclass,7) <« Shuffle(params, class, ASqata)

d «— Decide(sclass, k4, SViata)

r «— Identify(d, 7, AS4ata)

Return (v3, VieWaqy)
viewas := (auth, class, sclass, ,d,r, ASgata, params)
viewpp := (auth, class, D Byata, params)
viewys := (sclass, d, V S4ata, kd, params)
viewgye := (auth, class, sclass, d, params)

We require that, for all ID € U and all adv € {AS, DB,V S, Eve}, the following
distributions be computationally indistinguishable (=):

{(1D, Expfﬁlsz(adv, vo,v1))} = {(ID, ExpfﬁI:Ng(adv, vo,v1)) }

We define advantage Advi™P(adv) as (the absolute value of) the deviation from
1/2 in the probability that the adversary guesses (.

Untraceability — User Indistinguishability. The back-end server-side com-
ponents, DB and V'S, as well as any eavesdropper which is able to observe
the message exchanges corresponding to a protocol execution, must be un-
able to distinguish if two independent authentication runs correspond to the
same system user. We call this requirement user indistinguishability (uIND).
We define it using the following experiment, which takes as input a parameter
adv € {DB, VS, Eve}, and two fresh readings vy and v corresponding to valid
users uid and uid’ respectively.

Exp3™® (adv, vg, v1)
(params, kq) — Gen(1")
auth «— S(vg, params)
class «— Classify(params, auth, D Byata)
(sclass, ) <« Shuffle(params, class, ASqata)
d «— Decide(sclass, k4, SViata)
r — Identify(d, 7, AS4ata)
Return VieWagy

where the different views are defined as above.



30 M. Barbosa et al.

We require that, for all valid users with user identifiers uid and uid’, and all
adv € {DB, VS, Eve}, the following distributions be computationally indistin-
guishable (=):

{(uid, uid', Exp§™} (adv, vo, v1))} = {(uid, uid', Exp3™0 (adv, vy, v1)) }

Again, we define advantage Adv®!™?(adv) as (the absolute value of) the deviation
from 1/2 in the probability that the adversary guesses [3.

5 A Concrete Implementation

5.1 The SVM Classifier

We consider a |U|-class identification classifier called the Support Vector Machine
(SVM) [I7] and provide a short description of its operation. The basic SVM is
a mono class authentication classifiefi. Extension to U classes follows the one-
against-all strategy: for each user u € U, a mono classifier is trained using the
remaining users (U/u) as the rejected class. For each user, the learning stage of
the SVM determines both an outer and an inner hyperplane in a k-dimensional
features space. Said hyperplanes are expressed as a linear combination of S
known samples (so called support vectors SV;; € Vgm,i = 1...5,5 = 1...|U|)
weighted with «; ; € N coeflicients. Formally, we have

VSVM = Nk and WSVM = (N X V)leUl

During authentication, the SVM classifier evaluates the distance of the fresh
feature v to these hyperplanes using a scalar product. To account for the fact that
the user profile regions may not be linearly separable, the SVM may compute
the scalar product in a higher dimension space. For this, the SVM classifier uses
a kernel function K to project the data into the higher dimension space and
compute the scalar product in this space in a single step. The advantage is that
the computational cost is reduced when compared to a basic projection followed
by the scalar product. The classifier function is therefore

clsym : Vayu X Weyy — NlUI

clsm(v, wiy)) = (clg(v,wiy)), - - el (v, w]y)))

where wiy; contains (i, SV;j)] for1 <i<Sand1<j<|U|and

Clgm (v w|U| Zaw (v, 5Vi;5)-

In this paper, and to simplify the presentation, we will use the particular case
where K(a, b) refers to the scalar product between a and b in the initial space:

K(a,b) = 7, aby.

3 A classifier used in an authentication context “Am I who I claimed to be 7.



Secure Biometric Authentication with Improved Accuracy 31

The decision is calculated by finding the index of the maximum positive scalar
contained in the vector clgyn(v, w*). If no positive scalar exists, then the reject
symbol is returned (L):

d < argmax; " 1(ClSVM(U7w*))
If clég}),[(v,w )>0
Then return d
Else return L

DSVM(CZSVM('Uv w*)) =

5.2 Algorithm Implementations

We refer the reader to Appendix A for a description of the Paillier cryptosystem.
The concrete implementations we propose for the algorithms composing our
authentication protocol are the following:

— Gen(1") — (params, kq). The generation primitive simply uses the key
generation algorithm for the Paillier cryptosystem to obtain (k.,kq), sets
params « k. and returns (params, kg).

— S(v) — auth. This algorithm takes as input a fresh feature for an unknown
user. Recall that the feature space for the SVM is Vgyy = N¥, but we can
look at the feature as v := (vy,...,vx) € Z*. Encryption is carried out one
component at a time and the algorithm returns:

auth « (Epaitnier(V1, Ke)s - - -5 Epaitrier (Vi ke))

— Classify(auth, D Bgata, params) — class. This algorithm uses the homo-
morphic properties of the Paillier encryption scheme to compute pre-decision
SVM classification values without ever decrypting the features in auth. More
precisely, the algorithm takes the profile data wI*UI in DBygata and calculates

for 1 <j <|U|

S
¢; = | [ K(auth, 5Vi;)* = Eeasntier( Z% (v, SV; ), params)

i=1

where, using [-]; to denote the I*® component in a tuple, K* is defined by
k
K(auth SVij): H [auth;] SV”
1=1

To prevent the AS from performing an exhaustive search of the profile space,
the DB also re-randomizes the encryptions by calculating:

class; = (c;r}) mod n?

The algorithm returns class = (classi,...,class|y)).



32 M. Barbosa et al.

— Shuffle(class) — (sclass, 7). This algorithm generates a fresh permuta-
tion 7w : {1,...,|U|} — {1,...,|U[}, re-randomizes all the ciphertext compo-
nents in class and returns the permutated re-randomized vector as sclass.
More precisely, we have sclass = (sclassy, ..., sclass|y|) where

sclass; = (class,(;r}) mod n’

— Decide(sclass, kg, V Sqata) — d. This algorithm decrypts the components
in sclass and performs classification as described for the SVM classifier.
The result d is the index in the input vector corresponding to the largest
positive scaler, or L if no positive scalar exists.

— Identify(d, m, ASgata) — ID. For authentication runs where d # L, this
algorithm simply finds wid such that

wid = 7~ (d)

and returns the associated identity ID. Otherwise it returns L.

5.3 Security Analysis

In the full version of the paper [I8] we prove two theorems, which capture the
security properties of the proposed protocol.

Theorem 1. The proposed protocol ensures feature privacy. More precisely, any
PPT adversary has negligible advantage in distinguishing the distributions asso-
ciated with Exp®™P,

Theorem 2. The proposed protocol ensures user untraceability. More precisely,
any PPT adversary has negligible advantage in distinguishing the distributions
associated with Exp®I'™P,

Remark: On the (in)security of the Bringer et al. protocol The fIND model we
propose is a more formal version of Security Requirement 2 proposed by Bringer
et al. [I] for their authentication protocol. The security argument presented for
this protocol describes a reduction to the semantic security of the Goldwasser-
Micali cryptosystem. However, the argument fails to cover a simple attack by the
AS. The attack is possible because the interaction between the AS server and
the DB server does not include a re-randomization of the resulting ciphertexts.
This means that it may be possible for the AS to recover the user profile data
that the DB server has used in the calculations. After recovering a biometric
profile, the AS server is able to determine on its own which features belong to
a user, without even executing the protocol. More precisely, and referring to
the notation in [I], the AS calculates (E(t1,pk),...,E(tn,pk)), where N is the
number of users, ¢t; = 0 for all indexes except j =i for which t; = 1, and ¢ is the
index of the user to be authenticated. The DB server receives these ciphertexts



Secure Biometric Authentication with Improved Accuracy 33

and calculates €(b; x,pk) = [[)_; £(t;,pk)** mod n, for 1 < k < M, where
(bi1,-..,biar) is the biometric profile corresponding to user i. On receiving
E(bi k, pk), the AS can try to work out whether b; ; is 1 or 0. To do this, it tries
to calculate &(bik, pk)/ [1;c; €(t;,pk) mod n, for all subsets J C {1...N}\14,
where £(tj,pk) are exactly the same as those passed originally to the DB. If
in these calculations the AS obtains 1, then it knows b, = 0; if it obtains
E(ti, pk), then it knows b; 1, = 1. The feasibility of this attack depends on the
number of users N: in fact its complexity is exponential in N, which means it
may be infeasible for a very large N. However, a simple patch to the protocol,
preventing the attack altogether even for small IV, is to ensure that the DB server
re-randomises ciphertexts after applying the homomorphic transformations. We
emphasise that the security reduction presented in this paper for the proposed
protocol explicitly precludes this type of attack.

6 Discussion and Conclusion

We have presented a hybrid protocol for secure biometric authentication which
permits adopting state-of-the art pattern recognition classifiers to improve over
the authentication accuracy of existing solutions. Our protocol follows the ap-
proach of Bringer et al. [I], adopting the point of view that biometric information
may be stored in public servers, as long as it is guaranteed that it remains anony-
mous if security is breached. To allow for the use of more powerful classification
techniques, namely the SVM classifier, we use the Pailler public key encryption
scheme, taking advantage of its homomorphic properties.

The main advantages of the proposed protocol over previous solutions can be
summarised as follows:

— Potential for much better accuracy using different types of biometric signals,
including behavioural ones.

— Improved user privacy, since user identities are not transmitted at any point
in the protocol execution. This is possible because the classifiers we adopt
are identification classifiers which do not need to know who the user claims
to be in order to perform authentication and recover the user identity.

Security of the proposed protocol has been formalised in two security mod-
els: feature indistinguishability and user indistinguishability. These are extended
versions of the models proposed in [I], where we also account for eavesdroppers
external to the system. We provide a reduction relating the security of our au-
thentication protocol with the security of the Paillier encryption scheme. We
also describe a simple attack against the Bringer et al. protocol, and show how
it can be easily repaired.

Acknowledgements. The authors would like to thank Michel Abdalla for read-
ing and commenting on an earlier version of this paper.



34

M. Barbosa et al.

References

10.

11.

12.

13.

14.

15.

. Bringer, J., Chabanne, H., [zabachene, M., Pointcheval, D., Tang, Q., Zimmer, S.:

An application of the goldwasser-micali cryptosystem to biometric authentication.
In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp.
96-106. Springer, Heidelberg (2007)

. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to gener-

ate strong keys from biometrics and other noisy data. Cryptology ePrint Archive,
Report 2003/235 (2003), http://eprint.iacr.org/

. Boyen, X.: Reusable cryptographic fuzzy extractors. In: CCS 2004: Proceedings of

the 11th ACM conference on Computer and communications security, pp. 82-91.
ACM, New York (2004)

. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authenti-

cation using biometric data. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147-163. Springer, Heidelberg (2005),
http://www.cs.stanford.edu/~xb/eurocrypt05b/

. Monrose, F., Reiter, M.K., Wetzel, S.: Password hardening based on keystroke

dynamics. In: CCS 1999: Proceedings of the 6th ACM conference on Computer
and communications security, pp. 73-82. ACM, New York (1999)

. Hocquet, S., Ramel, J.Y., Cardot, H.: Fusion of methods for keystroke dynamic

authentication. Automatic Identification Advanced Technologies, 2005. In: Fourth
IEEE Workshop, October 17-18; 2005, pp. 224-229 (2005)

. Monrose, F., Reiter, M., Li, Q., Wetzel, S.: Cryptographic key generation from

voice. In: Proceedings of IEEE Symposium on Security and Privacy, S&P 2001,
pp. 202-213 (2001)

. Yegnanarayana, B., Prasanna, S., Zachariah, J., Gupta, C.: Combining evidence

from source, suprasegmental and spectral features for a fixed-text speaker verifi-
cation system. IEEE Transactions on Speech and Audio Processing 13, 575-582
(2005)

. Cauchie, S., Brouard, T., Cardot, H.: From features extraction to strong security in

mobile environment: A new hybrid system. In: Meersman, R., Tari, Z., Herrero, P.
(eds.) OTM 2006 Workshops. LNCS, vol. 4277, pp. 489-498. Springer, Heidelberg
(2006)

Feng, H., Choong, W.C.: Private key generation from on-line handwritten signa-
tures. Inf. Manag. Comput. Security 10(4), 159-164 (2002)

Fuentes, M., Garcia-Salicetti, S., Dorizzi, B.: On-line signature verification: Fusion
of a hidden markov model and a neural network via a support vector machine.
iwfthr 00, 253 (2002)

Goh, A., Ling, D.N.C.: Computation of cryptographic keys from face biometrics.
In: Lioy, A., Mazzocchi, D. (eds.) CMS 2003. LNCS, vol. 2828, pp. 1-13. Springer,
Heidelberg (2003)

Yan, T.T.H.: Object recognition using fractal neighbor distance: eventual conver-
gence and recognition rates. In: Proceedings of 15th International Conference on
Pattern Recognition, vol. 2, pp. 781-784 (2000)

Uludag, U.A.J.: Securing fingerprint template: Fuzzy vault with helper data. In:
Conference on Computer Vision and Pattern Recognition Workshop, June 17-22;
2006, pp. 163-163 (2006)

Guo, H.: A hidden markov model fingerprint matching approach. In: Proceedings
of 2005 International Conference on Machine Learning and Cybernetics, August
18-21, 2005, vol. 8, pp. 5055-5059 (2005)


http://eprint.iacr.org/
http://www.cs.stanford.edu/~xb/eurocrypt05b/

16.

17.

18.

19.

20.

21.

Secure Biometric Authentication with Improved Accuracy 35

Hao, F., Anderson, R., Daugman, J.: Combining crypto with biometrics effectively.
IEEE Transactions on Computers 55(9), 1081-1088 (2006)

Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research 2, 265-292 (2001)
Barbosa, M., Brouard, T., Cauchie, S., Sousa, S.: Secure biometric authentication
with improved accuracy. Cryptology ePrint Archive (2008)

Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238.
Springer, Heidelberg (1999)

Paillier, P., Pointcheval, D.: Efficient public-key cryptosystems provably secure
against active adversaries. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASI-
ACRYPT 1999. LNCS, vol. 1716, pp. 165-179. Springer, Heidelberg (1999)
Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259-274. Springer, Heidelberg (2000)

Appendix A: Paillier Public Key Encryption Scheme

The Paillier public key encryption scheme [T9/20] can be described as follows:

— Key generation: Gpai11ier(17) = (kqg, ke). The PPT key generation algo-

rithm takes a security parameter 1* as input, and randomly generates two
large prime numbers p and ¢, setting n = pg and A = lem(p — 1,q —1). The
algorithm then randomly selects g € Z7 ,, such that n divides the order of g.
This can be ensured by checking that

-1
ged(L(g® mod n?),n) =1, where L(u) = “ "

which in turn implies that the following multiplicative inverse exists:
p=(L(g® modn?) ! modn

The public key is then k. = (n,g) and the secret key is kg = (i, \).

— Encryption: &paitnier(m, ko). The PPT encryption algorithm takes a mes-

sage m € Z, and the public key k. = (n, g), generates r uniformly at random
from Z: and outputs a ciphertext ¢ € Z,2, where ¢ = g" - ™ mod n?.

— Decryption: Dpajiiier (¢, kq). The deterministic decryption algorithm takes

a ciphertext ¢ and the secret key and outputs the plaintext m, which is
recovered as m = L(¢* mod n?)-p mod n.

It has been shown [20] that, under the composite residuosity assumption,

the Paillier cryptosystem provides semantic security against chosen-plaintext
attacks (IND-CPA). In other words, any PPT adversary A has only a negligible
advantage in the following game against the Paillier cryptosystem:



36 M. Barbosa et al.

EXPrasiizer (A)
(kd; ke) — gPaillier(]-K)
(m07 mau, S) — Al(ke)

B8 —{0,1}
Cc — 5Pa1111er(m6)
ﬂ/ — A2 (Ca S)
return 3’
where the attacker’s advantage Adviio ;2 is defined as:
IND—CPA - _
AdViginier = | PrExPpaiiiier = 118 = 1] — PrExppiy e, = 116 = 0]]

In our scheme we will be using the Paillier cryptosystem to encrypt biometric
features represented as short sequences of integer numbers. Encryption will be
component-wise, where we assume that each integer component in the feature is
in a range suitable for direct encoding into the message spaceﬁ. For this reason
we require a generalisation of the IND-CPA property allowing the adversary
to make a polynomial number n of queries to a Left-or-Right challenge oracle.
We call this notion n-IND-CPA and emphasize that the security of the Paillier
encryption scheme in this setting is implied by its semantic security [21].

We will also take advantage of the following homomorphic properties of the
Paillier encryption scheme:

gPaillier(a/a ke)gpaillier(b7 ke) = 5Paillier(a + b7 ke)

gPaillier(au ke)b = gPaillier(abv ke)

The aditive property also provides a method to re-randomize a given Paillier
cryptosystem which we will use:

(gPaillier(aa ke; 7"/) : Tn) mod n? = gPaillier(au ke; 7"/7“)~

4 In practice, SVM features can be represented using integers in the range —100 to
100, which can be easily encoded into Z,.



A Critical Analysis and Improvement of AACS
Drive-Host Authentication

Jiayuan Sui and Douglas R. Stinson*

David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, ON, N2L 3G1, Canada

{jsui,dstinson}@uwaterloo.ca

Abstract. This paper presents a critical analysis of the AACS drive-host
authentication scheme. A few weaknesses are identified which could lead
to various attacks on the scheme. In particular, we observe that the scheme
is susceptible to unknown key-share and man-in-the-middle attacks. Mod-
ifications of the scheme are suggested in order to provide better security.
A proof of security of the modified scheme is also presented. The modified
scheme achieves better efficiency than the original scheme.

1 Introduction

Advanced Access Content System (AACS) is a content distribution system for
recordable and pre-recorded media. It has been developed by eight compa-
nies: Disney, IBM, Intel, Matsushita (Panasonic), Microsoft, Sony, Toshiba, and
Warner Brothers. Most notably, AACS is used to protect the next generation of
high definition optical discs such as Blu-ray and HD-DVD.

To design a media protection scheme that is able to run on open platforms
like PCs, designers have to make sure that the scheme is not susceptible to the
“virtual device attack”. A virtual device can mimic a physical hardware device
in all respects, so that the CPU is tricked into believing that a device exists when
actually it does not. To deploy a virtual device attack on a media system such
as the DVD playback system, the attacker can build software that implements a
virtual DVD drive. The content of the optical disc is moved onto the computer’s
hard drive as a disc image. The attacker can then play back this “DVD disc”
through the virtual DVD drive on a legitimate DVD player software.

The attacker can certainly duplicate the disc image into multiple copies and
disseminate them illegally, even though he never learns the content of the DVD
in the clear. In order to defend against this attack, the drive has to have the
ability to prove to the host (e.g. the playback software) that it is a legitimate
drive. This can be done through a cryptographic authentication protocol.

The AACS drive-host authentication scheme achieves mutual authentication,
which means that the drive proves to the host its legitimate identity and the

* Supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) through the grant NSERC-RGPIN #203114-06.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 37[52] 2008.
© Springer-Verlag Berlin Heidelberg 2008



38 J. Sui and D.R. Stinson

host has to prove its identity to the drive. After the drive and the host complete
a successful session of the protocol, a shared secret key is established between
them. Therefore, AACS drive-host mutual authentication protocol is combined
with a key agreement protocol. The shared secret key is then used for message
authentication purposes.

1.1 Mutual Authentication Protocol and Key Agreement Protocol

In a mutual authentication protocol, the two participating entities need to prove
their identities to each other. If an entity has successfully proven its identity to
the other entity, the other entity is required to “accept”. A session of a mutual
authentication protocol is a successfully completed session if both participants
have accepted by the end of the session. Mutual authentication protocols can be
devised by using either symmetric or asymmetric key cryptographic primitives.
Stinson [I3, Chapter 9] provides some good studies on mutual authentication
protocols.

After two entities have authenticated themselves to each other, most likely
they will want to communicate with each other. It therefore makes sense to
combine a key agreement protocol with a mutual authentication protocol, be-
cause a shared secret key provides confidentiality and/or data integrity to both
communicating entities. In a key agreement protocol, both entities contribute in-
formation which is used to derive a shared secret key. A key agreement protocol
most often uses asymmetric-key primitives.

A key agreement protocol is said to provide implicit key authentication to both
entity A and entity B if A is assured that no one other than B can possibly learn
the value of the shared secret key (likewise, B is assured that no one other than
A can learn the value of the key). Note that this property does not necessarily
mean that A is assured of B actually possessing the key nor is A assured that
B can actually compute the key. A key agreement protocol with implicit key
authentication is called an authenticated key agreement (AK) protocol.

A key agreement protocol is said to provide implicit key confirmation if A
is assured that B can compute the secret key while no others can, and vice
versa. A protocol provides explicit key confirmation if A is assured that B has
computed the secret key and no one other than B can compute the key, and vice
versa. A key agreement protocol that provides key confirmation (either implicit
or explicit) to both participating entities is called an authenticated key agreement
with key confirmation (AKC) protocol. For example, explicit key confirmation
can be achieved by using the newly derived key to encrypt a known value and to
send it to the other entity. In most cases, using a key agreement protocol with
implicit key confirmation is sufficient. For more information on key agreement
protocols, please refer to [I3, Chapter 11].

1.2 Owur Contributions

In this paper, we present a rigorous analysis of the AACS drive-host authenti-
cation scheme. Specifically, we identify a few weaknesses present in the scheme



A Critical Analysis and Improvement of AACS Drive-Host Authentication 39

which could lead to various attacks. It is yet to be known whether those weak-
nesses will lead to piracy of multimedia content. Nevertheless, we believe that it is
not desirable for such a widely-deployed system to employ a weak cryptographic
protocol if it can be made secure fairly easily. We propose an improvement of
the original scheme based on the well-established Station-to-Station key agree-
ment protocol. The improved scheme provides secure mutual authentication as
well as authenticated key agreement with key confirmation. We also discuss the
security of the improved scheme. The improved scheme is designed with the goal
of requiring little change to be made to the original scheme, so implementation
of the improved scheme is straightforward. In addition, the improved scheme
requires less interaction between the drive and the host, and therefore it is more
efficient than the original scheme. Furthermore, our improved scheme can be
easily implemented on other content distribution systems such as CSS [7] and
CPPM [1] which also use weak drive-host authentication schemes.

1.3 Organization

In Section[2] we introduce the AACS drive-host authentication scheme. Our anal-
ysis of the AACS drive-host authentication scheme is presented in Section [3]
where we identify several weaknesses in the scheme and provide corresponding
improvements. In Section @, we discuss the security of the improved drive-host
authentication scheme, followed by a conclusion in Section

2 AACS Drive-Host Authentication Scheme

When using AACS in a PC-based system where the drive and the host are sep-
arate entities, both the drive and the host are issued certificates from the AACS
LA (AACS Licensing Administrator). This allows either entity to verify whether
or not the other is trustworthy and in compliance with the AACS specifications.
These certificates, called the drive certificate and host certificate, each contain
fields stating the capabilities of the device, a unique identifier, the device’s public
key, and a signature from the AACS LA verifying the integrity of the certificate
signed with an AACS LA private key. Both the drive and the host have the
corresponding AACS LA public key for signature verification. A full description
of the certificate format can be found in the AACS Introduction and Common
Cryptographic Elements specification [2, Chapter 4].

Authentication between the drive and the host occurs each time new media
is placed into the drive. This is necessary because the new disc may contain
updated revocation lists. Each compliant disc contains a data structure called
the media key block (MKB), which holds the necessary information needed to
derive the keys to decrypt the content. It also contains the latest drive revocation
list (DRL) and host revocation list (HRL) which, respectively, contain a list of
IDs of the revoked drives and a list of IDs of the revoked hosts. A drive may
only communicate with a host that has not been revoked, and a host may only
communicate with a drive that has not been revoked.



40 J. Sui and D.R. Stinson

A detailed description of the AACS drive-host authentication scheme can be
found in [2, Section 4.3]. The original scheme consists a total of twenty-nine steps.
A simplified version consisting only the core steps involved in authentication and
key agreement is shown in Figure

After successfully completing the drive-host authentication algorithm, the
drive and the host have established a shared bus key based on an elliptic curve
Diffie-Hellman key agreement protocol [I]. It is interesting to note that while
this key could be used to encrypt messages between the drive and the host, it is
not actually used for this purpose. Instead, the bus key is used solely for message
authentication by including a MAC for any message traveling between the drive
and the host. The current AACS specifications do not require either the drive
or the host to be capable of encrypting and decrypting bus messages; however
there is a flag in each certificate stating whether or not an entity is capable of
performing bus encryption.

3 Analysis of the AACS Drive-Host Authentication
Scheme

In this section, we analyze the AACS drive-host authentication scheme. Several
weaknesses are identified which could lead to various attacks, and corresponding
improvements are provided to strengthen the original scheme.

Our discussion of security is based on the standard security model for authen-
tication and key agreement schemes, which was first proposed by Bellare and
Rogaway in the symmetric-key setting [4]. Blake-Wilson et al. later generalized
this model into the public-key setting [6]. In the standard model, the adver-
sary has enormous power and controls all communication between entities. The
adversary can read, modify, create, delay and replay messages, and he/she can
initiate new sessions at any time.

3.1 Weakness 1: Design Error

This weakness is present in the first four steps of the drive-host authentication
scheme. Suppose that the DRL in the MKB is newer than the DRL stored in
the host. A malicious party, Oscar, can change the MKB version number to an
older one, and send the modified MKB' to the host. This modification might
not be detected during the authentication procedure, because according to the
specification, the host first checks the MKB version number, and if the version
number is older than its DRL’s, it skips over step 2, which involves verifying the
signature on the DRL in the MKB.

Drive Oscar Host

MKB MKB




A Critical Analysis and Improvement of AACS Drive-Host Authentication 41

Drive Host
1. MEB — _ Verify MKB and DRL signa-
tures. Abort if signatures are
not valid.
2. Compare version of stored DRL

to DRL in MKB. If DRL in
MKB is not newer, use stored
DRL. Otherwise, use DRL in
MKB, and store it for later ref-
erence.
3. Verify MKB and HRL signa-
tures. Abort if signatures are
not valid.

4. Compare version of stored HRL
to HRL in MKB. If HRL in
MKB is not newer, use stored
HRL. Otherwise, use HRL in
MKB, and store it for later ref-
erence.

Fig. 1. Improved First Four Steps

If the drive has already been revoked, it could maliciously alter the MKB
version number in order not to let the host update its DRL, so that it can keep
interacting with the host.

The altered MKB might eventually be detected when the host processes the
MKB during content decryption. However, it is undesirable for a revoked drive
to be able to talk to the host until then.

The fix to this weakness is simple: The host should verify the MKB and DRL
signatures before checking the version numbers. The same modification can be
made to the drive side. Figure [Tl shows the modification.

3.2 Weakness 2: Unknown Key-Share Attack

Suppose A and B are two honest participating entities trying to set up a shared
secret key through a key agreement protocol, and O is an active malicious entity.
An unknown key-share attack on a key agreement protocol is an attack through
which O causes one of the two honest entities, say A, to believe that it shares a
key with O, but it actually shares the key with the other honest entity B, and
B believes that the key is shared with A. So, at the end of the protocol, O can
act on behalf of B to interact with A. There are a number of papers studying
unknown key-share attack and its application on a number of protocols, e.g. [3],
5], [, [12], and [14].

We can simplify the original flow representation of the drive-host authenti-
cation scheme displayed in [2, Section 4.3] into the one shown in Figure 2] by



42

J. Sui and D.R. Stinson
Drive Host

1' Hn, Hcert

2' Dn, Dcert
Siggrive (Hn||Dv), Dy

3. D,=D,G
Sighost(Dnl||Hv), Hy

4. H,=H,G

5. By=DHy=D,H,G By=H,D,=H,D,G

Fig. 2. Simplified AACS Drive-Host Authentication Protocol

taking into consideration only the core steps involved in authentication and key
agreement. A similar flow diagram is also provided in [2, Section 4.3].

1

. Host initiates a session with Drive. It sends a random nonce H,, and its

certificate H.ert to Drive. Drive verifies the signature of the Host certificate
using the AACS LA public key. If the verification fails, Drive shall abort this
authentication procedure.

. Drive replies to the Host with a random nonce D,, and its certificate D ey¢.

Host verifies the signature of the Drive certificate using the AACS LA public
key. If the verification fails, Host shall abort this authentication procedure.
Drive generates a 160-bit random number Dj and uses it to calculate a
point D, on the elliptic curve (G is the base point of the elliptic curve).
Drive then creates a signature of the concatenation of H, and D,. Drive
sends the digital signature and D, to Host. Host verifies the signature, and
aborts the session on failure.

Host generates a 160-bit random number Hj, and uses it to calculate a point
H, on the elliptic curve. Host then creates a signature of the concatenation of
D,, and H,. Host sends the digital signature and H, to Drive. Drive verifies
the signature, and aborts the session on failure.

On the last step, both Drive and Host calculate the shared secret bus key Bjy,.

An attacker, Drivepgscar, which is also a legitimate drive, can use a parallel

session to deploy an unknown key-share attack. Figure Bl shows the diagram of
the attack.

The attack works in this way:

Host initiates a session with Driveggear. It sends its random nonce H,, and
certificate H.er¢ to Driveoscar-

Drivepgcar relays the traffic to Drive as if Host is initiating a session with
Drive. Drive receives H,, and H,..,; and verifies that H_.,; is valid.

Drive sends back its random nonce D,, and certificate D+ to Host, which
of course get intercepted by Driveggcayr-



A Critical Analysis and Improvement of AACS Drive-Host Authentication 43

Drivepgcar relays the random nonce D,, to Host, however, it does not relay
the Drive’s certificate. Instead, it sends its own certificate Do cere to Host.
Host receives Do cert as well as D,,. It is tricked into believing that Driveogcar
has generated this random nonce. Host verifies Driveggca,’s certificate, and
the verification should pass because Drivegscar is a legitimate drive.
Following the AACS drive-host authentication protocol, Drive generates a
random number Dy, and calculates a point D, on the elliptic curve. Drive
then creates a signature of the concatenation of H,, and D,,. Drive sends the
digital signature and D, to Host.

Drivepgcar relays D, to Host. However, it creates its own signature of the
concatenation of H, and D, using its private key. It can do so because both
H, and D, are available to it. It sends this signature instead of Drive’s
signature to Host. Host verifies the signature using Drivepgcar’s public key
obtained from D¢ cer¢. The verification should pass.

Host generates a random number Hj, and calculates a point H, on the elliptic
curve. Drive then creates a signature of the concatenation of D, and H,.
Drive sends the digital signature and H, to Drivegscar-

Drivepgcar relays the traffic to Drive. Drive verifies the signature, and the
verification should pass.

By the time the session is complete, Drive has accepted Host, and it can

calculate the shared bus key Bj. On the other hand, Host does not accept Drive

8.

9

Drive Driveoscar Host
Hyp, Heert
Hy, Heert
Dy, Deert
Dy, Do _cert
Sigq(Hn||Dv), Dy
Dy=D,G Pt AT
Sigqo(Hn||Dv), Dy
29dol nll )y v
Sigp(Dnl||Hy), Hy
——r e Y Hy=H,G
Sigp (Dnl||Hy), Hy
2R EnlTT)y v
. By=DyH,=D,H,G Br=HDy,=H);, D, G

Fig. 3. Unknown Key-Share Attack on AACS Drive-Host Authentication Protocol



44 J. Sui and D.R. Stinson

because it simply does not know the existence of Drive from this interaction.
Instead, it has accepted Drivepgcar. Host can also calculate the same shared bus
key Bk.

Although Drivepgear does not know the secret bus key By in the end, it has
tricked Host into believing that it shares the bus key with Drivepgcar. Host thinks
that it is talking to Drivepscar While actually it is interacting with Drive.

This attack could be exploited in practice. For example, suppose that Drivey
is revoked. Then it can employ this attack to ask Driveg, which is not revoked, to
impersonate it. Since the host only sees Drivep’s certificate, the authentication
procedure should complete successfully. In this way, Drives can still interact
with the host after the authentication procedure. It has effectively bypassed the
authentication procedure.

Such an attack is enabled due to the fact that in the last two flows Driveggcar
can simply copy the traffic. This problem can be fixed by including the entity
IDs in the signature. (See Section B.]).

3.3 Weakness 3: Man-in-the-Middle Attack

The adversarial goal in an attack to a mutual authentication protocol is to cause
an honest participant to “accept” after a flow in which the adversary is active. To
consider a mutual authentication protocol secure, it has to satisfy the following
two conditions:

1. Suppose A and B are the two participants in a session of the protocol and
they are both honest. Suppose also that the adversary is passive. Then A
and B will both “accept”.

2. If the adversary is active during a given flow of the protocol, then no honest
participant will “accept” after that flow.

Figure[d shows an attack which might not be as powerful and practical as the
previous one. Nonetheless, it shows a weakness in this protocol.

Drive Oscar Host
1. Hn, Heert Hp, Heert
2. Dy, Deert D, Deert
3. D,=D,G _S49a(Hn||Dv), Do, Siga(Hn||Dv), Dy,
4. Host has “accepted”, Oscar wins w Hy—H,.G

B=HDy=H, DG

Fig. 4. A Trivial Man-In-The-Middle Attack



A Critical Analysis and Improvement of AACS Drive-Host Authentication 45

In this case, Oscar could be a polynomial time adversary with the ability
to listen and to modify the traffic. Notice that in step 2 when Oscar relays
the traffic from Drive to Host, it modifies the random nonce D,, generated by
Drive into a different one D/,. This does not make Host terminate the session.
In step 3, after Host has successfully verified Drive’s signature, it “accepts”.
This violates condition 2 mentioned above, hence the protocol should not be
considered secure.

A moment of reflection regarding this attack reveals that we do not really
need the two nonces “H,,” and “D,,”.

3.4 Improved Scheme

Since the scheme makes use of certificates, we can improve it using a simplified
Station-to-Station key agreement protocol (STS). STS protocol is a key agree-
ment scheme based on Diffie-Hellman scheme that provides mutual authentica-
tion. For more information on STS protocols, please refer to [§], [13, Chapter
11], [10.

Figure Bl shows the improved drive-host authentication scheme based on STS.
This modification solves both problems stated in weakness 2 and 3 (a security
proof is given in the next section). In addition, it improves the efficiency of the
original protocol, because the number of interactions between Drive and Host is
reduced.

1. Host initiates a session with Drive. It generates a 160-bit random number
Hj. and uses it to calculate a point H, on the elliptic curve. It sends the
H, and its certificate H.+ to Drive. Drive verifies the signature of the Host
certificate using the AACS LA public key. If the verification fails, Drive shall
abort this session.

2. Drive generates a 160-bit random number Dy, and uses it to calculate a point
D, on the elliptic curve. Drive then creates a signature of the concatenation
of the Host ID, D,, and H,. Drive sends the digital signature, D,, and
its certificate D e+ to Host. Host verifies the signature created by Drive:

verdrive (I Dhost|| Dy ||Hy, Drive’s signature) ~ true, and it also verifies the

Drive Host

Hy, Heert
1. Hy,=H,G

Sigdarive IDpost||Dvl|Hv), Dy, Deert

2. Dy=D,G
3 Sighost (IDdrivel|Hv||Dv)
4. By=DyH,=D,H,G Bp=H,Dy=H, DG

Fig. 5. Improved Scheme Based on the Station-to-Station Protocol



46 J. Sui and D.R. Stinson

signature of the Drive certificate. If any of the two verifications fail, Host
shall abort the session.

3. Host creates a signature of the concatenation of the Drive ID, H,,, and D,
and sends it to Drive. Drive verifies the signature: veryost(IDarive||Ho|| Do,

. ? . .
Host’s signature) = true, and aborts the session on failure.

At the end of the protocol, both Drive and Host are able to establish the
shared secret bus key By. Points H, and D, in this protocol also play a role as
random challenges.

The new protocol solves all the aforementioned problems. Since the random
challenges H,, and D,, are omitted, it enables the drive and the host to perform
fewer interactions, and is therefore more efficient.

Appendix [A] shows a flow representation of the entire improved drive-host
authentication protocol.

4 Security of the Improved Drive-Host Authentication
Scheme

The improved scheme protects against the unknown key-shared attack mentioned
earlier.

In Figure[G] a question mark following a signature indicates that the adversary
is unable to compute this signature. At step 3, the signature which Host sends
to Driveggear contains Driveogear’s ID not Drive’s ID because Host believes that
it is talking to Drivepscar. Driveoscar cannot compute Host’s signature on the
string I D grive||Hy|| Dy because he does not know Host’s private signing key. As
a result, unknown key-share attack is thwarted.

After step 2, Host “accepts” the authentication because it should successfully
verify Driveogear’s signature and certificate. This does not violate the second
condition of considering a mutual authentication protocol secure mentioned in
Section 3.3 because Host is authenticating with Driveggcar.

The improved scheme also protects against man-in-the-middle attack.

As shown in Figure [1, if Oscar modifies H,, he then would not be able to
produce Host’s signature on IDgrive||H,|| D, because he does not know Host’s

Drive Driveoscar Host
Hy, Heert Hy, Heert
1. Hy=H;,G
Sigq(IDp o5t 1 DullHy), Sigqo(IDy ot I1DvI1Hy),
v, Decert Dy, Do_cert
2. Dy=D,G
Sigh(IDgrivellHo||Dy)? Sign(IDarive_Oscar||Hv||Dy)

Bp=HyDy=H, DG

Fig. 6. Protection Against Unknown Key-Share Attack



A Critical Analysis and Improvement of AACS Drive-Host Authentication 47

Drive Oscar Host
H,, Heert Hy, Heert
1. H,=H,G
Sigq(IDpost||Dvl|H,), Dv, Deert Sigq(IDpost||Dy||Hu)?, D, Deert
2. D,=D,G
Sigh (IDgrivellH,||Dy)? Sign(IDdrive_Oscar||Hvl||D,)

Fig. 7. Prevention of Man-In-The-Middle Attack

private signing key. Likewise, if Oscar modifies D,,, he then would not be able to
produce Drive’s signature on I Dpos:|| DL || H, because he does not know Drive’s
private signing key.

Of course, we want to show that the improved scheme is secure against all
possible attacks, not just two particular attacks. Hence, we need to show that the
improved scheme is a secure mutual authentication scheme, and that it provides
assurances regarding knowledge of the shared secret key. For the proof of security
of our improved scheme, an informal treatment based on [13, Chapter 11] is given
in the rest of this section.

4.1 Secure Mutual Authentication

A secure mutual authentication has to satisfy the two conditions described
in Section Let us first show that our improved scheme satisfies the first
condition.

Since no one is modifying the traffic, if the adversary is passive and the two
participants are honest they should successfully authenticate themselves to each
other and both compute the shared secret key as in the Diffie-Hellman key
agreement scheme. Assuming the intractability of the Decision Di e-Hellman
problem, the inactive adversary cannot compute the share secret key.

To prove that our improved scheme satisfies the second condition, let us as-
sume that the adversary is active. The adversary wants to fool at least one of
the two participants to “accept” after a flow in which he is active. We show that
the adversary will not scceed in this way, except with a very small probability.

Definition 1. A signature scheme is (¢,Q,T)-secure if the adversary cannot
construct a valid signature for any new message with probability greater than e,
given that he has previously seen at most @ di erent valid signatures, and given
that his computation time is limited to 7.

Definition 2. A mutual authentication scheme is (¢, @, T')-secure if the adver-
sary cannot fool any honest participants into accepting with probability greater
than ¢, given that he has observed at most ) previous sessions between the honest
participants, and given that the his computation time is at most 7.



48 J. Sui and D.R. Stinson

Time T is usually chosen to be very long so that by the time the adversary
successfully computes the correct result the value of the result has decreased to
an insignificant level. For simplicity of notation, we omit the time parameter.
Q is a specified security parameter. Depending on the application, it could be
assigned with various values. The probability € is usually chosen to be so small
that the chance of success is negligible.

Theorem 1. Suppose that Sig is an (e, Q)-secure signature scheme, and suppose
that random challenges H, and D, are k bits in length. Then the scheme shown
in Figure Bl is a (Q/2"~! + 2¢, Q)-secure mutual authentication scheme.

Proof. The adversary, Oscar, observes () previous sessions of the protocol before
making his attack. A successful attack by Oscar is to deceive at least one honest
participant in a new session into accepting after he is active in one or more flows.

1. Oscar tries to deceive Host. In order to make Host accept, it has to receive a
signature signed by Drive containing the Host ID and the random challenge
H,. There are only two ways for Oscar to acquire such a signature: either
from a previously observed session or by computing it himself.

To observe such a signature from a previous session, H, has to be used
in that session. The probability that Host has already used the challenge in
a specific previous session is 1/2%. There are at most () previous sessions
under consideration, so the probability that H, was used as a challenge in
one of these previous sessions is at most Q/2*. If this happens, Oscar can
re-use Drive’s signature and D! (which may or may not be the same as D))
from that session to fool Host.

To compute such a signature himself, Oscar has at most a chance of ¢,
since Sig is (€, Q)-secure.

Therefore, Oscar’s probability of deceiving Host is at most Q/2% + e.

2. Oscar tries to deceive Drive. This is quite similar to the case we have dis-
cussed above. In order to fool Drive, Oscar has to have a legitimate signature
signed by Host. As in the previous case, the two ways for Oscar to acquire
such a signature are either from a previously observed session or by comput-
ing it himself.

To observe such a signature from a previous session, Oscar re-uses a H,
from a previous session S to send to Drive, and hopes that Drive will reply
with the same D, as in S so that he can re-use the corresponding signature.
This happens with probability 1/2*. The best case scenario for the adversary
would be that all @ previously observed sessions have the same H,. Because
if any D, from the @ sessions is re-used by Drive, Oscar can then re-use
the corresponding signature to fool Drive. Hence, Oscar has at most Q/2F
probability to re-use Host’s signature to deceive Drive.

Again since Sig is (¢, @Q)-secure, Oscar can compute such a signature
with a probability of at most e.

Therefore, Oscar’s probability of deceiving Drive is at most Q/2% + e.



A Critical Analysis and Improvement of AACS Drive-Host Authentication 49

Summing up, the probability for Oscar to deceive one of Host or Drive is at
most (Q/2% +€) + (Q/2F + €) = Q/2F 1 + 2e.

4.2 Implicit Key Confirmation

Now, let us see what we can infer about the improved scheme if Host or Drive
“accepts”. Firstly, suppose that Host “accepts”. Because the improved scheme is
a secure mutual authentication scheme, Host can be confident that it has really
been communicating with Drive and that the adversary was inactive before the
last flow. Assuming that Drive is honest and that it has executed the scheme
according to the specifications, Host can be confident that Drive can compute
the value of the secret bus key, and that no one other than Drive can compute
the value of the bus key.

Let us consider in more detail why Host should believe that Drive can compute
the bus key. The reason for this belief is that Host has received Drive’s signature
on the values H, and D,, so it is reasonable for Host to infer that Drive knows
these two values. Now, since Drive is a honest participant and executed the
scheme according to the specifications, Host can infer that Drive knows the
values of Dy. Drive is able to compute the value of the bus key, provided that
he knows the values of H, and Dy. Of course, there is no guarantee to Host that
Drive has actually computed the bus key at the moment when Host “accepts”.
We can be sure that no one else can compute the bus key because Dy, is meant
to be known to Drive only.

The analysis from the point of view of Drive is very similar. If Drive “accepts”,
then it is confident that it has really been communicating with Host, and that
the bus key can be computed only by Host and no one else.

The improved scheme does not make immediate use of the new bus key, so we
do not have explicit key confirmation. However, it does achieve implicit key con-
firmation. Moreover, it is always possible to augment any key agreement scheme
with implicit key confirmation so that it achieves explicit key confirmation (the
SIGMA protocol is an efficient key agreement scheme similar to STS which
provides explicit key confirmation [I0]), if so desired. In essence, the improved
scheme provides authenticated key agreement with key confirmation.

5 Conclusion

We have described three weaknesses in the AACS drive-host authentication
scheme. Specifically, the scheme is susceptible to unknown key-share attack and
man-in-the-middle attack. As a goal to improve the scheme to resist all kinds of
attacks, we have modified the original scheme based on a simplified Station-to-
Station key agreement protocol to provide secure mutual authentication as well
as authenticated key agreement with key confirmation. In addition, our modified
scheme achieves better efficiency than the original scheme.



50

J. Sui and D.R. Stinson

References

10.

11.

12.

13.

14.

A

. 4C Entity LLC, Content Protection For Prerecorded Media Specification, Revision

1.0 (January 2003)

. AACS LA, Advanced Access Content System (AACS) - Introduction and Common

Cryptographic Elements, Revision 0.91, February 17 (2006), http://
www.aacsla.com/specifications/specs091/AACS Spec Common 0.91.pdf

Baek, J., Kim, K.: Remarks on the Unknown Key Share Attacks. IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer Sci-
ences E83-A(12), 27662769 (2000)

Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232-249. Springer, Heidelberg
(1994)

Blake-Wilson, S., Menezes, A.: Unknown Key-Share Attacks on the Station-to-
Station (STS) Protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560,
pp. 154-170. Springer, Heidelberg (1999)

Blake-Wilson, S., Johnson, D., Menezes, A.: Key Agreement Protocols and Their
Security Analysis. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS,
vol. 1355, pp. 30—45. Springer, Heidelberg (1997)

DVD Copy Control Association, CSS Procedural Specification, Version 2.9 (Jan-
uary 2007)

. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and Authenticated

Key Exchanges. Designs, Codes and Cryptography 2(2), 107-125 (1992)

Kaliski Jr., B.S.: An Unknown Key-Share Attack on the MQV Key Agreement
Protocol. ACM Transactions on Information and System Security 4(3), 275-288
(2001)

Krawczyk, H.: SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE Protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400-425. Springer, Heidelberg (2003)

National Institute of Standards and Technology, Special Publication 800-56A, Rec-
ommendation for Pair-Wise Key Establish Schemes Using Discrete Logarithm
Cryptography (March 2007)

Shim, K.: Unknown Key-Share Attack on Authenticated Multiple-Key Agreement
Protocol. Electronics Letters 39(1), 38-39 (2003)

Stinson, D.R.: Cryptography Theory and Practice, Third Edition, 3rd edn. Chap-
man & Hall/CRC, Boca Raton (2006)

Zhou, H., Fan, L., Li, J.: Remarks on Unknown Key-Share Attack on Authenticated
Multiple-Key Agreement Protocol. Electronics Letters 39(17), 1248-1249 (2003)

Improved Drive-Host Authentication Scheme

Drive Host

MKB _ Verify MKB and DRL signa-
tures. Abort if signatures are
not valid.


http://www.aacsla.com/specifications/specs091/AACS_Spec_Common_0.91.pdf
http://www.aacsla.com/specifications/specs091/AACS_Spec_Common_0.91.pdf

10.

11.

A Critical Analysis and Improvement of AACS Drive-Host Authentication 51

. Verify MKB and HRL signa-

tures. Abort if signatures are
not valid.

. Compare version of stored

HRL to HRL in MKB. If HRL
in MKB is not newer, use
stored HRL. Otherwise, use
HRL in MKB, and store it for
later reference.

. Verify host certificate type

and length. Abort on failure.

Verify signature on host cer-
tificate. Abort on failure.

Check HRL and abort if Host
ID is found.

12.

13.

Generate 160-bit random

value Dy.

<

AGID

H,, Hcert

Compare version of stored
DRL to DRL in MKB. If DRL
in MKB is not newer, use
stored DRL. Otherwise, use
DRL in MKB, and store it for
later reference.

Generate 160-bit random

number Hy.

Calculate H, = H,G where
G is the base point of the el-
liptic curve.

Request a point on the ellip-
tic curve D, signature, and
drive certificate.



52

14.

15.

J. Sui and D.R. Stinson

Calculate D, = D,G where
G is the base point of the el-
liptic curve.

Calculate Dy;, as the signa-
ture of IDjest||Dy||H, using
the drive’s private key.

16.

17.

18.

19.

20.

21.

22.

23

24

. Verify H,;, and abort on fail-
ure.

. Calculate Bus Key By, as the
128 least significant bits of
x-coord(Dy H,).

25.

Dsig, Dy, Dcert
>

Hgig

Verify drive certificate type
and length. Abort on failure.

Verify signature on drive cer-
tificate. Abort on failure.
Check DRL and abort if
Drive ID is found.

Verify D,;, and abort on fail-
ure.

Calculate Hg;y as the signa-
ture of IDgpive||Hy|| Dy using
the host’s private key.

Calculate Bus Key By, as the
128 least significant bits of
x-coord(HyD,).



Comparing the Pre- and Post-specified Peer
Models for Key Agreement

Alfred Menezes and Berkant Ustaoglu

Department of Combinatorics & Optimization, University of Waterloo
{ajmeneze,bustaoglu}@uwaterloo.ca

Abstract. In the pre-specified peer model for key agreement, it is as-
sumed that a party knows the identifier of its intended communicating
peer when it commences a protocol run. On the other hand, a party in the
post-specified peer model for key agreement does not know the identifier
of its communicating peer at the outset, but learns the identifier during
the protocol run. In this paper we compare the security assurances pro-
vided by the Canetti-Krawczyk security definitions for key agreement in
the pre- and post-specified peer models. We give examples of protocols
that are secure in one model but insecure in the other. We also enhance
the Canetti-Krawczyk security models and definitions to encompass a
class of protocols that are executable and secure in both the pre- and
post-specified peer models.

1 Introduction

In 1993, Bellare and Rogaway [I] presented the first formal security model and se-
curity definition for key agreement. The model and associated definitions evolved
over the years, culminating in the 2001 work of Canetti and Krawczyk [4] and its
recent extension by LaMacchia, Lauter and Mityagin [I3]. In all the aforemen-
tioned works, key agreement protocols are analyzed in the so-called pre-specified
peer model wherein it is assumed that a party knows the identifier of its intended
communicating peer when it commences a run of the protocol. That is, it is as-
sumed that the exchange of identifiers, and possibly also the long-term public
keys of the communicating parties, is handled by the application that invokes a
run of the protocol.

In 2002, Canetti and Krawezyk [B] introduced the post-specified peer model
wherein a party is activated to establish a session key knowing only a destination
address (such as the IP address of a server) of the communicating peer, and only
learns the peer’s identifier during the execution of the protocol. According to
[5], this scenario is common in practical settings where the peer’s identifier is
simply unavailable at the outset, or if one party wishes to conceal its identity
from eavesdroppers or active adversaries. The IKE protocols [8I9] (see also [10])
are important examples of key agreement protocols that provide the option of
identity concealment.

In the remainder of this paper we will not consider the identity concealment
attribute of key agreement protocols. We will often shorten ‘pre-specified peer
model’” to ‘pre model’, and ‘post-specified peer model’ to ‘post model’.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 53]68] 2008.
© Springer-Verlag Berlin Heidelberg 2008



54 A. Menezes and B. Ustaoglu

We say that a key agreement protocol designed for one of the pre or post
models is executable in the other model if it can be run in the second model
without requiring any additional message flows (and without making any funda-
mental changes to the protocol description). It is clear that any key agreement
protocol designed for the post model is executable in the pre model. Indeed,
if the peer’s identifier (and long-term public key) is not needed at the start of
the protocol, then the protocol can also be executed given the peer’s identifier.
Canetti and Krawczyk observed that the Xy key agreement protocol is secure in
the post model with respect to the security definition given in [5], but not secure
in the pre model with respect to the security definition given in [4]. Hence, even
though any protocol designed for the post model can be executed in the pre
model, security in the post model of [5] does not guarantee security in the pre
model of [].

In this paper we explore the executability and security in the post model of
key agreement protocols that have been designed for and analyzed in the pre
model. Of course any protocol designed for the pre model can be modified for the
post model by adding message flows which include the identifiers and long-term
public keys of the communicating parties; however such a modification does not
conform to our notion of executability because of the additional message flows.
We provide an example of a key agreement protocol that is secure in the pre
model but is not executable in the post model. We also observe that the HMQV
protocol [IT], which has been proven to be secure in the pre model, is executable
in the post model (without the addition of message flows) but not secure unless
additional measures are taken. These examples illustrate the essential differences
between the two models, and highlight the danger of running in the post model
a protocol that has only been analyzed in the pre model.

It is natural then to ask when a protocol secure in one model is executable
and secure in the other model. We identify a class of modifiable key agreement
protocols that have been designed for the pre model but can be executed with
minimal modifications in the post model. This class includes many of the pro-
tocols that have been proposed in the literature including station-to-station [7],
UM [T9U16], MQV [15], Boyd-Mao-Paterson [2], HMQV [11], KEA+ [14], NAXOS
[13], CMQV [20] and Okamoto [18]. (See [3] for an extensive list of key establish-
ment protocols.) Such protocols have a hybrid description that combine the spec-
ification for the pre model and the specification of the modified protocol suitable
for the post model. We develop a combined model and associated security defini-
tion that aims to simultaneously capture the security assurances (and more) of
the extended Canetti-Krawczyk pre-specified peer model [13] and the Canetti-
Krawczyk post-specified peer model [5]. The combined model has the feature
that if a hybrid key agreement protocol is proven secure in that model, then its
specializations are guaranteed to be secure when run in the pre and post models.

The remainder of this paper is organized as follows. In §2we provide informal
overviews of the Canetti-Krawczyk pre and post models and security definitions
for key agreement. The differences between the two models are explored in 3l
Protocol P is described in §3.1] as an example of a protocol that is secure in the



Comparing the Pre- and Post-specified Peer Models for Key Agreement 55

pre model but not executable in the post model. In §3.2] we describe an attack
on HMQV, demonstrating that the protocol is not secure in the post model.
The Xy protocol, which is an example of a protocol that is secure in the post
model but insecure in the pre model, is revisited in §3.31 Our combined model
and security definition are presented in §4l The NAXOS-C protocol is presented
in §8l as an example of a protocol that is secure in the combined model.

Notation and Terminology. Let G = (g) denote a multiplicatively-written
cyclic group of prime order ¢, and let G* = G\ {1}. The Computational
Di e-Hellman (CDH) assumption in G is that computing CDH(U, V) = ¢*¥
is infeasible given U = ¢“ and V = g¢” where u,v €r [1,q — 1]. The Deci-
sional Di e-Hellman (DDH) assumption in G is that distinguishing DH triples
(g%, g*, g) from random triples (g%, g°, g¢) is infeasible. The Gap Di e-Hellman
(GDH) assumption in G is that the CDH assumption holds even when a CDH
solver is given a DDH oracle that distinguishes DH triples from random triples.

We consider Diffie-Hellman type protocols where the two communicating par-
ties exchange static (long-term) and ephemeral (one-time) public keys. Party
A’s static private key is an integer a €r [1,¢q — 1], and her corresponding static
public key is A = ¢g®. Similarly, party B has a static key pair (b, B), and so on.
A certifying authority (CA) issues certificates that binds a party’s identifier to
its static public key. We do not assume that the CA requires parties to prove
possession of their static private keys, but we do insist that the CA verifies that
static public keys belong to G*. We restrict our attention to protocols where a
party A called the initiator commences the protocol by selecting an ephemeral
key pair and then sends the ephemeral public key (and possibly other data)
to the second party. In our protocols, the ephemeral private key is either a ran-
domly selected integer = € [1,¢— 1] or a randomly selected binary string Z which
is used together with the static private key to derive an integer z € [1,q — 1],
and the corresponding ephemeral public key is X = ¢g*. Upon receipt of X, the
responder B selects an ephemeral private key y or § and sends Y = ¢¥ (and
possibly other data) to A. The parties may exchange some additional messages,
after which they compute a session key. We use Z and R to denote the constant
strings “initiator” and “responder”.

2 Security Definitions for Key Agreement

We provide overviews of the Canetti-Krawczyk pre- and post-specified peer mod-
els for key agreement and the associated security definitions. For full details and
further explanations refer to [4] and [5].

2.1 Pre-specified Peer Model

Communications take place in a multi-party system, where the parties are iden-
tified by A, B C,.... At any given point in time, a party may be engaged in
multiple instances of the protocol, each called a session. A session is created at
A via a message containing at least three parameters (A B ,S), where A is the



56 A. Menezes and B. Ustaoglu

session’s owner, B is the intended peer, and s is a number that is unique among
all sessions owned by A. (A uses s to direct incoming messages to the appropriate
session within /1.) Once created, a session is said to be active and maintains a
session state where session-specific short-lived data such as an ephemeral private
key is stored. The session processes incoming messages and produces outgoing
messages. A session may abort without producing a session key, or may complete
by accepting a session key and erasing its session state.

The adversary M, modeled as a probabilistic Turing machine, controls all
communications between parties as well as the activation of sessions. In order
to model the possible leakage of secret information, M is allowed to issue the
following queries to parties:

— SessionStateReveal: M learns the contents of the session state for a (not yet
completed) session of its choosing. The session can no longer be activated
and stops producing output.

— Expire: M directs a completed session to delete its session key.

— SessionKeyReveal: M learns the session key held by a (completed but un-
expired) session of its choosing.

— Corrupt: M learns all the secret information held by a party of its choosing,
including the party’s static private key, all session states, and all session
keys. The party can no longer be activated and stops producing output.

The adversary’s goal is to distinguish a session key from a random key. Ob-
viously the adversary should not be allowed to learn the session key by trivial
means, for example by asking for the session key via a SessionKeyReveal query.
To this end, a session (A7 B, s) is said to be locally exposed if M issued a Ses-
sionStateReveal or SessionKeyReveal query to that session, or if M issued a
Corrupt query to A before the session expired (this includes the case in which
A is corrupted before the session is created). Moreover, the session (B, A, s) is
defined to be matching to the session (A, B, s), and (A, B, s) is said to be unex-
posed if neither this session nor its matching session are locally exposed. Now,
M selects a session that is completed, unexpired, and unexposed, and issues a
special Test query to that session. (M is not allowed to issue the Test query
more than once.) In response, M is given with equal probability either the ses-
sion key held by the test session or a random key. M can continue to issue
queries, however must ensure that the test session remains unexposed. Finally,
M is said to win its distinguishing game (and thereby break the protocol) if
it guesses correctly whether the key is random or not with success probability
significantly greater than % A key agreement protocol is said to be secure (in
the pre-specified peer model) if (i) uncorrupted parties who complete matching
sessions compute the same session key (except with negligible probability); and
(ii) there is no adversary M who wins the distinguishing game.

2.2 Post-specified Peer Model

The Canetti-Krawczyk post-specified peer model and associated security defini-
tion [5] are essentially the same as in the pre model, but there are two important
differences.



Comparing the Pre- and Post-specified Peer Models for Key Agreement 57

First, a session at A is created via a message containing (at least) three pa-
rameters (/17 d, s), where d is a destination address to which outgoing messages
should be delivered. That is, party A does not know the identifier of its peer
when it starts the session. During the course of the protocol run, A learns the
(alleged) identifier B of the communicating party; this party is referred to as As
peer for that session.

Second, the definition of a matching session is different. Let (A, s) be a session
that has completed with peer B. Then a session (B, s) is said to be matching to
(A, s) if either (i) (B, s) has not yet completed; or (i) (B, s) has completed and
its peer is A. Condition (i) is necessary because the incomplete session (B, s)
may not yet have determined its peer and hence could have been communicating
with (A,s), in which case exposure of (B,s) could possibly reveal non-trivial
information about the session key held by (/1, s).

3 Differences between the Two Models

This section presents three examples to illustrate the differences between the
Canetti-Krawczyk security definitions for key agreement in the pre- and post-
specified peer models. Protocol P is secure in the pre model, but cannot be
executed in the post model. HMQV is an example of a protocol that is secure in
the pre model, and executable but not secure in the post model. The X protocol
is secure in the post model but insecure in the pre model.

3.1 Protocol P

We present a two-pass Diffie-Hellman key agreement protocol P. The protocol
can be proven secure in the pre-specified peer model under the GDH assumption
and where H and Hs are modeled as random functions. (The reductionist secu-
rity argument is elementary but tedious, and hence is omitted.) Observe that the
initiator A cannot prepare the first outgoing message without knowledge of the
peer’s identifier B and static public key B. Hence, unless protocol P is modified
in a fundamental way, it cannot be executed in the post-specified peer model
without additional message flows to exchange identifiers and static public keys.

1. On input (/i, B, s), party A (the initiator) does the following:
(a) Create an active session (A, B, s,T).
(b) Select an ephemeral private key = €g [1,q — 1].
(c) Compute X = g and t4 = H2(B*,Z,s A, B, X).
(d) Send (B, A,s, X ,ta) to B.
2. Upon receiving (B A s, Xt A), party B 3 (the responder) does the following:
(a) Create an active session (B /1 s, R).
(b) Verify that X € G*.
(c) Compute o, = A and verify that t4 = Ha(oy,Z, s, A, B7X).
(d) Select an ephemeral private key y €g [1,q — 1].
(¢) Compute Y = g¥, tp = Hy(0s,R,s,B,A,Y), and k = H(XY, X,Y).
(f) Destroy y and os.



58 A. Menezes and B. Ustaoglu

(g) Send (/1,3,5,1, Y,tp) to
(h) Complete the session (B, A, s, R) and accept k as the session key.
3. Upon receiving (/LB,S,I,Y,tB) party A checks that she owns an active
session with identifier (fl, B, s,7). If so, then A does the following:
(a) Verify that Y € G*.
(b) Verify that tg = Ho(B*, R, s, B, A,Y).
(¢) Compute k = H(Y*, X,Y).
(d) Destroy .
(e) Complete the session (A, B, s,Z) by accepting k as the session key.

A
A,

3.2 HMQYV Protocol

HMQV [11] is an efficient two-pass Diffie-Hellman key agreement protocol that
has been proven to be secure in the pre-specified peer model under the CDH
and KEA1 assumptions and where the hash functions employed are modeled
as random functions[] The following informal description of the protocol omits
some technical details that are not relevant to our analysis

Let H denote a hash function whose outputs are bitstrings of length I, where
[ is half the bitlength of the group order ¢. In HMQV, the initiator A sends
(B, A, X) to B, who responds with (A, B,Y). Party A computes the session key
k= H(o,), where 04 = (YB¢)*t9% and d = H(X, B) and e = H(Y, A). Party
B computes the same session key as k = H(op), where o = (X Ad)v+eb,

Unlike protocol P, HMQV is executable in the post-specified peer model. In-
deed, the initiator can prepare the first message (which essentially consists of the
ephemeral public key X) without knowledge of the peer’s identifier B or static
public key B. It is natural then to ask whether HMQV is secure in the post
model. This is also important because the version of HMQV that is being con-
sidered for standardization by the P1363 working group [I2] does not mandate
that the protocol be executed in the pre model (i.e., there is no requirement that
the communicating parties possess each other’s identifiers and static public keys
prior to a protocol run), and consequently the protocol may in fact be executed
in the post model in applications where the responder’s identifier is not available
to the initiator at the beginning of the protocol run.

We describe an attack which demonstrates that HMQV (without further mod-
ification such as the addition of message flows to exchange identifiers and static
public keys) is not secure in the post model. The attack makes the following plau-
sible assumptions: (i) the group order ¢ is a 160-bit prime and so the outputs of
H have bitlength 80; (ii) the best attack on the CDH problem in G takes approx-
imately 230 steps; (iii) there are at least 22 honest (i.e., uncorrupted) parties;
(iv) a party can select its own identifier; and (v) the certification authority does

! The security definition used in [IT] is stronger than the security definition outlined
in §2.J] in the sense that the adversary is granted certain additional capabilities.
For example, the adversary is allowed to register a static key pair at any time thus
allowing the modeling of attacks by malicious insiders.

2 In particular, we omit session identifiers and assume that all static and ephemeral
public key are fully validated, i.e., verified as belonging to G*.



Comparing the Pre- and Post-specified Peer Models for Key Agreement 59

not require parties to prove knowledge of the static private keys corresponding
to their static public keys during registrationﬁ The attack proceeds as follows.

1. The adversary M induces A to create a session with a destination address d
controlled by M. In response, A selects ephemeral key pair (x, X) and sends
(d, A, X).

2. M intercepts (d, A, X) and does the following:

(a) Compute S = {(C, H(X,()) | C is an honest party}.
(b) Select an identifier M (not the same as the identifier of an honest party)
such that (B, H(X,M)) € S for some B.
(¢) Select M = B as M’s static public key (note that M does not know the
corresponding private key).
(d) Send (B, 4,X) to B.
3. M intercepts B’s reply (A, B, Y') and sends (A, M, Y) to A.

Party A computes the session key k = H(c,), where o4 = (Y M¢)*td and
d= H(X,M) and e = H(Y, A). Party B computes the session key k' = H (o),
where o5 = (XA?)¥T¢® and d' = H(X,B) and ¢’ = H(Y, A). Since d' = d,
e = e, and M = B, we have 04 = op and hence ¥’ = k. The problem is that
while B correctly believes that k is shared with A, party A mistakenly believes
that k is shared with M. Thus M has successfully launched an ‘unknown key-
share’ or ‘identity misbinding’ attack on HMQV in the post model. The expected
running time of the attack is about 250 (for step 2b). Since most of the work
has to be done online, the attack cannot be considered practical. Nevertheless
it demonstrates that HMQV does not attain an 80-bit security level in the post
model as it presumably does in the pre model.

The mechanisms of the attack were outlined in Remark 7.2 of [II]. However,
the adversary considered in [I1] operates in a different setting, namely the pre
model where party A precomputes and stores her ephemeral public keys X which
are then inadvertently leaked to M before A uses them in a session. Three coun-
termeasures were proposed in [II] for foiling this attack: (i) increase the output
length of H to 160 bits; (ii) include the identifiers A, B in the key derivation
function whereby the session key is computed as k = H(o, A, B), and (iii) in-
clude random nonces (which are not precomputed and stored) in the derivation
of exponents d and e, whereby the exponents are computed as d = H(X, B,v4)
and e = H(Y, A,VB) where v4 and vp are A’s and B’s nonces, respectively.
Countermeasures (i) and (ii) are successful in thwarting the attack described
above on HMQYV in the post model. However, it can easily be seen that counter-
measure (iii) does not prevent the attack in the post model, thus demonstrating
that the two attacks are indeed different. The reason countermeasure (iii) fails
is that, unlike in the pre model, the peer’s identifier is not known to A when she
creates the session in the post model.

3 In [I1] it is noted that the HMQV security proof does not depend on the CA per-
forming any proof-of-possession checks.



60 A. Menezes and B. Ustaoglu

3.3 X Protocol

The X, protocol [5] is a simplified version of one of the IKE key agreement
protocols. In the protocol description below, PRF is a pseudorandom function
family, MAC is a message authentication code algorithm, and sig 4 and sigy are
the signing algorithms for A and B, respectively.

1. Party A (the mltlator) selects an ephemeral key pair (z, X), initializes the
session identifier to (A, s), and sends (d,da,s,X). Here da and dp are
destination addresses for A and B, respectively.

2. Upon receipt of (ciB,cf 4,8, X), B (the responder) selects an ephemeral key
pair (y,Y), and computes 0 = X¥, k = PRF,(0), and ¥’ = PRF,(1). B
then destroys y and o, initializes the session identifier to (37 s), and sends
my = (da, B, s,Y,sigg(R,5,X,Y),MACy, (R, s, B)).

3. Upon receiving my, A computes ¢ = Y*, k = PRF,(0), and ¥’ = PRF,(1).
A then verifies the signature and MAC tag in m,, and sends mg = (B 3 /1
siga(Z,s,Y, X),MACy, (Z, s, A)) Finally, A accepts the session key k Wlth
peer B , and erases the session state.

4. Upon receiving mo, B verifies the signature and MAC tag in mo, accepts
the session k with peer 121, and erases the session state.

In [5], the Xy protocol is proven secure in the post-specified peer model pro-
vided that the DDH assumption holds in G and that the PRF, MAC, and sig
primitives are secure. However, the following attack described in [5] shows that
Xy is not secure in the pre-specified peer model.

1. Create a session (A, B, s) at A.

2. Intercept A s outgoing message (B,A,s,X) and send (B, M, s, X) to B.

3. Intercept B’s response (M, B,s,Y, SB,tB) where Sp = slgB(R $,X,Y) and

= MACy (R, s ,B), and send (A, B,s,Y, Sp.tp) to A.

4. The session (A B ,8) at A completes and accepts k as the session key.

5. Intercept and delete A’s final message, and issue a SessionStateReveal query
to the session (B, M, s) thus learning k and k.

6. Issue the Test query to the session (/17 B, s) and use knowledge of k to win
the distinguishing game.

Notice that the attack is legitimate in the pre-specified peer model since the
exposed session (B, M, s) is not matching to the test session (A, B, s). On the
other hand, such an attack is not permitted in the post-specified peer model
because in step 5 of the attack the session (B, s) is still incomplete and therefore
matching to the Test session (and thus cannot be exposed). This is all rather
counterintuitive since one would expect that if a protocol is secure when the
initiator does not have a priori knowledge of the peer’s identifier, then it should
remain secure when the peer’s identifier is known at the outset.

One feature of both the pre and post models is that an exposed session does
not produce any further output. In practice, however, one might desire the as-
surance that a particular session is secure even if the adversary learns some
secret state information (such as an ephemeral private key) associated with that



Comparing the Pre- and Post-specified Peer Models for Key Agreement 61

session or its matching session. For this reason, the security models in recent
papers such as [I1], [I3] and [20] permit exposed sessions to continue producing
output, and furthermore allow the adversary to issue a SessionStateReveal query
(or its equivalent) to the Test session and its matching session (cf. §43)). How-
ever, if the adversary M were equipped with these extra capabilities, then the
Yo protocol would be insecure in both the pre and post models since M could
issue a SessionStateReveal query to (fi, s) after step 1 to learn x and thereafter
compute the session key. Furthermore, the X protocol falls in the post model to
the following analogue of the attack described above. The attack is a little more
realistic than the attack described above in the pre model because we now as-
sume that the SessionStateReveal query does not yield the session key k (which
may be stored in secure memory). M’s actions are the following:

1. Create a session (fL s) at A with peer destination address dp.

2. Intercept A’s outgoing message (ch,cZA, s, X) and send (cZB, dar. s, X) to B.

3. Intercept B’s response (dM,B,s,Y,SB,tB), where Sp = siggp(R,s, X,Y)
and tg = MACy (R,s,é)7 and send (dA,B,s,Y, Sp,tp) to A.

4. Intercept A’s final message and delete it. The session (A, s) completes with
peer B and session key k.

5. Issue a SessionStateReveal query to the incomplete session (B, s) and learn
the MAC key &'.

6. Compute Sy =sigy,(Z,s,Y, X) and tpr = MACy, (I7s7]\>[), and send
(B7M,S, SMﬂfM) to B

The session (37 s) completes with peer M and session key k. Thus M has suc-
cessfully launched an unknown key-share attack on Xy in the post model. The
two attacks demonstrate that a protocol proven secure in the post-specified peer
model of [5] may no longer be secure if exposed sessions are allowed to continue
producing output.

4 Combining the Two Models

In this section we introduce the notion of a modifiable key agreement protocol
— protocols designed for the pre-specified peer model but which can be adapted
with minor changes to be executable in the post-specified peer model. We also
introduce the notion of a hybrid key agreement protocol, which simultaneously
describes a modifiable protocol and its modification suitable for the post model.
We then develop a security definition that, if satisfied by a hybrid protocol,
guarantees that the associated protocols are secure in the pre and post models.

4.1 Modifiable Protocols

Consider a key agreement protocol /I designed for the pre model where the first
outgoing message prepared by the initiator A is of the form (B, A, RoundOne).
Then IT is said to be modifiable if RoundOne can be computed before the session



62 A. Menezes and B. Ustaoglu

is created at /1; in particular, this means that RoundOne does not depend on
B’s identifier or static public key.

A modifiable protocol IT can be easily adapted for the post-specified peer
model by incorporating identity establishment into the protocol flows. The re-
quired changes are the following. The initiator fl, who is activated to create a
session with a destination address d (and without knowledge of the recipient’s
identifier or static public key), sends (cf, A, RoundOne) as her first outgoing mes-
sage. Since this message contains the identifier fl, the responder has all the in-
formation he needs to prepare his first outgoing message as specified by II. The
responder appends his identifier to this outgoing message (if the message does
not already contain the identifier). After A receives this reply, both A and the
responder can proceed with IT without any further modifications. Notice that
the modified protocol II’ has the same number of message flows as the original
protocol IT; except for appending a public value to the first outgoing message,
the remainder of the protocol remains the same.

As mentioned in Il the class of modifiable key agreement protocols includes
many of the protocols that have been proposed in the literature. However, not
all key agreement protocols are modifiable; for example, protocol P defined in
§3.1] is not modifiable. Furthermore, as demonstrated by the attack on HMQV
in §3.2 security of a modifiable protocol IT in the pre model does not imply
security of the modified protocol IT’ in the post model.

4.2 Hybrid Protocols

Suppose that IT is a modifiable key agreement protocol, and I’ its modification
suitable for the post model. The specification of IT and II’ can be combined as
described below, resulting in a protocol IT called a hybrid protocol.

We use A to denote either an identifier A or a destination address d that can
be used to send messages to some party A whose identifier is not known to the
sender; note that the address d may not necessarily be under A’s control. In the
description of IT, a session is created at initiator A via a message containing
(A, B). The first outgoing message from A is (B, A, RoundOne). The responder
B includes the identifiers A and B in his response, and the remainder of the
protocol description is the same as for I1.

A hybrid protocol I can be specialized for the pre model by using an identifier
B for B. Protocol II can also be specialized for the post model by using a
destination address for B. An example of a hybrid protocol is given in §5l

4.3 Combined Security Model

This section describes a “combined” model and associated security definition
that aims to simultaneously capture the security assurances of the pre- and
post-specified peer models. That is, if a hybrid protocol I is proven secure with
respect to the new definition, then its specializations IT and II’ are guaranteed
to be secure when run in the pre and post models, respectively. More precisely,
when run in the pre model, IT satisfies the extended Canetti-Krawczyk (eCK)
definition [13] suitably enhanced to capture attacks where an adversary is able to



Comparing the Pre- and Post-specified Peer Models for Key Agreement 63

learn ephemeral public keys of parties before they are actually used in a protocol
session] Such attacks were considered by Krawczyk [I1], but were not incorpo-
rated into his security model. When run in the post model, the modified protocol
IT’ satisfies a strengthened version of the Canetti-Krawezyk definition from [5],
suitably enhanced to offer security assurances similar to the eCK definition (in-
cluding resistance to attacks where the adversary learns ephemeral private keys
of the session being attacked) and to capture attacks where the adversary learns
ephemeral public keys before they are actually used.

Instead of using pre-determined session numbers s to identify sessions (cf.
§2.10)), our session identifiers will consist of the identities of the communicating
parties together with a concatenation of the messages exchanged during a proto-
col run. As shown in [6], this notion of session identifier yields a security model
for key agreement that is at least as strong as other security models.

Notation. We assume that messages are represented as binary strings. If m is a
vector then #m denotes the number of its components. We say that two vectors m1
and mg are matched, written m; ~ ma, if the first t = min{#m;, #ms} compo-
nents of the vectors are pairwise equal as binary strings. We write A = D if either
D = Aorif D is a destination address that can be used to send messages to A.

Session Creation. A party A can be activated via an incoming message to
create a session. The incoming message has one of the following forms: (i) (A, B)
or (ii) (A, B, In). If A was activated with (A, B) then A is the session initiator;
otherwise A is the session responder.

Session Initiator. If A is the session initiator then A creates a separate session
state where session-specific short-lived data is stored, and prepares a reply Out
that includes an ephemeral public key X . The session is labeled active and iden-
tified via a (temporary and incomplete) session identifier s = (A, B, Z, Comm)
where Comm is initialized to Out. The outgoing message is (B, A, Out).

Session Responder. If A is the session responder then A creates a separate
session state and prepares a reply Out that includes an ephemeral public key
X. The session is labeled active and identified via a (temporary and incomplete)
session identifier s = (/1, B, R, Comm) where Comm = (In, Out). The outgoing
message is (é, A, T, In, Out).

Session Update. A party A can be activated to update a session via an incom-
ing message of the form (A, B, role, Comm, In), where role € {Z,R}. Upon re-
ceipt of this message, A checks that she owns an active session with identifier s =
(A, B, role, Comm) or s = (A, d, role, Comm) where d is a destination address;
except with negligible probability, A can own at most one such session. If no such
session exists then the message is rejected. If a session s = (/1,(2, role, Comm)
or s = (A, B, role, Comm) exists, then in the former case A updates the session

4 As discussed in [1], such attacks may be possible in situations where a party pre-
computes ephemeral public keys in order to improve on-line performance.



64 A. Menezes and B. Ustaoglu

identifier to s = (A, B, role, Comm); in either case, A updates s by appending In
to Comm. If the protocol requires a response by A, then A prepares the required
response Out; the outgoing message is (B , A, role, Comm, Out) where role is B’s
role as perceived by A, and the session identifier is updated by appending Out to
Comm. If the protocol specifies that no further messages will be received, then
the session completes and accepts a session key.

Matching Sessions. Since ephemeral public keys are selected at random on a
per-session basis, session identifiers are unique except with negligible probability.
Party A is said to be the owner of a session (A, B, %, ). For a session (A, B, %, %)
we call B the session peer ; together A and B are referred to as the communicating
parties. Let s = (A B, ro]eA7 Commy) be a session owned by A where roley €
{Z,R}. A session s* (C D , rolec, Commc ), where rolec € {I R}, is said to
be matching to s if C= B, A= D roley # rolec, and Comme ~ Commy. It
can be seen that the session s, except with negligible probability, can have more
than one matching session if and only if Comm, has exactly one component,
i.e., is comprised of a single outgoing message.

Aborted Sessions. A protocol may require parties to perform some checks on
incoming messages. For example, a party may be required to perform some form
of public key validation or verify a signature. If a party is activated to create a
session with an incoming message that does not meet the protocol specifications,
then that message is rejected and no session is created. If a party is activated
to update an active session with an incoming message that does not meet the
protocol specifications, then the party deletes all information specific to that
session (including the session state and the session key if it has been computed)
and aborts the session; such an abortion occurs before the session identifier can
be updated. At any point in time a session is in exactly one of the following
states: active, completed, aborted.

Adversary. The adversary M is modeled as a probabilistic Turing machine
and controls all communications. In particular, this means that A = d for all
parties A and all destination addresses d. Parties submit outgoing messages to
M, who makes decisions about their delivery. The adversary presents parties
with incoming messages via Send(message), thereby controlling the activation
of parties. The adversary does not have immediate access to a party’s private
information, however in order to capture possible leakage of private information
M is allowed to make the following queries:

— StaticKeyReveal(A): M obtains A’s static private key.

— EphemeralKeyReveal(s): M obtains the ephemeral private key held by ses-
sion s[| We will henceforth assume that M issues this query only to sessions
that hold an ephemeral private key.

® The EphemeralKeyReveal query can be made functionally equivalent to the Session-
StateReveal query by defining the ephemeral private key to consist of all ephemeral
secret data that a session may hold.



Comparing the Pre- and Post-specified Peer Models for Key Agreement 65

— SessionKeyReveal(s): If s has completed then M obtains the session key held
by s. We will henceforth assume that M issues this query only to sessions
that have completed.

— Ephemera]Pub]icKeyReveal(A): M obtains the ephemeral public key that
A will use the next time a session is created within A.

— Estab]isbParty(A, A): This query allows M to register an identifier A and a
static public key A on behalf of a party. The adversary totally controls that
party, thus permitting the modeling of attacks by malicious insiders. Parties
that were established by M using EstablishParty are called corrupted or
adversary controlled. If a party is not corrupted it is said to be honest.

Adversary Goal. To capture the indistinguishability requirement, M is al-
lowed to make a special query Test(s) to a ‘fresh’ session s. In response, M is
given with equal probability either the session key held by s or a random key.
M meets its goal if it guesses correctly whether the key is random or not. Note
that M can continue interacting with the parties after issuing the Test query,
but must ensure that the test session remains fresh throughout M’s experiment.

Definition 1. Let s be the identifier of a completed session, owned by an honest
party A with peer B, who is also honest. Let s* be the identifier of the matching
session of s, if it exists. Define s to be fresh if none of the following conditions
hold:

1. M issued SessionKeyReveal(s) or SessionKeyReveal(s*) (if s* exists).
2. s* exists and M issued one of the following:
(a) Both StaticKeyReveal(A) and EphemeralKeyReveal(s).
(b) Both StaticKeyReveal(B) and EphemeralKeyReveal(s*).
3. s does not exist and M issued one of the following:
(a

) Both StaticKeyReveal(A) and EphemeralKeyReveal(s).
(b) StaticKeyReveal(B).

Definition 2. A key agreement protocol is secure if the following conditions
hold:

1. If two honest parties complete matching sessions then, except with negligible
probability, they both compute the same session key.

2. No polynomially bounded adversary M can distinguish the session key of a
fresh session from a randomly chosen session key, with probability greater
than ; plus a negligible fraction.

5 NAXOS-C Protocol

In this section we present the hybrid version of the NAXOS-C key agreement
protocol, which is essentially the NAXOS protocol of [I3] augmented with key
confirmation. In the protocol description, A is the security parameters, and H :
{0,1}* — {0,1}* x {0,1}*, Hy : {0,1}* — [1,¢ — 1], and Hy : {0,1}* — {0,1}*
are hash functions. NAXOS-C can be specialized to run in either the pre or the



66 A. Menezes and B. Ustaoglu

post model. Moreover, it can be proven secure in the combined model of §4.3|
provided that the GDH assumption holds in G and that the hash functions H,
H, and Hy are modeled as random functions; a reductionist security argument
can be found in the full version of this paper [I7]. Hence NAXOS-C is secure in
both the pre- and post-specified peer models.

The purpose of presenting the NAXOS-C protocol is to demonstrate that the
security definition of §4.3]is useful (and not too restrictive) in the sense that there
exist practical protocols that meet the definition under reasonable assumptions.
The protocol was designed to allow a straightforward (albeit tedious) reduction-
ist security argument, and has not been optimized. In particular, not all the
inputs to the hash functions H, H; and Hs may be necessary for security, and
in practice Hy would be implemented as a MAC algorithm (with secret key k').

1. Party A (the initiator) does the following:
(a) Select an ephemeral private key # € {0,1}*, and compute z = H,(a, )
and X = ¢g”.
(b) Destroy .
(¢) Initialize the session identifier to (4, B,Z, X).
(d) Send (B, A, X) to B.
2. Upon receiving (B, A, X), party B (the responder) does the following:
(a) Verify that X € G*.
(b) Select an ephemeral private key 7 €g {0,1}*, and compute y = H (b, 9)
and Y = g¥.

(c) Compute o = AY, 05 = X® and 0, = XV.

(d) Compute (k, k") :H(A7 B,X,Y, 01,09, o.)andtp :Hg(k’,’R,B, Ay, X).
(e) Destroy ¢,y,01,02 and o,.

(f) Initialize the session identifier to (B, A, R, X,Y,tp).

(g) Send (A, B, X,Y,tp) to A.

3. Upon receiving (/Al, B, XYt B), party A checks that she owns an active ses-
sion with identifier (A7 B.Z, X). If so, then A does the following:
(a) Verify that Y € G*.

(b) Compute x = Hy(a,Z), o1 =Y* 09 = B* and 0, = Y*.

(¢) Compute (k, k') = H(A, B, X,Y,01,09,0.).

(d) Destroy &,x, 01,02 and o..

(e) Verify that tz = Ho(K', R, B, A, Y, X).

(f) Compute t4 = Ho(K',Z,A, B, X,Y).

(g) Destroy k'.

(h) Send (B, A, X,Y,tp,ta) to B.

(i) Update the session identifier to (fi, B,7,X.Y, tp,ta) and complete the

session by accepting k as the session key.

4. Upon receiving (37 /1, X,Y,tp,ta), party B checks that he owns an active
session with identifier (37 AR, XY, tp). If so, then B does the following:
(a) Verify that t4 = Ho (K, Z, A, B, X,Y).

(b) Destroy k'
(c) Update the session identifier to (B, AR, XY, tg, t4) and complete the
session by accepting k as the session key.



Comparing the Pre- and Post-specified Peer Models for Key Agreement 67

6 Conclusions

We compared the Canetti-Krawczyk pre- and post-specified peer models for key
agreement, and demonstrated that security in one model does not guarantee se-
curity or even executability in the other model. We also presented a combined
security model and definition that simultaneously encompasses strengthened ver-
sions of the Canetti-Krawczyk definitions. The new definition is stronger in that
it permits the adversary to learn ephemeral public keys before they are used, and
to learn secret information from the session being attacked. Useful directions for
future research would be the development of an optimized protocol that satisfies
the new security definition, perhaps modified to allow for identity concealment,
and the extension of the definition to capture a wider class of key agreement
protocols.

References

1. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232-249. Springer, Heidelberg
(1994), http://www.cs.ucdavis.edu/~rogaway /papers/eakd-abstract.html

2. Boyd, C., Mao, W., Paterson, K.: Key agreement using statically keyed authenti-
cators. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089,
pp. 248-262. Springer, Heidelberg (2004)

3. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Springer, Heidelberg (2003)

4. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for build-
ing secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp.
453-474. Springer, Heidelberg (2001), |http://eprint.iacr.org/2001/040

5. Canetti, R., Krawczyk, H.: Security analysis of IKE. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 143-161. Springer, Heidelberg (2002),
http://eprint.iacr.org/2002,/120

6. Choo, K., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based proof
models for key establishment protocols. In: Roy, B. (ed.) ASTACRYPT 2005. LNCS,
vol. 3788, pp. 585-604. Springer, Heidelberg (2005)

7. Diffie, W., van Oorschot, P., Wiener, M.: Authentication and authenticated key
exchanges. Designs, Codes and Cryptography 2, 107-125 (1992)

8. Harkins, D., Carrel, D.: The internet key exchange (IKE)., RFC 2409, Internet
Engineering Task Force (1998)

9. Kaufman, C. (ed.): Internet key exchange (IKEv2) protocol, RFC 4306, Internet
Engineering Task Force (2005)

10. Krawczyk, H.: SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400-425. Springer, Heidelberg (2003)

11. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol., Cryp-
tology ePrint Archive, Report 2005/176, http://eprint.iacr.org/2005/176; In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546-566. Springer, Hei-
delberg (2005)

12. Krawczyk, H.:“HMQV in IEEE P1363”, submission to the IEEE P1363 working
group, July 7 (2006), http://grouper.ieee.org/groups/1363/P1363-Reaffirm/
submissions/krawczyk-hmqgv-spec.pdf


http://www.cs.ucdavis.edu/~rogaway/papers/eakd-abstract.html
http://eprint.iacr.org/2001/040
http://eprint.iacr.org/2002/120
http://eprint.iacr.org/2005/176
http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/krawczyk-hmqv-spec.pdf
http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/krawczyk-hmqv-spec.pdf

68

13.

14.

15.

16.

17.

18.

19.

20.

A. Menezes and B. Ustaoglu

LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1-16. Springer, Heidelberg (2007)

Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 378-394. Springer, Heidelberg (2006)

Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for
authenticated key agreement. Designs, Codes and Cryptography 28, 119-134 (2003)
Menezes, A., Ustaoglu, B.: Security arguments for the UM key agreement protocol
in the NIST SP 800-56A standard. In: Proceedings of ASTACCS 2008, pp. 261-270.
ACM Press, New York (2008)

Menezes, A., Ustaoglu, B.: Comparing the pre- and post-specified peer models for
key agreement, Technical Report CACR 2008-07, University of Waterloo (2008),
http://www.cacr.math.uwaterloo.ca

Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASTACRYPT 2007. LNCS, vol. 4833, pp. 474-484.
Springer, Heidelberg (2007)

SP 800-56A Special Publication 800-56A, Recommendation for Pair-Wise Key Es-
tablishment Schemes Using Discrete Logarithm Cryptography, National Institute
of Standards and Technology (March 2006)

Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS. Designs, Codes and Cryptography 46, 329-342 (2008)


http://www.cacr.math.uwaterloo.ca

Efficient One-Round Key Exchange in the
Standard Model*

Colin Boyd!, Yvonne Cliff!, Juan Gonzalez Nieto!, and Kenneth G. Paterson?

! Information Security Institute,
Queensland University of Technology,

GPO Box 2434 Brisbane Qld 4001, Australia
y.cliff@isi.qut.edu.au, {c.boyd,j.gonzaleznieto}@qut.edu.au
2 Information Security Group,

Royal Holloway University of London,

Egham, Surrey TW20 0EX, U.K.

Kenny.Paterson@rhul.ac.uk

Abstract. We consider one-round key exchange protocols secure in
the standard model. The security analysis uses the powerful security
model of Canetti and Krawczyk and a natural extension of it to the
ID-based setting. It is shown how KEMs can be used in a generic way
to obtain two different protocol designs with progressively stronger
security guarantees. A detailed analysis of the performance of the
protocols is included; surprisingly, when instantiated with specific KEM
constructions, the resulting protocols are competitive with the best
previous schemes that have proofs only in the random oracle model.

Keywords: Key exchange, standard model.

1 Introduction

There has been a recent rapid growth of interest in efficient cryptographic prim-
itives of all kinds that carry proofs in the standard model. Avoiding the random
oracle model (ROM) or generic group model is to be preferred, given the known
problems with instantiating these models in practice [8]. However, the usual price
to be paid for working in the standard model is a loss of efficiency.

This paper initiates the systematic study of key exchange protocols whose
security can be analyzed in the standard model. Our focus here is on two-party,
one-round protocols — protocols in which only two message flows are required to
securely establish a key between two parties. We provide two related, yet distinct,
approaches to building such protocols using KEMs [1], both in the ID-based set-
ting and the traditional PKI-based setting. Our security proofs use the Canetti-
Krawczyk model (appropriately adapted for the identity-based case), which is
sufficiently powerful to allow the capture of a variety of security properties in-
cluding basic session key security, key compromise impersonation resistance, and
various types of forward security.

* See [6] for the full version of this paper.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 6983] 2008.
© Springer-Verlag Berlin Heidelberg 2008



70 C. Boyd et al.

In the identity-based setting, there is no shortage of protocols with security
analysis in the ROM, with Chen, Cheng and Smart [I0] providing a useful survey
and comparison of these. Our protocols appear to be the first explicit construc-
tions that are proven secure in the standard model in this setting. A recent
preprint [22] also considers ID-based key exchange in the standard model, but
the security analysis therein is incomplete — we comment in more detail on this
below. We consider the instantiation of our ID-based protocol designs with a
variety of suitable concrete KEM components. These are derived from ID-based
KEMs of Kiltz [14], Kiltz-Galindo [16] and Gentry [12]. By modifying these to
operate in the setting of asymmetric pairings and ordinary elliptic curves, we are
able to produce concrete ID-based protocols with security proven in the stan-
dard model that are only 2.5 times slower than the most efficient protocols with
security established in the ROM, the comparison being made on elliptic curves
with a 128-bit security level.

In the PKI setting we also obtain efficient, one round, concrete protocol designs
in the standard model, which compare favorably with the protocols of Jeong, Katz
and Lee [13], Krawczyk [18] and Okamoto [2I] which are to our knowledge the only
one-round protocols secure in the standard model. The protocols are reasonably
efficient even when compared to the best ROM protocols. For example, they can be
instantiated with standard model KEMs to yield protocols with a computational
increase of a factor around 3 when compared with HMQV [19].

Our first protocol design is the most efficient of the two, and provides key-
compromise impersonation (KCI) resistance but not forward secrecy (FS). The
basic idea of our first protocol design is very simple: the two parties simply send
each other a random secret value using the IB-KEM and then use a randomness
extractor to derive a session key from the combined secrets. Our second protocol
design is based on the first, but adds an independent Diffie-Hellman exchange
to achieve forward secrecy. It also achieves KCI resistance.

1.1 Related Work

Following the development of practical schemes for identity-based encryption
many other identity-based primitives have been designed; due to their practical
importance, these have included many key exchange protocols. Chen et al. [10]
have provided a useful survey and comparison of work to date on identity-based
key exchange.

Initially all security proofs for identity-based primitives relied on the random
oracle model. More recently there has been a focus on providing new identity-
based encryption (IBE) and identity-based key encapsulation (IB-KEM) schemes
with security proofs in the standard model. Recent and quite efficient proposals
include those of Waters [23], Kiltz [14], Gentry [12] and Kiltz—Galindo [T6JI7].

Up until now, all proofs for identity-based key exchange protocols have contin-
ued to rely on the ROM, with the exception [22] noted. However, although Wang
et al. [22] propose three protocols, a proof for only one is provided; the other
two proofs supposedly use similar techniques. The protocol with a claimed proof
applies a key derivation function Hs to the shared secret, exchanged messages



Efficient One-Round Key Exchange in the Standard Model 71

and identities. No properties of the key derivation function are stated or used
in the proof; indeed the proof ignores the presence of Hy altogether. However,
without the key derivation function, the protocol is completely insecure, because
it is based on the CPA (rather than CCA) version of Gentry’s IB-KEM [12] and
so has malleable messages. This malleability is easily exploited to find attacks
which break the security of the protocol. The problems in the paper of Wang et
al. [22] illustrate that it is not hard to devise ID-based protocols that look secure
in the standard model but making the proofs work is not always so simple.

We note too that it is relatively straightforward to obtain standard-model se-
cure key exchange protocols (in both settings) using the authenticator approach
of Canetti-Krawczyk [9], by working with standard-model-secure cryptographic
primitives. The resulting protocols can be quite computationally efficient, but
generally require more than one round of communication. A detailed study of
such protocols is deferred to our future work.

In the normal public key model, Jeong et al. [I3], proposed a protocol, called
TS3, which is one-round and proven secure in the standard modelTS3 is a Diffie-
Hellman (DH) key exchange authenticated using a MAC keyed under the (static)
DH of the long term keys of the two users. TS3 provides (weak) forward secrecy,
but fails to achieve KCI resistance — a consequence of the static key used for au-
thentication being the same for both parties. Interestingly, the ID-version of T'S3,
appears to be limited to be only secure in the ROM. An ID-based version of TS3
secure in the standard model would imply a non-interactive ID-based key estab-
lishment protocol also secure in the standard model, which to date is not known.
Even if we had such a primitive, the protocol would still not be KCI resistant.

More recently and closely related to our work, Okamoto [2I] has proposed
a one-round PKI-based protocol also secure in the standard model, which pro-
vides both (weak) forward secrecy and KCI resistance. The main advantage of
our protocols over Okamoto’s is that ours are generic. They can be instantiated
using any combination of KEMs as long as they are CCA secure. Okamoto’s
protocol is highly specialised and the proof does not seem to generalise easily.
Additionally Okamoto’s key derivation function needs a non-standard notion of
pseudo-random function security. Okamoto’s proof is in the extended Canetti-
Krawczyk (eCK) security model proposed by [20], while our proofs are on the
Canetti-Krawczyk (CK) model, with the modifications by Krawcyzk [19] to cap-
ture KCI security and weak FS. The difference between the two models is rather
subtle and is discussed in the full version of this paper [G]. However, we remark
now that contrary to Okamoto’s statement in his paper, the eCK model is not
stronger than the CK model, i.e. security in the eCK model does not imply se-
curity in the CK model. Furthermore it is arguable whether the eCK adversarial
model is more realistic than the CK one.

2 Preliminaries

In this section we present standard definitions and results needed in the rest of
the paper.



72 C. Boyd et al.

Definition 1 (Min-entropy). Let X be a probability distribution over A. The
min-entropy of X is the value

min- ent(X) = mingc 4.pyy [w#o(—logg(PrX [z])) (1)
(Note that if X has min-entropy ¢ then for all z € A, Pry[z] <27%)

Definition 2 (Strong randomness extractor). A family of e ciently com-
putable hash functions H = {h,, : {0,1}" — {0, 1}*|x € {0,1}?} is called a strong
(m, €)-randomness extractor, if for any random variable X over {0,1}"™ that has
min-entropy at least m, if x is chosen uniformly at random from {0,1}¢ and
R is chosen uniformly at random from {0, 1}*, the two distributions (, h.. (X))
and (k, R) have statistical distance ¢, that is

> [Pr(hn(X) =a] - Pr[R=2a]| =
z€{0,1}F
To implement the randomness extraction function, one could apply the work of
Chevassut et al. [11] to use a pseudo-random function as a randomness extractor.

Definition 3 (Pseudorandom Function Family (PRF)). Let F = {f;}scs
be a family of functions for security parameter & € N and with seed s € S = S(k).
Let C be an adversary that is given oracle access to either Iy for s €g K or a
truly random function with the same domain and range as the functions in F.
F is said to be pseudorandom if C’s advantage in distinguishing whether it has
access to a random member of F or a truly random function is negligible in %,
for all polynomial-time adversaries C. That is,

Advl}jcmnd(k) _ |Pr[CFb()(1k) — 1} —_ Pr[CRand(-)(lk) = 1“
is negligible in k.

Functions that are proven to be pseudorandom include CBC-MAC [4] (provided
the underlying block cipher is a secure pseudorandom permutation family and
the input length is constant) and HMAC [2] (provided the compression function
is a PRF).

Assumption 1 (Decisional Diffie-Hellman (DDH)) Let F be a cyclic
group of order p’ generated by an element f. Consider the set F? = F x F x F
and the following two probability distributions over it:

Re = {(f% f°, f°) for a,b,c €r Z, } (2)
and

DHp = {(f* f° f°) for a,b € Z, } (3)

We say the Decisional Diffie-Hellman (DDH) Assumption holds over F' = (f) if
the two distributions R and DHp are indistinguishable by all polynomial-time
adversaries D. More precisely, for k = |p/|

Advi'p (k) = |Pr[D(1%, p) = 1|p €g DHp] — Pr[D(1%,p) = 1|p € RF]|

is negligible in k.



Efficient One-Round Key Exchange in the Standard Model 73

Definition 4 (ID-based KEM). An IB-KEM & = (KeyGen, KeyDer,Enc, Dec)
consists of four polynomial-time algorithms:

— (pk, ) €r KeyGen(1%), given the security parameter k € N, returns a master
public key, pk, and master secret key «;

— d;q €r KeyDer(pk, «, id) generates a private key corresponding to the identity
id.

— (C,K) €r Enc(pk,id) outputs a key K € K (the key space) and an encap-
sulation (ciphertext) C' of the key under the identity id;

— K = Dec(pk,d;q,C) outputs key K corresponding to the encapsulation C.

Our definition of security for an identity-based key-encapsulation mechanism
(IB-KEM) scheme is based upon that of Kiltz and Galindo [16].

Definition 5 (IB-KEM-CCA Security). The security of an IB-KEM
scheme & = (KeyGen, KeyDer, Enc, Dec) is defined using the following exper-
iment.

Experiment Expi;;‘kemfcca(k)

(pk, ) €r KeyGen(1¥)

(id*, state) €g ACke0er):O0ec) (find, pk)
K er K

(C*, K}) €r Enc(pk,id™)

Y €R {07 1}

K* =K}

' €r AOKewer():Ooecl) (guess, K*, C*, state)
If v # ~' then return O else return 1

where the oracles and advantage of A are defined as follows:

Okeyper(id) = KeyDer(pk, v, id) (where id + id*)
Opecid, C) = Dec(pk, KeyDer(pk, o, id), C') (where id # id* or C' # C*)

The advantage of A in the above experiment is:
Ao )  [opr [Bxpln—en(iy = 1] 1]

£ is secure against adaptively-chosen ciphertext attacks if Adv?}kem‘“a(l@) is

a negligible function in & for all polynomial-time adversaries A.

3 Canetti-Krawczyk Model

In this section the CK approach is reviewed. Further details of the model can be
found in the original papers [3[9].

In the CK model a protocol 7 is modeled as a collection of n programs run-
ning at different parties, P, ..., P,. Each program is an interactive probabilistic
polynomial-time (PPT) machine. Each invocation of 7 within a party is defined



74 C. Boyd et al.

to be a session, and each party may have multiple sessions running concurrently.
The communications network is controlled by an adversary A, also a PPT ma-
chine, which schedules and mediates all sessions between the parties. When first
invoked within a party, a key exchange protocol 7 calls an initialization function
that returns any information needed for the bootstrapping of the cryptographic
authentication functions. After this initialization stage, the party waits for acti-
vation. A may activate a party P; in two ways:

1. By means of an establish-session(P;, P;, s) request, where P; is another party
with whom the key is to be established, and s is a session-id string which
uniquely identifies a session between the participants.

2. By means of an incoming message m with a specified sender P;.

Upon activation, the parties perform some computations, update their internal
state, and may output messages together with the identities of the intended
receivers. Two sessions (7, Pj, s) and (P}, P/, s') are said to be matching sessions
if P, = P}, P; = P/, and s = &', i.e. if their session-ids are identical and they
recognised each other as their respective communicating partner for the session.
In the analysis of the protocols in this paper, we define the session-id as the
concatenation of the messages sent and received by the party. In addition to the
activation of parties, A can perform the following queries:

1. corrupt(P;). With this query A learns the long term key of P;.

2. session-key(P;, P;j, s). This query returns the session key (if any) accepted by
P; during a given session s with P;.

3. session-state(P;, P;, s). This query returns all the internal state information
of party P; associated to a particular session s with P;, but does not include
the long term key of P;.

4. session-expiration(F;, Pj, s). This query is used for defining forward secrecy
and erases from memory the session key on a completed session. The session
is thereafter said to be expired.

5. test-session(FP;, P, s). To respond to this query, a random bit b is selected.
If b = 1 then the session key is output. Otherwise, a random key is output
chosen from the probability distribution of keys generated by the protocol.
This query can only be issued to a session that has not been exposed. A
session is exposed if the adversary performs any of the following actions:

— A session-state or session-key query to this session or to the matching
session, or

— A corrupt query to either partner before the session expires at that
partner.

Security is defined based on a game played by the adversary. In this game A
interacts with the protocol. In a first phase of the game, A is allowed to acti-
vate sessions and perform corrupt, session-key, session-state and session-expiration
queries as described above. The adversary then performs a test-session query to
a party and session of its choice. The adversary is not allowed to expose the test
session. A may then continue with its regular actions with the exception that



Efficient One-Round Key Exchange in the Standard Model 75

no more test-session queries can be issued. Eventually, A outputs a bit b’ as its
guess on whether the returned value to the test-session query was the session
key or a random value, then halts. A wins the game if b = b’. The definition of
security follows.

Definition 6. A key establishment protocol 7 is called session key (SK-) secure
with perfect forward secrecy (PFS) if the following properties are satisfied for
any adversary A.

1. If two uncorrupted parties complete matching sessions then they both output
the same key;

2. The probability that A guesses correctly the bit b is no more than
negligible function in the security parameter.

1

, Plus a

We define the advantage of A to be
AdvS = [2Pr[b =] —1].

Hence the second requirement will be met if the advantage of A is negligible.
Canetti and Krawczyk also provide a definition of SK-security without PFS. The
only difference with respect to the above definition is that now the adversary is
not allowed to expire sessions.

Krawczyk [19] showed that forward secrecy in the usual sense cannot be
achieved in a two-pass protocol such as the ones that we consider. Therefore
we restrict our concern to what Krawczyk calls weak forward secrecy (WFS), in
which the adversary is forbidden from taking an active part in the test session.
We will also consider partial WFS, where we further restrict the adversary to
corrupt at most one party to the test session. In the ID-based setting, WFS
implies key escrow freeness, i.e. it protects against attacks in which the Key
Generation Centre, who knows all the long term keys of all the parties, tries to
(passively) eavesdrop in the communications of any two parties.

The original CK model does not consider key compromise impersonation
(KCI) attacks, where the adversary, after compromising the long-term key of
a party A, engages in a successful protocol run with A posing as a third party
B, i.e. A accepts a session key in the belief that it is shared with B, when in
fact is shared with the adversary. Thus in a KCI attack there is no matching
session to the test session. To model KCI resistance for our protocols we modify
the definition of security to allow the adversary to corrupt the owner A of the
test session (A4, B, s).

4 Generic 2xKEM Protocols

In this section, we present Protocols 1 and 2, two generic protocols based on the
use of any CCA-secure IB-KEM. The first, Protocol [[ is the most efficient of
the two, and provides KCI resistance, but does not provide forward secrecy. The
basic idea of Protocol[lis very simple: the two parties simply send each other a



76 C. Boyd et al.

random secret value using the IB-KEM and then derive a session key from the
combined secrets using a randomness extractor and expander. Protocol B adds
an independent Diffie-Hellman exchange in a group generated by f to achieve
(weak) forward secrecy. It also achieves KCI resistance. The description of both
protocols for the PKI-based setting is the same except that the identities are
substituted with the public keys of the parties.

The protocol messages and actions are symmetrical for the parties in our
protocols. It is assumed that the IB-KEM is defined to output a random key if a
ciphertext is not valid. Because the protocols complete in one round, the actual
order in which the two parties A and B exchange their messages is irrelevant. In
the descriptions provided we let A be the one party such that id 4 < id g, using
some agreed order relation, e.g. lexicographic order.

In defining the session id s we have assumed that the randomness expander
is able to accept inputs at least as long as s. If this were not the case, a collision
resistant hash function can be used in order to shorten the length of the input to
the expander. Our security analysis can be easily modified to accept this change.

Note that each party must check that the identity of the party in its incom-
ing message is actually the identity of its intended partner. Furthermore, the
decapsulated IB-KEM key must be securely erased in the same activation in
which it is decapsulated. Thus we are making the restriction that session-state
reveal queries do not return decapsulated keys. Note however that once the key
is decapsulated it can be inmediately used to compute the session key, so there
is no need to store decapsulated keys. This restriction is critical, otherwise the
protocol can be trivially broken by the adversary, as follows. Let (A, C%, B,C%)
be the transcript of an observed protocol run that the adversary A seeks to com-
promise. A initiates a new session with B by sending D, C% to B, i.e. A pretends
to be D and replays the target ciphertext C%. The adversary could then issue a
session-state reveal for the new session to B, thus obtaining the decryption C7.
Using the same strategy with A, the adversary could find out the decryption
of C'%5, which would then allow the adversary to compute the session key cor-
responding to the session (A,C%, B, C%). We emphasize that all other session
state can be revealed as part of a session-state query, in particular, encapsulated
keys (at the party that generated them) and DH exponentials. Despite of this, in
the description of our protocols, we explicitly ask for all intermediate state to be
erased once the session key is computed. It would seem artificial to specify that
only the decapsulated key be deleted, when there is no need to store anything
apart from the session key and the session id.

Interestingly, Protocol 2 does not require that the parties check group mem-
bership of the Diffie-Hellman exponentials Y4 and Y. This is because the secu-
rity of the protocol does not depend on them except for proving weak forward
secrecy, where the adversary is passive, in which case these values are assumed
to be correctly generated. We can intuitively see that the security of Protocol 2
is independent of the Diffie-Hellman exchange when the adversary does not cor-
rupt the owners to the test session. To do so, let us assume that the adversary is
able to somehow choose the values Y4 and Yp itself (but the rest of the protocol is



Efficient One-Round Key Exchange in the Standard Model 7

A B
(Ca, K';) €r Enc(pk, idp) (Cs,K3) €r Enc(pk,ida)
A, Ca
Y
B,Cs
B
Kjg = DeC(pk,didA,CB) KfA = Dec(pkvdidBch)
K4 = Exct(KY4); Ki3 = Exct.(Kp) Kp = Exct.(Kp); Ky = Exct,(KY)
s = A||Cal[B||CB s = A||Cal|Bl|CB
Ka = Expdg (s)® Expdy (s) Kp = Expdg (s)® Expdy (s)
Erase all state except (K4, s) Erase all state except (KB, s)
‘Established (A, B,s, Ka)' ‘Established (B, A, s, Kp)'

Protocol 1. Generic 2x KEM

executed by the parties normally). The session key is computed as Expdg (s) @
Expdy, (s) ® Expdg  (s). The adversary effectively chooses the subkey Kp,
thus the goal of the adversary is reduced to distinguishing Expd . (s)®Expdg (s)
from random. This is same goal as a that of an adversary against Protocol 1, the
difference being that while in Protocol 1, s is fixed for A, C4, B, Cp, here s depends
also on Y4 and Y. However a crucial property of Protocol 2 is that each different
choice of Yy, Yp defines a different session id s, therefore Expdy  (s) @ Expdg  (s)
will also be pseudo-random across different sessions, even if K’} and K7 are fixed.

For the same reason, Protocol 2 is immune to malleability attacks where an
active adversary tries to take advantage of the malleability of the Diffie-Hellman
key-exchange part of the protocol. An example of such attack is as follows. A
sends A,C4,Ys to B, who outputs B,Cp,Yp. The adversary intercepts the
latter message and changes it to B, Cp, Y where r is chosen by the adversary.
Thus the key as computed by B is Kp = Expdy _ (s)®Expdg  (s)®Expdg (s),
whereas A computes Kp = Expdy (5) @ Expdg (5) ® Expd (g ) (5). Even
though the Diffie-Hellman subkeys K4 5 and (K'j 5)" are related, the two session
keys are indistinguishable from random to the adversary.

In the description of both protocols we have assumed that the same public
parameters are used by both parties. This is however not necessary. Each party
could be using different public parameters, IB-KEMs, or even one party could
be using a IB-KEM and the other a PKI-based KEM.

We are now in a position to state the security theorems for the two protocols.
For both these theorems we use the following notation:

— {Expdk ()} gey, © 10,1}7 — Uz is a pseudorandom function family, (as
described in Definition (),

— Excti(+) : K — Uy is chosen uniformly at random from a strong (m, €)-strong
randomness extractor for appropriate m and € (as described in Definition [2]),

— Norac 18 the total number of oracles (i.e. sessions) created by B against the
protocol, and



78 C. Boyd et al.

A

Ya €r Zy ;Ya = fU4
(Ca, K')) €r Enc(pk, idp)

K/B = Dec(pk,d,;dA,CB)
K4 = Exctn(KY4); Ki3 = Exct.(K3)
K)p = Exct (Y54)
s = Al|Cal|Ya||BI|Cs|YE;
Ka =Expdg (s)® Expdy (s)
OExpdy, (s)
Erase all state except (K4, s)

B

YB €R Z; ;Y = fYB
(Cs,K3) €r Enc(pk,ida)

Ky = Dec(pk,diapy,Ca)
K = Excty(Kp); Ky = Excty(K)
K54 = Excto (YP)
s = A||Cal[Ya||B||C5||Ys;
Kp =Expdy (s)® Expdy (s)
OExpdy (s)
Erase all state except (KB, s)

Protocol 2. Generic 2x KEM + Diffie-Hellman

—  is the maximum probability that C1 = Cy where (C1, K1) €r Enc(pk, id)
and (Cq, K2) €r Enc(pk,id) for any identity (if C7 = Cs then K7 = K> also
since both ciphertexts decrypt to the same value).

Theorem 1. Let /3 be any adversary against Protocol [Il Then the advantage of B
against the SK-security (with partial WFS and KCI resistance) of Protocol [l is:

2

Norac + 2norac (Advigbikem—cca(k) Fe+ Advgféand(k))
p K k)

Adviy (k) <

Theorem 2. Let B be any adversary against Protocol 2l Then the advantage of
B against the SK-security (with WFS and KCI resistance) of Protocol 2 is:

Advy (k) <max (2n2 AdvIh (k) + 2¢ + 2AdvE 5 (k) |

2 .
”p + 2norac (AAVEZT T ) + e+ Adv;jgan%k))) .

The proofs of Theorems[land 2 can be found in the full version of this paper [6].
We remark that, despite the simplicity of the protocols, proving their security
turns out to be less simple than one might expect.

5 Protocol Comparison: ID-Based Case

We now compare Protocols 1 and 2 with that of Boyd et al. [7] (BMP) which is
one of the most efficient listed by Chen et al. in their survey of protocols [10, Ta~
ble 6]. Unlike our protocols, which consist of two passes and a single round and
only provide implicit authentication, BMP is a three-round three-pass protocol
and provides explicit authentication. Thus it may appear that BMP is not a good



Efficient One-Round Key Exchange in the Standard Model 79

Table 1. Security and efficiency comparison (IB setting)

weak KCI Standard  Cost

FS Model per party
Protocol 1 X v 56
Protocol 2 vV v 59
BMP [ v X b 4 23

choice to compare our protocols with. However if desired, our protocols can be
modified to provide explicit authentication using the well-known key confirmation
method discussed by Krawczyk [19] Section 8] at a cost of an extra pseudo-random
function computation per party and the addition of a third message.

Table [l summarises the properties of the protocols under consideration. The
costs per party given in the table for Protocols 1 and 2 assume the use of Kiltz’s
IB-KEM. We note that the BMP protocol does not have a proof of security in
the standard model, unlike Protocols 1 and 2. Protocol 2 is the only one for
which we have been able to prove both weak forward security (FS) and KCI
resistance in the standard model.

To compare the efficiency of the protocols we use the costs per operation
provided by Chen et al. [I0] for Type 3 pairings with a security parameter of
128, which are the most efficient type of pairings for security levels higher than
80 bits. The values are shown in Table 2] which also shows the costs of Kiltz,
Kiltz-Galindo and Gentry IB-KEMs. These figures require 256 bits to represent
an element of Gy, 512 bits to represent an element of Go, and 3072 bits to
represent an element of Gp. As suggested by Chen et al., we assume that all
elements of the ciphertext are checked to determine that they lie in the correct
subgroup to avoid attacks such as the small subgroup attack.

All of these IB-KEMs were originally proposed to use Type 1 pairings, and
so to obtain the costs we have had to convert the three IB-KEMs to work with
Type 3 pairings. The modified schemes can be found in the full version of this
paper [6] together with a discussion on their security and efficiency.

Table 2. Costs of IB-KEMs using Type 3 pairings

Type 3 Kiltz Kiltz-Galindo Gentry
cost Enc Dec KeyDer Enc Dec KeyDer Enc Dec KeyDer

G1 exp, multi-exp. 1,15 -1 -1 2- 1,1 1,1 1- -1 -- -
G2 exp, multi-exp. 3,4.5 1- 1,- 1- 1, 2- 1- -- -1 -3
Gr exp, multi-exp. 3,4.5 1- -- - 1 - -- 31 -1 -

Pairing 20 -2 - -3 - -1 -
G1 subgroup check 1 -1 - -2 - -1 -
G2 subgroup check 3 -1 - -1 - - - -
G subgroup check 4 - - - - - - 3

Total cost 7.5 48.5 5 8.5 735 4 15 42 13,5
Total Enc + Dec cost 56 82 57



80 C. Boyd et al.

In BMP each party sends only one element of G; to the other, so the band-
width is smaller than using Kiltz’s IB-KEMs with Protocol [l Each party com-
putes one pairing and two exponentiations in G1, as well as a subgroup check
of one element in G1. Therefore the total cost per party is 23 time units, as op-
posed to the 56 units for the Kiltz IB-KEM with Protocol[ll This means that we
have achieved identity based key exchange in the standard model in less than 2.5
times the cost in the random oracle model using the size of curve given above.
Given the better security guarantees of the standard model, this extra cost may
be considered quite reasonable.

The efficiency of Protocol 2] will be worse than that of Protocol [l but de-
pending on the choice of the group (f), it may not be much worse. For example,
if the DDH assumption holds in G; (this will require G # G2 and no efficiently
computable homomorphism from G to Gs), only 3 extra time units would be
required per party (e.g. for party A, one to generate Y4, one to perform a sub-
group check on Y, and one to find Y4*). The increase in message size would
be an extra 256 bits per message.

6 Protocol Comparison: PKI-Based Case

We now consider our two generic protocols in the traditional PKI-based setting
and compare them with existing protocols. Table [3] shows the computational
cost of Protocol 1 and 2 when instantiated with the recently proposed KEMs
of Kiltz [I5] and Okamoto [2I]. The efficiency of these two KEMs is shown in
Table @l The computational cost figures of both Table Bl and Ml include the cost
of performing group membership tests (1 exponentiation per test) and distin-
guishes regular exponentiations from multi-exponentiations. However we ignore
“half-exponentiations” that maybe possible when exponents are the outputs of
hash functions. We stress that the shown computational costs are only rough
indicative figures. The exact computational costs depend on actual choices of
groups. We see that Kiltz’s KEM is more efficient than Okamoto’s by one regu-
lar exponentiation in the decapsulation algorithm. Kiltz’s KEM security is based
on the Gap Hashed Diffie-Hellman (GHDH) problem, while Okamoto’s is based

Table 3. Security and efficiency comparison (PKI setting)

weak KCI Standard Cost
FS Model (exp, multi-exp)

Protocol 1 - Kiltz X v v 3,2
Protocol 1 - Okamoto X v/ v 4,2
Protocol 2 - Kiltz v 7/ v 5,2
Protocol 2 - Okamoto v v v 6,2
Okamoto v 7/ v 4,2
Jeong-Katz-Lee v X v 3,-
HMQV v 7/ X 4,-



Efficient One-Round Key Exchange in the Standard Model 81

Table 4. Costs of KEMs

Enc Dec Security Ciphertext
(exp, multi-exp) (exp, multi-exp) Assumption (#group elements)
Kiltz 2,1 1,1 GHDH 2
Okamoto 2.1 2,1 DDH+7PRF 2

on the DDH problem and the existence of pseudo-random functions with pair-
wise independent random sources (7TPRF).

Table Bl also shows the costs of the protocols due to Jeong et al. [I3] and
Okamoto [2I], which to our knowledge are the only one-round protocols whose
security has been proven in the standard model. HMQV [19], whose security has
only been shown in the random oracle model, is also included. Jeong et al.’s pro-
tocol is the most efficient of all of the compared protocols, but does not provide
KCT resistance. Protocol 1 instantiated with Kiltz's KEM results in the cheap-
est protocol with KCI resistance but only provides partial FS. Of the protocols
providing both weak FS and KCI resistance in the standard model, Okamoto’s
protocol is the cheapest by one regular exponentiation. As discussed in the full
version of this paper [6], Okamoto’s protocol can be seen as an instantiation of
Protocol 2 with Okamoto’s KEM but using a different key derivation function.
We note that even though Okamoto’s protocol is slightly more efficient than
Protocol 2 instantiated with the currently most efficient KEM (Kiltz’s KEM),
Protocol 2 has the advantage of being generic. It is also possible that if a more
efficient KEM is devised, then the generic Protocol 2 would be more efficient
that Okamoto’s. Note that Okamoto’s key derivation function poses constraints
on the KEM key space and hence cannot be applied generally to all KEMs.

Finally, we note that Protocol 2 is reasonably efficient when compared with
HMQV. In its most optimised form (where there is no subgroup membership
checking and considering short-exponents) HMQV requires around 2.2 expo-
nentiations. We can roughly approximate 1 multi-exponentiation to 1.2 regu-
lar exponentiations [5], which makes the cost of Protocol 2-Kiltz 7.4 regular
exponentiations.

7 Conclusion

We have proven secure two generic protocols that may be used with any KEM
to achieve secure key exchange in the standard model, in either the ID-based
setting or the normal public key setting.In addition, we provided a detailed anal-
ysis of the protocols’ efficiency on Type 3 curves; this necessitated the extension
of the IB-KEMs of Kiltz [I4], Kiltz-Galindo [I6] and Gentry [12] to use ordinary
elliptic curves. We found that both our protocols take approximately 2.5 times
as long as the protocol of Boyd, Mao, and Paterson [7] (which is only proven
secure in the random oracle model) when both protocols are implemented on el-
liptic curves with a 128 bit security level. The PKI versions of our protocols also
compare favourably with the existing ones of Jeong et al. [13] and Okamoto [21].



82

C. Boyd et al.

Protocol 2 provides more security than Jeong’s protocol and the same as
Okamoto’s. When instantiated with Kiltz’ PKI-based KEM [I5] Protocol 2 is
slightly less efficient than Okamoto’s. However, Protocol 2 has the advantage of
being generic, i.e. it can be used together with any KEM which is CCA secure
and our security analysis still applies.

References

10.

11.

12.

13.

. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new frame-

work for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128-146. Springer,
Heidelberg (2005)

. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-

resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602-619.
Springer, Heidelberg (2006)

. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and

analysis of authentication and key exchange protocols. In: Proceedings of the thir-
tieth annual ACM symposium on Theory of computing, pp. 419-428. ACM Press,
New York (1998)

. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining

message authentication code. Journal of Computer and System Sciences 61(3),
362-399 (2000)

. Bernstein, D.J.: Pippenger’s exponentiation algorithm (2001),

http://cr.yp.to/papers.html

. Boyd, C., CIliff, Y., Gonzalez Nieto, J.M., Paterson, K.G.: Efficient one-round key

exchange in the standard model. Cryptology ePrint Archive, Report 2008/007
(2008), http://eprint.iacr.org/

. Boyd, C., Mao, W., Paterson, K.G.: Key agreement using statically keyed authen-

ticators. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089,
pp. 248-262. Springer, Heidelberg (2004)

. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.

In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing—
STOC 1998, pp. 209-218. ACM Press, New York (1998)

. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for

building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453-474. Springer, Heidelberg (2001)

Chen, L., Cheng, Z., Smart, N.P.: Identity-based key agreement protocols from
pairings. Cryptology ePrint Archive, Report 2006/199 (2006),
http://eprint.iacr.org/2006/199

Chevassut, O., Fouque, P.-A., Gaudry, P., Pointcheval, D.: Key derivation and
randomness extraction. Cryptology ePrint Archive, Report 2005/061 (2005),
http://eprint.iacr.org/2005/061

Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445-464. Springer, Hei-
delberg (2006)

Jeong, I.R., Katz, J., Lee, D.H.: One-round protocols for two-party authenticated
key exchange. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 220-232. Springer, Heidelberg (2004)


http://cr.yp.to/papers.html
http://eprint.iacr.org/
http://eprint.iacr.org/2006/199
http://eprint.iacr.org/2005/061

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Efficient One-Round Key Exchange in the Standard Model 83

Kiltz, E.: Direct chosen-ciphertext secure identity-based encryption in the standard
model with short ciphertexts. Cryptology ePrint Archive, Report 2006/122 (2006),
http://eprint.iacr.org/2006/122

Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed diffie-
hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282—
297. Springer, Heidelberg (2007)

Kiltz, E., Galindo, D.: Direct chosen-ciphertext secure identity-based key encap-
sulation without random oracles. Cryptology ePrint Archive, Report 2006/034
(2006), http://eprint.iacr.org/2006/034

Kiltz, E., Galindo, D.: Direct chosen-ciphertext secure identity-based key encap-
sulation without random oracles. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP
2006. LNCS, vol. 4058, pp. 336-347. Springer, Heidelberg (2006)

Krawczyk, H.: SKEME: A Versatile Secure Key Exchange Mechanism for Internet.
Proceedings of SNDSS 96, 114 (1996)

Krawczyk, H.: HMQV: A high-performance secure diffie-hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546-566. Springer, Hei-
delberg (2005)

LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1-16. Springer, Heidelberg (2007)

Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASTACRYPT 2007. LNCS, vol. 4833, pp. 474-484.
Springer, Heidelberg (2007)

Wang, S., Cao, Z., Choo, K.-K.R.: New identity-based authenticated key agreement
protocols from pairings (without random oracles). Cryptology ePrint Archive, Re-
port 2006/446 (2006), http://eprint.iacr.org/

Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114-127. Springer, Heidel-
berg (2005)


http://eprint.iacr.org/2006/122
http://eprint.iacr.org/2006/034
http://eprint.iacr.org/

On the Improvement of the BDF Attack on
LSBS-RSA

Hung-Min Sun!, Mu-En Wu'2, Huaxiong Wang?3, and Jian Guo?

! Department of Computer Science,
National Tsing Hua University, Taiwan
hmsun@cs.nthu.edu.tw, mn@is.cs.nthu.edu.tw
2 School of Physical & Mathematical Sciences,
Nanyang Technological University, Singapore
{hxwang,guojian}@ntu.edu.sg
3 Centre for Advanced Computing - Algorithms and Cryptography
Department of Computing
Macquarie University, Australia

Abstract. An (¢, 3,7)-LSBS RSA denotes an RSA system with primes
sharing « least significant bits, private exponent d with (3 least signifi-
cant bits leaked, and public exponent e with bit-length ~. Steinfeld and
Zheng showed that LSBS-RSA with small e is inherently resistant to the
BDF attack, but LSBS-RSA with large e is more vulnerable than stan-
dard RSA. In this paper, we improve the BDF attack on LSBS-RSA by
reducing the cost of exhaustive search for k, where k is the parameter
in RSA equation: ed = k - ¢ (N) + 1. Consequently, the complexity of
the BDF attacks on LSBS-RSA can be further reduced. Denote o as the
multiplicity of 2 in k. Our method gives the improvements, which depend
on the two cases:

1. In the case v < min {3, 2a} — o, the cost of exhaustive search for k
in LSBS-RSA can be simplified to searching k in polynomial time.
Thus, the complexity of the BDF attack is independent of ~, but it
still increases as « increases.

2. In the case v > min {3, 2a} — o, the complexity of the BDF attack
on LSBS-RSA can be further reduced with increasing « or 3.

More precisely, we show that an LSBS-RSA is more vulnerable under
the BDF attack as max {2a, 8} increases proportionally with the size of
N. In the last, we point out that although LSBS-RSA benefits the com-

putational efficiency in some applications, one should be more careful in
using LSBS-RSA.

Keywords: RSA, partial key exposure (PKE), the BDF attack, least
significant bit (LSB), LSBS-RSA, exhaustive search.
1 Introduction

RSA [12] is the most widely used public key cryptosystem in the world. It is not
only built into several operating systems, such as Microsoft, Apple, Sun, and

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 84]97] 2008.
© Springer-Verlag Berlin Heidelberg 2008



On the Improvement of the BDF Attack on LSBS-RSA 85

Novell, but is also used for securing web traffic, e-mail, smart cards and IC cards.
Since the encryption and decryption in RSA require taking heavy exponential
multiplications modulus of N, the efficiency problem is the main disadvantage of
using RSA. In order to overcome these drawbacks, many researchers have studied
variants of RSA which reduce the computational costs [10], [I1]. In general, the
RSA encryption and decryption time are roughly proportional to the number
of bits in public and secret exponents, respectively. To reduce the encryption
time (or the signature-verification time), one may wish to use a small public
exponent e. The smallest possible value for e is 3, however, it has been proven
to be insecure against some small public exponent attacks [9]. Therefore, a more
widely accepted and used public exponent is e = 26 + 1 = 65537 or larger but
far smaller than o(N).

In 1998, Boneh, Durfee, and Frankel [I], [2] first proposed the partial key
exposure (PKE) attacks on RSA. They showed that for low public exponent
RSA, given a fraction of the bits of the private exponent, an adversary can
recover the entire private key and thus break the RSA. We call their methods
the BDF attacks throughout this paper. More results of the partial key exposure
attacks on RSA were proposed in 2003, and 2005 by Blomer & May [3], and
Ernst, Jochemsz, May, & Weger []], respectively.

In this paper, we improve the BDF attack on LSBS-RSA. An LSBS-RSA de-
notes an RSA system with modulus primes sharing a number of least significant
bits (LSBs), i.e. p— ¢ = r-2% for some odd integer r, and « > 1, where r, a € N.
This concept was first proposed by Steinfeld and Zheng [13] to improve the effi-
ciency of a server aided RSA signature generation (SASG) [4]. In [13] and [14],
Steinfeld and Zheng analyze the complexity of the BDF attack on LSBS-RSA.
Their results show that low public exponent LSBS-RSA is inherently resistant
to the partial key exposure attacks. That means, the BDF attacks will be less
effective for LSBS-RSA with small e than for standard RSA. However, this is
not true for large public exponent LSBS-RSA. LSBS-RSA with large e is more
vulnerable under such attacks than standard RSA. In this paper, we give the
detailed analysis to further support Steinfeld and Zheng’s argument. We improve
the BDF attack by reducing the cost of exhaustive search for k in LSBS-RSA,
where k is the parameter in RSA equation: ed = k- ¢ (N) + 1.

Denote o as the multiplicity of 2 in k. Our improvements depend on the two
cases: v < min{f,2a} — o and v > min {3, 2a} — o:

In the case v < min {3, 2a} — o, the cost of exhaustive search for k in LSBS-
RSA can be simplified to searching k in polynomial time. Thus, the complexity
of the BDF attack in this case can be further reduced. On the other hand, in the
case v > min {3, 2a} — o, the complexity of searching k in LSBS-RSA still can
be improved instead of finding k& by exhaustive search totally. Thus, the BDF
attack on LSBS-RSA in this case is improved as well. Furthermore, we show
that an LSBS-RSA is more vulnerable under the BDF attack as max {2«, 3}
increases proportionally with the size of N.

The remainder of this paper is organized as follows. In Section 2, we briefly
review theorems and lemmas related to the BDF attack. In Section 3, we revise



86 H.-M. Sun et al.

the BDF attack on LSBS-RSA and show the complexity analysis in Section 4. In
Section 5, further discussions about the feasibility and the efficiency are proposed.
Finally, we conclude this paper and give some open problems in Section 6.

2 Preliminary

2.1 RSA, LSBS-RSA and Some Notations

In standard RSA, let N (= p x ¢g) be the product of two large primes p and g.
The public exponent e and the private exponent d satisfy e x d = 1 (mod p(N)),
where ¢(N) = (p — 1) x (¢ — 1) is the Euler totient function of N. Here, N
is called the RSA modulus. The public key is the pair (NN, e) that is used for
encryption (or signature-verification): ¢ = m® (mod N), where m is the message
and c is the corresponding ciphertext. The private key is the pair (IV,d) that
enables the decryption of ciphertext (or signature-generation): m = ¢? (mod N).
In the key generation of RSA, we usually select two primes (about 512 bits) p
and ¢, and then multiply them to obtain N (about 1024 bits). Next, we pick the
public exponent e first, and then compute the private exponent d by d = e
(mod ¢(N)) by Euclidean algorithm. With high probability, no matter what size
of e is chosen, the size of d is as large as the size of p(N) almost.

Throughout this paper, we follow the notation («, 3,~), which is also used
by Steinfeld and Zheng. An (a, 3,7)-LSBS RSA is an RSA system with the
following properties:

a: a-LSBS RSA modulus: N = pq, where |p — ¢| = r - 2% for some odd integer r.
(B: The [ least significant bits of the private exponent d are available.
~: The public exponent e with bit-length ~.

In addition, we use the symbols x and A\ to denote the multiplicity of 2 in k
and ¢ (N), respectively. Moreover, given an integer = of m bits, whose binary
representation is

($)2 = (-va Tm—1, ...acj, very Ljy ey T2, $1)27
where x; = 0 or 1 for i = 1,...,m. We call z,,, the most significant bit of x and
x1 the least significant bit of x. Denote “LSB;-;(x)” as the i-th to j-th least
significant bits of ()2, where i < j. That is,
LSBi~j($) = ($j7 ...7$i)2.
and “LSB;(x)” as the i-th least significant bit of (x)2. That is,
LSB;(z) = x;.

2.2 The BDF Attack on LSBS-RSA

Here we briefly introduce the BDF attack on LSBS-RSA. All the following theo-
rems and lemmas can be found in [I3] and [I4]. The goal is to use the informa-
tion of partial key to find LSBi-# (p) or LSBi-7 (g). Then, use Coppersmith’s
method (see Theorem 1) to factor N.



On the Improvement of the BDF Attack on LSBS-RSA 87

Theorem 1. (Coppersmith’s method [5]) Let N = pq be an n-bit RSA modulus.
If LSBi-» (p) or LSBy-+# (g) is given, then there exists an algorithm to factor N
in polynomial time in n.

We denote Teop (1) as the complexity of the algorithm in Theorem [[I The im-
proved versions of Coppersmith’s method can be found in [G] and [7].

Lemma 1. Consider the modular equation z2? = ¢ (mod 2") and let ms (c) de-
note the multiplicity of 2 in c. That is, ¢ = coqq - 2™2(¢), Where c,qq is the largest
odd factor of c¢. Then, the solutions are summarized in the following table:

Conditions Solution # Solution Forms
If r <msy(c) 2Lr/2] =0 (m0d2“/21)
If r > mg (¢) and my (c) is odd 0 -
If » > mgy (c) and ma (c) is even, there are three subcases:
subcase 1: 1 =mg (c) +1 2% r=2% (mod27*1h)
subcase 2: Zd_d T;zl(C()I I; 54) 2.2 =427 (mod2%+?)
r=4s5-2% (mod r=% ), or
4-2%  p=(ks+277m71) .27 (mod277),
where 52 = cogq (mod 27" ™).
Otherwise 0 -

m
2

subcase 3: 1 > ma(c)+3
Codd = 1 (mod B)

Proof. The proof can be found in Lemma 1 of [13], or [14].

Note that if there exist solutions for 22 = ¢ (mod 2"), then ¢ and r must satisfy
one of the conditions in the above table. Next, we show the properties of an
a-LSBS RSA.

Lemma 2. Let N = pg denote an n-bit a-LSBS-RSA modulus. There exists
an algorithm to compute the LSB;-2, (p + ¢q), LSB1-4 (p), and LSB;-, (¢) in
polynomial time O (n?).

Proof. Let p =py -2+ and ¢ = qy -2 +1. Thus, [ is a solution to the modular
quadratic congruence x> = N (mod 2%), and it can be computed at most for 4
candidates in time polynomial in n?. From

p-q=N, (1)

we may replace p and ¢ by pg - 2% +1 and qg - 2% 41, respectively. This conducts
to

LSB1-2 (I (pa + qu) - 2% 4 1%) = LSB1-24 (N). (2)

Since [ is an odd integer, [~! (mod 22%) exists. We have

LSBi-2a((par + qm) - 2%) = LSBy-2o (I7' - (N = 7)) . (3)



88 H.-M. Sun et al.

The identity (Bl shows that LSBi-, (pg + qu) can be totally computed from
[=1. (N —?). Thus, we have

LSBi-24-1 (P39)
= LSBi-2a—1((pa +qu) - 271 +1) (4)

= LSBi-a (pr + qnu) || LSBa ((pa +qa) -2°7" +1) || LSBi-a-1 (1)
where “||” denotes the concatenation. Therefore, we get
LSB1-24 (p+ q) = LSB1-3a—1 (?37) || 0,
which completes the proof.

In the following we show the result of the BDF attack on LSBS-RSA, which is
called the generalized BDF attack.

Theorem 2. (Generalized BDF Attack, [13], [1])]) Let N = pq denote an
n-bit a-LSBS RSA modulus, d is a private exponent, and e is a public exponent
with bit-length ~. Given dy = LSB;-3 (d), the Generalized BDF attack factors N
within the following time complexity:

If 3<2(a—1)+7, then Tspp (n) = O (727 28871y, (n));
(5)
If 8>2(a—1)+7, then Tppp (n) =0 (y27 - [2iT2=F] Ty (1)),

where T¢,,, (n) = Tcop (n) + O (n?), which is the complexity of Coppersmith’s
method plus the O (n?) for the other computations.

Note that in the case § > 2(a—1) +, Tspr (n) increases as « increases,
which shows Steinfeld and Zheng’s argument: low public exponent LSBS-RSA
is inherently resistant to the BDF attack. In addition, as can be seen in (&),
Tepr(n) decreases as 3 increases. We divide the process of the BDF attack on
LSBS-RSA into three parts:

1. Exhaustive search the parameter k£ in RSA equation: ed = k- p(N) + 1,
where 1 < k < e.

2. With the information of k, compute LSBi-= (p) by solving the quadratic
modular equation.

3. Once LSBy-» (p) is known, use Coppersmith’s method to factor N.

Since k < e and 277! < e < 27, the step 1 requires the time complex-
ity O (y27) to exhaustive search for k. The step 2 requires the time complex-

ity O (22_5) or O (21+2=#) depends on the relations between «, 3, and .
The step 3 requires the cost 7¢,,, (n), which is the complexity of Coppersmith’s
method plus O(n?).



On the Improvement of the BDF Attack on LSBS-RSA 89

3 The Revised BDF Attack on LSBS-RSA

In this section we show the revised BDF attack on LSBS-RSA. The main im-
provement is to reduce the cost of searching k in LSBS-RSA. Thus, the complex-
ity in the step 1, which is O (727), can be further reduced. Before that, we show
the process of recovering LSB;-» (p) by solving the quadratic modular equation,
and then use Coppersmith’s method to factor V.

3.1 The Process of the BDF Attack

From the RSA equation we have
ed—l—k(N+1—p— ];f) =0.

Multiplying p modulo 27 yields the following modular equation with root p:
kx® 4+ (edy —k(N+1)— 1)z + kN =0 (mod26)7 (6)

where dy = LSB1-5 (d) is known to the attacker.
Suppose k = koqq - 2", where k,qq is the largest odd factor of k, and x denotes
the multiplicity of 2 in k. Eliminating the leading coefficient of () yields

2+ (kg 9t = (N+1)2+N=0 (mod2° "), (7)

where k;dld denotes the inverse of k,qq in Lip—- Consequently, (@) is reduced to

(x + bg‘“))Q =c(k) (mod2°~%), (8)

where

b(k) = k;dld' edggl — (N +1), and

o (k) = (b<§>)2_N.

Now, we solve the modular equation (8) by applying Lemma [l

Since
b(k) =kogy- “%t —(N+1)

2K/
—1  k((N+1)— -k
=KL (« +12)~ (p+a)) _ (N +1) (mod 2°-*)
=—(p+q) (mod 25*"),
we get

c(k) = (b<§>)2 — N (mod 25~

(p;q)z — N (mod 2°—")

(759)° (mod 28-*).



90 H.-M. Sun et al.

Moreover, since N is an a-LSBS RSA modulus, we may write p — ¢ = r - 2¢

for some odd integer r, which shows the multiplicity of 2 in (”5‘1)2 is 2 (a—1).
Consequently, according to Lemmalll the number of the solutions of (8) depends
on the two cases: f —k <2(a—1)and f— Kk >2(a—1).

In the case f — k <2 (a — 1), there are 2L72"J solutions of the form

T+ b(Qk) =0 (m0d2[ﬁ?])

for the modular equation (®). Thus, the [ 5] least significant bits of the root,
i.e., p, are known to the attacker, which is the same as LSB, - (o= (_ b(2k) ) . Since
2
LSBi-7 (p) (or LSBy-» (g)) is the minimum requirement to apply Coppersmith’s
method, the remaining unknown part of p is LSB(rﬁ—NH_l)-n (p). Therefore, in
2 4
this case the search for the parameter k with the cost 24 =157 s required. We
simplify the cost to O (2g 224 _§>
In the case § — k > 2 (a — 1), three subcases are discussed below according
to Lemma [Tt

Subcase 1: If 3 — k = 2 (a — 1) + 1, there are 2%~ solutions of the form
x + b(Qk) =271 (mod 2%).

Subcase 2: If § —x = 2(a—1)+ 2, and (o —1),,, = 1 (mod4), there are
2291 golutions of the form

x4+ b(Qk) = 49071 (mod2a+1).

Subcase 3: If § —k > 2(a—1)+ 3, and (o —1),,; = 1 (mod8), there are
4 - 2%~ golutions of the form

x + b(Qk) = (4s) - 2271 (mod 20— ~(e=1) or

x+ b(Qk) = (£s+ 2(6_“)_2(”“_1)_1) -20=1 (mod 2(A—R)—(a=1)),

Note that s is any solution to s*> = (a—1),,, (mod2#=®=2(@=1))" where
(v —1),,, is the largest odd factor of o — 1.

In the subcase 1, LSBi-, (p) is known to the attacker. In order to apply
Coppersmith’s method, the remaining unknown part of p is LSB(y11)-n (p).
Thus, in this case it requires the search with cost 212,

In the subcase 2, LSB1-441 (p) is known to the attacker. In order to apply
Coppersmith’s method, the remaining unknown part of p is LSB(44.2)-» (p). We
simplify the cost to O (24 7%).

In the subcase 3, LSB1-(3—1)—(a—1) (p) is known to the attacker. In order to ap-
ply Coppersmith’s method, the remaining unknown part of pis LSB (51— a)-7 (p)-

Thus, in this case it requires the search with cost 2% ~(F=#)=(e=1) We simplify



On the Improvement of the BDF Attack on LSBS-RSA 91

the cost to O (2% - 23 =A%) As a result, the complexity of the BDF attack on
(a, 8,7)-LSBS RSA is concluded as follows.

If 3<2(a—1)+ &, then
K n_ B
Toor ()= 0 (|l (252 5) - Ty () o)
IfﬁZQ(a—l)+H+1’ Orﬂ:Q(a_l)‘FH—FQ,then

Tppr (n) = O (|Kc| - (257%) - Tt (n)) ; (10)
If3>2(a—1)+k+3, then

Tppr (n) = O (K| - (27 200D 12, (n), (11)

where |K.| denotes the number of candidates of k, which is required to test by
exhaustive search. Next, we show how to reduce the size of K. in LSBS-RSA.

3.2 Searching k in LSBS-RSA

We consider the following lemma:

Lemma 3. Consider the three positive integers A, B, and C, where C' = Ax B.
If LSB1-,,, (A) and LSB;-,, (C) are given, we can compute LSB;-~,_,,(4) (B)
in polynomial time in m, where my(A) denotes the multiplicity of 2 in A.

Proof. Suppose that A = Ay - 2™ 4+ Ay and B = By - 2™ + By, where Ay =
LSBi1-, (A) and By = LSB;-,, (B), respectively. We may write Ao = A (mod 2™)
and By = B (mod 2™). Since

Ax B = (AlB1) . 22m + (A1BQ + AQB1) -2™M + Ao By = C,
we have
C (mod2™) = Ay By (mod2™). (12)

Denote Ay = ag - 272(42) where mo(As) denotes the multiplicity of 2 in As.
Since C' = A x B, we may set C' = c - 2™2(42)  Consequently, simplifying (I2)
yields

as X By (mod 2™~ ™m2(A2)) — ¢ (mod 2m M2 (A2)),

which implies
By (mod 27 2(42)) = 1 x ¢ (mod 27 "2(42)),

where a2_1 denotes the inverse of as in Lyn—my(ag) - NOte that mo (A2) is smaller
than or equal to ms (A), but the case “ma (A2) = mao (A)” happens with proba-
bility 1 — Q}n, which is close to 1 if m is not too small. Thus, in our case we may
assume that mgy (A2) = ma (A) and get

LSB1-mma(a) (B) = az ' x ¢ (mod 27~ 2(D), (13)

which completes the proof.



92 H.-M. Sun et al.

Moreover, if B < 2™~ "2(4) then B can be completely determined immediately.
Following corollary shows our method for searching k in LSBS-RSA

Corollary 1. In (a, 3,7)-LSBS RSA, LSB;- in{s,2a}—o (k) Can be computed in
polynomial time in n, where o denotes the multiplicity of 2 in p(V).

Proof. From RSA equation we have ed — 1 = k - ¢(IN). Since dy = LSB1-5 (d)
is known, we can compute LSB1-5 (ed — 1). In addition, LSB1-2, (p + ¢) can be
computed efficiently according to Lemma 2 and thus LSBi-2, (¢(N)) can be
derived to the attacker immediately. Now, setting C' = ed — 1, A = p(N), and
B =k in Lemma [3] we get the result:

LSB1~min{B,2a}fo' (k) = (edo - 1) ' wil(mOd 2min{ﬁ,2a}fa)’ (14)
which completes the proof.

Note that we have k < e = 27 due to the process of RSA-key generation. Hence,
if the public exponent e is small enough such that v < min {3, 2a} — o, then k
can be completely determined immediately in polynomial time in n. On the other
hand, if the public exponent e satisfying v > min {3, 2a} — o, Corollary[[limplies
that finding k requires exhaustive search with cost 27— (min{#.2a}=0) Therefore,
the size of K. can be set to max {1, 27— (min{f,2a}—0) } Apply |K.| to the revised
BDF attack, the corresponding complexity analysis is shown in the next section.

4 The Complexity Analysis

According to Corollary [Il the complexity of the BDF attack on LSBS-RSA is
discussed in the two cases: small public exponent and large public exponent.

4.1 LSBS-RSA with Small Public Exponent e (v < min {3, 2a} — o)

In LSBS-RSA with small e satisfying v < min{f3,2a} — o, according to
Corollary [l the parameter k can be computed immediately. Hence, the term
|K.| in @), (@), and ([T can be replaced by T} (n), where T}, (n) denotes the
complexity of computing k from (Id]), which is polynomial time in n.

4.2 LSBS-RSA with Large Public Exponent e (v > min {3, 2a} — o)

For large public exponent e, i.e., min{f3,2a} — o < v, we may set |K.| =
27— (min{f,2a}=0) Thys, the complexity of searching k in this case depends on
the two cases: 8 < 2a, and 2a < .

In the Case B8 < 2a. First we consider the case f < 2a. According to
Corollary Il LSB1-5_, (k) is known to the attacker. Thus, finding the unknown
part of k requires exhaustive search with the cost 27~ (3=9)_ After replacing | K|
in @), @), and () by 27~ ¥, we get the following results:



On the Improvement of the BDF Attack on LSBS-RSA 93
In the case 8 < 2ac and 8 < 2 (a— 1) + K, we have

Tepr (n) = O (27 (F=2) 25 +5-5 ~Téop (n))
=0 (2577 2040 1y, ().

In the case f <2 and 8 =2 (a— 1)+ Kk + 1, we get 2a+ k — 1 < 2, which
implies k < 0. Since x denotes the multiplicity of 2 in k, we get x = 0, which
conducts to § = 2a — 1. Thus,

Tppr (n) = 0 (27-F=9) . (21 -«) Tty (n))
=0 (27 - 20itN=(4B) . T, (n)).

In the case f < 2aand 8 = 2(a—1) + k + 2, we get 2a + k < 2«, which
implies K < —1. This is a contradiction for any non-negative integer x. The same
result for the case § < 2cvand 8> 2 (a— 1)+ £+3, we get 2a+rk+1 < 8 < 2a.
It implies that x < —2, which is also a contradiction.

In the Case 2a < (3. Secondly, we consider the case 2a < 3. According to
Corollary [l LSB1-24—, (k) is known to the attacker. Thus, ﬁnding the unknown
part of k requires the exhaustive search with the cost 27~ (2a-0) . Replacing | K|
by 27-(2=9) in @), (I0), and (), we get the following results:

In the case 2a < B and 8 < 2(a— 1) + k, we have

Tepr (n) = O (27~ (Ra=). 25+5—2 Thop (n))
— 0 (25+7. 2(Z+’Y)—(2o¢+§) 'Téop (n)).

In the case 2a < fand f=2(a—1) 4+ k+ 1, we have

Tppr (n) =0 (27~ e=) . (21-9) Tty (n))
=0 (29 - 2titM =817, ().

The same result above in the case 2a < B and § =2 (o — 1)+ + 2, and thus
we ignore it.
In the case 2a < B and > 2(a— 1) + k + 3, we have

TBDF( ) 0(2—y (2a—0) | 9r+T+a—03 TCop n))
_O(2n+a (i +7)—(at+B) )

4.3 Summary of the Revised BDF Attack on LSBS-RSA

We give the summary for the complexity of the revised BDF attack on LSBS-
RSA. We just count in the complexity of the exponent, but eliminate the com-
plexity of polynomial time. In addition, o and x are both small constants with
high probability, and thus we can ignore them in the ”Big O” notation.



94 H.-M. Sun et al.

Table 1. The Summary of the BDF Attack on LSBS-RSA with Small Public Exponent

Condition Tepr (n)
B<2a—1)+50(T(n)- 252 Tty (n)
f=2a+k or

52atnon 0TI Loy ()
B=2a+k+1 O(Ti(n) 2847 1, (n))

Table 2. The Summary of the BDF Attack on LSBS-RSA with Large Public Exponent

Condition I Condition IT Tepr (n)

B < 2a f<2(a-D+n 02T 1, @)

0 < 2« B=2a—-1 andﬁ:00(2(2+7)_(°‘+ﬁ)~Téop (n))
2058 B<2@-D+r 02T ()
- BT CL R )
2 < g B>2+k+1 o) (2<2+v>*<a+ﬁ> Ty (n))

Table [I] shows the complexity of the revised BDF attack on LSBS-RSA when
v < min{g,2a} —o.

As can be seen in Table[I] v is independent to the complexity of BDF attack
on LSBS-RSA. However, in case of 8 > 2a+ k + 1, Tgpr (n) increases as «
increases, which is further supporting Steinfeld and Zheng’s argument [I4]: Low
public exponent LSBS-RSA is inherently resistant to the partial key exposure
attack.

Moreover, if we set Ymax = max {2, 3} and Xmin = min {2«, 8}, then all the
complexities in the exponential cost are in the interval:

n 1 n 1
[4 — 9 Xmax;) 4 — QXmin] .
Therefore, we conclude that the complexity of the revised BDF attack on (v, 3,7)-
LSBS RSA with small e is in the range
o (Tk (n) - ot = 3 xmax T, (n)) < Tepp(n) <O (Tk (n) - 9%~ % Xmin . Tep (n)) ) (15)

Table [ shows the complexity of the revised BDF attack on LSBS-RSA when
min {3, 2a} — o < 7. As shown in the table, the complexity of the revised BDF
attack is independent to « in the case 8 < 2 and f < 2(a— 1) + . In the
other cases, the complexity decrease as a and (3 increase.

All the complexities in exponential cost are in the interval:

[(Z +’V) - SXmaxa (Z +'7) - ngin] .



On the Improvement of the BDF Attack on LSBS-RSA 95

Therefore, we conclude that the complexity of the revised BDF attack on (a, 3, 7)-
LSBS RSA with large e is in the range

0 (2(2 +7)— 3 xmax | Teoy (n)) < Tppr (n) <O (2(2’+w)—§xmin Teop (n)) . (16)

From () and (I0]), we know that an LSBS-RSA is more vulnerable under the
BDF attack as xmax = max {2a, §} increases proportionally with the size of N.

5 Further Discussions

5.1 The Relation between («,3,v) and («, 0,~v)-LSBS RSA

The following result shows that for § < 2a and small difference of v and 3, to
break («, 3,7)-LSBS RSA is as hard as to break (a,0,v)-LSBS RSA.

Theorem 3. (Revised Theorem4in[I4]) In (., 5,7)-LSBS RSA, given (N, e, dy),
suppose an algorithm A can factor N in time T4 (n), where dy = LSB;-5(d) and
0 < 2a. Then, there exists a factoring algorithm F for («,0,~)-LSBS RSA, that
given (N, e), factors N in time T (n), where

Tr(n) =0 (27" (T4 (n) +n?)).

Proof. The proof is almost the same as the proof of the theorem 4 in [I4]. The
difference is that the cost for exhaustive search for k is reduced to O (2777)
rather than O (27). Thus, for each candidate k. € K., we may compute

do=e 1 +ke(N+1-s50)] (mod2%), (17)

where 5o = p + ¢ (mod 22%) is available according to Lemma Bl Consequently,
dp = LSB1-2, (d) consists of the 2« least significant bits of d, which also consists
of LSB; -5 (d). Applying (N, e, do) to the input of A succeeds to factor N in time

0 (277" (Ta (n) +n?)),
which denotes the complexity of T (n).

Note that (I7) also implies that LSB1-9, (d) is leaked in («,0,7)-LSBS RSA if
the cost of 2777 is feasible under current computational capability. Therefore,
for 8 < 2a and v — 8 < FEs, where E; denotes the bit number of the feasible
exhaustive search, Theorem Blalso shows the hardness of breaking («, 3, v)-LSBS
RSA is equivalent to that of («,0,v)-LSBS RSA.

5.2 Feasibility and Further Reducing the Cost of Searching k

Under the current computational capability, we may set F; = 64, which means
the exhaustive search forO (264) is feasible. According to our result, The revised
BDF attack on LSBS-RSA with small e , i.e., ¥ < min {3, 2a} — o, is feasible if

Z - éXmin S 64



96 H.-M. Sun et al.

For LSBS-RSA with large e, i.e., v > min {3, 2a} — o, the attack is feasible if
(3 +7) = 5 Xmin < 64.

We should point out that our method for finding £ is still a kind of brute method.
In fact, we can estimate the value of k before the exhaustive search. Denote the
estimation of ¢ to be pp 1= N+1-2 [V/N]. Compute k and d by using Euclidean
algorithm such that ed = k(N +1—2N) +1, where 0 < k < e and 0 < d < pp.
Then, searching k from k with the fixed part of least significant bits will further
reduce the cost.

6 Conclusion and Future Work

In this paper we improve the BDF attack on LSBS-RSA. With our improvement,
the complexity of the BDF attack is further reduced with less cost for exhaustive
search. More precisely, we show that the lower bound of exponential cost in the
BDF attack increases with decreasing max{2«, 3}, and the upper bound of
exponential cost in the BDF attack decreases with increasing min {2«, 3}. Our
result is further supporting the claim in [14]: Low public exponent LSBS-RSA is
resistant to partial key exposure attacks but large public exponent LSBS-RSA
is vulnerable under the attacks.

To further reduce the complexity of the BDF attack, we may focus on im-
proving the efficiency of Coppersmith’s method, such as [6], [7]. Moreover, an
open question has been mentioned for many times: whether the information of
the ; least significant bits of p (or ¢) is the minimum requirement to factor N
in polynomlal time? Moreover, to further extend the partial key exposure attack
on LSBS-RSA, the lattice technique should be considered to analyze.

LSBS-RSA is beneficial to computational efficiency of server-aided signature
generation, such as [4]. However, we believe that an RSA system with modulus
primes sharing a large number of bits also raises the risk in the security [15], [16].
It is a trade-off between the efficiency and the security level. Thus, one should
be more careful in using such RSA variants.

Acknowledgement

The authors would like to thank Ron Steinfeld for his helpful discussion and
anonymous reviewers for their valuable comments. This work was supported in
part by the National Science Council, Taiwan, under Contract NSC 96-2628-E-
007-025-MY3 and NSC 096-2917-1-007-022, the Ministry of Education of Singa-
pore under grant T206B2204, and the Australian Research Council under ARC
Discovery Project DP0665035.

References

1. Boneh, D., Durfee, G., Frankel, Y.: An Attacks on RSA Given a Small Fraction
of the Private Key Bits. In: Ohta, K., Pei, D. (eds.) ASTACRYPT 1998. LNCS,
vol. 1514, pp. 25-34. Springer, Heidelberg (1998)



10.

11.

12.

13.

14.

15.

16.

On the Improvement of the BDF Attack on LSBS-RSA 97

. Boneh, D., Durfee, G., Frankel, Y.: Exposing an RSA Privae Key Given a

Small Fraction of its Bits. Full version of the work from Asiacrypt 1998 (1998),
http://crypto.stanford.edu/~dabo/abstracts/bits of d.html

. Blomer, J., May, A.: New Partial Key Exposure Attacks on RSA. In: Boneh, D.

(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27-43. Springer, Heidelberg (2003)

. Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign with

RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399-416. Springer, Heidelberg (1996)

. Coppersmith, D.: Finding a Small Root of a Bivariate Integer Equation; Factor-

ing with High Bits Known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS,
vol. 1070, pp. 178-189. Springer, Heidelberg (1996)

. Coron, J.-S.: Finding Small Roots of Bivariate Integer Polynomial Equations Revis-

ited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 492-505. Springer, Heidelberg (2004)

. Coron, J.-S.: Finding Small Roots of Bivariate Integer Polynomial Equations: A

Direct Approach. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 379—
394. Springer, Heidelberg (2007)

. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial Key Exposure Attacks

on RSA up to Full Size Exponents. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 371-386. Springer, Heidelberg (2005)

. Hastad, J.: Solving simultaneous modular equations of low degree. STAM J. of

Computing 17, 336-341 (1988)

Sun, H.-M., Yang, W.-C., Laih, C.-S.: On the design of RSA with short secret
exponent. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASTACRYPT 1999. LNCS,
vol. 1716, pp. 150-164. Springer, Heidelberg (1999)

Sun, H.-M., Yang, C.-T.: RSA with balanced short exponents and its application
to entity authentication. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp.
199-215. Springer, Heidelberg (2005)

Rivest, R., Shamir, A., Aldeman, L.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120-126
(1978)

Steinfeld, R., Zheng, Y.: An Advantage of Low-Exponent RSA with Modulus
Primes Sharing Least Significant Bits. In: Naccache, D. (ed.) CT-RSA 2001. LNCS,
vol. 2020, pp. 52-62. Springer, Heidelberg (2001)

Steinfeld, R., Zheng, Y.: On the Security of RSA with Primes Sharing Least-
Significant Bits. Appl. Algebra Eng. Commun. Comput. 15,3(4), 179-200 (2004)
de Weger, B.: Cryptanalysis of RSA with small prime difference. Applicable Alge-
bra in Engineering, Communication and Computing 13, 17-28 (2002)

Zhao, Y.-D., Qi, W.-F.: Small Private-Exponent Attack on RSA with Primes Shar-
ing Bits. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 221-229. Springer, Heidelberg (2007)


http://crypto.stanford.edu/~dabo/abstracts/bits_of_d.html

Public-Key Cryptosystems with Primitive Power
Roots of Unity

Takato Hirano*, Koichiro Wada, and Keisuke Tanaka

Department of Mathematical and Computing Sciences, Tokyo Institute of
Technology. W8-55, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
{hirano6, wada4, keisuke}@is.titech.ac.jp

Abstract. We first consider a variant of the Schmidt-Samoa—Takagi en-
cryption scheme without losing additively homomorphic properties. We
show that this variant is secure in the sense of IND-CPA under the de-
cisional composite residuosity assumption, and of OW-CPA under the
assumption on the hardness of factoring n = p?q. Second, we introduce
new cryptographic properties “affine” and “pre-image restriction”, which
are closely related to homomorphism. Intuitively, “affine” is a tuple of
functions which have a special homomorphic property, and “pre-image
restriction” is a function which can restrict the receiver to having in-
formation on the encrypted message. Then, we propose an encryption
scheme with primitive power roots of unity in (Z/n*"*)*. We show that
our scheme has the above cryptographic properties.

Keywords: Paillier encryption scheme, factoring assumption, homomor-
phism, power roots of unity.

1 Introduction

Background. Homomorphism is one of the most useful cryptographic proper-
ties, and has been well-studied. For groups G and H, a function f : G — H is
(group) homomorphism if for g,¢" € G, f(g) on f(¢') = f(goa ¢'), where og
and og are the group operations G and H, respectively. In mathematical points
of view, this property means that f preserves the group structure of G. In cryp-
tographic points of view, we can make a meaningful ciphertext from ciphertexts
without knowing the hidden messages or the secret key. This property is useful
to many cryptographic applications such as electronic voting, electronic cash,
and so on.

We call f a multiplicative homomorphism if og is the multiplication “x”.
There exist many encryption schemes with multiplicatively homomorphic prop-
erties, for example, the RSA encryption scheme [7], the ElGamal encryption
scheme [3]. We call f an additive homomorphism if og is the addition “+7.
There also exist many encryption schemes with additively homomorphic prop-
erties, for example, the Goldwasser-Micali encryption scheme [4], the Paillier

* Supported in part by Global COE: Computationism as a Foundation for the Sciences
of Tokyo Institute of Technology.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 98-[IT2 2008.
© Springer-Verlag Berlin Heidelberg 2008



Public-Key Cryptosystems with Primitive Power Roots of Unity 99

encryption scheme [5]. In particular, the Paillier encryption scheme has interest-
ing structure and many mathematical advantages. Many variants of his scheme
have been proposed.

Our Contribution. In this paper, we first formalize the notion of a gen-
eral homomorphic property as follows: Let f1, fo, ..., fx, f be functions, and *, g
polynomial-time computable operations. For my,ma, ..., my, we have fi(mq) *
fa(ma) s -+ fi(my) = f(g(ma, ma, ..., my)).

These functions do not always have common domain or common range. A
multiplicative homomorphism can be expressed by f1 = fo = -+ = fr = f
and g(mqy,ma,...,mE) =mi X ma X -+ X my, and an additive homomorphism
fi=fo=- = fi = fand g(mi,ma,...,my) = my +ma + - + myg. With
this formalization, we consider two properties. A tuple ({f1, f2,..., fx}, f) of
functions is called “affine with 1, za,. .., xx” if fi(my)* fa(me)x---x fr(my) =
f(ximy + xoma + -+ + xpmy), that is, g(mi,ma,...,mg) = x1my + xome +
-+« +xpmyg. An additive homomorphism can be considered as a special case that
fi=fo=-=fr=fand g is addition and z1 = x5 = --- = xx = 1. A tuple
({f1, f2y -, fr}, f) of functions is called “pre-image restriction with modulo n”
if m=mg =mg=---=my and f1(m) x fo(m) *x---x fr,(m) = f(m mod n),
that is, g(m,m,...,m) = m mod n.

In this paper, we first consider a variant of the Schmidt-Samoa—Takagi en-
cryption scheme [8] without losing additively homomorphic properties, described
as E(r,m) = r™ (1 +n')™ mod n*!, where m € Z/(n*~**1/p) is a message and
r € (Z/n)* is a random number. We show that this variant is secure in the
sense of IND-CPA under the decisional composite residuosity assumption, and
of OW-CPA under the assumption on the hardness of factoring n = p2q.

Then, by extending our variant, we propose an encryption scheme with prim-
itive power roots of unity in (Z/n**t1)*. We show that this extended scheme
has, in addition to the additively homomorphic property, the above properties.
We also show that our extended scheme is secure in the sense of IND-CPA un-
der the decisional composite residuosity assumption, and of OW-CPA under the
assumption on the hardness of factoring p?q. In order to show that our scheme
works, we analyze several properties on primitive power roots of unity in (Z/n)*,
and give an algorithm which finds them efficiently. Furthermore, we discuss a
relation between factoring n and knowing primitive power roots of unity.

Related Works. In 1998, Okamoto and Uchiyama proposed a public-key en-
cryption scheme which employs the modulus n = p?q. Their scheme is secure
in the sense of OW-CPA under the assumption on the hardness of factoring
n = p?q, and of IND-CPA under the p-subgroup assumption. In addition, the
scheme has an additively homomorphic property.

In 1999, Paillier proposed a public-key encryption scheme, which has an ad-
ditively homomorphic property [5]. He showed that the encryption scheme is
secure in the sense of IND-CPA under the decisional composite residuosity as-
sumption. However, it is not known whether the one-wayness is reduced to the
problem of the hardness of factoring n = pq. In addition to IND-CPA, Paillier



100 T. Hirano, K. Wada, and K. Tanaka

and Pointcheval proposed its variant by using a conversion technique, which has
the indistinguishability against the chosen ciphertext attack (IND-CCA2) in the
random oracle model under the decisional composite residuosity assumption [6].

Damgard and Jurik proposed a variant of the Paillier encryption scheme where
the ciphertext space (Z/n?)* is extended to (Z/n*t1)* [1]. Thereby, it can
handle efficiently messages of arbitrary length in their scheme, although the
public key and the secret key are fixed. The security of their variant is similar
to that of the Paillier encryption scheme and it is not known whether the one-
wayness is reduced to the problem of the hardness of factoring n = pg. Their
scheme can be applied to threshold cryptosystem and zero-knowledge protocols.
Then, they constructed an electronic voting scheme by using these protocols and
their threshold variant [2].

Schmidt-Samoa and Takagi proposed another variant which employs modulus
n = p?q instead of n = pq [§], where p and ¢ are primes with the same length.
Their scheme is secure in the sense of not only IND-CPA under the decisional
composite residuosity assumption, but also OW-CPA under the assumption on
the hardness of factoring n = p?q. They constructed trapdoor hash families based
on the problem of factoring n = p2q, by applying the encryption scheme. These
hash families are suitable for on-line/off-line or chameleon signatures schemes.

Organization. The organization of this paper is as follows. In Section 2, we give
some definitions. In Section 3, we review the Schmidt-Samoa—Takagi encryption
scheme, and propose its variant. In Section 4, we describe new cryptographic prop-
erties and a construction of primitive power roots of unity in (Z/n**!)*. Then,
we extend our variant with primitive power roots of unity. In Section 5, we discuss
a relation between factoring n and knowing of primitive power roots of unity.

2 Preliminaries

We denote {0,1,...,n — 1} by Z/n, and its reduced residue class group by
(Z/n)*, namely, (Z/n)* = {x € Z/n|ged(z,n) = 1}. For g € (Z/n)*, ord, g is
defined as the smallest positive integer e such that g¢ =1 (mod n).

We denote the probability distribution on set X by x «— X and the uniform
distribution by z < X.

We denote the set of positive real numbers by RT. We say that a function
e : N — RT is negligible if and only if for every polynomial p, there exists ko € N
such that for all k > ko, e(k) < p(lk).

We review the definitions of public-key encryption schemes, of the one-wayness
against the chosen plaintext attack (OW-CPA), and of the indistinguishability
against the chosen plaintext attack (IND-CPA).

Definition 1. A public-key encryption scheme II = (K,E,D) consists of the
following three algorithms:

Key Generation K(1%): The key generation algorithm K is a randomized al-
gorithm that takes a security parameter k and returns a pair (pk, sk) of keys,
a public key and a matching secret key.



Public-Key Cryptosystems with Primitive Power Roots of Unity 101

Encryption &(pk,r,m): The encryption algorithm & is a randomized algorithm
that takes the public key pk, a randomness r, and a plaintext m and returns
a ciphertext c.

Decryption D(sk,c): The decryption algorithm D is a deterministic algorithm
that takes the secret key sk and a ciphertext ¢ and returns the corresponding
plaintext m or a special symbol L to indicate that the ciphertext is invalid.

Definition 2. (OW-CPA) Let II = (K, &, D) be a public-key encryption scheme
and A an adversary. We define an advantage of A via

Advi P (k) = Pr((pk, sk) K(1%); ¢ — E(pk,r,m) : A(pk,c) = m].

We say that IT is secure in the sense of OW-CPA if Advy ;"% (k) is negligible
n k, for any polynomial-time adversary A.

Definition 3. (IND-CPA) Let IT = (K, &, D) be a public-key encryption scheme
and A = (A1, A2) an adversary. We define the advantage of A via

Advi P (k) = [2Pr[(pk, k) — K(1%);mo, ma, state — Ay (pk);
b < {0,1}; ¢« E(pk,r,mp) : Aa(mo, m1, c, state) = b] — 1].

We say that II is secure in the sense of IND-CPA if Advif}:ﬂ;pa(k) is negligible
in k, for any polynomial-time adversary A.

3 A Variant of the Schmidt-Samoa—Takagi Encryption
Scheme

In [5], Paillier proposed the public-key encryption scheme with the additively
homomorphic property which can be applied many cryptographic applications.
Several variants of the Paillier encryption scheme have been studied. In this
section, we review the Schmidt-Samoa—Takagi encryption scheme which is a
variant of the Paillier encryption scheme [8], and study a variant of this encryp-
tion scheme without losing homomorphic properties. Furthermore, we show that
the security of our variant is the same as that of the Schmidt-Samoa—Takagi
encryption scheme.

3.1 The Schmidt-Samoa—Takagi Encryption Scheme

We review the Schmidt-Samoa—Takagi encryption scheme [§]. Let n = p?q, where
p and ¢ are primes with same length. The Schmidt-Samoa—Takagi function f is
as follows:
(Z/n)* x Z/n — (Z/n?)*
(r,m) — 7™ (1 4+ mn) mod n?,

where m is a message and r is a random number. Then, we obtain the following
properties on f:



102 T. Hirano, K. Wada, and K. Tanaka

— f is additively homomorphic in m.

— f(r,m) = f(r+ipg,m — (r~* mod n)ipq) for i € {1,2,...,p}, that is, f is a
p-to-1 function.

— The restriction f, = f|(z/pq)x xz/n o0 7 is 1-to-1. Then it has a group ho-
momorphism with respect to the group operation o, : (r1,m1) o, (r2, ma2)
= (riro mod pg,mq + ma + r;qllpq mod n), where 7,, = 7172 mod pg and
le{1,2,...,p} such that 7y = rpq + Ipg mod n.

— The restriction fr, = fl@z/n)x xz/pg o0 m is 1-to-1. Then it has a group
homomorphism with respect to the group operation o, : (11, m1)op, (12, m2)
= (r1r2 — Ipg mod n, my + my mod pq), where m,, = m1 + mo mod pg and
le{1,2,...,p} such that mq + ma = mpq — r;qllpq mod n.

— The scheme (whose encryption function &£ is f,,) is secure in the sense of
OW-CPA under the assumption of the hardness of factoring n = p2q.

— The scheme (whose encryption function &£ is f,,) is secure in the sense of
IND-CPA under the decisional composite residuosity assumption.

The decisional composite residuosity assumption is the assumption that there is
no polynomial-time algorithm which solves “the decisional composite residuosity
problem” with non-negligible advantage.

Definition 4. (The Decisional Composite Residuosity Problem) Let n be a ran-
domly chosen k-bit p>q modulus. For a probabilistic polynomial-time algorithm
A, we define the following probabilities:

PRrandom = Ptz — (Z/n*)* : A(z) = 1]

and
Presidque = Prlz «— (Z/n)* : A(z™ mod n?) = 1].

Then, we denote an advantage of A by

Ade\CR(k) = |PRandom - PResidue‘~

X

In this paper, we use the above definition by replacing (Z/n?)* and 2" mod n?

with (Z/n*t1)* and 2™ mod n**t!, respectively.

3.2 Owur Encryption Scheme

We consider a variant of the Schmidt-Samoa—Takagi encryption scheme by using
the idea of Damgard and Jurik [I]. Let n = p?q, where p and ¢ are primes with
same length. In addition, we introduce new parameters s,t € N such that s > ¢
to the Schmidt-Samoa-Takagi function. Then, we define a function f as follows:

(Z/n)* x Z/n* — (Z/nst1)*
(r,m) — 7" (1 4+ n!)™ mod n**1,

where m is a message and r is a random number. We note that our function
coincides with the Schmidt-Samoa—Takagi function if s =t = 1. Obviously, our
function is an additive homomorphism in m. We show that f is an (n'~!p)-to-1
function.



Public-Key Cryptosystems with Primitive Power Roots of Unity 103

Lemma 5. Let s,t € N such thatt < s < p,q. Then,

1 1+an®=(1+n)""" (mod n**) for a € (Z/n*t1).
2. ordyess (L+n') =n*"1, that is, (1+n') ~ Z/n°"".

Proof. 1. (1 4+ nY)*™" = 1 + an® + ns+1(a"t71(a;57t_l) +-) =1+ an®
(mod n**1).

2. Let © = ord,s+1 (1 + nt), that is, (1 + n')® = 1 mod n**1. Meanwhile (1 +
ntyn” =1+ n* (1 +---) =1 (mod nSH). Hence, z | n®~ 1. We set
x = p°q° such that e < 2(s — ¢+ 1),¢/ < s — ¢+ 1. We consider the
equation (1+n")* =37 (§)n'. Let § € N such that 6t < s+1 < (6 +1)t.
Clearly, § < s+ 1 < p,q from ¢t > 1. Then (1 4+ n")* = Y7 (9)n' =
S0 (B)ntt (mod noth). Tt follows that 3°0_, (¥)n = 0 (mod n**t!) by
the definition of z. In particular, 3°_, ()nt=Yt =0 (mod n*~t*1), that is,

pemt | 30 L ()=t For i < 6, gcd(z',p) = ged(il,q) = 1 from 6 < p, q.

s—t+1

Hence, we obtaln z | (%) by z = p°¢®. Now, we assume z < n’ and

show a contradiction. Le+t1y =37, (*)ni=Yt. Since n*~**1 | y, 2 | y, and
s t
x| n*~t1 it holds ™ | ¥ = 1+n ((5) ++-+). Then, we see that p | 1

t+

orgq|lsincep| ™ \ Yorg|™ | ¥, and obtain a contradiction. O

By Lemma [5l we have the following theorem and corollary.

Theorem 6. f(r,m) = f(r+ipg,m — (r~! mod n®)in*"tpq + jn*~t1) foric

{1,2,...,p} and j € {1,2,...,n'"1}, that is, f is an (n'~1p)-to-1 function.
Proof. The following congruence relation means that over (Z/n*+1)*. r=! means
r~1 mod n®.

¢ s—t s—t+1

Flr+ipg,m — n* "t Yipg 4 jn® =) = (1 4 ipg)" (1 ntymonT T i
I

’I"ns(].+nST_1ipq)(1+nt)m_ns r~ipq

_Tns(1+nt)ns_tr ipg+m—n®"tr~Lipg
=" (1+nhH)™
= f(r,m).
Hence, we see that f(r,m) = f(r + ipg,m — (r~! mod n®*)n*"tipg + jns—t*1).
Therefore, f is an (n'~!p)-to-1 function. O

Corollary 7. (of Theorem [d)

1. The restriction fr = fl(z/pq)% xz/n>—t+1 on 1 is 1-to-1. Then f, holds the fol-
lowing equation fr(ri,ma) fr(ra,ma) = fr(rire mod pg, mi+mo+(r,, mod
n®)In*~tpg mod n* 1), where rpy = r1ro mod pq and | € {1,2,...,p} such
that 1172 = rpq + Ipg mod n.

2. The restriction fm = flz/n)xxz/(ns+t-1/p) on m is 1-to-1. Then fy, holds
the following equation : fp,(r1,m1) fm(r2, me) = fin(rire — lpg mod n, mq +
ms mod (n*~'*1/p)), where my, = mi + ma mod (n 5*”1/1)) and 1 €
{1,2,...,p} such that my +mg = mpg — (r,,} mod n®)in*"'pg mod n*~**1.



104 T. Hirano, K. Wada, and K. Tanaka

We also show properties of f, which can help us to compute f~'.

Lemma 8. For xz,y € (Z/n)* and s > 1, 2® = y™ (mod n) if and only if
x =y (mod pq).

Corollary 9. (of Lemmal8) {z € (Z/n)* |
a subgroup of (Z/n)* whose order is (p — 1)(q

=y (mod n),y € (Z/n)*} is
—1).
equivalent to {z"™ mod n | z € (Z/pq)*}.

Especially, the subgroup is

Our encryption scheme is described as follows. We refer the detail description of
the decryption algorithm to the full paper.

Key Generation: Given a security parameter k, choose at random a modulus
n = p2q of k bits, where p, g have same length with t < s < p,¢. Compute
d=n"*% (mod (p—1)(¢—1)) and I € Z such that 2! < pg < 2/*1. Then, the
public key is pk = (n,[) and the secret key is sk = (p, q,d).

Encryption: To encrypt a message m € Z/(n*"'*1/p), choose r € (Z/n)* at
random and compute £(r,m), where £ = f,,, that is,

E(r,m) =™ (1 +nY)™ mod n® L.

Decryption: To decrypt a ciphertext ¢, compute r = ¢ mod pg, and y =
c(r‘l)"é mod n**!. Then, by using Algorithm XDJ, we obtain a message
m € Z/(n*~"*/p) by

D(c) = XDJ(s,t,n,y,1) mod (n*~t+1/p).

Algorithm 10. LetLy:(z) = “,'. The following algorithm takesy € (Z/n*T1)*,
a € (Z/n*TH)*, ands,t € N suchthatt < s, and computesx € Z/n*~t+1 such that
y = (1+ an')® mod n**1:

XDJ(Sat7nay7a)
z:=0
6:=17]—-1
for (i :=1 to ¢)

t1 := (o= mod n(* DY) x L, (y mod n+1*) mod n
to ==
for (j:=2 to i)

ri=z—1

ty =ty X x mod n't

ty =1, — tzx(a;t)kl mod n't
T =1

s—t+1

return x mod n

We note that Algorithm XDJ coincides with that by Damgard and Jurik when
t = a =1, and works for any n € N.
We give the following theorem on the security for our scheme.



Public-Key Cryptosystems with Primitive Power Roots of Unity 105

Theorem 11. We have the following properties on &.

1. Our scheme is secure in the sense of OW-CPA under the assumption of the
hardness of factoring n = p?q.

2. Our scheme is secure in the sense of IND-CPA under the decisional composite
residuosity assumption by replacing (Z/n?)* and x™ mod n? with (Z/n*+1)*
and ™" mod n*tt, respectively.

Proof. 1. We assume that there exists an adversary A that on input a random ci-
phertext ¢ = &, (r,m) = ™ (14+n?)™ mod n**!, outputs m € Z/(n>~+1/p)
with non-negligible probability e, that is, AdvOw A P%(k) = e. Then we will
construct a probabilistic polynomial-time algorlthm B which factors n by us-
ing this adversary A.

B chooses r’ € (Z/n)* and m’ € Z/n*~t*1. Then with probability 1—1/p,
B obtains m’ > n*~t+1/p. B computes ¢’ = ()" (1 4+ n*)™ mod n**+'. The
distribution of ¢ is exactly the same as the distribution of the valid cipher-
texts. B runs A on ¢. Since E(r,m) = E(r +ipg,m — (r~! mod n)n*"tipg +
ns= Y A() outputs M = m/ — ((')”" mod n®)n*" tzpq mod n*~tH €
Z/(n*~t*1/p) with probability €. From m’ — M = ((+')"" mod n®)n*tipq
(ie. (m' — M)/n*~t = ((+')"" mod n*)ipq), ¥ € (Z/n)* and 0 < i < p,
we obtain ged((m/ — M)/n®*~t n) = pq. Hence, B can factor n = p?q with
non-negligible probability (1 —1/p)e.

2. We will construct a probabilistic polynomial-time algorithm D such that
breaks the decisional composite residuosity assumption by using the adver-
sary A = (A1, A2) against IND-CPA with the advantage Advmd PhE) =e.
Let = be an instance of the decisional composite r651du081ty problem. Ay
outputs (mg, m1, state), where mg,m; € Z/(n*"**1/p). Next D chooses a
random bit b € {0,1}, computes ¢ = z(1 + n!)™ mod n**!, and runs Ay
on (mg,my,c). If x is an n*-th residue, then ¢ is a valid ciphertext, oth-
erwise ¢ is a random element of (Z/n**1)*. Therefore, let D outputs 1 if
As(mg,m1,¢) = b, or 0 otherwise. Hence, we can obtain that Advi°F (k)
equals non-negligible advantage €/2. a

4 Constructions Based on Primitive Power Roots of
Unity

In this section, we first introduce new cryptographic properties related to the
homomorphic property. Second, we describe some facts on primitive power roots
of 1, and apply them to our encryption function. Then, we propose an extended
encryption scheme which has the new cryptographic properties.

4.1 New Cryptographic Properties

In this section, we formalize the notion of a general homomorphic property as fol-
lows: Let f1, fo,..., fx, f be functions, and %, g polynomial-time computable op-
erations. For mq,ma,...,mg, we have fi(mq) * fa(ma) * -+ x fr(mg) =



106 T. Hirano, K. Wada, and K. Tanaka

f(g(my,ma,...,myg)). These functions do not always have common domain or
common range. For example, a multiplicative homomorphism can be expressed
by fi=fo=-= fr = fand g(a1,az,...,ar) = a1 Xaz X+ - - X ag. With this for-
malization, we consider two properties. A tuple ({f1, fa2,..., fx}, f) of functions
is called “affine with x1, 2o, ..., x” if f1(m1)* fa(ma)*- - fu(my) = f(xzimq +
Tomag + -+ - + xpmy), that is, g(my, ma,...,my) = x1my + xamo + -+ - + M.
An additive homomorphism can be considered as the special case. A tuple of
({f1, f2s-- - fr}, f) of functions is called “pre-image restriction with modulo n”
if m=mg =mg=---=myand f1(m) x fo(m) *x---x fr(m) = f(m mod n),
that is, g(m,m,...,m) = m mod n.

Definition 12. (Affine) A tuple ({f1, f2,---, fx}, f) of functions has the prop-
erty of affine with x1,xa, ...,z if for mi,ma,...,myg, fi(ma) * fa(ma) * -+ %
fe(my) = f(ximy + zomo + - + zpmy).

Definition 13. (Pre-Image Restriction) A tuple of functions ({ f1, fa,- -, fx}s f)
has the property of pre-image restriction with modulo n if for m, f1(m) * fa(m) *
<ok fr(m) = f(m mod n).

4.2 Our Extended Function

In order to extend our function f in Section B2 we introduce primitive power
roots of 1 in (Z/n*t1)* to f.
First, we give some facts on primitive power roots of 1 in (Z/n*t1)*.

Lemma 14. For ¢ € N, let p be an odd prime such that ¢ | p — 1. Then, there
exist @(£) primitive (-th roots of 1in (Z/p)*, where @ is the Euler phi-function,
and we can compute them efficiently if we know prime factors of p — 1.

Before we prove this lemma, we describe a fact for primitive /-th roots of 1 in
(Z/p)*.

Fact 15. We can identify the existence of primitive (-th roots of 1 in (Z/p)*
with that of a subgroup G of (Z/p)* whose order is £. This means that, if we
find an element g € (Z/p)* with order ¢, then g is a primitive £-th root of 1 in
(Z/p)* since g* £1 (mod p) for 1 <i<{—1.

Proof. (Lemma [I4]) Since (Z/p)* is a cyclic group, there exists a generator g €
(Z/p)*. In particular, we find g efficiently if we know prime factors p — 1. Then,
ordpg(p_l)/z = ( since ¢ | ord, g = p — 1. Therefore, g®=D/¢ is a primitive
(-th root of 1. Now, let g, be g®~1/¢. We define a subgroup G of (Z/p)* as
{9e,92,...,9}. Then, for any ¢’ € G, (¢') = 1 (mod p). We note that any
subgroups of cyclic groups are also cyclic. In addition, for subgroups G, G’ of a
cyclic group, it holds G = G’ if |G| = |G/|. Therefore, the number of primitive
(-th roots of 1 in (Z/p)* is ¢(¥). O

Now, we apply primitive /-th roots of 1 in (Z/p)* to those in (Z/n*T1)* by using
the Chinese Remainder Theorem, where n = p?q and s € N such that s < p, q.
Then, we give the following important lemma (see e.g. [, Section 6.5]).



Public-Key Cryptosystems with Primitive Power Roots of Unity 107

Lemma 16. Let p,q be distinct odd primes, and e, e’ positive integers.
1. (Z/p®)* is a cyclic group. In particular, |(Z/p®)*| = P~ tp—1).
2. For a group (Z/p°q® ), max ¢z peqeyx {00de er g} = lem(|(Z/p°) %],
((Z/q°)*]) =lem(p*~(p = 1),¢° "'(q — 1)).

We can compute efficiently a generator g of (Z/p?*+2)* using the Hensel lifting
if we know prime factors of p — 1, due to Lemma [[6 Similarly, we can compute
a generator h of (Z/q*t1)* efficiently. Then, from g and h, we can find an
element w € (Z/n*T1)* such that ord,s+1 w = lem(p**T(p — 1),¢°(¢ — 1)), by
using the Chinese Remainder Theorem. Now, let p — 1 = ¢p’, ¢ — 1 = {q’, and
ged(p—1,q—1) = £, where p/, ¢’ € N. Let wp = w(©dns+1 )/ mod ns*+t wy is a
primitive /-th root of 1 in (Z/n**t1)* since ord,s+1 w = p*T1g*p'q’¢. Thus, we
can compute a primitive ¢-th root of 1 efficiently.

Remark 17. Ifged(¢, (p—1)(g—1)) = 1, we see that there exists no primitive £-
th root of 1. In the RSA encryption scheme [, the encryption function f(X) =
X¢ mod n, where the exponent e is relatively prime to o(n) = (p—1)(¢ — 1), is
a permutation on (Z/n)*. Therefore, it holds also on (Z/p)* and (Z/q)* by the
Chinese Remainder Theorem. Hence, for all x € (Z/n)*, there exists only one
e-th root, that is, the e-th root of 1 is 1 in (Z/n)*.

In many cryptographic settings depending on the hardness of factoring n, the
product of two strong primes are recommended (we note that p € N is a strong
prime if p is prime and p = 2p’ + 1, where p’ is also prime). It is well-known
that strong primes have resistance against factoring attacks which depend on
the structure of primes, such as the p — 1 method and the elliptic curve method.
However, since ¢ is limited to 2 or p’ for a strong prime p, there are only g2, g,
in (Z/p)* as primitive ¢-th roots of 1. Hence, we consider to use the following
primes with many power roots of 1 in (Z/p)*, and can resist against factoring
attacks above.

Definition 18. (Semi ¢-Smooth Primes) For ¢ € 2N, a prime p € N is semi
L-smooth if p = {p' + 1, where p’ is prime.

In our extended function and scheme, we require that ¢ is constant and much
smaller than p’. However, we do not know whether the number of the primes
above is infinite, as well as that of strong primes. Nevertheless, we assume that
there exist infinite number of semi ¢-smooth primes for any ¢ € N. Henceforth
in this paper, we assume that p and ¢ are semi ¢-smooth prime.

For i € {1,2,...,¢}, we define an extended function f; with a primitive ¢-th
root of 1 in (Z/n**t1)* as follows:

fi: (Zfn)* X Z/n* — (Z/n**1)*
(r,m) — ™" (1 — win)™ mod n**!,

where m is a message, r is arandom number, and wy is a primitive ¢-th root of 1. We
note that our extended function is similar to the Schmidt-Samoa—Takagi function
if s = 1and i = ¢, since w) = 1 (mod n**1). Obviously, our function is additive
homomorphism in m. We give the following property on f;.



108 T. Hirano, K. Wada, and K. Tanaka

Corollary 19. (of Lemmald) Let s € N and a € (Z/n*T1)*. Then, ord,-+1 (1+
an) = n®, that is, (1 +an) ~Z/n°.

That is, we see that ord,,.+1 (1 — win) = n® since w} is relatively prime to n for
any ¢. Therefore, for any ¢, we obtain the properties similar to Theorem [6] and
Corollary [

Theorem 20. For anyi € {1,2,...,¢},

1. fi(r,m) = fi(r + jpg,m — (r~! mod n*)jpq) for j € {1,2,...,p}, that is, f;
is a p-to-1 function.

2. The restriction fi, = fil(z/pg)x xz/ns on v is 1-to-1. Then f;, holds the
following equation : f; (r1i,m1)fir(r2,ma) = fi r(rire mod pg,mi + mo +
(r;ql mod n®)ipg mod n®), where rpq = rire mod pg and I € {1,2,...,p}
such that riry = rpq + lpg mod n.

3. The restriction fim = filz/n)xxz/ms/p) 00 m is 1-to-1. Then f; , holds the
following equation : fi m(r1,m1) fi m (72, m2) = fi,m(r1re — Ipg mod n,my +
mo mod (n®/p)), where my, = my + mg mod (n®/p) and I € {1,2,...,p}
such that my +ma = mpq — (r;ql mod n*)lpg mod n*~t*L,

4.3 Our Extended Scheme

We propose a concrete scheme based on our extended function f;. We describe
our extended encryption scheme as follows:

Key Generation: Given a security parameter k, choose at random a modulus
n = p3q of k bits, where p, ¢ are semi f-smooth prime such that p { ¢ — 1
and ¢ 1 p — 1 with the same length, and ¢ < s < p,q. Compute d = n~*°
(mod (p — 1)(¢ — 1)), I € Z such that 2! < pg < 2!*! and a primitive (-th
root wy of 1 as above. Then, the public key is pk = (n, 1, w) and the secret
key is sk = (p, g, d).

Encryption: To encrypt a message m € Z/(n®/p), choose i € {1,2,...,£} and
r; € (Z/n)* at random, and compute & (r;, m), where & = f; 1, that is,

ci = Ei(ri,m) = (1 — win)™ mod n>*+*.
Then, the ciphertext is (¢;,1).

Decryption: To decrypt c;, compute r = ¢ mod pg and y = ¢;(r~!)" mod
n*T1. Then, by using Algorithm XDJ, we obtain a message m € Z/(n*/p)
by

né

D((ci,i)) = XDJ(s,1,n,y, —wz) mod (n®/p).

Obviously, &; has the additively homomorphic property, for any i.
Now, we can prove the following security proofs, in a similar fashion of
Theorem [T1]

Theorem 21. For any ¢ € {1,2,..., 0}, our extended scheme is secure in the
sense of OW-CPA under the assumption on the hardness of factoring n = p?q,
and of IND-CPA under the decisional composite residuosity assumption by re-
placing (Z/n*)* and ™ mod n? with (Z/n*t')* and ™ mod n**', respectively.



Public-Key Cryptosystems with Primitive Power Roots of Unity 109

In addition to the security proof, our extended scheme satisfies new crypto-
graphic properties “affine” and “pre-image restriction”. Let € O (m) = EB(r,m)
= 77" (1 — n*)™ mod n*t!. This is similar to our original function.

Theorem 22. For the functions £1,E&s, ..., e, we have the following properties:

1. For alli,j, k € {1,2,...,0}, there exist x; 1 and x;; such that ({&;,&;}, Ek)
is an affine tuple with x; and x;k, that is, for all mi,me € Z/(n°/p),
Ei(mi)€j(me) = Ex(zipmi + xjpme), where x4 € Z/n° such that 1 —
win = (1 — win)®a> (mod n**1). In particular, we can compute ;) and
xjk, efficiently.

2. For allt € N such that t | £, ({Es,Eas ... Es}, EW) is a pre-image restriction
tuple, where 6 = (/t, that is, for all m € Z/n®, E5(m)Eas(m) - - Ers(m) =
EW (m mod n*~t1). In particular, E5(m)Exs(m) - - - Es(m) = ED (m).

Proof. 1. By using Algorithm XDJ, we compute x,; such that 1 —win = (1—
win)®et (mod ns*tt) as follows, that is, z,, = XDJ(s,1,n,1 — win, —wh)
mod n®. Hence, we can compute x, ; efficiently. In particular, 2, , = 1. Then,

s

Ei(m1)Ej(ma) = (1 — win)™ry (1 — wZn)m2 mod n* !
= (rlrg)”s (1-— ujifn)"’“"”"l“”Mm2 mod n*t!

= Ek(zipm1 + x5 me).

2. For t € N such that ¢ | ¢, we have

t

t
H&'é(m) = H % (1 — wi¥n)™ mod n®*!
i=1

i=1

+ m
= (H(l - wéén)> mod n*T!,

i=1

where r = ry5r9s - - 15. Since wy is a primitive /-th root of 1, wg, wf‘s,

.., wt® are distinct t-th roots of 1. Hence, (1 — win)(1 — wn)--- (1 —

win) = 1—nt. Therefore, r™ (H§:1(1 - wéén)) =" (1-n')™ mod nst1.

From OI‘dns+1 (1 — nt) = n3—t+17 we obtain (1 _ nt)m = (1 o nt)m mod n® "ttt
(mod n**t1). Then, we have

¢
H&'é(m) =" (1 —n')™ mod n**+!
i=1

— Tns (1 _ nt)m mod n®~t+! 1

= £®(m mod n*~t*1).

mod n®*



110 T. Hirano, K. Wada, and K. Tanaka

We have proposed an extended scheme based on the Schmidt-Samoa—Takagi
encryption scheme with primitive /-th root of 1. We can also construct a scheme
from the Damgard and Jurik encryption scheme [I] instead of their scheme,
although we do not know whether the one-wayness is reduced to the problem of
factoring n = pq.

5 Properties on Primitive Power Roots of Unity

In this section, we discuss a relation between factoring n and knowing of a
primitive /-th root of 1 in (Z/n**1)*  where n = p?q and p, ¢ are semi /-smooth
prime. For the sake of simplicity, we consider primitive ¢-th roots of 1 in (Z/n)*
since wy mod n is also a primitive ¢-th root of 1 in (Z/n)*, where wy is a primitive
{-th root of 1 in (Z/n**t1)*. We note that the following argument can be applied
to the case of n®t! or n = pq.

First, by using w; = ws, we describe a well-known relation between factoring
n and knowing square roots. Second, we generalize the argument for £.

5.1 Square Roots

We consider the case of square roots, that is, £ = 2. Let = and y be elements
of (Z/n)* such that y = 22 (mod n). We identify = with (z,,z,) = (z mod
p?,x mod q) from (Z/n)* ~ (Z/p*)* x (Z/q)*. Then, for a variable X, all of
the solutions to the equation y = X2 (mod n) satisfy the following equations:

r=z1= (rmodp*rmodq) = (x,,),
22 = (— mod p?, —z mod q) = (—z,. — ),
25 = (zmodp?, ~zmod q) = (2p, —g),
zy = (—zmod p*,z mod q) = (—=zp,zq).
Obviously, 22 =y (mod n) for i = 1,2,3,4. In particular, 1 = —z2 (mod n)
and z3 = —z4 (mod n).
On the other hand, we have that a primitive square root in (Z/n)* of 1 is
ws = —1 = n — 1 (mod n), and identified ws with (ws mod p? wy mod q) =
(g2, ha) = (—1,—1), where g = —1 (mod p?) is a primitive square root of 1 in

(Z/p*)*, and hy = —1 (mod q) is also that in (Z/q)*. Then, we can interpret
x; (1=1,2,3,4) as follows:

r=z1= (zmodp?zmodq) = (xp,4),
23 = (war mod p?, waz mod q) = (g2, hay),
I3 = (‘T mod p27 w2 mod Q) = (‘Tpﬂ hQ‘Tq)u
ts= (wpzmodp?zmodg) = (9r2py).

Similarly, 1 = waxe (mod n) and x3 = wez4 (mod n).

As is well-known, given y € (Z/n)*, finding a “random” square root of it is
equivalent to factoring n. This means that if we have a pair (z;,2;) such that
x; # wsx; (mod n) for e = 1,2, then we obtain prime factors p and ¢ of n from



Public-Key Cryptosystems with Primitive Power Roots of Unity 111

ged(z; —wsxj, n). For example, for 1, x3 as above, it holds z1 # w§zs (e = 1,2),
therefore we obtain ged(zq — x3,n) = p? since r1 — x5 = (z, — Tp, T4 — hazy) =
(0,24(1—h2)). That is, 71 —x3 = 0 (mod p?) and # 0 (mod g). Conversely, if we
only have pairs (x;, 2;) such that ; = wSz; (mod n), it is hard to factor n. This
situation is similar to the following case. We choose x € (Z/n)* at random, and
compute y = 22 mod n. Since anyone knows that one of primitive square roots
of 1is —1 in any fields or rings, we have (x, wox) such that 2 = (wex)? (mod n)
and z = w3z (mod n), as a pair of square roots of y in (Z/n)*. However, it is
hard to find non-trivial square roots of 1 without knowing prime factors p, ¢ of
n, due to the factoring assumption. That is, it is hard to factor n even if we have
information on we = —1 or ¢ = 2. In addition, we note that, given y € (Z/n)*,
randomly finding a square root of y is equivalent to randomly finding a square
root of 1, since x;/x; # ws (mod n) is also a (-th root of 1 if 27 = x5 (mod n)
and z; # wsz; (mod n) for e =1,2.

5.2 Power Roots

We describe the case that £ | p—1 and £ | ¢ — 1 for each £ # p’, ¢’. This can be
considered as a generalization of ¢ = 2.

In our extended scheme, we first find generators g and h of (Z/p?)* and
(Z/q)*, respectively, with prime factors of p — 1 and ¢ — 1. Second, we compute
ge and hy, which are primitive ¢-th roots of 1 in (Z/p?)* and (Z/q)*, respectively,
by using ¢g and h. Then, we construct wy from g, and hy, by applying the Chinese
Remainder Theorem.

For 1 < e </, wy satisfy the following equations:

wy = (we mod p?, wy mod q) = (g¢, he),
wf = (w? mod p?, w? mod q) = (g7, h?),
(1=)wf= (1modp? lmodgq) = (1,1).
We also see that the following 21, 2s,2,...,200—1 are also ¢-th roots of 1 in

(Z/n)*, which are different from w§:

|
—~

201 (1 mod p?, wy mod q) 1,
ze2 = (1 modp?,w?modq) = (1,

ze0—1 = (1 mod p2,w§71 mod q) = (l,hgfl).

It follows that for 1 <7 < ¢ —1and 1 < e </, wiz,; mod n are also ¢-th
roots of 1 in (Z/n)*. It holds w§z,; # z¢; (mod n) for i # j and 1 < e < {.
Therefore, the number of /-th roots of 1 is ¢? (In particular, there exist ¢(£?)
primitive ¢-th roots of 1).

Now, we can see that it is easy to factor n by using w, and one of 2z, ; above,
since (w§)t = zfvi =1 (mod n) and w§ # z¢; (mod n) for 1 < e < {. Hence,
we must not give other primitive /-th roots of 1 publicly. Conversely, we regard



112 T. Hirano, K. Wada, and K. Tanaka

the problem of finding other ¢-th roots which are not the power of w, as a hard
problem.

Furthermore, we must construct wy from g, and hy, otherwise, for some 1 <
e < ¢—1, there exists the following (primitive) /-th root y¢ of 1: y§ = 1 (mod p?)
and y§ # 1 (mod ¢) or y§ # 1 (mod p?) and y§ = 1 (mod ¢). In other words,
this situation is equivalent to the case when a non-primitive /-th root in (Z/p?)*
or that in (Z/q)* instead of g, or hy, respectively, is used for constructing wy.
Hence, it is easy to factor n, that is, we must compute wy with g, and hy.

Thus, we can see that it is hard to factor n even if we give a primitive power
roots of 1 publicly. This situation is similar to that of strong primes. That is, if
wy or £ can help for factoring n, then wy = —1 or £ = 2 must.

References

1. Damgard, I., Jurik, M.: A Generalisation, a Simplification and Some Applications
of Paillier’s Probabilistic Public-Key System. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992 pp. 119-136. Springer, Heidelberg (2001)

2. Damgard, 1., Jurik, M.: A Length-Flexible Threshold Cryptosystem with Applica-
tions. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp.
350-364. Springer, Heidelberg (2003)

3. ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. IEEE Transactions on information Theory 31(4), 469-472 (1985)

4. Goldwasser, S., Micali, S.: Probabilistic Encryption & How to Play Mental Poker
Keeping Secret All Partial Information. In: STOC 1982: Proceedings of the four-
teenth annual ACM symposium on Theory of computing, pp. 365-377 (1982)

5. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238.
Springer, Heidelberg (1999)

6. Paillier, P., Pointcheval, D.: Efficient Public-Key Cryptosystems Provably Secure
against Active Adversaries. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASI-
ACRYPT 1999. LNCS, vol. 1716, pp. 165-179. Springer, Heidelberg (1999)

7. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures
and Public-key Cryptosystems. Communications of the ACM 21(2), 120-126 (1978)

8. Schmidt-Samoa, K., Takagi, T.: Paillier’s Cryptosystem Modulo p?q and Its Ap-
plications to Trapdoor Commitment Schemes. In: Dawson, E., Vaudenay, S. (eds.)
Myecrypt 2005. LNCS, vol. 3715, pp. 296-313. Springer, Heidelberg (2005)

9. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge
University Press, Cambridge (2005), http://www.shoup.net/ntb/ntb-v2 1.pdf


http://www.shoup.net/ntb/ntb-v2_1.pdf

Relationship between Two Approaches for
Defining the Standard Model PA-ness

Isamu Teranishi’ and Wakaha Ogata?

! NEC Corporation.
1753, Shimonumabe, Nakahara-Ku, Kawasaki, Kanagawa, 211-0011, Japan
teranisi@ah. jp.nec.com
2 Tokyo Institute of Technology.
2-12-1 Ookayama, Meguro-Ku Tokyo, 152-8550, Japan
wakaha@mot.titech.ac. jp

Abstract. There are two approaches to define Plaintext Awareness
(PA). The first one is a classical approach to define the PA security
and is used to define the PA security of the random oracle model. This
approach enables us to define the PA-ness simply, but no one know
whether we can define the standard model PA security based on this
approach. In contrast, the second approach is a current approach to
define the PA security. It enables us to define the standard model PA
security formally, but it is more elaborate than the overwhelming-based
approach. In this paper, we aim to clarify relations between the two
approaches. We define the standard model PA security based on the
first approach. Then we show that, under a very weak condition, it is
equivalent to the known definition of the standard model PA security
based on the second approach.

Keywords: Plaintext Awareness, Standard Model.

1 Introduction

1.1 Background
The Plaintext Awareness (PA) [BR94, BDPROS, [HLMO03, [BP04, [D0E, [TOOE,

[BDOT] is one of the most fundamental notion about a Public-Key Encryption
scheme (PKE). Intuitively, we say that a PKE is PA secure, if it satisfies the
following property: whenever an adversary generates a ciphertext, the adversary
“knows” the corresponding plaintext.

The PA notion is important, because the PA-ness together with the IND-
CPA security implies the IND-CCA2 security [BR94, [BDPROS, [BP04]. This
means that we can use the PA security when we show the IND-CCA2 security.
Moreover, it can bring some insight or an alternative perspection on the design
of existing PKE with IND-CCA2 security, as said by Bellare and Palacio [BP04].

Although the intuitive definition mentioned above is quite simple, it is elab-
orate task to define the PA notion formally. Therefore, many definitions of the
PA security are there. Mainly, there are two approaches to defining PA security,

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 113 2008.
© Springer-Verlag Berlin Heidelberg 2008



114 I. Teranishi and W. Ogata

which we will call “overwhelming-based approach” and “indistinguishability-
based approach.”

The overwhelming-based approach is a classical approach to define the PA secu-
rity and is used to define the PA security [BR94, [BDPROS] of the random oracle
model. This approach enables us to define the PA-ness simply, but no one know
whether we can define the standard model PA security based on this approach. In
contrast, the indistinguishability-based approach is a current approach to define
the PA security. It enables us to define the standard model PA security formally
[BP04], but it is more elaborate than the overwhelming-based approach.

Reviewing Two Approaches. Both the overwhelming-based approach and
the indistinguishability-based approach are defined by using an adversary and
an extractor. However, the details of two approaches are quite different. In the
case of the overwhelming-based approach, the adversary outputs one ciphertext
and the extractor extracts the corresponding plaintext from the ciphertext. We
say that a PKE is PA secure, if there exists an extractor which succeeds the
extraction with overwhelming probability.

In contrast, the indistinguishability-based approach defines the PA security
through the indistinguishability of two worlds. In the first and second worlds,
an adversary can polynomially many times access to the decryption oracle and
the extractor respectively. We say that a PKE is perfectly/statistically/com-
putationally PA secure, if these two worlds are perfectly/statistically/compu-
tationally indistinguishable for the adversary.

1.2 Owur Contributions

Motivation. In order to see the motivation of our work, we review the intuition
behind the PA-ness. Recall that the intuition behind the PA-ness is “A knows
the decrypted plaintext M,” and this intuition is realized by the existence of an
extractor IC which can extract M.

In the definition of the standard model PA-ness [BP04], an extractor K re-
quires to extract polynomially many plaintexts M, ..., M,,. This means that
the standard model PA-ness [BP04] requires that “A knows all of My, ..., M,.”

However, our intuition suggests that “A knows all of Mjy,..., M,” holds if

and only if all of the following facts holds: “A knows M;,”..., and “A knows
M,,.” Therefore, the extractor /' should be “decomposed” into the extractors
Ki,...,K,. Here IC; is an extractor which can extract M;.

We would like to know whether this intuition is true or not. Recall that the
overwhelming-based PA-ness requires an extractor to extract only one plain-
text. Therefore, if the above intuition is true, the extractor I for the standard
model PA-ness of can “decompose” into the extractors Ki,...,K, of
the overwhelming-based PA security. So, the above motivation can rephrase as
follows: “Can we define the standard model PA-ness by using the overwhelming-
based methodology?”

Two Approaches are Almost Equivalent. In this paper, we define
Over Whelming-Based PA security (OWB-PA) in the standard model and study



Relationship between Two Approaches 115

the relationship between the OWB-PA security and the indistinguishability-
based PA security [BP04]. In particular, we show that the extractor K for statis-
tical PA-ness, which extracts My, ..., M, can be constructed from the extractor
K1,...,K, of the OWB-PA security. Here C; is an extractor which extracts M;.

A naive definition of the OWB-PA security is obtained by “directly stan-
dard modelizing” the overwhelming-based PA security [BR94, [BDPRIS| of the
random oracle model. However, we can show that the naive OWB-PA security
seems to be equivalent to none of the perfect/statistical/computational PA se-
curity [BP04]. Therefore, we somewhat modify the definition of the OWB-PA
security, assume a very weak condition on a PKE and show that this (modi-
fied) OWB-PA security is equivalent to the statistical PA-security under this
condition.

The modification we use is allowing an adversary to access the decryption or-
acle, and giving an auxiliary input to the adversary. Our condition for a PKE is
about secret keys. Recall that, in some PKE such as the Cramer-Shoup scheme
[CS9]], one public key has two or more corresponding secret keys. Our condi-
tion, named sk-non-redundancy, is as follows: “If two secret keys sk; and sko
correspond to the same public key, Decg, (C') = Decs, (C') holds for any cipher-
text C.” Clearly, this condition is satisfied for any honestly generated ciphertext
C' = Enco(M), because Decg, (C') = Decek,(C) = M holds. The heart of the
sk-non-redundancy is that Decg, (C') = Decg, (C') holds even for maliciously gen-
erated ciphertext C. We can say that our sk-non-redundancy condition is very
weak, because all known PKEs satisfy this condition.

Significance. One of the most significant point of our result is that it shows the
“independence” of knowledge extractions. Recall that our result shows that the
extractor K for the statistical PA-ness can be “decomposed” into the extractor
Ki,..., K, of the OWB-PA security. Here K is an extractor which extracts all
My, ..., M, from decryption queries Ci,...,C,, of an adversary and C; is an
extractor which extracts M; from C;. Since K; can extract M; independent
from other K;, this means that the knowledge extractions of M; and M, are
“independent” from each other.

This independence is non-trivial fact from the folloing reason. Recall that the
definition of the statistical PA-ness requires that (M, ..., M,,) ~ (Decs(C1), . . .,
Decs(Ch)) holds. Here “~” denote the statistical indistinguishability.

However, the statistical indistinguishability (X1,...,X,) ~ (Y1,...,Y},) may
not hold even if X; ~ Y7,...,X,, =~ Y, holds, where X; and Y; are random
variables. (In fact, (Xi,...,X,) ~ (Y1,...,Y,) hold only if the distribution
of Xy,..., X, are independent from each other.) Recall that an adversary of
the statistical PA-ness can output {C;}; such that the distribution of C; is not
independent from that of other C;. Therefore, if IC extracts M; ~ Decy(C;) one
by one, (My,...,M,) ~ (Decek(C1),. .., Decs(Cy)) may not holds.

Our result is non-trivial because it shows that (M, ..., M,) ~ (Dec(C1),
..., Deck(C)) always holds even if I extracts M; ~ Decy(C;) one by one
by using the extractor K; of the OWB-PA-ness. That is, our result shows that the



116 I. Teranishi and W. Ogata

“independence” of knowledge extraction holds even if the distributions of Cf,
..., C, are dependent.

More Detailed Studies about the Equivalence. As mentioned before, we
show that the OWB-PA security was equivalent to the statistical PA security
[BP04] only if a PKE is sk-non-redundant. However, we also consider a slightly
modified version of the PA security [BP04] (named sk-PA security), where a
distinguisher is provided with the secret key. Then we show that the OWB-
PA security is equivalent to the sk-statistical PA security, even if a PKE is not
sk-non-redundant.

In the statistical case, we can say that the difference between the sk-PA secu-
rity and the original PA security is quite small, because we can show that these
two notions are equivalent for a sk-non-redundant PKE and all known PKEs are
sk-non-redundant.

However, the definition of the computational PA security dramatically changes
if a distinguisher is provided with the secret key. In fact, we can prove that the
sk-computational PA security is equivalent to the sk-statistical PA security, al-
though the original computational PA security is strictly weaker than the original
statistical PA security [TO06, [TO0S].

We can say that the above result show what the difference between the com-
putational PA security and the statistical PA is. That is, we can say that the
only difference between the computational PA security and the statistical PA
security is in the knowledge of sk.

Computational PA-ness. We finally note about the computational PA-ness.
One may think that our result can be generalized to the case of the computational
PA-ness. That is, one may think that the computational PA-ness is equivalent
to the “computational OWB-PA-ness.” Here the computational OWB-PA-ness
is a variant of the OWB-PA-ness such that an extractor requires to extract a
plaintext only from one ciphertext and the extracted plaintext is only required
to be computationally indistinguishable from the decrypted plaintext.

However, Bellare and Palacio [BP04] already showed that such computational
OWB-PA-ness was strictly weaker than the computational PA-ness. (They used
the term “PA0-ness” for the computational OWB-PA-ness.)

2 Standard Model PA-ness

We review the definition of the standard model PA-ness, which was given by
Bellare and Palacio [BP04] and was given through indistinguishability-based
methodology. From a technical reason, we slightly change the definition of

[BP0O4]. That is,

— we give an auxiliary input to an adversary.
We will see in Subsection why we need this modification.

Definition 1 (Standard Model PA-ness[BP04]). Let IT = (Gen, Enc, Dec)
be a PKE. Let A, K, P be polytime machines, which are respectively called
adversary, extractor, and plaintext creator.



Relationship between Two Approaches 117

7PA5)Ye,CA,Enco’P()‘7 Z)i 7PA}1§1,A,Enco’P()‘a Z)i
Take random tapes R and p for A and P. Take random tapes R, u, and p for A, P, K.
(pk,sk) « Gen(1%*). (pk, sk) < Gen(1%).

Initialize the list EList to e.
Initialize the state Stx of K to e.

Run A(pk, z; R) until it halts: Run A(pk, z; R) until it halts:

If A makes an encryption query (enc,@) If A makes an encryption query (enc, Q)
C' — Encpk 0 P(Q; ). C' «— Encp o P(Q; 1), EList < EList||C.
Send C' to A as the reply. Send C' to A as the reply.

If A makes a decryption query (dec, Q) If A makes a decryption query (dec, Q)
M — Deck(Q). (M, Stx) « K(pk, z, @, R, EList, Stx; p).
Send M to A as the reply. Send M to A as the reply.

Return an output 7' of A. Return an output 7" of A.

Fig. 1. Experiments for the Standard Model PA-ness of Bellare-Palacio [BP04]

For a plaintext creator P, let Stp and p denote the state of P and the random
tape of P respectively. The state Stp is initialized to the null string . We let
Encpk o P(Q; i) denote the algorithm which executes the following procedures:
(M,Stp) — P(Q,Stp; ), C «— Encok(M), and output C.

For a security parameter A, a polynomial poly, and an auxiliary input
z € {0,1}PYN of A we define two experiments PA%eAEnCOp(/\, z) and

PA’ICY)A’EHCW()\7 z), shown in Fig.[ll For a distinguisher D, we set

Papoyc,p,0(A) = max  [Pr[D(PAT U encor (X, 2)) =1-Pr[D(PAT; 4 ncor (A, 2)) =1].

2€{0,1}poly(N)

We say that a PKE IT is perfectly, statistically, or computationally PA secure
(with auziliary input) if it satisfies the following property 1, 2, or 3 respectively.

1. VA" polyC¥PYD (superpolytime distinguisher)?\ : P4 poly,ic,p,0(A) = 0.
2. Y A"poly? KYPYD (superpolytime distinguisher) —: Pa poly.ic,p,0(A) is negligible for A.
3. Y AYpoly? KYPYD (polytime distinguisher)  : P4 poly.ic,p,0(A) is negligible for .

We say that IC is successful for A if it satisfies the above relation for any P and
any D.

We stress that (pk,sk) is chosen after z is determined. This fact is important.
In fact, if the auxiliary input z depends on (pk, sk), the definition of the PA-ness
become meaningless. If we allow z to depend on (pk, sk), z can be equal to some
ciphertext z = Encp(M). Then A can obtain an auxiliary input z = Encpk (M)
“without knowing” the plaintext M. Then clearly, no extractor can obtain M,
if Encpi is oneway. Therefore, no non-trivial scheme satisfies the PA-ness.



118 I. Teranishi and W. Ogata

Take random tapes R and p for A and K.

(pk, sk) < Gen""(17).

Co — AHash,EncgkaSh(pk; R)

EList «(The list of all answers from the oracle Ench?*").

HList «—(The list of all pairs of hash queries of A and the corresponding answers).
Mo «— K(pk, Co, EList, HList; p).

If My = Dec?k“h (Co) return 1. Otherwise return 0.

Fig. 2. Experiment used to define the random oracle PA security [BDPRIS|

3 Definition of Overwhelming-Based Standard Model PA

3.1 Definition

We review the definition of the random oracle PA-ness [BR94, [BDPR9§]|, because
the random oracle PA-ness is given through the overwhelming-based approach.

Definition 2 (Overwhelming-Based PA Security in the Random Ora-
cle Model BDPRS]). Let IT = (Gen"" Enc™™" Dec*") be a PKE
which uses a hash function Hash. Let A and K be polytime machines, which
are respectively called adversary and extractor. For a security parameter A\, we
define an experiment OWB—PAIRTC))A’,C)EM(/\) as in Figl2l In this experiment, Cy
must not be an element of EList.

We say that IT is Over Whelming-Based PA secure (OWB-PA) in the random
oracle model, if II satisfies the following property:

FKYA - PrOWB-PAR?,  gnc(A) # 1] is negligible for \.

We give an overwhelming-based standard model PA-ness by modifying the
above definition in the following ways:

1. We “directly standard modelize” Definition 2l That is,
(a) We remove the random oracle.
(b) We allow a non-black-box extractor.
(¢c) We add a plaintext creator P.

2. We give an auxiliary input to A.

3. We allow an adversary to access the decryption oracle.

As mentioned in [BP04], the modifications (a), (b), and (c) are definitely
required when we define the standard model PA-ness. The modification 2 and 3
are required in order to show the equivalence between the OWB-PA-ness and the
indistinguishability-based statistical PA-ness. See Subsection for the details.

Definition 3 (OverWhelming-Based PA security (OWB-PA) in the
Standard Model). We take IT = (Gen,Enc,Dec), A, K, P, A\, and poly, as
in Definition [[I We let define Ency o P as in the Definition [l For an auxiliary



Relationship between Two Approaches 119

—OWB—PAH,_A,}C,EncoP(Av 2)7

Take random tapes R, p, and p for A, IC, and P.

(pk, sk) «— Gen(1%).

Co «— AEncpkoP(»;u),Decsk(pk’Z;R)

EList < (The list of all answers from the oracle Encpy).
DList «—(The list of all answers from the oracle Decg).
My «— K(pk, z, Co, R, EList, DList; p).

If Mo = Dec(Ch), return 1. Otherwise return 0.

Fig. 3. Experiment used to define the Definition of OWB-PA security

input z € {0, 1}P°YN of A, we define an experiment OWB-PA 7 4 x.Encor (A, 2)
as in Figll In this experiment, Cy must not be an element of EList.

We say that II satisfies OverWhelming-Based PA security (OWB-PA) in the
standard model, if it satisfies the following property:

Y A poly? KV P - {mz;xI o Pr[OWB-PA 1 4,k Encop (A, z) # 1] is negligible for .
2€{0,1}poly

We say that K is successful for A if it satisfies the above property for any P.

3.2 The Decryption Oracle Strengthens the Definition

At first glance, the modification 3 of Subsection [3] seems to be meaningless, be-
cause (1) the OWB-PA security (with or without the modification 3) means that
“an adversary A knows a plaintext corresponding to the ciphertext generated
by A,” (2) in particular, “an adversary knows the plaintext M; corresponding to
the i-th decryption query C;,” (3) therefore, an adversary can obtain M; without
accessing the decryption oracle.

However, the above discussion is not true. Recall that the intuition “an adver-
sary A knows a plaintext” is realized by using a polytime extractor. Therefore,
“an adversary knows the plaintext M; corresponding to the i-th decryption query
C;” means that “there exists a polytime extractor K; which can extract M; from
C;.” The problem is in the dependency of K; on i. Suppose that A makes de-
cryption query A times, where X is the security parameter. Since K; depends on
1, the number of steps T; of KC; also depends on i. Therefore, it is possible that
T; = 2'p;(\) holds for some polynomial p;.

For each fixed i, the number of steps T; = 2'p;(A\) of K; is polynomial of
the security parameter . Therefore, each K; is a polytime machine. However,
A needs superpolytime if A executes all of Kq,..., . Therefore, if A cannot
access the decryption oracle, A needs superpolytime in order to obtain all of
My, ..., M)y. This means that the polytime adversary A cannot obtain all of
My, ..., M. Therefore, we can say that the decryption oracle is meaningful.
Note that Bellare and Palacio [BP04] use similar discussions in other context.



120 I. Teranishi and W. Ogata

4 OWB-PA Security Implies Statistical PA

4.1 Result
In this section, we prove that the OWB-PA-ness implies the statistical PA-ness:

Theorem 4 (OWB-PA = Statistical PA). Let II be a PKFE salisfying the
OWB-PA security. Then II satisfies the statistical PA security.

We here give the idea behind the proof. The formal proof will be depicted in the
full paper.

Proof. (idea) Let IT be an OWB-PA secure PKE, Ay be an adversary for the
statistical PA-ness of II and mng be the number of decryption queries of Aj.
Bellow, z is an auxiliary input of Ay and (pk, sk) is a public key/secret key pair.

1. We construct an adversary By of the OWB-PA security such that, on input
(pk, 1%||2), By outputs the i-th decryption query of Ag(pk, z). The description
of By(pk, z’) is as follows:

— By parses 2’ as 1%||z. (If 2’ is not this type, By outputs | and terminates.)

— By executes Ag(pk, z) if i < ng. (Otherwise, By outputs L and termi-
nates.)

— If A makes encryption queries By answers them by passing the queries
to the encryption oracle of By.

— If A makes the j-th decryption query C; for j < i, By answers them by
passing the query to the decryption oracle of By.

— If A makes the i-th decryption query C;, By outputs it and terminates.

2. From the OWB-PA security of IT, there exists an extractor Ly for By.

3. We let Ko(pk, 1%||z, C;, R, EList, St; p) be the algorithm which executes Lo (pk,
1%|z, C;, R, EList, St; p), obtains an output M; of Ly, and outputs M.

Since Ko (pk, 1%||z, C;, R, EList, St; p) executes the extractor Lo(pk, 1?2, C;, R,
EList, St;p) for Bo(pk, 1?||z), and since By outputs the i-th decryption query
of Ao(pk, 1¢]|2), the outputs M; of Ky is equal to Decg(C;) with overwhelming
probability.

We show that the number T of steps of Ko(pk,1¢||z,C;, R,EList,St;p) is
bounded by some polynomial, which is independent from i. Note that the inde-
pendency from 4 is quite important. If 7' depends on 4, T' = 2p;()) can hold for
some polynomial p;(\). This means that 7" become superpolynomial 7' = 2*p, ()
when ICy extracts a plaintext from A-th decryption query of A.

Since Ko(pk, 1%||z,C;, R, EList,St;p) = Lo(pk, 1%||z, C;i, R, EList, St;p), we
have to show the following facts in order to show that Ky is a polytime machine:

— The description of L is independent from i.
— The length of the input (pk, 1¢||z, C;, R, EList, St; p) of L is bounded by some
polynomial, which is independent from 1.



Relationship between Two Approaches 121

We can prove that the description of Lg is independent from ¢, because the Lg
depends only on By and because the description of By is independent from i. We
next prove that the length of the input (pk, 1?||z, C;, R, EList, St, p) is bounded
by some polynomial, which is independent from 4. Recall that i is the number
of decryption queries of A. Since A is a polytime machine, this means that 4
is bounded by the polynomial ny which is independent from i. Here ng is the
number of steps of A. This means that the length of 1% is bounded by the
polynomial ny which is independent from . Moreover, from the definition of
the statistical PA-ness, the length of z is bounded by some polynomial poly(\),
which is independent from 4. The lengths of other inputs are clearly bounded by
a polynomial which is independent from 1. a

4.2 Why Are the Modified Definitions Required?

When we define the (standard model) OWB-PA-ness, we modify the random
oracle OWB-PA-ness in two ways. That is, we give an auxiliary input to an
adversary and allows an adversary to access the decryption oracle. Similarly, we
slightly modify the original definition of the statistical PA-ness and give
an auxiliary input to an adversary for it.

We think that these modifications are quite important to show Theorem [l In
this subsection, we see why these modifications are required.

Effect of Auxiliary Inputs: In the proof of Subsection ], we use an adversary
By such that, by giving an auxiliary input 1%z, By outputs the i-th decryption
query C; of Ag. Therefore, if we do not give adversaries to auxiliary inputs, we
cannot use the proof of Subsection 1]

One way to “prove” Theorem [d] without using auxiliary inputs is to construct
adversary B; which depends on i. That is, we “prove” Theorem [ as follows. Here
Ay is an adversary for the statistical PA security. We would like to construct an
extractor for Ajp.

— For each i, we construct an adversary 3; for the OWB-PA security, such that
B; outputs the i-th decryption query C; of Ay. (Contrary to the previous
By, each i is coded in the program of B;. Therefore, I3; does not require an
auxiliary input 1°|2.)

— From the OWB-PA-ness of the PKE II, there exists extractor L; for
each B;.

— We construct an extractor g for Ag such that Ky uses £; in order to extract
a plaintext from Cj.

The failure of the above “proof” is that the above Iy may be superpolytime
machine. The reason is as follows. In the above “proof,” we construct B; which
depends on i. Hence, the extractor £; of B; depends on i also. Therefore, the
number T; of steps of £; can depend on i. Therefore, it is possible that T; =
2ip;(\) holds for some polynomial p;.

For each fixed i, the number of steps T; = 2'p;(A\) of £; is polynomial of the
security parameter \. Therefore, £; is a polytime extractor of B; for the OWB-
PA security. However, Ky becomes a superpolynomial extractor, because Ky uses



122 I. Teranishi and W. Ogata

all of Ly,...,L,, and therefore requires steps more than 2" p, (). Here ng is
the number of steps of Ag and therefore is a polynomial of \.

Effect of the Decryption Oracle: In the proof of Subsection L], we use
an adversary By which accesses the decryption oracle. Therefore, if we do not
allow an adversary to access the decryption oracle, we cannot use the proof of
Subsection ET]

One way to to “prove” Theorem [ without using the decryption oracle is
to construct adversaries and their extractors recursively. That is, we seem to
“prove” Theorem Ml as follows. Here Ap is an adversary for the statistical PA
security. We would like to construct an extractor for Ajg.

— For each i, we construct an adversary B; for the OWB-PA-ness and its ex-
tractor L£; recursively:
e We define B; as follows: 5; executes Ay and answers the j-th decryption
query C; of Ay by using £; for j < 4, and outputs i-th decryption query
Oi of .Ao.
e We set £; to an extractor of BB; for the OWB-PA-ness.
— We construct an extractor g for Ag such that Ky uses £; in order to extract
a plaintext from Cj.

The failure of the above “proof” is that the above Iy may be superpolytime
machine. The reason is similar to that for an auxiliary input. In the above
“proof,” B; and L; depends on i also. Therefore, it is possible that the number
T;; of steps of £; satisfies T; = 2°p;(\) for some polynomial p;.

For each fixed 7, the number of steps T; = 2'p;(A\) of £; is polynomial of the
security parameter \. Therefore, £; is a polytime extractor of B; for the OWB-
PA security. However, Ky becomes a superpolynomial extractor, because Ky uses
all of £q,...,L,, and therefore requires steps more than 2°p, (X). Here ng is
the number of steps of Ay and therefore is a polynomial of A.

5 The Statistical PA Is Equivalent to the OWB-PA
Security, under Very Weak Condition

We already showed that the OWB-PA security implied the statistical PA security
of Section Pl In this section, we show that the converse holds under very weak
condition.

5.1 Equivalency under Very Weak Condition

We first give the condition (named sk-non-redundancy), under which the OWB-
PA security is equivalent to the statistical PA security. Recall that each public
key pk of a some PKE, such as the Cramer-Shoup scheme [CS98|[CS01], has many
corresponding secret keys. (Here we say that a public key pk corresponds to sk, if
there exists a random tape v satisfying (pk,sk) = Gen(1*;v).) Intuitively, the sk-
non-redundancy is the condition which ensures that Decgy, (C') = Decg, (C') holds



Relationship between Two Approaches 123

—Gen’(1*)—

(pk, sk) — Gen(1%)

R «— (A-bit random bit string).
pk’ < pk, sk’ « sk||R.

Output (pk’,sk’).

—Ency, (M)—

C « Encp (M), C" — 0||C. Output C".
—Decy (C)—

Parse C’ as b||C.

If b = 0, output Dec (C).
Otherwise, output R.

Fig. 4. A Scheme I’ which is not sk-non-redundant

with overwhelming probability for any secret keys sk; and sks corresponding
to the same public key pk. Clearly, this condition is satisfied for any honestly
generated ciphertext C' = Encpi (M), because Decgy, (C') = Decg, (C) = M holds.
The heart of the sk-non-redundancy is that Decg, (C) = Decek, (C) holds even
for maliciously generated ciphertext C.

We can say that our sk-non-redundancy condition is very weak, because all
known PKEs satisfy this condition. However, we can give an artificial example
II" = (Gen’,Enc’,Dec’) of Figll such that 1’ is not sk-non-redundant. Here
I = (Gen,Enc,Dec) is an arbitrary PKE. Since sk’ = sk||R holds and since
Decge (1]|C) is equal to R, the output Decge (1]|C) varies depending on a secret
key sk’, even if the corresponding public key pk’ does not vary. Note that Bellare
and Palacio [BP04] used a similar scheme in other context.

We now formalize the sk-non-redundancy. Recall that the sk-non-redundancy
means that Decg, (C) = Dece, (C') holds for any secret keys sk; and sk corre-
sponding to the same public key pk. In other words, Decg(C) depends only
on pk and C, and therefore does not depend on sk. If Decg(C) is deter-
mined from pk and C, we can define a (superpolytime) function Dec satisfying
Decpi(C) = Decg (C).

Definition 5. Let II = (Gen, Enc, Dec) be a PKE. We say that I7 satisfies sk-non-
redundancy if there exists a superpolytime deterministic function Dec such that
max _ Pr[(pk,sk) < Gen(1") : Decy(C) # Decyi, (C) | pk = pky] is negligible for .

Ce{o,1}*
pkg € {0,1}*

We next give our main result:

Theorem 6 (OWB-PA = Statistical PA under sk-non-redundancy). Let
1T be a sk-non-redundant PKE. Then II is statistically PA secure if and only if
OWB-PA secure.

The “only-if” part of the above theorem has already been shown in Theorem[dl We
give the idea behind the proof of the “if”-part. The formal proof will be described
in the full paper.



124 I. Teranishi and W. Ogata

Proof. (idea) Let II be a PKE which is sk-non-redundant and is statistically PA
secure. Let Ag be an adversary for the OWB-PA security, (pk,sk) be a public
key /secret key pair and z is an auxiliary input for A4g. We construct an adversary
By for the statistical PA security as follows. Bo(pk, z) executes Ag(pk, z). If Ap
makes a decryption query, By answers it by passing it to the decryption oracle. Ag
finally outputs a ciphertext Cy and terminates. Then By makes decryption query
Cp, obtains answer My to the query, outputs (pk, Co, Mp), and terminates. From
the assumption, there is an extractor Iy for By of the statistical PA security.

We construct a superpolytime distinguisher Dy which tries to distinguish an
output of PAIDYe,%’O,Enco'PO()V z) and that of PA’E?BO’EHCOPO (A, ), where Py is a plain-
text creator. Dy(pk, Cy) computes (one of) a secret key sk’ corresponding to
pk by using superpolytime. Then Dy outputs 1 or 0, depending on whether
My = Decge (Cp) holds or not.

In PA%‘?%()’E”CO%(A,Z), the decryption oracle sends the answer Decy(Cp) to
Ap. From the sk-non-redundancy, Decgs(Cy) = Dece(Co) holds with over-
whelming probability. Therefore, Dy outputs 1 if (pk,Cp, Mp) is an output
of PAIDfCBO)EncopO (A, z). This means that even if (pk,Cp, Mp) is an output of
PA’E?BO’EHCOPO(/\,Z), Dy outputs 1 with overwhelming probability. That is, an
output of Ky is equal to Decg(Cp) with overwhelming probability. This means
that ICg can use an extractor for Ay of the OWB-PA security. Since Aq is an
arbitrary adversary for the OWB-PA security, this means that IT is OWB-PA
secure. O

5.2 Effect of sk-non-Redundancy

The sk-non-redundancy is important to show Theorem [0l In fact, we can show
that the OWB-PA security does not imply the statistical PA security, if we
suppose no assumption for the PKE:

Theorem 7 (Perfect, Statistical and Computational PA = OWB-PA).
Suppose the existence of a perfectly (resp. statistically, computationally) PA se-
cure PKE in the standard model. Then there exists a PKE which is not OWB-PA
secure but is perfectly (resp. statistically, computationally) PA secure in the sence
of Section[2.

Proof. (idea) We only show the theorem for the case of the statistical PA security.
We can show the theorem for other cases quite similarly.

Let IT = (Gen,Enc,Dec) be a PKE which is statistically PA secure. By
using I1, we construct another PKE II' = (Gen’,Enc’,Dec’) as in Figll We
show that IT" is not OWB-PA secure. Let A be an adversary which outputs
C" = 1||Encpir (0). Then an extractor K for A has to output R = Decge (C").
However, K succeeds in outputting R with only negligible probability, because
the distribution of R is independent from the view of K. This means that I’ is
not OWB-PA secure.

We next show that I’ is statistically PA secure. Let A be an adversary for IT'.
We can recognize A as adversary for I1. Since IT is statistical PA secure, there



Relationship between Two Approaches 125

exists an extractor K of A for IT. We construct an extractor K’ of A for I’ as
follows. K’ selects R’ randomly and fixed it. If K" is provided with a ciphertext
C" = 0||C for some C, K’ executes K by giving C, obtains the output M of K,
and sends M back to A. If K’ is provided with a ciphertext C" = 1||C' for some
C, K’ sends R’ back to A.

We see that K’ is a successful extractor. Since K is a successful extractor, if
C’" = 0]|C holds, K" obviously succeeds in simulating the decryption oracle with
overwhelming probability. Since the distribution of R is independent from the
view of A, A cannot distinguish R and R’. Therefore, even if C’ = 1||C holds, K’
succeeds in simulating the decryption oracle with overwhelming probability. O

6 The sk-PA Security

We showed that the OWB-PA security was equivalent to the statistical PA se-
curity only if a PKE was sk-non-redundant. In this section, we consider
a slightly modified version of the PA security (named sk-PA security),
where a distinguisher is provided with the secret key. Then we see that the OWB-
PA security is equivalent to the sk-statistical PA security, even if a PKE is not
sk-non-redundant. The formal definition of the sk-PA security will depicted in
the full paper. Note that Fujisaki [F06] also considered a variant of a PA-ness
where a distinguisher is provided with the secret key.

The modification that we give the secret key to a distinguisher is quite small,
in the case of statistical PA security. In fact, since a distinguisher D of the
statistical PA security is a superpolytime machine, D can compute a secret key
corresponding to the public key pk by using superpolytime. However, there may
be many secret keys corresponding to pk as mentioned in Subsection 5.1l and D
cannot know which one is true sk. Therefore, we can say that the only advantage
of the sk-statistical PA security is that the distinguisher can know which one is sk.

If a PKE is sk-non-redundant, Decg(C') = Decge (C) holds for any sk and sk’
corresponding to the same public key pk. Therefore, the sk-statistical PA security
is not advantageous to the statistical PA security, in this case. Hence, we can
show the following theorem. The proof will be described in the full paper.

Theorem 8 (statistical PA = sk-statistical PA, under sk-non-
redundancy). Suppose that a PKE II satisfies the sk-non-redundancy. Then
11 satisfies the statistical PA security if and only if it satisfies the sk-statistical
PA security.

We now give our result.

Theorem 9 (OWB-PA = sk-statistical PA = sk-computational PA). The
following properties are equivalent:

— the OWB-PA security.
— the sk-statistical PA security.
— the sk-computational PA security.



126 I. Teranishi and W. Ogata

We can prove the above theorem in a similar way to that of Theorem[@l The proof
will be described in the full paper. Note that we can generalize Theorem [ into
the case of the perfect PA security, if we allow an extractor to output fail with
negligible probability.

One of the most surprising fact of the above theorem is that the sk-statistical
PA security is equivalent to the sk-computational PA security. This fact is im-
pressed because the statistical PA security is strictly stronger than the computa-
tional PA security [TOOQGL [TO08]. Therefore we can say that the only difference
between the statistical PA security and the computational PA security is in the
knowledge of sk.

We can also define more stronger variant of PA security, named the View-PA
security, such that a distinguisher is given the views of all entities. Above, “the
views of all entities” means the key generation algorithm Gen, an adversary A, a
plaintext creator P, and the encryption oracle Encpi(+). Then it is also equivalent
to the OWB-PA security. We will describe the proof in the full paper.

Theorem 10 (OWB-PA = View-statistical PA = View-computational
PA).
The following properties are equivalent:

— the OWB-PA security.
— the View-statistical PA security.
— the View-computational PA security.

7 Conclusion

There were two approaches to define the PA-ness, the indistinguishability-based
approach and the overwhelming-based approach. The current definition [BP04
of the PA-ness was given by using the indistinguishability-based approach.

In this paper, we defined an alternative definition of the (standard model)
PA-ness, OWB-PA security, based on the overwhelming-approach. Basically, this
notion was given by “standard modelizing” the random oracle model PA-ness
[BDPRIS]. However, we essentially changed the definition in one point,
that is, we allowed an adversary to access the decryption oracle.

We then showed that our OWB-PA security was equivalent to the statistical
PA security of [BP04], under a very weak condition, the sk-non-redundancy. We
also gave a new definition of the PA-ness, named sk-PA-ness, and showed that
the OWB-PA security was equivalent to the sk-statistical PA-ness, even if a PKE
was not sk-non-redundant.

References

[BDPR98] Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations Among
Notions of Security for Public-Key Encryption Schemes. In: Krawczyk, H.
(ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26-45. Springer, Heidelberg
(1998)



[BP04]

[BRO4]

[BDO7]

[CS98]

[CS01]

[D91]

[DO6]

[FO6)

[FO99)]

[HTO6]

[HLMO3]

S01]

[TOO06]

[TOO08]

Relationship between Two Approaches 127

Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption
without random oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 48—-62. Springer, Heidelberg (2004)

Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De San-
tis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92-111. Springer,
Heidelberg (1995)

Birkett, J., Dent, A.W.: Relations Among Notions of Plaintext Awareness.
PKC 2008, 47-64 (2007) eprint 2007/291

Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably
Secure Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 13-25. Springer, Heidelberg (1998)
Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key En-
cryption Schemes (2001)

Damgard, I.: Towards practical public key systems secure against chosen ci-
phertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 445-456. Springer, Heidelberg (1992)

Dent, A.W.: Cramer-Shoup is Plaintext-Aware in the Standard Model.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004. Springer,
Heidelberg (2006)

Fujisaki, E.: Plaintext Simulatability. IEICE Transactions 89-A(1), 55-65
(2006)

Fujisaki, E., Okamoto, T.: How to Enhance the Security of Public-Key
Encryption at Minimum Cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999.
LNCS, vol. 1560, pp. 53-68. Springer, Heidelberg (1999)

Hayashi, R., Tanaka, K.: PA in the Two-Key Setting and a Generic Con-
version for Encryption with Anonymity. In: Batten, L.M., Safavi-Naini, R.
(eds.) ACISP 2006. LNCS, vol. 4058, pp. 271-282. Springer, Heidelberg
(2006)

Herzog, J., Liskov, M., Micali, S.: Plaintext Awareness via Key Registra-
tion. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 548-564.
Springer, Heidelberg (2003)

Shoup, V.: OAEP Reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 223-249. Springer, Heidelberg (2001)

Teranishi, 1., Ogata, W.: Relationship between Standard Model Plaintext
Awareness and Message Hiding. In: Lai, X., Chen, K. (eds.) ASTACRYPT
2006. LNCS, vol. 4284, pp. 226-240. Springer, Heidelberg (2006)
Teranishi, I., Ogata, W.: The full paper of [TO06]. IEICE Transactions 91-
A(1), 244-261 (2008)



Distributed Verification of Mixing - Local Forking
Proofs Model*

Jacek Cichon, Marek Klonowski, and Mirostaw Kutylowski

Institute of Mathematics and Computer Science, Wroctaw University of Technology
Jacek.Cichon@pwr.wroc.pl, Marek.Klonowski@pwr.wroc.pl,
Marek.Klonowski@pwr.wroc.pl

Abstract. One of generic techniques to achieve anonymity is to process mes-
sages through a batch of cryptographic mixes. In order to guarantee proper exe-
cution verifiable mixes are constructed: each mix provides a proof of correctness
together with its output. However, if a mix is working on a huge number of mes-
sages at a time, the proof itself is huge since it concerns processing all messages.
So in practice only a few verifiers would download the proofs and in turn we
would have to trust what they are saying.

We consider a different model in which there are many verifiers, but each of
them is going to download only a limited number of bits in order to check the
mixes. Distributed character of the process ensures effectiveness even if many
verifiers are dishonest and do not report irregularities found.

We concern a fully distributed and intuitive verification scheme which we
call local forking proofs. For each intermediate ciphertext a verifier may ask for
a proof that its re-encrypted version is in the output of the mix concerned. The
proof shows that the re-encrypted version is within some subset of k ciphertexts
from the output of the mix, and it can be performed with strong zero-knowledge
or algebraic methods. They should work efficiently concerning communication
complexity, if k is a relatively small constant.

There are many issues concerning stochastic properties of local forking proofs.
In this paper we examine just one: we estimate quite precisely how many mixes
are required so that if a local proof is provided for each message, then a plaintext
hidden in an input message can appear on any position of the final output set.

Keywords: mix, anonymity, distributed system.

1 Introduction

Anonymity and hiding origin of the messages and electronic documents becomes today
one of the crucial issues for e-society. This is one of the major issues for applications
such like electronic voting. Providing privacy in the sense that in sensitive cases the
origin of a message should be unrevealed unless it is necessary for some explicit reason,
becomes one of the most challenging questions in computer security.

* Partially supported by Polish Ministry of Science and Higher Education, grant N N206
1842 33.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 128 2008.
(© Springer-Verlag Berlin Heidelberg 2008



Distributed Verification of Mixing - Local Forking Proofs Model 129

MIXes. D. Chaum [4] introduced concept of a MIX, which is a basic primitive for sys-
tems providing anonymity. A MIX takes a number of encrypted messages, say E(m1),
..., E(my,), processes them in some way (for instance decrypts or re-encrypts them)
and posts the result in a random order 7:

E/(mﬂ'(l))7 E/(mTF(Q))? SRR El(mﬂ'(n)) :

It should be guaranteed that nobody (except for the mix concerned) can link these input
and the output messages. For the rest of this paper we shall assume that cryptographic
methods used are strong enough to guarantee this. We also assume that the system is
used in a sound way - for instance, we cannot distinguish ciphertexts of m; by inspect-
ing their lengths.

In order to achieve anonymity a set of messages is processed by a cascade of inde-
pendent MIXes: the output of MIX ¢ becomes the input for MIX ¢+ 1. The output of the
last MIX in a cascade becomes the output of the system. As long as at least one of the
MIXes is honest and does not reveal its permutation used, the link between the input to
the system and its output cannot be established.

Problems. A single honest mix in a cascade ensures unlinkability between the input
and the output of the mix cascade. However, for some applications it is crucial to ensure
that none of the original plaintext messages gets removed and replaced by a ciphertext
of another message, or becomes modified. Of course, if at least one of the MIXes is
dishonest, then the final output might be corrupted.

For applications like anonymous access to WWW pages, this leads to some degra-
dation of service, only. However, it is critical for e-voting schemes that employ MIX
servers for processing encrypted ballots. Even worse situation occurs in case of auc-
tion schemes - a single message injected at a late stage may change the outcome of the
whole procedure (which is practically not the case for large scale voting).

Verifiable MIXes. In order to enforce an honest execution of a mixing protocol, each
MIX has to be controlled in some way so that:

— With a reasonable probability a dishonest MIX will be caught even if a single plain-
text message gets modified,
— The verification procedure does not endanger unlinkability.

These goals can be reached. However, the following issues have been concerned:

(a) Reducing conceptual complexity of the verification scheme so that it can be easily
understood and trusted at least by a skilled non-specialist,

(b) Reducing computational effort of the prover and of the verifier: since usually the
arithmetic operations such as exponentiations take most of computation time, their
number should be minimized,

(¢) Reducing communication cost of the prover and the verifier, i.e. reducing the total
volume of the messages exchanges as well as the number of communication rounds.

For instance, it was pointed by some authors that the tricky scheme from [20] might
be too complicated to reach general acceptance. For (b), computational complexity of



130 J. Cichon, M. Klonowski, and M. Kutytowski

verification process has been considered in many papers. Many schemes with a linear
number of exponentiations have been designed, differing by the constants standing in
front of n: 12n in case of [20], 107 in case of [ZI13], 8n in case of [L1]], and about 67
in case of [22]]. Computational efficiency can improve even more, if we perform some
computations in an offline phase [[1I].

Communication overhead in the number of bits has been considered, too. For in-
stance, according to [9]], the method from [[7] has communication cost 6388n bits, the
method from has communication cost 2528n bits, while [9]] requires 1344n bits.
A higher number of bits is required when we admit long messages [8] (see also [12]).

In order to improve efficiency, Peng et al. [21] propose to reorganize the process
of mixing so that at each stage the ciphertexts mixed are divided into groups and
the re-encrypting and shuffling process proceeds in groups. This approach results in
a lower communication complexity, however only a small fraction of permutations can
be reached in this way.

A different approach called randomized partial checking (RPC) is presented in [14].
The idea is that after getting the final results a MIX is asked to reveal values of permuta-
tion 7 used for a random set of n/2 arguments. Moreover, the MIX has to show that the
ciphertexts F/(m;) and E'(my(; ) contain the same plaintext for each 7 such that (i)
becomes revealed. (In fact, the connections to be revealed must be chosen with care so
that no path of length higher than 2 gets disclosed.)

Revealing part of the connections might be psychologically unacceptable for two
reasons: first, an average person might claim that it is still possible that the results
are incorrect, since we had bad luck and the fraud has not been detected. The second
problem is that a person with mathematical experience (see e.g. [11]]) might ask him-
self what is effect of revealing the connections in a stochastic sense — does it change
substantially conditional probabilities of potential permutations of messages? However,
there are strong mathematical arguments that security of the scheme remains intact [10].

Distributed versus Non-distributed Verifiability. With a few exceptions the proto-
cols concerned so far in the literature consider verification as a process performed by
a verifier having similar computational resources as a mix. Moreover, the proof con-
cerns the whole batch of ciphertexts. Consequently, the volume of verification data is
linear in the number n of ciphertexts mixed.

For certain applications mixing might concern a huge amount of data. For instance,
it may be the case for e-voting protocols where the ballots are processed by a single
cascade of mixes. With more than 100.000 voters and communication complexity of
more than 10007 bits, we get about 100Mbits communication volume to check one mix.
Since the number of mixes should be at least the number of participating parties (say
20), the communication volume could be something like 2Gbits. Assuming that a voter
communicates with a 1Mbit/sec. link, the communication would take 2000 seconds
~ 33 minutes. It is sound to assume that almost no citizen would use this checking
possibility and would have to trust some agent. This is not a good solution since one of
the major goals of advanced e-voting procedures is to provide transparency in absence
of any trusted third party.

Due to the reasons mentioned, in certain situations it would be helpful to design
a verification method having the following properties:



Distributed Verification of Mixing - Local Forking Proofs Model 131

1. Checking process is performed by a large number of independent verifiers,

2. Computational and communication complexity for each of the verifiers is
negligible,

3. Probability that no verifier catches a dishonest mixer on a fraud is small,

4. Collective knowledge of all verifiers should not enable to break anonymity.

Additionally, we should assume that some limited number of participants of the pro-
tocol can be corrupted by the mix(es) so that negative verification results will not be
shown in case of a fraud. Hence, it may occur that the centralized protocols concerned
in the literature fail, since the verification process requires fetching long data and so the
number of verifiers will be small. On the other hand, a fully decentralized setting has
the advantage that it is impossible to corrupt all members of a crowd of verifiers.

2 k-Local Forking Proofs

Assume that for set of ciphertexts C, . . ., C,,, a MIX gave an output C1, ..., C/, using
a (hidden) permutation I7 (that is, C; and 037(1‘) correspond to the same plaintext, for
each 7). Honesty of the mix is checked by the following protocol:

Initialization: for each i < n, the prover determines a random set S; of cardinality
k+ 1 such that I1() € S;, (thatis, II(7) is the only non-random element of S;, the
remaining k elements are chosen uniformly at random).

Challenge: a verifier may challenge the prover with an arbitrary ¢ < n,

Response: the prover presents a proof that one of the ciphertexts C’} for j € S; corre-
sponds to the same plaintext as C;.

Note that the initialization is performed for all verifiers, so if two different verifiers
challenge the same i, they get an answer concerning the same set S;. We do not specify
here what kind of proof is delivered in the response phase. Obviously, if every 7 gets
challenged and the prover responds correctly, then in the shuffled batch there is every
plaintext contained in C', ..., C,. Hence, if the plaintexts are unique, correctness of
shuffling of the mix is assured.

A verifier may challenge any of the mixes of the cascade, may be more than once.
It depends only on the computation time and bandwidth that one wishes to devote for
checking. Since k is assumed to be a small constant, this means a negligible effort for
each check as long as relatively efficient proof methods are used.

Models for Analysis. There is a number of questions concerning the framework of lo-
cal proofs. Certainly, data obtained by verifiers leak some information on permutations
used by a mix. The problem is how does it influence unlinkability of the whole process.
The example of RPC shows that unlinkability property might be preserved [10].

We may consider diverse models concerning verification process. For instance, we
may assume that each single user may fetch only a limited number of local proofs, and
that only a fraction of users will forward the data obtained to a given adversary willing
to break anonymity. In this case only a fraction of verification data can be gathered
in one place. So we have a situation that resembles RPC — only a limited number of



132 J. Cichon, M. Klonowski, and M. Kutytowski

links becomes revealed. However, unlike for RPC, we cannot put any restrictions on
which local proofs can be gathered together. The verifiers may even work adaptively to
increase their chances to break anonymity. On the other hand, for a given message its
re-encrypted version after leaving the current mix is not shown - all we know is that it
is contained in a set of k£ messages. The second more pessimistic model to concern is
that all information obtained by the verifiers might be gathered by some party.

Unlinkability Goals. Let II denote a random variable such that for i < n (n is the
number of messages) I1(7) is the position of the ith plaintext in the output of a mix
cascade concerned. Let D denote the probability distribution corresponding to /7. For a
reasonable system of mixes we may assume that D is a uniform distribution. However,
based on the information from local proofs, the adversary may (at least theoretically)
compute conditional probability distribution D’ of II. There is a number of questions
that might be asked about D':

1. What is the distance between distributions D and D’ (e.g. concerning L; norm or
information theoretic distance ([3123]))),
2. What is the maximum value of D’.

An answer of the first question provides very strong anonymity estimates. However,
results of this kind are quite rare and hard to get. An answer to the second question
gives an idea how immune the system is against brute force and guessing attacks.

We can also confine ourselves to a single message and probability distribution of its
position in the final batch, without local proofs (S) and with them (S’). Since S should
be uniform we are are concerned about

1. The distance between distributions S and S” with respect to a given norm,

2. The maximum value of S’,

3. Support of S’, i.e. the set of positions where the probability is positive i.e. the
anonymity set of the message concerned.

While a good bound for question 1 is highly desirable, a small bound for question 2
already says that there are no relatively likely positions. Getting a big anonymity set
is important to eliminate impossible positions and in this way enable linking all final
messages to the message concerned. This property might be all one needs for many
procedures in a court of law. For further discussion concerning anonymity measures
see [516].

One difficulty for performing mathematical analysis of forking proofs is that dis-
tributions D’ and S’ depend very much on the sets S; chosen by each mix and that
apparently there are some bad choices for these sets. So the final results may only be
stated in the form “With a high probability, distribution ...”

One should also notice that there is a major difference between considering S" and
D'. For k = 2, local forking proofs behave quite poorly with respect to D’, while for
k = 3 the situation is much better. Such a phase transition does not occur if we consider
the final position of a single message.

There are many scenarios corresponding to many different practical situations, but
due to available space we have to concentrate ourselves on one model. For the rest of the



Distributed Verification of Mixing - Local Forking Proofs Model 133

paper we assume that all local proofs can be gathered by an adversary; second, we are
interested in anonymity set rather than the maximum probability or distance to uniform
distribution.

Main Result. Our goal is to find a precise estimation of the number of mixes such that
with local forking proofs we reach the maximal possible size of anonymity sets.

Theorem 1. Consider a cascade of T' MIX-servers processing n messages. Consider
verification data for each position and each MIX created according k-local forking
proofs strategy. Then, the size of anonymity set of particular message entering the MIX-
cascade is equal to n with probability greater than 1 — 1/n, if T > Ty, where

log (1 logn) log(n/2)
log (1+ %)  log(1+7%)

log (151
+4/2.7 og( k ngn) logn + 0.65 log® n.
log (14 %)

Up to a constant, this is the optimal result since to obtain anonymity set equal to n we
need T' > [log,(n)]. The crucial message of Theorem[is that the sufficient number
of MIXes in a cascade is not much higher than in the trivial lower bound.

4.4
Ty = <0.8+ s >logn+ 1.7

3 Mathematical Modeling

Anonymity Metrics. Even if anonymity or unlinkability have their well established
intuitive meaning, it is unclear how to measure anonymity level in a uniform mathemat-
ical way. For the rest of this paper we focus on definition from [16] that catches idea
introduced in [17]. Let us suppose that we have n encrypted, enumerated messages.
Then the ciphertexts are processed by the system of MIXes. As an output we get an-
other n enumerated ciphertexts. The mixing process is modeled by a random variable
— a permutation II. So I1(i) = j menas that the i-th message in the first MIX after
processing is placed on the j-th position in the output of the last MIX. Then anonymity
of the ¢-th input object inp, can be measured by

S(inp;) = {1 <j <n:PrllI(i) = j] > 0},

where probability is conditioned on the knowledge available for an observer.
The value is S(inp;) called the size of anonymity set of the input inp,.

Infection Process. Let us consider following infection process: we have n distinguish-
able objects. The process consists of steps ¢ = 1, 2, . ... Each object is either infected or
not. Initially, exactly one object is infected. At each step, every infected object chooses
k distinct objects, uniformly at random. Then it infects these objects (if they are not
infected yet).

We are interested how many steps are required so that with a high probability ev-
ery object gets infected, where probability is considered over the choices made by the
infected objects during each step.



134 J. Cichon, M. Klonowski, and M. Kutytowski

Of course, the process of infection models the possible destinations of a message
given the information revealed by Local Forking Proofs. The infected nodes correspond
to those ciphertexts that can keep the plaintexts of the message considered with a non-
zero probability.

Infection Process in Details. While it is quite obvious that eventually all objects get
infected and the time required is O(logn), for n equal to the total number of objects,
determining precisely the time necessary to infect all object is of big practical impor-
tance. Namely, it determines the number of mixes in a cascade as a function of the
parameter n. Note that since we are interested in some relatively small values of k, the
constant factor may easily dominate the term log n.

Consider now the number of infected objects. At the beginning we have 1 infected
object, then exactly k objects, but starting from the third step, the number of infected
objects becomes uncertain. It is hard to say how many new objects become infected
at each step. Of course it is strongly correlated with the number of objects already in-
fected. More precisely, probability that a particular infected object infects a new object
is decreasing with the number of already infected objects. At the end, a majority con-
sisting of infected objects tries to ,,hit” a few non-infected remainders. On the other
hand, growing number of infected elements obviously increases the chance of being
infected for the object not infected yet.

Technical Result. Spirit of infection process seems to be similar to the well-known
epidemic processes (see for example [2]]). However, we are not aware of any analysis
for the particular model considered here. We prove the following technical theorem:

Theorem 1. Ler N (t) be a random variable denoting the number of infected objects
after step t of the infection process. Let T be the random variable equal to the index of
the first step such that all n. objects are infected: T = min{t € N|N(t) = n}. Then
Pr(T < Ty) > 1— ! for Ty given by Theoreml[l]

3.1 Mathematical Preliminaries

Consider a sequence of n independent (Bernoulli) trials, where each trial succeeds with
probability p and fails with probability 1 — p. The number of successes has binomial
distribution denoted here by Bi(n,p). Obviously, E[Bi(n,p)] = pn. Let us recall the
following well known bound (see (Theorem 2.1, Corollary 2.4):

Lemma 1. Let the random variable X has binomial distribution with parameters n
and p, i.e. X ~ Bi(n,p). Then for any t > 0:

Pr(X < E(X) —t) < exp (—Qtz) .

n

In particular, forany 1 > ¢ > 0:

Pr(X < (1—¢)B(X)) < exp (=207 .

n



Distributed Verification of Mixing - Local Forking Proofs Model 135

Now we would like to ask a related question. We have to find a number of trials n*
such that the number of successes X within n* trials is equal or greater than r with
probability higher than p.

Fact 1. Let us consider the series of Bernoulli’s trials with success probability p. It is
enough to try

n — {4pr+log o' +y/8prlog o=l +(log o~ 1)2 -‘
- i

times in order to have at least r successes with probability o.
This fact is implied directly by the Lemmal[ll Indeed, let us note that expected number
of successes is equal to n* - p. So, using Lemma[I]one can easily see that

n*

Pr [X <k]=Pr[X <n'p—(n"p—Fk)] <exp (— 2(”*1’71“)2) =

4p
-1
ex — =exp(—1lo = 0.
b 4pk-+log 0~ 1++/8pk log o~ +(log o~ 1)2 P go ) =e
4p2

2
9 (bg 0~ +/8pk log o= 1 +(log 0~ 1)2 )

We say that the random variable X is stochastically dominated by the random vari-
able Y if foreacht € R,

PriX >t <Pr[Y >t .

Stochastic dominance is useful when some weak dependencies occur. An example of
such case is following fact:

Fact 2 (see [18]). Let X1, X5, ..., X, be a sequence of random variables in an arbi-
trary domain, and let Y1, Yo, ..., Y, be a sequence of binary random variables with the
property that Y; = Y; (X1, Xo, ..., X;). If

Pr[}/z = ]-‘XluXQv' .. 7Xi71] < p

then sum of Y/ s is stochastically dominated by the binomial distribution:

Pr {fj Y > k] < Pr[Bi(n,p) > k] .

=1

Similarly, if Pr[Y; = 1| X1, Xa,..., Xi—1] > p, then Y Y; stochastically dominates
i=1

Bi(n, p).

Recall also the following version of Azuma’s inequality (for a proof see [18]).

Lemma 2. Let X = (X3, Xo,...,X,,) be a vector of independent random variables
with X; taking values in a set A; for each i. Suppose that a real-valued function f
defined on A1 x Ag X ... x A, satisfies:

[f(z) = f(@)] < e



136 J. Cichon, M. Klonowski, and M. Kutytowski

if the vectors x and x' differ only on the ith coordinate. Let E(f(X)) = . Then for
any d > 0,
Pr[f(X) < p—d] <exp(=2d°/ 37, (:)?) -

Lemma 2] can be very useful when we consider a process which is determined by a set
of independent experiments and each experiment has a limited in advance influence on
the overall process result.

Finally, let us consider the following randomized process. We have n bins. At each
time we choose uniformly at random exactly one bin and we put a ball inside the bin
chosen. Let T¢.(n) denote the number of balls thrown so that we get at least one ball in
each bin for the first time. Of course, T..(n) is a random variable.

Lemma 3. Pr(7.(n) > Bnlogn) < n'=P forany 3 > 1.

Lemma[3lis a version of the well-known coupon collector’s problem. This particular
version can be found in [19]]. Let us note that one can find a better asymptotic estimation
for coupon’s collector problem. However this version is fairly enough for our purposes.

3.2 Proof of the Main Result

Overview. Since from a practical point of view it is very important to have possibly
small constants, we split the infection process into three conceptual phases: beginning
of the process (small number of infected elements, high probability of infecting), stabi-
lization (,,middle part with a significant number of already infected elements and fairly
large probability of successful infection) and the end (with a few non-infected elements
difficult to be chosen).

Let us define three random variables

Ty = max{i | N(i) < 8logn?, if N(1) = k},
Ty = max{i | N(i) <n/2, if N(0) = [8logn?]},
T3 =min{i | N(i) =n, if N(0) = [n/2]}.
In other words, the random variables 7%, 75, Ts denote the number of steps necessary

to go from 0 to |8logn?] infected objects, from [8logn?] to [n/2] infected objects
and from [n/2] to n infected objects, respectively.

Probabilistic Analysis of the Process. Throughout this analysis assume that & > 2
and n > 128. Let us consider the expected number of infected objects after step ¢ + 1
conditioned by the value of N (t).

Fact 3
kN
BN+ DIN@) = N0+ (0= 8) (1= (1= 5, ))
The formula above follows from following observation: in the consecutive step already

infected items stays infected, and each of n — N () not infected items become infected
iff it is not the case that every infected item chooses different items to infect.



Distributed Verification of Mixing - Local Forking Proofs Model 137

Bounding 7. In this point we start with exactly k infected items, i.e. N(1) = k, and
we look for the first 73 such that N (77 + 1) > 8log n2. Let us represent the number of
infected objects in step ¢ + 1 step as:

N(t+1)=N(t)+ AN(®)) .

Let us now think about the random variable A(N (¢)) in terms of balls and bins. Each
of N (t) infected objects throws k& balls trying to hit n — N(¢) empty bins. It is easy
to observe that at each moment at least n — kN (t) balls are empty. Using Lemma 2]
we can see that the number of bins filled during step ¢ 4+ 1 stochastically dominates
Bi(kN(t),1 — kN(t)/n). It is easy see that each ball is placed in an empty bin with
probability greater than 1 — kN (t)/n, independently on the previous placements.

By Lemma[Il we get:

Pr[N(t+1) < (1+k/3)N(t)] <
Pr[N(t+1) < N(t) + iN(@)k (1- 57| <

2
exp <_k22 (1 B 810§n2> ) “1/e

for all values considered here (that is, k < N(t + 1) < 8logn?) and n considered in
our analysis.

If the condition N (¢t + 1) > (1 4+ k/3)N(¢) is fulfilled, then we say that step ¢ + 1
is successful. Note that it is enough to have [log(*®logn)/log(1 + %)] successful
rounds to obtain at least 8 log n? infected elements. However, not all rounds have to be
successful. So T is stochastically dominated by the number of steps necessary to get
an appropriate number of successful steps. Let us note that we can consider each step
as a separate and independent experiment with probability of success at least 1 — 1/e.
Using Fact[Il we can easily prove that after

4( ot ) IOg( 8 IOg") e—1 log( L6 logn) 5
log(14) +1.2logn +4/9.6%, tog (14 £) logn + 1.44(logn)

4 (e—1)2

€

steps, we have the required number of successful steps with probability greater than
1—1/nt2

As we noted before, it is sufficient for finishing the first phase of the process. Using
simple calculations and facts that

9.6°71 <6.05 and 4 ()" > 1.5

we get:

1 161 1 161
Pr|T1>0.8logn +1.7 o8 (& ngn) +4/2.7 o8 (& ngn) logn 4 0.65(log n)2 | <1/n">.
log (14 %) log (1+ %)



138 J. Cichon, M. Klonowski, and M. Kutytowski
Bounding T>. Itis easy to see that if 8logn? < N(t + 1) < n/2, then
E(Nt+1)|N@®) > (1+5)N@®).

Indeed, each infected object chooses k objects. Since each choice infects new object
with probability proportional to the fraction of non-infected objects (greater than 1/2),
so expected number of newly infected elements must be greater than k/2 - N (¢). For
this reason, by Theorem[2l we get immediately:

Pr(N(t+1) < (1+5) N(B) < exp (=2 (§N(1)” /NOF?) = exp(~N(1)/8)
Since 8logn? < N (t), one can easily see that

Pr [N(t +T)< (1457 N(t)] < Texp(—8logn?/8)
as long as 8logn? < N(t) < N(t + T) < n/2. This implies that:

log(n/2)
log(1 + Z)

log(n/2) 1

Pr
log(1 + ) n?

T5 >

Estimating T3. In this case we start with at least [n /2] infected objects. At each time,
each infected chooses k distinct objects in order to infect them. First of all let us look
at the process N (t) in terms of balls and bins. Again, let us assume that each object
is represented by a bin. Each infected object throws independently k balls to distinct
bins. So the number of balls is equal to the number of infected items multiplied by the
number of balls k. All objects become infected when each bin contains at least one

ball. Note that we assumed that we have at least n/2 already infected objects at the
2T (n)
nk

beginning. So, it is easy to see that T3 is statistically dominated by {
applying Lemma[3]to these considerations, we easily obtain the following bound on T5:

W.Now by

1

4.4
Pr [Tg > . log(n)] > Pr[T.(n) > 2.2nlog(n)] < 12

Bounding parameter 7". Let

log (1910 log (1% 1o
S =08logn + 17 k g" \/ g g? logn + 0.65 log 1
10g(n/2)

log(1 + ) og(m)



Distributed Verification of Mixing - Local Forking Proofs Model 139

Using estimations of 77, 75 and T3 obtained before we get:

Pr[T > S| <

1 161 1 161
< Pr|Ty > 08logn + 1.7 og ( logn) +\/2.7 og (' logn) logn +0.65logn| +

log(1+§) log(l-i-’;)

4.4
+ Pr [Tg > i log(n)} <

log(n/2)
log(1 + Z)
1 log(n/2) 1 1 1
nl2 " log(1 + Z) n2 " opl2 < n

+ Pr|T5 >

This completes the proof of the Theorem/[Il a

Examples. For and £ = 2 and £ = 6 we get, respectively:
Th—z < 6.3Inn +3.4In (81nn) + 2.3y/In (8Inn)Inn

and
Tr—s < 3.45Inn 4 1551 (2.7Inn) + 1.8y/In (2.71nn) Inn

Let us also note that from practical point of view, it does not make sense to use
too big forking parameter k. Increasing k always accelerates the process, but we gain
decreases with k.

Acknowledgements. Authors would like to thank anonymous reviewers for their valu-
able comments.

References

1. Adida, B., Wikstrom, D.: Offline/Online Mixing. In: Arge, L., Cachin, C., Jurdziniski, T.,
Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 484-495. Springer, Heidelberg (2007)

2. Athreya, K.B., Ney, P.E.: Branching Processes. Springer, Heidelberg (1972)

3. Berman, R., Fiat, A., Ta-Shma, A.: Provable Unlinkability Against Traffic Analysis. In: Juels,
A. (ed.) FC 2004. LNCS, vol. 3110, pp. 266-280. Springer, Heidelberg (2004)

4. Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.
CACM 24(2), 84-88 (1981)

5. Danezis, G., Serjantov, A.: Towards an Information Theoretic Metric for Anonymity. In:
Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41-53. Springer, Hei-
delberg (2003)

6. Diaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity Metric for
Anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41-53.
Springer, Heidelberg (2003)

7. Furukawa, J., Sako, K.: An Efficient Scheme for Proving a Shuffle. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 368-387. Springer, Heidelberg (2001)

8. Furukawa, J., Sako, K.: An Efficient Publicly Verifiable Mix-Net for Long Inputs. In: Di
Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 111-125. Springer, Heidel-
berg (2006)



140

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

J. Cichon, M. Klonowski, and M. Kutytowski

Furukawa, J.: Efficient, Verifiable Shuffle Decryption and Its Requirement of Unlinkability.
In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 319-332. Springer,
Heidelberg (2004)

Gomutkiewicz, M., Klonowski, M., Kutytowski, M.: Rapid Mixing and Security of Chaum’s
Visual Electronic Voting. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS,
vol. 2808, pp. 132-145. Springer, Heidelberg (2003)

Groth, J.: A Verifiable Secret Shuffle of Homomorphic Encryptions. In: Desmedt, Y.G. (ed.)
PKC 2003. LNCS, vol. 2567, pp. 145-160. Springer, Heidelberg (2002)

Groth, J., Lu, S.: Verifiable Shuffle of Large Size Ciphertexts. In: Okamoto, T., Wang, X.
(eds.) PKC 2007. LNCS, vol. 4450, pp. 377-392. Springer, Heidelberg (2007)

Janson, S., Luczak, T., Rucifiski, A.: Random Graphs. John Wiley & Sons, Chichester (2002)
Jakobsson, M., Juels, A., Rivest, R.L.: Making Mix Nets Robust For Electronic Voting By
Randomized Partial Checking. In: USENIX Security Symposium, pp. 339-353 (2002)
Nguyen, L., Safavi-Naini, R., Kurosawa, K.: Verifiable Shuffles: A Formal Model and a
Paillier-Based Efficient Construction with Provable Security. In: Jakobsson, M., Yung, M.,
Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 61-75. Springer, Heidelberg (2004)
Kesdogan, D., Egner, J., Biischkes, R.: Stop-and-Go-MIXes Providing Probabilistic
Anonymity in an Open System. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 83-98.
Springer, Heidelberg (1998)

Kohntopp, M., Pfitzmann, A.: Anonymity, Unobservability, and Pseudonymity: A Proposal
for Terminology. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS,
vol. 2009, pp. 1-9. Springer, Heidelberg (2001)

McDiarmid, C.: On the method of bounded differences. Surveys in Combinatorics. Cam-
bridge University Press, Cambridge (1989)

Mitzenmacher, M., Upfal, E.: Probability and computation. Cambridge University Press,
Cambridge (2005)

Neft, A.: Verifiable mixing(shuffling) of El-Gamal pairs (2004),
http://www.votehere.net/documentation/vhti

Peng, K., Boyd, C., Dawson, E., Viswanathan, K.: A Correct, Private and Efficient Mix Net-
work. In: Bao, F.,, Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 439—454.
Springer, Heidelberg (2004)

Peng, K., Boyd, C., Ed Dawson, E.: Simple and Efficient Shuffling with Provable Correctness
and ZK Privacy. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 188-204. Springer,
Heidelberg (2005)

Rackoff, C., Simon, D.R.: Cryptographic Defense Against Traffic Analysis. In: STOC,
vol. 25, pp. 672-681.


http://www.votehere.net/documentation/vhti

Fully-Simulatable Oblivious Set Transfer

Huafei Zhu

C&S Department, I?R, Singapore
huafei@i2r.a-star.edu.sg

Abstract. In this paper, a new notion which we call oblivious set trans-
fer is introduced and formalized. An oblivious set transfer in essence,
is an extension of the notions of oblivious bit transfer and oblivious
string transfer protocols. The security of oblivious set transfer protocols
is defined in the real/ideal world simulation paradigm. We show that
oblivious set transfer protocols that are provably secure in the full sim-
ulation model can be efficiently implemented assuming the existence of
semantically secure encryption schemes, perfectly hiding commitments
and perfectly binding commitments.

Keywords: Oblivious set transfer, perfectly hiding commitment, per-
fectly binding commitment, real/ideal world simulation paradigm.

1 Introduction

The oblivious transfer introduced by Rabin [I7], and extended by Even, Gol-
dreich and Lempel [6] and Brassard, Crépeau and Robert [2] is one of the most
basic and widely used protocol primitives in cryptography. The concept of obliv-
ious transfer protocol stands at the center of the fundamental results on secure
two-party and multi-party computation showing that any efficient functionality
can be securely computed ([I§] and [II]). Due to its general importance, the
task of constructing efficient oblivious transfer protocols has attracted much in-
terest. The state-of-the-art of security definitions of oblivious transfer protocols
are defined in the following three models:

— In the semi-honest model, an adversary follows the protocol specification
but tries to learn more than allowed by examining the protocol transcript. It
is possible to construct efficient oblivious transfer protocols from trapdoor
permutations [6] and homomorphic encryptions ([I] and [12]).

— The notion of semi-simulatable model first introduced and formalized by
Naor and Pinkas [T4], considers malicious senders and receivers, but handles
their security separately. Receiver security is defined by requiring that the
sender’s view of the protocol when the receiver chooses index o is indis-
tinguishable from a view of protocol when the receiver’s chooses ;. Sender
security follows the real/ideal world paradigm and guarantees that any ma-
licious receiver in the real world can be mapped to a receiver in an idealized
game in which the oblivious transfer protocol is implemented by a trusted
third party.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 141-{I54] 2008.
© Springer-Verlag Berlin Heidelberg 2008



142 H. Zhu

— The notion of fully-simulatable model was introduced and formalized by
Camenisch, Neven and Shelat [3]. In the full simulation model, the security
employs the real/ideal world paradigm for both receiver and the sender. The
difficulty in obtaining secure oblivious transfer protocols in this model is the
strict security requirement of simulation based definition.

The implementations of efficient oblivious transfer protocols that reach full sim-
ulation level of security are of great interest. One possibility is to use the protocol
compiler of Goldreich, Micali and Wigderson (GMW compiler [I1]) to transform
oblivious protocols for semi-honest adversaries into protocols that are secure in
the presence of malicious adversaries. Here an essential tool is the result that
all NP languages possess zero-knowledge proofs. That is, each party is required
to prove in zero-knowledge that each message he sends is what he should have
sent being honest, given his private input, his random choice and the messages
he received so far. If a malicious party frustrated at not being able to send mes-
sages according to a different program, decide to stop, his input and random bits
will be reconstructed by the community who will compute his messages when
necessary, without skewing the probability distribution of the final outcome.

1.1 The State-of-the-Art

Very recently, two fully simulatable oblivious transfer protocols without using
the generic GMW compiler are reported in the literature:

— Camenisch, Neven and Shelat [3] proposed two interesting implementations
of oblivious string transfer protocols. The first protocol is constructed from
any unique blind signature scheme in the random oracle model. The sec-
ond construction is based on the g-power decisional Diffie-Hellman assump-
tions. As noted by Green and Hohenberger [I0], the dynamic assumptions of
their scheme seem significantly stronger than well established primitives such
as the Diffie-Hellman decisional problem and quadratic residuosity assump-
tions. Thus, a well-motivated problem is to find efficient, fully simulatable
oblivious transfer schemes under weaker complexity assumptions.

— Green and Hohenberger [I0] proposed alternative implementation of oblivi-
ous string transfer protocols based on the Decisional Bilinear Diffie-Hellman
assumption. Zero-knowledge proof must be used in Green and Hohenberger’
protocol otherwise, it seems difficult to show their protocol is fully-simulatable
as the ideal sender would have to form the IV cipher-texts before learning the
messages that K of them must decrypt to. The security of their scheme is
based on the Decisional Bilinear Diffie-Hellman assumption that seems a less
well-established primitive.

Since the protocols described above are all based on less well-established prim-
itives, a well-motivated problem is thus to find efficient yet fully simulatable
oblivious transfer schemes under standard complexity assumptions.

Lindell’s oblivious bit transfer protocol [I3]: Lindell has presented the
first efficient implementation of fully-simulatable oblivious bit transfer protocols



Fully-Simulatable Oblivious Set Transfer 143

under the decisional Diffie-Hellman problem, the Nth residuosity and quadratic
residuosity assumptions as well as the assumption of that homomorphic encryp-
tion exists. All protocols are nice since they are provably secure in the presence
of malicious adversaries under the real/ideal model model simulation paradigm
without using general zero-knowledge proofs under standard complexity assump-
tions. The idea behind Lindell’s construction is that it makes use of the cut-and-
choose technique so that each party is not required to prove in zero-knowledge
and allows a simulator to rewind the malicious party so that an expected polyno-
mial time simulator under the standard cryptographic primitives can be defined.

Lindell’s protocol works by the receiver generating a tuple (g%, g%, g%, %) with
the following property: if the receiver’s input is 0, then ¢ = ab and d is random,
and if the receiver’s input equals 1, then d = ab and c is random. The sender re-
ceives this tuple and carries out a manipulation that randomizes the tuple so that
if ¢ = ab then the result of the manipulation on (g%, g%, ¢°) is still a Decisional
Diffie-Hellman tuple and the result of the manipulation on (g%, g°, g?) yields a
completely random tuple. The sender then derives a secret key from the multipli-
cation of each of (9%, g, ¢¢) and (g%, g%, g%), and sends information that enables
the receiver to derive the same secret key from the Decisional Diffie-Hellman
tupel while the key from the non-Decisional Diffie-Hellman remains completely
random. The design mechanism allows one to implement 1-out-2 oblivious bit
transfer protocols. We however do not know how to extend Lindell’s scheme to
the multi-bit (i.e., oblivious string transfer protocols) case. As a result, the con-
struction of oblivious string transfer protocols in the full simulation paradigm
remains a challenge task in the research community.

1.2 Our Results

In this paper, we introduce and formalize a new notion which we call oblivious
set transfer. An oblivious set transfer is a natural extension of the notions of
oblivious bit transfer and oblivious string transfer. If a set consists of two bits
then the definition of our protocols coincides with the definition of standard
oblivious bit transfer protocols. If a set consists of k indices, then our definition
coincides with the standard definition of oblivious string transfer protocols (see
the definition of oblivious set transfer in Section 2 for more details). We then
present an efficient implementation of oblivious set transfer protocols that are
secure in the presence of malicious adversaries in the real/ideal world simulation
paradigm. That is, assuming that Paillier’s encryption scheme is semantically
secure and assuming that COMy, is a perfectly hiding commitment and COM,
is a perfectly binding commitment, the oblivious set transfer protocol described
in this paper is secure in the full simulation model.

The idea behind of our construction is that a receiver encodes a set of strings
to an L-adic that will be retrieved at the end of execution of the oblivious set
transfer protocol, and then runs with the sender a two-party computation of an
encrypted linear function E(az+y), where x and y are two random strings used
to hide the exact message a whereas F is an additively homomorphic encryption



144 H. Zhu

(say, Paillier encryption scheme) used by the sender. It follows that if the receiver
obtains an decryption of the encrypted linear message, then the set of desired
messages can be retrieved.

2 Definitions

The oblivious set transfer functionality in this paper is an extension of [13], i.e., the
oblivious set transfer functionality is formally defined as a function f with two in-
puts and one output. The first input is an n-tuple message m=(my, - - -, m,, ), and
the second input is an index set S={i1, - - -, it }, where k < n. The output is a sub-
set {my,,- -, my, } of the n-tuple message. Party 1, also known as the sender, in-
puts (ma, - -+, m,) and receives no output. In contrast, Party 2, also known as the
receiver, inputs the set of indices {i1,---,ix} and receives Mg={m,,---,m;, }.
Formally, we write f(m,S)=(L,mg).

Adversarial behavior: In this paper, we consider malicious adversaries who
may arbitrarily deviate from the specified protocol. We however, consider the
static corruption model, where one of the parties is adversarial while the other
is honest, and this is fixed before the execution begins.

Execution in the real world model. In the real world, a malicious party
may follow an arbitrary feasible strategy. Let m be a two-party protocol, and let
M=(M, Ms) be a pair of non-uniform probabilistic polynomial time machines.
We assume that such a pair is admissible meaning that for at least one ¢ € {1,2}
we have M, is honest. The joint execution of w under M in the real model on
inputs m=(m,---,my,) and S={iy,---,4x}, denoted by REAL_,,(m,S), is de-
fined as the output of pair of M; and M resulting from the protc;col interaction.

Execution in the ideal world model. An ideal oblivious set transfer proceeds
as follows:

— Inputs: Party 1 obtains an input pair m=(my, - - -, my,) with |m;| =|m;|, and
Party 2 obtains an input S={i1,---,x}, where 1 <k < n.

— Send inputs to trusted party: An honest party always sends its inputs to the
trust party without any modification. A malicious party may either abort,
in which case it sends | to the trust party, or sends some other input to the
trusted party.

— If the trusted party receives L from one of the parties, then it sends L to
both parties and halts. Otherwise, upon receiving some (mj,---,m/) from
Party 1 and {3}, - -, )} from Party 2, the trusted party sends {mg,l, e m%c}
to Party 2 and halts.

— An honest party always outputs the message it has obtained from the trusted
party. A malicious party may output an arbitrary function of its initial input
and the message obtained from the trusted party.

By f we denote the oblivious set transfer functionality and let M =(M7, Ms) be
a pair of non-uniform probabilistic expected polynomial-time machines which is



Fully-Simulatable Oblivious Set Transfer 145

admissible. Then the joint execution of f under M in the ideal world model,
denoted by IDEAL, ,/(m, ), is defined as the output pair of M; and M, from
the above ideal execution.

Definition 1. Let f denote the functionality of oblivious set transfer protocol and
let  be a two-party protocol. Protocol  is said to be a secure oblivious set transfer
protocol if for every pair of admissible non-uniform probabilistic polynomial-time
machines A=(A1, As) for the real world model, there exists a pair of admissible
non-uniform probabilistic expected polynomial-time time machines B=(By, Bs)
for the ideal world, such that for every n-tuple message m=(maq,---,my) of the
same length, and for every indices subset S={i1,---,ir}, where & < n,
IDEAL; g(l,m,S) ~ REAL, . \,(m,S), where l is a security parameter.

3 Building Blocks

3.1 Paillier’s Additively Homomorphic Encryptions

Paillier investigated a novel computational problem called the composite residuos-
ity class problem (CRS), and its applications to public key cryptography in [16].

Decisional composite residuosity class problems: Let N = pq, where p
and ¢ are two large safe prime numbers. A number z is said to be a N-th residue
modulo N2, if there exists a number y € Z» such that z = y™ mod N2. The
decisional composite residuosity class problem states the following thing: given
z €y Zjy2 deciding whether z is N-th residue or non N-th residue. The decisional
composite residuosity class assumption means that there exists no polynomial
time distinguisher for N-th residues modulo N?2.

Paillier’s encryption scheme: the public key is a k-bit RSA modulus N=pq,
where p, g are two large safe primes with length k. The plain-text space is Zx and
the cipher-text space is Z3.. To encrypt a message m € Z, one chooses r € Z}
uniformly at random and computes the cipher-text as Epx (m,r) = ¢"r" mod
N2, where g = (1 + N) has order N in Z},. The private key is (p,q). It is
straightforward to verify that given ¢ =(1 + N)™r" mod N2, and the trapdoor

information (p,q), one can first compute ¢;=c mod N, and then compute r

1
from the equation r=c}’ mod?(N) mod N; Finally, one can compute m from the

equation cr~ mod N? =1+mN. The encryption function is homomorphic, i.e.,
EPK(ml,rl) X EPK(MQ,T‘Q) mod N2 = EPK(ml —+me mod .Z\f7 71 XTg mod N)
Paillier’s scheme is semantically secure if the decisional composite residuosity
class problem is hard.

3.2 Perfectly Hiding Commitment Schemes and Perfectly Binding
Commitment Schemes

Loosely speaking, a commitment is an efficient two-phase two-party protocol
through which one party, called the sender, can commit itself to a value so the
following two conflicting requirements are satisfied:



146 H. Zhu

— Secrecy (hiding): at the end of commit phase, the other party, called the
receiver, does not gain any computational knowledge of the sender’s value.
This requirement has to be satisfied even if the receiver tries to cheat;

— Non-ambiguity (binding): given a transcript of the interaction in the commit
phase, there exists at most one value which the receiver may accept as a legal
opening of the commitment. This requirement has to be satisfied even if the
sender tires to cheat.

Definition 2. A perfectly hiding (and computationally binding/computationally
non-ambiguity) commitment scheme is a triple of efficient algorithms (KG,
COM, VER) satisfying the following properties:

— Correctness: for all security parameter k and input «,
Problpk «— KG(1%), (¢c,d) «— COM (pk,a) : VER(pk,, ¢,d) = TRUE] = 1

— Perfectly hiding: for all k, and all inputs a and 3 the following distributions
are identical:

< pk «— KG(1%); (¢,d) « COM (pk,a) : (pk,c) >

and
< pk «— KG(1%); (¢,d) « COM (pk, ) : (pk,c) >

— Computationally binding/computationally non-ambiguity: for all k, and for
any probabilistic polynomial time cheating sender C*:

Problpk — KG(1%), (¢, dy, da, a1, ) «— C*
VER(pk,c,d1,01) = VER(pk,c,d2,2) = TRUE A o # aa] < v(k)
where v(k) is a negligible function.

Remark 1. Pedersen’s commitment scheme [I5] is a perfectly hiding (and com-
putationally binding/computationally non-ambiguity) protocol.

Definition 3. A perfectly binding/perfectly non-ambiguity (and computation-
ally hiding) commitment scheme is a triple of efficient algorithms (KG, COM,
VER) satisfying the following properties:

— Correctness: for all security parameter k and input o and ,
Problpk — KG(1%), (¢c,d) «— COM (pk,a) : VER(pk,,¢,d) = TRUE] = 1

— Computationally hiding: for all k, and all inputs o and B the following dis-
tributions are computationally indistinguishable:

< pk — KG(1%); (¢,d) «— COM (pk, ) : (pk,c) >

and
< pk — KG(1%);(c,d) — COM (pk, 3) : (pk,c) >



Fully-Simulatable Oblivious Set Transfer 147

— Perfectly binding/non-ambiguity: for all k, and for any C*:
Prob[pk «— KG(1%), (¢, d1,da, a1, a0) «— C*
VER(pk,c,d1,0n0) = VER(pk, c,d2,c0) = TRUE A oy # ) =0

Remark 2. Paillier’s public-key encryption scheme is an example of perfectly
binding/non-ambiguity (and computationally hiding) commitment scheme.

4 Oblivious Set Transfer

4.1 Description of Oblivious Set Transfer Protocol

Common reference string: The sender, Party 1 has an instance of Paillier’s
encryption scheme denoted by (pk, sk), Party 2, a receiver obtains pk (including
the description of encryption algorithm F and the description algorithm D) but
knows nothing about sk at all.

Both parties also have a description of the specified common reference string: a
description of perfectly hiding and computationally binding commitment
(COM},) and a description of a perfectly binding and computationally hiding
commitment (COMy). The description of COMj, is denoted by mpy; The de-
scription of COMj, is denoted by mp.

Input: The sender has an input pair m=(mo, - - -, m,—_1) with m; € {0,1}*, and
the receiver has an input S={o1,---,0,} C {0,---,n—1}, where 0 < o; <n—1.

The protocol

— Step 1: For i=0 to n — 1, the sender computes ¢; =F(m;, ry,,), where F is
Paillier’s encryption algorithm.

Let L be an upper bound of m; (0 <4 < n — 1) such that moL°® +m L +
<+ +my_1L"t < N (this assumption can be relaxed if Damgard-Jurik
encryption scheme is applied [5]).

By mr, we denote moL® +miL +---+m,_1 L"'. Obviously, given my,
(mg, -+, my_1) can be uniquely retrieved.

— Step 2: For j=1 to t where t =(}), the receiver computes K7, - - -, K;, where

K; = E(mjl)L]1 . E(mjk)yk. The receiver further performs the following
computations, where s is a security parameter:

(2.1) for j=1to ¢

(2.2) for i =1 to s,

(2.3) chooses (a, ;) €Rr ?}(, X 7%, . 1-

(2.4) computes K;% E(1)% . By L(i, j), we denote K;% E(1)";

(2.5) commits L(i, j) using the perfectly hiding and computationally binding
commitment (COMy,) which is denoted by COMy,(L(4, 7))

(2.6) finally, the receiver randomly reorders all computed commit-
ments(COMy,(L(4,7)), 0 <i<s,0<j<t) to get a random commitment-
table:



148 H. Zhu

— Step 3: Coin tossing:

(3.1) the sender P; chooses a random Ry € {0,1}*" and sends COM,(R;)
to PQ;

(3.2) the receiver P, chooses a random Ry €g {0,1}*" and sends COM,(Rs)
to Pl;

(3.3) P, sends the de-commitment of COMy,(R;) to Ps;

(3.4) P, sends the de-commitment of COMy(R2) to Pr;

(35) Py and P set r =R; @ Rs. Denote r = (T171, BEEN Tl,t)a BEEN (7"371, BRI
Ts,t)~

— Step 4: If all commitments of the chooser’s indies are located at r; ; = 1, then
P, outputs L, otherwise, it continues the following process (notice that the
probability that P, outputs L is (1/2)° that is negligible in the function of the
security parameter s). That is, for every 1 < i < s and 1 < j <t for which
ri; =1, P> sends the de-commitment of ¢; j. Namely, if ¢; ;j=COMy(L(?, j'),
then P, sends the following strings to P
(4.1) L(¢,j') and its random string l;7 j used to generate ¢; ;;

(4.2) K and(a,,ﬂ s
(4'3) (lev Lh)’ T (C]k7 L];");

— Step 5: Py tests the validity of the following equations

(5.1) (L(¢, 5'), lir j+) is a valid de-commitment to ¢; ;;

(5:2) L(i',5") = K™ E(1)";

(5.3) K /—C]Ll---ch]k
If any of the checks falls P, halts and outputs L. Otherwise, P; continues
the following process with Ps.

— Step 6: P, chooses (i, j**) such that 7y~ j~ =0 and Li*,j*) be an random-
ized encryption of L-adic of Py’s indices with auxiliary strings o, and Si..
P, now sends a de-commitment of ¢~ j~ to Pi (i.e., sends L(i*,j*) to P
such that COl\/Ih(L(2*7j*)7 li*)j*): Cirs g1+ .

— Step 7: P; checks the validity of the de-commitment. P, sends the decryption
of L(i*,j*) to P if the de-commitment is correct, otherwise output L;

— Step 8: P recovers (my,, -+, My, ) from the plain- text [(m(,lL"1 + o+

Mg, L7F) X a?i + ﬂ;] mod N with auxiliary strings oz]* and ﬂz

In case that P, and P, are honest participants, then one can verify that the
scheme works with overwhelming probability 1-(1/2)%.

4.2 The Proof of Security

Expected polynomial-time simulator for coin-tossing protocol: we first
show that the coin-tossing protocol employed in the oblivious set transfer pro-
tocol is simulatable in the expected polynomial time. If we are able to show the
existence of such simulator, then we are able to extract a malicious party’s input
to the trusted party within expected polynomial-time and thus we are able to
show that our protocol is secure in the real/ideal world simulation paradigm.



Fully-Simulatable Oblivious Set Transfer 149

Coin-tossing protocol

Common Input: A perfectly hiding and computationally binding commitment
(COMy,). The description of COM,, is denoted by my; A perfectly binding and
computationally hiding commitment (COMy). The description of COM,, is de-
noted by my;

Auxiliary Input to two parties: Auxiliary input to one party Alice (A) is ra,
and auxiliary input to another party Bob (B) is rp.

On input inpa=(my,, mp, 74) and input inpg=(my, my, rg), A and B proceed
the following steps:

— A sends ¢y =COMy,(s4, rs,) to B;

B sends cg =COMy(sg, 7s,) to B;

— A sends the de-commitment (sa, rs,) of c4 to B;

B sends the de-commitment (spg, 75, ) of cp to A;

shared coin toss is s4 @ sp which is denoted by s (i.e, s = s4 ® sp).

If A is corrupted, then we will show that there exists an expected polynomial-
time simulator sim 4. The simulator starts by selecting and fixing a random type
r4 and my and then feeds (14, myp) to sima. The simulator sim 4 proceeds in
two steps:

— (S1) Extracting committed value: The simulator generates c4 and sends it to
B; The simulator then generates a random commitment to a dummy value
¢ (say a commitment to 1) and feeds it to A. In case A replies by revealing
correctly de-commitment, denoted by (sa, 7s,), the simulator records the
value and proceeds the next step; In case the reply of A is not a valid revealing
of the commitment c4, the simulator halts and outputs current view of A.

— (S2) Generating real commitment: Let (sa, rs,) denotes de-commitment
recorded in Step (S1). The simulator now rewinds A from scratch with
the same random type r4 and the same message m; and generates cp
=COMy,(sp, rsy) such that s=sa @ sp, where s is a random string. The
simulator feeds cp and (sg, 75, ) to A.

Let ¢(k) denote the probability that program A, on input my, my and r4, cor-
rectly reveals the commitment made in Step(S1) after receiving random com-
mitment to a dummy value; Let p(k) denote the probability that program A, on
input my,, my and r4, correctly reveals the commitment made in Step(S1) after
receiving a genuine commitment; We stress that the difference between ¢(k) and
p(k) is negligible, otherwise one can derives contradiction to the computational
secrecy of A. It follows that the expected number of times that Step(S2) is in-
voked when running simulator is ¢(k) x 1/p(k). Unfortunately, even though, p(k)
and ¢(k) are at most polynomially far away from each, the value q(k) x 1/p(k)
may not necessary be polynomial. Thus, the expected running-time of sim 4 is
not necessary polynomial. We now make use of well studied technique (say, [,
[8] and [7]) to solve this problem.



150 H. Zhu

A modified simulator sim A

— (S1) Extracting committed value: The simulator then generates a random
commitment to a dummy value ¢/5 and feeds it to A. The simulator generates
c4 and sends it to B; In case A replies by revealing correctly de-commitment,
denoted by (sa, rs,), the simulator records the value and proceeds the next
step; In case the reply of A is not a valid revealing of the commitment c4,
the simulator halts and outputs current view of A.

— (S1.5) Approximating ¢(k): If the simulator does not halt in Step(S1) then
the simulator needs to approximate g(k) so that an expected polynomial-
time simulator can be constructed. Let n(k) be a polynomial, and let X;
be a random variable such that X; =1 if the i-th revealed commitment is
correct, and X;=0, otherwise. Running Step(S1) n(k) times. The output of

n(k
n(k) repeatedly sampling is Z‘;((lk))xi which is denoted by (k).

— (S2) Generating real commitment: Repeat the performance of Step(S2) ;N((?)

times. If none of these executions yield a correct reveal of A, the simulator
outputs a special symbol indicating time-out; If A ever reveals a correct open-
ing of the commitment that is different from the one recorded in Step(S1),
the simulator halts outputting a special symbol indicating ambiguity.

This ends the description of sim4. One can easily verified that the modified

simulator has expected running time bounded by g(k) x g((},?) =t(k). Furthermore,

sim4 has the following nice features as well.

Lemma 1. (k) is within a constant factor of q(k) with overwhelmingly high
probability

Proof. Let X; be a random variable such that X; =1 if the i-th revealed com-
mitment is correct, and X;=0, otherwise. By applying Chernoff bound, we know
that

2

(k) X, 2
=L (k)| > 6) < 2 "awlon < 2e7

Prob(] Z;(k)

It follows that g(k) is within a constant factor of ¢(k) with overwhelmingly
2
high probability 1 — e~"s , where § is any constant smaller than q(1—q).
Lemma 2. The probability that the event time-out happens is negligible.

Proof. Let u(k) be the probability that sima outputs a special time-out symbol.

Then,

q(k) “m q(k) b

Gk) O(1))(1 = p(k)) 1 + Prob( #0(1))(1 — p(k)) «®
t(k)

u(k) = Prob( 3(k)
< g(k)(1 — p(k)) i) + 207

Since the difference between p(k) and ¢(k) are negligible, by applying the stan-
dard truncated technique, we know that u(k) is negligible in k.



Fully-Simulatable Oblivious Set Transfer 151

Lemma 3. The probability that the event ambiguity happens is negligible.

Proof. Let v(k) be the probability that sim4 outputs a special ambiguity sym-
bol. Assume by the contradiction that the ambiguity symbol is output with
probability at least Q(k) for a polynomial Q(+), and an infinite sequence of com-
mitted values. By running Step(S2) more than 2t(k)Q(k), it follows that sim.4

outputs an ambiguity symbol with probability at least 2Q1(k)' As a result, when

sim A invokes A at the moment then the event ambiguity happens with the prob-
ability at least 2Q1(k)' This contradicts the assumption of non-ambiguity of B’s

commitment scheme.

Combining the above lemmas, we have the following statement immediately.
That is,

Corollary 1. The output distribution of simulator sima differs from the output
distribution of simulator simy is at most negligible.

Proof. Notice that the output distribution of simulator simy differs from the
output distribution of simulator sim 4 in two types of executions: time-out and
ambiguity. Due to the above lemmas, we know that the output distribution of
simulator sim 4 differs from the output distribution of simulator sim 4 is at most
negligible.

Lemma 4. Assuming that COMy is a perfect hiding and computational bind-
ing commitment and COM, is a perfectly binding and computationally hiding
commitment, then the shared coin tossing protocol is secure against malicious
adversary A. Furthermore, the simulator sim 4 Tuns in expected polynomial time.

Proof. According to the description of simulator, one can verify that the modi-
fied simulator has expected running time bounded by g(k) x 2((2)) =t(k). The rest
of this work is to show the view of A is computationally indistinguishable from
that generated by simy4. Since the simulator then generates a random commit-
ment to a dummy value ¢z (say a commitment to 1) and feeds it to A, and the
commitment that generates the dummy value is perfectly biding and computa-
tionally hiding, it follows that the view of A is computationally indistinguishable
from that generated by sim 4.

Using the same technique, we can show that

Lemma 5. Assuming that COMy, is a perfect hiding and computational bind-
ing commitment and COMy is a perfectly binding and computationally hiding
commitment, then the shared coin tossing protocol is secure against malicious
adversary B. Furthermore, the simulator simp runs in expected polynomial time.

Expected polynomial time simulator for oblivious set transfer proto-
col: We now show that the proposed scheme is fully simulatable in the real/ideal
world paradigm by considering the following two cases:



152 H. Zhu

Case 1 — P is corrupted. Let A; be a non-uniform probabilistic polynomial
time real adversary that controls P;. We construct a non-uniform probabilistic
expected polynomial time ideal model adversary/simulator S;. The task of S;
now is to extract the input messages that P; hands to the trusted party with
the help of auxiliary information of (pk, sk) of Paillier’s encryption scheme.

— 51 chooses r € {0,1}5" uniformly at random;

— 51 receives (cg, -, ¢p—1) from Aj, generates Ky, ---, K; and constructs a
garble table according to Step 2;

— S) receives a commitment c¢j, from As, chooses Ry € {0,1}*! uniformly at
random and sends ¢,= COM,(R2) to A;. If A; does not send a valid de-
commitment to ¢y, then Sy simulates P, aborting. Otherwise, if A; sends a
valid de-commitment to ¢y, Si sets Ry = Ry & r, rewinds A; and hands ¢},
=COM,(R5);

— Forevery 1 <i <sand 1 <j <t for which r; ; =1, S sends the decommit-
ments according to Step 4 in the protocol; Namely, if ¢; ;=COM,;(L(?, j),
then P, sends the following strings to P
L(4',j') and its random string l;s ;- used to generate ¢; ;;

Kj/ and (043»//, ﬂ;:),
(Cj{’ Lji)’ T (Cj,;’ Lj;“);

— A tests the validity of the received strings, according to Step 5, namely
(L(',7"), lir ) is a valid de-commitment to ¢; ;;

L(i',j') = K;* E()™;

v
T L]l L'jk
Kj =cy RS i
— 51 receives a de-commitment L(i*,j*) and obtains mjx, -, my= according
to Step 7.
— The output of Sy is mys, -+, mj=.

The simulator now runs the above procedure (n — k) times (again the running
time is within expected polynomial time), it follows that Sy is able to extract all
messages {mg, - - -, Mp_1 } with overwhelming probability. Given {mg, - - -, mpn_1},
S1 runs with the honest party P, by simply handing the input messages to the
trusted party (the input of Ps is chosen uniformly at random by the trusted third
party on behalf of P»). As a result, the view of simulation when S; runs with P in
the ideal world is computationally indistinguishable from the view of real oblivious
set transfer protocol when A; runs with P, in the real world.

Case 2 — P, is corrupted. Let As be a non-uniform probabilistic polynomial
time real adversary that controls P,. We construct a non-uniform probabilistic
expected polynomial time ideal model adversary/simulator S;. The task of S
now is to extract the input set that P> hands to the trusted party with the help
of auxiliary information of (pk, sk) of Paillier’s encryption scheme.

Step S1: S generates n dummy encryptions ¢y, - - -, ¢,—1 and sends these dummy
encryptions to As;
Step S2: S5 is given a garble table



Fully-Simulatable Oblivious Set Transfer 153

Step S3: S runs coin-tossing protocol with As, the resulting shared string is
denoted by 7 = (11,1, -+, T1¢), = (Fs,1s o5 Ts,t);

Step S4: For every 1 <4 < sand 1 < j <t for which r; ; =1, S receives the de-
commitment ¢; j; Namely, if ¢; ;j=COMj(L(?, j'), then Sy receives the following
strings:

— L(i,7') and its random string l; ;» used to generate ¢; ;;
— Ky and (e 7
— (e, L), -, (cjt Lik);

S5 tests the validity of the received strings, according to Step 5, namely

(L(',7"), lir ) is a valid de-commitment to ¢; ;;
L(i',§') = Ky B();

v

J i,

Lo, LR
Tk

- Ky =cy

Step S5: Sy receives a query message (¢*,j*) such that ry« j« =0 and the de-
commitment of ¢;- j« (i.e., S also receives L(i*,j*) and its random string used
to commit ¢« j-).

Step S6: So now rewinds As at the Step S3 by running the coin-tossing protocol
with As. The resulted string is denoted by ' = (17 1, -+, 71 ), -5 (1, -+ 75 4)-

The existence of two random strings such 7« j» =0 but 77. ,.=1 is guaranteed
since S5 can rewind the simulator of the coin-tossing protocol and the running
time of such a simulator is within expected polynomial time. It follows that
the simulator Sy obtains the input message o =m;(j),, - -, mi(j)x of A within
expected polynomial time. Given o, S2 runs with the honest party P; by simply
handing the input messages to the trusted party (the input of P; is chosen
uniformly at random by the trusted third party on behalf of P;). As a result,
the view of simulation when S runs with P; in the ideal world is computationally
indistinguishable from the view of real oblivious set transfer protocol when A,
runs with P; in the real world.

Combining the above results, we have the following main statement immediately

Theorem 1. Assuming that Paillier’s encryption scheme is semantically secure
and assuming that COMy, is a perfectly hiding commitment and COM, is a
perfectly binding commitment. Then the oblivious set transfer protocol described
above is secure in the full stmulation model.

5 Conclusion

We have introduced and formalized the notion of oblivious set transfer, an nat-
ural extension of the notion of oblivious bit transfer and the notion of oblivious



154 H. Zhu

string transfer. The security of oblivious set transfer is defined in the real/ideal
world simulation paradigm. We have proposed an feasible implementation of
oblivious set transfer protocol in the presence of malicious adversaries in the
simulation paradigm.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital
Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119-135.
Springer, Heidelberg (2001)

2. Brassard, G., Crépeau, C., Robert, J.-M.: All-or-Nothing Disclosure of Secrets.
In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234-238. Springer,
Heidelberg (1987)

3. Camenisch, J., Neven, G., Shelat, A.: Simulatable Adaptive Oblivious Transfer.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573-590. Springer,
Heidelberg (2007)

4. Canetti, R., Even, G., Goldreich, O.: Lower Bounds for Sampling Algorithms for
Estimating the Average. Inf. Process. Lett. 53(1), 17-25 (1995)

5. Damgard, I., Jurik, M.: A Generalisation, a Simplification and Some Applications of
Paillier’s Probabilistic Public-Key System. In: Proceedings of the 4th International
Workshop on Practice and Theory in Public Key Cryptography, pp. 119-136 (2001)

6. Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts.
Commun. ACM 28(6), 637-647 (1985)

7. Decatur, S.E., Goldreich, O., Ron, D.: Computational Sample Complexity. STAM
J. Comput. 29(3), 854-879 (1999)

8. Goldreich, O., Kahan, A.: How to Construct Constant-Round Zero-Knowledge
Proof Systems for NP. J. Cryptology 9(3), 167-190 (1996)

9. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A Com-
pleteness Theorem for Protocols with Honest Majority STOC, pp. 218-229 (1987)

10. Green,, Hohenberger,: Green and Hohenberger: Blind identity-based encryption
and simulatable oblivious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 265-282. Springer, Heidelberg (2007)

11. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A
Completeness Theorem for Protocols with Honest Majority STOC 1987, pp. 218—
229 (1987)

12. Kushilevitz, E., Ostrovsky, R.: Replication is NOT Needed: SINGLE Database,
Computationally-Private Information Retrieval. In: FOCS 1997, pp. 364-373 (1997)

13. Lindell, Y.: Efficient Fully-Simulatable Oblivious Transfer. In: CTRSA 2008 (2008)

14. Naor, M., Pinkas, B.: Computationally Secure Oblivious Transfer. J. Cryptol-
ogy 18(1), 1-35 (2005)

15. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129-140.
Springer, Heidelberg (1992)

16. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238.
Springer, Heidelberg (1999)

17. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-
81, Aiken Computation Laboratory, Harvard University (1981)

18. A.C.-C. Yao.: Protocols for Secure Computations (Extended Abstract). In: FOCS
1982, pp. 160-164 (1982)



Efficient Disjointness Tests for Private Datasets

Qingsong Ye!, Huaxiong Wang':2, Josef Pieprzyk', and Xian-Mo Zhang'

! Centre for Advanced Computing — Algorithms and Cryptography
Department of Computing, Macquarie University, NSW 2109, Australia
{gingsong, hwang, josef,xianmo}@ics.mg.edu.au
2 Division of Mathematical Sciences
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

Abstract. We present efficient protocols for private set disjointness tests. We
start from an intuition of our protocols that applies Sylvester matrices. Unfor-
tunately, this simple construction is insecure as it reveals information about the
cardinality of the intersection. More specifically, it discloses its lower bound. By
using the Lagrange interpolation we provide a protocol for the honest-but-curious
case without revealing any additional information. Finally, we describe a protocol
that is secure against malicious adversaries. The protocol applies a verification
test to detect misbehaving participants. Both protocols require O(1) rounds of
communication. Our protocols are more efficient than the previous protocols in
terms of communication and computation overhead. Unlike previous protocols
whose security relies on computational assumptions, our protocols provide in-
formation theoretic security. To our knowledge, our protocols are first ones that
have been designed without a generic secure function evaluation. More impor-
tantly, they are the most efficient protocols for private disjointness tests for the
malicious adversary case.

Keywords: Private Set Disjointness, Private Matching, Secure Multi-Party
Computation.

1 Introduction

Suppose two parties, Alice and Bob, each has a private dataset of some items denoted by
A and B, respectively. Alice wishes to learn whether these two sets are disjoint, that is,
whether A N B = () or not. In doing so, Alice does not want to reveal any information
about her set A to Bob, who, in turn, does not wish to reveal any information about his
set B, other than whether AN B = () or not. This is called a private disjointness test [1]].

A private disjointness test is a useful primitive in various online service applications.
For example, Bob is a club owner offering a special-status membership called "Super
Fun" and Alice would like to know whether she is eligible for membership. Alice has
a smart card issued by the state authority containing her resident address, her age band
(assuming that O for age 0—9, 1 for the age 11 —19, 2 for the age 20 —29 and so on), her
membership status, etc. Bob determines whether Alice is eligible for the special-status
membership based on Alice’s attribute information. For example, Bob may require that
at least one of the following three conditions holds: (1) Alice lives in the same suburb
as Bob; (2) Alice’s age band is 5; (3) Alice is the member of Good Credit Union.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 155 2008.
(© Springer-Verlag Berlin Heidelberg 2008



156 Q. Yeet al.

Bob considers the detail of his policy to be commercial secret and does not want to
reveal it to others. Alice is interested in this membership and would like to go forward;
however, she wants to reveal as little information about her as possible. On the other
hand, Bob wants Alice to know only whether she is eligible for the membership, but
nothing else.

There are several protocols to tackle this problem, such as Freedman, Nissim and
Pinkas (FNP) [2]], Hohenberger and Weis (HW) [3]] and Kiayias and Mitrofanova (KM)
[1]]. The KM protocols have either high round complexity or high communication com-
plexity, while the FNP and HW protocols leak the information about the intersection
cardinality. Moreover, both FNP and KM protocols require random oracles and costly
sub-protocols that have to be secure in the presence of a malicious adversaries. The
HW protocol only considers the malicious Bob and assumes the honest Alice in order
to make the protocol efficient. This paper provides efficient protocols for private dis-
jointness tests. The protocols are unconditionally secure against malicious adversaries.

Related Work. Freedman, Nissim and Pinkas (FNP) [2] proposed a protocol for the
private computation of set disjointness. The protocol is based on the representation of
datasets as roots of a polynomial and applies oblivious polynomial evaluation tech-
niques [4]]. The protocol simply lets Alice represent her dataset A = {ay, ..., a,,} over
a field as a polynomial F(y) = [] (y —a;) = >_i", iy’ in that field. Alice then en-
a; €A

crypts coefficients of F with a homomorphic cryptosystem such as Paillier’s [5]]. Thus,
given encrypted coefficients of F, Bob first evaluates F(b;) for each elements b; € B,
and then returns encrypted v.F (b;) where +y is a random non-zero value picked by Bob.
Note that any b; € A if and only if F(b;) = 0, which not only indicates the disjointness
status but also reveals the information of the intersection cardinality.

The FNP construction leads to a very efficient protocol assuming honest-but-curious
adversaries. This construction heavily influences two other related works of Kiayias and
Mitrofanova [1]] and of Hohenberger and Weis [3]]. To cope with malicious adversaries,
the FNP protocol employs random oracle and invokes expensive sub-protocols.

Hohenberger and Weis have taken a similar approach to the one given
in [2] and designed a protocol using an oblivious polynomial evaluation. The
security proof relies on the difficulty of discrete logarithm. Assume G is a
group with the composite order n = pg where p < ¢ are primes. Let g, u be random
generators of G and b = u?. As in the FNP protocol, Alice represents her dataset A
by the polynomial F(y) = le‘ilo a;y® € Zgly], chooses a random polynomial
R(z) = leilo r;xt € Zy[z] and publishes n and commitments of F(y), g**h"i for
i €0,...,|Al]. For each b; € B selected in random order, Bob obliviously evaluates
vj = g7 ®)hAb5) and sends w; = v]7 to Alice, where ; is a non-zero value randomly
picked from Z? . Note that if b; € A, then g7#7 (%) will have order p. Since & has order
p, Alice concludes A N B # ) if wé’ = 1 with overwhelming probability.

The protocol is efficient and secure without using the random oracle. The security,
however, is proven under the assumption that Alice is honest (but Bob can be mali-
cious). If both Alice and Bob are malicious, then the cost of the protocol is the same
as in the FNP protocol. Moreover, their security properties are the same as of the FNP



Efficient Disjointness Tests for Private Datasets 157

protocol and allow Alice to discover the intersection cardinality. In our membership ex-
ample, if Alice knows the intersection cardinality, she may learn some extra information
about Bob’s business policy which is against Bob’s will.

Kiayias and Mitrofanova [I]] provided three protocols for private set disjointness
tests. The first protocol assumed that the domain is relatively small, which is not rele-
vant to our work. Our work is related to their second and third protocols, denoted by
KM—2 and KM—3, respectively. KM—2 uses a new primitive called superposed en-
cryption based on Pedersen commitments [6]. Superposed encryption is closely related
to a homomorphic ElGamal variant first used in voting schemes by Cramer et.al. [[7]]. In
the KM—2 protocol, Bob returns to Alice a single ciphertext of v|A N B|, where ~ is
a random non-zero value. This protocol needs |B| rounds of communication between
two parties. The total communication cost is |A| - | B| if the adversary is honest but cu-
rious, but increases by a quadratic factor if either party behaves maliciously. To reduce
the high round complexity in KM—2, the authors presented the KM—3 protocol that
uses a multivariate polynomial so the task can be done in a single round. The price to
Al +|B]

1B]
The disadvantage of those two protocols is obvious. It is unlikely for causal clients
to use such online services which require either extensive network communication or
numerous interactions.

Kissner and Song [8] presented FNP-inspired schemes for various private set oper-
ations such as set intersection, set union, threshold cardinality of the set intersection,
and multiplicity tests. The problem of secure computation of the subset relation of two
private datasets is a variant of the private set intersection problem where the intersec-
tion content is one party’s whole dataset. This operation can be computed by extending
the FNP protocol. The applications of the subset relation were discussed in [9] [10].
Protocols for private equality tests are a special case of the private disjointness tests,
where each party has a single element in the dataset. These protocols were proposed in
[11L 4] [12]. The distributed case of private equality tests and various private set opera-
tions were considered in [14].

Secure determinant computation by multiple parties is discussed in [13]. The secure
shares computation and distribution of a matrix are based on the Lagrange interpola-
tion. Using similar technique, Mohassel and Franklin [16] proposed a multi-party com-
putation protocol to securely test whether two shared polynomials are coprime. Their
construction applies Sylvester matrices construction.

be paid is a high communication cost O( ( ) ) for the honest-but-curious case.

Our Results: We present two disjointness test protocols. Each protocol takes O(1)
rounds. The second protocol that provides verifiability, is secure against malicious ad-
versaries, and the parties learn nothing more than the desired result. In our construction,
we build two polynomials g and h whose roots are representing the datasets A and B of
the two parties, respectively. The polynomials are next used to form a Sylvester matrix.
The determinant of the matrix tells us whether g and h share any root and therefore
allows us to ascertain if the intersection of the datasets is empty or not.

We first give an intuition of our protocols that applies a Sylvester matrix directly.
However, this simple construction is not secure as Alice can learn the intersection car-
dinality by computing the rank of the matrix. Note, this is allowed in [2} 3.



158 Q. Yeet al.

To reduce the amount of information leaking about the intersection of sets, we can
modify the simple construction as the following. We let two parties cooperate to multi-
ply the Sylvester matrix and its transpose. In such a way that Alice still knows whether
the determinant of the related Sylvester matrix is zero. Consequently, this improved
version reveals the lower bound of the intersection cardinality only.

To achieve no information leaks apart from the fact that whether AN B = () or
not, we utilize a secure determinant evaluation scheme in a multi-party computation
setting developed by Cramer and Damgard [13]]. In this protocol, Bob randomly picks
|A| + |B| + 1 distinct indexes and forwards them to Alice along with the shares of
his dataset. Alice then constructs the corresponding | A| + | B| + 1 shares of the masked
Sylvester matrix associated with g and h. Using the Lagrange interpolation, Alice is able
to test if the determinant of the masked Sylvester matrix is zero or not. This approach
requires O((|A| 4 |B|)?) communication cost and O((| A| + | B|)-%7) field operations.

We then further employ a verification test to detect misbehaving participants. The
test is going to double the communication cost.

The advantage of our solution is that our protocols are conceptually simple. Com-
paring to the previous work, our protocols are very efficient. In particular, our solution
can deal with malicious Bob and malicious Alice at same time. Unlike the previous
solutions, our schemes provide unconditional security. Our approach is of a great ad-
vantage, where the communication facilities are in a short supply and consequently,
protocols with small number of rounds are preferred. Our protocols do not leak any
information apart from whether A N B = () or not.

Our paper is organized as follows. In Section[2] we introduce the notations, Sylvester
matriices and some techniques that will be used in this paper. In Section[3l we discuss
the adversary model and define the problem in hand. A general description of a simple
and insecure protocol that is based on Sylvester matrices is presented in Section[dl In
Section 3] we show our main protocols for the private disjointness test of two datasets
based on the Sylvester matrix construction and demonstrate its security. We also analyze
the efficiency of our protocols in this section. Finally, we give concluding remarks in
Section[@l

2 Preliminaries

Throughout this paper, let GL,,(K) C K™" denote the group of n X n non-singular
matrices over an arbitrary finite field K. We assume that the number of elements in the
field ¢ = | K| is much larger than the dimension n.

2.1 Sylvester Matrix

Given two polynomials g(z) = > " a;a’ € Zg[z] and h(z) = D 1 Bz’ € Zg[z] of
degrees m and n, respectively. The Sylvester matrix S associated with g and h is then
the (m + n) x (m + n) matrix obtained as follows:

— The first row is: (@, Qm—1, - - -, @0, 0, ...,0).
— The next row is obtained from the previous one by shifting it one position (column)
to the right and putting zero in the first position.



Efficient Disjointness Tests for Private Datasets 159

— This process is repeated n — 2 times.

— The (n + 1)th row is (B, Bn—1,---,050,0,...,0).

— Nextm—1rows are created in the same way as for the first row. The only difference
is the number of rows.

For example, the Sylvester matrix .S associated with g and i form = 4 andn = 3 is:

0440430420410400 0
00&40&30&20&10&00
0 00&40&30&20&10&0
S=|B3B206160 0 0 0
0 B3 B2061 60 0 0
0 0 B3 0206160 0
0 0 0 850201 Bo

Thus, the determinant of the associated Sylvester matrix is defined by the two as-
sociated polynomials g and h. Consequently, two polynomials do not share a common
root if and only if the determinant of the Sylvester matrix is non-zero value. If the deter-
minant of the Sylvester matrix is zero, then the rank of the Sylvester matrix determines
the degree of the greatest common divisor of g and h. That is:

deg(ged(g, h)) = m + n — rank(S).

2.2 Building Blocks

In general, any secret sharing scheme can be used in our protocol. Since there are only
two parties involved in our protocol, we assume that (2-out-of-2)-Shamir secret sharing is
used. The computations in this paper are carried out over a finite field K. The two parties
are Alice and Bob. We frequently use the following building blocks from [18]] and [13].

Secure Inversion of Shared Field Elements and Matrices is a protocol that accepts
a list of shares of an invertible field element or matrix as its input and generates a list
of shares of the inverse. We denote this secure computation of shares of the inverse
by [z7']; = [z]; ', and [M~1]; = [M]; " respectively for an element = and a ma-
trix M, where [x~];’s are shares of the inverse, [z]; !’s are the inverse of shares, and
i € {A, B} in our protocol. In our protocols, we slightly modify the original protocol

to let only one party compute such inverses as the following.

Input: Shares [x] 4, [x] g of the element .
Output: Shares [x 7] 4, [x 7] 5 of the inverse element x L.
Protocol:

1. Compute shares [p] 4, [p] s of an element p € K that is random and non-zero,
2. Compute [o]4 = [p]a - []4 and [0]p = [p] 5 - [7].
3. Calculate o from the shares [0] 4 and [0] g,

4. Find [z~ Ya =07 [plaand [z g = 0!

“[o]B-

Note that the other party i, who receives the pair [z]; and [x71];, cannot find any
information about x. This is also true for the matrix M. For simplicity, we denote



160 Q. Yeet al.

[c]: = [pli - [x]; in Step 2. Actually, the computation of [¢]; is not simple and we
need to employ an appropriate sub-protocol such as the one presented in Section 1.1
of [18]]. Although the secure computation of [o]; is not required in this protocol, but
it is necessary in the next protocols where the appropriate sub-protocol is applied. A
constant-round sub-protocol between Alice and Bob might be also needed if a secure
computation of [c]; is expected.

Secure Multiplication of Shared Field Elements is a protocol that produces a share
of the product of two shared field elements [z - y] 4, [z - y] g of z and y. The protocol can
be successfully run if all shares are invertible. It proceeds according to the following
steps:

Input: Alice and Bob hold their shares of two elements = and y, i.e. Alice has [z] 4, [y] 4
and Bob owns [z]p and [y] 5.

Output: Alice gets the shares [z - Y], [x - y]B.

Protocol:

1. Alice
(a) generates shares [p1]a,[p1]p of p1, and [p2]4, [p2]B of p2 independently at
random from all non-zero values.
(b) computes [01]a = [x]4 - [p1]a, and [o2]a = [p1] " - [y)a - [p2] 4,
(c) sends [p1]p, [p2] B [p1]5', [01] 4, [02] 4 to Bob.
2. Bob
(a) computes [o1]p = [2]5 - [p1]p. and [02] 5 = [p1]5" - W] B - [p2] B
(b) constructs o1, 02 from computed shares,
(c) sends (o7 - 02) to Alice.
3. Alice computes [z - yJ4 = 01 - 09 - [p2] ;' and [z - y]p = 01 - 02 - [p2] 5

Note that only Alice could compute [z - y] 4 and [« - y] 5. Consequently, Alice learns
the result of = - y. This is allowed in our protocol. The security requirement of our
protocol is that Alice learns z - y without knowing the value of x and/or .

In general, if one of the inputs is zero, then Ben-Or and Cleve showed in [19]] how to
modify the protocol given above.

Secure Shared Matrix Multiplication is a protocol that securely generates shares
[M - M'|a,[M - M']p for Alice and Bob respectively, from shares [M]4, [M]p of
a matrix M, and [M']4,[M']p of M’, where [M]a,[M’']4 are held by Alice and
[M]p,[M’]p are possessed by Bob. This protocol works in an obvious way follow-
ing the previous Secure Multiplication of Shared Field Elements protocol.

Secure Determinant Evaluation (SDE) computes the determinant of a matrix
M € K™" from a list of related non-singular matrices. Let zy, ..., 2, are distinct
and random integers selected from /. We simplify the technique of secure determinant
evaluation in the multiparty computation model introduced by Cramer and Damgard
[13], and we use the following equation

det) = (-)"- > | | TT . 7 |- det(eilusn—20) | |
i=0 0<j<n ™ J
JF#i



Efficient Disjointness Tests for Private Datasets 161

where [, denotes the n x n identity matrix. For each z; € K, it holds that
(ziI, — M) € GL,(K) if and only if z; is not an eigenvalue of M. Since M has
at most n eigenvalues, each matrix z;1,, — M is invertible, when z; is randomly and
independently chosen, except with the probability at most Z .

3 Model and Definition

This section formally defines our verifiable disjointness test of two private datasets. Our
construction can be described as follows. Let Alice P 4 and Bob P be two probabilistic
polynomial time interactive Turing machines. Let A = {a1,...,am},
B = {by,...,b,} be datasets owned by P 4 and Pg, respectively. We assume that the
set cardinalities |A| and | B| are not secret. The private disjointness test checks whether
AN B = 0 or not. For sets A,B C K, define the disjointness predicate
D(A,B) = (AN B = 0), that is, D(A, B) will have value 1 if and only if A and
B are disjoint otherwise, the predicate is equal zero. The interaction between P 4 and
‘Pp yields a result that is known to P4 only.

In our model, an adversary can be misbehaving Bob, misbehaving Alice or both. In
particular, we cannot hope to avoid parties that (i) refuse to participate in the protocol,
(ii) substitute a correct input by an arbitrary value, and (iii) abort the protocol any time.
In our work, we do not address these issues. The way that security is dealt in this case
is by comparing the player’s views with respect to an "ideal" protocol implementation,
using a trusted third party. The reader is referred to [20] for a more complete discussion.

Definition 1. (Private Disjointness Testing) Tivo probabilistic polynomial time inter-
active Turing machines, P4 and Pp, define a Private Disjointness Testing protocol if
the following conditions hold:

Completeness. If both parties are honest, the protocol works and P4 learns the dis-
Jjointness predicate, that is whether AN B = ().

Soundness. For an unknown P 4’s set A C K, the probability that Pp will convince
P4 to accept AN B # () is negligible.

Security. Assume that the size of both datasets are public. With an overwhelming proba-
bility, P 4 does not get any extra information about 'Pg’s dataset beyond the knowledge
of the disjointness predicate. Pg learns nothing about P 4’s set.

Informally, completeness means that a correct execution between two honest parties
will return the correct value of the disjointness predicate to P 4. The soundness implies
that on an unknown input set A C K for P, P4 has no chance of obtaining a non-
zero result when interacting with any malicious Bob Pg. That is, unless Py actually
knows a value in P 4’s set, P4 will not be fooled into thinking otherwise. As pointed
out in [3]], both FNP and KM protocols are not sound according to this definition. In
those schemes, P 4 will believe that there is an intersection if it receives the value zero
encrypted under a public-key. Pj could trivially violate the soundness property by en-
crypting a zero value itself.



162 Q. Yeet al.

In a verifiable protocol, P 4’s privacy requires that no malicious Bob Pj can learn
anything about the set A beyond | A| from an interaction with P 4. Using the same argu-
ment for a malicious Alice P7, Ps’s privacy ensures that P’ does not learn anything
about B beyond the set cardinality.

4 Intuition of Set Disjointness Test from Sylvester Matrix
Construction

Our solution is based on the Sylvester matrix construction. To test if P 4’s dataset
A = {ay,...,an} and Pg’s dataset B = {by,...,b,} are disjoint, we represent two
datasets as two polynomials g(z) = [, ca(z — @) = Y oz’ and
hz) =[I,,ep(z —bj) = o Bjad, respectively. As in Section[Z]] we can build a
Sylvester matrix .S from the polynomials g and h. Then, the determinant of S indicates
whether A and B are disjoint.

In order to protect datasets privacy, we can let P 4 send encrypted g to P by using
a public-key homomorphic cryptosystem, such as Paillier’s [3], where the encrypted
g is denoted as the encryption of g’s coefficients with P 4’s public key. P then con-
structs the Sylvester matrix based on the polynomial ~ and encrypted polynomial g. To
protect the privacy of the polynomial h, Py randomly selects Ry € G L+, (K) and
obliviously computes R; - .S by using the homomorphic properties of the encryption
applied. After receiving the cryptogram of R, -.S, P 4 decrypts it and is able to compute
det(R;-S). In such a way, P4 learns det(R; -.S) = 0 if and only if det(S) = 0 without
leaking any information about the polynomial g and gaining no other information apart
from the disjointness of two datasets.

However, if we apply this idea directly to construct a protocol, then P 4 can learn the
intersection cardinality. This is because rank(R; - S) = rank(S). Thus,
deg(ged(g, h)) = deg(g) + deg(h) — rank((R; - S)) which reveals |A N B|. How-
ever, with slightly bigger communication cost, we could let P4 learn only the lower
bound of the intersection by securely computing det(S7 - S). It is easy to see that P4
is still able to determine whether det(S) is zero or not from the computation. The fact

is that rank(S7 - S) < rank(S). Denote S = <%j> , then,

ST .S =M% Ms+ ML - Mp

where M4 - M4 and M} - Mp can be computed independently by P4 and Pg. The
secure computation of det(ST - S) works in the same way as the one discussed above.

5 Private Disjointness Test

In this section, we propose a solution to test the disjointness without releasing any extra
information beyond |A| and | B|. Our private computation is based on the Sylvester
matrix construction and the technique of secure determinant evaluation in the multi-
party computation model introduced by Cramer and Damgard [15]]. Let polynomials g
and h represents the datasets A and B.



Efficient Disjointness Tests for Private Datasets 163

5.1 Protocol without Bob- Verifiability

To secure construct a Sylvester matrix S from the polynomials g and &, and accordingly
evaluate if det(S) = 0, we employ the SDE technique. We form a list of
(deg(g) 4+ deg(h) + 1) shares of S held by two parties in a certain way to let one
party to compute det(S) without knowing the rank(.S). The protocol runs according to
the following steps.

Input: P 4 and P hold the datasets A and B, respectively.
Output: P4 learns if AN B = 0.
Protocol 11,

1. P4 constructs the polynomial g from the dataset A, computes shares [g] 4, [g] 5 of
g, and sends [g] 5 to Pg.
2. Pn
(a) constructs the polynomial h from the dataset B, computes shares [h] 4, [h] 5 of
h, and forms an m x (m + n) half Sylvester matrix [Mp]p related to [h] 5 as

Bnle [Bn-1lB - [Bo]e 0O 0 ... 0 0 0
0 Brle ... [Bile [BolB 0 ... 0 0 0
0 0 o Buls Bus Bocls...[Bols 0 0 |
0 0 .0 0 [Bals .. s Bls ol

(b) generates shares [R] 4, [R] g for a random matrix R € G Ly, 1, (K) in a certain
way that both [R]4 and [R]p are invertible (the reader is refered to [I3] for
more information). Let d = det(R),

(c) forms an n x (m + n) half Sylvester matrix [M]p from received [g]5 as in

Step 2(a),
(d) randomly selects distinct non-zero zg, . . . , 2y, 4y, from the field K, and assigns
[2:]4 = [2:] B for each z;,
(e) sends [h]A, [R}/h dil, [Z()]A7 ey [Zern]A to P4.
3. Pp assists P4 in computing [S{]a = [Rla - ([z:]a © Lnan — G%ﬂj) ),

(S5 = [R]s - ([z:]B - Imin — G%ﬂ;)) separately as in Sect. 2,21 where the

matrices [Ma]a, [Mp] . are constructed by P 4 in the same way as [M4]p, [M 5] 5.
4. Pa
(a) computes S from shares [S!]4,[S/]lz and further computes
N _(MsY, _ N.g-1 L R(s _ (M=
det(z;  Lntn (MA>) = det(S})-d~ ', where S} = R- (% L+n M, ),



164 Q. Yeet al.

(b) concludes AN B # () if and only if

m—+n
SUL 127 e ()] =0
=0 0<j<m+n ZiT A 4

J#i

Theorem 1. The construction of Protocol I1; is correct and secure with no other in-
Sformation revealed beyond |A| and | B| if both parties follow the protocol faithfully.

Poof. The soundness proof is irrelevant to this protocol based on Definition[I] since Pgp
is honest-but-curious and follows the protocol faithfully.

Completeness. The completeness of this protocol is clear. This is ensured by the

Mp
My
g and h share common root(s), in other word A N B # (). The correct computation of

Sylvester matrix construction. det( >) = 0 if and only if related polynomials

My
SDE scheme. The associated shares construction and computation are guaranteed by
the Shamir secret sharing scheme.

det( (MB >) from related m + n + 1 matrices is provided by Cramel and Damgard’s

Security. The privacy of P4’s g is unconditional. It is guaranteed by the perfectness of
Shamir secret sharing, since P only knows partial share of g owned by P 4.

Mp

MA) ) cannot learn

Pg’s security ensures that P4 given S] = R - (z; - Iy+n — <

anything about B beyond |B|.
The proof of Pg’s security is that an honest-but-curious P7 is not able to glean any

information about B from the result of R (z; - Ly 1n — ) with unknown matrices

Mg
My
Rand Mg , where R € GL,,1,(K) is random, Mg is an m X (m + n) matrix with a
half Sylvester matrix form. P’ can launch an attack on Mp with

SI=R- (2 Ipan — (%’j)) (1)

Denote (%ﬁ) = (2 + Inn — (%’j)) where My and Mp are same size. P

knows S/ and M 4, and tries to find out the matrix Mz (really just one row of the entry,

the polynomial h). Note that (MB
My

S! must be non-singular. By only knowing M 4 and with no knowledge about h, P

> is non-singular, and R € G L,,,1,,(K). Therefore,

can search possible candidate polynomial, which can assure (%B

) be non-singular
A

(in other words, can satisfy Equation [I)).



Efficient Disjointness Tests for Private Datasets 165

Non-singular (%ﬁ) means that det (%B> # 0. Let det (%B>

A A
= f(Bo,B1...,0n) where f is a polynomial with n + 1 unknowns. For any (3; by
fixing 3;,0 < i < mand i # j, deg(f) = n and there are at most n solutions
for f(...,0;,...) = 0. We know that there are ¢ possible selections for 3; in the
field. Therefore, there must exists at least ¢ — n possible choices for (3;, such that
f(...,B5,...) # 0. Since the polynomial f has n+ 1 unknowns, the total possible can-
didates for M are (g—n)" 1. If ¢ is large enough, P% only has a negligible probability
to guess h correctly.

5.2 Verifiable Disjointness Test Protocol

In order to deal with a malicious Pp, P4 needs to verify whether the matrix M p as-
sociated with the shared polynomial h has the full rank as he claims to prevent the
malicious Pp inserting one row zeros or two dependent rows in the matrix. In the fol-
lowing, we show how to modify our previous protocol to gain security against malicious
‘Pr with a verification test. Assume that deg(h) is known by P 4. Otherwise, Pi needs
to send a single value deg(h) to P4 at the beginning of the protocol. Suppose that P 4
has a private and random permutation function 7, which permutes each of m +n tuples.

Input: P 4 and Pp hold the datasets A and B, respectively.
Output: P4 learns if AN B = 0.
Protocol 115

1. Pa

(a) constructs the polynomial g from the dataset A, and computes n pairs of shares
{(gl14519]15)s -+ (9] (m+n) 4 [9] (m+”)5)}’ where the combination of two
shares in any pair can find g,

(b) sets an constant polynomial ¢ = 1, and computes n pairs of shares as in
previous step, o she gets {([9']14+[9']15): - - -+ (9} i), [9')min ) -

(c) obtains {(elm(l),eln@)), . (e(m+n)%+"(1),e(m+n)w+"<2))} by perform-
ing m{(e1,,€1,)s .-, (e(m+n)1 , e(m+n)2)}, where {(e1,,€15), -+
(e(m+n)1ve(m+n)z)} = {([g]lsa [g/}15)7 ) ([g}(m+n)57 [g/](ern)B)}’

(d) sends {(elml) , elmZ))7 . (e(m+n)w+"<1> , e(er”)mern@))} to Pg;

2. For each pair (eiwj )1 €in2) ), the protocol runs step 2 and 3 of Protocol I1; parallel
with the same parameters and computes

i,

S, = R+ (Gl Lo = (g ))

75 (1) 4

(!, 00, = Bl - (225 - T — ([M[%B]B >)

Z7Tj<1)B

S, = Rl (a Lo = (a2 ))

i (2) 4



166 Q. Yeet al.

[Mg]B
S/ T =|R . 7 . Im n —
Slese, = Blo- (o Fnn = (i) )
where [M A]iwj s [M A]iwj o, are constructed from [g]; and [¢']; with the order de-
termined by the permutation 7;, which is unknown to Pg.
3. Pa

!
(a) computes Si,rj a

[S’L{]ﬂ'j (2)A’ [S':]TF] (2)3 H

) from shares

) from shares [S;]ﬂj(l)A, [S;]ﬂj(l)B, and S;ﬂ_@

(b) obtiiins / {(%17512), e gSEM+n)1’SEM+7)2)} by performing
TG0 S @) Sl Sk,
(c) computes f;, = det(S; ) and f;, = det(S;,) fori € {0,...,m +n} asin
Protocol 114,
Mg

(d) computes det(z; - Lyptn — ( >) = fi, -d"tfori € {0,...,m+n}, where

M}y
M, denotes a half Sylvester matrix constructed from the polynomial ¢’,
(e) halts if

m—+n

m+n Zj ) MB
(—1)mtn. Z _H o -det(2; -+ Imgn — (M14>) #£1.
=0 0<j<m+n
j#i
MB —1 .
(f) computes det(z; - Lyyn — Y; )= fi, d"tfori €{0,...,m+n},
A

(g) concludes AN B # () if and only if

m—+n

2 M
S| I L7 | et ne= (1) | o

i=0 0<j<m+n Zi
J#
Theorem 2. The construction of the Protocol 115 is complete and sound against a ma-
licious adversaries. With overwhelming probability, a malicious Py will be caught. In
other word, unless Py actually knows a value in P 4’s set, P4 will not be fooled into
thinking otherwise. The security of both P4 and Pp is also protected based on the
shares of each polynomial are randomly selected from field, and the Secure Determi-
nant Evaluation.

Proof. The correctness proof is the same as for the Protocol I7;. The only difference is
that we use m+n pairs of shares [g]; . , [9]i, for g. The reason for doing this is to ensure
the soundness of this protocol, and will be discussed shortly. The security proof is the
similar as the one in the Protocol I7;. An adversary does not gain any extra information.
This is because of the perfectness of Shamir secret sharing and the SDE we used.

Soundness. In the given soundness definition, Pj is operating with an unknown dataset
A C K. From our construction, Pg does not know anything about A beyond a share of

A and P 4 knows a share of B. P4 will only accept AN B # ) when det( (%B> )=0.
A



Efficient Disjointness Tests for Private Datasets 167

Note that [g];, is sent along with [¢];, fori € {1,...,m + n}. In the setting,
(9lia # [glja and [g']i, # [g']j,, fori # jand i' # j'. With the randomness of
[g]ia’s and [¢'];, s, Pj could deliberately set rank(A ) < n. This way P 4 will accept
AN B # ) since det( (%B> ) = 0. The only way for letting rank(Mp) < nisto set h

A
be a zero polynomial in our setting. But this will be challenged by our verification test,
which P 4 only accepts h when

m—+n
(_1)7n+n . Z H Zj -det(Zi Tpan — (%?)) = 1.
i=0 0<j<mtn i 7 A

J#i

The malicious Bob P} can find the shares [h] 4, [2/] 5, [h]p for the polynomial A,
such that h can be reconstructed through the shares [h] 4 and [h] 5, but the combination
of [h] 4 and [R/] g corresponds to a zero polynomial. P can then use [h] g for the ver-
ification test and [h/] 5 for disjointness test if he can guess which one of (e;_,,,€i_ )
corresponds to [¢'];,. But the chance Pj guesses correctly in each pair is é Thus, the
chance Py can guess correctly for all m + n pairs is 27,}“ . If m and n are reasonable
sizes, P will be caught with an overwhelming probability.

5.3 Computation and Communication Complexity

Two protocols proposed in this paper are very simple and require only O(1) rounds of
communication. The communication cost is in terms of number of [log, ¢] bits that
are transmitted. The computation cost is measured in number of field operations. In
our calculation, the complexity of matrix multiplication is O((m + n)%37) [21]); the
complexity of determinant computation is O((m + n)%%97) [22].

The communication complexity of the Protocol IT; is O((m + n)?). The protocol
requires 2(m + n) matrix multiplication, and m + n determinant computations. The
overall computation complexity is O((m + n)3:5°7) field operations.

There is slightly more commnication cost for Protocol I/, but complexity is still
O((m + n)?). The computation cost is only double the cost of the Protocol I7;.

6 Conclusion

We proposed protocols for private disjointness tests that are based on the polynomial
representation of datasets and Sylvester matrix construction. We first introduced the
structure of Sylvester matrices and the intuition of our protocols that applies Sylvester
matrices. To avoid revealing the intersection cardinality by directly applying Sylvester
matrices, we provided a protocol to test the set disjointness without revealing any ad-
ditional information in the honest-but-curious case. Finally, we described a protocol to
against malicious adversaries by applying a verification test.

The protocols constructed in this paper are more efficient than previous protocols
with respect to communication and computation complexity. They are all O(1) rounds,
and do not require the parties to compute exponentiations or any other kind of public



168 Q. Yeet al.

key operations. Our protocols also provide information theoretic security, and do not
rely on any computational assumption.

Acknowledgment

The authors are grateful to the anonymous reviewers for their comments to improve the
quality of this paper. We also like to thank C. Pandu Rangan for some helpful discus-
sions. This work was supported by the Australian Research Council under ARC Dis-
covery Projects DP0558773, DP0665035 and DP0663452. Qingsong Ye’s work was
funded by an iMURS scholarship provided by Macquarie University. The research of
Huaxiong Wang is partially supported by the Ministry of Education of Singapore under
grant T206B2204.

References

[1] Kiayias, A., Mitrofanova, A.: Testing disjointness and private datasets. In: S. Patrick, A.,
Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 109-124. Springer, Heidelberg (2005)

[2] Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1-9.
Springer, Heidelberg (2004)

[3] Hohenberger, S., Weis, S.A.: Honest-verifier private disjointness testing without random or-
acles. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 277-294. Springer,
Heidelberg (2006)

[4] Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: 31st annual ACM
Symposium on Theory of Computing (STOC 1999), Atlanta, Georgia, May 1999, pp. 245—
254 (1999)

[5] Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238. Springer, Heidelberg
(1999)

[6] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129-140. Springer, Heidel-
berg (1992)

[7] Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp.
103-118. Springer, Heidelberg (1997)

[8] Kissner, L., Song, D.: Privacy-preserving set operaitons. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 241-257. Springer, Heidelberg (2005)

[9] Laur, S., Lipmaa, H., Mielikainen, T.: Private itemset support counting. In: Qing, S., Mao,
W., Lépez, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 97-111. Springer, Hei-
delberg (2005)

[10] Kiayias, A., Mitrofanova, A.: Syntax-driven private evaluation of quantified membership
queries. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 470-485.
Springer, Heidelberg (2006)

[11] Fagin, R., Naor, M., Winkler, P.. Comparing information without leaking it. Communica-
tions of the ACM 39(5), 77-85 (1996)

[12] Lipmaa, H.: Verifiable homomorphic oblivious transfer and private equality test. In: Laih,
C.-S. (ed.) ASTACRYPT 2003. LNCS, vol. 2894, pp. 416—433. Springer, Heidelberg (2003)



[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]
(21]

(22]

Efficient Disjointness Tests for Private Datasets 169

Ye, Q., Wang, H., Tartary, C.: Privacy-preserving distributed set intersection. In: The 2nd
Workshop on Advances in Information Security (conjuncted with ARES 2008), Barcelona,
Spain, March 2008, pp. 1332-1339. IEEE Computer Society Press, Los Alamitos (2008)
Ye, Q., Wang, H., Pieprzyk, J.: Distributed private matching and set operations. In: ISPEC
2008, April 2008. LNCS, vol. 4991, pp. 347-360. Springer, Heidelberg (2008)

Cramer, R., Damgard, 1.: Secure distributed linear algebra in a constant number of rounds.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119-136. Springer, Heidelberg
(2001)

Mohassel, P., Franklin, M.: Efficient polynomial operations in the shared-coefficients set-
ting. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 44-57. Springer, Heidelberg (2006)

von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press,
Cambridge (2003)

Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in a constant number
of rounds of interaction. In: 8th ACM Annual Symposium on Principles of Distributed
Computing (PODC 1989), pp. 201-209. ACM Press, New York (1989)

Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of registers.
In: 20th annual ACM Symposium on Theory of Computing (STOC 1988), pp. 254-257.
ACM Press, New York (1988)

Goldreich, O.: The Foundations of Cryptography, vol. 2. Cambridge University Press, Cam-
bridge (2004)

Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal
of Symbolic Computing 9, 251-280 (1990)

Kaltofen, E., Villard, G.: On the complexity of computing determinants. Computational
Complexity 13(3-4), 91-130 (2005)



Efficient Perfectly Reliable and Secure Message
Transmission Tolerating Mobile Adversary

Arpita Patra, Ashish Choudhary*, Madhu Vaidyanathan,
and C. Pandu Rangan**

Dept of Computer Science and Engineering
II'T Madras, Chennai India 600036
arpita@cse.iitm.ernet.in, ashishc@cse.iitm.ernet.in,
madhu@cse.iitm.ernet.in, rangan@iitm.ernet.in

Abstract. In this paper, we study the problem of Perfectly Reliable
Message Transmission (PRMT) and Perfectly Secure Message Transmis-
sion (PSMT) between two nodes S and R in an undirected synchronous
network, a part of which is under the influence of an all powerful mo-
bile Byzantine adversary. We design a three phase bit optimal PSMT
protocol tolerating mobile adversary, whose communication complexity
matches the existing lower bound on the communication complexity of
any multi phase PSMT protocol, tolerating mobile adversary. This sig-
nificantly reduces the phase complexity of the existing O(¢) phase bit
optimal PSMT protocol tolerating mobile adversary, where t denotes
the number of nodes corrupted by the mobile adversary. Furthermore,
we design a three phase bit optimal PRMT protocol which achieves reli-
ability with constant factor overhead against a mobile adversary. These
are the first ever constant phase bit optimal PRMT and PSMT protocols
against mobile Byzantine adversary. We also characterize PSMT proto-
cols in directed networks tolerating mobile adversary. Finally, we derive
tight bound on the number of rounds required to achieve reliable com-
munication from S to R tolerating a mobile adversary with arbitrary
roaming speecﬂ. Finally, we show how our constant phase PRMT and
PSMT protocols can be adapted to design round optimal and bit optimal
PRMT and PSMT protocols, provided the network is given as collection
of vertex disjoint paths.

Keywords: Information Theoretic Security, Mobile Adversary.

* Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Se-
cure Communication and Computation Sponsored by Department of Information
Technology, Government of India.

** Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Se-
cure Communication and Computation Sponsored by Department of Information
Technology, Government of India.

! By roaming speed we mean the speed with which the adversary changes the set of
corrupted node.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 170 2008.
© Springer-Verlag Berlin Heidelberg 2008



Efficient Perfectly Reliable and Secure Message 171

1 Introduction

Consider the following problem: a sender S and a receiver R, who want to “talk” to
each other via an underlying communication network that they do not trust. Note
that if S and R are connected directly via a private and authenticated link (like
in the generic solutions for secure multiparty computation B, B, |E, ]), secure
communication is trivially guaranteed. However, in reality, it is not economical
to directly connect every two players in the network. The sender’s distrust in the
underlying communication network is modeled by a virtual entity called the ad-
versary that has unbounded computing power and can corrupt some of the players
(nodes) in the network. In spite of the presence of such an adversary in the net-
work, S wishes to send a message m chosen from a finite field F, reliably to R, in a
guaranteed manner. This problem is called perfectly reliable message transmission
(PRMT). The problem of perfectly secure message transmission (PSMT) has an
additional constraint that the adversary should get no information about m. Se-
curity against such an adversary with unbounded computational power is called
information theoretic or perfect security.

The problem of PRMT and PSMT was introduced and studied by Dolev et.al
ﬂﬂ], who assumed that the adversary can corrupt any ¢ nodes in the network and
that the adversary is static Byzantine, i.e., a player once corrupted remains so
subsequently. More recent efforts using the same (static) adversarial model for
the problem of PSMT include M, m, @, @, @] However, as first noticed in

], the static model implicitly assumes that the number of dishonest players
in the network is independent of the protocol’s execution time. This is usually
not true in practice. Furthermore, since a corrupted player could be corrected
given sufficient time, ﬂﬂ] proposed the mobile adversary model wherein the ad-
versary could move around the network whilst still corrupting up to t players at
any given instant. Subsequently, extensive research efforts on tolerating mobile
adversaries have resulted in what is well-known as proactive security E, , , ]

Existing Results: It is known that for the existence of any r-phase B (r>2)
PRMT/PSMT protocol, n > 2t + 1 vertex disjoint paths (also called as wires)
between S and R is necessary and sufficient to tolerate a t-active static adversary
ﬂa] Also, as reported in ﬂﬁ], any 1 phase (r > 2) PSMT protocol has a commu-

nt
n—2t

against a t-active static adversary. While for PSMT we have a proven lower
bound for communication complexity, for PRMT it can be as small as £2(1) for
communicating message of ¢ field elements. The authors of ﬂﬂ] have designed a
three phase PRMT protocol which satisfies the above defined bound and sends a
message containing ¢ field elements by communicating O(¢) field elements. Such
a protocol is called bit-optimal PRMT protocol. In addition, the authors M]
also reported a three phase PSMT protocol, whose communication complexity

nication complexity of {2 field elements, to securely send ¢ field elements

is O (ﬁ&) (asymptotically touching the lower bound specified for multiphase

2 A phase is a send from S to R or vice-versa.



172 A. Patra et al.

PSMT) and hence it is bit optimal against a static adversary. Designing a two

phase PSMT protocol against a t-active static adversary, whose communication

nt
n—2t

it is solved by Kurosawa et.al in ﬂ_‘l__l|]

Unlike static adversary, a t-active mobile adversary can corrupt different set
of ¢ wires during different phases of the protocol. Thus, a wire once corrupted,
may not remain corrupted in subsequent phases. Intuitively, it is more difficult
to tolerate a t-active mobile adversary in comparison to a t-active static adver-
sary. However, in NE], it is shown that n > 2¢ + 1 wires between S and R is
necessary and sufficient for the possibility of any r-phase (r > 2) PRMT/PSMT
protocol against a t-active mobile adversary. Thus mobility of adversary does
not affects its tolerability. In ﬂﬂ], the communication complexity of any r-phase

(r > 2) PSMT protocol is stated to be 2 ( nt ), where ¢ is the message to be

complexity is O ( ) has been an outstanding open problem @] and recently

n—2t
sent securely against a t-active mobile adversary. The authors of the same paper
has also designed a O(t) phase PSMT protocol satisfying the bound.

Our Contribution, Its Motivation and Significance: The following are
the main contribution of this paper: (a) A bit-optimal three phase PRMT pro-
tocol, which sends a message of ¢ field elements by communicating O(¢) field ele-
ments and thus achieves reliability with constant factor overhead in three phases
even in the presence of mobile adversary. (b) A bit-optimal three phase PSMT
protocol satisfying the bound for communication complexity proved in ﬂﬁ] Both
these protocols uses a novel technique, very different from the techniques adapted
in the three phase bit-optimal PRMT and PSMT protocol proposed in ﬂﬂ] tol-
erating a static adversary. We also give the first ever characterization of PSMT
protocols in directed networks tolerating mobile adversary.

All existing PRMT and PSMT protocols abstract the underlying network as
vertex disjoint paths, called wires, between S and R, thus neglecting the interme-
diate nodes in these paths. However, we show that such an abstraction gives an
incorrect estimation on the communication complexity and round complexity of
PRMT and PSMT protocols, in many practical scenarios. Hence, it is essential
to consider all the intermediate nodes in each wire for the design and analysis of
PRMT and PSMT protocols. Also, considering the intermediate nodes/details of
each wire motivates to use more finer notion of roundlJ in comparison to phase.
Accordingly, the behavior of mobile adversary is re-defined to allow the adversary
to corrupt any set of t nodes after every p > 1 rounds, where p is called the roam-
ing speed of the adversary. In this work, our contribution also encompasses: (c)
Computation of a tight bound on the minimum number of rounds 7,,,;,,, required
for the existence of any PRMT protocol tolerating mobile adversary, with roam-
ing speed of p = 1. (d) The same for an adversary with arbitrary roaming speed
p > 2. (e) Finally, adaptation of our constant phase PRMT and PSMT protocols
into round optimal and communication optimal PRMT and PSMT protocols in a
given network, provided the network is given as a collection of disjoint paths.

3 A round is a send from one node to its neighbor.



Efficient Perfectly Reliable and Secure Message 173

As mentioned earlier, abstraction of network as wires leads to incorrect esti-
mation on communication and round complexity of protocols. But still wired ab-
straction eases deriving lower bounds on communication complexity and finding
out the connectivity requirement for PRMT/PSMT problem and also simplifies
the analysis of protocols. That is why we have designed phase-based protocols
for PRMT and PSMT and later adapted them to work in terms of rounds.

2 Proactive PRMT and PSMT in Terms of Phases

Network Settings and Computational Model: Recall that a phase is a
send from S to R or vice-versa. While designing protocols in terms of phases,
following the approach of E], we abstract the network as a collection of vertex
disjoint paths called wires between S and R, neglecting the intermediate nodes
in these paths. A t-active mobile adversary can corrupt different set of ¢ wires
during different phases of the protocol. Hence a wire w, which is corrupted in
some phase, may not remain corrupted during subsequent phases and can be-
have honestly. Also by corrupting a wire w during a particular phase, adversary
does not get any information which was transmitted over w in earlier phase(s)
(unless w was corrupted in earlier phase(s) also). We assume that S and R are
connected by n > 2t+1 bi-directional wires w1, wa, . . . w,, which is necessary and
sufficient for PRMT/PSMT protocols against a t-active mobile adversary ﬂﬂ]
In our protocols, all computation are done from a finite field F of prime order,
with [F| > n. Any information which is sent over all the n wires is said to be
“broadcast”. If x € F is “broadcast” over n > 2t wires, then it will be always
recovered correctly at the receiving end by taking the majority.

Extracting Randomness ﬂﬂ] Let S and R agree on an n-tuple z =
[x1,22,...2,] € F", such that the adversary knows n— f components of x, but has
no information about other f components of x. However, S and R do not know
which values are known to the adversary. But they want to agree on a sequence
of f elements y1,y2,...yy € Fsuch that yq,y2,...y; is information theoretically
secure. This is achieved by algorithm EXTRAND,, ¢(z) proposed in ﬂﬂ]

Algorithm EXTRAND,, ;(z). Let V be a n x f Vandermonde matrix with elements
from F and is known publicly. S and R locally compute [y1 y2 ... yf] = [z1 z2 ... zo]V.

Communicating Conflict Graph: Consider the following scenario: S and R
are connected by n = 2t + 1 wires. S selects at random n polynomials p;(z),
1 <i < n over IF, each of degree t. Next through wire w;,1 <7 <n, S sends to
R the polynomial p;(z) and for each j, 1 < j < n, the value of p;(e;) denoted
by rj;, where a;’s are arbitrary distinct publicly specified members of F.

Let R receives polynomial p}(x) and the values 77, along w;. R tries to find as
many faults as he can find that occurred in the previous phase and communicates
his findings reliably to S. Towards this, R constructs a directed graph called

conflict graph H = (W, E), where W = {w1,ws, ..., w,} and arc (w;,w;) € E if



174 A. Patra et al.

ri; # pi(;). There can be @(n?) arcs in the conflict graph. For each (w;, w;) €
E, R adds a four tuple {w;, w;, p;(a;),r};} to a list X. R then broadcasts X to

S. S reliably receives X. For each {w;, w;,p;i(a;),7i;} € X, S verifies 7, < Tij
and p}(a;) ~ pi(a;). Depending upon the outcome of the test, S concludes that
either R has received incorrect r7; over wire w; or incorrect p;(x) over wire w; (or
both) and accordingly adds w; or w; (or both) to a list Lqu:. S then broadcasts

L yqur to R. Now we can say the following:

Theorem 1. If w; delivers pi(x) # p;(x) to R, then S will know this from X.
Moreover, S will be able to reliably send this information to R.

Proof: As pl(x) and p;(z) are of degree t, they can intersect at most at ¢ points. So
there exist at least one honest wire, say w;, such that r;; = r}; and pj(a;) # ;.
So w; will contradict w; and the arc (w;, w;) will be present in the conflict graph
and hence the four tuple {;, a;, pi(a;),7};} will be present in the list X. Since
X is broadcast over 2t + 1 wires, S will correctly receive X and eventually knows
that w; has delivered incorrect polynomial, adds w; to Lyfq.;¢ and then reliably
sends L fqu¢ to R by broadcasting. |

Theorem 2. The communication complexity of broadcasting the list X is O(n?).

Remark 1. An efficient way of sending the conflict graph (which contains O(n?)
edges) by communicating O(n?) field elements, against static adversary was
introduced in [17] and subsequently used in [14]. The method deals with finding
maximum matching of conflict graph and a few notions from coding theory.
However, the same technique will not work against mobile adversary, as it can
choose to corrupt different set of ¢ wires in different phases. So only way of
reliably sending the conflict graph against mobile adversary is by broadcasting.

2.1 Proactive PRMT with Constant Factor Overhead

We propose a three phase PRMT protocol PRMT Optimal which sends a
message containing n(t + 1)2 = 2(n?) field elements by communicating O(n?)
field elements against a t-active mobile Byzantine adversary, where S and R
are connected by n = 2t + 1 wires. Thus, PRMT Optimal achieves reliability
with constant factor overhead in constant phases and thus is bit-optimal. In M],
a three phase bit-optimal PRMT protocol had been presented against a static
adversary which sends 2(n?) field elements by communicating O(n?). Thus, ex-
tra adversarial power of mobility does not hinder achieving bit-optimality in the
same number of phases (three) except that the optimality is achieved for larger
message size!! Before describing the protocol, we describe a technique used in
our protocol which we call as Union Technique.

Union Technique: Recall the same scenario described in previous section. Dur-
ing first phase R receives n polynomials p}(z),1 < i < n, each of degree t and
n values corresponding to each polynomial denoted by rgj. Let B denote the set
of n polynomials and their n values as received by R. Using B, R can construct
a conflict graph. In our protocol PRMT Optimal, instead of a single set B, R



Efficient Perfectly Reliable and Secure Message 175

Table 1. Data Flow over n wires in Phase I of PRMT Optimal

Wire B Bi B,

wi  Pri(z) ri,1,m12,0, -0 Tt e Pei(®) TR Tk2,15 - Tt -o o Prt(2) i1, Te2,1s - et
wz  Pia(x) r11,2,712,2, - - - T1in2 - Pe2(T) TR12,Tk2,25 - Thkn,2 oo - Pn2(®) Th1,2,7n2,2,. - Tnn,2
w; Pri(x) r11,i, 712,85 Tin,i - Pri(®) Tk1,6,Tk2,i0 - Thnyi oo Pni(®) Tni1,i,Tn2,is- - Tnn,i
Wn Pia(®) P11, 12,0, Tingn -« Pen(®) Thins Tk2ns - Thnon - Pan(®) Tnin, Tn2,ns - Tann

receives n such sets denoted as By, 1 < k < n, where By contains n polynomials
Pri(7),1 < i < n and n values for each pj,(z) denoted by 7y, ;,1 < j < n. The
flow of information over n wires during Phase I is given in Table[Il

R then constructs conflict graph Hj using the set By. For each Hy, we can
say the following from Theorem [I} if during Phase I, R receives a corrupted
polynomial pj;(x) # pri(z) over w;, then there exist at least one directed arc
(wi, w;) in Hy, where w; is an honest wire. If R broadcasts all conflict graphs,
then from Theorem [Il both S and R would come to know the identity of all
faulty wires w; over which R has received at least one faulty p),(z),1 <k <n
during Phase I. However, from Theorem [2] broadcasting all of them requires
communicating O(n?) field elements. So we now introduce a method of combining
n conflict graphs into a single directed conflict graph H. By broadcasting H
to S, R can ensure that S will be able to identify all w;’s over which R has
received at least one faulty polynomial p},(x). The combined directed conflict
graph H = (V, E) will have vertices and edges as follows: V' = {wy,wa,...,wy,}
and E = {(w;,w;)} where arc (w;,w;) € E if (w;,w;) occurs in at least one
Hy,1 < k < n. Since an arc (w;,w;) can occur in multiple H’s, R considers
(w;, w;j) from the minimum indexed H, among all such H}’s, keeping a note
that (w;,w;) is added from H.,. For each (w;,w;) € E, R adds a five tuple
{wi, wj, v, pli(a;), 7, i} to alist X, provided (w;,w;) is taken from H.,. It is
easy to see that there can be ©(n?) edges in H and hence ©(n?) tuples in X.
In the next theorem, we prove that S can identify all faulty wires over which R
received at least one faulty polynomial after receiving X.

Theorem 3. In Union Technique, if R broadcasts X to S, then S identifies
all faulty wires w; over which R has received at least one p);(x) # pri(x).

Proof: Similar to the proof of Theorem [0 and hence is omitted due to space
constraint. For complete proof, see ﬂﬁ] a

Now we are well-equipped to understand Protocol PRMT Optimal, given in
Table 2l Intuitively, the protocols works as follows: S selects n bivariate poly-
nomials whose coefficients are the message to be sent. S then generates n sets
Bi, 1 < k < n from n bivariate polynomials and communicates them to R in
Phase I. On receiving n By’s, R first constructs n conflict graphs Hy’s and then
combine all of them to a single graph H and broadcast H to S in Phase II. In
Phase III, S identifies all faulty wires (which delivered incorrect polynomials
during Phase I) from the knowledge of H and sends their identity to R. Finally,



176 A. Patra et al.

Table 2. PRMT Optimal: A three phase proactive bit optimal PRMT protocol

Let the sequence of n(t+1)? field elements that S wishes to transmit be denoted by my ;;,
0<4,5<tand1<Ek<n.

Phase I: (S to R)

e S defines n bivariate polynomials g (z,y),1 < k < n over F, where qx(z,y) =
i=t
fj&j:o mp,i;2'y’. S evaluates gi(z,y) at n publicly known distinct values i, az, ..., an

to get polynomials pg;(x),1 <k <n,1 < i< n,each of degree ¢, where py;(z) = g (x, ;).

S then sends values to R over wire w;, 1 <14 < n as shown in Table [
Phase IT (R to S)

e Let R receives over wire w;,1 < ¢ < n the polynomials pj;(z) and the values
Thjis 1 < k,j <m. For 1 <k <n, R considers the polynomials pj; (), pa(x),. .., Pyn ()
and the values ry; ;,1 < j,i < n and constructs the conflict graph Hj,, where (wi, w;) € Hy
if p;(j) # 445 R combines Hg,1 < k < n into a single conflict graph H using Union
Technique and forms the corresponding list of five tuples X and broadcasts X to S.

Phase III (S to R)

o S reliably receives the list X. S then creates a list L 4. which is initialized to 0. For each
tuple {wi,w;, k, py; (), 7 ;3 € X, S locally verifies ry; ; < Tri; and pr;(ay) < pri(aj).
Depending upon the output of the verification, S concludes that w; or w; or both are
faulty and adds to Lyquit. S finally broadcasts the list Lqui¢ to R and terminates the
protocol.

Message Recovery by R.

e R reliably receives Lyqui: and identifies all w; over which it had received at least one
faulty polynomial during Phase I (see Theorem [)). R neglects all the polynomials re-
ceived over w; € Lyquit,. Using the remaining (at least) ¢t +1 pj,’s, 1 < k < n, R correctly
recovers the polynomials gx(z,y)’s, 1 < k < n and hence the message.

R recovers the message by reconstructing all the n bivariate polynomials using
the identity of the faulty wires communicated by S.

Theorem 4. PRMT Optimal correctly delivers the message to R.

Proof: In PRMT Optimal, to recover m, R should be able to interpolate each
bivariate polynomial g (z,y), 1 < k < n. Since each g (z, y) is of degree ¢ in both
x and y, R requires ¢ + 1 correct g (z, ;) = pri(x)’s to recover g (x,y). Since
among n wires at most ¢ can be corrupted, R will receive at least ¢t + 1 correct
pri(z)’s. Now R wants to know the identity of ¢ + 1 correct py;(z)’s. During
Phase II, R constructs n conflict graph Hy,1 < k < n and combine them into
a single conflict graph H using Union Technique, forms X and broadcasts it
to S. Now from the working of the protocol and Theorem [3], from list Lfq., R
identifies all faulty wires over which it has received at least one faulty polynomial
during Phase I and neglects such wires. R will now have at least ¢t + 1 correct
pri(z) for each 1 < k < n, using which R recovers each gy (z,y) and hence m. O



Efficient Perfectly Reliable and Secure Message 177

Theorem 5. The communication complexity of PRMT Optimal is O(n?).

Proof. Follows from the protocol and hence is omitted due to space constraint.
For complete proof, see ] O

2.2 Constant Phase Bit Optimal Proactive PSMT Protocol

We now present a three phase proactive PSMT protocol PSMT Optimal, given
in Table Bl The protocol securely sends n(t + 1) = §2(n?) field elements by com-
municating O(n?) field elements, where n = 2¢ + 1. This matches the existing
lower bound on the communication complexity of multi phase proactive PSMT
protocol, as proved in [17]. It also significantly reduces the O(t) phase commu-
nication optimal proactive PSMT protocol given in [17].

Theorem 6. PSMT Optimal correctly delivers the message to R by commu-
nicating O(n®) field elements..

Proof: For complete proof, see [13]. O

Theorem 7. In PSMT Optimal, any mobile adversary A, controlling at most
t wires will get no information about the message m.

Proof: Without loss of generality, assume during Phase I, A controls wy, ws, . . .,
wy. Thus A knows the constant terms of the polynomials py;(x),1 < k <mn,1 <
i <t and t points on remaining polynomials py;,t + 1 < j < n. Since the degree
of each pyj,t +1 < j < mis ¢, A lacks one point for each of these polynomials
implying information theoretic security for the constant terms of these polynomi-
als. From Theorem [@, during Phase III, S will be able to identify all the faulty
wires over which R had received at least one faulty polynomial during Phase I.
S adds all such wires to L fq4¢ and neglects them. S is left with n — |L pqu | wires,
out of which at most ¢ — |L ¢4.¢| Wires were passively listened by the adversary.
So S forms the vector = which is the list of constant terms of all the polynomials
which were delivered correctly to R during Phase I. Since, there are ¢t + 1 honest
(not controlled by adversary) wires, S generates a one time pad of length n(t+ 1)
from x by executing EXTRAND. The proof now follows from the correctness of
the EXTRAND algorithm. Note that during Phase I1, the list X broadcast by
R, reveals no new information to .A. Suppose {w;, w;, k, pj,; (), 7y, ;} € X. Then
either w; or w; or both had been corrupted by A during Phase I. So A already
knows ry; j = pri(@;). Thus X reveals no new information to A. m]

Optimality of PSMT Optimal: In ﬂﬁ], it is shown that any three phase
proactive PSMT protocol which securely sends n(t + 1) = §2(n?) field elements,
need to communicate 2(n?) field elements. Since, the communication complexity
of PSMT Optimal is O(n?), it is asymptotically optimal.

2.3 Proactive PSMT in Directed Networks

In M], the authors have studied PSMT in directed networks in the presence of a
static adversary, where the network is abstracted in the form of directed wires,



178 A. Patra et al.

Table 3. PSMT Optimal: A Three Phase Optimal Proactive PSMT Protocol

Let the sequence of n(t+ 1) field elements that S wishes to transmit securely be denoted
by mi, 1 <i<n(t+1).

Phase I: Sto R
e S selects n? random polynomials pii(x),1 < k,i < n over F each of degree t. Over
w;, 1 < i < n, S sends the values to R, as shown in Table [T

Phase IT (R to S)

e Let R receives over w;,1 < i < n the polynomials p};(x) and the values r;j,i,l <
k,7 < n. Then similar to PRMT Optimal protocol, R constructs the conflict graphs
H,y, Hs,...,H, and combine them to a single conflict graph H using Union Technique
, forms the list of five tuples X and broadcasts X to S.

Phase III (S to R)

e Similar to the PRMT Optimal protocol, S correctly receives X and identifies all faulty
wires w; over which R must have received at least one faulty polynomial during Phase I.
S adds all such wires Lyquit. S neglects all w; € Lyquiz.

e S is left with (n — |Lyqu|) wires after neglecting all the faulty wires in the previous
step. S then forms a vector @ of length (n — |Lsquit|) * n which is the concatenation of the
constant terms of all the polynomials pr;(z),1 < k < n such that w; € Lyauit-

e S computes a pad y of length n(t + 1) by executing EXTRAND ;L ;. 01, 1),n(t-+1) (%)-
S computes ¢ = y @ m, broadcasts Lfquit,c to R and terminates.

Message Recovery by R.

o R reliably receives the list Lfq.+ and identifies all the wires w; over which it has received
at least one faulty polynomial during Phase I (see Theorem [6]) and neglects such w;’s. R
then generates the pad y of length n(t+ 1) following the same procedure as done by S and
finally recovers the message m by computing m = c @ y.

directed either from S to R or vice-versa. Modeling the underlying network
in the form of a directed graph is important in many practical scenarios. For
instance, a base-station may communicate to even a far-off hand-held device
but the other way round is not possible. Hence the digraph model is practically
well-motivated. We now characterize proactive PSMT in directed networks.

Theorem 8. Let G = (V, E) be a directed network, where S, R € V. Then a
r-phase (r > 2) proactive PSMT protocol between S and R against a t-active
adversary is possible iff G is (2t +1)-(S, R) and (2t +1)-(R, S) connected.

Proof: Sufficiency: Let G be (2t 4 1)-(S, R) and (2t +1)-(R, S) connected. So
there exists 2t 4+ 1 directed wires from S to R and vice-versa. It is easy to see
that protocol PSMT Optimal can be correctly and securely executed over G.

Necessity: Since any proactive PSMT protocol should communicate the mes-
sage reliably, S and R should be 2t 4+ 1 connected in forward direction which
is necessary for PRMT ﬂﬂ] Similarly, we can show that 2¢ 4+ 1 wires are neces-
sary from R to S. If not, then since the adversary is mobile and can corrupt



Efficient Perfectly Reliable and Secure Message 179

different set of ¢ wires, it will fail any reliable communication from R to S, thus
making any communication from R to S is useless. This reduces any multiphase
protocol to a single phase protocol where S has to securely send a message over
(2t+ 1) wires tolerating a t-active Byzantine adversary, which is impossible from
the results of @] Hence the theorem holds. a

3 Proactive PRMT and PSMT in Terms of Rounds

Till previous section, we focussed on the design of bit-optimal phase-based PRMT
(PSMT) protocols on a network abstracted in terms of wires. The merits of
working in such a model are as follows: (i) It eases deriving the connectiv-
ity requirement for the possibility of PRMT/PSMT protocols and also deriv-
ing lower bounds for the communication complexity for protocols. (ii) It sim-
plifies the analysis of any protocol designed on such model. But this model
has its own demerits which are brought to the fore by the following example.
Consider the network on (2t + 8) vertices
given in Figure 1. Suppose the network in
Figure 1 is abstracted as a collection of

(2t + 2) wires, under the control of a ¢-
active mobile adversary. From [17], there
exist an optimal single phase PRMT pro-
tocol with communication complexity of s
O(nk) to send / field elements, where n is

the number of wires from S to R (which

in this case is 2t + 2). Now suppose that

the protocol execution take place in a se-
quence of rounds, where at the beginning

of each round, each node send messages to  Fig- 1. A (2t42)-(S,R)-connected Net-
their neighbors. Thus, the messages sent WOtk

by a player in round k reaches its neigh-

bor at the beginning of round k + 1. Then the so called single phase “optimal”
protocol of |[17] runs in siz rounds (which is the length of the longest path), with
a communication complexity of O(n) times the message size. Now the question is
whether there exists a 6-round PRMT protocol in the network of Figure 1 with
a better communication complexity. The answer is yes! Consider the following
protocol: S and R run the 3-phase PRMT Optimal protocol using the wires
Py, Py, ..., P11, neglecting the path of length six (The longest path takes 6
rounds! While all other paths delivers message in two rounds). Thus while the
single phase protocol has a complexity of O(nf), the 3-phase protocol has a
communication complexity of O(¢). Thus in Figure 1, an O(¢) 6-round protocol
is possible. However, the information regarding the length of each of the paths
(wires) in the actual network is completely lost in the wired abstraction. Thus
wired abstraction causes an over estimation in the round complexity and com-
munication complexity of protocols in the original network. We thus redefine our
network model and adversary settings.




180 A. Patra et al.

Round Based Network and Adversary Settings: As shown in previous ex-
ample, it is necessary to use more fine-grained and stronger model, namely graph
based one (in comparison to collection of wires) for designing and analyzing op-
timal PRMT and PSMT protocols. So we consider a graph with internal details
in the following way. Let H be an undirected graph under the control of a t-
active mobile adversary. From [1§], H should be (2¢+1)-(S, R) connected which
is necessary and sufficient for PRMT and PSMT. Let G be the subgraph of H
induced by the 2t 4+ 1 vertex disjoint paths. If there are more than 2t + 1 vertex
disjoint paths in H, then G will also contain these paths. In the following sec-
tions, we work on G to derive tight lower bound on round complexity for reliable
communication and design protocols on G.

The system is synchronous and the protocol is executed in a sequence of
rounds wherein in each round, a player can perform some local computation,
send new messages to his out-neighbors, receive the messages sent in previous
round by his in-neighbor, in that order. The distrust in the network is modeled
by a mobile Byzantine adversary. The behavior of mobile adversary is re-defined
to allow it to corrupt any set of ¢t nodes after every p > 1 rounds, where p is
called the roaming speed of the adversary. We first consider the worst case where
p = 1, and later on, we will consider any arbitrary value of p. More formally
before the beginning of round k, the adversary can corrupt any subset Peorrupt
consisting of ¢ players. Then the adversary has access to the messages sent to
the players in Peoppupt in round k— 1 and can alter the behavior of the players in
Peorrupt arbitrarily in the round k. However by corrupting a player P in a round
k the adversary does not obtain information about the messages to and from the
node P in all the previous rounds, i.e., the protocol can choose to delete some
information from the (honest) node at the end of a round, to make sure that the
information is not available to the adversary even if he corrupts the node at a
later round. We now define transmission graph, which is used in our protocols.

Transmission Graph HE] In the case of mobile adversary, where the adver-
sary can corrupt different set of nodes at different times, a graph representation
of the network is inadequate. However since the protocol itself discretizes time
in terms of rounds, it is sufficient to model the system at each round rather
than each time instant. Hence, in HE], the author have introduced the concept
of transmission graph G% to study the execution of a protocol that has run d
rounds. In the transmission graph G¢, each node P is represented by a set of
nodes {Py, Pi, P> ... P;}. The node P, corresponds to the node P at round r.
For any two neighboring nodes P and @ and any 1 <r < d, a message sent by
P to @ in round r — 1 is available to @ only at round r. Hence there is an edge
in g4 connecting the node P._; to the node @, for all 1 < r < d. Note that the
transmission graph is a directed graph, because of the directed nature of time.
So the edges between the nodes at consecutive time steps are always oriented
towards increasing time. We now give the formal definition.

Definition 1. Given a graph G = (V, E) and a positive integer d, the transmis-
sion Graph G¢ is a directed graph defined as follows



Efficient Perfectly Reliable and Secure Message 181

— Nodes of G¢ belong to V x {0...d} where the node (P,r) € V x {0...d} is
denoted by P,.

— The edge set of G is E* = Ey U Ey where, By = {(Pa,_,, Py,) |(Pa, P) €
Eand1<r<d} and Eo={(Pa,_,,Pa,)|P. €V and 1 <r <dj}.

Let P" denote the set of nodes corresponding to nodes at round r, P" =
{P,, |P, € V}. Let ADVp,0piie be a threshold mobile adversary acting on a
network G that can corrupt any t nodes in a single round. Consider an ex-
ecution I' of a d-round protocol on G. Suppose ADV,,opite corrupts a set of
nodes Adv, = {Py, Ps,...P;} in round r in G, then the same effect is obtained
by corrupting the nodes Adv” = {P; ,Ps,_,... P, } in G¢ Hence the effect of
ADV opite 00 execution I' can be simulated by a static general adversary who

d
corrupts |J Adv” on G%. More formally, we have the following lemma:
r=1
Lemma 1. Mobile adversary ADY obite acting on the original graph G for d
rounds can be simulated by a static adversary given by the adversary structure
ADVY = {Adv' U Adv? U Adv® .. .U Adv?| Adv™ € TI,(P"),1 < r < d} on G,
where IT,(P") denotes set of all subsets of cardinality t of the set P".

Ezample 1. Consider the network shown in Figure 2: The network is 3-(S,R)-
connected and hence at most one mobile adversary (¢t = 1) can be tolerated
by any PRMT (PSMT) protocol. Consider G*, where the adversary structure
ADVY, .. = {Adv' UAdv? UAdv® UAdv*}, where each Adv™ € IT,(P7),1 < r < 4
and IT;(P") denotes the set of all subsets of cardinality 1 of the set P". For
example, {Hy, By, B, A4} is an element of ADV?,, ;. in G*, which denotes an
adversarial strategy where in the original network, the adversary corrupts the
nodes H, F, B and A during first, second, third and fourth round respectively.

In order to find the minimum number of rounds

for reliable communication, we slightly modify the 5 S
definition of transmission graph as follows: s o—o o—=¢ ®
Definition 2. Given a graph G and an integer d > o n T«

0 the modified Transmission Graph G? is the graph

G4 along with two additional nodes S, R. S is con- Fig. 2. Graph G

nected to all S,,0 < r <d and each R,., 0 <r <d
is connected to R. Further the edges between (S,—1,S,) and (R,_1,R;) for
1 <r <d are removed.

Definition 3. Two paths Iy and I's between the nodes S and R in the modified
transmission graph G% are said to be securely disjoint if the only common nodes

between the two paths are S, and Ry for some value of a and b. That is, [1NI5 C
{S()7 S1,S,... Sd} @] {R07R17R2 cee Rd}

Definition 4. Given a path I' = {S, P1, Py ... P,,R} from S to R in the under-
lying graph G, the space-time path I'* in graph G? is defined as I'" = {S,S;, P,
P2¢+27" P. Ri+z+1,R}7 0§Z§d—2—1

ct Ritz

i+1)



182 A. Patra et al.

Ezample 2. Consider the path I' = {S, A4, B,R} in Figure 2. Now in G®, there
are three space time paths corresponding to the path I", namely I'° = {S, Sy, A1,
327 Rg, R}, Fl = {S, Sl, AQ, Bg, 1:{,47 R} and Fz = {S, SQ, Ag, B47 R5, R} The
space time path I can be interpreted as S communicating to A in the 0*” round,
A communicating to B in the first round, B communicating to R in the second
round which is received by R. in the third round. Note that in G°, there are only
three space time paths corresponding to the path I" in G. In general, let G be
a graph and I" be a path between S and R containing z nodes (i.e., the path
length is z + 1). Then in the transmission graph G¢,d > z, there will be d — z
space time paths corresponding to the path I", namely I'",0 < i < d — z — 1.

Lemma 2 ( HE]) For any path I’ of length z from S to R in G, the paths
I'',0 <i < d— z are pairwise securely disjoint. Further, for any two vertex
disjoint paths I't, I'y and for any i,j the paths I} and I'] are securely disjoint.

3.1 Computing Minimum Number of Rounds for PRMT with p =1

In NE], the authors have computed the minimum number of rounds d for reliable
communication from S to R which is d > (2t + 1)N (see Lemma 4.1 of [18]),
where S and R are connected by 2¢ + 1 paths and N is the total number of
nodes in the given network. However, we show that the bound in NE] is not
tight. So, we derive tight bound on the minimum number of rounds, denoted
by rmin required for reliable communication from S to R. Consider a graph G
where S and R are connected by 2t + 1 vertex disjoint paths {I'1, Is, ..., Ioy1}.
Without loss of generality, assume that the paths are arranged in ascending order
of path length. Let N; denotes the number of nodes in I;,1 <7 < 2t+ 1. Then
in G?, there will be d — N; space time paths corresponding to I, 1 < i < 2t + 1
in G, provided d — N; > 0. If d — N; < 0 then there will be no space time path
corresponding to I; in G?. Assuming that each of the term d— N; is positive, the
total number of the space time paths in G¢ is Zzzftﬂ(d — N;). From Lemma 2]
all these paths are securely disjoint. Now if any reliable protocol is executed
on the original graph G for d rounds, then the adversary can make corruption
only up to (d — 1) rounds because in any reliable protocol, which is executed
for d rounds, R will receive information from its neighboring nodes in round d,
which they sent to R in round d — 1 and terminates the protocol. So even if
adversary corrupts some node in round d, it will not effect the protocol, because
the protocol will terminate in the d*” round itself. Note that if at least one
node in a space time path in G¢ is corrupted, it implies that the entire space
time path is corrupted because the corrupted data introduced by the corrupted
node will be forwarded by other nodes of the path in subsequent rounds. In
general, since the adversary can corrupt at most ¢ nodes in each round of any
reliable protocol, it can corrupt at most ¢(d — 1) nodes in G which can be in
worst case distributed on t(d — 1) secure disjoint paths and hence each element
in ADV? is of maximum cardinality ¢(d — 1). We now state the following

static
theorem.



Efficient Perfectly Reliable and Secure Message 183

Theorem 9. Let G be an undirected network where S and R are connected by
2t + 1 vertex disjoint paths 11,15, ..., ITor1 with N; nodes in I;,1 < i < 2t+1.
Let ADV popite be a mobile adversary corrupting any set (probably different) of t
nodes in each round. Then the minimum number of rounds required for reliable

communication 8 min Uff Tmin > N — 2t + 1 where N = ZE?H N;.

Proof. Necessity: Let r,,;, be the minimum number of rounds required for
reliable communication in G. Then as explained above, any mobile adversary
ADVpopite can be simulated by a static adversary structure ADV it where
each element of it is of cardinality ¢(ry, — 1). Also in G™™in there will be
Z;jtﬂ (rmin—N;) securely disjoint paths between S and R out of which at most
t(Tmin — 1) can be under the control of the adversary. Now it is known from m],
that reliable communication between S and R in a network in the presence of a
static adversary given by an adversary structure is possible iff removal of of any
two adversarial sets from the adversary structure does not disconnect S and R.
It implies that reliable communication in G' under the presence of ADV,,0pite is
possible in 7,,;, rounds if Z;jtﬂ(rmn — N;) > 2t(rmin — 1) + 1. Solving this

we get i > N — 2t 4+ 1 where N = sztﬂ N;.

Sufficiency: Suppose 7, > N —2t+1 where N = z;jtﬂ N;. Then in G™™in
there are 2¢(rm, — 1) + 1 securely disjoint paths from S to R, out of which at
most ¢(7min — 1) can be under the control of the adversary ADV " . Let us
denote these paths by wy, wa, . .., wogt1, where ¢ = t(rmin —1). We now describe
a reliable protocol REL on the graph G"™i» and show how it can be executed

on the real network G to reliably send m.

Protocol REL: Round-Optimal Reliable Message transmission of message m.

— The sender S sends the message m along all the paths w;, 1 <7 < 2q+ 1.

— All nodes P,, along a path w; just forward the message to the next node along
Wy .

— R on receiving the values along all the paths takes the majority as m.

REL can be emulated on G in the following way: if a node P, and P, , are
consecutive nodes in G"™» along some path w;, where w; is the space time path
corresponding to some physical path I;,1 < j < 2¢ 4 1, then P; on receiving
m’ (possibly changed m) along the path I'; at the beginning of round b forward
it to the node P» at the end of round b which is received by P» in round b+ 1.
The protocol has a communication complexity of O((2¢(ryin — 1)|m|) and this
is polynomial in N. The correctness of the protocol is obvious. O

3.2 Proactive PRMT and PSMT Protocols in Terms of Rounds

From Theorem [ in G"™i~ there will be 2¢(7,:n — 1) + 1 securely disjoint paths
out of which at most ¢(7,:, — 1) can be corrupted. However each of these paths
are temporal and hence can be used at most once. We now present the modified
version of three phase protocol PRMT Optimal, called PRMT Round, as



184 A. Patra et al.

Table 4. PRMT Round: A 37, Round Proactive PRMT Protocol

Let the sequence of n(q + 1)? field elements that S wishes to transmit be denoted by
Mi,ij, 0 <45 <gand 1 <k <n.

First 7min rounds: (S to R) executed over space time paths F.(l), 1<i<2g+1

7

e Using the my ;; values, S defines n bivariate polynomials ¢x(x,y),1 < k < n, where
i=q -
Qe (w,y) = 3755 j—oMri@'y’. S evaluates each gi(z,y) at n publicly known distinct

values a1, aa, ..., o, to obtain total n? polynomials pri(z),1 <k <n,1 <i<noverF,
each of degree ¢ where py;(z) = qx(x, ;). Over space time paths F;l), 1<:i<2¢+1,8S
sends pri(z),1 < k < n and the values px;(a;), denoted by 7y, for 1 < k,j < n.

Second 7, rounds: (R to S) executed over space time paths FZ.(Q), 1<1<2¢+1
e Let R receives over space time path Fiu), 1 < i < n the polynomials pj,(x) and the
values ry; ;,1 < k,j < n. R considers the polynomials pj, (), pjo(2), ..., Pl (x) and the
values 77; ;,,1 < j,4 < n and constructs the conflict graph Hy,1 < k < n. R then combines
Hi,1 < k < n into a single directed conflict graph H using Union Technique and
forms the corresponding list of five tuples X and reliably sends X to S by executing REL
protocol over the space time paths I’i(Q), 1<i<2q+1.

Last 7, rounds: S to R executed over space time paths F.(3), 1<i<2¢g+1

1
e S reliably receives the list X and identifies all faulty space time paths I l-(l) over which
R has received at least one faulty polynomial pj;(z),1 < k < n during first 7., rounds.
S adds all such paths to a list Ljquie. Note that |Lyeuie| < ¢. S then reliably sends Lyqui

to R by executing REL protocol over the space time paths F,L.(B), 1<i<2¢+1.

Message Recovery by R.

o R reliably receives L.+ and identifies all space time path Fi(l) over which it has received
at least one faulty polynomial during first 7., rounds (proof is similar to Theorem H) and
neglects those space time paths. Using the remaining (at least) ¢ + 1 py;’s, 1 <k <n, R
correctly recovers the bivariate polynomials gx(z,y)’s, 1 < k < n and hence the message.

shown in Table [ tolerating a mobile adversary who can corrupt any ¢ nodes in
every round. PRMT Round is executed for 3r,,;, rounds on G where G is the
original network consisting 2t + 1 vertex disjoint paths between S and R. The
first phase of PRMT Optimal is executed in the first r,,;, rounds from S to
R, the second phase of PRMT Optimal is executed in the next r,,;, rounds
from R to S and finally the third phase in the last r,,;, rounds from S to R.
This can be visualized as executing a 37,,;, round protocol on G3"min  where
first 7,4, rounds are executed from S to R, next r,,;, rounds from R to S and
finally last 7,4, rounds from S to R. Let ¢ = t(ryin — 1) and n = 2¢ + 1. We
refer to the nodes corresponding to the first r,,;, rounds from S to R as the first
half denoted by Fi(l), 1 <i<2g+1, the nodes in the next r,,;, rounds from
R to S as second half denoted by Fi@), 1 <17 <2g+1 and the nodes in the last

Tmin Tounds from S to R as third half denoted by Fi(s), 1 <i<2¢+1. From
Theorem[d, 7,,,5, = N —2t+1. The protocol is same as PRMT Optimal except
that degree of each bi-variate polynomial is q. Moreover, Phase i,1 < i < 3



Efficient Perfectly Reliable and Secure Message 185

is executed in 7,,;, rounds on Fj(l), 1 <j<2¢+ 1. PRMT Round can be
simulated on G following the explanation provided earlier for REL protocol.
Note that Theorem @ and Theorem [ will hold for PRMT Round with ¢ in
the place of t. The protocol reliably sends n(q + 1)? = 2(n?) field elements by

communicating O(n?) field elements in 37,,;, rounds.

Computing 7,,;, for Arbitrary Roaming Speed: We now consider a mo-
bile adversary with roaming speed p > 1 and compute the minimum number of
rounds ! . required for reliable communication from S to R, against a t-active
mobile adversary, corrupting ¢ nodes after every p rounds. Note that a mobile
adversary with roaming speed one is the strongest adversary.

Theorem 10. Let G be a (2t + 1)-(S, R) connected undirected network un-
der the influence of a t-active mobile adversary with roaming speed of p > 1.
Then the minimum number of rounds r° . required for reliable communica-

min
. . . P o . p—1 . L. . .
tion is given by rh .= min {r,rl "} where r is the minimum value satisfying

i=2t+1rr—N; r—
S N =2 e+ 1

Proof: For complete proof see ﬂﬁ] o

References

1. Agarwal, S., Cramer, R., Haan, R.d.: Asymptotically optimal two-round perfectly
secure message transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 394-408. Springer, Heidelberg (2006)

2. Backes, M., Cachin, C., Strobl, R.: Proactive secure message transmission in asyn-
chronous networks. In: Proc. of PODC 2003, pp. 223-232 (2003)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proc. of 20th ACM
STOC, pp. 1-10 (1988)

4. Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502-517. Springer, Hei-
delberg (2002)

5. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
JACM 40(1), 17-47 (1993)

6. Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Proactive RSA. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 440-452. Springer, Heidelberg
(1997)

7. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proc.
of 19th ACM STOC, pp. 218-229 (1987)

8. Herzberg, A., Jakobson, M., Jarecki, S., Krawczyk, H., Yung, M.: Proactive Public
Key and Signature Systems. In: Proceedings of 4th Conference on Computer and
Communications Security, pp. 100-110 (1997)

9. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive Secret Sharing, or:
How to Cope with Perpetual Leakage. In: Coppersmith, D. (ed.) CRYPTO 1995.
LNCS, vol. 963, pp. 339-352. Springer, Heidelberg (1995)

10. Kumar, M.V.N.A., Goundan, P.R., Srinathan, K., Rangan, C.P.: On perfectly se-
cure communication over arbitrary networks. In: Proc. of PODC 2002, pp. 193—-202
(2002)



186

11.

12.

13.

14.

15.

16.

17.

18.

19.

A. Patra et al.

Kurosawa, K., Suzuki, K.: Truly efficient 2-round perfectly secure message trans-
mission scheme. In: Proc. of EUROCRYPT, pp. 324-340 (2008)

Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: Proc. of 10th
PODC, pp. 51-61. ACM Press, New York (1991)

Patra, A., Choudhary, A., Gayatri, M., Pandu Rangan, C.: Efficient perfectly re-
liable and secure communication tolerating mobile adversary. Cryptology ePrint
Archive, Report 2008/086 (2008)

Patra, A., Choudhary, A., Srinathan, K., Rangan, C.P.: Constant phase bit op-
timal protocols for perfectly reliable and secure message transmission. In: Barua,
R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 221-235. Springer,
Heidelberg (2006)

Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: Proc. of 21st ACM STOC, pp. 73-85 (1989)

Sayeed, H., Abu-Amara, H.: Efficient perfectly secure message transmission in syn-
chronous networks. Information and Computation 126(1), 53-61 (1996)
Srinathan, K., Narayanan, A., Rangan, C.P.: Optimal perfectly secure message
transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545-561.
Springer, Heidelberg (2004)

Srinathan, K., Raghavendra, P., Rangan, C.P.: On proactive perfectly secure mes-
sage transmission. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007.
LNCS, vol. 4586, pp. 461-473. Springer, Heidelberg (2007)

Yao, A.C.: Protocols for secure computations. In: Proc. of 23rd IEEE FOCS, pp.
160-164 (1982)



Methods for Linear and Differential Cryptanalysis of
Elastic Block Ciphers

Debra L. Cook!, Moti Yung?, and Angelos D. Keromytis®

! Bell Labs, New Providence, NJ, USA
dcook@cs.columbia.edu”
2 Goo gle, Inc. and Department of Computer Science, Columbia University, New York, NY, USA
moti@cs.columbia.edu
3 Department of Computer Science, Columbia University, New York, NY, USA
angelos@cs.columbia.edu

Abstract. The elastic block cipher design employs the round function of a given,
b-bit block cipher in a black box fashion, embedding it in a network structure to
construct a family of ciphers in a uniform manner. The family is parameterized
by block size, for any size between b and 2b. The design assures that the overall
workload for encryption is proportional to the block size. When considering the
approach taken in elastic block ciphers, the question arises as to whether crypt-
analysis results, including methods of analysis and bounds on security, for the
original fixed-sized cipher are lost or, since original components of the cipher are
used, whether previous analysis can be applied or reused in some manner.

With this question in mind, we analyze elastic block ciphers and consider the
security against two basic types of attacks, linear and differential cryptanalysis.
We show how they can be related to the corresponding security of the fixed-length
version of the cipher. Concretely, we develop techniques that take advantage of
relationships between the structure of the elastic network and the original version
of the cipher, independently of the cipher.

This approach demonstrates how one can build upon existing components to
allow cryptanalysis within an extended structure (a topic which may be of general
interest outside of elastic block ciphers). We show that any linear attack on an elas-
tic block cipher can be converted efficiently into a linear attack on the fixed-length
version of the cipher by converting the equations used to attack the elastic version
to equations for the fixed-length version. We extend the result to any algebraic at-
tack. We then define a general method for deriving the differential characteristic
bound of an elastic block cipher using the differential bound on a single round of
the fixed-length version of the cipher. The structure of elastic block ciphers allows
us to use a state transition method to compute differentials for the elastic version
from differentials of the round function of the original cipher.

Keywords: security analysis, linear cryptanalysis, differential cryptanalysis.

1 Introduction

Elastic block ciphers were designed to convert existing fixed-length block ciphers into
variable-length block ciphers in an efficient manner. Furthermore, the design allows

* This work was performed primarily while the author was at Columbia University.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 187-202] 2008.
(© Springer-Verlag Berlin Heidelberg 2008



188 D.L. Cook, M. Yung, and A.D. Keromytis

certain properties of the fixed-length cipher to remain intact in the elastic version, cre-
ating a well-defined relationship between the security of the elastic and fixed-length
versions [3l4]]. Exploiting existing ciphers’ components in the design of new ciphers is
not uncommon. In the elastic block cipher case, since the cipher attempts to cover a
large range of block sizes, a specific design for each size was traded against a general
design methodology. Naturally, in a general design, as opposed to an optimized design
for a specific block size, one may lose the ability to provide tight security bounds, but
security analysis is required nevertheless. A natural approach when building upon ex-
isting components is to reuse the security properties of the building blocks. Thus, our
work is concerned with how the security of an elastic block cipher relates to the security
of the fixed-length version.

In more detail, we view elastic block ciphers as a category of block ciphers with
(somewhat generic) design rules, and we consider how to evaluate their security against
the two most basic types of cryptanalysis: linear [6]] and differential cryptanalysis [[]].
The elastic design is a generic approach that inserts the round function from an existing
block cipher into a network structure (the elastic network). Therefore, new methods
are needed to perform our analysis that are derived from the structure of the elastic
network. Since the approach taken in forming elastic block ciphers is non-traditional
in the sense that it does not focus on optimizing the design for a specific block size,
one may dismiss the entire idea and stick to usual designs of ciphers of fixed size;
however, we believe that the idea of having a substitution-permutation network that is
size-flexible (i.e., the elastic network) and is somewhat generic is an interesting subject
that deserves investigation. This work is a step in this direction.

Concretely, we first prove that any linear attack on an elastic block cipher can be con-
verted in polynomial time and memory into a linear attack on the fixed-length version of
the cipher. This is done by showing how to convert the equations for such an attack on
the elastic version to an attack on the fixed-length version. Therefore, if the fixed-length
version is immune to linear cryptanalysis, the elastic version is also immune. We ex-
tend the result to any algebraic attack. We then define a general method for deriving the
differential characteristic bound of an elastic block cipher from the differential bound
on a round of the fixed-length version. We summarize our application of the method to
elastic versions of AES [9]] and MISTY1 [[7].

The remainder of the paper is organized as follows. In Section 2] we briefly review
the construction of elastic block ciphers. In Section Bl we prove that a linear attack,
or more generally any algebraic attack, on an elastic block cipher implies that such an
attack exists on the fixed-length version of the block cipher. In Section[d] we define our
method for deriving differential bounds on an elastic block cipher. Section 3l concludes
the paper.

2 Elastic Block Cipher Review

2.1 Overview

We briefly review the method presented by Cook, et. al, for creating elastic block ci-
phers [3l]. The method converts the encryption and decryption functions of existing



Methods for Linear and Differential Cryptanalysis of Elastic Block Ciphers 189

b Iiits y I:J'its } plaintext b+y bits, 0<y < b

’ whitening ‘

l L

’key dependent permutation‘
T

Total # of rounds:

r=r+] ry/b—|
id «
cycle of G
round
function ! y
’ whitening
XOR vy bits left out of the round
function with y of the b bits output
from the round function and swap the
two segments. The y bit positions
chosen from the round function output
will vary per round.
'
lrz(i)sutn d cycle of G
4

’key dependent permutatior{

’ whitening ‘

b+y bit ciphertext

Fig. 1. Elastic Block Cipher Structure [3]

block ciphers to accept blocks of size b to 2b bits, where b is the block size of the origi-
nal block cipher. The general structure of an elastic block cipher is shown in Figure [Tl
An elastic version of a block cipher is created by inserting the cycle of the original
fixed-length block cipher into the network structure to form the round function of the
elastic version. In each round the leftmost b bits are processed by the round function
and the rightmost y bits are omitted from the round function. Afterwards, the rightmost
y bits are XORed with a subset of the leftmost b bits and the results swapped. This
swapping of bits may be omitted after the last round. The elastic version also includes
initial and end of round whitening, and an initial and final key dependent permutation.
The number of expanded-key bits required varies based on the block size and the origi-
nal block cipher. The key schedule of the original cipher is replaced with a generic key
schedule that generates as many expanded-key bits as needed. In theory, the expanded
key bits can take on any value and we view the expanded key bits in this manner in our
analysis. For actual implementations, a stream cipher was suggested as one option for
the key schedule [3].
We use the following notation:

— G denotes any existing fixed-length block cipher.
— r denotes the number of cycles in G, where a cycle in G is the point at which all b
bits of the block have been processed by the round function of G. For example, if



190 D.L. Cook, M. Yung, and A.D. Keromytis

G is a Feistel network, a cycle is the sequence of applying the round function of G
to the left and right halves of the b-bit block. In AES, the round function is a cycle.

— b denotes the block length of the input to G in bits.

- yis an integer in the range [0, b].

— G’ denotes the elastic version of G with a (b+ y)-bit input for any valid value of y.

— 7’ denotes the number of rounds in G". 7" = r 4 [ /].

— The round function of G’ will refer to one entire cycle of G.

— The swap step will refer the step in which the rightmost y bits are XORed with a
subset of the leftmost b bits and the results swapped.

3 Linear Cryptanalysis

We consider linear attacks and algebraic attacks on elastic block ciphers in general. We
prove that any practical linear or algebraic attack on an elastic block cipher, G/, can be
converted into a polynomial time related attack on the original cipher, G, independently
of the specific block cipher used for G. We take advantage of the elastic block cipher
structure to define a linear relationship, if one exists, across r rounds of G’ in terms of
any linear relationship in a cycle of G.

Linear cryptanalysis involves finding equations relating plaintext, ciphertext and key
(usually expanded-key) bits via XORs that hold with probability é + « for non-neglig-
ible c. Without loss of generality, we assume the equations are in the form such that
0<a< é, and that the equations involve the expanded-key bits. We omit the initial
and final key-dependent permutations in the elastic block cipher construction when per-
forming our analysis in order to focus on the core structure of elastic block ciphers. The
two permutations do not impact any relationship that exists across the rounds of G'.

We show that a linear relationship across r rounds of G’ implies such a relation-
ship across r cycles of G. If any such linear relationship holds with a probability such
that fewer than 2(°—1) (plaintext, ciphertext) pairs are required for an attack, then G is
subject to a linear attack that requires fewer plaintexts, on average, than an exhaustive
search over all plaintexts. Whether or not using the equations is computationally fea-
sible depends on number of (plaintext, ciphertext) pairs and the number of equations
that must be computed. If at least 2(°~1) plaintext, ciphertext pairs are required for an
attack on r rounds of G, then either the attack is infeasible on r rounds of G’ from a
practical perspective or G is subject to a brute force attack in practice. Note that we are
dealing with an attack on only r rounds of G’ and the probability of a linear relationship
holding across ' = 7 4 ["/ ] rounds of G’ will be less than that for r rounds. More
specifically, if the attack on G’ involves a maximum correlation between plaintext, ci-
phertext and key bits which occurs with probability < 27° on 7 rounds (thus requiring
in practice > 2° plaintexts), then an attack on 27 rounds involves a maximum correla-
tion that occurs with probability < 272% and requires > 22° plaintexts. In this case, G’
is practically secure against a linear attack when ["Y | = 7. A direct implication of our
result is that if G’ is subject to an attack using any algebraic equations, as opposed to
just linear equations, then so is G.

Theorem 1. Given a block cipher G with a block size of b bits and r cycles, and its
elastic version G’ with a block size of b + y bits for 0 < y < b, if G’ is subject to a



Methods for Linear and Differential Cryptanalysis of Elastic Block Ciphers 191

linear attack on r rounds then either G is subject to a linear attack or the resources exist
to perform an exhaustive search on G over all plaintexts, assuming the key schedules of
G and G’ do not produce message-dependent expanded keys, meaning any expanded-
key bits depend only on the key and do not vary based on the plaintext or ciphertext
input to the cipher.

Proof. We first note that if the linear attack on r rounds of G’ requires at least 2°
(plaintext, ciphertext) pairs then either the attack is computationally infeasible or G is
insecure independent of the attack (since the attacker has the resources to encrypt 2°
plaintexts). Therefore, it can be assumed that the attack on G’ requires < 2° (plaintext,
ciphertext) pairs. The assumption that the expanded key bits do not depend on the in-
put to the cipher (the plaintext or ciphertext) is true of block ciphers used in practice
and of elastic block ciphers. The theorem is proved by showing how a linear attack
on G’ can be converted into an attack in G. With no further assumptions about the
key schedules, the result is an attack that finds an expanded key for GG that produces
the (plaintext, ciphertext) pairs consistent with G, but which may or may not adhere
to the key schedule of G. If the expanded key is inconsistent with the key schedule
of G, this itself indicates another weakness in G because it means there is some ex-
panded key that is not produced by the key schedule of GG but which produces the same
(plaintext, ciphertext) pairs that G would produce when using some key generated
by G’s key schedule (i.e. the attack finds an equivalent key). If the following three as-
sumptions are placed on the expanded key bits of G’, then the attack on GG will find a
key consistent with the key schedule of G:

— The rightmost y bits of each whitening step in G’ can take on any value and are
independent of any other expanded-key bits.

— Any expanded-key bits used in the round function of the first  consecutive rounds
of G’ can take on the same values as the expanded-key bits used in the cycles of G.

— If G contains initial and end of cycle whitening, any expanded-key bits used for the
leftmost b bits of each whitening step in the first  consecutive rounds of G’ can
take on the same values as the corresponding whitening bits in G.

To understand how a linear relationship (if one exists) between the plaintext, cipher-
text and expanded-key bits is determined for G, we first consider how a linear relation-
ship is derived for a block cipher structured as a series of rounds with block length b and
then add the impact of the whitening and swap step to these relationships. We number
the rounds from 1 to . We will refer to any initial whitening step that occurs prior to
the first round as round 0 and the round function of round 0 is just the initial whitening.
The relationship between the output of the ;" round/cycle and the input to the (j +1)**
round/cycle is depicted in Figure Pl for both G and G

We use the following notation for describing the relationships across the rounds
of G":

— Two bits, x1 and 22, cancel each other in an equation means x1 ¢ 22 = 0 with
probability 1.

— Let uy; denote the ith bit of the input to the round function in round 7, 1 <7 < b,
0<5<r

— Letvj; denote the it" bit of the output from the round function in round j, 1 <1 <
b,0 <7<,



192 D.L. Cook, M. Yung, and A.D. Keromytis

Uj U - Uy Uj U - Uy Wiy Wi ... Wy

| l

cycle round function
eky's elkji S
ViV oo Vi
Vi Vig -+ Vp= ® ®

Uity Ygaty2 -+ Yt

|

’ kw;; kw, ... kwy, ‘ ’ij(bn) KW, 0 - KW, )

cycle @ y bits swapped out
ek, 'S l
el * Wity Wity - Weirnyy
l i = Vi@ kw; " " "
Ugery = V@ kw; © wy @ kwyy
Vit Viety2 =+ Vit '
round function
Cycle Input and eKi1y'S

Output of G “Bit i not swapped.
**Bit i swapped.
Vit Vienz -+ Vis)p

Round Input and Output of G’

Fig. 2. Linear Relationship Between Round j’s Output and Round (5 + 1)’s Input

— Letn; denote the number of expanded-key bits used in the round function in round
7, 0 < 5 < r. This does not include any end of round whitening added to form
G’, but does include the end of round whitening if it is part of the cycle of G (as is
the case with AES). If G does not contain initial whitening, the round function in
round 0 is the identity function and ng = 0.

— Let ek;; denote the ith expanded-key bit in the round function in round 5, 1 < i <
n;.

- Let Lj([ujn, ...ujp]®[vj1, ...v55]Dlekj1, ...ekjy,]) denote the set of linear equations
(if any) relating the input, output and round key bits with non-negligible probability
for the round function in round j, 0 < j < 7. We will abbreviate this as L.
An equation in L; holds with probability ; + « for some non-negligible o such
that 0 < o < J. For example, if w12 @ v13 @ ekys = 0 with probability 0.75,
this equation will be in L;. Any equation which reflects a negative relationship,
meaning the equation holds with probability é — «, 1s rewritten as an equation
holding with probability } + .

— Without loss of generality, the equations in L; are in reduced form; for example,
Ujo @ ujo O ujz = 1 will be reduced to ujo = 1.

— Internal variables will refer to the set of u;; for1 < j < randwvy; for0 < j <r—1,
with 1 < ¢ < b. i.e., any variable corresponding to an input bit for rounds 1 to r or
to an output bit of rounds O (initial whitening step) to r — 1.

A linear relationship across consecutive rounds is obtained by combining the lin-
ear equations for each of the rounds, with v;; becoming u(;1);. A linear relationship



Methods for Linear and Differential Cryptanalysis of Elastic Block Ciphers 193

exists that involves only plaintext, ciphertext and expanded-key bits if the intermediate
round inputs and outputs (the internal variables) cancel when combining the per round
equations, leaving equation(s) involving only ug;’s, v,;’s and expanded-key bits. For
example, if in G with two cycles: w11 @ vi2 = eky1 and uge O veg = ekog. Then, since
V12 = U2, U1l D ekyy @ vos = ekas.

We now consider how the steps between the rounds in G’ impact the linear relation-
ships across the rounds.

- Let Y denote the rightmost y bits of the data block for a (b + y)-bit data block.

— Let I" refer to the set of the equations used in a linear attack on r rounds of G’
formed from combining the L;’s for the individual rounds along with the end of
round whitening and swap steps.

— Let I" refer to a set of linear equations for G formed from equations in .

— Let kwj; denote the it" key bit used for the whitening step added in round j when
constructing G', 1 <i<b+yand1 < j <r. kwj; = 0for1 < ¢ < bif the cycle
of G includes end of cycle whitening and kwy; = 0 for 1 < ¢ < b if G contains
initial whitening because G’ does not add whitening to the b bits when it is already
present.

— Let wj; denote the 1t" bitof the Y portion of the data, for 1 <[ < yand2 < j <r.
wji = vj—1)n D kw(j_1), where 1 < h < band h is the bit position swapped with
bit position [ in the previous swap. When j = 1, w1; = wo; @ kwoy4), the initial
input bit XORed with the initial whitening applied.

With the addition of the whitening and swap steps, the input to the round function is
now defined as:
= UG41)i = Vji D kwj; when vy; is not involved in the swap step.
- U(j4+1)i = Vi @ kwj; Dwjy EBkwj(bH) when v;; is involved in the swap step. When
J = 2, this can be written as u(j1y; = vj;i Dkwj; Dv(j_1)n Dkw(—1)n DEw;p41)-

Notice that the steps between applications of the round function in G’ maintain a linear
relationship between the output of one round and the input of the next round.

If the key schedule of G’ produces whitening bits which are created independently
of the key bits used within the round function (to the extent that the key bits are pseudo-
random), and of the round function’s input and output, these whitening bits will cancel
with any vj;, u;41 and/or ek;; with probability é + e for negligible e (i.e., there is no
discernable relationship between these whitening bits and any of the plaintext, cipher-
text and expanded-key bits used internal to the round function by definition of the key
schedule). Thus, the kwj;’s added when forming G’ will not increase the probability
of a linear relationship between plaintext bits, ciphertext bits and expanded-key bits
used in the round function. If a key schedule is used for G’ that does not guarantee
independence amongst the kw;;’s and that results in cancellation among some kwj;’s,
this is merely cancelling variables that are not present in the linear equations for the
round function and thus will not simplify the equations or increase the probability that
an equation holds across r applications of the round function.

Now we assume a set of equations, I, exist for G’ that contains no internal variables
and show how to convert them to a set of equations for G. Given the sets, L;’s, of linear
equations for the round function in G/, these same sets of equations hold for G because



194 D.L. Cook, M. Yung, and A.D. Keromytis

the elastic version does not alter the cycle of GG. These equations are combined across
cycles as was done for the rounds of G/, except to form the input to one cycle from the
output of the previous cycle, the impact of the swap step and any whitening added when
forming G’ is removed as follows:

— Set kwj; to O for 0 < j < rand1 < ¢ < bso these whitening bits are omitted from
the resulting equations. This removes any initial and end of round whitening that
was added to the leftmost b bits when forming G’. Recall that if G had initial and
end of cycle whitening, it was treated as part of the round function of G and addi-
tional whitening on the leftmost b bits in each round was not added when forming
G’ (i.e. kwj; was already 0 in the equations for G’ for 0 < j < rand 1 <4 <b).

- Set kwop41y = 0 and kwy 1) = 0 for 1 < 1 < y. This sets the rightmost y bits of
the initial whitening and of the end of round whitening in the first round to 0. By
using plaintexts that have the rightmost y bits set to 0, this results in the rightmost
vy bits in the first round having no impact on the equations.

— Set kwj(b+l) 0 v(j—1)n for2 < j <r—1and1 <[ <y, where h is the index
in the leftmost b bits corresponding to the bit position swapped with the " bit
of the rightmost y bits. This removes the impact of the swap steps by having the
rightmost y bits of whitening in each round cancel with the y bits omitted from
each round. These settings are needed only on rounds 2 through r» — 1. The output
of the r*" round function is the ciphertext so the swap step is not applicable after
the r*" round. Per the previous item, the rightmost y bits in the first round can be set
to have no impact on the equations. Each such setting can add an internal variable,
V(i—1)hs which now equals uy,, to the equations.

These settings result in each input bit to the (j + 1)** round function being of the form
u(j+1)i = vji and the impact of any added end of round whitening and the swap step
being removed. The equations will combine to form a set of equations, I from the
equations in I"” with any kw,;’s which appear in I"” removed and with at most (r — 2)y
internal variables added to the equations. Before explaining how these variables can
be accommodated, we first state a few additional notes on the resulting equations. The
equations in /" may contain up to y extra plaintext bits and up to y extra ciphertext
bits beyond the b-bit block size of G since G’ processes b + y bit blocks. The attacker
can set these extraneous y plaintext bits to any value (the whitening bits were set in
the conversion based on these plaintext bits being set to 0) and the extra y ciphertext
bits are identical to y of the bits output from the next to last round function. For any
equation Eq' € I" that holds with probability J + «, the corresponding equation,
Eq € I', formed by removing the kw’;s from Eq" will also hold with probability
% + «. Furthermore, only variables representing whitening bits not present in GG are
deleted when converting I/ to I" and no equations are added or removed. An equation
will not disappear when removing kw;; variables because that would imply the equation
did not involve plaintext and/or ciphertext bits.

We now address the presence of the internal variables in I'. Since it was assumed
I"' consists entirely of equations involving only plaintext, ciphertext and expanded-key
bits, the removal of the swap step can introduce up to y internal variables, (vjis), per
round (cycle) into the equations. The removal of the swap step impacts r — 2 rounds
(cycles), resulting in a maximum of (r — 2)y internal variables in the equations in I".



Methods for Linear and Differential Cryptanalysis of Elastic Block Ciphers 195

If equations in I corresponding to some y > 0 are converted directly into equations
for the original cipher (y = 0), this results in at most 2("~2)¥ possible values to try
for the internal variables. However, it is possible to make the number of such values
to test linear in y instead of exponential in y. Instead of converting the attack on G’
directly to an attack on G, repeatedly decrease y one bit at a time (decrease the block
size of G’) converting the attack on G’ with a b + n bit block size to an attack on G’
with a b+ n — 1 bit block size, forn = y,y — 1,...1. When I’ is converted into a set
of equations for the cipher corresponding to a b + y — 1 blocksize, there are at most
r — 2 internal values, one for each of rounds 2 to » — 1, and therefore at most 272
possible combinations of values for the internal values. Let I}, denote this set of
equations. Using (plaintext,ciphertext) pairs with a b + y — 1 bit block size, solve the
equations, setting the r — 2 internal variables in the equations to the specific values that
result in a solution consistent with the (plaintext, ciphertext) pairs. In the worst case, all
possible combinations of values for the interal variables must be tested in the equations,
resulting in at most 2("~2) combinations to test. Then repeat the process, decreasing the
block size one bit at a time. In each iteration, there are at most » — 2 internal variables
whose values need to be determined.

More formally, given G’ with a block size of b+ y bits, where 0 < y < b and the set
of linear equations I used to attack r consecutive rounds of G':

- Let G}, ., refer to an elastic version of G' with a (b + n)- bit block size, where
0<n<y.

- Let I}, refer to the set of linear equations for r consecutive rounds of G}, with
at most r — 2 internal variables present in the equations.

— Let Ij, refer I}, with the values of the internal variables determined. This is
a set of linear equations involving only plaintext, ciphertext and expanded key bits
for r rounds of Gy, ..

— Let Ay, refer to the attack on G}, , using I

b+n “+n"

Convert the attack on G’ to an attack on G as follows:

n=y

Fl;+n = F/

while (n > 0) {
convert Iy to I},
Using (plaintext,ciphertext) pairs for G, _;, solve for any
internal variables in 77, to obtain I3, ;.
n«—n-—1

}

The set of equations, I', used to attack G will be Fl;. This results in at most qu’ 2(r=2) —
y2("=2) possible combinations of the internal variables to try as opposed to < 2("=2)¥
combinations. Since r is constant (and small in practice) and y is bounded by b, which
is constant, the amount of work in converting the attack on G’ to an attack on G is
polynomial in the time to attack G’, specifically, the work is bounded by a constant
times the time to attack G’. For example, in AES with a 128-bit key, b = 128 and
r = 10, thus y < 128 and y(2(“2)) < 128 % 256 = 32768. The amount of memory
required is linear in the amount of memory required to attack G’. In the worst case, a



196 D.L. Cook, M. Yung, and A.D. Keromytis

separate amount of memory is required when forming each I’ . Thus, a linear attack
on a r-round version of G’ that requires less than 2° (plaintext, ciphertext) pairs implies
a linear attack exists on G.

Theorem [I] can be applied to algebraic equations in general. An algebraic attack on a
block cipher G is defined in the same manner as the linear attack with the modification
that the equations can involve any algebraic operations, not just XORs.

Lemma 1. Given a block cipher G with a block size of b bits and r cycle, and its elastic
version G’ with a block size of b+ y bits for 0 < y < b, if G’ is subject to an algebraic
attack on v rounds then either G is subject to an algebraic attack or the resources exist
to perform an exhaustive search on G over all plaintexts.

Proof. The proof follows directly from the proof to Theorem [T by removing the qual-
ification in Theorem [I's proof that the equations in the L; sets are linear. Now 1" and
I" contain algebraic equations instead of only linear equations. I" is formed from I’
exactly as before (the conversion adds only XORs of variables to the equations). There-
fore, if an algebraic attack exists on r rounds of G’ then an attack exists on G.

4 Differential Cryptanalysis

4.1 Overview

We consider how the conversion of a block cipher to its elastic form impacts differential
cryptanalysis. We define a general method for bounding the probability a differential
characteristic occurs in the elastic version of a cipher when given the bound for a single
round of the original cipher. We have illustrated the method on elastic versions of AES
and MISTY1 in [2]. We use the symbol A to refer to the XOR of two bit strings.
The sequence of A inputs and outputs of the rounds of a block cipher is a differential
characteristic. Specifically, let (P1,C1) and (P2,C2) be two (plaintext, ciphertext)
pairs for a block cipher with 7 rounds. AP = P1 @& P2 and AC = C1 & C2. Let
Aqj refer to the delta input to round j and let A,; refer to the delta output of round j.
Ait = AP. X\, = AC. Let pr; be the probability \,; occurs given ;. Let 2 =
(N1, Aot, Ai2s Ao2---Air, Aor ). The probability §2 ocurrs is H;Z pr;. If the block size is
b bits, it is sufficient to show that no differential characteristic occurs with probability
< 27% in order to prove a cipher is immune to differential cryptanalysis (because this
implies > 2b (plaintext, ciphertext pairs) are required for the attack).

The variable block size and the swap step in elastic block ciphers significantly in-
crease the number of cases to explore when determining the probability of a differential
characteristic compared to that of the fixed-length version of a block cipher. This is
the reason why we had to find a new approach to modelling the differentials instead
of using an existing approach, such as the differential trails approach used on AES [J3].
Furthermore, the structure of elastic block ciphers allows analysis performed on the
fixed-length version to be partially reused when evaluating the elastic version.

The method we use to bound the probabilities of differential characteristics for an
elastic block cipher involves defining states representing which bytes in the differen-
tial input to a round have a non-zero delta and tracking what sequences of states the



Methods for Linear and Differential Cryptanalysis of Elastic Block Ciphers 197

cipher can potentially pass through over a number of rounds. Using this method and
differential bounds for the round function of the original cipher, we can derive an upper
bound on differential characteristics for the elastic version of a cipher. We exclude the
initial and final key-dependent mixing steps from our analysis in order to focus on the
core structure and these permutations will only reduce the probability of any specific
differential characteristic occurring.

4.2 General Observation

The first observation we make regarding differential cryptanalysis of elastic block ci-
phers is that, unlike linear cryptanalysis where the equations for the elastic version,
G’, of a block cipher can be converted directly into equations for the original cipher
G, a differential characteristic for G’ cannot be converted directly into a differential
characteristic for G except for one special case.

We use the following notation when describing a differential characteristic of an
elastic block cipher.

— AY; is the XOR of two y-bit segments for round .

— ADBin; is the XOR of two b-bit segments input to the round function in round i.

— ABout; is the XOR of two b-bit segments output from the round function in
round 7.

— A b-bit value formed from the XOR of a b-bit value and a y-bit value, where y < b,
refers to the b-bit result when the y bits are XORed with a subset of y bits of the b
bits and the remaining b — y bits are unchanged.

— Forming AY;; from ABout; refers to setting AY; to the y bits from ABout, that
are in the bit positions involved in the swap step after round :.

- AY, ABin and ABout without a subscript of ¢ refers to a specific delta indepen-
dently of the round.

In the elastic version of a cipher, ABin;; is determined by ABout; and AY;. If
AY; # 0 then ABin;y1 # ABout;; whereas, ABin;1 = ABout; in the original
block cipher. This is shown in Figure[3l Therefore, a sequence of deltas ocurring across
multiple rounds in the elastic version will not hold across the original version unless
AY; = 0 for r sequential rounds.

Now we consider the special case where r consecutive AY;’s are 0.

Lemma 2. If a differential characteristic occurs in the elastic version, G', of a block
cipher that contains r consecutive rounds with AY; = 0 and this characteristic can be
used to attack G', then it can be used to attack G.

Proof. Let £’ be the characteristic corresponding to the ABin; values and ABout;
values for the r consecutive rounds each with AY; = 0. {2’ is also a characteristic for
the 7 rounds of G. 2 must hold with probability > 27°~¥ to be used in an attack on
G'. If {2’ holds with probability 2~ > 27°_ then it can be used to attack G directly,
provided the probability is large enough that it is computationally feasible to encrypt
O(2%) plaintexts.

If it holds with probability 2~ such that 27% > 27 > 27%=¥ it can be used to attack
G as follows: Using an 7 round version of G’ and (plaintext, ciphertext) pairs consistent



198 D.L. Cook, M. Yung, and A.D. Keromytis

ABin, ABin, AY,;
Round
Function
ABout; 69‘/
ABin,,
Round
Cycle Function
ABout,, ABout; AY,,,
Original Version Elastic Version

Fig. 3. Differential in Original and Elastic Versions of a Cipher

with the delta input and delta output of {2’ by setting the leftmost b bits to be consistent
with 2" and the rightmost y bits to have a A of 0. Then apply the attack on G’ to find
the round keys for the  rounds and use these as the keys for the r cycles of G.

However, if this later case where 2% > 272 > 275~V is computationally feasible, it
implies it is computationally feasible to encrypt 2° plaintexts with G. Thus G'is insecure
because given a ciphertext, C, an attacker can ask for all 2° plaintexts be encrypted with
the same key (which is unknown) used to generate C' and see which plaintext produces
C. As an estimate of the probability of r consecutive rounds having AY = 0, consider
what happens if the y bits left out of each round in G’ take on any of the possible 2¥
values with equal probability. Then, ignoring the differential for the b-bit portions of
each round’s input and output, a case where AY; = 0 for r consecutive rounds may be
found for small values of y and r. If each AY; occurs with probability 27¥, then the
probability that AY; = 0 in r consecutive rounds is 27¥". For example, in MISTY 1,
r = 4 (MISTY1 contains four cycles and a cycle is used as the round function in the
elastic version). When y = 1, the probability of r consecutive AY’s being zero is 116.

4.3 State Transition Method

We now consider how to evaluate any elastic block cipher’s immunity or susceptibility
to differential cryptanalysis by using the bound from a single cycle of the fixed-length
version of the cipher.

Theorem 2. The differential probabilities from the cycle of a fixed-length block cipher
G can be used to bound the probability that a differential characteristic occurs in its
elastic version G'.



Methods for Linear and Differential Cryptanalysis of Elastic Block Ciphers 199

The general method we use is the tracking of states through the rounds of an elastic
block cipher. We devise a method for categorizing the impact of the swapping of bits
between rounds on the differentials entering a round. We combine the impact of the
swap step with the upper bound on the probability a differential characteristic occurs in
a single application of the round function (from available analysis on G) to determine
an upper bound the probability of a differential characteristic across multiple rounds in
G'. By obtaining a bound, x, on the probability across n rounds in G’, the probability

across ' rounds can be bounded by zL % J.

In the case where the round function of G is a cycle, such as in AES, we view the
(b + y)-bit data block entering a round of G’ as a b-bit segment and a y-bit segment.
Three main states are defined:

(ABin = 0and AY # 0), (ABin # 0 and AY = 0), (ABin # 0 and AY # 0)
The state in which ABin = 0 and AYin = 0 is not of interest because, given a
non-zero delta input to the cipher, a delta of zero across all b + y bits cannot occur.
Within a main state, the number of bytes for which the delta is non-zero are counted.
For example, if the input to the third round has a ABin that is 1 in the 2"¢ and 18"
bit positions and is zero in all other bits, then there are two bytes with non-zero deltas
in ABin. Tracking of states between rounds involves determining what ABin||AY
can result for the (i + 1)** round based on the delta in the i*" round. For example, if
ABin = 0 and AY # 0 in the input to round 4, then ABin # 0 and AY = 0 in round
i + 1. This is because the delta output of the i*" round function will be zero, then the
non-zero AY will be swapped into the b-bit portion input to the (i + 1)*¢ round and a
delta of zero will be swapped out to form the AY for the (i + 1)*¢ round.

When the original cipher is a Feistel network (or is a Feistel network with additional
steps as in the case of MISTY 1), the ABin portion is viewed as a left half (ALin) and
right half (ARin). The main states are the seven combinations of AL, AR and AY
being = 0 or # 0 with at least one being # 0.

Using the states, an upper bound (which is not necessarily a tight upper bound) can
be determined for the probability of a differential characteristic for ' rounds of G’. The
probability of a differential characteristic occurring for a single application of the round
function of G and the possible AB or AL||AR values entering the round function
in each round are used to bound the probability for a round of G’. The possible AB
or AL||AR and AY values in a round determine the possible input states to the next
round of G'.

4.4 Examples

We applied the state transition method to the elastic versions of AES and MISTY1
described in [3]]. The process and results are described in [2]. We briefly state the results
of the work here. Elastic AES is an example in which the input to each round is viewed
in the form of ABin||AY. AES is a 128-bit block cipher with 10 rounds. The number
of rounds, 7/, in the elastic version is 10 + Hgg] Elastic MISTY1 is an example in
which the input to each round is viewed in the form of AL||AR||AY. MISTY1 is a
64-bit block cipher involving four cycles of a Feistel network. ' = 4 + [ég] in the
elastic version of MISTY 1.



200 D.L. Cook, M. Yung, and A.D. Keromytis

We analyzed the elastic versions without the initial and final key dependent permuta-
tions to simplify the model since these permutations will only decrease the probability
that a specific differential characteristic occurs. Our analysis is independent of the key
schedule[] The swap step is performed by selecting y consecutive bits from the round
function’s output to XOR and swap with the y bits left out of the round function. In the
implementation of elastic AES, the starting position of the y bits selected rotates to the
right one byte each round. In elastic MISTY 1, the starting position alternates between
the left and right halves of the b bit segment in addition to rotating to the right within
the half block each round.

When analyzing the state transitions for both elastic AES and elastic MISTY 1, we
are concerned with how many byte positions have non-zero deltas. Therefore, we only
need to consider each block size where Y contains an integer number of bytes. The
case for y = 8x where x is an integer such that 1 < z < g covers the cases of y such
that 8(z — 1) < y < 8z. For example, the lower bound on a differential characteristic
occurring for the case of y = 8 is also the lower bound for values of y in the range of 1
to 7 because this range of y influences exactly one byte in b-bit portion during each of
the swap steps.

In order to analyze the state transitions in elastic AES, we created a program that
tracks how many bytes contain a non-zero differential characteristic in each round and
determines the possible next states. The number of bytes with a non-zero delta in the
b-bit portion in a single round bounds the probability that a differential characteristic
holds through that round. A lower bound on the differential probability for a single
round of AES is < 27¢*P where exp = 6 x | ABin|. The multiplication by 6 is due to
the fact that the probability a specific difference in two one-byte inputs to AES’s S-Box
produces a specific difference in the two outputs of the S-Box is 27 or 277, depending
on the exact byte values ([3] pages 205-206). For block sizes of 17, 18 ... to 32 bytes, the
model was run through three rounds for all possible input states. A lose lower bound for
all 7’ rounds was then calculated by viewing the 7’ rounds as 3 round segments plus 0
to 2 additional rounds, depending on the exact value of 7. Sequences producing a three
round bound which did not exclude the possibility of a differential attack were traced
through subsequent rounds, with the number of rounds depending on the exact size of
y and the probability produced after each round. The results from our analysis show
that the probability of a differential characteristic occurring is < 27128~Y, Therefore, a
differential attack is impossible.

Our analysis of elastic AES is general in terms of block size but only considers a
single method for selecting the bits to swap (described previously) after each round
as opposed to all possible ways of selecting y bits from 128 bits. In [4]] it was proven
that an elastic version of a cipher is immune to any practical key-recovery attack if the
original cipher is immune to the attack regardless of the specific bit positions chosen for
the swap steps. Differential cryptanalysis is covered by this result. The state transition
method can be applied to any choice of bits to swap, but it is computationally infeasible
to include in one model all 2¢("'~1) possible ways of selecting the bits to swap in the
first 7 — 1 rounds (recall that the swap step adds no value after the last round and thus
can be omitted from round r’).

! In the constructions from [3]}, the stream cipher RC4 was used for the key schedule.



Methods for Linear and Differential Cryptanalysis of Elastic Block Ciphers 201

MISTY1 uses two functions, referred to as F'0 and F'L, as building blocks along
with a Feistel network. F'0 is the round function in the Feistel network. In each cycle
of the Feistel network, F'L is applied to one half of the data and FL~! is applied to
the other half. An upper bound of 27°¢ on the probability a differential characteristic
occurs was derived for 4 cycles of the 64-bit version [§] by using a bound of 24 per
cycle due entirely to the bound from the F'0 function. Using a manual analysis of state
transitions and only the bound for the F'0 function, we derive an upper bound on the
elastic version of MISTY1 of 2~ 4("'~1) where 7 is the number of rounds (cycles of
MISTY1) in the elastic version. This bound is not tight and does not by itself elimi-
nate the possibility of a differential attack (either in MISTY1 or the elastic version).
However, the state transition analysis does reduce the number of state sequences that
need to be investigated to tighten the bound over 7’ rounds. The bound of 2~ 4(”'~1)
also allows the potential contribution needed from the initial and final key-dependent
mixing steps in preventing differential attacks to be determined.

5 Conclusions

We showed how to convert a linear, or more generally any algebraic, attack on an elas-
tic block cipher into such an attack on the fixed-length version of the block cipher to
prove that if the fixed-length version is immune to such an attack then so is the elastic
version. This was accomplished by proving that any set of linear or algebraic equations
used in an attack on the elastic version can be converted in polynomial time and mem-
ory into equations for the fixed-length version. We also devised a method for bounding
the probability of a differential characteristic on the elastic version of a block cipher us-
ing the differential bounds for the cycle of the fixed-length version of the cipher. When
performing differential cryptanalysis on an elastic block cipher, the differential bound
for the round function is the bound from the cycle of the original version of the cipher.
The swapping of bits between rounds in the elastic version impacts the sequence of
differentials entering the series of rounds by altering the output of the i*" application of
the round function before it is input to the (i + 1)*¢ application of the round function.
The bound for the round function and the impact of the swap step can be combined to
bound the probability a differential characteristic occurs in the elastic version of a block
cipher. This is accomplished by defining states representing whether or not there is a
non-zero differential in the b-bit portion and/or y-bit portion of the round’s input, then
determining what states may potentially occur as input to each round. The possible state
sequences in the elastic version of the cipher are combined with the probabilities a dif-
ferential characteristic occurs in one cycle of the original cipher to bound the probability
of a differential characteristic across all rounds of the elastic version of the cipher.

Acknowledgments

This work was partially supported by NSF Grants ITR CNS-04-26623 and CPA CCF-
05-41093. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the NSF
or the U.S Government.



202 D.L. Cook, M. Yung, and A.D. Keromytis

References

1. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer,
New York (1993)

2. Cook, D.: Elastic Block Ciphers, Ph.D. Thesis, Columbia University (2006)

3. Cook, D., Yung, M., Keromytis, A.: Elastic Block Ciphers: The Basic Design. In: Proceedings
of ASTACCS, pp. 350-355. ACM, New York (2007)

4. Cook, D., Yung, M., Keromytis, A.: The Security of Elastic Block Ciphers Against Key-
Recovery Attacks. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 89-103. Springer, Heidelberg (2007)

5. Daemen, J., Rijmen, V.: The Design of Rijndael: AES the Advanced Encryption Standard.
Springer, Berlin (2002)

6. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 0765, pp. 386-397. Springer, Heidelberg (1994)

7. Matsui, M.: New Block Encryption Algorithm MISTY. In: Biham, E. (ed.) FSE 1997. LNCS,
vol. 1267, pp. 54-68. Springer, Heidelberg (1997)

8. Matsui, M.: New Structure of Block Ciphers with Provable Security Against Differential
and Linear Cryptanalysis. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 205-218.
Springer, Heidelberg (1996)

9. NIST, FIPS 197 Advanced Encryption Standard (AES) (2001)



Multidimensional Linear Cryptanalysis of Reduced
Round Serpent

Miia Hermelin', Joo Yeon Cho', and Kaisa Nyberg'-?

! Helsinki University of Technology
2 Nokia Research Center, Finland

Abstract. Various authors have previously presented different approaches how
to exploit multiple linear approximations to enhance linear cryptanalysis. In this
paper we present a new truly multidimensional approach to generalise Matsui’s
Algorithm 1. We derive the statistical framework for it and show how to cal-
culate multidimensional probability distributions based on correlations of one-
dimensional linear approximations. The main advantage is that the assumption
about statistical independence of linear approximations can be removed. Then
we apply these new techniques to four rounds of the block cipher Serpent and
show that the multidimensional approach is more effective in recovering key bits
correctly than the previous methods that use a multiple of one-dimensional linear
approximations.

1 Introduction

Linear cryptanalysis introduced by Matsui in [1]] has become one of the most important
cryptanalysis methods for symmetric ciphers. Matsui analysed the DES block cipher
using a linear approximation of the known data bits, which holds with a large correlation
independently of the key, and presented two ways of exploiting this property: Algorithm
1 which determines one bit from the secret key and Algorithm 2 which recovers a part
of the last (or first) round key bits. Originally, only one approximative linear relation
was used. In [2]], two approximations were used to reduce the amount of data needed
for the attack. This idea was developed further by Kaliski and Robshaw in [3]], and
later by Biryukov, et al., in [4]], where the goal was to use several linear approximations
simultaneously in order to recover more key bits with equal amount of data. In both
[3] and [4]] the fundamental assumption was that the approximations are statistically
independent. This assumption is hard to verify in practice. The main contribution of
this paper is to remove this assumption.

In [5]], Baignéres, et al., analysed the statistical properties of multidimensional linear
approximations without the assumption of statistical independence. They proved that by
using multiple approximations, less data is needed to have the same level of test as with
only one approximation. However, their target system was a block cipher, which was
assumed to have a Markovian property [6]. Consequently, no practical way of building
the probability distributions for the purposes of Matsui’s Algorithm 1 can be found.

In Englund and Maximov calculated directly the multidimensional probability
distribution needed for the distinguisher. However, their calculations become infeasible

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 203 2008.
© Springer-Verlag Berlin Heidelberg 2008



204 M. Hermelin, J.Y. Cho, and K. Nyberg

for systems with word-size of 64 or more. In this paper, it will be shown how one-
dimensional linear approximations can be combined to determine the multidimensional
linear approximation and the corresponding probability distribution. The method can
be applied to both stream and block ciphers of any word size.

The goal of this paper is to present a key recovery attack by generalising Algorithm 1 to
the multidimensional case. This algorithm will be compared with the method suggested
by Biryukov, et al., in [4] and the experimental results presented in [8]].

The structure of this paper is as follows: In Sect. [2] the notation and the theoret-
ical basics needed in this paper are given. Section [3] starts with showing how linear
one-dimensional approximations can be used to make multidimensional linear approxi-
mations. Using the results of [3] it is then shown that it is advantageous to use multiple
approximations instead of just one. The rest of the Sect.Blshows how to generalise Mat-
sui’s Algorithm 1. Section ] shows how the method can be applied to the block cipher
Serpent. The results will also be compared to those presented in [8]], where Biryukov’s
method was applied to Serpent. Finally, Sect. |5l draws conclusions.

2 Probability Distribution of a Boolean Function

We will denote the space of n-dimensional binary vectors by V. The inner product is
defined fora = (a', ,d"),b=(b", ,b")eV,asa b=a'b'+ +d"b", where +
is sum modulo 2.

A function f : V,, — Vj is called a Boolean function. A function f : V,, — V,, with
f = (fi, ,fwm), where f; are Boolean functions is called a vector Boolean function
of dimension m. A linear Boolean function from V,, — V,, is represented by an m X n
binary matrix U. The m rows of U are denoted by u;, ,u,, where each u; is a binary
vector of length n.

A random variable (r.v.) is denoted by boldface, capital letters, e.g., X, Y,Z, .The
abbreviation i.i.d. will mean independent and identically distributed.

Let Y be ar.v. in V,,, and denote by p, = Pr(Y = ) Then the probability distribu-
tion (p.d.) of Y is the vector p = (pg, ,pa 1). Let f:V, — V,, be a vector Boolean
function, and let X be a r.v. in V,, with the 2"-dimensional uniform distribution vector
6, =2 "1, ,1) Then we associate with f arv.Y = f(X) in V,, with a probabil-
ity distribution p(f) = (po(f), ,p2r 1(f)), where Pr(f(X) = n) = py(f), n € Vi
This p.d. is called the probability distribution of f and is denoted by p(f). We may
also abbreviate p,(f) by p, if the function is clear from the context. Two Boolean func-
tions f and g are called statistically independent if the associated r.v.’s are statistically
independent.

The correlation between a binary r.v. X and zero is defined as Pr(X = 0) Pr(X = 1)
The correlation of a Boolean function g : V,, — V| to zero shall be referred to as the
correlation (of g) and is defined as

2" # 1@ =0} #Elg@)=1D=2Pr(gX)=0) 1,

where X is uniformly distributed.

Capacity was defined by Biryukov in [4]] where they showed that it was inversely pro-
portional to the data complexity of their distinguishing attack. We will now generalise
the definition.



Multidimensional Linear Cryptanalysis of Reduced Round Serpent 205

Definition 1. Let p = (po, ,pm) and g = (qo, ,qm) be two p.d.’s. Their (mutual)
capacity is then

_ - (pn C]n)2
Cpg)=), (1)

n=0 n

IfM =2" 1andq = 0, is uniform then C(p,0,) = 2" ||p 0m||§ will be called the
capacity of p and we will denote it by C(p). It can also be called the Squared Euclidean
Imbalance [J3]].

In the next section, we will see that the generalised capacity will be inversely propor-
tional to the data complexity of a multidimensional linear distinguisher.

3 Multidimensional Approximation of Boolean Functions

3.1 From One-Dimensional Probability Distributions to Multiple Dimensions

Let f : V;, — V, be a vector Boolean function and binary vectors w; € V, and u; €
Ve, i = 1,2, ,,m be linear masks such that the paired masks (u;, w;) are linearly
independent. Let us define functions g; by

gi§) =wi f(&)+u; &, 2

and assume g;’s have correlations p;, i = 1,2, ,m We will call these correlations
the base-correlations, and the corresponding linear approximations of f the base-appro-
ximations. We want to find the p.d. of the m-dimensional linear expression

8(&) = Wf(&) + UE,

where W = (w;, ,wn),U = (41, ,u,) and g =(g1, ,gm) Letthe p.d.of g be p.
Assume that we have the correlations p(a) of all the linear mappingsa g of g, a € V,,.
Ife; = (0 010 0) with 1 at the ith position, then p(e;) = p;,i = 1, ,m We will
call the correlations p(a), a # e; the combined correlations of f and the corresponding
approximations the combined approximations. Recall the following lemma from [9].

Lemma 1. Let g = (g1, .,8&m): Vi — Vi be avector-valued Boolean function and p
it’s p.d. Then
2111717 = m Z Z( 1)4 (8@&)+m
aeV,, &€V,

The correlations p(a) can be written as

play=2") ( 1

&€V

Using this and Lemma [Tl we get the following corollary that connects p and the one-
dimensional correlations p(a):



206 M. Hermelin, J.Y. Cho, and K. Nyberg

Corollary 1. Let g : V,, — V,, be a Boolean function with p.d. p and one-dimensional
correlations p(a) of a g. Then

pr=2" > 1Y'"p(a)

acVy,

The following corollary is obtained using Parseval’s theorem. An equivalent form of it
can be found in [3], where the proof was based on the inverse Walsh-Hadamard trans-
form of the deviations ¢, from the uniform distribution, €, = p, 2.

Corollary 2. Let g be the Boolean function defined as previously with p.d. p. Then

Cp)=2") & = ) pa)

7 a#0

We will need this equality in the next section where we study how linear distinguishing
is done in multiple dimensions.

3.2 One vs. Multidimensional Linear Distinguishers

In this section we will present the general statistical framework of multidimensional
approximation.

The theory of hypothesis testing can be found for example in [10]. Here we will
restrict to the most essential parts of the theory. Assume we have two p.d’s p and g,
g # p and consider two hypotheses: H states that the experimental data z"¥ of N words
is derived from p and H; states that zV is derived from g¢.

In the one-dimensional case, we have a linear approximation such as (@). Let p be the
correlation of the approximation. The number of bits N| needed to distinguish z" from
a random sequence is A/p*, where A depends on the level and the power of the test. It
was already noted in [T]] that the data complexity N, is proportional to 1/p? For proof,
see [11]]. Note that the bias used in [1]] is the correlation divided by two.

The data complexity of the attack in [4]] using multiple linear approximations, was
shown to be proportional to Ng ; , where

1 1
Nei = e 5= (3)
S.1. Zi:] p12 6‘2

and & is the capacity as defined in [4]. This means a significant improvement in data
complexity, but relies on the assumption that the base approximations are statistically
independent.

Let us next study the case of multiple approximations without the assumption of
statistical independence. The log-likelihood ratio (LLR) is defined as follows:

M
1" = Y Naplog . 4)

n=0 n

where p and ¢ are defined as in Definition [[land N(n) is the experimental frequency of
the value i in zV. The LLR was used as the distinguisher in [3]] to proof the following
theorem.



Multidimensional Linear Cryptanalysis of Reduced Round Serpent 207

Theorem 1. Let us have a hypothesis testing problem with Hy stating that the data
is drawn i.i.d. from p.d. p and H; stating that the data is drawn from q # p. Assume
that the p.d’s are close to each other:

lan Pyl < gy, foralln &)
Then the amount of data needed for distinguishing the hypotheses is proportional to

A
Clp,q)’

where A depends on the level and the power of the test.

(6)

If we want to distinguish a distribution of some data related to a cipher from that of
a truly random source we will use the previous hypothesis test with ¢ as the ciphers
p.d. and p as the uniform distribution. Using @) we will see that N ; given by @) is
actually greater than the true amount of data needed for m < n linear approximations,
since by using Corollary 2] the latter is proportional to

bl bl
N = -
Cl@)  Zazop(a)

In an “optimal case” we can make an m-dimensional approximation where all the corre-
lations p(a) are (in absolute) value equal to the maximal one-dimensional correlations.
If N; is the data requirement for one approximation, then N,, = N;/(2" 1) On the
other hand, if only a single one-dimensional approximation has a large correlation, then
N,, = Nj and it is not useful to use multiple approximations.

In [5] Markovian block ciphers were analysed using multidimensional distinguish-
ers on the probability distributions related to the Markovian transition probabilities
averaged over the keys. Hence, their main goal was to improve the efficiency of Al-
gorithm 2. Next, we will generalise Matsui’s Algorithm 1 to the multidimensional
case. In the practical experiments we use Corollary [T to determine the related multidi-
mensional probability distributions from the correlations of the one-dimensional linear
approximations.

3.3 Key Recovery Attack

We will show how to find m key bits of the key K using a multidimensional version
of Algorithm 1. Let X be a uniformly distributed r.v. and Y = f(X), where (X,Y) is a
plaintext-ciphertext pair. We consider the r.v.

UX e WY & VK, @)

with a fixed unknown key K, and use p to denote the r.v.’s p.d. Here U = (i1, ,up),
W = (wi, ,wp)andV = (vi, ,v,) are some maskmatrices. This approxima-
tion can be generated from linearly independent one-dimensional approximations with
correlations py, ,p, using Corollary [Il (assuming that we are also given the com-
bined correlations). The linear mapping V divides the key space to equivalence classes



208 M. Hermelin, J.Y. Cho, and K. Nyberg

k=VK € Z.Thebits k; = v; K are called the parity bits. For each k the expected p.d.
pF of ZF = UX @ WY for the distribution originating from the empirical data will be
some permutation of p determined by the key (class) k. For the purposes of this study,
we assume that all the keys give distinct permutations such that p* # p/, if k # j.

Biryukov’s attack introduced in [4] uses m’ > m linear approximations to select the
correct key class from Z. It has three phases: distillation, analysis and search phases.
They can be described as follows:

1. Distillation phase. Obtain N plaintext-ciphertext pairs (x;, y,) and calculate the em-
pirical correlation vector ¢ = (01,  , )

2. Analysis phase. For each key class k, give the key a rank dj and make a sorted list
of the keys with smallest d; at the top of the list.

3. Search phase. Run through the list and try all keys contained in the equivalence
classes until the correct key is found.

The statistic used is d; = ||¢ ¢ll,, where ¢, = (( Dbp;, ,( DFp,), a vector
consisting of the theoretical correlations and the parity bits of k. In addition a measure
“gain” was defined to analyze the success of the method taking into account the time
complexity of the search phase.

The purpose of our multidimensional approach is to improve the distillation phase
in theory and in practice. In order to compare the distillation phase of Biryukov’s and
our multidimensional method, we discuss a plain multiple linear cryptanalysis method
(the plain method), which is similar to the Biryukov’s method but without the grading
of the key candidates. We measure the success of the plain method and our method
using the probability Pok, which is the probability that the right key is at the top of the
list. We assume that the plain method uses m linearly and statistical independent linear
approximations and recovers m bits of the key based on the deviations dy. Let g be the
experimental p.d. constructed from the data. Our method uses the m base approxima-
tions, 2" m 1 combined approximations and the Kullback-Leibler distance between
g and p* The Kullback-Leibler distance is used in measuring the difference between
p.d.’s. It can be seen to be related to the LLR:

Definition 2. The relative entropy or the Kullback-Leibler distance between two distri-
butions p = (po, ,pm) and q =(qo, ,qum) is defined as

M
q
D(glip) = ) gylog " (8)
n=0 n

Then, in the analysis phase, instead of a grading problem we face the following multiple
hypothesis testing problem.

Theorem 2. Let us have an | Z|-ary hypothesis problem, with | Z| hypotheses Hy stating
that the data originates from p*, where k € Z corresponds to the key. The hypothesis
for which the Kullback-Leibler distance D(q||p*) is smallest is selected. Given some
success probability Pok, the lower bound Ny, for the amount of data needed to give the
smallest value of the statistic when the correct key is used, is given by

4log, |Z|

: A 9
min .o C(p°, p/)

Nkey ~



Multidimensional Linear Cryptanalysis of Reduced Round Serpent 209

Proof. For each key k we must distinguish p* from p/, for all j # k. Using
Proposition 3 in [3]], the probability that we choose j when k is true is

PrC Y = 0 \NGCh p)12),

where @ is the distribution function of the normed normal distribution. Let the prob-
ability of successfully distinguishing Hy from all the other hypotheses be Pox Then
Pox = [1(1 Pr(H;|Hy)) Assume Nij(pk,pj) > 1 forall j # k. Then

1 j
Pox ~ exp[ " Z e NuC'p )/4] (10)
/S

j#k

Let Ny = max; Ni;. Since we have to collect the amount of N; for at least one test
with k we can use the same amount for all the tests. On the other hand, let us define
ck = min; C(pk, 9. Replacing the capacities with ¢y, Ny must be increased to get the
required success probability. We get a lower bound for Nj by solving N; from (I0)

N 4log, |Z| 4In(V2rIn Pok)
k ~

Ck
Since we do not know which k is the right key, we have to choose N = max; Ny to be
able to find the right key. Since p/’s are each others’ permutations, we have C(p*, p/) =
C(p°, p**/). But then ¢; = mingo C(p°, p*) = co which is independent of k and ()
follows. O

Note that we need the assumption that p' # p/ to ensure that min; C(p°, p/) # 0.
In [5]] a similar formula was derived for the purposes of Algorithm 2 to distinguish
the distribution related to the correct key from the, presumably uniform, distribution
related to a wrong key. Formula (@) gives an estimate how much data is needed to
reliably determine which of the |Z| distributions gives the best fit with the empirical
data. Exactly the same calculations can be done to the Biryukov’s statistic with the help
of proof of Theorem 1 in [4]]. Then the data complexity of the plain attack is proportional
t0 Nppain Which is given by the formula

8log, |Z| 2log, IZI
Nplain = . = . 5
minjelec e, ming o]
Since the denominator in Niey is usually much larger than in Npj,in, we have Nyjain >
Niey. Especially, if the combined correlations are large, the advantage is significant.
The data, time and memory complexities of distillation and analysis phases have
been given in Table [l The main difference in the complexities between our method
and the plain method is due to the fact that our method uses the full m-dimensional
distributions and needs to compute 2" empirical values from the data, while the plain
method determines only the m entries of the empirical correlation vector ¢.
The main improvements introduced by Biryukov, et al., in [4]] is the implementation
of the key ranking procedure and its statistical treatment using the concepts of capacity



210 M. Hermelin, J.Y. Cho, and K. Nyberg

Table 1. Complexities of Algorithm 1 for plain, Biryukov’s and our multidimensional method

Distillation Analysis
Plain  Biryukov Our method Plain Biryukov Our method
Data O(Npldm) O(Ns i. ) O(Nkey) -
Time O(mNplam) O(m N51 ) O(szkey) O(m|~Z|) O(m |~Z|) 0(2"1|~Z|)
Memory — O(m)  O(m’) oe2m  o1Zh oazh - o1Zh

and gain which helps to reduce the lower bound of the data complexity to Nj;. For
additional improvement of the practical performance of their method, Biryukov, et al.,
extend the base set of the m linearly (and presumably also statistically) independent
approximations with combined approximations. This extension was justified in [4] by
informal arguments and assuming that the linear approximations also in the extended
set are statistically independent. Statistical independence of linear approximations is
difficult to verify in practice. One method would be to evaluate experimentally the cor-
relations of all linear combinations of the approximations and use Piling-Up Lemma
[1] to check for statistical independence. In practical applications of the method of
Biryukov, et al., in [4] and [8], statistical independence was not verified. Let us denote
by m’ the number of approximations used, where m < m’ < 2". The resulting com-
plexities are given in Table [Tl Selection of m is always a trade-off between complexity
and maximising the capacity. Typical values for m and m’ are, for example, m = 10 and
m’ = 861in [4] and m = 10 and m’ = 64 in []]. Also often |Z| = 2"

In the next section we will compare Biryukov’s method and our method in practice
using small experiments on the four-round Serpent. The same “test-bed” was previously
used by Collard, et al., in [8] to carry out experiments of Biryukov’s method. When
comparing our results with their results we can see that similar advantage in practi-
cal performance can be achieved using our method and the Biryukov’s with m’ > m,
compared to the plain method with just m approximations. In addition, our method has
a few important advantages over the Biryukov’s. We provide sound theoretical justi-
fication for using combined approximations. More importantly, no assumption about
statistical independence of the approximations is needed.

4 Multidimensional Linear Attack on 4-Round Serpent

Serpent [12] is one of the block ciphers proposed to the Advanced Encryption Stan-
dard (AES) competition. It was selected to be among the five finalists [13]]. The best
known linear approximation of 9-round Serpent was reported by Biham et al. in FSE
2001 [14]. Recently, experimental results on multiple linear cryptanalysis of 4-round
Serpent were presented by Collard, et al., in [8]. In this section, we will apply the mul-
tidimensional linear attack to the reduced round Serpent and compare our results to the
previous attacks presented in [§]].

4.1 Multidimensional Linear Attack on 4-Round Serpent

In [8], authors used maximum m’ = 64 linear approximations to perform Matsui’s Al-
gorithm 1 type -attack on 4-round Serpent. The detailed description of approximations



Multidimensional Linear Cryptanalysis of Reduced Round Serpent 211

Table 2. Input and output masks used for the multidimensional linear attack

index mask = (MSB, ..., LSB)
uy  (0x70000000, 0x00000000, 0x00000000, 0x07000900)
u;  (0x70000000, 0x00000000, 0x00000000, 0x07000B00)
u, (0x70000000, 0x00000000, 0x00000000, 0xOB000900)
u;  (0xB0O0O00O00O, 0x00000000, 0x00000000, 0x07000900)
uy  (0x70000000, 0x00000000, 0x00000000, 0x07000500)
us  (0x70000000, 0x00000000, 0x00000000, 0x07000600)
ug  (0x70000000, 0x00000000, 0x00000000, 0x07000C00)
u;  (0x70000000, 0x00000000, 0x00000000, 0x01000900)
ug  (0x70000000, 0x00000000, 0x00000000, 0x0A000900)
uyg  (0xB0O0O0O000O, 0xO0000000, 0x00000000, 0x03000B00)

output mask w  (0x00007000, 0x03000000, 0x00000000, 0x00000000)

input mask

can be found in [13]. Those 64 linear approximations used in the attack are not linearly
independent. Hence, strictly speaking, the attack in [§] is not consistent with the tech-
nique in [4] which assumes that multiple approximations are statistically independent.
On the other hand, our attack does not require such a statistical assumption. One can
exploit as many approximations with non-negligible correlations as possible for recov-
ering the targeted key bits without such restriction.

In experiments, we chose a 4-round linear trail (from S4 to S7) that was used in
[8]. We picked up m = 10 linearly independent approximations Ly, , Lo which can
be used to recover 10 bits of the first round key. The input and output masks of the
approximations used in our attack are listed in Table[2l

Let us denote L; as follows:

up P+w C=v; K i=0, .9 1n

where u;, w and v; stand for the input mask, output mask and the key mask, respectively
and P, C and K represent the plaintext, ciphertext and the key, respectively. Note that
the output mask w is identical for all the approximations since this experiment targets
the first round key, not the last one.

Let QO = span{Ly, , Lo} such that Q is a set of approximations generated by the 10
base approximations L;. Then, |Q| = 210 1. Note that the 64 linear approximations
used in [§] form a subset of Q.

Our experiments were performed in two ways: In the first experiment, we used all
the linear approximations of the set Q. Among 2'° 1 linear approximations of the Q,
we found that 200 of them held with non-negligible correlations, as listed in Table
The correlations of the approximations were calculated by the Piling-up lemma [1]]. We
note that their real correlations can be different from calculated ones due to the effect of
correlations of other linear trails using the same input and output masks. However, we
assume that the theoretical correlations of the approximations are close to the calculated
correlations.

! We can find maximum 12 linear appr. to recover 12 bits of the first round key from this linear
trail. However, we targeted only 10 bits of the key for direct comparison of the performance
between the Biryukov’s attack and multidimensional attack.



212 M. Hermelin, J.Y. Cho, and K. Nyberg

Table 3. Correlations of approximations

correlation # of approximations
64 appr. 10 base appr., 200 non-negligible
2 1 8 8
2 12 56 64
213 0 128

In the second experiment, we generated from Ly, , Lo the 64 linear approximations
which were the same as those used in [8] and used them in our method while approxi-
mating the rest of the combined correlations to be zero. In this manner we get a rougher
approximation of the full 10-dimensional p.d. than with using 200 approximations. The
purpose of this experiment was to compare the performance of the Biryukov’s attack to
that of our attack when the same approximations are exploited in both attacks.

For comparison, we applied both the Biryukov’s and our method to the 4-Round Ser-
pent and measured their gains by experiment so that we could compare our method with
the results in [8]). It was already noted in [8] that the plain method (using m approxima-
tions) gives poorer results than the Biryukov’s method (using m” > m approximations).
No explanation was given to this heuristics in [4] or [8]. Following the theory of the
previous sections this heuristic can be justified: Increasing m” makes the Biryukov’s
method approximate the real multidimensional method. However, since the LLR is the
optimal statistic, the Biryukov’s method cannot perform better than our method even
whenm’ =2" 1.

According to Lemma 1 in [4], the key class k is determined by searching for the
minimum Euclidean distance || ¢l|, , where € = (01, ,plo) is the estimated corre-
lation of ten approximations. On the other hand, in our attack, we measure the empir-
ical probability distributions ¢ of multiple approximations and determine the key class
k by searching for the minimum Kullback-Leibler distance D(g||p*), where p* is some
permutation of the theoretical probability distribution p. The p.d. p is computed by
Corollary [[lusing theoretical correlations of one-dimensional approximations. The p.d.
g could be calculated in the same way by using the experimental correlations but in this
work it was constructed directly using 2™ counters.

We performed the experiments repeatedly 100 times and obtained the average gain of
each method. We used a different 128-bit key that was randomly selected each time. The
results are displayed in Fig.[Il For comparison, the gain vy of the attack was measured
using the formula which was introduced in [4] as follows

2 M 1
210

In Fig. [[l the multidimensional attack using 10 linearly independent approximations
with full span (200 non-negligible approximations) reaches the full gain at around 2%
texts. Compared to this result, Biryukov’s attack shows that the gain of the attack is
saturated with around 22? texts. Hence, this experiment shows that our method requires
less data to get the same accuracy as Biryukov’s method. The plain method with m = 10
approximations would give even weaker results not reaching the maximum gain until
with about 2% texts, see Fig. 5 of [8].

y= log,



Multidimensional Linear Cryptanalysis of Reduced Round Serpent 213

T T
Multidimensional(200 appr.)
Multidimensional(64 appr.)
9n Biryukov(64 appr.)[8] b

gain of the attack

0 1 1 1 1 1 1
2M2 2M4 2M6 2M8 2/20 2122 /24
number of texts

Fig. 1. Comparison of the gain of the different attacks using multiple linear approximations

5 Conclusions

In this paper we investigated a few different approaches presented in recent years on
linear cryptanalysis using multiple approximations. We used the statistical theory pre-
sented in [5] and developed a new multidimensional cryptanalysis attack. For this pur-
pose, we also showed how to construct multidimensional linear approximations from
one-dimensional approximations. The main advantage of the new method is that the
assumption on statistical independence of the linear approximations can be removed.

We also applied our method to the 4-round version of block cipher Serpent that
was studied in [8]] using Biryukov’s method [4]. We studied the cases of 10 linear ap-
proximations, showed how to make multidimensional approximations from them and
measured the success of recovering 10 key parity bits.

We also saw in Table 3] examples where the combined approximations had corre-
lations of the same magnitude as the base approximations. This demonstrates that the
assumption about statistical independence between the base approximations needed in
Biryukov’s method used in [8] does not hold. The theoretical framework presented in
this paper removes the need of this assumption.

References

1. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 386-397. Springer, New York (1994)

2. Matsui, M.: The First Experimental Cryptanalysis of the Data Encryption Standard. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1-11. Springer, Heidelberg (1994)



214 M. Hermelin, J.Y. Cho, and K. Nyberg

10.

11.

12.

13.

14.

15.

A

. Burton, S., Kaliski, J., Robshaw, M.J.B.: Linear Cryptanalysis Using Multiple Approxima-

tions. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26-39. Springer, Heidel-
berg (1994)

. Biryukov, A., Canniére, C.D., Quisquater, M.: On Multiple Linear Approximations. In:

Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1-22. Springer, Heidelberg (2004)

. Baigneres, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Cryptanalysis?

In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432-450. Springer, Heidelberg
(2004)

. Wagner, D.: Towards a unifying view of block cipher cryptanalysis. In: Roy, B., Meier, W.

(eds.) FSE 2004. LNCS, vol. 3017, pp. 16-33. Springer, Heidelberg (2004)

. Englund, H., Maximov, A.: Attack the Dragon. In: Maitra, S., Veni Madhavan, C.E., Venkate-

san, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 130-142. Springer, Heidelberg
(2005)

. Collard, B., Standaert, F.X., Quisquater, J.J.: Experiments on the Multiple Linear Cryptanal-

ysis of Reduced Round Serpent. In: Proceedings of FSE 2008. LNCS, Springer, Heidelberg
(to appear, 2008)

. Nyberg, K., Hermelin, M.: Multidimensional Walsh Transform and a Characterization of

Bent Functions. In: Tor Helleseth, P.V.K., Ytrehus, O. (eds.) Proceedings of the 2007 IEEE
Information Theory Workshop on Information Theory for Wireless Networks, pp. 83-86.
IEEE, Los Alamitos (2007)

Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Series in Telecommu-
nications and Signal Processing. Wiley-Interscience, Chichester (2006)

Junod, P.: On the Complexity of Matsui’s Attack. In: Vaudenay, S., Youssef, A.M. (eds.) SAC
2001. LNCS, vol. 2259, pp. 199-211. Springer, Heidelberg (2001)

Anderson, R., Biham, E., Knudsen, L.: Serpent: A Proposal for the Advanced Encryption
Standard. In: First Advanced Encryption Standard (AES) conference (1998)

NIST: A request for Candidate Algorithm Nominations for the Advanced Encryption Stan-
dard AES (1997), http://csrc nist gov/archive/aes/index2 html

Biham, E., Dunkelman, O., Keller, N.: Linear Cryptanalysis of Reduced Round Serpent. In:
Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 16-27. Springer, Heidelberg (2002)
Collard, B., Standaert, F., Quisquater, J. (2008),

http://www dice ucl ac be/fstandae/PUBLIS/50b zip

Brief Description of Serpent Algorithm

We use the notation of [12]. Each intermediate value of round i is denoted by B; (a
128-bit value). Each B; is treated as four 32-bit words Xo, X1, X»>, X3 where bit j of X; is
bit 4 = i + j of the B,;. Serpent has a set of eight 4-bit to 4-bit S Boxes So, ,S7anda
128-bit to 128-bit linear transformation LT. Each round function R; uses a single S-box
32 times in parallel.

Serpent ciphering algorithm is formally described as follows.
By=P Bii=Ri(B) C=Bxy,
where

R(X)=LTS(X®K;), i=0, ,30
R(X)=SX®K)® K3, i=31


http://csrc.nist.gov/archive/aes/index2.html
http://www.dice.ucl.ac.be/fstandae/PUBLIS/50b.zip

Multidimensional Linear Cryptanalysis of Reduced Round Serpent 215

The linear transformation LT is described as follows.

Xo, X1, X2, X3 = Si(B; ® K;)

Xo=Xox 12
X=X, «3
Xi=XieXo® X,
X;=X30X,®d(Xg x 3)
Xi=Xix1
X3 =Xs 7
Xo=Xo® X1 ®X3
X=X X506 (X; x«7)
Xo=Xo x5
X =X, <22

By = Xo, X1, X2, X3

The detailed description of Serpent can be found in [12].



Cryptanalysis of Reduced-Round SMS4
Block Cipher

Lei Zhang!?, Wentao Zhang!, and Wenling Wu!

! State Key Laboratory of Information Security,

Institute of Software, Chinese Academy of Sciences, Beijing 100190, P.R. China
{zhangleil015,wwl}@is.iscas.ac.cn,
zhangwt06@yahoo.com
2 State Key Laboratory of Information Security,

Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China

Abstract. SMS4 is a 128-bit block cipher used in the WAPI standard.
WAPT is the Chinese national standard for securing Wireless LANSs. Since
the specification of SMS4 was not released until January 2006, there
have been only a few papers analyzing this cipher. In this paper, firstly
we present a kind of 5-round iterative differential characteristic of SMS4
whose probability is about 27*2. Then based on this kind of iterative dif-
ferential characteristic, we present a rectangle attack on 16-round SMS4
and a differential attack on 21-round SMS4. As far as we know, these
are the best cryptanalytic results on SMS4.

Keywords: SMS4, Block cipher, Differential characteristic, Rectangle
attack, Differential cryptanalysis.

1 Introduction

SMS4 is the underlying block cipher used in the WAPI (WLAN Authentication
and Privacy Infrastructure) standard to protect WLAN products. The WAPI
standard is a Chinese national standard for securing Wireless LANs, and it was
also submitted to the ISO trying to be adopted as an international standard. Al-
though it was rejected by the ISO in favor of IEEE 802.11i, the WAPI standard is
still officially mandated in China. Considering that the rejection of WAPI by ISO
was partially because of the uncertainties regarding the security of the undis-
closed block cipher, the specification of SMS4 [I] was declassified by Chinese
government in January 2006. The publication of SMS4 is supposed to encour-
age the cryptanalysts to evaluate its strength against all kinds of cryptanalytic
attacks and gain security evidence.

SMS4 employs a 32-round unbalanced Feistel network structure, and both of
its block size and key size are 128 bits. Since its publication, there have been only
a few cryptanalytic results. First of all, a differential fault analysis of SMS4 was
presented in [I3]. Later in 2007, Liu et al [9] investigated the origin of the S-Box
employed by the cipher and presented an integral attack on 13-round SMS4. In
[7], Ji and Hu analyzed the structure of SMS4 from a viewpoint of algebra, and

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 216-229] 2008.
© Springer-Verlag Berlin Heidelberg 2008



Cryptanalysis of Reduced-Round SMS4 Block Cipher 217

estimated the complexity of solving the equation system. Moreover, in [10] Lu
presented a rectangle attack on 14-round SMS4 and an impossible differential
attack on 16-round SMS4, which are the best cryptanalytic results on SMS4 in
the open literature.

Differential attack [2/3] is one of the most effective approaches in analyzing a
cipher. A good cipher must provide enough security against known attacks before
it is widely accepted by public. In [I] the specification of SMS4 was published
without security analysis. Thus in this paper we try to search for good differ-
ential characteristics with high probabilities, and evaluate the security of SMS4
against differential-type attack. Amongst our results, we first present a kind of
5-round iterative differential characteristic of SMS4 whose average probability
is 2742, Then based on a 14-round rectangle distinguisher constructed by the
5-round iterative differential, we mount a rectangle attack on 16-round SMS4.
This is a better result than the rectangle attack in [I0]. Furthermore, by iter-
ating the 5-round iterative differential three and a half times, we can obtain an
18-round differential characteristic with a probability of 2726, Then we present
a differential attack on 21-round SMS4, which is the best cryptanalytic result on
SMS4 so far. However, our attack still can not endanger the full 32-round SMS4
since the round number has provided a sufficient safety margin.

The rest of the paper is organized as follows. Section 2 provides a description
of SMS4. In Section 3, we introduce a kind of 5-round iterative differential char-
acteristics of SMS4. Then in Sections 4 and 5, a rectangle attack on 16-round
SMS4 and a differential attack on 21-round SMS4 are presented respectively.
Finally, Section 6 summarizes this paper.

2 Description of SMS4

SMS4 is a block cipher with a 128-bit block size and a 128-bit key size. The overall
structure of SMS4 is 32-round unbalanced Feistel network. Since the encryption
procedure and the decryption procedure of SMS4 are identical except that the
round subkeys are used in the reverse order, we will just describe the encryption
procedure in the followings.

2.1 Notation

First of all, we introduce the following notations used throughout this paper.

— 732 denotes the set of 32-bit words, and Z§ denotes the set of 8-bit bytes;

— Sbozx(-) is the 8 x 8 bijective S-Box used in the round function F;

— 1: left rotation by 4 bits;

— (X4, Xiy1, Xiv2, Xiv3) € (Z32)* denotes the input of the i-th round, and RK;
is the corresponding 32-bit subkey in round i (0 < ¢ < 31);

— Probp(a — 3) : the probability that the output difference of the function F
is # when the input difference is a (F' can be omitted when the context is clear);
— We call a S-Box active if the input difference of it is nonzero; Otherwise, if
the input difference is zero ,we call it a passive S-Box.



218 L. Zhang, W. Zhang, and W. Wu

X REK; Xin Xito Xits
\4
b 7+ B3
T=LoS
\4 \ \ \4
Xit1 Xito Xit3 Xita

Fig. 1. The i-th round of SMS4

2.2 Encryption Procedure of SMS4

Let (Xo, X1, X2, X3) € (Z3%)* and (Yp, Y1, Y2, Y3) € (Z3%)* denote the 128-bit
plaintext P and the 128-bit ciphertext C respectively. The round subkeys are
RK; € Z5?, (i =0,1,2,...31). Note that the first round is referred as Round 0.
Then the encryption procedure of SMS4 is as follows:

Xita=F(X;, Xiv1, Xiq2, Xivs, RK;) = X; 8 T(Xi41 @ Xig2 & Xiy3 @ RK;),

for i = 0,1,...,31. In the end, the 128-bit ciphertext is generated by applying
the switch transformation R to the output of Round 31:

(Yo, Y1,Y2,Y3) = R(X32, X33, X34, X35) = (X35, X34, X33, X32).
Specifically, the i-th round of SMS4 can be expressed as follows:
(X Xist, Xiva, Xita) — (Xip1. Xivo, Xiys, Xita),
and the round function F(X;, X;11, X192, Xit3, RK;) is defined as:
Xija=X; T (Xi41 ® Xi2 ® Xiy3 ® RK;),

where the transformation 7" is composed of a non-linear transformation S and a
linear diffusion function L, namely T'(-) = L(S(-)).

The non-linear transformation S applies the same 8 x 8 S-Box four times in
parallel to an 32-bit input. Let A = (ag,a1,az2,a3) € (Z8)* denotes the input
of transformation S, and B = (b, b1, b, b3) € (Z5)* denotes the corresponding
output. Then the transformation S is defined as follows:

(bo, b1, b2, b3) = S(A) = (Sbox(ag), Sbox(ay), Sbox(az), Sbox(as)).

The diffusion transformation L is a simple linear function whose input is the
output of transformation S. Let B € Z3? and C € Z3? denote the input and
output of L respectively. Then the linear function L is defined as follows.

C=LB)=Ba(B 2B 10a(B 18)a(B 24).



Cryptanalysis of Reduced-Round SMS4 Block Cipher 219

Fig. [ depicts one round of the encryption procedure of SMS4. We omit the
key scheduling algorithm of SMS4 as it is not involved in our analysis, and
interested readers can refer to [I] and [I0] for details.

3 5-Round Iterative Differential Characteristic of SMS4

In this section, we present a kind of 5-round iterative differential characteristic
of SMS4 whose average probability is about 2742, Our later analysis are mainly
based on this new-found iterative differential. Fig. 2 illustrates the trace of the
5-round iterative differential characteristic in detail.

Let o € Z3*\{0} denotes a 32-bit nonzero difference, and we choose the input
difference of Round ¢ as (a, a, a, 0). Then the input difference of transformation
T in Round 7 equals to 0 (= a®a®0); thus the output difference of T" also equals
to 0. Therefore, the output difference of the i-th round is (o, «r, 0, ) with proba-
bility 1. Next in Round (i + 1), the input and output difference of T are both 0;
hence the output difference of the (i + 1)-th round is («, 0, «v, ) with probability
1. Similarly, after passing through the (i + 2)-th round, the output difference of
Round (i+2) is (0, @, v, ) with probability 1. In the (i + 3)-th round, the input
difference of T equals to a. Then after applying transformation 7', the probability
that the output difference is also « is denoted as Probr (o« — «). Therefore, the
output difference of Round (i+3) is (o, «, v, ) with probability Proby (o« — «).
Similar analysis can be applied to the (i + 4)-th round, and the input difference
of Round (i 4 4) can be transformed into the output difference (a, a, , 0) with
probability Probr (v — «). Therefore, we have obtained the following 5-round
iterative differential characteristic whose probability is (Probr (o — «))>.

(o, , 0, 0) SR (o, ,0,0), p=(Proby (o — a))2 . (1)

The subsequent problem would be how to select the value of a to make the
probability (Proby (o — a))2 as high as possible. First of all, we introduce the
following two properties of SMS4 which are important to our analysis.

Property 1. For the S-Box of SMS/, there exist 127 possible output differences
for any nonzero input difference, of which 1 output difference occurs with prob-
ability 275, and each of the other 126 output differences occurs with probability
27,
Definition 1. (Branch number) Let W(-) denote the byte weight function,
namely the number of nonzero bytes. The branch number of a linear transforma-
tion L : Z3* — Z32 is:
min  (W(a) + W(L(a))).

min (W(a) £ W (L))
Property 2. The branch number of the linear transformation L in the round
function of SMSY is 5.

Property 1 and 2 can be verified by computer programs easily. Moreover, ac-
cording to Property 1, we can see that the difference distribution table of the
SMS4’s S-Box is similar to that of AES.



220 L. Zhang, W. Zhang, and W. Wu

« « o 0
RK;

\

é‘ T~ @E p=1

« RKii1 « 0 «
v

é‘ T~ GBE p=1

« RKiso 0 « «
A\

é‘ T~ @E p=1

0 RKiys o o o
v
é‘ T+ D+ p = Probr (o — «)
« RK»L+4 « « «
v
é‘ T+ D p = Probr (a — «)
A\ \ \ v
«a o o 0

Fig. 2. The 5-round iterative differential characteristic of SMS4

In order to make the probability of the above iterative differential as high as
possible, we need to make the number of active S-Boxes in the non-linear layer
as low as possible. Considering that in the above differential both the input and
output difference of T" are o and the branch number of L is 5 according to Prop-
erty 2, we can know that « has at least 3 active bytes. Therefore, the probability



Cryptanalysis of Reduced-Round SMS4 Block Cipher 221

of the above iterative differential is maximized when « has only three active
bytes. For simplicity, we can fix the passive byte as byte 0, and « is expressed
as (0,a1, az, asz), where a1, as,az € Z§\ {0}. Furthermore, since the input differ-
ence of transformation S is a and the corresponding output difference is L= (),
the first byte of L™! (o) must be zero, namely L~! (a) = (0,b1, ba, b3), where
b1, ba, by € Z8\ {0}. After testing all the possible values of a = (0, a1, az,a3) by
programs, there remain about 2'6 candidates satisfying that only the first byte
of L71 (a) is zero.

For all the 216 remaining candidates of a, the probability Probr (a — «) can
be computed as follows.

Probspos (a1 — b1) X Probgpes (az — ba) X Probspes (as — bs) .

According to Property 1, for any nonzero input difference, there are only 127
possible output differences. Therefore, Probr (o — «) is not equal to 0 for only
about 213(= 216 x (1/2)%) possible values of o. Our experimental results verify
the theoretical estimations well, and in practice we get 7905 (Rﬁ 212'95) possible
values of a. Moreover, according to Property 1, only one of the 127 possible
output difference occurs with probability 276, and each of the other 126 output
differences occurs with probability 2~7. Thus for most of the 2'3 possible values of
a (with a probability of (126/127)3), Probr (a — «) equals to (277)3. Although
for a few possible a, Probr (o — «) may have higher probability such as 272°
and 2719, Therefore, in most cases of the 2'3 possible «, the probability of the
above 5-round iterative differential characteristics is 2742, Note that for a few
a, the 5-round iterative differentials may have higher probability.

To sum up, the average probability of the 5-round iterative differential charac-
teristic (o, , «, 0) LN (o, a, i, 0) is about 2742 and there are about 2'3 possible
values of & when we fix the first byte of a as passive byte. Similar analysis can be
applied to the cases when we fix the other byte as passive byte, and our testing
programs get just the same results.

In the end, we give an example of the 5-round iterative differential. Choose
a = 00e5edec (in hexadecimal), then we have L™1(a) = 0001 0c 34. According
to the difference distribution table of the S-Box, we have the following equations:

Probgpes (€5 — 01) = Probspes (ed — 0¢) = Probspes (ec — 34) = 277,

Thus the probability that both of the input and output difference of T are «
is Probr(00 €5 ed ec — 00 €5 ed ec) = 2721, Therefore, we get the following
5-round iterative differential characteristic of SMS4:

(00e5edec, 00ebedec, 00e5edec, 0) SR, (00e5edec, 00e5edec, 00e5edec, 0)
whose probability is 2742

4 Rectangle Attack on 16-Round SMS4

The rectangle attack [BJ6ITT] is an improved chosen plaintext variant of the
boomerang attack [SIT2]. The key idea is to encrypt many plaintext pairs (Py, Ps)



222 L. Zhang, W. Zhang, and W. Wu

and (Ps, Py) with input difference A to look for quartets that conform to the
rectangle distinguisher, namely C1 ®&C5 = Co®Cy = 4. First of all, a block cipher
is treated as a cascade of two sub-ciphers E = E' o E°, such that for E° there
exists a differential A\ — @ with probability p, and for E' there exists a differential
v — 0 with probability q. Thus the probability of the rectangle distinguisher is
p227"¢%. Then by using all possible #’s and +’s simultaneously, we can get a

rectangle distinguisher with probability 27" (;5(})27 where p = \/Z Pr? [\ — f]
B

and ¢ = /> Pr*[y — ¢]. Finally, by guessing subkeys of the first or the last
Bt
several rounds , the rectangle distinguisher can be used for a key recovery attack.

4.1 The 14-Round Rectangle Distinguisher

In this subsection, we construct a 14-round rectangle distinguisher based on the
5-round iterative differential characteristic described in Section 3. This distin-
guisher can be used to mount a rectangle attack on SMS4 reduced to 16 rounds.

According to the analysis in Section 3, although for most of the 2!3 possible
values of a the probabilities of the 5-round iterative differential are 2742, there
are still some a which can lead to differentials with higher probabilities. By
searching through all the possible values, we choose a = 00 ¢3 02 90 which max-
imizes the probability of the 5-round iterative differential, and the probability
of one round Probr(a — «) is computed as follows.
Prob (c3 — 90) x Prob (02 — 81) x Prob(90 — 45) =277 x 276 x 276 =2-19
Therefore, we have obtained a 5-round iterative differential with probability 2738
which is higher than the average probability.

Based on this specific 5-round iterative differential, we can construct a 14-
round rectangle distinguisher, and the differentials used for E (Rounds 0-8)
and E' (Rounds 9-13) are as follows.

—The following 9-round differentials are used for E°: (A, A, A,0)— (A, A, A, 3),
where A = 00 ¢3 02 90 and 3 has 1272 possible values. It is constructed by
iterating the above 5-round differential one and a half times, and then extending
one more round in the end. Note that a half 5-round iterative differential means
the first three rounds whose probabilities are all equal to 1. See Table 1 for
details of the first differential, and the difference in the table means the input
difference to the corresponding round.

—The following 5-round differentials are used for E': (v, ¥, ¥, W) — (¥, ¥, ¥,§),
where ¥ = 00000002, 6 = 83060685 and v has 127 possible values. It is
composed of a half 5-round differential and two extended rounds before and
after it. See Table 2 for details of the second differential.

For the first differential, there are 1272 possible output differences /3. Accord-
ing to Property 1, the probabilities of pg are distributed as follows: one 3 has
probability 2718, 3-126 have probability 27!, 3-1262 have probability 272°, and
1263 have probability 272!. As we use all these differentials simultaneously, the
probability of the first differential is j = \/Z Pr2[(A, A, A,0) — (A, A, A, B)] ~

B



Cryptanalysis of Reduced-Round SMS4 Block Cipher 223

Table 1. The first differential used for E°

ROqu(i) AXZ AXi+1AXi+2 AX»L+,5 PI‘Ob.

0 (A, A, A,0) /
1 (A, A,0,A) 1
2 (4,0, A, A) 1
3 (0,4, A, A) 1
4 (A, A, A, A) 219
5 (A, A, A,0) 219
6 (A, A,0,A) 1
7 (A,0,A, A) 1
8 (0,4, A, A) 1
output (A, A A B) g

Table 2. The second differential used for E*

Round(i) AXZ‘AXZ‘JrlAXZ‘Jrz AXi+3 Prob.

9 (v, W, W, W) /
10 (0, ¥, ¥,0) Dy
11 (0, ,0,%) 1
12 (7,0,0,W) 1
13 0,9, 9, %) 1

output (0, ¥, W,5) 2-6

24847 Gimilar analysis can be applied to the second differential, and the total
probability of the second differential is § = \/z P2 [(y, 0, 0, W) — (¥, 0, W, )] ~
Bt

27955 Therefore, the probability of the 14-round rectangle distinguisher is about
27128 (2748472 (279:55)2 2724404 A for a random permutation, the prob-
ability that a quartet satisfies the distinguisher is (27128)2 = 27256 < 9=244.04,

this 14-round rectangle distinguisher can be used to mount a key recovery attack.

4.2 Rectangle Attack Procedure

We set the 14-round rectangle distinguisher at Rounds 0 ~ 13, and by guessing
subkeys of the following two rounds we can mount a rectangle attack on SMS4
reduced to 16 rounds (Round 0 ~ 15). Since the last switch transformation R
has no effect to our attack, we will omit it in the later analysis. The rectangle
attack procedure is as follows.

1. Choose N = 2'2% pairs of plaintexts (P;, P;"), where P} = P, & (A, A, A,0).
Denote the corresponding ciphertext pairs as (C;, C7), and the k-th (0 < k <
3) word of C; and C} are denoted as C; ;, and C’i"i . respectively. Then these
pairs can generate about N?/2 = 2247 candidate quartets (C;, G, C;, C5),
for 1 <i<j <2124,



224 L. Zhang, W. Zhang, and W. Wu

2. For each candidate quartet (C;, C}, Cj, C7), check if the first two words of
C; ® Cj and Cf @ CF are equal to (¥,0). If this is not the case, discard the
quartet. After this test there remains about 2247.2764.2764 = 2119 guartets.

3. For all the remaining quartets, compute C; o@®C;, 10 C; 2 and Cj o®C; 1B C) 2,
which are the inputs of 7" in Round 15 for C; and C} respectively. Then insert
the quartets into a hash table indexed by the 64-bit computed values. About
2119 . 964 — 955 collisions are expected for each index.

4. For every guess of the 32-bit subkey RK75 in Round 15, do as follows:

(a) For each 64-bit index, compute the output of transformation 7" in Round
15, namely T(CZ')O @Ci,l @CZ')Q &) RK15) and T(Cj)o @Cjﬂ &) Cj’g &) RK15).
Then for each quartet (C;, C7, Cj, C7) that collides on the same index,
decrypt Round 15 for C; and C}. Check if the first word of their output
difference of Round 14 is equal to ¥, and discard the unsatisfied quartets.
After this test there remains about 2°° - 2732 . 264 = 287 quartets.

(b) Next insert all the remaining quartets into a hash table indexed by the
64-bit value C7( @® C7) @ C7y and C7, @ C7 ) @ CF,. This will cause
about 287 - 2764 = 223 collisions for each index. Using the guessed value
of subkey RKji5, decrypt the 15-th round for C7 and C7. Check if the
first word of their output difference of Round 14 is equal to ¥. If this
is not the case, discard the quartet. After this test there remains about
223.9732. 964 — 95 quartets.

(¢) For all the remaining quartets, try all the possible values of subkey
RK14, and decrypt the 14-th round for C; and Cj;. Check if the first
word of their output difference of Round 13 is equal to ¥. If this is not
the case, discard the quartet. Then decrypt Round 14 and do the similar
check for CF and C7}, and discard the unsatisfied quartets. If 6 or more
quartets pass all the tests, output the corresponding guessed subkey as
correct RK 5 and RK14. Otherwise, return to Step 4 and repeat.

232

4.3 Analysis of the Attack

After the tests in Step 4-(c), for the wrong key guesses, the expected remaining
quartet is about 2°° - 27%% = 279 However, for the correct key guess, it is
expected that there remain about 2247 . 2724404 ~ 8 right quartets after all
the tests. Thus the probability that a wrong subkey guess is output in Step 4-
(c) is about 2735 which is computed approximately by the following Poisson
distribution: X ~ Poi(A = 279), Pr[X > 6] ~ 27935 Hence the number of
wrong subkey outputs is rather small, and it can be removed easily by one
encryption check. For the correct key guess, the probability that 6 or more
quartets pass all the tests is approximately 0.81, which is computed by the
Poisson distribution X ~ Poi(A = 8), Pr[X > 6] ~ 0.81. Therefore, the success
probability of the rectangle attack on 16-round SMS4 is about 81%.

The attack requires 2'2° chosen plaintexts in all, and the time complexity can
be estimated as follows. Compared to the decryptions in Step 4, the computations
in Steps 2 and 3 take relatively small time and thus can be omitted. For Steps
4-(a) and (b) the time complexities are both about 232 - 264 = 29 one round



Cryptanalysis of Reduced-Round SMS4 Block Cipher 225

encryption. In Step 4-(c¢) the total number of guessed subkey bits are 64-bit, and
there remains 2% quartets for the first check and 223 quartets for the second
check; thus the time complexity of Step 4-(c) is about 264.255.24264.223.9 ~ 2120
one round encryption. Therefore, the total time complexity of the attack is about
2120 /16 = 2116 16-round encryption. The remaining 64-bit unknown subkeys can
be obtained by other technique such as exhaustive search.

We stress that our rectangle attack on 16-round SMS4 is just a simple and
standard attack, and we have not adopted any skills such as plaintext structures
and divide-and-conquer technique. Therefore, we believe that by utilizing these
techniques significant improvements can be made to our attack.

5 Differential Cryptanalysis on 21-Round SMS4

In this section, we construct an 18-round differential characteristic by iterating
the 5-round iterative differential described in Section 3 three and a half times,
and its probability is about (2742)% = 27126, The 18-round differential (Rounds
0 ~ 17) can be expressed as follows.

(o, a0, 0) 2R, (o, 0, 0, 0) 28, (o, a0, 0) 2R, (o, 0, 0, 0) 2R, 0,a, o, o).

Then by guessing subkeys of the following three rounds we can mount a differ-
ential attack on SMS4 reduced to 21 rounds.

According to the analysis in Section 3, there are about 2'3 possible values of o
when we fix the first byte as passive byte. In later analysis, we denote the set of
all the 213 possible o as Dif f = {((0, u, v, w), (0,u, v, w), (0,u,v,w), (0,0,0,0))}.
Therefore, when the difference of a plaintext pair belongs to Dif f, with a average
probability of 27126 the output difference of them after Round 17 is expected to
be ((0,0,0,0), (0, u,v,w), (0,u,v,w), (0,u,v,w)).

5.1 Attack Procedure

We set the 18-round differential at Rounds 0 ~ 17, and choose the differences
of the plaintext pairs as («, «,«,0) € Diff, where « = (0,u,v,w). Then the
output differences of Round 17 for the right pairs are expected to be (0, a, o, @),
and the output differences of the following three rounds are supposed to be
(o, a, a0, %), (@, %, %) and (q, *, %, %), where * denotes an unknown word. The
differential attack on 21-round SMS4 (Rounds 0 ~ 20) is described as follows.

1. Select m structures of 272 plaintexts each, where in each structure the 56 bits

of bytes 0,4,8,12,13,14, 15 are fixed, and all the other 72 bits take all the
possible values. Then each structure generates about (272)2/2 = 2143 plain-
text pairs with difference ((0, *, *, x), (0, %, x, %), (0, *, *, %), (0,0,0,0)), and m
structures can propose about m - 243 plaintext pairs in all.

2. For each plaintext pair, check if the difference of the plaintext pair belongs
to set Dif f. If this is not the case, discard the pair. After this test, about
m - 2143 . (213 /272) = . 284 plaintext pairs are expected to remain.



226 L. Zhang, W. Zhang, and W. Wu

3. For each remaining pair (P;, P;), compute the plaintext difference and de-
note it as ((0, u, v, w), (0,u,v,w), (0,u,v,w),(0,0,0,0)). Then compute the
difference of the corresponding ciphertext pair (C;, C;), and check if the first
word of the ciphertext difference equals to (0, u, v, w). If this is not the case,
discard the pair. After this test there remains m - 284 - 2732 = m - 252 pairs.

4. For every guess of the 32-bit subkey RK5g in Round 20, do as follows:

(a) For all the remaining pairs, partially decrypt the 20-th round: Xsg =
Xog DT (X1 ® Xoo ® Xos ® RKop). Check if the first word of the output
difference of Round 19 equals to (0,u,v,w), and discard the unsatisfied
pairs. After this test, there remains m - 2°2 - 2732 = m - 220 pairs.

(b) For every guess of the 32-bit subkey RK19, decrypt the 19-th round for
the remaining pairs: X19 = Xo3 ® T(Xog B Xo1 ® Xo2 & RK19). Check if
the first word of the output difference of Round 18 equals to (0, u, v, w),
and if this is not the case discard the pair. After this test, for every
guess of RK»sy and RKig, there remains about m - 220 . 2732
2712 pairs.

(c) Try all the 232 possible values of subkey RK1g, and decrypt Round 18
for the remaining pairs: X158 = Xoo @ T (X19® Xog® X271 ® RK15). Check
if the first word of the output difference of Round 17 equals to 0. If this
is not the case, discard the pair. After this test, for every guess of RKyy,
RK19 and RK1g, there remains about m - 2712 .2732 = ;. 274 pairs.

5. Output the 96-bit subkey guess RKs, RK19 and RK;g as the correct subkey,
if it has maximal number of remaining pairs after Step 4-(c).

= m -

5.2 Analysis of the Attack

As the average probability of the 18-round differential is 27126, it is expected
that there remains about m - 284 . 27126 = 1 . 2742 right pairs for the correct
key. However, for the wrong subkey guesses, the expected number of remaining
pairs after Step 4-(c) is about m - 284 . 27128 = 4. 2744 In later analysis, we
exploit the concept of ”signal-to-noise ratio” introduced by Biham and Shamir
in [3] to choose appropriate value of m to make the differential attack succeed.

The signal-to-noise ratio is defined as the proportion of the probability of the
right key being suggested by a right pair to the probability of a random key
being suggested by a random pair with the initial difference. According to [3],
the signal-to-noise ratio can be computed by the following formula:

2k x p
axf

where k is the number of guessed key bits, p is the probability of the differential
characteristic, « is the average number of keys suggested by a counted pair, and
( is the ratio of the counted pairs to all pairs (both counted and discarded).

In the above attack, we have guessed 96-bit subkeys and the probability of
the differential characteristic is 27126, For every test in Step 4, there are 232

S/N =



Cryptanalysis of Reduced-Round SMS4 Block Cipher 227

possible key guesses and a counted pair needs to satisfy a 32-bit condition; thus
a = 1. In Step 3, a 32-bit condition is used to discard the pairs, thus 8 = 2732
Therefore, the signal-to-noise ratio of the above attack is 296 . 27126 /2732 — 4,
According to the suggestions of Biham and Shamir in [3], about 20 ~ 40 right
pairs are needed to mount a successful differential attack when S/N = 2, and
less right pairs are needed when S/N > 2. Hence, in our attack we can choose
m = 2%, and the expected number of right pairs is about 246 . 2742 = 16.

Therefore, the attack requires 246 - 272 = 218 chosen plaintexts in all. Since
Steps 1 to 3 take relatively small time which can be omitted, the time complexity
of the attack is dominated by Step 4-(a). The time complexity of this step
is about 2 - 252 .2%6 . 232 — 92131 gpe round encryption. Thus the total time
complexity of the attack on 21-round SMS4 is about 213!/21 ~ 2126:6 21_round
encryptions.

6 Conclusion

In this paper, firstly we present a kind of 5-round iterative differential charac-
teristic whose average probability is 2742, Then based on this 5-round iterative
differential, we construct a 14-round rectangle distinguisher and mount a rect-
angle attack on 16-round SMS4 with 2'2° chosen plaintexts and 2''6 encryp-
tions. Moreover, by iterating the 5-round differential characteristic three and a
half times we can obtain an 18-round differential characteristic, and a differen-
tial attack is applicable to 21-round SMS4 whose complexities are 2!'® chosen
plaintexts and 2'26-6 encryptions. As far as we know, our differential attack on
21-round SMS4 is the best cryptanalytic result on SMS4. Table 3 summarizes
our results along with the previously known attacks on SMS4.

Table 3. Summary of our results and the previously known results on SMS4

# of Attack Data Time Source
rounds type Complexity Complexity
13 Integral Attack 216 ot [
14 Rectangle Attack 212182 211666 [10]
16 Rectangle Attack 2125 Q116 This paper
16 Impossible Differential 2105 2107 [10)

2118 2126.6

21  Differential Cryptanalysis This paper

Although our differential attack can reach up to 21 rounds of SMS4, it still
can not endanger the full 32-round SMS4 since the round number has provided
enough safety margin. We hope our results can be helpful in evaluating the
security of SMS4 against differential-type attacks, and we look forward to further
work in evaluating SMS4 against other kinds of cryptanalytic attacks.



228 L. Zhang, W. Zhang, and W. Wu

Acknowledgments. This work is supported by the National High-Tech Re-
search and Development 863 Plan of China (No.2007AA01Z470), the National
Natural Science Foundation of China (No0.90604036), and the National Grand
Fundamental Research 973 Program of China (No.2004CB318004). Moreover,
the authors are very grateful to the anonymous referees for their comments and
editorial suggestions.

References

1. Specification of SMS4, Block Cipher for WLAN Products — SMS4 (in Chinese),
http://www.oscca.gov.cn/UpFile/200621016423197990.pdf

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystem (ex-
tended abstract). In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 2—-21. Springer, Heidelberg (1991)

3. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

4. Biham, E.,; Dunkelman, O., Keller, N.: The Rectangle Attack - Rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340—
357. Springer, Heidelberg (2001)

5. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507
525. Springer, Heidelberg (2005)

6. Biham, E., Dunkelman, O., Keller, N.: A Related-Key Rectangle Attack on the
Full KASUMI. In: Roy, B. (ed.) ASTACRYPT 2005. LNCS, vol. 3788, pp. 443-461.
Springer, Heidelberg (2005)

7. Ji, W., Hu, L.: New Description of SMS4 by an Embedding over GF(2%). In: Sri-
nathan, K., Pandu Rangan, C., Yung, M. (eds.) Indocrypt 2007. LNCS, vol. 4859,
pp. 238-251. Springer, Heidelberg (2007)

8. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks against Reduced-
Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp.
75-93. Springer, Heidelberg (2001)

9. Liu, F., Ji, W., Hu, L., Ding, J., Lv, S., Pyshkin, A., Weinmann, R.P.: Analysis of
the SMS4 Block Cipher. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP
2007. LNCS, vol. 4586, pp. 158-170. Springer, Heidelberg (2007)

10. Lu, J.: Attacking Reduced-Round Versions of the SMS4 Block Cipher in the Chi-
nese WAPI Standard. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS,
vol. 4861, pp. 306-318. Springer, Heidelberg (2007)

11. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Differential and Rectangle Attacks on
Reduced-Round SHACAL-1. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 17-31. Springer, Heidelberg (2006)

12. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156-170. Springer, Heidelberg (1999)

13. Zhang, L., Wu, W.: Differential Fault Analysis on SMS4 (in Chinese). Chinese
Journal of Computers 29(9), 1596-1602 (2006)


http://www.oscca.gov.cn/UpFile/200621016423197990.pdf

Cryptanalysis of Reduced-Round SMS4 Block Cipher 229
Appendix A: The S-Box of SMS4

0x0 Ox1 0x2 0x3 0Ox4 0x5 0x6 0x7 0x8 0x9 Oxa Oxb Oxc Oxd Oxe Oxf
0xO d6 90 e9 fe cc el 3d b7 16 b6 14 2 28 fb 2¢c 05
0x1 2b 67 9a 76 2a be 04 ¢3 aa 44 13 26 49 86 06 99
0x2 9¢ 42 50 f4 91 ef 98 Ta 33 54 O0b 43 ed cof ac 62
0x3 e b3 1lc a9 ¢9 08 e8 95 8 df 94 fa 75 & 3f ab
Ox4 47 07 a7 fc 3 73 17 ba 83 59 3c 19 e6 85 4f a8
0x5 68 6b 8 b2 71 64 da 8 8 eb 0Of 4b 70 56 9d 35
0x6 1le 24 0e bHe 63 58 dl a2 25 22 7¢c 3b 01 21 78 87
0x7 d4 00 46 57 Oof d3 27 52 4c 36 02 e7 a0 c4 c8 e
0x8 ea bf 8a d2 40 ¢7 38 b5 a3 7 2 ce 9 61 15 al
0x9 e ae 5d a4 9b 34 1la 55 ad 93 32 30 f5 & bl e3
Oxa 1d f6 e2 2 82 66 ca 60 cO 29 23 ab 0d 53 4e 6f
Oxb d5 db 37 45 de fd 8 2f 03 ff 6a 72 6d 6¢c 5b 51
Oxc 8 1b af 92 bb dd be 7 11 d9 5¢ 41 1f 10 5a d8
Oxd Oa c¢1 31 8 a5 cd 7b bd 2d 74 d0O 12 b8 e5 b4 b
Oxe 89 69 97 4a 0Oc 96 77 Te 65 b9 f1 09 c5 6Ge c6 84
Oxf 18 f0 7d e 3a dc 4d 20 79 e 5f 3e d7 cb 39 48




On the Unprovable Security of 2-Key XCBC

Peng Wang'!, Dengguo Feng?, Wenling Wu?, and Liting Zhang?

! State Key Laboratory of Information Security
Graduate University of Chinese Academy of Sciences, Beijing 100049, China
wp@is.ac.cn
2 State Key Laboratory of Information Security
Institution of Software of Chinese Academy of Sciences, Beijing 100080, China
{feng,wwl,zhangliting}@is.iscas.ac.cn

Abstract. There has been extensive research focusing on improving
CBC-MAC to operate on variable length messages with less keys and
less blockcipher invocations. After Black and Rogaway’s XCBC, Moriai
and Imai proposed 2-Key XCBC, which replaced the third key of XCBC
with its first key. Moriai and Imai “proved” that 2-Key XCBC is secure
if the underling blockcipher is a pseudorandom permutation (PRP). Our
research shows that it is not the case. The security of 2-Key XCBC can
not be proved under the solo assumption of PRP, even if it is a RPR-
RK secure against some related-key attack. We construct a special PRP
(PRP-RK) to show that the main lemma in [I4] is not true and 2-Key
XCBC using this PRP (PRP-RK) is totally insecure.

Keywords. Blockcipher, Blockcipher mode of operation, Message au-
thentication code, Provable security, Related-key attack.

1 Introduction

CBC-MAC [§] is the most commonly used message authentication code (MAC)
based on a blockcipher. Let E : £ x {0,1}™ — {0,1}" be the underling blockci-
pher and let M = M; --- M, be a string we want to MAC, where |M;| =--- =
|M,,| = n. Then CBC-MACk (M), the CBC-MAC of M under the key K, is
Ty, where

Ti = EK(Mi @Ti—l) fOI‘ 7= 1,...,m and TO = On

If the underling blockcipher is a pseudorandom permutation (PRP), then
CBC-MAC is secure [I] in the sense of reduction-based cryptography. Unfortu-
nately this provable security result only holds for fixed length messages and for
variable length messages CBC-MAC is not secure. For example, if the CBC-MAC
of a one-block message M is T = CBC-MACgk (M) = Ex (M), the CBC-MAC
of the two-block message M||(M @& T) is once again T

To overcome this drawback, several variants of CBC-MAC such as EMAC,
XCBC, TMAC and OMAC, have been proposed which are probably secure for
variable length messages.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 230238 2008.
© Springer-Verlag Berlin Heidelberg 2008



On the Unprovable Security of 2-Key XCBC 231

EMAC [6l15] encrypt CBC-MAC by E again with a new key:
EMACk, x,(M) = Ex,(CBC-MACy, (M)).

In order to operate on arbitrary length messages, some padding method must
be used. For example, we append the minimal bit string 10° to the message M
to make the length a multiple of n. However, when | M| is already a multiple of
n, we must append an entirely extra block 107!, That will waste a blockcipher
invocation. Furthermore, because K; and Ko are both keys fed to E, EMAC
need two blockcipher key setups.

Black and Rogaway proposed XCBC [4] to solved the above problems. They
treated different messages using different keys according to whether or not the
length of the message is a multiple of n, shaved off one blockcipher invocation,
and avoided keying E by multiple keys. XCBC has three keys (Ki, Ko, K3),
where K7 € K which is fed to E and Ks, K35 € {0,1}" which are XORed with
the last message block. When |M] is a multiple of n, XCBC does the same as
CBC-MAC, except for XORing K5 before encrypting the last block. When |M |
is not a multiple of n, XCBC firstly appends some 10° to make it a multiple of n,
and then does the same as CBC-MAC, except for XORing K3 before encrypting
the last block.

Kurosawa and Iwata then proposed TMAC [13] which has two keys. They
replaced (K3, K3) in XCBC with (K5 -u, K2) where u is some non-zero constant
and - is the multiplication in some finite field. Finally, Iwata and Kurosawa
proposed OMAC [I0] which has only one key. They replaced (K3, K3) in XCBC
with (L - u,L - u?) (in OMAC1) or with (L - u,L-u~') (in OMAC2) where
L = Ek(0™) and u is some non-zero constant. CMAC [7] which was adopted by
NIST as the recommendation for MAC is just OMACI.

Moriai and Imai proposed 2-Key XCBC [14/9] right after XCBC. Their pur-
pose was the same as TMAC and OMAC — minimum size of key. They replaced
K3 in XCBC with K. So 2-Key XCBC is just XCBC with keys (K7, Ko, K71).
Moriai and Imai “proved” that 2-Key XCBC is secure using the main lemma
that (Ex(), Ex (K @-)) is indistinguishable from a pair of independent uniform
random permutations (URPs), if E is an PRP.

Unfortunately, it is not the case. We notice that when the message M is not
of a multiple of n, 2-Key XCBC only takes one key K; which is both keying F
and XORed with the last padded message block. For example when |M| =n—1,
the 2-Key CBC is

2‘Key XCBCKl,Kz(M) = .E‘[{1 (K] @ MH].).

Furuya and Sakurai studied 2-Key XCBC from the attacking point of view [9].
They instantiated the underling blockcipher with practical ones such as DESX,
AES, etc., and pointed out that it is very dangerous to XOR the key of the
blockeipher to the message (they called it raw-key masking [9]). For example,
when F is AES, the XORing of the key removes the key to the first round of
AES, because they are identical, resulting in one less round AES.



232 P. Wang et al.

1.1 Owur Contributions

We study 2-Key XCBC from the provable-security point of view. We show that
the proof for 2-key XCBC MAC is not correct. We give a PRP (technically,
a PRP-RK) for which the 2-key XCBC MAC is easily forgeable. We therefore
conclude that the 2-key XCBC MAC construction is not secure.

We construct a special PRP G such that Gx (K @ 0"~ 11) = K for any key
K € {0,1}™, from a PRP E : {0,1}" x {0,1}" — {0,1}. This construction is
similar to the one used in [3]. We prove that if E is a PRP, G is also a PRP,
and furthermore if F is a PRP-RK, G is also a PRP-RK for some related-key
attack.

This construction implies that the main lemma in [I4] does not hold. Because
when one query 0”1 to the right oracle of (Gx(-), Gx (K & -)) reveals the key
K, using this information we can easily distinguish (Gx (), Gx (K @ -)) from a
pair of independent uniform random permutations.

This construction also implies that the underling blockcipher being a PRP
(even if PRP-RK) is not enough for providing the security of 2-Key XCBC. If
the underling blockcipher 2-Key XCBC is G, one query 0"~ ! also reveals the
key K7, which enables us forge any message being of a multiple of n.

1.2 Related Work

It’s dangerous to encrypt the key of scheme together with the plaintext. In [5]
Black, Rogaway and Shrimpton called it key-dependent message (KDM) encryp-
tion. They also defined a general KDM security model and showed that KDM
security can be achieved within the random-oracle model.

The security proof is always a subtle thing, for it is error-prone and difficult to
check. Iwata and Kurosawa found some mistakes in the previous security proofs
and showed that the encryption algorithm and MAC in 3GPP and a variant
of OMAC are not provably secure under the assumption that the underling
blockeipher is only a PRP [TTIT2]. But the algorithms in 3GPP are secure if the
underling blockcipher is a PRP-RK secure against a certain class of related-key
attacks.

2 Preliminaries

Notations. We write s < S to denote choosing a random element s from a
set S by uniform distribution. An adversary is a (randomized) algorithm with
access to one or more oracles which are written as superscripts. We write the
adversary A with oracle O outputing a bit b as A9 = b. Adv§ss (A) denotes
the advantage of A attacking a scheme “SSS” with a goal of “GGG”.

Blockcipher, PRP and PRP-RK. A blockcipher is a function F : K x
{0,1}™ — {0,1}™, where Ex(-) = E(K,-) is permutation for any key KK. Let



On the Unprovable Security of 2-Key XCBC 233

Perm(n) be the set of all permutations on {0,1}". In the reduction-based cryp-
tography, we usually treat a secure blockcipher as a pseudorandom permutation
(PRP). A blockcipher is a PRP, if it is indistinguishable from a uniform random
permutation (URP). More specifically, if the advantage

Adviy"(4) = PriK S AP = 1] = Pr[r & Perm(n) : A0 = 1]

is negligible for any A with reasonable resources, then F is said to be a pseu-
dorandom permutation (PRP), or a secure blockcipher, or secure against chosen
plaintext attack.

The notion of PRP-RK was introduced in [2], to model blockciphers secure
against some related-key attacks. In this model, the adversary not only can
choose plaintext but also can change the underling key using a set of related-
key-deriving (RKD) functions. The RKD set depicts the adversaries’ abilities for
deriving related keys. We denote the RKD set as . Without loss of generality, we
assume that any function in @ is a permutation on K. Let Perm (K, n) be the set
of all blockciphers with domain {0,1}™ and key space K, thus 7 & Perm(/C, n)
denotes selecting a random blockcipher, or in other words, for any K € IC, Tk (+)
is a uniform random permutation (URP). Let RK (¢, K) = ¢(K), for any ¢ € &.
A blockcipher is @-PRP-RK secure, if the advantage

AdvEPPTE(A) =prK & K APRKc00) )
— Pr[K & K & Perm(KC, n) : ATrxc.0() = 1]

is negligible for any A with reasonable resources.

MAC and Unforgeability. A MAC is function MAC : Kx M — {0, 1}¢, which
takes a key K € K and a message M € M to return a t-bit tag T € {0,1}%.
We write MAC(K, -) as MACk(-) and say that an adversary AMACK() forges if
it outputs (M, T) such that T = MACk (M) and A never ask query M to its
oracle before. A MAC is secure if the advantage

Advii,o(A) = Pr[K S Ko AMACKO) forges].

is negligible for any A with reasonable resources. The MAC is also said to be
unforgeable, or unpredictable.

XCBC and 2-Key XCBC. Let E : £ x {0,1}" — {0,1}" be the underling
blockcipher, XCBC is the following algorithm:

The only difference between XCBC and 2-Key XCBC is that in the later
K3 = K. Figure [l illustrates XCBC and 2-Key XCBC for a message of three
blocks.



234 P. Wang et al.

Algorithm XCBC[E]x,,k,,k5(M):
T() <—On
Let M = M -+ My, where |[M;|=nfor1<i<m—1land 1< |Mn|<n
for i=1tom—1do
T, — FEx,(M; ®T;_1)
if |[My,|=nthen T «— Ex (M, ® K2)
if |M,,| <n then T — Ex (M, 10"~ *~1Mml g ;)

My | [ M | [ M | [ M | [ M, ] [Msl0--0
|l|, III.:‘ Ky ffl |l.' I\‘g
/ / i /
K+ FE ll.u'l’{l—» E III.'I{I—- E K+ E I."'KI—- E ll.u'l’{l—» E
f / f
[/ / i / [/ !

Fig. 1. XCBC and 2-Key XCBC for a message of three blocks. K3 = K; in 2-Key
XCBC. On the left is the case where |M]| is a multiple of n. While on the right is the
case where it is not.

3 Construction of a Special PRP

In this section we construct a special PRP G : {0,1}" x {0,1}"™ — {0,1}"™ with
following property:

Gr(K a0 ') = K, (1)
for any key K € {0,1}".
We start from a PRP E : {0,1}" x {0,1}" — {0,1}", and define G as follows:

K if M=Kaoo 1,
Gg(M)={ Ex(K® 0" '1) if M=FEg(K),
Ex (M) else.

Theorem 1. If E is a PRP, then G is a PRP. More specifically, G and E are

indistinguishable. For any adversary A with q queries trying to distinguish G
and E, there is an adversary B with no more than (q+ 1) queries such that
2

Pr{A% = 1] - Pr[A” = 1] < 20AdVEP(B) + T

" —q

Furthermore, B runs in approrimately the same time as A.

Proof. Suppose that A makes q queries x;,7 = 1,..., ¢ and the corresponding an-
Swers are yi, ..., Y. We describe the attacking procedure of A as the interaction
with games. Game 1 illustrates how G answers A’s queries.



On the Unprovable Security of 2-Key XCBC 235

11 bad « false Game 1 and Game 2
12 when the query is :

13 if =K®0" "1, bad — true , return K

14 if = E'(K), bad « true , return Ex (K ® 0" 1)
15 return Fx(z)

31 bad < false Game 3
32 when the query is z:

33 if K=2®0" 1, bad — true

34 if K = Fk(x), bad < true

35 return Ex(z)

Fig. 2. Game 1, Game 2 and Game 3. Game 2 is obtained by omitting the boxed
statements

Game 2 is obtained by omitting the boxed statements. Obviously Game 2
illustrates how E answers A’s queries. In Game 1, each boxed statement is exe-
cuted if and only if the flag bad is set to be true. Therefore we have

Pr[AY = 1] — Pr[AF = 1] = Pr[A®»™e ! = 1] — Pr[A%ame 2 = 1] @

< Pr[A%ame 2 sets bad).

Notice that in the Game 2 line 14 » = E'(K) is equivalent to K = Ex ().
We recompose Game 2 into Game 3 and we have

Pr[ASame 2 sets bad] = Pr[A%*™me 3 sets bad). (3)

AGame 3 get bad if and only if during the queries to Ex (+) the key K appears
in {z; 0" 1 :i=1,...,qt orin {y; : i = 1,...,q}. If E is a PRP, this
probability is very small. We construct a new algorithm B making use of A,
trying to distinguish E from a uniformly random permutation. B randomly
chooses a string in {z; @0" 11 :i=1,...,¢q)U{y;:i=1,...,q}, and takes it
as the key of E. The detail is following:

Algorithm B°:

(t,b) < {1,...,q} x {0,1}
run A°
when A asks the t** query z; and gets y;

if b=0,K —z,®0" 1
ifb=1K—uy:

choose = which is not in {z; :i=1,...,t}

d «— EK (m)

query x and get d’

if d = d' then return 1

else return 0



236 P. Wang et al.

Obviously, Pr[K & {0,1}» : B6x<() = 1] > 21qPr[AGame3 sets bad] and
Pr[r < Perm(n) : B™0) = 1] < g2 50 AdVET(B) > 5 PrASme 3 sets bad]—

1
2n g

2

2
Pr{A%™ ¥ sets bad] < 20AdVEP(B) + ! . (4)

Combining @), @) and @), we get

Pr[A® = 1] — Pr[A¥ = 1] < 2¢AdVv%(B) + on g
—q

It is easy to modify the above proof slightly to get the following theorem.

Theorem 2. If E is ®-PRP-RK secure, and @ is set of permutations, then G is
®-PRP-RK secure. More specifically, for any adversary A with q queries trying
to distinguish G and E, there is an adversary B with no more than (¢+1) queries
such that

2
Pr[A% = 1] = Pr[A” = 1] < 20AdvE"™™(B) + T
"—q

Furthermore, B runs in approrimately the same time as A.

4 Unprovable Security of 2-Key XCBC

(Gk(-),;Gk(K & -)) is distinguishable from (71(-),72(:)). The main
lemma in [I4] states that if E is a PRP, (Ex(-), Ex (K @ -)) is indistinguishable
from (m1(+), m2(+)), where 7 and 7 are two independent URPs. This lemma is
the base for their security proof. But it is not the case, because (Gg (-), Gx (K @
1)) is distinguishable from (71 (+),m2(-)). We firstly query 0”711 to the right or-
acle, if it is G (K @ -), we get the key K. This information enable us almost
totally distinguish (Gk (+), Gx (K&-)) from (m1(+), m2(+)). The detailed algorithm
is the following:

Algorithm D1 ():020).

query 0" '1 to Oz(-) and get K’
C— Gg/(1™)

query 1™ to O1(-) and get C’

if C =C’, return 1

else return 0

We can see that Pr[D(C@x().Gx(K&) — 1] = 1 and Pr[DMmO)m0) = 1] = 1|
so the advantage is 1 — 21n.



On the Unprovable Security of 2-Key XCBC 237

2-Key-XCBC[G] is Not a Secure MAC. If the underling blockcipher 2-
Key XCBC is G, one query 0"~ ! also reveals the key K, which enables us to
forge any message with length of a multiple of n. The detailed algorithm is the
following:

Algorithm F*Key-XCBCIGI(0),
query 0"~ ! to 2—Key—XCBC[G](+) and get K’
T « Gg/ (K ®0"210)
return (0" 2,7)

We notice that K’ =2-Key-XCBC[G](0""!) = Gk, (K1 ® 0"~ !1) = Ky, so 2-
Key-XCBC[G](0"2) = G, (K1 @ 0"210) = G (K’ & 0"210) = T and

Adv'x., xepoie) (F) = 1.

Acknowledgment

The authors would like to thank the anonymous referees for their many valuable
comments. This research is supported by the National Natural Science Foun-
dation Of China (No. 60673083, 90604036), the National Grand Fundamental
Research 973 Program of China (No.2007CB311202) and the National High-Tech
Research and Development Program of China (No.2007AA01Z470).

References

1. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341-358. Springer, Hei-
delberg (1994)

2. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491-506. Springer, Heidelberg (2003)

3. Black, J.: The ideal-cipher model, revisited: An uninstantiable blockcipher-based
hash function. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 328-340.
Springer, Heidelberg (2006)

4. Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: The three-key
constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197-215.
Springer, Heidelberg (2000)

5. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62-75. Springer, Heidelberg (2003)

6. Bosselaers, A., Preneel, B. (eds.): RIPE 1992. LNCS, vol. 1007. Springer, Heidel-
berg (1995)

7. Dworkin, M.: Recommendation for block cipher modes of operation: The CMAC
mode for authentication. NIST Special Publication 800-38B (2005),
http://csrc.nist.gov/publications/nistpubs/800-38B/SP 800-38B.pdf

8. FIPS-133. Federal information processing standards publication (FIPS 133). com-
puter data authentication (1985)


http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

238

9.

10.

11.

12.

13.

14.

15.

P. Wang et al.

Furuya, S., Sakurai, K.: Risks with raw-key maksing - the security evaluations of
2-Key XCBC. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS,
vol. 2513, pp. 327-341. Springer, Heidelberg (2002)

Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129-153. Springer, Heidelberg (2003)

Iwata, T., Kurosawa, K.: On the correctness of security proofs for the 3GPP con-
fidentiality and integrity algorithms. In: Paterson, K.G. (ed.) Cryptography and
Coding 2003. LNCS, vol. 2898, pp. 306-318. Springer, Heidelberg (2003)

Iwata, T., Kurosawa, K.: On the security of a new variant of OMAC. In: Lim, J.,
Lee, D. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 67-78. Springer, Heidelberg (2004)
Kurosawa, K., Iwata, T.: TMAC: Two-key CBC MAC. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 33-49. Springer, Heidelberg (2003)

Moriai, S., Imai, H.: 2-Key XCBC: the CBC MAC for arbitrary-length messages
by the two-key construction. In: The 2002 Symposium on Cryptography and In-
formation Security, SCIS (2002) (in Japanese)

Petrank, E., Rackoff, C.: CBC MAC for real-time data sources. Journal of Cryp-
tology 13(3), 315-338 (2000)



Looking Back at a New Hash Function

Olivier Billet', Matthew J.B. Robshaw!, Yannick Seurin', and Yiqun Lisa Yin?

! Orange Labs, Issy les Moulineaux, France
{forename.surname}@orange-ftgroup.com
2 Independent Security Consultant
yiqun@alum.mit.edu

Abstract. We present two (related) dedicated hash functions that de-
liberately borrow heavily from the block ciphers that appeared in the
final stages of the AES process. We explore the computational trade-off
between the key schedule and encryption in a block cipher-based hash
function and we illustrate our approach with a 256-bit hash function
that has a hashing rate equivalent to the encryption rate of AES-128.
The design extends naturally to a 512-bit hash function.

1 Introduction

After recent cryptanalytic advances [37I38] the need for new hash functions has
become acute. In response NIST has made a call for proposals [28] for the devel-
opment of a new Advanced Hash Standard (SHA-3). However most commentators
would probably agree that the field of hash functions has, until recently, been
somewhat neglected and that the current knowledge of hash function design is
somewhat fragmented. So difficult are the starting conditions for the develop-
ment of the AHS that it is not always straightforward to exactly articulate the
properties we want from a hash function. Even worse, there is little agreement
on even the basic features for a successful hash function design.

By way of contrast, if we were to turn the clock back to the start of the
AES process, at that time we already had five years of block cipher theory and
design after the development of linear cryptanalysis [20] and ten years after the
development of differential cryptanalysis [8]. And while all the AES submissions
were very different, their designs had evolved from several years of research
experience gained during the mid-1990s.

In this paper we propose two new (related) dedicated hash functions DASH-
256 and DASH-512. Whilst they are, in principle, suitable for submission to the
NIST hash function development process, this is not our intention. Instead we
prefer to see the paper as research-oriented and our work is prompted by the
following questions:

1. How close can we stay to AES proposals in the design of a hash function?
2. Can we use an unusual key schedule design to our advantage?

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 239 2008.
© Springer-Verlag Berlin Heidelberg 2008



240 O. Billet et al.

2 Background, Goals, and Design Criteria

We informally recapitulate some of the classical goals for a hash function. A
cryptographic hash function H takes an input of variable size and returns a hash
value of fixed length while satisfying the properties of preimage resistance, second
preimage resistance, and collision resistance [2I]. For a secure hash function that
gives an n-bit output, compromising these properties should require 2", 2", and
27/2 operations respectively. A more thorough set of hash function requirements
for the SHA-3 development process is available at [28].

The pioneering work of Merkle and Damgard [14122] showed how to construct
a collision-free hash function from a compression function that has a fixed-length
input. This input consists of a chaining variable and a message extract while
the new value of the chaining variable is produced as output. The chaining
variable will be denoted by v; and the message extract will be denoted by m;.
Thus, at iteration i of the Merkle-Damgard construction, we compute v; 11 =
COMPRESS(my;, v;). The advantages and disadvantages of the Merkle-Damgard
approach are, by now, well-established. On the positive side are its simplicity
and the proof of security that (loosely speaking) relates the collision-resistance
of the hash function to that of the compression function. On the negative side
are cryptanalytic results that take advantage of the chaining that is used in a
repeated application of the compression function [ISITGIT8II9]. These results help
provide a greater understanding of the Merkle-Damgéard approach, particularly
when hashing exceptionally long messages.

Design Decisions

Our design philosophy for DASH-256 (and DASH-512) can be summarised as: keep
it simple and use established techniques. In practise this resulted in the following:

1. We base the hash function around the use of a compression function and the
Merkle-Damgérd paradigm [T4122]. To avoid some structural deficiencies we
use the HATFA model [7] for formatting the inputs.

2. For the compression function we use a block cipher and Davies-Meyer [29).

3. We revisit the AES process and appeal to the vast pool of results [25] to
design a block cipher at the heart of the compression function.

4. We push the parameters of a block cipher key schedule so as to better un-
derstand the range of options for a practical hash function design.

By way of background, we now consider each issue in turn.

Using Merkle-Damgard and Davies-Meyer

While there have been proposals for alternatives to Merkle-Damgard, e.g. the
sponge construction [6], we focus on the body of work that considers adjustments
to Merkle-Damgérd, such as those of Coron et al [I3], Biham and Dunkelman [7],
and Rivest [34]. These proposals share the property that Merkle-Damgard is



Looking Back at a New Hash Function 241

used almost as is, but that additional inputs are included at each iteration of
the compression function. They vary in the form of inputs and the resultant loss
of efficiency, but recent work [2] has shown that the more efficient proposal by
Rivest [34] does not seem to provide the additional security intended. With this
in mind we use the HAsh Tterative FrAmework [7], or HATFA model.

For the compression function itself we use a block cipher in Davies-Meyer
mode. This is a mode for which there is a proof-of-security, i.e. the security
of Davies-Meyer can be reduced to that of the underlying block cipher. If we
denote encryption of a plaintext p under a key k by ENCg(p) then the output of
the Davies-Meyer mode is given by ENCg(p) @ p. When used as a compression
function, for which the chaining variable input is denoted v; and the message
input is denoted m, the next value of the chaining variable output from the
compression function is given by v; 41 = ENC,,(v;) ® v;. We note that there
are some unusual properties of Davies-Meyer. For instance it is easy to find
fixed points for this construction. By choosing v; = ENC;!(0) we have that
COMPRESS(m, v;) = v; since ENC,, (v;)®v; = v;. However the HAIFA model helps
to mitigate the effect of these, as well as countering other recent cryptanalytic
work on long-message attacks [IBII6/I8]. By contrast the Davies-Meyer mode
has one major advantage over other single block cipher constructions [I1]. Note
that for the Davies-Meyer transformation ENC,,(v;) @ v; the block size is given
by |v;| and the key size by |m|. For the AES these are restricted to 128 bits and
128/192/256 bits respectively. However our design allows the block size to vary
between 256 and 512 bits while the “key” length is eight times larger; this permits
larger message inputs on each iteration and a more competitive throughput. And
for block cipher designs there is no better place to look than the AES process [25].

Revisiting the AES Process

Returning to the AES process with the benefit of hindsight is an interesting
experience. We are not the first to do so: the designers of PRESENT [12] used
the AES finalist Serpent [9] as a starting point for the development of their
ultra-compact block cipher. We therefore hope to be able to make similarly
advantageous observations by considering two other finalists: Rijndael (i.e. the
AES |24]) and RC6 [32]. Rijndael is now very well known. Like Rijndael, RC6
was a simple proposal that offered good software performance on modern pro-
cessors [3]. However the 32-bit squaring operation didn’t scale quite as well to
8-bit processors or hardware implementations. However, of particular interest to
us here is the key schedule for RC6. While it is computationally heavy, it allows
very long keys. This is ideal for a hashing application as was observed by the
RC6 designers during the AES process [33].

So the block cipher that lies at the heart of DASH-256 and DASH-512 will use
a topology that is similar to RC6 and CLEFIA [36] along with a key schedule
that is almost identical to that used in RC5 and RC6. However we will make
changes to some of the operations used to improve scalability and to reduce the
potential exposure to side-channel analysis in MAC-applications [27].



242 O. Billet et al.

Block Ciphers and Key Schedules

The performance of a block cipher is dependent on the cost of both the encryption
routine and key setup. For bulk encryption the cost of a single key setup is
amortized over the entire encryption session. However, when used as the basis
for a hash function, the cost of the key schedule becomes a significant factor.
Most modern ciphers, including the AES, tend to have a lightweight key schedule.
In this paper, we want to explore what happens when we put more work into the
key schedule. Given the importance of key schedule performance for hashing, at
first sight this appears to be the wrong direction. Indeed for constructions where
the message and chaining value must be the same size, such as Mateas-Meyer-
Oseas [21] and Miyaguchi-Preneel [2I] (which is used in Whirlpool [5]) this would
be the case. However, the Davies-Meyer construction allows us to take a very
large message block as “key” and provided there is sufficient mixing of the key
there is no reason why a good performance profile cannot be attained.

3 The Specification of DASH-256 and DASH-512

Both DASH-256 and DASH-512 are built around a dedicated block cipher which we
will name Ass6 and As12 respectively. For ease of exposition we will concentrate
on DASH-256 and Ass6 and describe the cipher in terms of an encryption routine
and a key schedule. The necessary changes for DASH-512 are given in Section [3.4]

3.1 The Encryption Routine for Ajysg

One encryption round (out of the 30 required) is illustrated in Figure [[l Each
strand represents a 64-bit word and the key schedule, see Section B.2] generates
64 subkeys of which two are used as pre-whitening for strands B and D, 60
are used during the encryption process (two in each round), and two are used as
post-whitening on strands A and C before output. The data-dependent rotations
and multiplication in RC6 have been replaced in Asss with a confusion/diffusion
operation closely inspired by the AES. The mixing operation Mgy is the natural
restriction of the AES diffusion layer to two columns, see Figure 2] and uses the
S-boxes and AES MDS transformation directly. This allows us to combine the
scalability of RC5 and RC6 with the AES diffusion operationsﬂ However, AES
diffusion is somewhat structured so the one-bit and eight-bit rotations help to
break some alignments and avoid some trivial linear approximations.

3.2 The Key Schedule for Azs54

By using a key schedule that is close to that used in RC5 and RC6 we aim to
leverage its long-standing in the literature and the opportunities for analysis
during the AES process. We also take advantage of the fact that it allows long
key inputs. The original key schedule can be found in either of [30J32] though

! Naturally other MDS transformations [I7] and S-boxes may offer other advantages.



Looking Back at a New Hash Function 243

A B C D

e e e e
O & -0

-« SZ bl SiJrl

A’ B’ C D’

Fig.1. One round of the encryption routine for Aass with the 256-bit input
(A||B]|C||D) being transformed into the 256-bit output (A’||B’||C'||D")

(msb) INPUT (Isb)

\l \l \l \l \l \l \l \l
MIXCOLUMNS MIXCOLUMNS
\/ \/ \/ \/ \/ \/ \/ \/
OuUTPUT

Fig. 2. The mixing operation Mgy that is used in Azse. Note that the S-boxes and
MDS transformations are those specified in the AES.

we follow the example set in the encryption routine and replace the single data-
dependent rotation in the key schedule with the AES-inspired diffusion operation
Mg4. This is illustrated in Figure Bl The input to be hashed at an iteration of
the compression function (after HAIFA formatting) will be 256 bytes long and
loaded into an array of 32 words of 64 bits L[0],. .., L[31]. From this we generate
64 words of 64 bits which are stored in an array 5[0, ..., 63] and used as subkeys
during encryption.



244 O. Billet et al.

S[0] = Pea
for i =1 to 63 do S[i| = S[i — 1] + Qeu

A=B=i=j=0
for s=1 to (3 x64) do

{
A=S[=(Sli|l+A+B)xk3
B=L[jl = (Lljl + A+ B) ® Mes(A + B)
i = (i + 1) mod 64
j=(j+1)mod32
}

Fig. 3. The key schedule for Azss. The input is represented as an array L[] of 32
64-bit words and the output is a set S[] of 64 64-bit subkeys. The constants Pss =
0xB7E151628AED2A6B and Qg4 = 0x9E3779B9TF4A7C15 are those used in RC5 and RC6.

M, ci S M Cy S
Y Y
Vo ° > A Q»Ul ® > A Q»’Ut T »h
COMPRESS COMPRESS

Fig.4. The chained iteration of the compression function. In the HAIFA model,
the initial value vo is computed from an IV (Section B:S]) which we choose to be
0x FEDCBA9876543210 || 0123456789ABCDEF || FDB97531ECA86420 || 02468ACE13579BDF

3.3 The Full Specification of DASH-256

We restrict ourselves to the case of DASH-256 and since we follow the HATFA con-
struction there are three inputs to the hash function; a message M of
length n bits with n < 254, a salt value S of 64 bits, and the length d of the
hash output or message digest. Internally, we use a 64-bit counter that takes a
value denoted C; at iteration i of the compression function. The counter stores
the value—in little-endian notation—of the number of bits of M that have been
hashed so far.

To deal with incomplete blocks we pad M to give a related message M'. The
input to the compression function x; is of the form [M;||C;||S] with |C;| = |S| =
64 and so we generate a padded message M’ that is of length ¢ x 1920 bits
where ¢ is the smallest integer for which ¢ x 1920 > n + 73, the strange number
being explained by what follows: padding is always applied and appends a single
‘1’ bit and as many ‘0’ bits as needed so as to leave room for nine bits that are
setd to the binary representation of the hash output length d and a further 64 bits

2 This is required in the HAIFA model.



Looking Back at a New Hash Function 245

(msb) INPUT (lsb)

\l \l \l \l \ \/ \/ \/ \/ \ \ \/ \ \ \ \
MixCOLUMNS MixCOLUMNS MixCOLUMNS MixCOLUMNS
\/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ A4 A4 A4 A4
OuUTPUT

Fig. 5. The mixing operation Misg that is used in Asi2. Note that this is exactly the
diffusion layer specified in the AES.

that are reserved for the binary representation of n. The resultant M’ is then
divided into ¢ blocks M, ..., M;, with each M; being of length 240 bytes.

At each iteration of the compression function there are two inputs; the current
value of the chaining variable v; which is a 256-bit input and the 2048-bit z; =
[M;]|C;]|S] that is being processed and we have v; = COMPRESS(z;,v;—1) for
1 <4 < t. The initial value vg is computed as vg = COMPRESS(d|[IV]|0) for a
master 1V, as required in HAIFA, and the output is given by the value v;. A
hash value of any shorter length, such as 224 bits, can be derived by truncation
from the left, i.e. we use the rightmost bits. This is indicated by T in Figure @
and would, of course, require that the representation of d in the padding and
computation of vy be changed accordingly.

3.4 The Specification of DASH-512

The essential difference between DASH-256 and DASH-512 is that the first oper-
ates on 64-bit words while the second operates on 128-bit words. This is a direct
benefit of the elegant scalability designed into RC5 [30]. All-but-one of the op-
erations in DASH-256 scale obviously between the versions, the one exception
being the Mgy function. However for DASH-512 we use Misg which is a 128-bit
permutation that is identical to one round of the AES without the key addition.
This is illustrated in Figure Bl All other parts of the algorithm, illustrated in
Figures [[l Bl and Ml scale in the obvious way and any 64-bit word operation
is replaced by a 128-bit word operation. In Figure B] the equivalent constants
Pios and Q125 can be defined as described in [30] for Asi2. Future analysis
will reveal the appropriate number of rounds for As15 while padding will follow
the HAIFA model and this can also be used to compute a 384-bit hash value
by truncation.



246 O. Billet et al.

4 Security Analysis

The security of DASH-256 and DASH-512 can be split into a consideration of the
underlying block cipher and then of the compression function and chaining mode.
The latter concerns are handled by the results of Damgard [14], Merkle [22],
Black et al [I1], and Biham and Dunkelman [7] so for reasons of space we con-
centrate on the cipher within the compression function and particularly on Assg.

4.1 The Encryption Routine in the Component Az5¢

Many cryptanalytic tools for block ciphers can be used against hash function so
we consider these classical techniques first.

Differential Cryptanalysis. We can easily identify a lower bound on the
number of active S-boxes for a differential in Ass6 (and As12) when the expanded
message words S[-] are the same for both pairs in a differential. The situation
where the expanded message words might induce a difference is considered in
the case of local collisions below.

Without loss of generality, we can suppose that we have a non-zero exclusive-
or difference in strand A. This will pass across a single round of Ass6 and Aso
trivially. However it must induce a, for 1 < a < 8, active S-boxes in the following
round which, in turn, induce more active S-boxes in the rounds that follow. To
establish a lower bound on the number of active S-boxes we can appeal to the
properties of the MDS operation in Mgy and Miss and observe that over two
adjacent active rounds there must be at least five active S-boxes. Thus over any
three rounds of Assg and As1o—for which there is no difference in the expanded
message words—there will be at least five active S-boxes. This gives a differential
probability of less than 273°. Since there are 30 rounds to Ass¢ this leads to a
simple upper bound of 273% over the full encryption routine.

This basic analysis is crude in two significant ways. First, on the positive side
for the algorithm, it significantly under-estimates the number of active S-boxes.
Second, on the negative side, this crude analysis doesn’t immediately capture
situations where the array S[-] might be used to introduce a difference. However
analysis of the key schedule, see Section 22, and of local collisions later in this
section suggest that more complex differential phenomena are highly unlikely
and while more sophisticated analysis is underway, we expect this to confirm the
difficulty of applying differential techniques.

Linear Cryptanalysis. The fixed rotations during encryption with Aas¢ (and
As12), see Figure[l] are intended to hinder the evolution of linear approximations.
Note that without the fixed rotations it would be straightforward to identify
linear approximations that held with probability 1 across infinitely many rounds.
In particular, if we were to use I; to denote the single-bit parity mask with a
single one in position 7, then we would have the following linear approximation
for a single round of Ass6 with no rotations:



Looking Back at a New Hash Function 247

ONE ROUND (NO ROTATIONS)

(F0707F070) (07.[‘0,07.[‘0).

This would hold with probability 1, ¢.e. with the maximum bias of %

However the simple fixed rotations prevent such simple linear approximations
from developing. We note that there is an interesting effect if we were to remove,
or to change into exclusive-or, the operation used to introduce the expanded
message words S[]. Let us call such a round a linearised-round and for this
linearised variant of Ass¢ we will consider the parity mask consisting of all bits,
i.e. a mask of I, = OxFFFFFFFFFFFFFFFF. Then we would have that:

ONE LINEARISED ROUND
(Fpﬂ 0, va 0)

(07 FP? 07 Fp)

with probability 1. Thus the linearised version of Asss (and As12) would be
vulnerable to this kind of analysis, a common enough situation when ciphers are
modified to facilitate analysis. However, with integer addition and an effective
key schedule such parity relations are quickly destroyed.

Three-Round Local Collisions. Here we consider a typical disturbance cor-
rection strategy and how it might be used against As56. We consider the following
perturbative-corrective pattern for a three-round local collision and the linearised
version of Asgsg, i.e. where the expanded message words S[i] are introduced using
exclusive-or. Consider the follow three rounds of expanded message

(AS[i],0, AS[i + 2], AS[i + 3],0, AS[i]),

where AS[i] is a low-weight perturbative vector, and AS[i + 2] and AS[i + 3]
are deduced from the best differential of the AES S-box, i.e.

AS[i+2) = (AS'[i]]) 1 and AS[i+3] = AS'[i]

where AS'[i] is such that Pro[Megs(C @ AS[i]) @ Mes(C) = AS'[7]] is maximal.
The maximal differential probability of the AES S-box is 276, hence whatever
AS[i] and AS'[i], the probability of such a local collision for the linearised variant
of Assg is upper bounded by 27'2.

If we now return to the real Asss where the words S[i] are mixed through
modular addition, we can make the following analysis. For each difference bit in
A and B, A+ C and B + C differ only in the same bits as A and B with probability
upper bounded by 27", where r is the number of different bits, with the exception
of the most significant bit (MSB), in A and B. There are four additions to take
into account, one for each non-zero input expanded message word. Due to the
MDS property in Mgy and M;og, one must have Hwt(AS[i])+Hwt(AS[i+2]) > 5
as well as Hwt(AS[i]) + Hwt(AS[i + 3]) > 5 where we use Hwt to denote the
Hamming weight.

This means that there are at least six active bits across integer addition that
are not in the most significant position. Hence the probability of such a local



248 O. Billet et al.

collision is upper bounded by 2712 x 276 = 2718 To do better than the birth-
day attack, an attack on Ass6 would need an expanded message difference that
combines seven or less such local collisions. However this would imply that the
remaining 64-bit words in S[-] are identical for the two messages and there is a
vanishingly small chance that an attacker can manipulate message inputs so as
to give two arrays S|[-] with the required values.

4.2 The Key Schedule in the Component Ajssg

By choice the key schedule for Ass6 is closely related to that used in RC5 and
RC6. In moving to the key schedule in Ass¢ and As12 we have added some non-
linearity via a series of AES S-boxes. While experiments have shown an improved
avalanche of change as a result, this does not exclude some dedicated analysis.

The Attack of Saarinen on RC6. During the first round of the AES process,
Saarinen made some interesting observations about the RC6 key schedule when
very long keys were used [35]. Let us assume that we choose a key length so
that the arrays L[-] and S[-] are of equal length P The important feature of the
key expansion, see Figure 3 is that state information is carried between the two
arrays by two words A and B. If we take two keys that are nearly equal except
for the last few words then, on the first pass through, only the last few words
of the L[-] and S[-] arrays will change. If the cryptanalyst is lucky, or if we can
find a high probability differential of the right form, the difference in the values
of A and B at the start of the second pass will be zero. When this happens, no
change is carried into the second pass and only the last few words of the L[]
and S[-] arrays will have a non-zero difference.

Moving on, if we are lucky (since we cannot rely on a differential of sufficiently
high probability) the difference in the values of A and B at the start of the third
pass will be zero. If this happens then, on the third and final pass through
the arrays, only the later words in S[-] will change. Saarinen [35] was therefore
able to demonstrate ciphertexts generated by related keys that had an average
Hamming distance between them of 4.2 bits. This was later extended [23] to
demonstrate the existence of equivalent keys for this particular instance.

Two features are important for this attack. First, being able to identify a
short cancelling differential for the first pass. Second, the number of times we
pass through the L[] array. In the case of RC6 with 128-bit blocks and 1308-bit
keys (the case looked at by Saarinen) we start the L[-] array three times. For the
first pass the difference in A and B is zero (by definition). For the second pass
it is zero by construction of the differential, and for the third pass we can use
the birthday paradox to find a pair of messages that generate a zero-difference
in A and B from a pool of 232 possibilities.

In the case of Asse and Asi2, however, the S[-] array will always be twice
the size of the L[] array. Thus we will pass through the L[] array six times.
The conditions we need on A and B at the start of each pass is a condition on

3 This is the simplest case, but variants exist for different array sizes.



Looking Back at a New Hash Function 249

128 or 256 bits respectively. The first time it is trivially satisfied and we might
pessimistically assume that it can be satisfied with probability one the second
time[] Then there remain three times for which the condition on A and B must
hold by chance before we process the S[-] array for the final time. Thus we have
a condition on 3 x 128 bits (3 x 256 resp.) which we expect to see fulfilled from
a pool of 2192 messages (23%* resp.) using the birthday paradox. However this is
worse than brute-force.

In fact the conditions to avoid the attack of Saarinen can be generalised and we
need to pass through the L[] array at least four times and the S[-] array at least
three times. This is what we accomplish in DASH-256 and DASH-512. Interestingly,
in [33] the RC6 designers propose a 1024-bit key length when using RC6, which
is based on 32-bit words, for the most efficient hashing configuration. This also
satisfies our general requirement.

On the Potential for Collisions in the Expansion. Consider two different
inputs M; and M/ to an iteration of the compression function. These will be used
to initialise the L[] array and after the expansion phase will give the final values
to the S[-] array. Clearly, if we derive the same S[] array from different inputs
then we trivially have a collision over one iteration of the compression function.
However provided there is sufficient mixing of the L[] and S[-] arrays, there are
no known weak or equivalent key phenomena for RC5 or RC6 and a brute-force
attack seems to pose a far greater concern. Of course this isn’t the full picture.
Even arrays that are identical only part of the time, or in the earlier words,
can still be useful to the cryptanalyst. However, assuming sufficiently thorough
mixing of the values in the S[-] array, collisions in the chaining variable would
seem to be easier to find than pairs of messages where five or more words in S|
are identical. Given 30 rounds, it is highly unlikely an exploitable weaknesses
will occur by chance.

The Oneway-ness of the Key Schedule. The key schedule expands the
message-related input into a set of 64 subkeys. This is done in a complicated
way and it has been noted by various commentators that this delivers a certain
amount of one-wayness [30I35]. So even if attacks on the encryption process
leak information about the subkeys S[-] it would be very hard to relate this
information to the input M; at the i*? iteration of the compression function. Yet
it is information about the input M; that is needed to compromise either the
compression function or the resultant hash function.

The Role of the Key Schedule. It is well-known that many hash function
designs are built around a dedicated block cipher. In such cases there is some
message mixing, i.e. a key schedule, and some state processing, i.e. an encryption
routine. In MD5 [31] the message-mixing involves message block repetition while
in SHA-1 [26] “key expansion” is a little more involved. However it remains simple
and without a strong “encryption” process it is somewhat vulnerable.

4 This would require a sophisticated differential through several AES S-boxes.



250 O. Billet et al.

By contrast, in Asss and As12 we might view the key schedule as a com-
plex non-linear message expansion. This idea of “expansion” as a form of pre-
processing appears in [I] and has been used in other hash functions [I0]. Given
such an expansion phase, we can then view the “encryption” as a complicated
way of distilling information into the 256-bit (or 512-bit) output. But is it better
to have more work done in the “expansion” or in the “distillation”? When looked
at in this way, traditional hash functions of the MD-family have a computation-
ally lightweight (almost trivial) expansion phase and compensate for this with
a heavier mixing phase. For DASH-256 and DASH-512 this is reversed and we
have a computationally heavy expansion paired with a lighter (though strong)
distillation phase. We believe that this approach is worth exploring and could
be better suited to the hashing environment where an attacker has complete
control over the inputs to the compression function. For compression functions
based on block ciphers, a simple key schedule will place a significant burden on
the encryption routine.

5 Performance

Assessing the performance of a cryptographic algorithm is tricky and often in-
complete. When we look at the operations in DASH-256 it is likely that most
software implementations will use table look-ups for the S-box operation and
that this will be the dominant operation. For DASH-256 there are 30 x 2 x 8 = 480
table look-ups during encryption and 192 x 8 = 1536 during key expansion giving
a total of 2016. Since 240 bytes are processed per compression function itera-
tion we have 8.4 look-ups per byte. In comparison encryption with the AES-128
requires 10 x 16 = 160 look-ups for encryption but only 16 bytes of plaintext
are encrypted giving an encryption cost of 10 look-ups per byte. Thus we might
expect the bulk processing performance of DASH-256 to be comparable to the
bulk encryption rate of AES-128. This seems to be a very natural target since
they both offer the same 128-bit security. We can compare results from Wei Dai
(see [39] for details) with our first-cut optimised version of DASH-256 where the
key expansion (ezp.) and processing time (pro.) are separated out [ The results
compare well to some other recent hash function proposals [4].

platform clock AES-128 SHA-256 DASH-256
(GHz)  (cycles/byte)  (cycles/byte) (cycles/byte)
[39] Opteron 2.4 15.9 21.5 -

erp. pro. total
Opteron 2.2 - - 144 31 175

Unfortunately the performance of DASH-256 suffers on 32-bit machines. On the
P4, for example, a first-cut implementation runs at half the speed of AES-128 and
we see that even basic operations over 64-bit words can exact a heavy price.

5 Note that pro. is not the encryption rate. If we used DASH-256 for encryption then we
would need 480 table look-ups to encrypt 32 bytes giving a rate of 15 look-ups/byte.



Looking Back at a New Hash Function 251

6 Conclusions

We have presented two, closely-related, dedicated hash functions. In contrast
to some other recent hash function proposals we have stayed close to known
constructions and deliberately looked back at the AES process to use techniques
that were analysed and discussed there. At the same time we have explored the
role of a computationally-heavy key schedule which allows us to hash a large
amount of message at each iteration. We believe that an appropriate balance
between security and speed can be achieved in this way and we encourage others
to explore the advantages and disadvantages of this approach.

Independently of the success of DASH-256, we can see several directions in
which to take this work. Certainly we believe that some variants of DASH-256 may
offer room for improvement. For instance, while the key schedule in DASH-256 has
many interesting attributes, we feel that the design is too complex. And while
its long standing is a good sign, it would be more satisfying to say something
concrete about the security offered when such very long keys (messages) are
being used. The state size of DASH-256 is large, though so is that of some other
hash function proposals, and we note that there would be an overhead when
hashing short inputs. The most significant downside, however, is that DASH-256
is oriented to 64-bit operations. Instead we feel (with hindsight) that a new
design geared towards 32-bit operations would be a better starting point.

We believe that these are all interesting avenues to explore, as is the more
general question of the role of the key schedule when a block cipher is used as
the basis for a hash function. With this in mind, we hope that the simplicity
of our proposal will promote new and independent analysis of DASH-256/512 in
particular and hash functions in general; something that we strongly encourage.

References

1. Aiello, W., Haber, S., Venkatesan, R.: New Constructions for Secure Hash Func-
tions. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 150-167. Springer,
Heidelberg (1998)

2. Andreeva, E., Bouillaguet, C., Fouque, P.-A., Hoch, J., Kelsey, J., Shamir, A.,
Zimmer, S.: Second Preimage Attacks on Dithered Hash Functions. In: Smart,
N. (ed.) Proceedings of Eurocrypt 2008. LNCS, vol. 4965, pp. 270-288. Springer,
Heidelberg (2008)

3. Aoki, K., Lipmaa, H.: Fast Implementations of AES Candidates,
http://csrc.nist.gov

4. Aumasson, J.P., Meier, W., Phan, R.: The Hash Function Family LAKE. In: Ny-
berg, K. (ed.) Proceedings of FSE 2008 (to appear, 2008)

5. Baretto, P., Rijmen, V.: The Whirlpool Hashing Function,
paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html

6. Bertoni, G., Daemen, J., Peeters, M., van Assche, G.: Sponge Functions. In:
ECRYPT Hash Workshop, May 24-25 (2007), www.ecrypt.eu.org

7. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions -
HATFA. In: Second NIST Cryptographic Hash Workshop, August 24-25 (2006),
csrc.nist.gov/groups/ST/hash/


http://csrc.nist.gov
paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
www.ecrypt.eu.org
csrc.nist.gov/groups/ST/hash/

252

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

O. Billet et al.

Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

Anderson, R., Knudsen, L.R., Biham, E.: Serpent: A New Block Cipher Proposal.
In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222-238. Springer, Heidel-
berg (1998)

Billet, O., Robshaw, M.J.B., Peyrin, T.: On Building Hash Functions from Mu-
tivariate Quadratic Equations. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.)
ACISP 2007. LNCS, vol. 4586, pp. 82-95. Springer, Heidelberg (2007)

Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320-335. Springer, Heidelberg (2002)

Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: Present: An Ultra-Lightweight Block Cipher. In:
Paillier, P., Verbauwhede, I. (eds.) Proceedings of CHES 2007. LNCS, vol. 4727,
pp. 450-466. Springer, Heidelberg (2007)

Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgéard Revisited: How
to Construct a Hash Functio. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430-448. Springer, Heidelberg (2005)

Damgard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) Ad-
vances in Cryptology — CRYPTO 1989. LNCS, vol. 435, pp. 416-427. Springer,
Heidelberg (1989)

Dean, R.D.: Formal Aspects of Mobile Code Security. PhD thesis. Princeton Uni-
versity (1999)

Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306-316.
Springer, Heidelberg (2004)

Junod, P., Vaudenay, S.: Perfect Diffusion Primitives for Block Ciphers—Building
Efficient MDS Matrices. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS,
vol. 3357, pp. 84-98. Springer, Heidelberg (2004)

Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2™ Work. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474-490. Springer, Heidelberg (2005)

Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183-200. Springer,
Heidelberg (2006)

Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386-397. Springer, Heidelberg (1994)
Menezes, A.J., Vanstone, S.A., Van Oorschot, P.C.: Handbook of Applied Cryp-
tography. CRC Press, Inc., Boca Raton (1996)

Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) Advances
in Cryptology — CRYPTO 1989. LNCS, vol. 435, pp. 428-446. Springer, Heidelberg
(1989)

Mizuno, H., Kuwakado, H., Tanaka, H.: Equivalent keys in RC6-32/20/176. IEICE
Transactions on Fundamentals of Electronics, Communications, and Computer Sci-
ences E84-A(10), 2474-2481

National Institute of Standards and Technology. FIPS 197: Advanced Encryption
Standard (November 2001), [csrc.nist.gov

National Institute of Standards and Technology. AES Archive, [csrc.nist.gov
National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard
(August 2002), [csrc.nist.gov


csrc.nist.gov
csrc.nist.gov
csrc.nist.gov

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Looking Back at a New Hash Function 253

National Institute of Standards and Technology. FIPS 198: The Keyed-Hash Mes-
sage Authentication Code (HMAC) (March 2002), [csrc.nist.gov

National Institute of Standards and Technology. Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family, [csrc.nist.gov

Preneel, B.: Analysis and design of cryptographic hash functions. PhD thesis,
Katholieke Universiteit Leuven (1993)

Rivest, R.L.: The RC5 Encryption Algorithm. In: Preneel, B. (ed.) Proceedings of
FSE 1994. LNCS, vol. 1008, pp. 363-366. Springer, Heidelberg (1994)

Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992),
www.ietf.org/rfc/rfc1321.txt

Rivest, R.L., Robshaw, M.J.B., Sydney, R., Yin, Y.L.: The Block Cipher RC6,
csrc.nist.gov

Rivest, R.L., Robshaw, M.J.B., Yin, Y.L.: The Case for RC6 as the AES,
csrc.nist.gov

Rivest, R.L.: Abelian Square-Free Dithering for Iterated Hash Functions. In:
First NIST Cryptographic Hash Workshop, October 31 - November 1 (2005),
csrc.nist.gov/groups/ST/hash/

Saarinen, M.-J.O.: A Note Regarding the Hash Function Use of MARS and RC6,
csrc.nist.gov

Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit Block
Cipher CLEFIA. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181-195.
Springer, Heidelberg (2007)

Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19-35. Springer, Heidelberg
(2005)

Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17-36. Springer, Heidelberg (2005)
Dai, W.: Crypto++ 5.5 Benchmarks,
http://www.cryptopp.com/benchmarks.html


csrc.nist.gov
csrc.nist.gov
www.ietf.org/rfc/rfc1321.txt
csrc.nist.gov
csrc.nist.gov
csrc.nist.gov/groups/ST/hash/
csrc.nist.gov
http://www.cryptopp.com/benchmarks.html

Non-linear Reduced Round Attacks against
SHA-2 Hash Family

Somitra Kumar Sanadhya* and Palash Sarkar

Applied Statistics Unit,
Indian Statistical Institute,
203, B.T. Road, Kolkata,
India 700108

somitra r@isical.ac.in, palash@isical.ac.in

Abstract. Most of the attacks against (reduced) SHA-2 family in liter-
ature have used local collisions which are valid for linearized version of
SHA-2 hash functions. Recently, at FSE 08, an attack against reduced
round SHA-256 was presented by Nikoli¢ and Biryukov which used a
local collision which is valid for the actual SHA-256 function. It is a
9-step local collision which starts by introducing a modular difference
of 1 in the two messages. It succeeds with probability roughly 1/3. We
build on the work of Nikoli¢ and Biryukov and provide a generalized
nonlinear local collision which accepts an arbitrary initial message dif-
ference. This local collision succeeds with probability 1. Using this local
collision we present attacks against 18-step SHA-256 and 18-step SHA-
512 with arbitrary initial difference. Both of these attacks succeed with
probability 1. We then present special cases of our local collision and
show two different differential paths for attacking 20-step SHA-256 and
20-step SHA-512. One of these paths is the same as presented by Nikolié
and Biryukov while the other one is a new differential path. Messages
following both these differential paths can be found with probability 1.
This improves on the previous result where the success probability of
20-step attack was 1/3. Finally, we present two differential paths for 21-
step collisions for SHA-256 and SHA-512, one of which is a new path.
The success probabilities of these paths for SHA-256 are roughly 271°
and 2717 which improve on the 21-step attack having probability 271°
reported earlier. We show examples of message pairs following all the
presented differential paths for up to 21-step collisions in SHA-256. We
also show first real examples of colliding message pairs for up to 20-step
reduced SHA-512.

1 Introduction

Cryptanalysis of hash functions has been an area of intense interest to the re-
search community since past decade and a half. Many hash functions were broken
in this time, most notable among them are MD5 [I3], SHA-0 [14] and theoretical

* This author is supported by the Ministry of Information Technology, Govt. of India.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 254-260] 2008.
© Springer-Verlag Berlin Heidelberg 2008



Non-linear Reduced Round Attacks against SHA-2 Hash Family 255

break of SHA-1 [12]. This has directed the attention of the cryptology community
to the SHA-2 family of hash functions.

Known Results for the SHA-2 Family: Gilbert and Handschuh (GH) [2]
were the first to study local collisions in the SHA-2 family. They reported a 9-step
local collision for linearized version of SHA-256 and estimated the probability of
the differential path to be 2766, This probability estimate was later improved by
Hawkes et al. [3]. Sanadhya and Sarkar [7] presented 16 new 9-step local collisions
for SHA-2 family of hash functions. All these local collisions are also for the
linearized version of SHA-256. The message expansion of SHA-256 was studied
by Mendel et al. [4], who reported a colliding message pair for 18-step SHA-
256 which was recently corrected in [B]. They used the linearized local collision
from [2] in their work. Mendel et al. [4] also improved the probability estimate of
the Gilbert-Handschuh local collision to values similar to those obtained in [3].
In [§], an algorithm for generating 18-step SHA-256 collisions was developed
using one of the local collisions from [7] and many colliding message pairs for
18-step SHA-256 were obtained.

Recently, Nikoli¢ and Biryukov [G] presented a new local collision which uses
modular differences instead of the XOR differences. Since this local collision is
for the actual SHA-256 (and not its linearized version), its probability is much
higher than the linearized local collisions presented earlier. For the first time in
the literature, the authors in [6] worked directly with modular differences for
SHA-256. Using this local collision they obtained 20-step and 21-step collisions
for SHA-256 with probabilities 1/3 and 1/2'9 respectively.

Our Contributions: We build on the work of Nikoli¢ and Biryukov [6] and
present a generalized non-linear local collision which accepts an arbitrary initial
message difference. In [6], sufficient conditions for the differential path are deter-
mined and a particular local collision is obtained. We work with exact solutions
of conditions imposed by the differential path and obtain general solutions of
these conditions. Since we work with exact solutions of the conditions, our local
collision is deterministic i.e. it holds with probability 1. Using this local collision,
we obtain collisions for 18-step SHA-256 and 18-step SHA-512 with an arbitrary
initial message difference. These attacks succeed with probability 1.

Then we show special instances of our generalized local collision which are
suitable for finding collisions for 20-step SHA-256 and 20-step SHA-512. We
present two such instances. One of these instances is a new local collision which
can be realized in two different ways. The other one is the same as that presented
by Nikoli¢ and Biryukov for obtaining 20-step collision in [6]. However, unlike
in [6], our 20-step attacks succeed with probability 1.

Finally, we use 20-step collisions to obtain 21-step collisions for SHA-256 as
in [6]. There the probability for 21-step SHA-256 collisions is experimentally es-
timated to be about 2719, We improve the efficiency of the probabilistic search
used in this case and obtain 21-step collisions for SHA-256 with estimated ex-
perimental probability of 271°. This is also the first time that actual collisions
for SHA-512 reduced up to 20 steps are presented.



256 S.K. Sanadhya and P. Sarkar

2 Notation

In this paper we use the following notation:

—m; €{0,1}", W; € {0,1}"™, W/ € {0,1}"™ for any i. The word size n is 32 for
SHA-256 and 64 for SHA-512.

— The colliding message pair: {mq, m1, ...mi5} and {mg, m}, ... m}s}.

— The expanded message pair: {Wy, W1, Wa, ... W,_1} and {W}, Wy, W3,
...W/_;}. The number of steps r is 64 for SHA-256 and 80 for SHA-512.

— The internal registers for the two message pairs in step i: {a;,...,h;} and
{al,...,h;}.

— ROTR’(z): Right rotation of an n-bit quantity « by k bits.

— SHRF(x): Right shift of an n-bit quantity by k bits.

— @: bitwise XOR.

— +: addition modulo 2".

— —: subtraction modulo 2™.

— 60X = X’ — X where X is an n-bit quantity.

— (521(6,‘) = 21(6;) — Zl(ei).

- (520(611) = Zo(ag) - Eo(ai).

— 0frras(z,y, 2): Output difference of the fasra; function in step ¢ when its
inputs differ by z,y and z. That is, 0fi;4;(®,y,2) = faas(ai +2,b; + vy,
ci +2) = fuag(ai,bi,c;).

— 0f1p(z,y, 2): Output difference of the f;p function in step ¢ when its inputs
differ by z,y and 2. That is, 6 fix(z,y,2) = fir(ei + 2, fi +y,9i + 2) —
frr(eis fi, gi)-

3 Collision Attacks Against the SHA-2 Hash Family

The SHA-2 hash function was standardized by NIST in 2002. Eight registers are
used in the evaluation of SHA-2. The initial value in the registers is specified by
an 8 x n bit IV, n=32 for SHA-256 and 64 for SHA-512. In Step i, the 8 registers
are updated from (a;—1, bi—1, ¢i—1, di—1, €i-1, fi—1, gi-1, hi=1) to (ai, bi, ¢, d;,
e, fi, gi, hi) according to the following equations:

a; = Xo(ai—1) + faras(ai—1,bim1,cio1) + Xi(ei—1)
+frr(ei—1, fic1,9i-1) +hic1 + Ky + W,

bi =a;—1
ci =bi1
di = ci—1

e =di—1+ X1(ei—1) + frr(ei—1, fiz1, 9i—1)
+h; 1+ K; +W;

fi = €i—1
9i = fi—l
h; = 0gi—1

The f;r and the fy;a; are three variable bitwise boolean functions If and Ma-
jority respectively. For detailed information on the function Xy, X7 and the
message expansion of SHA-2 family, see [I1].



Non-linear Reduced Round Attacks against SHA-2 Hash Family 257

The aim of collision attacks against hash functions is to obtain two different
messages which produce the same digest under that hash function. The hash
functions use one word of the message in each step and process the message for
multiple steps. Typically, an attacker introduces a small difference in one word
of the message. Using the terminology from [I], this initial difference is called
the “perturbation message difference”. Next few message words are chosen to
differ in such a manner that all the introduced differences cancel themselves
with high probability. These later message word differences are called “correction
differences”.

Only the first 16 words are free in the SHA-2 design, with the rest of the
message words being defined by the “message expansion”. In a local collision, a
differential path for small number of steps is considered in which the message
expansion is ignored. We present our new nonlinear local collision next.

4 A General Class of Nonlinear Local Collisions

Table[lshows the general structure of a 9-step local collision for SHA-2 family. The
perturbation message difference is taken to be x and other message differences are
later computed. In Table[D the registers (a;—1, ..., hj—1) and W; are inputs to
Step i of the hash evaluation and this step outputs the registers (a;, ..., h;).

Table 1. A 9-step nonlinear local collision for SHA-256

Step i OW, da; 0b; dc; dd; de; 5fz 591‘ oh;
i — 1 0 0O 0 0 0 0 0 O
) T
1+ 1 5WZ‘+1
1+ 2 5WZ‘+2
7+ 3 5Wi+3
i+4 Wita
1+ 5 5WZ‘+5
7+ 6 5Wi+(j
T+ 7 5Wi+7
1+ 8 5Wz‘+8

O OO O OO OoOO8R
o oo oco0ooOo8 O
DO OO OO O 8 OO
OO oo OoO8 OO0 O
SO0 O 8 OoOnvNw 8
oo R8 onvnw 8 O
o8 onvnwe 8 © O
o8 onvwe 8 OO0 oo

4.1 Obtaining a Local Collision

In Step i of SHA-2, only the registers a; and e; are computed. Rest of the registers
are copies of the old ones. Therefore we focus on these two register evaluations
only. From (), we get:

de; = 0X1(ei—1) + 0 frr(dei—1,0fi—1,0gi—1) + ddi—1 + 0hi—1 + W5,  (2)

da; = 0X0(ai—1) + 0 famar(6ai—1,0b;—1,6ci1) + 621 (ei—1) +
Ofrr(dei—1,0fi—1,0gi—1) + 0hi—1 + W5,
=0X0(ai—1) + 6 fmas(dai—1,6b;—1,6ci—1) + de; — dd;_1. (3)



258 S.K. Sanadhya and P. Sarkar

Table 2. Message word differences for the local collision of Table [I]

1y =—650(ai) = firas(@,0,0) 2 2=—6f11as(0,2,0)
3 (5W—L = 4 5WZ‘+1 :y—(Sf}F(:r,O,O) —521(61')
4 5Wi+2 =z — 5f};,cl (y,w,O) — 521(61‘+1) 5 5WZ‘+3 = —5f};§2(z,y,a:) — 521(61‘+2)
6 OWita = —a —3f15%(0,2,9) 7 Wits = —y —6fi:4(x,0,2)

=021 (€ita)
8 Wit = —z—0fi1°(0,,0) 9 Wity = —0f135(0,0,x)
10 6Wigs = — 115fi3,(0,0,2) =0

The differential path of Table[Il defines the message word differences as shown
in Table[2 The derivation of these differences can be done by techniques similar
to [6]. For details on this derivation, refer to [9].

To obtain the 9-step local collision as in Table[Il we first select the perturba-
tion message difference §W; as a randomly generated 32-bit (or 64-bit) quantity
x. The differences 0W; for j € {(i +1),..., (i +8)} are defined as in Table[2 In
addition, we need to choose W; o such that a;12 = a;4+; to ensure the success
of condition 11 in Table [2l Rest of the message words could be any randomly
chosen 32-bit (or 64-bit) words. This local collision holds with probability 1,
since all the steps are deterministic and feasible. For details, see [9].

5 Extending a Single Local Collision to Obtain 18-Step
Collisions

In this section we briefly explain how to obtain 18-step collisions using the local
collision shown in this paper. We discuss three different types of differential paths
depending on the value of the differential z used in de; 42 to dh;y5 in Table [Tl
These values of z are —1,0 and 1.

For all the different cases, we choose to span the 9-step local collision from
Step 3 to Step 11. The message differentials 0W; for i € {3, 4, ..., 11} are
defined by the local collision. We use a single local collision, which implies that
all the other free message words are equal. That is, §W; = 0 for ¢ € {0, 1, 2, 12,
13, 14, 15}.

First two steps of message expansion of SHA-2 define the message words Wig
and Wy7 as follows:

Wie = Ul(W14) + Wy + Uo(Wl) + Wy
Wir = 01(Wis) + Wig + oo(Wa) + W1

From these two equations, it is clear that if §Wg = dWi9 = 0 then the two
expanded message words will be equal for Steps 17 and 18. This will result in
an 18-step collision for SHA-2. Note that Wy and Wi correspond to Steps
7 and 8 of the local collision used. Hence our target is to get differentials of
the message in these two steps to vanish. The 18-step collisions as suggested
above can be found with probability 1. For detailed analysis of this case and the
colliding message pairs, see [9].



Non-linear Reduced Round Attacks against SHA-2 Hash Family 259

6 Extending a Single Local Collision to Obtain 20-Step
Collisions

We follow the technique used in [6] to obtain 20-step collisions for SHA-256. This
time we need to handle first 4 steps of message expansion. These steps are:

Wi = o1(Wha) + Wy + oo(W7) + Wy
Wiz = o1(Wis) + Wi + co(Wa) + W1
Wis = 01(Wie) + Wit + oo(W3) + W
Wig = o1(Wir) + Wiz + 0o(Wa) + W3

If a single local collision spanning from Step 5 to Step 13 is used and all other
messages outside the scope of this local collision are taken to have zero differen-
tials, then §W,; = 0 for i € {0,1,2,3,4,14,15}. This implies that if we can have
Wy = 0Whg = 0Wq1 = W12 = 0, then the differentials of the first 4 expanded
message words will be zero. In this case the message expansion will not play a
role and we will be able to extend a single local collision to 20 steps.

The local collision presented in [6] is such that the message differentials at
steps i +4 to i+ 7 are zero for it (i = 5 is the starting step of the local collision).
Hence it can be used to obtain 20-step collisions directly. The local collision we
presented is more general but does not necessarily have 4 consecutive message
differentials equal to zero. Now we find particular instances of our local collision
such that we have zero differentials as desired. This time we work with sufficient
conditions as in [6].

To obtain the 4 consecutive zero differentials in the local collision, we need to
have differentials generated by 0W, 14, 0Wiy5, 6W; 6 and §W;,7 (corresponding
to Steps 9, 10, 11 and 12 of the differential path) to be equal to zero. We next
discuss the conditions put by these equations. We also need to control the values
of y and z. As in [6], we start the local collision by choosing = = 1.

Condition on the value of y: This condition contains the term 6X¢(as) =
Yo(ak) — Xo(as). From the differential path we know that das = af — a5 = x.
Differential behavior of the non-linear function X is difficult to analyze. To
make it tractable, we choose §Xg(as) = = 1. For this case, the only solutions
are as = —1 = Oxffffffff and af = 0. We also put restriction that the faras
term doesn’t propagate any difference. This condition f3; , ;(2,0,0) = 0 implies
bs = cs, i.e. ag = a3. Conditions on a4 and as registers can be deterministically
satisfied by choosing Wy and Wj suitably. By the choices made above, this
equation gives y = —1.

Condition on the value of W, 5: This condition contains the term § X (eg)
= X1(e§) — X1(eg). From the differential path we know that deg = e — eg =
x. Differential behaviour of the non-linear function X is difficult to analyze.
Similar to the previous equation, we choose §X7(eg) = = 1. Once again, the
only solutions are eg = —1 = Oxffffffff and ey = 0. This condition can be



260 S.K. Sanadhya and P. Sarkar

deterministically satisfied by choosing Wy suitably. Finally, we wish to make the
following difference zero:

Wi = —y — 6f7p(2,0,2) — 651 (e9)
=—(=1)— (frr(eog + 1,es,e7 + 2) — frr(eg, es,€7))
—(X(eg+1) — Xi(e9))
=1— f1r(0,es,e7 +2) + frr(—1,es,e7) — 1
=eg—e7— 2
We have already chosen suitable values for = and y but z is still free. Having

worked with the 18-step collisions earlier, we realize that only suitable values for
z are 0, +1 and —1.

Condition on the value of éW;;7: This condition is the easiest to satisfy.
We need §Wip = 0. But 6Wia = 0f15(0,0,). If the frr function chooses its
middle argument then we will have the desired value. Hence we need to ensure
e11 = —1. This can be done deterministically by choosing W7, suitably.

Condition 11 from Table To get 0f7;4,(0,0,z) = 0, it is sufficient to
ensure that a; = ag. This can be done deterministically by choosing W7 suitably.
All the resulting conditions are summarized in Table [3]

Table 3. Conditions put on the registers and differential path along with conditions
yet to be satisfied

1 z=1y=-1 5 es —z—e7r =0 (Condition 7, Table 2]
2 as=as, a5 =—1 6 §f$;4;(0,2,0) = —z (Condition 2, Table B
3 a7 = ag 7 —x=20fr(0,2,9) (Condition 6, Table E)
4 eg=—1,e11=-1 8 6fi%(0,2,0) = —2 (Condition 8, Table )

We need to consider three choices for z: 0, 1 and —1. The middle arguments
to the 6f5,,, function are a5 + 1 and as, both of which have already been
set to specific values 0 and —1 respectively (Cf. Condition 2 in Table [3)). This
causes difficulty in the satisfaction of Condition 6 in Table Bl for z = 1. Hence
we consider the other two values for z now.

6.1 When z=0

This is the same 20-step differential path considered in [6]. We now attempt to
satisfy conditions 5 to 8 in Table 3l

— Taking ag = a4 satisfies condition 6. This can be done by suitably choosing
We.

— Taking eg = e7 satisfies condition 5. This can be done by suitably choosing
Ws.

— Taking e1p = 0 satisfies condition 8. This can be done by suitably choosing
W10~



Non-linear Reduced Round Attacks against SHA-2 Hash Family 261

The only condition remaining now is Condition 7 which is §f8,(0,0, —1) =
—1. There is no message freedom left to satisfy this condition. In [6], this condi-
tion is let to be free and is satisfied with probability 1/3 by random choices of
messages. We now show that it is possible to satisfy even this condition deter-
ministically.

It is clear that if we have es = 0 then f;p will select its last argument which
has a difference of —1. Thus the output of frp will be —1 as desired. But we
have already chosen Wg such that eg = e7. All the earlier message words starting
from Wy have also been used to satisfy some condition or the other. We now
look at the calculation of er:

er =ds + X1(es) + frr(es, fo,96) + he + K7 + Wy
=ds + a7 — Xo(ag) — faras(as, bs, cs)
= a3+ a7 — Xo(ag) — fras(as, as, aq)

= a4+ ag — Xo(as) — frmas(as, —1,a4)

If we can ensure that ag = a4 = 0 then e; = eg = 0 will be deterministic, which
in turn will lead to a 20-step collision with probability 1. We used W, to get
as = ag earlier. Now we choose the free word W3 to get as = 0. Rest of the
conditions remain the same as in [6] and we get 20-step deterministic collisions
for SHA-2. Examples of colliding message pairs for 20-step SHA-256 and SHA-
512 are given in [9]. The set of conditions on the registers are given as Case 1 in
Table @

Table 4. Conditions on the registers for 20-step deterministic collisions for SHA-2.
Satisfaction of these conditions lead to 20-step collisions for SHA-2 with probability 1.
A condition on a; (or e;) can be satisfied by suitable choice of W;. The condition on
e7 in each case gets satisfied automatically when other conditions are met.

Casel z=1,y=-1, 2=0

1 az = a4 =0, as =—1, ag=a7r =0

2 er =es =0, ein=0, e9=en=-1
Case 22 Az =1,y=-1, z=-1

1 az=as=—1, as=—-1, ag=a7r =0

2 6720,68 = —1, €9 = —]., €10 = €11 = —1
Case 2-Bzr=1,y=—-1, z=-1

1 az = a4 =0, as =—1, ag=a7r=—1

2 er = 1,68 :0, €9 = —]., €10 = €11 = —1

6.2 When z = —1

Similar to the case z = 0 above, we can determine conditions for 20-step collisions
in SHA-2 and deterministically satisfy all the conditions. This time we get two
sets of conditions. These are listed as Case 2-A and 2-B in Table [@ Note that
this case gives rise to a new 20-step differential path for SHA-2. Colliding pairs
of messages satisfying these conditions are given in Section [Al



262 S.K. Sanadhya and P. Sarkar

7 Extending a Single Local Collision to Obtain 21-Step
Collisions

Using a single local collision to obtain 21-step collisions appears difficult because
initial message words start repeating in the recursion of the message expansion
this time. In [6], a single local collision spanning from Step 6 to Step 14 is used
and a 21-step collision for SHA-256 is obtained probabilistically. Note that the
earlier 20-step collisions had the local collision spanning from Step 5 to Step 13.
This time the local collision has been slid down by one step. We first describe
the method used in [0].
First 5 steps of message expansion for SHA-2 are:

Wi = o1(Wia) + Wo + oo(W1) + Wy
Wiz = o1(Whis) + Wig + oo(W2) + Wy
Wig = o1(Wis) + Wir + 0o(W3) + Ws
Wig = 01(Whi7) + Wiz + o0(Wy) + W3
Wao = 01 (Wis) + Wiz + oo(Ws) + Wy

Since the chosen local collision has 4 consecutive zero message differentials
within its span, we have 6W; = 0 for ¢ € {10, 11,12, 13}. Further, this being the
only local collision, messages outside the span of the local collision do not have
any difference. Thus, we also have éW; = 0 for ¢« € {0,1,2,3,4,5,15}. Terms
which may have non-zero differentials in the above equations are underlined.

All these zero differentials imply that if doq(Wi4) + Wy = 0 then the first
5 steps of the message expansion will not produce any difference, and we will
have a 21-step collision. Since both W14 and Wy are random, it can be expected
that they will cancel the differences in this manner. The probability for this
cancellation to happen is estimated to be about 2717 in [6]. Since their local
collision has probability roughly 1/3, the probability of the 21-step collision is
estimated to be approximately 2719,

We use the same technique for our deterministic 20-step collisions and slide the
single local collision one step to attempt a 21-step collision. We first observe that
in having the 20-step collisions with probability 1, we have lost some message
freedom and consequently, 6Wy is no more random for two of the three cases
described in Table dl This happens for Case 1 and Case 2-B from this table. For
proof of this claim, refer to [9].

To use the 20-step collision described by Case 1 in Table @l we need to relax
some of the conditions there and obtain some randomness in §Wy. An example of
such a relaxation is not to enforce az = a4 = 0, rather only ensure a3 = a4. This
also causes relaxation on the condition on e7, and the 20-step collision becomes
probabilistic now. In fact, this is exactly the same 20-step collision described
in [6]. The 21-step collision can now be found for this case as described in [6]. We
describe an improvement to the search for messages satisfying do1 (Wi4)+0Wy =
0 a little later.

We note that the conditions in case 2-B of Table Fl cannot be relaxed to
obtain randomness in Wy and consequently this case can not be used for



Non-linear Reduced Round Attacks against SHA-2 Hash Family 263

21-step collisions. We also note that Case 2-A introduces randomness in Wy
by default, so we do not need to relax any condition for this case. This is a good
case for obtaining 21-step collisions, since it has probability 1 for all the steps
other than the cancellation of §Wy as described above. Next we describe our
improved method of searching for suitable messages such that the difference in
W14 and Wy cancels the difference in Wis.

7.1 Obtaining Messages Satisfying do1(6W14) + Wy = 0

We have that 6Wyy = W{, — Wiy = —1. We expect §Wy to be random. It is
stated in [6] that by random choice of message words, the condition above can
be satisfied with probability 27175, This expectation seems to be based on the
randomness of do1(W14). We note that the difference of two o1 terms when their
inputs differ by —1 is highly non-random.

The choices made in the local collision make the term 6Wy biased towards
values which are small in magnitude. A rough idea of the distribution of 6Wy
can be had from the following example: We ran the code for 21-step collisions
of [6] 5 x 10° times and observed that only 174 times the value of Wy came out
to be larger than 1000 in magnitude. Further, there were only 334 values larger
than 500, 594 values larger than 300 and 1870 values larger than 100.

At the same time, o1 (W14 — 1) — 01(Why4) is biased towards large magnitudes
for random values of Wiy4. In fact, for a large number of points p € {0, 1}3? there
is no solution to the equation o1 (Wi4 —1) — 01 (W14) = —Wy = p. Interestingly,
this equation does not have any solution for Wy4 for even values of p. The
distribution of the left hand side of this equation is so non-uniform that there
are only 4 values of 6Wy in {—300,300} for which a solution for Wi, exists. We
list these 4 values of §Wy and corresponding values of Wy4 in Table Bl

Table 5. Some solutions to the equation o1 (Wia—1) —o1(Wia)+0Wy = 0 for SHA-256

No. oWy Wia

00000041 7£c00000, 80400000

00000101 45000000, 81000000, 7£000000, 2b000000
ffffff41 4c400000, b3c00000

fff£££01 19000000, 44000000, b3000000, €7000000

U

This analysis suggests that a specific suitable value of §Wy should first be
selected and then we should search for corresponding Wi4. Even if this procedure
is used, the probability of being able to get the correct Wi, is of the order of
2732 This implies that the search in [6] is not over random messages, rather
a pre-computed value of Wiy is used for a specific 6Wy. From the colliding
message pair given in [6], we observe that the value of §Wy used is ££££££01
and the corresponding Wiy is 19000000. This particular choice of §Wy occurs
with probability 2717-5 which corresponds to the estimate given in [6].



264 S.K. Sanadhya and P. Sarkar

We use a speed-up in the search for the correct Wi,. First we create a list
of pairs (o1(p) — o1(p — 1), p) for all p € {0,1}32. We sort this list on the first
element. While running the code for 21-step collision, we compute §Wy and do a
binary search over this list. If this value matches with the first element of a pair in
the list, then we use the second element to define Wy4. With this modification,
we obtain a 16 fold improvement to the probability of obtaining the correct
0Wy. Since Wiy is pre-computed, the only probability is in getting the right
difference dWy.

We have extended two types of 20-step collisions to obtain 21-step collisions for
SHA-256. One of the local collisions is the Case 1 of Table[@with some conditions
relaxed. As already mentioned, this is the Nikolié-Biryukov local collision [6]
having probability 1/3. For this case our method succeeds in finding correct
Wy with probability roughly 2713-5. Thus the overall probability of the 21-step
SHA-256 collision is about 2715,

The second 20-step collision we extend to 21 steps is described by Case 2-A
of Table [l For this case, we could find suitable §Wy with probability roughly
2717, Since the probability of the 20-step collision is 1 in this case, we get the
21-step collision with probability roughly 2717.

8 Conclusions

In this paper we presented a generalized local collision for SHA-2. Using a single
instance of this local collision, we obtained 18-step collisions with an arbitrary
starting message difference. These collisions hold with probability 1. We then
presented two different differential paths for 20-step collisions in SHA-2 both of
which hold with probability 1. Finally, we improved on the search for 21-step
collisions in SHA-256 increasing the probability of success 16 fold. Apart from
the colliding message pairs for different cases and different number of steps for
SHA-256, we also show colliding message pairs for up to 20-step SHA-512 for
the first time in the literature.

Acknowledgements

We would like to thank anonymous reviewers for giving useful suggestions.

References

1. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56-71. Springer, Heidelberg (1998)

2. Gilbert, H., Handschuh, H.: Security Analysis of SHA-256 and Sisters. In: Mat-
sui, M., Zuccherato, R.J. (eds.) Selected Areas in Cryptography, 10th Annual In-
ternational Workshop, SAC 2003, Ottawa, Canada, August 14-15, 2003. LNCS,
vol. 3006, pp. 175-193. Springer, Heidelberg (2003)

3. Hawkes, P., Paddon, M., Rose, G.G.: On Corrective Patterns for the SHA-2 Family.
Cryptology eprint Archive (August 2004), http://eprint.iacr.org/2004/207


http://eprint.iacr.org/2004/207

10.
11.

12.

13.

14.

Non-linear Reduced Round Attacks against SHA-2 Hash Family 265

. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of Step-Reduced

SHA-256. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 126-143.
Springer, Heidelberg (2006)

. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of Step-Reduced

SHA-256. Cryptology eprint Archive (March 2008),
http://eprint.iacr.org/2008/130

. Nikoli¢, I., Biryukov, A.: Collisions for Step-Reduced SHA-256. In: Nyberg, K.

(ed.) Fast Software Encryption 2008. LNCS, pp. 1-16. Springer, Heidelberg (2008)

. Sanadhya, S.K., Sarkar, P.: New Local Collisions for the SHA-2 Hash Family. In:

Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 193-205. Springer,
Heidelberg (2007)

. Sanadhya, S.K., Sarkar, P.: Attacking Reduced Round SHA-256. In: Bellovin, S.,

Gennaro, R. (eds.) ACNS 2008. LNCS. Springer, Heidelberg (to appear, 2008)

. Sanadhya, S.K., Sarkar, P.: Non-Linear Reduced Round Attacks Against SHA-2

Hash family. Cryptology eprint Archive (April 2008),
http://eprint.iacr.org/2008/174

Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)
Secure Hash Standard. Federal Information Processing Standard Publication 180-
2. U.S. Department of Commerce, National Institute of Standards and Tech-
nology(NIST) (2002), http://csrc.nist.gov/publications/fips/fips180-2/
fips180-2withchangenotice.pdf

Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup (ed.)
[10], pp. 17-36

Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19-35. Springer, Heidelberg
(2005)

Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In: Shoup
[10], pp. 1-16


http://eprint.iacr.org/2008/130
http://eprint.iacr.org/2008/174
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

266 S.K. Sanadhya and P. Sarkar

A Colliding Message Pairs

Table 6. Colliding message pair for 20-step SHA-256 with standard IV. These messages
follow the differential path of Table [[] with z = 1, y = -1, 2 = -1. These messages
satisfy Case 2-A of Table [l

W71 0-7 5a603c44 0£5fdd15 69e8c2ad 1754c271 60518701 feef6b5f c7£50d13 fdc492ca
8-15 d5d49f53 d4c9d37f bf796acd aaf3823e a24e8e62 8d8898c8 fc4456f3 8d557aeb
Wy 0-7 5a603c44 0£5fdd15 69e8c2ad 1754c271 60518701 feef6b60 d3d50e93 £9a49248
8-15 d2326157 d4c9d37f bf796acd aaf3823e a24e8e62 8d8898c7 fc4456f3 8d557aeb

Table 7. Colliding message pair for 21-step SHA-256 with standard IV. These messages
follow the differential path of Table [l with z = 1, y = -1, z = -1. For these messages
oWy = ffffe191.

‘W1 0-7 4158ecc7 3a3ffe6l ba7149f0 ed452440 4d9ab924 £016459f 22f5578c c56333cl
8-15 £f1941ff 19b8055b fb2876ba cadd6044 8d41a28d 8194372b 7e100000 5240bb72
Wo 0-7 4158ecc7 3a3ffe6l ba7149f0 ed452440 4d9ab924 f016459f 22f5578d c1433241
8-15 £b39427d 19b7ebec fb2876ba cadd6044 8d41a28d 8194372b TeOfffff 5240bb72

Table 8. Colliding message pair for 20-step SHA-512 with standard IV. These messages
follow the differential path of Table [[] with z = 1, y = -1, 2 = -1. These messages
satisfy Case 2-A of Table [l

1c99041525eeeebld 7dfc74f74babla89 aacad442cddb37351 21d1684a782a5b87
3d374aed94c9d766 296c28£f080eced7a 62f73e6df90ce266 d4c85286272c52cl
8-11 e2d8e832fb623115 5c43e3fcIbee94c3 5ef6£726192a4213 aaf3823c2a004blf
12-15 fa18ffe92868d117 8584328bd3146ed0 c3ce87104858e6ch 6dc9cd6519344c6a
Wo 0-3 1c99041525eeeeb3 7dfc74f74babla89 aaca442cddb37351 21d1684a782a5b87
4-7 3d3742ed94c9d766 296c28f080eced7b 62fafe6df88ce264 d4cc928628ac52c0
8-11 £73a261982122135 5c43e3fc9bee94c3 5ef6£726192a4213 aaf3823c2a004blf
12-15 fa18ffe92868d117 8584328bd3146ecf c3ce87104858e6cb 6dc9cd6519344c6a



Collisions for Round-Reduced LAKE*

Florian Mendel and Martin Schléffer

Graz University of Technology,
Institute for Applied Information Processing and Communications,
Inffeldgasse 16a, A-8010 Graz, Austria
{florian.mendel,martin.schlaeffer}@iaik.tugraz.at

Abstract. LAKE is a family of cryptographic hash functions presented
at FSE 2008. It is an iterated hash function and defines two main in-
stances with a 256 bit and 512 bit hash value. In this paper, we present
the first security analysis of LAKE. We show how collision attacks, ex-
ploiting the non-bijectiveness of the internal compression function of
LAKE, can be mounted on reduced variants of LAKE. We show an effi-
cient attack on the 256 bit hash function LAKE-256 reduced to 3 rounds
and present an actual colliding message pair. Furthermore, we present a
theoretical attack on LAKE-256 reduced to 4 rounds with a complexity
of 219, By using more sophisticated message modification techniques
we expect that the attack can be extended to 5 rounds. However, for
the moment our approach does not appear to be applicable to the full
LAKE-256 hash function (with all 8 rounds).

Keywords: cryptanalysis, hash functions, collision attack.

1 Introduction

A cryptographic hash function H maps a message M of arbitrary length to
a fixed-length hash value h. A cryptographic hash function has to fulfill the
following security requirements:

— Collision resistance: it is infeasible to find two messages M and M™*, with
M* # M, such that H(M) = H(M*).

— Second preimage resistance: for a given message M, it is infeasible to find a
second message M* # M such that H(M) = H(M™).

— Preimage resistance: for a given hash value h, it is infeasible to find a message
M such that H(M) = h.

The resistance of a hash function to collision and (second) preimage attacks
depends on the length n of the hash value. Based on the birthday paradox the
generic complexity for a collision attack is about 2”/2 hash computations, where
n is the size of the hash value. For a preimage attack and a second preimage

* The work in this paper has been supported in part by the European Commission
under contract IST-2002-507932 (ECRYPT) and through the Austrian Science Fund
(FWF) under grant number P19863.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 267-281] 2008.
© Springer-Verlag Berlin Heidelberg 2008



268 F. Mendel and M. Schléaffer

attack the generic complexity is about 2™ hash computations. If collisions and
(second) preimages can be found with a complexity less than 2"/2 and 2" the
hash function is considered to be broken.

Recent cryptanalytic results focus on the collision resistance of hash functions.
Collision attacks have been shown for many commonly used hash functions, like
MD5 [13] and SHA-1 [A12]. In the upcoming NIST competition [9] to find an
alternative hash function to SHA-2, many new hash function designs will be pro-
posed. Therefore, the cryptanalysis of new and alternative hash function designs
like LAKE is of great interest. In this article, we will present a security analysis
with respect to collision resistance for the hash function LAKE, proposed at
FSE 2008 [2]. We are not aware of any published security analysis of this hash
function until now.

The hash function LAKE is a new iterated hash function based on the HATFA
framework [3]. It is a software-oriented design and uses an internal wide-pipe
strategy [7I8]. The two proposed variants of LAKE compute a 256-bit and 512-
bit hash value and use an 8- and 10-round compression function, respectively.
In our analysis we focus on the 256-bit variant LAKE-256 but the same attack
applies to LAKE-512 as well. In the following we omit the bit size in the name if
we refer to LAKE-256. We show collisions for round-reduced variants of LAKE
where we exploit a structural weakness in the internal compression functions.
We construct collisions in the used Boolean functions which are then extended
to an attack on round-reduced variants of LAKE.

The remainder of this article is structured as follows. In the next section, we
give a short description of the hash function LAKE with a focus on the relevant
parts for our attacks. In Sect. Bl we explain the basic attack strategy and show
a collision for a simplified variant of the full hash function. The results of the
collision attacks on round-reduced variants are presented in Sect. @l Finally, we
conclude this paper with a short recommendation on how the LAKE design
could be improved to withstand our attack.

2 Description of LAKE

The LAKE hash function is an iterated hash function based on the HAIFA
framework [3]. It takes a salt and the message as its input. The message is padded
by a specific padding rule and the initial chaining variable Hy is computed form
the initial value (IV) and parameterized by the (variable) output bit length d
of the hash function. The LAKE family defines two main instances LAKE-256
and LAKE-512 which differ only in their used bit sizes, constants and rotation
values. While our attack is not limited to LAKE-256 we focus on this instance
of the LAKE family for the remainder of this paper.

The compression function of LAKE computes the next chaining variable H;
from the previous H;_1, the current message block M; the salt S and the current
block index t. It consists of three parts which are shown in Fig. [l The function
saltstate mixes the global chaining variable H; with the salt S, and the block
index t using 8 calls to the function g. The output of saltstate is written into the



Collisions for Round-Reduced LAKE 269

H,.
-1 Hp[

[— Sy.;
saltstate So.; y
8callstog
8callsto g o) to1
¢ Lo
process-

[ my_;s mo,.is
message —>|Eus tof

(8 rounds)

(8 rounds)
kS

16 calls to /°
16 callsto g 16 cal@d—

L(l‘)
feedforward |[4—— H,,; L
So.s
8 calls to f —— S ; " 8 calls to
l— 1, '

Tn

Fig. 1. The compression function of LAKE-256 consists of the three main parts salt-
state, processmessage and feedforward which call two nonlinear internal compression
functions f and g

internal chaining variable L("=1) which is twice as large as H;_;. The function
processmessage is the main part of the LAKE compression function and takes
the current message block M, and the current internal chaining variable L~
as its input. The message block is first expanded by the message permutation
o,(1) and then incorporated into the internal chaining variables within r rounds.
Every round of processmessage uses 16 calls to two nonlinear internal compres-
sion functions f and g. The feedforward function compresses the previous global
chaining variable H;_1, the salt S, the block index ¢, and the last internal chain-
ing variable L(") by 8 calls of the function f and produces the next chaining
variable Hy.

Table 1. The index k = 0, () of the message permutation of LAKE-256 for the rounds
R1-R8 of processmessage

: 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rt 01 2 3 4 5 6 7 8 910 11 12 13 14 15
R2 1 611 0 51015 4 9 14 3 8 13 2 7 12
R3 5 811 14 1 4 7 1013 0 3 6 9 12 15 2
R4 0 714 512 3 10 1 8 15 6 13 4 11 2 9
R5 01 2 3 4 5 6 7 8 910 11 12 13 14 15
R6 1 611 0 5 1015 4 9 14 3 8 13 2 7 12
Rr 5 811 14 1 4 7 1013 0 3 6 9 12 15 2
R8 0 714 512 3 10 1 8 15 6 13 4 11 2 9



270 F. Mendel and M. Schléaffer

In the case of LAKE-256, the compression function uses r = 8 rounds and the
message permutation of Table [[I The nonlinear internal compression functions
f and g are defined by

fla,bye,d)=((a+ (bVC))+ (c+(anC) T+ (b+(cad) 13)
g(a,b,e,d) = ((a +b) 1) @ (c+d).

Depending on whether they are used in saltstate, processmessage or feedforward,
these functions are parameterized by some constants Cy, ..., C15, which are ex-
tracted from m:

Cop = 452821E6 (; = COAC29B7 Cg = 9216D5D9 (2 = 2FFD72DB
C1 = 38D01377 (5 = C97C50DD Cy = 8979FB1B (13 = DO1ADFB7
Cy = BEG466CF (s = 3F84D5B5 (jp = D1310BA6 (4 = BBE1AFED
C5 = 34E90C6C (7 = B5470917 (3 = 98DFBSAC (15 = 6A267E96

In case of processmessage, the inputs of f are the previous internal chaining
variables L("=1) the current internal chaining variables F(")| the constants Cj,
and the expanded message words my with k& = 0,.(7). The function g takes as
input the current internal chaining variables F(")| the previous internal chaining
variables L("~1) using feed-forward and the new internal chaining variables L("):

F" = fla,b,e,d) = F(F7, LU my, C)

L = gla,b,e,d) = g(L, B LY ED)
Note that F(") gets initialized by L'~ and L") gets initialized by F(). We
get for the sequence of chaining variables H; and internal chaining variables L")
and F("):

Hy 1 —salt — LU = f - F0) — g - L) - feedforward — H,
~ ~

-
8 rounds

3 Basic Attack Strategy

The basic observation for the attack on the compression function of LAKE is
that the internal compression function f of processmessage is not bijective (not
injective) regarding the chaining variables and message words. This means, that
at least two message words exist, which result in the same output of f for
fixed internal chaining variables. In fact, it is possible to find many different
message words my and mj which result in the same output of f. Using these
inner collisions of the internal compression function f we can construct collisions
for round-reduced versions of LAKE. Note that the same idea applies to both
variants, LAKE-256 and LAKE-512 because the two variants differ only in the
used word size, constants and rotation values.



Collisions for Round-Reduced LAKE 271

3.1 Collisions for 1 Round of LAKE

In every round, each message word my, is used only once by one of the 16 calls to
the f function. Hence, we can construct a collision for one round of LAKE using
a single inner collision in f (this has been independently observed by Stefan
Lucks). By performing a collision attack on the 32-bit output of f we have been
able to efficiently find many message pairs mj, and mj, for many internal chaining

values F\"), L") and all constants C; such that the output of f collides:

f(F(T) L(Til),mk,Ci):f(F(T) L(Til),mz70i)

1—17 1 i—1 g

Note that the authors of LAKE have proposed to analyze a reduced variant
of the hash function which uses the same constant in every round [I]. In this
case we can simply use the same inner collision in f for every round of LAKE.
Table [ shows a collision for 8 rounds of LAKE using the same constant Cp in
each round which can be computed instantly on a standard PC.

Table 2. A colliding message pair for LAKE using the same constant C in each round

H, 243F6A88 85A308D3 13198A2E 03707344 A4093822 299F31D0 082EFA98 EC4E6C89

7901FB66 7120239A 75018D7B 38EFC240 04BA14F4 54B5A198 60842D9A O5CEOAF7
1A31E11B 40B1C10C 55F91C02 559DF366 74D6D973 455E48F2 31072B72 4DB56283
7D11BC59 7120239A 75018D7B 38EFC240 04BA14F4 54B5A198 60842D9A O5CEOAF7
1A31E11B 40B1C10C 55F91C02 559DF366 74D6D973 455E48F2 31072B72 4DB56283

0410473F 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H; 289B5613 0295350F CA661380 699C892A 80CC3678 91B6F85B FDO332EB D89C925A
I{f 289B5613 0295350F CA661380 699C892A 80CC3678 91B6F85B FDO332EB D89C925A

3.2 Collisions for More Than 1 Round of LAKE

The original LAKE specification defines different constants for each round and
we cannot use the same inner collision for every round anymore. However, the
idea of constructing collisions in f can still be extended to attack more rounds
of LAKE. Then, the same message pair m;, and mj, has to result in an inner
collision of f for each of the attacked rounds. Due to the message expansion, the
message word my, is used in a different call of f in each round. However, in each
call 7, the f function differs only in the used constant C;. For instance, if we
want to construct a collision for the first two rounds of LAKE, we need to find
a message pair my and mj such that we have a collision in f in both rounds.

Assume we are using message word mg. In the first round, my is used in call
i = 0 of the function f and in the second round, my is used in call i = 3 of f (see
Table[I)). Hence, we need to find a message pair mg and mg, which results in an
inner collision of f and applies to both constants Cy and C'5 simultaneously. One
method to find such a pair is to search for each constant separately and check
for matching message pairs. This method might work for two constants but is
insufficient for more constants. In the following we show how this can be done
more efficiently.



272 F. Mendel and M. Schléaffer

3.3 Inner Collisions in f Using Different Constants

A better method is to analyze the differential behaviour of the f function and
choose message differences Amy,, which are independent of the used constants.
To find a message differences which results in a collision and thus, in a zero
difference of the f function, we simplify the f function to:

fla;b,my, Ci) = er + (i +¢2) 1)+ (s +(me@C))  13) (1)

where the values c1, ¢2 and c3 depend on the internal chaining variables Lgr_l)

and Fi@r Because the majority of the remaining operations are modular addi-
tions and rotations we use signed bit differences in our attack. Note that more
advanced techniques like generalized characteristics as used in the most recent
attacks on SHA-1 are not needed in this case [5]. Signed bit differences have been
introduced by Wang et al. in the analysis of the MD4-family of hash functions
[11]. Using these differences, the carry expansions of the modular additions in
Equation () can be controlled by imposing conditions on the absolute values (c1,
co and c¢3) and rotated without imposing further conditions. In the xor-addition
Amy, @ C; the sign of the signed bit difference Amy, is flipped at each position
where the constant C; is one and does not change where Cj is zero. For a detailed
description of signed bit differences, we refer to [0].

Before constructing a zero output difference of the f function, we define the
differential representation of f regarding the message difference Amy by

Af = (\Amﬁ 7) + (&Amk (&) Czl 13)=0 (2)
e %,

where the differences Az and Ay need to cancel each other after the rotations.
For a collision over more than one round of LAKE, we need to fulfill equation 2]
for different constants C; but with the same message difference Amy. Therefore,
we allow a signed bit difference in the message only at positions, where the values
of the used constants are equal. In this case the difference Ay is independent of
the used C;. We define the equal positions of all used constants C;,,Ci,, ... by:

e ~(p) . ~(p)
e 0 otherwise

where C?) denotes the bit position p of the value C. Note that the difference
Ax is independent of each round. To get a zero difference of f for all rounds,
the differences Ay has to be the same for each round and every used constant.

The more rounds we attack, the more constants C; are used and the less
is the Hamming weight of the equal positions C¢, of these constants. Since at
each position we can choose between a negative, a positive or no difference, the
number of the allowed signed message differences is 37*(Cea)  If less differences
are allowed in Amy, the probability of a collision decreases. However, the search
space gets reduced as well and we can check more (or even all) signed message



Collisions for Round-Reduced LAKE 273

differences. We have implemented a search tool similar as in [I0], which uses
carry expansions for the differences Ax = Amy, and Ay = Amy @ C;. After the
rotations we check whether the resulting differences cancel each other.

Note that two signed bit differences in the MSB always cancel each other
in the addition and are thus considered to be equal. Therefore, we can allow
additional message differences at the MSB of each modular addition. A flip of
the message difference in the MSB because of xoring it with different constants
C; results in the same difference. Since we can omit the sign of the regarding
MSB in each of the 3 modular additions, we allow additional message differences
at position 32, 13 and 6. A difference at position 13 in Amy @ C; gets rotated to
the MSB in Ay and a difference at position 6 in Amy, ® C; gets rotated to the
same position as the MSB of Amy in Az. By including these three cases, the
search space can be increased and even includes all inner collisions of f.

4 Results of the Collision Attack

To attack more than one round of LAKE we have implemented a tool which
checks for collisions in f depending on the used constants C;. We first compute
Ceq and determine all possible message differences Amy,. Then, we use signed
carry expansions of the message difference in Az and Ay and check whether the
differences cancel each other after the rotation. Table Bl shows which constant C;
is used for each message word my, in each round. With our tool we are able to
check all possible message differences if more than three different constants are
used. In this case, the Hamming weight of C,, and the search space is low enough
to try all possible expanded differences. For all cases where only two constants
are involved, we have limited the search to high probability differentials (with a
short carry expansion) and can therefore find collisions with a high probability
as well.

Table 3. For each message word my different constants C; are used in every round
due to the message permutation. The constants for R5-R8 are the same as for R1-R4.

Mo M1 M2 M3 M4 Mz Me M7 M8 Mg Mio M1l Mi2 M13 M14 M15
R1Cy C1 Cy C3 Cy C5 Cg C7 Cs Cy Crp C11 Ci2 Ci1z3 Cia Cis
R2 C3 Coy C13 Cio C7r Cy C1 C1a Ci1 Cg Cs Cz2 Cis Ciz Co Ch
R3 Cy9 C4 C15 Ci1o C5 Co C11 Cs C1 Cr12 Cr Cy Ci3 Cg C3 Chia
R4 Co C7 Cra Cs C12 C3 C1g C1 Cs Ci15 Cs Ci1z3 Cy4 Ci1 Cy Co

4.1 2 Rounds

For an attack on two rounds of LAKE, we need a collision in f with two different
values of C;. When attacking the first two rounds of LAKE we can choose one of
the first two constants of Table Bl We have found the best result for the message
word mg. In the first round this message word is used in call 3 to f and thus,
it is xored with the constant C3. In the second round, ms is used in call 10 and



274 F. Mendel and M. Schléaffer

xored with the constant C1g. Hence, we need to fulfill the following differential
equations for f simultaneously:
Afs=(Amz  T)+(Ams® C3)  13) =0 (4)
Afro = (Amg 7) + ((Amg D Clo) 13) =0 (5)
We allow signed differences in Amg at all positions, where the constants C3 and
Cqo are equal:
C3 = 34E90C6C
C19o =D1310BA6
Coq = 1A2TF835
Amg = 9A27F835
The number of the equal positions in C5 and Cyg is 16 and by including the three
MSBs we get a maximum Hamming weight for the allowed message differences
of HW(Amg) = 17.

Using our tool we have found the following four message differences, where
each of them results in a zero difference of the f function. Note that each inverted
message difference results in a collision as well.

Amg = 8207E820 Amg = [+32,-26,19,18,17,16, 15, 14, 12, 6]

Amgz = 8207E821 = [+32,-26,19,18,17,16, 15,14, 12,6, 1]

Amgz = 8207F820 Amg = [+32,-26,19,18,17,16, 15,14, 13, —12, 6]

Amg = 8207F821 Amg = [+32,-26,19,18,17,16,15,14,13,—12,6, 1]

For these message difference we get many expanded differences Ax and Ay
which cancel each other. For example, if we consider the message difference
Amgz = 8207E820, the signed differences Ax and Ay with the best probabilities
are:

Az = [—-32,26,—20,13,12,—-8,7,6]
Ay = [-32,26,—20, 18,14, 12, 6]
where the difference Az occurs with probability 27® and Ay with probability
277, After rotating these difference by 7 and by 13 we get the following two
differences, which cancel each other in the third modular addition:
Az 7=[32,31,-25,19, —-13,6,5, —1]
Ay 13 =[31,25,-19,13,-7,5,1]

Therefore, we get an inner collision in f for both rounds with a probability
of 271% each. Usually the expanded differences with the highest probabilities
determine the complexity of the attack. However, if many expanded differences
cancel each other, the actual complexity is determined by the sum of all probabil-
ities. For the message difference Amg = 8207E820 we have found 2600 expanded
signed differences Az and 5486 expanded signed differences for Ay. By adding

all possible combined probabilities of Az and Ay we get an overall probability
of 27438 instead of 271°.



Collisions for Round-Reduced LAKE 275

4.2 3 Rounds

The previous collision in f over two rounds can be easily extended to a collision
over 3 rounds. To extend the attack we use a weakness in the message permu-
tation. The message word mg is used in call 3 of the first round and in call 10
of the second and third round. Thus, the constant Cg is used twice and we can
use the same collision for f as in the attack on two rounds. Note that we could
do the same for message word mq; which uses the constant Cy twice.

A Colliding Message for 3 Rounds of LAKE. By using the message differ-
ence Ams = 8207E820 we can construct a collision for LAKE reduced to three
rounds with a complexity of about 23438 ~ 2132 round evaluations (less than
1 second on a standard PC), since we can get a collision for each round with a
probability of 27438, The colliding message pair is given in Table @l Note that
ho is the initial value and hq is the final hash value.

Table 4. A colliding message pair for LAKE reduced to 3 rounds

H, 243F6A88 85A308D3 13198A2E 03707344 A4093822 299F31D0 082EFA98 EC4E6C89

2ED54018 259E7BED 6A7D12A0 12780007 57979D36 619A5DE1 2F1FA8A0 09D72979
3428C041 1439951D 63537711 144840C4 7C75D35E 70C613E9 23DCA632 52DB6AB9
2ED54018 259E7BED 6A7D12A0 907FE827 57979D36 619A5DE1 2F1FA8A0 09D72979
3428C041 1439951D 63537711 144840C4 7C75D35E 70C613E9 23DCA632 52DB6AB9

00000000 00000000 00000000 8207E820 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Hi 0969AF41 101EA7CE CBF3F2FE E47832EB 60FFD511 DA156A75 150B3A20 FOO3BA7E
HY 0969AF41 101EA7CE CBF3F2FE E47832EB 60FFD511 DA156A75 150B3A20 FOO3BA7E

4.3 More Than 3 Rounds

To attack more than 3 rounds we have first tried to construct a collision which
uses only 3 different constants. This could be done for the message words myg, ms,
mg and mq (see Table[]). However, even by checking all possible message differ-
ences and carry expansions, we did not find a collision in these message words.
Anyway, by trying all message words which use four different constants, we have
found solutions for m4 and m7. The involved constants are Cy4, C7,Cs, C1 for
mag and C’77 C’147 Cﬁ, Cl for mr.

For the 4 round collision we have only found a characteristic with low prob-
ability. The possible message differences are Am; = Amy = +1. Thus, we
allow a difference only in the LSB of the message word. Note that the LSB of
the involved constants is 1 and the xor operation flips the message difference.
Therefore, the differences in Az and Ay have a opposite sign and cancel each
other if the following conditions are fulfilled (i = 4,7,5,12):

F ACL =0 (6)
L\"Y 4+ C; = FFFFFFFF (7)



276 F. Mendel and M. Schléaffer

Under these conditions, the differences do not get changed by the rotations and
we can get an inner collision in f for every round of LAKE.

Let us consider the case Amy = —1 with my = 0. By fulfilling the previous
conditions the resulting values before the rotation are always either 00000000
or FFFFFFFF. These values do not get changed by the rotation and we get for
my = 0:

O+F"AC) 7+ V4 (0@C)) 13 =FFFFFFFF  (8)
N~ - ~

~ ~ -

FAC1=0 L{"™Y) 4 C;=FFFFFFFF
and for mj=my—1=0-1:

(0—1+FAC) T+ Y+ ((0-1)®C;) 13 = FFFFFFFF (9)
- -~ - ~ ~~ -
(F") ACY)—1=FFFFFFFF LY 4140i=0

The two equations ([B) and (@) hold in each round with a probability of
2732715 — 9747 gince the Hamming weight of C; is 15. Hence, we can get a
collision for LAKE reduced to r rounds with a probability of 27747 and for
r = 4 rounds we get a probability of 27188,

Note that the difference Am; = 41 works for any message word and any
number of rounds, as long as the LSB of all involved constants is 1. However, due
to the low probability we have only attacked 4 rounds of LAKE using message
modification. By more sophisticated message modification techniques, we expect
that an attack up to 5 rounds of the LAKE compression function is possible.

4.4 A Collision Attack for 4 Rounds of LAKE

The attack complexity of 2!%8 for 4 rounds of LAKE can be improved by using
message modification techniques introduced by Wang et al. in the analysis of
MD5 and SHA-1 [I3I12]. In general, the idea of message modification is to use
the degrees of freedom in the message to fulfill conditions on the state variables.
This improves the probability of the attack and in the following we will show how
message modification can be done for the first 2 rounds of LAKE. The sequence
of internal chaining variables and calls to f and g are illustrated in App. [A] to
comprehend the message modification steps.

Message Modification. In the first round we use basic message modification
which simply adjusts the message words such that the conditions in the internal
chaining variables are fulfilled. To fulfill the conditions on F3(1) AC1 = 0 we adjust
Fél) by modifying mgs since Fél) = f(F2(1)7LéO)7m3,Cg). Because of the right
rotation, we can start by modifying bit 7 of the message and proceed up to bit
25 without getting any conflict due to carries. The remaining 6 bits are fulfilled
by brute force which results in a complexity of 2°. Since all further modifications
change message words after call 3 of f, we perform this modification only once
at the beginning. Therefore, this modification does not increase the overall com-
plexity. Next we need to fulfill the conditions of LELO) +(Cy = FFFFFFFF. Note that



Collisions for Round-Reduced LAKE 277

Lflo) depends on the I'V or previous chaining value H;_;. By using an arbitrary
first message block we can construct the needed value of Lz(lo) by brute force.
This has a complexity of 232 but needs do be done only once as well.

For the second round of LAKE we need to use advanced message modification
techniques. Without message modification, equation F ) A C1 = 0 of the second
round is fulfilled with a probability of 2715 and equatlon L( )+ C7 = FFFFFFFF

is fulfilled with a probability of 2732 Note that L{" depends on F{" of the first

(1)

round. This means that we can correct L, ’ by Fg(l)7 which in turn gets modified

by message word mg. The undesired changes in the following steps (Fg(l) to Fl(é))
can be corrected by advanced message modification using message word m;s.
This ensures that Lél) to Lél) do not get changed as a result of the modification
of mg.

The Collision Search for 4 Rounds of LAKE. The search for a collision of
LAKE reduced to 4 rounds can be summarized by the following steps:

1. We fulfill the 32 conditions on Lflo) by choosing an arbitrary first message
block Mj. This has a complexity of 232 evaluations of the compression func-
tion and needs to be done only once at the beginning of the search.

2. Next we choose random message words my, . .., ms to compute the internal
chaining variables Fo(l), ceey F?El).

3. The 15 conditions on Fg(l) can be fulfilled by adjusting mj3 using basic mes-

sage modification. This step has a complexity of about 2° calls to Fél) =

f(Fz(l), L:(;O), ms, C3). Since we do not change my, ..., ms later on, this step
needs to be done only once as well.
4. The remaining message words my, ..., m15 are chosen at random to compute

the internal chaining variables F4(1), ceey Fl(sl) and Lgl), . ,L;l) to check the

conditions on L(l)

5. To fulfill the conditions on L( ) e compute the required value of F by
simply inverting the function L(7) = (Lé )7F7( ),L(70)7F8( )) and get for
F(l) _ (L(l) @ (( (1) + F(l)) 1) — L(O)

6. We can generate thls required value of F( ) by modifying mg in Fg(l) =
f (F7( ), Léo), msg, Cs) using basic message modification with a complexity of
about 26 calls to f.

7. The modification of mg and F(l) leads to new values in the internal chain-
ing variables starting from F( ). Note that L(l) (Lél),Fél),Lg ),F(l))

depends only on Lé )

and values prior to Fg( ). To guarantee that L(7 ) does
not get changed again, it is sufficient to require that F1(51) does not change.
8. We can ensure this by adjusting the message word m;5 such that F’ 1(;) has the
same value as prior to the modification of mg. Then, the values L(l) e Lgl)

do not change and the conditions on L; ) stay fulfilled. This modification of
m1s has again a complexity of about 2° calls to f.



278 F. Mendel and M. Schléaffer

9. The conditions on F6(2) and on the internal chaining variable of round 3
and 4 can be fulfill by randomly choosing message words my, ..., mi4. We
ensure the conditions on L;l) by modifying m15 again. Note that we have
enough degrees of freedom in these 6 message words to fulfill these remaining

15 4 47 4+ 47 = 109 conditions by brute-force.

These message modification techniques improve the attack complexity significantly.
By performing the collision search as described above we can construct collisions
for LAKE reduced to 4 rounds with an overall complexity of about 2'%? compres-
sion function evaluations. Note that the complexity can actually be smaller if early
stopping techniques are used. By applying more advanced message modification
techniques we expect to be able to break up to 5 rounds of LAKE.

5 Conclusion

In this paper we have presented the first cryptanalytic results on the hash func-
tion family LAKE. We have shown how collision attacks, exploiting inner colli-
sions in the nonlinear functions of LAKE, can be mounted on reduced variants
of the hash function. We have presented an efficient attack on LAKE reduced
to 3 (out of 8) rounds. Moreover, we have shown a theoretical attack on LAKE
reduced to 4 rounds with a complexity of 2!%9. We expect that our attack can
also be extended to LAKE reduced to 5 rounds by using more sophisticated
message modification techniques. Note that the same strategy can be used to
attack LAKE-512 as well. For the moment our approach does not appear to be
applicable to the full hash function.

However, this does not prove that the hash function is secure. Further analysis
is required to get a good view on the security margins of LAKE. In our analysis
we have shown that the security of LAKE strongly depends on the choice of the
constants. Due to a weak combination of constants, attacks on round-reduced
versions of LAKE are possible. Further, we note that the non-bijectiveness re-
garding the chaining variables can be used to cancel differences in the internal
chaining variables as well. To prevent our attack we suggest to design internal
compression functions which are bijective and thus, invertible regarding the mes-
sage words and each chaining variable. Further, the security of these functions
should not depend on the (good) choice of the used constants.

Acknowledgments
We thank the authors of LAKE for sending us a preliminary version of their
paper and for helpful discussions.

References

1. Aumasson, J.-P.: The Hash Function Family LAKE. FSE talk (2008),
http://£se2008.epfl.ch/docs/slides/day 1 sess 3/
aumassony,20lake slides.pdf


http://fse2008.epfl.ch/docs/slides/day_1_sess_3/aumasson%20lake_slides.pdf
http://fse2008.epfl.ch/docs/slides/day_1_sess_3/aumasson%20lake_slides.pdf

10.

11.

12.

13.

Collisions for Round-Reduced LAKE 279

. Aumasson, J.-P., Meier, W., Phan, R.C.-W.: The Hash Function Family LAKE.

In: Nyberg, K. (ed.) FSE. LNCS. Springer, Heidelberg (to appear, 2008)

. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions - HAIFA.

Cryptology ePrint Archive, Report 2007/278 (2007), http://eprint.iacr.org

. De Canniere, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On the

Full Cost of Collision Search. In: Adams, C.M., Miri, A., Wiener, M.J. (eds.) SAC
2007. LNCS, vol. 4876, pp. 56-73. Springer, Heidelberg (2007)

. De Canniere, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results

and Applications. In: Lai, X., Chen, K. (eds.) ASTACRYPT 2006. LNCS, vol. 4284,
pp. 1-20. Springer, Heidelberg (2006)

. Daum, M.: Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr-

Universitdt Bochum (May 2005)

. Lucks, S.: Design Principles for Iterated Hash Functions. Cryptology ePrint

Archive, Report 2004/253 (2004), http://eprint.iacr.org

. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.)

ASIACRYPT 2005. LNCS, vol. 3788, pp. 474-494. Springer, Heidelberg (2005)

. National Institute of Standards and Technology (NIST). Cryptographic Hash

Project (2007), http://www.nist.gov/hash-competition

Schlaffer, M., Oswald, E.: Searching for Differential Paths in MD4. In: Robshaw,
M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 242-261. Springer, Heidelberg (2006)
Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1-18. Springer, Heidelberg (2005)

Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Galbraith,
S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 17-36. Springer,
Heidelberg (2007)

Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19-35. Springer, Heidelberg
(2005)


http://eprint.iacr.org
http://eprint.iacr.org
http://www.nist.gov/hash-competition

280

F. Mendel and M. Schléaffer

A Advanced Message Modification

The step update functions f and g for the first two rounds of LAKE. The internal
chaining variables on which we impose conditions for the attack on 4 rounds of
LAKE are underlined.

Al

Round 1
Fél) = f(L§°5)7 Léo), mo, Co)
Fl(l) = f(Fél),Lﬁo),thn
Fz(l) = f(Ffl)aL(zo),mmCQ)
stl) = f(Fz(l)aL:(z,O),m3703)
FY = f#5) L ma, Ca)
Y = f(ED, LY ms, Cs)
Fg = f(5Y LgY me, Co)
B = () LY ma, Cr)
Fsgl) = f(F;l),LéO),m&Cg)
F9(1) = f(Fs(l)’Ls(go)’m%Cg)
Fl(é) = f(Fg(l) Lg%), mio, Co
FY = f(FR), LY mir, On
Fy = f(FY, LYY mia, Oro
Fy) = f(FY, LY mis, O
Fy = f(FY), LYY mua, O
F1(51) = f(F1(4)’ ng)), mis, C1s

Round 2

o — O — ~—

LY = g(Fys) Fy", Léo),Ff”)
LY = g(Ls", Y, L 1 V. EY)
L) = g(1i", 73V, 1" FyY)
L) = g(rs" 5V, LS F}Y)
Ly = g(Ly" FV. L FY)
L) = g(Ly BV, L 5 Y EY)
Ly = g(18) KV, L 6 YY)
L = g(rs”, BV, LY FY)
L) = g(r" BV, L0 FyY)
Ly” = gLy’ BV, L i)
L%) Q(Ls(yl)vFl(o)v 10,F1(11))
Lgll) = g(L%)?Fl(l)v Ly 7F1(21))
Lglz) :9(L§11)7F1(2)v 12,F1(§))
L%) 9(L§12)7F1(3)v 13,F1(i))
L(l) g(L%)vFl(ZL)v 14,F1(51))
Lgs) Q(Lﬁ)vas)v 15,L(1))

L(()2) Q(Ffs)aFém Lo
£ = o, PP, L)
Lé2) _ g(L( ) F(2) L2
L:(f) _ g(L( ) F(2) Ls
Lf) _ g(L( ) F(2) L4
1) = (L, 2, 1)

7

7

)
7)
)
)
5)

7



Collisions for Round-Reduced LAKE 281

Y = (7, L, mis, Co) LY =g FP LY Yy (32)
FP = f(FP LY my, O7) L =g K2 LY FP)  (33)
FP = (PP LY mo, Cs) LY = g(L?, F{?, L 8 VEP) (34)
FyP = fFD, LY i, Co) LY =gy B LY RS (35)
FY = f(FP L ms, 00) L5 = g(LP A, LY, FY)  (36)
FY = f(PS LY ms,0n) LY =gl AP, LY, FD)  (37)
Fl(g) f(F1(1)aL12am137012) Lg) 9(L§21)7F1(2)v 12,F1(§)) (38)
FY = (PG L m, Cs) L) = g(L), FLY), 13,Ffi>> (39)
Fﬁ):f(Ffs)aLh)amncm) Lgi)zg(L%)vFl(z;)v 14a (2)) (40)
FP = (PG L me, ) LR =gl FD, L, L) (41)



Preimage Attacks on Step-Reduced MD5

Yu Sasaki and Kazumaro Aoki

NTT Information Sharing Platform Laboratories,
NTT Corporation 3-9-11 Midoricho, Musashino-shi, Tokyo, 180-8585, Japan
sasaki.yu@lab.ntt.co.jp

Abstract. In this paper, we propose preimage attacks on step-reduced
MD5. We show that a preimage of a 44-step MD5 can be computed to
a complexity of 2°. We also consider a preimage attack against variants
of MD5 where the round order is modified from the real MD5. In such a
case, a preimage of a 51-step round-reordered MD5 can be computed to
a complexity of 2°°. Our attack uses “local collisions” of MD5 to create
a degree of message freedom. This freedom enables us to match the two
128-bit intermediate values efficiently.

Keywords: Preimage Attack, One-Way, MD5, Hash Function, Message
Expansion, Local Collision.

1 Introduction

Hash functions are cryptographic primitives that compress arbitrary length mes-
sages into n-bit hash values. Hash functions are used in many protocols, so their
security is important. For hash function H, there are three important properties.

Preimage Resistance: For given y, it must be computationally hard to find
x such that H(x) = y.

Second Preimage Resistance: For given z, it must be computationally hard
to find &’ such that H(x) = H(z'), x # 2'.

Collision Resistance: It must be computationally hard to find a pair of (x, 2")
such that H(x) = H(a'), © # a'.

Because hash values are n-bit, computing a hash value of 2" input messages
should produce y. Due to this, any method to find a preimage of a given hash
value faster than 2" computations is a threat for hash functions. Such meth-
ods are called preimage attacks. More formal definitions of these properties are
introduced by [17].

MD5 HE] is a hash function that is designed to be highly efficient in terms of
computation time. It is used in a huge number of protocols all over the world, so
a security analysis of it is interesting from both an academic and an industrial
position. So far, many pseudo-collision attacks B, , B] and collision attacks
ﬂi @7 |E7 @, ] (the complexity of the best one being 223 MD5 computations)
have been proposed. However, no attack has succeeded in breaking the second
preimage resistance or preimage resistance of MD5.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 282-296] 2008.
© Springer-Verlag Berlin Heidelberg 2008



Preimage Attacks on Step-Reduced MD5 283

There are some papers in which preimage attacks are proposed. Regarding
MD2, Muller proposed a preimage attack ] and Knudsen and Mathiassen
improved its result ﬂﬁ] Dobbertin proposed a preimage attack against the step-
reduced version of MD4 in 1998 ﬂﬂ] Let a hash function that consists of round 4
and j of MD-x be MDx(%) . This attack can find a preimage of MD4(12), There
are claims that MD4(?®) can also be attacked by a similar approach. In 2000,
Kuwakado and Tanaka proposed a preimage attack against a variant of MD4
where the round order is modified, MD4(*®) [11]. In 2007, De et al. showed that
a preimage of the first 39 steps of MD4 could be found in less than 8 hoursN%].
In 2008, Leurent proposed the first preimage attack against the full MD4 [12],
which has a complexity of 2192 MD4 computations. Regarding MD5, in 2007, De
et al. also showed that the first 26 steps of MD5 were invertible M] To the best
of our knowledge, no other preimage attack is known against MD5 or variants
of MD5.

Our Contribution

In this paper, we propose preimage attacks against variants of MD5.

First, we show a preimage attack against 51 steps of round-reordered MD5
(steps 7-57 of MD5(133)) " which has a complexity of 2%, Second, we show a
preimage attack against 44 steps of the real MD5 (steps 3-47 of MD5), which
has a complexity of 296, A comparison of our results and previously published
results is shown in Table [fl.

Table 1. Previous preimage attacks against MD-family and our new results

Target Attack Number of steps Complexity
MD4 MD4 5] 32 232
(Total 48 steps) MD4('®) [11] 32 232

MD4 [4] 39 Not given (8 hours)

MD4 [12] 48 (Full) 2102

MD5 MD5 (4] 26 Not given
(Total 64 steps) MD5  Our result 44 296
MD5%3) Our result 51 296

Similar to the previous preimage attacks against MD4, our attacks analyze
the behaviors of intermediate chaining variables word-by-word not bit-by-bit.
However, our attacks use a local-collision approach, which has been considered
bit-by-bit in many collision attacks. By using local collision, we create message
freedom, and this freedom enables us to match the two 128-bit intermediate
values efficiently. We also analyze the message expansion and determine the
implications on hash function design by analyzing the strong and weak message
expansions against our attacks.

! Very recently, Aumasson et al. proposed a preimage attack against the first 47 steps
of MD5 [1l].



284 Y. Sasaki and K. Aoki

Our attacks can find preimages for any hash value, IV, and message length.
By using these properties, the following attacks can be constructed.

1. For any message m and hash value h, we can find a message = such that
MD5(m||x) = h.

2. Let a value of multi-collision be M C. (The multi-collision attacks proposed
by Joux [& or Yu and Wang [20] can generate multi-collisions.) By finding
a preimage that starts from M C and ends with h, many preimages can be
generated by computing one preimage.

This paper is organized as follows. Section 2 explains the specifications of
MD5. In section 3, we describe the previous preimage attack against MD4 and
why it is difficult to apply to MD5. In section 4, we propose a preimage attack
against 51 steps of the round-reordered MD5 and determine the implications
on hash function design by analyzing the strong and weak message expansion
structures against our attack. In section 5, we propose a preimage attack against
44 steps of the real MDb5. In section 6, we conclude this paper.

2 Description of MD5

MD5 ﬂﬁ] uses a Merkle-Damgard structure, which takes an arbitrary length
message M as input and outputs a 128-bit hash value H(M). First, M is padded
to be a multiple of a 512-bit length. In the padding process, first a single bit ‘1’
is added to M. Then, ‘0’s are added until the message length reaches 448 mod
512. Finally, the original message length is added into the last 64 bits.

The padded message is divided into 512-bit block messages (Mo, My, -+,
M,,—1). These messages go through a compression function (C'F) with a 128-bit
chaining variable. The initial chaining variable (Hy) is set as follows:
ap = 0x67452301, by = Oxefcdab89, ¢y = 0x98badcfe, dy = 0x10325476.

The procedure of the MD5 algorithm is as follows:

Hy, = CF(My, Hy), Ho =CF(My,H,), -+, H,=CF(My_1,Hp,_1).

Finally, H,, is output as the hash value of M.

MD5 Compression Function

The compression function of MD5 takes M; and H; as input and outputs H;1.
First, the message block M; is divided into sixteen 32-bit length messages (my,
mi,--+,my5). The hash value H; is divided into four 32-bit length chaining
variables (Q_4,Q—_1,Q_2,Q_3). The compression function consists of 64 steps.
Steps 0-15, steps 16-31, steps 32-47, and steps 48-63 are called the first, second,
third and fourth rounds. In step j, the chaining variables @; are updated by the
step-update expression:

Qi =Qi1+(Qja+Pj(Qj-1,Q;-2,Q;-3) +mgy +kj)  sj.

Hereafter, ‘“+’ denotes the addition on modulo 232. Similarly, we use ‘=’ to
denote the subtraction on modulo 2%2. @; and 7(j) are defined in Table @ k; is



Preimage Attacks on Step-Reduced MD5 285

Table 2. Boolean functions and message expansion of MD5

0<j<15 &;(X,Y,Z)=(XAY)V(-XAZ)

16<j<31 &;(X,Y,2)=(XAZ)V (Y A=Z)

32<j <47 &, (XY, Z)=XdYDZ

48<j<63 &;(X,Y,Z)=Y ®(XV-Z)

7(0)---m(15) 0, 1, 2, 3, 4, 5, 6, 7, 8 9,10, 11,12, 13, 14, 15
7(16)---m(31) 1, 6,11, 0, 5,10,15, 4, 9,14, 3, 8,13, 2, 7,12
7(32)---m(47) 5, 8,11,14, 1, 4, 7,10,13, 0, 3, 6, 9,12, 15 2
7(48)---m(63) 0, 7,14, 5,12, 3,10, 1, 8 15, 6,13, 4,11, 2, 9

a constant value defined in each step, and s; denotes the left rotation by s;
bits. The value of s; is defined in each step. Because our attacks work for any
k; and sj;, we omit their description. Finally, the compression function outputs
the following values:

Hiy1 = (ho, hi,ha, hs) = (Q—4 + Qo0, Q-1 + Qe63, Q—2 + Qg2, Q—3 + Q61).

3 Related Work

In this section, we briefly describe the preimage attack against MD4 proposed
by Leurent ﬂﬁ] and explain why this attack is difficult to apply to MD5.

3.1 Summary of Differences between MD4 and MD5

Before we explain the preimage attack against MD4, we will clarify the differ-
ences between MD4 and MD5.

— The compression function of MD4 consists of 3 rounds (48 steps).

— The step-update expression in step j is
Qj = (Qj-1+Pj(Qj-1,Q;-2,Q;-3) +mﬂ'(] + k;) S
Note that Q;_; is only used in @;, while it is directly added in MD5. Graphs
of step-update expressions of MD4 and MD5 are shown in Fig. 1. MD5 has
an addition shown by the bold arrow.

— The Boolean function @; and the values of 7(j), k;, and s; are different.

3.2 Converting Pseudo-Preimage Attack to Preimage Attack

For a given hash value y, pseudo-preimage is a pair of (M,x),x # IV such
that CF(M,z) = y. There is a generic approach to constructing a preimage
attack from a pseudo-preimage attack m, Fact 9.99]. Assume there is an attack
that finds a pseudo-preimage of a target hash value with a complexity of 2%. If
we generate 2("~%)/2 pseudo-preimages by this attack and take hash values of
2(n+k)/2 random messages that start from the IV, we can expect that one of these
hash values will be matched with high probability by the birthday paradox. The
complexity is 2'T("+#)/2 Therefore, a pseudo-preimage attack with a complexity
less than 2772 can be converted to a preimage attack.



286 Y. Sasaki and K. Aoki

Qs Qp Q, Q Qyu Q, Q, Qg
mm—z—g mn(i)—g—g
<< <<
‘_
Qs Q. Ry Q. @ R, Q5

Fig. 1. Step-update expressions of MD4 (left) and MD5 (right)

3.3 Previous Preimage Attack on MD4

At FSE 2008, Leurent proposed a preimage attack against MD4 ﬂﬂ] In this
attack, message freedom in a late step in the third round is necessary for gener-
ating a desired hash value. However, because of the message expansion structure,
modifying a message in the third round always changes the value of a message
in the first and second rounds. Therefore, it is necessary to cancel these changes
in the first and second rounds by constructing a differential path such that any
selection of a m; in the third round can be accepted.

The key to this preimage attack is the construction of the differential path.
There are several techniques for this.

— In the first round, the change of a message is cancelled by changing the initial
value to guarantee that the other chaining variables in the first round are
left unchanged. Because the initial value is used only in the first 4 steps of
the first round, only m (o), Mr(1), Mr(2), and my(3) can be changed.

— In the second round, a differential path has been constructed in advance so
that the propagation of changes of messages in the second round correspond-
ing to my(0), Mr(1), Mr(2), and my(3) can be controlled. To achieve such a
situation, the absorption properties of ¢; explained below, are appropriately
used.

Absorption Properties of &;

@ to @31 of MD4 have an absorption property, namely, the output of @; can be
kept unchanged even if one input element of @; is changed. To check the absorp-
tion properties of MD4, please refer to ﬂﬁ] We show the absorption properties of
&; of MD5 in Table[Bl Here, 0 represents 0x00000000, 1 represents Oxffffffff,
and C represents a constant.

Table 3. Absorption properties of @; of MD5

Absorb 1% input Absorb 2°¢ input Absorb 3¢ input

0<j<15 &;(z,C,C)=C ¢,(0,2,C)=C &,(1,C,z)=C

16<j <31 &(z,C,0)=C &,(C,z,1)=C &,(C,C,z)=C
32 < j <47 - - -

48 < j <63 ®;(z,C,0)=C - ®;(1,C,z) = C



Preimage Attacks on Step-Reduced MD5 287

3.4 Difficulties of Applying Previous Attack to MD5

MD?5 consists of 64 steps, which is 16 steps longer than MD4. Therefore, finding
preimage attacks on MD5 seems harder than that on MD4. However, even if we
do not consider the increased number of steps, the construction of MD5 seems
to be harder than that of MDA4.

As explained in section 3.3, the key point of the previous preimage attack
is the construction of a differential path in the second round. In the attack by
Leurent, only messages corresponding to m (o), Mx(1), Mx(2) and mg(3) can be
changed. Fortunately, a very good differential path in the second round can be
constructed by only using these four messages. However, the same strategy does
not seem to be applicable to MD5 for the following reasons.

— In the step-update expression of MD5, Q;_1 is directly added to @; (Fig. 1).
Therefore, to cancel the change of @;_1, we need to change a message. (In
MD4, the change of ();_1 can be absorbed by only the absorption property of
&,;.) This makes the construction of a differential path harder than in MD4.

— @; of MD5 in round 4, which is not used in MD4, does not have an absorption
property when the second input element is changed as shown in Table[3l This
makes the control of values harder than in MD4.

— The message expansion of MD5 is different from MD4. Therefore, construct-
ing an efficient differential path in the second round by using only messages
corresponding to M (), Mx(1), Mr(2), and my(s) is hard.

4 A Preimage Attack Against 51 Steps of MD5(1133)

As explained in section 3, the previous attack against MD4 cannot be directly
applied to MD5. One reason is the structure of the MD5 message expansion.
However, which message expansion is strong has not been well-analyzed. In this
section, we propose an attack against modified MD5 whose message expansion
is weak. Then, in the next section, we consider applying it to the real MD5.

We found that 51 steps of an MD5 variant, where the round order is modified
to MD5(1133)  does not have preimage resistance. We confirmed that this round
order is the weakest as long as our strategy is used. We also show the strong
round orders, and determine some implications on hash function design.

4.1 Outline of Our Attack

We considered the reduced MD5(1133) that starts from step 7 and ends at step
57. The outline of our attack is given below. The message expansion of MD5(1133)
is shown in Fig. 2 and the schematic explanation in Fig. 3.

1. We focused on (msz,ms, mg), which can form a local collision in the second
round. We call these messages Local-Collision Messages, steps where the
local collision is inserted Local Collision Part, and steps where the local-
collision messages are used in the third round Matching Part.



288

S G wN

Y. Sasaki and K. Aoki

IR|0|1|2|3|4|5|6]|7 8|9 10[11[12]13|14|15
R|0| 14234 5[6EF7 8 9 10[11]12(13 1415
3R|5|8|11/14]1 4|7 1013|043 |6 |9 [12/15 2 f
3R|5(8 |1114]1 |4 |7 10|13 0T3 619 |12|15] 2
Local Collision Part Matching Part
Fig. 2. Message expansion of MD5(1133)
| Given Initial Value |
————
Fix
::zE 2%2 possible
Local Gollision Part 7} patterns of
— m, {(my, my, M)

Fix

Efficient match
using 2*2 freedom

of (m,, m;, my)

v

) Matching Part

— 73
— My

[ m,

Fix

5

| Given Hash Value

Fig. 3. Schematic explanation of attack procedure

Randomly determine all messages except for the local-collision messages.

Compute chaining variables from the

initial value to the matching part.

From a given IV and hash value, compute chaining variables in the last step.
Inversely compute chaining variables from the last step to the matching part.
Both input and output chaining variables of the matching part (128 bits) are

now fixed. In the matching part, bec

ause the local-collision messages have

232 freedom, 32 bits out of 128 bits can be matched with a probability of 1.
Therefore, the 128 bits are matched with a probability of 2796,



The first seven and last six steps are excluded from the attack target (Fig. 2).
Therefore, ms, ms, and mg appear only twice. A local collision can be formed

Preimage Attacks on Step-Reduced MD5

for any ma, so there is 32-bit freedom in (mq, ms, mg).

4.2 Detailed Procedure of Preimage Attack

First, we strictly define a modified MD5. We rewrite steps 7-57 in Fig. 2 to steps
0-50. This is shown in Fig. 4. This means 7(0) to m(50) of the modified MD5 are

shown in Fig. 4.

Step
0-15

16-31
32-47

48-50

78910111213141501523456
7189 |10011(12]13|14|15| 5 8.11 14147
101305369121525581114147
oIl o T LTTTCELITEIITY

Matching Part

Fig. 4. Message expansion of modified MD5

We also rewrite ¢; as follows.

sj and kj, (0 < j < 50) of the modified MD5 are s;;7 and kji7 of the real
MD5. We use the same IV and padding rule as the real MD5. The final output
is computed as follows: Hiy1 = (ho,h1,h2,h3) = (Q—4 + Qa7, Q-1 + Qs0,

0<j<8:

9<j<24:

25 < j <40:
41 <35 <50

Q-2+ Qu9, Q_3+ Qug).

The attack procedure is as follows.

Gl o=

mai) = ((Q — Qj-1)

Randomly determine the values of Qq, ...
Determine the values of m3, ...
Compute Qg, ..

P, (
P, (
P, (
P, (

X,Y,Z

Local Collision Part

XY, Z)=XaYaZ,
XY, Z)=XaYaZ

)
X,Y,Z)
)

) QS'

, mys to satisfy MD5 message padding.

, Qg by the step-update expression.

Randomly determine the values of Qg, Q10, @14, and Q15.

To make @13(Q12, Q11, Q10) independent of Q11, we use the absorption prop-

erty of @135. Therefore, we set (12 to be 0x00000000.

6. Similarly, to make @14(Q13, @12, @11) independent of @11, we set Q13 to be
Oxffffffff.

7. For j =0, ..., 5,9,10,13, 14, compute m;) by the following equation:

8j) = Qj—a = P(Qj-1,Qj-2,Qj-3) = kj.

(XAY)V (-X A 2),
(XAY)V (=X A 2),



290 Y. Sasaki and K. Aoki

8. Compute Q1¢, ..., @34 by the step-update expression.
9. Compute Qu7, ..., Q50 by the following equations:
Qur=ho—Q_4, Qs0=h1 —Q_1, Qug =h2 — Q_2, Qug =h3z — Q_3.
10. Compute Qg46, ..., Q37 by the following equation:

Qj-a=((Qj —Qj-1)  8j) = Ma(j) — Pj(Qj-1,Qj-2,Qj-3) —

11. Check whether the chaining varlableb in the matching part are matched by
executing the matching method explained in section 4.3. By this method, all
chaining variables are matched with a probability of 279,

12. If all chaining variables are matched, output my,...,m15, then halt this
algorithm. Otherwise, repeat this procedure from Step 4 or 1.

Steps 4-11 of the above procedure have the dominant complexity 2%.

4.3 Matching Method

The matching method is executed in the matching part. The input is the values of
Q315+, Q34,Q37, ..., Qao, and My (37, ..., My(39). The purpose is to determine
the values of (ma, ms, mg) so that 32 bits out of 128 bits of the chaining variables
are matched with a probability of 1 and to check whether the other 96 bits are
matched or not. Equations in the matching part are as follows. (Known fixed
variables are underlined.)

Q35 = Q34 + (Q31 + (R34 © Q33 © Q32) +m3 + k35) 535 (1)
Q36 = Q35 + (Q32 + (Q35 © Q34 © Q33) + M6 + k3s) 536 (2)
Q37 = Q36 + (Q33 + (Q36 D Q35 © Q34) + Mp37) +k3r) 837 (3)
Q3s = Q37 + (Q34 + (Q37 © Q36 © Q35) + Mr(3g) + k3g) 38 (4)
Q39 = Q38 + (Q35 + (P38 © Q37 © Q36) + Mr(39) + k3g) 839 (5)
Qa0 = Q39 + (Q36 + (Q39 © Q38 © Q37) +ma + kao) 540 (6)
The procedure of the matching method is as follows.
1. Define X as follows:
X = Q35 ® Wse- (7)

2. From equation 4, compute the value of X:

= (((Q38 — Q37)  s38) — Q34 — My(38) — k3s) D Q7. (8)

3. From equation 3, compute the value of Q3¢:

Q36 = Q37 — ((Q33 + (X © Q34) + mysry +k3r)  s37). 9)
4. From equation 7, compute the value of Q35:
Q35 = X © Qs6. (10)

5. From equation 6, compute the value of ma:

mo = ((Qao — Q39) $40) — Q36 — (Q39 & Q33 ® Q37) — kao. (11)



Preimage Attacks on Step-Reduced MD5 291

6. From the equations for steps 11, 12, and 15 in the local collision part, com-
pute the values of @11, m3, and mg:

Qi1 = Qo + (Q7 + P11(Q10, Qo, Qs) + ma + k11) 511, (12)
mz = ((Q12 — Q1) s12) — Qs — P12(Q11, Q10, Qo) — k12, (13)
me = ((Q15 — Q14) 515) — Q11 — P15(Q14, Q13, Q12) — k15 (14)

7. Finally, check whether equations 1, 2, and 5 are correct or not. This succeeds
with a probability of 276 therefore, the matching method succeeds with a
probability of 2796,

4.4 A Study of Round Orders

The message expansion structure seems to be heavily related to security. How-
ever, the strength of the message expansion is not well-analyzed. In this paper,
we try all possible round orders of MD5 to detect strong and weak round orders
against our attack. The outline is as follows. (Details are shown in Appendix B.)

1. For all possible round orders and selection of local-collision messages, do the
followings.

2. Reduce the steps from the first and last steps until all the selected local-
collision messages are excluded from the attack target in the first and fourth
rounds.

3. The remaining steps are the attack target. If the attack target is long, we
say such a round order is weak against our attack. If the attack target is
short, the round order is strong.

We denote each round of the original MD5 as “R;,” “Rs,” “R3,” and “R4.”
Then, we denote each round of the modified MD5 before the step number is
reduced as “first round,” “second round,” “third round,” and “fourth round.”

As a result of this analysis, we confirmed that MD5(1133) is the weakest round
order against our attackl. We also found the strong round orders. We show 20
round orders that can be attacked at 35 or 36 steps at most in Table [4]

The number of steps that can be attacked depends on R; used as the first,
second, and fourth rounds. In Table @ we denote the third round by *, which
means any R; is acceptable.

Table 4. Strong round orders against our preimage attack

Upper-bound of attackable steps Round order
35 1-3-%.1,
36 1-3-%4, 2-3-%2, 4-3-%1, 4-3-*4

All the strong round orders in Table @ use R3 as the second round. This is
because making the local collision in Rj3 involves more messages than in the
other R;. We show the pattern of local-collision messages in Table[Bl As we can

2 Details and other weak round orders are in Appendix C.



292 Y. Sasaki and K. Aoki

Table 5. Local-collision messages for R;

Round function Local-collision messages (0 < j < 11)

Ry Moz (j)s Mr(41)> Mo (j+4)

Ry Mo (), Mo (j+1) Mo (j+4)

Rs Mo (5)s M (j4+1)> Mo (j+2) Mo (j43) s Mo (j+4)
Ry M ()5 Mo (1) > Mo (j42) Mo (5+4)

Why these messages form local collisions is explained in
Appendix A.

see, the local-collision messages in R3 involve five messages while the other R;
involve only three or four messages. Therefore, selecting R3 as the second round
can efficiently prevent our attack.

4.5 Implications on Hash Function Design
What we can learn from our analysis is summarized as follows.

— A local collision may damage the one-wayness of hash functions.

— As the number of messages necessary to make the local collision increases,
attacking long steps by our approach becomes difficult. In the case of MD5,
selecting Rj3 as the second round efficiently prevents our attack.

— The number of messages necessary to make the local collision depends on
the existence of the absorption property of non-linear functions. Therefore,
eliminating the absorption property in the design of non-linear functions is
important for preventing this kind of analysis.

— If the absorption property cannot be eliminated, a direct addition from a
chaining variable to another can be a solution. In fact, MD5 is harder to
analyze than MD4 because of the addition from Q;_1 to @;.

5 A Preimage Attack Against 44 Steps of MD5

5.1 Selecting Step Number

First, we select the local-collision messages in the second round. The number of
steps that can be attacked is maximized (46 steps) when we select my4, mg and
mg as the local-collision messages. However, in such a case, the matching part
becomes too long, and an efficient matching method cannot be constructed. As
a consequence, our strategy cannot be efficiently applied to the real MD5.

The other way to construct a preimage attack is to remove the local collision
part and use only the matching part. Such an attack needs a message that
appears only once in the message expansion. As seen in Table Pl if we take steps
3-46 (total of 44 steps), mo will appear only once. By using this property, our
attack succeeds with a complexity of 2°6 reduced-MD5 computations.



Preimage Attacks on Step-Reduced MD5 293

5.2 Procedure of Preimage Attack

A reduced MD?5 is defined similarly to the modified MD5. The attack procedure
is as follows.

1. Randomly determine the values of mg,my,ms, ..., mi2, and determine
mys, ..., mys to satisfy MD5 message padding.

2. Compute Qq, ..., Q25 by the step-update expression.

3. Compute Quq, ..., Q43 by the following equations:

Qi =ho—Q-4, Quz=h1 —Q_1, Quz=ha —Q_2, Qu1 =h3z —Q_3.

4. Compute Q39, ..., Q27 by the following equation:

Qj—a=((Q5 =Qj-1)  85) =mr() — Pj(Qj-1,Qj-2,Q;-3) — k;

5. Check that all chaining variables in the matching part can be matched by
the matching method explained in section 5.3. By this method, all chaining
variables are matched with a probability of 279,

6. If all chaining variables are matched, output mg, ..., mis, then halt this

algorithm. Otherwise, repeat this procedure from Step 1.
The above procedure is repeated 20 times, so the complexity is 2°6.

5.3 Matching Method

The input of the matching method is the values of Qas,...,Q25, Qa7, ..., Q30
and My (27), . ., Mx(30)- Equations in the matching part are as follows. (Known
fixed values are underlined.)

Q26 = Q25 + (Q22 + P26 (Q25, Q24, Q23) + ma2 + ko) 526 (15)
Q27 = Qa6 + (Q23 + Pa7(Q26, Q25, Q24) + Mr(2r) + ka7)  s27 (16)
Q28 = Qa7 + (Qa24 + Pas(Qa7, Q26, Q25) + Mr(28) + kag)  s2s  (17)
Q29 = Qas + (Qa5 + P29 (Qa2s, Qa27, Q26) + Mr(20) + k20)  S20  (18)
Q30 = Q29 + (Q26 + P30(Q29, Q2s, Q27) + Mr(30) + k30)  s30  (19)

The procedure of the matching method is as follows.

1. From equation 19, compute the value of Qa¢.

2. From equation 15, compute the value of ms.

3. Finally, check whether equations 16, 17, and 18 are correct or not. This
succeeds with a probability of 2796,

6 Conclusion

In this paper, we considered preimage attacks against MD5. Our approach ap-
plies local collision to construct preimage attacks. As a result, we developed a
preimage attack that finds a preimage of 51 steps of MD5(133) with the com-
plexity 2°6. We also proposed a preimage attack against 44 steps of the real
MD5. The complexity of this attack is 2°6. Our attacks easily satisfy the mes-
sage padding rule and work for any IV. Finally, we analyzed message expansion,
and showed the strong and weak round orders against our attack.



294 Y. Sasaki and K. Aoki
Acknowledgement

We thank Jean-Philippe Aumasson, Willi Meier, and Florian Mendel for inform-
ing us of their research result.

References

1. Aumasson, J.-P., Meier, W., Mendel, F.: Preimage Attacks on 3-Pass
HAVAL and Step-Reduced MD5. Cryptology ePrint Archive, Report 2008/183,
http://eprint.iacr.org/2008/183.pdf

2. Black, J., Cochran, M., Highland, T.: A Study of the MD5 Attacks: Insights and
Improvements. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 262-277.
Springer, Heidelberg (2006)

3. den Boer, B., Bosselaers, A.: Collisions for the Compression Function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293-304. Springer,
Heidelberg (1994)

4. De, D., Kumarasubramanian, A., Venkatesan, R.: Inversion Attacks on Secure
Hash Functions Using SAT Solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.)
SAT 2007. LNCS, vol. 4501, pp. 377-382. Springer, Heidelberg (2007)

5. Dobbertin, H.: The First Two Rounds of MD4 are Not One-Way. In: Vaudenay, S.
(ed.) FSE 1998. LNCS, vol. 1372, pp. 284-292. Springer, Heidelberg (1998)

6. Dobbertin, H.: Cryptanalysis of MD5 compress. In: Announcement at the Rump
session of Eyrocrypt 1996 (1996)

7. Dobbertin, H.: The Status of MD5 After a Recent Attack. CryptoBytes The tech-
nical newsletter of RSA Laboratories, a division of RSA Data Security, Inc. 2(2),
Summer 1996 (1996)

8. Joux, A.: Multicollisions in Iterated Hash Functions. Applications to Cascaded
Constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306—
316. Springer, Heidelberg (2004)

9. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptol-
ogy ePrint Archive, Report 2006/105, http://eprint.iacr.org/2006/105.pdf

10. Knudsen, L.R., Mathiassen, J.E.: Preimage and Collision Attacks on MD2. In:
Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 255-267.
Springer, Heidelberg (2005)

11. Kuwakado, H., Tanaka, H.: New Algorithm for Finding Preimages in a Reduced
Version of the MD4 Compression Function. IEICE TRANSACTIONS on Funda-
mentals of Electronics, Communications and Computer Sciences E83-A(1), 97-100
(2000)

12. Leurent, G.: MD4 is Not One-Way. In: Preproceedings of Fast Software Encryption
- FSE 2008 (2008)

13. Liang, J., Lai, X.: Improved Collision Attack on Hash Function MD5. Journal of
Computer Science and Technology 22(1), 79-87 (2007)

14. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC Press, Boca Raton (1997)

15. Muller, F.: The MD2 Hash Function Is Not One-Way. In: Lee, P.J. (ed.) ASI-
ACRYPT 2004. LNCS, vol. 3329, pp. 214-229. Springer, Heidelberg (2004)

16. Rivest, R.L.: The MD5 Message Digest Algorithm. RFC 1321 (April 1992),
http://www.ietf.org/rfc/rfc1321.txt


http://eprint.iacr.org/2008/183.pdf
http://eprint.iacr.org/2006/105.pdf
http://www.ietf.org/rfc/rfc1321.txt

17.

18.

19.

20.

A

Preimage Attacks on Step-Reduced MD5 295

Rogaway, P.: Formalizing human ignorance. In: Nguyén, P.Q. (ed.) VIETCRYPT
2006. LNCS, vol. 4341, pp. 211-228. Springer, Heidelberg (2006)

Sasaki, Y., Naito, Y., Kunihiro, N., Ohta, K.: Improved Collision Attacks on MD4
and MD5. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences E90-A (1), 36-47 (2007)

Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19-25. Springer, Heidelberg
(2005)

Yu, H., Wang, X.: Multi-collision Attack on the Compression Functions of MD4
and 3-Pass HAVAL. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817,
pp. 206-226. Springer, Heidelberg (2007)

Patterns of Local-Collision Messages in Each Round

— —

Fig. 5. Patterns of local collision in each round

0<j<15:0,(X,Y,2)=(XAY)V (=X A Z),
16<j<31:8;(X,Y,Z)=(XAZ)V (Y A=Z),
32<j<47: ,(X,Y,2) =X DY & Z,
48<j<63:3;(X,Y,Z2) =Y ®(XV-Z).

The left diagram describes the local collision in the first and second rounds. The
center and right describe that in the third and fourth rounds, respectively. In any
round, we change M (;+1) and my(;14) to offset the change of m ;). In the third and
fourth rounds, we change M (;y2) and my(;43) because @; cannot absorb the change.
(In step ¢ + 1, the change of m, ;) can be offset without the absorption properties by
modifying mr(i11).)



296 Y. Sasaki and K. Aoki

B Round Order Search Algorithm

The round order search algorithm searches for strong and weak round orders
against our attack. It is as follows.

1. Generate all possible round orders. Because each round has 4 options, 4* =
256 round orders exist.

2. For each round order, consider all possible local-collision messages in the
second round. The pattern of local-collision messages for R; is shown in
Table Bl For any R;, there are 12 options for the local-collision messages.
Therefore, consider 256 x 12 = 3072 patterns.

3. For each of the 3072 patterns, reduce the steps from the first and last steps until
all the local-collision messages are excluded from the first and fourth rounds.

4. Finally, output the number of remaining steps for each of the 3072 patterns.

We coded the above algorithm, then we found the strong and weak round
orders against our attack. Strong round orders are discussed in section 4.4. Weak
round orders are shown in Table [l of Appendix C.

C Weak Round Orders Against Our Preimage Attack

We show weak round orders that may be attacked more than three rounds (48
steps) in Table

Table 6. Weak round orders against our preimage attack

Number of steps where Round order Local-collision messages Range of
preimage can be found matching part
51 steps 1-1-1-3 ma, ms, Me 5 steps
1-1-2-3 ma, M3, Me 13 steps
1-1-3-3 ma, M3, Me 6 steps
1-1-4-3 ma, ms, Me 10 steps
50 steps 3-1-1-1 mig, M11,M14 5 steps
3-1-2-1 mio0,M11,M14 8 steps
3-1-3-1 mig, M11,M14 6 steps
3-1-4-1 mio, Mi1, M14 12 steps
49 steps 1-2-1-2 ms, M7, Ms 6 steps
1-2-2-2 ms, m7, Mg 5 steps
1-2-3-2 ms, myz, ms 10 steps
1-2-4-2 ms, M7, Mms 8 steps
49 steps 4-2-1-2 ms, Mz, ms 6 steps
4-2-2-2 ms, M7, Mg 5 steps
4-2-3-2 ms, M7, Mms 10 steps
4-2-4-2 ms, myz, ms 8 steps

From Table [6l we can see that the weakest order may be attacked up to 51
steps. The range of the matching part is important for constructing an efficient
matching method. By considering these facts, we decided to use the round order
1R — 1R — 3R — 3R, and the local-collision messages (maz, ms, mg).



Linear Distinguishing Attack on Shannon

Risto M. Hakala! and Kaisa Nyberg!:2

! Helsinki University of Technology, Finland
2 Nokia Research Center, Finland
{risto.m.hakala,kaisa.nyberg}@tkk.fi

Abstract. In this paper, we present a linear distinguishing attack on
the stream cipher Shannon. Our distinguisher can distinguish the out-
put keystream of Shannon from 2'°7 keystream words while using an
array of 232 counters. The distinguisher makes use of a multidimensional
linear transformation instead of a one-dimensional transformation, which
is traditionally used in linear distinguishing attacks. This gives a clear
improvement to the keystream requirement: we need approximately 2°
times less keystream than when a one-dimensional transform is used.

Keywords: Distinguishing attacks, linear cryptanalysis, stream ciphers,
Shannon.

1 Introduction

Stream ciphers are symmetric encryption primitives that are used to ensure
confidentiality in digital communication. Compared to block ciphers, stream ci-
phers are often more efficient and allow a more compact implementation. How-
ever, their security has not been on the same level with the most secure block
ciphers. Since there does not seem to be any specific reason for this, stream ci-
phers have started to gain more attention from the cryptographic community.
To strengthen the scientific foundations of the security of stream ciphers, the
ECRYPT Network of Excellence has launched the eSTREAM project [1], whose
main objective is to identify new stream ciphers that might become suitable for
wide-spread adoption.

The security of a stream cipher is highly dependent on how random the
keystream can be made to appear. To analyze this property, statistical and al-
gebraic distinguishing attacks have been developed. Distinguishing attacks are
attacks where the attacker is able to tell whether a sequence has been generated
by the keystream generator or not. In linear distinguishing attacks, the attacker
tries to find statistical bias in the sequence that is obtained after a linear trans-
form has been applied to the original sequence. In this paper, we present a linear
distinguishing attack on the stream cipher Shannon [2]. Shannon is a recently
proposed synchronous stream cipher designed by Hawkes et al. [2] of Qualcomm
Australia. It has been designed according to PROFILE 1A of the ECRYPT call
for stream cipher primitives, and it uses a secret key that may be up to 256
bits in length. In addition to keystream generation, Shannon also offers message

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 297-305] 2008.
© Springer-Verlag Berlin Heidelberg 2008



298 R.M. Hakala and K. Nyberg

authentication functionality. However, we consider only the keystream generator
part of Shannon in this paper. To our knowledge, there are no publications with
cryptographic analysis of Shannon.

Linear distinguishing attacks on stream ciphers are often based on a bi-
ased linear combination of keystream bits. In other words, these attacks em-
ploy a one-dimensional transform which is applied to the given sequence. In
our attack, a multidimensional transform is used instead. We also consider the
one-dimensional approach and show that the multidimensional approach signifi-
cantly reduces the attack complexity. Our distinguisher can distinguish the out-
put keystream of Shannon from approximately 2'°7 keystream words. The one-
dimensional distinguishing attack requires approximately 2'1? keystream words.
Similar multidimensional distinguishing attacks have been presented previously,
e.g., on SNOW 2.0 by Maximov and Johansson [3] and on Dragon by Englund
and Maximov [4]. However, such attacks appear less frequently since the com-
putational effort required for constructing a multidimensional attack is usually
far too big for current techniques. In this paper, we use the Walsh-Hadamard
transform for efficient computation of the probability distribution related to
the multidimensional linear distinguishers. The theoretical basis for multidimen-
sional linear distinguishing attacks has only recently started to take form. In [5],
Baigneres et al. present several useful results in this direction. Also relevant is
the work on multiple linear approximations by Kaliski and Robshaw [6] and by
Biryukov et al. [1].

The outline of the paper is as follows. In Sect.[2, we introduce those definitions
and notations that are used in the paper. We give a short description of Shannon
in Sect.[Bl In Sect.d] we discuss linear distinguishers on a general level. In Sect.[5]
we describe our linear distinguisher for Shannon and estimate its complexity. Our
conclusions are given in Sect. [

2 Preliminaries

Let n be a positive integer. We denote by V,, the n-dimensional binary vector
space and use z to denote the n-bit vector (x[0],...,z[n —1]) € V,,. The vectors
in V,, are 1dentiﬁed with the integers in ZZ9» using the natural correspondence
e Y ' 2[i]2%. Addition of vectors in V, (i.c., the bitwise exclusive-OR) is
denoted by @. For vectors u € V,, and € V,,, we let u - x denote the standard
inner product u - x = u[0]z[0] @ - - - ® u[n — 1]z[n — 1] € V4. The linear function
lu: Viu — Vi is defined by [, (x) = u - x. The circular shift of x to left by a
coordinates is denoted by x a. We use V to denote the bitwise OR of two
vectors in V,,.

Let X be a random variable with the sample space V,,. We denote by Px (z) =
Pr[X = z], for all z € V,,. Px is called the probability function or the distribution
of X. The n-dimensional uniform distribution Py is a probability distribution
such that Py(z) = 27", for all © € V,,. For a Bernoulli distributed random
variable Y, we call the value

€y — Py(O) — Py(].)



Linear Distinguishing Attack on Shannon 299

the bias of Y. In linear cryptanalysis [8], one commonly studies biases of expres-
sions such as u - f(X) ®v - X, where u € V,;,, v € V,, and f: V,, — V,,, is a
vector-valued Boolean function. The vectors v and v are often called the linear
output and input masks, respectively.

2.1 Walsh-Hadamard Transform

Given a real-valued function f: V,, — IR the Walsh-Hadamard transform of f is
defined by

Flfl(u) = Z f@)(=1)** for all u € V,.

eV,

The Walsh-Hadamard transform is easily inverted. Given the transform F'(u) =
Flf](u), for all u € V,,, the values of f can be determined from the inverse
transform:

FUF)(@)=2"" > F(u)(-1)*", forallz eV,
uEVn

We have f(z) = F~[F](z), for all z € V,,. Parseval’s theorem for the Walsh-
Hadamard transform (see, e.g., [9]) gives us the result

o f@P =2 Fu)?

eV, u€Vy,

3 Description of Shannon

The keystream generator of Shannon [2] produces a keystream of 32-bit words
based on a 256-bit secret key. It is based on a single nonlinear feedback shift
register and a nonlinear filter. The state of the shift register at time ¢ > 0 consists
of 16 elements s;y;, ¢ = 0,..., 15, from Va2. In the specification of Shannon [2],
the state update procedure is defined as

5t416 = f1(5i412 @ 50413 @ K) © (R 1),

Rip1 = 541D fo(S643 © St416),
where f1, fo: V35 — V39 are nonlinear Boolean functions and K € V35 is a 32-bit

secret constant that is derived in the initialization process. The state update
procedure can also be written as a single relation:

St416 = f1(St412 D St413 D K) @ ((8¢t D f2(St42 @ St+15)) 1). (1)

The output z; at time ¢ > 0 is given by

2t = 8149 D S¢413 D f2(Se43 B Set16)-



300 R.M. Hakala and K. Nyberg

The functions f; and f, are defined by

fl(m) = g(g($7577)719722)7

fg(.T) = g(g(:m 7, 22)7 9, 19)7

with the function g: V3o X ZZ x ZZ — V39 defined by
gz,a,b) =& ((x a)V(x D).

Clearly, g(x ¢,a,b) = g(z,a,b) ¢, for all 1 < ¢ < 32. Hence, f;(z

c) = fi(z) ¢, fori = 1,2 and ¢ = 1,...,32. The functions f; and fy are
not surjective: according to [2], their ranges cover about 84.74% and 84.34%
of the codomain V3o, respectively. For further details of Shannon, such as the
initialization procedure and message authentication functionality, we refer to the
specification [2].

4 Linear Distinguishers

A distinguisher is essentially an implementation of a statistical hypothesis test:
a sequence (x;)¢>0 over V,, is given as input to the distinguisher and the distin-
guisher decides whether the input sequence is from a specific cipher or appears to
be random. In other words, the distinguisher compares a sampling distribution
constructed from the input to the uniform distribution Py and the distribution
Pc that sequences generated by the cipher are estimated to have. The distin-
guisher should be able to make the decision with high confidence level.

A linear distinguisher is a distinguisher which operates in two phases. In the
first phase, a linear transformation is applied to the input sequence (z¢);>0 to
get a new sequence (&¢)¢>o over V,,, where m < n. The distribution of (Z¢)¢>0
is examined in the second phase in order to make the decision. In this paper, we
assume that the transformation is a linear transform T': (V;,)/!l — V;,, such that

.i‘t = T(($t+i)iel)7 for all ¢ Z 07

where [ is an index set. To create an efficient distinguisher, the transform 7T’
should be chosen such that given a sequence produced by the keystream gener-
ator the sequence (&;)¢>0 should deviate from the uniform distribution as much
as possible with respect to the test statistic used in the distinguisher. On the
other hand, (Z);>0 should not be biased if the input sequence (z;);>0 is not
from the cipher. We use P to denote the expected distribution of (Z¢):>¢ when
a keystream sequence has been given as input.

A distinguisher uses a test statistic to perform the hypothesis test. In [5],
Baigneres et al. showed that the log-likelihood ratio statistic is an optimal statis-
tic for a linear distinguisher. For a sufficiently large number NV of samples (&4 )¢>0,
one can perform the hypothesis test reliably. In the hypothesis test, the distribu-
tion of (Z4)¢>0 is compared to the m-dimensional distributions P and Py using
the log-likelihood ratio

A= Z log, Pc(it). (2)



Linear Distinguishing Attack on Shannon 301

The sample size requirement N is inversely proportional to the squared Euclidean
distance between distributions P and Py. More accurately, we have

1
M ampo - poly

where ||-||2 is the £2-norm. In [5], Baignéres et al. call the denominator 2™ || Pc —
Pyll3 = 2™ Y, ey, (Po(x) — 27™)% the Squared Euclidean Imbalance of Pe.
Hence, to find an efficient distinguisher, one needs to find a linear transforma-
tion for the input sequence (z¢);>o0 such that the squared Euclidean distance
between (Z¢)¢>0 and a uniformly distributed sequence is large whenever the in-
put sequence has been generated by the keystream generator. Note that if m = 1,
the linear distinguisher examines linear combinations of input sequence bits. In
this case, Pc is the Bernoulli distribution and we have 2™||Pc — Py||3 = €2,
where ec is the expected bias in (&)>0.

5 Linear Distinguishers for Shannon

To build a linear distinguisher for Shannon, we find a linear transform 7" which
is applied to the sequence ();>¢ over Vza given as input for the distinguisher.
This transformation should be chosen such that the squared Euclidean distance
between the distribution of (#;):>0 and the uniform distribution is large if the
input sequence (x¢);>0 has been generated by Shannon. Since all of the nonlin-
earity in the keystream generator is achieved with the functions f; and fs5, we
strive to find a transform 7" such that the distribution of (Z;):>¢ is affected by
fi and fs as little as possible if (z4)¢>0 is a keystream. This way, we try to make
the distribution of (#4):>¢ as nonuniform as possible whenever a keystream is
given as input. The best linear distinguisher that we found for Shannon relies
on the transformation

T: (xy, r416) — (24 1) ® w4116, forallt > 0.

In the next sections, we show how this transform is constructed and how the
distribution of (Z¢)i>0 can be estimated when a keystream has been given as
input.

5.1 Constructing the Distinguisher

We construct the linear distinguisher for Shannon by taking a linear combination
of the keystream variables z;, ¢ > 0, such that the combination will have a
nonuniform time-invariant distribution, denoted by P-. We use the state update
function () to cancel out the internal state variables not given as input to f;
or fa. Hence, if the system was linear, this linear combination would always be
equal to 0. With Shannon, however, such clear distinguishing is not possible
since the functions f1 and f have nonuniform value distributions. Using a linear
combination of the outputs of f; and fo, deviation from the uniform distribution



302 R.M. Hakala and K. Nyberg

can still be detected. This linear combination is used as the linear transform 7'
in the distinguisher.

The distribution Po of (2 1) @ 21416 can be estimated as follows. Since
fa(x) 1= fo(z 1), the state update function (1) can be rewritten as

(s¢ 1) ® str16 = fi(ser12 D 50413 D K) B fo((st42 D Se415) 1). (3

Recall that the output z; is given by

2t = 8149 D St413 D fa(Se43 B Set16)-

Now, by adding the keystream variables z; 1 and z;y16 together, the rela-
tion (@) can be used twice. We get

(2 1) @ zi416 = ((St+9 ® Se413 D f2(St43 D St116)) 1)
© St125 D St420 © fo(5¢410 D St432)
= f1(St421 ® S1422 B K) @ fo((Se411 D Se424) 1) (4)
®© f1(se425 © 51426 D K) @ fo((St415 D 5¢428) 1)
D f2(5t419 ® s1432) D fo((5t43 D 51416) 1).

Here, we have again used the fact that fo(x) 1= folx 1). None of the
state variables appear more than once in the inputs of f; or fo in (). Hence,
it is justified to assume that the inputs to fi and f> are independent uniformly
distributed random variables for all ¢ > 0. In that case, (z 1) @ 24416 has
a time-invariant distribution, which is determined from the value distributions
of f1 and fo. Note that it is not possible to gain information about the secret
constant K by using this linear transform—the distribution is independent of K
when the transform is constructed this way.

A linear distinguishing attack can be performed if we know the distribution
P of (z 1) @ z1416. The decision is made based on the value of the log-
likelihood ratio A given in @)): if A > 0, the distinguisher decides that the input
sequence has been generated by Shannon; otherwise, the input is decided to be
random.

5.2 Calculating the Distribution P¢c

Let P, and P, denote the probability distributions of the outputs of f; and
f2, respectively. The distribution Po of (z 1) @ 21416 is defined as the
convolution (over the exclusive-OR) of six random variables: two of them have
the distribution P; and four of them have the distribution P,. We make use of
the Walsh-Hadamard transform for calculating Pe efficiently. Let X be a random
variable with the sample space V; and the probability distribution Px, where
Px(z) = Pr[X = z], for all € V. Now, the random variable [,,(X) = u- X has
the Bernoulli distribution P,.x. Denote by e(u) the bias of u - X. We get

€(u) = Pux(0) = Pux(1) = Y Px(z)(=1)"", forall u € V.
zeVy



Linear Distinguishing Attack on Shannon 303

Hence, the bias e(u) is given by the transform F[Px] at u € Vy. Using the
well-known fast Walsh-Hadamard transform, it is possible to compute F[Px] in
O(d2?) operations. Since computation of Px takes O(2¢) operations, the biases
e(u), u € Vg, can be determined in O((d+1)2¢) operations. Conversely, if the bi-
ases €(u), u € Vg, are known, the distribution Px can be computed by taking the
inverse transform F~![e] (see [I0, Lemma 1]). Using the fast Walsh-Hadamard
transform, this takes O(d2%) operations.

In order to determine the biases ec(u), u € Via, we first compute the distri-
butions P; and P;. Using the fast Walsh-Hadamard transform, we compute the
biases €1 (u) and es(u) for the distributions Py and P for all u € V35. Since we
have d = 32, these procedures take roughly 2 - (32 + 1) - 232 ~ 23® operations.
Next, we determine the bias ec(u) of u- ((z¢ 1) ® z1416) for all u € Vsy. Since
all six random variables in (@) are statistically independent, the biases can be
computed using the Piling-Up Lemma [§]:

ec(u) = e1(u)?ex(u)?, for all u € Vas. (5)

Thus, the distribution P can be calculated by taking the inverse transform
F~1ec]. In the attack, the distribution Pc is used to evaluate the log-likelihood
ratio A. Calculation of Po and the inverse Walsh-Hadamard transform is not
necessary, however, if one simply wants to determine the sample size requirement
N for the distinguisher. Using Parseval’s theorem, it is not hard to show that
2™||Pc — Pyll3 = 3,40 €c(u)? [B, Proposition 11]. Hence, the sample size N can
be expressed as a function of the biases ec(u), u € Vy:
1
Y S et (6)

5.3 Results

To estimate the complexity of the distinguisher, we determined the sample size
requirement N using (B). The biases ec(u), u € Via, were computed for all
u € Vio using (B)). We also determined the highest bias ec(u), u # 0, from
these values in order to compare the complexity of one-dimensional and 32-
dimensional distinguishing attacks. In the one-dimensional distinguishing attack,
the distinguisher makes use of the transform [,, o7 instead of T'. The highest bias
ec(u) = 27°% was achieved with the mask u = 0x0410a4a1. In order to compute
the log-likelihood ratio A, we need to store the distribution Pz to memory. For
this, we need to have memory space for 232 counters when the transform 7T is
used and a single counter when the transform [, o T is used. The results are
presented in Table [[l For completeness, we present the absolute biases |e; (u)]
and |ea(u)| for u = 0x0410adal in Table 2l We also present the masks which
induce the highest individual biases |e;(u)| and |e2(u)] in the same table.

The results in Table [l show a clear advantage of using a multidimensional
transform 7T instead of I, o T in the distinguisher: we need approximately 2°
times less keystream in the former case. From (@), it is possible to see how
different masks u affect the requirement N. Since f;(u) c= fi(u ),



304 R.M. Hakala and K. Nyberg

Table 1. The keystream requirement N and the memory requirement M for the dis-
tinguisher that uses the transform 7" and for the distinguisher that uses the transform
[y o T, where u = 0x0410adal. In the latter case, N is simply given by ec(u)ﬂ.

T lyoT
N 2106.996 2112
M 232 1

Table 2. Properties of distributions of fi and f2. The mask u = 0x0410adal gives
the highest ec(u); the mask v = 0x00021021 gives the highest |e1(u)|; the mask u =
0x25252525 gives the highest |ez(u)|.

u lex(u)]  lez(w)|

0x0410a4al 27 '2 98
0x00021021 278415 0
0x25252525 0 9=7.997

i = 1,2, we have ec(u) = ec(u ¢), for ¢ = 1,...,32. If all nonzero masks
would induce the same bias as the masks 0x0410a4al ¢, c=1,...,32, the
keystream requirement N would reduce by a factor of 232. Since the reduction
factor is 25-004, all other masks have a negligible effect on the requirement: they
reduce it by a factor of 20-0%4. As shown in Table ] the largest |e2(u)]| is greater
than the largest |e1 (u)|. Perhaps it is because the coverage of fs is slightly smaller
than the coverage of fi.

6 Conclusions

We have presented a multidimensional linear distinguishing attack on Shannon.
The attack requires about 2'°7 keystream words and memory space for 232 coun-
ters. The distinguisher makes use of the transform

T: (zt, Try16) — (24 1) @ x4416, forallt > 0.

We have also studied the complexity of a distinguishing attack where the one-
dimensional transform [, o T, u = 0x0410a4al, is used instead. The multidimen-
sional transform 7' gives a clear improvement over the transform [, o T in the
complexity: the distinguisher needs 2° times less input in the former case. How-
ever, the memory requirement is larger (but still reasonable) in the multidimen-
sional case. A crucial method in our analysis has been the fast Walsh-Hadamard
transform. This has allowed handling of large probability distributions efficiently.
Generally, building a multidimensional distinguisher is not possible since it re-
quires too much computational effort to examine and handle large distributions.

In the specification for Shannon [2], the authors state that the intention of
the design is to ensure that there are no distinguishing attacks on Shannon



Linear Distinguishing Attack on Shannon 305

requiring less than 289 keystream words and less than 2'2® computations. The
results obtained in this paper do not break these limits, and Shannon seems to be
as robust against distinguishing attacks as intended. The authors also claim that
Shannon should be resistant against distinguishing attacks when used subject
to the condition that no key/nonce pair is ever reused, and that no more than
218 words of data are processed with one key/nonce pair, and no more than 289
words are processed with one key. These limitations do not affect distinguishers
which work independently of the initial state of the cipher. For example, the
distinguisher in this paper should work with all key/nonce pairs because the
distribution of (z; 1) @ 24416 does not depend on either the key or the nonce.
In theory, one could generate enough keystream for the distinguisher by rekeying
the cipher repeatedly with different keys. Hence, the security requirements are
not fulfilled in comparison to this claim.

References

1. ECRYPT Network of Excellence: The homepage for eSTREAM (2008),
http://www.ecrypt.eu.org/stream/

2. Hawkes, P., McDonald, C., Paddon, M., Rose, G.G., Wiggers de Vries, M.: Design
and primitive specification for Shannon. Technical report, Qualcomm Australia
(2007), http://eprint.iacr.org/2007/044 . pdf

3. Maximov, A., Johansson, T.: Fast computation of large distributions and its cryp-
tographic applications. In: Roy, B. (ed.) ASTACRYPT 2005. LNCS, vol. 3788, pp.
313-332. Springer, Heidelberg (2005)

4. Englund, H., Maximov, A.: Attack the Dragon. In: Maitra, S., Veni Madhavan,
C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 130-142.
Springer, Heidelberg (2005)

5. Baigneres, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASTACRYPT 2004. LNCS, vol. 3329, pp. 432-450.
Springer, Heidelberg (2004)

6. Kaliski, B., Robshaw, M.: Linear cryptanalysis using multiple approximations. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26-39. Springer, Heidel-
berg (1994)

7. Biryukov, A., Canniere, C.D., Quisquater, M.: On multiple linear approximations.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1-22. Springer, Hei-
delberg (2004)

8. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386-397. Springer, Heidelberg (1994)

9. Beauchamp, K.G.: Applications of Walsh and Related Functions. Academic Press,
London (1984)

10. Nyberg, K., Hermelin, M.: Multidimensional Walsh transform and a characteri-
zation of bent functions. In: Proceedings of the 2007 IEEE Information Theory
Workshop on Information Theory for Wireless Networks, pp. 83-86. IEEE, Los
Alamitos (2007)


http://www.ecrypt.eu.org/stream/
http://eprint.iacr.org/2007/044.pdf

Recovering RC4 Permutation from 2048
Keystream Bytes if 7 Is Stuck

Subhamoy Maitra! and Goutam Paul?

1 Applied Statistics Unit, Indian Statistical Institute,
Kolkata 700 108, India
subho@isical.ac.in
2 Department of Computer Science and Engineering,
Jadavpur University, Kolkata 700 032, India
goutam paul@cse. jdvu.ac.in

Abstract. In this paper, we study the behaviour of RC4 when the in-
dex j is stuck at a certain value not known to the attacker. Though it
seems quite natural that RC4 would be weak if j does not change, it has
never been studied earlier in a disciplined manner. This work presents
the nontrivial issues involved in the analysis, identifying how the infor-
mation regarding S starts leaking with as low as 258 keystream output
bytes. The leakage of information increases as more bytes are available
and finally the complete S is recovered with 2'! bytes in around 22°
time complexity. The attack considers that “the deterministic index ¢ at
the point when j got stuck” and “the value at which 7 remains stuck”
are unknown. Further, the study presents a nice combinatorial structure
that is relevant to the fault analysis of RCA4.

Keywords: Cryptanalysis, Fault Analysis, Keystream, Permutation,
RC4, Stream Cipher.

1 Introduction

RC4 is one of the most well known stream ciphers in cryptographic literature.
The cipher has been analysed for around two decades, and many weaknesses have
been identified. However, none of the weaknesses could seriously affect RC4 and
it can very well be used in a secure manner if certain precautions are taken. That
is the reason RC4 is still being used in commercial domain.

One more motivating point behind the study of RC4 is its simplicity. The Key
Scheduling Algorithm (KSA) and the Pseudo Random Generation Algorithm
(PRGA) of RC4 are presented below. The data structure consists of an array S of
size N (typically, 256), which contains a permutation of the integers {0,..., N —
1}, two indices i, and the secret key array K. Given a secret key k of [ bytes
(typically 5 to 32), the array K of size N is such that K[y] = k[y mod [] for any

We consider a stuck-at fault where the value of the index j is stuck at some
value = during the PRGA, 0 < & < N — 1. With this, we term the PRGA as
StuckPRGA.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 306-1320] 2008.
© Springer-Verlag Berlin Heidelberg 2008



Recovering RC4 Permutation from 2048 Keystream Bytes if j Is Stuck 307

Algorithm KSA Algorithm PRGA Algorithm StuckPRGA
Initialization: Initialization: Initialization:
For i =10,..., N —1 i=3j=0; i=7=0;
S[i] = i; Output Keystream Generation Loop: Output Keystream Generation Loop:
j=0; i=i+1; i=i+41;
Scrambling: j =3+ S[i; j= =
Fori=0,..., N -1 Swap(S[i], S[j]); Swap(S[i], S[j]);
i = (i + Slil + K[i); t = Sl + S[j; t = S[il + S[s];
Swap(S[i], S[4]); Output z = S[t]; Output z = S[t];

The simple structure of RC4 has invited substantial attention towards its
analysis. RC4 can be completely attacked if one can reconstruct the permutation
S looking at the keystream output bytes. In [4, Table 2], it has been estimated
that this kind of attack would require around 277 to 2797 complexity. Later in [9,
Table 7], an improved idea has been presented that estimates a complexity of
2731 These results are interesting if one considers RC4 with key of size greater
than 731 bits (approximately 92 bytes). However, these estimates, in no way,
affect the security of RC4 if the key size of 32 bytes (256 bits) is considered. A
very recent and important work [§] in this area shows that the permutation can
be recovered much faster than that have been shown in [4/9] and the complexity
is estimated as 224!, This shows that RC4 is not secure when the key length is
more than 30 bytes. Fortunately, this result does not affect RC4 for the typical
secret key size of 5 to 16 bytes.

Another important kind of analysis in RC4 is to study how the keystream
output bytes can be distinguished from random stream or how they are biased
towards the secret key. These results can be exploited to mount certain attacks.
One may refer to [B6I7] and the references therein for more details.

Since RC4 cannot be comprehensively attacked, some easier models of RC4
have been studied in literature. In [4l, Section 3], the behaviour of RC4 is studied
when there is no swap or reduced number of swaps (i.e., swap would work after
generation of more than one keystream output bytes during PRGA). While for
no swap, it has been demonstrated that RC4 can be broken easily, in case of
reduced swap, the attack requires more time complexity [4] and may not be
achievable in certain cases.

The fault attacks are also an interesting area of study. Based on certain models
of the fault during the execution of the cipher, the security parameters of the ci-
pher degrade. The fault attack on RC4 has been initially studied in [3], Section 3.3].
The model in [3] is to introduce a fault on a single byte of S and then analyze the
resulting stream to get back the permutation S. Empirical results show that get-
ting certain information on S requires more than 10,000 keystream output bytes.
In [I], fault is introduced in the indices 7, j such that the RC4 state lands into a
Finney cycle [2]. Then it becomes easier to get back the permutation S. The result
of [1, Section 3] (impossible fault analysis) shows that at least 216 keystream out-
put bytes are required to mount such an attack. In [T], Table 1], it was shown that
the work of [3] requires injection of 216 faults and it needs 226 amount of keystream
bytes; whereas the work of [I, Section 4] (differential fault analysis) requires injec-
tion of 2'° faults and it needs 2'¢ bytes. Fault attack has also been considered in [7]
where 20,000 iterations are required and 2'* many faults need to be injected.

In our work, we consider that the index j is stuck at a certain value during
the execution of RC4 PRGA. Under this situation, the complete permutation S



308 S. Maitra and G. Paul

can be recovered with 2048 keystream output bytes. Our strategy is to interleave
the RC4 output bytes in a logical manner so that we can identify sequences of
two or more consecutive elements in the permutation.

It is acceptable that the fault models always rely on optimistic assumptions
and considers a weaker version of the cipher than the original one. Also it has
been commented in [3] Section 1.3] that the attacker should have partial control
in terms of number, location and timing of fault injections. Thus, getting a
situation where j would get stuck at a certain value for some period of time is
rather optimistic. However, if one accepts this model, then the attempt should
be to recover the permutation with as less keystream output bytes as possible
when the value of j, where it is stuck, is not known. That is what we target in
this paper.

In Section 2 we build the theoretical framework considering j is stuck at 0
and it happens at the beginning of the PRGA (just after the KSA) when ¢ = 1.
This helps in understanding the situation clearly. In Section [B, we present the
general scenario that none of 7, j is known and j is stuck at an unknown value.

In [T Page 364], a stronger fault model is mentioned where one can select the
exact value of the indices ¢ or j or one value in the permutation S. Further, it
has been commented [I, Page 364] that in this case much stronger attack would
exist specifically for this model. We complete the task in this paper by showing
that such an attack exists by recovering the permutation S with very few (as
low as 2048) keystream output bytes.

Apart from the cryptographic significance, studying RC4 with j stuck at some
value reveals nice combinatorial structures. First, an internal state on any step is
a restricted permutation over some fixed initial state. Secondly, if one considers
consecutive outputs at steps say r,r + 257, + 514 and so on, then the resulting
keystream sequence (i) either consists of the same values (in very few cases),
or (i) is exactly the subarray (e.g., indices y,y + 1,y + 2,...) of the initial
permutation (in most of the cases), or (iii) the subarray (e.g., indices y,y+1,y+
3,y +4,...) of the initial permutation with a jump in the initial permutation
(in very few cases). These facts allow to recover the full state given only 2048
keystream bytes and this will be clear looking at Table [l

Though the basic idea is not complicated, the formal analysis is quite involved.
The complete structure of the permutation S is studied in detail in such a situ-
ation and the reconstruction of S is explained in proper theoretical framework.
We show that even with 258 keystream output bytes, one can start getting infor-
mation about the permutation S and increasing amount of knowledge is leaked
with more bytes. The complete information on S is revealed when 2048 output
bytes are known.

2 Recovering Permutation from Keystream

First we introduce a few notations and definitions and then present the theoret-
ical analysis.



Recovering RC4 Permutation from 2048 Keystream Bytes if j Is Stuck 309

Let SY be the permutation and z, be the keystream output byte after 7 many
rounds of the PRGA, r > 1. Also, let ¢, be the index (in S&) from where z,
is chosen. We also denote by S§ the original permutation before the PRGA
starts. For the rest of the paper, we assume, without loss of generality, that
Sg; = < agp,a1,0as,...,any—1 >. The subscripts in a,’s are implicitly assumed to
follow arithmetic modulo N. For example, a_y, ay—, and in general a,n—_, for
any integer p represent the same element.

We now state a few definitions that would be needed in the subsequent
analysis.

Definition 1. A run of the RC/ PRGA is defined to be a set of any N consec-
utive rounds of keystream output byte generation during which the deterministic
index i takes each value in {0,...,N — 1} exactly once.

Definition 2. Given a permutation S, the n-th successor of an element u in
S, denoted by suc™(u), is defined to be the element which appears n locations
after u, if we move from left to right in S in a circular fashion. If S = <
bo, b1, b2, ..., bn_1 >, then suc™(by) = byir.

Definition 3. Given a permutation S, the n-rotated permutation, denoted by
rot™(S), is defined to be the permutation obtained by circularly right-shifting S
by n positions. If S = < bg,b1,ba,...,by_1 >, then

TOtn(S) =< bn, bn+1, ey bN—la bo, bl, ey bn_z, bp_1 >.

Definition 4. An ordered pair (u,v) is called a candidate pair, if u appears
N + 1 rounds after v in the keystream and both w,v come from the same index
i the respective permutations.

Definition 5. A set {(u,v1), (u,v2)} of two candidate pairs is called a conflict
set, if v1 # vy and it is not known whether vy = suc'(u) or va = sucl(u).

Definition 6. A candidate pair (u,v) is called a resolved pair for a permutation
S, if it is known that v = suc'(u).

Definition 7. A permutation S of N elements is said to be resolved, if for each
element u in S, suc'(u) is known, or in other words, if N — 1 many distinct
candidate pairs are resolved.

Note that since the permutation has N distinct elements, knowledge of N — 1
successors for any N — 1 elements reveals the successor of the remaining element.

Definition 8. A permutation S of N elements is said to be partially resolved,
if for some element u in S, suc'(u) is not known, or in other words, if less than
N — 1 many distinct candidate pairs are resolved.

Definition 9. Given two partially resolved permutations Sy and Sy of the same
N elements, we say S1 > Sy or S1 = Sy or S1 < Ss, if the number of resolved
pairs for S1 is more than or equal to or less than the number of resolved pairs
for Sy respectively.



310 S. Maitra and G. Paul

Table 1. Evolution of the permutation during StuckPRGA with j stuck at 0

Round r» 14 Bytes of the Permutation Sg Output Index tq

0 L.N—-2N-1

0 ag a1 @z az a4 as ... 4354 Aa355

1 1 a3 ap a2 a3z aqas ... azs4 azs5 ag +ay

2 2 a2 ag a1 agaq as ... azs4 azs5s al + az

3 3 a3 ap a1 az aq a5 ... azsq A255 agz + a3z

255 255 agss ag a1 a2 a3 agq ... az53 az54  a254 +a255

256 0 ags5 ag a1 a2 az a4 ... ag53 a254 2a255

257 1 ap agss a1 ap ag ag ... a253 azs54 ag + azs5

258 2 ay agss ag ag a3z ag ... a53  Aa254 ag + aq

259 3 ag ags5 ag a) az aq ... a253 a254 al + az

260 4 ag agss ag aj] ag a4 ... a53 ag54 ag + a3

511 255 agpq ags5 ag a1 a2 a3 ... azs52 a253  a253 +a254

512 0 ags4 a255 ap aj a2 a3 ... az52 4253 2a254

513 1 ags5 agsq ag a1 az az ... az52 az53  az54 + a2s5

514 2 ag agsq a255 a1 a2 43 ... 4252 A253 ag + a2s55

515 3 a1 ag54 a2s5 ap a2 a3 ... 4252 4253 ag +ay

516 4 az ags4 azs5 ag a1 a3z ... azs2 4253 a1 +az

Before we formally discuss our main results, let us illustrate the structure of the
permutation under the above fault model at different rounds of the PRGA in
Table [l We consider N = 256.

Without loss of generality, throughout this section, we assume that j is stuck
at © = 0 from round 1 onwards. Since the index 7 visits 0 to N — 1 cyclically,
similar results hold for x # 0 also, which will be discussed in Section [3

Proposition 1. Suppose the permutation after round pN of the PRGA, p > 0,
15 SEN = < bg,b1,...,by_1 >. Then the permutation after round pN + vy of the
PRGA, 1 <y < N-—1, is given by S§N+y = <by,bo,...,by—1,by41,...,bn—1 >.

Proof. We prove it by induction on y.
Base Case: When y = 1, the deterministic index i takes the value 1. So, bg, by
are swapped and SENH = < by,bg,ba,...,by_1 >. Hence the result holds for
y=1.
Inductive Case: Suppose for some y, 1 <y < N — 2, the result holds, i.e.,
S§N+y = < by,bo,...,by—1,byt1,...,bn—1 > (inductive hypothesis).

Now, in round pN + y + 1, the index ¢ becomes y + 1 and the other index j
remains fixed at 0. Thus, the values b, and by41 are swapped. Hence,

SO iyr1 = < byt1,00, -, by,byya, .., by 1 >, fee., the result also holds for
y+ 1. a
Lemma 1

(1) After round pN + vy of the PRGA, p > 0, 1 <y < N — 1, the permutation
is given by ST\, = < AN—piys AN—ps AN—p1s -+ 5 AN—prhy—15 AN —priy15 -

aN—p-2,aN—p—1 > and the permutation S,41)n after round pN + N is the
same as the permutation S,n+nN—1 after round pN + N — 1.



Recovering RC4 Permutation from 2048 Keystream Bytes if j Is Stuck 311

(2) The index where the keystream output byte is chosen from is given by

/ _Jan—pry1tan—piy if p=0, 1<y <N -1
PNTY T 2an— ifp>1,y=0.

Proof. The proof of item (1) will be based on induction on p.
Base Case: Take p = 0. We need to prove that
Sf = < Gy,00,01, ..., 0y—1,0y41,---,0N—2,aN—1 >, 1 <y < N — 1. This
immediately follows from Proposition [Il above, taking p = 0.
Inductive Case: Suppose the result holds for some p > 0, i.e., SEN+y =
< AN—ptys AN—ps AN —p413+++ s AN —pty—1, AN—pty+1s-+ -, AN—p—2, AN—p—1 >,
for 1 <y < N —1 (inductive hypothesis).
Thus, in round pN + N — 1, we have
S,?NJFN,l = < AaGN—p—1,AN—p; AN —p41;---s AN—p—2 >.
In the next round, i.e. in round pN + N, the deterministic index ¢ becomes 0
which is equal to the value of j and hence no swap is involved. Thus, S(C; YN T

S§N+N71 = < AN—p—1;AN—p, AN—p+1,-- -, AN—p—2 >, Which can be rewritten
as < bg,bi,...,bxy—1 >, where by = an—p—14y, 0 <y < N — 1. According to
Proposition [, S(C;H)N+y =<by,bo,b1,...,by—1,by41,...,bn—2,bn_1 >

= < AN—(p+1)+ys AN—(p+1)s AN —(p+1)+1s - - - » AN —(p+1)+y—13s AN —(p+1)+y+1s - - -

an—_(p+1)—1 > Hence, the result holds for the case p + 1 also.
Now we prove item (2). In round pN + y, the value of the deterministic index
i is y (modN) and that of the index j remains fixed at 0. Hence the output is

generated from the index t,n 4, = S5y, [yl + S5y 4, [0]. Writing the permutation
bytes in terms of the a,’s, we get the result. O

Theorem 1. Consider the two rounds pN +y and (p+1)N+(y+1), p > 0,1 <
y < N —2. The two keystream output bytes z,n 1y and z(p41)N+(y+1) come from
the same location t = aN—pty—1+ AN—pty 0 the Tespective permutations Syn+y
and S(p41)N+(y+1) with the following characteristics.

1. t=0 <= 2pN+y = 2(p+)N+(+1) = S5 [N = p +y].
2. t=y+1 <= zZyNty = suc2(z(p+1)N+(y+1)) with respect to S§'.
3.te{0,1,...,y — Ly, y+2,y+3,...,N -1}

= 2Ny = SUC (2(ps1) N1 (y+1)) With respect to S§.

Proof. Consider p > 0,1 < y < N — 2. From Lemma [Il we get t,nqy =

Lo+ )N+ (y+1) = ON—pty—1 + AN—ptry =t (s2Y).
Again from Lemmalll S,n, and S(,;1)n+(y+1) are respectively given by

< AN—pty; AN—p; AN —p+1; - - - s AN—pty—1, AN —pty+1, AN —py+2; - - -
AN—p-2,aN—p—1 >, a0d < AN py, AN—p—1,EN—ps - - -
AN —pty—2y AN —pty—1, AN —pty+1s+ -+, AN —p—3,AN—p—2 >.

Thus, t = 0 if and only if 2,n 1y = 2(,41)N+(y+1) = # (say). And in that case,
z reveals an_p4y, i.€., the value at index 0 in SEN 4y Or equivalently the value
at index N — p + y in the original permutation Sg; . This proves item 1.

Of the N — 1 other possible values of ¢, if t = y 4 1, then 2,n+y = aN—pty+1
and 2(,41)N+(y+1) = ON—p+y—1; and vice versa. This proves item 2.



312 S. Maitra and G. Paul

If, however, ¢ takes any of the remaining N —2 values (other than 0 and y+1),
then z,n1y appears next to z(,11)Ny(y+1) i S§'; and vice versa. This proves
item 3. O

Note that the keystream output bytes that come from the same index in two
consecutive run’s are always N 4 1 rounds apart.

For the sake of clarity, let us elaborate the pattern considered in the above
Theorem. Consider the indices of the keystream output bytes in two consecutive
run’s as follows.

y 1 2 N -2 N -1 N
run p o aN_p AN _p41 AN—p4l TAN_—p42 - ON—p-3TAN_p_2 AN_—p-2tAN_p_1 2aN_p_1
runp+ 1l any_p 1 taN—p aN_ptaN_p41 - ON_—p4atAN_p_3aAN_p- 3T AN_p_2 2aN_p_2

Observe that the keystream output indices in run p for y =1 to N — 2 exactly
match with those in run p 4+ 1 for y = 2 to N — 1 respectively. Moreover, as
discussed in the proof of Theorem [ the permutations in run p+ 1 for y = 2 to
N —1 are right shifts of the permutations in run p for y = 1 to N — 2 respectively
except at two locations.

We can exploit the above combinatorial structure identified in Theorem [ to
devise an efficient algorithm PartResolvePerm for getting a partially resolved
permutation from the keystream bytes.

Algorithm PartResolvePerm
Inputs:
1. The RN many keystream output bytes from the first R(> 2) run’s of the PRGA.
Outputs:
1. A partially resolved permutation in the form of an array Newt.
2. A set of conflict pairs in an array Conflict.
Steps:
1. Foru=0to N —1do
1.1. Set Nezt[u] = —1;
2. NumConflicts = 0;
3. Forp=0to R—2do
3.1. Fory=1to N —2do
3.1.1If ZpN+y = Z(p+1)N+(y+1) then do
3.1.1.1 Set SF[N — p+ 9] = 2poN+y;
3.1.2 Else do
3.1.2.1 If Next[z(p+1)N+(y+1)] = —1 then do
3.1.2.1.1 Set Nea:t[z(p+1)N+(y+1)] = ZpN+vy;
3.1.2.2 Else if Next[z(,11)N+(y+1)] # 2oN+y then do
3.1.2.2.1 Set NumConflicts = NumConflicts + 1;
3.1.2.2.2 Set Con flictiNumCon flicts).value = Z(p41)N+(y+1);
3.1.2.2.3 Set ConflictiNumConflicts].first =
Next[2(p11) Nt (y+1)];
3.1.2.2.4 Set Conflict[NumConflicts].second = zpN+y;

In the algorithm, Next[u] denotes the value that comes immediately after the
value u in the permutation S§'. If Next[u] is unassigned (i.e., Next[u] = —1),



Recovering RC4 Permutation from 2048 Keystream Bytes if j Is Stuck 313

it means that the element next to the element u in S§ is not yet known. Essen-
tially, we tally two consecutive run’s of the PRGA and fill in the array Next by
observing the candidate pairs, i.e., the keystream output bytes that come from
the same index in the respective permutations. Due to item 2 of Theorem[I] for
some u, one may record suc®(u) as suc'(u) resulting in some conflict sets, i.e.
candidate pairs (u, v1) and (u, v2) such that v1 # vo. Then it is not known which
one of vy, vy is suct (u). We keep an array Con flict where each entry corresponds
to a conflict set of the form {(u,v1), (u,v2)} and consists of three fields, namely,
(i) value for storing w, (i) first for storing vy and (iii) second for storing vs.

Remark 1. The fact that j is stuck provides a regular structure in the secret
permutation and therefore in the output bytes. At the point j gets stuck, the
permutation S can be considered to be a random permutation. Thus each byte
of the first run, coming out after j got stuck, can be considered to be chosen
uniformly at random from {0,..., N — 1}. Since we are using any two consec-
utive run’s for getting the candidate pairs, the values in each such pair can be
considered uniformly random for estimating the expected numbers of distinct
candidate pairs and conflict sets. This we have also confirmed by experimenta-
tion. This uniformity assumption is followed in the technical results in the rest
of this paper.

Theorem 2. The expected number of unassigned entries in the array Next after
the execution of the PartResolvePerm algorithm is N - (N]\Fl)(R_l)(N_Q).

Proof. The candidate pairs are of the form (z(p41)N4(y+1)s ZoN+y), 0 < p < R—2,
1 <y < N —2. Thus, each distinct value of z)n4,, 0 < p < R-2,1<y < N-2,
would give rise to a candidate pair and hence assign exactly one entry of the array
Next.

Let xz, = 1, if the value u does not occur in any of the (R — 1)(N — 2)
many keystream bytes z,n4y, 0 < p < R—2,1 < y < N — 2; otherwise,

let z, = 0,0 < u < N — 1. Hence, the total number of values that did not
N-1

occur in those keystream bytes is given by X = Z Zy. Assuming that each
u=0

keystream byte is uniformly randomly distributed in {0,..., N — 1}, we have

Pz, = 1) = (NgHEDWN=2 Thus, E(z,) = (V1) EDE-2) and E(X) =

N—-1
Z B(z,) = N - (Ng1)E-D(N=2), 0
u=0

Corollary 1. The expected number of distinct candidate pairs after the execu-
tion of the PartResolvePerm algorithm is N - (1 - (Njgl)(R_l)(N_Q)).

Theorem 3. The expected number of conflict sets after the execution of the

PartResolvePerm algorithm is bounded by (R — 1) - (V?).

Proof. The candidate pairs are of the form (2(p41)N+(y+1), 2pN+y) and the cor-
responding output indices are t,, = aN_pty—1 + ON—pty, 0 < p < R — 2,



314 S. Maitra and G. Paul

1 <y < N — 2. According as item 2 of Theorem [ if ¢,, = y + 1, then
ZpN+y = sucz(z(pH)NHyH)), but due to Step 3.1.2.1.1 of the PartResolvePerm
algorithm, z,n 4., is wrongly recorded as suc' (z(p11)n+(y+1))- For 0 < p < R—2,
1<y<N-=-2letz,, =1ift,, = y+1; otherwise, let z,, = 0. Hence, the total
number of wrong entries in the array Next after the execution of the PartRe-
R—2N-2
solvePerm algorithm is given by X = Z Z Z,,y. Bach wrong entry in Next is
p=0 y=1
a potential contributor to one conflict set, i.e., NumConflicts < X. Assuming
that each output index is uniformly randomly distributed, we have P(z,, =
R—2 N-2
1) = % Thus, E(z,) = \ and E(X) = > > E(x,,) = (R-1)-("3?). O
p=0 y=1

Given a conflict set {(u,v1), (u,v2)}, if we are able to find v1,v2 in a candidate
pair, then the conflict is resolved and we know the exact order of u, vy, vs. Using
this observation, we can devise an algorithm ResolveConflicts which takes as
input a partially resolved permutation S; and a collection of conflict sets and
generates as output another partially resolved permutation S such that Sy > 5.

Algorithm ResolveConflicts
Inputs:
1. A partially resolved permutation S; in the form of an array Newt.
2. A set of conflict pairs in an array Con flict.
Output:
1. A partially resolved permutation S2 > S in the form of the array Next.
Steps:
1. For u = 1 to NumConflicts do
1.1 For p=0to R—2do
1.1.1 Fory=1to N —2 do
1.1.1.1 If Conflict[u). first = z(p41)N+(y+1) and
Conflict[u].second = zpN+y then do
1.1.1.1.1 Set Nexzt[Conflict[u].value] = Con flictu].first;
1.1.1.1.2 Set Next[Next[Conflict|u].value]] = Con flict[u].second,
1.1.1.2 If Con flict[u].second = z(p41)N+(y+1) and
Conflict[u].first = zpn+y then do
1.1.1.2.1 Set Next[Conflict[u].value] = Con flict[u].second;
1.1.1.2.2 Set Next[Next|Con flict[u].value]] = Conflictu].first;

After R many run’s of the PRGA, the permutation may still remain partially
resolved. We then need to exhaustively fill in the remaining unassigned entries
in the array Next to form possible resolved permutations. We run PRGA on
each resolved permutation in turn, in order to determine its first element, and
thereby recover the entire permutation.

Lemma 2. If the initial permutation S5 becomes resolved at any stage of the
RCj PRGA, then S§ can be retrieved completely in O(N) average time.

Proof. Suppose one runs PRGA for M rounds starting with an arbitrary per-
mutation S. Assuming that the keystream output bytes are uniformly randomly



Recovering RC4 Permutation from 2048 Keystream Bytes if j Is Stuck 315

distributed, the probability that the set of M random keystream bytes obtained
by running PRGA on S would match with the M keystream bytes in hand (ob-
tained by running PRGA on S§') is b . With N = 256, a small value of M such
as M = 8 yields a negligibly small value 224 (close to 0) of this probability. Thus,
running PRGA on S for only 8 rounds, with almost certainty one would be able
to determine if that permutation indeed was the original permutation S§'.
Now, suppose S is a resolved permutation. So for any arbitrary element in S,
we know what is its successor. Starting from any element u as the first element,
if we write all the elements in sequence, then we get a permutation T = <
u, suct(u), suc?(u), . .., sucN~"1(u) > such that S = rot"(T) for some n, 0 <n <
N — 1. We run PRGA starting with the initial permutation once as T', next as
rot!(T), next as rot?(T), and so on, until the first 8 keystream bytes match with
the observed keystream bytes in hand. With at most N such trials, the entire
permutation can be constructed. a

The above Lemma readily gives an algorithm ConstructPerm to construct S§
from a resolved permutation.

Algorithm ConstructPerm
Inputs:
1. A partially resolved permutation S in the form of an array Next.
Output:
1. The original permutation S5 before the PRGA begins.
Steps:
1. Set m = the number of unassigned (i.e., —1) entries in the array Next;
2. For each possible assignment of those m entries do
2.1 Get the corresponding resolved permutation T
22Forn=0to N —1do
2.2.1 Run PRGA starting with rot™(T") as the initial permutation for
8 rounds and generate the first 8 keystream bytes;
2.2.2 If the above 8 keystream bytes match with the first 8 keystream
bytes obtained in the actual execution of PRGA, then do
2.2.2.1 Set S§ = rot™(T) and Exit.

We can combine the algorithms PartResolvePerm, ResolveConflicts and Con-
structPerm to devise an efficient algorithm RecoverPerm to retrieve the original
permutation S§ from the first few run’s of keystream output bytes generation.

Algorithm RecoverPerm
Inputs:
1. The RN many keystream output bytes from the first R(> 2) run’s of the PRGA.
Output:
1. The original permutation S5 before the PRGA begins.
Steps:
1. Run PartResolvePerm with the given keystream bytes and
generate the arrays Next and Conflict;
2. Run ResolveConflicts on Next;
3. Run ConstructPerm on updated Next;



316 S. Maitra and G. Paul

Theorem 4. The average case time complexity of the RecoverPerm algorithm
is O((R2 v [Emzv), where E = N - (Ng1)(R-D(NV-2),
Proof. The time complexity of Step 1 in RecoverPerm is O(RN), since there are
two nested ‘for’ loops in PartResolvePerm of R — 1 and N — 2 many iterations
respectively and one execution of the steps inside the ‘for’ loops takes O(1) time.

The time complexity of Step 2 in RecoverPerm is O(R?N)), since from Theo-
rem [3] the average value of NumConflicts is O(R) and resolving each of them
in the two nested ‘for’ loops in ResolveConflicts takes O(RN) time.

According to Theorem Bl just before the execution of ConstructPerm in Step
3 of RecoverPerm, the average value of the number m of unassigned entries in
the array Next is E = N - (Ng1)E-DW=2) Hence the ‘for’ loop in Step 2 of
ConstructPerm is iterated [ E']! times on the average. Again, from Lemma[2] the
time complexity of each iteration of the ‘for’ loop in Step 2 of ConstructPerm is
O(N). Hence the overall complexity of Step 3 in RecoverPerm is O([E|!N).

Thus, the time complexity of RecoverPerm is O((R2 + fEV)N) 0

Remark 2. If 2pn 1y = 2(p41)N+(y+1) for some p > 0 and some y € {1,..., N—2},
i.e., if the two values in a candidate pair turn out to be equal, then according to
item 1 of Theorem [ we would have S§'[N — p +y] = z,n+y. Once the location
of one entry of a resolved permutation is known, the positions of all other entries
are immediately known. If one makes use of this fact in the PartResolvePerm
algorithm, then rotating 7" in Step 2.2 of the ConstructPerm algorithm is not
needed at all. After Step 2.1, one can run PRGA for 8 rounds on T itself to
check whether T'= S§ or not. In that case, the average case time complexity of

the RecoverPerm algorithm would be reduced to O(R2N+ [E] !). However, this

requires the knowledge of i. Since in general ¢ will not be known to the attacker
(see Section [ for details), we do not make use of item 1 of Theorem [ in our
strategy.

The quantity logs([E1!) can be considered as a measure of uncertainty in re-
solving the permutation. Considering N = 256, Table [2] below lists the values
of E and logs([ET]!) for few values of R. Observe that if all the successors are
unresolved (the case R = 1 is an example of this), then the uncertainty is
loga(256!) = 1683.9961.

We see that as one considers more number of run’s, the uncertainty in resolving
the permutation decreases. In fact, the uncertainty starts decreasing when only
the first 258 keystream output bytes are available, as z; and z253 come from
the same index ag 4+ a1 (see Table [[) and constitute a candidate pair. Table
also shows that theoretically 7 run’s are enough to reduce the uncertainty in
resolving the permutation to zero and recover the permutation in O(R?N) time.
However, we empirically found that 8 run’s provide a conservative estimate when
there is no uncertainty in resolving the permutation. In all the experiments we
performed with 8 run’s, we could successfully recover the complete permutation.
Zero uncertainty implies that the permutation obtained after ResolveConflicts



Recovering RC4 Permutation from 2048 Keystream Bytes if j Is Stuck 317

Table 2. Decrease in uncertainty of resolving the permutation with increasing run’s

Runs Avg. No. of Elements with Uncertainty in Permutation

R Unassigned Successors E log2([ET!)
1 256 1684

2 94.73 491.69

3 35.05 138.09

4 12.97 32.54

5 4.80 6.91

6 1.78 1.00

7 0.66 0.00

8 0.24 0.00

in Step 2 of RecoverPerm algorithm is a resolved permutation. In this case, the
time complexity reduces to 82 - 256 = 214,

We can completely recover the permutation even if we have less keystream
bytes at our disposal, except at the cost of increased time complexity due to ex-
haustive assignment of successor elements. For example, when R = 4, i.e., when
we start with the first 1024 keystream output bytes, the average number of per-
mutation elements whose next elements are not known is 256 - ( ggg )3*254 = 12.97.
If we exhaustively fill in these [12.97] = 13 successor values, we would gen-
erate 13! ~ 232 possible resolved permutations. The time complexity of com-
pletely recovering the permutation with 1024 keystream bytes would be around
(42 4 232) . 256 ~ 218,

Interestingly, if we go for R = N run’s, i.e. we have a total of N? (= 216
for N = 256) many keystream output bytes, then we can construct the per-
mutation in O(N) time. From Lemma [0l when p = N, we have S,y = <
g, 1,02, ...,AN_1 >= S& and hence after the first N run’s, the structure
of the permutation, the output indices as well as the keystream output bytes
start repeating in the same order. So if we consider the keystream output bytes
coming from a fixed index ay—1 + ay, i.e., the values z,n4 4y for a fixed y,
0 < p <N —1, then we can readily get a resolved permutation and do not need
to perform exhaustive assignments.

3 Indices ¢,7 Unknown and 3 Stuck

All the results above can easily be extended when j is stuck at any value x €
{0,..., N — 1}. Suppose r4 is the round from which onwards j is stuck at x,
ret > 1. The value of the deterministic index 4 at round rg; is 15 = 74 mod N.
Then after d = (z — iy ) mod N more rounds, i.e., at round 74 +d+ 1, i becomes
x + 1 for the first time after j got stuck. One can denote the indices of the
permutation and the corresponding values after the end of round rg + d as
follows.

Permutation Index 0 1 ..x—1lzzxz+1... N—-2 N-1
Permutation Bytes by—z bn—z41 ... bn—1bo b1 ...bN—2-2 ODN—1-2



318 S. Maitra and G. Paul

Thus, “the evolution of the permutation from round rs + d + 1 onwards with j
stuck at x from round rs” is analogous to “the x-rotation of the permutation
evolving from round 1 onwards with j stuck at 0 from round 17”.

Suppose that the keystream bytes from the point when j got stuck is available
to the attacker. Because of the above cyclic pattern, and because of the relative
gap of N + 1 rounds between the values in any candidate pair as demonstrated
in the discussion following Theorem [1 in Section Bl the attacker does not need
to know rg or ig. If the attacker starts counting the first run from the point
when he has the first keystream byte at his disposal, he can efficiently recover
the permutation at the point when j got stuck. In the subsequent analysis, we
assume that the attacker does not know

1. the round rg from which j got stuck,
2. the value i of the deterministic index ¢ when j got stuck and
3. the value x at which j is stuck.

We here like to point out the modification corresponding to Step 3.1 of the
algorithm PartResolvePerm (and similarly Step 1.1.1 of algorithm ResolveCon-
flicts), where y varies from 1 to N — 2. In Section [2] j was assumed to be stuck
at 0 from round 7y = 1 (when iy was also 1). Thus, it was known in advance
that the candidate pairs (2(,41)N+(y+1), 2oN+y), for y = N —1, N (i.e., when the
deterministic index ¢ takes the values j — 1, 7), should be ignored. Here, rg; as
well as 74 are both unknown. For the sake of processing the keystream bytes
using the algorithms PartResolvePerm and ResolveConflicts), we initialize p to
0 at the point j gets stuck and from that point onwards the keystream bytes
are named as z1, 22, ... and so on. Given that j is stuck at an unknown value
x, when the deterministic index i takes the values z — 1 and z, the two corre-
sponding candidate pairs should be ignored. However, these two cases cannot be
eliminated here as z is not known. Hence, in Step 3.1 of the algorithm PartRe-
solvePerm and Step 1.1.1 of algorithm ResolveConflicts, we should consider that
y varies from 1 to N for each value of p € {0,1,..., R — 3} and y varies from 1
to N —1for p=R—2.

In this approach, utilizing all the RN many keystream bytes yield total
(R—1)N — 1 many candidate pairs. Following the same line of arguments as in
Theorem 2, we get the expected number of unassigned entries in the array Next
just before the execution of Step 3 of RecoverPerm as E' = N - (Njgl)(R_l)N_1
which, for large N (such as N = 256), is approximately equal to £ = N -
(N E-DIN=2)Since we get two extra wrong entries in each of the R — 1
run’s, the number of conflict sets would increase by 2(R — 1) from the value es-
timated in Theorem [3l Thus, the new bound on the expected number of conflict
sets after the execution of the PartResolvePerm algorithm, when the candidate
pairs are formed by considering all the keystream bytes in each run, is given
by (R—1)- (24 N?). Observe that the bound is still O(R) as in Theorem B
However, since i, and x are not known, we need to run Step 2.2 of the Con-
structPerm Algorithm for each possible values of ig; and z in {0,..., N — 1},
until Step 2.2.2 of ConstructPerm reveals the true initial permutation. Thus, we
need at most N? executions of Step 2.2 of ConstructPerm for each of the [E]!



Recovering RC4 Permutation from 2048 Keystream Bytes if j Is Stuck 319
resolved permutations where £ = N - (V! YE=DN=2) Thus, when i,; and x are
unknown, the average case time complexity of ConstructPerm is [E]!N?3, and
following the same analysis as in Theorem [l the average case time complexity of

RecoverPerm is 0(R2N +[E] !N3). With N = 256 and R = 8, we have E = 0

and the time complexity becomes 82 - 256 + 2563 ~ 225,

In the above analysis we assumed that the keystream bytes from the point
when j got stuck is available to the attacker. In practical scenario, the attacker
has access to the keystream output bytes only. He should be able to determine
the interval during which j remains stuck at a certain value by analyzing the
keystream. Then he can run the RecoverPerm algorithm on the keystream bytes
obtained during that interval. Theoretically determining the exact point when
J got stuck seems extremely tedious. However, we are going to provide a simple
test which can distinguish between a sequence of normal RC4 keystream bytes
when j is pseudo-randomly updated and a sequence of RC4 keystream bytes
when j is stuck. We use the following theorem that shows that the number of
conflict sets from the PartResolvePerm algorithm when j is pseudo-randomly
updated is much more than that when j is stuck at a certain value.

Theorem 5. Assume that the index j is pseudo-randomly updated in each round
of the PRGA. Then the expected number of conflict sets after the execution of the
PartResolvePerm algorithm, when the candidate pairs are formed by considering
all the keystream bytes in each run, is bounded by (R —1) - (N — 1) — Nt

Proof. The candidate pairs are of the form (2(p41)N+(y+1), 2pN+y) and the cor-
responding output indices are t,, = an—pty—1 + aN—pty, 1 < y < N for
0<p<R-3 andl <y<N-—-1forp=R—-2 Let x,, =1if z,n4y #
sucl(z(pH)NHyH)); otherwise, let z,, = 0. Then the total number of wrong
entries in the array Next after the execution of the PartResolvePerm algorithm

R-3 N N-1
is given by X = Z pr,y“‘ Z TR-2,y. Bach wrong entry in Next is a po-
p=0 y=1 y=1

tential contributor to one conflict set, i.e., NumConflicts < X. Assuming that
the index j is pseudo-randomly updated and each output index is uniformly
randomly distributed, we have P(z,, = 1) = V!, Thus, E(z,,) = Vy' and

R—3 N N—-1
E(X)=Y Y E(w,,)+ > E(wr2,) =(R-1)-(N—=1) = ' 0
p=0 y=1 y=1

Thus, one can run the PartResolvePerm algorithm once on the sequence of avail-
able keystream bytes and count the number of conflict sets. Numcon flits will be
O(R) if j is stuck during the interval when those keystream bytes were generated;
otherwise, Numcon flits will be O(RN).

4 Conclusion

We theoretically show how to recover the RC4 permutation completely when
the value of the pseudo-random index j is stuck at some value x from a point



320 S. Maitra and G. Paul

when i = ig. In such a case, 8N keystream output bytes suffice to retrieve the
permutation in around O(N) time when z and iy are known and in O(N?3)
time when they are unknown, N being the size of the permutation (N = 256
in standard RC4 applications). Our analysis of the evolution of the permutation
and that of the output indices reveals interesting combinatorial structures.

Acknowledgments. The authors like to thank the anonymous reviewers for
their comments that helped improve the editorial as well as the technical quality
of the paper. Also we like to thank Prof. Palash Sarkar and Prof. Murari Mitra
for discussion and valuable comments.

References

1. Biham, E., Granboulan, L., Nguyen, P.Q.: Impossible Fault Analysis of RC4 and
Differential Fault Analysis of RC4. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005.
LNCS, vol. 3557, pp. 359-367. Springer, Heidelberg (2005)

2. Finney, H.: An RC4 cycle that can’t happen (September 1994)

3. Hoch, J.J., Shamir, A.: Fault Analysis of Stream Ciphers. In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240-253. Springer, Heidelberg (2004)

4. Knudsen, L.R., Meier, W., Preneel, B., Rijmen, V., Verdoolaege, S.: Analysis Meth-
ods for (Alleged) RCA. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 327-341. Springer, Heidelberg (1998)

5. Maitra, S., Paul, G.: New Form of Permutation Bias and Secret Key Leakage in
Keystream Bytes of RC4. In: Workshop on Fast Software Encryption, FSE 2008
(2008)

6. Mantin, I.: Predicting and Distinguishing Attacks on RC4 Keystream Generator.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 491-506. Springer,
Heidelberg (2005)

7. Mantin, I.: A Practical Attack on the Fixed RC4 in the WEP Mode. In: Roy, B.
(ed.) ASTACRYPT 2005. LNCS, vol. 3788, pp. 395-411. Springer, Heidelberg (2005)

8. Maximov, A., Khovratovich, D.: New State Recovering Attack on RC4 (Full Ver-
sion). IACR Eprint Server, eprint.iacr.org, number 2008/017 (January 10, 2008)

9. Tomasevic, V., Bojanic, S., Nieto-Taladriz, O.: Finding an internal state of RC4
stream cipher. Information Sciences 177, 1715-1727 (2007)



Related-Key Chosen IV Attacks
on Grain-vl and Grain-128*

Yuseop Lee!, Kitae Jeong!, Jaechul Sung?, and Seokhie Hong?

! Center for Information Security Technologies(CIST),
Korea University, Seoul, Korea
{yusubi,kite,hsh}@cist.korea.ac.kr
2 Department of Mathematics, University of Seoul, Seoul, Korea
jcsungQuos.ac.kr

Abstract. The slide resynchronization attack on Grain was proposed
in [6]. This attack finds related keys and initialization vectors of Grain
that generate the 1-bit shifted keystream sequence. In this paper, we
extend the attack proposed in [6] and propose related-key chosen IV at-
tacks on Grain-vl and Grain-128. The attack on Grain-v1 recovers the
secret key with 22259 chosen IVs, 2262°_bit keystream sequences and
22290 computational complexity. To recover the secret key of Grain-128,
our attack requires 22659 chosen Vs, 23139 bit keystream sequences and
22701 computational complexity. These works are the first known key re-
covery attacks on Grain-vl and Grain-128.

Keywords: Stream cipher, Grain-v1, Grain-128, Related-key chosen IV
attack, Cryptanalysis.

1 Introduction

A Dbit-oriented synchronous stream cipher Grain [2] was designed by M. Hell,
T. Johansson and W. Meier. Their main goal was to design an algorithm which
can be implemented efficiently in hardware. Grain consists of two 80-bit shift
registers, a linear feedback shift register (LFSR) and a nonlinear feedback shift
register (NFSR), and a 5-input filter function. The key size is specified with 80
bits and additionally an initialization vector of 64 bits is required. But because
of weakness in the filter function, a key recovery attack [I] and a distinguishing
attack [5] on Grain were proposed.

In order to solve the security problem of Grain, the designers of Grain pro-
posed the tweak versions of Grain, called Grain-vl [3] and Grain-128 [4]. Simi-
larly to Grain, Grain-v1 uses a 80-bit secret key and a 64-bit initialization vector
to fill in an internal state of size 160 bits divided into LFSR and NFSR of length
80 bits each. The feedback function of NFSR used in Grain-v1 is not equal to

* This research was supported by the MKE(Ministry of Knowledge Economy), Ko-
rea, under the ITRC(Information Technology Research Center) support program
supervised by the IITA (Institute of Information Technology Advancement) (IITA-
2008-(C1090-0801-0025)).

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 321-335] 2008.
© Springer-Verlag Berlin Heidelberg 2008



322 Y. Lee et al.

that used in Grain. Grain-v1 generate a keystream bit by XORing 7-bit values
from NFSR with the output value of the filter function, in contrast to XORing
1-bit value from NFSR with the output value of the filter function in Grain.
The Grain-128 supports a 128-bit secret key and a 96-bit initialization vector.
It consists of an 128-bit LFSR, an 128-bit NFSR and a 9-input filter function.

On the other hand, Grain, Grain-vl and Grain-128 use the same setup mode
similar to the keystream generation mode. The slide resynchronization attack
(SRA) on Grain was suggested with this property [0], finds related keys and
initialization vectors of Grain that generate the 1-bit shifted keystream sequence
with probability 272. In this paper, we extend the attack in [6] and propose
related-key chosen IV attacks on Grain-vl and Grain-128. To attack Grain-v1
and Grain-128, our attack uses m + 1 keys and does m steps repeatedly, i.e., we
run the fist step by using the secret key and the first related key and then the
second step by using the first related key and the second related key and so on. In
each step, we apply three methods, D-Test, *-Change and {-Change which will
be explained in Section 3. At first, in order to construct « linear equations for
the secret key, we find the initialization vector passing D-Test for the secret key
and the a-bit left rotated key among chosen initialization vectors adequately.
Then we apply f-Change to recover additional a-bit key. We repeat this step
m times. In case of Grain-vl we can find 2ma-bit information of the key, the
remained key bits can be recovered by the exhaustive search with computational
complexity 280=2m The attack on Grain-128 is similar to that of Grain-v1. It
decrease the computational complexity of the exhaustive search from 228 to
2128=3ma Table [[] summarizes our results.

This paper is organized as follows: in Section 2, we briefly describe Grain-v1,
Grain-128 and the attack proposed in [6]. We present key recovery attacks on
Grain-v1 and Grain-128 in Section 3 and 4, respectively. Finally, we conclude in
Section 5.

Table 1. Results on Grain-vl and Grain-128

. Related Data Complexity Computational
Stream Cipher . .
Keys Chosen Vs Keystream Bits Complexity
Grain-v1 3 22259 22629 2%2-90 940-clock cycles
Grain-128 3 226-59 23139 22701 384 clock cycles

2 Preliminaries

In this section, we briefly describe Grain-v1, Grain-128 and the attack proposed
in [6]. The following notations are used throughout the paper.

— S': the internal state of Grain-v1l and Grain-128 at time t.
— Lt: the internal state of LFSR at time .
— Nt the internal state of NFSR at time t.
n': a feedback bit of the NFSR at time ¢.



Related-Key Chosen IV Attacks on Grain-v1 and Grain-128 323

(@) :(b)
I P
NFSR LFSR Ml [ NFsR Fi" LFSR E‘é
n' | X y
| ]
> h(x) [¢ | > h(x) [*
b ! )
) 4 ' ) 4
»/ T > »/ »
> > | > 3
1bit T
v X |
‘ ——7 bits '

4

Fig. 1. (a) the keystream generation mode (b) the setup mode of Grain-v1

It: a feedback bit of the LFSR at time ¢.

o': an output bit of Grain-v1 or Grain-128 at time ¢.

Z = (20,21, - ): the keystream sequence of Grain-vl or Grain-128.

Za]: the a-bit shifted keystream sequence of Z, i.e., Z[a] = (2, Zat1, " )-

2.1 Grain-vl and Gain-128

Grain-v1 consists of an 80-bit LFSR, an 80-bit NFSR and a 5-input filter func-
tion h. It generates the keystream sequence from an 80-bit secret key K =

(ko, -+, k7g) and a 64-bit initialization vector IV = (ivg, - - - ,ive3).
At time ¢, LFSR and NFSR are denoted by L' = (Lf,---,Lty) and N* =
(NE, -+ NLy), respectively, where Lby, Ny are the most significant bits. The

feedback bits of LFSR and NFSR, I’ and n!, are computed as follows:
I' = Ly ® Ly ® Lig @ Loz © Li; @ Ly,
n' = Lj ® Ny & Neg ® N5y ® Nis © Nig @ Niz © Nyg ® Ny, © Niy @ Ng & Ny
@ Ng3Ngo © N3z N3z © NisNg © NgoNgo Nis © N3z Nag Noy © Nz N5 Nag N
@ NgoNga N3z N33 © Nz Neo Noy Nis @& Nz Neo Nso Nis Nig
@ N33 NjgNoy NizNg & Nio Nis Ngz N3z Nog N3,
The filter function h takes 5-bit input values from LFSR and NFSR as follows:

h(L3, Ly, Lig, Lga, No3) = Los © Nz @ LyLy @ LigLey ® Ly Ney © Ly Lys Lig
® LyLigLgy ® LyLigNgs ® Los LigNes © LigLgaNes.
At time ¢, the output bit o' of Grain-v1 is generated as follows.
o' = Z Nli & h(Lév L§57 LZG? Lé4, Nés)v
keA

where A = {1,2,4,10,31,43,56}. Note that 2 is equal to 0'%°, since Grain-v1
is clocked for 160 clock cycles without producing the keystream sequence.



324 Y. Lee et al.

(a) :(b)
[ [
I v wé
NFSR LFSR NFSR Fi LFSR
n M | X EA
= ! s
W) & | j h) 1§
> 5 l > 3
) 4 ' ‘ ) 4
g, > De | »D >
1 bit : T
v X |
o ——7 bits '

Fig. 2. (a) the keystream generation mode (b) the setup mode of Grain-128

The setup process is carried out using (K, IV) in three steps:

1. The internal state of NFSR is loaded with K as follows: NZ-0 =k, (0<1<79).
2. The internal state of LFSR is loaded with IV as follows:
{ivi, where 0 < i <63

LY = .
1, where 64 <7 < 80

7

3. The two registers are clocked for 160 clock cycles without producing the
keystream sequence, where the output bit is fed back and XORed with the
input, both to LFSR and to NFSR. See Fig. [T}(b).

Grain-128 consists of a 128-bit LFSR, a 128-bit NFSR and a 9-input filter
function h. It generates keystream sequence from a 128-bit secret key K =
(ko, -+, k127) and a 96-bit initialization vector IV = (ivg, - ,ivgs). At time ¢,
the feedback bits of LFSR and NFSR are computed as follows.

'=Liso Ly, o Lhyo Ligo L & L.
n' = Lj ® Ngg ® Ngy ® Ngg © Nag ® Ny © Ny Ngg ® Ngs Ne; © NigNi
® NigNiy © NigNiz ® NizNi; @ Ng Ns.
The filter function h takes an input values as 7-bit values from LFSR and 2-bit
values from NFSR, respectively. It is defined as follows:

h(L§, LYz, L5y, Lia, Lo, Ly, Lys, Nig, Nis) = NiaLg & Liz Ly & NgsLi,
@ L§oLg © NiyNgsLis.
The output bit of of Grain-128 at time ¢ is generated as follows.
o' = Ni @ h(Lg, Liz, Ly, Lz, Lig, Ly, Lbs, N, Ni5) @ L,
keA

where A = {2,15,36,45,64, 73,89} and zg = 0°°C.
The setup process of Grain-128 is similar to that of Grain-vl except that
the number of clocking without producing the keystream sequence is 256. See

Fig. 2H(b).



Related-Key Chosen IV Attacks on Grain-v1 and Grain-128 325

Table 2. Conditions used in the attack on Grain

K = (ko, - , k7o), K/:(k1,~~~ ,k79,n0@00),

IV = (ivg, - -, iv79) IV = (v, -+ ,ives, 1) Condition
t  Np Lig t Nrg L7
0 ko 1
1 n® @ o° 1°®o° 0 n® @ o° 1 Pe®=1
2 nlao ol 1 0@ 19 @ o

160 n159 é0159 1159 E'B0159 159 n/158 é0/158 l/158 é0/158
161 nlﬁo l160 160 n/159 &) 0/159 l/159 &) 0/159 0/159 =0
162 nlﬁl l161 161 n/160 @ 0/160 l/160 @ 0/160

2.2 Slide Resynchronization Attack on Grain

In [6], Kiiciikk showed that it is possible to find related keys and initialization
vectors of Grain. For any pair (K, V), slide resynchronization attack (SRA)
on Grain finds the related pair (K',IV') = ((k{,- - , kbg), (10, -+ ,iv43)) that
generates the 1-bit shifted keystream sequence with probability 272. It is based
on two observations:

1. The number of updated bits for 1 clock is only 2.
2. The setup process and the keystream generation procedure are similar.

SRA is done by assuming two conditions as shown in Table[2l The relation of
(K,IV) and (K',IV’) is as follows:

K = (k(),“- 7]€79) =K' = (kl,“- ,]€7g,b)7 where b € {071}
IV = (ivo,-~- 7’L"U63) = V' = (Z"Uh'-' 77;1}6371).

Let S* and S’ be internal states generated from (K, IV) and (K’,IV') at time
t, respectively. We assume that S' = S’° which is equal to I° @ 0° = 1 from
Table Bl Then S'*! = S’ (0 < t < 159). S*6! is updated by the keystream
generation mode but $1%0 is updated by the setup mode. If o'**® = 0, then S'6!
is equal to S’1%°. Thus if I @ 0 = 1 and 0o/**° = 0, then (K’,IV’) generates the
1-bit shifted keystream sequence Z[1] of Z generated from (K, V). Assuming
that 1@ 0" and 0'1% are uniformly distributed, we find the related pair (K’, IV")
with probability 272

3 Related-Key Chosen IV Attack on Grain-v1l

In this section, we introduce a key recovery attack on Grain-v1. Firstly, we intro-
duce some properties of Grain-v1 and propose a key recovery attack on Grain-vl



326 Y. Lee et al.

by using same properties. Let K be a secret key and I'V be an initialization vec-
tor. Our attack uses m+ 1 keys K, Ky, --- , K,,. Here, we only describe the case
that ((K,1V) , (Ky,IV")) pair is used. Other cases can be done by repeating
the case that ((K;, IV) and (K;1,IV")) is used, i.e., if we use three keys K, K
and K5, we run the first attack by using K, K; and then second one by using
K1, K5. The second attack procedure is almost similar to the first.

3.1 Constructing o Linear Equations for K

The related key K’ and initialization vector IV" are defined as follows. Here, «
is a parameter such that 1 < a < 12.

K= (k07“' 7k79) = K/ - (kau'“ 7k797k07"' 7]{0471)' (]-)
IV = (ivo,-~- 7’L"U63) =1V = (Z"UO”'-' 7iU6371;"' 71). (2)

Let Z and Z’' be keystream sequences generated from (K,IV) and (K',IV").
Kiiciik assumed that S* is equal to S’ which implies S**! is equal to S (0 <
t < 159). We can get Property [[l by using this property.

Property 1. If S® is equal to S’°, then S is equal to S""~ for a < i < 160. It
means that o’ is equal to o’*~%. That is,

g — S/O = Sz — S/i—a.

Proof. This property follows directly from the setup process of Grain-v1. Recall
that the number of clocking without producing the keystream sequence is 160
in the setup process. a

If IV satisfies S = S0, we say that IV is valid. Otherwise we say that the IV
is tnwvalid. In Theorem [Il we prove that we can construct total 2« equations for
secret key using a valid IV and calculate the probability that a valid IV exists.

Theorem 1. For a valid IV, we can construct 2 equations of which unknown
values are K. And the valid IV exists with probability 2=2%. That is,

Pr (5% =8"7) =272
Proof. Since (K,1V) is loaded to NFSR and LFSR directly, the following holds:
§* =80 N*=K' L*=1V'|(1---1).
For0<i<a, N*= K’ and L* = IV'||(1---1) imply @) and (@).
n' @ o = k. (3)
I'do =1. (4)

So, we can construct 2a equations for K using the valid IV. If n?, 0’1" and
k; are assumed statically independent, () and (@) hold with probability 271,
respectively. Thus S = S’ holds with probability 272, O



Related-Key Chosen IV Attacks on Grain-v1 and Grain-128 327

We show that how to construct « linear equations for K in Property 2 and
Theorem 2

Property 2. If h takes the input value of which some bits are fixed, then it is
approximated to k' with probability 1, as follows.

Approx;: If L} =0, L%, = 1 then b/ = L & Lk,
Approxe: If L = Lh., LY = 1,L,, =1 then b’ = Nl; & 1

Using Theorem [I] and Property 2l we can induce the following theorem. This
theorem shows that there exists a valid IV among 22¢ IVs whose some bit
positions are fixed.

Theorem 2. For a fived K, we choose 2% IV s where (ivasi1," - ,i0i510) =
(0,--+,0), (101241, ", V124a, 12441, - * ,V24+4) are all 2c-bit values and the
remaining bits are fized to b (€ {0,1}). Then there exists exactly one valid IV .
Thus we can construct a linear equations for K using (B and the IV .

Proof. LY,,--- , LY are fixed to 1 in the setup mode. Thus (@) and (@) are equal
to (@) and (@) respectively by Approx; of Property [ if iv4541,- - , 104510 are
fixed 0.
1; B (i1)3+i D ’L'1)25+i) = (n’ (&) ivi) Pk D @ ksyi, (5)
s€A

(10; Div1344 D 12315 D 1U3s4i D 1U51+i D Wgai) D (1034 D ivasy;) = 1@@ ks,

sEA
(6)
where 0 < i < a and A = {1,2,4,10,31,43,56}. Because the right hand side of
[B) and (@) are determined by K, these values are fixed for all chosen I'Vs. Also
the remaining bits of IV's except for (iv1241, - , V124, V2441, * ;102444 ) ATE
fixed for all chosen I'V's by the assumption. Thus we can rewrite () as (@), where
the right hand side of (@) is fixed for all chosen I'Vs.

1W25+; = U344 D nt @ k; & @ ksti. (7)

seA
Since ivg54; € {iv2ay1, - ,1V2444}, there exist 2 IVs which satisfy () among
all 22¢ chosen IVs and these IVs are fixed except for (iviai1, -, V124a)-

Similarly to the case of ([), we can rewrite (@) as (§), where the right hand side
of @) is fixed for all 2¢ IVs.

1134 = 10; D 10234 D 10384 D 1U514; D iVt Div3y; Divas; D1D @ ksyi. (8)
seA

So there exists exactly one IV satisfying ([{]) and (8) among all chosen 22 IVs.
By the definition of “valid IV”, the IV satisfying (@) and (§) is valid. Hence
there exists exactly one valid I'V. Moreover, we can construct « linear equations
by applying the valid IV to (@), since (@) is a linear equation for K. a



328 Y. Lee et al.

Table 3. The changed bit positions of *-Change

Event The changed bit positions  Event The changed bit positions

x-Change; V15, 1040 x-Changes V15, 1040, 1U16, 1041
*—Changeg iU16, i’U41 *—Changeﬁ iU15, i’U40, i1117, i’U42
x-Changes 017, 1042 *-Changer V15, 1040, 1U18, 1043
x-Changey V18, 1043 x-Changes V16, V41, TU17, 1V42

Let 8 be the maximum value such that z; = 0 (0 < i < () (Note that the
expected value of 3 is about 2, since 2 ~ 1+ 1 +2-1+3-1+-..). Because
an updated bit affects to keystream bits after 16 clock cycles, we define ~ as
follows:

ZroZ' S 2ari =2 (0<i <16 —a+ ).

In our attack, we find a valid IV by checking that Z and Z’ satisfy Z ~, Z'.
The following theorem enable us to distinguish a valid IV and an invalid IV.

Theorem 3. A valid IV always satisfies Z ~q Z' but an invalid IV satisfies it
with probability 2~ 16=a+5)

Proof. By Theorem [I a valid IV satisfies S160 = §/160=@ Then 0% (= z) is
equal to o190~ Since z; = 0 (0 < i < b), '16072F = 2, =0 (0 < i < ) and
S160+5 — §160—atB - After (o — 3) clock cycles, L9+ and N1+« are always
equal to L' and N'150 except the (a — 3) most significant bits, respectively.
Since « used in our attack is less than or equal to 12, h takes the same input
values for additional (16 — oo + 3) clock cycles in two cases. Thus (K,IV) and
(K',IV') always generate the same keystream bits for additional (16 — o + 3)
clock cycles. For an invalid IV, Z and Z’ are uniformly generated. Thus the IV
satisfies Z ~,, Z' with 2~ (16—a+5) O

If o« = 12 and 3 = 2, then the probability that an invalid IV satisfies Z ~, Z’
is 27¢ (we call it D-Test) which is not small. To decrease the probability that
an invalid I'V passes D-Test, we use another method, *-Change. For any IV,
we generate the corresponding IV* by modifying the values of even positions
in the IV. We change the bits of IV that do not affect the results of (@) and
(@) as shown in Table Bl Since these bits are not used as input values of h for
1 < @ <12 and the left hand side of ([]) is linear, the results of these equations
do not change. Thus an I'V is valid if and only if the corresponding I'V* is valid.
Corollary [ show that we can distinguish valid IVs and invalid I'V's with very
high probability using *-changes. In our attack, we generate (y — 1) IV*s for
an IV where v is the integer satisfying 22¢~7(16-a+8) << 1. Hence, we can
find a valid IV by Corollary [l and construct « linear equations for K using
Theorem [ and the valid IV

Corollary 1. If an IV is invalid, the probability that the IV and the corre-
sponding IV* pass D-Test is 2~ 2(16=2+8)  Fyrther, the IV and the corresponding
(v — 1) IV*s pass D-Test with probability 2~ 7(16=a+8)



Related-Key Chosen IV Attacks on Grain-v1 and Grain-128 329

Proof. This property follows directly from the fact that each invalid IV* passes
D-Test independently. O

3.2 Recovering Another a-Bit Key

Up to now, we introduced the method to find a valid IV and construct « linear
equations for K by using the valid IV. From this, we can get the a-bit key
information. Now, we present the method, {-Change, to recover another a-bit
key. For a valid IV, we will generate the corresponding V' by modifying the
values of some positions in the valid IV. In case of @ = 12, Appendix [A]]
presents the bit positions where 7-Change modifies. The conditionally changed
bit positions in {-Change; are modified only if iv34; is not equal to ivas4,. Here,
we focus only -Changeg. Other events {-Change; (1 < ¢ < 11) can be done
similar to {-Changeg. t-Changeg is done as follows:

1. Using Approxs of Property 2 do the followings;

(a) Modify iv4e which is the third input value of h at time 0.

(b) If ivs is not equal to ives, then modify ivas. Here, ivg and ives are the
first and second input values of h at time 0, respectively.

2. Modify bit positions of the IV such that the results of (@) and (@) that
time is not 0 do not change.

(a) Since iv4g changes the result of (@) at time 8, modify ivs9 which is in
the linear part of (@) at time 8. Note that we can change other bits
which are in the linear part of (@) at time 8. But we found that the
number of the additional changed bits for ivs9 are less than for other
bits.

(b) If ives in Step 1-(b) is changed, it changes the result of (@) at time 2.
Thus modify iv15 which is in the linear part of (@) at time 2.

Applying t-Changey, the results of (@) and (@) for (K, IV) are equal to them
for (K,IVT) except time 0. The equations for (K,IVT) at time 0 are (@) and
(@@). Here, A = {1,2,4,10,31, 43,56}

ivo @ (koo & 1) = (n” & ivo) & ko & @) k- (9)
seA
(v @ iv13 D tves D ivzs B 1vs1 D ivg) D (ks D 1) =1D @ ks. (10)
seEA

If the IVT is valid, (@) and (@) are equal to (@) and ([I0) at time 0, respectively.
Thus we get ([IJ). Otherwise we get (I2). Applying other events similarly, we
can recover kgs, - - , k74.

1vg @ ivgs = kg3 @ 1. (11)
Z"Ug ] i1)25 = k63. (].2)



330 Y. Lee et al.

3.3 Description of Our Attack on Grain-vl

We are ready to present our attack on Grain-v1. This attack uses m + 1 keys
K, Ky, , K, and consists of m steps. For 0 < i < m, the i-th step use K; and
K41 satisfying the following relation:

K’L = (k07' o ?k79) = Ki+1 - (ka? e 7k79ak07' o 7k'o¢—1)'

Note that Ky = K. In each step, we construct « linear equations for K and re-
cover the a-bit key. Finally we find the remaining bits by the exhaustive search.
Each step runs three algorithms, the FilterIV algorithm, the CheckValid algo-
rithm and the RecoverKey algorithm. Firstly, the FilterIV algorithm finds a valid
IV among 22% IVs that satisfies Corollary [l as follows:

1. Generate 22* (16 + [(3;)-bit keystream sequences Z; by using K and
IV; (1 < i < 2%%) from Corollary [l Here, f3; is the value such that the
first (3; bits of Z; are zeros.

2. Calculate the corresponding IV, to I'V; from (2] and generate the (16 —
a + (3;)-bit keystream sequence Z! by using K’ and IV} .

3. Check D-test for each (Z;, Z!) and store all IV; which the corresponding
Z; and Z! pass D-test.

4. Until only one IV remains, repeat the followings;

) Set j=1;

) Calculate IV*s by applying *-Change; to the remaining IVs.

) Calculate the IV*'s corresponding I'V*s.

) Generate keystream sequences using (K, IV*) and (K',IV*).

) Check D-Test for the generated keystream sequences and discard I'V's

that the corresponding keystream sequences do not pass D-test.
(f) Add 1 to j.
5. Return the remaining I'V.

(a
(b
(c
(d
(

€

On average, the number of IV's used in this algorithm is

y—1

9 Z (22a7i(167a+5)) ’

i=0

where « is parameter which is chosen by the attacker, g is maximum value such
that z; = 0 (0 <i < ) and 7 is the number satisfying 22¢—7(16=a+8) << 1,

From an IV, this algorithm generates the (16 4 3)-bit keystream sequence for
K and the (16 — a + [3)-bit keystream sequence for K’. Thus it requires the

—

(16 + ) Z_: (zm i(16- a+m> (16 — a + B) Z (22a—i<16—a+5>)
=0

=0

-bit keystream sequence on average.



Related-Key Chosen IV Attacks on Grain-v1 and Grain-128 331

The CheckValid algorithm takes an I'V and checks the validity of it as follows:

1. Generate Z and Z’ using (K,IV) and (K’,IV’), respectively. Check D-
test for (Z,Z"). If it does not pass D-test, then return “invalid”.
2. Set i =1 and if 7 < v, then repeat the followings;

(a) Calculate the I'V* by applying *-Change; to the I'V.

(b) Generate keystream sequences by using (K, IV*), (K',IV*) and
check D-Test for the generated keystream sequences. If they do not
pass, then return “invalid”.

(¢) Add 1 to i.

3. Return “valid”.

This algorithm uses 2y IVs and ((16 + )y + (16 — o + (3)7)-bit keystream
sequence.
Finally, the RecoverKey algorithm takes a valid IV and recover the a-bit key

(k(62+ma+1) mod 805" " » k(62+ma+a) mod 80)

in the m-th step. Since this algorithm calls the CheckValid algorithm « times, it
requires 2ay I'Vs and the a((16 + )y + (16 — a+ §))-bit keystream sequence.
It is done as follows:

Input : a valid IV = (ivg, - - - ive3)
1. Set ¢ = 0 and if ¢ < «, then repeat the followings;
(a) Calculate the corresponding I VZ-T by applying {-Change; to the IV.
(b) Check that I ViT is valid by using the CheckValid algorithm.
(c) If IV;r is valid, k(631ma+ti) modso = 03+i @ ivesyi © 1. Otherwise

k(63+ma+i) mod 80 = U3+ B 1V254i-
(d) Add 1 to i.

We find the right secret key by the exhaustive search by using the 2ma-bit
key information obtained in previous steps. We generate the 80-bit keystream
sequence from each candidate key and check that it is equal to the original
keystream sequence. Thus, this test requires 240-clock cycles of Grain-v1. Our
attack procedure on Grain-v1 is done as follows:

1. Generate 22¢ IV's from Theorem 2

2. Set i = 0 and if 7 < m, repeat the followings;
(a) For K; and K1, find an valid IV by using the FilterIV algorithm.
(b) Construct « linear equations by using (@) and the valid IV.
(c) Recover the a-bit key by using the RecoverKey algorithm.

3. Find the right secret key K by the exhaustive search using the 2ma-bit
key information obtained in Step 2.

The number of chosen IVs used in our attack is 2m(ZZ;01(22a*i(16*a+5)) +

~va) and our attack requires m((32 — a + 25)(2?;01 (220=116=a+A)) 4 yq))-bit

keystream sequence. The computational complexity of Step 2 is m((352§fo+25 )



332 Y. Lee et al.

Table 4. Our results on Grain-v1

m| a |y C hoseia;éf;?}i:;l;}r; Bits Computational Complexity
111216 525.02 2861 956

511216 526.02 529.61 532.02

311014 52259 52629 522.90

311216 526.61 530-19 526.70

Computation complexity unit: 240-clock cycles of Grain-v1

(77220 i06-a40)) L yq)) 240-clock cycles of Grain-v1. Since we get the 2ma-
bit key information, the computational complexity of Step 3 is 289~2™ 240-clock
cycles of Grain-v1. Table @l shows the complexities of our attack for parameters
m, a and . For m = 3, a« = 10 and «y = 4, we recover the secret key of Grain-v1
with 22629 bits keystream sequence and 22299 computational complexity. If we
use more related keys, we need less complexities to attack Grain-v1, i.e., if we use
40 related keys, then the computational complexity decrease to 28-2! 240-clock
cycles of Grain-vl and the data complexity is as follows: 28:4 chosen IV's and
212.77_bjit keystream sequence. The usage of 3 related keys and the computational
complexity of 22290 is reasonable. For m = 3, a = 10 and ~ = 4, we practically
recovered the secret key within 3 minutes on average.

4 Related-Key Chosen IV Attack on Grain-128

Since the attack on Grain-128 is similar to that on Grain-v1, we briefly present
our attack on Grain-128 using one related key K'. K', IV’ and ~,, are defined
as follows:

K = (ko,- -+ ,ki27) = K" = (ka,- -+ , k127, ko, -+ , ka—1).
IV:(’L'UO7~-~ 77;1}95):>IV/:(7;U&7“~ ,Z'1)95,].7~-~ ,].).
Z o Z S 2ari =2 (01 <32—a+ ).

In case of Grain-128, a valid IV always satisfy Z ~, Z’ but an invalid IV
passes D-test with probability 2~ (32=+8)  Similarly to the attack on Grain-vl,
we apply *-Change to decreases the probability that an invalid I'V passes D-test.
The changed bit positions are shown in Table Bl In the attack on Grain-v1, we
change the values of even positions in I'V but the positions of Table [ do not
affect all equations for o < 15. Thus we choose just one position in I'V.

Table 5. The changed bit positions of *-Change on Grain-128

Event The changed bit positions Event The changed bit positions
x-change 1U3g *-changes 1040
*-changes U39 #-changey 141



Related-Key Chosen IV Attacks on Grain-v1 and Grain-128 333

Table 6. The modification of h

Event Fixed value Approximated function h’
Approx, Lé = 07L§3 = Oathu =0, Léo =0, Lgs =1 Nf2N55
Approxs Lg =1,Lj3 =0,Lis =0,Lg =0, Loz =1 Nt @ NiyNgs
Approxs Lé = Oth13 = Onylz = LLEO = OngE) =1 N§5 52 Nf2N55

Table 7. Our results on Grain-128

m| a |y Chosell)la;?/s(,‘jlo(rj;l:r);l;fn Bits Computational Complexity
111512 531 53573 583

511512 532 536.73 538.03

311212 92650 93139 927

311512 93250 93731 532.98

Computation complexity unit: 384-clock cycles of Grain-128

As shown in Table B, h is approximated to h’ with probability 1. Since h
takes two input value from NFSR, we can recover the 2a-bit key by applying
-Change as shown in Appendix[A2l For 0 < i < a, the events {-Change} and -
Changei2 can be used to recover kj24; and ko5, respectively. The conditionally
changed bit positions in -Change; are modified only if ivgp4; = 0. Note that
ivgr, - -+ ,1vg5 are fixed to 1 in order to apply f-Change.

Our attack on Grain-128 uses 22® IV's that satisfy conditions of Approx; in
Table B Then there exists a valid IV among these IVs. But u! ® o' =1 (0 <
i < «) is quadratic equation for K. So we construct a quadratic equations for
K as follows:

U@ k1ot ikosti ® (kari ® kisti © ksori © kasti © koari © krari © kgors) = 1.

Since we can recover kijoy; and kgsi; by using the RecoverKey algorithm, we
can construct « linear equations as follows:

U'® (ko i ©k154: ©kseri ©hasi Dkeati Dhra i Dhsoti) = 10v; (v; = k1a1ikosti)-

Because the RecoverKey algorithm recovers the key bits that are quadratic part
of these equations, we can construct « linear equations for K. The bit positions
that are modified in f-change; is presented in Appendix

As shown in Table [ we need 22659 chosen IVs, the 2313%-bit keystream
sequence and 227 384-clock cycles of Grain-128 to recover the secret key of Grain-
128. If we use more related keys, we need less complexities to attack Grain-128.

5 Conclusion

In this paper, we have presented related-key chosen IV attacks on Grain-v1 and
Grain-128 with the weakness that the setup mode is similar to the keystream



334 Y. Lee et al.

Table 8. Simulation results of our attack

Stream Cipher m « v Attack Time Success Rate (success trials/total trials)

Grain-vl 3 10 4 145 sec 1 (100/100)
Grain-128 3 12 2 95 min 1 (100/100)

generation mode. As summarized in Table[Il these results imply that Grain-v1
and Grain-128 have still the weakness, though they are designed to advance
Grain which has been cryptanalyzed by a key recovery attack and a distinguish-
ing attack by the weakness in the filter function. Our attack on Grain-v1 recovers
the secret key with 222:%° chosen IV's, 226-29_bit keystream sequences and 22290
computational complexity. In case of Grain-128, our attack needs 2269 cho-
sen IVs, 23139 bit keystream sequences and 227-°! computational complexity.
Table B presents simulation results that our attacks. The simulation was im-
plemented on Pentium-4, CPU 2.4GHz, 2.0 Gb RAM, OS Windows XP Pro
SP2. We could always recover the secret key of Grain-vl and Grain-128 within
3 minutes and 100 minutes on average, respectively.

References

1. Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of Grain. In: Robshaw, M.J.B.
(ed.) FSE 2006. LNCS, vol. 4047, pp. 15-29. Springer, Heidelberg (2006)

2. Hell, M., Johansson, T., Meier, W.: Grain - A Stream Cipher for Constrained Envi-
ronments, eSTREAM - ECRYPT Stream Cipher Project, Report 2005/010 (2005),
http://www.ecrypt.eu.org/stream/ciphers/grain/grain.pdf

3. Hell, M., Johansson, T., Meier, W.: Grain - A Stream Cipher for Constrained En-
vironments, eSSTREAM - ECRYPT Stream Cipher Project (2007),
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain p3.pdf

4. Hell, M., Johansson, T., Meier, W.: A Stream Cipher Proposal: Grain-128,
eSTREAM - ECRYPT Stream Cipher Project (2007),
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grainl28 p3.pdf

5. Khazaei, S., Hassanzadeh, M., Kiaei, M.: Distinguishing Attack on Grain,
eSTREAM - ECRYPT Stream Cipher Project, Report 2005/071 (2005),
http://www.ecrypt.eu.org/stream/papersdir/071.pdf

6. Kiictik, O.: Slide Resynchronization Attack on the Initialization of Grain 1.0,
eSTREAM - ECRYPT Stream Cipher Project, Report 2006/044 (2006),
http://www.ecrypt.eu.org/stream/papersdir/2006/044.ps

7. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential At-
tack, Cryptology ePrint Archive: Report 2007/413 (2007),
http://eprint.iacr.org/2007/413.pdf


http://www.ecrypt.eu.org/stream/ciphers/grain/grain.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain128_p3.pdf
http://www.ecrypt.eu.org/stream/papersdir/071.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/044.ps
 http://eprint.iacr.org/2007/413.pdf

Related-Key Chosen IV Attacks on Grain-v1 and Grain-128 335

A {-Change on Grain-vl and Grain-128

A.1 The Changed Bit Positions of {-Change on Grain-vl (a = 12)

Event
1-Changeg
7-Change;
T-Changes
7-Changes
T-Changey
7-Changes
1-Changeg
t-Changer
7-Changeg
T-Changeg
t-Changeqg
T—Changen

Recovered key bit The changed bit positions

k63
k64

iU46, ’L.1]597 iU§5, ivfs
’L"U47, ’L"UG(), ’L"Ug6, ’L"Uf6
iV48, 1V61, 1057, 1077
’L"U49, ’L"UGQ, ’L"U38 s ’L"Ugg, ’L"Ufg
150 , 1059, 1VTg
’L"U51, ’L"U38, ivgo, ’L"USO
iU52, ’L.1]397 ivgl, iv§1
iU53, iU40, iU§2, iU52
154, 1041, 153, 1V, 1VG]
155, 1042, 105, 1USg, 106
’L"U56, ’L"U43, iv§5
’L.1}577 ’L.1]447 iU§6

1v5: the changed bit position conditionally.

A.2 The Changed Bit Positions of {-Change on Grain-128 (a = 15)

Event Recover'ed T.he ChE.iI.lged Fvent Recovelted The che.u}ged
Key bit bit positions Key bit |bit positions
T-Changeé k12 ivg, iveg, ivgg T—changeg k'95 Z"U42, iUgg,
T—change% k13 Z"Ug, iv69, iU40 T—change% kg@ iU43, ivgﬁ
T-change% k14 V10, 1070, V41 , 1038 T—change% ko7 V44, LUST
T—change% k15 ivll, ’L"U71, ivg5, ivgg T—change% kgg i?)45, ivgg
T-Change}l kig V12, 1072, Vs, 1V40 T—changei kog V46, 1U89
T—Changeé k17 ivlg, iU73, iUg’y, iv41 T—changeg ]{2100 ’iU47, iUgO
f-change] k1s V14, 1074, 1077, 1085 || T-change? k101 148, 1091
T-Change% klg i”()15, Z"U78 T—change% ]{7102 ’L"U49, iUgQ
T—changeé kgo ivlg, iU79 T—change% ]43103 iU50, ivgg
T-Changeé ko1 V17, 1080 T—changeg k104 V51, 1040
f-changef, ko V18, 192 f-change?y||  kios 1052, 1041
T-Changeh ko3 V19, 1U82, 1U39 T—change%l k106 1053
f-changef, ka4 iV, iUs3, 1040 , 1§ |[T-changeT,||  kio7 iUs4
T-Changeh k)25 711121, ’L"Ug4, i1)41 s Z’Ui T-Change%z)) klog iU55
f-changet, kas V22, 105 f-change?, || kioo iUs56

1v5: the conditional changed bit position.



Signature Generation and Detection of
Malware Families

V. Sai Sathyanarayan, Pankaj Kohli, and Bezawada Bruhadeshwar

Centre for Security, Theory and Algorithmic Research (C-STAR)
International Institute of Information Technology
Hyderabad - 500032, India
{satya vs,pankaj kohli}@research.iiit.ac.in, bezawada@iiit.ac.in

Abstract. Malware detection and prevention is critical for the protec-
tion of computing systems across the Internet. The problem in detecting
malware is that they evolve over a period of time and hence, traditional
signature-based malware detectors fail to detect obfuscated and previ-
ously unseen malware executables. However, as malware evolves, some
semantics of the original malware are preserved as these semantics are
necessary for the effectiveness of the malware. Using this observation, we
present a novel method for detection of malware using the correlation be-
tween the semantics of the malware and its API calls. We construct a
base signature for an entire malware class rather than for a single speci-
men of malware. Such a signature is capable of detecting even unknown
and advanced variants that belong to that class. We demonstrate our ap-
proach on some well known malware classes and show that any advanced
variant of the malware class is detected from the base signature.

Keywords: Malware Detection, Signature Generation, Static Analysis.

1 Introduction

Malware or malicious code refers to the broad class of software threats to com-
puter systems and networks. It includes any code that modifies, destroys or steals
data, allows unauthorized access, exploits or damages a system, or does some-
thing that the user does not intend to do. Perhaps the most sophisticated types
of threats to computer systems are presented by malicious codes that exploit
vulnerabilities in applications. Pattern based signatures are the most common
technique employed for malware detection. Implicit in a signature-based method
is an apriori knowledge of distinctive patterns of malicious code. The advantage
of such malware detectors lies in their simplicity and speed. While the signature-
based approach is successful in detecting known malware, it does not work for
new malware for which signatures have not yet been prepared. There is a need
to train the detector often in order to detect new malware.

One of the most common reasons that the signature-based approaches fail
is when the malware mutates, making signature based detection difficult. The
presence of such a metamorphism has already been witnessed in the past [5, [].

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 336 2008.
© Springer-Verlag Berlin Heidelberg 2008



Signature Generation and Detection of Malware Families 337

Malware authors often tend to obfuscate the executable so as to make analysis
difficult and to evade detection. Four techniques [I5] are commonly employed
for obfuscating executables. The first approach, insertion of dead code involves
insertion of code that does not change the malware behavior, such as a sequence
of NOPs (no operation instructions). The second approach, register reassignment
involves changing the usage of one register with another such as eax with ebx to
evade detection. The third approach, instruction substitution replaces a sequence
of instructions with an equivalent instruction sequence. Finally, the fourth ap-
proach, code transposition involves jumbling the sequences of instructions in such
a way that the behavior of the code remains the same. We note that, although
all of these approaches change the code pattern in order to evade detection, the
behavior of the malware still remains the same.

Past research has focused on modeling program behavior for intrusion and
malware detection. Such modeling of program behavior was first studied by
Forrest et al [24]. Their approach called N-Grams used short sequences of system
calls to model normal program behavior. Sekar et al [25], used system calls to
construct a control flow graph of normal program behavior. Peisert et al [26], use
sequence of function calls to represent program behavior. Based on such results,
in our approach, we have used API calls as measure of the malware program
behavior. Specifically, we use only a subset of API calls, called critical API calls
in our analysis. These critical API calls are the ones that can possibly cause
malicious behavior. API calls have been used in the past research for modeling
program behavior [20, 22] and for detecting malware [19] 2T, 27].

We use static analysis to extract critical API calls from known malicious
programs to construct signatures for an entire malware class rather than for a
single specimen of malware. In our approach, a malicious program is detected by
statistical comparison of its API calls with that of a malware class. The technique
presented in this paper aims to detect known and unknown malicious programs,
including self-mutating malware. Also, it is capable of detecting malware that
use common obfuscations. Our approach relies on the fact that the behavior
of the malicious programs in a specific malware class differs considerably from
programs in other malware classes and benign programs. The main contributions
of this paper include:

— Detection using API calls. We extract critical API calls from the binary
executable of a program to classify it as malicious or benign. The extracted
calls are subjected to a statistical likelihood test to determine the malware
class.

— Effective against common obfuscations. Common obfuscations such as
those explained above change the code pattern but do not affect the behavior
of the malware. By generating a signature that reflects the behavior of the
malware, our technique is able to defeat such common obfuscations. Also,
since we consider only critical APT calls, such obfuscations have no effect on
our signature generation approach.



338 V.S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar

— Effective against new variants. By constructing a signature for a malware
family, our approach is automatically able to detect future variants that
belong to that family.

Paper Organization. In Section 2, we present the related work done in the
field of malware detection. In Section 3, we describe our approach for malware
detection. In Section 4, we describe a prototype implementation of our approach,
present experimental results and evaluate the effectiveness of our approach. Fi-
nally, we conclude in Section 5.

2 Related Work

Several techniques have been studied in the past for malware detection. Cohen
[11] and Chess & White [12] use sandboxing to detect viruses. They proved that
in general the problem of virus detection is undecidable. Christodorescu and
Jha [I5] use static analysis to detect malicious code in executables. Their im-
plementation called SAFFE handles most common types of obfuscations used by
malware writers, such as insertion of NOPs between instructions, that are used
to evade detection. In [4], Christodorescu et al exploited semantic heuristics to
detect obfuscated malware. Although, their approach works well for obfuscated
malicious programs, the time taken (over a minute to classify) by their approach
makes it impractical for use in commercial antivirus scanners. Kruegel et al [16]
use control flow graph information and statistical methods for disassembling
obfuscated executables. Bergeron et al [I8] consider critical API calls and se-
curity policies to test for presence of malicious code. Their approach does not
work for obfuscated malicious executables. Zhang et al [I9] use fuzzy pattern
recognition to detect unknown malicious code. The approach does not handle
obfuscated program binaries and gives many false positives. Martignoni et al
[7] use real-time program monitoring to detect deobfuscation in memory. Their
implementation OmniUnpack detects obfuscation for both known and unknown
packers. MetaAware [27] identifies patterns of system or library functions called
from a malware sample to detect its metamorphic version. Bilar [10] uses sta-
tistical structures such as opcode frequency distribution and graph structure
fingerprints to detect malicious programs. The approach presented in this paper
detects malicious programs including those with common obfuscations as well
as previously unknown variants of malware families.

In [I7], Krugel et al use dynamic analysis to detect obfuscated malicious code,
using mining algorithm. Their approach works well for obfuscated malicious
programs but takes several seconds to test a single program. DOME [23] uses
static analysis to detect system call locations and run-time monitoring to check
all system calls are made from a location identified during static analysis. Min-
Sun et al [22] use dynamic monitoring to detect worms and other exploits. Their
approach is limited to detection of worms and exploits that use hard-coded
addresses of API calls, and does not work for other malware types such as trojans
or backdoors. Also, as evident by our experimental results, our approach is much
faster than all other approaches described above.



Signature Generation and Detection of Malware Families 339

3 Owur Approach for Malware Detection

In this section, first, we briefly outline our approach for malware signature gener-
ation and classification. Next, we describe our program behavior model used for
signature generation and the statistical comparison technique. Then, we present
our malware detection algorithm using our program behavior model. Finally, we
describe our prototype implementation in detail and show a sample signature of
a malware extracted using our approach.

i Test
[ Tro;ans] [Backdoors] [ Worms] [ Ffl:: ]

| ] J

‘ IDA Pro Disassembler ‘

| sncws | J

Test
File

Backdoors Worms

‘ Trojans

&mn\% ‘ Signature ‘

‘ Classifier ‘

7 >

Benign

Fig. 1. Architecture of our malware detector

3.1 Malware Signature Generation and Classification Approach

We create signatures based on the characteristics of an entire malware class
rather than a single sample of malware. Malware classes are defined based on
similar behavior. The behavior of a malware class can be specified based on
the API calls that the members of the malware calls use. For instance, a virus
trying to search for executable files will typically make use of API calls such
as FindFirstFileA, FindNextFileA and FindClose in KERNEL32.DLL. The be-
havior of searching files is captured by the use of these API calls. Rather than
considering all API calls, we consider only critical API calls [I7, [1§]. Critical
API calls include all API calls that can lead to security compromise such as calls
that change the way the operating system behaves or those used for communi-
cation, such as Registry API, File I/O API, WinSock etc. We do not consider
APT calls which can be added or removed in a sample of malware without chang-
ing its malicious behavior, such as MessageBox, printf, malloc etc. For each
malware class, we extract API calls and their call frequency from several ma-
licious programs. The signature for the malware class is then computed using



340 V.S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar

several samples that are known to belong to that class. From our results, we
have observed that 2 or 3 samples from a malware class are adequate to cre-
ate a signature. Given any test file, it is classified as malicious or benign by
statistical comparison of the frequency of its critical API calls with that of the
malware classes. Figure 1 shows the architecture of our malware detector. Next,
we describe our strategy for malware behavior profiling and show our method is
used to generate signatures and classify programs as benign or malicious. In our
classification, we not only differentiate between benign and malicious programs,
but also between different malware classes.

Malware Behavior Profiling. Malicious programs exhibit a behavior that
can be distinguished from behavior of benign programs. The signature for a
malware class is based on the frequency of critical API calls. Let the vector
P = (f1, fo,..., fn) be a profile created from a program by extracting its critical
API calls, where f; represents the frequency of i*" critical API call and n being
the total number of critical APT calls.

We use a statistical measure to differentiate between malware and benign
programs. To detect malware, we measure the difference between the propor-
tions of the critical API calls in a signature and that of a test program using
Chi-square test [6]. Chi-square test is a likelihood-ratio or maximum likelihood
statistical significance test that measures the difference b