

Lecture Notes in Computer Science 5107

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Yi Mu Willy Susilo Jennifer Seberry (Eds.)

Information Security
and Privacy

13th Australasian Conference, ACISP 2008
Wollongong, Australia, July 7-9, 2008
Proceedings

13

Volume Editors

Yi Mu
Willy Susilo
Jennifer Seberry
University of Wollongong
School of Computer Science and Software Engineering
Northfields Avenue, Wollongong, NSW 2522, Australia
E-mail: {ymu, wsusilo, jennie}@uow.edu.au

Library of Congress Control Number: Applied for

CR Subject Classification (1998): E.3, K.6.5, D.4.6, C.2, E.4, F.2.1, K.4.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743

ISBN-10 3-540-69971-6 Springer Berlin Heidelberg New York

ISBN-13 978-3-540-69971-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12322725 06/3180 5 4 3 2 1 0

Preface

The 13th Australasian Conference on Information Security and Privacy (ACISP
2008) was held at Wollongong, Australia, during July 7–9, 2008. The conference
was sponsored by the Centre for Computer and Information Security of the
University of Wollongong and the Research Network for a Secure Australia. The
submission and review process was run using the iChair software, written by
Thomas Baigneres and Matthieu Finiasz from EPFL, LASEC, Switzerland. We
would like to thank them for letting us use their iChair software.

The conference received 111 submissions, out of which the Program Commit-
tee selected 33 papers for presentation at the conference after a rigorous review
process. These papers are included in the proceedings. The accepted papers cover
a range of topics in information security, including authentication, key man-
agement, public key cryptography, privacy, anonymity, secure communication,
ciphers, network security, elliptic curves, hash functions, and database security.
The conference proceedings contain revised versions of the selected papers. Since
some of them were not checked again for correctness before publication, the au-
thors bear full responsibility for the contents of their papers. We would like to
thank the authors of all papers for submitting their papers to the conference.

In addition to the contributed papers, the program comprised three invited
talks. The invited speakers were Xavier Boyen (Voltage, USA), Josef Pieprzyk
(Macquarie University, Australia) and Nigel Phair (Australian High Tech Crime
Centre). We would like to express our thanks to them.

As in previous years, we selected a “best student paper.” To be eligible for
selection, a paper has to be co-authored by a postgraduate student, whose con-
tribution was more than 50%. The winner was Risto Hakala from Helsinki Uni-
versity of Technology, Finland, for the paper “Linear Distinguishing Attack on
Shannon.”

We would like to thank all the people who helped with the conference program
and organization. In particular, we heartily thank the Program Committee and
the sub-reviewers listed on the following pages for the effort and time they con-
tributed to the review process. We would like to express our thanks to Springer
for continuing to support the ACISP conference and for help in the conference
proceedings production.

Finally, we would like to thank the Organizing Committee for their excellent
contribution to the conference.

July 2008 Yi Mu
Willy Susilo

Jennifer Seberry

The 13th Australasian Conference on

Information Security and Privacy (ACISP 2008)

Sponsored by

Centre for Computer and Information Security Research,
University of Wollongong, Australia

Research Network for a Secure Australia

General Chair

Jennifer Seberry University of Wollongong, Australia

Program Chairs

Yi Mu University of Wollongong, Australia
Willy Susilo University of Wollongong, Australia

Program Committee

Michel Abdalla ENS, Paris, France
Masayuki Abe NTT, Japan
Colin Boyd QUT, Australia
Feng Bao Institute for Infocomm Research, Singapore
Lynn Batten Deakin University, Australia
Ed Dawson QUT, Australia
Dieter Gollmann TU Hamburg, Germany
Aggelos Kiayias University of Connecticut, USA
Kwangjo Kim ICU, Korea
Tanja Lange Technische Universiteit Eindhoven, Netherlands
Pil Joong Lee Pohang University of Science and Technology, Korea
Benoit Libert UCL, Belgium
Javier Lopez University of Malaga, Spain
Chris Mitchell RHUL, UK
Yi Mu University of Wollongong, Australia
Kaisa Nyberg Helsinki University of Technology, Finland
Eiji Okamoto Tsukuba University, Japan
Josef Pieprzyk Macquarie University, Australia
Sihan Qing Chinese Academy of Scineces, China
Jean-Jacques Quisquater UCL, Belgium
Rei Safavi-Naini University of Calgary, Canada

VIII Organization

Jennifer Seberry University of Wollongong, Australia
Ron Steinfeld Macquarie University, Australia
Douglas Stinson University of Waterloo, Canada
Willy Susilo University of Wollongong, Australia
C. Pandu Rangan Indian Institute of Technology, India
Tsuyoshi Takagi Future University, Japan
Vijay Varadharajan Macquarie University, Australia
Sabrina De Capitani

di Vimercati University of Milan, Italy
Huaxiong Wang Nanyang Technological University, Singapore
Duncan S. Wong City University of Hong Kong, China
Fangguo Zhang Sun Yat-Sen University, China
Ning Zhang University of Manchester, UK
Jianying Zhou Institute for Infocomm Research, Singapore

Organizing Committee

Man Ho Au University of Wollongong, Australia
Xinyi Huang University of Wollongong, Australia
Shams Ud Din Qazi University of Wollongong, Australia
Mohammad Reza

Reyhanitabar University of Wollongong, Australia
Siamak Fayyaz

Shahandashti University of Wollongong, Australia
Pairat Thorncharoensri University of Wollongong, Australia
Wei Wu University of Wollongong, Australia
Tsz Hon Yuen University of Wollongong, Australia

External Referees

Isaac Agudo
Hadi Ahmadi
K. Ambika
Venkat Balakrishnan
Daniel J. Bernstein
Jean-Luc Beuchat
Peter Birkner
Billy Bob Brumley
S. Chandrasekar
Joo Yeon Cho
Sherman Chow
Baudoin Collard
Alex Dent
Dang Nguyen Duc
Sung Wook Eom

Reza Rezaeian Farashahi
Gerardo Fernandez
Carmen Fernandez-Gago
Georg Fuchsbauer
Juan Garay
Praveen Gauravaram
Juan Gonzalez
Satoshi Hada
Risto Hakala
Kevin Henry
Matt Henricksen
Jason Hinek
Michael Hitchens
Qiong Huang
Shaoquan Jiang

Jang Seong Kim
Sun Young Kim
Young Mok Kim
Varad Kirthane
Hoi Le
Fagen Li
Jin Li
Vo Duc Liem
Peter van Liesdonk
Joseph K. Liu
Jiqiang Lu
Mark Manulis
Krystian Matusiewicz
Antonina Mitrofanova
Cameron McDonald

Organization IX

Pablo Najera
Miyako Ohkubo
Vijayakrishnan P.
Arpita Patra
Angela Piper
M.R. Reyhanitabar
Rodrigo Roman
Chun Ruan
Palash Sarkar
Sharmila Devi Selvi
Jae Woo Seo
Siamak Shahandashti
Hongsong Shi
Jong Hoon Shin
Masaaki Shirase

Igor Shparlinski
Leonie Simpson
Michal Sramka
Jerry Sui
Christophe Tartary
Ronghua Tian
Tomas Toft
Mohammed A.A. Tuhin
Udaya Kiran Tupakula
Damien Vergnaud
José Villegas
Jose L. Vivas
Yongge Wang
Baodian Wei
Kenneth Wong

Jiang Wu
Guomin Yang
Yanjiang Yang
Yeon-Hyeong Yang
Chan Yeob Yeun
Hongbo Yu
Yu Yu
Janson Zhang
Chang-An Zhao
Weiliang Zhao
Hong-Sheng Zhou
Huafei Zhu
Sebastien Zimmer

Table of Contents

New Paradigms for Password Security: Abstract from the Keynote
Lecture . 1

Xavier Boyen

Enforcing User-Aware Browser-Based Mutual Authentication with
Strong Locked Same Origin Policy . 6

Sebastian Gajek, Mark Manulis, and Jörg Schwenk

Secure Biometric Authentication with Improved Accuracy 21
Manuel Barbosa, Thierry Brouard, Stéphane Cauchie, and
Simão Melo de Sousa

A Critical Analysis and Improvement of AACS Drive-Host
Authentication . 37

Jiayuan Sui and Douglas R. Stinson

Comparing the Pre- and Post-specified Peer Models for Key
Agreement . 53

Alfred Menezes and Berkant Ustaoglu

Efficient One-Round Key Exchange in the Standard Model 69
Colin Boyd, Yvonne Cliff, Juan Gonzalez Nieto, and
Kenneth G. Paterson

On the Improvement of the BDF Attack on LSBS-RSA 84
Hung-Min Sun, Mu-En Wu, Huaxiong Wang, and Jian Guo

Public-Key Cryptosystems with Primitive Power Roots of Unity 98
Takato Hirano, Koichiro Wada, and Keisuke Tanaka

Relationship between Two Approaches for Defining the Standard
Model PA-ness . 113

Isamu Teranishi and Wakaha Ogata

Distributed Verification of Mixing - Local Forking Proofs Model 128
Jacek Cichoń, Marek Klonowski, and Miros�law Kuty�lowski

Fully-Simulatable Oblivious Set Transfer . 141
Huafei Zhu

Efficient Disjointness Tests for Private Datasets . 155
Qingsong Ye, Huaxiong Wang, Josef Pieprzyk, and Xian-Mo Zhang

XII Table of Contents

Efficient Perfectly Reliable and Secure Message Transmission Tolerating
Mobile Adversary . 170

Arpita Patra, Ashish Choudhary, Madhu Vaidyanathan, and
C. Pandu Rangan

Methods for Linear and Differential Cryptanalysis of Elastic Block
Ciphers . 187

Debra L. Cook, Moti Yung, and Angelos D. Keromytis

Multidimensional Linear Cryptanalysis of Reduced Round Serpent 203
Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg

Cryptanalysis of Reduced-Round SMS4 Block Cipher 216
Lei Zhang, Wentao Zhang, and Wenling Wu

On the Unprovable Security of 2-Key XCBC . 230
Peng Wang, Dengguo Feng, Wenling Wu, and Liting Zhang

Looking Back at a New Hash Function . 239
Olivier Billet, Matthew J.B. Robshaw, Yannick Seurin, and
Yiqun Lisa Yin

Non-linear Reduced Round Attacks against SHA-2 Hash Family 254
Somitra Kumar Sanadhya and Palash Sarkar

Collisions for Round-Reduced LAKE . 267
Florian Mendel and Martin Schläffer

Preimage Attacks on Step-Reduced MD5 . 282
Yu Sasaki and Kazumaro Aoki

Linear Distinguishing Attack on Shannon . 297
Risto M. Hakala and Kaisa Nyberg

Recovering RC4 Permutation from 2048 Keystream Bytes if j Is
Stuck . 306

Subhamoy Maitra and Goutam Paul

Related-Key Chosen IV Attacks on Grain-v1 and Grain-128 321
Yuseop Lee, Kitae Jeong, Jaechul Sung, and Seokhie Hong

Signature Generation and Detection of Malware Families 336
V. Sai Sathyanarayan, Pankaj Kohli, and Bezawada Bruhadeshwar

Reducing Payload Scans for Attack Signature Matching Using Rule
Classification . 350

Sunghyun Kim and Heejo Lee

Implicit Detection of Hidden Processes with a Feather-Weight
Hardware-Assisted Virtual Machine Monitor . 361

Yan Wen, Jinjing Zhao, Huaimin Wang, and Jiannong Cao

Table of Contents XIII

FormatShield: A Binary Rewriting Defense against Format String
Attacks . 376

Pankaj Kohli and Bezawada Bruhadeshwar

Advanced Permission-Role Relationship in Role-Based Access
Control . 391

Min Li, Hua Wang, Ashley Plank, and Jianming Yong

Enhancing Micro-Aggregation Technique by Utilizing
Dependence-Based Information in Secure Statistical Databases 404

B. John Oommen and Ebaa Fayyoumi

Montgomery Residue Representation Fault-Tolerant Computation in
GF (2k) . 419

Silvana Medoš and Serdar Boztaş

A Tree-Based Approach for Computing Double-Base Chains 433
Christophe Doche and Laurent Habsieger

Extractors for Jacobians of Binary Genus-2 Hyperelliptic Curves 447
Reza Rezaeian Farashahi

Efficient Modular Arithmetic in Adapted Modular Number System
Using Lagrange Representation . 463

Christophe Negre and Thomas Plantard

Author Index . 479

New Paradigms for Password Security

(Abstract from the Keynote Lecture)

Xavier Boyen

Voltage Inc.
xb@boyen.org

For the past several decades, cryptographers have consistently provided us with
stronger and more capable primitives and protocols that have found many ap-
plications in security systems in everyday life. One of the central tenets of cryp-
tographic design is that, whereas a system’s architecture ought to be public and
open to scrutiny, the keys on which it depends — long, utterly random, unique
strings of bits — will be perfectly preserved by their owner, and yet nominally
inaccessible to foes.

This security model works well as long as one can assume the existence of an
inviolate physical location or storage device to safeguard those keys. In client-
server scenarios, the mere delocalization of the participants suffices to enforce a
proper boundary without any further precaution. In proxy settings, one may call
upon tamper-resistant “smart cards” or hardware security modules to isolate the
keys adequately from most opponents.

Things break down when one can no longer assume that an external storage
medium is available to store our keys, and that the only option is to remember
them in our minds. The problem, of course, is a cognitive one: the human brain
is ill-equipped to remember hundreds of random bits of key material for the
long term without making any mistake. The secrets that our brain is keen on
remembering are those of our own choosing, which for all their apparent ran-
domness and unpredictability can certainly not be mistaken nor substituted for
genuine cryptographic keys. Security from purely mental secrets requires us at
the very least to compromise on key strength — this encompassing both entropy
and uniformity —, and seek the best reachable security goals based not on ideal
random keys but on passwords of sub-cryptographic quality.

Plain textual passwords and passphrases — or passtexts — have always been
the preferred form of human-memorable secret, having the benefit of medium-
independence which entails compatibility with virtually any conceivable user
interface. More exotic mental secrets — passthoughts — may be based on visual
or auditory recognition feedback; these are equivalent to passwords from a cryp-
tographic perspective, but the specialized input device they require make them
less practical. Secrets whose expression requires body action such as speech or
ocular movements — passmoves — may also be envisaged given the proper mea-
surement apparatus, with the proviso that the unavoidable measurement noise
in the analog signal will have to be dealt with; we merely mention that errors
on the post-quantization signal may be correctable using information-theoretic

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 1–5, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 X. Boyen

cryptographic tools such as reusable and robust fuzzy extractors [1] without
leaking excessive information about the secret.

Regardless of the shape of form of the secret, an important criterion for its
human memorability is that its selection ultimately be left to the human who
will have to remember it. Machines can assist in password selection, but should
not make the final choice. Because of this, it is a near-certainty that the selected
secret will not make a suitable cryptographic key, nor will it be possible to derive
one from it due to lack of entropy. Hence, specialized primitives and protocols
are needed that explicitly take into account those inherent weaknesses, and seek
to achieve the best possible security under the circumstances.

Although password-based primitives and protocols have seen much founda-
tional and implementational improvements during the last two decades, the gen-
eral philosophy of password-based offline key derivation and online key exchange
has remained essentially what it was in the early nineties. In particular, most
current approaches could better handle real-life situations where the password
are too weak for comfort and/or are recycled in part or in whole with multiple
correspondents.

The purpose of this exposé is thus to investigate what security may indeed
be attained from human-memorable passwords as they do appear in the real
world — including the weak, skewed, reused, and exceedingly long-lived ones.
The focus on literal passwords stems from tradition as much as convenience.

1 Halting Puzzles against Brute-Force Dictionary Attacks

Stand-alone — offline — uses of passwords mainly concern encryption and key
derivation applications. The prime example of this is to encrypt the contents of
a laptop so that only its owner can access it. Local authentication and device
unlocking uses may also be treated as special cases of password-based encryption.
At the core of these systems, one finds a Key Derivation Function (KDF), which
is a one-way function taking a password and an optional public random salt as
input, and producing a reproducible cryptographic key as output.

Offline applications such as those are tremendously difficult to secure with
a weak password. The threat model here is the loss of the entire ciphertext
and all associated hardware to an attacker, where only the password is being
held back. Therefore, any opponent that simply tries out all passwords in an
offline dictionary attack, e.g., by decreasing order of estimated likelihood, will
eventually stumble upon the correct one and defeat the encryption. The only
defense against such a threat is to slow down or deter the attacker by making
the attack more daunting. There are two ways to do this: by picking an unlikely
password to increase the expected number of guesses, and by making each guess
more computationally demanding to verify.

One cannot really play with the choice of the password, short of encouraging
the user to select a long and difficult one. Making the guesses hard to verify
is possible, but only within limits, as it has the side effect of increasing the
user’s legitimate access latency in the same proportion. For this reason, KDFs

New Paradigms for Password Security 3

are purposely designed to be somewhat expensive to compute, although most
implementations tend to be very conservative with the amount of slowdown that
they are willing to impose on users, and rarely offer the user any choice in the
matter. The general trend is thus to use KDFs with a slowdown parameter (often
a hash iteration count) that is conservatively chosen, once-and-for-all frozen, and
publicly disclosed as part of the KDF specification or implementation. Some
implementations support in-the-field adjustment of the KDF iteration count,
but this parameter always remains public.

This has been and continues to be the ubiquitous way in which passwords are
used for local key derivation.

In departure from this trend, we recently introduced, in [2], the notion of
Halting Key Derivation Function (HKDF), which explicitly lets the user choose
an arbitrary hardness parameter and emded it into the function in a crypto-
graphically secret manner. The idea is to encourage the user to make the HKDF
as difficult to compute as the delay he or she is willing to tolerate when seeking
access, but conceal the value of the chosen parameter from public view, and yet
not require the user to remember such value — or for that matter anything else
besides the password.

The crucial element is that, on the correct password, the HKDF function will
recognize that it succeeded and halt spontaneously after the intended computa-
tional delay; but on an incorrect password, it will continue indefinitely without
giving any feedback until manually interrupted. The only indication given to the
user that a password is incorrect will be the feeling that the key derivation is tak-
ing longer than it should. The user will naturally react by restarting the process
and reentering the password more carefully without much of an afterthought.
To an attacker, by contrast, this lack of feedback will disproportionately compli-
cate the task of mounting an offline dictionary attack. The result is an effective
security increase equivalent to two extra bits of password entropy, at virtually
no cost to the legitimate user.

The total security gains provided by HKDFs are actually much greater than
just two bits, due to a combination of factors. The main contributing factor
is that legacy KDFs tend to be parameterized very conservatively, leading to
exceedingly short delays (∼ 1ms) that are only getting shorter as computers
are getting faster, raising obsolescence concerns. By contrast, HKDFs are pro-
grammed on a case-by-case basis, on the basis on actual clock times, with respect
to the current state of computer performance. Even at the shorter end of HKDF
delays, the “blink of an eye” (∼ 1s), the jump is already substantial. It will also
keep up with technological progress, since a one-second-delay in ten years will
entail a greater number of elementary operations than a one-second-delay today.

As discussed in [2], one should expect a fairly wide spectrum of user-selected
HKDF delays to find their way in practical applications. Short delays are ap-
propriate for frequently used day-to-day passwords with a short lifespan. Longer
delays (∼ 1m and more) could be used to protect longer-term backup passwords,
which may need to be simpler to be memorable over a longer period. The longest

4 X. Boyen

delays (∼ 1h and more) would be reserved for last-resort disaster-recovery pass-
words, never intended to be used, but that must be available and remembered
if ever needed even after many years have lapsed. Such passwords would likely
have to be very weak to be reliably memorable over such long periods, hence the
need for very long HKDF delays to protect them from offline dictionary attacks.
Notably, the same plaintext can be encrypted under different passwords using
different delays, seamlessly, without any loss of security or usability.

2 Hardened Protocols toward Universal Authentication

Client-server — online — uses of passwords are primarily geared toward au-
thentication and key exchange. Both parties share a password, and, based on
it, try to establish a private authenticated channel over open communication
lines. The constraints on online passwords are fairly different than in the offline
case, as here the threat model typically assumes that the communicating parties
are honest and try to prevent eavesdropping and impersonation by a malicious
outsider (who controls the underlying communication channel).

Password-Authenticated Key Exchange (PAKE) is indeed a success story of
cryptographic protocol design, as there are many protocols realizing the theo-
retically optimal security requirement that the only feasible attack vector be for
the adversary to make online password guesses, one guess at a time, interactively
with one of the honest parties — who can then detect the attack and throttle it
by refusing to communicate. Secure online authentication can thus be achieved
using much weaker passwords than would be thinkable in the offline case.

Extensions of this notion have been proposed for the case where the server
itself may be viewed as an adversary, as is the case when the client wishes to reuse
the same password with other servers. Asymmetric Password-Authenticated Key
Exchange (APAKE) deals with this notion by requiring the password only on
the client side; the server is instead entrusted with a derived secret that can be
used to reach mutual authentication with the client, but not impersonate it to
another server (in particular the password should be hard to recover from this).
APAKE protocols are for this reason more desirable in practical use than PAKE,
in light of the well-documented propensity of internet users to recycle the same
few passwords with a broad variety of vendors. However, one concern remains,
which is how difficult it actually is for a malicious server to recover its clients’
passwords from the derived secrets.

The concern is that the derived secrets are typically obtained by applying a
one-way function to the password w, be it a cryptographic hash h(w) or a mod-
ular exponentiation gw. Functions like these are usually very fast to compute,
so even though they technically may be one way, they might be relatively easy
to invert in an offline dictionary attack if the user password is not already very
strong. Also, without an extra randomization step, a server can attack all of its
clients’ passwords for the price of one.

Since typical real-life users are probably going to continue reusing the same
weak passwords with many servers regardless of whether this is considered a safe

New Paradigms for Password Security 5

thing to do, it would be desirable to design a protocol that attempts to preserve
the best possible form of online and offline password security, even under reuse of
a weak password across multiple servers. The benefit from such a notion would
be safe universal authentication on the internet using a single easy-to-remember
password (for each user).

Ideally, one wish to combine the security of (A)PAKE against outside online
attackers, with the security of HKDF against malicious servers.

To this end, we are proposing, in [3], the notion of Hardened Password-
Authenticated Key Exchange (HPAKE), which offers the same security guar-
antees as regular asymmetric key exchange, and in addition allows the user to
specify an arbitrarily expensive one-way function for the mapping from client
password to server secret. This makes even relatively weak passwords infeasible
to recover by malicious servers, thereby enabling the reuse of such passwords
with arbitrarily many servers.

There are several difficulties with this. The first is a systemic one: the burden
of computing this arbitrarily expensive one-way function should befall the client
who selected it, and not the server which for scalability reasons must be able to
process many authentication requests with minimal effort. The second issue is a
technical one: since the one-way function is to be computed on the client side, the
client must obtain the necessary inputs from the server prior to authentication.
This creates a paradox, since the success of such transfer must depend on the
client’s knowledge of the password, but at the same time not reveal to either the
client or the server whether the transfer succeeded, lets it open an avenue for
offline attack to outsiders or to the server itself.

We shall discuss how these difficulties can be overcome, and how the HPAKE
framework from [3] provides a plausible and practical answer to the problem of
universal authentication from a single password.

3 Conclusion

The password schemes presented in this lecture have in common that they seek
to provide the best possible security for the password holder, in the offline and
online setting, regardless of how careless his or her use of that password may be.
The only safety rule that should never be failed, is that one’s password should
only be seized on a local trusted HKDF or HPAKE entry device, and not shared
with other less secure protocols.

References

1. Boyen, X.: Robust and Reusable Fuzzy Extractors. In: Tuyls, P., Skoric, B., Keve-
naar, T. (eds.) Security with Noisy Data, Springer, Heidelberg (2007)

2. Boyen, X.: Halting Password Puzzles – hard-to-break encryption from human-
memorable keys. In: SECURITY 2007, The USENIX Association (2007)

3. Boyen, X.: Hardened Password Authentication – mulitple mobile credentials from a
single short secret. Manuscript (2008)

Enforcing User-Aware Browser-Based Mutual
Authentication with Strong Locked Same Origin Policy

Sebastian Gajek1, Mark Manulis2, and Jörg Schwenk1

1 Horst Görtz Institute for IT-Security, Germany
{sebastian.gajek,joerg.schwenk}@nds.rub.de

2 UCL Crypto Group, Belgium
mark.manulis@uclouvain.be

Abstract. The standard solution for mutual authentication between human users
and servers on the Internet is to execute a TLS handshake during which the server
authenticates using a X.509 certificate followed by the authentication of the user
either with own password or with some cookie stored within the user’s browser.
Unfortunately, this solution is susceptible to various impersonation attacks such
as phishing as it turned out that average Internet users are unable to authenticate
servers based on their certificates.

In this paper we address security of cookie-based authentication using the
concept of strong locked same origin policy for browsers introduced at ACM
CCS’07. We describe a cookie-based authentication protocol between human
users and TLS-servers and prove its security in the extended formal model for
browser-based mutual authentication introduced at ACM ASIACCS’08. It turns
out that the small modification of the browser’s security policy is sufficient to
achieve provably secure cookie-based authentication protocols considering the
ability of users to recognize images, video, or audio sequences.

1 Introduction

Motivation. The browser plays an indispensable function as the user’s interface to ac-
cess the rich world of Web based services. In order to serve the purpose of an universal
client, commodity browsers have been augmented with numerous functionalities. Ex-
amples include extensions of the HTTP header to control caching and transport cookies,
or the HTML markup language to enable high-level scripting and supply technologies
like AJAX, AFLEX or SOAP. By contrast, much effort to amend the browser security
model and provide new cryptographic services has not been spent. Since its adaption
more than a decade ago [9], the Transport Layer Security (TLS) framework is the main
pillar of browser-based protocols to provide Web applications with a security layer.
After the protocol framework has been peer-reviewed without finding any significant
vulnerabilities [25,28,24,22], it has been believed to be the holy grail for secure Web
authentication. However, recent studies point out that average-skilled Internet users un-
derstand neither TLS nor its indication in commodity Web browsers at all [7,27]. Users
tend to ignore browser’s warnings and prefer to identify Web sites on the basis of non-
technical indicators (e.g., brands, logos). This attitude provides a wrong sense of secu-
rity. An adversary may fake the site and disclose the user’s password (phishing attack).

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 6–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Enforcing User-Aware Browser-Based Mutual Authentication 7

The advent of these large-scale fraud attacks has led to several modifications in the vi-
sualization of TLS. Unfortunately, it seems to turn out that the changes do not meet
their high expectations either [16].

Another line of research addresses the design of authentication protocols that provide
user-awareness. The essence of user-aware protocols is to relax the assumptions on user
behavior and provide secure authentication ceremonies. Recently, the authors of this
paper introduced a formal security model for browser-based mutual authentication
(BBMA) between a human user and a server where the browser is modeled as the medi-
ator of the communication [11]. Their model is an extension of the classical model for
authentication from [3] towards consideration of user-awareness within the authentica-
tion protocols on the Internet whereby user-awareness is modeled via human percepti-
ble authenticators (HPAs) that are implied by natural human senses, such as recognition
of images, videos, and audio sequences. In addition to the model, [11] describes a pro-
tocol called BBMA (based on the ideas of the PassMark Security Inc.’s Two-Factor-Two-
Way AuthenticationTM) which can be implemented within the standard specification of
the TLS protocol. In this protocol the human user authenticates via password which is
typed into an HTML form only after the successful recognition of some expected HPA
sent by the server. In order to protect the disclosure of this HPA to unauthorized par-
ties, the TLS protocol uses client (possibly self-generated) certificates which serve as a
cryptographic identifier for the corresponding HPA.

Extending this line of research, we deal with user-awareness in cookie-based
authentication protocols. These protocols execute a server-only authenticated
TLS session, where the user authenticates through a cookie that has been previously
set by the server and stored in the browser’s cache. The technique has the adva-
ntage that the user is refrained from retyping the password. Further, the cookie is taken
from a sufficiently large random distribution. There is no need to expect a
“security defect” due to the use of low-entropy passwords. These simplifications of
user authentication have led to a wide adaption of cookie-based authenticated channels
in browser-based protocols and there are many protocols that build upon this technique.
Unfortunately, they have been shown to be vulnerable when taking the mature browser
security model into account (see Section 2 for more discussions). The crux is that the
browser decides on the basis of the server’s domain name whether to reveal the cookie.
The adversary is feasible to steal the cookie by spoofing the domain names and there
are many attacks allowing the adversary to do this (e.g., dynamic pharming, DNS re-
binding [15,19].

To protect against the growing presence of these threats, Karlof et. al. propose re-
finements of the browser’s cookie disclosure policy [23,19]. Their contribution is to
augment the browser with some additional functionality which uses cryptographic
mechanisms to enforce restricted access policies without relying on DNS, dubbed the
strong locked same origin (SLSO) policy. In the context of cookie-based authentication
protocols over the TLS channel, the SLSO policy enforcement means that the browser
sends a cookie to the server only after the server proves the possession of a valid crypto-
graphic identifier, namely the server’s public key, i.e., the server proves the knowledge
of the corresponding private key.

8 S. Gajek, M. Manulis, and J. Schwenk

Contributions. In this paper we extend our model from [11] towards cookie-based au-
thentication and consideration of the browser’s SLSO policy. Using the extended model
we analyze the security of the cookie-based version of BBMA from [11] re-engineered
under the SLSO policy. We call the modified protocol BBMA-SLSO. It turns out that
some minor changes of the browser security model to enforce the SLSO policy—which
is a straightforward task compared to the large scale deployment of, say secure domain
name resolution protocols (DNSSEC)—turns an insecure protocol into a provably se-
cure one. Additionally, the use of SLSO policy allows us to eliminate the costly use of
the client certificates, which are essential to prove security of BBMA. In addition to the
formal security definition, BBMA-SLSO has additional advantages over previous cookie-
based authentication protocols. The advantages include

1. BBMA-SLSO is user-aware. In order to authenticate, the server sends a HPA, which
serves (i) as non-cryptographic identifier for the user to validate the server as in the
physical world where identities are provided in an easily recognizable fashion and
(ii) as fail-stop mechanism to hamper that she discloses private information on a
faked site.

2. BBMA-SLSO fits into the standard TLS specification. There is no need to modify
commodity server implementations. In fact, the necessary augmentations address
browsers, more precisely their functionality to access cookies corresponding to the
SLSO policy. See [23] for more details.

We remark that the enforcement of the SLSO policy is ineligible to protect against
cross-site scripting (XSS) attacks. The anatomy of XSS attacks is to exploit weaknesses
of application servers and inject malicious scripts into the communication that enable
the adversary to invoke certain browser functionalities. Since the scripts are in the same
security context the SLSO policy does not help. Consequently, the adversary would
have access to the user’s password typing, the cookie and HPA in BBMA-SLSO. Though
we treat XSS attacks as (server) corruptions in our model and exclude them in the anal-
ysis, a work-around to make BBMA-SLSO resistant against the attacks is to completely
isolate the named security critical information and prevent that they are accessible from
the surrounding (potentially malicious) scripts. Such a feature is already available in
the Internet Explorer for cookies [21]. The approach has to be extended for passwords
and HPAs. Since the implementation of the SLSO policy requires the modification of
the current browser’s security policy anyway, we suggest to enrich this policy with the
private/public tagging of elements. An element such as a password field tagged with a
private value shall signal the browser that any script is prevented from access, regardless
of its security context. See [10] for more details.

Organization. The remainder sections are structured as follows. We review related
work in Section 2. In Section 3, we describe the formal security model for cookie-
based BBMA protocols under consideration of the SLSO policy. In Section 4 we spec-
ify a concrete protocol called BBMA-SLSO using the high level description of the TLS
handshake in the key transport mode and prove that it is user-aware and satisfies the
defined authentication requirement. Finally, we conclude the paper in Section 5.

Enforcing User-Aware Browser-Based Mutual Authentication 9

2 Related Work

So far, few browser-based protocols have been subject to rigorous security analysis:
Kormann and Rubin [20] show that Microsoft’s .NET passport, a Web-based realization
of the Kerberos protocol for single sign on, is susceptible to attacks where the adversary
steals the ticket granting ticket cookie. Soghoian and Jakobsson [30] investigate the
SiteKey-protocol that displays a previously negotiated image in addition to password
forms in order to signal that the user is connected to the benign server. The authors
show the feasibility of stealing the shared secret that is stored in a cookie. Groß [12]
analyzes SAML, an alternative single sign on protocol, and shows that the protocol is
vulnerable to adaptive attacks where the adversary intercepts the authentication token
contained in the URL. By contrast, BBMA-SLSO has formal security arguments and is
provably secure in a model which takes into account the adversarial control over the
network and attacks against the classical browser’s security policies that reveal weak
identifiers, such as cookies.

Groß et al. prove in [14] the security of WS-Federation passive Requestor Profile—
a browser-based protocol for federated identity management. The proof is carried out
in the browser model [13] that builds on the Reactive Simulatability framework due
to Pfitzmann and Waidner [26]. The model abstracts away the TLS-protected channel
through an ideal functionality that captures the same cryptographic task and presup-
poses ideal users who are able to identify servers based on certificates. There exists
no soundness proof that TLS is simulatable and realizes such functionality, especially
with respect to the relaxed user behavior assumptions. BBMA-SLSO takes explicitly into
account the TLS protocol and is shown to be provably secure in the Random Oracle
Model when instantiated with the widely deployed key transport cipher suite in server
authentication mode.

3 Modeling BBMA with SLSO Policy

In this section we extend our security model for browser-based mutual authentication
from [11] towards consideration of cookie-based authentication and the SLSO policy
implemented within the browser.

3.1 Protocol Participants and Communication Model

User, Browser, Server, and their Long-Lived Keys. Let U denote a human user for
whom we do not make any further assumptions except for the ability to use some natu-
rally born senses. We assume that U remembers some (high-entropy) human perceptible
authenticator (HPA) w ∈ W (e.g. an image or a video/audio sequence from some space
W) as its long-lived key LLU .

To the contrary, the browser B and the server S are modeled as PPT machines. LLB
is the browser’s high-entropy long-lived key which contains (S, pkS , cky) where S is
the identity (domain name) of the server, pkS ∈ {0, 1}p1(κ) its certified public key,
and cky ∈ {0, 1}p2(κ) is the cookie set by S during the establishment of the security
association with the client which is denoted by C = (U ,B). (Here and in the following,

10 S. Gajek, M. Manulis, and J. Schwenk

pi : N → N, i ∈ [1, 5] is a polynomial and κ ∈ N the security parameter.) We assume
that cky contains secret information (e.g. obfuscated or cryptographically processed
password) which allows S to uniquely identify U . Similarly, LLS contains the private
key skS ∈ {0, 1}p1(κ) and the tuple (U , cky, w).

Additionally, by C we denote the traditional client given by a pair (U ,B).

Communication between B and U via render-Function. Let λi : N→ N, i ∈ [1, 2]
be two polynomials. B communicates to U through the visualization function render :
M× Ψ → M∗ where M ∈ {0, 1}λ1(κ) is the message space (space of all HTML
messages) and Ψ ∈ {0, 1}λ2(κ) is the browser’s configuration for message processing
that may be altered by querying the browser’s DOM model.

Modeling User-Awareness via recognize-Function. Similar to [11] we assume that
U can recognize some previously remembered high-entropy HPA w ∈ W . The recog-
nition is handled by a boolean human perception function recognize : M∗ ×W →
{0, 1} which on input a visualized message m∗ ∈ M∗ and w the recognize function
outputs 1 if U recognizes w among the content of m∗; otherwise the output is 0. In
this paper we assume that if m∗ contains w (denoted as m∗|w) then recognize out-
puts 1, i.e., the ability of U to recognize w is perfect. On the other hand, we do not
assume that w is the only HPA for which recognize outputs 1, i.e., we do not ide-
alize U as there can be some set W∗ ⊆ W which contains HPAs that are perfectly
human-indistinguishable from U according to the following definition.

Definition 1 (Perfect Human-Indistinguishability of HPAs). Let w ∈ W be some
given HPA. For any m∗ ∈ M∗ and any w∗ ∈ W , we say that w and w∗ are perfectly
human-indistinguishable, if for any human user U

∣
∣ Pr[U .recognize(m∗|w, w) = 1]− Pr[U .recognize(m∗|w∗, w) = 1]

∣
∣ = 0

where the probabilities are computed over the choices of w∗. ByW∗ ⊆ W we denote
the set of all perfectly human-indistinguishable HPAs for some given w ∈ W assuming
that w ∈ W∗.

The main idea in designing user-aware security protocols based on HPAs is to opt for
authenticators for whichW∗ is sufficiently small for most of the users. In this case the
probability that an adversary chooses or guesses some HPA that cannot be distinguished
from w by U can be kept low. The ideal case would be ifW∗ would consist only of w.
We call w a good HPA if the size of the set W∗ is sufficiently small such that the
term |W∗|/|W| which is used in our proof beside other cryptography-related terms to
compute the overall probability of a successful attack is negligible.

For our protocol we assume that the HPA used by U in the execution of our protocol
is good. We stress that in order to identify good HPAs extensive user experiments,
possibly under consideration of specific statistic models, have to be conducted. We
conjecture that good HPAs may be found from the personal digital images, audio and
even video sequences.

Enforcing User-Aware Browser-Based Mutual Authentication 11

Protocol Sessions and Participating Instances. Participation of C = (U ,B) and S
in distinct executions of Π is modeled via instances [C, sidC] and [S, sidS] where
sidC , sidS ∈ N are respective session ids and if sidC = sidS then the instances are
partnered – belong to the same session. We sometimes write C and S instead of their
instances when the difference is visible from the context.

Execution Stages. Once initialized with the corresponding long-lived key an instance
[C, sidC] or [S, sidS] is marked as used and turns into the stand-by stage where it waits
for an invocation to execute the protocol. Upon receiving such invocation the instance
turns into a processing stage where it proceeds according to the protocol specification
until it collects enough information to decide whether the execution was successful or
not, and to terminate then. If the execution is successful then we say that the instance
accepts before it terminates; otherwise we say it aborts. The acceptance of [C, sidC]
with C = (U ,B) is implied by the acceptance of U regardless of B, as U is the ultimate
endpoint of the communication and controls the browser. However, [C, sidC] aborts if
either U or B does so.

3.2 Security Model

In the following we specify attacks and security goals for BBMA protocols from the
perspective of fixed identities S and (U ,B).

Assumptions on the Initialization. We assume that the establishment of the security
association between S and (U ,B) during which B receives (certified) pkS and cky, and
S receives w is trusted. In practice, this can be done through the execution of the very
first TLS handshake in the key transport mode under the assumption that this first ses-
sion is not compromised. We remark that this assumption has practical substantiation.
For example, assume that the protocol should be deployed for the login access to the
online banking service of some bank UFB (for User Friendly Bank). If some U who
does not have any online banking account at UFB receives phishing emails with the
invitation to access some fake website of UFB there will be no damage even if U ac-
cepts. However, after U subscribes for the corresponding online service of UFB and
receives the user guide that usually includes information on the connection establish-
ment, it is likely that U , especially if U is technology-unaware and has no experience in
online banking, will follow the guidelines, at least for the very first session in which the
required security association through the upload of w will be established. Thus, for a
successful attack the phishing email should be received by U in the time period between
the subscription and the registration on the site.

Assumptions on the Adversary. The PPT adversary A controls all communication
between the protocol parties. This implies:

- A controls the domain name resolution. This also allows A to mount phishing
and pharming attacks. Due to the SLSO policy we assume that the adversary can
establish security association (S′, pkS′ , cky′) with the client (U ,B) for any server
identity S′ as long as it can prove the knowledge of the corresponding private key

12 S. Gajek, M. Manulis, and J. Schwenk

skS′ .1 Upon sending forged domain resolution responses, the adversary obtains
access to the parts of the browser’s DOM model which are not protected by the
policy. Note also that since the human recognizable authenticator is not cached, it
can not be accessed using the DOM model.

- A can issue public keys which B accepts. There is no trusted third party in the sense
of a trusted CA. Hence, a certified public key in a X.509 server certificate is treated
as a public key that can be identified by a unique identifier (i.e., hash value of the
public key).

- A is unable to corrupt B. Note that in this model we do not deal with malware2

attacks against B and S, therefore, do not consider the case where A reveals the
ephemeral and long-lived secrets stored inside B. In particular this implies that
the adversary is not able to access the secure cookie cky unless its request is suc-
cessfully verified by B based on the SLSO policy. By the same token we do not
consider attacks resulting from the physical access of the adversary to the user’s
digital device running B.

- A is unable to corrupt S. Note also that in this model we do not deal with malware
attacks against the server. This means that the adversary is excluded from revealing
the ephemeral and long-lived secrets stored inside S.

Adversarial Queries. A can participate in the actual protocol execution via the fol-
lowing queries:

- Execute(C,S): A eavesdrops the execution of the new protocol session between C
and S and receives its transcript.

- Invoke(C,S): U starts the protocol execution with the new instance of S using the
associated instance of browser B andA obtains the first protocol message returned
by B (which is usually generated on some input received from U , e.g., the entered
URL).

- Send(P, m): In an active attack A can send a message to some (instance) of P ∈
{U ,B,S} whereby messages addressed to U are implicitly handled as messages
addressed to the associated browserB with the subsequent execution of render(m,
Ψ) and visualization of its output to U . A receives the response which P generates
after having processed m according to the specification of Π (or an empty string if
m is unexpected).

- RevealState(B): A receives information stored within the browser’s state Ψ and
which is not protected via the SLSO policy. Additionally, it returns (S, pkS), i.e.,A
may learn which servers have security associations with the client, without learning
their secure cookies.

1 Assuming that the initialization process is done during the trusted TLS key transport session
between (U ,B) and S , the adversary must be able to decrypt messages encrypted with pkS′ .
Under the assumption that the deployed asymmetric encryption scheme is sufficiently secure
the decryption operation can be seen as the required proof of possession.

2 Consideration of malware attacks and augmentation of the proposed model with Trusted Com-
puting functionalities to model resistance against malware attacks is surely an interesting as-
pect for the future work on security of browser-based protocols.

Enforcing User-Aware Browser-Based Mutual Authentication 13

- SetCKY(B, (S′, pkS′ , cky′)): With this query (which is new in comparison to [11])
A sets up a new security association with (U ,B) on behalf of some server S′ as
long as pkS′ �= pkS (note that due to our assumptions that A controls the domain
name resolution and can issue certificates that B will accept we explicitly allow
S′ to be equal to S.) A receives the HPA w′ ∈ W chosen by U such that it is
distinguishable from w, i.e., w′ �∈ W∗ according to the Definition 1.3

Correctness and Browser-Based Mutual Authentication. The following definition
specifies the correctness requirement for BBMA protocols.

Definition 2 (Correctness). A BBMA protocol Π is correct if each Execute(C,S)
query results in two instances, [C, sidC] and [S, sidS] which are partnered (sidC =
sidS) and accept prior to termination.

In the following we define the main security requirement of browser-based mutual au-
thentication between participating U and S with B acting as a mediator of the commu-
nication.

Definition 3 (Browser-Based Mutual Authentication). Let Π be a correct protocol
according to Definition 2 and Gamebbma

Π (A, κ) the interaction between the instances of
C = (U ,B) and S with a PPT adversary A who is allowed to query Execute, Invoke,
Send, RevealState, and SetCKY. We say that A wins if at some point during the inter-
action:

1. An instance [C, sidC] accepts but there is no partnered instance [S, sidS], or
2. An instance [S, sidS] accepts but there is no partnered instance [C, sidC].

The maximum probability of this event (over all adversaries running in time κ) is de-
noted Succbbma

Π (A, κ) = max
A |Pr[A wins in Gamebbma

Π (A, κ)]|. We say that Π provides
browser-based mutual authentication if this probability is a negligible function of κ.

The first requirement ensures that U authenticates to the matching server S. Since the
acceptance of [C, sidC] with C = (U ,B) is implied by the acceptance of U the second
requirement ensures that S authenticates to the matching user U . In both cases B plays
the role of the mediator of the communication and can be queried by A; thus, not
mentioning B in the above definition would be incorrect from the formal point of view.

4 User-Aware BBMA over TLS with the SLSO Policy

In this section we specify the BBMA-SLSO protocol which can be seen as the modifi-
cation of the BBMA protocol from [11] towards cookie-based authentication and SLSO
policy.

4.1 Building Blocks of BBMA-SLSO

TLS Protocol. The main pillar of BBMA-SLSO is the server authenticated key trans-
port, where the server’s identity is a cryptographic value independent from the Internet
infrastructure. This complies with RSA-based ciphersuites as specified in [1]. These
suites are preferentially negotiated between standard browsers and servers.

3 Thus, we assume that users do not use same HPAs with different servers.

14 S. Gajek, M. Manulis, and J. Schwenk

Cryptographic Primitives. BBMA-SLSO uses (well-known) cryptographic primitives
that are deployed in the cryptographic key transport suites of the TLS protocol, namely:

– A pseudo-random function PRF : {0, 1}p3(κ) × {0, 1}∗ → {0, 1}∗. Note that TLS
defines PRF with data expansion s.t. it can be used to obtain outputs of a vari-
able length which becomes useful for the key extraction phase. We refer to [8]
for the proof that the key extraction function in TLS is indeed pseudo-random. By
Advprf

PRF (κ) we denote the maximum advantage over all PPT adversaries (running
within security parameter κ) in distinguishing the outputs of PRF from those of a
random function better than by a random guess.

– A symmetric encryption scheme which provides indistinguishability under chosen
plaintext attacks (IND-CPA). The symmetric encryption operation is denoted Enc
and the corresponding decryption operation Dec. By Advind−cpa

(Enc,Dec)(κ) we denote
the maximum advantage over all PPT adversaries (running within security param-
eter κ) in breaking the IND-CPA property of (Enc, Dec) better than by a random
guess;

– An IND-CPA secure asymmetric encryption scheme whose encryption operation is
denoted E and the corresponding decryption operation D. By Advind−cpa

(E,D) (κ) we
denote the maximum advantage over all PPT adversaries (running within security
parameter κ) in breaking the IND-CPA property of (E ,D) better than by a random
guess; Note that the general case of RSA-OAEP encryption which is used in the
TLS key transport mode has been proven in [29] based on the assumptions of the
Random Oracle Model [4] to satisfy indistinguishability under adaptive chosen ci-
phertext attacks (IND-CCA2), which is stronger than IND-CPA. Also [18] provides
such proof which is tailored specifically to the construction used in the TLS proto-
col. Still, we emphasize that for the security of BBMA-SLSO the weaker requirement
of IND-CPA which is implied by IND-CCA2 is fully sufficient.

– A cryptographic collision-resistant hash function Hash : {0, 1}∗ → {0, 1}p4(κ). By
Succcoll

Hash(κ) we denote the maximum success probability over all PPT adversaries
(running within security parameter κ) in finding a collision, i.e., a pair (m, m′) ∈
{0, 1}∗ × {0, 1}∗ s.t. Hash(m) = Hash(m′).

– A digital signature scheme which provides existential unforgeability under chosen
message attacks (EUF-CMA). The signing operation is denoted Sig and the corre-
sponding verification operation V er. By Succeuf−cma

(Sig,V er)(κ) we denote the maximum
success probability over all PPT adversaries (running within security parameter κ)
given access to the signing oracle in finding a forgery;

– The well-known message authentication code function HMAC which is believed
to satisfy weak unforgeability under chosen message attacks (WUF-CMA) [2].
Here we remark that security of HMAC is not relevant for the security analysis of
BBMA-SLSO. A detailed look on the protocol from the formal perspective shows
that using HMAC is redundant since all HMAC values are encrypted prior to the trans-
mission. Nevertheless, we do not omit protocol parts where HMAC is computed from
our description since this is what happens in the today’s execution of TLS.

SLSO Policy in BBMA-SLSO. During the initialization procedure which is assumed to
be trusted server S establishes a security association with the client (U ,B) using the

Enforcing User-Aware Browser-Based Mutual Authentication 15

TLS protocol in key transport with its (certified) public key. For the successful verifi-
cation of the SLSO policy in subsequent connections B stores pkS and the http cookie
provided by S. This cookie contains information which allows S to authenticate U . On
each connection with S, B has to make a decision whether to send cky or not. Follow-
ing the definition of the SLSO policy in [19], B decides by comparing the public key
used by the candidate server during that particular TLS handshake to the stored pkS . If
the keys are equal then cky is transmitted, otherwise not. However, since the browser
is a very general piece of software that must be able to communicate with any http
server on the Internet, we design BBMA-SLSO in such a way that it does not abort the
communication if this verification fails; otherwise this would pose a lot of compatibil-
ity problems and could be seen as an impractical solution. Instead, if the verification
fails, the browser will simply continue with the protocol, by sending the empty cookie
which we consider as some constant publicly known value ζ ∈ {0, 1}p2(κ). In this
way the decision on whether the communication should be continued or not is miti-
gated to S, which will normally abort the communication since otherwise U remains
unauthenticated.

4.2 Protocol Description

In the following we describe the execution of the BBMA-SLSO protocol specified in
Figure 1. Let l1, l2, l3 and l4 denote the publicly known labels specified in TLS for
the instantiation of PRF. (We write in parenthesis the corresponding standard TLS mes-
sages.)

Initiate the Protocol. The user U initiates the protocol by communicating server’s
URL to the own browser B. Upon resolving the corresponding address B chooses his
own nonce rC of length p5(κ) at random and forwards it to S (ClientHello). In
response S chooses own random nonce rS and a TLS session identifier sid of length
p5(κ) and appends it to the own certificate certS (ServerHello). We stress that sid
chosen by S is not the session identifier sidS used in our security model but a value
specified in TLS.

Negotiate Key Material. B chooses a pre-master secret kp of length p3(κ) at random
and sends it to S encrypted with the received public key pkS (ClientKeyExchange)
taken from the servers certificate CertS . The pre-master secret kp is used to derive the
master secret km through a pseudo-random function PRF on input (l1, rC—rS) with kp

as the secret seed. This key derivation is performed based on the standard TLS pseudo-
random function PRF (see [1, Sect. 5]). The master secret is then used as a secret seed
for the instantiation of the pseudo-random function PRF on input (l2, rC—rS) to derive
the session keys k1|k2 used to encrypt and authenticate session messages exchanged be-
tween B and S. TLS specifies the generation of six session keys: A symmetric encryp-
tion key, a MAC key, and an IV for block ciphers only (either for client and server). For
simplicity, we denote k1 as the encryption key and k2 as the authentication key which
are the same for B and S. Here we remark that as shown later in our security analysis
the use of different keys for encryption and authentication in TLS is redundant from the
formal point of view. The reason is that each computed HMAC value is encrypted using

16 S. Gajek, M. Manulis, and J. Schwenk

k1 prior to its transmission over the network. Since the computed value k1|k2 can be
seen as a single output of PRF the security of the applied encryption scheme is already
sufficient to achieve symmetric authentication of the encrypted message.

Session Key Confirmation. B confirms the session key generation, i.e., FC is the first
message that is authenticated via HMAC computed with k2 and encrypted via the sym-
metric encryption scheme computed with k1. FC is computed as output of PRF on input
(l3, h1) with km as the secret seed; whereby h1 denotes the hash value computed over
all messages previously processed by B (ClientFinished). Further, S generates
km and derives the session keys (k1, k2) in a similar way. S uses the own session keys
(k1, k2) to ensure that it communicates with B through the verification of FC . If the
verification fails, S aborts the protocol. Otherwise, it confirms the negotiated session
parameters, using PRF on input (l4, h2) with km as secret seed; whereby h2 denotes the
hash value over the received messages. The output of PRF is first authenticated via HMAC
computed with k2 and then encrypted via the symmetric encryption scheme computed
with k1 (ServerFinished). The client C checks this message analogously.

Mutual Authentication between Browser and Server. The browser B now exploits
the fact that the server S has been authenticated in the previous step by showing that
he knows the private key associated with pkS . This value is used as a key to the cre-
dential store of the browser, and the corresponding cookie cky is retrieved and sent to
the server, encrypted with k1 together with the attached message authentication code
computed using k2.

Human Perceptible Server Authentication. The server selects the HPA w associated
with cky, and sends it (encrypted with k1 together with the attached message authen-
tication code computed using k2) for display to the browser. We call the message in a
high-level description the HumanAuth message. B communicates the decrypted au-
thenticator to U through execution of the render function which takes as input the
authenticator w and state Ψ and outputs the visualization of w named w∗. The ab-
stract human perception function recognize is used to model the ability of U to decide
whether the authenticator w∗ matches the original authenticator w which is shared with
S after the initialization stage.

Before we continue with the security analysis we reemphasize the triangular model
of authentication in BBMA-SLSO. When verifying FS , B knows the identity of S. B re-
solves pkS to look up for the corresponding cookie cky. If no matching triple (S,pkS ,
cky) exists, B sends an empty cookie ζ and continues with the protocol (it is now in
responsibility of the server to abort); otherwise, B continues by sending cky confiden-
tially to S.

However, TLS in server authentication mode does not prevent U from contacting to
a rogue server in order to disclose sensitive information. When verifying w∗ through
the execution of recognize, U is sure to be communicating to S through B, since S
is the only owner of w apart from U . Upon this stage, the protocol ensures that S is
authenticated to U .

Enforcing User-Aware Browser-Based Mutual Authentication 17

Client (U,B)
{LLU := w, LLB := (S, pkS , cky)}

Server S
{LLS := (cky, w, skS , certS)}

get URL of S from U
rC ∈r {0, 1}p5(κ)

A := rC

−
A

−−−−−−−−−−−−−−→
rS , sid ∈r {0, 1}p5(κ)

sidS := rC|rS
B := rS |sid|certS

←−
B

−−−−−−−−−−−−−−
sidC := rC|rS
kp ∈r {0, 1}p3(κ)

km := PRFkp (l1, sidC)

[validate certS]
get pk′

S from certS
C := Epk′

S
(kp)

k1|k2 := PRFkm (l2, sidC)
h1 := Hash(A|B|C)
FC := PRFkm (l3, h1)
D := Enck1 (FC|HMACk2 (FC))

−
C|D

−−−−−−−−−−−−−−→
kp := DskS (C)

km := PRFkp (l1, sidS)

k1|k2 := PRFkm (l2, sidS)
h1 := Hash(A|B|C)
FC|μD := Deck1 (D)
if FC �= PRFkm (l3, h1)
or μD �= HMACk2 (FC)
then ABORT else
h2 := Hash(A|B|C|FC)
FS := PRFkm (l4, h2)
E := Enck1 (FS |HMACk2 (FS))

←−
E

−−−−−−−−−−−−−−
FS |μE := Deck1 (E)
h2 := Hash(A|B|C|FC)
if FS �= PRFkm (l4, h2)
or μE �= HMACk2 (FS)
then ABORT else
[SLSO policy test]
if pk′

S = pkS
then F := Enck1 (cky, HMACk2 (cky))
else F := Enck1 (ζ, HMACk2 (ζ))

− F−−−−−−−−−−−−−−→
cky′|μF := Deck1 (F)

if μF �= HMACk2 (cky′)
or cky′ �= cky
then ABORT else
G := Enck1 (w|HMACk2 (w))
ACCEPT

←− G−−−−−−−−−−−−−−
w|μG := Deck1 (G)
if μG �= HMACk2 (w)
then ABORT else
visualize w∗ := render(w, Ψ) to U

Fig. 1. Sketch of the BBMA-SLSO protocol between (U ,B) and S based on the SLSO policy of B.
Boxed messages denote the standard TLS handshake. U accepts in the protocol execution only if
U .recognize(w∗, w) = 1.

18 S. Gajek, M. Manulis, and J. Schwenk

4.3 Security Analysis

In the following we argue on the security of the proposed BBMA-SLSO protocol. We
recall that the goal of the protocol is to provide mutual authentication between U and S
communicating via B according to Definition 3.

Theorem 1 (BBMA-Security). Let q denote the total number of executed protocol ses-
sions during the interaction with an adversaryA participating in Gamebbma

BBMA-SLSO(A, κ).
If PRF is pseudo-random, Hash is collision-resistant, (Enc, Dec) and (E ,D) are IND-
CPA secure andW∗ is sufficiently small, then BBMA-SLSO provides browser-based mu-
tual authentication in the sense of Definition 3, and

Succbbma
BBMA-SLSO(κ) ≤ q|W∗|

|W| +
3q2

2p5(κ)
+

q2

2p3(κ)
+

q

2p2(κ)
+ qAdvind−cpa

(E,D) (κ) +

4qAdvind−cpa
(Enc,Dec)(κ) + 4qAdvprf

PRF (κ) + 2qSucccoll
Hash(κ).

Proof. For space limitations the proof appears in the full version of this paper. Its main
idea is to simulate the execution of the protocol based on the event InjPK which occurs
if A injects some public key certificate which does not contain the expected public key
pkS . In this case security of BBMA-SLSO relies on the ability of U to distinguish some
HPA w∗ chosen byA. However, if InjPK does not occur then the security of BBMA-SLSO
relies on the execution of the TLS handshake and the browser’s SLSO policy.

Remark 1. Although not stated in Theorem 1 explicitly, the security proof of
BBMA-SLSO based on the current TLS standard is valid in the Random Oracle Model
(ROM) [4]. The reason is that the specification of TLS prescribes the use of the RSA
encryption according to PKCS#1 (a.k.a. RSA-OAEP) which in turn is known to provide
IND-CPA security in ROM (see [29] and [18] for the proof of the general construction
and the TLS-specific construction, respectively). On the other hand, Theorem 1 assumes
(E ,D) to be IND-CPA secure (independent of ROM). Hence, whether BBMA-SLSO is se-
cure under standard assumptions or not heavily relies on the assumptions underlying the
security of (E ,D).

Remark 2. Another look on Theorem 1 reveals that the success probability of the adver-
sary strongly depends on the size ofW∗, i.e., the set of authenticators that are perfectly
human-indistinguishable from the HPA w used in the BBMA-SLSO protocol. In fact the
protocol is secure if the size ofW∗ is sufficiently small such that the factor q|W∗|/|W|
can be seen as negligible. This happens in case that the chosen HPA is good and is
precisely what makes BBMA-SLSO user-aware.

Remark 3. As already mentioned during the description of BBMA-SLSO the HMAC con-
struction used in the standard specification of the TLS protocol, formally, does not play
any role for the security of the protocol. This is not surprisingly since every output
of HMAC is encrypted using session key k1 before being sent over the network. Since
k1|k2 is treated as a single output of PRF the separation into k1 and k2 can be seen as
redundant from the theoretical point of view. Note also that Krawczyk has proved the
MAC-then-encrypt construction as secure in [22]. Though he mentions some problems
in the general construction he shows that they do not apply to TLS.

Enforcing User-Aware Browser-Based Mutual Authentication 19

5 Conclusion

Authenticating the user on the Web is an essential primitive and target to various attacks.
We have introduced and analyzed a cookie-based authentication protocol BBMA-SLSO
that makes very weak assumptions on user’s skills and requires little modifications of
the browser security model to enforce the SLSO policy in order to be provably secure.
The protocol is specifically designed for security-unaware users who wish to identify
Web sites through some easy-to-recognize indicators. The main assumption underlying
the protocol security is that good HPAs w exist for which the size of their perfectly
human-indistinguishable set W∗ remains sufficiently small (for most of the users). It
remains an open question, to find such HPAs. We have conjectured that good HPAs
might be found among images, audio and video sequences. For example, a personal
image taken during own summer vacation and extended with some additional personal
text using graphic editor might be better recognizable than an image without such text.
However, extensive usability experiments in this interesting research direction have still
to be conducted. Nevertheless, the presented protocol is another step towards bridging
the gap between protocols that are provably secure, interfaced to users who are prone
to errors, and implementable within the design constraints of standard browsers.

References

1. Allen, C., Dierks, T.: The TLS Protocol — Version 1.1. Internet proposed standard RFC 4346
(2006)

2. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among Notions and
Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000.
LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

3. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)

4. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. In: ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)

5. Chiasson, S., van Oorschot, P.C., Biddle, R.: Graphical Password Authentication Using Cued
Click Points. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 359–374.
Springer, Heidelberg (2007)

6. Dhamija, R., Tygar, J.D.: The Battle against Phishing: Dynamic Security Skins. In: SOUPS
2005, pp. 77–88. ACM Press, New York (2005)

7. Dhamija, R., Tygar, J.D., Hearst, M.A.: Why Phishing Works? In: CHI 2006, pp. 581–590.
ACM Press, New York (2006)

8. Fouque, P.-A., Pointcheval, D., Zimmer, S.: HMAC is a Randomness Extractor and Applica-
tions to TLS. In: ACM ASIACCS 2008, pp. 21–32. ACM Press, New York (2008)

9. Freier, A.O., Kariton, P., Kocher, P.C.: The SSL Protocol: Version 3.0. Internet draft,
Netscape Communications (1996)

10. Gajek, S., Schwenk, S.: Revising the Mature Browser Security Model. Technical Report,
HGI TR-2008-004 (2008)

11. Gajek, S., Manulis, M., Sadeghi, A.-R., Schwenk, J.: Provably Secure Browser-Based User-
Aware Mutual Authentication over TLS. In: ACM ASIACCS 2008, pp. 300–311. ACM
Press, New York (2008)

12. Groß, T.: Security Analysis of the SAML Single Sign-on Browser/Artifact Profile. In: AC-
SAC 2003, pp. 298–307. IEEE CS, Los Alamitos (2003)

20 S. Gajek, M. Manulis, and J. Schwenk

13. Groß, T., Pfitzmann, B., Sadeghi, A.-R.: Browser Model for Security Analysis of Browser-
Based Protocols. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS
2005. LNCS, vol. 3679, pp. 489–508. Springer, Heidelberg (2005)

14. Groß, T., Pfitzmann, B., Sadeghi, A.-R.: Proving a WS-Federation Passive Requestor Profile
with a Browser Model. In: SWS 2005, pp. 54–64. ACM Press, New York (2005)

15. Jackson, C., Barth, A., Bortz, A., Shao, W., Boneh, D.: Protecting Browsers from DNS Re-
binding Attacks. In: CCS 2007, pp. 421–431. ACM Press, New York (2007)

16. Jackson, C., Simon, D.R., Tan, D.S., Barth, A.: An Evaluation of Extended Validation and
Picture-in-Picture Phishing Attacks. In: FC 2007/USEC 2007. LNCS, vol. 4886, pp. 281–
293. Springer, Heidelberg (2008)

17. Jakobsson, M., Myers, S.: Delayed Password Disclosure. IJACT 1(1), 47–59 (2008)
18. Jonsson, J., Kaliski, B.S.: On the Security of RSA Encryption in TLS. In: Yung, M. (ed.)

CRYPTO 2002. LNCS, vol. 2442, pp. 127–142. Springer, Heidelberg (2002)
19. Karlof, C., Shankar, U., Tygar, J.D., Wagner, D.: Dynamic Pharming Attacks and Locked

Same-Origin Policies for Web Browsers. In: ACM CCS 2007, pp. 58–71. ACM Press, New
York (2007)

20. Kormann, D., Rubin, A.: Risks of the Passport Single SignOn Protocol. Computer Net-
works 33(1–6), 51–58 (2000)

21. Microsoft Corporation. Mitigating Cross-Site Scripting with HTTP-only Cookies (2008),
http://msdn2.microsoft.com/en-us/library/ms533046.aspx

22. Krawczyk, H.: The Order of Encryption and Authentication for Protecting Communications
(or: How Secure Is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 310–331.
Springer, Heidelberg (2001)

23. Mason, C., Baek, K.-H., Smith, S.: WSKE: Web Server Key Enabled Cookies. In: FC
2007/USEC 2007, pp. 294–306. Springer, Heidelberg (2008)

24. Mitchell, J.C., Shmatikov, V., Stern, U.: Finite-State Analysis of SSL 3.0. In: USENIX Se-
curity Symp., pp. 201–216 (1998)

25. Paulson, L.C.: Inductive Analysis of the Internet protocol TLS. ACM Trans. on Comp. and
Syst. Sec. (3), 332–351 (1999)

26. Pfitzmann, B., Waidner, M.: A Model for Asynchronous Reactive Systems and its Applica-
tion to Secure Message Transmission. In: IEEE S&P 2001, pp. 184–200. IEEE Computer
Society Press, Los Alamitos (2001)

27. Schechter, S.E., Dhamija, R., Ozment, A., Fischer, I.: The Emperor’s New Security Indica-
tors. In: IEEE S&P 2007, pp. 51–65. IEEE Computer Society Press, Los Alamitos (2007)

28. Schneier, B., Wagner, D.: Analysis of the SSL 3.0 protocol. In: USENIX Workshop on Elec-
tronic Commerce (1996)

29. Shoup, V.: OAEP Reconsidered. Journal of Cryptology 15(4), 223–249 (2002)
30. Soghoian, C., Jakobsson, M.: A Deceit-Augmented Ma. In: The Middle Attack Against Bank

of America’s SiteKey Service (2007), http://paranoia.dubfire.net/
2007/04/deceit-augmented-man-in-middle-attack.html

31. Suo, X., Zhu, Y., Owen, G.S.: Graphical Passwords: A Survey. In: Ann. Comp. Sec. Applic.
Conf. IEEE Computer Society Press, Los Alamitos (2005)

32. W3C. Document Object Model (DOM) (2005), http://www.w3.org/DOM

http://msdn2.microsoft.com/en-us/library/ms533046.aspx
http://paranoia.dubfire.net/2007/04/deceit-augmented-man-in-middle-attack.html
http://paranoia.dubfire.net/2007/04/deceit-augmented-man-in-middle-attack.html
http://www.w3.org/DOM

Secure Biometric Authentication

with Improved Accuracy

Manuel Barbosa2, Thierry Brouard1,
Stéphane Cauchie1,3, and Simão Melo de Sousa3

1 Laboratoire Informatique de l’Université François Rabelais de Tours
stephane.cauchie@univ-tours.fr

2 Departamento de Informática, Universidade do Minho
mbb@di.uminho.pt

3 Departamento de Informática, Universidade da Beira Interior
desousa@ubi.pt

Abstract. We propose a new hybrid protocol for cryptographically
secure biometric authentication. The main advantages of the proposed
protocol over previous solutions can be summarised as follows: (1) poten-
tial for much better accuracy using different types of biometric signals,
including behavioural ones; and (2) improved user privacy, since user
identities are not transmitted at any point in the protocol execution.
The new protocol takes advantage of state-of-the-art identification clas-
sifiers, which provide not only better accuracy, but also the possibility
to perform authentication without knowing who the user claims to be.
Cryptographic security is based on the Paillier public key encryption
scheme.

Keywords: Secure Biometric Authentication, Cryptography, Classifier.

1 Introduction

Biometric techniques endow a very appealing property to authentication mech-
anisms : the user is the key, meaning there is no need to securely store secret
identification data. Presently, most applications of biometric authentication con-
sist of closed self-contained systems, where all the stages in the authentication
process and usually all static biometric profile information underlying it, are
executed and stored in a controlled and trusted environment. This paper ad-
dresses the problem of implementing distributed biometric authentication sys-
tems, where data acquisition and feature recognition are performed by separate
sub-systems, which communicate over an insecure channel. This type of sce-
nario may occur, for instance, if one intends to use biometric authentication to
access privileged resources over the Internet. Distributed biometric authentica-
tion requires hybrid protocols integrating cryptographic techniques and pattern
recognition tools. Related work in this area has produced valid solutions from
a cryptographic security point of view. However, these protocols can be seen
as rudimentary from a pattern-recognition point of view. In fact, regardless of

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 21–36, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

22 M. Barbosa et al.

the security guarantees that so-called fuzzy cryptosystems provide, they present
great limitations on the accuracy that can be achieved, when compared to purely
biometric solutions resorting to more powerful pattern recognition techniques.

In this paper, we propose a solution which overcomes this accuracy limitation.
Our contribution is a protocol offering the accuracy of state-of-the-art pattern
recognition classifiers and strong cryptographic security. To achieve our goals
we follow an approach to hybrid authentication protocols proposed by Bringer
et al. [1]. In our solution we adapt and extend this approach to use a more
accurate and stable set of models, or classifiers, which are widely used in the
pattern recognition community in settings where cryptographic security aspects
are not considered. Interestingly, the characteristics of these classifiers allow us,
not only to achieve better accuracy, but also to improve the degree of privacy
provided by the authentication system. This is possible because we move away
from authentication classifiers and take advantage of an identification classifier.
An identification classifier does not need to know who the user claims to be,
in order to determine if she belongs to the set of valid users in the system
and determine her user identifier. An additional contribution of this paper is
to formalise the security models for the type of protocol introduced by Bringer
et al. [1]. We show that the original protocol is actually insecure and under
the original security model, although it can be easily fixed. We also extend the
security model to account for eavesdroppers external to the system, and provide
a security argument that our solution is secure in this extended security model.

The remaining of the paper is organized as follows. We first summarise related
work in Section 2 and we introduce our notational framework for distributed
biometric authentication systems in Section 3. We propose our secure biometric
authentication protocol and security models in Section 4. In Section 5 we present
a concrete implementation based on the Support Vector Machine classifier and
the Paillier public key encryption scheme, including the corresponding security
analysis. Finally, we discuss our contributions in Section 6.

2 Related Work

Fuzzy extractors are a solution to secure biometric authentication put forward
by the cryptographic community [2]. Here, the pattern recognition component
is based on error correction. A fuzzy extractor is defined by two algorithms. The
generation algorithm takes a user’s biometric data w and derives secret random-
ness r. To allow for robustness in reconstructing r, the generation algorithm
also produces public data pub. On its own, pub reveals no useful information
about the biometric data or the secret randomness. The reconstruction algo-
rithm permits recovering r given a sufficiently close measurement w′ and pub.
To use a fuzzy extractor for secure remote authentication, the server would store
(pub, r) during the enrolment stage. When the user wants to authenticate, the
server provides the corresponding public information pub, so that it is possible
reconstruct r from a fresh reading w′. The user is authenticated once the server
confirms that r has been correctly reconstructed; for example, r can be used to
derive a secret key.

Secure Biometric Authentication with Improved Accuracy 23

A problem with this solution is that security is only guaranteed against eaves-
droppers: the server must be authenticated and the public information transmit-
ted reliably. Additionally, Boyen [3] later showed that, even in this scenario, it
is not possible to guarantee that security is preserved if the same fuzzy extrac-
tor is used to authenticate a user with multiple servers. An adversary might
put together public information and secrets leaked from some of the servers to
impersonate the user in another server. The same author proposed improved
security models and constructions to solve this problem. Boyen et al. [4] later
addressed a different problem which arises when the channel to the server is not
authenticated and an active adversary can change the value of pub. The original
fuzzy extractor definition and security model does not ensure that such an adver-
sary is unable to persuade the user that it is the legitimate server. The authors
propose a robust fuzzy extractor that permits achieving mutual authentication
over an insecure channel.

The protocol proposed by Bringer et al. [1] uses the Goldwasser-Micali encryp-
tion scheme, taking advantage of its homomorphic properties. The protocol
performs biometric classification using the Hamming distance between fresh bio-
metric readings and stored biometric profiles. User privacy protection is ensured
by hiding the association between biometric data and user identities. For this to
be possible one must distribute the server-side functionality: an authentication
service knows the user’s claimed identity and wants to verify it, a database service
stores user biometric data in such a way that it cannot possibly determine to whom
it belongs, and a matching service ensures that it is possible to authenticate users
without making an association between their identity and their biometric profile.
These servers are assumed to be honest-but-curious and, in particular, they are
assumed to follow the protocol and not to collude to break its security.

Authentication Accuracy. In this paper we propose a protocol which im-
proves authentication accuracy while ensuring strong cryptographic security. It
is important to support our claims from a pattern recognition accuracy perspec-
tive. In the following table we present experimental results found in literature,
to compare the accuracy (Equal Error Rate1) of advanced pattern recognition
classifiers (Classifier Error) with that of those adopted in existing hybrid au-
thentication protocols, or so called fuzzy cryptosystems (Fuzzy Error).

Biometric Data References Bit Length Fuzzy Error Classifier Error

Key stroke [5]/[6] 12 48% 1.8%

Voice [7]/[8] 46 20% 5%

Tactim [9] 16 15% 1%

Signature [10]/[11] 40 28% 5%

Face [12]/[13] 120 5% 0.6%

Fingerprint [14]/[15] 128 17% 8%

Iris [16] 140 5% 5%

1 Percentage of recognition errors when the biometric system is adjusted in order to
obtain the same false positive and false negative rates.

24 M. Barbosa et al.

Results are presented for both physiological (iris, face and fingerprint) and be-
havioural (key stroke, voice, tactim, signature) biometric data. From the results
in the table, one can conclude that advanced classifiers consistently outperform
simple distance-based (fuzzy) classification techniques. However, this is most im-
portant for behavioural biometry, where fuzzy techniques present significantly
worse accuracy rates. An empirical explanation for this shortcoming is that fuzzy
pattern recognition components can deal with acquisition variability but not with
the user variability, which plays a major role in behavioral biometry. From a pat-
tern recognition point of view, advanced classifiers are built on the assumption
that two users may produce close measurements. Classification focuses on the
boundaries between users, and some of them like the Support Vector Machine
(SVM) classifier [17], can optimally minimize the error risk.

3 Biometric Systems

In this section we present a precise definition of a pattern recognition system for
biometric authentication and identification, which we will later use in the defini-
tion of our hybrid authentication protocol. We take a particular type of biomet-
ric parameter b ∈ B, where B denotes the complete set of biometric parameters.
The basic tool associated with b is an adequate sensor, denoted by the application
ρb : U → V where U is a set representing the universe of possible users and V

represents a sensor-dependent space of biometric features (usually an n-tuple of
real numbers). We will refer to the output of the sensor as a feature. 2

Consider a set of users U ⊂ U. The goal is to recover the pre-image of a
feature ρb(u), for u ∈ U , using prior knowledge of a users profile w∗

U ∈ W,
where W is a sensor-dependent set of possible users profiles, and an inversion
function called a classifier. Usually a classifier is a two-stage procedure: (1) there
is a pre-decision processing stage cl, which takes a feature and pre-established
profile information and returns classification data such as confidence intervals,
distances, etc.; and (2) a decision stage D which makes the final decision using
an appropriate criterion, for example a pre-defined threshold, majority rules, etc.
Ideally, one expects that classification satisfies

∀u ∈ U,D(cl(ρb(u), w∗
U)) = u

∀u ∈ U/U,D(cl(ρb(u), w∗
U)) = ⊥

At this stage a distinction must be made between biometric authentication and
biometric identification systems. A system satisfying the previous predicate (or
a close enough relaxation that is good enough for practical applications) for a
set of users U such that |U | > 1 is called a biometric identification system.
Systems satisfying these conditions for only a single user are called biometric
2 In practice raw sensor outputs must be pre-processed using feature extraction before

classification can be performed. To be precise, we could denote the acquisition of the
raw signal by a non deterministic application ab, and feature extraction by a deter-
ministic application f . We would then have ρb = ab ◦ f .

Secure Biometric Authentication with Improved Accuracy 25

authentication systems. Note that it is possible to use a biometric authentication
system for identification, e.g. by trying all possible users in a database. However,
depending on the biometric parameter and sensor technology, the accuracy of
such a system may suffer from overlaps in user profiles. From the point of view of
cryptographic protocols, this distinction is also important. In fact, all solutions
we have encountered in literature assume that we are dealing with a biometric
authentication system, which means that the user’s claimed identity must be
transmitted over the network. If we move to a biometric identification system,
the authentication protocol can be implemented by transmitting only the user’s
biometric data. We will return to this issue in the next section.

Setting-up and operating a biometric authentication system involves two sep-
arate procedures: a set-up stage called Enrolment, and the actual operation stage
called Generalisation. We now describe these in more detail.

Enrolment. This is usually split into two steps: (1) the acquisition and feature
extraction step, and (2) the learning step. The first step constructs a reference
set of feature values ρb(u) (∀u ∈ U), called a training set. The learning step
uses the training set to construct the users’ profile w∗

U .
Generalisation. This is also split in two steps: (1) the acquisition and feature

extraction step, and (2) the decision step. The former consists of collecting
a feature v = ρb(unknown) for an unknown user. The decision step uses the
classifier cl and profile data w∗ to determine which user is unknown. More
precisely the decision check is {u ∈ U,⊥} ← D(cl(v, w∗

U)).

In this context, we define a pattern recognition system for biometric identifica-
tion Γ as follows.

Definition 1. A pattern recognition system for biometric identification Γ is a
5-tuple < b, U, ρb,D ◦ cl, w∗

U >, where the tuple elements are as described above.

Remark. We stress that the concept of profile w∗
U usually adopted within the

pattern recognition community constitutes, in the context of our work, a security-
critical parameter. This is because it usually reveals private user information such
as a user-specific region in a sensor-dependent parameter space W. In particular,
if this information is leaked, anyone can determine whether a feature belongs to a
particular user. The vulnerability detected in the protocol proposed by Bringer et
al. is based on the fact that an attacker may recover a user profile from a protocol
trace. This means that it can perform classification itself, even thought it would
never be able to break the encryption scheme protecting the user features used
in an authentication run.

4 Proposed Authentication Protocol

In this section we propose a new authentication protocol based on the approach
in [1]. We take advantage of a biometric identification scheme implemented us-
ing a more powerful pattern recognition technique in the form of a multi-class
classifier to achieve improved accuracy and security properties.

26 M. Barbosa et al.

4.1 Participants and Their Roles

The following diagram depicts the data flow between the different participants
in our protocol.

S A S

D B

V S

1 : a u t h

2 : a u t h

3 : c l a s s

4 : s c l a s s
5 : d

S e r v e r - s i d e

C l i e n t - s i d e

The server-side functionality is partitioned in three components to ensure that
no single entity can associate a user’s identity with the biometric data being
collected during authentication. The participants in the authentication protocol
are the following:

1. The Sensor (S) is the only client-side component. Following the approach in
[1], we assume that the sensor is capable of capturing the user’s biometric
data, extracting it into a binary string, and performing cryptographic oper-
ations such as public key encryption. We also assume a liveness link between
the sensor and the server-side components, to provide confidence that the
biometric data received on the server-side is from a present living person.

2. The Authentication Service (AS) is responsible for communicating with the
user who wants to authenticate and organizing the entire server-side proce-
dure. In a successful authentication the AS will obviously learn the user’s
identity, which means that it should learn nothing about the biometric data
being submitted.

3. The Database Server (DB) securely stores the users’ profile (w∗
U) and its

job is to execute the pre-decision part of classification (cl). Since the DB is
aware of privileged biometric data, it should learn nothing about the user’s
identity, or even be able to correlate or trace authentication runs from a
given (unknown) user.

4. The Verification Server (V S) completes the authentication process by taking
the output produced by the DB server and computing the final decision (D)
step. This implies that the V S possesses privileged information that allows
it to make a final decision, and again that it should not be able to learn
anything about the user’s real identity, or even be able to correlate or trace
authentication runs from a given (unknown) user.

4.2 Enrolment and System Set-Up

In this section we describe the procedures that must be carried out to prepare a
system using the proposed authentication protocol for normal operation. These
include the data collection procedures associated with enrolment, the construc-
tion of the static data sets assigned to each actor in the protocol, and the security
assumptions/requirements we impose on these elements.

Secure Biometric Authentication with Improved Accuracy 27

The output of the initialisation procedure are three sets of static data (ASdata,
DBdata and V Sdata) which allow the different servers to carry out their roles:

– ASdata consists of a list U = {ID1, . . . , ID|U|} of user identities IDi ∈ {0, 1}∗.
The index of the user in this list will be used as the application-specific user
identifier uid ∈ {1 . . . |U |}.

– DBdata consists of biometric classification data (w∗
U) for the set of valid users.

This should permit computing pre-decision classification information (cl)
over authentication requests, but should be totally anonymous for the DB.
In particular, we require that the DB obtains information which permits
performing pre-classification for the |U | system users consistently with the
application-specific user identifiers assigned by the AS. However, it should
not receive any information about the user identities themselves.

– V Sdata consists of information which will allow the V S to obtain a verdict
from obfuscated pre-decision classification information. The need for obfus-
cation is justified by the apparently contradictory requirement that only the
V S is capable of producing a decision verdict, but still should be unable to
learn the user’s real identity, or even trace requests by the same user.

We assume that some trusted authority is available to control the enrolment
procedure, and ensure that the static data is assigned to the servers in a secure
way: no server obtains any information concerning another server’s static data,
and no information is leaked to eavesdroppers external to the system.

4.3 Authentication Protocol Definition

The proposed authentication protocol is a five-tuple of probabilistic polynomial
time algorithms that the different participants will execute. Each server-side
participant stores corresponding static information ASdata, DSdata and V Sdata.
The algorithms are:

Participant Algorithm

V S (params, kd) ← Gen(1κ)
S auth ← S(vID, params)

DB class ← Classify(params, auth, DBdata)
AS (sclass, π) ← Shuffle(params, class, ASdata)
V S d ← Decide(sclass, params, kd, V Sdata)
AS ID/⊥ ← Identify(d, π,ASdata)

1. The key generation algorithm Gen is executed by the V S, which stores the
secret key kd securely, and publishes a set of public parameters params.

2. On each authentication run, the sensor encrypts fresh biometric data vID
from a user with identity ID using algorithm S and the public parameters,
and produces the authentication request auth.

3. The AS receives the authentication request and passes it on to the DB
for pre-decision classification. This operation is represented by algorithm
Classify which takes also public parameters and profile information DBdata

and returns encrypted classification information class.

28 M. Barbosa et al.

4. The AS takes class and scrambles it in order to disassociate the decision
result from previous authentication runs. This operation is represented by al-
gorithm Shuffle which outputs scrambled data sclass and a de-scrambling
key π which the AS keeps to itself.

5. The V S uses the secret key kd and sclass to perform the final decision
step and produces a verdict d. This operation is represented by algorithm
Decide.

6. Finally, the AS can recover the user’s real identity, or a failure symbol, from
the verdict d and the de-scrambling key π using algorithm Identify.

The soundness condition for our protocol is that the server-side system as
a whole, and the AS in particular, produces a correct decision on the user’s
authenticity, i.e. recognises whether a new feature belongs to a valid user, and
determines the correct identity. Formally, for soundness we require that the fol-
lowing probability yields a value sufficiently close to one for practical use as an
authentication protocol, for valid static data ASdata, DBdata and V Sdata result-
ing from a successful enrolment procedure, and for all fresh features vID:

Pr

⎡

⎢
⎢
⎢
⎢
⎣

(params, kd) ← Gen(1κ)
auth ← S(vID, params)

Identify(d, π, ASdata) = r class ← Classify(params, auth, DBdata)
(sclass, π) ← Shuffle(params, class, ASdata)
d ← Decide(sclass, params, kd, V Sdata)

⎤

⎥
⎥
⎥
⎥
⎦

.

where r = ID when ID is in the valid set of users, and r = ⊥ otherwise.

4.4 Security Model

Intuitively, the security requirements we want to impose are the following:

– Privacy. None of the services (and no passive attacker observing commu-
nications) gets enough information to reconstruct an identity/feature pair.
More precisely, none of the services can distinguish whether a particular
measurement belongs to a particular person.

– Untraceability. Except for the authentication service, none of the other
services (and no passive attacker observing communications) gets enough
information to recognize a previously authenticated user. More precisely,
the database service and the matching service cannot distinguish whether
two authentication requests belong to the same person.

We assume that the servers are honest-but-curious, namely that they do not
collude and follow the protocol rules, but may try to use the information they
obtain to subvert the previous requirements. Formally, this translates into two
security models.

Privacy: Feature Indistinguishability. The three server-side components, as
well as any eavesdropper which is able to observe the message exchanges corre-
sponding to a protocol execution, must be unable to distinguish between which

Secure Biometric Authentication with Improved Accuracy 29

of two features belongs to a particular system user. We call this requirement
feature indistinguishability (fIND). We define it using the following experiment,
which takes as input a parameter adv ∈ {AS, DB, V S, Eve}, and fresh readings
v0, from valid user ID ∈ U , and v1 from any user.

ExpfINDβ (adv, v0, v1)
(params, kd)← Gen(1κ)
auth ← S(v0, params)
class ← Classify(params, auth, DBdata)
(sclass, π) ← Shuffle(params, class, ASdata)
d ← Decide(sclass, kd, SVdata)
r ← Identify(d, π, ASdata)
Return (vβ , viewadv)

viewAS := (auth, class, sclass, π, d, r, ASdata, params)
viewDB := (auth, class, DBdata, params)
viewV S := (sclass, d, V Sdata, kd, params)
viewEve := (auth, class, sclass, d, params)

We require that, for all ID ∈ U and all adv ∈ {AS, DB, V S, Eve}, the following
distributions be computationally indistinguishable (≡):

{(ID, ExpfINDβ=1(adv, v0, v1))} ≡ {(ID, ExpfINDβ=0(adv, v0, v1))}
We define advantage AdvfIND(adv) as (the absolute value of) the deviation from
1/2 in the probability that the adversary guesses β.

Untraceability – User Indistinguishability. The back-end server-side com-
ponents, DB and V S, as well as any eavesdropper which is able to observe
the message exchanges corresponding to a protocol execution, must be un-
able to distinguish if two independent authentication runs correspond to the
same system user. We call this requirement user indistinguishability (uIND).
We define it using the following experiment, which takes as input a parameter
adv ∈ {DB, V S, Eve}, and two fresh readings v0 and v1 corresponding to valid
users uid and uid′ respectively.

ExpuINDβ (adv, v0, v1)
(params, kd)← Gen(1κ)
auth ← S(vβ , params)
class ← Classify(params, auth, DBdata)
(sclass, π) ← Shuffle(params, class, ASdata)
d ← Decide(sclass, kd, SVdata)
r ← Identify(d, π, ASdata)
Return viewadv

where the different views are defined as above.

30 M. Barbosa et al.

We require that, for all valid users with user identifiers uid and uid′, and all
adv ∈ {DB, V S, Eve}, the following distributions be computationally indistin-
guishable (≡):

{(uid, uid′, ExpuINDβ=1(adv, v0, v1))} ≡ {(uid, uid′, ExpuINDβ=0(adv, v0, v1))}
Again, we define advantage AdvuIND(adv) as (the absolute value of) the deviation
from 1/2 in the probability that the adversary guesses β.

5 A Concrete Implementation

5.1 The SVM Classifier

We consider a |U |-class identification classifier called the Support Vector Machine
(SVM) [17] and provide a short description of its operation. The basic SVM is
a mono class authentication classifier3. Extension to U classes follows the one-
against-all strategy: for each user u ∈ U , a mono classifier is trained using the
remaining users (U/u) as the rejected class. For each user, the learning stage of
the SVM determines both an outer and an inner hyperplane in a k-dimensional
features space. Said hyperplanes are expressed as a linear combination of S
known samples (so called support vectors SVi,j ∈ VSVM, i = 1...S, j = 1...|U |)
weighted with αi,j ∈ N coefficients. Formally, we have

VSVM = N
k and WSVM = (N× V)S×|U|

During authentication, the SVM classifier evaluates the distance of the fresh
feature v to these hyperplanes using a scalar product. To account for the fact that
the user profile regions may not be linearly separable, the SVM may compute
the scalar product in a higher dimension space. For this, the SVM classifier uses
a kernel function K to project the data into the higher dimension space and
compute the scalar product in this space in a single step. The advantage is that
the computational cost is reduced when compared to a basic projection followed
by the scalar product. The classifier function is therefore

clSVM : VSVM ×WSVM → N
|U|

clSVM(v, w∗
|U|) := (cl(1)SVM(v, w∗

|U|), . . . , cl
(|U|)
SVM (v, w∗

|U|))

where w∗
|U| contains (αi,j , SVi,j)] for 1 ≤ i ≤ S and 1 ≤ j ≤ |U | and

cl
(j)
SVM(v, w∗

|U|) :=
S∑

i=1

αi,j K(v, SVi,j).

In this paper, and to simplify the presentation, we will use the particular case
where K(a, b) refers to the scalar product between a and b in the initial space:
K(a, b) =

∑k
l=1 albl.

3 A classifier used in an authentication context “Am I who I claimed to be ?”.

Secure Biometric Authentication with Improved Accuracy 31

The decision is calculated by finding the index of the maximum positive scalar
contained in the vector clSVM(v, w∗). If no positive scalar exists, then the reject
symbol is returned (⊥):

DSVM(clSVM(v, w∗)) :=

⎧

⎪⎪⎨

⎪⎪⎩

d← argmax|U|
j=1(cl(j)SVM(v, w∗))

If cl
(d)
SVM(v, w∗) > 0

Then return d
Else return ⊥

5.2 Algorithm Implementations

We refer the reader to Appendix A for a description of the Paillier cryptosystem.
The concrete implementations we propose for the algorithms composing our
authentication protocol are the following:

– Gen(1κ) → (params, kd). The generation primitive simply uses the key
generation algorithm for the Paillier cryptosystem to obtain (ke, kd), sets
params← ke and returns (params, kd).

– S(v)→ auth. This algorithm takes as input a fresh feature for an unknown
user. Recall that the feature space for the SVM is VSVM = N

k, but we can
look at the feature as v := (v1, . . . , vk) ∈ Z

k
n. Encryption is carried out one

component at a time and the algorithm returns:

auth← (EPaillier(v1, ke), . . . , EPaillier(vk, ke))

– Classify(auth, DBdata, params) → class. This algorithm uses the homo-
morphic properties of the Paillier encryption scheme to compute pre-decision
SVM classification values without ever decrypting the features in auth. More
precisely, the algorithm takes the profile data w∗

|U| in DBdata and calculates
for 1 ≤ j ≤ |U |

cj =
S∏

i=1

∗
K(auth, SVi,j)αi,j = EPaillier(

S∑

i=1

αi,j K(v, SVi,j), params)

where, using [·]l to denote the lth component in a tuple, K∗ is defined by

∗
K(auth, SVi,j) :=

k∏

l=1

[authj][SVi,j]l
l

To prevent the AS from performing an exhaustive search of the profile space,
the DB also re-randomizes the encryptions by calculating:

classj = (cjr
n
j) mod n2

The algorithm returns class = (class1, . . . , class|U|).

32 M. Barbosa et al.

– Shuffle(class) → (sclass, π). This algorithm generates a fresh permuta-
tion π : {1, . . . , |U |} → {1, . . . , |U |}, re-randomizes all the ciphertext compo-
nents in class and returns the permutated re-randomized vector as sclass.
More precisely, we have sclass = (sclass1, . . . , sclass|U|) where

sclassj = (classπ(j)r
n
j) mod n2

– Decide(sclass, kd, V Sdata) → d. This algorithm decrypts the components
in sclass and performs classification as described for the SVM classifier.
The result d is the index in the input vector corresponding to the largest
positive scaler, or ⊥ if no positive scalar exists.

– Identify(d, π, ASdata) → ID. For authentication runs where d �= ⊥, this
algorithm simply finds uid such that

uid = π−1(d)

and returns the associated identity ID. Otherwise it returns ⊥.

5.3 Security Analysis

In the full version of the paper [18] we prove two theorems, which capture the
security properties of the proposed protocol.

Theorem 1. The proposed protocol ensures feature privacy. More precisely, any
PPT adversary has negligible advantage in distinguishing the distributions asso-
ciated with ExpfIND.

Theorem 2. The proposed protocol ensures user untraceability. More precisely,
any PPT adversary has negligible advantage in distinguishing the distributions
associated with ExpuIND.

Remark: On the (in)security of the Bringer et al. protocol The fIND model we
propose is a more formal version of Security Requirement 2 proposed by Bringer
et al. [1] for their authentication protocol. The security argument presented for
this protocol describes a reduction to the semantic security of the Goldwasser-
Micali cryptosystem. However, the argument fails to cover a simple attack by the
AS. The attack is possible because the interaction between the AS server and
the DB server does not include a re-randomization of the resulting ciphertexts.
This means that it may be possible for the AS to recover the user profile data
that the DB server has used in the calculations. After recovering a biometric
profile, the AS server is able to determine on its own which features belong to
a user, without even executing the protocol. More precisely, and referring to
the notation in [1], the AS calculates (E(t1, pk), . . . , E(tN , pk)), where N is the
number of users, tj = 0 for all indexes except j = i for which tj = 1, and i is the
index of the user to be authenticated. The DB server receives these ciphertexts

Secure Biometric Authentication with Improved Accuracy 33

and calculates E(bi,k, pk) =
∏N

j=1 E(tj , pk)bj,k mod n, for 1 ≤ k ≤ M , where
(bi,1, . . . , bi,M) is the biometric profile corresponding to user i. On receiving
E(bi,k, pk), the AS can try to work out whether bi,k is 1 or 0. To do this, it tries
to calculate E(bi,k, pk)/

∏

j∈J E(tj , pk) mod n, for all subsets J ⊂ {1 . . .N} \ i,
where E(tj , pk) are exactly the same as those passed originally to the DB. If
in these calculations the AS obtains 1, then it knows bi,k = 0; if it obtains
E(ti, pk), then it knows bi,k = 1. The feasibility of this attack depends on the
number of users N : in fact its complexity is exponential in N , which means it
may be infeasible for a very large N . However, a simple patch to the protocol,
preventing the attack altogether even for small N , is to ensure that the DB server
re-randomises ciphertexts after applying the homomorphic transformations. We
emphasise that the security reduction presented in this paper for the proposed
protocol explicitly precludes this type of attack.

6 Discussion and Conclusion

We have presented a hybrid protocol for secure biometric authentication which
permits adopting state-of-the art pattern recognition classifiers to improve over
the authentication accuracy of existing solutions. Our protocol follows the ap-
proach of Bringer et al. [1], adopting the point of view that biometric information
may be stored in public servers, as long as it is guaranteed that it remains anony-
mous if security is breached. To allow for the use of more powerful classification
techniques, namely the SVM classifier, we use the Pailler public key encryption
scheme, taking advantage of its homomorphic properties.

The main advantages of the proposed protocol over previous solutions can be
summarised as follows:

– Potential for much better accuracy using different types of biometric signals,
including behavioural ones.

– Improved user privacy, since user identities are not transmitted at any point
in the protocol execution. This is possible because the classifiers we adopt
are identification classifiers which do not need to know who the user claims
to be in order to perform authentication and recover the user identity.

Security of the proposed protocol has been formalised in two security mod-
els: feature indistinguishability and user indistinguishability. These are extended
versions of the models proposed in [1], where we also account for eavesdroppers
external to the system. We provide a reduction relating the security of our au-
thentication protocol with the security of the Paillier encryption scheme. We
also describe a simple attack against the Bringer et al. protocol, and show how
it can be easily repaired.

Acknowledgements. The authors would like to thank Michel Abdalla for read-
ing and commenting on an earlier version of this paper.

34 M. Barbosa et al.

References

1. Bringer, J., Chabanne, H., Izabachène, M., Pointcheval, D., Tang, Q., Zimmer, S.:
An application of the goldwasser-micali cryptosystem to biometric authentication.
In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp.
96–106. Springer, Heidelberg (2007)

2. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to gener-
ate strong keys from biometrics and other noisy data. Cryptology ePrint Archive,
Report 2003/235 (2003), http://eprint.iacr.org/

3. Boyen, X.: Reusable cryptographic fuzzy extractors. In: CCS 2004: Proceedings of
the 11th ACM conference on Computer and communications security, pp. 82–91.
ACM, New York (2004)

4. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authenti-
cation using biometric data. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005),
http://www.cs.stanford.edu/∼xb/eurocrypt05b/

5. Monrose, F., Reiter, M.K., Wetzel, S.: Password hardening based on keystroke
dynamics. In: CCS 1999: Proceedings of the 6th ACM conference on Computer
and communications security, pp. 73–82. ACM, New York (1999)

6. Hocquet, S., Ramel, J.Y., Cardot, H.: Fusion of methods for keystroke dynamic
authentication. Automatic Identification Advanced Technologies, 2005. In: Fourth
IEEE Workshop, October 17–18, 2005, pp. 224–229 (2005)

7. Monrose, F., Reiter, M., Li, Q., Wetzel, S.: Cryptographic key generation from
voice. In: Proceedings of IEEE Symposium on Security and Privacy, S&P 2001,
pp. 202–213 (2001)

8. Yegnanarayana, B., Prasanna, S., Zachariah, J., Gupta, C.: Combining evidence
from source, suprasegmental and spectral features for a fixed-text speaker verifi-
cation system. IEEE Transactions on Speech and Audio Processing 13, 575–582
(2005)

9. Cauchie, S., Brouard, T., Cardot, H.: From features extraction to strong security in
mobile environment: A new hybrid system. In: Meersman, R., Tari, Z., Herrero, P.
(eds.) OTM 2006 Workshops. LNCS, vol. 4277, pp. 489–498. Springer, Heidelberg
(2006)

10. Feng, H., Choong, W.C.: Private key generation from on-line handwritten signa-
tures. Inf. Manag. Comput. Security 10(4), 159–164 (2002)

11. Fuentes, M., Garcia-Salicetti, S., Dorizzi, B.: On-line signature verification: Fusion
of a hidden markov model and a neural network via a support vector machine.
iwfhr 00, 253 (2002)

12. Goh, A., Ling, D.N.C.: Computation of cryptographic keys from face biometrics.
In: Lioy, A., Mazzocchi, D. (eds.) CMS 2003. LNCS, vol. 2828, pp. 1–13. Springer,
Heidelberg (2003)

13. Yan, T.T.H.: Object recognition using fractal neighbor distance: eventual conver-
gence and recognition rates. In: Proceedings of 15th International Conference on
Pattern Recognition, vol. 2, pp. 781–784 (2000)

14. Uludag, U.A.J.: Securing fingerprint template: Fuzzy vault with helper data. In:
Conference on Computer Vision and Pattern Recognition Workshop, June 17-22,
2006, pp. 163–163 (2006)

15. Guo, H.: A hidden markov model fingerprint matching approach. In: Proceedings
of 2005 International Conference on Machine Learning and Cybernetics, August
18-21, 2005, vol. 8, pp. 5055–5059 (2005)

http://eprint.iacr.org/
http://www.cs.stanford.edu/~xb/eurocrypt05b/

Secure Biometric Authentication with Improved Accuracy 35

16. Hao, F., Anderson, R., Daugman, J.: Combining crypto with biometrics effectively.
IEEE Transactions on Computers 55(9), 1081–1088 (2006)

17. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research 2, 265–292 (2001)

18. Barbosa, M., Brouard, T., Cauchie, S., Sousa, S.: Secure biometric authentication
with improved accuracy. Cryptology ePrint Archive (2008)

19. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

20. Paillier, P., Pointcheval, D.: Efficient public-key cryptosystems provably secure
against active adversaries. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASI-
ACRYPT 1999. LNCS, vol. 1716, pp. 165–179. Springer, Heidelberg (1999)

21. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

Appendix A: Paillier Public Key Encryption Scheme

The Paillier public key encryption scheme [19,20] can be described as follows:

– Key generation: GPaillier(1κ) = (kd, ke). The PPT key generation algo-
rithm takes a security parameter 1κ as input, and randomly generates two
large prime numbers p and q, setting n = pq and λ = lcm(p− 1, q− 1). The
algorithm then randomly selects g ∈ Z

∗
n2 , such that n divides the order of g.

This can be ensured by checking that

gcd(L(gλ mod n2), n) = 1, where L(u) =
u− 1

n

which in turn implies that the following multiplicative inverse exists:

μ = (L(gλ mod n2))−1 mod n

The public key is then ke = (n, g) and the secret key is kd = (μ, λ).

– Encryption: EPaillier(m, ke). The PPT encryption algorithm takes a mes-
sage m ∈ Zn and the public key ke = (n, g), generates r uniformly at random
from Z

∗
n and outputs a ciphertext c ∈ Zn2 , where c = gm · rn mod n2.

– Decryption: DPaillier(c, kd). The deterministic decryption algorithm takes
a ciphertext c and the secret key and outputs the plaintext m, which is
recovered as m = L(cλ mod n2) · μ mod n.

It has been shown [20] that, under the composite residuosity assumption,
the Paillier cryptosystem provides semantic security against chosen-plaintext
attacks (IND-CPA). In other words, any PPT adversary A has only a negligible
advantage in the following game against the Paillier cryptosystem:

36 M. Barbosa et al.

ExpIND−CPA
Paillier(A)

(kd, ke) ← GPaillier(1κ)
(m0, m1, s)← A1(ke)
β ← {0, 1}
c ← EPaillier(mβ)
β′ ← A2(c, s)
return β′

where the attacker’s advantage AdvIND−CPA
Paillier is defined as:

AdvIND−CPA
Paillier = |Pr[ExpIND−CPA

Paillier = 1|β = 1]− Pr[ExpIND−CPA
Paillier = 1|β = 0]|

In our scheme we will be using the Paillier cryptosystem to encrypt biometric
features represented as short sequences of integer numbers. Encryption will be
component-wise, where we assume that each integer component in the feature is
in a range suitable for direct encoding into the message space4. For this reason
we require a generalisation of the IND-CPA property allowing the adversary
to make a polynomial number n of queries to a Left-or-Right challenge oracle.
We call this notion n-IND-CPA and emphasize that the security of the Paillier
encryption scheme in this setting is implied by its semantic security [21].

We will also take advantage of the following homomorphic properties of the
Paillier encryption scheme:

EPaillier(a, ke)EPaillier(b, ke) = EPaillier(a + b, ke)

EPaillier(a, ke)b = EPaillier(ab, ke)

The aditive property also provides a method to re-randomize a given Paillier
cryptosystem which we will use:

(EPaillier(a, ke; r′) · rn) mod n2 = EPaillier(a, ke; r′r).

4 In practice, SVM features can be represented using integers in the range −100 to
100, which can be easily encoded into Zn.

A Critical Analysis and Improvement of AACS

Drive-Host Authentication

Jiayuan Sui and Douglas R. Stinson�

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, ON, N2L 3G1, Canada
{jsui,dstinson}@uwaterloo.ca

Abstract. This paper presents a critical analysis of the AACS drive-host
authentication scheme. A few weaknesses are identified which could lead
to various attacks on the scheme. In particular, we observe that the scheme
is susceptible to unknown key-share and man-in-the-middle attacks. Mod-
ifications of the scheme are suggested in order to provide better security.
A proof of security of the modified scheme is also presented. The modified
scheme achieves better efficiency than the original scheme.

1 Introduction

Advanced Access Content System (AACS) is a content distribution system for
recordable and pre-recorded media. It has been developed by eight compa-
nies: Disney, IBM, Intel, Matsushita (Panasonic), Microsoft, Sony, Toshiba, and
Warner Brothers. Most notably, AACS is used to protect the next generation of
high definition optical discs such as Blu-ray and HD-DVD.

To design a media protection scheme that is able to run on open platforms
like PCs, designers have to make sure that the scheme is not susceptible to the
“virtual device attack”. A virtual device can mimic a physical hardware device
in all respects, so that the CPU is tricked into believing that a device exists when
actually it does not. To deploy a virtual device attack on a media system such
as the DVD playback system, the attacker can build software that implements a
virtual DVD drive. The content of the optical disc is moved onto the computer’s
hard drive as a disc image. The attacker can then play back this “DVD disc”
through the virtual DVD drive on a legitimate DVD player software.

The attacker can certainly duplicate the disc image into multiple copies and
disseminate them illegally, even though he never learns the content of the DVD
in the clear. In order to defend against this attack, the drive has to have the
ability to prove to the host (e.g. the playback software) that it is a legitimate
drive. This can be done through a cryptographic authentication protocol.

The AACS drive-host authentication scheme achieves mutual authentication,
which means that the drive proves to the host its legitimate identity and the
� Supported by the Natural Sciences and Engineering Research Council of Canada

(NSERC) through the grant NSERC-RGPIN #203114-06.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 37–52, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

38 J. Sui and D.R. Stinson

host has to prove its identity to the drive. After the drive and the host complete
a successful session of the protocol, a shared secret key is established between
them. Therefore, AACS drive-host mutual authentication protocol is combined
with a key agreement protocol. The shared secret key is then used for message
authentication purposes.

1.1 Mutual Authentication Protocol and Key Agreement Protocol

In a mutual authentication protocol, the two participating entities need to prove
their identities to each other. If an entity has successfully proven its identity to
the other entity, the other entity is required to “accept”. A session of a mutual
authentication protocol is a successfully completed session if both participants
have accepted by the end of the session. Mutual authentication protocols can be
devised by using either symmetric or asymmetric key cryptographic primitives.
Stinson [13, Chapter 9] provides some good studies on mutual authentication
protocols.

After two entities have authenticated themselves to each other, most likely
they will want to communicate with each other. It therefore makes sense to
combine a key agreement protocol with a mutual authentication protocol, be-
cause a shared secret key provides confidentiality and/or data integrity to both
communicating entities. In a key agreement protocol, both entities contribute in-
formation which is used to derive a shared secret key. A key agreement protocol
most often uses asymmetric-key primitives.

A key agreement protocol is said to provide implicit key authentication to both
entity A and entity B if A is assured that no one other than B can possibly learn
the value of the shared secret key (likewise, B is assured that no one other than
A can learn the value of the key). Note that this property does not necessarily
mean that A is assured of B actually possessing the key nor is A assured that
B can actually compute the key. A key agreement protocol with implicit key
authentication is called an authenticated key agreement (AK) protocol.

A key agreement protocol is said to provide implicit key confirmation if A
is assured that B can compute the secret key while no others can, and vice
versa. A protocol provides explicit key confirmation if A is assured that B has
computed the secret key and no one other than B can compute the key, and vice
versa. A key agreement protocol that provides key confirmation (either implicit
or explicit) to both participating entities is called an authenticated key agreement
with key confirmation (AKC) protocol. For example, explicit key confirmation
can be achieved by using the newly derived key to encrypt a known value and to
send it to the other entity. In most cases, using a key agreement protocol with
implicit key confirmation is sufficient. For more information on key agreement
protocols, please refer to [13, Chapter 11].

1.2 Our Contributions

In this paper, we present a rigorous analysis of the AACS drive-host authenti-
cation scheme. Specifically, we identify a few weaknesses present in the scheme

A Critical Analysis and Improvement of AACS Drive-Host Authentication 39

which could lead to various attacks. It is yet to be known whether those weak-
nesses will lead to piracy of multimedia content. Nevertheless, we believe that it is
not desirable for such a widely-deployed system to employ a weak cryptographic
protocol if it can be made secure fairly easily. We propose an improvement of
the original scheme based on the well-established Station-to-Station key agree-
ment protocol. The improved scheme provides secure mutual authentication as
well as authenticated key agreement with key confirmation. We also discuss the
security of the improved scheme. The improved scheme is designed with the goal
of requiring little change to be made to the original scheme, so implementation
of the improved scheme is straightforward. In addition, the improved scheme
requires less interaction between the drive and the host, and therefore it is more
efficient than the original scheme. Furthermore, our improved scheme can be
easily implemented on other content distribution systems such as CSS [7] and
CPPM [1] which also use weak drive-host authentication schemes.

1.3 Organization

In Section 2, we introduce the AACS drive-host authentication scheme. Our anal-
ysis of the AACS drive-host authentication scheme is presented in Section 3,
where we identify several weaknesses in the scheme and provide corresponding
improvements. In Section 4, we discuss the security of the improved drive-host
authentication scheme, followed by a conclusion in Section 5.

2 AACS Drive-Host Authentication Scheme

When using AACS in a PC-based system where the drive and the host are sep-
arate entities, both the drive and the host are issued certificates from the AACS
LA (AACS Licensing Administrator). This allows either entity to verify whether
or not the other is trustworthy and in compliance with the AACS specifications.
These certificates, called the drive certificate and host certificate, each contain
fields stating the capabilities of the device, a unique identifier, the device’s public
key, and a signature from the AACS LA verifying the integrity of the certificate
signed with an AACS LA private key. Both the drive and the host have the
corresponding AACS LA public key for signature verification. A full description
of the certificate format can be found in the AACS Introduction and Common
Cryptographic Elements specification [2, Chapter 4].

Authentication between the drive and the host occurs each time new media
is placed into the drive. This is necessary because the new disc may contain
updated revocation lists. Each compliant disc contains a data structure called
the media key block (MKB), which holds the necessary information needed to
derive the keys to decrypt the content. It also contains the latest drive revocation
list (DRL) and host revocation list (HRL) which, respectively, contain a list of
IDs of the revoked drives and a list of IDs of the revoked hosts. A drive may
only communicate with a host that has not been revoked, and a host may only
communicate with a drive that has not been revoked.

40 J. Sui and D.R. Stinson

A detailed description of the AACS drive-host authentication scheme can be
found in [2, Section 4.3]. The original scheme consists a total of twenty-nine steps.
A simplified version consisting only the core steps involved in authentication and
key agreement is shown in Figure 2.

After successfully completing the drive-host authentication algorithm, the
drive and the host have established a shared bus key based on an elliptic curve
Diffie-Hellman key agreement protocol [11]. It is interesting to note that while
this key could be used to encrypt messages between the drive and the host, it is
not actually used for this purpose. Instead, the bus key is used solely for message
authentication by including a MAC for any message traveling between the drive
and the host. The current AACS specifications do not require either the drive
or the host to be capable of encrypting and decrypting bus messages; however
there is a flag in each certificate stating whether or not an entity is capable of
performing bus encryption.

3 Analysis of the AACS Drive-Host Authentication
Scheme

In this section, we analyze the AACS drive-host authentication scheme. Several
weaknesses are identified which could lead to various attacks, and corresponding
improvements are provided to strengthen the original scheme.

Our discussion of security is based on the standard security model for authen-
tication and key agreement schemes, which was first proposed by Bellare and
Rogaway in the symmetric-key setting [4]. Blake-Wilson et al. later generalized
this model into the public-key setting [6]. In the standard model, the adver-
sary has enormous power and controls all communication between entities. The
adversary can read, modify, create, delay and replay messages, and he/she can
initiate new sessions at any time.

3.1 Weakness 1: Design Error

This weakness is present in the first four steps of the drive-host authentication
scheme. Suppose that the DRL in the MKB is newer than the DRL stored in
the host. A malicious party, Oscar, can change the MKB version number to an
older one, and send the modified MKB′ to the host. This modification might
not be detected during the authentication procedure, because according to the
specification, the host first checks the MKB version number, and if the version
number is older than its DRL’s, it skips over step 2, which involves verifying the
signature on the DRL in the MKB.

Drive Oscar Host

MKB−−−−−−−−−−−−−−−−−−→ MKB′−−−−−−−−−−−−−−−−−−→

A Critical Analysis and Improvement of AACS Drive-Host Authentication 41

Drive Host

1. MKB �� Verify MKB and DRL signa-
tures. Abort if signatures are
not valid.

2. Compare version of stored DRL
to DRL in MKB. If DRL in
MKB is not newer, use stored
DRL. Otherwise, use DRL in
MKB, and store it for later ref-
erence.

3. Verify MKB and HRL signa-
tures. Abort if signatures are
not valid.

4. Compare version of stored HRL
to HRL in MKB. If HRL in
MKB is not newer, use stored
HRL. Otherwise, use HRL in
MKB, and store it for later ref-
erence.

Fig. 1. Improved First Four Steps

If the drive has already been revoked, it could maliciously alter the MKB
version number in order not to let the host update its DRL, so that it can keep
interacting with the host.

The altered MKB might eventually be detected when the host processes the
MKB during content decryption. However, it is undesirable for a revoked drive
to be able to talk to the host until then.

The fix to this weakness is simple: The host should verify the MKB and DRL
signatures before checking the version numbers. The same modification can be
made to the drive side. Figure 1 shows the modification.

3.2 Weakness 2: Unknown Key-Share Attack

Suppose A and B are two honest participating entities trying to set up a shared
secret key through a key agreement protocol, and O is an active malicious entity.
An unknown key-share attack on a key agreement protocol is an attack through
which O causes one of the two honest entities, say A, to believe that it shares a
key with O, but it actually shares the key with the other honest entity B, and
B believes that the key is shared with A. So, at the end of the protocol, O can
act on behalf of B to interact with A. There are a number of papers studying
unknown key-share attack and its application on a number of protocols, e.g. [3],
[5], [9], [12], and [14].

We can simplify the original flow representation of the drive-host authenti-
cation scheme displayed in [2, Section 4.3] into the one shown in Figure 2 by

42 J. Sui and D.R. Stinson

Drive Host

1.
Hn, Hcert←−−−−−−−−−−−−−−−−−−−

2.
Dn, Dcert−−−−−−−−−−−−−−−−−−−→

3. Dv=DkG
Sigdrive(Hn||Dv), Dv−−−−−−−−−−−−−−−−−−−→

4.
Sighost(Dn||Hv), Hv←−−−−−−−−−−−−−−−−−−− Hv=HkG

5. Bk=DkHv=DkHkG Bk=HkDv=HkDkG

Fig. 2. Simplified AACS Drive-Host Authentication Protocol

taking into consideration only the core steps involved in authentication and key
agreement. A similar flow diagram is also provided in [2, Section 4.3].

1. Host initiates a session with Drive. It sends a random nonce Hn and its
certificate Hcert to Drive. Drive verifies the signature of the Host certificate
using the AACS LA public key. If the verification fails, Drive shall abort this
authentication procedure.

2. Drive replies to the Host with a random nonce Dn and its certificate Dcert.
Host verifies the signature of the Drive certificate using the AACS LA public
key. If the verification fails, Host shall abort this authentication procedure.

3. Drive generates a 160-bit random number Dk and uses it to calculate a
point Dv on the elliptic curve (G is the base point of the elliptic curve).
Drive then creates a signature of the concatenation of Hn and Dv. Drive
sends the digital signature and Dv to Host. Host verifies the signature, and
aborts the session on failure.

4. Host generates a 160-bit random number Hk and uses it to calculate a point
Hv on the elliptic curve. Host then creates a signature of the concatenation of
Dn and Hv. Host sends the digital signature and Hv to Drive. Drive verifies
the signature, and aborts the session on failure.

On the last step, both Drive and Host calculate the shared secret bus key Bk.
An attacker, DriveOscar, which is also a legitimate drive, can use a parallel

session to deploy an unknown key-share attack. Figure 3 shows the diagram of
the attack.

The attack works in this way:

1. Host initiates a session with DriveOscar. It sends its random nonce Hn and
certificate Hcert to DriveOscar.

2. DriveOscar relays the traffic to Drive as if Host is initiating a session with
Drive. Drive receives Hn and Hcert and verifies that Hcert is valid.

3. Drive sends back its random nonce Dn and certificate Dcert to Host, which
of course get intercepted by DriveOscar.

A Critical Analysis and Improvement of AACS Drive-Host Authentication 43

4. DriveOscar relays the random nonce Dn to Host, however, it does not relay
the Drive’s certificate. Instead, it sends its own certificate DO cert to Host.
Host receives DO cert as well as Dn. It is tricked into believing that DriveOscar

has generated this random nonce. Host verifies DriveOscar’s certificate, and
the verification should pass because DriveOscar is a legitimate drive.

5. Following the AACS drive-host authentication protocol, Drive generates a
random number Dk and calculates a point Dv on the elliptic curve. Drive
then creates a signature of the concatenation of Hn and Dv. Drive sends the
digital signature and Dv to Host.

6. DriveOscar relays Dv to Host. However, it creates its own signature of the
concatenation of Hn and Dv using its private key. It can do so because both
Hn and Dv are available to it. It sends this signature instead of Drive’s
signature to Host. Host verifies the signature using DriveOscar’s public key
obtained from DO cert. The verification should pass.

7. Host generates a random number Hk and calculates a point Hv on the elliptic
curve. Drive then creates a signature of the concatenation of Dn and Hv.
Drive sends the digital signature and Hv to DriveOscar.

8. DriveOscar relays the traffic to Drive. Drive verifies the signature, and the
verification should pass.

By the time the session is complete, Drive has accepted Host, and it can
calculate the shared bus key Bk. On the other hand, Host does not accept Drive

Drive DriveOscar Host

1.
Hn, Hcert←−−−−−−−−−−−−−

2.
Hn, Hcert←−−−−−−−−−−−−−

3.
Dn, Dcert−−−−−−−−−−−−−→

4.
Dn, DO cert−−−−−−−−−−−−−→

5. Dv=DkG
Sigd(Hn||Dv), Dv−−−−−−−−−−−−−→

6.
Sigdo(Hn||Dv), Dv−−−−−−−−−−−−−→

7.
Sigh(Dn||Hv), Hv←−−−−−−−−−−−−− Hv=HkG

8.
Sigh(Dn||Hv), Hv←−−−−−−−−−−−−−

9. Bk=DkHv=DkHkG Bk=HkDv=HkDkG

Fig. 3. Unknown Key-Share Attack on AACS Drive-Host Authentication Protocol

44 J. Sui and D.R. Stinson

because it simply does not know the existence of Drive from this interaction.
Instead, it has accepted DriveOscar. Host can also calculate the same shared bus
key Bk.

Although DriveOscar does not know the secret bus key Bk in the end, it has
tricked Host into believing that it shares the bus key with DriveOscar. Host thinks
that it is talking to DriveOscar while actually it is interacting with Drive.

This attack could be exploited in practice. For example, suppose that DriveA

is revoked. Then it can employ this attack to ask DriveB, which is not revoked, to
impersonate it. Since the host only sees DriveB’s certificate, the authentication
procedure should complete successfully. In this way, DriveA can still interact
with the host after the authentication procedure. It has effectively bypassed the
authentication procedure.

Such an attack is enabled due to the fact that in the last two flows DriveOscar

can simply copy the traffic. This problem can be fixed by including the entity
IDs in the signature. (See Section 3.4).

3.3 Weakness 3: Man-in-the-Middle Attack

The adversarial goal in an attack to a mutual authentication protocol is to cause
an honest participant to “accept” after a flow in which the adversary is active. To
consider a mutual authentication protocol secure, it has to satisfy the following
two conditions:

1. Suppose A and B are the two participants in a session of the protocol and
they are both honest. Suppose also that the adversary is passive. Then A
and B will both “accept”.

2. If the adversary is active during a given flow of the protocol, then no honest
participant will “accept” after that flow.

Figure 4 shows an attack which might not be as powerful and practical as the
previous one. Nonetheless, it shows a weakness in this protocol.

Drive Oscar Host

1.
Hn, Hcert←−−−−−−−−−−−−− Hn, Hcert←−−−−−−−−−−−−

2.
Dn, Dcert−−−−−−−−−−−−−→ D′

n, Dcert−−−−−−−−−−−−→

3. Dv=DkG
Sigd(Hn||Dv), Dv−−−−−−−−−−−−−→ Sigd(Hn||Dv), Dv−−−−−−−−−−−−→

4. Host has “accepted”, Oscar wins
Sigh(D′

n||Hv), Hv←−−−−−−−−−−−− Hv=HkG

Bk=HkDv=HkDkG

Fig. 4. A Trivial Man-In-The-Middle Attack

A Critical Analysis and Improvement of AACS Drive-Host Authentication 45

In this case, Oscar could be a polynomial time adversary with the ability
to listen and to modify the traffic. Notice that in step 2 when Oscar relays
the traffic from Drive to Host, it modifies the random nonce Dn generated by
Drive into a different one D′

n. This does not make Host terminate the session.
In step 3, after Host has successfully verified Drive’s signature, it “accepts”.
This violates condition 2 mentioned above, hence the protocol should not be
considered secure.

A moment of reflection regarding this attack reveals that we do not really
need the two nonces “Hn” and “Dn”.

3.4 Improved Scheme

Since the scheme makes use of certificates, we can improve it using a simplified
Station-to-Station key agreement protocol (STS). STS protocol is a key agree-
ment scheme based on Diffie-Hellman scheme that provides mutual authentica-
tion. For more information on STS protocols, please refer to [8], [13, Chapter
11], [10].

Figure 5 shows the improved drive-host authentication scheme based on STS.
This modification solves both problems stated in weakness 2 and 3 (a security
proof is given in the next section). In addition, it improves the efficiency of the
original protocol, because the number of interactions between Drive and Host is
reduced.

1. Host initiates a session with Drive. It generates a 160-bit random number
Hk and uses it to calculate a point Hv on the elliptic curve. It sends the
Hv and its certificate Hcert to Drive. Drive verifies the signature of the Host
certificate using the AACS LA public key. If the verification fails, Drive shall
abort this session.

2. Drive generates a 160-bit random number Dk and uses it to calculate a point
Dv on the elliptic curve. Drive then creates a signature of the concatenation
of the Host ID, Dv, and Hv. Drive sends the digital signature, Dv, and
its certificate Dcert to Host. Host verifies the signature created by Drive:
verdrive(IDhost||Dv||Hv, Drive′s signature) ?= true, and it also verifies the

Drive Host

1.
Hv , Hcert←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Hv=HkG

2. Dv=DkG
Sigdrive(IDhost||Dv||Hv), Dv, Dcert−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

3.
Sighost(IDdrive||Hv ||Dv)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4. Bk=DkHv=DkHkG Bk=HkDv=HkDkG

Fig. 5. Improved Scheme Based on the Station-to-Station Protocol

46 J. Sui and D.R. Stinson

signature of the Drive certificate. If any of the two verifications fail, Host
shall abort the session.

3. Host creates a signature of the concatenation of the Drive ID, Hv, and Dv

and sends it to Drive. Drive verifies the signature: verhost(IDdrive||Hv||Dv,

Host′s signature) ?= true, and aborts the session on failure.

At the end of the protocol, both Drive and Host are able to establish the
shared secret bus key Bk. Points Hv and Dv in this protocol also play a role as
random challenges.

The new protocol solves all the aforementioned problems. Since the random
challenges Hn and Dn are omitted, it enables the drive and the host to perform
fewer interactions, and is therefore more efficient.

Appendix A shows a flow representation of the entire improved drive-host
authentication protocol.

4 Security of the Improved Drive-Host Authentication
Scheme

The improved scheme protects against the unknown key-shared attack mentioned
earlier.

In Figure 6, a question mark following a signature indicates that the adversary
is unable to compute this signature. At step 3, the signature which Host sends
to DriveOscar contains DriveOscar’s ID not Drive’s ID because Host believes that
it is talking to DriveOscar. DriveOscar cannot compute Host’s signature on the
string IDdrive||Hv||Dv because he does not know Host’s private signing key. As
a result, unknown key-share attack is thwarted.

After step 2, Host “accepts” the authentication because it should successfully
verify DriveOscar’s signature and certificate. This does not violate the second
condition of considering a mutual authentication protocol secure mentioned in
Section 3.3, because Host is authenticating with DriveOscar.

The improved scheme also protects against man-in-the-middle attack.
As shown in Figure 7, if Oscar modifies Hv, he then would not be able to

produce Host’s signature on IDdrive||H ′
v||Dv because he does not know Host’s

Drive DriveOscar Host

1.
Hv, Hcert←−−−−−−−−−−−−−−− Hv, Hcert←−−−−−−−−−−−−−−−−− Hv=HkG

2. Dv=DkG

Sigd(IDhost||Dv||Hv),

Dv, Dcert−−−−−−−−−−−−−−−→
Sigdo(IDhost||Dv||Hv),

Dv, DO cert−−−−−−−−−−−−−−−−−→

3.
Sigh(IDdrive||Hv||Dv)?←−−−−−−−−−−−−−−− Sigh(IDdrive Oscar||Hv||Dv)←−−−−−−−−−−−−−−−−−

Bk=HkDv=HkDkG

Fig. 6. Protection Against Unknown Key-Share Attack

A Critical Analysis and Improvement of AACS Drive-Host Authentication 47

Drive Oscar Host

1.
H′

v, Hcert←−−−−−−−−−−−−−−−−−−−−− Hv, Hcert←−−−−−−−−−−−−−−−−−−−−− Hv=HkG

2. Dv=DkG
Sigd(IDhost||Dv||H′

v), Dv, Dcert−−−−−−−−−−−−−−−−−−−−−→ Sigd(IDhost||D′
v||Hv)?, D′

v, Dcert−−−−−−−−−−−−−−−−−−−−−→

3.
Sigh(IDdrive||H′

v||Dv)?←−−−−−−−−−−−−−−−−−−−−− Sigh(IDdrive Oscar||Hv||D′
v)←−−−−−−−−−−−−−−−−−−−−−

Fig. 7. Prevention of Man-In-The-Middle Attack

private signing key. Likewise, if Oscar modifies Dv, he then would not be able to
produce Drive’s signature on IDhost||D′

v||Hv because he does not know Drive’s
private signing key.

Of course, we want to show that the improved scheme is secure against all
possible attacks, not just two particular attacks. Hence, we need to show that the
improved scheme is a secure mutual authentication scheme, and that it provides
assurances regarding knowledge of the shared secret key. For the proof of security
of our improved scheme, an informal treatment based on [13, Chapter 11] is given
in the rest of this section.

4.1 Secure Mutual Authentication

A secure mutual authentication has to satisfy the two conditions described
in Section 3.3. Let us first show that our improved scheme satisfies the first
condition.

Since no one is modifying the traffic, if the adversary is passive and the two
participants are honest they should successfully authenticate themselves to each
other and both compute the shared secret key as in the Diffie-Hellman key
agreement scheme. Assuming the intractability of the Decision Diffie-Hellman
problem, the inactive adversary cannot compute the share secret key.

To prove that our improved scheme satisfies the second condition, let us as-
sume that the adversary is active. The adversary wants to fool at least one of
the two participants to “accept” after a flow in which he is active. We show that
the adversary will not scceed in this way, except with a very small probability.

Definition 1. A signature scheme is (ε, Q, T)-secure if the adversary cannot
construct a valid signature for any new message with probability greater than ε,
given that he has previously seen at most Q different valid signatures, and given
that his computation time is limited to T .

Definition 2. A mutual authentication scheme is (ε, Q, T)-secure if the adver-
sary cannot fool any honest participants into accepting with probability greater
than ε, given that he has observed at most Q previous sessions between the honest
participants, and given that the his computation time is at most T .

48 J. Sui and D.R. Stinson

Time T is usually chosen to be very long so that by the time the adversary
successfully computes the correct result the value of the result has decreased to
an insignificant level. For simplicity of notation, we omit the time parameter.
Q is a specified security parameter. Depending on the application, it could be
assigned with various values. The probability ε is usually chosen to be so small
that the chance of success is negligible.

Theorem 1. Suppose that Sig is an (ε, Q)-secure signature scheme, and suppose
that random challenges Hv and Dv are k bits in length. Then the scheme shown
in Figure 5 is a (Q/2k−1 + 2ε, Q)-secure mutual authentication scheme.

Proof. The adversary, Oscar, observes Q previous sessions of the protocol before
making his attack. A successful attack by Oscar is to deceive at least one honest
participant in a new session into accepting after he is active in one or more flows.

1. Oscar tries to deceive Host. In order to make Host accept, it has to receive a
signature signed by Drive containing the Host ID and the random challenge
Hv. There are only two ways for Oscar to acquire such a signature: either
from a previously observed session or by computing it himself.

To observe such a signature from a previous session, Hv has to be used
in that session. The probability that Host has already used the challenge in
a specific previous session is 1/2k. There are at most Q previous sessions
under consideration, so the probability that Hv was used as a challenge in
one of these previous sessions is at most Q/2k. If this happens, Oscar can
re-use Drive’s signature and D′

v (which may or may not be the same as Dv)
from that session to fool Host.

To compute such a signature himself, Oscar has at most a chance of ε,
since Sig is (ε, Q)-secure.

Therefore, Oscar’s probability of deceiving Host is at most Q/2k + ε.
2. Oscar tries to deceive Drive. This is quite similar to the case we have dis-

cussed above. In order to fool Drive, Oscar has to have a legitimate signature
signed by Host. As in the previous case, the two ways for Oscar to acquire
such a signature are either from a previously observed session or by comput-
ing it himself.

To observe such a signature from a previous session, Oscar re-uses a Hv

from a previous session S to send to Drive, and hopes that Drive will reply
with the same Dv as in S so that he can re-use the corresponding signature.
This happens with probability 1/2k. The best case scenario for the adversary
would be that all Q previously observed sessions have the same Hv. Because
if any Dv from the Q sessions is re-used by Drive, Oscar can then re-use
the corresponding signature to fool Drive. Hence, Oscar has at most Q/2k

probability to re-use Host’s signature to deceive Drive.
Again since Sig is (ε, Q)-secure, Oscar can compute such a signature

with a probability of at most ε.
Therefore, Oscar’s probability of deceiving Drive is at most Q/2k + ε.

A Critical Analysis and Improvement of AACS Drive-Host Authentication 49

Summing up, the probability for Oscar to deceive one of Host or Drive is at
most (Q/2k + ε) + (Q/2k + ε) = Q/2k−1 + 2ε.

4.2 Implicit Key Confirmation

Now, let us see what we can infer about the improved scheme if Host or Drive
“accepts”. Firstly, suppose that Host “accepts”. Because the improved scheme is
a secure mutual authentication scheme, Host can be confident that it has really
been communicating with Drive and that the adversary was inactive before the
last flow. Assuming that Drive is honest and that it has executed the scheme
according to the specifications, Host can be confident that Drive can compute
the value of the secret bus key, and that no one other than Drive can compute
the value of the bus key.

Let us consider in more detail why Host should believe that Drive can compute
the bus key. The reason for this belief is that Host has received Drive’s signature
on the values Hv and Dv, so it is reasonable for Host to infer that Drive knows
these two values. Now, since Drive is a honest participant and executed the
scheme according to the specifications, Host can infer that Drive knows the
values of Dk. Drive is able to compute the value of the bus key, provided that
he knows the values of Hv and Dk. Of course, there is no guarantee to Host that
Drive has actually computed the bus key at the moment when Host “accepts”.
We can be sure that no one else can compute the bus key because Dk is meant
to be known to Drive only.

The analysis from the point of view of Drive is very similar. If Drive “accepts”,
then it is confident that it has really been communicating with Host, and that
the bus key can be computed only by Host and no one else.

The improved scheme does not make immediate use of the new bus key, so we
do not have explicit key confirmation. However, it does achieve implicit key con-
firmation. Moreover, it is always possible to augment any key agreement scheme
with implicit key confirmation so that it achieves explicit key confirmation (the
SIGMA protocol is an efficient key agreement scheme similar to STS which
provides explicit key confirmation [10]), if so desired. In essence, the improved
scheme provides authenticated key agreement with key confirmation.

5 Conclusion

We have described three weaknesses in the AACS drive-host authentication
scheme. Specifically, the scheme is susceptible to unknown key-share attack and
man-in-the-middle attack. As a goal to improve the scheme to resist all kinds of
attacks, we have modified the original scheme based on a simplified Station-to-
Station key agreement protocol to provide secure mutual authentication as well
as authenticated key agreement with key confirmation. In addition, our modified
scheme achieves better efficiency than the original scheme.

50 J. Sui and D.R. Stinson

References

1. 4C Entity LLC, Content Protection For Prerecorded Media Specification, Revision
1.0 (January 2003)

2. AACS LA, Advanced Access Content System (AACS) - Introduction and Common
Cryptographic Elements, Revision 0.91, February 17 (2006), http://
www.aacsla.com/specifications/specs091/AACS Spec Common 0.91.pdf

3. Baek, J., Kim, K.: Remarks on the Unknown Key Share Attacks. IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer Sci-
ences E83-A(12), 2766–2769 (2000)

4. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

5. Blake-Wilson, S., Menezes, A.: Unknown Key-Share Attacks on the Station-to-
Station (STS) Protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560,
pp. 154–170. Springer, Heidelberg (1999)

6. Blake-Wilson, S., Johnson, D., Menezes, A.: Key Agreement Protocols and Their
Security Analysis. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS,
vol. 1355, pp. 30–45. Springer, Heidelberg (1997)

7. DVD Copy Control Association, CSS Procedural Specification, Version 2.9 (Jan-
uary 2007)

8. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and Authenticated
Key Exchanges. Designs, Codes and Cryptography 2(2), 107–125 (1992)

9. Kaliski Jr., B.S.: An Unknown Key-Share Attack on the MQV Key Agreement
Protocol. ACM Transactions on Information and System Security 4(3), 275–288
(2001)

10. Krawczyk, H.: SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE Protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003)

11. National Institute of Standards and Technology, Special Publication 800-56A, Rec-
ommendation for Pair-Wise Key Establish Schemes Using Discrete Logarithm
Cryptography (March 2007)

12. Shim, K.: Unknown Key-Share Attack on Authenticated Multiple-Key Agreement
Protocol. Electronics Letters 39(1), 38–39 (2003)

13. Stinson, D.R.: Cryptography Theory and Practice, Third Edition, 3rd edn. Chap-
man & Hall/CRC, Boca Raton (2006)

14. Zhou, H., Fan, L., Li, J.: Remarks on Unknown Key-Share Attack on Authenticated
Multiple-Key Agreement Protocol. Electronics Letters 39(17), 1248–1249 (2003)

A Improved Drive-Host Authentication Scheme

Drive Host

1. MKB �� Verify MKB and DRL signa-
tures. Abort if signatures are
not valid.

http://www.aacsla.com/specifications/specs091/AACS_Spec_Common_0.91.pdf
http://www.aacsla.com/specifications/specs091/AACS_Spec_Common_0.91.pdf

A Critical Analysis and Improvement of AACS Drive-Host Authentication 51

2. Compare version of stored
DRL to DRL in MKB. If DRL
in MKB is not newer, use
stored DRL. Otherwise, use
DRL in MKB, and store it for
later reference.

3. Verify MKB and HRL signa-
tures. Abort if signatures are
not valid.

4. Compare version of stored
HRL to HRL in MKB. If HRL
in MKB is not newer, use
stored HRL. Otherwise, use
HRL in MKB, and store it for
later reference.

5. AGID ��

6. Generate 160-bit random
number Hk.

7. Calculate Hv = HkG where
G is the base point of the el-
liptic curve.

8. Hv , Hcert��

9. Verify host certificate type
and length. Abort on failure.

10. Verify signature on host cer-
tificate. Abort on failure.

11. Check HRL and abort if Host
ID is found.

12. Request a point on the ellip-
tic curve Dv, signature, and
drive certificate.

13. Generate 160-bit random
value Dk.

52 J. Sui and D.R. Stinson

14. Calculate Dv = DkG where
G is the base point of the el-
liptic curve.

15. Calculate Dsig as the signa-
ture of IDhost‖Dv‖Hv using
the drive’s private key.

16. Dsig, Dv , Dcert��

17. Verify drive certificate type
and length. Abort on failure.

18. Verify signature on drive cer-
tificate. Abort on failure.

19. Check DRL and abort if
Drive ID is found.

20. Verify Dsig and abort on fail-
ure.

21. Calculate Hsig as the signa-
ture of IDdrive‖Hv‖Dv using
the host’s private key.

22. Hsig��

23. Verify Hsig and abort on fail-
ure.

24. Calculate Bus Key Bk as the
128 least significant bits of
x-coord(DkHv).

25. Calculate Bus Key Bk as the
128 least significant bits of
x-coord(HkDv).

Comparing the Pre- and Post-specified Peer

Models for Key Agreement

Alfred Menezes and Berkant Ustaoglu

Department of Combinatorics & Optimization, University of Waterloo
{ajmeneze,bustaoglu}@uwaterloo.ca

Abstract. In the pre-specified peer model for key agreement, it is as-
sumed that a party knows the identifier of its intended communicating
peer when it commences a protocol run. On the other hand, a party in the
post-specified peer model for key agreement does not know the identifier
of its communicating peer at the outset, but learns the identifier during
the protocol run. In this paper we compare the security assurances pro-
vided by the Canetti-Krawczyk security definitions for key agreement in
the pre- and post-specified peer models. We give examples of protocols
that are secure in one model but insecure in the other. We also enhance
the Canetti-Krawczyk security models and definitions to encompass a
class of protocols that are executable and secure in both the pre- and
post-specified peer models.

1 Introduction

In 1993, Bellare and Rogaway [1] presented the first formal security model and se-
curity definition for key agreement. The model and associated definitions evolved
over the years, culminating in the 2001 work of Canetti and Krawczyk [4] and its
recent extension by LaMacchia, Lauter and Mityagin [13]. In all the aforemen-
tioned works, key agreement protocols are analyzed in the so-called pre-specified
peer model wherein it is assumed that a party knows the identifier of its intended
communicating peer when it commences a run of the protocol. That is, it is as-
sumed that the exchange of identifiers, and possibly also the long-term public
keys of the communicating parties, is handled by the application that invokes a
run of the protocol.

In 2002, Canetti and Krawczyk [5] introduced the post-specified peer model
wherein a party is activated to establish a session key knowing only a destination
address (such as the IP address of a server) of the communicating peer, and only
learns the peer’s identifier during the execution of the protocol. According to
[5], this scenario is common in practical settings where the peer’s identifier is
simply unavailable at the outset, or if one party wishes to conceal its identity
from eavesdroppers or active adversaries. The IKE protocols [8,9] (see also [10])
are important examples of key agreement protocols that provide the option of
identity concealment.

In the remainder of this paper we will not consider the identity concealment
attribute of key agreement protocols. We will often shorten ‘pre-specified peer
model’ to ‘pre model’, and ‘post-specified peer model’ to ‘post model’.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 53–68, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

54 A. Menezes and B. Ustaoglu

We say that a key agreement protocol designed for one of the pre or post
models is executable in the other model if it can be run in the second model
without requiring any additional message flows (and without making any funda-
mental changes to the protocol description). It is clear that any key agreement
protocol designed for the post model is executable in the pre model. Indeed,
if the peer’s identifier (and long-term public key) is not needed at the start of
the protocol, then the protocol can also be executed given the peer’s identifier.
Canetti and Krawczyk observed that the Σ0 key agreement protocol is secure in
the post model with respect to the security definition given in [5], but not secure
in the pre model with respect to the security definition given in [4]. Hence, even
though any protocol designed for the post model can be executed in the pre
model, security in the post model of [5] does not guarantee security in the pre
model of [4].

In this paper we explore the executability and security in the post model of
key agreement protocols that have been designed for and analyzed in the pre
model. Of course any protocol designed for the pre model can be modified for the
post model by adding message flows which include the identifiers and long-term
public keys of the communicating parties; however such a modification does not
conform to our notion of executability because of the additional message flows.
We provide an example of a key agreement protocol that is secure in the pre
model but is not executable in the post model. We also observe that the HMQV
protocol [11], which has been proven to be secure in the pre model, is executable
in the post model (without the addition of message flows) but not secure unless
additional measures are taken. These examples illustrate the essential differences
between the two models, and highlight the danger of running in the post model
a protocol that has only been analyzed in the pre model.

It is natural then to ask when a protocol secure in one model is executable
and secure in the other model. We identify a class of modifiable key agreement
protocols that have been designed for the pre model but can be executed with
minimal modifications in the post model. This class includes many of the pro-
tocols that have been proposed in the literature including station-to-station [7],
UM [19,16], MQV [15], Boyd-Mao-Paterson [2], HMQV [11], KEA+ [14], NAXOS
[13], CMQV [20] and Okamoto [18]. (See [3] for an extensive list of key establish-
ment protocols.) Such protocols have a hybrid description that combine the spec-
ification for the pre model and the specification of the modified protocol suitable
for the post model. We develop a combined model and associated security defini-
tion that aims to simultaneously capture the security assurances (and more) of
the extended Canetti-Krawczyk pre-specified peer model [13] and the Canetti-
Krawczyk post-specified peer model [5]. The combined model has the feature
that if a hybrid key agreement protocol is proven secure in that model, then its
specializations are guaranteed to be secure when run in the pre and post models.

The remainder of this paper is organized as follows. In §2 we provide informal
overviews of the Canetti-Krawczyk pre and post models and security definitions
for key agreement. The differences between the two models are explored in §3.
Protocol P is described in §3.1 as an example of a protocol that is secure in the

Comparing the Pre- and Post-specified Peer Models for Key Agreement 55

pre model but not executable in the post model. In §3.2 we describe an attack
on HMQV, demonstrating that the protocol is not secure in the post model.
The Σ0 protocol, which is an example of a protocol that is secure in the post
model but insecure in the pre model, is revisited in §3.3. Our combined model
and security definition are presented in §4. The NAXOS-C protocol is presented
in §5 as an example of a protocol that is secure in the combined model.

Notation and Terminology. Let G = 〈g〉 denote a multiplicatively-written
cyclic group of prime order q, and let G∗ = G \ {1}. The Computational
Diffie-Hellman (CDH) assumption in G is that computing CDH(U, V) = guv

is infeasible given U = gu and V = gv where u, v ∈R [1, q − 1]. The Deci-
sional Diffie-Hellman (DDH) assumption in G is that distinguishing DH triples
(ga, gb, gab) from random triples (ga, gb, gc) is infeasible. The Gap Diffie-Hellman
(GDH) assumption in G is that the CDH assumption holds even when a CDH
solver is given a DDH oracle that distinguishes DH triples from random triples.

We consider Diffie-Hellman type protocols where the two communicating par-
ties exchange static (long-term) and ephemeral (one-time) public keys. Party
Â’s static private key is an integer a ∈R [1, q − 1], and her corresponding static
public key is A = ga. Similarly, party B̂ has a static key pair (b, B), and so on.
A certifying authority (CA) issues certificates that binds a party’s identifier to
its static public key. We do not assume that the CA requires parties to prove
possession of their static private keys, but we do insist that the CA verifies that
static public keys belong to G∗. We restrict our attention to protocols where a
party Â called the initiator commences the protocol by selecting an ephemeral
key pair and then sends the ephemeral public key (and possibly other data)
to the second party. In our protocols, the ephemeral private key is either a ran-
domly selected integer x ∈ [1, q−1] or a randomly selected binary string x̃ which
is used together with the static private key to derive an integer x ∈ [1, q − 1],
and the corresponding ephemeral public key is X = gx. Upon receipt of X , the
responder B̂ selects an ephemeral private key y or ỹ and sends Y = gy (and
possibly other data) to Â. The parties may exchange some additional messages,
after which they compute a session key. We use I and R to denote the constant
strings “initiator” and “responder”.

2 Security Definitions for Key Agreement

We provide overviews of the Canetti-Krawczyk pre- and post-specified peer mod-
els for key agreement and the associated security definitions. For full details and
further explanations refer to [4] and [5].

2.1 Pre-specified Peer Model

Communications take place in a multi-party system, where the parties are iden-
tified by Â, B̂, Ĉ, At any given point in time, a party may be engaged in
multiple instances of the protocol, each called a session. A session is created at
Â via a message containing at least three parameters (Â, B̂, s), where Â is the

56 A. Menezes and B. Ustaoglu

session’s owner, B̂ is the intended peer, and s is a number that is unique among
all sessions owned by Â. (Â uses s to direct incoming messages to the appropriate
session within Â.) Once created, a session is said to be active and maintains a
session state where session-specific short-lived data such as an ephemeral private
key is stored. The session processes incoming messages and produces outgoing
messages. A session may abort without producing a session key, or may complete
by accepting a session key and erasing its session state.

The adversary M, modeled as a probabilistic Turing machine, controls all
communications between parties as well as the activation of sessions. In order
to model the possible leakage of secret information, M is allowed to issue the
following queries to parties:

– SessionStateReveal:M learns the contents of the session state for a (not yet
completed) session of its choosing. The session can no longer be activated
and stops producing output.

– Expire:M directs a completed session to delete its session key.
– SessionKeyReveal: M learns the session key held by a (completed but un-

expired) session of its choosing.
– Corrupt:M learns all the secret information held by a party of its choosing,

including the party’s static private key, all session states, and all session
keys. The party can no longer be activated and stops producing output.

The adversary’s goal is to distinguish a session key from a random key. Ob-
viously the adversary should not be allowed to learn the session key by trivial
means, for example by asking for the session key via a SessionKeyReveal query.
To this end, a session (Â, B̂, s) is said to be locally exposed if M issued a Ses-
sionStateReveal or SessionKeyReveal query to that session, or if M issued a
Corrupt query to Â before the session expired (this includes the case in which
Â is corrupted before the session is created). Moreover, the session (B̂, Â, s) is
defined to be matching to the session (Â, B̂, s), and (Â, B̂, s) is said to be unex-
posed if neither this session nor its matching session are locally exposed. Now,
M selects a session that is completed, unexpired, and unexposed, and issues a
special Test query to that session. (M is not allowed to issue the Test query
more than once.) In response,M is given with equal probability either the ses-
sion key held by the test session or a random key. M can continue to issue
queries, however must ensure that the test session remains unexposed. Finally,
M is said to win its distinguishing game (and thereby break the protocol) if
it guesses correctly whether the key is random or not with success probability
significantly greater than 1

2 . A key agreement protocol is said to be secure (in
the pre-specified peer model) if (i) uncorrupted parties who complete matching
sessions compute the same session key (except with negligible probability); and
(ii) there is no adversaryM who wins the distinguishing game.

2.2 Post-specified Peer Model

The Canetti-Krawczyk post-specified peer model and associated security defini-
tion [5] are essentially the same as in the pre model, but there are two important
differences.

Comparing the Pre- and Post-specified Peer Models for Key Agreement 57

First, a session at Â is created via a message containing (at least) three pa-
rameters (Â, d̂, s), where d̂ is a destination address to which outgoing messages
should be delivered. That is, party Â does not know the identifier of its peer
when it starts the session. During the course of the protocol run, Â learns the
(alleged) identifier B̂ of the communicating party; this party is referred to as Â’s
peer for that session.

Second, the definition of a matching session is different. Let (Â, s) be a session
that has completed with peer B̂. Then a session (B̂, s) is said to be matching to
(Â, s) if either (i) (B̂, s) has not yet completed; or (ii) (B̂, s) has completed and
its peer is Â. Condition (i) is necessary because the incomplete session (B̂, s)
may not yet have determined its peer and hence could have been communicating
with (Â, s), in which case exposure of (B̂, s) could possibly reveal non-trivial
information about the session key held by (Â, s).

3 Differences between the Two Models

This section presents three examples to illustrate the differences between the
Canetti-Krawczyk security definitions for key agreement in the pre- and post-
specified peer models. Protocol P is secure in the pre model, but cannot be
executed in the post model. HMQV is an example of a protocol that is secure in
the pre model, and executable but not secure in the post model. The Σ0 protocol
is secure in the post model but insecure in the pre model.

3.1 Protocol P
We present a two-pass Diffie-Hellman key agreement protocol P . The protocol
can be proven secure in the pre-specified peer model under the GDH assumption
and where H and H2 are modeled as random functions. (The reductionist secu-
rity argument is elementary but tedious, and hence is omitted.) Observe that the
initiator Â cannot prepare the first outgoing message without knowledge of the
peer’s identifier B̂ and static public key B. Hence, unless protocol P is modified
in a fundamental way, it cannot be executed in the post-specified peer model
without additional message flows to exchange identifiers and static public keys.

1. On input (Â, B̂, s), party Â (the initiator) does the following:
(a) Create an active session (Â, B̂, s, I).
(b) Select an ephemeral private key x ∈R [1, q − 1].
(c) Compute X = gx and tA = H2(Ba, I, s, Â, B̂, X).
(d) Send (B̂, Â, s, X, tA) to B̂.

2. Upon receiving (B̂, Â, s, X, tA), party B̂ (the responder) does the following:
(a) Create an active session (B̂, Â, s,R).
(b) Verify that X ∈ G∗.
(c) Compute σs = Ab and verify that tA = H2(σs, I, s, Â, B̂, X).
(d) Select an ephemeral private key y ∈R [1, q − 1].
(e) Compute Y = gy, tB = H2(σs,R, s, B̂, Â, Y), and k = H(Xy, X, Y).
(f) Destroy y and σs.

58 A. Menezes and B. Ustaoglu

(g) Send (Â, B̂, s, I, Y, tB) to Â.
(h) Complete the session (B̂, Â, s,R) and accept k as the session key.

3. Upon receiving (Â, B̂, s, I, Y, tB), party Â checks that she owns an active
session with identifier (Â, B̂, s, I). If so, then Â does the following:
(a) Verify that Y ∈ G∗.
(b) Verify that tB = H2(Ba,R, s, B̂, Â, Y).
(c) Compute k = H(Y x, X, Y).
(d) Destroy x.
(e) Complete the session (Â, B̂, s, I) by accepting k as the session key.

3.2 HMQV Protocol

HMQV [11] is an efficient two-pass Diffie-Hellman key agreement protocol that
has been proven to be secure in the pre-specified peer model under the CDH
and KEA1 assumptions and where the hash functions employed are modeled
as random functions.1 The following informal description of the protocol omits
some technical details that are not relevant to our analysis.2

Let H denote a hash function whose outputs are bitstrings of length l, where
l is half the bitlength of the group order q. In HMQV, the initiator Â sends
(B̂, Â, X) to B̂, who responds with (Â, B̂, Y). Party Â computes the session key
k = H(σA), where σA = (Y Be)x+da and d = H(X, B̂) and e = H(Y, Â). Party
B̂ computes the same session key as k = H(σB), where σB = (XAd)y+eb.

Unlike protocol P , HMQV is executable in the post-specified peer model. In-
deed, the initiator can prepare the first message (which essentially consists of the
ephemeral public key X) without knowledge of the peer’s identifier B̂ or static
public key B. It is natural then to ask whether HMQV is secure in the post
model. This is also important because the version of HMQV that is being con-
sidered for standardization by the P1363 working group [12] does not mandate
that the protocol be executed in the pre model (i.e., there is no requirement that
the communicating parties possess each other’s identifiers and static public keys
prior to a protocol run), and consequently the protocol may in fact be executed
in the post model in applications where the responder’s identifier is not available
to the initiator at the beginning of the protocol run.

We describe an attack which demonstrates that HMQV (without further mod-
ification such as the addition of message flows to exchange identifiers and static
public keys) is not secure in the post model. The attack makes the following plau-
sible assumptions: (i) the group order q is a 160-bit prime and so the outputs of
H have bitlength 80; (ii) the best attack on the CDH problem in G takes approx-
imately 280 steps; (iii) there are at least 220 honest (i.e., uncorrupted) parties;
(iv) a party can select its own identifier; and (v) the certification authority does

1 The security definition used in [11] is stronger than the security definition outlined
in §2.1 in the sense that the adversary is granted certain additional capabilities.
For example, the adversary is allowed to register a static key pair at any time thus
allowing the modeling of attacks by malicious insiders.

2 In particular, we omit session identifiers and assume that all static and ephemeral
public key are fully validated, i.e., verified as belonging to G∗.

Comparing the Pre- and Post-specified Peer Models for Key Agreement 59

not require parties to prove knowledge of the static private keys corresponding
to their static public keys during registration.3 The attack proceeds as follows.

1. The adversaryM induces Â to create a session with a destination address d̂
controlled byM. In response, Â selects ephemeral key pair (x, X) and sends
(d̂, Â, X).

2. M intercepts (d̂, Â, X) and does the following:

(a) Compute S = {(Ĉ, H(X, Ĉ)) | Ĉ is an honest party}.
(b) Select an identifier M̂ (not the same as the identifier of an honest party)

such that (B̂, H(X, M̂)) ∈ S for some B̂.
(c) Select M = B as M̂ ’s static public key (note thatM does not know the

corresponding private key).
(d) Send (B̂, Â, X) to B̂.

3. M intercepts B̂’s reply (Â, B̂, Y) and sends (Â, M̂, Y) to Â.

Party Â computes the session key k = H(σA), where σA = (Y Me)x+da and
d = H(X, M̂) and e = H(Y, Â). Party B̂ computes the session key k′ = H(σB),
where σB = (XAd′

)y+e′b and d′ = H(X, B̂) and e′ = H(Y, Â). Since d′ = d,
e′ = e, and M = B, we have σA = σB and hence k′ = k. The problem is that
while B̂ correctly believes that k is shared with Â, party Â mistakenly believes
that k is shared with M̂ . Thus M has successfully launched an ‘unknown key-
share’ or ‘identity misbinding’ attack on HMQV in the post model. The expected
running time of the attack is about 260 (for step 2b). Since most of the work
has to be done online, the attack cannot be considered practical. Nevertheless
it demonstrates that HMQV does not attain an 80-bit security level in the post
model as it presumably does in the pre model.

The mechanisms of the attack were outlined in Remark 7.2 of [11]. However,
the adversary considered in [11] operates in a different setting, namely the pre
model where party Â precomputes and stores her ephemeral public keys X which
are then inadvertently leaked toM before Â uses them in a session. Three coun-
termeasures were proposed in [11] for foiling this attack: (i) increase the output
length of H to 160 bits; (ii) include the identifiers Â, B̂ in the key derivation
function whereby the session key is computed as k = H(σ, Â, B̂); and (iii) in-
clude random nonces (which are not precomputed and stored) in the derivation
of exponents d and e, whereby the exponents are computed as d = H(X, B̂, νA)
and e = H(Y, Â, νB) where νA and νB are Â’s and B̂’s nonces, respectively.
Countermeasures (i) and (ii) are successful in thwarting the attack described
above on HMQV in the post model. However, it can easily be seen that counter-
measure (iii) does not prevent the attack in the post model, thus demonstrating
that the two attacks are indeed different. The reason countermeasure (iii) fails
is that, unlike in the pre model, the peer’s identifier is not known to Â when she
creates the session in the post model.

3 In [11] it is noted that the HMQV security proof does not depend on the CA per-
forming any proof-of-possession checks.

60 A. Menezes and B. Ustaoglu

3.3 Σ0 Protocol

The Σ0 protocol [5] is a simplified version of one of the IKE key agreement
protocols. In the protocol description below, PRF is a pseudorandom function
family, MAC is a message authentication code algorithm, and sigA and sigB are
the signing algorithms for Â and B̂, respectively.

1. Party Â (the initiator) selects an ephemeral key pair (x, X), initializes the
session identifier to (Â, s), and sends (d̂B , d̂A, s, X). Here d̂A and d̂B are
destination addresses for Â and B̂, respectively.

2. Upon receipt of (d̂B, d̂A, s, X), B̂ (the responder) selects an ephemeral key
pair (y, Y), and computes σ = Xy, k = PRFσ(0), and k′ = PRFσ(1). B̂
then destroys y and σ, initializes the session identifier to (B̂, s), and sends
m1 = (d̂A, B̂, s, Y, sigB(R, s, X, Y), MACk′ (R, s, B̂)).

3. Upon receiving m1, Â computes σ = Y x, k = PRFσ(0), and k′ = PRFσ(1).
Â then verifies the signature and MAC tag in m1, and sends m2 = (B̂, Â, s,
sigA(I, s, Y, X), MACk′ (I, s, Â)). Finally, Â accepts the session key k with
peer B̂, and erases the session state.

4. Upon receiving m2, B̂ verifies the signature and MAC tag in m2, accepts
the session k with peer Â, and erases the session state.

In [5], the Σ0 protocol is proven secure in the post-specified peer model pro-
vided that the DDH assumption holds in G and that the PRF, MAC, and sig
primitives are secure. However, the following attack described in [5] shows that
Σ0 is not secure in the pre-specified peer model.

1. Create a session (Â, B̂, s) at Â.
2. Intercept Â’s outgoing message (B̂, Â, s, X) and send (B̂, M̂, s, X) to B̂.
3. Intercept B̂’s response (M̂, B̂, s, Y, SB, tB), where SB = sigB(R, s, X, Y) and

tB = MACk′ (R, s, B̂), and send (Â, B̂, s, Y, SB, tB) to Â.
4. The session (Â, B̂, s) at Â completes and accepts k as the session key.
5. Intercept and delete Â’s final message, and issue a SessionStateReveal query

to the session (B̂, M̂ , s) thus learning k and k′.
6. Issue the Test query to the session (Â, B̂, s) and use knowledge of k to win

the distinguishing game.

Notice that the attack is legitimate in the pre-specified peer model since the
exposed session (B̂, M̂, s) is not matching to the test session (Â, B̂, s). On the
other hand, such an attack is not permitted in the post-specified peer model
because in step 5 of the attack the session (B̂, s) is still incomplete and therefore
matching to the Test session (and thus cannot be exposed). This is all rather
counterintuitive since one would expect that if a protocol is secure when the
initiator does not have a priori knowledge of the peer’s identifier, then it should
remain secure when the peer’s identifier is known at the outset.

One feature of both the pre and post models is that an exposed session does
not produce any further output. In practice, however, one might desire the as-
surance that a particular session is secure even if the adversary learns some
secret state information (such as an ephemeral private key) associated with that

Comparing the Pre- and Post-specified Peer Models for Key Agreement 61

session or its matching session. For this reason, the security models in recent
papers such as [11], [13] and [20] permit exposed sessions to continue producing
output, and furthermore allow the adversary to issue a SessionStateReveal query
(or its equivalent) to the Test session and its matching session (cf. §4.3). How-
ever, if the adversary M were equipped with these extra capabilities, then the
Σ0 protocol would be insecure in both the pre and post models since M could
issue a SessionStateReveal query to (Â, s) after step 1 to learn x and thereafter
compute the session key. Furthermore, the Σ0 protocol falls in the post model to
the following analogue of the attack described above. The attack is a little more
realistic than the attack described above in the pre model because we now as-
sume that the SessionStateReveal query does not yield the session key k (which
may be stored in secure memory). M’s actions are the following:

1. Create a session (Â, s) at Â with peer destination address d̂B .
2. Intercept Â’s outgoing message (d̂B , d̂A, s, X) and send (d̂B, d̂M , s, X) to B̂.
3. Intercept B̂’s response (d̂M , B̂, s, Y, SB, tB), where SB = sigB(R, s, X, Y)

and tB = MACk′ (R, s, B̂), and send (d̂A, B̂, s, Y, SB, tB) to Â.
4. Intercept Â’s final message and delete it. The session (Â, s) completes with

peer B̂ and session key k.
5. Issue a SessionStateReveal query to the incomplete session (B̂, s) and learn

the MAC key k′.
6. Compute SM = sigM (I, s, Y, X) and tM = MACk′ (I, s, M̂), and send

(B̂, M̂ , s, SM , tM) to B̂.

The session (B̂, s) completes with peer M̂ and session key k. Thus M has suc-
cessfully launched an unknown key-share attack on Σ0 in the post model. The
two attacks demonstrate that a protocol proven secure in the post-specified peer
model of [5] may no longer be secure if exposed sessions are allowed to continue
producing output.

4 Combining the Two Models

In this section we introduce the notion of a modifiable key agreement protocol
— protocols designed for the pre-specified peer model but which can be adapted
with minor changes to be executable in the post-specified peer model. We also
introduce the notion of a hybrid key agreement protocol, which simultaneously
describes a modifiable protocol and its modification suitable for the post model.
We then develop a security definition that, if satisfied by a hybrid protocol,
guarantees that the associated protocols are secure in the pre and post models.

4.1 Modifiable Protocols

Consider a key agreement protocol Π designed for the pre model where the first
outgoing message prepared by the initiator Â is of the form (B̂, Â, RoundOne).
Then Π is said to be modifiable if RoundOne can be computed before the session

62 A. Menezes and B. Ustaoglu

is created at Â; in particular, this means that RoundOne does not depend on
B̂’s identifier or static public key.

A modifiable protocol Π can be easily adapted for the post-specified peer
model by incorporating identity establishment into the protocol flows. The re-
quired changes are the following. The initiator Â, who is activated to create a
session with a destination address d̂ (and without knowledge of the recipient’s
identifier or static public key), sends (d̂, Â, RoundOne) as her first outgoing mes-
sage. Since this message contains the identifier Â, the responder has all the in-
formation he needs to prepare his first outgoing message as specified by Π . The
responder appends his identifier to this outgoing message (if the message does
not already contain the identifier). After Â receives this reply, both Â and the
responder can proceed with Π without any further modifications. Notice that
the modified protocol Π ′ has the same number of message flows as the original
protocol Π ; except for appending a public value to the first outgoing message,
the remainder of the protocol remains the same.

As mentioned in §1, the class of modifiable key agreement protocols includes
many of the protocols that have been proposed in the literature. However, not
all key agreement protocols are modifiable; for example, protocol P defined in
§3.1 is not modifiable. Furthermore, as demonstrated by the attack on HMQV
in §3.2, security of a modifiable protocol Π in the pre model does not imply
security of the modified protocol Π ′ in the post model.

4.2 Hybrid Protocols

Suppose that Π is a modifiable key agreement protocol, and Π ′ its modification
suitable for the post model. The specification of Π and Π ′ can be combined as
described below, resulting in a protocol Π̃ called a hybrid protocol.

We use Ã to denote either an identifier Â or a destination address d̂ that can
be used to send messages to some party Â whose identifier is not known to the
sender; note that the address d̂ may not necessarily be under Â’s control. In the
description of Π̃ , a session is created at initiator Â via a message containing
(Â, B̃). The first outgoing message from Â is (B̃, Â, RoundOne). The responder
B̂ includes the identifiers Â and B̂ in his response, and the remainder of the
protocol description is the same as for Π .

A hybrid protocol Π̃ can be specialized for the pre model by using an identifier
B̂ for B̃. Protocol Π̃ can also be specialized for the post model by using a
destination address for B̃. An example of a hybrid protocol is given in §5.

4.3 Combined Security Model

This section describes a “combined” model and associated security definition
that aims to simultaneously capture the security assurances of the pre- and
post-specified peer models. That is, if a hybrid protocol Π̃ is proven secure with
respect to the new definition, then its specializations Π and Π ′ are guaranteed
to be secure when run in the pre and post models, respectively. More precisely,
when run in the pre model, Π satisfies the extended Canetti-Krawczyk (eCK)
definition [13] suitably enhanced to capture attacks where an adversary is able to

Comparing the Pre- and Post-specified Peer Models for Key Agreement 63

learn ephemeral public keys of parties before they are actually used in a protocol
session.4 Such attacks were considered by Krawczyk [11], but were not incorpo-
rated into his security model. When run in the post model, the modified protocol
Π ′ satisfies a strengthened version of the Canetti-Krawczyk definition from [5],
suitably enhanced to offer security assurances similar to the eCK definition (in-
cluding resistance to attacks where the adversary learns ephemeral private keys
of the session being attacked) and to capture attacks where the adversary learns
ephemeral public keys before they are actually used.

Instead of using pre-determined session numbers s to identify sessions (cf.
§2.1), our session identifiers will consist of the identities of the communicating
parties together with a concatenation of the messages exchanged during a proto-
col run. As shown in [6], this notion of session identifier yields a security model
for key agreement that is at least as strong as other security models.

Notation. We assume that messages are represented as binary strings. If m is a
vector then #m denotes the number of its components. We say that two vectors m1

and m2 are matched, written m1 ∼ m2, if the first t = min{#m1, #m2} compo-
nents of the vectors are pairwise equal as binary strings. We write Â ≡ D̃ if either
D̃ = Â or if D̃ is a destination address that can be used to send messages to Â.

Session Creation. A party Â can be activated via an incoming message to
create a session. The incoming message has one of the following forms: (i) (Â, B̃)
or (ii) (Ã, B̂, In). If Â was activated with (Â, B̃) then Â is the session initiator;
otherwise Â is the session responder.

Session Initiator. If Â is the session initiator then Â creates a separate session
state where session-specific short-lived data is stored, and prepares a reply Out
that includes an ephemeral public key X . The session is labeled active and iden-
tified via a (temporary and incomplete) session identifier s = (Â, B̃, I, Comm)
where Comm is initialized to Out. The outgoing message is (B̃, Â, Out).

Session Responder. If Â is the session responder then Â creates a separate
session state and prepares a reply Out that includes an ephemeral public key
X . The session is labeled active and identified via a (temporary and incomplete)
session identifier s = (Â, B̂,R, Comm) where Comm = (In, Out). The outgoing
message is (B̂, Â, I, In, Out).

Session Update. A party Â can be activated to update a session via an incom-
ing message of the form (Â, B̂, role, Comm, In), where role ∈ {I,R}. Upon re-
ceipt of this message, Â checks that she owns an active session with identifier s =
(Â, B̂, role, Comm) or s = (Â, d̂, role, Comm) where d̂ is a destination address;
except with negligible probability, Â can own at most one such session. If no such
session exists then the message is rejected. If a session s = (Â, d̂, role, Comm)
or s = (Â, B̂, role, Comm) exists, then in the former case Â updates the session

4 As discussed in [11], such attacks may be possible in situations where a party pre-
computes ephemeral public keys in order to improve on-line performance.

64 A. Menezes and B. Ustaoglu

identifier to s = (Â, B̂, role, Comm); in either case, Â updates s by appending In
to Comm. If the protocol requires a response by Â, then Â prepares the required
response Out; the outgoing message is (B̂, Â, role, Comm, Out) where role is B̂’s
role as perceived by Â, and the session identifier is updated by appending Out to
Comm. If the protocol specifies that no further messages will be received, then
the session completes and accepts a session key.

Matching Sessions. Since ephemeral public keys are selected at random on a
per-session basis, session identifiers are unique except with negligible probability.
Party Â is said to be the owner of a session (Â, B̃, ∗, ∗). For a session (Â, B̂, ∗, ∗)
we call B̂ the session peer ; together Â and B̂ are referred to as the communicating
parties. Let s = (Â, B̃, roleA, CommA) be a session owned by Â, where roleA ∈
{I,R}. A session s∗ = (Ĉ, D̃, roleC , CommC), where roleC ∈ {I,R}, is said to
be matching to s if Ĉ ≡ B̃, Â ≡ D̃, roleA �= roleC , and CommC ∼ CommA. It
can be seen that the session s, except with negligible probability, can have more
than one matching session if and only if CommA has exactly one component,
i.e., is comprised of a single outgoing message.

Aborted Sessions. A protocol may require parties to perform some checks on
incoming messages. For example, a party may be required to perform some form
of public key validation or verify a signature. If a party is activated to create a
session with an incoming message that does not meet the protocol specifications,
then that message is rejected and no session is created. If a party is activated
to update an active session with an incoming message that does not meet the
protocol specifications, then the party deletes all information specific to that
session (including the session state and the session key if it has been computed)
and aborts the session; such an abortion occurs before the session identifier can
be updated. At any point in time a session is in exactly one of the following
states: active, completed, aborted.

Adversary. The adversary M is modeled as a probabilistic Turing machine
and controls all communications. In particular, this means that Â ≡ d̂ for all
parties Â and all destination addresses d̂. Parties submit outgoing messages to
M, who makes decisions about their delivery. The adversary presents parties
with incoming messages via Send(message), thereby controlling the activation
of parties. The adversary does not have immediate access to a party’s private
information, however in order to capture possible leakage of private information
M is allowed to make the following queries:

– StaticKeyReveal(Â): M obtains Â’s static private key.
– EphemeralKeyReveal(s):M obtains the ephemeral private key held by ses-

sion s.5 We will henceforth assume thatM issues this query only to sessions
that hold an ephemeral private key.

5 The EphemeralKeyReveal query can be made functionally equivalent to the Session-
StateReveal query by defining the ephemeral private key to consist of all ephemeral
secret data that a session may hold.

Comparing the Pre- and Post-specified Peer Models for Key Agreement 65

– SessionKeyReveal(s): If s has completed thenM obtains the session key held
by s. We will henceforth assume that M issues this query only to sessions
that have completed.

– EphemeralPublicKeyReveal(Â): M obtains the ephemeral public key that
Â will use the next time a session is created within Â.

– EstablishParty(Â, A): This query allowsM to register an identifier Â and a
static public key A on behalf of a party. The adversary totally controls that
party, thus permitting the modeling of attacks by malicious insiders. Parties
that were established by M using EstablishParty are called corrupted or
adversary controlled. If a party is not corrupted it is said to be honest.

Adversary Goal. To capture the indistinguishability requirement, M is al-
lowed to make a special query Test(s) to a ‘fresh’ session s. In response, M is
given with equal probability either the session key held by s or a random key.
M meets its goal if it guesses correctly whether the key is random or not. Note
that M can continue interacting with the parties after issuing the Test query,
but must ensure that the test session remains fresh throughoutM’s experiment.

Definition 1. Let s be the identifier of a completed session, owned by an honest
party Â with peer B̂, who is also honest. Let s∗ be the identifier of the matching
session of s, if it exists. Define s to be fresh if none of the following conditions
hold:

1. M issued SessionKeyReveal(s) or SessionKeyReveal(s∗) (if s∗ exists).
2. s∗ exists and M issued one of the following:

(a) Both StaticKeyReveal(Â) and EphemeralKeyReveal(s).
(b) Both StaticKeyReveal(B̂) and EphemeralKeyReveal(s∗).

3. s∗ does not exist and M issued one of the following:
(a) Both StaticKeyReveal(Â) and EphemeralKeyReveal(s).
(b) StaticKeyReveal(B̂).

Definition 2. A key agreement protocol is secure if the following conditions
hold:

1. If two honest parties complete matching sessions then, except with negligible
probability, they both compute the same session key.

2. No polynomially bounded adversaryM can distinguish the session key of a
fresh session from a randomly chosen session key, with probability greater
than 1

2 plus a negligible fraction.

5 NAXOS-C Protocol

In this section we present the hybrid version of the NAXOS-C key agreement
protocol, which is essentially the NAXOS protocol of [13] augmented with key
confirmation. In the protocol description, λ is the security parameters, and H :
{0, 1}∗ → {0, 1}λ × {0, 1}λ, H1 : {0, 1}∗ → [1, q − 1], and H2 : {0, 1}∗ → {0, 1}λ
are hash functions. NAXOS-C can be specialized to run in either the pre or the

66 A. Menezes and B. Ustaoglu

post model. Moreover, it can be proven secure in the combined model of §4.3
provided that the GDH assumption holds in G and that the hash functions H ,
H1 and H2 are modeled as random functions; a reductionist security argument
can be found in the full version of this paper [17]. Hence NAXOS-C is secure in
both the pre- and post-specified peer models.

The purpose of presenting the NAXOS-C protocol is to demonstrate that the
security definition of §4.3 is useful (and not too restrictive) in the sense that there
exist practical protocols that meet the definition under reasonable assumptions.
The protocol was designed to allow a straightforward (albeit tedious) reduction-
ist security argument, and has not been optimized. In particular, not all the
inputs to the hash functions H , H1 and H2 may be necessary for security, and
in practice H2 would be implemented as a MAC algorithm (with secret key k′).

1. Party Â (the initiator) does the following:
(a) Select an ephemeral private key x̃ ∈R {0, 1}λ, and compute x = H1(a, x̃)

and X = gx.
(b) Destroy x.
(c) Initialize the session identifier to (Â, B̃, I, X).
(d) Send (B̃, Â, X) to B̃.

2. Upon receiving (B̃, Â, X), party B̂ (the responder) does the following:
(a) Verify that X ∈ G∗.
(b) Select an ephemeral private key ỹ ∈R {0, 1}λ, and compute y = H1(b, ỹ)

and Y = gy.
(c) Compute σ1 = Ay, σ2 = Xb and σe = Xy.
(d) Compute (k, k′)=H(Â, B̂, X, Y, σ1, σ2, σe) and tB =H2(k′,R,B̂, Â, Y, X).
(e) Destroy ỹ, y, σ1, σ2 and σe.
(f) Initialize the session identifier to (B̂, Â,R, X, Y, tB).
(g) Send (Â, B̂, X, Y, tB) to Â.

3. Upon receiving (Â, B̂, X, Y, tB), party Â checks that she owns an active ses-
sion with identifier (Â, B̃, I, X). If so, then Â does the following:
(a) Verify that Y ∈ G∗.
(b) Compute x = H1(a, x̃), σ1 = Y a, σ2 = Bx and σe = Y x.
(c) Compute (k, k′) = H(Â, B̂, X, Y, σ1, σ2, σe).
(d) Destroy x̃, x, σ1, σ2 and σe.
(e) Verify that tB = H2(k′,R, B̂, Â, Y, X).
(f) Compute tA = H2(k′, I, Â, B̂, X, Y).
(g) Destroy k′.
(h) Send (B̂, Â, X, Y, tB, tA) to B̂.
(i) Update the session identifier to (Â, B̂, I, X, Y, tB, tA) and complete the

session by accepting k as the session key.
4. Upon receiving (B̂, Â, X, Y, tB, tA), party B̂ checks that he owns an active

session with identifier (B̂, Â,R, X, Y, tB). If so, then B̂ does the following:
(a) Verify that tA = H2(k′, I, Â, B̂, X, Y).
(b) Destroy k′.
(c) Update the session identifier to (B̂, Â,R, X, Y, tB, tA) and complete the

session by accepting k as the session key.

Comparing the Pre- and Post-specified Peer Models for Key Agreement 67

6 Conclusions

We compared the Canetti-Krawczyk pre- and post-specified peer models for key
agreement, and demonstrated that security in one model does not guarantee se-
curity or even executability in the other model. We also presented a combined
security model and definition that simultaneously encompasses strengthened ver-
sions of the Canetti-Krawczyk definitions. The new definition is stronger in that
it permits the adversary to learn ephemeral public keys before they are used, and
to learn secret information from the session being attacked. Useful directions for
future research would be the development of an optimized protocol that satisfies
the new security definition, perhaps modified to allow for identity concealment,
and the extension of the definition to capture a wider class of key agreement
protocols.

References

1. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994), http://www.cs.ucdavis.edu/∼rogaway/papers/eakd-abstract.html

2. Boyd, C., Mao, W., Paterson, K.: Key agreement using statically keyed authenti-
cators. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089,
pp. 248–262. Springer, Heidelberg (2004)

3. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Springer, Heidelberg (2003)

4. Canetti, R.,Krawczyk,H.:Analysis of key-exchangeprotocols and their use for build-
ing secure channels. In:Pfitzmann,B. (ed.)EUROCRYPT2001.LNCS, vol. 2045, pp.
453–474. Springer, Heidelberg (2001), http://eprint.iacr.org/2001/040

5. Canetti, R., Krawczyk, H.: Security analysis of IKE. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 143–161. Springer, Heidelberg (2002),
http://eprint.iacr.org/2002/120

6. Choo, K., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based proof
models for key establishment protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS,
vol. 3788, pp. 585–604. Springer, Heidelberg (2005)

7. Diffie, W., van Oorschot, P., Wiener, M.: Authentication and authenticated key
exchanges. Designs, Codes and Cryptography 2, 107–125 (1992)

8. Harkins, D., Carrel, D.: The internet key exchange (IKE)., RFC 2409, Internet
Engineering Task Force (1998)

9. Kaufman, C. (ed.): Internet key exchange (IKEv2) protocol, RFC 4306, Internet
Engineering Task Force (2005)

10. Krawczyk, H.: SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003)

11. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol., Cryp-
tology ePrint Archive, Report 2005/176, http://eprint.iacr.org/2005/176; In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005)

12. Krawczyk, H.:“HMQV in IEEE P1363”, submission to the IEEE P1363 working
group, July 7 (2006), http://grouper.ieee.org/groups/1363/P1363-Reaffirm/
submissions/krawczyk-hmqv-spec.pdf

http://www.cs.ucdavis.edu/~rogaway/papers/eakd-abstract.html
http://eprint.iacr.org/2001/040
http://eprint.iacr.org/2002/120
http://eprint.iacr.org/2005/176
http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/krawczyk-hmqv-spec.pdf
http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/krawczyk-hmqv-spec.pdf

68 A. Menezes and B. Ustaoglu

13. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

14. Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 378–394. Springer, Heidelberg (2006)

15. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for
authenticated key agreement. Designs, Codes and Cryptography 28, 119–134 (2003)

16. Menezes, A., Ustaoglu, B.: Security arguments for the UM key agreement protocol
in the NIST SP 800-56A standard. In: Proceedings of ASIACCS 2008, pp. 261–270.
ACM Press, New York (2008)

17. Menezes, A., Ustaoglu, B.: Comparing the pre- and post-specified peer models for
key agreement, Technical Report CACR 2008-07, University of Waterloo (2008),
http://www.cacr.math.uwaterloo.ca

18. Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484.
Springer, Heidelberg (2007)

19. SP 800-56A Special Publication 800-56A, Recommendation for Pair-Wise Key Es-
tablishment Schemes Using Discrete Logarithm Cryptography, National Institute
of Standards and Technology (March 2006)

20. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS. Designs, Codes and Cryptography 46, 329–342 (2008)

http://www.cacr.math.uwaterloo.ca

Efficient One-Round Key Exchange in the

Standard Model�

Colin Boyd1, Yvonne Cliff1, Juan Gonzalez Nieto1, and Kenneth G. Paterson2

1 Information Security Institute,
Queensland University of Technology,

GPO Box 2434 Brisbane Qld 4001, Australia
y.cliff@isi.qut.edu.au, {c.boyd,j.gonzaleznieto}@qut.edu.au

2 Information Security Group,
Royal Holloway University of London,

Egham, Surrey TW20 0EX, U.K.
Kenny.Paterson@rhul.ac.uk

Abstract. We consider one-round key exchange protocols secure in
the standard model. The security analysis uses the powerful security
model of Canetti and Krawczyk and a natural extension of it to the
ID-based setting. It is shown how KEMs can be used in a generic way
to obtain two different protocol designs with progressively stronger
security guarantees. A detailed analysis of the performance of the
protocols is included; surprisingly, when instantiated with specific KEM
constructions, the resulting protocols are competitive with the best
previous schemes that have proofs only in the random oracle model.

Keywords: Key exchange, standard model.

1 Introduction

There has been a recent rapid growth of interest in efficient cryptographic prim-
itives of all kinds that carry proofs in the standard model. Avoiding the random
oracle model (ROM) or generic group model is to be preferred, given the known
problems with instantiating these models in practice [8]. However, the usual price
to be paid for working in the standard model is a loss of efficiency.

This paper initiates the systematic study of key exchange protocols whose
security can be analyzed in the standard model. Our focus here is on two-party,
one-round protocols — protocols in which only two message flows are required to
securely establish a key between two parties. We provide two related, yet distinct,
approaches to building such protocols using KEMs [1], both in the ID-based set-
ting and the traditional PKI-based setting. Our security proofs use the Canetti-
Krawczyk model (appropriately adapted for the identity-based case), which is
sufficiently powerful to allow the capture of a variety of security properties in-
cluding basic session key security, key compromise impersonation resistance, and
various types of forward security.
� See [6] for the full version of this paper.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 69–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

70 C. Boyd et al.

In the identity-based setting, there is no shortage of protocols with security
analysis in the ROM, with Chen, Cheng and Smart [10] providing a useful survey
and comparison of these. Our protocols appear to be the first explicit construc-
tions that are proven secure in the standard model in this setting. A recent
preprint [22] also considers ID-based key exchange in the standard model, but
the security analysis therein is incomplete – we comment in more detail on this
below. We consider the instantiation of our ID-based protocol designs with a
variety of suitable concrete KEM components. These are derived from ID-based
KEMs of Kiltz [14], Kiltz-Galindo [16] and Gentry [12]. By modifying these to
operate in the setting of asymmetric pairings and ordinary elliptic curves, we are
able to produce concrete ID-based protocols with security proven in the stan-
dard model that are only 2.5 times slower than the most efficient protocols with
security established in the ROM, the comparison being made on elliptic curves
with a 128-bit security level.

In the PKI setting we also obtain efficient, one round, concrete protocol designs
in the standard model, which compare favorably with the protocols of Jeong, Katz
and Lee [13], Krawczyk [18] and Okamoto [21] which are to our knowledge the only
one-round protocols secure in the standard model. The protocols are reasonably
efficient even when compared to the best ROM protocols. For example, they can be
instantiated with standard model KEMs to yield protocols with a computational
increase of a factor around 3 when compared with HMQV [19].

Our first protocol design is the most efficient of the two, and provides key-
compromise impersonation (KCI) resistance but not forward secrecy (FS). The
basic idea of our first protocol design is very simple: the two parties simply send
each other a random secret value using the IB-KEM and then use a randomness
extractor to derive a session key from the combined secrets. Our second protocol
design is based on the first, but adds an independent Diffie-Hellman exchange
to achieve forward secrecy. It also achieves KCI resistance.

1.1 Related Work

Following the development of practical schemes for identity-based encryption
many other identity-based primitives have been designed; due to their practical
importance, these have included many key exchange protocols. Chen et al. [10]
have provided a useful survey and comparison of work to date on identity-based
key exchange.

Initially all security proofs for identity-based primitives relied on the random
oracle model. More recently there has been a focus on providing new identity-
based encryption (IBE) and identity-based key encapsulation (IB-KEM) schemes
with security proofs in the standard model. Recent and quite efficient proposals
include those of Waters [23], Kiltz [14], Gentry [12] and Kiltz–Galindo [16,17].

Up until now, all proofs for identity-based key exchange protocols have contin-
ued to rely on the ROM, with the exception [22] noted. However, although Wang
et al. [22] propose three protocols, a proof for only one is provided; the other
two proofs supposedly use similar techniques. The protocol with a claimed proof
applies a key derivation function H2 to the shared secret, exchanged messages

Efficient One-Round Key Exchange in the Standard Model 71

and identities. No properties of the key derivation function are stated or used
in the proof; indeed the proof ignores the presence of H2 altogether. However,
without the key derivation function, the protocol is completely insecure, because
it is based on the CPA (rather than CCA) version of Gentry’s IB-KEM [12] and
so has malleable messages. This malleability is easily exploited to find attacks
which break the security of the protocol. The problems in the paper of Wang et
al. [22] illustrate that it is not hard to devise ID-based protocols that look secure
in the standard model but making the proofs work is not always so simple.

We note too that it is relatively straightforward to obtain standard-model se-
cure key exchange protocols (in both settings) using the authenticator approach
of Canetti-Krawczyk [9], by working with standard-model-secure cryptographic
primitives. The resulting protocols can be quite computationally efficient, but
generally require more than one round of communication. A detailed study of
such protocols is deferred to our future work.

In the normal public key model, Jeong et al. [13], proposed a protocol, called
TS3, which is one-round and proven secure in the standard modelTS3 is a Diffie-
Hellman (DH) key exchange authenticated using a MAC keyed under the (static)
DH of the long term keys of the two users. TS3 provides (weak) forward secrecy,
but fails to achieve KCI resistance – a consequence of the static key used for au-
thentication being the same for both parties. Interestingly, the ID-version of TS3,
appears to be limited to be only secure in the ROM. An ID-based version of TS3
secure in the standard model would imply a non-interactive ID-based key estab-
lishment protocol also secure in the standard model, which to date is not known.
Even if we had such a primitive, the protocol would still not be KCI resistant.

More recently and closely related to our work, Okamoto [21] has proposed
a one-round PKI-based protocol also secure in the standard model, which pro-
vides both (weak) forward secrecy and KCI resistance. The main advantage of
our protocols over Okamoto’s is that ours are generic. They can be instantiated
using any combination of KEMs as long as they are CCA secure. Okamoto’s
protocol is highly specialised and the proof does not seem to generalise easily.
Additionally Okamoto’s key derivation function needs a non-standard notion of
pseudo-random function security. Okamoto’s proof is in the extended Canetti-
Krawczyk (eCK) security model proposed by [20], while our proofs are on the
Canetti-Krawczyk (CK) model, with the modifications by Krawcyzk [19] to cap-
ture KCI security and weak FS. The difference between the two models is rather
subtle and is discussed in the full version of this paper [6]. However, we remark
now that contrary to Okamoto’s statement in his paper, the eCK model is not
stronger than the CK model, i.e. security in the eCK model does not imply se-
curity in the CK model. Furthermore it is arguable whether the eCK adversarial
model is more realistic than the CK one.

2 Preliminaries

In this section we present standard definitions and results needed in the rest of
the paper.

72 C. Boyd et al.

Definition 1 (Min-entropy). Let X be a probability distribution over A. The
min-entropy of X is the value

min- ent(X) = minx∈A:PrX [x] �=0(−log2(PrX [x])) (1)

(Note that if X has min-entropy t then for all x ∈ A, PrX [x] ≤ 2−t.)

Definition 2 (Strong randomness extractor). A family of efficiently com-
putable hash functions H = {hκ : {0, 1}n → {0, 1}k|κ ∈ {0, 1}d} is called a strong
(m, ε)-randomness extractor, if for any random variable X over {0, 1}n that has
min-entropy at least m, if κ is chosen uniformly at random from {0, 1}d and
R is chosen uniformly at random from {0, 1}k, the two distributions 〈κ, hκ(X)〉
and 〈κ, R〉 have statistical distance ε, that is

1
2

∑

x∈{0,1}k

|Pr[hκ(X) = x]− Pr[R = x]| = ε

To implement the randomness extraction function, one could apply the work of
Chevassut et al. [11] to use a pseudo-random function as a randomness extractor.

Definition 3 (Pseudorandom Function Family (PRF)). Let F = {fs}s∈S

be a family of functions for security parameter k ∈ N and with seed s ∈ S = S(k).
Let C be an adversary that is given oracle access to either Fs for s ∈R K or a
truly random function with the same domain and range as the functions in F .
F is said to be pseudorandom if C’s advantage in distinguishing whether it has
access to a random member of F or a truly random function is negligible in k,
for all polynomial-time adversaries C. That is,

Advp−rand
F ,C (k) = |Pr[CFs(·)(1k) = 1]− Pr[CRand(·)(1k) = 1]|

is negligible in k.

Functions that are proven to be pseudorandom include CBC-MAC [4] (provided
the underlying block cipher is a secure pseudorandom permutation family and
the input length is constant) and HMAC [2] (provided the compression function
is a PRF).

Assumption 1 (Decisional Diffie-Hellman (DDH)) Let F be a cyclic
group of order p′ generated by an element f . Consider the set F 3 = F × F × F
and the following two probability distributions over it:

RF = {(fa, f b, f c) for a, b, c ∈R Zp′} (2)

and
DHF = {(fa, f b, fab) for a, b ∈R Zp′} (3)

We say the Decisional Diffie-Hellman (DDH) Assumption holds over F = 〈f〉 if
the two distributions RF and DHF are indistinguishable by all polynomial-time
adversaries D. More precisely, for k = |p′|

Advddh
F,D(k) = |Pr[D(1k, ρ) = 1|ρ ∈R DHF]− Pr[D(1k, ρ) = 1|ρ ∈R RF]|

is negligible in k.

Efficient One-Round Key Exchange in the Standard Model 73

Definition 4 (ID-based KEM). An IB-KEM E = (KeyGen, KeyDer,Enc, Dec)
consists of four polynomial-time algorithms:

– (pk , α) ∈R KeyGen(1k), given the security parameter k ∈ N, returns a master
public key, pk, and master secret key α;

– did ∈R KeyDer(pk , α, id) generates a private key corresponding to the identity
id.

– (C, K) ∈R Enc(pk , id) outputs a key K ∈R K (the key space) and an encap-
sulation (ciphertext) C of the key under the identity id;

– K = Dec(pk , did , C) outputs key K corresponding to the encapsulation C.

Our definition of security for an identity-based key-encapsulation mechanism
(IB-KEM) scheme is based upon that of Kiltz and Galindo [16].

Definition 5 (IB-KEM-CCA Security). The security of an IB-KEM
scheme E = (KeyGen, KeyDer, Enc, Dec) is defined using the following exper-
iment.

Experiment Expib−kem−cca
E,A (k)

(pk , α) ∈R KeyGen(1k)
(id∗, state) ∈R AOKeyDer(·),ODec(·,·)(find, pk)
K∗

0 ∈R K

(C∗, K∗
1) ∈R Enc(pk , id∗)

γ ∈R {0, 1}
K∗ = K∗

γ

γ′ ∈R AOKeyDer(·),ODec(·,·)(guess, K∗, C∗, state)
If γ �= γ′ then return 0 else return 1

where the oracles and advantage of A are defined as follows:

OKeyDer(id) = KeyDer(pk , α, id) (where id �= id∗)
ODec(id , C) = Dec(pk , KeyDer(pk , α, id), C) (where id �= id∗ or C �= C∗)

The advantage of A in the above experiment is:

Advib−kem−cca
E,A (k) =

∣
∣
∣2Pr

[

Expib−kem−cca
E,A (k) = 1

]

− 1
∣
∣
∣ .

E is secure against adaptively-chosen ciphertext attacks if Advib−kem−cca
E,A (k) is

a negligible function in k for all polynomial-time adversaries A.

3 Canetti-Krawczyk Model

In this section the CK approach is reviewed. Further details of the model can be
found in the original papers [3,9].

In the CK model a protocol π is modeled as a collection of n programs run-
ning at different parties, P1, . . . , Pn. Each program is an interactive probabilistic
polynomial-time (PPT) machine. Each invocation of π within a party is defined

74 C. Boyd et al.

to be a session, and each party may have multiple sessions running concurrently.
The communications network is controlled by an adversary A, also a PPT ma-
chine, which schedules and mediates all sessions between the parties. When first
invoked within a party, a key exchange protocol π calls an initialization function
that returns any information needed for the bootstrapping of the cryptographic
authentication functions. After this initialization stage, the party waits for acti-
vation. A may activate a party Pi in two ways:

1. By means of an establish-session(Pi, Pj , s) request, where Pj is another party
with whom the key is to be established, and s is a session-id string which
uniquely identifies a session between the participants.

2. By means of an incoming message m with a specified sender Pj .

Upon activation, the parties perform some computations, update their internal
state, and may output messages together with the identities of the intended
receivers. Two sessions (Pi, Pj , s) and (P ′

i , P
′
j , s

′) are said to be matching sessions
if Pi = P ′

j , Pj = P ′
i , and s = s′, i.e. if their session-ids are identical and they

recognised each other as their respective communicating partner for the session.
In the analysis of the protocols in this paper, we define the session-id as the
concatenation of the messages sent and received by the party. In addition to the
activation of parties, A can perform the following queries:

1. corrupt(Pi). With this query A learns the long term key of Pi.
2. session-key(Pi, Pj , s). This query returns the session key (if any) accepted by

Pi during a given session s with Pj .
3. session-state(Pi, Pj , s). This query returns all the internal state information

of party Pi associated to a particular session s with Pj , but does not include
the long term key of Pi.

4. session-expiration(Pi, Pj , s). This query is used for defining forward secrecy
and erases from memory the session key on a completed session. The session
is thereafter said to be expired.

5. test-session(Pi, Pj , s). To respond to this query, a random bit b is selected.
If b = 1 then the session key is output. Otherwise, a random key is output
chosen from the probability distribution of keys generated by the protocol.
This query can only be issued to a session that has not been exposed. A
session is exposed if the adversary performs any of the following actions:
– A session-state or session-key query to this session or to the matching

session, or
– A corrupt query to either partner before the session expires at that

partner.

Security is defined based on a game played by the adversary. In this game A
interacts with the protocol. In a first phase of the game, A is allowed to acti-
vate sessions and perform corrupt, session-key, session-state and session-expiration
queries as described above. The adversary then performs a test-session query to
a party and session of its choice. The adversary is not allowed to expose the test
session. A may then continue with its regular actions with the exception that

Efficient One-Round Key Exchange in the Standard Model 75

no more test-session queries can be issued. Eventually, A outputs a bit b′ as its
guess on whether the returned value to the test-session query was the session
key or a random value, then halts. A wins the game if b = b′. The definition of
security follows.

Definition 6. A key establishment protocol π is called session key (SK-) secure
with perfect forward secrecy (PFS) if the following properties are satisfied for
any adversary A.

1. If two uncorrupted parties complete matching sessions then they both output
the same key;

2. The probability that A guesses correctly the bit b is no more than 1
2 plus a

negligible function in the security parameter.

We define the advantage of A to be

Advsk
A = |2Pr[b = b′]− 1| .

Hence the second requirement will be met if the advantage of A is negligible.
Canetti and Krawczyk also provide a definition of SK-security without PFS. The
only difference with respect to the above definition is that now the adversary is
not allowed to expire sessions.

Krawczyk [19] showed that forward secrecy in the usual sense cannot be
achieved in a two-pass protocol such as the ones that we consider. Therefore
we restrict our concern to what Krawczyk calls weak forward secrecy (WFS), in
which the adversary is forbidden from taking an active part in the test session.
We will also consider partial WFS, where we further restrict the adversary to
corrupt at most one party to the test session. In the ID-based setting, WFS
implies key escrow freeness, i.e. it protects against attacks in which the Key
Generation Centre, who knows all the long term keys of all the parties, tries to
(passively) eavesdrop in the communications of any two parties.

The original CK model does not consider key compromise impersonation
(KCI) attacks, where the adversary, after compromising the long-term key of
a party A, engages in a successful protocol run with A posing as a third party
B, i.e. A accepts a session key in the belief that it is shared with B, when in
fact is shared with the adversary. Thus in a KCI attack there is no matching
session to the test session. To model KCI resistance for our protocols we modify
the definition of security to allow the adversary to corrupt the owner A of the
test session (A, B, s).

4 Generic 2×KEM Protocols

In this section, we present Protocols 1 and 2, two generic protocols based on the
use of any CCA-secure IB-KEM. The first, Protocol 1, is the most efficient of
the two, and provides KCI resistance, but does not provide forward secrecy. The
basic idea of Protocol 1 is very simple: the two parties simply send each other a

76 C. Boyd et al.

random secret value using the IB-KEM and then derive a session key from the
combined secrets using a randomness extractor and expander. Protocol 2 adds
an independent Diffie-Hellman exchange in a group generated by f to achieve
(weak) forward secrecy. It also achieves KCI resistance. The description of both
protocols for the PKI-based setting is the same except that the identities are
substituted with the public keys of the parties.

The protocol messages and actions are symmetrical for the parties in our
protocols. It is assumed that the IB-KEM is defined to output a random key if a
ciphertext is not valid. Because the protocols complete in one round, the actual
order in which the two parties A and B exchange their messages is irrelevant. In
the descriptions provided we let A be the one party such that idA < idB, using
some agreed order relation, e.g. lexicographic order.

In defining the session id s we have assumed that the randomness expander
is able to accept inputs at least as long as s. If this were not the case, a collision
resistant hash function can be used in order to shorten the length of the input to
the expander. Our security analysis can be easily modified to accept this change.

Note that each party must check that the identity of the party in its incom-
ing message is actually the identity of its intended partner. Furthermore, the
decapsulated IB-KEM key must be securely erased in the same activation in
which it is decapsulated. Thus we are making the restriction that session-state
reveal queries do not return decapsulated keys. Note however that once the key
is decapsulated it can be inmediately used to compute the session key, so there
is no need to store decapsulated keys. This restriction is critical, otherwise the
protocol can be trivially broken by the adversary, as follows. Let (A, C∗

A, B, C∗
B)

be the transcript of an observed protocol run that the adversaryA seeks to com-
promise. A initiates a new session with B by sending D, C∗

A to B, i.e. A pretends
to be D and replays the target ciphertext C∗

A. The adversary could then issue a
session-state reveal for the new session to B, thus obtaining the decryption C∗

A.
Using the same strategy with A, the adversary could find out the decryption
of C∗

B , which would then allow the adversary to compute the session key cor-
responding to the session (A, C∗

A, B, C∗
B). We emphasize that all other session

state can be revealed as part of a session-state query, in particular, encapsulated
keys (at the party that generated them) and DH exponentials. Despite of this, in
the description of our protocols, we explicitly ask for all intermediate state to be
erased once the session key is computed. It would seem artificial to specify that
only the decapsulated key be deleted, when there is no need to store anything
apart from the session key and the session id.

Interestingly, Protocol 2 does not require that the parties check group mem-
bership of the Diffie-Hellman exponentials YA and YB. This is because the secu-
rity of the protocol does not depend on them except for proving weak forward
secrecy, where the adversary is passive, in which case these values are assumed
to be correctly generated. We can intuitively see that the security of Protocol 2
is independent of the Diffie-Hellman exchange when the adversary does not cor-
rupt the owners to the test session. To do so, let us assume that the adversary is
able to somehow choose the values YA and YB itself (but the rest of the protocol is

Efficient One-Round Key Exchange in the Standard Model 77

A B

(CA, K′
A) ∈R Enc(pk , idB) (CB , K′

B) ∈R Enc(pk , idA)
A, CA−−−−−→
B, CB←−−−−−

K′
B = Dec(pk , didA , CB) K′

A = Dec(pk , didB , CA)
K′′

A = Exctκ(K′
A); K′′

B = Exctκ(K′
B) K′′

B = Exctκ(K′
B); K′′

A = Exctκ(K′
A)

s = A||CA||B||CB s = A||CA||B||CB

KA = ExpdK′′
A

(s) ⊕ ExpdK′′
B

(s) KB = ExpdK′′
B

(s) ⊕ ExpdK′′
A

(s)

Erase all state except (KA, s) Erase all state except (KB , s)
‘Established (A, B, s, KA)’ ‘Established (B, A, s, KB)’

Protocol 1. Generic 2×KEM

executed by the parties normally). The session key is computed as ExpdK′′
B

(s)⊕
ExpdK′′

A
(s) ⊕ ExpdK′′

AB
(s). The adversary effectively chooses the subkey K ′′

AB,
thus the goal of the adversary is reduced to distinguishing ExpdK′′

B
(s)⊕ExpdK′′

A
(s)

from random. This is same goal as a that of an adversary against Protocol 1, the
difference being that while in Protocol 1, s is fixed for A, CA, B, CB, here s depends
also on YA and YB . However a crucial property of Protocol 2 is that each different
choice of YA, YB defines a different session id s, therefore ExpdK′′

A
(s)⊕ExpdK′′

B
(s)

will also be pseudo-random across different sessions, even if K ′′
A and K ′′

B are fixed.
For the same reason, Protocol 2 is immune to malleability attacks where an

active adversary tries to take advantage of the malleability of the Diffie-Hellman
key-exchange part of the protocol. An example of such attack is as follows. A
sends A, CA, YA to B, who outputs B, CB , YB. The adversary intercepts the
latter message and changes it to B, CB , Y r

B where r is chosen by the adversary.
Thus the key as computed by B is KB = ExpdK′′

B
(s)⊕ExpdK′′

A
(s)⊕ExpdK′′

AB
(s),

whereas A computes KB = ExpdK′′
B

(s̄) ⊕ ExpdK′′
A

(s̄) ⊕ Expd(K′′
AB)r (s̄). Even

though the Diffie-Hellman subkeys K ′′
AB and (K ′′

AB)r are related, the two session
keys are indistinguishable from random to the adversary.

In the description of both protocols we have assumed that the same public
parameters are used by both parties. This is however not necessary. Each party
could be using different public parameters, IB-KEMs, or even one party could
be using a IB-KEM and the other a PKI-based KEM.

We are now in a position to state the security theorems for the two protocols.
For both these theorems we use the following notation:

– {ExpdK (·)}K∈U1
: {0, 1}σ → U2 is a pseudorandom function family, (as

described in Definition 3),
– Exctκ(·) : K→ U1 is chosen uniformly at random from a strong (m, ε)-strong

randomness extractor for appropriate m and ε (as described in Definition 2),
– norac is the total number of oracles (i.e. sessions) created by B against the

protocol, and

78 C. Boyd et al.

A B

yA ∈R Z
∗
p′ ; YA = fyA yB ∈R Z

∗
p′ ; YB = fyB

(CA, K′
A) ∈R Enc(pk , idB) (CB, K′

B) ∈R Enc(pk , idA)
A, CA, YA−−−−−→
B, CB, YB←−−−−−

K′
B = Dec(pk , didA , CB) K′

A = Dec(pk , didB , CA)
K′′

A = Exctκ(K′
A); K′′

B = Exctκ(K′
B) K′′

B = Exctκ(K′
B); K′′

A = Exctκ(K′
A)

K′′
AB = Exctκ(Y yA

B) K′′
BA = Exctκ(Y yB

A)
s = A||CA||YA||B||CB ||YB ; s = A||CA||YA||B||CB ||YB ;

KA = ExpdK′′
A

(s) ⊕ ExpdK′′
B

(s) KB = ExpdK′′
B

(s) ⊕ ExpdK′′
A

(s)

⊕ExpdK′′
AB

(s) ⊕ExpdK′′
BA

(s)

Erase all state except (KA, s) Erase all state except (KB , s)

Protocol 2. Generic 2×KEM + Diffie-Hellman

– 1
p is the maximum probability that C1 = C2 where (C1, K1) ∈R Enc(pk , id)
and (C2, K2) ∈R Enc(pk , id) for any identity (if C1 = C2 then K1 = K2 also
since both ciphertexts decrypt to the same value).

Theorem 1. Let B be any adversary against Protocol 1. Then the advantage of B
against the SK-security (with partial WFS and KCI resistance) of Protocol 1 is:

Advsk
B (k) ≤ n2

orac

p
+ 2norac

(

Advib−kem−cca
E,A (k) + ε + Advp−rand

F ,C (k)
)

Theorem 2. Let B be any adversary against Protocol 2. Then the advantage of
B against the SK-security (with WFS and KCI resistance) of Protocol 2 is:

Advsk
B (k) ≤max

(

2n2
oracAdvddh

F,D(k) + 2ε + 2Advp−rand
F ,C (k) ,

n2
orac

p
+ 2norac

(

Advib−kem−cca
E,A (k) + ε + Advp−rand

F ,C (k)
))

.

The proofs of Theorems 1 and 2 can be found in the full version of this paper [6].
We remark that, despite the simplicity of the protocols, proving their security
turns out to be less simple than one might expect.

5 Protocol Comparison: ID-Based Case

We now compare Protocols 1 and 2 with that of Boyd et al. [7] (BMP) which is
one of the most efficient listed by Chen et al. in their survey of protocols [10, Ta-
ble 6]. Unlike our protocols, which consist of two passes and a single round and
only provide implicit authentication, BMP is a three-round three-pass protocol
and provides explicit authentication. Thus it may appear that BMP is not a good

Efficient One-Round Key Exchange in the Standard Model 79

Table 1. Security and efficiency comparison (IB setting)

weak KCI Standard Cost
FS Model per party

Protocol 1 ✘ ✓ ✓ 56
Protocol 2 ✓ ✓ ✓ 59
BMP [7] ✓ ✘ ✘ 23

choice to compare our protocols with. However if desired, our protocols can be
modified to provide explicit authentication using the well-known key confirmation
method discussed by Krawczyk [19, Section 8] at a cost of an extra pseudo-random
function computation per party and the addition of a third message.

Table 1 summarises the properties of the protocols under consideration. The
costs per party given in the table for Protocols 1 and 2 assume the use of Kiltz’s
IB-KEM. We note that the BMP protocol does not have a proof of security in
the standard model, unlike Protocols 1 and 2. Protocol 2 is the only one for
which we have been able to prove both weak forward security (FS) and KCI
resistance in the standard model.

To compare the efficiency of the protocols we use the costs per operation
provided by Chen et al. [10] for Type 3 pairings with a security parameter of
128, which are the most efficient type of pairings for security levels higher than
80 bits. The values are shown in Table 2, which also shows the costs of Kiltz,
Kiltz-Galindo and Gentry IB-KEMs. These figures require 256 bits to represent
an element of G1, 512 bits to represent an element of G2, and 3072 bits to
represent an element of GT . As suggested by Chen et al., we assume that all
elements of the ciphertext are checked to determine that they lie in the correct
subgroup to avoid attacks such as the small subgroup attack.

All of these IB-KEMs were originally proposed to use Type 1 pairings, and
so to obtain the costs we have had to convert the three IB-KEMs to work with
Type 3 pairings. The modified schemes can be found in the full version of this
paper [6] together with a discussion on their security and efficiency.

Table 2. Costs of IB-KEMs using Type 3 pairings

Type 3 Kiltz Kiltz-Galindo Gentry
cost Enc Dec KeyDer Enc Dec KeyDer Enc Dec KeyDer

G1 exp, multi-exp. 1, 1.5 -,1 -,1 2,- 1,1 1,1 1,- -,1 -,- -,-
G2 exp, multi-exp. 3, 4.5 1,- 1,- 1,- 1,- 2,- 1,- -,- -,1 -,3
GT exp, multi-exp. 3, 4.5 1,- -,- -,- 1,- -,- -,- 3,1 -,1 -,-

Pairing 20 - 2 - - 3 - - 1 -
G1 subgroup check 1 - 1 - - 2 - - 1 -
G2 subgroup check 3 - 1 - - 1 - - - -
GT subgroup check 4 - - - - - - - 3 -

Total cost 7.5 48.5 5 8.5 73.5 4 15 42 13.5
Total Enc + Dec cost 56 82 57

80 C. Boyd et al.

In BMP each party sends only one element of G1 to the other, so the band-
width is smaller than using Kiltz’s IB-KEMs with Protocol 1. Each party com-
putes one pairing and two exponentiations in G1, as well as a subgroup check
of one element in G1. Therefore the total cost per party is 23 time units, as op-
posed to the 56 units for the Kiltz IB-KEM with Protocol 1. This means that we
have achieved identity based key exchange in the standard model in less than 2.5
times the cost in the random oracle model using the size of curve given above.
Given the better security guarantees of the standard model, this extra cost may
be considered quite reasonable.

The efficiency of Protocol 2 will be worse than that of Protocol 1, but de-
pending on the choice of the group 〈f〉, it may not be much worse. For example,
if the DDH assumption holds in G1 (this will require G1 �= G2 and no efficiently
computable homomorphism from G1 to G2), only 3 extra time units would be
required per party (e.g. for party A, one to generate YA, one to perform a sub-
group check on YB, and one to find Y yA

B). The increase in message size would
be an extra 256 bits per message.

6 Protocol Comparison: PKI-Based Case

We now consider our two generic protocols in the traditional PKI-based setting
and compare them with existing protocols. Table 3 shows the computational
cost of Protocol 1 and 2 when instantiated with the recently proposed KEMs
of Kiltz [15] and Okamoto [21]. The efficiency of these two KEMs is shown in
Table 4. The computational cost figures of both Table 3 and 4 include the cost
of performing group membership tests (1 exponentiation per test) and distin-
guishes regular exponentiations from multi-exponentiations. However we ignore
“half-exponentiations” that maybe possible when exponents are the outputs of
hash functions. We stress that the shown computational costs are only rough
indicative figures. The exact computational costs depend on actual choices of
groups. We see that Kiltz’s KEM is more efficient than Okamoto’s by one regu-
lar exponentiation in the decapsulation algorithm. Kiltz’s KEM security is based
on the Gap Hashed Diffie-Hellman (GHDH) problem, while Okamoto’s is based

Table 3. Security and efficiency comparison (PKI setting)

weak KCI Standard Cost
FS Model (exp, multi-exp)

Protocol 1 - Kiltz ✘ ✓ ✓ 3,2
Protocol 1 - Okamoto ✘ ✓ ✓ 4,2
Protocol 2 - Kiltz ✓ ✓ ✓ 5,2
Protocol 2 - Okamoto ✓ ✓ ✓ 6,2
Okamoto ✓ ✓ ✓ 4,2
Jeong-Katz-Lee ✓ ✘ ✓ 3,-
HMQV ✓ ✓ ✘ 4,-

Efficient One-Round Key Exchange in the Standard Model 81

Table 4. Costs of KEMs

Enc Dec Security Ciphertext
(exp, multi-exp) (exp, multi-exp) Assumption (#group elements)

Kiltz 2,1 1,1 GHDH 2
Okamoto 2,1 2,1 DDH+πPRF 2

on the DDH problem and the existence of pseudo-random functions with pair-
wise independent random sources (πPRF).

Table 3 also shows the costs of the protocols due to Jeong et al . [13] and
Okamoto [21], which to our knowledge are the only one-round protocols whose
security has been proven in the standard model. HMQV [19], whose security has
only been shown in the random oracle model, is also included. Jeong et al .’s pro-
tocol is the most efficient of all of the compared protocols, but does not provide
KCI resistance. Protocol 1 instantiated with Kiltz’s KEM results in the cheap-
est protocol with KCI resistance but only provides partial FS. Of the protocols
providing both weak FS and KCI resistance in the standard model, Okamoto’s
protocol is the cheapest by one regular exponentiation. As discussed in the full
version of this paper [6], Okamoto’s protocol can be seen as an instantiation of
Protocol 2 with Okamoto’s KEM but using a different key derivation function.
We note that even though Okamoto’s protocol is slightly more efficient than
Protocol 2 instantiated with the currently most efficient KEM (Kiltz’s KEM),
Protocol 2 has the advantage of being generic. It is also possible that if a more
efficient KEM is devised, then the generic Protocol 2 would be more efficient
that Okamoto’s. Note that Okamoto’s key derivation function poses constraints
on the KEM key space and hence cannot be applied generally to all KEMs.

Finally, we note that Protocol 2 is reasonably efficient when compared with
HMQV. In its most optimised form (where there is no subgroup membership
checking and considering short-exponents) HMQV requires around 2.2 expo-
nentiations. We can roughly approximate 1 multi-exponentiation to 1.2 regu-
lar exponentiations [5], which makes the cost of Protocol 2-Kiltz 7.4 regular
exponentiations.

7 Conclusion

We have proven secure two generic protocols that may be used with any KEM
to achieve secure key exchange in the standard model, in either the ID-based
setting or the normal public key setting.In addition, we provided a detailed anal-
ysis of the protocols’ efficiency on Type 3 curves; this necessitated the extension
of the IB-KEMs of Kiltz [14], Kiltz-Galindo [16] and Gentry [12] to use ordinary
elliptic curves. We found that both our protocols take approximately 2.5 times
as long as the protocol of Boyd, Mao, and Paterson [7] (which is only proven
secure in the random oracle model) when both protocols are implemented on el-
liptic curves with a 128 bit security level. The PKI versions of our protocols also
compare favourably with the existing ones of Jeong et al . [13] and Okamoto [21].

82 C. Boyd et al.

Protocol 2 provides more security than Jeong’s protocol and the same as
Okamoto’s. When instantiated with Kiltz’ PKI-based KEM [15] Protocol 2 is
slightly less efficient than Okamoto’s. However, Protocol 2 has the advantage of
being generic, i.e. it can be used together with any KEM which is CCA secure
and our security analysis still applies.

References

1. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new frame-
work for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005)

2. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

3. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols. In: Proceedings of the thir-
tieth annual ACM symposium on Theory of computing, pp. 419–428. ACM Press,
New York (1998)

4. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. Journal of Computer and System Sciences 61(3),
362–399 (2000)

5. Bernstein, D.J.: Pippenger’s exponentiation algorithm (2001),
http://cr.yp.to/papers.html

6. Boyd, C., Cliff, Y., Gonzalez Nieto, J.M., Paterson, K.G.: Efficient one-round key
exchange in the standard model. Cryptology ePrint Archive, Report 2008/007
(2008), http://eprint.iacr.org/

7. Boyd, C., Mao, W., Paterson, K.G.: Key agreement using statically keyed authen-
ticators. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089,
pp. 248–262. Springer, Heidelberg (2004)

8. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing—
STOC 1998, pp. 209–218. ACM Press, New York (1998)

9. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

10. Chen, L., Cheng, Z., Smart, N.P.: Identity-based key agreement protocols from
pairings. Cryptology ePrint Archive, Report 2006/199 (2006),
http://eprint.iacr.org/2006/199

11. Chevassut, O., Fouque, P.-A., Gaudry, P., Pointcheval, D.: Key derivation and
randomness extraction. Cryptology ePrint Archive, Report 2005/061 (2005),
http://eprint.iacr.org/2005/061

12. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

13. Jeong, I.R., Katz, J., Lee, D.H.: One-round protocols for two-party authenticated
key exchange. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 220–232. Springer, Heidelberg (2004)

http://cr.yp.to/papers.html
http://eprint.iacr.org/
http://eprint.iacr.org/2006/199
http://eprint.iacr.org/2005/061

Efficient One-Round Key Exchange in the Standard Model 83

14. Kiltz, E.: Direct chosen-ciphertext secure identity-based encryption in the standard
model with short ciphertexts. Cryptology ePrint Archive, Report 2006/122 (2006),
http://eprint.iacr.org/2006/122

15. Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed diffie-
hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–
297. Springer, Heidelberg (2007)

16. Kiltz, E., Galindo, D.: Direct chosen-ciphertext secure identity-based key encap-
sulation without random oracles. Cryptology ePrint Archive, Report 2006/034
(2006), http://eprint.iacr.org/2006/034

17. Kiltz, E., Galindo, D.: Direct chosen-ciphertext secure identity-based key encap-
sulation without random oracles. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP
2006. LNCS, vol. 4058, pp. 336–347. Springer, Heidelberg (2006)

18. Krawczyk, H.: SKEME: A Versatile Secure Key Exchange Mechanism for Internet.
Proceedings of SNDSS 96, 114 (1996)

19. Krawczyk, H.: HMQV: A high-performance secure diffie-hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005)

20. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

21. Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484.
Springer, Heidelberg (2007)

22. Wang, S., Cao, Z., Choo, K.-K.R.: New identity-based authenticated key agreement
protocols from pairings (without random oracles). Cryptology ePrint Archive, Re-
port 2006/446 (2006), http://eprint.iacr.org/

23. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidel-
berg (2005)

http://eprint.iacr.org/2006/122
http://eprint.iacr.org/2006/034
http://eprint.iacr.org/

On the Improvement of the BDF Attack on

LSBS-RSA

Hung-Min Sun1, Mu-En Wu1,2, Huaxiong Wang2,3, and Jian Guo2

1 Department of Computer Science,
National Tsing Hua University, Taiwan

hmsun@cs.nthu.edu.tw, mn@is.cs.nthu.edu.tw
2 School of Physical & Mathematical Sciences,
Nanyang Technological University, Singapore

{hxwang,guojian}@ntu.edu.sg
3 Centre for Advanced Computing - Algorithms and Cryptography

Department of Computing
Macquarie University, Australia

Abstract. An (α, β, γ)-LSBS RSA denotes an RSA system with primes
sharing α least significant bits, private exponent d with β least signifi-
cant bits leaked, and public exponent e with bit-length γ. Steinfeld and
Zheng showed that LSBS-RSA with small e is inherently resistant to the
BDF attack, but LSBS-RSA with large e is more vulnerable than stan-
dard RSA. In this paper, we improve the BDF attack on LSBS-RSA by
reducing the cost of exhaustive search for k, where k is the parameter
in RSA equation: ed = k · ϕ (N) + 1. Consequently, the complexity of
the BDF attacks on LSBS-RSA can be further reduced. Denote σ as the
multiplicity of 2 in k. Our method gives the improvements, which depend
on the two cases:

1. In the case γ ≤ min {β, 2α} − σ, the cost of exhaustive search for k
in LSBS-RSA can be simplified to searching k in polynomial time.
Thus, the complexity of the BDF attack is independent of γ, but it
still increases as α increases.

2. In the case γ > min {β, 2α} − σ, the complexity of the BDF attack
on LSBS-RSA can be further reduced with increasing α or β.

More precisely, we show that an LSBS-RSA is more vulnerable under
the BDF attack as max {2α, β} increases proportionally with the size of
N . In the last, we point out that although LSBS-RSA benefits the com-
putational efficiency in some applications, one should be more careful in
using LSBS-RSA.

Keywords: RSA, partial key exposure (PKE), the BDF attack, least
significant bit (LSB), LSBS-RSA, exhaustive search.

1 Introduction

RSA [12] is the most widely used public key cryptosystem in the world. It is not
only built into several operating systems, such as Microsoft, Apple, Sun, and

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 84–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Improvement of the BDF Attack on LSBS-RSA 85

Novell, but is also used for securing web traffic, e-mail, smart cards and IC cards.
Since the encryption and decryption in RSA require taking heavy exponential
multiplications modulus of N , the efficiency problem is the main disadvantage of
using RSA. In order to overcome these drawbacks, many researchers have studied
variants of RSA which reduce the computational costs [10], [11]. In general, the
RSA encryption and decryption time are roughly proportional to the number
of bits in public and secret exponents, respectively. To reduce the encryption
time (or the signature-verification time), one may wish to use a small public
exponent e. The smallest possible value for e is 3, however, it has been proven
to be insecure against some small public exponent attacks [9]. Therefore, a more
widely accepted and used public exponent is e = 216 + 1 = 65537 or larger but
far smaller than ϕ(N).

In 1998, Boneh, Durfee, and Frankel [1], [2] first proposed the partial key
exposure (PKE) attacks on RSA. They showed that for low public exponent
RSA, given a fraction of the bits of the private exponent, an adversary can
recover the entire private key and thus break the RSA. We call their methods
the BDF attacks throughout this paper. More results of the partial key exposure
attacks on RSA were proposed in 2003, and 2005 by Blömer & May [3], and
Ernst, Jochemsz, May, & Weger [8], respectively.

In this paper, we improve the BDF attack on LSBS-RSA. An LSBS-RSA de-
notes an RSA system with modulus primes sharing a number of least significant
bits (LSBs), i.e. p−q = r ·2α for some odd integer r, and α > 1, where r, α ∈ N.
This concept was first proposed by Steinfeld and Zheng [13] to improve the effi-
ciency of a server aided RSA signature generation (SASG) [4]. In [13] and [14],
Steinfeld and Zheng analyze the complexity of the BDF attack on LSBS-RSA.
Their results show that low public exponent LSBS-RSA is inherently resistant
to the partial key exposure attacks. That means, the BDF attacks will be less
effective for LSBS-RSA with small e than for standard RSA. However, this is
not true for large public exponent LSBS-RSA. LSBS-RSA with large e is more
vulnerable under such attacks than standard RSA. In this paper, we give the
detailed analysis to further support Steinfeld and Zheng’s argument. We improve
the BDF attack by reducing the cost of exhaustive search for k in LSBS-RSA,
where k is the parameter in RSA equation: ed = k · ϕ (N) + 1.

Denote σ as the multiplicity of 2 in k. Our improvements depend on the two
cases: γ ≤ min {β, 2α} − σ and γ > min {β, 2α} − σ:

In the case γ ≤ min {β, 2α} − σ, the cost of exhaustive search for k in LSBS-
RSA can be simplified to searching k in polynomial time. Thus, the complexity
of the BDF attack in this case can be further reduced. On the other hand, in the
case γ > min {β, 2α} − σ, the complexity of searching k in LSBS-RSA still can
be improved instead of finding k by exhaustive search totally. Thus, the BDF
attack on LSBS-RSA in this case is improved as well. Furthermore, we show
that an LSBS-RSA is more vulnerable under the BDF attack as max {2α, β}
increases proportionally with the size of N .

The remainder of this paper is organized as follows. In Section 2, we briefly
review theorems and lemmas related to the BDF attack. In Section 3, we revise

86 H.-M. Sun et al.

the BDF attack on LSBS-RSA and show the complexity analysis in Section 4. In
Section 5, further discussions about the feasibility and the efficiency are proposed.
Finally, we conclude this paper and give some open problems in Section 6.

2 Preliminary

2.1 RSA, LSBS-RSA and Some Notations

In standard RSA, let N (= p× q) be the product of two large primes p and q.
The public exponent e and the private exponent d satisfy e×d ≡ 1 (mod ϕ(N)),
where ϕ(N) = (p − 1) × (q − 1) is the Euler totient function of N . Here, N
is called the RSA modulus. The public key is the pair (N, e) that is used for
encryption (or signature-verification): c ≡ me (mod N), where m is the message
and c is the corresponding ciphertext. The private key is the pair (N, d) that
enables the decryption of ciphertext (or signature-generation): m ≡ cd (mod N).
In the key generation of RSA, we usually select two primes (about 512 bits) p
and q, and then multiply them to obtain N (about 1024 bits). Next, we pick the
public exponent e first, and then compute the private exponent d by d ≡ e−1

(mod ϕ(N)) by Euclidean algorithm. With high probability, no matter what size
of e is chosen, the size of d is as large as the size of ϕ(N) almost.

Throughout this paper, we follow the notation (α, β, γ), which is also used
by Steinfeld and Zheng. An (α, β, γ)-LSBS RSA is an RSA system with the
following properties:

α: α-LSBS RSA modulus: N = pq, where |p− q| = r · 2α for some odd integer r.
β: The β least significant bits of the private exponent d are available.
γ: The public exponent e with bit-length γ.

In addition, we use the symbols κ and λ to denote the multiplicity of 2 in k
and ϕ (N), respectively. Moreover, given an integer x of m bits, whose binary
representation is

(x)2 = (xm, xm−1, ...xj , ..., xi, ..., x2, x1)2,

where xi = 0 or 1 for i = 1, ..., m. We call xm the most significant bit of x and
x1 the least significant bit of x. Denote “LSBi˜j(x)” as the i-th to j-th least
significant bits of (x)2, where i < j. That is,

LSBi˜j(x) = (xj , ..., xi)2.

and “LSBi(x)” as the i-th least significant bit of (x)2. That is,

LSBi(x) = xi.

2.2 The BDF Attack on LSBS-RSA

Here we briefly introduce the BDF attack on LSBS-RSA. All the following theo-
rems and lemmas can be found in [13] and [14]. The goal is to use the informa-
tion of partial key to find LSB1˜ n

4
(p) or LSB1˜ n

4
(q). Then, use Coppersmith’s

method (see Theorem 1) to factor N .

On the Improvement of the BDF Attack on LSBS-RSA 87

Theorem 1. (Coppersmith’s method [5]) Let N = pq be an n-bit RSA modulus.
If LSB1˜ n

4
(p) or LSB1˜ n

4
(q) is given, then there exists an algorithm to factor N

in polynomial time in n.

We denote TCop (n) as the complexity of the algorithm in Theorem 1. The im-
proved versions of Coppersmith’s method can be found in [6] and [7].

Lemma 1. Consider the modular equation x2 ≡ c (mod 2r) and let m2 (c) de-
note the multiplicity of 2 in c. That is, c = codd · 2m2(c), where codd is the largest
odd factor of c. Then, the solutions are summarized in the following table:

Conditions Solution # Solution Forms
If r ≤ m2 (c) 2�r/2� x ≡ 0

(

mod 2�r/2�)

If r > m2 (c) and m2 (c) is odd 0 -
If r > m2 (c) and m2 (c) is even, there are three subcases:
subcase 1: r = m2 (c) + 1 2

m
2 x ≡ 2

m
2 (mod 2

m
2 +1)

subcase 2: r = m2 (c) + 2
codd ≡ 1 (mod 4) 2 · 2 m

2 x ≡ ±2
m
2 (mod 2

m
2 +2)

subcase 3: r ≥ m2 (c) + 3
codd ≡ 1 (mod 8) 4 · 2 m

2

x ≡ ±s · 2 m
2 (mod 2r−m

2), or
x ≡ (±s + 2r−m−1

) · 2 m
2 (mod 2r−m

2),
where s2 ≡ codd (mod 2r−m).

Otherwise 0 -

Proof. The proof can be found in Lemma 1 of [13], or [14].

Note that if there exist solutions for x2 ≡ c (mod 2r), then c and r must satisfy
one of the conditions in the above table. Next, we show the properties of an
α-LSBS RSA.

Lemma 2. Let N = pq denote an n-bit α-LSBS-RSA modulus. There exists
an algorithm to compute the LSB1˜2α (p + q), LSB1˜α (p), and LSB1˜α (q) in
polynomial time O

(

n2
)

.

Proof. Let p = pH ·2α + l and q = qH ·2α + l. Thus, l is a solution to the modular
quadratic congruence x2 ≡ N (mod 2α), and it can be computed at most for 4
candidates in time polynomial in n2. From

p · q = N , (1)

we may replace p and q by pH ·2α + l and qH ·2α + l, respectively. This conducts
to

LSB1˜2α

(

l · (pH + qH) · 2α + l2
)

= LSB1˜2α (N) . (2)

Since l is an odd integer, l−1 (mod 22α) exists. We have

LSB1˜2α((pH + qH) · 2α) = LSB1˜2α

(

l−1 · (N − l2)
)

. (3)

88 H.-M. Sun et al.

The identity (3) shows that LSB1˜α (pH + qH) can be totally computed from
l−1 · (N − l2). Thus, we have

LSB1˜2α−1

(
p+q
2

)

= LSB1˜2α−1((pH + qH) · 2α−1 + l)

= LSB1˜α (pH + qH) || LSBα

(

(pH + qH) · 2α−1 + l
) || LSB1˜α−1 (l).

(4)

where “||” denotes the concatenation. Therefore, we get

LSB1˜2α (p + q) = LSB1˜2α−1

(
p+q
2

) || 0,

which completes the proof.

In the following we show the result of the BDF attack on LSBS-RSA, which is
called the generalized BDF attack.

Theorem 2. (Generalized BDF Attack, [13], [14]) Let N = pq denote an
n-bit α-LSBS RSA modulus, d is a private exponent, and e is a public exponent
with bit-length γ. Given d0 = LSB1˜β (d), the Generalized BDF attack factors N
within the following time complexity:

If β < 2 (α− 1) + γ, then TBDF (n) = O
(

γ2γ · �2 n
4 − β

2 � · T ′
Cop (n)

)

;

If β ≥ 2 (α− 1) + γ, then TBDF (n) = O
(

γ2γ · �2 n
4 +α−β� · T ′

Cop (n)
)

,
(5)

where T ′
Cop (n) = TCop (n) + O

(

n2
)

, which is the complexity of Coppersmith’s
method plus the O

(

n2
)

for the other computations.

Note that in the case β ≥ 2 (α− 1) + γ, TBDF (n) increases as α increases,
which shows Steinfeld and Zheng’s argument: low public exponent LSBS-RSA
is inherently resistant to the BDF attack. In addition, as can be seen in (5),
TBDF (n) decreases as β increases. We divide the process of the BDF attack on
LSBS-RSA into three parts:

1. Exhaustive search the parameter k in RSA equation: ed = k · ϕ(N) + 1,
where 1 < k < e.

2. With the information of k, compute LSB1˜ n
4

(p) by solving the quadratic
modular equation.

3. Once LSB1˜ n
4

(p) is known, use Coppersmith’s method to factor N .

Since k < e and 2γ−1 ≤ e < 2γ , the step 1 requires the time complex-
ity O (γ2γ) to exhaustive search for k. The step 2 requires the time complex-
ity O

(

2
n
4 − β

2

)

or O
(

2
n
4 +α−β

)

, depends on the relations between α, β, and γ.
The step 3 requires the cost T ′

Cop (n), which is the complexity of Coppersmith’s
method plus O(n2).

On the Improvement of the BDF Attack on LSBS-RSA 89

3 The Revised BDF Attack on LSBS-RSA

In this section we show the revised BDF attack on LSBS-RSA. The main im-
provement is to reduce the cost of searching k in LSBS-RSA. Thus, the complex-
ity in the step 1, which is O (γ2γ), can be further reduced. Before that, we show
the process of recovering LSB1˜ n

4
(p) by solving the quadratic modular equation,

and then use Coppersmith’s method to factor N .

3.1 The Process of the BDF Attack

From the RSA equation we have

ed− 1− k
(

N + 1− p− N
p

)

= 0.

Multiplying p modulo 2β yields the following modular equation with root p:

kx2 + (ed0 − k (N + 1)− 1) x + kN ≡ 0
(

mod 2β
)

, (6)

where d0 = LSB1˜β (d) is known to the attacker.
Suppose k = kodd ·2κ, where kodd is the largest odd factor of k, and κ denotes

the multiplicity of 2 in k. Eliminating the leading coefficient of (6) yields

x2 +
(

k−1
odd · ed0−1

2κ − (N + 1)
)

x + N ≡ 0
(

mod 2β−κ
)

, (7)

where k−1
odd denotes the inverse of kodd in Z

∗
2β−κ . Consequently, (7) is reduced to

(

x + b(k)
2

)2

≡ c (k)
(

mod 2β−κ
)

, (8)

where
b (k) = k−1

odd · ed0−1
2κ − (N + 1), and

c (k) =
(

b(k)
2

)2

−N .

Now, we solve the modular equation (8) by applying Lemma 1.
Since

b (k) = k−1
odd · ed0−1

2κ − (N + 1)

≡ k−1
odd · k((N+1)−(p+q))

2κ − (N + 1)
(

mod 2β−κ
)

≡ − (p + q)
(

mod 2β−κ
)

,

we get

c (k) =
(

b(k)
2

)2

−N (mod 2β−κ)

≡ (
p+q
2

)2 −N (mod 2β−κ)

≡ (
p−q
2

)2 (

mod 2β−κ
)

.

90 H.-M. Sun et al.

Moreover, since N is an α-LSBS RSA modulus, we may write p − q = r · 2α

for some odd integer r, which shows the multiplicity of 2 in
(

p−q
2

)2
is 2 (α− 1).

Consequently, according to Lemma 1, the number of the solutions of (8) depends
on the two cases: β − κ ≤ 2 (α− 1) and β − κ > 2 (α− 1).

In the case β − κ ≤ 2 (α− 1), there are 2�
β−κ

2 � solutions of the form

x + b(k)
2 ≡ 0 (mod 2�

β−κ
2 �)

for the modular equation (8). Thus, the �β−κ
2 � least significant bits of the root,

i.e., p, are known to the attacker, which is the same as LSB1˜� β−κ
2 �

(

− b(k)
2

)

. Since
LSB1˜ n

4
(p) (or LSB1˜ n

4
(q)) is the minimum requirement to apply Coppersmith’s

method, the remaining unknown part of p is LSB(�β−κ
2 �+1)˜ n

4
(p). Therefore, in

this case the search for the parameter k with the cost 2
n
4 −�β−κ

2 � is required. We
simplify the cost to O

(

2
κ
2 · 2 n

4 − β
2

)

.
In the case β − κ > 2 (α− 1), three subcases are discussed below according

to Lemma 1:

Subcase 1: If β − κ = 2 (α− 1) + 1, there are 2α−1 solutions of the form

x + b(k)
2 ≡ 2α−1 (mod 2α).

Subcase 2: If β − κ = 2 (α− 1) + 2, and (α− 1)odd ≡ 1 (mod 4), there are
2 · 2α−1 solutions of the form

x + b(k)
2 ≡ ±2α−1 (mod 2α+1).

Subcase 3: If β − κ ≥ 2 (α− 1) + 3, and (α− 1)odd ≡ 1 (mod 8), there are
4 · 2α−1 solutions of the form

x + b(k)
2 ≡ (±s) · 2α−1 (mod 2(β−κ)−(α−1)), or

x + b(k)
2 ≡

(±s + 2(β−κ)−2(α−1)−1
) · 2α−1 (mod 2(β−κ)−(α−1)).

Note that s is any solution to s2 ≡ (α− 1)odd (mod 2(β−κ)−2(α−1)), where
(α− 1)odd is the largest odd factor of α− 1.

In the subcase 1, LSB1˜α (p) is known to the attacker. In order to apply
Coppersmith’s method, the remaining unknown part of p is LSB(α+1)˜ n

4
(p).

Thus, in this case it requires the search with cost 2
n
4 −α.

In the subcase 2, LSB1˜α+1 (p) is known to the attacker. In order to apply
Coppersmith’s method, the remaining unknown part of p is LSB(α+2)˜ n

4
(p). We

simplify the cost to O
(

2
n
4 −α

)

.
In the subcase 3, LSB1˜(β−κ)−(α−1) (p) is known to the attacker. In order to ap-

ply Coppersmith’s method, the remaining unknown part of p is LSB(β−κ−α)˜ n
4

(p).
Thus, in this case it requires the search with cost 2

n
4 −((β−κ)−(α−1)). We simplify

On the Improvement of the BDF Attack on LSBS-RSA 91

the cost to O
(

2κ · 2(n
4 −β)+α

)

. As a result, the complexity of the BDF attack on
(α, β, γ)-LSBS RSA is concluded as follows.

If β ≤ 2 (α− 1) + κ, then

TBDF (n) = O
(

|Kc| · (2 κ
2 · 2 n

4 − β
2) · T ′

Cop (n)
)

; (9)

If β = 2 (α− 1) + κ + 1, or β = 2 (α− 1) + κ + 2, then

TBDF (n) = O
(|Kc| · (2 n

4 −α) · T ′
Cop (n)

)

; (10)

If β ≥ 2 (α− 1) + κ + 3, then

TBDF (n) = O
(

|Kc| · (2κ · 2(n
4 −β)+α) · T ′

Cop (n)
)

, (11)

where |Kc| denotes the number of candidates of k, which is required to test by
exhaustive search. Next, we show how to reduce the size of Kc in LSBS-RSA.

3.2 Searching k in LSBS-RSA

We consider the following lemma:

Lemma 3. Consider the three positive integers A, B, and C, where C = A×B.
If LSB1˜m (A) and LSB1˜m (C) are given, we can compute LSB1˜m−m2(A) (B)
in polynomial time in m, where m2(A) denotes the multiplicity of 2 in A.

Proof. Suppose that A = A1 · 2m + A2 and B = B1 · 2m + B2, where A2 =
LSB1˜m (A) and B2 = LSB1˜m (B), respectively. We may write A2 = A (mod 2m)
and B2 = B (mod 2m). Since

A×B = (A1B1) · 22m + (A1B2 + A2B1) · 2m + A2B2 = C,

we have
C (mod 2m) ≡ A2B2 (mod 2m) . (12)

Denote A2 = a2 · 2m2(A2), where m2(A2) denotes the multiplicity of 2 in A2.
Since C = A × B, we may set C = c · 2m2(A2). Consequently, simplifying (12)
yields

a2 ×B2 (mod 2m−m2(A2)) = c (mod 2m−m2(A2)),

which implies

B2 (mod 2m−m2(A2)) = a−1
2 × c (mod 2m−m2(A2)),

where a−1
2 denotes the inverse of a2 in Z

∗
2m−m2(A2) . Note that m2 (A2) is smaller

than or equal to m2 (A), but the case “m2 (A2) = m2 (A)” happens with proba-
bility 1− 1

2m , which is close to 1 if m is not too small. Thus, in our case we may
assume that m2 (A2) = m2 (A) and get

LSB1˜m−m2(A) (B) = a−1
2 × c (mod 2m−m2(A)), (13)

which completes the proof.

92 H.-M. Sun et al.

Moreover, if B ≤ 2m−m2(A), then B can be completely determined immediately.
Following corollary shows our method for searching k in LSBS-RSA

Corollary 1. In (α, β, γ)-LSBS RSA, LSB1˜ min{β,2α}−σ (k) can be computed in
polynomial time in n, where σ denotes the multiplicity of 2 in ϕ(N).

Proof. From RSA equation we have ed − 1 = k · ϕ(N). Since d0 = LSB1˜β (d)
is known, we can compute LSB1˜β (ed− 1). In addition, LSB1˜2α (p + q) can be
computed efficiently according to Lemma 2, and thus LSB1˜2α (ϕ(N)) can be
derived to the attacker immediately. Now, setting C = ed − 1, A = ϕ(N), and
B = k in Lemma 3, we get the result:

LSB1˜min{β,2α}−σ (k) = (ed0 − 1) · ϕ−1(mod 2min{β,2α}−σ), (14)

which completes the proof.

Note that we have k < e ≈ 2γ due to the process of RSA-key generation. Hence,
if the public exponent e is small enough such that γ ≤ min {β, 2α} − σ, then k
can be completely determined immediately in polynomial time in n. On the other
hand, if the public exponent e satisfying γ > min {β, 2α}−σ, Corollary 1 implies
that finding k requires exhaustive search with cost 2γ−(min{β,2α}−σ). Therefore,
the size of Kc can be set to max

{

1, 2γ−(min{β,2α}−σ)
}

. Apply |Kc| to the revised
BDF attack, the corresponding complexity analysis is shown in the next section.

4 The Complexity Analysis

According to Corollary 1, the complexity of the BDF attack on LSBS-RSA is
discussed in the two cases: small public exponent and large public exponent.

4.1 LSBS-RSA with Small Public Exponent e (γ ≤ min {β, 2α} − σ)

In LSBS-RSA with small e satisfying γ ≤ min {β, 2α} − σ, according to
Corollary 1, the parameter k can be computed immediately. Hence, the term
|Kc| in (9), (10), and (11) can be replaced by Tk (n), where Tk (n) denotes the
complexity of computing k from (14), which is polynomial time in n.

4.2 LSBS-RSA with Large Public Exponent e (γ > min {β, 2α} − σ)

For large public exponent e, i.e., min {β, 2α} − σ < γ, we may set |Kc| =
2γ−(min{β,2α}−σ). Thus, the complexity of searching k in this case depends on
the two cases: β < 2α, and 2α ≤ β.

In the Case β < 2α. First we consider the case β < 2α. According to
Corollary 1, LSB1˜β−σ (k) is known to the attacker. Thus, finding the unknown
part of k requires exhaustive search with the cost 2γ−(β−σ). After replacing |Kc|
in (9), (10), and (11) by 2γ−(β−σ), we get the following results:

On the Improvement of the BDF Attack on LSBS-RSA 93

In the case β < 2α and β ≤ 2 (α− 1) + κ, we have

TBDF (n) = O
(

2γ−(β−σ) · 2 κ
2 + n

4 − β
2 · T ′

Cop (n)
)

= O
(

2
κ
2 +σ · 2(n

4 +γ)− 3β
2 · T ′

Cop (n)
)

.

In the case β < 2α and β = 2 (α− 1) + κ + 1, we get 2α + κ− 1 < 2α, which
implies κ ≤ 0. Since κ denotes the multiplicity of 2 in k, we get κ = 0, which
conducts to β = 2α− 1. Thus,

TBDF (n) = O
(

2γ−(β−σ) · (2 n
4 −α) · T ′

Cop (n)
)

= O
(

2σ · 2(n
4 +γ)−(α+β) · T ′

Cop (n)
)

.

In the case β < 2α and β = 2 (α− 1) + κ + 2, we get 2α + κ < 2α, which
implies κ ≤ −1. This is a contradiction for any non-negative integer κ. The same
result for the case β < 2α and β ≥ 2 (α− 1)+κ+3, we get 2α+κ+1 ≤ β < 2α.
It implies that κ ≤ −2, which is also a contradiction.

In the Case 2α ≤ β. Secondly, we consider the case 2α ≤ β. According to
Corollary 1, LSB1˜2α−σ (k) is known to the attacker. Thus, finding the unknown
part of k requires the exhaustive search with the cost 2γ−(2α−σ). Replacing |Kc|
by 2γ−(2α−σ) in (9), (10), and (11), we get the following results:

In the case 2α ≤ β and β ≤ 2 (α− 1) + κ, we have

TBDF (n) = O
(

2γ−(2α−σ) · 2 κ
2 + n

4 − β
2 · T ′

Cop (n)
)

= O
(

2
κ
2 +σ · 2(n

4 +γ)−(2α+ β
2) · T ′

Cop (n)
)

.

In the case 2α ≤ β and β = 2 (α− 1) + κ + 1, we have

TBDF (n) = O
(

2γ−(2α−σ) · (2 n
4 −α) · T ′

Cop (n)
)

= O
(

2σ · 2(n
4 +γ)−3α · T ′

Cop (n)
)

.

The same result above in the case 2α ≤ β and β = 2 (α− 1) +κ+ 2, and thus
we ignore it.

In the case 2α ≤ β and β ≥ 2 (α− 1) + κ + 3, we have

TBDF (n) = O
(

2γ−(2α−σ) · 2κ+n
4 +α−β · T ′

Cop (n)
)

= O
(

2κ+σ · 2(n
4 +γ)−(α+β) · T ′

Cop (n)
)

.

4.3 Summary of the Revised BDF Attack on LSBS-RSA

We give the summary for the complexity of the revised BDF attack on LSBS-
RSA. We just count in the complexity of the exponent, but eliminate the com-
plexity of polynomial time. In addition, σ and κ are both small constants with
high probability, and thus we can ignore them in the ”Big O” notation.

94 H.-M. Sun et al.

Table 1. The Summary of the BDF Attack on LSBS-RSA with Small Public Exponent

Condition TBDF (n)

β ≤ 2 (α − 1) + κ O
(

Tk (n) · 2n
4 − β

2 · T ′
Cop (n)

)

β = 2α + κ ,or
β = 2α + κ − 1

O
(

Tk (n) · (2n
4 −α) · T ′

Cop (n)
)

β ≥ 2α + κ + 1 O
(

Tk (n) · 2n
4 +α−β · T ′

Cop (n)
)

Table 2. The Summary of the BDF Attack on LSBS-RSA with Large Public Exponent

Condition I Condition II TBDF (n)

β < 2α β ≤ 2 (α − 1) + κ O
(

2(n
4 +γ)− 3β

2 · T ′
Cop (n)

)

β < 2α β = 2α − 1 and κ = 0 O
(

2(n
4 +γ)−(α+β) · T ′

Cop (n)
)

2α ≤ β β ≤ 2 (α − 1) + κ O
(

2(n
4 +γ)−(2α+ β

2) · T ′
Cop (n)

)

2α ≤ β
β = 2α + κ, or
β = 2α + κ − 1

O
(

2(n
4 +γ)−3α · T ′

Cop (n)
)

2α ≤ β β ≥ 2α + κ + 1 O
(

2(n
4 +γ)−(α+β) · T ′

Cop (n)
)

Table 1 shows the complexity of the revised BDF attack on LSBS-RSA when
γ ≤ min {β, 2α} − σ.

As can be seen in Table 1, γ is independent to the complexity of BDF attack
on LSBS-RSA. However, in case of β ≥ 2α + κ + 1, TBDF (n) increases as α
increases, which is further supporting Steinfeld and Zheng’s argument [14]: Low
public exponent LSBS-RSA is inherently resistant to the partial key exposure
attack.

Moreover, if we set χmax = max {2α, β} and χmin = min {2α, β}, then all the
complexities in the exponential cost are in the interval:

[
n
4 − 1

2χmax, n
4 − 1

2χmin

]

.

Therefore, we conclude that the complexity of the revised BDF attack on (α, β, γ)-
LSBS RSA with small e is in the range

O
(

Tk (n) · 2 n
4 − 1

2 χmax · T
′
Cop (n)

)

≤ TBDF (n) ≤ O
(

Tk (n) · 2 n
4 − 1

2 χmin · T
′
Cop (n)

)

. (15)

Table 2 shows the complexity of the revised BDF attack on LSBS-RSA when
min {β, 2α} − σ < γ. As shown in the table, the complexity of the revised BDF
attack is independent to α in the case β < 2α and β ≤ 2 (α− 1) + κ. In the
other cases, the complexity decrease as α and β increase.

All the complexities in exponential cost are in the interval:
[

(n
4 + γ)− 3

2χmax, (n
4 + γ)− 3

2χmin

]

.

On the Improvement of the BDF Attack on LSBS-RSA 95

Therefore, we conclude that the complexity of the revised BDF attack on (α, β, γ)-
LSBS RSA with large e is in the range

O
(

2(n
4 +γ)− 3

2 χmax · T ′
Cop (n)

)

≤ TBDF (n) ≤ O
(

2(n
4 +γ)− 3

2 χmin · T ′
Cop (n)

)

. (16)

From (15) and (16), we know that an LSBS-RSA is more vulnerable under the
BDF attack as χmax = max {2α, β} increases proportionally with the size of N .

5 Further Discussions

5.1 The Relation between (α, β, γ) and (α, 0, γ)-LSBS RSA

The following result shows that for β ≤ 2α and small difference of γ and β, to
break (α, β, γ)-LSBS RSA is as hard as to break (α, 0, γ)-LSBS RSA.

Theorem 3. (Revised Theorem 4 in [14]) In (α, β, γ)-LSBS RSA, given (N, e, d0),
suppose an algorithm A can factor N in time TA (n), where d0 = LSB1˜β (d) and
β ≤ 2α. Then, there exists a factoring algorithm F for (α, 0, γ)-LSBS RSA, that
given (N, e), factors N in time TF (n), where

TF (n) = O
(

2γ−β · (TA (n) + n2
))

.

Proof. The proof is almost the same as the proof of the theorem 4 in [14]. The
difference is that the cost for exhaustive search for k is reduced to O

(

2γ−β
)

rather than O (2γ). Thus, for each candidate kc ∈ Kc, we may compute

d0 = e−1 [1 + kc (N + 1− s0)] (mod 22α), (17)

where s0 ≡ p + q (mod 22α) is available according to Lemma 2. Consequently,
d0 = LSB1˜2α (d) consists of the 2α least significant bits of d, which also consists
of LSB1˜β (d). Applying (N, e, d0) to the input of A succeeds to factor N in time

O
(

2γ−β · (TA (n) + n2
))

,

which denotes the complexity of TF (n).

Note that (17) also implies that LSB1˜2α (d) is leaked in (α, 0, γ)-LSBS RSA if
the cost of 2γ−β is feasible under current computational capability. Therefore,
for β ≤ 2α and γ − β < Es, where Es denotes the bit number of the feasible
exhaustive search, Theorem 3 also shows the hardness of breaking (α, β, γ)-LSBS
RSA is equivalent to that of (α, 0, γ)-LSBS RSA.

5.2 Feasibility and Further Reducing the Cost of Searching k

Under the current computational capability, we may set Es = 64, which means
the exhaustive search forO

(

264
)

is feasible. According to our result, The revised
BDF attack on LSBS-RSA with small e , i.e., γ ≤ min {β, 2α} − σ, is feasible if

n
4 − 1

2χmin ≤ 64.

96 H.-M. Sun et al.

For LSBS-RSA with large e, i.e., γ > min {β, 2α} − σ, the attack is feasible if

(n
4 + γ)− 3

2χmin ≤ 64.

We should point out that our method for finding k is still a kind of brute method.
In fact, we can estimate the value of k before the exhaustive search. Denote the
estimation of ϕ to be ϕE := N +1−2�√N�. Compute k̃ and d̃ by using Euclidean
algorithm such that ed̃ = k̃(N + 1− 2N) + 1, where 0 < k̃ < e and 0 < d̃ < ϕE .
Then, searching k from k̃ with the fixed part of least significant bits will further
reduce the cost.

6 Conclusion and Future Work

In this paper we improve the BDF attack on LSBS-RSA. With our improvement,
the complexity of the BDF attack is further reduced with less cost for exhaustive
search. More precisely, we show that the lower bound of exponential cost in the
BDF attack increases with decreasing max {2α, β}, and the upper bound of
exponential cost in the BDF attack decreases with increasing min {2α, β}. Our
result is further supporting the claim in [14]: Low public exponent LSBS-RSA is
resistant to partial key exposure attacks but large public exponent LSBS-RSA
is vulnerable under the attacks.

To further reduce the complexity of the BDF attack, we may focus on im-
proving the efficiency of Coppersmith’s method, such as [6], [7]. Moreover, an
open question has been mentioned for many times: whether the information of
the n

4 least significant bits of p (or q) is the minimum requirement to factor N
in polynomial time? Moreover, to further extend the partial key exposure attack
on LSBS-RSA, the lattice technique should be considered to analyze.

LSBS-RSA is beneficial to computational efficiency of server-aided signature
generation, such as [4]. However, we believe that an RSA system with modulus
primes sharing a large number of bits also raises the risk in the security [15], [16].
It is a trade-off between the efficiency and the security level. Thus, one should
be more careful in using such RSA variants.

Acknowledgement

The authors would like to thank Ron Steinfeld for his helpful discussion and
anonymous reviewers for their valuable comments. This work was supported in
part by the National Science Council, Taiwan, under Contract NSC 96-2628-E-
007-025-MY3 and NSC 096-2917-I-007-022, the Ministry of Education of Singa-
pore under grant T206B2204, and the Australian Research Council under ARC
Discovery Project DP0665035.

References

1. Boneh, D., Durfee, G., Frankel, Y.: An Attacks on RSA Given a Small Fraction
of the Private Key Bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 25–34. Springer, Heidelberg (1998)

On the Improvement of the BDF Attack on LSBS-RSA 97

2. Boneh, D., Durfee, G., Frankel, Y.: Exposing an RSA Privae Key Given a
Small Fraction of its Bits. Full version of the work from Asiacrypt 1998 (1998),
http://crypto.stanford.edu/∼dabo/abstracts/bits of d.html

3. Blömer, J., May, A.: New Partial Key Exposure Attacks on RSA. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

4. Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign with
RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996)

5. Coppersmith, D.: Finding a Small Root of a Bivariate Integer Equation; Factor-
ing with High Bits Known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS,
vol. 1070, pp. 178–189. Springer, Heidelberg (1996)

6. Coron, J.-S.: Finding Small Roots of Bivariate Integer Polynomial Equations Revis-
ited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 492–505. Springer, Heidelberg (2004)

7. Coron, J.-S.: Finding Small Roots of Bivariate Integer Polynomial Equations: A
Direct Approach. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 379–
394. Springer, Heidelberg (2007)

8. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial Key Exposure Attacks
on RSA up to Full Size Exponents. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

9. Hastad, J.: Solving simultaneous modular equations of low degree. SIAM J. of
Computing 17, 336–341 (1988)

10. Sun, H.-M., Yang, W.-C., Laih, C.-S.: On the design of RSA with short secret
exponent. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS,
vol. 1716, pp. 150–164. Springer, Heidelberg (1999)

11. Sun, H.-M., Yang, C.-T.: RSA with balanced short exponents and its application
to entity authentication. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp.
199–215. Springer, Heidelberg (2005)

12. Rivest, R., Shamir, A., Aldeman, L.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126
(1978)

13. Steinfeld, R., Zheng, Y.: An Advantage of Low-Exponent RSA with Modulus
Primes Sharing Least Significant Bits. In: Naccache, D. (ed.) CT-RSA 2001. LNCS,
vol. 2020, pp. 52–62. Springer, Heidelberg (2001)

14. Steinfeld, R., Zheng, Y.: On the Security of RSA with Primes Sharing Least-
Significant Bits. Appl. Algebra Eng. Commun. Comput. 15,3(4), 179–200 (2004)

15. de Weger, B.: Cryptanalysis of RSA with small prime difference. Applicable Alge-
bra in Engineering, Communication and Computing 13, 17–28 (2002)

16. Zhao, Y.-D., Qi, W.-F.: Small Private-Exponent Attack on RSA with Primes Shar-
ing Bits. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 221–229. Springer, Heidelberg (2007)

http://crypto.stanford.edu/~dabo/abstracts/bits_of_d.html

Public-Key Cryptosystems with Primitive Power

Roots of Unity

Takato Hirano�, Koichiro Wada, and Keisuke Tanaka

Department of Mathematical and Computing Sciences, Tokyo Institute of
Technology. W8-55, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

{hirano6, wada4, keisuke}@is.titech.ac.jp

Abstract. We first consider a variant of the Schmidt-Samoa–Takagi en-
cryption scheme without losing additively homomorphic properties. We
show that this variant is secure in the sense of IND-CPA under the de-
cisional composite residuosity assumption, and of OW-CPA under the
assumption on the hardness of factoring n = p2q. Second, we introduce
new cryptographic properties “affine” and “pre-image restriction”, which
are closely related to homomorphism. Intuitively, “affine” is a tuple of
functions which have a special homomorphic property, and “pre-image
restriction” is a function which can restrict the receiver to having in-
formation on the encrypted message. Then, we propose an encryption
scheme with primitive power roots of unity in (Z/ns+1)×. We show that
our scheme has the above cryptographic properties.

Keywords: Paillier encryption scheme, factoring assumption, homomor-
phism, power roots of unity.

1 Introduction

Background. Homomorphism is one of the most useful cryptographic proper-
ties, and has been well-studied. For groups G and H , a function f : G → H is
(group) homomorphism if for g, g′ ∈ G, f(g) ◦H f(g′) = f(g ◦G g′), where ◦G
and ◦H are the group operations G and H , respectively. In mathematical points
of view, this property means that f preserves the group structure of G. In cryp-
tographic points of view, we can make a meaningful ciphertext from ciphertexts
without knowing the hidden messages or the secret key. This property is useful
to many cryptographic applications such as electronic voting, electronic cash,
and so on.

We call f a multiplicative homomorphism if ◦G is the multiplication “×”.
There exist many encryption schemes with multiplicatively homomorphic prop-
erties, for example, the RSA encryption scheme [7], the ElGamal encryption
scheme [3]. We call f an additive homomorphism if ◦G is the addition “+”.
There also exist many encryption schemes with additively homomorphic prop-
erties, for example, the Goldwasser-Micali encryption scheme [4], the Paillier
� Supported in part by Global COE: Computationism as a Foundation for the Sciences

of Tokyo Institute of Technology.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 98–112, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Public-Key Cryptosystems with Primitive Power Roots of Unity 99

encryption scheme [5]. In particular, the Paillier encryption scheme has interest-
ing structure and many mathematical advantages. Many variants of his scheme
have been proposed.

Our Contribution. In this paper, we first formalize the notion of a gen-
eral homomorphic property as follows: Let f1, f2, . . . , fk, f be functions, and ∗, g
polynomial-time computable operations. For m1, m2, . . . , mk, we have f1(m1) ∗
f2(m2) ∗ · · · ∗ fk(mk) = f(g(m1, m2, . . . , mk)).

These functions do not always have common domain or common range. A
multiplicative homomorphism can be expressed by f1 = f2 = · · · = fk = f
and g(m1, m2, . . . , mk) = m1 ×m2 × · · · ×mk, and an additive homomorphism
f1 = f2 = · · · = fk = f and g(m1, m2, . . . , mk) = m1 + m2 + · · · + mk. With
this formalization, we consider two properties. A tuple ({f1, f2, . . . , fk}, f) of
functions is called “affine with x1, x2, . . . , xk” if f1(m1) ∗ f2(m2) ∗ · · · ∗ fk(mk) =
f(x1m1 + x2m2 + · · · + xkmk), that is, g(m1, m2, . . . , mk) = x1m1 + x2m2 +
· · ·+xkmk. An additive homomorphism can be considered as a special case that
f1 = f2 = · · · = fk = f and g is addition and x1 = x2 = · · · = xk = 1. A tuple
({f1, f2, . . . , fk}, f) of functions is called “pre-image restriction with modulo n”
if m = m1 = m2 = · · · = mk and f1(m) ∗ f2(m) ∗ · · · ∗ fk(m) = f(m mod n),
that is, g(m, m, . . . , m) = m mod n.

In this paper, we first consider a variant of the Schmidt-Samoa–Takagi en-
cryption scheme [8] without losing additively homomorphic properties, described
as E(r, m) = rns

(1 + nt)m mod ns+1, where m ∈ Z/(ns−t+1/p) is a message and
r ∈ (Z/n)× is a random number. We show that this variant is secure in the
sense of IND-CPA under the decisional composite residuosity assumption, and
of OW-CPA under the assumption on the hardness of factoring n = p2q.

Then, by extending our variant, we propose an encryption scheme with prim-
itive power roots of unity in (Z/ns+1)×. We show that this extended scheme
has, in addition to the additively homomorphic property, the above properties.
We also show that our extended scheme is secure in the sense of IND-CPA un-
der the decisional composite residuosity assumption, and of OW-CPA under the
assumption on the hardness of factoring p2q. In order to show that our scheme
works, we analyze several properties on primitive power roots of unity in (Z/n)×,
and give an algorithm which finds them efficiently. Furthermore, we discuss a
relation between factoring n and knowing primitive power roots of unity.

Related Works. In 1998, Okamoto and Uchiyama proposed a public-key en-
cryption scheme which employs the modulus n = p2q. Their scheme is secure
in the sense of OW-CPA under the assumption on the hardness of factoring
n = p2q, and of IND-CPA under the p-subgroup assumption. In addition, the
scheme has an additively homomorphic property.

In 1999, Paillier proposed a public-key encryption scheme, which has an ad-
ditively homomorphic property [5]. He showed that the encryption scheme is
secure in the sense of IND-CPA under the decisional composite residuosity as-
sumption. However, it is not known whether the one-wayness is reduced to the
problem of the hardness of factoring n = pq. In addition to IND-CPA, Paillier

100 T. Hirano, K. Wada, and K. Tanaka

and Pointcheval proposed its variant by using a conversion technique, which has
the indistinguishability against the chosen ciphertext attack (IND-CCA2) in the
random oracle model under the decisional composite residuosity assumption [6].

Damg̊ard and Jurik proposed a variant of the Paillier encryption scheme where
the ciphertext space (Z/n2)× is extended to (Z/ns+1)× [1]. Thereby, it can
handle efficiently messages of arbitrary length in their scheme, although the
public key and the secret key are fixed. The security of their variant is similar
to that of the Paillier encryption scheme and it is not known whether the one-
wayness is reduced to the problem of the hardness of factoring n = pq. Their
scheme can be applied to threshold cryptosystem and zero-knowledge protocols.
Then, they constructed an electronic voting scheme by using these protocols and
their threshold variant [2].

Schmidt-Samoa and Takagi proposed another variant which employs modulus
n = p2q instead of n = pq [8], where p and q are primes with the same length.
Their scheme is secure in the sense of not only IND-CPA under the decisional
composite residuosity assumption, but also OW-CPA under the assumption on
the hardness of factoring n = p2q. They constructed trapdoor hash families based
on the problem of factoring n = p2q, by applying the encryption scheme. These
hash families are suitable for on-line/off-line or chameleon signatures schemes.

Organization. The organization of this paper is as follows. In Section 2, we give
some definitions. In Section 3, we review the Schmidt-Samoa–Takagi encryption
scheme, and propose its variant. In Section 4, we describe new cryptographic prop-
erties and a construction of primitive power roots of unity in (Z/ns+1)×. Then,
we extend our variant with primitive power roots of unity. In Section 5, we discuss
a relation between factoring n and knowing of primitive power roots of unity.

2 Preliminaries

We denote {0, 1, . . . , n − 1} by Z/n, and its reduced residue class group by
(Z/n)×, namely, (Z/n)× = {x ∈ Z/n| gcd(x, n) = 1}. For g ∈ (Z/n)×, ordn g is
defined as the smallest positive integer e such that ge ≡ 1 (mod n).

We denote the probability distribution on set X by x ← X and the uniform
distribution by x

u← X .
We denote the set of positive real numbers by R

+. We say that a function
ε : N→ R

+ is negligible if and only if for every polynomial p, there exists k0 ∈ N

such that for all k ≥ k0, ε(k) < 1
p(k) .

We review the definitions of public-key encryption schemes, of the one-wayness
against the chosen plaintext attack (OW-CPA), and of the indistinguishability
against the chosen plaintext attack (IND-CPA).

Definition 1. A public-key encryption scheme Π = (K, E ,D) consists of the
following three algorithms:

Key Generation K(1k): The key generation algorithm K is a randomized al-
gorithm that takes a security parameter k and returns a pair (pk, sk) of keys,
a public key and a matching secret key.

Public-Key Cryptosystems with Primitive Power Roots of Unity 101

Encryption E(pk, r, m): The encryption algorithm E is a randomized algorithm
that takes the public key pk, a randomness r, and a plaintext m and returns
a ciphertext c.

Decryption D(sk, c): The decryption algorithm D is a deterministic algorithm
that takes the secret key sk and a ciphertext c and returns the corresponding
plaintext m or a special symbol ⊥ to indicate that the ciphertext is invalid.

Definition 2. (OW-CPA) Let Π = (K, E ,D) be a public-key encryption scheme
and A an adversary. We define an advantage of A via

Advow-cpa
Π,A (k) = Pr[(pk, sk)← K(1k); c← E(pk, r, m) : A(pk, c) = m].

We say that Π is secure in the sense of OW-CPA if Advow-cpa
Π,A (k) is negligible

in k, for any polynomial-time adversary A.

Definition 3. (IND-CPA) Let Π = (K, E ,D) be a public-key encryption scheme
and A = (A1,A2) an adversary. We define the advantage of A via

Advind-cpa
Π,A (k) = |2 Pr[(pk, sk)← K(1k); m0, m1, state← A1(pk);

b
u← {0, 1}; c← E(pk, r, mb) : A2(m0, m1, c, state) = b]− 1|.

We say that Π is secure in the sense of IND-CPA if Advind-cpa
Π,A (k) is negligible

in k, for any polynomial-time adversary A.

3 A Variant of the Schmidt-Samoa–Takagi Encryption
Scheme

In [5], Paillier proposed the public-key encryption scheme with the additively
homomorphic property which can be applied many cryptographic applications.
Several variants of the Paillier encryption scheme have been studied. In this
section, we review the Schmidt-Samoa–Takagi encryption scheme which is a
variant of the Paillier encryption scheme [8], and study a variant of this encryp-
tion scheme without losing homomorphic properties. Furthermore, we show that
the security of our variant is the same as that of the Schmidt-Samoa–Takagi
encryption scheme.

3.1 The Schmidt-Samoa–Takagi Encryption Scheme

We review the Schmidt-Samoa–Takagi encryption scheme [8]. Let n = p2q, where
p and q are primes with same length. The Schmidt-Samoa–Takagi function f is
as follows:

(Z/n)× × Z/n −→ (Z/n2)×

(r, m)
−→ rn(1 + mn) mod n2,

where m is a message and r is a random number. Then, we obtain the following
properties on f :

102 T. Hirano, K. Wada, and K. Tanaka

– f is additively homomorphic in m.
– f(r, m) = f(r + ipq, m− (r−1 mod n)ipq) for i ∈ {1, 2, . . . , p}, that is, f is a

p-to-1 function.
– The restriction fr = f |(Z/pq)××Z/n on r is 1-to-1. Then it has a group ho-

momorphism with respect to the group operation ◦r : (r1, m1) ◦r (r2, m2)
= (r1r2 mod pq, m1 + m2 + r−1

pq lpq mod n), where rpq = r1r2 mod pq and
l ∈ {1, 2, . . . , p} such that r1r2 = rpq + lpq mod n.

– The restriction fm = f |(Z/n)××Z/pq on m is 1-to-1. Then it has a group
homomorphism with respect to the group operation ◦m : (r1, m1)◦m (r2, m2)
= (r1r2 − lpq mod n, m1 + m2 mod pq), where mpq = m1 + m2 mod pq and
l ∈ {1, 2, . . . , p} such that m1 + m2 = mpq − r−1

pq lpq mod n.
– The scheme (whose encryption function E is fm) is secure in the sense of

OW-CPA under the assumption of the hardness of factoring n = p2q.
– The scheme (whose encryption function E is fm) is secure in the sense of

IND-CPA under the decisional composite residuosity assumption.

The decisional composite residuosity assumption is the assumption that there is
no polynomial-time algorithm which solves “the decisional composite residuosity
problem” with non-negligible advantage.

Definition 4. (The Decisional Composite Residuosity Problem) Let n be a ran-
domly chosen k-bit p2q modulus. For a probabilistic polynomial-time algorithm
A, we define the following probabilities:

PRandom = Pr[x← (Z/n2)× : A(x) = 1]

and
PResidue = Pr[x← (Z/n)× : A(xn mod n2) = 1].

Then, we denote an advantage of A by

AdvDCR
A (k) = |PRandom − PResidue|.

In this paper, we use the above definition by replacing (Z/n2)× and xn mod n2

with (Z/ns+1)× and xns

mod ns+1, respectively.

3.2 Our Encryption Scheme

We consider a variant of the Schmidt-Samoa–Takagi encryption scheme by using
the idea of Damg̊ard and Jurik [1]. Let n = p2q, where p and q are primes with
same length. In addition, we introduce new parameters s, t ∈ N such that s ≥ t
to the Schmidt-Samoa–Takagi function. Then, we define a function f as follows:

(Z/n)× × Z/ns −→ (Z/ns+1)×

(r, m)
−→ rns

(1 + nt)m mod ns+1,

where m is a message and r is a random number. We note that our function
coincides with the Schmidt-Samoa–Takagi function if s = t = 1. Obviously, our
function is an additive homomorphism in m. We show that f is an (nt−1p)-to-1
function.

Public-Key Cryptosystems with Primitive Power Roots of Unity 103

Lemma 5. Let s, t ∈ N such that t < s < p, q. Then,

1. 1 + ans ≡ (1 + nt)ans−t

(mod ns+1) for a ∈ (Z/ns+1)×.
2. ordns+1 (1 + nt) = ns−t+1, that is, 〈1 + nt〉 Z/ns−t+1.

Proof. 1. (1 + nt)ans−t

= 1 + ans + ns+1(ant−1(ans−t−1)
2 + · · ·) ≡ 1 + ans

(mod ns+1).
2. Let x = ordns+1 (1 + nt), that is, (1 + nt)x ≡ 1 mod ns+1. Meanwhile (1 +

nt)ns−t+1
= 1 + ns+1(1 + · · ·) ≡ 1 (mod ns+1). Hence, x | ns−t+1. We set

x = peqe′
such that e ≤ 2(s − t + 1), e′ ≤ s − t + 1. We consider the

equation (1 + nt)x =
∑x

i=0

(
x
i

)

nit. Let δ ∈ N such that δt < s + 1 ≤ (δ + 1)t.
Clearly, δ < s + 1 ≤ p, q from t ≥ 1. Then (1 + nt)x =

∑x
i=0

(
x
i

)

nit ≡
∑δ

i=0

(
x
i

)

nit (mod ns+1). It follows that
∑δ

i=1

(
x
i

)

nit ≡ 0 (mod ns+1) by
the definition of x. In particular,

∑δ
i=1

(
x
i

)

n(i−1)t ≡ 0 (mod ns−t+1), that is,
ns−t+1 | ∑δ

i=1

(
x
i

)

n(i−1)t. For i ≤ δ, gcd(i!, p) = gcd(i!, q) = 1 from δ < p, q.
Hence, we obtain x | (

x
i

)

by x = peqe′
. Now, we assume x < ns−t+1 and

show a contradiction. Let y =
∑δ

i=1

(
x
i

)

n(i−1)t. Since ns−t+1 | y, x | y, and
x | ns−t+1, it holds ns−t+1

x | y
x = 1 + nt(

(
x
2

)

+ · · ·). Then, we see that p | 1
or q | 1 since p | ns−t+1

x | y
x or q | ns−t+1

x | y
x , and obtain a contradiction. ��

By Lemma 5, we have the following theorem and corollary.

Theorem 6. f(r, m) = f(r + ipq, m− (r−1 mod ns)ins−tpq + jns−t+1) for i ∈
{1, 2, . . . , p} and j ∈ {1, 2, . . . , nt−1}, that is, f is an (nt−1p)-to-1 function.

Proof. The following congruence relation means that over (Z/ns+1)×. r−1 means
r−1 mod ns.

f(r + ipq, m− ns−tr−1ipq + jns−t+1) ≡ (r + ipq)ns

(1 + nt)m−ns−tr−1ipq+jns−t+1

≡ rns

(1 + nsr−1ipq)(1 + nt)m−ns−tr−1ipq

≡ rns

(1 + nt)ns−tr−1ipq+m−ns−tr−1ipq

≡ rns

(1 + nt)m

≡ f(r, m).

Hence, we see that f(r, m) = f(r + ipq, m − (r−1 mod ns)ns−tipq + jns−t+1).
Therefore, f is an (nt−1p)-to-1 function. ��
Corollary 7. (of Theorem 6)

1. The restriction fr = f |(Z/pq)××Z/ns−t+1 on r is 1-to-1. Then fr holds the fol-
lowing equation : fr(r1, m1)fr(r2, m2) = fr(r1r2 mod pq, m1+m2+(r−1

pq mod
ns)lns−tpq mod ns−t+1), where rpq = r1r2 mod pq and l ∈ {1, 2, . . . , p} such
that r1r2 = rpq + lpq mod n.

2. The restriction fm = f |(Z/n)××Z/(ns+t−1/p) on m is 1-to-1. Then fm holds
the following equation : fm(r1, m1)fm(r2, m2) = fm(r1r2 − lpq mod n, m1 +
m2 mod (ns−t+1/p)), where mpq = m1 + m2 mod (ns−t+1/p) and l ∈
{1, 2, . . . , p} such that m1 + m2 = mpq − (r−1

pq mod ns)lns−tpq mod ns−t+1.

104 T. Hirano, K. Wada, and K. Tanaka

We also show properties of f , which can help us to compute f−1.

Lemma 8. For x, y ∈ (Z/n)× and s ≥ 1, xns ≡ yns

(mod n) if and only if
x ≡ y (mod pq).

Corollary 9. (of Lemma 8) {x ∈ (Z/n)× | x ≡ yns

(mod n), y ∈ (Z/n)×} is
a subgroup of (Z/n)× whose order is (p − 1)(q − 1). Especially, the subgroup is
equivalent to {xns

mod n | x ∈ (Z/pq)×}.

Our encryption scheme is described as follows. We refer the detail description of
the decryption algorithm to the full paper.

Key Generation: Given a security parameter k, choose at random a modulus
n = p2q of k bits, where p, q have same length with t < s < p, q. Compute
d ≡ n−s (mod (p− 1)(q− 1)) and l ∈ Z such that 2l < pq < 2l+1. Then, the
public key is pk = (n, l) and the secret key is sk = (p, q, d).

Encryption: To encrypt a message m ∈ Z/(ns−t+1/p), choose r ∈ (Z/n)× at
random and compute E(r, m), where E = fm, that is,

E(r, m) = rns

(1 + nt)m mod ns+1.

Decryption: To decrypt a ciphertext c, compute r = cd mod pq, and y =
c(r−1)ns

mod ns+1. Then, by using Algorithm XDJ, we obtain a message
m ∈ Z/(ns−t+1/p) by

D(c) = XDJ(s, t, n, y, 1) mod (ns−t+1/p).

Algorithm 10. LetLnt(x) = x−1
nt .The following algorithm takes y ∈ (Z/ns+1)×,

a ∈ (Z/ns+1)×, and s, t ∈ N such that t ≤ s, and computes x ∈ Z/ns−t+1 such that
y = (1 + ant)x mod ns+1:

XDJ(s, t, n, y, a)
x := 0
δ := � s

t � − 1
for (i := 1 to δ)

t1 := (a−1 mod n(i+1)t)× Lnt(y mod n(i+1)t) mod nit

t2 := x
for (j := 2 to i)

x := x− 1
t2 := t2 × x mod nit

t1 := t1 − t2×(ant)j−1

j! mod nit

x := t1
return x mod ns−t+1

We note that Algorithm XDJ coincides with that by Damg̊ard and Jurik when
t = a = 1, and works for any n ∈ N.

We give the following theorem on the security for our scheme.

Public-Key Cryptosystems with Primitive Power Roots of Unity 105

Theorem 11. We have the following properties on E.
1. Our scheme is secure in the sense of OW-CPA under the assumption of the

hardness of factoring n = p2q.
2. Our scheme is secure in the sense of IND-CPA under the decisional composite

residuosity assumption by replacing (Z/n2)× and xn mod n2 with (Z/ns+1)×

and xns

mod ns+1, respectively.

Proof. 1. We assume that there exists an adversaryA that on input a random ci-
phertext c = Em(r, m) = rns

(1 + nt)m mod ns+1, outputs m ∈ Z/(ns−t+1/p)
with non-negligible probability ε, that is, Advow−cpa

Π,A (k) = ε. Then we will
construct a probabilistic polynomial-time algorithm B which factors n by us-
ing this adversary A.
B chooses r′ ∈ (Z/n)× and m′ ∈ Z/ns−t+1. Then with probability 1−1/p,

B obtains m′ > ns−t+1/p. B computes c′ = (r′)ns

(1 + nt)m′
mod ns+1. The

distribution of c′ is exactly the same as the distribution of the valid cipher-
texts. B runs A on c′. Since E(r, m) = E(r + ipq, m− (r−1 mod n)ns−tipq +
jns−t+1), A(c′) outputs M = m′ − ((r′)−1 mod ns)ns−tipq mod ns−t+1 ∈
Z/(ns−t+1/p) with probability ε. From m′ −M = ((r′)−1 mod ns)ns−tipq

(i.e. (m′ − M)/ns−t = ((r′)−1 mod ns)ipq), r′ ∈ (Z/n)× and 0 ≤ i < p,
we obtain gcd((m′ −M)/ns−t, n) = pq. Hence, B can factor n = p2q with
non-negligible probability (1− 1/p)ε.

2. We will construct a probabilistic polynomial-time algorithm D such that
breaks the decisional composite residuosity assumption by using the adver-
sary A = (A1,A2) against IND-CPA with the advantage Advind−cpa

Π,A (k) = ε.
Let x be an instance of the decisional composite residuosity problem. A1

outputs (m0, m1, state), where m0, m1 ∈ Z/(ns−t+1/p). Next D chooses a
random bit b ∈ {0, 1}, computes c = x(1 + nt)mb mod ns+1, and runs A2

on (m0, m1, c). If x is an ns-th residue, then c is a valid ciphertext, oth-
erwise c is a random element of (Z/ns+1)×. Therefore, let D outputs 1 if
A2(m0, m1, c) = b, or 0 otherwise. Hence, we can obtain that AdvDCR

D (k)
equals non-negligible advantage ε/2. ��

4 Constructions Based on Primitive Power Roots of
Unity

In this section, we first introduce new cryptographic properties related to the
homomorphic property. Second, we describe some facts on primitive power roots
of 1, and apply them to our encryption function. Then, we propose an extended
encryption scheme which has the new cryptographic properties.

4.1 New Cryptographic Properties

In this section, we formalize the notion of a general homomorphic property as fol-
lows: Let f1, f2, . . . , fk, f be functions, and ∗, g polynomial-time computable op-
erations. For m1, m2, . . . , mk, we have f1(m1) ∗ f2(m2) ∗ · · · ∗ fk(mk) =

106 T. Hirano, K. Wada, and K. Tanaka

f(g(m1, m2, . . . , mk)). These functions do not always have common domain or
common range. For example, a multiplicative homomorphism can be expressed
by f1 = f2 = · · · = fk = f and g(a1, a2, . . . , ak) = a1×a2×· · ·×ak. With this for-
malization, we consider two properties. A tuple ({f1, f2, . . . , fk}, f) of functions
is called “affine with x1, x2, . . . , xk” if f1(m1)∗f2(m2)∗ · · · ∗fk(mk) = f(x1m1 +
x2m2 + · · · + xkmk), that is, g(m1, m2, . . . , mk) = x1m1 + x2m2 + · · ·+ xkmk.
An additive homomorphism can be considered as the special case. A tuple of
({f1, f2, . . . , fk}, f) of functions is called “pre-image restriction with modulo n”
if m = m1 = m2 = · · · = mk and f1(m) ∗ f2(m) ∗ · · · ∗ fk(m) = f(m mod n),
that is, g(m, m, . . . , m) = m mod n.

Definition 12. (Affine) A tuple ({f1, f2, . . . , fk}, f) of functions has the prop-
erty of affine with x1, x2, . . . , xk if for m1, m2, . . . , mk, f1(m1) ∗ f2(m2) ∗ · · · ∗
fk(mk) = f(x1m1 + x2m2 + · · ·+ xkmk).

Definition 13. (Pre-Image Restriction) A tuple of functions ({f1, f2, . . . , fk}, f)
has the property of pre-image restriction with modulo n if for m, f1(m) ∗ f2(m) ∗
· · · ∗ fk(m) = f(m mod n).

4.2 Our Extended Function

In order to extend our function f in Section 3.2, we introduce primitive power
roots of 1 in (Z/ns+1)× to f .

First, we give some facts on primitive power roots of 1 in (Z/ns+1)×.

Lemma 14. For � ∈ N, let p be an odd prime such that � | p− 1. Then, there
exist ϕ(�) primitive �-th roots of 1 in (Z/p)×, where ϕ is the Euler phi-function,
and we can compute them efficiently if we know prime factors of p− 1.

Before we prove this lemma, we describe a fact for primitive �-th roots of 1 in
(Z/p)×.

Fact 15. We can identify the existence of primitive �-th roots of 1 in (Z/p)×

with that of a subgroup G of (Z/p)× whose order is �. This means that, if we
find an element g ∈ (Z/p)× with order �, then g is a primitive �-th root of 1 in
(Z/p)× since gi �≡ 1 (mod p) for 1 ≤ i ≤ �− 1.

Proof. (Lemma 14) Since (Z/p)× is a cyclic group, there exists a generator g ∈
(Z/p)×. In particular, we find g efficiently if we know prime factors p− 1. Then,
ordp g(p−1)/� = � since � | ordp g = p − 1. Therefore, g(p−1)/� is a primitive
�-th root of 1. Now, let g� be g(p−1)/�. We define a subgroup G of (Z/p)× as
{g�, g

2
� , . . . , g�

�}. Then, for any g′ ∈ G, (g′)� ≡ 1 (mod p). We note that any
subgroups of cyclic groups are also cyclic. In addition, for subgroups G, G′ of a
cyclic group, it holds G = G

′ if |G| = |G′|. Therefore, the number of primitive
�-th roots of 1 in (Z/p)× is ϕ(�). ��
Now, we apply primitive �-th roots of 1 in (Z/p)× to those in (Z/ns+1)× by using
the Chinese Remainder Theorem, where n = p2q and s ∈ N such that s < p, q.
Then, we give the following important lemma (see e.g. [9, Section 6.5]).

Public-Key Cryptosystems with Primitive Power Roots of Unity 107

Lemma 16. Let p, q be distinct odd primes, and e, e′ positive integers.

1. (Z/pe)× is a cyclic group. In particular, |(Z/pe)×| = pe−1(p− 1).
2. For a group (Z/peqe′

)×, maxg∈(Z/peqe′)×{ordpeqe′ g} = lcm(|(Z/pe)×|,
|(Z/qe′

)×|) = lcm(pe−1(p− 1), qe′−1(q − 1)).

We can compute efficiently a generator g of (Z/p2s+2)× using the Hensel lifting
if we know prime factors of p− 1, due to Lemma 16. Similarly, we can compute
a generator h of (Z/qs+1)× efficiently. Then, from g and h, we can find an
element w ∈ (Z/ns+1)× such that ordns+1 w = lcm(p2s+1(p − 1), qs(q − 1)), by
using the Chinese Remainder Theorem. Now, let p − 1 = �p′, q − 1 = �q′, and
gcd(p− 1, q− 1) = �, where p′, q′ ∈ N. Let w� = w(ordns+1 w)/� mod ns+1, w� is a
primitive �-th root of 1 in (Z/ns+1)× since ordns+1 w = p2s+1qsp′q′�. Thus, we
can compute a primitive �-th root of 1 efficiently.

Remark 17. If gcd(�, (p−1)(q−1)) = 1, we see that there exists no primitive �-
th root of 1. In the RSA encryption scheme [7], the encryption function f(X) =
Xe mod n, where the exponent e is relatively prime to ϕ(n) = (p− 1)(q − 1), is
a permutation on (Z/n)×. Therefore, it holds also on (Z/p)× and (Z/q)× by the
Chinese Remainder Theorem. Hence, for all x ∈ (Z/n)×, there exists only one
e-th root, that is, the e-th root of 1 is 1 in (Z/n)×.

In many cryptographic settings depending on the hardness of factoring n, the
product of two strong primes are recommended (we note that p ∈ N is a strong
prime if p is prime and p = 2p′ + 1, where p′ is also prime). It is well-known
that strong primes have resistance against factoring attacks which depend on
the structure of primes, such as the p− 1 method and the elliptic curve method.
However, since � is limited to 2 or p′ for a strong prime p, there are only g2, gp′

in (Z/p)× as primitive �-th roots of 1. Hence, we consider to use the following
primes with many power roots of 1 in (Z/p)×, and can resist against factoring
attacks above.

Definition 18. (Semi �-Smooth Primes) For � ∈ 2N, a prime p ∈ N is semi
�-smooth if p = �p′ + 1, where p′ is prime.

In our extended function and scheme, we require that � is constant and much
smaller than p′. However, we do not know whether the number of the primes
above is infinite, as well as that of strong primes. Nevertheless, we assume that
there exist infinite number of semi �-smooth primes for any � ∈ N. Henceforth
in this paper, we assume that p and q are semi �-smooth prime.

For i ∈ {1, 2, . . . , �}, we define an extended function fi with a primitive �-th
root of 1 in (Z/ns+1)× as follows:

fi : (Z/n)× × Z/ns −→ (Z/ns+1)×

(r, m)
−→ rns

(1− wi
�n)m mod ns+1,

where m is a message, r is a random number, and w� is a primitive �-th root of 1. We
note that our extended function is similar to the Schmidt-Samoa–Takagi function
if s = 1 and i = �, since w�

� ≡ 1 (mod ns+1). Obviously, our function is additive
homomorphism in m. We give the following property on fi.

108 T. Hirano, K. Wada, and K. Tanaka

Corollary 19. (of Lemma 5) Let s ∈ N and a ∈ (Z/ns+1)×. Then, ordns+1 (1+
an) = ns, that is, 〈1 + an〉 Z/ns.

That is, we see that ordns+1 (1− wi
�n) = ns since wi

� is relatively prime to n for
any i. Therefore, for any i, we obtain the properties similar to Theorem 6 and
Corollary 7.

Theorem 20. For any i ∈ {1, 2, . . . , �},
1. fi(r, m) = fi(r + jpq, m− (r−1 mod ns)jpq) for j ∈ {1, 2, . . . , p}, that is, fi

is a p-to-1 function.
2. The restriction fi,r = fi|(Z/pq)××Z/ns on r is 1-to-1. Then fi,r holds the

following equation : fi,r(r1, m1)fi,r(r2, m2) = fi,r(r1r2 mod pq, m1 + m2 +
(r−1

pq mod ns)lpq mod ns), where rpq = r1r2 mod pq and l ∈ {1, 2, . . . , p}
such that r1r2 = rpq + lpq mod n.

3. The restriction fi,m = fi|(Z/n)××Z/(ns/p) on m is 1-to-1. Then fi,m holds the
following equation : fi,m(r1, m1)fi,m(r2, m2) = fi,m(r1r2 − lpq mod n, m1 +
m2 mod (ns/p)), where mpq = m1 + m2 mod (ns/p) and l ∈ {1, 2, . . . , p}
such that m1 + m2 = mpq − (r−1

pq mod ns)lpq mod ns−t+1.

4.3 Our Extended Scheme

We propose a concrete scheme based on our extended function fi. We describe
our extended encryption scheme as follows:

Key Generation: Given a security parameter k, choose at random a modulus
n = p2q of k bits, where p, q are semi �-smooth prime such that p � q − 1
and q � p − 1 with the same length, and � < s < p, q. Compute d ≡ n−s

(mod (p − 1)(q − 1)), l ∈ Z such that 2l < pq < 2l+1 and a primitive �-th
root w� of 1 as above. Then, the public key is pk = (n, l, w�) and the secret
key is sk = (p, q, d).

Encryption: To encrypt a message m ∈ Z/(ns/p), choose i ∈ {1, 2, . . . , �} and
ri ∈ (Z/n)× at random, and compute Ei(ri, m), where Ei = fi,m, that is,

ci = Ei(ri, m) = rns

i (1 − wi
�n)m mod ns+1.

Then, the ciphertext is (ci, i).
Decryption: To decrypt ci, compute r = cd

i mod pq and y = ci(r−1)ns

mod
ns+1. Then, by using Algorithm XDJ, we obtain a message m ∈ Z/(ns/p)
by

D((ci, i)) = XDJ(s, 1, n, y,−wi
�) mod (ns/p).

Obviously, Ei has the additively homomorphic property, for any i.
Now, we can prove the following security proofs, in a similar fashion of

Theorem 11.

Theorem 21. For any i ∈ {1, 2, . . . , �}, our extended scheme is secure in the
sense of OW-CPA under the assumption on the hardness of factoring n = p2q,
and of IND-CPA under the decisional composite residuosity assumption by re-
placing (Z/n2)× and xn mod n2 with (Z/ns+1)× and xns

mod ns+1, respectively.

Public-Key Cryptosystems with Primitive Power Roots of Unity 109

In addition to the security proof, our extended scheme satisfies new crypto-
graphic properties “affine” and “pre-image restriction”. Let E(t)(m) = E(t)(r, m)
= rns

(1 − nt)m mod ns+1. This is similar to our original function.

Theorem 22. For the functions E1, E2, . . . , E�, we have the following properties:

1. For all i, j, k ∈ {1, 2, . . . , �}, there exist xi,k and xi,j such that ({Ei, Ej}, Ek)
is an affine tuple with xi,k and xj,k, that is, for all m1, m2 ∈ Z/(ns/p),
Ei(m1)Ej(m2) = Ek(xi,km1 + xj,km2), where xa,b ∈ Z/ns such that 1 −
wa

� n ≡ (1 − wb
�n)xa,b (mod ns+1). In particular, we can compute xi,k and

xj,k, efficiently.
2. For all t ∈ N such that t | �, ({Eδ, E2δ . . . Etδ}, E(t)) is a pre-image restriction

tuple, where δ = �/t, that is, for all m ∈ Z/ns, Eδ(m)E2δ(m) · · · Etδ(m) =
E(t)(m mod ns−t+1). In particular, Eδ(m)E2δ(m) · · · Etδ(m) = E(t)(m).

Proof. 1. By using Algorithm XDJ, we compute xa,b such that 1−wa
� n ≡ (1−

wb
�n)xa,b (mod ns+1) as follows, that is, xa,b = XDJ(s, 1, n, 1 − wa

� n,−wb
�)

mod ns. Hence, we can compute xa,b efficiently. In particular, xa,a = 1. Then,

Ei(m1)Ej(m2) = rns

1 (1− wi
�n)m1rns

2 (1− wj
�n)m2 mod ns+1

= (r1r2)ns

(1− wk
� n)xi,km1+xj,km2 mod ns+1

= Ek(xi,km1 + xj,km2).

2. For t ∈ N such that t | �, we have

t∏

i=1

Eiδ(m) =
t∏

i=1

rns

iδ (1− wiδ
� n)m mod ns+1

= rns

(
t∏

i=1

(1 − wiδ
� n)

)m

mod ns+1,

where r = r1δr2δ · · · rtδ. Since w� is a primitive �-th root of 1, wδ
� , w2δ

� ,
. . . , wtδ

� are distinct t-th roots of 1. Hence, (1 − wδ
�n)(1 − w2δ

� n) · · · (1 −
wtδ

� n) = 1−nt. Therefore, rns
(
∏t

i=1(1− wiδ
� n)

)m

= rns

(1−nt)m mod ns+1.

From ordns+1 (1− nt) = ns−t+1, we obtain (1− nt)m ≡ (1− nt)m mod ns−t+1

(mod ns+1). Then, we have

t∏

i=1

Eiδ(m) = rns

(1 − nt)m mod ns+1

= rns

(1 − nt)m mod ns−t+1
mod ns+1

= E(t)(m mod ns−t+1).

��

110 T. Hirano, K. Wada, and K. Tanaka

We have proposed an extended scheme based on the Schmidt-Samoa–Takagi
encryption scheme with primitive �-th root of 1. We can also construct a scheme
from the Damg̊ard and Jurik encryption scheme [1] instead of their scheme,
although we do not know whether the one-wayness is reduced to the problem of
factoring n = pq.

5 Properties on Primitive Power Roots of Unity

In this section, we discuss a relation between factoring n and knowing of a
primitive �-th root of 1 in (Z/ns+1)×, where n = p2q and p, q are semi �-smooth
prime. For the sake of simplicity, we consider primitive �-th roots of 1 in (Z/n)×

since w� mod n is also a primitive �-th root of 1 in (Z/n)×, where w� is a primitive
�-th root of 1 in (Z/ns+1)×. We note that the following argument can be applied
to the case of ns+1 or n = pq.

First, by using w� = w2, we describe a well-known relation between factoring
n and knowing square roots. Second, we generalize the argument for �.

5.1 Square Roots

We consider the case of square roots, that is, � = 2. Let x and y be elements
of (Z/n)× such that y ≡ x2 (mod n). We identify x with (xp, xq) = (x mod
p2, x mod q) from (Z/n)× (Z/p2)× × (Z/q)×. Then, for a variable X , all of
the solutions to the equation y ≡ X2 (mod n) satisfy the following equations:

x = x1 = (x mod p2, x mod q) = (xp, xq),
x2 = (−x mod p2,−x mod q) = (−xp,−xq),
x3 = (x mod p2,−x mod q) = (xp,−xq),
x4 = (−x mod p2, x mod q) = (−xp, xq).

Obviously, x2
i ≡ y (mod n) for i = 1, 2, 3, 4. In particular, x1 ≡ −x2 (mod n)

and x3 ≡ −x4 (mod n).
On the other hand, we have that a primitive square root in (Z/n)× of 1 is

w2 = −1 ≡ n − 1 (mod n), and identified w2 with (w2 mod p2, w2 mod q) =
(g2, h2) = (−1,−1), where g2 ≡ −1 (mod p2) is a primitive square root of 1 in
(Z/p2)×, and h2 ≡ −1 (mod q) is also that in (Z/q)×. Then, we can interpret
xi (i = 1, 2, 3, 4) as follows:

x = x1 = (x mod p2, x mod q) = (xp, xq),
x2 = (w2x mod p2, w2x mod q) = (g2xp, h2xq),
x3 = (x mod p2, w2x mod q) = (xp, h2xq),
x4 = (w2x mod p2, x mod q) = (g2xp, xq).

Similarly, x1 ≡ w2x2 (mod n) and x3 ≡ w2x4 (mod n).
As is well-known, given y ∈ (Z/n)×, finding a “random” square root of it is

equivalent to factoring n. This means that if we have a pair (xi, xj) such that
xi �≡ we

2xj (mod n) for e = 1, 2, then we obtain prime factors p and q of n from

Public-Key Cryptosystems with Primitive Power Roots of Unity 111

gcd(xi−we
2xj , n). For example, for x1, x3 as above, it holds x1 �≡ we

2x3 (e = 1, 2),
therefore we obtain gcd(x1 − x3, n) = p2 since x1 − x3 = (xp − xp, xq − h2xq) =
(0, xq(1−h2)). That is, x1−x3 ≡ 0 (mod p2) and �≡ 0 (mod q). Conversely, if we
only have pairs (xi, xj) such that xi ≡ we

2xj (mod n), it is hard to factor n. This
situation is similar to the following case. We choose x ∈ (Z/n)× at random, and
compute y = x2 mod n. Since anyone knows that one of primitive square roots
of 1 is −1 in any fields or rings, we have (x, w2x) such that x2 ≡ (w2x)2 (mod n)
and x ≡ w2

2x (mod n), as a pair of square roots of y in (Z/n)×. However, it is
hard to find non-trivial square roots of 1 without knowing prime factors p, q of
n, due to the factoring assumption. That is, it is hard to factor n even if we have
information on w2 = −1 or � = 2. In addition, we note that, given y ∈ (Z/n)×,
randomly finding a square root of y is equivalent to randomly finding a square
root of 1, since xi/xj �≡ we

2 (mod n) is also a �-th root of 1 if x2
i ≡ x2

j (mod n)
and xi �≡ we

2xj (mod n) for e = 1, 2.

5.2 Power Roots

We describe the case that � | p− 1 and � | q − 1 for each � �= p′, q′. This can be
considered as a generalization of � = 2.

In our extended scheme, we first find generators g and h of (Z/p2)× and
(Z/q)×, respectively, with prime factors of p− 1 and q− 1. Second, we compute
g� and h�, which are primitive �-th roots of 1 in (Z/p2)× and (Z/q)×, respectively,
by using g and h. Then, we construct w� from g� and h�, by applying the Chinese
Remainder Theorem.

For 1 ≤ e ≤ �, we
� satisfy the following equations:

w� = (w� mod p2, w� mod q) = (g�, h�),
w2

� = (w2
� mod p2, w2

� mod q) = (g2
� , h2

�),
...

(1 =)w�
� = (1 mod p2, 1 mod q) = (1, 1).

We also see that the following z�,1, z�,2, . . . , z�,�−1 are also �-th roots of 1 in
(Z/n)×, which are different from we

� :

z�,1 = (1 mod p2, w� mod q) = (1, h�),
z�,2 = (1 mod p2, w2

� mod q) = (1, h2
�),

...
z�,�−1 = (1 mod p2, w�−1

� mod q) = (1, h�−1
�).

It follows that for 1 ≤ i ≤ � − 1 and 1 ≤ e ≤ �, we
�z�,i mod n are also �-th

roots of 1 in (Z/n)×. It holds we
�z�,i �≡ z�,j (mod n) for i �= j and 1 ≤ e ≤ �.

Therefore, the number of �-th roots of 1 is �2 (In particular, there exist ϕ(�2)
primitive �-th roots of 1).

Now, we can see that it is easy to factor n by using w� and one of z�,i above,
since (we

�)� ≡ z�
�,i ≡ 1 (mod n) and we

� �≡ z�,i (mod n) for 1 ≤ e ≤ �. Hence,
we must not give other primitive �-th roots of 1 publicly. Conversely, we regard

112 T. Hirano, K. Wada, and K. Tanaka

the problem of finding other �-th roots which are not the power of w� as a hard
problem.

Furthermore, we must construct w� from g� and h�, otherwise, for some 1 ≤
e ≤ �−1, there exists the following (primitive) �-th root y� of 1: ye

� ≡ 1 (mod p2)
and ye

� �≡ 1 (mod q) or ye
� �≡ 1 (mod p2) and ye

� ≡ 1 (mod q). In other words,
this situation is equivalent to the case when a non-primitive �-th root in (Z/p2)×

or that in (Z/q)× instead of g� or h�, respectively, is used for constructing w�.
Hence, it is easy to factor n, that is, we must compute w� with g� and h�.

Thus, we can see that it is hard to factor n even if we give a primitive power
roots of 1 publicly. This situation is similar to that of strong primes. That is, if
w� or � can help for factoring n, then w2 = −1 or � = 2 must.

References

1. Damg̊ard, I., Jurik, M.: A Generalisation, a Simplification and Some Applications
of Paillier’s Probabilistic Public-Key System. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

2. Damg̊ard, I., Jurik, M.: A Length-Flexible Threshold Cryptosystem with Applica-
tions. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp.
350–364. Springer, Heidelberg (2003)

3. ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. IEEE Transactions on information Theory 31(4), 469–472 (1985)

4. Goldwasser, S., Micali, S.: Probabilistic Encryption & How to Play Mental Poker
Keeping Secret All Partial Information. In: STOC 1982: Proceedings of the four-
teenth annual ACM symposium on Theory of computing, pp. 365–377 (1982)

5. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

6. Paillier, P., Pointcheval, D.: Efficient Public-Key Cryptosystems Provably Secure
against Active Adversaries. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASI-
ACRYPT 1999. LNCS, vol. 1716, pp. 165–179. Springer, Heidelberg (1999)

7. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures
and Public-key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

8. Schmidt-Samoa, K., Takagi, T.: Paillier’s Cryptosystem Modulo p2q and Its Ap-
plications to Trapdoor Commitment Schemes. In: Dawson, E., Vaudenay, S. (eds.)
Mycrypt 2005. LNCS, vol. 3715, pp. 296–313. Springer, Heidelberg (2005)

9. Shoup,V.:AComputational Introduction toNumberTheory andAlgebra.Cambridge
University Press, Cambridge (2005), http://www.shoup.net/ntb/ntb-v2 1.pdf

http://www.shoup.net/ntb/ntb-v2_1.pdf

Relationship between Two Approaches for

Defining the Standard Model PA-ness

Isamu Teranishi1 and Wakaha Ogata2

1 NEC Corporation.
1753, Shimonumabe, Nakahara-Ku, Kawasaki, Kanagawa, 211-0011, Japan

teranisi@ah.jp.nec.com
2 Tokyo Institute of Technology.

2-12-1 Ookayama, Meguro-Ku Tokyo, 152-8550, Japan
wakaha@mot.titech.ac.jp

Abstract. There are two approaches to define Plaintext Awareness
(PA). The first one is a classical approach to define the PA security
and is used to define the PA security of the random oracle model. This
approach enables us to define the PA-ness simply, but no one know
whether we can define the standard model PA security based on this
approach. In contrast, the second approach is a current approach to
define the PA security. It enables us to define the standard model PA
security formally, but it is more elaborate than the overwhelming-based
approach. In this paper, we aim to clarify relations between the two
approaches. We define the standard model PA security based on the
first approach. Then we show that, under a very weak condition, it is
equivalent to the known definition of the standard model PA security
based on the second approach.

Keywords: Plaintext Awareness, Standard Model.

1 Introduction

1.1 Background

The Plaintext Awareness (PA) [BR94, BDPR98, HLM03, BP04, D06, TO06,
BD07] is one of the most fundamental notion about a Public-Key Encryption
scheme (PKE). Intuitively, we say that a PKE is PA secure, if it satisfies the
following property: whenever an adversary generates a ciphertext, the adversary
“knows” the corresponding plaintext.

The PA notion is important, because the PA-ness together with the IND-
CPA security implies the IND-CCA2 security [BR94, BDPR98, BP04]. This
means that we can use the PA security when we show the IND-CCA2 security.
Moreover, it can bring some insight or an alternative perspection on the design
of existing PKE with IND-CCA2 security, as said by Bellare and Palacio [BP04].

Although the intuitive definition mentioned above is quite simple, it is elab-
orate task to define the PA notion formally. Therefore, many definitions of the
PA security are there. Mainly, there are two approaches to defining PA security,

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 113–127, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

114 I. Teranishi and W. Ogata

which we will call “overwhelming-based approach” and “indistinguishability-
based approach.”

The overwhelming-based approach is a classical approach to define the PA secu-
rity and is used to define the PA security [BR94, BDPR98] of the random oracle
model. This approach enables us to define the PA-ness simply, but no one know
whether we can define the standard model PA security based on this approach. In
contrast, the indistinguishability-based approach is a current approach to define
the PA security. It enables us to define the standard model PA security formally
[BP04], but it is more elaborate than the overwhelming-based approach.

Reviewing Two Approaches. Both the overwhelming-based approach and
the indistinguishability-based approach are defined by using an adversary and
an extractor. However, the details of two approaches are quite different. In the
case of the overwhelming-based approach, the adversary outputs one ciphertext
and the extractor extracts the corresponding plaintext from the ciphertext. We
say that a PKE is PA secure, if there exists an extractor which succeeds the
extraction with overwhelming probability.

In contrast, the indistinguishability-based approach defines the PA security
through the indistinguishability of two worlds. In the first and second worlds,
an adversary can polynomially many times access to the decryption oracle and
the extractor respectively. We say that a PKE is perfectly/statistically/com-
putationally PA secure, if these two worlds are perfectly/statistically/compu-
tationally indistinguishable for the adversary.

1.2 Our Contributions

Motivation. In order to see the motivation of our work, we review the intuition
behind the PA-ness. Recall that the intuition behind the PA-ness is “A knows
the decrypted plaintext M ,” and this intuition is realized by the existence of an
extractor K which can extract M .

In the definition of the standard model PA-ness [BP04], an extractor K re-
quires to extract polynomially many plaintexts M1, . . . , Mn. This means that
the standard model PA-ness [BP04] requires that “A knows all of M1, . . . , Mn.”

However, our intuition suggests that “A knows all of M1, . . . , Mn” holds if
and only if all of the following facts holds: “A knows M1,”. . ., and “A knows
Mn.” Therefore, the extractor K should be “decomposed” into the extractors
K1, . . . ,Kn. Here Ki is an extractor which can extract Mi.

We would like to know whether this intuition is true or not. Recall that the
overwhelming-based PA-ness requires an extractor to extract only one plain-
text. Therefore, if the above intuition is true, the extractor K for the standard
model PA-ness of [BP04] can “decompose” into the extractors K1, . . . ,Kn of
the overwhelming-based PA security. So, the above motivation can rephrase as
follows: “Can we define the standard model PA-ness by using the overwhelming-
based methodology?”

Two Approaches are Almost Equivalent. In this paper, we define
OverWhelming-Based PA security (OWB-PA) in the standard model and study

Relationship between Two Approaches 115

the relationship between the OWB-PA security and the indistinguishability-
based PA security [BP04]. In particular, we show that the extractor K for statis-
tical PA-ness, which extracts M1, . . . , Mn can be constructed from the extractor
K1, . . . ,Kn of the OWB-PA security. Here Ki is an extractor which extracts Mi.

A naive definition of the OWB-PA security is obtained by “directly stan-
dard modelizing” the overwhelming-based PA security [BR94, BDPR98] of the
random oracle model. However, we can show that the naive OWB-PA security
seems to be equivalent to none of the perfect/statistical/computational PA se-
curity [BP04]. Therefore, we somewhat modify the definition of the OWB-PA
security, assume a very weak condition on a PKE and show that this (modi-
fied) OWB-PA security is equivalent to the statistical PA-security under this
condition.

The modification we use is allowing an adversary to access the decryption or-
acle, and giving an auxiliary input to the adversary. Our condition for a PKE is
about secret keys. Recall that, in some PKE such as the Cramer-Shoup scheme
[CS98], one public key has two or more corresponding secret keys. Our condi-
tion, named sk-non-redundancy, is as follows: “If two secret keys sk1 and sk2

correspond to the same public key, Decsk1(C) = Decsk2(C) holds for any cipher-
text C.” Clearly, this condition is satisfied for any honestly generated ciphertext
C = Encpk(M), because Decsk1(C) = Decsk2(C) = M holds. The heart of the
sk-non-redundancy is that Decsk1(C) = Decsk2(C) holds even for maliciously gen-
erated ciphertext C. We can say that our sk-non-redundancy condition is very
weak, because all known PKEs satisfy this condition.

Significance. One of the most significant point of our result is that it shows the
“independence” of knowledge extractions. Recall that our result shows that the
extractor K for the statistical PA-ness can be “decomposed” into the extractor
K1, . . . ,Kn of the OWB-PA security. Here K is an extractor which extracts all
M1, . . . , Mn from decryption queries C1, . . . , Cn of an adversary and Ki is an
extractor which extracts Mi from Ci. Since Ki can extract Mi independent
from other Kj , this means that the knowledge extractions of Mi and Mj are
“independent” from each other.

This independence is non-trivial fact from the folloing reason. Recall that the
definition of the statistical PA-ness requires that (M1, . . . , Mn) � (Decsk(C1), . . .,
Decsk(Cn)) holds. Here “�” denote the statistical indistinguishability.

However, the statistical indistinguishability (X1, . . . , Xn) � (Y1, . . . , Yn) may
not hold even if X1 � Y1, . . . , Xn � Yn holds, where Xi and Yi are random
variables. (In fact, (X1, . . . , Xn) � (Y1, . . . , Yn) hold only if the distribution
of X1, . . . , Xn are independent from each other.) Recall that an adversary of
the statistical PA-ness can output {Ci}i such that the distribution of Ci is not
independent from that of other Cj . Therefore, if K extracts Mi � Decsk(Ci) one
by one, (M1, . . . , Mn) � (Decsk(C1), . . . , Decsk(Cn)) may not holds.

Our result is non-trivial because it shows that (M1, . . . , Mn) � (Decsk(C1),
. . ., Decsk(Cn)) always holds even if K extracts Mi � Decsk(Ci) one by one
by using the extractor Ki of the OWB-PA-ness. That is, our result shows that the

116 I. Teranishi and W. Ogata

“independence” of knowledge extraction holds even if the distributions of C1,
. . ., Cn are dependent.

More Detailed Studies about the Equivalence. As mentioned before, we
show that the OWB-PA security was equivalent to the statistical PA security
[BP04] only if a PKE is sk-non-redundant. However, we also consider a slightly
modified version of the PA security [BP04] (named sk-PA security), where a
distinguisher is provided with the secret key. Then we show that the OWB-
PA security is equivalent to the sk-statistical PA security, even if a PKE is not
sk-non-redundant.

In the statistical case, we can say that the difference between the sk-PA secu-
rity and the original PA security is quite small, because we can show that these
two notions are equivalent for a sk-non-redundant PKE and all known PKEs are
sk-non-redundant.

However, the definition of the computational PA security dramatically changes
if a distinguisher is provided with the secret key. In fact, we can prove that the
sk-computational PA security is equivalent to the sk-statistical PA security, al-
though the original computational PA security is strictly weaker than the original
statistical PA security [TO06, TO08].

We can say that the above result show what the difference between the com-
putational PA security and the statistical PA is. That is, we can say that the
only difference between the computational PA security and the statistical PA
security is in the knowledge of sk.

Computational PA-ness. We finally note about the computational PA-ness.
One may think that our result can be generalized to the case of the computational
PA-ness. That is, one may think that the computational PA-ness is equivalent
to the “computational OWB-PA-ness.” Here the computational OWB-PA-ness
is a variant of the OWB-PA-ness such that an extractor requires to extract a
plaintext only from one ciphertext and the extracted plaintext is only required
to be computationally indistinguishable from the decrypted plaintext.

However, Bellare and Palacio [BP04] already showed that such computational
OWB-PA-ness was strictly weaker than the computational PA-ness. (They used
the term “PA0-ness” for the computational OWB-PA-ness.)

2 Standard Model PA-ness

We review the definition of the standard model PA-ness, which was given by
Bellare and Palacio [BP04] and was given through indistinguishability-based
methodology. From a technical reason, we slightly change the definition of
[BP04]. That is,

– we give an auxiliary input to an adversary.

We will see in Subsection 4.2 why we need this modification.

Definition 1 (Standard Model PA-ness[BP04]). Let Π = (Gen, Enc, Dec)
be a PKE. Let A, K, P be polytime machines, which are respectively called
adversary, extractor, and plaintext creator.

Relationship between Two Approaches 117

—PADec
Π,A,Enc◦P(λ, z)—

Take random tapes R and μ for A and P .
(pk, sk) ← Gen(1λ).

Run A(pk, z; R) until it halts:
If A makes an encryption query (enc, Q)

C ← Encpk ◦ P(Q;μ).
Send C to A as the reply.

If A makes a decryption query (dec, Q)
M ← Decsk(Q).
Send M to A as the reply.

Return an output T of A.

—PAK
Π,A,Enc◦P(λ, z)—

Take random tapes R, μ, and ρ for A, P , K.

(pk, sk) ← Gen(1λ).
Initialize the list EList to ε.
Initialize the state StK of K to ε.
Run A(pk, z; R) until it halts:

If A makes an encryption query (enc, Q)
C ← Encpk ◦ P(Q; μ), EList ← EList‖C.
Send C to A as the reply.

If A makes a decryption query (dec, Q)
(M, StK) ← K(pk, z, Q, R, EList, StK; ρ).
Send M to A as the reply.

Return an output T of A.

Fig. 1. Experiments for the Standard Model PA-ness of Bellare-Palacio [BP04]

For a plaintext creator P , let StP and μ denote the state of P and the random
tape of P respectively. The state StP is initialized to the null string ε. We let
Encpk ◦ P(Q; μ) denote the algorithm which executes the following procedures:
(M, StP)← P(Q, StP ; μ), C ← Encpk(M), and output C.

For a security parameter λ, a polynomial poly, and an auxiliary input
z ∈ {0, 1}poly(λ) of A, we define two experiments PADec

Π,A,Enc◦P(λ, z) and
PAK

Π,A,Enc◦P(λ, z), shown in Fig. 1. For a distinguisher D, we set

PA,poly,K,P,D(λ)= max
z∈{0,1}poly(λ)

|Pr[D(PADec
Π,A,Enc◦P(λ, z))=1]−Pr[D(PAK

Π,A,Enc◦P(λ, z))=1]|.

We say that a PKE Π is perfectly, statistically, or computationally PA secure
(with auxiliary input) if it satisfies the following property 1, 2, or 3 respectively.

1. ∀A∀poly∃K∀P∀D (superpolytime distinguisher)∀λ : PA,poly,K,P,D(λ) = 0.
2. ∀A∀poly∃K∀P∀D (superpolytime distinguisher) : PA,poly,K,P,D(λ) is negligible for λ.
3. ∀A∀poly∃K∀P∀D (polytime distinguisher) : PA,poly,K,P,D(λ) is negligible for λ.

We say that K is successful for A if it satisfies the above relation for any P and
any D.

We stress that (pk, sk) is chosen after z is determined. This fact is important.
In fact, if the auxiliary input z depends on (pk, sk), the definition of the PA-ness
become meaningless. If we allow z to depend on (pk, sk), z can be equal to some
ciphertext z = Encpk(M). Then A can obtain an auxiliary input z = Encpk(M)
“without knowing” the plaintext M . Then clearly, no extractor can obtain M ,
if Encpk is oneway. Therefore, no non-trivial scheme satisfies the PA-ness.

118 I. Teranishi and W. Ogata

Take random tapes R and ρ for A and K.

(pk, sk) ← GenHash(1λ).

C0 ← AHash,EncHash
pk (pk; R).

EList ←(The list of all answers from the oracle EncHash
pk).

HList ←(The list of all pairs of hash queries of A and the corresponding answers).
M0 ← K(pk, C0, EList, HList; ρ).

If M0 = DecHash
sk (C0) return 1. Otherwise return 0.

Fig. 2. Experiment used to define the random oracle PA security [BDPR98]

3 Definition of Overwhelming-Based Standard Model PA

3.1 Definition

We review the definition of the random oracle PA-ness [BR94, BDPR98], because
the random oracle PA-ness is given through the overwhelming-based approach.

Definition 2 (Overwhelming-Based PA Security in the Random Ora-
cle Model [BR94, BDPR98]). Let Π = (GenHash, EncHash, DecHash) be a PKE
which uses a hash function Hash. Let A and K be polytime machines, which
are respectively called adversary and extractor. For a security parameter λ, we
define an experiment OWB-PARO

Π,A,K,Enc(λ) as in Fig.2. In this experiment, C0

must not be an element of EList.
We say that Π is OverWhelming-Based PA secure (OWB-PA) in the random

oracle model, if Π satisfies the following property:

∃K∀A : Pr[OWB-PARO
Π,A,K,Enc(λ) �= 1] is negligible for λ.

We give an overwhelming-based standard model PA-ness by modifying the
above definition in the following ways:

1. We “directly standard modelize” Definition 2. That is,
(a) We remove the random oracle.
(b) We allow a non-black-box extractor.
(c) We add a plaintext creator P .

2. We give an auxiliary input to A.
3. We allow an adversary to access the decryption oracle.

As mentioned in [BP04], the modifications (a), (b), and (c) are definitely
required when we define the standard model PA-ness. The modification 2 and 3
are required in order to show the equivalence between the OWB-PA-ness and the
indistinguishability-based statistical PA-ness. See Subsection 4.2 for the details.

Definition 3 (OverWhelming-Based PA security (OWB-PA) in the
Standard Model). We take Π = (Gen, Enc, Dec), A, K, P , λ, and poly, as
in Definition 1. We let define Encpk ◦ P as in the Definition 1. For an auxiliary

Relationship between Two Approaches 119

—OWB-PAΠ,A,K,Enc◦P(λ, z)—

Take random tapes R, ρ, and μ for A, K, and P .

(pk, sk) ← Gen(1λ).

C0 ← AEncpk◦P(·;μ),Decsk(pk, z; R)
EList ←(The list of all answers from the oracle Encpk).
DList ←(The list of all answers from the oracle Decsk).
M0 ← K(pk, z, C0, R, EList, DList; ρ).
If M0 = Decsk(C0), return 1. Otherwise return 0.

Fig. 3. Experiment used to define the Definition of OWB-PA security

input z ∈ {0, 1}poly(λ) of A, we define an experiment OWB-PAΠ,A,K,Enc◦P(λ, z)
as in Fig.3. In this experiment, C0 must not be an element of EList.

We say that Π satisfies OverWhelming-Based PA security (OWB-PA) in the
standard model, if it satisfies the following property:

∀A∀poly∃K∀P : max
z∈{0,1}poly(λ)

Pr[OWB-PAΠ,A,K,Enc◦P(λ, z) �= 1] is negligible for λ.

We say that K is successful for A if it satisfies the above property for any P .

3.2 The Decryption Oracle Strengthens the Definition

At first glance, the modification 3 of Subsection 3.1 seems to be meaningless, be-
cause (1) the OWB-PA security (with or without the modification 3) means that
“an adversary A knows a plaintext corresponding to the ciphertext generated
by A,” (2) in particular, “an adversary knows the plaintext Mi corresponding to
the i-th decryption query Ci,” (3) therefore, an adversary can obtain Mi without
accessing the decryption oracle.

However, the above discussion is not true. Recall that the intuition “an adver-
sary A knows a plaintext” is realized by using a polytime extractor. Therefore,
“an adversary knows the plaintext Mi corresponding to the i-th decryption query
Ci” means that “there exists a polytime extractor Ki which can extract Mi from
Ci.” The problem is in the dependency of Ki on i. Suppose that A makes de-
cryption query λ times, where λ is the security parameter. Since Ki depends on
i, the number of steps Ti of Ki also depends on i. Therefore, it is possible that
Ti = 2ipi(λ) holds for some polynomial pi.

For each fixed i, the number of steps Ti = 2ipi(λ) of Ki is polynomial of
the security parameter λ. Therefore, each Ki is a polytime machine. However,
A needs superpolytime if A executes all of K1, . . . ,Kλ. Therefore, if A cannot
access the decryption oracle, A needs superpolytime in order to obtain all of
M1, . . . , Mλ. This means that the polytime adversary A cannot obtain all of
M1, . . . , Mλ. Therefore, we can say that the decryption oracle is meaningful.
Note that Bellare and Palacio [BP04] use similar discussions in other context.

120 I. Teranishi and W. Ogata

4 OWB-PA Security Implies Statistical PA

4.1 Result

In this section, we prove that the OWB-PA-ness implies the statistical PA-ness:

Theorem 4 (OWB-PA ⇒ Statistical PA). Let Π be a PKE satisfying the
OWB-PA security. Then Π satisfies the statistical PA security.

We here give the idea behind the proof. The formal proof will be depicted in the
full paper.

Proof. (idea) Let Π be an OWB-PA secure PKE, A0 be an adversary for the
statistical PA-ness of Π and n0 be the number of decryption queries of A0.
Bellow, z is an auxiliary input of A0 and (pk, sk) is a public key/secret key pair.

1. We construct an adversary B0 of the OWB-PA security such that, on input
(pk, 1i‖z), B0 outputs the i-th decryption query of A0(pk, z). The description
of B0(pk, z′) is as follows:
– B0 parses z′ as 1i‖z. (If z′ is not this type, B0 outputs ⊥ and terminates.)
– B0 executes A0(pk, z) if i ≤ n0. (Otherwise, B0 outputs ⊥ and termi-

nates.)
– If A makes encryption queries B0 answers them by passing the queries

to the encryption oracle of B0.
– If A makes the j-th decryption query Cj for j < i, B0 answers them by

passing the query to the decryption oracle of B0.
– If A makes the i-th decryption query Ci, B0 outputs it and terminates.

2. From the OWB-PA security of Π , there exists an extractor L0 for B0.
3. We let K0(pk, 1i‖z, Ci, R, EList, St; ρ) be the algorithm which executes L0(pk,

1i‖z, Ci, R, EList, St; ρ), obtains an output Mi of L0, and outputs Mi.

Since K0(pk, 1i‖z, Ci, R, EList, St; ρ) executes the extractor L0(pk, 1i‖z, Ci, R,
EList, St; ρ) for B0(pk, 1i‖z), and since B0 outputs the i-th decryption query
of A0(pk, 1i‖z), the outputs Mi of K0 is equal to Decsk(Ci) with overwhelming
probability.

We show that the number T of steps of K0(pk, 1i‖z, Ci, R, EList, St; ρ) is
bounded by some polynomial, which is independent from i. Note that the inde-
pendency from i is quite important. If T depends on i, T = 2ipi(λ) can hold for
some polynomial pi(λ). This means that T become superpolynomial T = 2λpλ(λ)
when K0 extracts a plaintext from λ-th decryption query of A.

Since K0(pk, 1i‖z, Ci, R, EList, St; ρ) = L0(pk, 1i‖z, Ci, R, EList, St; ρ), we
have to show the following facts in order to show that K0 is a polytime machine:

– The description of L0 is independent from i.
– The length of the input (pk, 1i‖z, Ci, R, EList, St; ρ) of L0 is bounded by some

polynomial, which is independent from i.

Relationship between Two Approaches 121

We can prove that the description of L0 is independent from i, because the L0

depends only on B0 and because the description of B0 is independent from i. We
next prove that the length of the input (pk, 1i‖z, Ci, R, EList, St, ρ) is bounded
by some polynomial, which is independent from i. Recall that i is the number
of decryption queries of A. Since A is a polytime machine, this means that i
is bounded by the polynomial n0 which is independent from i. Here n0 is the
number of steps of A. This means that the length of 1i is bounded by the
polynomial n0 which is independent from i. Moreover, from the definition of
the statistical PA-ness, the length of z is bounded by some polynomial poly(λ),
which is independent from i. The lengths of other inputs are clearly bounded by
a polynomial which is independent from i. ��

4.2 Why Are the Modified Definitions Required?

When we define the (standard model) OWB-PA-ness, we modify the random
oracle OWB-PA-ness in two ways. That is, we give an auxiliary input to an
adversary and allows an adversary to access the decryption oracle. Similarly, we
slightly modify the original definition of the statistical PA-ness [BP04] and give
an auxiliary input to an adversary for it.

We think that these modifications are quite important to show Theorem 4. In
this subsection, we see why these modifications are required.

Effect of Auxiliary Inputs: In the proof of Subsection 4.1, we use an adversary
B0 such that, by giving an auxiliary input 1i‖z, B0 outputs the i-th decryption
query Ci of A0. Therefore, if we do not give adversaries to auxiliary inputs, we
cannot use the proof of Subsection 4.1.

One way to “prove” Theorem 4 without using auxiliary inputs is to construct
adversary Bi which depends on i. That is, we “prove” Theorem 4 as follows. Here
A0 is an adversary for the statistical PA security. We would like to construct an
extractor for A0.

– For each i, we construct an adversary Bi for the OWB-PA security, such that
Bi outputs the i-th decryption query Ci of A0. (Contrary to the previous
B0, each i is coded in the program of Bi. Therefore, Bi does not require an
auxiliary input 1i‖z.)

– From the OWB-PA-ness of the PKE Π , there exists extractor Li for
each Bi.

– We construct an extractor K0 for A0 such that K0 uses Li in order to extract
a plaintext from Ci.

The failure of the above “proof” is that the above K0 may be superpolytime
machine. The reason is as follows. In the above “proof,” we construct Bi which
depends on i. Hence, the extractor Li of Bi depends on i also. Therefore, the
number Ti of steps of Li can depend on i. Therefore, it is possible that Ti =
2ipi(λ) holds for some polynomial pi.

For each fixed i, the number of steps Ti = 2ipi(λ) of Li is polynomial of the
security parameter λ. Therefore, Li is a polytime extractor of Bi for the OWB-
PA security. However, K0 becomes a superpolynomial extractor, because K0 uses

122 I. Teranishi and W. Ogata

all of L1, . . . ,Ln0 and therefore requires steps more than 2n0pn0(λ). Here n0 is
the number of steps of A0 and therefore is a polynomial of λ.

Effect of the Decryption Oracle: In the proof of Subsection 4.1, we use
an adversary B0 which accesses the decryption oracle. Therefore, if we do not
allow an adversary to access the decryption oracle, we cannot use the proof of
Subsection 4.1.

One way to to “prove” Theorem 4 without using the decryption oracle is
to construct adversaries and their extractors recursively. That is, we seem to
“prove” Theorem 4 as follows. Here A0 is an adversary for the statistical PA
security. We would like to construct an extractor for A0.

– For each i, we construct an adversary Bi for the OWB-PA-ness and its ex-
tractor Li recursively:
• We define Bi as follows: Bi executes A0 and answers the j-th decryption

query Cj of A0 by using Lj for j < i, and outputs i-th decryption query
Ci of A0.
• We set Li to an extractor of Bi for the OWB-PA-ness.

– We construct an extractor K0 for A0 such that K0 uses Li in order to extract
a plaintext from Ci.

The failure of the above “proof” is that the above K0 may be superpolytime
machine. The reason is similar to that for an auxiliary input. In the above
“proof,” Bi and Li depends on i also. Therefore, it is possible that the number
Ti of steps of Li satisfies Ti = 2ipi(λ) for some polynomial pi.

For each fixed i, the number of steps Ti = 2ipi(λ) of Li is polynomial of the
security parameter λ. Therefore, Li is a polytime extractor of Bi for the OWB-
PA security. However, K0 becomes a superpolynomial extractor, because K0 uses
all of L1, . . . ,Ln0 and therefore requires steps more than 2n0pn0(λ). Here n0 is
the number of steps of A0 and therefore is a polynomial of λ.

5 The Statistical PA Is Equivalent to the OWB-PA
Security, under Very Weak Condition

We already showed that the OWB-PA security implied the statistical PA security
of Section 2. In this section, we show that the converse holds under very weak
condition.

5.1 Equivalency under Very Weak Condition

We first give the condition (named sk-non-redundancy), under which the OWB-
PA security is equivalent to the statistical PA security. Recall that each public
key pk of a some PKE, such as the Cramer-Shoup scheme [CS98, CS01], has many
corresponding secret keys. (Here we say that a public key pk corresponds to sk, if
there exists a random tape ν satisfying (pk, sk) = Gen(1λ; ν).) Intuitively, the sk-
non-redundancy is the condition which ensures that Decsk1(C) = Decsk2(C) holds

Relationship between Two Approaches 123

—Gen′(1λ)—

(pk, sk) ← Gen(1λ)
R ← (λ-bit random bit string).
pk′ ← pk, sk′ ← sk‖R.
Output (pk′, sk′).
—Enc′pk′(M)—
C ← Encpk(M), C′ ← 0‖C. Output C′.
—Dec′sk′(C

′)—
Parse C′ as b‖C.
If b = 0, output Decsk(C).
Otherwise, output R.

Fig. 4. A Scheme Π ′ which is not sk-non-redundant

with overwhelming probability for any secret keys sk1 and sk2 corresponding
to the same public key pk. Clearly, this condition is satisfied for any honestly
generated ciphertext C = Encpk(M), because Decsk1(C) = Decsk2(C) = M holds.
The heart of the sk-non-redundancy is that Decsk1(C) = Decsk2(C) holds even
for maliciously generated ciphertext C.

We can say that our sk-non-redundancy condition is very weak, because all
known PKEs satisfy this condition. However, we can give an artificial example
Π ′ = (Gen′, Enc′, Dec′) of Fig.4 such that Π ′ is not sk-non-redundant. Here
Π = (Gen, Enc, Dec) is an arbitrary PKE. Since sk′ = sk‖R holds and since
Decsk′(1‖C) is equal to R, the output Decsk′(1‖C) varies depending on a secret
key sk′, even if the corresponding public key pk′ does not vary. Note that Bellare
and Palacio [BP04] used a similar scheme in other context.

We now formalize the sk-non-redundancy. Recall that the sk-non-redundancy
means that Decsk1(C) = Decsk1(C) holds for any secret keys sk1 and sk2 corre-
sponding to the same public key pk. In other words, Decsk(C) depends only
on pk and C, and therefore does not depend on sk. If Decsk(C) is deter-
mined from pk and C, we can define a (superpolytime) function Dec satisfying
Decpk(C) = Decsk(C).

Definition 5. Let Π = (Gen, Enc, Dec) be a PKE. We say that Π satisfies sk-non-
redundancy if there exists a superpolytime deterministic function Dec such that

max
C ∈ {0, 1}∗

pk0 ∈ {0, 1}∗

Pr[(pk, sk) ← Gen(1λ) : Decsk(C) �= Decpk0
(C) | pk = pk0] is negligible for λ.

We next give our main result:

Theorem 6 (OWB-PA = Statistical PA under sk-non-redundancy). Let
Π be a sk-non-redundant PKE. Then Π is statistically PA secure if and only if
OWB-PA secure.

The “only-if” part of the above theorem has already been shown in Theorem 4. We
give the idea behind the proof of the “if”-part. The formal proof will be described
in the full paper.

124 I. Teranishi and W. Ogata

Proof. (idea) Let Π be a PKE which is sk-non-redundant and is statistically PA
secure. Let A0 be an adversary for the OWB-PA security, (pk, sk) be a public
key/secret key pair and z is an auxiliary input for A0. We construct an adversary
B0 for the statistical PA security as follows. B0(pk, z) executes A0(pk, z). If A0

makes a decryption query, B0 answers it by passing it to the decryption oracle.A0

finally outputs a ciphertext C0 and terminates. Then B0 makes decryption query
C0, obtains answer M0 to the query, outputs (pk, C0, M0), and terminates. From
the assumption, there is an extractor K0 for B0 of the statistical PA security.

We construct a superpolytime distinguisher D0 which tries to distinguish an
output of PADec

Π,B0,Enc◦P0
(λ, z) and that of PAK0

Π,B0,Enc◦P0
(λ, z), where P0 is a plain-

text creator. D0(pk, C0) computes (one of) a secret key sk′ corresponding to
pk by using superpolytime. Then D0 outputs 1 or 0, depending on whether
M0 = Decsk′(C0) holds or not.

In PADec
Π,B0,Enc◦P0

(λ, z), the decryption oracle sends the answer Decsk(C0) to
A0. From the sk-non-redundancy, Decsk′(C0) = Decsk(C0) holds with over-
whelming probability. Therefore, D0 outputs 1 if (pk, C0, M0) is an output
of PADec

Π,B0,Enc◦P0
(λ, z). This means that even if (pk, C0, M0) is an output of

PAK0
Π,B0,Enc◦P0

(λ, z), D0 outputs 1 with overwhelming probability. That is, an
output of K0 is equal to Decsk(C0) with overwhelming probability. This means
that K0 can use an extractor for A0 of the OWB-PA security. Since A0 is an
arbitrary adversary for the OWB-PA security, this means that Π is OWB-PA
secure. ��

5.2 Effect of sk-non-Redundancy

The sk-non-redundancy is important to show Theorem 6. In fact, we can show
that the OWB-PA security does not imply the statistical PA security, if we
suppose no assumption for the PKE:

Theorem 7 (Perfect, Statistical and Computational PA � OWB-PA).
Suppose the existence of a perfectly (resp. statistically, computationally) PA se-
cure PKE in the standard model. Then there exists a PKE which is not OWB-PA
secure but is perfectly (resp. statistically, computationally) PA secure in the sence
of Section 2.

Proof. (idea) We only show the theorem for the case of the statistical PA security.
We can show the theorem for other cases quite similarly.

Let Π = (Gen, Enc, Dec) be a PKE which is statistically PA secure. By
using Π , we construct another PKE Π ′ = (Gen′, Enc′, Dec′) as in Fig.4. We
show that Π ′ is not OWB-PA secure. Let A be an adversary which outputs
C′ = 1‖Encpk′(0). Then an extractor K for A has to output R = Decsk′(C′).
However, K succeeds in outputting R with only negligible probability, because
the distribution of R is independent from the view of K. This means that Π ′ is
not OWB-PA secure.

We next show that Π ′ is statistically PA secure. Let A be an adversary for Π ′.
We can recognize A as adversary for Π . Since Π is statistical PA secure, there

Relationship between Two Approaches 125

exists an extractor K of A for Π . We construct an extractor K′ of A for Π ′ as
follows. K′ selects R′ randomly and fixed it. If K′ is provided with a ciphertext
C′ = 0‖C for some C, K′ executes K by giving C, obtains the output M of K,
and sends M back to A. If K′ is provided with a ciphertext C′ = 1‖C for some
C, K′ sends R′ back to A.

We see that K′ is a successful extractor. Since K is a successful extractor, if
C′ = 0‖C holds, K′ obviously succeeds in simulating the decryption oracle with
overwhelming probability. Since the distribution of R is independent from the
view of A, A cannot distinguish R and R′. Therefore, even if C′ = 1‖C holds, K′

succeeds in simulating the decryption oracle with overwhelming probability. ��

6 The sk-PA Security

We showed that the OWB-PA security was equivalent to the statistical PA se-
curity [BP04] only if a PKE was sk-non-redundant. In this section, we consider
a slightly modified version of the PA security [BP04] (named sk-PA security),
where a distinguisher is provided with the secret key. Then we see that the OWB-
PA security is equivalent to the sk-statistical PA security, even if a PKE is not
sk-non-redundant. The formal definition of the sk-PA security will depicted in
the full paper. Note that Fujisaki [F06] also considered a variant of a PA-ness
where a distinguisher is provided with the secret key.

The modification that we give the secret key to a distinguisher is quite small,
in the case of statistical PA security. In fact, since a distinguisher D of the
statistical PA security is a superpolytime machine, D can compute a secret key
corresponding to the public key pk by using superpolytime. However, there may
be many secret keys corresponding to pk as mentioned in Subsection 5.1, and D
cannot know which one is true sk. Therefore, we can say that the only advantage
of the sk-statistical PA security is that the distinguisher can know which one is sk.

If a PKE is sk-non-redundant, Decsk(C) = Decsk′(C) holds for any sk and sk′

corresponding to the same public key pk. Therefore, the sk-statistical PA security
is not advantageous to the statistical PA security, in this case. Hence, we can
show the following theorem. The proof will be described in the full paper.

Theorem 8 (statistical PA = sk-statistical PA, under sk-non-
redundancy). Suppose that a PKE Π satisfies the sk-non-redundancy. Then
Π satisfies the statistical PA security if and only if it satisfies the sk-statistical
PA security.

We now give our result.

Theorem 9 (OWB-PA = sk-statistical PA = sk-computational PA). The
following properties are equivalent:

– the OWB-PA security.
– the sk-statistical PA security.
– the sk-computational PA security.

126 I. Teranishi and W. Ogata

We can prove the above theorem in a similar way to that of Theorem 4. The proof
will be described in the full paper. Note that we can generalize Theorem 9 into
the case of the perfect PA security, if we allow an extractor to output fail with
negligible probability.

One of the most surprising fact of the above theorem is that the sk-statistical
PA security is equivalent to the sk-computational PA security. This fact is im-
pressed because the statistical PA security is strictly stronger than the computa-
tional PA security [TO06, TO08]. Therefore we can say that the only difference
between the statistical PA security and the computational PA security is in the
knowledge of sk.

We can also define more stronger variant of PA security, named the View-PA
security, such that a distinguisher is given the views of all entities. Above, “the
views of all entities” means the key generation algorithm Gen, an adversary A, a
plaintext creator P , and the encryption oracle Encpk(·). Then it is also equivalent
to the OWB-PA security. We will describe the proof in the full paper.

Theorem 10 (OWB-PA = View-statistical PA = View-computational
PA).

The following properties are equivalent:

– the OWB-PA security.
– the View-statistical PA security.
– the View-computational PA security.

7 Conclusion

There were two approaches to define the PA-ness, the indistinguishability-based
approach and the overwhelming-based approach. The current definition [BP04]
of the PA-ness was given by using the indistinguishability-based approach.

In this paper, we defined an alternative definition of the (standard model)
PA-ness, OWB-PA security, based on the overwhelming-approach. Basically, this
notion was given by “standard modelizing” the random oracle model PA-ness
[BR94, BDPR98]. However, we essentially changed the definition in one point,
that is, we allowed an adversary to access the decryption oracle.

We then showed that our OWB-PA security was equivalent to the statistical
PA security of [BP04], under a very weak condition, the sk-non-redundancy. We
also gave a new definition of the PA-ness, named sk-PA-ness, and showed that
the OWB-PA security was equivalent to the sk-statistical PA-ness, even if a PKE
was not sk-non-redundant.

References

[BDPR98] Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations Among
Notions of Security for Public-Key Encryption Schemes. In: Krawczyk, H.
(ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg
(1998)

Relationship between Two Approaches 127

[BP04] Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption
without random oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 48–62. Springer, Heidelberg (2004)

[BR94] Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De San-
tis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer,
Heidelberg (1995)

[BD07] Birkett, J., Dent, A.W.: Relations Among Notions of Plaintext Awareness.
PKC 2008, 47–64 (2007) eprint 2007/291

[CS98] Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably
Secure Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

[CS01] Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key En-
cryption Schemes (2001)

[D91] Damg̊ard, I.: Towards practical public key systems secure against chosen ci-
phertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 445–456. Springer, Heidelberg (1992)

[D06] Dent, A.W.: Cramer-Shoup is Plaintext-Aware in the Standard Model.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004. Springer,
Heidelberg (2006)

[F06] Fujisaki, E.: Plaintext Simulatability. IEICE Transactions 89-A(1), 55–65
(2006)

[FO99] Fujisaki, E., Okamoto, T.: How to Enhance the Security of Public-Key
Encryption at Minimum Cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999.
LNCS, vol. 1560, pp. 53–68. Springer, Heidelberg (1999)

[HT06] Hayashi, R., Tanaka, K.: PA in the Two-Key Setting and a Generic Con-
version for Encryption with Anonymity. In: Batten, L.M., Safavi-Naini, R.
(eds.) ACISP 2006. LNCS, vol. 4058, pp. 271–282. Springer, Heidelberg
(2006)

[HLM03] Herzog, J., Liskov, M., Micali, S.: Plaintext Awareness via Key Registra-
tion. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 548–564.
Springer, Heidelberg (2003)

[S01] Shoup, V.: OAEP Reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 223–249. Springer, Heidelberg (2001)

[TO06] Teranishi, I., Ogata, W.: Relationship between Standard Model Plaintext
Awareness and Message Hiding. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 226–240. Springer, Heidelberg (2006)

[TO08] Teranishi, I., Ogata, W.: The full paper of [TO06]. IEICE Transactions 91-
A(1), 244–261 (2008)

Distributed Verification of Mixing - Local Forking
Proofs Model�

Jacek Cichoń, Marek Klonowski, and Mirosław Kutyłowski

Institute of Mathematics and Computer Science, Wrocław University of Technology
Jacek.Cichon@pwr.wroc.pl, Marek.Klonowski@pwr.wroc.pl,

Marek.Klonowski@pwr.wroc.pl

Abstract. One of generic techniques to achieve anonymity is to process mes-
sages through a batch of cryptographic mixes. In order to guarantee proper exe-
cution verifiable mixes are constructed: each mix provides a proof of correctness
together with its output. However, if a mix is working on a huge number of mes-
sages at a time, the proof itself is huge since it concerns processing all messages.
So in practice only a few verifiers would download the proofs and in turn we
would have to trust what they are saying.

We consider a different model in which there are many verifiers, but each of
them is going to download only a limited number of bits in order to check the
mixes. Distributed character of the process ensures effectiveness even if many
verifiers are dishonest and do not report irregularities found.

We concern a fully distributed and intuitive verification scheme which we
call local forking proofs. For each intermediate ciphertext a verifier may ask for
a proof that its re-encrypted version is in the output of the mix concerned. The
proof shows that the re-encrypted version is within some subset of k ciphertexts
from the output of the mix, and it can be performed with strong zero-knowledge
or algebraic methods. They should work efficiently concerning communication
complexity, if k is a relatively small constant.

There are many issues concerning stochastic properties of local forking proofs.
In this paper we examine just one: we estimate quite precisely how many mixes
are required so that if a local proof is provided for each message, then a plaintext
hidden in an input message can appear on any position of the final output set.

Keywords: mix, anonymity, distributed system.

1 Introduction

Anonymity and hiding origin of the messages and electronic documents becomes today
one of the crucial issues for e-society. This is one of the major issues for applications
such like electronic voting. Providing privacy in the sense that in sensitive cases the
origin of a message should be unrevealed unless it is necessary for some explicit reason,
becomes one of the most challenging questions in computer security.

� Partially supported by Polish Ministry of Science and Higher Education, grant N N206
1842 33.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 128–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Distributed Verification of Mixing - Local Forking Proofs Model 129

MIXes. D. Chaum [4] introduced concept of a MIX, which is a basic primitive for sys-
tems providing anonymity. A MIX takes a number of encrypted messages, say E(m1),
. . . , E(mn), processes them in some way (for instance decrypts or re-encrypts them)
and posts the result in a random order π:

E′(mπ(1)), E′(mπ(2)), . . . , E′(mπ(n)) .

It should be guaranteed that nobody (except for the mix concerned) can link these input
and the output messages. For the rest of this paper we shall assume that cryptographic
methods used are strong enough to guarantee this. We also assume that the system is
used in a sound way - for instance, we cannot distinguish ciphertexts of mi by inspect-
ing their lengths.

In order to achieve anonymity a set of messages is processed by a cascade of inde-
pendent MIXes: the output of MIX i becomes the input for MIX i+1. The output of the
last MIX in a cascade becomes the output of the system. As long as at least one of the
MIXes is honest and does not reveal its permutation used, the link between the input to
the system and its output cannot be established.

Problems. A single honest mix in a cascade ensures unlinkability between the input
and the output of the mix cascade. However, for some applications it is crucial to ensure
that none of the original plaintext messages gets removed and replaced by a ciphertext
of another message, or becomes modified. Of course, if at least one of the MIXes is
dishonest, then the final output might be corrupted.

For applications like anonymous access to WWW pages, this leads to some degra-
dation of service, only. However, it is critical for e-voting schemes that employ MIX
servers for processing encrypted ballots. Even worse situation occurs in case of auc-
tion schemes - a single message injected at a late stage may change the outcome of the
whole procedure (which is practically not the case for large scale voting).

Verifiable MIXes. In order to enforce an honest execution of a mixing protocol, each
MIX has to be controlled in some way so that:

– With a reasonable probability a dishonest MIX will be caught even if a single plain-
text message gets modified,

– The verification procedure does not endanger unlinkability.

These goals can be reached. However, the following issues have been concerned:

(a) Reducing conceptual complexity of the verification scheme so that it can be easily
understood and trusted at least by a skilled non-specialist,

(b) Reducing computational effort of the prover and of the verifier: since usually the
arithmetic operations such as exponentiations take most of computation time, their
number should be minimized,

(c) Reducing communication cost of the prover and the verifier, i.e. reducing the total
volume of the messages exchanges as well as the number of communication rounds.

For instance, it was pointed by some authors that the tricky scheme from [20] might
be too complicated to reach general acceptance. For (b), computational complexity of

130 J. Cichoń, M. Klonowski, and M. Kutyłowski

verification process has been considered in many papers. Many schemes with a linear
number of exponentiations have been designed, differing by the constants standing in
front of n: 12n in case of [20], 10n in case of [7,15], 8n in case of [11], and about 6n
in case of [22]. Computational efficiency can improve even more, if we perform some
computations in an offline phase [1].

Communication overhead in the number of bits has been considered, too. For in-
stance, according to [9], the method from [7] has communication cost 6388n bits, the
method from [11] has communication cost 2528n bits, while [9] requires 1344n bits.
A higher number of bits is required when we admit long messages [8] (see also [12]).

In order to improve efficiency, Peng et al. [21] propose to reorganize the process
of mixing so that at each stage the ciphertexts mixed are divided into groups and
the re-encrypting and shuffling process proceeds in groups. This approach results in
a lower communication complexity, however only a small fraction of permutations can
be reached in this way.

A different approach called randomized partial checking (RPC) is presented in [14].
The idea is that after getting the final results a MIX is asked to reveal values of permuta-
tion π used for a random set of n/2 arguments. Moreover, the MIX has to show that the
ciphertexts E(mi) and E′(mπ(i)) contain the same plaintext for each i such that π(i)
becomes revealed. (In fact, the connections to be revealed must be chosen with care so
that no path of length higher than 2 gets disclosed.)

Revealing part of the connections might be psychologically unacceptable for two
reasons: first, an average person might claim that it is still possible that the results
are incorrect, since we had bad luck and the fraud has not been detected. The second
problem is that a person with mathematical experience (see e.g. [11]) might ask him-
self what is effect of revealing the connections in a stochastic sense – does it change
substantially conditional probabilities of potential permutations of messages? However,
there are strong mathematical arguments that security of the scheme remains intact [10].

Distributed versus Non-distributed Verifiability. With a few exceptions the proto-
cols concerned so far in the literature consider verification as a process performed by
a verifier having similar computational resources as a mix. Moreover, the proof con-
cerns the whole batch of ciphertexts. Consequently, the volume of verification data is
linear in the number n of ciphertexts mixed.

For certain applications mixing might concern a huge amount of data. For instance,
it may be the case for e-voting protocols where the ballots are processed by a single
cascade of mixes. With more than 100.000 voters and communication complexity of
more than 1000n bits, we get about 100Mbits communication volume to check one mix.
Since the number of mixes should be at least the number of participating parties (say
20), the communication volume could be something like 2Gbits. Assuming that a voter
communicates with a 1Mbit/sec. link, the communication would take 2000 seconds
≈ 33 minutes. It is sound to assume that almost no citizen would use this checking
possibility and would have to trust some agent. This is not a good solution since one of
the major goals of advanced e-voting procedures is to provide transparency in absence
of any trusted third party.

Due to the reasons mentioned, in certain situations it would be helpful to design
a verification method having the following properties:

Distributed Verification of Mixing - Local Forking Proofs Model 131

1. Checking process is performed by a large number of independent verifiers,
2. Computational and communication complexity for each of the verifiers is

negligible,
3. Probability that no verifier catches a dishonest mixer on a fraud is small,
4. Collective knowledge of all verifiers should not enable to break anonymity.

Additionally, we should assume that some limited number of participants of the pro-
tocol can be corrupted by the mix(es) so that negative verification results will not be
shown in case of a fraud. Hence, it may occur that the centralized protocols concerned
in the literature fail, since the verification process requires fetching long data and so the
number of verifiers will be small. On the other hand, a fully decentralized setting has
the advantage that it is impossible to corrupt all members of a crowd of verifiers.

2 k-Local Forking Proofs

Assume that for set of ciphertexts C1, . . . , Cn, a MIX gave an output C′
1, . . . , C

′
n using

a (hidden) permutation Π (that is, Ci and C′
Π(i) correspond to the same plaintext, for

each i). Honesty of the mix is checked by the following protocol:

Initialization: for each i ≤ n, the prover determines a random set Si of cardinality
k + 1 such that Π(i) ∈ Si, (that is, Π(i) is the only non-random element of Si, the
remaining k elements are chosen uniformly at random).

Challenge: a verifier may challenge the prover with an arbitrary i ≤ n,
Response: the prover presents a proof that one of the ciphertexts C′

j for j ∈ Si corre-
sponds to the same plaintext as Ci.

Note that the initialization is performed for all verifiers, so if two different verifiers
challenge the same i, they get an answer concerning the same set Si. We do not specify
here what kind of proof is delivered in the response phase. Obviously, if every i gets
challenged and the prover responds correctly, then in the shuffled batch there is every
plaintext contained in C1, . . . , Cn. Hence, if the plaintexts are unique, correctness of
shuffling of the mix is assured.

A verifier may challenge any of the mixes of the cascade, may be more than once.
It depends only on the computation time and bandwidth that one wishes to devote for
checking. Since k is assumed to be a small constant, this means a negligible effort for
each check as long as relatively efficient proof methods are used.

Models for Analysis. There is a number of questions concerning the framework of lo-
cal proofs. Certainly, data obtained by verifiers leak some information on permutations
used by a mix. The problem is how does it influence unlinkability of the whole process.
The example of RPC shows that unlinkability property might be preserved [10].

We may consider diverse models concerning verification process. For instance, we
may assume that each single user may fetch only a limited number of local proofs, and
that only a fraction of users will forward the data obtained to a given adversary willing
to break anonymity. In this case only a fraction of verification data can be gathered
in one place. So we have a situation that resembles RPC – only a limited number of

132 J. Cichoń, M. Klonowski, and M. Kutyłowski

links becomes revealed. However, unlike for RPC, we cannot put any restrictions on
which local proofs can be gathered together. The verifiers may even work adaptively to
increase their chances to break anonymity. On the other hand, for a given message its
re-encrypted version after leaving the current mix is not shown - all we know is that it
is contained in a set of k messages. The second more pessimistic model to concern is
that all information obtained by the verifiers might be gathered by some party.

Unlinkability Goals. Let Π denote a random variable such that for i ≤ n (n is the
number of messages) Π(i) is the position of the ith plaintext in the output of a mix
cascade concerned. LetD denote the probability distribution corresponding to Π . For a
reasonable system of mixes we may assume that D is a uniform distribution. However,
based on the information from local proofs, the adversary may (at least theoretically)
compute conditional probability distribution D′ of Π . There is a number of questions
that might be asked aboutD′:

1. What is the distance between distributions D and D′ (e.g. concerning L1 norm or
information theoretic distance ([3,23])),

2. What is the maximum value of D′.

An answer of the first question provides very strong anonymity estimates. However,
results of this kind are quite rare and hard to get. An answer to the second question
gives an idea how immune the system is against brute force and guessing attacks.

We can also confine ourselves to a single message and probability distribution of its
position in the final batch, without local proofs (S) and with them (S′). Since S should
be uniform we are are concerned about

1. The distance between distributions S and S′ with respect to a given norm,
2. The maximum value of S′,
3. Support of S′, i.e. the set of positions where the probability is positive i.e. the

anonymity set of the message concerned.

While a good bound for question 1 is highly desirable, a small bound for question 2
already says that there are no relatively likely positions. Getting a big anonymity set
is important to eliminate impossible positions and in this way enable linking all final
messages to the message concerned. This property might be all one needs for many
procedures in a court of law. For further discussion concerning anonymity measures
see [5,6].

One difficulty for performing mathematical analysis of forking proofs is that dis-
tributions D′ and S′ depend very much on the sets Si chosen by each mix and that
apparently there are some bad choices for these sets. So the final results may only be
stated in the form “With a high probability, distribution ...”

One should also notice that there is a major difference between considering S′ and
D′. For k = 2, local forking proofs behave quite poorly with respect to D′, while for
k = 3 the situation is much better. Such a phase transition does not occur if we consider
the final position of a single message.

There are many scenarios corresponding to many different practical situations, but
due to available space we have to concentrate ourselves on one model. For the rest of the

Distributed Verification of Mixing - Local Forking Proofs Model 133

paper we assume that all local proofs can be gathered by an adversary; second, we are
interested in anonymity set rather than the maximum probability or distance to uniform
distribution.

Main Result. Our goal is to find a precise estimation of the number of mixes such that
with local forking proofs we reach the maximal possible size of anonymity sets.

Theorem 1. Consider a cascade of T MIX-servers processing n messages. Consider
verification data for each position and each MIX created according k-local forking
proofs strategy. Then, the size of anonymity set of particular message entering the MIX-
cascade is equal to n with probability greater than 1− 1/n, if T > T0, where

T0 =
(

0.8 +
4.4
k

)

log n + 1.7
log
(

16
k log n

)

log
(

1 + k
3

) +
log(n/2)

log(1 + k
4)

+

√

2.7
log
(

16
k log n

)

log
(

1 + k
3

) log n + 0.65 log2 n.

Up to a constant, this is the optimal result since to obtain anonymity set equal to n we
need T ≥ �logk(n)�. The crucial message of Theorem 1 is that the sufficient number
of MIXes in a cascade is not much higher than in the trivial lower bound.

3 Mathematical Modeling

Anonymity Metrics. Even if anonymity or unlinkability have their well established
intuitive meaning, it is unclear how to measure anonymity level in a uniform mathemat-
ical way. For the rest of this paper we focus on definition from [16] that catches idea
introduced in [17]. Let us suppose that we have n encrypted, enumerated messages.
Then the ciphertexts are processed by the system of MIXes. As an output we get an-
other n enumerated ciphertexts. The mixing process is modeled by a random variable
– a permutation Π . So Π(i) = j menas that the i-th message in the first MIX after
processing is placed on the j-th position in the output of the last MIX. Then anonymity
of the i-th input object inpi can be measured by

S(inpi) = |{1 ≤ j ≤ n : Pr[Π(i) = j] > 0}| ,
where probability is conditioned on the knowledge available for an observer.

The value is S(inpi) called the size of anonymity set of the input inpi.

Infection Process. Let us consider following infection process: we have n distinguish-
able objects. The process consists of steps t = 1, 2, Each object is either infected or
not. Initially, exactly one object is infected. At each step, every infected object chooses
k distinct objects, uniformly at random. Then it infects these objects (if they are not
infected yet).

We are interested how many steps are required so that with a high probability ev-
ery object gets infected, where probability is considered over the choices made by the
infected objects during each step.

134 J. Cichoń, M. Klonowski, and M. Kutyłowski

Of course, the process of infection models the possible destinations of a message
given the information revealed by Local Forking Proofs. The infected nodes correspond
to those ciphertexts that can keep the plaintexts of the message considered with a non-
zero probability.

Infection Process in Details. While it is quite obvious that eventually all objects get
infected and the time required is O(log n), for n equal to the total number of objects,
determining precisely the time necessary to infect all object is of big practical impor-
tance. Namely, it determines the number of mixes in a cascade as a function of the
parameter n. Note that since we are interested in some relatively small values of k, the
constant factor may easily dominate the term log n.

Consider now the number of infected objects. At the beginning we have 1 infected
object, then exactly k objects, but starting from the third step, the number of infected
objects becomes uncertain. It is hard to say how many new objects become infected
at each step. Of course it is strongly correlated with the number of objects already in-
fected. More precisely, probability that a particular infected object infects a new object
is decreasing with the number of already infected objects. At the end, a majority con-
sisting of infected objects tries to ,,hit” a few non-infected remainders. On the other
hand, growing number of infected elements obviously increases the chance of being
infected for the object not infected yet.

Technical Result. Spirit of infection process seems to be similar to the well-known
epidemic processes (see for example [2]). However, we are not aware of any analysis
for the particular model considered here. We prove the following technical theorem:

Theorem 1. Let N(t) be a random variable denoting the number of infected objects
after step t of the infection process. Let T be the random variable equal to the index of
the first step such that all n objects are infected: T = min{t ∈ N|N(t) = n}. Then
Pr(T < T0) > 1− 1

n for T0 given by Theorem 1.

3.1 Mathematical Preliminaries

Consider a sequence of n independent (Bernoulli) trials, where each trial succeeds with
probability p and fails with probability 1 − p. The number of successes has binomial
distribution denoted here by Bi(n, p). Obviously, E[Bi(n, p)] = pn. Let us recall the
following well known bound (see [13] (Theorem 2.1, Corollary 2.4):

Lemma 1. Let the random variable X has binomial distribution with parameters n
and p, i.e. X ∼ Bi(n, p). Then for any t > 0:

Pr(X ≤ E(X)− t) ≤ exp
(

− 2t2

n

)

.

In particular, for any 1 > ε > 0:

Pr(X ≤ (1− ε)E(X)) ≤ exp
(

− 2(εE(X))2

n

)

.

Distributed Verification of Mixing - Local Forking Proofs Model 135

Now we would like to ask a related question. We have to find a number of trials n∗

such that the number of successes X within n∗ trials is equal or greater than r with
probability higher than �.

Fact 1. Let us consider the series of Bernoulli’s trials with success probability p. It is
enough to try

n∗ =
⌈

4pr+log �−1+
√

8pr log �−1+(log �−1)2

4p2

⌉

times in order to have at least r successes with probability �.

This fact is implied directly by the Lemma 1. Indeed, let us note that expected number
of successes is equal to n∗ · p. So, using Lemma 1 one can easily see that

Pr [X < k] = Pr [X < n∗p− (n∗p− k)] < exp
(

− 2(n∗p−k)2

n∗

)

=

exp

⎛

⎜
⎜
⎜
⎝
−

2
(

log �−1+
√

8pk log �−1+(log �−1)2

4p

)2

4pk+log �−1+
√

8pk log �−1+(log �−1)2

4p2

⎞

⎟
⎟
⎟
⎠

= exp(− log �−1) = �.

We say that the random variable X is stochastically dominated by the random vari-
able Y if for each t ∈ R,

Pr [X > t] ≤ Pr [Y > t] .

Stochastic dominance is useful when some weak dependencies occur. An example of
such case is following fact:

Fact 2 (see [18]). Let X1, X2, . . . , Xn be a sequence of random variables in an arbi-
trary domain, and let Y1, Y2, . . . , Yn be a sequence of binary random variables with the
property that Yi = Yi(X1, X2, . . . , Xi). If

Pr[Yi = 1|X1, X2, . . . , Xi−1] ≤ p

then sum of Y ′
i s is stochastically dominated by the binomial distribution:

Pr
[

n∑

i=1

Yi > k

]

≤ Pr[Bi(n, p) > k] .

Similarly, if Pr[Yi = 1|X1, X2, . . . , Xi−1] ≥ p, then
n∑

i=1

Yi stochastically dominates

Bi(n, p).

Recall also the following version of Azuma’s inequality (for a proof see [18]).

Lemma 2. Let X = (X1, X2, . . . , Xn) be a vector of independent random variables
with Xi taking values in a set Ai for each i. Suppose that a real-valued function f
defined on A1 ×A2 × . . .×An satisfies:

|f(x)− f(x′)| ≤ ci

136 J. Cichoń, M. Klonowski, and M. Kutyłowski

if the vectors x and x′ differ only on the ith coordinate. Let E(f(X)) = μ. Then for
any d ≥ 0,

Pr
[

f(X) ≤ μ− d] ≤ exp(−2d2/
∑n

i=1(ci)2
)

.

Lemma 2 can be very useful when we consider a process which is determined by a set
of independent experiments and each experiment has a limited in advance influence on
the overall process result.

Finally, let us consider the following randomized process. We have n bins. At each
time we choose uniformly at random exactly one bin and we put a ball inside the bin
chosen. Let Tc(n) denote the number of balls thrown so that we get at least one ball in
each bin for the first time. Of course, Tc(n) is a random variable.

Lemma 3. Pr(Tc(n) > βn log n) < n1−β for any β > 1.

Lemma 3 is a version of the well-known coupon collector’s problem. This particular
version can be found in [19]. Let us note that one can find a better asymptotic estimation
for coupon’s collector problem. However this version is fairly enough for our purposes.

3.2 Proof of the Main Result

Overview. Since from a practical point of view it is very important to have possibly
small constants, we split the infection process into three conceptual phases: beginning
of the process (small number of infected elements, high probability of infecting), stabi-
lization (,,middle part“ with a significant number of already infected elements and fairly
large probability of successful infection) and the end (with a few non-infected elements
difficult to be chosen).

Let us define three random variables

T1 = max{i | N(i) ≤ 8 logn2 , if N(1) = k} ,

T2 = max{i | N(i) ≤ n/2 , if N(0) = �8 logn2�} ,

T3 = min{i | N(i) = n , if N(0) = �n/2�} .

In other words, the random variables T1, T2, T3 denote the number of steps necessary
to go from 0 to
8 log n2� infected objects, from �8 logn2� to
n/2� infected objects
and from �n/2� to n infected objects, respectively.

Probabilistic Analysis of the Process. Throughout this analysis assume that k ≥ 2
and n ≥ 128. Let us consider the expected number of infected objects after step t + 1
conditioned by the value of N(t).

Fact 3

E(N(t + 1)|N(t)) = N(t) + (n−Nt)
(

1−
(

1− k
n−1

)Nt
)

The formula above follows from following observation: in the consecutive step already
infected items stays infected, and each of n−N(t) not infected items become infected
iff it is not the case that every infected item chooses different items to infect.

Distributed Verification of Mixing - Local Forking Proofs Model 137

Bounding T1. In this point we start with exactly k infected items, i.e. N(1) = k, and
we look for the first T1 such that N(T1 + 1) ≥ 8 logn2. Let us represent the number of
infected objects in step t + 1 step as:

N(t + 1) = N(t) + Δ(N(t)) .

Let us now think about the random variable Δ(N(t)) in terms of balls and bins. Each
of N(t) infected objects throws k balls trying to hit n − N(t) empty bins. It is easy
to observe that at each moment at least n − kN(t) balls are empty. Using Lemma 2
we can see that the number of bins filled during step t + 1 stochastically dominates
Bi(kN(t), 1 − kN(t)/n). It is easy see that each ball is placed in an empty bin with
probability greater than 1− kN(t)/n, independently on the previous placements.

By Lemma 1 we get:

Pr [N(t + 1) < (1 + k/3)N(t)] <

Pr
[

N(t + 1) < N(t) + 1
2N(t)k

(

1− 8 log n2

n

)]

<

exp
(

−k2

2

(

1− 8 log n2

n

)2
)

< 1/e

for all values considered here (that is, k < N(t + 1) < 8 log n2) and n considered in
our analysis.

If the condition N(t + 1) > (1 + k/3)N(t) is fulfilled, then we say that step t + 1
is successful. Note that it is enough to have �log(16

k log n)/ log(1 + k
3)� successful

rounds to obtain at least 8 logn2 infected elements. However, not all rounds have to be
successful. So T1 is stochastically dominated by the number of steps necessary to get
an appropriate number of successful steps. Let us note that we can consider each step
as a separate and independent experiment with probability of success at least 1 − 1/e.
Using Fact 1, we can easily prove that after

4(e−1
e) log(16

k log n)
log(1+ k

3) + 1.2 logn +
√

9.6 e−1
e

log(16
k log n)

log(1+ k
3) log n + 1.44(logn)2

4
(

e−1
e

)2

steps, we have the required number of successful steps with probability greater than
1− 1/n1.2.

As we noted before, it is sufficient for finishing the first phase of the process. Using
simple calculations and facts that

9.6 e−1
e < 6.05 and 4

(
e−1

e

)2
> 1.5

we get:

Pr

[

T1 >0.8 log n +1.7
log
(

16
k

log n
)

log
(

1 + k
3

) +

√

2.7
log
(

16
k

log n
)

log
(

1 + k
3

) log n + 0.65(log n)2

]

<1/n1.2.

138 J. Cichoń, M. Klonowski, and M. Kutyłowski

Bounding T2. It is easy to see that if 8 log n2 ≤ N(t + 1) ≤ n/2, then

E(N(t + 1)|N(t)) >
(

1 + k
2

)

N(t) .

Indeed, each infected object chooses k objects. Since each choice infects new object
with probability proportional to the fraction of non-infected objects (greater than 1/2),
so expected number of newly infected elements must be greater than k/2 · N(t). For
this reason, by Theorem 2 we get immediately:

Pr
(

N(t + 1) ≤ (1 + k
4

)

N(t)
) ≤ exp

(

−2
(

k
4N(t)

)2
/N(t)k2

)

= exp(−N(t)/8) .

Since 8 log n2 < N(t), one can easily see that

Pr
[

N(t + T) <
(

1 + k
4

)T
N(t)

]

< T exp(−8 logn2/8)

as long as 8 logn2 ≤ N(t) ≤ N(t + T) ≤ n/2. This implies that:

Pr

[

T2 >
log(n/2)

log(1 + k
4)

]

<
log(n/2)

log(1 + k
4)

1
n2

.

Estimating T3. In this case we start with at least �n/2� infected objects. At each time,
each infected chooses k distinct objects in order to infect them. First of all let us look
at the process N(t) in terms of balls and bins. Again, let us assume that each object
is represented by a bin. Each infected object throws independently k balls to distinct
bins. So the number of balls is equal to the number of infected items multiplied by the
number of balls k. All objects become infected when each bin contains at least one
ball. Note that we assumed that we have at least n/2 already infected objects at the

beginning. So, it is easy to see that T3 is statistically dominated by
⌈

2Tc(n)
nk

⌉

. Now by

applying Lemma 3 to these considerations, we easily obtain the following bound on T3:

Pr
[

T3 ≥ 4.4
k

log(n)
]

> Pr [Tc(n) ≥ 2.2n log(n)] ≤ 1
n1.2

.

Bounding parameter T . Let

S = 0.8 logn + 1.7
log
(

16
k log n

)

log
(

1 + k
3

) +

√

2.7
log
(

16
k log n

)

log
(

1 + k
3

) log n + 0.65 logn

+
log(n/2)

log(1 + k
4)

+
4.4
k

log(n).

Distributed Verification of Mixing - Local Forking Proofs Model 139

Using estimations of T1, T2 and T3 obtained before we get:

Pr [T > S] ≤

< Pr

[

T1 > 0.8 logn + 1.7
log
(

16
k log n

)

log
(

1 + k
3

) +

√

2.7
log
(

16
k log n

)

log
(

1 + k
3

) log n + 0.65 logn

]

+

+ Pr

[

T2 >
log(n/2)

log(1 + k
4)

]

+ Pr
[

T3 >
4.4
k

log(n)
]

<

<
1

n1.2
+

log(n/2)
log(1 + k

4)
1
n2

+
1

n1.2
<

1
n

This completes the proof of the Theorem 1. �

Examples. For and k = 2 and k = 6 we get, respectively:

Tk=2 < 6.3 lnn + 3.4 ln (8 lnn) + 2.3
√

ln (8 lnn) ln n

and
Tk=6 < 3.45 lnn + 1.55 ln (2.7 lnn) + 1.8

√

ln (2.7 lnn) ln n

Let us also note that from practical point of view, it does not make sense to use
too big forking parameter k. Increasing k always accelerates the process, but we gain
decreases with k.

Acknowledgements. Authors would like to thank anonymous reviewers for their valu-
able comments.

References

1. Adida, B., Wikström, D.: Offline/Online Mixing. In: Arge, L., Cachin, C., Jurdziński, T.,
Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 484–495. Springer, Heidelberg (2007)

2. Athreya, K.B., Ney, P.E.: Branching Processes. Springer, Heidelberg (1972)
3. Berman, R., Fiat, A., Ta-Shma, A.: Provable Unlinkability Against Traffic Analysis. In: Juels,

A. (ed.) FC 2004. LNCS, vol. 3110, pp. 266–280. Springer, Heidelberg (2004)
4. Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.

CACM 24(2), 84–88 (1981)
5. Danezis, G., Serjantov, A.: Towards an Information Theoretic Metric for Anonymity. In:

Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Hei-
delberg (2003)

6. Diaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity Metric for
Anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53.
Springer, Heidelberg (2003)

7. Furukawa, J., Sako, K.: An Efficient Scheme for Proving a Shuffle. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)

8. Furukawa, J., Sako, K.: An Efficient Publicly Verifiable Mix-Net for Long Inputs. In: Di
Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 111–125. Springer, Heidel-
berg (2006)

140 J. Cichoń, M. Klonowski, and M. Kutyłowski

9. Furukawa, J.: Efficient, Verifiable Shuffle Decryption and Its Requirement of Unlinkability.
In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 319–332. Springer,
Heidelberg (2004)

10. Gomułkiewicz, M., Klonowski, M., Kutyłowski, M.: Rapid Mixing and Security of Chaum’s
Visual Electronic Voting. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS,
vol. 2808, pp. 132–145. Springer, Heidelberg (2003)

11. Groth, J.: A Verifiable Secret Shuffle of Homomorphic Encryptions. In: Desmedt, Y.G. (ed.)
PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2002)

12. Groth, J., Lu, S.: Verifiable Shuffle of Large Size Ciphertexts. In: Okamoto, T., Wang, X.
(eds.) PKC 2007. LNCS, vol. 4450, pp. 377–392. Springer, Heidelberg (2007)

13. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. John Wiley & Sons, Chichester (2002)
14. Jakobsson, M., Juels, A., Rivest, R.L.: Making Mix Nets Robust For Electronic Voting By

Randomized Partial Checking. In: USENIX Security Symposium, pp. 339–353 (2002)
15. Nguyen, L., Safavi-Naini, R., Kurosawa, K.: Verifiable Shuffles: A Formal Model and a

Paillier-Based Efficient Construction with Provable Security. In: Jakobsson, M., Yung, M.,
Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 61–75. Springer, Heidelberg (2004)

16. Kesdogan, D., Egner, J., Büschkes, R.: Stop-and-Go-MIXes Providing Probabilistic
Anonymity in an Open System. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 83–98.
Springer, Heidelberg (1998)

17. Köhntopp, M., Pfitzmann, A.: Anonymity, Unobservability, and Pseudonymity: A Proposal
for Terminology. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS,
vol. 2009, pp. 1–9. Springer, Heidelberg (2001)

18. McDiarmid, C.: On the method of bounded differences. Surveys in Combinatorics. Cam-
bridge University Press, Cambridge (1989)

19. Mitzenmacher, M., Upfal, E.: Probability and computation. Cambridge University Press,
Cambridge (2005)

20. Neff, A.: Verifiable mixing(shuffling) of El-Gamal pairs (2004),
http://www.votehere.net/documentation/vhti

21. Peng, K., Boyd, C., Dawson, E., Viswanathan, K.: A Correct, Private and Efficient Mix Net-
work. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 439–454.
Springer, Heidelberg (2004)

22. Peng, K., Boyd, C., Ed Dawson, E.: Simple and Efficient Shuffling with Provable Correctness
and ZK Privacy. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 188–204. Springer,
Heidelberg (2005)

23. Rackoff, C., Simon, D.R.: Cryptographic Defense Against Traffic Analysis. In: STOC,
vol. 25, pp. 672–681.

http://www.votehere.net/documentation/vhti

Fully-Simulatable Oblivious Set Transfer

Huafei Zhu

C&S Department, I2R, Singapore
huafei@i2r.a-star.edu.sg

Abstract. In this paper, a new notion which we call oblivious set trans-
fer is introduced and formalized. An oblivious set transfer in essence,
is an extension of the notions of oblivious bit transfer and oblivious
string transfer protocols. The security of oblivious set transfer protocols
is defined in the real/ideal world simulation paradigm. We show that
oblivious set transfer protocols that are provably secure in the full sim-
ulation model can be efficiently implemented assuming the existence of
semantically secure encryption schemes, perfectly hiding commitments
and perfectly binding commitments.

Keywords: Oblivious set transfer, perfectly hiding commitment, per-
fectly binding commitment, real/ideal world simulation paradigm.

1 Introduction

The oblivious transfer introduced by Rabin [17], and extended by Even, Gol-
dreich and Lempel [6] and Brassard, Crépeau and Robert [2] is one of the most
basic and widely used protocol primitives in cryptography. The concept of obliv-
ious transfer protocol stands at the center of the fundamental results on secure
two-party and multi-party computation showing that any efficient functionality
can be securely computed ([18] and [11]). Due to its general importance, the
task of constructing efficient oblivious transfer protocols has attracted much in-
terest. The state-of-the-art of security definitions of oblivious transfer protocols
are defined in the following three models:

– In the semi-honest model, an adversary follows the protocol specification
but tries to learn more than allowed by examining the protocol transcript. It
is possible to construct efficient oblivious transfer protocols from trapdoor
permutations [6] and homomorphic encryptions ([1] and [12]).

– The notion of semi-simulatable model first introduced and formalized by
Naor and Pinkas [14], considers malicious senders and receivers, but handles
their security separately. Receiver security is defined by requiring that the
sender’s view of the protocol when the receiver chooses index σ0 is indis-
tinguishable from a view of protocol when the receiver’s chooses σ1. Sender
security follows the real/ideal world paradigm and guarantees that any ma-
licious receiver in the real world can be mapped to a receiver in an idealized
game in which the oblivious transfer protocol is implemented by a trusted
third party.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 141–154, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

142 H. Zhu

– The notion of fully-simulatable model was introduced and formalized by
Camenisch, Neven and Shelat [3]. In the full simulation model, the security
employs the real/ideal world paradigm for both receiver and the sender. The
difficulty in obtaining secure oblivious transfer protocols in this model is the
strict security requirement of simulation based definition.

The implementations of efficient oblivious transfer protocols that reach full sim-
ulation level of security are of great interest. One possibility is to use the protocol
compiler of Goldreich, Micali and Wigderson (GMW compiler [11]) to transform
oblivious protocols for semi-honest adversaries into protocols that are secure in
the presence of malicious adversaries. Here an essential tool is the result that
all NP languages possess zero-knowledge proofs. That is, each party is required
to prove in zero-knowledge that each message he sends is what he should have
sent being honest, given his private input, his random choice and the messages
he received so far. If a malicious party frustrated at not being able to send mes-
sages according to a different program, decide to stop, his input and random bits
will be reconstructed by the community who will compute his messages when
necessary, without skewing the probability distribution of the final outcome.

1.1 The State-of-the-Art

Very recently, two fully simulatable oblivious transfer protocols without using
the generic GMW compiler are reported in the literature:

– Camenisch, Neven and Shelat [3] proposed two interesting implementations
of oblivious string transfer protocols. The first protocol is constructed from
any unique blind signature scheme in the random oracle model. The sec-
ond construction is based on the q-power decisional Diffie-Hellman assump-
tions. As noted by Green and Hohenberger [10], the dynamic assumptions of
their scheme seem significantly stronger than well established primitives such
as the Diffie-Hellman decisional problem and quadratic residuosity assump-
tions. Thus, a well-motivated problem is to find efficient, fully simulatable
oblivious transfer schemes under weaker complexity assumptions.

– Green and Hohenberger [10] proposed alternative implementation of oblivi-
ous string transfer protocols based on the Decisional Bilinear Diffie-Hellman
assumption. Zero-knowledge proof must be used in Green and Hohenberger’
protocol otherwise, it seems difficult to show their protocol is fully-simulatable
as the ideal sender would have to form the N cipher-texts before learning the
messages that K of them must decrypt to. The security of their scheme is
based on the Decisional Bilinear Diffie-Hellman assumption that seems a less
well-established primitive.

Since the protocols described above are all based on less well-established prim-
itives, a well-motivated problem is thus to find efficient yet fully simulatable
oblivious transfer schemes under standard complexity assumptions.

Lindell’s oblivious bit transfer protocol [13]: Lindell has presented the
first efficient implementation of fully-simulatable oblivious bit transfer protocols

Fully-Simulatable Oblivious Set Transfer 143

under the decisional Diffie-Hellman problem, the Nth residuosity and quadratic
residuosity assumptions as well as the assumption of that homomorphic encryp-
tion exists. All protocols are nice since they are provably secure in the presence
of malicious adversaries under the real/ideal model model simulation paradigm
without using general zero-knowledge proofs under standard complexity assump-
tions. The idea behind Lindell’s construction is that it makes use of the cut-and-
choose technique so that each party is not required to prove in zero-knowledge
and allows a simulator to rewind the malicious party so that an expected polyno-
mial time simulator under the standard cryptographic primitives can be defined.

Lindell’s protocol works by the receiver generating a tuple (ga, gb, gc, gd) with
the following property: if the receiver’s input is 0, then c = ab and d is random,
and if the receiver’s input equals 1, then d = ab and c is random. The sender re-
ceives this tuple and carries out a manipulation that randomizes the tuple so that
if c = ab then the result of the manipulation on (ga, gb, gc) is still a Decisional
Diffie-Hellman tuple and the result of the manipulation on (ga, gb, gd) yields a
completely random tuple. The sender then derives a secret key from the multipli-
cation of each of (ga, gb, gc) and (ga, gb, gd), and sends information that enables
the receiver to derive the same secret key from the Decisional Diffie-Hellman
tupel while the key from the non-Decisional Diffie-Hellman remains completely
random. The design mechanism allows one to implement 1-out-2 oblivious bit
transfer protocols. We however do not know how to extend Lindell’s scheme to
the multi-bit (i.e., oblivious string transfer protocols) case. As a result, the con-
struction of oblivious string transfer protocols in the full simulation paradigm
remains a challenge task in the research community.

1.2 Our Results

In this paper, we introduce and formalize a new notion which we call oblivious
set transfer. An oblivious set transfer is a natural extension of the notions of
oblivious bit transfer and oblivious string transfer. If a set consists of two bits
then the definition of our protocols coincides with the definition of standard
oblivious bit transfer protocols. If a set consists of k indices, then our definition
coincides with the standard definition of oblivious string transfer protocols (see
the definition of oblivious set transfer in Section 2 for more details). We then
present an efficient implementation of oblivious set transfer protocols that are
secure in the presence of malicious adversaries in the real/ideal world simulation
paradigm. That is, assuming that Paillier’s encryption scheme is semantically
secure and assuming that COMh is a perfectly hiding commitment and COMb

is a perfectly binding commitment, the oblivious set transfer protocol described
in this paper is secure in the full simulation model.

The idea behind of our construction is that a receiver encodes a set of strings
to an L-adic that will be retrieved at the end of execution of the oblivious set
transfer protocol, and then runs with the sender a two-party computation of an
encrypted linear function E(αx+y), where x and y are two random strings used
to hide the exact message α whereas E is an additively homomorphic encryption

144 H. Zhu

(say, Paillier encryption scheme) used by the sender. It follows that if the receiver
obtains an decryption of the encrypted linear message, then the set of desired
messages can be retrieved.

2 Definitions

The oblivious set transfer functionality in this paper is an extension of [13], i.e., the
oblivious set transfer functionality is formally defined as a function f with two in-
puts and one output. The first input is an n-tuple message m=(m1, · · · , mn), and
the second input is an index set S={i1, · · · , ik}, where k ≤ n. The output is a sub-
set {mi1 , · · · , mik

} of the n-tuple message. Party 1, also known as the sender, in-
puts (m1, · · · , mn) and receives no output. In contrast, Party 2, also known as the
receiver, inputs the set of indices {i1, · · · , ik} and receives MS={mi1 , · · · , mik

}.
Formally, we write f(m, S)=(⊥, mS).

Adversarial behavior: In this paper, we consider malicious adversaries who
may arbitrarily deviate from the specified protocol. We however, consider the
static corruption model, where one of the parties is adversarial while the other
is honest, and this is fixed before the execution begins.

Execution in the real world model. In the real world, a malicious party
may follow an arbitrary feasible strategy. Let π be a two-party protocol, and let
M=(M1, M2) be a pair of non-uniform probabilistic polynomial time machines.
We assume that such a pair is admissible meaning that for at least one i ∈ {1, 2}
we have Mi is honest. The joint execution of π under M in the real model on
inputs m=(m1, · · · , mn) and S={i1, · · · , ik}, denoted by REALπ,M (m, S), is de-
fined as the output of pair of M1 and M2 resulting from the protocol interaction.

Execution in the ideal world model. An ideal oblivious set transfer proceeds
as follows:

– Inputs: Party 1 obtains an input pair m=(m1, · · · , mn) with |mi| =|mj |, and
Party 2 obtains an input S={i1, · · · , ik}, where 1 ≤ k ≤ n.

– Send inputs to trusted party: An honest party always sends its inputs to the
trust party without any modification. A malicious party may either abort,
in which case it sends ⊥ to the trust party, or sends some other input to the
trusted party.

– If the trusted party receives ⊥ from one of the parties, then it sends ⊥ to
both parties and halts. Otherwise, upon receiving some (m′

1, · · · , m′
n) from

Party 1 and {i′1, · · · , i′k} from Party 2, the trusted party sends {m′
i′1

, · · · , m′
i′k
}

to Party 2 and halts.
– An honest party always outputs the message it has obtained from the trusted

party. A malicious party may output an arbitrary function of its initial input
and the message obtained from the trusted party.

By f we denote the oblivious set transfer functionality and let M =(M1, M2) be
a pair of non-uniform probabilistic expected polynomial-time machines which is

Fully-Simulatable Oblivious Set Transfer 145

admissible. Then the joint execution of f under M in the ideal world model,
denoted by IDEALf,M (m, S), is defined as the output pair of M1 and M2 from
the above ideal execution.

Definition 1. Let f denote the functionality of oblivious set transfer protocol and
let π be a two-party protocol. Protocol π is said to be a secure oblivious set transfer
protocol if for every pair of admissible non-uniform probabilistic polynomial-time
machines A=(A1, A2) for the real world model, there exists a pair of admissible
non-uniform probabilistic expected polynomial-time time machines B=(B1, B2)
for the ideal world, such that for every n-tuple message m=(m1, · · · , mn) of the
same length, and for every indices subset S={i1, · · · , ik}, where k ≤ n,
IDEALf,B(l, m, S) ≈ REALl,π,M (m, S), where l is a security parameter.

3 Building Blocks

3.1 Paillier’s Additively Homomorphic Encryptions

Paillier investigated a novel computational problem called the composite residuos-
ity class problem (CRS), and its applications to public key cryptography in [16].

Decisional composite residuosity class problems: Let N = pq, where p
and q are two large safe prime numbers. A number z is said to be a N -th residue
modulo N2, if there exists a number y ∈ Z∗

N2 such that z = yN mod N2. The
decisional composite residuosity class problem states the following thing: given
z ∈r Z∗

N2 deciding whether z is N -th residue or non N -th residue. The decisional
composite residuosity class assumption means that there exists no polynomial
time distinguisher for N -th residues modulo N2.

Paillier’s encryption scheme: the public key is a k-bit RSA modulus N=pq,
where p, q are two large safe primes with length k. The plain-text space is ZN and
the cipher-text space is Z∗

N2 . To encrypt a message m ∈ ZN , one chooses r ∈ Z∗
N

uniformly at random and computes the cipher-text as EPK(m, r) = gmrN mod
N2, where g = (1 + N) has order N in Z∗

N2 . The private key is (p, q). It is
straightforward to verify that given c =(1 + N)mrN mod N2, and the trapdoor
information (p, q), one can first compute c1=c mod N , and then compute r

from the equation r=c
N−1modφ(N)
1 mod N ; Finally, one can compute m from the

equation cr−N mod N2 =1+mN . The encryption function is homomorphic, i.e.,
EPK(m1, r1) × EPK(m2, r2) mod N2 = EPK(m1 +m2 mod N , r1×r2 mod N).
Paillier’s scheme is semantically secure if the decisional composite residuosity
class problem is hard.

3.2 Perfectly Hiding Commitment Schemes and Perfectly Binding
Commitment Schemes

Loosely speaking, a commitment is an efficient two-phase two-party protocol
through which one party, called the sender, can commit itself to a value so the
following two conflicting requirements are satisfied:

146 H. Zhu

– Secrecy (hiding): at the end of commit phase, the other party, called the
receiver, does not gain any computational knowledge of the sender’s value.
This requirement has to be satisfied even if the receiver tries to cheat;

– Non-ambiguity (binding): given a transcript of the interaction in the commit
phase, there exists at most one value which the receiver may accept as a legal
opening of the commitment. This requirement has to be satisfied even if the
sender tires to cheat.

Definition 2. A perfectly hiding (and computationally binding/computationally
non-ambiguity) commitment scheme is a triple of efficient algorithms (KG,
COM , V ER) satisfying the following properties:

– Correctness: for all security parameter k and input α,

Prob[pk ← KG(1k), (c, d)← COM(pk, α) : V ER(pk, α, c, d) = TRUE] = 1

– Perfectly hiding: for all k, and all inputs α and β the following distributions
are identical:

< pk← KG(1k); (c, d)← COM(pk, α) : (pk, c) >

and
< pk← KG(1k); (c, d)← COM(pk, β) : (pk, c) >

– Computationally binding/computationally non-ambiguity: for all k, and for
any probabilistic polynomial time cheating sender C∗:

Prob[pk ← KG(1k), (c, d1, d2, α1, α2)← C∗ :

V ER(pk, c, d1, α1) = V ER(pk, c, d2, α2) = TRUE ∧ α1 �= α2] < υ(k)

where υ(k) is a negligible function.

Remark 1. Pedersen’s commitment scheme [15] is a perfectly hiding (and com-
putationally binding/computationally non-ambiguity) protocol.

Definition 3. A perfectly binding/perfectly non-ambiguity (and computation-
ally hiding) commitment scheme is a triple of efficient algorithms (KG, COM ,
V ER) satisfying the following properties:

– Correctness: for all security parameter k and input α and ,

Prob[pk ← KG(1k), (c, d)← COM(pk, α) : V ER(pk, α, c, d) = TRUE] = 1

– Computationally hiding: for all k, and all inputs α and β the following dis-
tributions are computationally indistinguishable:

< pk← KG(1k); (c, d)← COM(pk, α) : (pk, c) >

and
< pk← KG(1k); (c, d)← COM(pk, β) : (pk, c) >

Fully-Simulatable Oblivious Set Transfer 147

– Perfectly binding/non-ambiguity: for all k, and for any C∗:

Prob[pk ← KG(1k), (c, d1, d2, α1, α2)← C∗ :

V ER(pk, c, d1, α1) = V ER(pk, c, d2, α2) = TRUE ∧ α1 �= α2] = 0

Remark 2. Paillier’s public-key encryption scheme is an example of perfectly
binding/non-ambiguity (and computationally hiding) commitment scheme.

4 Oblivious Set Transfer

4.1 Description of Oblivious Set Transfer Protocol

Common reference string: The sender, Party 1 has an instance of Paillier’s
encryption scheme denoted by (pk, sk), Party 2, a receiver obtains pk (including
the description of encryption algorithm E and the description algorithm D) but
knows nothing about sk at all.

Both parties also have a description of the specified common reference string: a
description of perfectly hiding and computationally binding commitment
(COMh) and a description of a perfectly binding and computationally hiding
commitment (COMb). The description of COMh is denoted by mH ; The de-
scription of COMh is denoted by mB.

Input: The sender has an input pair m=(m0, · · · , mn−1) with mi ∈ {0, 1}ι, and
the receiver has an input S={σ1, · · · , σk} ⊆ {0, · · · , n−1}, where 0 ≤ σi ≤ n−1.

The protocol

– Step 1: For i=0 to n − 1, the sender computes ci =E(mi, rmi), where E is
Paillier’s encryption algorithm.

Let L be an upper bound of mi (0 ≤ i ≤ n− 1) such that m0L
0 + m1L +

· · · + mn−1L
n−1 < N (this assumption can be relaxed if Damg̊ard-Jurik

encryption scheme is applied [5]).
By mL, we denote m0L

0 + m1L + · · ·+ mn−1L
n−1. Obviously, given mL,

(m0, · · · , mn−1) can be uniquely retrieved.
– Step 2: For j=1 to t where t =

(
n
k

)

, the receiver computes K1, · · ·, Kt, where

Kj = E(mj1)Lj1 · · · E(mjk
)Ljk

. The receiver further performs the following
computations, where s is a security parameter:
(2.1) for j=1 to t
(2.2) for i = 1 to s,
(2.3) chooses (αi

j , βi
j) ∈R Z∗

N × Z∗
N ,

(2.4) computes Kj
αi

j E(1)βi
j . By L(i, j), we denote Kj

αi
j E(1)βi

j ;
(2.5) commits L(i, j) using the perfectly hiding and computationally binding
commitment (COMh) which is denoted by COMh(L(i, j))
(2.6) finally, the receiver randomly reorders all computed commit-
ments(COMh(L(i, j)), 0 ≤ i ≤ s, 0 ≤ j ≤ t) to get a random commitment-
table: ⎛

⎝

c1,1 · · · c1,t

· · · · · · · · ·
cs,1 · · · cs,t

⎞

⎠

148 H. Zhu

– Step 3: Coin tossing:
(3.1) the sender P1 chooses a random R1 ∈R {0, 1}st and sends COMh(R1)
to P2;
(3.2) the receiver P2 chooses a random R2 ∈R {0, 1}st and sends COMb(R2)
to P1;
(3.3) P1 sends the de-commitment of COMh(R1) to P2;
(3.4) P2 sends the de-commitment of COMb(R2) to P1;
(3.5) P1 and P2 set r =R1 ⊕ R2. Denote r = (r1,1, · · ·, r1,t), · · ·, (rs,1, · · ·,
rs,t).

– Step 4: If all commitments of the chooser’s indies are located at ri,j = 1, then
P2 outputs ⊥, otherwise, it continues the following process (notice that the
probability that P2 outputs⊥ is (1/2)s that is negligible in the function of the
security parameter s). That is, for every 1 ≤ i ≤ s and 1 ≤ j ≤ t for which
ri,j =1, P2 sends the de-commitment of ci,j . Namely, if ci,j=COMh(L(i′, j′),
then P2 sends the following strings to P1

(4.1) L(i′, j′) and its random string li′,j′ used to generate ci,j ;
(4.2) Kj′ and (αi′

j′ , βi′
j′);

(4.3) (cj′1 , Lj′1), · · ·, (cj′
k
, Lj′k);

– Step 5: P1 tests the validity of the following equations
(5.1) (L(i′, j′), li′,j′) is a valid de-commitment to ci,j ;

(5.2) L(i′, j′) = Kj′
αi′

j′ E(1)βi′
j′ ;

(5.3) Kj′ =cj′1
Lj′1 · · · cj′

k

Lj′
k .

If any of the checks fails, P1 halts and outputs ⊥. Otherwise, P1 continues
the following process with P2.

– Step 6: P2 chooses (i′∗, j′∗) such that ri′∗,j′∗ =0 and L(i
∗, j∗) be an random-

ized encryption of L-adic of P2’s indices with auxiliary strings αi∗
j∗ and βi∗

j∗ .
P2 now sends a de-commitment of ci′∗,j′∗ to P1 (i.e., sends L(i∗, j∗) to P1

such that COMh(L(i∗, j∗), li∗,j∗)= ci′∗,j′∗ .
– Step 7: P1 checks the validity of the de-commitment. P1 sends the decryption

of L(i∗, j∗) to P2 if the de-commitment is correct, otherwise output ⊥;
– Step 8: P2 recovers (mσ1 , · · ·, mσk

) from the plain-text [(mσ1L
σ1 + · · · +

mσk
Lσk) × αi∗

j∗ + βi∗
j∗] mod N with auxiliary strings αi∗

j∗ and βi∗
j∗ .

In case that P1 and P2 are honest participants, then one can verify that the
scheme works with overwhelming probability 1-(1/2)s.

4.2 The Proof of Security

Expected polynomial-time simulator for coin-tossing protocol: we first
show that the coin-tossing protocol employed in the oblivious set transfer pro-
tocol is simulatable in the expected polynomial time. If we are able to show the
existence of such simulator, then we are able to extract a malicious party’s input
to the trusted party within expected polynomial-time and thus we are able to
show that our protocol is secure in the real/ideal world simulation paradigm.

Fully-Simulatable Oblivious Set Transfer 149

Coin-tossing protocol

Common Input: A perfectly hiding and computationally binding commitment
(COMh). The description of COMh is denoted by mh; A perfectly binding and
computationally hiding commitment (COMb). The description of COMh is de-
noted by mb;

Auxiliary Input to two parties: Auxiliary input to one party Alice (A) is rA,
and auxiliary input to another party Bob (B) is rB.

On input inpA=(mh, mb, rA) and input inpB=(mh, mb, rB), A and B proceed
the following steps:

– A sends cA =COMh(sA, rsA) to B;
– B sends cB =COMb(sB , rsB) to B;
– A sends the de-commitment (sA, rsA) of cA to B;
– B sends the de-commitment (sB, rsB) of cB to A;
– shared coin toss is sA ⊕ sB which is denoted by s (i.e, s = sA ⊕ sB).

If A is corrupted, then we will show that there exists an expected polynomial-
time simulator simA. The simulator starts by selecting and fixing a random type
rA and mh and then feeds (rA, mh) to simA. The simulator simA proceeds in
two steps:

– (S1) Extracting committed value: The simulator generates cA and sends it to
B; The simulator then generates a random commitment to a dummy value
c′B (say a commitment to 1) and feeds it to A. In case A replies by revealing
correctly de-commitment, denoted by (sA, rsA), the simulator records the
value and proceeds the next step; In case the reply of A is not a valid revealing
of the commitment cA, the simulator halts and outputs current view of A.

– (S2) Generating real commitment: Let (sA, rsA) denotes de-commitment
recorded in Step (S1). The simulator now rewinds A from scratch with
the same random type rA and the same message mh and generates cB

=COMh(sB , rsB) such that s=sA ⊕ sB, where s is a random string. The
simulator feeds cB and (sB , rsB) to A.

Let q(k) denote the probability that program A, on input mh, mb and rA, cor-
rectly reveals the commitment made in Step(S1) after receiving random com-
mitment to a dummy value; Let p(k) denote the probability that program A, on
input mh, mb and rA, correctly reveals the commitment made in Step(S1) after
receiving a genuine commitment; We stress that the difference between q(k) and
p(k) is negligible, otherwise one can derives contradiction to the computational
secrecy of A. It follows that the expected number of times that Step(S2) is in-
voked when running simulator is q(k)×1/p(k). Unfortunately, even though, p(k)
and q(k) are at most polynomially far away from each, the value q(k) × 1/p(k)
may not necessary be polynomial. Thus, the expected running-time of simA is
not necessary polynomial. We now make use of well studied technique (say, [4],
[8] and [7]) to solve this problem.

150 H. Zhu

A modified simulator s̃imA.

– (S1) Extracting committed value: The simulator then generates a random
commitment to a dummy value c′B and feeds it to A. The simulator generates
cA and sends it to B; In case A replies by revealing correctly de-commitment,
denoted by (sA, rsA), the simulator records the value and proceeds the next
step; In case the reply of A is not a valid revealing of the commitment cA,
the simulator halts and outputs current view of A.

– (S1.5) Approximating q(k): If the simulator does not halt in Step(S1) then
the simulator needs to approximate q(k) so that an expected polynomial-
time simulator can be constructed. Let n(k) be a polynomial, and let Xi

be a random variable such that Xi =1 if the i-th revealed commitment is
correct, and Xi=0, otherwise. Running Step(S1) n(k) times. The output of

n(k) repeatedly sampling is
∑n(k)

i=1 Xi

n(k) which is denoted by q̃(k).

– (S2) Generating real commitment: Repeat the performance of Step(S2) t(k)
q̃(k)

times. If none of these executions yield a correct reveal of A, the simulator
outputs a special symbol indicating time-out; If A ever reveals a correct open-
ing of the commitment that is different from the one recorded in Step(S1),
the simulator halts outputting a special symbol indicating ambiguity.

This ends the description of s̃imA. One can easily verified that the modified
simulator has expected running time bounded by q̃(k)× t(k)

q̃(k) =t(k). Furthermore,

s̃imA has the following nice features as well.

Lemma 1. q̃(k) is within a constant factor of q(k) with overwhelmingly high
probability

Proof. Let Xi be a random variable such that Xi =1 if the i-th revealed com-
mitment is correct, and Xi=0, otherwise. By applying Chernoff bound, we know
that

Prob(|
∑n(k)

i=1 Xi

n(k)
− q(k)| > δ) < 2e−n δ2

2p(1−p) ≤ 2e−n δ2
4

It follows that q̃(k) is within a constant factor of q(k) with overwhelmingly
high probability 1− e−n δ2

4 , where δ is any constant smaller than q(1− q).

Lemma 2. The probability that the event time-out happens is negligible.

Proof. Let u(k) be the probability that s̃imA outputs a special time-out symbol.
Then,

u(k) = Prob(
q(k)
q̃(k)

= Θ(1))(1 − p(k))
t(k)
q̃(k) + Prob(

q(k)
q̃(k)

�= Θ(1))(1 − p(k))
t(k)
q̃(k)

< q(k)(1 − p(k))
t(k)
q(k) + 2e−n δ2

4

Since the difference between p(k) and q(k) are negligible, by applying the stan-
dard truncated technique, we know that u(k) is negligible in k.

Fully-Simulatable Oblivious Set Transfer 151

Lemma 3. The probability that the event ambiguity happens is negligible.

Proof. Let v(k) be the probability that s̃imA outputs a special ambiguity sym-
bol. Assume by the contradiction that the ambiguity symbol is output with
probability at least Q(k) for a polynomial Q(·), and an infinite sequence of com-
mitted values. By running Step(S2) more than 2t(k)Q(k), it follows that s̃imA

outputs an ambiguity symbol with probability at least 1
2Q(k) . As a result, when

s̃imA invokes A at the moment then the event ambiguity happens with the prob-
ability at least 1

2Q(k) . This contradicts the assumption of non-ambiguity of B’s
commitment scheme.

Combining the above lemmas, we have the following statement immediately.
That is,

Corollary 1. The output distribution of simulator s̃imA differs from the output
distribution of simulator simA is at most negligible.

Proof. Notice that the output distribution of simulator s̃imA differs from the
output distribution of simulator simA in two types of executions: time-out and
ambiguity. Due to the above lemmas, we know that the output distribution of
simulator s̃imA differs from the output distribution of simulator simA is at most
negligible.

Lemma 4. Assuming that COMh is a perfect hiding and computational bind-
ing commitment and COMb is a perfectly binding and computationally hiding
commitment, then the shared coin tossing protocol is secure against malicious
adversary A. Furthermore, the simulator s̃imA runs in expected polynomial time.

Proof. According to the description of simulator, one can verify that the modi-
fied simulator has expected running time bounded by q̃(k)× t(k)

q̃(k) =t(k). The rest
of this work is to show the view of A is computationally indistinguishable from
that generated by simA. Since the simulator then generates a random commit-
ment to a dummy value c′B (say a commitment to 1) and feeds it to A, and the
commitment that generates the dummy value is perfectly biding and computa-
tionally hiding, it follows that the view of A is computationally indistinguishable
from that generated by simA.

Using the same technique, we can show that

Lemma 5. Assuming that COMh is a perfect hiding and computational bind-
ing commitment and COMb is a perfectly binding and computationally hiding
commitment, then the shared coin tossing protocol is secure against malicious
adversary B. Furthermore, the simulator s̃imB runs in expected polynomial time.

Expected polynomial time simulator for oblivious set transfer proto-
col: We now show that the proposed scheme is fully simulatable in the real/ideal
world paradigm by considering the following two cases:

152 H. Zhu

Case 1 − P1 is corrupted. Let A1 be a non-uniform probabilistic polynomial
time real adversary that controls P1. We construct a non-uniform probabilistic
expected polynomial time ideal model adversary/simulator S1. The task of S1

now is to extract the input messages that P1 hands to the trusted party with
the help of auxiliary information of (pk, sk) of Paillier’s encryption scheme.

– S1 chooses r ∈ {0, 1}st uniformly at random;
– S1 receives (c0, · · ·, cn−1) from A1, generates K1, · · ·, Kt and constructs a

garble table according to Step 2;
– S1 receives a commitment ch from A2, chooses R2 ∈ {0, 1}st uniformly at

random and sends cb= COMb(R2) to A1. If A1 does not send a valid de-
commitment to ch, then S1 simulates P2 aborting. Otherwise, if A1 sends a
valid de-commitment to ch, S1 sets R′

2 = R1 ⊕ r, rewinds A1 and hands c′b
=COMb(R′

2);
– For every 1 ≤ i ≤ s and 1 ≤ j ≤ t for which ri,j =1, S1 sends the decommit-

ments according to Step 4 in the protocol; Namely, if ci,j=COMh(L(i′, j′),
then P2 sends the following strings to P1

L(i′, j′) and its random string li′,j′ used to generate ci,j ;
Kj′ and (αi′

j′ , βi′
j′);

(cj′1 , Lj′1), · · ·, (cj′
k
, Lj′k);

– A1 tests the validity of the received strings, according to Step 5, namely
(L(i′, j′), li′,j′) is a valid de-commitment to ci,j ;

L(i′, j′) = Kj′
αi′

j′ E(1)βi′
j′ ;

Kj′ =cj′1
Lj′1 · · · cj′

k

L
j′
k .

– S1 receives a de-commitment L(i∗, j∗) and obtains mj∗1 , · · ·, mj∗
k

according
to Step 7.

– The output of S1 is mj∗1 , · · ·, mj∗k .

The simulator now runs the above procedure (n − k) times (again the running
time is within expected polynomial time), it follows that S1 is able to extract all
messages {m0, · · · , mn−1}with overwhelming probability. Given {m0, · · · , mn−1},
S1 runs with the honest party P2 by simply handing the input messages to the
trusted party (the input of P2 is chosen uniformly at random by the trusted third
party on behalf of P2). As a result, the view of simulation when S1 runs with P2 in
the ideal world is computationally indistinguishable from the view of real oblivious
set transfer protocol when A1 runs with P2 in the real world.

Case 2 − P2 is corrupted. Let A2 be a non-uniform probabilistic polynomial
time real adversary that controls P2. We construct a non-uniform probabilistic
expected polynomial time ideal model adversary/simulator S2. The task of S2

now is to extract the input set that P2 hands to the trusted party with the help
of auxiliary information of (pk, sk) of Paillier’s encryption scheme.

Step S1: S2 generates n dummy encryptions c0, · · ·, cn−1 and sends these dummy
encryptions to A2;
Step S2: S2 is given a garble table

Fully-Simulatable Oblivious Set Transfer 153

⎛

⎝

c1,1 · · · c1,t

· · · · · · · · ·
cs,1 · · · cs,t

⎞

⎠

Step S3: S2 runs coin-tossing protocol with A2, the resulting shared string is
denoted by r = (r1,1, · · ·, r1,t), · · ·, (rs,1, · · ·, rs,t);
Step S4: For every 1 ≤ i ≤ s and 1 ≤ j ≤ t for which ri,j =1, S2 receives the de-
commitment ci,j ; Namely, if ci,j=COMh(L(i′, j′), then S2 receives the following
strings:

– L(i′, j′) and its random string li′,j′ used to generate ci,j ;
– Kj′ and (αi′

j′ , βi′
j′);

– (cj′1 , Lj′1), · · ·, (cj′
k
, Lj′k);

S2 tests the validity of the received strings, according to Step 5, namely

– (L(i′, j′), li′,j′) is a valid de-commitment to ci,j ;

– L(i′, j′) = Kj′
αi′

j′ E(1)βi′
j′ ;

– Kj′ =cj′1
Lj′1 · · · cj′

k

L
j′
k .

Step S5: S2 receives a query message (i∗, j∗) such that ri∗,j∗ =0 and the de-
commitment of ci∗,j∗ (i.e., S2 also receives L(i∗, j∗) and its random string used
to commit ci∗,j∗).
Step S6: S2 now rewinds A2 at the Step S3 by running the coin-tossing protocol
with A2. The resulted string is denoted by r′ = (r′1,1, · · ·, r′1,t), · · ·, (r′s,1, · · ·, r′s,t).

The existence of two random strings such ri∗,j∗ =0 but r′i∗,j∗=1 is guaranteed
since S2 can rewind the simulator of the coin-tossing protocol and the running
time of such a simulator is within expected polynomial time. It follows that
the simulator S2 obtains the input message σ =πi(j)1, · · ·, πi(j)k of A2 within
expected polynomial time. Given σ, S2 runs with the honest party P1 by simply
handing the input messages to the trusted party (the input of P1 is chosen
uniformly at random by the trusted third party on behalf of P1). As a result,
the view of simulation when S2 runs with P1 in the ideal world is computationally
indistinguishable from the view of real oblivious set transfer protocol when A2

runs with P1 in the real world.
Combining the above results, we have the following main statement immediately

Theorem 1. Assuming that Paillier’s encryption scheme is semantically secure
and assuming that COMh is a perfectly hiding commitment and COMb is a
perfectly binding commitment. Then the oblivious set transfer protocol described
above is secure in the full simulation model.

5 Conclusion

We have introduced and formalized the notion of oblivious set transfer, an nat-
ural extension of the notion of oblivious bit transfer and the notion of oblivious

154 H. Zhu

string transfer. The security of oblivious set transfer is defined in the real/ideal
world simulation paradigm. We have proposed an feasible implementation of
oblivious set transfer protocol in the presence of malicious adversaries in the
simulation paradigm.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital
Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

2. Brassard, G., Crépeau, C., Robert, J.-M.: All-or-Nothing Disclosure of Secrets.
In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer,
Heidelberg (1987)

3. Camenisch, J., Neven, G., Shelat, A.: Simulatable Adaptive Oblivious Transfer.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer,
Heidelberg (2007)

4. Canetti, R., Even, G., Goldreich, O.: Lower Bounds for Sampling Algorithms for
Estimating the Average. Inf. Process. Lett. 53(1), 17–25 (1995)

5. Damg̊ard, I., Jurik, M.: A Generalisation, a Simplification and Some Applications of
Paillier’s Probabilistic Public-Key System. In: Proceedings of the 4th International
Workshop on Practice and Theory in Public Key Cryptography, pp. 119–136 (2001)

6. Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts.
Commun. ACM 28(6), 637–647 (1985)

7. Decatur, S.E., Goldreich, O., Ron, D.: Computational Sample Complexity. SIAM
J. Comput. 29(3), 854–879 (1999)

8. Goldreich, O., Kahan, A.: How to Construct Constant-Round Zero-Knowledge
Proof Systems for NP. J. Cryptology 9(3), 167–190 (1996)

9. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A Com-
pleteness Theorem for Protocols with Honest Majority STOC, pp. 218–229 (1987)

10. Green,, Hohenberger,: Green and Hohenberger: Blind identity-based encryption
and simulatable oblivious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 265–282. Springer, Heidelberg (2007)

11. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A
Completeness Theorem for Protocols with Honest Majority STOC 1987, pp. 218–
229 (1987)

12. Kushilevitz, E., Ostrovsky, R.: Replication is NOT Needed: SINGLE Database,
Computationally-Private Information Retrieval. In: FOCS 1997, pp. 364–373 (1997)

13. Lindell, Y.: Efficient Fully-Simulatable Oblivious Transfer. In: CTRSA 2008 (2008)
14. Naor, M., Pinkas, B.: Computationally Secure Oblivious Transfer. J. Cryptol-

ogy 18(1), 1–35 (2005)
15. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret

Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

16. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

17. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-
81, Aiken Computation Laboratory, Harvard University (1981)

18. A.C.-C. Yao.: Protocols for Secure Computations (Extended Abstract). In: FOCS
1982, pp. 160-164 (1982)

Efficient Disjointness Tests for Private Datasets

Qingsong Ye1, Huaxiong Wang1,2, Josef Pieprzyk1, and Xian-Mo Zhang1

1 Centre for Advanced Computing – Algorithms and Cryptography
Department of Computing, Macquarie University, NSW 2109, Australia

{qingsong,hwang,josef,xianmo}@ics.mq.edu.au
2 Division of Mathematical Sciences

School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

Abstract. We present efficient protocols for private set disjointness tests. We
start from an intuition of our protocols that applies Sylvester matrices. Unfor-
tunately, this simple construction is insecure as it reveals information about the
cardinality of the intersection. More specifically, it discloses its lower bound. By
using the Lagrange interpolation we provide a protocol for the honest-but-curious
case without revealing any additional information. Finally, we describe a protocol
that is secure against malicious adversaries. The protocol applies a verification
test to detect misbehaving participants. Both protocols require O(1) rounds of
communication. Our protocols are more efficient than the previous protocols in
terms of communication and computation overhead. Unlike previous protocols
whose security relies on computational assumptions, our protocols provide in-
formation theoretic security. To our knowledge, our protocols are first ones that
have been designed without a generic secure function evaluation. More impor-
tantly, they are the most efficient protocols for private disjointness tests for the
malicious adversary case.

Keywords: Private Set Disjointness, Private Matching, Secure Multi-Party
Computation.

1 Introduction

Suppose two parties, Alice and Bob, each has a private dataset of some items denoted by
A and B, respectively. Alice wishes to learn whether these two sets are disjoint, that is,
whether A ∩ B = ∅ or not. In doing so, Alice does not want to reveal any information
about her set A to Bob, who, in turn, does not wish to reveal any information about his
set B, other than whether A∩B = ∅ or not. This is called a private disjointness test [1].

A private disjointness test is a useful primitive in various online service applications.
For example, Bob is a club owner offering a special-status membership called "Super
Fun" and Alice would like to know whether she is eligible for membership. Alice has
a smart card issued by the state authority containing her resident address, her age band
(assuming that 0 for age 0−9, 1 for the age 11−19, 2 for the age 20−29 and so on), her
membership status, etc. Bob determines whether Alice is eligible for the special-status
membership based on Alice’s attribute information. For example, Bob may require that
at least one of the following three conditions holds: (1) Alice lives in the same suburb
as Bob; (2) Alice’s age band is 5; (3) Alice is the member of Good Credit Union.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 155–169, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

156 Q. Ye et al.

Bob considers the detail of his policy to be commercial secret and does not want to
reveal it to others. Alice is interested in this membership and would like to go forward;
however, she wants to reveal as little information about her as possible. On the other
hand, Bob wants Alice to know only whether she is eligible for the membership, but
nothing else.

There are several protocols to tackle this problem, such as Freedman, Nissim and
Pinkas (FNP) [2], Hohenberger and Weis (HW) [3] and Kiayias and Mitrofanova (KM)
[1]. The KM protocols have either high round complexity or high communication com-
plexity, while the FNP and HW protocols leak the information about the intersection
cardinality. Moreover, both FNP and KM protocols require random oracles and costly
sub-protocols that have to be secure in the presence of a malicious adversaries. The
HW protocol only considers the malicious Bob and assumes the honest Alice in order
to make the protocol efficient. This paper provides efficient protocols for private dis-
jointness tests. The protocols are unconditionally secure against malicious adversaries.

Related Work. Freedman, Nissim and Pinkas (FNP) [2] proposed a protocol for the
private computation of set disjointness. The protocol is based on the representation of
datasets as roots of a polynomial and applies oblivious polynomial evaluation tech-
niques [4]. The protocol simply lets Alice represent her dataset A = {a1, . . . , am} over

a field as a polynomial F(y) =
∏

ai∈A

(y − ai) =
∑m

i=0 αiy
i in that field. Alice then en-

crypts coefficients of F with a homomorphic cryptosystem such as Paillier’s [5]. Thus,
given encrypted coefficients of F , Bob first evaluates F(bi) for each elements bi ∈ B,
and then returns encrypted γF(bi) where γ is a random non-zero value picked by Bob.
Note that any bi ∈ A if and only if F(bi) = 0, which not only indicates the disjointness
status but also reveals the information of the intersection cardinality.

The FNP construction leads to a very efficient protocol assuming honest-but-curious
adversaries. This construction heavily influences two other related works of Kiayias and
Mitrofanova [1] and of Hohenberger and Weis [3]. To cope with malicious adversaries,
the FNP protocol employs random oracle and invokes expensive sub-protocols.

Hohenberger and Weis [3] have taken a similar approach to the one given
in [2] and designed a protocol using an oblivious polynomial evaluation. The
security proof relies on the difficulty of discrete logarithm. Assume G is a
group with the composite order n = pq where p < q are primes. Let g, u be random
generators of G and h = uq. As in the FNP protocol, Alice represents her dataset A

by the polynomial F(y) =
∑|A|

i=0 αiy
i ∈ Zq[y], chooses a random polynomial

R(x) =
∑|A|

i=0 rix
i ∈ Zp[x] and publishes n and commitments of F(y), gαihri for

i ∈ [0, . . . , |A|]. For each bj ∈ B selected in random order, Bob obliviously evaluates
vj = gF(bj)hR(bj) and sends wj = v

γj

j to Alice, where γj is a non-zero value randomly

picked from Z
∗
n. Note that if bj ∈ A, then gγjF(bj) will have order p. Since h has order

p, Alice concludes A ∩B �= ∅ if wp
j = 1 with overwhelming probability.

The protocol is efficient and secure without using the random oracle. The security,
however, is proven under the assumption that Alice is honest (but Bob can be mali-
cious). If both Alice and Bob are malicious, then the cost of the protocol is the same
as in the FNP protocol. Moreover, their security properties are the same as of the FNP

Efficient Disjointness Tests for Private Datasets 157

protocol and allow Alice to discover the intersection cardinality. In our membership ex-
ample, if Alice knows the intersection cardinality, she may learn some extra information
about Bob’s business policy which is against Bob’s will.

Kiayias and Mitrofanova [1] provided three protocols for private set disjointness
tests. The first protocol assumed that the domain is relatively small, which is not rele-
vant to our work. Our work is related to their second and third protocols, denoted by
KM−2 and KM−3, respectively. KM−2 uses a new primitive called superposed en-
cryption based on Pedersen commitments [6]. Superposed encryption is closely related
to a homomorphic ElGamal variant first used in voting schemes by Cramer et.al. [7]. In
the KM−2 protocol, Bob returns to Alice a single ciphertext of γ|A ∩ B|, where γ is
a random non-zero value. This protocol needs |B| rounds of communication between
two parties. The total communication cost is |A| · |B| if the adversary is honest but cu-
rious, but increases by a quadratic factor if either party behaves maliciously. To reduce
the high round complexity in KM−2, the authors presented the KM−3 protocol that
uses a multivariate polynomial so the task can be done in a single round. The price to

be paid is a high communication cost Θ(
(|A|+ |B|

|B|
)

) for the honest-but-curious case.

The disadvantage of those two protocols is obvious. It is unlikely for causal clients
to use such online services which require either extensive network communication or
numerous interactions.

Kissner and Song [8] presented FNP-inspired schemes for various private set oper-
ations such as set intersection, set union, threshold cardinality of the set intersection,
and multiplicity tests. The problem of secure computation of the subset relation of two
private datasets is a variant of the private set intersection problem where the intersec-
tion content is one party’s whole dataset. This operation can be computed by extending
the FNP protocol. The applications of the subset relation were discussed in [9, 10].
Protocols for private equality tests are a special case of the private disjointness tests,
where each party has a single element in the dataset. These protocols were proposed in
[11, 4, 12]. The distributed case of private equality tests and various private set opera-
tions were considered in [13, 14].

Secure determinant computation by multiple parties is discussed in [15]. The secure
shares computation and distribution of a matrix are based on the Lagrange interpola-
tion. Using similar technique, Mohassel and Franklin [16] proposed a multi-party com-
putation protocol to securely test whether two shared polynomials are coprime. Their
construction applies Sylvester matrices [17] construction.

Our Results: We present two disjointness test protocols. Each protocol takes O(1)
rounds. The second protocol that provides verifiability, is secure against malicious ad-
versaries, and the parties learn nothing more than the desired result. In our construction,
we build two polynomials g and h whose roots are representing the datasets A and B of
the two parties, respectively. The polynomials are next used to form a Sylvester matrix.
The determinant of the matrix tells us whether g and h share any root and therefore
allows us to ascertain if the intersection of the datasets is empty or not.

We first give an intuition of our protocols that applies a Sylvester matrix directly.
However, this simple construction is not secure as Alice can learn the intersection car-
dinality by computing the rank of the matrix. Note, this is allowed in [2, 3].

158 Q. Ye et al.

To reduce the amount of information leaking about the intersection of sets, we can
modify the simple construction as the following. We let two parties cooperate to multi-
ply the Sylvester matrix and its transpose. In such a way that Alice still knows whether
the determinant of the related Sylvester matrix is zero. Consequently, this improved
version reveals the lower bound of the intersection cardinality only.

To achieve no information leaks apart from the fact that whether A ∩ B = ∅ or
not, we utilize a secure determinant evaluation scheme in a multi-party computation
setting developed by Cramer and Damgard [15]. In this protocol, Bob randomly picks
|A| + |B| + 1 distinct indexes and forwards them to Alice along with the shares of
his dataset. Alice then constructs the corresponding |A|+ |B|+ 1 shares of the masked
Sylvester matrix associated with g and h. Using the Lagrange interpolation, Alice is able
to test if the determinant of the masked Sylvester matrix is zero or not. This approach
requires O((|A|+ |B|)2) communication cost and O((|A|+ |B|)3.697) field operations.

We then further employ a verification test to detect misbehaving participants. The
test is going to double the communication cost.

The advantage of our solution is that our protocols are conceptually simple. Com-
paring to the previous work, our protocols are very efficient. In particular, our solution
can deal with malicious Bob and malicious Alice at same time. Unlike the previous
solutions, our schemes provide unconditional security. Our approach is of a great ad-
vantage, where the communication facilities are in a short supply and consequently,
protocols with small number of rounds are preferred. Our protocols do not leak any
information apart from whether A ∩B = ∅ or not.

Our paper is organized as follows. In Section 2, we introduce the notations, Sylvester
matriices and some techniques that will be used in this paper. In Section 3, we discuss
the adversary model and define the problem in hand. A general description of a simple
and insecure protocol that is based on Sylvester matrices is presented in Section 4. In
Section 5, we show our main protocols for the private disjointness test of two datasets
based on the Sylvester matrix construction and demonstrate its security. We also analyze
the efficiency of our protocols in this section. Finally, we give concluding remarks in
Section 6.

2 Preliminaries

Throughout this paper, let GLn(K) ⊂ Kn,n denote the group of n × n non-singular
matrices over an arbitrary finite field K . We assume that the number of elements in the
field q = |K| is much larger than the dimension n.

2.1 Sylvester Matrix

Given two polynomials g(x) =
∑m

i=0 αix
i ∈ Zq[x] and h(x) =

∑n
i=0 βix

i ∈ Zq[x] of
degrees m and n, respectively. The Sylvester matrix S associated with g and h is then
the (m + n)× (m + n) matrix obtained as follows:

– The first row is: (αm, αm−1, . . . , α0, 0, . . . , 0).
– The next row is obtained from the previous one by shifting it one position (column)

to the right and putting zero in the first position.

Efficient Disjointness Tests for Private Datasets 159

– This process is repeated n− 2 times.
– The (n + 1)th row is (βn, βn−1, . . . , β0, 0, . . . , 0).
– Next m−1 rows are created in the same way as for the first row. The only difference

is the number of rows.

For example, the Sylvester matrix S associated with g and h for m = 4 and n = 3 is:

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α4 α3 α2 α1 α0 0 0
0 α4 α3 α2 α1 α0 0
0 0 α4 α3 α2 α1 α0

β3 β2 β1 β0 0 0 0
0 β3 β2 β1 β0 0 0
0 0 β3 β2 β1 β0 0
0 0 0 β3 β2 β1 β0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, the determinant of the associated Sylvester matrix is defined by the two as-
sociated polynomials g and h. Consequently, two polynomials do not share a common
root if and only if the determinant of the Sylvester matrix is non-zero value. If the deter-
minant of the Sylvester matrix is zero, then the rank of the Sylvester matrix determines
the degree of the greatest common divisor of g and h. That is:

deg(gcd(g, h)) = m + n− rank(S).

2.2 Building Blocks

In general, any secret sharing scheme can be used in our protocol. Since there are only
two parties involved in our protocol, we assume that (2-out-of-2)-Shamir secret sharing is
used. The computations in this paper are carried out over a finite field K . The two parties
are Alice and Bob. We frequently use the following building blocks from [18] and [15].

Secure Inversion of Shared Field Elements and Matrices is a protocol that accepts
a list of shares of an invertible field element or matrix as its input and generates a list
of shares of the inverse. We denote this secure computation of shares of the inverse
by [x−1]i = [x]−1

i , and [M−1]i = [M]−1
i respectively for an element x and a ma-

trix M , where [x−1]i’s are shares of the inverse, [x]−1
i ’s are the inverse of shares, and

i ∈ {A, B} in our protocol. In our protocols, we slightly modify the original protocol
to let only one party compute such inverses as the following.

Input: Shares [x]A, [x]B of the element x.
Output: Shares [x−1]A, [x−1]B of the inverse element x−1.
Protocol:

1. Compute shares [ρ]A, [ρ]B of an element ρ ∈ K that is random and non-zero,
2. Compute [σ]A = [ρ]A · [x]A and [σ]B = [ρ]B · [x]B ,
3. Calculate σ from the shares [σ]A and [σ]B ,
4. Find [x−1]A = σ−1 · [ρ]A and [x−1]B = σ−1 · [ρ]B .

Note that the other party i, who receives the pair [x]i and [x−1]i, cannot find any
information about x. This is also true for the matrix M . For simplicity, we denote

160 Q. Ye et al.

[σ]i = [ρ]i · [x]i in Step 2. Actually, the computation of [σ]i is not simple and we
need to employ an appropriate sub-protocol such as the one presented in Section 1.1
of [18]. Although the secure computation of [σ]i is not required in this protocol, but
it is necessary in the next protocols where the appropriate sub-protocol is applied. A
constant-round sub-protocol between Alice and Bob might be also needed if a secure
computation of [σ]i is expected.

Secure Multiplication of Shared Field Elements is a protocol that produces a share
of the product of two shared field elements [x ·y]A, [x ·y]B of x and y. The protocol can
be successfully run if all shares are invertible. It proceeds according to the following
steps:
Input: Alice and Bob hold their shares of two elements x and y, i.e. Alice has [x]A, [y]A
and Bob owns [x]B and [y]B .
Output: Alice gets the shares [x · y]A, [x · y]B .
Protocol:

1. Alice
(a) generates shares [ρ1]A, [ρ1]B of ρ1, and [ρ2]A, [ρ2]B of ρ2 independently at

random from all non-zero values.
(b) computes [σ1]A = [x]A · [ρ1]A, and [σ2]A = [ρ1]−1

A · [y]A · [ρ2]A,
(c) sends [ρ1]B, [ρ2]B, [ρ1]−1

B , [σ1]A, [σ2]A to Bob.
2. Bob

(a) computes [σ1]B = [x]B · [ρ1]B , and [σ2]B = [ρ1]−1
B · [y]B · [ρ2]B ,

(b) constructs σ1, σ2 from computed shares,
(c) sends (σ1 · σ2) to Alice.

3. Alice computes [x · y]A = σ1 · σ2 · [ρ2]−1
A and [x · y]B = σ1 · σ2 · [ρ2]−1

B .

Note that only Alice could compute [x · y]A and [x · y]B . Consequently, Alice learns
the result of x · y. This is allowed in our protocol. The security requirement of our
protocol is that Alice learns x · y without knowing the value of x and/or y.

In general, if one of the inputs is zero, then Ben-Or and Cleve showed in [19] how to
modify the protocol given above.

Secure Shared Matrix Multiplication is a protocol that securely generates shares
[M · M ′]A, [M · M ′]B for Alice and Bob respectively, from shares [M]A, [M]B of
a matrix M , and [M ′]A, [M ′]B of M ′, where [M]A, [M ′]A are held by Alice and
[M]B, [M ′]B are possessed by Bob. This protocol works in an obvious way follow-
ing the previous Secure Multiplication of Shared Field Elements protocol.

Secure Determinant Evaluation (SDE) computes the determinant of a matrix
M ∈ Kn,n from a list of related non-singular matrices. Let z0, . . . , zn are distinct
and random integers selected from K . We simplify the technique of secure determinant
evaluation in the multiparty computation model introduced by Cramer and Damgard
[15], and we use the following equation

det(M) = (−1)n ·
n∑

i=0

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

∏

0≤j≤n

j �=i

zj

zi − zj

⎞

⎟
⎟
⎠
· det(ziIm+n −M)

⎞

⎟
⎟
⎠

,

Efficient Disjointness Tests for Private Datasets 161

where In denotes the n × n identity matrix. For each zi ∈ K , it holds that
(ziIn − M) ∈ GLn(K) if and only if zi is not an eigenvalue of M . Since M has
at most n eigenvalues, each matrix ziIn −M is invertible, when zi is randomly and
independently chosen, except with the probability at most n

q .

3 Model and Definition

This section formally defines our verifiable disjointness test of two private datasets. Our
construction can be described as follows. Let AlicePA and BobPB be two probabilistic
polynomial time interactive Turing machines. Let A = {a1, . . . , am},
B = {b1, . . . , bn} be datasets owned by PA and PB, respectively. We assume that the
set cardinalities |A| and |B| are not secret. The private disjointness test checks whether
A ∩ B = ∅ or not. For sets A, B ⊂ K , define the disjointness predicate
D(A, B) = (A ∩ B = ∅), that is, D(A, B) will have value 1 if and only if A and
B are disjoint otherwise, the predicate is equal zero. The interaction between PA and
PB yields a result that is known to PA only.

In our model, an adversary can be misbehaving Bob, misbehaving Alice or both. In
particular, we cannot hope to avoid parties that (i) refuse to participate in the protocol,
(ii) substitute a correct input by an arbitrary value, and (iii) abort the protocol any time.
In our work, we do not address these issues. The way that security is dealt in this case
is by comparing the player’s views with respect to an "ideal" protocol implementation,
using a trusted third party. The reader is referred to [20] for a more complete discussion.

Definition 1. (Private Disjointness Testing) Two probabilistic polynomial time inter-
active Turing machines, PA and PB, define a Private Disjointness Testing protocol if
the following conditions hold:

Completeness. If both parties are honest, the protocol works and PA learns the dis-
jointness predicate, that is whether A ∩B = ∅.

Soundness. For an unknown PA’s set A ⊂ K , the probability that PB will convince
PA to accept A ∩B �= ∅ is negligible.

Security. Assume that the size of both datasets are public. With an overwhelming proba-
bility, PA does not get any extra information about PB’s dataset beyond the knowledge
of the disjointness predicate. PB learns nothing about PA’s set.

Informally, completeness means that a correct execution between two honest parties
will return the correct value of the disjointness predicate to PA. The soundness implies
that on an unknown input set A ⊂ K for PB , PA has no chance of obtaining a non-
zero result when interacting with any malicious Bob P∗

B. That is, unless P∗
B actually

knows a value in PA’s set, PA will not be fooled into thinking otherwise. As pointed
out in [3], both FNP and KM protocols are not sound according to this definition. In
those schemes, PA will believe that there is an intersection if it receives the value zero
encrypted under a public-key. P∗

B could trivially violate the soundness property by en-
crypting a zero value itself.

162 Q. Ye et al.

In a verifiable protocol, PA’s privacy requires that no malicious Bob P∗
B can learn

anything about the set A beyond |A| from an interaction with PA. Using the same argu-
ment for a malicious Alice P∗

A, PB’s privacy ensures that P∗
A does not learn anything

about B beyond the set cardinality.

4 Intuition of Set Disjointness Test from Sylvester Matrix
Construction

Our solution is based on the Sylvester matrix construction. To test if PA’s dataset
A = {a1, . . . , am} and PB’s dataset B = {b1, . . . , bn} are disjoint, we represent two
datasets as two polynomials g(x) =

∏

ai∈A(x − ai) =
∑m

i=0 αix
i and

h(x) =
∏

bj∈B(x − bj) =
∑n

j=0 βjx
j , respectively. As in Section 2.1, we can build a

Sylvester matrix S from the polynomials g and h. Then, the determinant of S indicates
whether A and B are disjoint.

In order to protect datasets privacy, we can let PA send encrypted g to PB by using
a public-key homomorphic cryptosystem, such as Paillier’s [5], where the encrypted
g is denoted as the encryption of g’s coefficients with PA’s public key. PB then con-
structs the Sylvester matrix based on the polynomial h and encrypted polynomial g. To
protect the privacy of the polynomial h, PB randomly selects R1 ∈ GLm+n(K) and
obliviously computes R1 · S by using the homomorphic properties of the encryption
applied. After receiving the cryptogram of R1 ·S, PA decrypts it and is able to compute
det(R1 ·S). In such a way,PA learns det(R1 ·S) = 0 if and only if det(S) = 0 without
leaking any information about the polynomial g and gaining no other information apart
from the disjointness of two datasets.

However, if we apply this idea directly to construct a protocol, then PA can learn the
intersection cardinality. This is because rank(R1 · S) = rank(S). Thus,
deg(gcd(g, h)) = deg(g) + deg(h) − rank((R1 · S)) which reveals |A ∩ B|. How-
ever, with slightly bigger communication cost, we could let PA learn only the lower
bound of the intersection by securely computing det(ST · S). It is easy to see that PA
is still able to determine whether det(S) is zero or not from the computation. The fact

is that rank(ST · S) ≤ rank(S). Denote S =
(

MB

MA

)

, then,

ST · S = MT
A ·MA + MT

B ·MB

where MT
A ·MA and MT

B ·MB can be computed independently by PA and PB. The
secure computation of det(ST · S) works in the same way as the one discussed above.

5 Private Disjointness Test

In this section, we propose a solution to test the disjointness without releasing any extra
information beyond |A| and |B|. Our private computation is based on the Sylvester
matrix construction and the technique of secure determinant evaluation in the multi-
party computation model introduced by Cramer and Damgard [15]. Let polynomials g
and h represents the datasets A and B.

Efficient Disjointness Tests for Private Datasets 163

5.1 Protocol without Bob-Verifiability

To secure construct a Sylvester matrix S from the polynomials g and h, and accordingly
evaluate if det(S) = 0, we employ the SDE technique. We form a list of
(deg(g) + deg(h) + 1) shares of S held by two parties in a certain way to let one
party to compute det(S) without knowing the rank(S). The protocol runs according to
the following steps.

Input: PA and PB hold the datasets A and B, respectively.
Output: PA learns if A ∩B = ∅.
Protocol Π1

1. PA constructs the polynomial g from the dataset A, computes shares [g]A, [g]B of
g, and sends [g]B to PB.

2. PB
(a) constructs the polynomial h from the dataset B, computes shares [h]A, [h]B of

h, and forms an m× (m + n) half Sylvester matrix [MB]B related to [h]B as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[βn]B [βn−1]B . . . [β0]B 0 0 . . . 0 0 0
0 [βn]B . . . [β1]B [β0]B 0 . . . 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . [βn]B [βn−1]B [βn−2]B . . . [β0]B 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 0 0 [βn]B . . . [β2]B [β1]B [β0]B

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(b) generates shares [R]A, [R]B for a random matrix R ∈ GLm+n(K) in a certain
way that both [R]A and [R]B are invertible (the reader is refered to [15] for
more information). Let d = det(R),

(c) forms an n × (m + n) half Sylvester matrix [MA]B from received [g]B as in
Step 2(a),

(d) randomly selects distinct non-zero z0, . . . , zm+n from the field K , and assigns
[zi]A = [zi]B for each zi,

(e) sends [h]A, [R]A, d−1, [z0]A, . . . , [zm+n]A to PA.

3. PB assists PA in computing [S′
i]A = [R]A · ([zi]A · Im+n −

(

[MB]A
[MA]A

)

),

[S′
i]B = [R]B · ([zi]B · Im+n −

(
[MB]B
[MA]B

)

) separately as in Sect. 2.2, where the

matrices [MA]A, [MB]A are constructed byPA in the same way as [MA]B, [MB]B .
4. PA

(a) computes S′
i from shares [S′

i]A, [S′
i]B and further computes

det(zi ·Im+n−
(

MB

MA

)

) = det(S′
i)·d−1, where S′

i = R·(zi ·Im+n−
(

MB

MA

)

),

164 Q. Ye et al.

(b) concludes A ∩B �= ∅ if and only if

m+n∑

i=0

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

∏

0≤j≤m+n

j �=i

zj

zi − zj

⎞

⎟
⎟
⎠
· det(zi · Im+n −

(
MB

MA

)

)

⎞

⎟
⎟
⎠

= 0.

Theorem 1. The construction of Protocol Π1 is correct and secure with no other in-
formation revealed beyond |A| and |B| if both parties follow the protocol faithfully.

Poof. The soundness proof is irrelevant to this protocol based on Definition 1, since PB
is honest-but-curious and follows the protocol faithfully.

Completeness. The completeness of this protocol is clear. This is ensured by the

Sylvester matrix construction. det(
(

MB

MA

)

) = 0 if and only if related polynomials

g and h share common root(s), in other word A ∩ B �= ∅. The correct computation of

det(
(

MB

MA

)

) from related m + n + 1 matrices is provided by Cramel and Damgard’s

SDE scheme. The associated shares construction and computation are guaranteed by
the Shamir secret sharing scheme.

Security. The privacy of PA’s g is unconditional. It is guaranteed by the perfectness of
Shamir secret sharing, since PB only knows partial share of g owned by PA.

PB’s security ensures that PA given S′
i = R · (zi · Im+n −

(
MB

MA

)

) cannot learn

anything about B beyond |B|.
The proof of PB’s security is that an honest-but-curious P∗

A is not able to glean any

information about B from the result of R ·(zi ·Im+n−
(

MB

MA

)

) with unknown matrices

R and MB , where R ∈ GLm+n(K) is random, MB is an m× (m + n) matrix with a
half Sylvester matrix form. P∗

A can launch an attack on MB with

S′
i = R · (zi · Im+n −

(

MB

MA

)

) (1)

Denote

(
M̂B

M̂A

)

= (zi · Im+n −
(

MB

MA

)

) where MB and M̂B are same size. P∗
A

knows S′
i and M̂A, and tries to find out the matrix M̂B (really just one row of the entry,

the polynomial h). Note that

(
M̂B

M̂A

)

is non-singular, and R ∈ GLm+n(K). Therefore,

S′
i must be non-singular. By only knowing M̂A and with no knowledge about h, P∗

A

can search possible candidate polynomial, which can assure

(

M̂B

M̂A

)

be non-singular

(in other words, can satisfy Equation 1).

Efficient Disjointness Tests for Private Datasets 165

Non-singular

(
M̂B

M̂A

)

means that det
(

M̂B

M̂A

)

�= 0. Let det
(

M̂B

M̂A

)

= f(β0, β1 . . . , βn) where f is a polynomial with n + 1 unknowns. For any βj by
fixing βi, 0 ≤ i ≤ n and i �= j, deg(f) = n and there are at most n solutions
for f(. . . , βj , . . .) = 0. We know that there are q possible selections for βj in the
field. Therefore, there must exists at least q − n possible choices for βj , such that
f(. . . , βj , . . .) �= 0. Since the polynomial f has n+1 unknowns, the total possible can-
didates for M̂B are (q−n)n+1. If q is large enough,P∗

A only has a negligible probability
to guess h correctly.

5.2 Verifiable Disjointness Test Protocol

In order to deal with a malicious PB, PA needs to verify whether the matrix MB as-
sociated with the shared polynomial h has the full rank as he claims to prevent the
malicious PB inserting one row zeros or two dependent rows in the matrix. In the fol-
lowing, we show how to modify our previous protocol to gain security against malicious
PB with a verification test. Assume that deg(h) is known by PA. Otherwise, PB needs
to send a single value deg(h) to PA at the beginning of the protocol. Suppose that PA
has a private and random permutation function π, which permutes each of m+n tuples.

Input: PA and PB hold the datasets A and B, respectively.
Output: PA learns if A ∩B = ∅.
Protocol Π2

1. PA
(a) constructs the polynomial g from the dataset A, and computes n pairs of shares
{([g]1A , [g]1B), . . . , ([g](m+n)A

, [g](m+n)B
)}, where the combination of two

shares in any pair can find g,
(b) sets an constant polynomial g′ = 1, and computes n pairs of shares as in

previous step, so she gets {([g′]1A , [g′]1B), . . . , ([g′](m+n)A
, [g′](m+n)B

)},
(c) obtains {(e1π1(1) , e1π1(2)), . . . , (e(m+n)πm+n(1)

, e(m+n)πm+n(2)
)} by perform-

ing π{(e11 , e12), . . . , (e(m+n)1
, e(m+n)2

)}, where {(e11 , e12), . . . ,
(e(m+n)1 , e(m+n)2)} = {([g]1B , [g′]1B), . . . , ([g](m+n)B

, [g′](m+n)B
)},

(d) sends {(e1π1(1) , e1π1(2)), . . . , (e(m+n)πm+n(1)
, e(m+n)πm+n(2)

)} to PB;

2. For each pair (eiπj(1) , eiπj(2)), the protocol runs step 2 and 3 of Protocol Π1 parallel
with the same parameters and computes

[S′
i]πj(1)A

= [R]A · ([zi]A · Im+n −
(

[MB]A
[MA]iπj (1)

A

)

)

[S′
i]πj(1)B

= [R]B · ([zi]B · Im+n −
(

[MB]B
[MA]iπj(1)

B

)

)

[S′
i]πj(2)A

= [R]A · ([zi]A · Im+n −
(

[MB]A
[MA]iπj (2)

A

)

)

166 Q. Ye et al.

[S′
i]πj(2)B

= [R]B · ([zi]B · Im+n −
(

[MB]B
[MA]iπj(2)

B

)

)

where [MA]iπj(1) , [MA]iπj(2) are constructed from [g]i and [g′]i with the order de-
termined by the permutation πj , which is unknown to PB.

3. PA
(a) computes S′

iπj(1)
from shares [S′

i]πj(1)A
, [S′

i]πj(1)B
, and S′

iπj(2)
from shares

[S′
i]πj(2)A

, [S′
i]πj(2)B

,
(b) obtains {(S′

11
, S′

12
), . . . , (S′

(m+n)1
, S′

(m+n)2
)} by performing

π−1{(S′
1π1(1)

, S′
1π1(2)

), . . . , (S′
(m+n)πm+n(1)

, S′
(m+n)πm+n(2)

)}
(c) computes fi1 = det(S′

i1
) and fi2 = det(S′

i2
) for i ∈ {0, . . . , m + n} as in

Protocol Π1,

(d) computes det(zi · Im+n−
(

MB

M ′
A

)

) = fi2 ·d−1 for i ∈ {0, . . . , m+n}, where

M ′
A denotes a half Sylvester matrix constructed from the polynomial g′,

(e) halts if

(−1)m+n ·
m+n∑

i=0

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

∏

0≤j≤m+n

j �=i

zj

zi − zj

⎞

⎟
⎟
⎠
· det(zi · Im+n −

(
MB

M ′
A

)

)

⎞

⎟
⎟
⎠
�= 1.

(f) computes det(zi · Im+n −
(

MB

MA

)

) = fi1 · d−1 for i ∈ {0, . . . , m + n},
(g) concludes A ∩B �= ∅ if and only if

m+n∑

i=0

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

∏

0≤j≤m+n

j �=i

zj

zi − zj

⎞

⎟
⎟
⎠
· det(zi · Im+n −

(

MB

MA

)

)

⎞

⎟
⎟
⎠

= 0.

Theorem 2. The construction of the Protocol Π2 is complete and sound against a ma-
licious adversaries. With overwhelming probability, a malicious P∗

B will be caught. In
other word, unless P∗

B actually knows a value in PA’s set, PA will not be fooled into
thinking otherwise. The security of both PA and PB is also protected based on the
shares of each polynomial are randomly selected from field, and the Secure Determi-
nant Evaluation.

Proof. The correctness proof is the same as for the Protocol Π1. The only difference is
that we use m+n pairs of shares [g]iA , [g]iB for g. The reason for doing this is to ensure
the soundness of this protocol, and will be discussed shortly. The security proof is the
similar as the one in the Protocol Π1. An adversary does not gain any extra information.
This is because of the perfectness of Shamir secret sharing and the SDE we used.

Soundness. In the given soundness definition, P∗
B is operating with an unknown dataset

A ⊂ K . From our construction,PB does not know anything about A beyond a share of

A and PA knows a share of B. PA will only accept A∩B �= ∅when det(
(

MB

MA

)

) = 0.

Efficient Disjointness Tests for Private Datasets 167

Note that [g]iA is sent along with [g′]iA for i ∈ {1, . . . , m + n}. In the setting,
[g]iA �= [g]jA and [g′]i′A �= [g′]j′A for i �= j and i′ �= j′. With the randomness of
[g]iA’s and [g′]iA ’s, P∗

B could deliberately set rank(MB) < n. This way PA will accept

A∩B �= ∅ since det(
(

MB

MA

)

) = 0. The only way for letting rank(MB) < n is to set h

be a zero polynomial in our setting. But this will be challenged by our verification test,
which PA only accepts h when

(−1)m+n ·
m+n∑

i=0

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

∏

0≤j≤m+n

j �=i

zj

zi − zj

⎞

⎟
⎟
⎠
· det(zi · Im+n −

(
MB

M ′
A

)

)

⎞

⎟
⎟
⎠

= 1.

The malicious Bob P∗
B can find the shares [h]A, [h′]B, [h]B for the polynomial h,

such that h can be reconstructed through the shares [h]A and [h]B , but the combination
of [h]A and [h′]B corresponds to a zero polynomial. P∗

B can then use [h]B for the ver-
ification test and [h′]B for disjointness test if he can guess which one of (eiπ(1) , eiπ(2))
corresponds to [g′]iA . But the chance P∗

B guesses correctly in each pair is 1
2 . Thus, the

chance P∗
B can guess correctly for all m + n pairs is 1

2m+n . If m and n are reasonable
sizes, P∗

B will be caught with an overwhelming probability.

5.3 Computation and Communication Complexity

Two protocols proposed in this paper are very simple and require only O(1) rounds of
communication. The communication cost is in terms of number of �log2 q	 bits that
are transmitted. The computation cost is measured in number of field operations. In
our calculation, the complexity of matrix multiplication is O((m + n)2.375) [21]; the
complexity of determinant computation is O((m + n)2.697) [22].

The communication complexity of the Protocol Π1 is O((m + n)2). The protocol
requires 2(m + n) matrix multiplication, and m + n determinant computations. The
overall computation complexity is O((m + n)3.697) field operations.

There is slightly more commnication cost for Protocol Π2, but complexity is still
O((m + n)2). The computation cost is only double the cost of the Protocol Π1.

6 Conclusion

We proposed protocols for private disjointness tests that are based on the polynomial
representation of datasets and Sylvester matrix construction. We first introduced the
structure of Sylvester matrices and the intuition of our protocols that applies Sylvester
matrices. To avoid revealing the intersection cardinality by directly applying Sylvester
matrices, we provided a protocol to test the set disjointness without revealing any ad-
ditional information in the honest-but-curious case. Finally, we described a protocol to
against malicious adversaries by applying a verification test.

The protocols constructed in this paper are more efficient than previous protocols
with respect to communication and computation complexity. They are all O(1) rounds,
and do not require the parties to compute exponentiations or any other kind of public

168 Q. Ye et al.

key operations. Our protocols also provide information theoretic security, and do not
rely on any computational assumption.

Acknowledgment

The authors are grateful to the anonymous reviewers for their comments to improve the
quality of this paper. We also like to thank C. Pandu Rangan for some helpful discus-
sions. This work was supported by the Australian Research Council under ARC Dis-
covery Projects DP0558773, DP0665035 and DP0663452. Qingsong Ye’s work was
funded by an iMURS scholarship provided by Macquarie University. The research of
Huaxiong Wang is partially supported by the Ministry of Education of Singapore under
grant T206B2204.

References

[1] Kiayias, A., Mitrofanova, A.: Testing disjointness and private datasets. In: S. Patrick, A.,
Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 109–124. Springer, Heidelberg (2005)

[2] Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–9.
Springer, Heidelberg (2004)

[3] Hohenberger, S., Weis, S.A.: Honest-verifier private disjointness testing without random or-
acles. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 277–294. Springer,
Heidelberg (2006)

[4] Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: 31st annual ACM
Symposium on Theory of Computing (STOC 1999), Atlanta, Georgia, May 1999, pp. 245–
254 (1999)

[5] Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg
(1999)

[6] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidel-
berg (1992)

[7] Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp.
103–118. Springer, Heidelberg (1997)

[8] Kissner, L., Song, D.: Privacy-preserving set operaitons. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

[9] Laur, S., Lipmaa, H., Mielikainen, T.: Private itemset support counting. In: Qing, S., Mao,
W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 97–111. Springer, Hei-
delberg (2005)

[10] Kiayias, A., Mitrofanova, A.: Syntax-driven private evaluation of quantified membership
queries. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 470–485.
Springer, Heidelberg (2006)

[11] Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Communica-
tions of the ACM 39(5), 77–85 (1996)

[12] Lipmaa, H.: Verifiable homomorphic oblivious transfer and private equality test. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 416–433. Springer, Heidelberg (2003)

Efficient Disjointness Tests for Private Datasets 169

[13] Ye, Q., Wang, H., Tartary, C.: Privacy-preserving distributed set intersection. In: The 2nd
Workshop on Advances in Information Security (conjuncted with ARES 2008), Barcelona,
Spain, March 2008, pp. 1332–1339. IEEE Computer Society Press, Los Alamitos (2008)

[14] Ye, Q., Wang, H., Pieprzyk, J.: Distributed private matching and set operations. In: ISPEC
2008, April 2008. LNCS, vol. 4991, pp. 347–360. Springer, Heidelberg (2008)

[15] Cramer, R., Damgard, I.: Secure distributed linear algebra in a constant number of rounds.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119–136. Springer, Heidelberg
(2001)

[16] Mohassel, P., Franklin, M.: Efficient polynomial operations in the shared-coefficients set-
ting. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 44–57. Springer, Heidelberg (2006)

[17] von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press,
Cambridge (2003)

[18] Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in a constant number
of rounds of interaction. In: 8th ACM Annual Symposium on Principles of Distributed
Computing (PODC 1989), pp. 201–209. ACM Press, New York (1989)

[19] Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of registers.
In: 20th annual ACM Symposium on Theory of Computing (STOC 1988), pp. 254–257.
ACM Press, New York (1988)

[20] Goldreich, O.: The Foundations of Cryptography, vol. 2. Cambridge University Press, Cam-
bridge (2004)

[21] Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal
of Symbolic Computing 9, 251–280 (1990)

[22] Kaltofen, E., Villard, G.: On the complexity of computing determinants. Computational
Complexity 13(3-4), 91–130 (2005)

Efficient Perfectly Reliable and Secure Message

Transmission Tolerating Mobile Adversary

Arpita Patra, Ashish Choudhary�, Madhu Vaidyanathan,
and C. Pandu Rangan��

Dept of Computer Science and Engineering
IIT Madras, Chennai India 600036

arpita@cse.iitm.ernet.in, ashishc@cse.iitm.ernet.in,
madhu@cse.iitm.ernet.in, rangan@iitm.ernet.in

Abstract. In this paper, we study the problem of Perfectly Reliable
Message Transmission (PRMT) and Perfectly Secure Message Transmis-
sion (PSMT) between two nodes S and R in an undirected synchronous
network, a part of which is under the influence of an all powerful mo-
bile Byzantine adversary. We design a three phase bit optimal PSMT
protocol tolerating mobile adversary, whose communication complexity
matches the existing lower bound on the communication complexity of
any multi phase PSMT protocol, tolerating mobile adversary. This sig-
nificantly reduces the phase complexity of the existing O(t) phase bit
optimal PSMT protocol tolerating mobile adversary, where t denotes
the number of nodes corrupted by the mobile adversary. Furthermore,
we design a three phase bit optimal PRMT protocol which achieves reli-
ability with constant factor overhead against a mobile adversary. These
are the first ever constant phase bit optimal PRMT and PSMT protocols
against mobile Byzantine adversary. We also characterize PSMT proto-
cols in directed networks tolerating mobile adversary. Finally, we derive
tight bound on the number of rounds required to achieve reliable com-
munication from S to R tolerating a mobile adversary with arbitrary
roaming speed1. Finally, we show how our constant phase PRMT and
PSMT protocols can be adapted to design round optimal and bit optimal
PRMT and PSMT protocols, provided the network is given as collection
of vertex disjoint paths.

Keywords: Information Theoretic Security, Mobile Adversary.

� Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Se-
cure Communication and Computation Sponsored by Department of Information
Technology, Government of India.

�� Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Se-
cure Communication and Computation Sponsored by Department of Information
Technology, Government of India.

1 By roaming speed we mean the speed with which the adversary changes the set of
corrupted node.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 170–186, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Perfectly Reliable and Secure Message 171

1 Introduction

Consider the following problem: a sender S and a receiver R, who want to “talk” to
each other via an underlying communication network that they do not trust. Note
that if S and R are connected directly via a private and authenticated link (like
in the generic solutions for secure multiparty computation [3, 7, 15, 19]), secure
communication is trivially guaranteed. However, in reality, it is not economical
to directly connect every two players in the network. The sender’s distrust in the
underlying communication network is modeled by a virtual entity called the ad-
versary that has unbounded computing power and can corrupt some of the players
(nodes) in the network. In spite of the presence of such an adversary in the net-
work, S wishes to send a message m chosen from a finite field F, reliably to R, in a
guaranteed manner. This problem is called perfectly reliable message transmission
(PRMT). The problem of perfectly secure message transmission (PSMT) has an
additional constraint that the adversary should get no information about m. Se-
curity against such an adversary with unbounded computational power is called
information theoretic or perfect security.

The problem of PRMT and PSMT was introduced and studied by Dolev et.al
[5], who assumed that the adversary can corrupt any t nodes in the network and
that the adversary is static Byzantine, i.e., a player once corrupted remains so
subsequently. More recent efforts using the same (static) adversarial model for
the problem of PSMT include [4, 10, 14, 16, 17]. However, as first noticed in
[12], the static model implicitly assumes that the number of dishonest players
in the network is independent of the protocol’s execution time. This is usually
not true in practice. Furthermore, since a corrupted player could be corrected
given sufficient time, [12] proposed the mobile adversary model wherein the ad-
versary could move around the network whilst still corrupting up to t players at
any given instant. Subsequently, extensive research efforts on tolerating mobile
adversaries have resulted in what is well-known as proactive security [2, 6, 8, 9].

Existing Results: It is known that for the existence of any r-phase 2 (r ≥ 2)
PRMT/PSMT protocol, n ≥ 2t + 1 vertex disjoint paths (also called as wires)
between S and R is necessary and sufficient to tolerate a t-active static adversary
[5]. Also, as reported in [17], any r phase (r ≥ 2) PSMT protocol has a commu-
nication complexity of Ω

(
n�

n−2t

)

field elements, to securely send � field elements
against a t-active static adversary. While for PSMT we have a proven lower
bound for communication complexity, for PRMT it can be as small as Ω(l) for
communicating message of � field elements. The authors of [14] have designed a
three phase PRMT protocol which satisfies the above defined bound and sends a
message containing � field elements by communicating O(�) field elements. Such
a protocol is called bit-optimal PRMT protocol. In addition, the authors [14]
also reported a three phase PSMT protocol, whose communication complexity
is O

(
n�

n−2t

)

(asymptotically touching the lower bound specified for multiphase

2 A phase is a send from S to R or vice-versa.

172 A. Patra et al.

PSMT) and hence it is bit optimal against a static adversary. Designing a two
phase PSMT protocol against a t-active static adversary, whose communication
complexity is O

(
n�

n−2t

)

has been an outstanding open problem [1] and recently
it is solved by Kurosawa et.al in [11].

Unlike static adversary, a t-active mobile adversary can corrupt different set
of t wires during different phases of the protocol. Thus, a wire once corrupted,
may not remain corrupted in subsequent phases. Intuitively, it is more difficult
to tolerate a t-active mobile adversary in comparison to a t-active static adver-
sary. However, in [18], it is shown that n ≥ 2t + 1 wires between S and R is
necessary and sufficient for the possibility of any r-phase (r ≥ 2) PRMT/PSMT
protocol against a t-active mobile adversary. Thus mobility of adversary does
not affects its tolerability. In [17], the communication complexity of any r-phase
(r ≥ 2) PSMT protocol is stated to be Ω

(
n�

n−2t

)

, where � is the message to be
sent securely against a t-active mobile adversary. The authors of the same paper
has also designed a O(t) phase PSMT protocol satisfying the bound.

Our Contribution, Its Motivation and Significance: The following are
the main contribution of this paper: (a) A bit-optimal three phase PRMT pro-
tocol, which sends a message of � field elements by communicating O(�) field ele-
ments and thus achieves reliability with constant factor overhead in three phases
even in the presence of mobile adversary. (b) A bit-optimal three phase PSMT
protocol satisfying the bound for communication complexity proved in [17]. Both
these protocols uses a novel technique, very different from the techniques adapted
in the three phase bit-optimal PRMT and PSMT protocol proposed in [14] tol-
erating a static adversary. We also give the first ever characterization of PSMT
protocols in directed networks tolerating mobile adversary.

All existing PRMT and PSMT protocols abstract the underlying network as
vertex disjoint paths, called wires, between S and R, thus neglecting the interme-
diate nodes in these paths. However, we show that such an abstraction gives an
incorrect estimation on the communication complexity and round complexity of
PRMT and PSMT protocols, in many practical scenarios. Hence, it is essential
to consider all the intermediate nodes in each wire for the design and analysis of
PRMT and PSMT protocols. Also, considering the intermediate nodes/details of
each wire motivates to use more finer notion of round 3 in comparison to phase.
Accordingly, the behavior of mobile adversary is re-defined to allow the adversary
to corrupt any set of t nodes after every ρ ≥ 1 rounds, where ρ is called the roam-
ing speed of the adversary. In this work, our contribution also encompasses: (c)
Computation of a tight bound on the minimum number of rounds rmin, required
for the existence of any PRMT protocol tolerating mobile adversary, with roam-
ing speed of ρ = 1. (d) The same for an adversary with arbitrary roaming speed
ρ ≥ 2. (e) Finally, adaptation of our constant phase PRMT and PSMT protocols
into round optimal and communication optimal PRMT and PSMT protocols in a
given network, provided the network is given as a collection of disjoint paths.

3 A round is a send from one node to its neighbor.

Efficient Perfectly Reliable and Secure Message 173

As mentioned earlier, abstraction of network as wires leads to incorrect esti-
mation on communication and round complexity of protocols. But still wired ab-
straction eases deriving lower bounds on communication complexity and finding
out the connectivity requirement for PRMT/PSMT problem and also simplifies
the analysis of protocols. That is why we have designed phase-based protocols
for PRMT and PSMT and later adapted them to work in terms of rounds.

2 Proactive PRMT and PSMT in Terms of Phases

Network Settings and Computational Model: Recall that a phase is a
send from S to R or vice-versa. While designing protocols in terms of phases,
following the approach of [5], we abstract the network as a collection of vertex
disjoint paths called wires between S and R, neglecting the intermediate nodes
in these paths. A t-active mobile adversary can corrupt different set of t wires
during different phases of the protocol. Hence a wire w, which is corrupted in
some phase, may not remain corrupted during subsequent phases and can be-
have honestly. Also by corrupting a wire w during a particular phase, adversary
does not get any information which was transmitted over w in earlier phase(s)
(unless w was corrupted in earlier phase(s) also). We assume that S and R are
connected by n ≥ 2t+1 bi-directional wires w1, w2, . . . wn, which is necessary and
sufficient for PRMT/PSMT protocols against a t-active mobile adversary [17].
In our protocols, all computation are done from a finite field F of prime order,
with |F| > n. Any information which is sent over all the n wires is said to be
“broadcast”. If x ∈ F is “broadcast” over n > 2t wires, then it will be always
recovered correctly at the receiving end by taking the majority.

Extracting Randomness [17]: Let S and R agree on an n-tuple x =
[x1, x2, . . . xn] ∈ F

n, such that the adversary knows n−f components of x, but has
no information about other f components of x. However, S and R do not know
which values are known to the adversary. But they want to agree on a sequence
of f elements y1, y2, . . . yf ∈ F such that y1, y2, . . . yf is information theoretically
secure. This is achieved by algorithm EXTRANDn,f (x) proposed in [17].

Algorithm EXTRANDn,f (x). Let V be a n × f Vandermonde matrix with elements
from F and is known publicly. S and R locally compute [y1 y2 . . . yf] = [x1 x2 . . . xn]V .

Communicating Conflict Graph: Consider the following scenario: S and R
are connected by n = 2t + 1 wires. S selects at random n polynomials pi(x),
1 ≤ i ≤ n over F, each of degree t. Next through wire wi, 1 ≤ i ≤ n, S sends to
R the polynomial pi(x) and for each j, 1 ≤ j ≤ n, the value of pj(αi) denoted
by rji, where αi’s are arbitrary distinct publicly specified members of F.

Let R receives polynomial p′i(x) and the values r′ji along wi. R tries to find as
many faults as he can find that occurred in the previous phase and communicates
his findings reliably to S. Towards this, R constructs a directed graph called
conflict graph H = (W , E), whereW = {w1, w2, . . . , wn} and arc (wi, wj) ∈ E if

174 A. Patra et al.

r′ij �= p′i(αj). There can be Θ(n2) arcs in the conflict graph. For each (wi, wj) ∈
E, R adds a four tuple {wi, wj , p

′
i(αj), r′ij} to a list X . R then broadcasts X to

S. S reliably receives X . For each {wi, wj , p
′
i(αj), r′ij} ∈ X , S verifies r′ij

?= rij

and p′i(αj) ?= pi(αj). Depending upon the outcome of the test, S concludes that
either R has received incorrect r′ij over wire wj or incorrect p′i(x) over wire wi (or
both) and accordingly adds wi or wj (or both) to a list Lfault. S then broadcasts
Lfault to R. Now we can say the following:

Theorem 1. If wi delivers p′i(x) �= pi(x) to R, then S will know this from X.
Moreover, S will be able to reliably send this information to R.

Proof: As p′i(x) and pi(x) are of degree t, they can intersect at most at t points. So
there exist at least one honest wire, say wj , such that rij = r′ij and p′i(αj) �= r′ij .
So wj will contradict wi and the arc (wi, wj) will be present in the conflict graph
and hence the four tuple {αi, αj , p

′
i(αj), r′ij} will be present in the list X . Since

X is broadcast over 2t+1 wires, S will correctly receive X and eventually knows
that wi has delivered incorrect polynomial, adds wi to Lfault and then reliably
sends Lfault to R by broadcasting. �

Theorem 2. The communication complexity of broadcasting the list X is O(n3).

Remark 1. An efficient way of sending the conflict graph (which contains O(n2)
edges) by communicating O(n2) field elements, against static adversary was
introduced in [17] and subsequently used in [14]. The method deals with finding
maximum matching of conflict graph and a few notions from coding theory.
However, the same technique will not work against mobile adversary, as it can
choose to corrupt different set of t wires in different phases. So only way of
reliably sending the conflict graph against mobile adversary is by broadcasting.

2.1 Proactive PRMT with Constant Factor Overhead

We propose a three phase PRMT protocol PRMT Optimal which sends a
message containing n(t + 1)2 = Ω(n3) field elements by communicating O(n3)
field elements against a t-active mobile Byzantine adversary, where S and R
are connected by n = 2t + 1 wires. Thus, PRMT Optimal achieves reliability
with constant factor overhead in constant phases and thus is bit-optimal. In [14],
a three phase bit-optimal PRMT protocol had been presented against a static
adversary which sends Ω(n2) field elements by communicating O(n2). Thus, ex-
tra adversarial power of mobility does not hinder achieving bit-optimality in the
same number of phases (three) except that the optimality is achieved for larger
message size!! Before describing the protocol, we describe a technique used in
our protocol which we call as Union Technique.

Union Technique: Recall the same scenario described in previous section. Dur-
ing first phase R receives n polynomials p′i(x), 1 ≤ i ≤ n, each of degree t and
n values corresponding to each polynomial denoted by r′ij . Let B denote the set
of n polynomials and their n values as received by R. Using B, R can construct
a conflict graph. In our protocol PRMT Optimal, instead of a single set B, R

Efficient Perfectly Reliable and Secure Message 175

Table 1. Data Flow over n wires in Phase I of PRMT Optimal

Wire B1 . . . Bk . . . Bn

w1 P11(x) r11,1, r12,1, . . . r1n,1 . . . Pk1(x) rk1,1, rk2,1, . . . rkn,1 . . . Pn1(x) rn1,1, rn2,1, . . . rnn,1
w2 P12(x) r11,2, r12,2, . . . r1n,2 . . . Pk2(x) rk1,2, rk2,2, . . . rkn,2 . . . Pn2(x) rn1,2, rn2,2, . . . rnn,2
.
wi P1i(x) r11,i, r12,i, . . . r1n,i . . . Pki(x) rk1,i, rk2,i, . . . rkn,i . . . Pni(x) rn1,i, rn2,i, . . . rnn,i

.
wn P1n(x) r11,n, r12,n, . . . r1n,n . . . Pkn(x) rk1,n, rk2,n, . . . rkn,n . . . Pnn(x) rn1,n, rn2,n, . . . rnn,n

receives n such sets denoted as Bk, 1 ≤ k ≤ n, where Bk contains n polynomials
p′ki(x), 1 ≤ i ≤ n and n values for each p′ki(x) denoted by r′ki,j , 1 ≤ j ≤ n. The
flow of information over n wires during Phase I is given in Table 1.

R then constructs conflict graph Hk using the set Bk. For each Hk, we can
say the following from Theorem 1: if during Phase I, R receives a corrupted
polynomial p′ki(x) �= pki(x) over wi, then there exist at least one directed arc
(wi, wj) in Hk, where wj is an honest wire. If R broadcasts all conflict graphs,
then from Theorem 1, both S and R would come to know the identity of all
faulty wires wi over which R has received at least one faulty p′ki(x), 1 ≤ k ≤ n
during Phase I. However, from Theorem 2, broadcasting all of them requires
communicating O(n4) field elements. So we now introduce a method of combining
n conflict graphs into a single directed conflict graph H . By broadcasting H
to S, R can ensure that S will be able to identify all wi’s over which R has
received at least one faulty polynomial p′ki(x). The combined directed conflict
graph H = (V, E) will have vertices and edges as follows: V = {w1, w2, . . . , wn}
and E = {(wi, wj)} where arc (wi, wj) ∈ E if (wi, wj) occurs in at least one
Hk, 1 ≤ k ≤ n. Since an arc (wi, wj) can occur in multiple Hk’s, R considers
(wi, wj) from the minimum indexed Hγ among all such Hk’s, keeping a note
that (wi, wj) is added from Hγ . For each (wi, wj) ∈ E, R adds a five tuple
{wi, wj , γ, p′γi(αj), r′γi,j} to a list X , provided (wi, wj) is taken from Hγ . It is
easy to see that there can be Θ(n2) edges in H and hence Θ(n2) tuples in X .
In the next theorem, we prove that S can identify all faulty wires over which R
received at least one faulty polynomial after receiving X .

Theorem 3. In Union Technique, if R broadcasts X to S, then S identifies
all faulty wires wi over which R has received at least one p′ki(x) �= pki(x).

Proof: Similar to the proof of Theorem 1 and hence is omitted due to space
constraint. For complete proof, see [13]. �

Now we are well-equipped to understand Protocol PRMT Optimal, given in
Table 2. Intuitively, the protocols works as follows: S selects n bivariate poly-
nomials whose coefficients are the message to be sent. S then generates n sets
Bk, 1 ≤ k ≤ n from n bivariate polynomials and communicates them to R in
Phase I. On receiving n Bk’s, R first constructs n conflict graphs Hk’s and then
combine all of them to a single graph H and broadcast H to S in Phase II. In
Phase III, S identifies all faulty wires (which delivered incorrect polynomials
during Phase I) from the knowledge of H and sends their identity to R. Finally,

176 A. Patra et al.

Table 2. PRMT Optimal: A three phase proactive bit optimal PRMT protocol

Let the sequence of n(t+1)2 field elements that S wishes to transmit be denoted by mk,ij ,
0 ≤ i, j ≤ t and 1 ≤ k ≤ n.

Phase I: (S to R)

• S defines n bivariate polynomials qk(x, y), 1 ≤ k ≤ n over F, where qk(x, y) =
∑

i=t
j=t

i=0,j=0 mk,ijx
iyj . S evaluates qk(x, y) at n publicly known distinct values α1, α2, . . . , αn

to get polynomials pki(x), 1 ≤ k ≤ n, 1 ≤ i ≤ n, each of degree t, where pki(x) = qk(x,αi).
S then sends values to R over wire wi, 1 ≤ i ≤ n as shown in Table 1.

Phase II (R to S)

• Let R receives over wire wi, 1 ≤ i ≤ n the polynomials p′
ki(x) and the values

r′kj,i, 1 ≤ k, j ≤ n. For 1 ≤ k ≤ n, R considers the polynomials p′
k1(x), p′

k2(x), . . . , p′
kn(x)

and the values r′kj,i, 1 ≤ j, i ≤ n and constructs the conflict graph Hk, where (wi, wj) ∈ Hk

if p′
ki(αj) �= r′ki,j . R combines Hk, 1 ≤ k ≤ n into a single conflict graph H using Union

Technique and forms the corresponding list of five tuples X and broadcasts X to S.

Phase III (S to R)

• S reliably receives the list X. S then creates a list Lfault which is initialized to ∅. For each

tuple {wi, wj , k, p′
ki(αj), r

′
ki,j} ∈ X, S locally verifies r′ki,j

?
= rki,j and p′

ki(αj)
?
= pki(αj).

Depending upon the output of the verification, S concludes that wi or wj or both are
faulty and adds to Lfault. S finally broadcasts the list Lfault to R and terminates the
protocol.

Message Recovery by R.

• R reliably receives Lfault and identifies all wi over which it had received at least one
faulty polynomial during Phase I (see Theorem 4). R neglects all the polynomials re-
ceived over wi ∈ Lfault,. Using the remaining (at least) t + 1 p′

ki’s, 1 ≤ k ≤ n, R correctly
recovers the polynomials qk(x, y)’s, 1 ≤ k ≤ n and hence the message.

R recovers the message by reconstructing all the n bivariate polynomials using
the identity of the faulty wires communicated by S.

Theorem 4. PRMT Optimal correctly delivers the message to R.

Proof: In PRMT Optimal, to recover m, R should be able to interpolate each
bivariate polynomial qk(x, y), 1 ≤ k ≤ n. Since each qk(x, y) is of degree t in both
x and y, R requires t + 1 correct qk(x, αi) = pki(x)’s to recover qk(x, y). Since
among n wires at most t can be corrupted, R will receive at least t + 1 correct
pki(x)’s. Now R wants to know the identity of t + 1 correct pki(x)’s. During
Phase II, R constructs n conflict graph Hk, 1 ≤ k ≤ n and combine them into
a single conflict graph H using Union Technique, forms X and broadcasts it
to S. Now from the working of the protocol and Theorem 3, from list Lfault, R
identifies all faulty wires over which it has received at least one faulty polynomial
during Phase I and neglects such wires. R will now have at least t + 1 correct
pki(x) for each 1 ≤ k ≤ n, using which R recovers each qk(x, y) and hence m. �

Efficient Perfectly Reliable and Secure Message 177

Theorem 5. The communication complexity of PRMT Optimal is O(n3).

Proof: Follows from the protocol and hence is omitted due to space constraint.
For complete proof, see [13]. �

2.2 Constant Phase Bit Optimal Proactive PSMT Protocol

We now present a three phase proactive PSMT protocol PSMT Optimal, given
in Table 3. The protocol securely sends n(t + 1) = Ω(n2) field elements by com-
municating O(n3) field elements, where n = 2t + 1. This matches the existing
lower bound on the communication complexity of multi phase proactive PSMT
protocol, as proved in [17]. It also significantly reduces the O(t) phase commu-
nication optimal proactive PSMT protocol given in [17].

Theorem 6. PSMT Optimal correctly delivers the message to R by commu-
nicating O(n3) field elements..

Proof: For complete proof, see [13]. �

Theorem 7. In PSMT Optimal, any mobile adversary A, controlling at most
t wires will get no information about the message m.

Proof: Without loss of generality, assume during Phase I, A controls w1, w2, . . . ,
wt. Thus A knows the constant terms of the polynomials pki(x), 1 ≤ k ≤ n, 1 ≤
i ≤ t and t points on remaining polynomials pkj , t + 1 ≤ j ≤ n. Since the degree
of each pkj , t + 1 ≤ j ≤ n is t, A lacks one point for each of these polynomials
implying information theoretic security for the constant terms of these polynomi-
als. From Theorem 6, during Phase III, S will be able to identify all the faulty
wires over which R had received at least one faulty polynomial during Phase I.
S adds all such wires to Lfault and neglects them. S is left with n−|Lfault| wires,
out of which at most t − |Lfault| wires were passively listened by the adversary.
So S forms the vector x which is the list of constant terms of all the polynomials
which were delivered correctly to R during Phase I. Since, there are t + 1 honest
(not controlled by adversary) wires, S generates a one time pad of length n(t + 1)
from x by executing EXTRAND. The proof now follows from the correctness of
the EXTRAND algorithm. Note that during Phase II, the list X broadcast by
R, reveals no new information toA. Suppose {wi, wj , k, p′ki(αj), r′ki,j} ∈ X . Then
either wi or wj or both had been corrupted by A during Phase I. So A already
knows rki,j = pki(αj). Thus X reveals no new information to A. �

Optimality of PSMT Optimal: In [17], it is shown that any three phase
proactive PSMT protocol which securely sends n(t + 1) = Ω(n2) field elements,
need to communicate Ω(n3) field elements. Since, the communication complexity
of PSMT Optimal is O(n3), it is asymptotically optimal.

2.3 Proactive PSMT in Directed Networks
In [4], the authors have studied PSMT in directed networks in the presence of a
static adversary, where the network is abstracted in the form of directed wires,

178 A. Patra et al.

Table 3. PSMT Optimal: A Three Phase Optimal Proactive PSMT Protocol

Let the sequence of n(t + 1) field elements that S wishes to transmit securely be denoted
by mi, 1 ≤ i ≤ n(t + 1).

Phase I: S to R
• S selects n2 random polynomials pki(x), 1 ≤ k, i ≤ n over F each of degree t. Over
wi, 1 ≤ i ≤ n, S sends the values to R, as shown in Table 1.

Phase II (R to S)

• Let R receives over wi, 1 ≤ i ≤ n the polynomials p′
ki(x) and the values r′kj,i, 1 ≤

k, j ≤ n. Then similar to PRMT Optimal protocol, R constructs the conflict graphs
H1, H2, . . . , Hn and combine them to a single conflict graph H using Union Technique
, forms the list of five tuples X and broadcasts X to S.

Phase III (S to R)
• Similar to the PRMT Optimal protocol, S correctly receives X and identifies all faulty
wires wi over which R must have received at least one faulty polynomial during Phase I.
S adds all such wires Lfault. S neglects all wi ∈ Lfault.

• S is left with (n − |Lfault|) wires after neglecting all the faulty wires in the previous
step. S then forms a vector x of length (n− |Lfault|) ∗n which is the concatenation of the
constant terms of all the polynomials pki(x), 1 ≤ k ≤ n such that wi �∈ Lfault.

• S computes a pad y of length n(t + 1) by executing EXTRANDn(n−|Lfault|),n(t+1)(x).
S computes c = y ⊕ m, broadcasts Lfault, c to R and terminates.

Message Recovery by R.
• R reliably receives the list Lfault and identifies all the wires wi over which it has received
at least one faulty polynomial during Phase I (see Theorem 6) and neglects such wi’s. R
then generates the pad y of length n(t+1) following the same procedure as done by S and
finally recovers the message m by computing m = c ⊕ y.

directed either from S to R or vice-versa. Modeling the underlying network
in the form of a directed graph is important in many practical scenarios. For
instance, a base-station may communicate to even a far-off hand-held device
but the other way round is not possible. Hence the digraph model is practically
well-motivated. We now characterize proactive PSMT in directed networks.

Theorem 8. Let G = (V, E) be a directed network, where S, R ∈ V . Then a
r-phase (r ≥ 2) proactive PSMT protocol between S and R against a t-active
adversary is possible iff G is (2t + 1)-(S, R) and (2t + 1)-(R, S) connected.

Proof: Sufficiency: Let G be (2t + 1)-(S, R) and (2t + 1)-(R, S) connected. So
there exists 2t + 1 directed wires from S to R and vice-versa. It is easy to see
that protocol PSMT Optimal can be correctly and securely executed over G.

Necessity: Since any proactive PSMT protocol should communicate the mes-
sage reliably, S and R should be 2t + 1 connected in forward direction which
is necessary for PRMT [5]. Similarly, we can show that 2t + 1 wires are neces-
sary from R to S. If not, then since the adversary is mobile and can corrupt

Efficient Perfectly Reliable and Secure Message 179

different set of t wires, it will fail any reliable communication from R to S, thus
making any communication from R to S is useless. This reduces any multiphase
protocol to a single phase protocol where S has to securely send a message over
(2t+1) wires tolerating a t-active Byzantine adversary, which is impossible from
the results of [5]. Hence the theorem holds. �

3 Proactive PRMT and PSMT in Terms of Rounds

Till previous section, we focussed on the design of bit-optimal phase-based PRMT
(PSMT) protocols on a network abstracted in terms of wires. The merits of
working in such a model are as follows: (i) It eases deriving the connectiv-
ity requirement for the possibility of PRMT/PSMT protocols and also deriv-
ing lower bounds for the communication complexity for protocols. (ii) It sim-
plifies the analysis of any protocol designed on such model. But this model
has its own demerits which are brought to the fore by the following example.

S R
A

B

C

D

E

P1

P2

P2t

P2t+1

Fig. 1. A (2t+2)-(S,R)-connected Net-
work

Consider the network on (2t + 8) vertices
given in Figure 1. Suppose the network in
Figure 1 is abstracted as a collection of
(2t + 2) wires, under the control of a t-
active mobile adversary. From [17], there
exist an optimal single phase PRMT pro-
tocol with communication complexity of
O(n�) to send � field elements, where n is
the number of wires from S to R (which
in this case is 2t + 2). Now suppose that
the protocol execution take place in a se-
quence of rounds, where at the beginning
of each round, each node send messages to
their neighbors. Thus, the messages sent
by a player in round k reaches its neigh-
bor at the beginning of round k + 1. Then the so called single phase “optimal”
protocol of [17] runs in six rounds (which is the length of the longest path), with
a communication complexity of O(n) times the message size. Now the question is
whether there exists a 6-round PRMT protocol in the network of Figure 1 with
a better communication complexity. The answer is yes! Consider the following
protocol: S and R run the 3-phase PRMT Optimal protocol using the wires
P1, P2, . . . , P2t+1, neglecting the path of length six (The longest path takes 6
rounds! While all other paths delivers message in two rounds). Thus while the
single phase protocol has a complexity of O(n�), the 3-phase protocol has a
communication complexity of O(�). Thus in Figure 1, an O(�) 6-round protocol
is possible. However, the information regarding the length of each of the paths
(wires) in the actual network is completely lost in the wired abstraction. Thus
wired abstraction causes an over estimation in the round complexity and com-
munication complexity of protocols in the original network. We thus redefine our
network model and adversary settings.

180 A. Patra et al.

Round Based Network and Adversary Settings: As shown in previous ex-
ample, it is necessary to use more fine-grained and stronger model, namely graph
based one (in comparison to collection of wires) for designing and analyzing op-
timal PRMT and PSMT protocols. So we consider a graph with internal details
in the following way. Let H be an undirected graph under the control of a t-
active mobile adversary. From [18], H should be (2t+1)-(S, R) connected which
is necessary and sufficient for PRMT and PSMT. Let G be the subgraph of H
induced by the 2t + 1 vertex disjoint paths. If there are more than 2t + 1 vertex
disjoint paths in H , then G will also contain these paths. In the following sec-
tions, we work on G to derive tight lower bound on round complexity for reliable
communication and design protocols on G.

The system is synchronous and the protocol is executed in a sequence of
rounds wherein in each round, a player can perform some local computation,
send new messages to his out-neighbors, receive the messages sent in previous
round by his in-neighbor, in that order. The distrust in the network is modeled
by a mobile Byzantine adversary. The behavior of mobile adversary is re-defined
to allow it to corrupt any set of t nodes after every ρ ≥ 1 rounds, where ρ is
called the roaming speed of the adversary. We first consider the worst case where
ρ = 1, and later on, we will consider any arbitrary value of ρ. More formally
before the beginning of round k, the adversary can corrupt any subset Pcorrupt

consisting of t players. Then the adversary has access to the messages sent to
the players in Pcorrupt in round k−1 and can alter the behavior of the players in
Pcorrupt arbitrarily in the round k. However by corrupting a player P in a round
k the adversary does not obtain information about the messages to and from the
node P in all the previous rounds, i.e., the protocol can choose to delete some
information from the (honest) node at the end of a round, to make sure that the
information is not available to the adversary even if he corrupts the node at a
later round. We now define transmission graph, which is used in our protocols.

Transmission Graph [18]: In the case of mobile adversary, where the adver-
sary can corrupt different set of nodes at different times, a graph representation
of the network is inadequate. However since the protocol itself discretizes time
in terms of rounds, it is sufficient to model the system at each round rather
than each time instant. Hence, in [18], the author have introduced the concept
of transmission graph Gd to study the execution of a protocol that has run d
rounds. In the transmission graph Gd, each node P is represented by a set of
nodes {P0, P1, P2 . . . Pd}. The node Pr corresponds to the node P at round r.
For any two neighboring nodes P and Q and any 1 ≤ r ≤ d, a message sent by
P to Q in round r − 1 is available to Q only at round r. Hence there is an edge
in Gd connecting the node Pr−1 to the node Qr for all 1 ≤ r ≤ d. Note that the
transmission graph is a directed graph, because of the directed nature of time.
So the edges between the nodes at consecutive time steps are always oriented
towards increasing time. We now give the formal definition.

Definition 1. Given a graph G = (V, E) and a positive integer d, the transmis-
sion Graph Gd is a directed graph defined as follows

Efficient Perfectly Reliable and Secure Message 181

– Nodes of Gd belong to V × {0 . . . d} where the node (P, r) ∈ V × {0 . . . d} is
denoted by Pr.

– The edge set of Gd is Ed = E1 ∪ E2 where, E1 = {(Par−1 , Pbr) |(Pa, Pb) ∈
E and 1 ≤ r ≤ d} and E2 = {(Par−1 , Par)|Pa ∈ V and 1 ≤ r ≤ d}.

Let Pr denote the set of nodes corresponding to nodes at round r, Pr =
{Par |Pa ∈ V }. Let ADVmobile be a threshold mobile adversary acting on a
network G that can corrupt any t nodes in a single round. Consider an ex-
ecution Γ of a d-round protocol on G. Suppose ADVmobile corrupts a set of
nodes Advr = {P1, P2, . . . Pt} in round r in G, then the same effect is obtained
by corrupting the nodes Advr = {P1r , P2r , . . . Ptr} in Gd. Hence the effect of
ADVmobile on execution Γ can be simulated by a static general adversary who

corrupts
d⋃

r=1
Advr on Gd. More formally, we have the following lemma:

Lemma 1. Mobile adversary ADVmobile acting on the original graph G for d
rounds can be simulated by a static adversary given by the adversary structure
ADVd

static = {Adv1 ∪Adv2 ∪Adv3 . . .∪Advd|Advr ∈ Πt(Pr), 1 ≤ r ≤ d} on Gd,
where Πt(Pr) denotes set of all subsets of cardinality t of the set Pr.

Example 1. Consider the network shown in Figure 2: The network is 3-(S,R)-
connected and hence at most one mobile adversary (t = 1) can be tolerated
by any PRMT (PSMT) protocol. Consider G4, where the adversary structure
ADV4

static = {Adv1∪Adv2∪Adv3∪Adv4}, where each Advr ∈ Π1(Pr), 1 ≤ r ≤ 4
and Π1(Pr) denotes the set of all subsets of cardinality 1 of the set Pr. For
example, {H1, E2, B3, A4} is an element of ADV4

static in G4, which denotes an
adversarial strategy where in the original network, the adversary corrupts the
nodes H, E, B and A during first, second, third and fourth round respectively.

A B

C D E F

G H I J
K

S R

Fig. 2. Graph G

In order to find the minimum number of rounds
for reliable communication, we slightly modify the
definition of transmission graph as follows:

Definition 2. Given a graph G and an integer d >
0 the modified Transmission Graph Gd is the graph
Gd along with two additional nodes S, R. S is con-
nected to all Sr,0 ≤ r ≤ d and each Rr, 0 ≤ r ≤ d
is connected to R. Further the edges between (Sr−1,Sr) and (Rr−1,Rr) for
1 ≤ r ≤ d are removed.

Definition 3. Two paths Γ1 and Γ2 between the nodes S and R in the modified
transmission graph Gd are said to be securely disjoint if the only common nodes
between the two paths are Sa and Rb for some value of a and b. That is, Γ1∩Γ2 ⊂
{S0,S1,S2 . . .Sd} ∪ {R0,R1,R2 . . .Rd}.

Definition 4. Given a path Γ = {S, P1, P2 . . . Pz,R} from S to R in the under-
lying graph G, the space-time path Γ i in graph Gd is defined as Γ i = {S,Si, P1i+1 ,
P2i+2 , . . . Pzi+z ,Ri+z+1,R}, 0 ≤ i ≤ d− z − 1.

182 A. Patra et al.

Example 2. Consider the path Γ = {S, A, B,R} in Figure 2. Now in G5, there
are three space time paths corresponding to the path Γ , namely Γ 0 = {S,S0, A1,
B2,R3,R}, Γ 1 = {S,S1, A2, B3,R4,R} and Γ 2 = {S,S2, A3, B4,R5,R}. The
space time path Γ 0 can be interpreted as S communicating to A in the 0th round,
A communicating to B in the first round, B communicating to R in the second
round which is received by R in the third round. Note that in G5, there are only
three space time paths corresponding to the path Γ in G. In general, let G be
a graph and Γ be a path between S and R containing z nodes (i.e., the path
length is z + 1). Then in the transmission graph Gd, d > z, there will be d − z
space time paths corresponding to the path Γ , namely Γ i, 0 ≤ i ≤ d− z − 1.

Lemma 2 ([18]). For any path Γ of length z from S to R in G, the paths
Γ i, 0 ≤ i ≤ d − z are pairwise securely disjoint. Further, for any two vertex
disjoint paths Γ1, Γ2 and for any i, j the paths Γ i

1 and Γ j
2 are securely disjoint.

3.1 Computing Minimum Number of Rounds for PRMT with ρ = 1

In [18], the authors have computed the minimum number of rounds d for reliable
communication from S to R which is d > (2t + 1)N (see Lemma 4.1 of [18]),
where S and R are connected by 2t + 1 paths and N is the total number of
nodes in the given network. However, we show that the bound in [18] is not
tight. So, we derive tight bound on the minimum number of rounds, denoted
by rmin required for reliable communication from S to R. Consider a graph G
where S and R are connected by 2t+1 vertex disjoint paths {Γ1, Γ2, . . . , Γ2t+1}.
Without loss of generality, assume that the paths are arranged in ascending order
of path length. Let Ni denotes the number of nodes in Γi, 1 ≤ i ≤ 2t + 1. Then
in Gd, there will be d−Ni space time paths corresponding to Γi, 1 ≤ i ≤ 2t + 1
in G, provided d−Ni > 0. If d−Ni ≤ 0 then there will be no space time path
corresponding to Γi in Gd. Assuming that each of the term d−Ni is positive, the
total number of the space time paths in Gd is

∑i=2t+1
i=1 (d−Ni). From Lemma 2,

all these paths are securely disjoint. Now if any reliable protocol is executed
on the original graph G for d rounds, then the adversary can make corruption
only up to (d − 1) rounds because in any reliable protocol, which is executed
for d rounds, R will receive information from its neighboring nodes in round d,
which they sent to R in round d − 1 and terminates the protocol. So even if
adversary corrupts some node in round d, it will not effect the protocol, because
the protocol will terminate in the dth round itself. Note that if at least one
node in a space time path in Gd is corrupted, it implies that the entire space
time path is corrupted because the corrupted data introduced by the corrupted
node will be forwarded by other nodes of the path in subsequent rounds. In
general, since the adversary can corrupt at most t nodes in each round of any
reliable protocol, it can corrupt at most t(d − 1) nodes in Gd which can be in
worst case distributed on t(d− 1) secure disjoint paths and hence each element
in ADVd

static is of maximum cardinality t(d − 1). We now state the following
theorem.

Efficient Perfectly Reliable and Secure Message 183

Theorem 9. Let G be an undirected network where S and R are connected by
2t + 1 vertex disjoint paths Γ1, Γ2, . . . , Γ2t+1 with Ni nodes in Γi, 1 ≤ i ≤ 2t + 1.
Let ADVmobile be a mobile adversary corrupting any set (probably different) of t
nodes in each round. Then the minimum number of rounds required for reliable
communication is rmin iff rmin ≥ N − 2t + 1 where N =

∑i=2t+1
i=1 Ni.

Proof: Necessity: Let rmin be the minimum number of rounds required for
reliable communication in G. Then as explained above, any mobile adversary
ADVmobile can be simulated by a static adversary structure ADVrmin

static where
each element of it is of cardinality t(rmin − 1). Also in Grmin , there will be
∑i=2t+1

i=1 (rmin−Ni) securely disjoint paths between S and R out of which at most
t(rmin−1) can be under the control of the adversary. Now it is known from [10],
that reliable communication between S and R in a network in the presence of a
static adversary given by an adversary structure is possible iff removal of of any
two adversarial sets from the adversary structure does not disconnect S and R.
It implies that reliable communication in G under the presence of ADVmobile is
possible in rmin rounds if

∑i=2t+1
i=1 (rmin −Ni) ≥ 2t(rmin − 1) + 1. Solving this

we get rmin ≥ N − 2t + 1 where N =
∑i=2t+1

i=1 Ni.

Sufficiency: Suppose rmin ≥ N−2t+1 where N =
∑i=2t+1

i=1 Ni. Then in Grmin

there are 2t(rmin − 1) + 1 securely disjoint paths from S to R, out of which at
most t(rmin − 1) can be under the control of the adversary ADVrmin

static. Let us
denote these paths by w1, w2, . . . , w2q+1, where q = t(rmin−1). We now describe
a reliable protocol REL on the graph Grmin and show how it can be executed
on the real network G to reliably send m.

Protocol REL: Round-Optimal Reliable Message transmission of message m.

– The sender S sends the message m along all the paths wi, 1 ≤ i ≤ 2q + 1.
– All nodes Pab along a path wi just forward the message to the next node along

wi.
– R on receiving the values along all the paths takes the majority as m.

REL can be emulated on G in the following way: if a node P1b
and P2b+1 are

consecutive nodes in Grmin along some path wi, where wi is the space time path
corresponding to some physical path Γj , 1 ≤ j ≤ 2t + 1, then P1 on receiving
m′ (possibly changed m) along the path Γj at the beginning of round b forward
it to the node P2 at the end of round b which is received by P2 in round b + 1.
The protocol has a communication complexity of O((2t(rmin − 1)|m|) and this
is polynomial in N . The correctness of the protocol is obvious. �

3.2 Proactive PRMT and PSMT Protocols in Terms of Rounds

From Theorem 9, in Grmin there will be 2t(rmin − 1) + 1 securely disjoint paths
out of which at most t(rmin − 1) can be corrupted. However each of these paths
are temporal and hence can be used at most once. We now present the modified
version of three phase protocol PRMT Optimal, called PRMT Round, as

184 A. Patra et al.

Table 4. PRMT Round: A 3rmin Round Proactive PRMT Protocol

Let the sequence of n(q + 1)2 field elements that S wishes to transmit be denoted by
mk,ij , 0 ≤ i, j ≤ q and 1 ≤ k ≤ n.

First rmin rounds: (S to R) executed over space time paths Γ
(1)
i , 1 ≤ i ≤ 2q + 1

• Using the mk,ij values, S defines n bivariate polynomials qk(x, y), 1 ≤ k ≤ n, where

qk(x, y) =
∑ i=q

j=q

i=0,j=0 mk,ijx
iyj . S evaluates each qk(x, y) at n publicly known distinct

values α1, α2, . . . , αn to obtain total n2 polynomials pki(x), 1 ≤ k ≤ n, 1 ≤ i ≤ n over F,

each of degree q where pki(x) = qk(x, αi). Over space time paths Γ
(1)
i , 1 ≤ i ≤ 2q + 1, S

sends pki(x), 1 ≤ k ≤ n and the values pkj(αi), denoted by rkj,i, for 1 ≤ k, j ≤ n.

Second rmin rounds: (R to S) executed over space time paths Γ
(2)
i , 1 ≤ i ≤2q +1

• Let R receives over space time path Γ
(1)
i , 1 ≤ i ≤ n the polynomials p′

ki(x) and the
values r′kj,i, 1 ≤ k, j ≤ n. R considers the polynomials p′

k1(x), p′
k2(x), . . . , p′

kn(x) and the
values r′kj,i, 1 ≤ j, i ≤ n and constructs the conflict graph Hk, 1 ≤ k ≤ n. R then combines
Hk, 1 ≤ k ≤ n into a single directed conflict graph H using Union Technique and
forms the corresponding list of five tuples X and reliably sends X to S by executing REL
protocol over the space time paths Γ

(2)
i , 1 ≤ i ≤ 2q + 1.

Last rmin rounds: S to R executed over space time paths Γ
(3)
i , 1 ≤ i ≤ 2q + 1

• S reliably receives the list X and identifies all faulty space time paths Γ
(1)
i over which

R has received at least one faulty polynomial p′
ki(x), 1 ≤ k ≤ n during first rmin rounds.

S adds all such paths to a list Lfault. Note that |Lfault| ≤ q. S then reliably sends Lfault

to R by executing REL protocol over the space time paths Γ
(3)
i , 1 ≤ i ≤ 2q + 1.

Message Recovery by R.

• R reliably receives Lfault and identifies all space time path Γ
(1)
i over which it has received

at least one faulty polynomial during first rmin rounds (proof is similar to Theorem 4) and
neglects those space time paths. Using the remaining (at least) q + 1 p′

ki’s, 1 ≤ k ≤ n, R
correctly recovers the bivariate polynomials qk(x, y)’s, 1 ≤ k ≤ n and hence the message.

shown in Table 4, tolerating a mobile adversary who can corrupt any t nodes in
every round. PRMT Round is executed for 3rmin rounds on G where G is the
original network consisting 2t + 1 vertex disjoint paths between S and R. The
first phase of PRMT Optimal is executed in the first rmin rounds from S to
R, the second phase of PRMT Optimal is executed in the next rmin rounds
from R to S and finally the third phase in the last rmin rounds from S to R.
This can be visualized as executing a 3rmin round protocol on G3rmin , where
first rmin rounds are executed from S to R, next rmin rounds from R to S and
finally last rmin rounds from S to R. Let q = t(rmin − 1) and n = 2q + 1. We
refer to the nodes corresponding to the first rmin rounds from S to R as the first
half denoted by Γ

(1)
i , 1 ≤ i ≤ 2q + 1 , the nodes in the next rmin rounds from

R to S as second half denoted by Γ
(2)
i , 1 ≤ i ≤ 2q + 1 and the nodes in the last

rmin rounds from S to R as third half denoted by Γ
(3)
i , 1 ≤ i ≤ 2q + 1. From

Theorem 9, rmin = N−2t+1. The protocol is same as PRMT Optimal except
that degree of each bi-variate polynomial is q. Moreover, Phase i, 1 ≤ i ≤ 3

Efficient Perfectly Reliable and Secure Message 185

is executed in rmin rounds on Γ
(i)
j , 1 ≤ j ≤ 2q + 1. PRMT Round can be

simulated on G following the explanation provided earlier for REL protocol.
Note that Theorem 4 and Theorem 5 will hold for PRMT Round with q in
the place of t. The protocol reliably sends n(q + 1)2 = Ω(n3) field elements by
communicating O(n3) field elements in 3rmin rounds.

Computing rmin for Arbitrary Roaming Speed: We now consider a mo-
bile adversary with roaming speed ρ > 1 and compute the minimum number of
rounds rρ

min, required for reliable communication from S to R, against a t-active
mobile adversary, corrupting t nodes after every ρ rounds. Note that a mobile
adversary with roaming speed one is the strongest adversary.

Theorem 10. Let G be a (2t + 1)-(S, R) connected undirected network un-
der the influence of a t-active mobile adversary with roaming speed of ρ > 1.
Then the minimum number of rounds rρ

min required for reliable communica-
tion is given by rρ

min = min {r, rρ−1
min} where r is the minimum value satisfying

∑i=2t+1
i=1 	 r−Ni

ρ
 ≥ 2	 r−1
ρ
 ∗ t + 1.

Proof: For complete proof see [13]. �

References

1. Agarwal, S., Cramer, R., Haan, R.d.: Asymptotically optimal two-round perfectly
secure message transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 394–408. Springer, Heidelberg (2006)

2. Backes, M., Cachin, C., Strobl, R.: Proactive secure message transmission in asyn-
chronous networks. In: Proc. of PODC 2003, pp. 223–232 (2003)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proc. of 20th ACM
STOC, pp. 1–10 (1988)

4. Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Hei-
delberg (2002)

5. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
JACM 40(1), 17–47 (1993)

6. Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Proactive RSA. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 440–452. Springer, Heidelberg
(1997)

7. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proc.
of 19th ACM STOC, pp. 218–229 (1987)

8. Herzberg, A., Jakobson, M., Jarecki, S., Krawczyk, H., Yung, M.: Proactive Public
Key and Signature Systems. In: Proceedings of 4th Conference on Computer and
Communications Security, pp. 100–110 (1997)

9. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive Secret Sharing, or:
How to Cope with Perpetual Leakage. In: Coppersmith, D. (ed.) CRYPTO 1995.
LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)

10. Kumar, M.V.N.A., Goundan, P.R., Srinathan, K., Rangan, C.P.: On perfectly se-
cure communication over arbitrary networks. In: Proc. of PODC 2002, pp. 193–202
(2002)

186 A. Patra et al.

11. Kurosawa, K., Suzuki, K.: Truly efficient 2-round perfectly secure message trans-
mission scheme. In: Proc. of EUROCRYPT, pp. 324–340 (2008)

12. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: Proc. of 10th
PODC, pp. 51–61. ACM Press, New York (1991)

13. Patra, A., Choudhary, A., Gayatri, M., Pandu Rangan, C.: Efficient perfectly re-
liable and secure communication tolerating mobile adversary. Cryptology ePrint
Archive, Report 2008/086 (2008)

14. Patra, A., Choudhary, A., Srinathan, K., Rangan, C.P.: Constant phase bit op-
timal protocols for perfectly reliable and secure message transmission. In: Barua,
R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 221–235. Springer,
Heidelberg (2006)

15. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: Proc. of 21st ACM STOC, pp. 73–85 (1989)

16. Sayeed, H., Abu-Amara, H.: Efficient perfectly secure message transmission in syn-
chronous networks. Information and Computation 126(1), 53–61 (1996)

17. Srinathan, K., Narayanan, A., Rangan, C.P.: Optimal perfectly secure message
transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561.
Springer, Heidelberg (2004)

18. Srinathan, K., Raghavendra, P., Rangan, C.P.: On proactive perfectly secure mes-
sage transmission. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007.
LNCS, vol. 4586, pp. 461–473. Springer, Heidelberg (2007)

19. Yao, A.C.: Protocols for secure computations. In: Proc. of 23rd IEEE FOCS, pp.
160–164 (1982)

Methods for Linear and Differential Cryptanalysis of
Elastic Block Ciphers

Debra L. Cook1, Moti Yung2, and Angelos D. Keromytis3

1 Bell Labs, New Providence, NJ, USA
dcook@cs.columbia.edu�

2 Google, Inc. and Department of Computer Science, Columbia University, New York, NY, USA
moti@cs.columbia.edu

3 Department of Computer Science, Columbia University, New York, NY, USA
angelos@cs.columbia.edu

Abstract. The elastic block cipher design employs the round function of a given,
b-bit block cipher in a black box fashion, embedding it in a network structure to
construct a family of ciphers in a uniform manner. The family is parameterized
by block size, for any size between b and 2b. The design assures that the overall
workload for encryption is proportional to the block size. When considering the
approach taken in elastic block ciphers, the question arises as to whether crypt-
analysis results, including methods of analysis and bounds on security, for the
original fixed-sized cipher are lost or, since original components of the cipher are
used, whether previous analysis can be applied or reused in some manner.

With this question in mind, we analyze elastic block ciphers and consider the
security against two basic types of attacks, linear and differential cryptanalysis.
We show how they can be related to the corresponding security of the fixed-length
version of the cipher. Concretely, we develop techniques that take advantage of
relationships between the structure of the elastic network and the original version
of the cipher, independently of the cipher.

This approach demonstrates how one can build upon existing components to
allow cryptanalysis within an extended structure (a topic which may be of general
interest outside of elastic block ciphers). We show that any linear attack on an elas-
tic block cipher can be converted efficiently into a linear attack on the fixed-length
version of the cipher by converting the equations used to attack the elastic version
to equations for the fixed-length version. We extend the result to any algebraic at-
tack. We then define a general method for deriving the differential characteristic
bound of an elastic block cipher using the differential bound on a single round of
the fixed-length version of the cipher. The structure of elastic block ciphers allows
us to use a state transition method to compute differentials for the elastic version
from differentials of the round function of the original cipher.

Keywords: security analysis, linear cryptanalysis, differential cryptanalysis.

1 Introduction

Elastic block ciphers were designed to convert existing fixed-length block ciphers into
variable-length block ciphers in an efficient manner. Furthermore, the design allows
� This work was performed primarily while the author was at Columbia University.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 187–202, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

188 D.L. Cook, M. Yung, and A.D. Keromytis

certain properties of the fixed-length cipher to remain intact in the elastic version, cre-
ating a well-defined relationship between the security of the elastic and fixed-length
versions [3,4]. Exploiting existing ciphers’ components in the design of new ciphers is
not uncommon. In the elastic block cipher case, since the cipher attempts to cover a
large range of block sizes, a specific design for each size was traded against a general
design methodology. Naturally, in a general design, as opposed to an optimized design
for a specific block size, one may lose the ability to provide tight security bounds, but
security analysis is required nevertheless. A natural approach when building upon ex-
isting components is to reuse the security properties of the building blocks. Thus, our
work is concerned with how the security of an elastic block cipher relates to the security
of the fixed-length version.

In more detail, we view elastic block ciphers as a category of block ciphers with
(somewhat generic) design rules, and we consider how to evaluate their security against
the two most basic types of cryptanalysis: linear [6] and differential cryptanalysis [1].
The elastic design is a generic approach that inserts the round function from an existing
block cipher into a network structure (the elastic network). Therefore, new methods
are needed to perform our analysis that are derived from the structure of the elastic
network. Since the approach taken in forming elastic block ciphers is non-traditional
in the sense that it does not focus on optimizing the design for a specific block size,
one may dismiss the entire idea and stick to usual designs of ciphers of fixed size;
however, we believe that the idea of having a substitution-permutation network that is
size-flexible (i.e., the elastic network) and is somewhat generic is an interesting subject
that deserves investigation. This work is a step in this direction.

Concretely, we first prove that any linear attack on an elastic block cipher can be con-
verted in polynomial time and memory into a linear attack on the fixed-length version of
the cipher. This is done by showing how to convert the equations for such an attack on
the elastic version to an attack on the fixed-length version. Therefore, if the fixed-length
version is immune to linear cryptanalysis, the elastic version is also immune. We ex-
tend the result to any algebraic attack. We then define a general method for deriving the
differential characteristic bound of an elastic block cipher from the differential bound
on a round of the fixed-length version. We summarize our application of the method to
elastic versions of AES [9] and MISTY1 [7].

The remainder of the paper is organized as follows. In Section 2, we briefly review
the construction of elastic block ciphers. In Section 3, we prove that a linear attack,
or more generally any algebraic attack, on an elastic block cipher implies that such an
attack exists on the fixed-length version of the block cipher. In Section 4, we define our
method for deriving differential bounds on an elastic block cipher. Section 5 concludes
the paper.

2 Elastic Block Cipher Review

2.1 Overview

We briefly review the method presented by Cook, et. al, for creating elastic block ci-
phers [3]. The method converts the encryption and decryption functions of existing

Methods for Linear and Differential Cryptanalysis of Elastic Block Ciphers 189

Fig. 1. Elastic Block Cipher Structure [3]

block ciphers to accept blocks of size b to 2b bits, where b is the block size of the origi-
nal block cipher. The general structure of an elastic block cipher is shown in Figure 1.
An elastic version of a block cipher is created by inserting the cycle of the original
fixed-length block cipher into the network structure to form the round function of the
elastic version. In each round the leftmost b bits are processed by the round function
and the rightmost y bits are omitted from the round function. Afterwards, the rightmost
y bits are XORed with a subset of the leftmost b bits and the results swapped. This
swapping of bits may be omitted after the last round. The elastic version also includes
initial and end of round whitening, and an initial and final key dependent permutation.
The number of expanded-key bits required varies based on the block size and the origi-
nal block cipher. The key schedule of the original cipher is replaced with a generic key
schedule that generates as many expanded-key bits as needed. In theory, the expanded
key bits can take on any value and we view the expanded key bits in this manner in our
analysis. For actual implementations, a stream cipher was suggested as one option for
the key schedule [3].

We use the following notation:

– G denotes any existing fixed-length block cipher.
– r denotes the number of cycles in G, where a cycle in G is the point at which all b

bits of the block have been processed by the round function of G. For example, if

190 D.L. Cook, M. Yung, and A.D. Keromytis

G is a Feistel network, a cycle is the sequence of applying the round function of G
to the left and right halves of the b-bit block. In AES, the round function is a cycle.

– b denotes the block length of the input to G in bits.
– y is an integer in the range [0, b].
– G′ denotes the elastic version of G with a (b+ y)-bit input for any valid value of y.
– r′ denotes the number of rounds in G′. r′ = r + � ry

b �.
– The round function of G′ will refer to one entire cycle of G.
– The swap step will refer the step in which the rightmost y bits are XORed with a

subset of the leftmost b bits and the results swapped.

3 Linear Cryptanalysis

We consider linear attacks and algebraic attacks on elastic block ciphers in general. We
prove that any practical linear or algebraic attack on an elastic block cipher, G′, can be
converted into a polynomial time related attack on the original cipher, G, independently
of the specific block cipher used for G. We take advantage of the elastic block cipher
structure to define a linear relationship, if one exists, across r rounds of G′ in terms of
any linear relationship in a cycle of G.

Linear cryptanalysis involves finding equations relating plaintext, ciphertext and key
(usually expanded-key) bits via XORs that hold with probability 1

2 +α for non-neglig-
ible α. Without loss of generality, we assume the equations are in the form such that
0 < α ≤ 1

2 , and that the equations involve the expanded-key bits. We omit the initial
and final key-dependent permutations in the elastic block cipher construction when per-
forming our analysis in order to focus on the core structure of elastic block ciphers. The
two permutations do not impact any relationship that exists across the rounds of G′.

We show that a linear relationship across r rounds of G′ implies such a relation-
ship across r cycles of G. If any such linear relationship holds with a probability such
that fewer than 2(b−1) (plaintext, ciphertext) pairs are required for an attack, then G is
subject to a linear attack that requires fewer plaintexts, on average, than an exhaustive
search over all plaintexts. Whether or not using the equations is computationally fea-
sible depends on number of (plaintext, ciphertext) pairs and the number of equations
that must be computed. If at least 2(b−1) plaintext, ciphertext pairs are required for an
attack on r rounds of G′, then either the attack is infeasible on r rounds of G′ from a
practical perspective or G is subject to a brute force attack in practice. Note that we are
dealing with an attack on only r rounds of G′ and the probability of a linear relationship
holding across r′ = r + � ry

b � rounds of G′ will be less than that for r rounds. More
specifically, if the attack on G′ involves a maximum correlation between plaintext, ci-
phertext and key bits which occurs with probability ≤ 2−b on r rounds (thus requiring
in practice ≥ 2b plaintexts), then an attack on 2r rounds involves a maximum correla-
tion that occurs with probability ≤ 2−2b and requires > 22b plaintexts. In this case, G′

is practically secure against a linear attack when � ry
b � = r. A direct implication of our

result is that if G′ is subject to an attack using any algebraic equations, as opposed to
just linear equations, then so is G.

Theorem 1. Given a block cipher G with a block size of b bits and r cycles, and its
elastic version G′ with a block size of b + y bits for 0 ≤ y ≤ b, if G′ is subject to a

Methods for Linear and Differential Cryptanalysis of Elastic Block Ciphers 191

linear attack on r rounds then either G is subject to a linear attack or the resources exist
to perform an exhaustive search on G over all plaintexts, assuming the key schedules of
G and G′ do not produce message-dependent expanded keys, meaning any expanded-
key bits depend only on the key and do not vary based on the plaintext or ciphertext
input to the cipher.

Proof. We first note that if the linear attack on r rounds of G′ requires at least 2b

(plaintext, ciphertext) pairs then either the attack is computationally infeasible or G is
insecure independent of the attack (since the attacker has the resources to encrypt 2b

plaintexts). Therefore, it can be assumed that the attack on G′ requires < 2b (plaintext,
ciphertext) pairs. The assumption that the expanded key bits do not depend on the in-
put to the cipher (the plaintext or ciphertext) is true of block ciphers used in practice
and of elastic block ciphers. The theorem is proved by showing how a linear attack
on G′ can be converted into an attack in G. With no further assumptions about the
key schedules, the result is an attack that finds an expanded key for G that produces
the (plaintext, ciphertext) pairs consistent with G, but which may or may not adhere
to the key schedule of G. If the expanded key is inconsistent with the key schedule
of G, this itself indicates another weakness in G because it means there is some ex-
panded key that is not produced by the key schedule of G but which produces the same
(plaintext, ciphertext) pairs that G would produce when using some key generated
by G’s key schedule (i.e. the attack finds an equivalent key). If the following three as-
sumptions are placed on the expanded key bits of G′, then the attack on G will find a
key consistent with the key schedule of G:

– The rightmost y bits of each whitening step in G′ can take on any value and are
independent of any other expanded-key bits.

– Any expanded-key bits used in the round function of the first r consecutive rounds
of G′ can take on the same values as the expanded-key bits used in the cycles of G.

– If G contains initial and end of cycle whitening, any expanded-key bits used for the
leftmost b bits of each whitening step in the first r consecutive rounds of G′ can
take on the same values as the corresponding whitening bits in G.

To understand how a linear relationship (if one exists) between the plaintext, cipher-
text and expanded-key bits is determined for G′, we first consider how a linear relation-
ship is derived for a block cipher structured as a series of rounds with block length b and
then add the impact of the whitening and swap step to these relationships. We number
the rounds from 1 to r. We will refer to any initial whitening step that occurs prior to
the first round as round 0 and the round function of round 0 is just the initial whitening.
The relationship between the output of the jth round/cycle and the input to the (j +1)st

round/cycle is depicted in Figure 2 for both G and G′.
We use the following notation for describing the relationships across the rounds

of G′:
– Two bits, x1 and x2, cancel each other in an equation means x1 ⊕ x2 = 0 with

probability 1.
– Let uji denote the ith bit of the input to the round function in round j, 1 ≤ i ≤ b,

0 ≤ j ≤ r.
– Let vji denote the ith bit of the output from the round function in round j, 1 ≤ i ≤

b, 0 ≤ j ≤ r.

192 D.L. Cook, M. Yung, and A.D. Keromytis

Fig. 2. Linear Relationship Between Round j’s Output and Round (j + 1)’s Input

– Let nj denote the number of expanded-key bits used in the round function in round
j, 0 ≤ j ≤ r. This does not include any end of round whitening added to form
G′, but does include the end of round whitening if it is part of the cycle of G (as is
the case with AES). If G does not contain initial whitening, the round function in
round 0 is the identity function and n0 = 0.

– Let ekji denote the ith expanded-key bit in the round function in round j, 1 ≤ i ≤
nj .

– Let Lj([uj1, ...ujb]⊕[vj1, ...vjb]⊕[ekj1, ...ekjnj]) denote the set of linear equations
(if any) relating the input, output and round key bits with non-negligible probability
for the round function in round j, 0 ≤ j ≤ r. We will abbreviate this as Lj .
An equation in Lj holds with probability 1

2 + α for some non-negligible α such
that 0 < α ≤ 1

2 . For example, if u12 ⊕ v13 ⊕ ek15 = 0 with probability 0.75,
this equation will be in L1. Any equation which reflects a negative relationship,
meaning the equation holds with probability 1

2 − α, is rewritten as an equation
holding with probability 1

2 + α.
– Without loss of generality, the equations in Lj are in reduced form; for example,

uj2 ⊕ uj2 ⊕ uj2 = 1 will be reduced to uj2 = 1.
– Internal variables will refer to the set of uji for 1 ≤ j ≤ r and vji for 0 ≤ j ≤ r−1,

with 1 ≤ i ≤ b. i.e., any variable corresponding to an input bit for rounds 1 to r or
to an output bit of rounds 0 (initial whitening step) to r − 1.

A linear relationship across consecutive rounds is obtained by combining the lin-
ear equations for each of the rounds, with vji becoming u(j+1)i. A linear relationship

Methods for Linear and Differential Cryptanalysis of Elastic Block Ciphers 193

exists that involves only plaintext, ciphertext and expanded-key bits if the intermediate
round inputs and outputs (the internal variables) cancel when combining the per round
equations, leaving equation(s) involving only u0i’s, vri’s and expanded-key bits. For
example, if in G with two cycles: u11 ⊕ v12 = ek11 and u22 ⊕ v26 = ek23. Then, since
v12 = u22, u11 ⊕ ek11 ⊕ v26 = ek23.

We now consider how the steps between the rounds in G′ impact the linear relation-
ships across the rounds.

– Let Y denote the rightmost y bits of the data block for a (b + y)-bit data block.
– Let Γ ′ refer to the set of the equations used in a linear attack on r rounds of G′

formed from combining the Lj’s for the individual rounds along with the end of
round whitening and swap steps.

– Let Γ refer to a set of linear equations for G formed from equations in Γ ′.
– Let kwji denote the ith key bit used for the whitening step added in round j when

constructing G′, 1 ≤ i ≤ b + y and 1 ≤ j ≤ r. kwji = 0 for 1 ≤ i ≤ b if the cycle
of G includes end of cycle whitening and kw0i = 0 for 1 ≤ i ≤ b if G contains
initial whitening because G′ does not add whitening to the b bits when it is already
present.

– Let wjl denote the lth bit of the Y portion of the data, for 1 ≤ l ≤ y and 2 ≤ j ≤ r.
wjl = v(j−1)h⊕ kw(j−1)h where 1 ≤ h ≤ b and h is the bit position swapped with
bit position l in the previous swap. When j = 1, w1l = w0l ⊕ kw0(b+l), the initial
input bit XORed with the initial whitening applied.

With the addition of the whitening and swap steps, the input to the round function is
now defined as:

– u(j+1)i = vji ⊕ kwji when vji is not involved in the swap step.
– u(j+1)i = vji⊕kwji⊕wjl⊕kwj(b+l) when vji is involved in the swap step. When

j ≥ 2, this can be written as u(j+1)i = vji⊕kwji⊕v(j−1)h⊕kw(j−1)h⊕kwj(b+l).

Notice that the steps between applications of the round function in G′ maintain a linear
relationship between the output of one round and the input of the next round.

If the key schedule of G′ produces whitening bits which are created independently
of the key bits used within the round function (to the extent that the key bits are pseudo-
random), and of the round function’s input and output, these whitening bits will cancel
with any vji, uj+1 and/or ekji with probability 1

2 + e for negligible e (i.e., there is no
discernable relationship between these whitening bits and any of the plaintext, cipher-
text and expanded-key bits used internal to the round function by definition of the key
schedule). Thus, the kwji’s added when forming G′ will not increase the probability
of a linear relationship between plaintext bits, ciphertext bits and expanded-key bits
used in the round function. If a key schedule is used for G′ that does not guarantee
independence amongst the kwji’s and that results in cancellation among some kwji’s,
this is merely cancelling variables that are not present in the linear equations for the
round function and thus will not simplify the equations or increase the probability that
an equation holds across r applications of the round function.

Now we assume a set of equations, Γ ′, exist for G′ that contains no internal variables
and show how to convert them to a set of equations for G. Given the sets, Lj’s, of linear
equations for the round function in G′, these same sets of equations hold for G because

194 D.L. Cook, M. Yung, and A.D. Keromytis

the elastic version does not alter the cycle of G. These equations are combined across
cycles as was done for the rounds of G′, except to form the input to one cycle from the
output of the previous cycle, the impact of the swap step and any whitening added when
forming G′ is removed as follows:

– Set kwji to 0 for 0 ≤ j ≤ r and 1 ≤ i ≤ b so these whitening bits are omitted from
the resulting equations. This removes any initial and end of round whitening that
was added to the leftmost b bits when forming G′. Recall that if G had initial and
end of cycle whitening, it was treated as part of the round function of G and addi-
tional whitening on the leftmost b bits in each round was not added when forming
G′ (i.e. kwji was already 0 in the equations for G′ for 0 ≤ j ≤ r and 1 ≤ i ≤ b).

– Set kw0(b+l) = 0 and kw1(b+l) = 0 for 1 ≤ l ≤ y. This sets the rightmost y bits of
the initial whitening and of the end of round whitening in the first round to 0. By
using plaintexts that have the rightmost y bits set to 0, this results in the rightmost
y bits in the first round having no impact on the equations.

– Set kwj(b+l) to v(j−1)h for 2 ≤ j ≤ r − 1 and 1 ≤ l ≤ y, where h is the index
in the leftmost b bits corresponding to the bit position swapped with the lth bit
of the rightmost y bits. This removes the impact of the swap steps by having the
rightmost y bits of whitening in each round cancel with the y bits omitted from
each round. These settings are needed only on rounds 2 through r − 1. The output
of the rth round function is the ciphertext so the swap step is not applicable after
the rth round. Per the previous item, the rightmost y bits in the first round can be set
to have no impact on the equations. Each such setting can add an internal variable,
v(j−1)h, which now equals ujh, to the equations.

These settings result in each input bit to the (j + 1)st round function being of the form
u(j+1)i = vji and the impact of any added end of round whitening and the swap step
being removed. The equations will combine to form a set of equations, Γ from the
equations in Γ ′ with any kwji’s which appear in Γ ′ removed and with at most (r− 2)y
internal variables added to the equations. Before explaining how these variables can
be accommodated, we first state a few additional notes on the resulting equations. The
equations in Γ may contain up to y extra plaintext bits and up to y extra ciphertext
bits beyond the b-bit block size of G since G′ processes b + y bit blocks. The attacker
can set these extraneous y plaintext bits to any value (the whitening bits were set in
the conversion based on these plaintext bits being set to 0) and the extra y ciphertext
bits are identical to y of the bits output from the next to last round function. For any
equation Eq′ ∈ Γ ′ that holds with probability 1

2 + α, the corresponding equation,
Eq ∈ Γ , formed by removing the kw′

jis from Eq′ will also hold with probability
1
2 + α. Furthermore, only variables representing whitening bits not present in G are
deleted when converting Γ ′ to Γ and no equations are added or removed. An equation
will not disappear when removing kwji variables because that would imply the equation
did not involve plaintext and/or ciphertext bits.

We now address the presence of the internal variables in Γ . Since it was assumed
Γ ′ consists entirely of equations involving only plaintext, ciphertext and expanded-key
bits, the removal of the swap step can introduce up to y internal variables, (vji′s), per
round (cycle) into the equations. The removal of the swap step impacts r − 2 rounds
(cycles), resulting in a maximum of (r − 2)y internal variables in the equations in Γ .

Methods for Linear and Differential Cryptanalysis of Elastic Block Ciphers 195

If equations in Γ ′ corresponding to some y > 0 are converted directly into equations
for the original cipher (y = 0), this results in at most 2(r−2)y possible values to try
for the internal variables. However, it is possible to make the number of such values
to test linear in y instead of exponential in y. Instead of converting the attack on G′

directly to an attack on G, repeatedly decrease y one bit at a time (decrease the block
size of G′) converting the attack on G′ with a b + n bit block size to an attack on G′

with a b + n − 1 bit block size, for n = y, y − 1, ...1. When Γ ′ is converted into a set
of equations for the cipher corresponding to a b + y − 1 blocksize, there are at most
r − 2 internal values, one for each of rounds 2 to r − 1, and therefore at most 2r−2

possible combinations of values for the internal values. Let Γ ′
b+y−1 denote this set of

equations. Using (plaintext,ciphertext) pairs with a b + y − 1 bit block size, solve the
equations, setting the r− 2 internal variables in the equations to the specific values that
result in a solution consistent with the (plaintext, ciphertext) pairs. In the worst case, all
possible combinations of values for the interal variables must be tested in the equations,
resulting in at most 2(r−2) combinations to test. Then repeat the process, decreasing the
block size one bit at a time. In each iteration, there are at most r − 2 internal variables
whose values need to be determined.

More formally, given G′ with a block size of b + y bits, where 0 ≤ y ≤ b and the set
of linear equations Γ ′ used to attack r consecutive rounds of G′:

– Let G′
b+n refer to an elastic version of G with a (b + n)- bit block size, where

0 ≤ n ≤ y.
– Let Γ ∗

b+n refer to the set of linear equations for r consecutive rounds of G′
b+n with

at most r − 2 internal variables present in the equations.
– Let Γ ′

b+n refer Γ ∗
b+n with the values of the internal variables determined. This is

a set of linear equations involving only plaintext, ciphertext and expanded key bits
for r rounds of G′

b+n.
– Let Ab+n refer to the attack on G′

b+n using Γ ′
b+n.

Convert the attack on G′ to an attack on G as follows:

n = y
Γ ′

b+n = Γ ′

while (n > 0) {
convert Γ ′

b+n to Γ ∗
b+n−1

Using (plaintext,ciphertext) pairs for G′
b+n−1, solve for any

internal variables in Γ ∗
b+n−1 to obtain Γ ′

b+n−1.
n← n− 1

}
The set of equations, Γ , used to attack G will be Γ ′

b. This results in at most
∑y

1 2(r−2) =
y2(r−2) possible combinations of the internal variables to try as opposed to ≤ 2(r−2)y

combinations. Since r is constant (and small in practice) and y is bounded by b, which
is constant, the amount of work in converting the attack on G′ to an attack on G is
polynomial in the time to attack G′, specifically, the work is bounded by a constant
times the time to attack G′. For example, in AES with a 128-bit key, b = 128 and
r = 10, thus y ≤ 128 and y(2(r−2)) ≤ 128 ∗ 256 = 32768. The amount of memory
required is linear in the amount of memory required to attack G′. In the worst case, a

196 D.L. Cook, M. Yung, and A.D. Keromytis

separate amount of memory is required when forming each Γ ′
b+n. Thus, a linear attack

on a r-round version of G′ that requires less than 2b (plaintext, ciphertext) pairs implies
a linear attack exists on G.

Theorem 1 can be applied to algebraic equations in general. An algebraic attack on a
block cipher G is defined in the same manner as the linear attack with the modification
that the equations can involve any algebraic operations, not just XORs.

Lemma 1. Given a block cipher G with a block size of b bits and r cycle, and its elastic
version G′ with a block size of b + y bits for 0 ≤ y ≤ b, if G′ is subject to an algebraic
attack on r rounds then either G is subject to an algebraic attack or the resources exist
to perform an exhaustive search on G over all plaintexts.

Proof. The proof follows directly from the proof to Theorem 1 by removing the qual-
ification in Theorem 1’s proof that the equations in the Lj sets are linear. Now Γ ′ and
Γ contain algebraic equations instead of only linear equations. Γ is formed from Γ ′

exactly as before (the conversion adds only XORs of variables to the equations). There-
fore, if an algebraic attack exists on r rounds of G′ then an attack exists on G.

4 Differential Cryptanalysis

4.1 Overview

We consider how the conversion of a block cipher to its elastic form impacts differential
cryptanalysis. We define a general method for bounding the probability a differential
characteristic occurs in the elastic version of a cipher when given the bound for a single
round of the original cipher. We have illustrated the method on elastic versions of AES
and MISTY1 in [2]. We use the symbol Δ to refer to the XOR of two bit strings.
The sequence of Δ inputs and outputs of the rounds of a block cipher is a differential
characteristic. Specifically, let (P1, C1) and (P2, C2) be two (plaintext, ciphertext)
pairs for a block cipher with r rounds. ΔP = P1 ⊕ P2 and ΔC = C1 ⊕ C2. Let
λij refer to the delta input to round j and let λoj refer to the delta output of round j.
λi1 = ΔP . λor = ΔC. Let prj be the probability λoj occurs given λij . Let Ω =
(λi1, λo1, λi2, λo2...λir , λor). The probability Ω ocurrs is

∏j=r
j=1 prj . If the block size is

b bits, it is sufficient to show that no differential characteristic occurs with probability
≤ 2−b in order to prove a cipher is immune to differential cryptanalysis (because this
implies ≥ 2b (plaintext, ciphertext pairs) are required for the attack).

The variable block size and the swap step in elastic block ciphers significantly in-
crease the number of cases to explore when determining the probability of a differential
characteristic compared to that of the fixed-length version of a block cipher. This is
the reason why we had to find a new approach to modelling the differentials instead
of using an existing approach, such as the differential trails approach used on AES [5].
Furthermore, the structure of elastic block ciphers allows analysis performed on the
fixed-length version to be partially reused when evaluating the elastic version.

The method we use to bound the probabilities of differential characteristics for an
elastic block cipher involves defining states representing which bytes in the differen-
tial input to a round have a non-zero delta and tracking what sequences of states the

Methods for Linear and Differential Cryptanalysis of Elastic Block Ciphers 197

cipher can potentially pass through over a number of rounds. Using this method and
differential bounds for the round function of the original cipher, we can derive an upper
bound on differential characteristics for the elastic version of a cipher. We exclude the
initial and final key-dependent mixing steps from our analysis in order to focus on the
core structure and these permutations will only reduce the probability of any specific
differential characteristic occurring.

4.2 General Observation

The first observation we make regarding differential cryptanalysis of elastic block ci-
phers is that, unlike linear cryptanalysis where the equations for the elastic version,
G′, of a block cipher can be converted directly into equations for the original cipher
G, a differential characteristic for G′ cannot be converted directly into a differential
characteristic for G except for one special case.

We use the following notation when describing a differential characteristic of an
elastic block cipher.

– ΔYi is the XOR of two y-bit segments for round i.
– ΔBini is the XOR of two b-bit segments input to the round function in round i.
– ΔBouti is the XOR of two b-bit segments output from the round function in

round i.
– A b-bit value formed from the XOR of a b-bit value and a y-bit value, where y ≤ b,

refers to the b-bit result when the y bits are XORed with a subset of y bits of the b
bits and the remaining b− y bits are unchanged.

– Forming ΔYi+1 from ΔBouti refers to setting ΔYi to the y bits from ΔBouti that
are in the bit positions involved in the swap step after round i.

– ΔY , ΔBin and ΔBout without a subscript of i refers to a specific delta indepen-
dently of the round.

In the elastic version of a cipher, ΔBini+1 is determined by ΔBouti and ΔYi. If
ΔYi
= 0 then ΔBini+1
= ΔBouti; whereas, ΔBini+1 = ΔBouti in the original
block cipher. This is shown in Figure 3. Therefore, a sequence of deltas ocurring across
multiple rounds in the elastic version will not hold across the original version unless
ΔYi = 0 for r sequential rounds.

Now we consider the special case where r consecutive ΔYi’s are 0.

Lemma 2. If a differential characteristic occurs in the elastic version, G′, of a block
cipher that contains r consecutive rounds with ΔYi = 0 and this characteristic can be
used to attack G′, then it can be used to attack G.

Proof. Let Ω′ be the characteristic corresponding to the ΔBini values and ΔBouti
values for the r consecutive rounds each with ΔYi = 0. Ω′ is also a characteristic for
the r rounds of G. Ω′ must hold with probability > 2−b−y to be used in an attack on
G′. If Ω′ holds with probability 2−α > 2−b, then it can be used to attack G directly,
provided the probability is large enough that it is computationally feasible to encrypt
O(2α) plaintexts.

If it holds with probability2−α such that 2−b > 2−α > 2−b−y, it can be used to attack
G as follows: Using an r round version of G′ and (plaintext, ciphertext) pairs consistent

198 D.L. Cook, M. Yung, and A.D. Keromytis

Fig. 3. Differential in Original and Elastic Versions of a Cipher

with the delta input and delta output of Ω′ by setting the leftmost b bits to be consistent
with Ω′ and the rightmost y bits to have a Δ of 0. Then apply the attack on G′ to find
the round keys for the r rounds and use these as the keys for the r cycles of G.

However, if this later case where 2−b > 2−α > 2−b−y is computationally feasible, it
implies it is computationally feasible to encrypt 2b plaintexts with G. Thus G is insecure
because given a ciphertext, C, an attacker can ask for all 2b plaintexts be encrypted with
the same key (which is unknown) used to generate C and see which plaintext produces
C. As an estimate of the probability of r consecutive rounds having ΔY = 0, consider
what happens if the y bits left out of each round in G′ take on any of the possible 2y

values with equal probability. Then, ignoring the differential for the b-bit portions of
each round’s input and output, a case where ΔYi = 0 for r consecutive rounds may be
found for small values of y and r. If each ΔYi occurs with probability 2−y, then the
probability that ΔYi = 0 in r consecutive rounds is 2−yr. For example, in MISTY1,
r = 4 (MISTY1 contains four cycles and a cycle is used as the round function in the
elastic version). When y = 1, the probability of r consecutive ΔY ’s being zero is 1

16 .

4.3 State Transition Method

We now consider how to evaluate any elastic block cipher’s immunity or susceptibility
to differential cryptanalysis by using the bound from a single cycle of the fixed-length
version of the cipher.

Theorem 2. The differential probabilities from the cycle of a fixed-length block cipher
G can be used to bound the probability that a differential characteristic occurs in its
elastic version G′.

Methods for Linear and Differential Cryptanalysis of Elastic Block Ciphers 199

The general method we use is the tracking of states through the rounds of an elastic
block cipher. We devise a method for categorizing the impact of the swapping of bits
between rounds on the differentials entering a round. We combine the impact of the
swap step with the upper bound on the probability a differential characteristic occurs in
a single application of the round function (from available analysis on G) to determine
an upper bound the probability of a differential characteristic across multiple rounds in
G′. By obtaining a bound, x, on the probability across n rounds in G′, the probability

across r′ rounds can be bounded by x� r′
n �.

In the case where the round function of G is a cycle, such as in AES, we view the
(b + y)-bit data block entering a round of G′ as a b-bit segment and a y-bit segment.
Three main states are defined:

(ΔBin = 0 and ΔY
= 0), (ΔBin
= 0 and ΔY = 0), (ΔBin
= 0 and ΔY
= 0)
The state in which ΔBin = 0 and ΔY in = 0 is not of interest because, given a
non-zero delta input to the cipher, a delta of zero across all b + y bits cannot occur.
Within a main state, the number of bytes for which the delta is non-zero are counted.
For example, if the input to the third round has a ΔBin that is 1 in the 2nd and 18th

bit positions and is zero in all other bits, then there are two bytes with non-zero deltas
in ΔBin. Tracking of states between rounds involves determining what ΔBin||ΔY
can result for the (i + 1)st round based on the delta in the ith round. For example, if
ΔBin = 0 and ΔY
= 0 in the input to round i, then ΔBin
= 0 and ΔY = 0 in round
i + 1. This is because the delta output of the ith round function will be zero, then the
non-zero ΔY will be swapped into the b-bit portion input to the (i + 1)st round and a
delta of zero will be swapped out to form the ΔY for the (i + 1)st round.

When the original cipher is a Feistel network (or is a Feistel network with additional
steps as in the case of MISTY1), the ΔBin portion is viewed as a left half (ΔLin) and
right half (ΔRin). The main states are the seven combinations of ΔL, ΔR and ΔY
being = 0 or
= 0 with at least one being
= 0.

Using the states, an upper bound (which is not necessarily a tight upper bound) can
be determined for the probability of a differential characteristic for r′ rounds of G′. The
probability of a differential characteristic occurring for a single application of the round
function of G and the possible ΔB or ΔL||ΔR values entering the round function
in each round are used to bound the probability for a round of G′. The possible ΔB
or ΔL||ΔR and ΔY values in a round determine the possible input states to the next
round of G′.

4.4 Examples

We applied the state transition method to the elastic versions of AES and MISTY1
described in [3]. The process and results are described in [2]. We briefly state the results
of the work here. Elastic AES is an example in which the input to each round is viewed
in the form of ΔBin||ΔY . AES is a 128-bit block cipher with 10 rounds. The number
of rounds, r′, in the elastic version is 10 + � 10y

128 �. Elastic MISTY1 is an example in
which the input to each round is viewed in the form of ΔL||ΔR||ΔY . MISTY1 is a
64-bit block cipher involving four cycles of a Feistel network. r′ = 4 + � 4y

64� in the
elastic version of MISTY1.

200 D.L. Cook, M. Yung, and A.D. Keromytis

We analyzed the elastic versions without the initial and final key dependent permuta-
tions to simplify the model since these permutations will only decrease the probability
that a specific differential characteristic occurs. Our analysis is independent of the key
schedule.1 The swap step is performed by selecting y consecutive bits from the round
function’s output to XOR and swap with the y bits left out of the round function. In the
implementation of elastic AES, the starting position of the y bits selected rotates to the
right one byte each round. In elastic MISTY1, the starting position alternates between
the left and right halves of the b bit segment in addition to rotating to the right within
the half block each round.

When analyzing the state transitions for both elastic AES and elastic MISTY1, we
are concerned with how many byte positions have non-zero deltas. Therefore, we only
need to consider each block size where Y contains an integer number of bytes. The
case for y = 8x where x is an integer such that 1 ≤ x ≤ b

8 covers the cases of y such
that 8(x − 1) < y ≤ 8x. For example, the lower bound on a differential characteristic
occurring for the case of y = 8 is also the lower bound for values of y in the range of 1
to 7 because this range of y influences exactly one byte in b-bit portion during each of
the swap steps.

In order to analyze the state transitions in elastic AES, we created a program that
tracks how many bytes contain a non-zero differential characteristic in each round and
determines the possible next states. The number of bytes with a non-zero delta in the
b-bit portion in a single round bounds the probability that a differential characteristic
holds through that round. A lower bound on the differential probability for a single
round of AES is ≤ 2−exp where exp = 6 ∗ |ΔBin|. The multiplication by 6 is due to
the fact that the probability a specific difference in two one-byte inputs to AES’s S-Box
produces a specific difference in the two outputs of the S-Box is 2−6 or 2−7, depending
on the exact byte values ([5] pages 205-206). For block sizes of 17, 18 ... to 32 bytes, the
model was run through three rounds for all possible input states. A lose lower bound for
all r′ rounds was then calculated by viewing the r′ rounds as 3 round segments plus 0
to 2 additional rounds, depending on the exact value of r′. Sequences producing a three
round bound which did not exclude the possibility of a differential attack were traced
through subsequent rounds, with the number of rounds depending on the exact size of
y and the probability produced after each round. The results from our analysis show
that the probability of a differential characteristic occurring is ≤ 2−128−y. Therefore, a
differential attack is impossible.

Our analysis of elastic AES is general in terms of block size but only considers a
single method for selecting the bits to swap (described previously) after each round
as opposed to all possible ways of selecting y bits from 128 bits. In [4] it was proven
that an elastic version of a cipher is immune to any practical key-recovery attack if the
original cipher is immune to the attack regardless of the specific bit positions chosen for
the swap steps. Differential cryptanalysis is covered by this result. The state transition
method can be applied to any choice of bits to swap, but it is computationally infeasible
to include in one model all 2y(r′−1) possible ways of selecting the bits to swap in the
first r′ − 1 rounds (recall that the swap step adds no value after the last round and thus
can be omitted from round r′).

1 In the constructions from [3], the stream cipher RC4 was used for the key schedule.

Methods for Linear and Differential Cryptanalysis of Elastic Block Ciphers 201

MISTY1 uses two functions, referred to as F0 and FL, as building blocks along
with a Feistel network. F0 is the round function in the Feistel network. In each cycle
of the Feistel network, FL is applied to one half of the data and FL−1 is applied to
the other half. An upper bound of 2−56 on the probability a differential characteristic
occurs was derived for 4 cycles of the 64-bit version [8] by using a bound of 2−14 per
cycle due entirely to the bound from the F0 function. Using a manual analysis of state
transitions and only the bound for the F0 function, we derive an upper bound on the
elastic version of MISTY1 of 2−14(r′−1), where r′ is the number of rounds (cycles of
MISTY1) in the elastic version. This bound is not tight and does not by itself elimi-
nate the possibility of a differential attack (either in MISTY1 or the elastic version).
However, the state transition analysis does reduce the number of state sequences that
need to be investigated to tighten the bound over r′ rounds. The bound of 2−14(r′−1)

also allows the potential contribution needed from the initial and final key-dependent
mixing steps in preventing differential attacks to be determined.

5 Conclusions

We showed how to convert a linear, or more generally any algebraic, attack on an elas-
tic block cipher into such an attack on the fixed-length version of the block cipher to
prove that if the fixed-length version is immune to such an attack then so is the elastic
version. This was accomplished by proving that any set of linear or algebraic equations
used in an attack on the elastic version can be converted in polynomial time and mem-
ory into equations for the fixed-length version. We also devised a method for bounding
the probability of a differential characteristic on the elastic version of a block cipher us-
ing the differential bounds for the cycle of the fixed-length version of the cipher. When
performing differential cryptanalysis on an elastic block cipher, the differential bound
for the round function is the bound from the cycle of the original version of the cipher.
The swapping of bits between rounds in the elastic version impacts the sequence of
differentials entering the series of rounds by altering the output of the ith application of
the round function before it is input to the (i + 1)st application of the round function.
The bound for the round function and the impact of the swap step can be combined to
bound the probability a differential characteristic occurs in the elastic version of a block
cipher. This is accomplished by defining states representing whether or not there is a
non-zero differential in the b-bit portion and/or y-bit portion of the round’s input, then
determining what states may potentially occur as input to each round. The possible state
sequences in the elastic version of the cipher are combined with the probabilities a dif-
ferential characteristic occurs in one cycle of the original cipher to bound the probability
of a differential characteristic across all rounds of the elastic version of the cipher.

Acknowledgments

This work was partially supported by NSF Grants ITR CNS-04-26623 and CPA CCF-
05-41093. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the NSF
or the U.S Government.

202 D.L. Cook, M. Yung, and A.D. Keromytis

References

1. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer,
New York (1993)

2. Cook, D.: Elastic Block Ciphers, Ph.D. Thesis, Columbia University (2006)
3. Cook, D., Yung, M., Keromytis, A.: Elastic Block Ciphers: The Basic Design. In: Proceedings

of ASIACCS, pp. 350–355. ACM, New York (2007)
4. Cook, D., Yung, M., Keromytis, A.: The Security of Elastic Block Ciphers Against Key-

Recovery Attacks. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 89–103. Springer, Heidelberg (2007)

5. Daemen, J., Rijmen, V.: The Design of Rijndael: AES the Advanced Encryption Standard.
Springer, Berlin (2002)

6. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 0765, pp. 386–397. Springer, Heidelberg (1994)

7. Matsui, M.: New Block Encryption Algorithm MISTY. In: Biham, E. (ed.) FSE 1997. LNCS,
vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

8. Matsui, M.: New Structure of Block Ciphers with Provable Security Against Differential
and Linear Cryptanalysis. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 205–218.
Springer, Heidelberg (1996)

9. NIST, FIPS 197 Advanced Encryption Standard (AES) (2001)

Multidimensional Linear Cryptanalysis of Reduced
Round Serpent

Miia Hermelin1, Joo Yeon Cho1, and Kaisa Nyberg1�2

1 Helsinki University of Technology
2 Nokia Research Center, Finland

Abstract. Various authors have previously presented di�erent approaches how
to exploit multiple linear approximations to enhance linear cryptanalysis. In this
paper we present a new truly multidimensional approach to generalise Matsui’s
Algorithm 1. We derive the statistical framework for it and show how to cal-
culate multidimensional probability distributions based on correlations of one-
dimensional linear approximations. The main advantage is that the assumption
about statistical independence of linear approximations can be removed. Then
we apply these new techniques to four rounds of the block cipher Serpent and
show that the multidimensional approach is more e�ective in recovering key bits
correctly than the previous methods that use a multiple of one-dimensional linear
approximations.

1 Introduction

Linear cryptanalysis introduced by Matsui in [1] has become one of the most important
cryptanalysis methods for symmetric ciphers. Matsui analysed the DES block cipher
using a linear approximation of the known data bits, which holds with a large correlation
independently of the key, and presented two ways of exploiting this property: Algorithm
1 which determines one bit from the secret key and Algorithm 2 which recovers a part
of the last (or first) round key bits. Originally, only one approximative linear relation
was used. In [2], two approximations were used to reduce the amount of data needed
for the attack. This idea was developed further by Kaliski and Robshaw in [3], and
later by Biryukov, et al., in [4], where the goal was to use several linear approximations
simultaneously in order to recover more key bits with equal amount of data. In both
[3] and [4] the fundamental assumption was that the approximations are statistically
independent. This assumption is hard to verify in practice. The main contribution of
this paper is to remove this assumption.

In [5], Baignères, et al., analysed the statistical properties of multidimensional linear
approximations without the assumption of statistical independence. They proved that by
using multiple approximations, less data is needed to have the same level of test as with
only one approximation. However, their target system was a block cipher, which was
assumed to have a Markovian property [6]. Consequently, no practical way of building
the probability distributions for the purposes of Matsui’s Algorithm 1 can be found.

In [7] Englund and Maximov calculated directly the multidimensional probability
distribution needed for the distinguisher. However, their calculations become infeasible

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 203–215, 2008.
c� Springer-Verlag Berlin Heidelberg 2008

204 M. Hermelin, J.Y. Cho, and K. Nyberg

for systems with word-size of 64 or more. In this paper, it will be shown how one-
dimensional linear approximations can be combined to determine the multidimensional
linear approximation and the corresponding probability distribution. The method can
be applied to both stream and block ciphers of any word size.

The goal of this paper is to present a key recovery attack by generalising Algorithm 1 to
the multidimensional case. This algorithm will be compared with the method suggested
by Biryukov, et al., in [4] and the experimental results presented in [8].

The structure of this paper is as follows: In Sect. 2 the notation and the theoret-
ical basics needed in this paper are given. Section 3 starts with showing how linear
one-dimensional approximations can be used to make multidimensional linear approxi-
mations. Using the results of [5] it is then shown that it is advantageous to use multiple
approximations instead of just one. The rest of the Sect. 3 shows how to generalise Mat-
sui’s Algorithm 1. Section 4 shows how the method can be applied to the block cipher
Serpent. The results will also be compared to those presented in [8], where Biryukov’s
method was applied to Serpent. Finally, Sect. 5 draws conclusions.

2 Probability Distribution of a Boolean Function

We will denote the space of n-dimensional binary vectors by Vn. The inner product is
defined for a � (a1� � � � � an)� b � (b1� � � � � bn) � Vn as a � b � a1b1

� � � � � anbn, where �
is sum modulo 2.

A function f : Vn � V1 is called a Boolean function. A function f : Vn � Vm with
f � (f1� � � � � fm)� where fi are Boolean functions is called a vector Boolean function
of dimension m. A linear Boolean function from Vn � Vm is represented by an m � n
binary matrix U. The m rows of U are denoted by u1� � � � � um, where each ui is a binary
vector of length n.

A random variable (r.v.) is denoted by boldface, capital letters, e.g., X�Y�Z� � � � . The
abbreviation i.i.d. will mean independent and identically distributed.

Let Y be a r.v. in Vm, and denote by p� � Pr(Y � �)� Then the probability distribu-
tion (p.d.) of Y is the vector p � (p0� � � � � p2m

�1). Let f : Vn � Vm be a vector Boolean
function, and let X be a r.v. in Vn with the 2n-dimensional uniform distribution vector
�n � 2�n(1� � � � � 1)� Then we associate with f a r.v. Y � f (X) in Vm with a probabil-
ity distribution p(f) � (p0(f)� � � � � p2m

�1(f)), where Pr(f (X) � �) � p�(f)� � � Vm�

This p.d. is called the probability distribution of f and is denoted by p(f). We may
also abbreviate p�(f) by p� if the function is clear from the context. Two Boolean func-
tions f and g are called statistically independent if the associated r.v.’s are statistically
independent.

The correlation between a binary r.v. X and zero is defined as Pr(X � 0)�Pr(X � 1)�
The correlation of a Boolean function g : Vn � V1 to zero shall be referred to as the
correlation (of g) and is defined as

2�n (#� � � g(�) � 0 � � #� � � g(�) � 1 �) � 2 Pr (g(X) � 0) � 1�

where X is uniformly distributed.
Capacity was defined by Biryukov in [4] where they showed that it was inversely pro-

portional to the data complexity of their distinguishing attack. We will now generalise
the definition.

Multidimensional Linear Cryptanalysis of Reduced Round Serpent 205

Definition 1. Let p � (p0� � � � � pM) and q � (q0� � � � � qM) be two p.d.’s. Their (mutual)
capacity is then

C(p� q) �
M�

��0

(p� � q�)2

q�

� (1)

If M � 2m � 1 and q � �m is uniform then C(p� �m) � 2m ��p � �m��22 will be called the
capacity of p and we will denote it by C(p). It can also be called the Squared Euclidean
Imbalance [5].

In the next section, we will see that the generalised capacity will be inversely propor-
tional to the data complexity of a multidimensional linear distinguisher.

3 Multidimensional Approximation of Boolean Functions

3.1 From One-Dimensional Probability Distributions to Multiple Dimensions

Let f : V� � Vn be a vector Boolean function and binary vectors wi � Vn and ui �
V�, i � 1� 2� � � � � �m be linear masks such that the paired masks (ui�wi) are linearly
independent. Let us define functions gi by

gi(�) � wi � f (�) � ui � �� (2)

and assume gi’s have correlations �i� i � 1� 2� � � � �m� We will call these correlations
the base-correlations, and the corresponding linear approximations of f the base-appro-
ximations. We want to find the p.d. of the m-dimensional linear expression

g(�) � W f (�) � U��

where W � (w1� � � � �wm)�U � (u1� � � � � um) and g � (g1� � � � � gm)� Let the p.d. of g be p.
Assume that we have the correlations �(a) of all the linear mappings a � g of g, a � Vm.
If ei � (0 � � �010 � � �0) with 1 at the ith position, then �(ei) � �i� i � 1� � � � �m� We will
call the correlations �(a)� a � ei the combined correlations of f and the corresponding
approximations the combined approximations. Recall the following lemma from [9].

Lemma 1. Let g � (g1� � � � � gm) : Vn � Vm be a vector-valued Boolean function and p
it’s p.d. Then

2n p� � 2�m
�
a�Vm

�
��Vn

(�1)a�(g(�)��)�

The correlations �(a) can be written as

�(a) � 2�n
�
��Vn

(�1)a�g(�)�

Using this and Lemma 1 we get the following corollary that connects p and the one-
dimensional correlations �(a):

206 M. Hermelin, J.Y. Cho, and K. Nyberg

Corollary 1. Let g : Vn � Vm be a Boolean function with p.d. p and one-dimensional
correlations �(a) of a � g. Then

p� � 2�m
�
a�Vm

(�1)a���(a)�

The following corollary is obtained using Parseval’s theorem. An equivalent form of it
can be found in [5], where the proof was based on the inverse Walsh-Hadamard trans-
form of the deviations �� from the uniform distribution, �� � p� � 2m.

Corollary 2. Let g be the Boolean function defined as previously with p.d. p. Then

C(p) � 2m
�
�

�2
� �

�
a�0

�(a)2�

We will need this equality in the next section where we study how linear distinguishing
is done in multiple dimensions.

3.2 One vs. Multidimensional Linear Distinguishers

In this section we will present the general statistical framework of multidimensional
approximation.

The theory of hypothesis testing can be found for example in [10]. Here we will
restrict to the most essential parts of the theory. Assume we have two p.d’s p and q,
q � p and consider two hypotheses: H0 states that the experimental data zN of N words
is derived from p and H1 states that zN is derived from q.

In the one-dimensional case, we have a linear approximation such as (2). Let � be the
correlation of the approximation. The number of bits N1 needed to distinguish zN from
a random sequence is �	�2� where � depends on the level and the power of the test. It
was already noted in [1] that the data complexity N1 is proportional to 1	�2� For proof,
see [11]. Note that the bias used in [1] is the correlation divided by two.

The data complexity of the attack in [4] using multiple linear approximations, was
shown to be proportional to Ns.i.� where

Ns.i. �
1�m

i�1 �
2
i

�
1
c̄2
� (3)

and c̄2 is the capacity as defined in [4]. This means a significant improvement in data
complexity, but relies on the assumption that the base approximations are statistically
independent.

Let us next study the case of multiple approximations without the assumption of
statistical independence. The log-likelihood ratio (LLR) is defined as follows:

l(zN) �
M�

��0

N(�) log
p�

q�

� (4)

where p and q are defined as in Definition 1 and N(�) is the experimental frequency of
the value � in zN . The LLR was used as the distinguisher in [5] to proof the following
theorem.

Multidimensional Linear Cryptanalysis of Reduced Round Serpent 207

Theorem 1. Let us have a hypothesis testing problem with H0 stating that the data zN

is drawn i.i.d. from p.d. p and H1 stating that the data is drawn from q � p. Assume
that the p.d’s are close to each other:

�q� � p�� 	 q�� for all �� (5)

Then the amount of data needed for distinguishing the hypotheses is proportional to

N �
�

C(p� q)
� (6)

where � depends on the level and the power of the test.

If we want to distinguish a distribution of some data related to a cipher from that of
a truly random source we will use the previous hypothesis test with q as the ciphers
p.d. and p as the uniform distribution. Using (2) we will see that Ns.i. given by (3) is
actually greater than the true amount of data needed for m
 n linear approximations,
since by using Corollary 2, the latter is proportional to

Nm �
�

C(q)
�

��
a�0 �(a)2

�

In an “optimal case” we can make an m-dimensional approximation where all the corre-
lations �(a) are (in absolute) value equal to the maximal one-dimensional correlations.
If N1 is the data requirement for one approximation, then Nm � N1	(2m � 1)� On the
other hand, if only a single one-dimensional approximation has a large correlation, then
Nm � N1 and it is not useful to use multiple approximations.

In [5] Markovian block ciphers were analysed using multidimensional distinguish-
ers on the probability distributions related to the Markovian transition probabilities
averaged over the keys. Hence, their main goal was to improve the eÆciency of Al-
gorithm 2. Next, we will generalise Matsui’s Algorithm 1 to the multidimensional
case. In the practical experiments we use Corollary 1 to determine the related multidi-
mensional probability distributions from the correlations of the one-dimensional linear
approximations.

3.3 Key Recovery Attack

We will show how to find m key bits of the key K using a multidimensional version
of Algorithm 1. Let X be a uniformly distributed r.v. and Y � f (X), where (X�Y) is a
plaintext-ciphertext pair. We consider the r.v.

UX � WY � VK� (7)

with a fixed unknown key K, and use p to denote the r.v.’s p.d. Here U � (u1� � � � � um)�
W � (w1� � � � �wm) and V � (v1� � � � � vm) are some maskmatrices. This approxima-
tion can be generated from linearly independent one-dimensional approximations with
correlations �1� � � � � �m using Corollary 1 (assuming that we are also given the com-
bined correlations). The linear mapping V divides the key space to equivalence classes

208 M. Hermelin, J.Y. Cho, and K. Nyberg

k � VK � . The bits ki � vi � K are called the parity bits. For each k the expected p.d.
pk of Zk

� UX � WY for the distribution originating from the empirical data will be
some permutation of p determined by the key (class) k. For the purposes of this study,
we assume that all the keys give distinct permutations such that pk

� p j, if k � j.
Biryukov’s attack introduced in [4] uses m� � m linear approximations to select the

correct key class from . It has three phases: distillation, analysis and search phases.
They can be described as follows:

1. Distillation phase. Obtain N plaintext-ciphertext pairs (xt� yt) and calculate the em-
pirical correlation vector ĉ � (�̂1� � � � � ˆ�m�)�

2. Analysis phase. For each key class k, give the key a rank dk and make a sorted list
of the keys with smallest dk at the top of the list.

3. Search phase. Run through the list and try all keys contained in the equivalence
classes until the correct key is found.

The statistic used is dk � ��ĉ � ck ��2 � where ck � ((�1)k1�1� � � � � (�1)km��m�)� a vector
consisting of the theoretical correlations and the parity bits of k. In addition a measure
“gain” was defined to analyze the success of the method taking into account the time
complexity of the search phase.

The purpose of our multidimensional approach is to improve the distillation phase
in theory and in practice. In order to compare the distillation phase of Biryukov’s and
our multidimensional method, we discuss a plain multiple linear cryptanalysis method
(the plain method), which is similar to the Biryukov’s method but without the grading
of the key candidates. We measure the success of the plain method and our method
using the probability POK, which is the probability that the right key is at the top of the
list. We assume that the plain method uses m linearly and statistical independent linear
approximations and recovers m bits of the key based on the deviations dk. Let q be the
experimental p.d. constructed from the data. Our method uses the m base approxima-
tions, 2m �m� 1 combined approximations and the Kullback-Leibler distance between
q and pk� The Kullback-Leibler distance is used in measuring the di�erence between
p.d.’s. It can be seen to be related to the LLR:

Definition 2. The relative entropy or the Kullback-Leibler distance between two distri-
butions p � (p0� � � � � pM) and q � (q0� � � � � qM) is defined as

D(q��p) �
M�

��0

q� log
q�

p�

� (8)

Then, in the analysis phase, instead of a grading problem we face the following multiple
hypothesis testing problem.

Theorem 2. Let us have an ��-ary hypothesis problem, with �� hypotheses Hk stating
that the data originates from pk, where k � corresponds to the key. The hypothesis
for which the Kullback-Leibler distance D(q��pk) is smallest is selected. Given some
success probability POK� the lower bound Nkey for the amount of data needed to give the
smallest value of the statistic when the correct key is used, is given by

Nkey �
4 log2 ��

min j�0 C(p0� p j)
� (9)

Multidimensional Linear Cryptanalysis of Reduced Round Serpent 209

Proof. For each key k we must distinguish pk from p j, for all j � k. Using
Proposition 3 in [5], the probability that we choose j when k is true is

Pr(H j�Hk) �

�
�
�

Nk jC(pk� p j)	2
�
�

where
 is the distribution function of the normed normal distribution. Let the prob-
ability of successfully distinguishing Hk from all the other hypotheses be POK� Then
POK �

�
j�i(1 � Pr(H j�Hk))� Assume Nk jC(pk� p j) � 1 for all j � k. Then

POK � exp

�������	�
1�
2�

�
j�k

e�Nk jC(pk �pj)�4

������� � (10)

Let Nk � max j Nk j. Since we have to collect the amount of Nk for at least one test
with k we can use the same amount for all the tests. On the other hand, let us define
ck � min j C(pk� p j). Replacing the capacities with ck� Nk must be increased to get the
required success probability. We get a lower bound for Nk by solving Nk from (10)

Nk �
4 log2 �� � 4 ln(

�
2� ln POK)

ck
�

Since we do not know which k is the right key, we have to choose N � maxk Nk to be
able to find the right key. Since p j’s are each others’ permutations, we have C(pk� p j) �
C(p0� pk� j). But then ck � mins�0 C(p0� ps) � c0 which is independent of k and (9)
follows. ��

Note that we need the assumption that pi
� p j to ensure that min j C(p0� p j) � 0.

In [5] a similar formula was derived for the purposes of Algorithm 2 to distinguish
the distribution related to the correct key from the, presumably uniform, distribution
related to a wrong key. Formula (9) gives an estimate how much data is needed to
reliably determine which of the �� distributions gives the best fit with the empirical
data. Exactly the same calculations can be done to the Biryukov’s statistic with the help
of proof of Theorem 1 in [4]. Then the data complexity of the plain attack is proportional
to Nplain which is given by the formula

Nplain �
8 log2 ��

min j�k j�k

ck � c j

2

�
2 log2 ��
min j �

2
j

�

Since the denominator in Nkey is usually much larger than in Nplain� we have Nplain �

Nkey. Especially, if the combined correlations are large, the advantage is significant.
The data, time and memory complexities of distillation and analysis phases have

been given in Table 1. The main di�erence in the complexities between our method
and the plain method is due to the fact that our method uses the full m-dimensional
distributions and needs to compute 2m empirical values from the data, while the plain
method determines only the m entries of the empirical correlation vector ĉ.

The main improvements introduced by Biryukov, et al., in [4] is the implementation
of the key ranking procedure and its statistical treatment using the concepts of capacity

210 M. Hermelin, J.Y. Cho, and K. Nyberg

Table 1. Complexities of Algorithm 1 for plain, Biryukov’s and our multidimensional method

Distillation Analysis
Plain Biryukov Our method Plain Biryukov Our method

Data �(Nplain) �(Ns.i.) �(Nkey) - - -
Time �(mNplain) �(m�Ns.i.) �(2mNkey) �(m���) �(m����) �(2m���)

Memory �(m) �(m�) �(2m) �(���) �(���) �(���)

and gain which helps to reduce the lower bound of the data complexity to Ns�i�. For
additional improvement of the practical performance of their method, Biryukov, et al.,
extend the base set of the m linearly (and presumably also statistically) independent
approximations with combined approximations. This extension was justified in [4] by
informal arguments and assuming that the linear approximations also in the extended
set are statistically independent. Statistical independence of linear approximations is
diÆcult to verify in practice. One method would be to evaluate experimentally the cor-
relations of all linear combinations of the approximations and use Piling-Up Lemma
[1] to check for statistical independence. In practical applications of the method of
Biryukov, et al., in [4] and [8], statistical independence was not verified. Let us denote
by m� the number of approximations used, where m
 m� 2m. The resulting com-
plexities are given in Table 1. Selection of m is always a trade-o� between complexity
and maximising the capacity. Typical values for m and m� are, for example, m � 10 and
m�
� 86 in [4] and m � 10 and m�

� 64 in [8]. Also often �� � 2m�

In the next section we will compare Biryukov’s method and our method in practice
using small experiments on the four-round Serpent. The same “test-bed” was previously
used by Collard, et al., in [8] to carry out experiments of Biryukov’s method. When
comparing our results with their results we can see that similar advantage in practi-
cal performance can be achieved using our method and the Biryukov’s with m� � m,
compared to the plain method with just m approximations. In addition, our method has
a few important advantages over the Biryukov’s. We provide sound theoretical justi-
fication for using combined approximations. More importantly, no assumption about
statistical independence of the approximations is needed.

4 Multidimensional Linear Attack on 4-Round Serpent

Serpent [12] is one of the block ciphers proposed to the Advanced Encryption Stan-
dard (AES) competition. It was selected to be among the five finalists [13]. The best
known linear approximation of 9-round Serpent was reported by Biham et al. in FSE
2001 [14]. Recently, experimental results on multiple linear cryptanalysis of 4-round
Serpent were presented by Collard, et al., in [8]. In this section, we will apply the mul-
tidimensional linear attack to the reduced round Serpent and compare our results to the
previous attacks presented in [8].

4.1 Multidimensional Linear Attack on 4-Round Serpent

In [8], authors used maximum m�
� 64 linear approximations to perform Matsui’s Al-

gorithm 1 type -attack on 4-round Serpent. The detailed description of approximations

Multidimensional Linear Cryptanalysis of Reduced Round Serpent 211

Table 2. Input and output masks used for the multidimensional linear attack

index mask � (MSB, . . . , LSB)

input mask

u0 (0x70000000, 0x00000000, 0x00000000, 0x07000900)
u1 (0x70000000, 0x00000000, 0x00000000, 0x07000B00)
u2 (0x70000000, 0x00000000, 0x00000000, 0x0B000900)
u3 (0xB0000000, 0x00000000, 0x00000000, 0x07000900)
u4 (0x70000000, 0x00000000, 0x00000000, 0x07000500)
u5 (0x70000000, 0x00000000, 0x00000000, 0x07000600)
u6 (0x70000000, 0x00000000, 0x00000000, 0x07000C00)
u7 (0x70000000, 0x00000000, 0x00000000, 0x01000900)
u8 (0x70000000, 0x00000000, 0x00000000, 0x0A000900)
u9 (0xB0000000, 0x00000000, 0x00000000, 0x03000B00)

output mask w (0x00007000, 0x03000000, 0x00000000, 0x00000000)

can be found in [15]. Those 64 linear approximations used in the attack are not linearly
independent. Hence, strictly speaking, the attack in [8] is not consistent with the tech-
nique in [4] which assumes that multiple approximations are statistically independent.
On the other hand, our attack does not require such a statistical assumption. One can
exploit as many approximations with non-negligible correlations as possible for recov-
ering the targeted key bits without such restriction.

In experiments, we chose a 4-round linear trail (from S 4 to S 7) that was used in
[8]. We picked up m � 10 linearly independent approximations L0� ���� L9 which can
be used to recover 10 bits of the first round key. 1 The input and output masks of the
approximations used in our attack are listed in Table 2.

Let us denote Li as follows:

ui � P � w �C � vi � K i � 0� � � � � 9 (11)

where ui�w and vi stand for the input mask, output mask and the key mask, respectively
and P�C and K represent the plaintext, ciphertext and the key, respectively. Note that
the output mask w is identical for all the approximations since this experiment targets
the first round key, not the last one.

Let Q � span�L0� ���� L9� such that Q is a set of approximations generated by the 10
base approximations Li. Then, �Q� � 210 � 1. Note that the 64 linear approximations
used in [8] form a subset of Q.

Our experiments were performed in two ways: In the first experiment, we used all
the linear approximations of the set Q. Among 210 � 1 linear approximations of the Q,
we found that 200 of them held with non-negligible correlations, as listed in Table 3.
The correlations of the approximations were calculated by the Piling-up lemma [1]. We
note that their real correlations can be di�erent from calculated ones due to the e�ect of
correlations of other linear trails using the same input and output masks. However, we
assume that the theoretical correlations of the approximations are close to the calculated
correlations.

1 We can find maximum 12 linear appr. to recover 12 bits of the first round key from this linear
trail. However, we targeted only 10 bits of the key for direct comparison of the performance
between the Biryukov’s attack and multidimensional attack.

212 M. Hermelin, J.Y. Cho, and K. Nyberg

Table 3. Correlations of approximations

correlation # of approximations
64 appr. 10 base appr., 200 non-negligible

2�11 8 8
2�12 56 64
2�13 0 128

In the second experiment, we generated from L0� ���� L9 the 64 linear approximations
which were the same as those used in [8] and used them in our method while approxi-
mating the rest of the combined correlations to be zero. In this manner we get a rougher
approximation of the full 10-dimensional p.d. than with using 200 approximations. The
purpose of this experiment was to compare the performance of the Biryukov’s attack to
that of our attack when the same approximations are exploited in both attacks.

For comparison, we applied both the Biryukov’s and our method to the 4-Round Ser-
pent and measured their gains by experiment so that we could compare our method with
the results in [8]. It was already noted in [8] that the plain method (using m approxima-
tions) gives poorer results than the Biryukov’s method (using m� � m approximations).
No explanation was given to this heuristics in [4] or [8]. Following the theory of the
previous sections this heuristic can be justified: Increasing m� makes the Biryukov’s
method approximate the real multidimensional method. However, since the LLR is the
optimal statistic, the Biryukov’s method cannot perform better than our method even
when m�

� 2m � 1.
According to Lemma 1 in [4], the key class k is determined by searching for the

minimum Euclidean distance ��ĉ � ck��2 � where ĉ � (�̂1� � � � � ˆ�10) is the estimated corre-
lation of ten approximations. On the other hand, in our attack, we measure the empir-
ical probability distributions q of multiple approximations and determine the key class
k by searching for the minimum Kullback-Leibler distance D(q��pk)� where pk is some
permutation of the theoretical probability distribution p. The p.d. p is computed by
Corollary 1 using theoretical correlations of one-dimensional approximations. The p.d.
q could be calculated in the same way by using the experimental correlations but in this
work it was constructed directly using 2m counters.

We performed the experiments repeatedly 100 times and obtained the average gain of
each method. We used a di�erent 128-bit key that was randomly selected each time. The
results are displayed in Fig. 1. For comparison, the gain � of the attack was measured
using the formula which was introduced in [4] as follows

� � � log2
2 � M � 1

210

In Fig. 1, the multidimensional attack using 10 linearly independent approximations
with full span (200 non-negligible approximations) reaches the full gain at around 222

texts. Compared to this result, Biryukov’s attack shows that the gain of the attack is
saturated with around 223 texts. Hence, this experiment shows that our method requires
less data to get the same accuracy as Biryukov’s method. The plain method with m � 10
approximations would give even weaker results not reaching the maximum gain until
with about 226 texts, see Fig. 5 of [8].

Multidimensional Linear Cryptanalysis of Reduced Round Serpent 213

2^12 2^14 2^16 2^18 2^20 2^22 2^24
0

1

2

3

4

5

6

7

8

9

10

number of texts

ga
in

 o
f t

he
 a

tta
ck

Multidimensional(200 appr.)
Multidimensional(64 appr.)
Biryukov(64 appr.)[8]

Fig. 1. Comparison of the gain of the di�erent attacks using multiple linear approximations

5 Conclusions

In this paper we investigated a few di�erent approaches presented in recent years on
linear cryptanalysis using multiple approximations. We used the statistical theory pre-
sented in [5] and developed a new multidimensional cryptanalysis attack. For this pur-
pose, we also showed how to construct multidimensional linear approximations from
one-dimensional approximations. The main advantage of the new method is that the
assumption on statistical independence of the linear approximations can be removed.

We also applied our method to the 4-round version of block cipher Serpent that
was studied in [8] using Biryukov’s method [4]. We studied the cases of 10 linear ap-
proximations, showed how to make multidimensional approximations from them and
measured the success of recovering 10 key parity bits.

We also saw in Table 3 examples where the combined approximations had corre-
lations of the same magnitude as the base approximations. This demonstrates that the
assumption about statistical independence between the base approximations needed in
Biryukov’s method used in [8] does not hold. The theoretical framework presented in
this paper removes the need of this assumption.

References

1. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, New York (1994)

2. Matsui, M.: The First Experimental Cryptanalysis of the Data Encryption Standard. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer, Heidelberg (1994)

214 M. Hermelin, J.Y. Cho, and K. Nyberg

3. Burton, S., Kaliski, J., Robshaw, M.J.B.: Linear Cryptanalysis Using Multiple Approxima-
tions. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidel-
berg (1994)

4. Biryukov, A., Canniére, C.D., Quisquater, M.: On Multiple Linear Approximations. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer, Heidelberg (2004)

5. Baignères, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Cryptanalysis?
In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450. Springer, Heidelberg
(2004)

6. Wagner, D.: Towards a unifying view of block cipher cryptanalysis. In: Roy, B., Meier, W.
(eds.) FSE 2004. LNCS, vol. 3017, pp. 16–33. Springer, Heidelberg (2004)

7. Englund, H., Maximov, A.: Attack the Dragon. In: Maitra, S., Veni Madhavan, C.E., Venkate-
san, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 130–142. Springer, Heidelberg
(2005)

8. Collard, B., Standaert, F.X., Quisquater, J.J.: Experiments on the Multiple Linear Cryptanal-
ysis of Reduced Round Serpent. In: Proceedings of FSE 2008. LNCS, Springer, Heidelberg
(to appear, 2008)

9. Nyberg, K., Hermelin, M.: Multidimensional Walsh Transform and a Characterization of
Bent Functions. In: Tor Helleseth, P.V.K., Ytrehus, O. (eds.) Proceedings of the 2007 IEEE
Information Theory Workshop on Information Theory for Wireless Networks, pp. 83–86.
IEEE, Los Alamitos (2007)

10. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Series in Telecommu-
nications and Signal Processing. Wiley-Interscience, Chichester (2006)

11. Junod, P.: On the Complexity of Matsui’s Attack. In: Vaudenay, S., Youssef, A.M. (eds.) SAC
2001. LNCS, vol. 2259, pp. 199–211. Springer, Heidelberg (2001)

12. Anderson, R., Biham, E., Knudsen, L.: Serpent: A Proposal for the Advanced Encryption
Standard. In: First Advanced Encryption Standard (AES) conference (1998)

13. NIST: A request for Candidate Algorithm Nominations for the Advanced Encryption Stan-
dard AES (1997), �����������	
���	����������������
����	����

14. Biham, E., Dunkelman, O., Keller, N.: Linear Cryptanalysis of Reduced Round Serpent. In:
Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 16–27. Springer, Heidelberg (2002)

15. Collard, B., Standaert, F., Quisquater, J. (2008),
����������	����	���	��	�������
����������� !�	"��

A Brief Description of Serpent Algorithm

We use the notation of [12]. Each intermediate value of round i is denoted by B̂i (a
128-bit value). Each B̂i is treated as four 32-bit words X0� X1� X2� X3 where bit j of Xi is
bit 4 � i � j of the B̂i. Serpent has a set of eight 4-bit to 4-bit S Boxes S 0� � � � � S 7 and a
128-bit to 128-bit linear transformation LT . Each round function Ri uses a single S-box
32 times in parallel.

Serpent ciphering algorithm is formally described as follows.

B̂0 � P ˆBi�1 � Ri(B̂i) C � B32�

where

Ri(X) � LT (Ŝ i(X � K̂i))� i � 0� � � � � 30

Ri(X) � Ŝ i(X � K̂i) � K̂32� i � 31�

http://csrc.nist.gov/archive/aes/index2.html
http://www.dice.ucl.ac.be/fstandae/PUBLIS/50b.zip

Multidimensional Linear Cryptanalysis of Reduced Round Serpent 215

The linear transformation LT is described as follows.

X0� X1� X2� X3 � S i(Bi � Ki)

X0 � X0� 12

X2 � X2� 3

X1 � X1 � X0 � X2

X3 � X3 � X2 � (X0� 3)

X1 � X1� 1

X3 � X3� 7

X0 � X0 � X1 � X3

X2 � X2 � X3 � (X1� 7)

X0 � X0� 5

X2 � X2� 22

Bi�1 � X0� X1� X2� X3

The detailed description of Serpent can be found in [12].

Cryptanalysis of Reduced-Round SMS4

Block Cipher

Lei Zhang1,2, Wentao Zhang1, and Wenling Wu1

1 State Key Laboratory of Information Security,
Institute of Software, Chinese Academy of Sciences, Beijing 100190, P.R. China

{zhanglei1015,wwl}@is.iscas.ac.cn,
zhangwt06@yahoo.com

2 State Key Laboratory of Information Security,
Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China

Abstract. SMS4 is a 128-bit block cipher used in the WAPI standard.
WAPI is the Chinese national standard for securing Wireless LANs. Since
the specification of SMS4 was not released until January 2006, there
have been only a few papers analyzing this cipher. In this paper, firstly
we present a kind of 5-round iterative differential characteristic of SMS4
whose probability is about 2−42. Then based on this kind of iterative dif-
ferential characteristic, we present a rectangle attack on 16-round SMS4
and a differential attack on 21-round SMS4. As far as we know, these
are the best cryptanalytic results on SMS4.

Keywords: SMS4, Block cipher, Differential characteristic, Rectangle
attack, Differential cryptanalysis.

1 Introduction

SMS4 is the underlying block cipher used in the WAPI (WLAN Authentication
and Privacy Infrastructure) standard to protect WLAN products. The WAPI
standard is a Chinese national standard for securing Wireless LANs, and it was
also submitted to the ISO trying to be adopted as an international standard. Al-
though it was rejected by the ISO in favor of IEEE 802.11i, the WAPI standard is
still officially mandated in China. Considering that the rejection of WAPI by ISO
was partially because of the uncertainties regarding the security of the undis-
closed block cipher, the specification of SMS4 [1] was declassified by Chinese
government in January 2006. The publication of SMS4 is supposed to encour-
age the cryptanalysts to evaluate its strength against all kinds of cryptanalytic
attacks and gain security evidence.

SMS4 employs a 32-round unbalanced Feistel network structure, and both of
its block size and key size are 128 bits. Since its publication, there have been only
a few cryptanalytic results. First of all, a differential fault analysis of SMS4 was
presented in [13]. Later in 2007, Liu et al [9] investigated the origin of the S-Box
employed by the cipher and presented an integral attack on 13-round SMS4. In
[7], Ji and Hu analyzed the structure of SMS4 from a viewpoint of algebra, and

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 216–229, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Cryptanalysis of Reduced-Round SMS4 Block Cipher 217

estimated the complexity of solving the equation system. Moreover, in [10] Lu
presented a rectangle attack on 14-round SMS4 and an impossible differential
attack on 16-round SMS4, which are the best cryptanalytic results on SMS4 in
the open literature.

Differential attack [2,3] is one of the most effective approaches in analyzing a
cipher. A good cipher must provide enough security against known attacks before
it is widely accepted by public. In [1] the specification of SMS4 was published
without security analysis. Thus in this paper we try to search for good differ-
ential characteristics with high probabilities, and evaluate the security of SMS4
against differential-type attack. Amongst our results, we first present a kind of
5-round iterative differential characteristic of SMS4 whose average probability
is 2−42. Then based on a 14-round rectangle distinguisher constructed by the
5-round iterative differential, we mount a rectangle attack on 16-round SMS4.
This is a better result than the rectangle attack in [10]. Furthermore, by iter-
ating the 5-round iterative differential three and a half times, we can obtain an
18-round differential characteristic with a probability of 2−126. Then we present
a differential attack on 21-round SMS4, which is the best cryptanalytic result on
SMS4 so far. However, our attack still can not endanger the full 32-round SMS4
since the round number has provided a sufficient safety margin.

The rest of the paper is organized as follows. Section 2 provides a description
of SMS4. In Section 3, we introduce a kind of 5-round iterative differential char-
acteristics of SMS4. Then in Sections 4 and 5, a rectangle attack on 16-round
SMS4 and a differential attack on 21-round SMS4 are presented respectively.
Finally, Section 6 summarizes this paper.

2 Description of SMS4

SMS4 is a block cipher with a 128-bit block size and a 128-bit key size. The overall
structure of SMS4 is 32-round unbalanced Feistel network. Since the encryption
procedure and the decryption procedure of SMS4 are identical except that the
round subkeys are used in the reverse order, we will just describe the encryption
procedure in the followings.

2.1 Notation

First of all, we introduce the following notations used throughout this paper.
− Z32

2 denotes the set of 32-bit words, and Z8
2 denotes the set of 8-bit bytes;

− Sbox(·) is the 8× 8 bijective S-Box used in the round function F ;
− ≪ i : left rotation by i bits;
− (Xi, Xi+1, Xi+2, Xi+3) ∈ (Z32

2)4 denotes the input of the i-th round, and RKi

is the corresponding 32-bit subkey in round i (0 ≤ i ≤ 31);
− ProbF (α → β) : the probability that the output difference of the function F
is β when the input difference is α (F can be omitted when the context is clear);
− We call a S-Box active if the input difference of it is nonzero; Otherwise, if
the input difference is zero ,we call it a passive S-Box.

218 L. Zhang, W. Zhang, and W. Wu

Xi Xi+1 Xi+2 Xi+3

� � � �
���

����������������������

��������

��������

��������
� � � �

Xi+1 Xi+2 Xi+3 Xi+4

⊕

RKi
�

�T�⊕

T = L ◦ S

Fig. 1. The i-th round of SMS4

2.2 Encryption Procedure of SMS4

Let (X0, X1, X2, X3) ∈ (Z32
2)4 and (Y0, Y1, Y2, Y3) ∈ (Z32

2)4 denote the 128-bit
plaintext P and the 128-bit ciphertext C respectively. The round subkeys are
RKi ∈ Z32

2 , (i = 0, 1, 2, . . .31). Note that the first round is referred as Round 0.
Then the encryption procedure of SMS4 is as follows:

Xi+4 = F (Xi, Xi+1, Xi+2, Xi+3, RKi) = Xi ⊕ T (Xi+1 ⊕Xi+2 ⊕Xi+3 ⊕RKi),

for i = 0, 1, . . . , 31. In the end, the 128-bit ciphertext is generated by applying
the switch transformation R to the output of Round 31:

(Y0, Y1, Y2, Y3) = R(X32, X33, X34, X35) = (X35, X34, X33, X32).

Specifically, the i-th round of SMS4 can be expressed as follows:

(Xi, Xi+1, Xi+2, Xi+3) F−→ (Xi+1, Xi+2, Xi+3, Xi+4),

and the round function F (Xi, Xi+1, Xi+2, Xi+3, RKi) is defined as:

Xi+4 = Xi ⊕ T (Xi+1 ⊕Xi+2 ⊕Xi+3 ⊕RKi),

where the transformation T is composed of a non-linear transformation S and a
linear diffusion function L, namely T (·) = L(S(·)).

The non-linear transformation S applies the same 8 × 8 S-Box four times in
parallel to an 32-bit input. Let A = (a0, a1, a2, a3) ∈ (Z8

2)4 denotes the input
of transformation S, and B = (b0, b1, b2, b3) ∈ (Z8

2)4 denotes the corresponding
output. Then the transformation S is defined as follows:

(b0, b1, b2, b3) = S(A) = (Sbox(a0), Sbox(a1), Sbox(a2), Sbox(a3)).

The diffusion transformation L is a simple linear function whose input is the
output of transformation S. Let B ∈ Z32

2 and C ∈ Z32
2 denote the input and

output of L respectively. Then the linear function L is defined as follows.

C = L(B) = B ⊕ (B ≪ 2)⊕ (B ≪ 10)⊕ (B ≪ 18)⊕ (B ≪ 24).

Cryptanalysis of Reduced-Round SMS4 Block Cipher 219

Fig. 1 depicts one round of the encryption procedure of SMS4. We omit the
key scheduling algorithm of SMS4 as it is not involved in our analysis, and
interested readers can refer to [1] and [10] for details.

3 5-Round Iterative Differential Characteristic of SMS4

In this section, we present a kind of 5-round iterative differential characteristic
of SMS4 whose average probability is about 2−42. Our later analysis are mainly
based on this new-found iterative differential. Fig. 2 illustrates the trace of the
5-round iterative differential characteristic in detail.

Let α ∈ Z32
2 \{0} denotes a 32-bit nonzero difference, and we choose the input

difference of Round i as (α, α, α, 0). Then the input difference of transformation
T in Round i equals to 0 (= α⊕α⊕0); thus the output difference of T also equals
to 0. Therefore, the output difference of the i-th round is (α, α, 0, α) with proba-
bility 1. Next in Round (i + 1), the input and output difference of T are both 0;
hence the output difference of the (i+1)-th round is (α, 0, α, α) with probability
1. Similarly, after passing through the (i + 2)-th round, the output difference of
Round (i+ 2) is (0, α, α, α) with probability 1. In the (i+ 3)-th round, the input
difference of T equals to α. Then after applying transformation T , the probability
that the output difference is also α is denoted as ProbT (α→ α). Therefore, the
output difference of Round (i+3) is (α, α, α, α) with probability ProbT (α→ α).
Similar analysis can be applied to the (i + 4)-th round, and the input difference
of Round (i + 4) can be transformed into the output difference (α, α, α, 0) with
probability ProbT (α→ α). Therefore, we have obtained the following 5-round
iterative differential characteristic whose probability is (ProbT (α→ α))2.

(α, α, α, 0) 5R−→ (α, α, α, 0), p = (ProbT (α→ α))2 . (1)

The subsequent problem would be how to select the value of α to make the
probability (ProbT (α→ α))2 as high as possible. First of all, we introduce the
following two properties of SMS4 which are important to our analysis.

Property 1. For the S-Box of SMS4, there exist 127 possible output differences
for any nonzero input difference, of which 1 output difference occurs with prob-
ability 2−6, and each of the other 126 output differences occurs with probability
2−7.

Definition 1. (Branch number) Let W (·) denote the byte weight function,
namely the number of nonzero bytes. The branch number of a linear transforma-
tion L : Z32

2 → Z32
2 is:

min
a�=0,a∈Z32

2

(W (a) + W (L(a))).

Property 2. The branch number of the linear transformation L in the round
function of SMS4 is 5.

Property 1 and 2 can be verified by computer programs easily. Moreover, ac-
cording to Property 1, we can see that the difference distribution table of the
SMS4’s S-Box is similar to that of AES.

220 L. Zhang, W. Zhang, and W. Wu

α α α 0

� � � �
���

����������������������

��������

��������

��������

⊕

RKi
�

�T�⊕
p = 1

α α 0 α

� � � �
���

����������������������

��������

��������

��������

⊕

RKi+1
�

�T�⊕
p = 1

α 0 α α

� � � �
���

����������������������

��������

��������

��������

⊕

RKi+2
�

�T�⊕
p = 1

0 α α α

� � � �
���

����������������������

��������

��������

��������

⊕

RKi+3
�

�T�⊕
p = ProbT (α→ α)

α α α α

� � � �
���

����������������������

��������

��������

��������

⊕

RKi+4
�

�T�⊕

� � � �

p = ProbT (α→ α)

α α α 0

Fig. 2. The 5-round iterative differential characteristic of SMS4

In order to make the probability of the above iterative differential as high as
possible, we need to make the number of active S-Boxes in the non-linear layer
as low as possible. Considering that in the above differential both the input and
output difference of T are α and the branch number of L is 5 according to Prop-
erty 2, we can know that α has at least 3 active bytes. Therefore, the probability

Cryptanalysis of Reduced-Round SMS4 Block Cipher 221

of the above iterative differential is maximized when α has only three active
bytes. For simplicity, we can fix the passive byte as byte 0, and α is expressed
as (0, a1, a2, a3), where a1, a2, a3 ∈ Z8

2\ {0}. Furthermore, since the input differ-
ence of transformation S is α and the corresponding output difference is L−1 (α),
the first byte of L−1 (α) must be zero, namely L−1 (α) = (0, b1, b2, b3), where
b1, b2, b3 ∈ Z8

2\ {0}. After testing all the possible values of α = (0, a1, a2, a3) by
programs, there remain about 216 candidates satisfying that only the first byte
of L−1 (α) is zero.

For all the 216 remaining candidates of α, the probability ProbT (α→ α) can
be computed as follows.

ProbSbox (a1 → b1)× ProbSbox (a2 → b2)× ProbSbox (a3 → b3) .

According to Property 1, for any nonzero input difference, there are only 127
possible output differences. Therefore, ProbT (α→ α) is not equal to 0 for only
about 213(= 216 × (1/2)3) possible values of α. Our experimental results verify
the theoretical estimations well, and in practice we get 7905

(≈ 212.95
)

possible
values of α. Moreover, according to Property 1, only one of the 127 possible
output difference occurs with probability 2−6, and each of the other 126 output
differences occurs with probability 2−7. Thus for most of the 213 possible values of
α (with a probability of (126/127)3), ProbT (α→ α) equals to (2−7)3. Although
for a few possible α, ProbT (α→ α) may have higher probability such as 2−20

and 2−19. Therefore, in most cases of the 213 possible α, the probability of the
above 5-round iterative differential characteristics is 2−42. Note that for a few
α, the 5-round iterative differentials may have higher probability.

To sum up, the average probability of the 5-round iterative differential charac-
teristic (α, α, α, 0) 5R−→ (α, α, α, 0) is about 2−42, and there are about 213 possible
values of α when we fix the first byte of α as passive byte. Similar analysis can be
applied to the cases when we fix the other byte as passive byte, and our testing
programs get just the same results.

In the end, we give an example of the 5-round iterative differential. Choose
α = 00 e5 ed ec (in hexadecimal), then we have L−1(α) = 00 01 0c 34. According
to the difference distribution table of the S-Box, we have the following equations:

ProbSbox(e5→ 01) = ProbSbox(ed→ 0c) = ProbSbox(ec→ 34) = 2−7.

Thus the probability that both of the input and output difference of T are α
is ProbT (00 e5 ed ec → 00 e5 ed ec) = 2−21. Therefore, we get the following
5-round iterative differential characteristic of SMS4:

(00e5edec, 00e5edec, 00e5edec, 0) 5R−→ (00e5edec, 00e5edec, 00e5edec, 0)

whose probability is 2−42.

4 Rectangle Attack on 16-Round SMS4

The rectangle attack [4,5,6,11] is an improved chosen plaintext variant of the
boomerang attack [8,12]. The key idea is to encrypt many plaintext pairs (P1, P2)

222 L. Zhang, W. Zhang, and W. Wu

and (P3, P4) with input difference λ to look for quartets that conform to the
rectangle distinguisher, namely C1⊕C3 = C2⊕C4 = δ. First of all, a block cipher
is treated as a cascade of two sub-ciphers E = E1 ◦ E0, such that for E0 there
exists a differential λ→ β with probability p, and for E1 there exists a differential
γ → δ with probability q. Thus the probability of the rectangle distinguisher is
p22−nq2. Then by using all possible β’s and γ’s simultaneously, we can get a
rectangle distinguisher with probability 2−n (p̂q̂)2, where p̂ =

√
∑

β

Pr2 [λ→ β]

and q̂ =
√
∑

γ
Pr2 [γ → δ]. Finally, by guessing subkeys of the first or the last

several rounds , the rectangle distinguisher can be used for a key recovery attack.

4.1 The 14-Round Rectangle Distinguisher

In this subsection, we construct a 14-round rectangle distinguisher based on the
5-round iterative differential characteristic described in Section 3. This distin-
guisher can be used to mount a rectangle attack on SMS4 reduced to 16 rounds.

According to the analysis in Section 3, although for most of the 213 possible
values of α the probabilities of the 5-round iterative differential are 2−42, there
are still some α which can lead to differentials with higher probabilities. By
searching through all the possible values, we choose α = 00 c3 02 90 which max-
imizes the probability of the 5-round iterative differential, and the probability
of one round ProbT (α→ α) is computed as follows.
Prob (c3→ 90)× Prob (02→ 81)× Prob (90→ 45) = 2−7 × 2−6 × 2−6 = 2−19

Therefore, we have obtained a 5-round iterative differential with probability 2−38

which is higher than the average probability.
Based on this specific 5-round iterative differential, we can construct a 14-

round rectangle distinguisher, and the differentials used for E0 (Rounds 0-8)
and E1 (Rounds 9-13) are as follows.

−The following 9-round differentials are used for E0: (Δ, Δ, Δ, 0)→(Δ, Δ, Δ, β),
where Δ = 00 c3 02 90 and β has 1273 possible values. It is constructed by
iterating the above 5-round differential one and a half times, and then extending
one more round in the end. Note that a half 5-round iterative differential means
the first three rounds whose probabilities are all equal to 1. See Table 1 for
details of the first differential, and the difference in the table means the input
difference to the corresponding round.
−The following 5-round differentials are used for E1: (γ, Ψ, Ψ, Ψ)→ (Ψ, Ψ, Ψ, δ),
where Ψ = 00 00 00 02, δ = 83 06 06 85 and γ has 127 possible values. It is
composed of a half 5-round differential and two extended rounds before and
after it. See Table 2 for details of the second differential.

For the first differential, there are 1273 possible output differences β. Accord-
ing to Property 1, the probabilities of pβ are distributed as follows: one β has
probability 2−18, 3 ·126 have probability 2−19, 3 ·1262 have probability 2−20, and
1263 have probability 2−21. As we use all these differentials simultaneously, the
probability of the first differential is p̂ =

√
∑

β

Pr2 [(Δ, Δ, Δ, 0)→ (Δ, Δ, Δ, β)] ≈

Cryptanalysis of Reduced-Round SMS4 Block Cipher 223

Table 1. The first differential used for E0

Round(i) ΔXiΔXi+1ΔXi+2ΔXi+3 Prob.

0 (Δ, Δ, Δ, 0) /
1 (Δ, Δ, 0, Δ) 1
2 (Δ, 0, Δ, Δ) 1
3 (0, Δ, Δ, Δ) 1
4 (Δ, Δ, Δ, Δ) 2−19

5 (Δ, Δ, Δ, 0) 2−19

6 (Δ, Δ, 0, Δ) 1
7 (Δ, 0, Δ, Δ) 1
8 (0, Δ, Δ, Δ) 1

output (Δ, Δ, Δ, β) pβ

Table 2. The second differential used for E1

Round(i) ΔXiΔXi+1ΔXi+2ΔXi+3 Prob.

9 (γ, Ψ, Ψ, Ψ) /
10 (Ψ, Ψ, Ψ, 0) pγ

11 (Ψ, Ψ, 0, Ψ) 1
12 (Ψ, 0, Ψ, Ψ) 1
13 (0, Ψ, Ψ, Ψ) 1

output (Ψ, Ψ, Ψ, δ) 2−6

2−48.47. Similar analysis can be applied to the second differential, and the total
probability of the second differential is q̂ =

√
∑

γ
Pr2 [(γ, Ψ, Ψ, Ψ)→(Ψ, Ψ, Ψ, δ)] ≈

2−9.55. Therefore, the probability of the 14-round rectangle distinguisher is about
2−128 · (2−48.47)2 · (2−9.55)2 ≈ 2−244.04. As for a random permutation, the prob-
ability that a quartet satisfies the distinguisher is (2−128)2 = 2−256 < 2−244.04,
this 14-round rectangle distinguisher can be used to mount a key recovery attack.

4.2 Rectangle Attack Procedure

We set the 14-round rectangle distinguisher at Rounds 0 ∼ 13, and by guessing
subkeys of the following two rounds we can mount a rectangle attack on SMS4
reduced to 16 rounds (Round 0 ∼ 15). Since the last switch transformation R
has no effect to our attack, we will omit it in the later analysis. The rectangle
attack procedure is as follows.

1. Choose N = 2124 pairs of plaintexts (Pi, P
∗
i), where P ∗

i = Pi ⊕ (Δ, Δ, Δ, 0).
Denote the corresponding ciphertext pairs as (Ci, C

∗
i), and the k-th (0 ≤ k ≤

3) word of Ci and C∗
i are denoted as Ci,k and C∗

i,k respectively. Then these
pairs can generate about N2/2 = 2247 candidate quartets (Ci, C

∗
i , Cj , C

∗
j),

for 1 ≤ i < j ≤ 2124.

224 L. Zhang, W. Zhang, and W. Wu

2. For each candidate quartet (Ci, C
∗
i , Cj , C

∗
j), check if the first two words of

Ci ⊕ Cj and C∗
i ⊕ C∗

j are equal to (Ψ, δ). If this is not the case, discard the
quartet. After this test there remains about 2247 ·2−64 ·2−64 = 2119 quartets.

3. For all the remaining quartets, compute Ci,0⊕Ci,1⊕Ci,2 and Cj,0⊕Cj,1⊕Cj,2,
which are the inputs of T in Round 15 for Ci and Cj respectively. Then insert
the quartets into a hash table indexed by the 64-bit computed values. About
2119 · 2−64 = 255 collisions are expected for each index.

4. For every guess of the 32-bit subkey RK15 in Round 15, do as follows:
(a) For each 64-bit index, compute the output of transformation T in Round

15, namely T (Ci,0⊕Ci,1⊕Ci,2⊕RK15) and T (Cj,0⊕Cj,1⊕Cj,2⊕RK15).
Then for each quartet (Ci, C

∗
i , Cj , C

∗
j) that collides on the same index,

decrypt Round 15 for Ci and Cj . Check if the first word of their output
difference of Round 14 is equal to Ψ , and discard the unsatisfied quartets.
After this test there remains about 255 · 2−32 · 264 = 287 quartets.

(b) Next insert all the remaining quartets into a hash table indexed by the
64-bit value C∗

i,0 ⊕ C∗
i,1 ⊕ C∗

i,2 and C∗
j,0 ⊕ C∗

j,1 ⊕ C∗
j,2. This will cause

about 287 · 2−64 = 223 collisions for each index. Using the guessed value
of subkey RK15, decrypt the 15-th round for C∗

i and C∗
j . Check if the

first word of their output difference of Round 14 is equal to Ψ . If this
is not the case, discard the quartet. After this test there remains about
223 · 2−32 · 264 = 255 quartets.

(c) For all the remaining quartets, try all the 232 possible values of subkey
RK14, and decrypt the 14-th round for Ci and Cj . Check if the first
word of their output difference of Round 13 is equal to Ψ . If this is not
the case, discard the quartet. Then decrypt Round 14 and do the similar
check for C∗

i and C∗
j , and discard the unsatisfied quartets. If 6 or more

quartets pass all the tests, output the corresponding guessed subkey as
correct RK15 and RK14. Otherwise, return to Step 4 and repeat.

4.3 Analysis of the Attack

After the tests in Step 4-(c), for the wrong key guesses, the expected remaining
quartet is about 255 · 2−64 = 2−9. However, for the correct key guess, it is
expected that there remain about 2247 · 2−244.04 ≈ 8 right quartets after all
the tests. Thus the probability that a wrong subkey guess is output in Step 4-
(c) is about 2−63.5, which is computed approximately by the following Poisson
distribution: X ∼ Poi(λ = 2−9), Pr[X ≥ 6] ≈ 2−63.5. Hence the number of
wrong subkey outputs is rather small, and it can be removed easily by one
encryption check. For the correct key guess, the probability that 6 or more
quartets pass all the tests is approximately 0.81, which is computed by the
Poisson distribution X ∼ Poi(λ = 8), Pr[X ≥ 6] ≈ 0.81. Therefore, the success
probability of the rectangle attack on 16-round SMS4 is about 81%.

The attack requires 2125 chosen plaintexts in all, and the time complexity can
be estimated as follows. Compared to the decryptions in Step 4, the computations
in Steps 2 and 3 take relatively small time and thus can be omitted. For Steps
4-(a) and (b) the time complexities are both about 232 · 264 = 296 one round

Cryptanalysis of Reduced-Round SMS4 Block Cipher 225

encryption. In Step 4-(c) the total number of guessed subkey bits are 64-bit, and
there remains 255 quartets for the first check and 223 quartets for the second
check; thus the time complexity of Step 4-(c) is about 264 ·255 ·2+264·223 ·2 ≈ 2120

one round encryption. Therefore, the total time complexity of the attack is about
2120/16 = 2116 16-round encryption. The remaining 64-bit unknown subkeys can
be obtained by other technique such as exhaustive search.

We stress that our rectangle attack on 16-round SMS4 is just a simple and
standard attack, and we have not adopted any skills such as plaintext structures
and divide-and-conquer technique. Therefore, we believe that by utilizing these
techniques significant improvements can be made to our attack.

5 Differential Cryptanalysis on 21-Round SMS4

In this section, we construct an 18-round differential characteristic by iterating
the 5-round iterative differential described in Section 3 three and a half times,
and its probability is about (2−42)3 = 2−126. The 18-round differential (Rounds
0 ∼ 17) can be expressed as follows.

(α, α, α, 0) 5R−→ (α, α, α, 0) 5R−→ (α, α, α, 0) 5R−→ (α, α, α, 0) 3R−→ (0, α, α, α).

Then by guessing subkeys of the following three rounds we can mount a differ-
ential attack on SMS4 reduced to 21 rounds.

According to the analysis in Section 3, there are about 213 possible values of α
when we fix the first byte as passive byte. In later analysis, we denote the set of
all the 213 possible α as Diff = {((0, u, v, w), (0, u, v, w), (0, u, v, w), (0, 0, 0, 0))}.
Therefore, when the difference of a plaintext pair belongs to Diff , with a average
probability of 2−126 the output difference of them after Round 17 is expected to
be ((0, 0, 0, 0), (0, u, v, w), (0, u, v, w), (0, u, v, w)).

5.1 Attack Procedure

We set the 18-round differential at Rounds 0 ∼ 17, and choose the differences
of the plaintext pairs as (α, α, α, 0) ∈ Diff , where α = (0, u, v, w). Then the
output differences of Round 17 for the right pairs are expected to be (0, α, α, α),
and the output differences of the following three rounds are supposed to be
(α, α, α, ∗), (α, α, ∗, ∗) and (α, ∗, ∗, ∗), where ∗ denotes an unknown word. The
differential attack on 21-round SMS4 (Rounds 0 ∼ 20) is described as follows.

1. Select m structures of 272 plaintexts each, where in each structure the 56 bits
of bytes 0, 4, 8, 12, 13, 14, 15 are fixed, and all the other 72 bits take all the
possible values. Then each structure generates about (272)2/2 = 2143 plain-
text pairs with difference ((0, ∗, ∗, ∗), (0, ∗, ∗, ∗), (0, ∗, ∗, ∗), (0, 0, 0, 0)), and m
structures can propose about m · 2143 plaintext pairs in all.

2. For each plaintext pair, check if the difference of the plaintext pair belongs
to set Diff . If this is not the case, discard the pair. After this test, about
m · 2143 · (213/272) = m · 284 plaintext pairs are expected to remain.

226 L. Zhang, W. Zhang, and W. Wu

3. For each remaining pair (Pi, Pj), compute the plaintext difference and de-
note it as ((0, u, v, w), (0, u, v, w), (0, u, v, w), (0, 0, 0, 0)). Then compute the
difference of the corresponding ciphertext pair (Ci, Cj), and check if the first
word of the ciphertext difference equals to (0, u, v, w). If this is not the case,
discard the pair. After this test there remains m · 284 · 2−32 = m · 252 pairs.

4. For every guess of the 32-bit subkey RK20 in Round 20, do as follows:
(a) For all the remaining pairs, partially decrypt the 20-th round: X20 =

X24⊕T (X21⊕X22⊕X23⊕RK20). Check if the first word of the output
difference of Round 19 equals to (0, u, v, w), and discard the unsatisfied
pairs. After this test, there remains m · 252 · 2−32 = m · 220 pairs.

(b) For every guess of the 32-bit subkey RK19, decrypt the 19-th round for
the remaining pairs: X19 = X23⊕T (X20⊕X21⊕X22⊕RK19). Check if
the first word of the output difference of Round 18 equals to (0, u, v, w),
and if this is not the case discard the pair. After this test, for every
guess of RK20 and RK19, there remains about m · 220 · 2−32 = m ·
2−12 pairs.

(c) Try all the 232 possible values of subkey RK18, and decrypt Round 18
for the remaining pairs: X18 = X22⊕T (X19⊕X20⊕X21⊕RK18). Check
if the first word of the output difference of Round 17 equals to 0. If this
is not the case, discard the pair. After this test, for every guess of RK20,
RK19 and RK18, there remains about m · 2−12 · 2−32 = m · 2−44 pairs.

5. Output the 96-bit subkey guess RK20, RK19 and RK18 as the correct subkey,
if it has maximal number of remaining pairs after Step 4-(c).

5.2 Analysis of the Attack

As the average probability of the 18-round differential is 2−126, it is expected
that there remains about m · 284 · 2−126 = m · 2−42 right pairs for the correct
key. However, for the wrong subkey guesses, the expected number of remaining
pairs after Step 4-(c) is about m · 284 · 2−128 = m · 2−44. In later analysis, we
exploit the concept of ”signal-to-noise ratio” introduced by Biham and Shamir
in [3] to choose appropriate value of m to make the differential attack succeed.

The signal-to-noise ratio is defined as the proportion of the probability of the
right key being suggested by a right pair to the probability of a random key
being suggested by a random pair with the initial difference. According to [3],
the signal-to-noise ratio can be computed by the following formula:

S/N =
2k × p

α× β

where k is the number of guessed key bits, p is the probability of the differential
characteristic, α is the average number of keys suggested by a counted pair, and
β is the ratio of the counted pairs to all pairs (both counted and discarded).

In the above attack, we have guessed 96-bit subkeys and the probability of
the differential characteristic is 2−126. For every test in Step 4, there are 232

Cryptanalysis of Reduced-Round SMS4 Block Cipher 227

possible key guesses and a counted pair needs to satisfy a 32-bit condition; thus
α = 1. In Step 3, a 32-bit condition is used to discard the pairs, thus β = 2−32.
Therefore, the signal-to-noise ratio of the above attack is 296 · 2−126/2−32 = 4.
According to the suggestions of Biham and Shamir in [3], about 20 ∼ 40 right
pairs are needed to mount a successful differential attack when S/N = 2, and
less right pairs are needed when S/N > 2. Hence, in our attack we can choose
m = 246, and the expected number of right pairs is about 246 · 2−42 = 16.

Therefore, the attack requires 246 · 272 = 2118 chosen plaintexts in all. Since
Steps 1 to 3 take relatively small time which can be omitted, the time complexity
of the attack is dominated by Step 4-(a). The time complexity of this step
is about 2 · 252 · 246 · 232 = 2131 one round encryption. Thus the total time
complexity of the attack on 21-round SMS4 is about 2131/21 ≈ 2126.6 21-round
encryptions.

6 Conclusion

In this paper, firstly we present a kind of 5-round iterative differential charac-
teristic whose average probability is 2−42. Then based on this 5-round iterative
differential, we construct a 14-round rectangle distinguisher and mount a rect-
angle attack on 16-round SMS4 with 2125 chosen plaintexts and 2116 encryp-
tions. Moreover, by iterating the 5-round differential characteristic three and a
half times we can obtain an 18-round differential characteristic, and a differen-
tial attack is applicable to 21-round SMS4 whose complexities are 2118 chosen
plaintexts and 2126.6 encryptions. As far as we know, our differential attack on
21-round SMS4 is the best cryptanalytic result on SMS4. Table 3 summarizes
our results along with the previously known attacks on SMS4.

Table 3. Summary of our results and the previously known results on SMS4

of Attack Data Time Source
rounds type Complexity Complexity

13 Integral Attack 216 2114 [9]
14 Rectangle Attack 2121.82 2116.66 [10]
16 Rectangle Attack 2125 2116 This paper
16 Impossible Differential 2105 2107 [10]
21 Differential Cryptanalysis 2118 2126.6 This paper

Although our differential attack can reach up to 21 rounds of SMS4, it still
can not endanger the full 32-round SMS4 since the round number has provided
enough safety margin. We hope our results can be helpful in evaluating the
security of SMS4 against differential-type attacks, and we look forward to further
work in evaluating SMS4 against other kinds of cryptanalytic attacks.

228 L. Zhang, W. Zhang, and W. Wu

Acknowledgments. This work is supported by the National High-Tech Re-
search and Development 863 Plan of China (No.2007AA01Z470), the National
Natural Science Foundation of China (No.90604036), and the National Grand
Fundamental Research 973 Program of China (No.2004CB318004). Moreover,
the authors are very grateful to the anonymous referees for their comments and
editorial suggestions.

References

1. Specification of SMS4, Block Cipher for WLAN Products – SMS4 (in Chinese),
http://www.oscca.gov.cn/UpFile/200621016423197990.pdf

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystem (ex-
tended abstract). In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 2–21. Springer, Heidelberg (1991)

3. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

4. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack - Rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001)

5. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–
525. Springer, Heidelberg (2005)

6. Biham, E., Dunkelman, O., Keller, N.: A Related-Key Rectangle Attack on the
Full KASUMI. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 443–461.
Springer, Heidelberg (2005)

7. Ji, W., Hu, L.: New Description of SMS4 by an Embedding over GF (28). In: Sri-
nathan, K., Pandu Rangan, C., Yung, M. (eds.) Indocrypt 2007. LNCS, vol. 4859,
pp. 238–251. Springer, Heidelberg (2007)

8. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks against Reduced-
Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp.
75–93. Springer, Heidelberg (2001)

9. Liu, F., Ji, W., Hu, L., Ding, J., Lv, S., Pyshkin, A., Weinmann, R.P.: Analysis of
the SMS4 Block Cipher. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP
2007. LNCS, vol. 4586, pp. 158–170. Springer, Heidelberg (2007)

10. Lu, J.: Attacking Reduced-Round Versions of the SMS4 Block Cipher in the Chi-
nese WAPI Standard. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS,
vol. 4861, pp. 306–318. Springer, Heidelberg (2007)

11. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Differential and Rectangle Attacks on
Reduced-Round SHACAL-1. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 17–31. Springer, Heidelberg (2006)

12. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

13. Zhang, L., Wu, W.: Differential Fault Analysis on SMS4 (in Chinese). Chinese
Journal of Computers 29(9), 1596–1602 (2006)

http://www.oscca.gov.cn/UpFile/200621016423197990.pdf

Cryptanalysis of Reduced-Round SMS4 Block Cipher 229

Appendix A: The S-Box of SMS4

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 d6 90 e9 fe cc e1 3d b7 16 b6 14 c2 28 fb 2c 05

0x1 2b 67 9a 76 2a be 04 c3 aa 44 13 26 49 86 06 99

0x2 9c 42 50 f4 91 ef 98 7a 33 54 0b 43 ed cf ac 62

0x3 e4 b3 1c a9 c9 08 e8 95 80 df 94 fa 75 8f 3f a6

0x4 47 07 a7 fc f3 73 17 ba 83 59 3c 19 e6 85 4f a8

0x5 68 6b 81 b2 71 64 da 8b f8 eb 0f 4b 70 56 9d 35

0x6 1e 24 0e 5e 63 58 d1 a2 25 22 7c 3b 01 21 78 87

0x7 d4 00 46 57 9f d3 27 52 4c 36 02 e7 a0 c4 c8 9e

0x8 ea bf 8a d2 40 c7 38 b5 a3 f7 f2 ce f9 61 15 a1

0x9 e0 ae 5d a4 9b 34 1a 55 ad 93 32 30 f5 8c b1 e3

0xa 1d f6 e2 2e 82 66 ca 60 c0 29 23 ab 0d 53 4e 6f

0xb d5 db 37 45 de fd 8e 2f 03 ff 6a 72 6d 6c 5b 51

0xc 8d 1b af 92 bb dd bc 7f 11 d9 5c 41 1f 10 5a d8

0xd 0a c1 31 88 a5 cd 7b bd 2d 74 d0 12 b8 e5 b4 b0

0xe 89 69 97 4a 0c 96 77 7e 65 b9 f1 09 c5 6e c6 84

0xf 18 f0 7d ec 3a dc 4d 20 79 ee 5f 3e d7 cb 39 48

On the Unprovable Security of 2-Key XCBC

Peng Wang1, Dengguo Feng2, Wenling Wu2, and Liting Zhang2

1 State Key Laboratory of Information Security
Graduate University of Chinese Academy of Sciences, Beijing 100049, China

wp@is.ac.cn
2 State Key Laboratory of Information Security

Institution of Software of Chinese Academy of Sciences, Beijing 100080, China
{feng,wwl,zhangliting}@is.iscas.ac.cn

Abstract. There has been extensive research focusing on improving
CBC-MAC to operate on variable length messages with less keys and
less blockcipher invocations. After Black and Rogaway’s XCBC, Moriai
and Imai proposed 2-Key XCBC, which replaced the third key of XCBC
with its first key. Moriai and Imai “proved” that 2-Key XCBC is secure
if the underling blockcipher is a pseudorandom permutation (PRP). Our
research shows that it is not the case. The security of 2-Key XCBC can
not be proved under the solo assumption of PRP, even if it is a RPR-
RK secure against some related-key attack. We construct a special PRP
(PRP-RK) to show that the main lemma in [14] is not true and 2-Key
XCBC using this PRP (PRP-RK) is totally insecure.

Keywords. Blockcipher, Blockcipher mode of operation, Message au-
thentication code, Provable security, Related-key attack.

1 Introduction

CBC-MAC [8] is the most commonly used message authentication code (MAC)
based on a blockcipher. Let E : K × {0, 1}n → {0, 1}n be the underling blockci-
pher and let M = M1 · · ·Mm be a string we want to MAC, where |M1| = · · · =
|Mm| = n. Then CBC-MACK(M), the CBC-MAC of M under the key K, is
Tm, where

Ti = EK(Mi ⊕ Ti−1) for i = 1, . . . , m and T0 = 0n.

If the underling blockcipher is a pseudorandom permutation (PRP), then
CBC-MAC is secure [1] in the sense of reduction-based cryptography. Unfortu-
nately this provable security result only holds for fixed length messages and for
variable length messages CBC-MAC is not secure. For example, if the CBC-MAC
of a one-block message M is T = CBC-MACK(M) = EK(M), the CBC-MAC
of the two-block message M ||(M ⊕ T) is once again T .

To overcome this drawback, several variants of CBC-MAC such as EMAC,
XCBC, TMAC and OMAC, have been proposed which are probably secure for
variable length messages.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 230–238, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Unprovable Security of 2-Key XCBC 231

EMAC [6,15] encrypt CBC-MAC by E again with a new key:

EMACK1,K2(M) = EK2(CBC-MACK1(M)).

In order to operate on arbitrary length messages, some padding method must
be used. For example, we append the minimal bit string 10i to the message M
to make the length a multiple of n. However, when |M | is already a multiple of
n, we must append an entirely extra block 10n−1. That will waste a blockcipher
invocation. Furthermore, because K1 and K2 are both keys fed to E, EMAC
need two blockcipher key setups.

Black and Rogaway proposed XCBC [4] to solved the above problems. They
treated different messages using different keys according to whether or not the
length of the message is a multiple of n, shaved off one blockcipher invocation,
and avoided keying E by multiple keys. XCBC has three keys (K1, K2, K3),
where K1 ∈ K which is fed to E and K2, K3 ∈ {0, 1}n which are XORed with
the last message block. When |M | is a multiple of n, XCBC does the same as
CBC-MAC, except for XORing K2 before encrypting the last block. When |M |
is not a multiple of n, XCBC firstly appends some 10i to make it a multiple of n,
and then does the same as CBC-MAC, except for XORing K3 before encrypting
the last block.

Kurosawa and Iwata then proposed TMAC [13] which has two keys. They
replaced (K2, K3) in XCBC with (K2 ·u, K2) where u is some non-zero constant
and · is the multiplication in some finite field. Finally, Iwata and Kurosawa
proposed OMAC [10] which has only one key. They replaced (K2, K3) in XCBC
with (L · u, L · u2) (in OMAC1) or with (L · u, L · u−1) (in OMAC2) where
L = EK(0n) and u is some non-zero constant. CMAC [7] which was adopted by
NIST as the recommendation for MAC is just OMAC1.

Moriai and Imai proposed 2-Key XCBC [14,9] right after XCBC. Their pur-
pose was the same as TMAC and OMAC – minimum size of key. They replaced
K3 in XCBC with K1. So 2-Key XCBC is just XCBC with keys (K1, K2, K1).
Moriai and Imai “proved” that 2-Key XCBC is secure using the main lemma
that (EK(·), EK(K ⊕ ·)) is indistinguishable from a pair of independent uniform
random permutations (URPs), if E is an PRP.

Unfortunately, it is not the case. We notice that when the message M is not
of a multiple of n, 2-Key XCBC only takes one key K1 which is both keying E
and XORed with the last padded message block. For example when |M | = n−1,
the 2-Key CBC is

2-Key XCBCK1,K2
(M) = EK1(K1 ⊕M ||1).

Furuya and Sakurai studied 2-Key XCBC from the attacking point of view [9].
They instantiated the underling blockcipher with practical ones such as DESX,
AES, etc., and pointed out that it is very dangerous to XOR the key of the
blockcipher to the message (they called it raw-key masking [9]). For example,
when E is AES, the XORing of the key removes the key to the first round of
AES, because they are identical, resulting in one less round AES.

232 P. Wang et al.

1.1 Our Contributions

We study 2-Key XCBC from the provable-security point of view. We show that
the proof for 2-key XCBC MAC is not correct. We give a PRP (technically,
a PRP-RK) for which the 2-key XCBC MAC is easily forgeable. We therefore
conclude that the 2-key XCBC MAC construction is not secure.

We construct a special PRP G such that GK(K ⊕ 0n−11) = K for any key
K ∈ {0, 1}n, from a PRP E : {0, 1}n × {0, 1}n → {0, 1}. This construction is
similar to the one used in [3]. We prove that if E is a PRP, G is also a PRP,
and furthermore if E is a PRP-RK, G is also a PRP-RK for some related-key
attack.

This construction implies that the main lemma in [14] does not hold. Because
when one query 0n−11 to the right oracle of (GK(·), GK(K ⊕ ·)) reveals the key
K, using this information we can easily distinguish (GK(·), GK(K ⊕ ·)) from a
pair of independent uniform random permutations.

This construction also implies that the underling blockcipher being a PRP
(even if PRP-RK) is not enough for providing the security of 2-Key XCBC. If
the underling blockcipher 2-Key XCBC is G, one query 0n−1 also reveals the
key K1, which enables us forge any message being of a multiple of n.

1.2 Related Work

It’s dangerous to encrypt the key of scheme together with the plaintext. In [5]
Black, Rogaway and Shrimpton called it key-dependent message (KDM) encryp-
tion. They also defined a general KDM security model and showed that KDM
security can be achieved within the random-oracle model.

The security proof is always a subtle thing, for it is error-prone and difficult to
check. Iwata and Kurosawa found some mistakes in the previous security proofs
and showed that the encryption algorithm and MAC in 3GPP and a variant
of OMAC are not provably secure under the assumption that the underling
blockcipher is only a PRP [11,12]. But the algorithms in 3GPP are secure if the
underling blockcipher is a PRP-RK secure against a certain class of related-key
attacks.

2 Preliminaries

Notations. We write s
$←− S to denote choosing a random element s from a

set S by uniform distribution. An adversary is a (randomized) algorithm with
access to one or more oracles which are written as superscripts. We write the
adversary A with oracle O outputing a bit b as AO ⇒ b. AdvGGG

SSS (A) denotes
the advantage of A attacking a scheme “SSS” with a goal of “GGG”.

Blockcipher, PRP and PRP-RK. A blockcipher is a function E : K ×
{0, 1}n → {0, 1}n, where EK(·) = E(K, ·) is permutation for any key KK. Let

On the Unprovable Security of 2-Key XCBC 233

Perm(n) be the set of all permutations on {0, 1}n. In the reduction-based cryp-
tography, we usually treat a secure blockcipher as a pseudorandom permutation
(PRP). A blockcipher is a PRP, if it is indistinguishable from a uniform random
permutation (URP). More specifically, if the advantage

Advprp
E (A) = Pr[K $←− K : AEK(·) ⇒ 1]− Pr[π $←− Perm(n) : Aπ(·) ⇒ 1]

is negligible for any A with reasonable resources, then E is said to be a pseu-
dorandom permutation (PRP), or a secure blockcipher, or secure against chosen
plaintext attack.

The notion of PRP-RK was introduced in [2], to model blockciphers secure
against some related-key attacks. In this model, the adversary not only can
choose plaintext but also can change the underling key using a set of related-
key-deriving (RKD) functions. The RKD set depicts the adversaries’ abilities for
deriving related keys. We denote the RKD set as Φ. Without loss of generality, we
assume that any function in Φ is a permutation on K. Let Perm(K, n) be the set

of all blockciphers with domain {0, 1}n and key space K, thus π̃
$←− Perm(K, n)

denotes selecting a random blockcipher, or in other words, for any K ∈ K, π̃K(·)
is a uniform random permutation (URP). Let RK(φ, K) = φ(K), for any φ ∈ Φ.
A blockcipher is Φ-PRP-RK secure, if the advantage

AdvΦ-prp-rk
E (A) =Pr[K $←− K : AERK(·,K)(·) ⇒ 1]

− Pr[K $←− K; π̃ $←− Perm(K, n) : Aπ̃RK(·,K)(·) ⇒ 1]

is negligible for any A with reasonable resources.

MAC and Unforgeability. A MAC is function MAC : K×M→ {0, 1}t, which
takes a key K ∈ K and a message M ∈ M to return a t-bit tag T ∈ {0, 1}t.
We write MAC(K, ·) as MACK(·) and say that an adversary AMACK(·) forges if
it outputs (M, T) such that T = MACK(M) and A never ask query M to its
oracle before. A MAC is secure if the advantage

Advuf
MAC(A) = Pr[K $←− K : AMACK(·) forges].

is negligible for any A with reasonable resources. The MAC is also said to be
unforgeable, or unpredictable.

XCBC and 2-Key XCBC. Let E : K × {0, 1}n → {0, 1}n be the underling
blockcipher, XCBC is the following algorithm:

The only difference between XCBC and 2-Key XCBC is that in the later
K3 = K1. Figure 1 illustrates XCBC and 2-Key XCBC for a message of three
blocks.

234 P. Wang et al.

Algorithm XCBC[E]K1,K2,K3(M):
T0 ← 0n

Let M = M1 · · ·Mm, where |Mi| = n for 1 ≤ i ≤ m − 1 and 1 ≤ |Mm| ≤ n
for i = 1 to m − 1 do

Ti ← EK1(Mi ⊕ Ti−1)
if |Mm| = n then T ← EK(Mm ⊕ K2)

if |Mm| < n then T ← EK(Mm10n−1−|Mm| ⊕ K3)

Fig. 1. XCBC and 2-Key XCBC for a message of three blocks. K3 = K1 in 2-Key
XCBC. On the left is the case where |M | is a multiple of n. While on the right is the
case where it is not.

3 Construction of a Special PRP

In this section we construct a special PRP G : {0, 1}n × {0, 1}n → {0, 1}n with
following property:

GK(K ⊕ 0n−11) = K, (1)

for any key K ∈ {0, 1}n.
We start from a PRP E : {0, 1}n×{0, 1}n→ {0, 1}n, and define G as follows:

GK(M) =

⎧

⎪⎨

⎪⎩

K if M = K ⊕ 0n−11,

EK(K ⊕ 0n−11) if M = E−1
K (K),

EK(M) else.

Theorem 1. If E is a PRP, then G is a PRP. More specifically, G and E are
indistinguishable. For any adversary A with q queries trying to distinguish G
and E, there is an adversary B with no more than (q + 1) queries such that

Pr[AG ⇒ 1]− Pr[AE ⇒ 1] ≤ 2qAdvprp
E (B) +

2q

2n − q
.

Furthermore, B runs in approximately the same time as A.

Proof. Suppose that A makes q queries xi, i = 1, . . . , q and the corresponding an-
swers are y1, . . . , yq. We describe the attacking procedure of A as the interaction
with games. Game 1 illustrates how G answers A’s queries.

On the Unprovable Security of 2-Key XCBC 235

11 bad ← false Game 1 and Game 2
12 when the query is x:

13 if x = K ⊕ 0n−11, bad ← true , return K

14 if x = E−1
K (K), bad ← true , return EK(K ⊕ 0n−11)

15 return EK(x)

31 bad ← false Game 3
32 when the query is x:
33 if K = x ⊕ 0n−11, bad ← true
34 if K = EK(x), bad ← true
35 return EK(x)

Fig. 2. Game 1, Game 2 and Game 3. Game 2 is obtained by omitting the boxed
statements

Game 2 is obtained by omitting the boxed statements. Obviously Game 2
illustrates how E answers A’s queries. In Game 1, each boxed statement is exe-
cuted if and only if the flag bad is set to be true. Therefore we have

Pr[AG ⇒ 1]− Pr[AE ⇒ 1] = Pr[AGame 1 ⇒ 1]− Pr[AGame 2 ⇒ 1]

≤ Pr[AGame 2 sets bad].
(2)

Notice that in the Game 2 line 14 x = E−1
K (K) is equivalent to K = EK(x).

We recompose Game 2 into Game 3 and we have

Pr[AGame 2 sets bad] = Pr[AGame 3 sets bad]. (3)

AGame 3 set bad if and only if during the queries to EK(·) the key K appears
in {xi ⊕ 0n−11 : i = 1, . . . , q} or in {yi : i = 1, . . . , q}. If E is a PRP, this
probability is very small. We construct a new algorithm B making use of A,
trying to distinguish E from a uniformly random permutation. B randomly
chooses a string in {xi ⊕ 0n−11 : i = 1, . . . , q} ∪ {yi : i = 1, . . . , q}, and takes it
as the key of E. The detail is following:

Algorithm BO:

(t, b)
$←− {1, . . . , q} × {0, 1}

run AO

when A asks the tth query xt and gets yt

if b = 0, K ← xt ⊕ 0n−11
if b = 1, K ← yt

choose x which is not in {xi : i = 1, . . . , t}
d ← EK(x)
query x and get d′

if d = d′ then return 1
else return 0

236 P. Wang et al.

Obviously, Pr[K $←− {0, 1}n : BGK(·) ⇒ 1] ≥ 1
2q Pr[AGame 3 sets bad] and

Pr[π $←− Perm(n) : Bπ(·) ⇒ 1] ≤ 1
2n−q , so Advprp

E (B) ≥ 1
2q Pr[AGame 3 sets bad]−

1
2n−q ,

Pr[AGame 3 sets bad] ≤ 2qAdvprp
E (B) +

2q

2n − q
. (4)

Combining (2), (3) and (4), we get

Pr[AG ⇒ 1]− Pr[AE ⇒ 1] ≤ 2qAdvprp
E (B) +

2q

2n − q
. (5)

�

It is easy to modify the above proof slightly to get the following theorem.

Theorem 2. If E is Φ-PRP-RK secure, and Φ is set of permutations, then G is
Φ-PRP-RK secure. More specifically, for any adversary A with q queries trying
to distinguish G and E, there is an adversary B with no more than (q+1) queries
such that

Pr[AG ⇒ 1]− Pr[AE ⇒ 1] ≤ 2qAdvΦ-prp-rk
E (B) +

2q

2n − q
.

Furthermore, B runs in approximately the same time as A.

4 Unprovable Security of 2-Key XCBC

(GK(·), GK(K ⊕ ·)) is distinguishable from (π1(·), π2(·)). The main
lemma in [14] states that if E is a PRP, (EK(·), EK(K ⊕ ·)) is indistinguishable
from (π1(·), π2(·)), where π1 and π2 are two independent URPs. This lemma is
the base for their security proof. But it is not the case, because (GK(·), GK(K⊕
·)) is distinguishable from (π1(·), π2(·)). We firstly query 0n−11 to the right or-
acle, if it is GK(K ⊕ ·), we get the key K. This information enable us almost
totally distinguish (GK(·), GK(K⊕·)) from (π1(·), π2(·)). The detailed algorithm
is the following:

Algorithm DO1(·),O2(·):
query 0n−11 to O2(·) and get K′

C ← GK′ (1n)
query 1n to O1(·) and get C′

if C = C′, return 1
else return 0

We can see that Pr[D(GK(·),GK(K⊕·)) ⇒ 1] = 1 and Pr[D(π1(·),π2(·)) ⇒ 1] = 1
2n ,

so the advantage is 1− 1
2n .

On the Unprovable Security of 2-Key XCBC 237

2-Key-XCBC[G] is Not a Secure MAC. If the underling blockcipher 2-
Key XCBC is G, one query 0n−1 also reveals the key K1, which enables us to
forge any message with length of a multiple of n. The detailed algorithm is the
following:

Algorithm F 2-Key-XCBC[G](·):
query 0n−1 to 2−Key−XCBC[G](·) and get K′

T ← GK′(K′ ⊕ 0n−210)
return (0n−2, T)

We notice that K ′ =2-Key-XCBC[G](0n−1) = GK1(K1 ⊕ 0n−11) = K1, so 2-
Key-XCBC[G](0n−2) = GK1(K1 ⊕ 0n−210) = GK′(K ′ ⊕ 0n−210) = T and

Advuf
2-Key-XCBC[G](F) = 1.

Acknowledgment

The authors would like to thank the anonymous referees for their many valuable
comments. This research is supported by the National Natural Science Foun-
dation Of China (No. 60673083, 90604036), the National Grand Fundamental
Research 973 Program of China (No.2007CB311202) and the National High-Tech
Research and Development Program of China (No.2007AA01Z470).

References

1. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Hei-
delberg (1994)

2. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

3. Black, J.: The ideal-cipher model, revisited: An uninstantiable blockcipher-based
hash function. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 328–340.
Springer, Heidelberg (2006)

4. Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: The three-key
constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215.
Springer, Heidelberg (2000)

5. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003)

6. Bosselaers, A., Preneel, B. (eds.): RIPE 1992. LNCS, vol. 1007. Springer, Heidel-
berg (1995)

7. Dworkin, M.: Recommendation for block cipher modes of operation: The CMAC
mode for authentication. NIST Special Publication 800-38B (2005),
http://csrc.nist.gov/publications/nistpubs/800-38B/SP 800-38B.pdf

8. FIPS-133. Federal information processing standards publication (FIPS 133). com-
puter data authentication (1985)

http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

238 P. Wang et al.

9. Furuya, S., Sakurai, K.: Risks with raw-key maksing - the security evaluations of
2-Key XCBC. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS,
vol. 2513, pp. 327–341. Springer, Heidelberg (2002)

10. Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

11. Iwata, T., Kurosawa, K.: On the correctness of security proofs for the 3GPP con-
fidentiality and integrity algorithms. In: Paterson, K.G. (ed.) Cryptography and
Coding 2003. LNCS, vol. 2898, pp. 306–318. Springer, Heidelberg (2003)

12. Iwata, T., Kurosawa, K.: On the security of a new variant of OMAC. In: Lim, J.,
Lee, D. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 67–78. Springer, Heidelberg (2004)

13. Kurosawa, K., Iwata, T.: TMAC: Two-key CBC MAC. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 33–49. Springer, Heidelberg (2003)

14. Moriai, S., Imai, H.: 2-Key XCBC: the CBC MAC for arbitrary-length messages
by the two-key construction. In: The 2002 Symposium on Cryptography and In-
formation Security, SCIS (2002) (in Japanese)

15. Petrank, E., Rackoff, C.: CBC MAC for real-time data sources. Journal of Cryp-
tology 13(3), 315–338 (2000)

Looking Back at a New Hash Function

Olivier Billet1, Matthew J.B. Robshaw1, Yannick Seurin1, and Yiqun Lisa Yin2

1 Orange Labs, Issy les Moulineaux, France
{forename.surname}@orange-ftgroup.com

2 Independent Security Consultant
yiqun@alum.mit.edu

Abstract. We present two (related) dedicated hash functions that de-
liberately borrow heavily from the block ciphers that appeared in the
final stages of the AES process. We explore the computational trade-off
between the key schedule and encryption in a block cipher-based hash
function and we illustrate our approach with a 256-bit hash function
that has a hashing rate equivalent to the encryption rate of AES-128.
The design extends naturally to a 512-bit hash function.

1 Introduction

After recent cryptanalytic advances [37,38] the need for new hash functions has
become acute. In response NIST has made a call for proposals [28] for the devel-
opment of a new Advanced Hash Standard (SHA-3). However most commentators
would probably agree that the field of hash functions has, until recently, been
somewhat neglected and that the current knowledge of hash function design is
somewhat fragmented. So difficult are the starting conditions for the develop-
ment of the AHS that it is not always straightforward to exactly articulate the
properties we want from a hash function. Even worse, there is little agreement
on even the basic features for a successful hash function design.

By way of contrast, if we were to turn the clock back to the start of the
AES process, at that time we already had five years of block cipher theory and
design after the development of linear cryptanalysis [20] and ten years after the
development of differential cryptanalysis [8]. And while all the AES submissions
were very different, their designs had evolved from several years of research
experience gained during the mid-1990s.

In this paper we propose two new (related) dedicated hash functions dash-
256 and dash-512. Whilst they are, in principle, suitable for submission to the
NIST hash function development process, this is not our intention. Instead we
prefer to see the paper as research-oriented and our work is prompted by the
following questions:

1. How close can we stay to AES proposals in the design of a hash function?
2. Can we use an unusual key schedule design to our advantage?

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 239–253, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

240 O. Billet et al.

2 Background, Goals, and Design Criteria

We informally recapitulate some of the classical goals for a hash function. A
cryptographic hash function H takes an input of variable size and returns a hash
value of fixed length while satisfying the properties of preimage resistance, second
preimage resistance, and collision resistance [21]. For a secure hash function that
gives an n-bit output, compromising these properties should require 2n, 2n, and
2n/2 operations respectively. A more thorough set of hash function requirements
for the SHA-3 development process is available at [28].

The pioneering work of Merkle and Damgård [14,22] showed how to construct
a collision-free hash function from a compression function that has a fixed-length
input. This input consists of a chaining variable and a message extract while
the new value of the chaining variable is produced as output. The chaining
variable will be denoted by vi and the message extract will be denoted by mi.
Thus, at iteration i of the Merkle-Damgård construction, we compute vi+1 =
compress(mi, vi). The advantages and disadvantages of the Merkle-Damgård
approach are, by now, well-established. On the positive side are its simplicity
and the proof of security that (loosely speaking) relates the collision-resistance
of the hash function to that of the compression function. On the negative side
are cryptanalytic results that take advantage of the chaining that is used in a
repeated application of the compression function [15,16,18,19]. These results help
provide a greater understanding of the Merkle-Damgård approach, particularly
when hashing exceptionally long messages.

Design Decisions

Our design philosophy for dash-256 (and dash-512) can be summarised as: keep
it simple and use established techniques. In practise this resulted in the following:

1. We base the hash function around the use of a compression function and the
Merkle-Damgård paradigm [14,22]. To avoid some structural deficiencies we
use the HAIFA model [7] for formatting the inputs.

2. For the compression function we use a block cipher and Davies-Meyer [29].
3. We revisit the AES process and appeal to the vast pool of results [25] to

design a block cipher at the heart of the compression function.
4. We push the parameters of a block cipher key schedule so as to better un-

derstand the range of options for a practical hash function design.

By way of background, we now consider each issue in turn.

Using Merkle-Damgård and Davies-Meyer

While there have been proposals for alternatives to Merkle-Damgård, e.g. the
sponge construction [6], we focus on the body of work that considers adjustments
to Merkle-Damgård, such as those of Coron et al [13], Biham and Dunkelman [7],
and Rivest [34]. These proposals share the property that Merkle-Damgård is

Looking Back at a New Hash Function 241

used almost as is, but that additional inputs are included at each iteration of
the compression function. They vary in the form of inputs and the resultant loss
of efficiency, but recent work [2] has shown that the more efficient proposal by
Rivest [34] does not seem to provide the additional security intended. With this
in mind we use the HAsh Iterative FrAmework [7], or HAIFA model.

For the compression function itself we use a block cipher in Davies-Meyer
mode. This is a mode for which there is a proof-of-security, i.e. the security
of Davies-Meyer can be reduced to that of the underlying block cipher. If we
denote encryption of a plaintext p under a key k by enck(p) then the output of
the Davies-Meyer mode is given by enck(p) ⊕ p. When used as a compression
function, for which the chaining variable input is denoted vi and the message
input is denoted m, the next value of the chaining variable output from the
compression function is given by vi+1 = encm(vi) ⊕ vi. We note that there
are some unusual properties of Davies-Meyer. For instance it is easy to find
fixed points for this construction. By choosing vi = enc−1

m (0) we have that
compress(m, vi) = vi since encm(vi)⊕vi = vi. However the HAIFA model helps
to mitigate the effect of these, as well as countering other recent cryptanalytic
work on long-message attacks [15,16,18]. By contrast the Davies-Meyer mode
has one major advantage over other single block cipher constructions [11]. Note
that for the Davies-Meyer transformation encm(vi) ⊕ vi the block size is given
by |vi| and the key size by |m|. For the AES these are restricted to 128 bits and
128/192/256 bits respectively. However our design allows the block size to vary
between 256 and 512 bits while the “key” length is eight times larger; this permits
larger message inputs on each iteration and a more competitive throughput. And
for block cipher designs there is no better place to look than the AES process [25].

Revisiting the AES Process

Returning to the AES process with the benefit of hindsight is an interesting
experience. We are not the first to do so: the designers of present [12] used
the AES finalist Serpent [9] as a starting point for the development of their
ultra-compact block cipher. We therefore hope to be able to make similarly
advantageous observations by considering two other finalists: Rijndael (i.e. the
AES [24]) and RC6 [32]. Rijndael is now very well known. Like Rijndael, RC6
was a simple proposal that offered good software performance on modern pro-
cessors [3]. However the 32-bit squaring operation didn’t scale quite as well to
8-bit processors or hardware implementations. However, of particular interest to
us here is the key schedule for RC6. While it is computationally heavy, it allows
very long keys. This is ideal for a hashing application as was observed by the
RC6 designers during the AES process [33].

So the block cipher that lies at the heart of dash-256 and dash-512 will use
a topology that is similar to RC6 and CLEFIA [36] along with a key schedule
that is almost identical to that used in RC5 and RC6. However we will make
changes to some of the operations used to improve scalability and to reduce the
potential exposure to side-channel analysis in MAC-applications [27].

242 O. Billet et al.

Block Ciphers and Key Schedules

The performance of a block cipher is dependent on the cost of both the encryption
routine and key setup. For bulk encryption the cost of a single key setup is
amortized over the entire encryption session. However, when used as the basis
for a hash function, the cost of the key schedule becomes a significant factor.
Most modern ciphers, including the AES, tend to have a lightweight key schedule.
In this paper, we want to explore what happens when we put more work into the
key schedule. Given the importance of key schedule performance for hashing, at
first sight this appears to be the wrong direction. Indeed for constructions where
the message and chaining value must be the same size, such as Mateas-Meyer-
Oseas [21] and Miyaguchi-Preneel [21] (which is used in Whirlpool [5]) this would
be the case. However, the Davies-Meyer construction allows us to take a very
large message block as “key” and provided there is sufficient mixing of the key
there is no reason why a good performance profile cannot be attained.

3 The Specification of dash-256 and dash-512

Both dash-256 and dash-512 are built around a dedicated block cipher which we
will name A256 and A512 respectively. For ease of exposition we will concentrate
on dash-256 and A256 and describe the cipher in terms of an encryption routine
and a key schedule. The necessary changes for dash-512 are given in Section 3.4.

3.1 The Encryption Routine for A256

One encryption round (out of the 30 required) is illustrated in Figure 1. Each
strand represents a 64-bit word and the key schedule, see Section 3.2, generates
64 subkeys of which two are used as pre-whitening for strands B and D, 60
are used during the encryption process (two in each round), and two are used as
post-whitening on strands A and C before output. The data-dependent rotations
and multiplication in RC6 have been replaced in A256 with a confusion/diffusion
operation closely inspired by the AES. The mixing operation M64 is the natural
restriction of the AES diffusion layer to two columns, see Figure 2, and uses the
S-boxes and AES MDS transformation directly. This allows us to combine the
scalability of RC5 and RC6 with the AES diffusion operations.1 However, AES
diffusion is somewhat structured so the one-bit and eight-bit rotations help to
break some alignments and avoid some trivial linear approximations.

3.2 The Key Schedule for A256

By using a key schedule that is close to that used in RC5 and RC6 we aim to
leverage its long-standing in the literature and the opportunities for analysis
during the AES process. We also take advantage of the fact that it allows long
key inputs. The original key schedule can be found in either of [30,32] though
1 Naturally other MDS transformations [17] and S-boxes may offer other advantages.

Looking Back at a New Hash Function 243

A’ B’ C’ D’

A B C D

��������

��������

��������

������������������������

��

��

��

��

��

��

��

��

��

��
<<<

1 ��

��
<<<

8

Si Si+1
� �

M64 M64
� �� �� �� �

� �

�����������

�������������

Fig. 1. One round of the encryption routine for A256 with the 256-bit input
(A||B||C||D) being transformed into the 256-bit output (A′||B′||C′||D′)

INPUT(msb) (lsb)

� � � � � � � �
S S S S S S S S

� � � � � � � �

MixColumns MixColumns
� � � �

								

								

� � � �

OUTPUT

Fig. 2. The mixing operation M64 that is used in A256. Note that the S-boxes and
MDS transformations are those specified in the AES.

we follow the example set in the encryption routine and replace the single data-
dependent rotation in the key schedule with the AES-inspired diffusion operation
M64. This is illustrated in Figure 3. The input to be hashed at an iteration of
the compression function (after HAIFA formatting) will be 256 bytes long and
loaded into an array of 32 words of 64 bits L[0], . . . , L[31]. From this we generate
64 words of 64 bits which are stored in an array S[0, ..., 63] and used as subkeys
during encryption.

244 O. Billet et al.

S[0] = P64

for i = 1 to 63 do S[i] = S[i − 1] + Q64

A = B = i = j = 0
for s = 1 to (3 × 64) do

{
A = S[i] = (S[i] + A + B)<<<3
B = L[j] = (L[j] + A + B) ⊕ M64(A + B)
i = (i + 1) mod 64
j = (j + 1) mod 32

}

Fig. 3. The key schedule for A256. The input is represented as an array L[·] of 32
64-bit words and the output is a set S[·] of 64 64-bit subkeys. The constants P64 =
0xB7E151628AED2A6B and Q64 = 0x9E3779B97F4A7C15 are those used in RC5 and RC6.

M1 C1 S

A

compress

v0 ��

�

�
�� v1 · · ·

Mt Ct S

A

compress

��

�

�
�� vt � T � h

Fig. 4. The chained iteration of the compression function. In the HAIFA model,
the initial value v0 is computed from an IV (Section 3.3) which we choose to be
0x FEDCBA9876543210 || 0123456789ABCDEF || FDB97531ECA86420 || 02468ACE13579BDF

3.3 The Full Specification of dash-256

We restrict ourselves to the case of dash-256 and since we follow the HAIFA con-
struction there are three inputs to the hash function; a message M of
length n bits with n < 264, a salt value S of 64 bits, and the length d of the
hash output or message digest. Internally, we use a 64-bit counter that takes a
value denoted Ci at iteration i of the compression function. The counter stores
the value—in little-endian notation—of the number of bits ofM that have been
hashed so far.

To deal with incomplete blocks we padM to give a related messageM′. The
input to the compression function xi is of the form [Mi||Ci||S] with |Ci| = |S| =
64 and so we generate a padded message M′ that is of length t × 1920 bits
where t is the smallest integer for which t× 1920 > n + 73, the strange number
being explained by what follows: padding is always applied and appends a single
‘1’ bit and as many ‘0’ bits as needed so as to leave room for nine bits that are
set2 to the binary representation of the hash output length d and a further 64 bits

2 This is required in the HAIFA model.

Looking Back at a New Hash Function 245

INPUT(msb) (lsb)

� � � � � � � � � � � � � � � �
S S S S S S S S S S S S S S S S

��������

��������

��������

������������������������

��������

��������

��������

����������������

����������������

����������������

����������������
� � � � � � � � � � � � � � � �

MixColumns MixColumns MixColumns MixColumns

� � � � � � � � � � � � � � � �
OUTPUT

Fig. 5. The mixing operation M128 that is used in A512. Note that this is exactly the
diffusion layer specified in the AES.

that are reserved for the binary representation of n. The resultant M′ is then
divided into t blocks M1, . . ., Mt, with each Mi being of length 240 bytes.

At each iteration of the compression function there are two inputs; the current
value of the chaining variable vi which is a 256-bit input and the 2048-bit xi =
[Mi||Ci||S] that is being processed and we have vi = compress(xi, vi−1) for
1 ≤ i ≤ t. The initial value v0 is computed as v0 = compress(d||IV||0) for a
master IV, as required in HAIFA, and the output is given by the value vt. A
hash value of any shorter length, such as 224 bits, can be derived by truncation
from the left, i.e. we use the rightmost bits. This is indicated by T in Figure 4
and would, of course, require that the representation of d in the padding and
computation of v0 be changed accordingly.

3.4 The Specification of dash-512

The essential difference between dash-256 and dash-512 is that the first oper-
ates on 64-bit words while the second operates on 128-bit words. This is a direct
benefit of the elegant scalability designed into RC5 [30]. All-but-one of the op-
erations in dash-256 scale obviously between the versions, the one exception
being the M64 function. However for dash-512 we use M128 which is a 128-bit
permutation that is identical to one round of the AES without the key addition.
This is illustrated in Figure 5. All other parts of the algorithm, illustrated in
Figures 1, 3, and 4, scale in the obvious way and any 64-bit word operation
is replaced by a 128-bit word operation. In Figure 3 the equivalent constants
P128 and Q128 can be defined as described in [30] for A512. Future analysis
will reveal the appropriate number of rounds for A512 while padding will follow
the HAIFA model and this can also be used to compute a 384-bit hash value
by truncation.

246 O. Billet et al.

4 Security Analysis

The security of dash-256 and dash-512 can be split into a consideration of the
underlying block cipher and then of the compression function and chaining mode.
The latter concerns are handled by the results of Damgård [14], Merkle [22],
Black et al [11], and Biham and Dunkelman [7] so for reasons of space we con-
centrate on the cipher within the compression function and particularly on A256.

4.1 The Encryption Routine in the Component A256

Many cryptanalytic tools for block ciphers can be used against hash function so
we consider these classical techniques first.

Differential Cryptanalysis. We can easily identify a lower bound on the
number of active S-boxes for a differential in A256 (and A512) when the expanded
message words S[·] are the same for both pairs in a differential. The situation
where the expanded message words might induce a difference is considered in
the case of local collisions below.

Without loss of generality, we can suppose that we have a non-zero exclusive-
or difference in strand A. This will pass across a single round of A256 and A512

trivially. However it must induce a, for 1 ≤ a ≤ 8, active S-boxes in the following
round which, in turn, induce more active S-boxes in the rounds that follow. To
establish a lower bound on the number of active S-boxes we can appeal to the
properties of the MDS operation in M64 and M128 and observe that over two
adjacent active rounds there must be at least five active S-boxes. Thus over any
three rounds of A256 and A512—for which there is no difference in the expanded
message words—there will be at least five active S-boxes. This gives a differential
probability of less than 2−30. Since there are 30 rounds to A256 this leads to a
simple upper bound of 2−300 over the full encryption routine.

This basic analysis is crude in two significant ways. First, on the positive side
for the algorithm, it significantly under-estimates the number of active S-boxes.
Second, on the negative side, this crude analysis doesn’t immediately capture
situations where the array S[·] might be used to introduce a difference. However
analysis of the key schedule, see Section 4.2, and of local collisions later in this
section suggest that more complex differential phenomena are highly unlikely
and while more sophisticated analysis is underway, we expect this to confirm the
difficulty of applying differential techniques.

Linear Cryptanalysis. The fixed rotations during encryption with A256 (and
A512), see Figure 1, are intended to hinder the evolution of linear approximations.
Note that without the fixed rotations it would be straightforward to identify
linear approximations that held with probability 1 across infinitely many rounds.
In particular, if we were to use Γi to denote the single-bit parity mask with a
single one in position i, then we would have the following linear approximation
for a single round of A256 with no rotations:

Looking Back at a New Hash Function 247

(Γ0, 0, Γ0, 0)
one round (no rotations)−−−−−−−−−−−−−−−−−−−−−−−−→ (0, Γ0, 0, Γ0).

This would hold with probability 1, i.e. with the maximum bias of 1
2 .

However the simple fixed rotations prevent such simple linear approximations
from developing. We note that there is an interesting effect if we were to remove,
or to change into exclusive-or, the operation used to introduce the expanded
message words S[·]. Let us call such a round a linearised-round and for this
linearised variant of A256 we will consider the parity mask consisting of all bits,
i.e. a mask of Γp = 0xFFFFFFFFFFFFFFFF. Then we would have that:

(Γp, 0, Γp, 0) one linearised round−−−−−−−−−−−−−−−−−−−−→ (0, Γp, 0, Γp)

with probability 1. Thus the linearised version of A256 (and A512) would be
vulnerable to this kind of analysis, a common enough situation when ciphers are
modified to facilitate analysis. However, with integer addition and an effective
key schedule such parity relations are quickly destroyed.

Three-Round Local Collisions. Here we consider a typical disturbance cor-
rection strategy and how it might be used againstA256. We consider the following
perturbative-corrective pattern for a three-round local collision and the linearised
version of A256, i.e. where the expanded message words S[i] are introduced using
exclusive-or. Consider the follow three rounds of expanded message

(ΔS[i], 0, ΔS[i + 2], ΔS[i + 3], 0, ΔS[i]),

where ΔS[i] is a low-weight perturbative vector, and ΔS[i + 2] and ΔS[i + 3]
are deduced from the best differential of the AES S-box, i.e.

ΔS[i + 2] = (ΔS′[i]) ≪ 1 and ΔS[i + 3] = ΔS′[i]

where ΔS′[i] is such that PrC [M64(C ⊕ΔS[i])⊕M64(C) = ΔS′[i]] is maximal.
The maximal differential probability of the AES S-box is 2−6, hence whatever
ΔS[i] and ΔS′[i], the probability of such a local collision for the linearised variant
of A256 is upper bounded by 2−12.

If we now return to the real A256 where the words S[i] are mixed through
modular addition, we can make the following analysis. For each difference bit in
A and B, A+ C and B+ C differ only in the same bits as A and B with probability
upper bounded by 2−r, where r is the number of different bits, with the exception
of the most significant bit (MSB), in A and B. There are four additions to take
into account, one for each non-zero input expanded message word. Due to the
MDS property in M64 and M128, one must have Hwt(ΔS[i])+Hwt(ΔS[i+2]) ≥ 5
as well as Hwt(ΔS[i]) + Hwt(ΔS[i + 3]) ≥ 5 where we use Hwt to denote the
Hamming weight.

This means that there are at least six active bits across integer addition that
are not in the most significant position. Hence the probability of such a local

248 O. Billet et al.

collision is upper bounded by 2−12 × 2−6 = 2−18. To do better than the birth-
day attack, an attack on A256 would need an expanded message difference that
combines seven or less such local collisions. However this would imply that the
remaining 64-bit words in S[·] are identical for the two messages and there is a
vanishingly small chance that an attacker can manipulate message inputs so as
to give two arrays S[·] with the required values.

4.2 The Key Schedule in the Component A256

By choice the key schedule for A256 is closely related to that used in RC5 and
RC6. In moving to the key schedule in A256 and A512 we have added some non-
linearity via a series of AES S-boxes. While experiments have shown an improved
avalanche of change as a result, this does not exclude some dedicated analysis.

The Attack of Saarinen on RC6. During the first round of the AES process,
Saarinen made some interesting observations about the RC6 key schedule when
very long keys were used [35]. Let us assume that we choose a key length so
that the arrays L[·] and S[·] are of equal length.3 The important feature of the
key expansion, see Figure 3, is that state information is carried between the two
arrays by two words A and B. If we take two keys that are nearly equal except
for the last few words then, on the first pass through, only the last few words
of the L[·] and S[·] arrays will change. If the cryptanalyst is lucky, or if we can
find a high probability differential of the right form, the difference in the values
of A and B at the start of the second pass will be zero. When this happens, no
change is carried into the second pass and only the last few words of the L[·]
and S[·] arrays will have a non-zero difference.

Moving on, if we are lucky (since we cannot rely on a differential of sufficiently
high probability) the difference in the values of A and B at the start of the third
pass will be zero. If this happens then, on the third and final pass through
the arrays, only the later words in S[·] will change. Saarinen [35] was therefore
able to demonstrate ciphertexts generated by related keys that had an average
Hamming distance between them of 4.2 bits. This was later extended [23] to
demonstrate the existence of equivalent keys for this particular instance.

Two features are important for this attack. First, being able to identify a
short cancelling differential for the first pass. Second, the number of times we
pass through the L[·] array. In the case of RC6 with 128-bit blocks and 1308-bit
keys (the case looked at by Saarinen) we start the L[·] array three times. For the
first pass the difference in A and B is zero (by definition). For the second pass
it is zero by construction of the differential, and for the third pass we can use
the birthday paradox to find a pair of messages that generate a zero-difference
in A and B from a pool of 232 possibilities.

In the case of A256 and A512, however, the S[·] array will always be twice
the size of the L[·] array. Thus we will pass through the L[·] array six times.
The conditions we need on A and B at the start of each pass is a condition on
3 This is the simplest case, but variants exist for different array sizes.

Looking Back at a New Hash Function 249

128 or 256 bits respectively. The first time it is trivially satisfied and we might
pessimistically assume that it can be satisfied with probability one the second
time.4 Then there remain three times for which the condition on A and B must
hold by chance before we process the S[·] array for the final time. Thus we have
a condition on 3× 128 bits (3× 256 resp.) which we expect to see fulfilled from
a pool of 2192 messages (2384 resp.) using the birthday paradox. However this is
worse than brute-force.

In fact the conditions to avoid the attack of Saarinen can be generalised and we
need to pass through the L[·] array at least four times and the S[·] array at least
three times. This is what we accomplish in dash-256 and dash-512. Interestingly,
in [33] the RC6 designers propose a 1024-bit key length when using RC6, which
is based on 32-bit words, for the most efficient hashing configuration. This also
satisfies our general requirement.

On the Potential for Collisions in the Expansion. Consider two different
inputs Mi and M ′

i to an iteration of the compression function. These will be used
to initialise the L[·] array and after the expansion phase will give the final values
to the S[·] array. Clearly, if we derive the same S[·] array from different inputs
then we trivially have a collision over one iteration of the compression function.
However provided there is sufficient mixing of the L[·] and S[·] arrays, there are
no known weak or equivalent key phenomena for RC5 or RC6 and a brute-force
attack seems to pose a far greater concern. Of course this isn’t the full picture.
Even arrays that are identical only part of the time, or in the earlier words,
can still be useful to the cryptanalyst. However, assuming sufficiently thorough
mixing of the values in the S[·] array, collisions in the chaining variable would
seem to be easier to find than pairs of messages where five or more words in S[·]
are identical. Given 30 rounds, it is highly unlikely an exploitable weaknesses
will occur by chance.

The Oneway-ness of the Key Schedule. The key schedule expands the
message-related input into a set of 64 subkeys. This is done in a complicated
way and it has been noted by various commentators that this delivers a certain
amount of one-wayness [30,35]. So even if attacks on the encryption process
leak information about the subkeys S[·] it would be very hard to relate this
information to the input Mi at the ith iteration of the compression function. Yet
it is information about the input Mi that is needed to compromise either the
compression function or the resultant hash function.

The Role of the Key Schedule. It is well-known that many hash function
designs are built around a dedicated block cipher. In such cases there is some
message mixing, i.e. a key schedule, and some state processing, i.e. an encryption
routine. In MD5 [31] the message-mixing involves message block repetition while
in SHA-1 [26] “key expansion” is a little more involved. However it remains simple
and without a strong “encryption” process it is somewhat vulnerable.
4 This would require a sophisticated differential through several AES S-boxes.

250 O. Billet et al.

By contrast, in A256 and A512 we might view the key schedule as a com-
plex non-linear message expansion. This idea of “expansion” as a form of pre-
processing appears in [1] and has been used in other hash functions [10]. Given
such an expansion phase, we can then view the “encryption” as a complicated
way of distilling information into the 256-bit (or 512-bit) output. But is it better
to have more work done in the “expansion” or in the “distillation”? When looked
at in this way, traditional hash functions of the MD-family have a computation-
ally lightweight (almost trivial) expansion phase and compensate for this with
a heavier mixing phase. For dash-256 and dash-512 this is reversed and we
have a computationally heavy expansion paired with a lighter (though strong)
distillation phase. We believe that this approach is worth exploring and could
be better suited to the hashing environment where an attacker has complete
control over the inputs to the compression function. For compression functions
based on block ciphers, a simple key schedule will place a significant burden on
the encryption routine.

5 Performance

Assessing the performance of a cryptographic algorithm is tricky and often in-
complete. When we look at the operations in dash-256 it is likely that most
software implementations will use table look-ups for the S-box operation and
that this will be the dominant operation. For dash-256 there are 30×2×8 = 480
table look-ups during encryption and 192×8 = 1536 during key expansion giving
a total of 2016. Since 240 bytes are processed per compression function itera-
tion we have 8.4 look-ups per byte. In comparison encryption with the AES-128
requires 10 × 16 = 160 look-ups for encryption but only 16 bytes of plaintext
are encrypted giving an encryption cost of 10 look-ups per byte. Thus we might
expect the bulk processing performance of dash-256 to be comparable to the
bulk encryption rate of AES-128. This seems to be a very natural target since
they both offer the same 128-bit security. We can compare results from Wei Dai
(see [39] for details) with our first-cut optimised version of dash-256 where the
key expansion (exp.) and processing time (pro.) are separated out.5 The results
compare well to some other recent hash function proposals [4].

platform clock AES-128 SHA-256 DASH-256
(GHz) (cycles/byte) (cycles/byte) (cycles/byte)

[39] Opteron 2.4 15.9 21.5 -
exp. pro. total

Opteron 2.2 - - 14.4 3.1 17.5

Unfortunately the performance of dash-256 suffers on 32-bit machines. On the
P4, for example, a first-cut implementation runs at half the speed of AES-128 and
we see that even basic operations over 64-bit words can exact a heavy price.
5 Note that pro. is not the encryption rate. If we used dash-256 for encryption then we

would need 480 table look-ups to encrypt 32 bytes giving a rate of 15 look-ups/byte.

Looking Back at a New Hash Function 251

6 Conclusions

We have presented two, closely-related, dedicated hash functions. In contrast
to some other recent hash function proposals we have stayed close to known
constructions and deliberately looked back at the AES process to use techniques
that were analysed and discussed there. At the same time we have explored the
role of a computationally-heavy key schedule which allows us to hash a large
amount of message at each iteration. We believe that an appropriate balance
between security and speed can be achieved in this way and we encourage others
to explore the advantages and disadvantages of this approach.

Independently of the success of dash-256, we can see several directions in
which to take this work. Certainly we believe that some variants of dash-256 may
offer room for improvement. For instance, while the key schedule in dash-256 has
many interesting attributes, we feel that the design is too complex. And while
its long standing is a good sign, it would be more satisfying to say something
concrete about the security offered when such very long keys (messages) are
being used. The state size of dash-256 is large, though so is that of some other
hash function proposals, and we note that there would be an overhead when
hashing short inputs. The most significant downside, however, is that dash-256
is oriented to 64-bit operations. Instead we feel (with hindsight) that a new
design geared towards 32-bit operations would be a better starting point.

We believe that these are all interesting avenues to explore, as is the more
general question of the role of the key schedule when a block cipher is used as
the basis for a hash function. With this in mind, we hope that the simplicity
of our proposal will promote new and independent analysis of dash-256/512 in
particular and hash functions in general; something that we strongly encourage.

References

1. Aiello, W., Haber, S., Venkatesan, R.: New Constructions for Secure Hash Func-
tions. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 150–167. Springer,
Heidelberg (1998)

2. Andreeva, E., Bouillaguet, C., Fouque, P.-A., Hoch, J., Kelsey, J., Shamir, A.,
Zimmer, S.: Second Preimage Attacks on Dithered Hash Functions. In: Smart,
N. (ed.) Proceedings of Eurocrypt 2008. LNCS, vol. 4965, pp. 270–288. Springer,
Heidelberg (2008)

3. Aoki, K., Lipmaa, H.: Fast Implementations of AES Candidates,
http://csrc.nist.gov

4. Aumasson, J.P., Meier, W., Phan, R.: The Hash Function Family LAKE. In: Ny-
berg, K. (ed.) Proceedings of FSE 2008 (to appear, 2008)

5. Baretto, P., Rijmen, V.: The Whirlpool Hashing Function,
paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html

6. Bertoni, G., Daemen, J., Peeters, M., van Assche, G.: Sponge Functions. In:
ECRYPT Hash Workshop, May 24-25 (2007), www.ecrypt.eu.org

7. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions -
HAIFA. In: Second NIST Cryptographic Hash Workshop, August 24-25 (2006),
csrc.nist.gov/groups/ST/hash/

http://csrc.nist.gov
paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
www.ecrypt.eu.org
csrc.nist.gov/groups/ST/hash/

252 O. Billet et al.

8. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

9. Anderson, R., Knudsen, L.R., Biham, E.: Serpent: A New Block Cipher Proposal.
In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidel-
berg (1998)

10. Billet, O., Robshaw, M.J.B., Peyrin, T.: On Building Hash Functions from Mu-
tivariate Quadratic Equations. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.)
ACISP 2007. LNCS, vol. 4586, pp. 82–95. Springer, Heidelberg (2007)

11. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

12. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: Present: An Ultra-Lightweight Block Cipher. In:
Paillier, P., Verbauwhede, I. (eds.) Proceedings of CHES 2007. LNCS, vol. 4727,
pp. 450–466. Springer, Heidelberg (2007)

13. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård Revisited: How
to Construct a Hash Functio. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

14. Damgård, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) Ad-
vances in Cryptology – CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer,
Heidelberg (1989)

15. Dean, R.D.: Formal Aspects of Mobile Code Security. PhD thesis. Princeton Uni-
versity (1999)

16. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

17. Junod, P., Vaudenay, S.: Perfect Diffusion Primitives for Block Ciphers—Building
Efficient MDS Matrices. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS,
vol. 3357, pp. 84–98. Springer, Heidelberg (2004)

18. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

19. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

20. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

21. Menezes, A.J., Vanstone, S.A., Van Oorschot, P.C.: Handbook of Applied Cryp-
tography. CRC Press, Inc., Boca Raton (1996)

22. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) Advances
in Cryptology – CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg
(1989)

23. Mizuno, H., Kuwakado, H., Tanaka, H.: Equivalent keys in RC6-32/20/176. IEICE
Transactions on Fundamentals of Electronics, Communications, and Computer Sci-
ences E84-A(10), 2474–2481

24. National Institute of Standards and Technology. FIPS 197: Advanced Encryption
Standard (November 2001), csrc.nist.gov

25. National Institute of Standards and Technology. AES Archive, csrc.nist.gov
26. National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard

(August 2002), csrc.nist.gov

csrc.nist.gov
csrc.nist.gov
csrc.nist.gov

Looking Back at a New Hash Function 253

27. National Institute of Standards and Technology. FIPS 198: The Keyed-Hash Mes-
sage Authentication Code (HMAC) (March 2002), csrc.nist.gov

28. National Institute of Standards and Technology. Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family, csrc.nist.gov

29. Preneel, B.: Analysis and design of cryptographic hash functions. PhD thesis,
Katholieke Universiteit Leuven (1993)

30. Rivest, R.L.: The RC5 Encryption Algorithm. In: Preneel, B. (ed.) Proceedings of
FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1994)

31. Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992),
www.ietf.org/rfc/rfc1321.txt

32. Rivest, R.L., Robshaw, M.J.B., Sydney, R., Yin, Y.L.: The Block Cipher RC6,
csrc.nist.gov

33. Rivest, R.L., Robshaw, M.J.B., Yin, Y.L.: The Case for RC6 as the AES,
csrc.nist.gov

34. Rivest, R.L.: Abelian Square-Free Dithering for Iterated Hash Functions. In:
First NIST Cryptographic Hash Workshop, October 31 - November 1 (2005),
csrc.nist.gov/groups/ST/hash/

35. Saarinen, M.-J.O.: A Note Regarding the Hash Function Use of MARS and RC6,
csrc.nist.gov

36. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit Block
Cipher CLEFIA. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195.
Springer, Heidelberg (2007)

37. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

38. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

39. Dai, W.: Crypto++ 5.5 Benchmarks,
http://www.cryptopp.com/benchmarks.html

csrc.nist.gov
csrc.nist.gov
www.ietf.org/rfc/rfc1321.txt
csrc.nist.gov
csrc.nist.gov
csrc.nist.gov/groups/ST/hash/
csrc.nist.gov
http://www.cryptopp.com/benchmarks.html

Non-linear Reduced Round Attacks against

SHA-2 Hash Family

Somitra Kumar Sanadhya� and Palash Sarkar

Applied Statistics Unit,
Indian Statistical Institute,
203, B.T. Road, Kolkata,

India 700108
somitra r@isical.ac.in, palash@isical.ac.in

Abstract. Most of the attacks against (reduced) SHA-2 family in liter-
ature have used local collisions which are valid for linearized version of
SHA-2 hash functions. Recently, at FSE ’08, an attack against reduced
round SHA-256 was presented by Nikolić and Biryukov which used a
local collision which is valid for the actual SHA-256 function. It is a
9-step local collision which starts by introducing a modular difference
of 1 in the two messages. It succeeds with probability roughly 1/3. We
build on the work of Nikolić and Biryukov and provide a generalized
nonlinear local collision which accepts an arbitrary initial message dif-
ference. This local collision succeeds with probability 1. Using this local
collision we present attacks against 18-step SHA-256 and 18-step SHA-
512 with arbitrary initial difference. Both of these attacks succeed with
probability 1. We then present special cases of our local collision and
show two different differential paths for attacking 20-step SHA-256 and
20-step SHA-512. One of these paths is the same as presented by Nikolić
and Biryukov while the other one is a new differential path. Messages
following both these differential paths can be found with probability 1.
This improves on the previous result where the success probability of
20-step attack was 1/3. Finally, we present two differential paths for 21-
step collisions for SHA-256 and SHA-512, one of which is a new path.
The success probabilities of these paths for SHA-256 are roughly 2−15

and 2−17 which improve on the 21-step attack having probability 2−19

reported earlier. We show examples of message pairs following all the
presented differential paths for up to 21-step collisions in SHA-256. We
also show first real examples of colliding message pairs for up to 20-step
reduced SHA-512.

1 Introduction

Cryptanalysis of hash functions has been an area of intense interest to the re-
search community since past decade and a half. Many hash functions were broken
in this time, most notable among them are MD5 [13], SHA-0 [14] and theoretical
� This author is supported by the Ministry of Information Technology, Govt. of India.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 254–266, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Non-linear Reduced Round Attacks against SHA-2 Hash Family 255

break of SHA-1 [12]. This has directed the attention of the cryptology community
to the SHA-2 family of hash functions.

Known Results for the SHA-2 Family: Gilbert and Handschuh (GH) [2]
were the first to study local collisions in the SHA-2 family. They reported a 9-step
local collision for linearized version of SHA-256 and estimated the probability of
the differential path to be 2−66. This probability estimate was later improved by
Hawkes et al. [3]. Sanadhya and Sarkar [7] presented 16 new 9-step local collisions
for SHA-2 family of hash functions. All these local collisions are also for the
linearized version of SHA-256. The message expansion of SHA-256 was studied
by Mendel et al. [4], who reported a colliding message pair for 18-step SHA-
256 which was recently corrected in [5]. They used the linearized local collision
from [2] in their work. Mendel et al. [4] also improved the probability estimate of
the Gilbert-Handschuh local collision to values similar to those obtained in [3].
In [8], an algorithm for generating 18-step SHA-256 collisions was developed
using one of the local collisions from [7] and many colliding message pairs for
18-step SHA-256 were obtained.

Recently, Nikolić and Biryukov [6] presented a new local collision which uses
modular differences instead of the XOR differences. Since this local collision is
for the actual SHA-256 (and not its linearized version), its probability is much
higher than the linearized local collisions presented earlier. For the first time in
the literature, the authors in [6] worked directly with modular differences for
SHA-256. Using this local collision they obtained 20-step and 21-step collisions
for SHA-256 with probabilities 1/3 and 1/219 respectively.

Our Contributions: We build on the work of Nikolić and Biryukov [6] and
present a generalized non-linear local collision which accepts an arbitrary initial
message difference. In [6], sufficient conditions for the differential path are deter-
mined and a particular local collision is obtained. We work with exact solutions
of conditions imposed by the differential path and obtain general solutions of
these conditions. Since we work with exact solutions of the conditions, our local
collision is deterministic i.e. it holds with probability 1. Using this local collision,
we obtain collisions for 18-step SHA-256 and 18-step SHA-512 with an arbitrary
initial message difference. These attacks succeed with probability 1.

Then we show special instances of our generalized local collision which are
suitable for finding collisions for 20-step SHA-256 and 20-step SHA-512. We
present two such instances. One of these instances is a new local collision which
can be realized in two different ways. The other one is the same as that presented
by Nikolić and Biryukov for obtaining 20-step collision in [6]. However, unlike
in [6], our 20-step attacks succeed with probability 1.

Finally, we use 20-step collisions to obtain 21-step collisions for SHA-256 as
in [6]. There the probability for 21-step SHA-256 collisions is experimentally es-
timated to be about 2−19. We improve the efficiency of the probabilistic search
used in this case and obtain 21-step collisions for SHA-256 with estimated ex-
perimental probability of 2−15. This is also the first time that actual collisions
for SHA-512 reduced up to 20 steps are presented.

256 S.K. Sanadhya and P. Sarkar

2 Notation

In this paper we use the following notation:

– mi ∈ {0, 1}n, Wi ∈ {0, 1}n, W ′
i ∈ {0, 1}n for any i. The word size n is 32 for

SHA-256 and 64 for SHA-512.
– The colliding message pair: {m0, m1, . . . m15} and {m′

0, m′
1, . . . m′

15}.
– The expanded message pair: {W0, W1, W2, . . . Wr−1} and {W ′

0, W ′
1, W ′

2,
. . . W ′

r−1}. The number of steps r is 64 for SHA-256 and 80 for SHA-512.
– The internal registers for the two message pairs in step i: {ai, . . . , hi} and
{a′

i, . . . , h
′
i}.

– ROTRk(x): Right rotation of an n-bit quantity x by k bits.
– SHRk(x): Right shift of an n-bit quantity x by k bits.
– ⊕: bitwise XOR.
– +: addition modulo 2n.
– −: subtraction modulo 2n.
– δX = X ′ −X where X is an n-bit quantity.
– δΣ1(ei) = Σ1(e′i)−Σ1(ei).
– δΣ0(ai) = Σ0(a′

i)−Σ0(ai).
– δf i

MAJ (x, y, z): Output difference of the fMAJ function in step i when its
inputs differ by x, y and z. That is, δf i

MAJ(x, y, z) = fMAJ(ai + x, bi + y,
ci + z)− fMAJ (ai, bi, ci).

– δf i
IF (x, y, z): Output difference of the fIF function in step i when its inputs

differ by x, y and z. That is, δf i
IF (x, y, z) = fIF (ei + x, fi + y, gi + z) −

fIF (ei, fi, gi).

3 Collision Attacks Against the SHA-2 Hash Family

The SHA-2 hash function was standardized by NIST in 2002. Eight registers are
used in the evaluation of SHA-2. The initial value in the registers is specified by
an 8×n bit IV, n=32 for SHA-256 and 64 for SHA-512. In Step i, the 8 registers
are updated from (ai−1, bi−1, ci−1, di−1, ei−1, fi−1, gi−1, hi−1) to (ai, bi, ci, di,
ei, fi, gi, hi) according to the following equations:

ai = Σ0(ai−1) + fMAJ (ai−1, bi−1, ci−1) + Σ1(ei−1)
+fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

bi = ai−1

ci = bi−1

di = ci−1

ei = di−1 + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1)
+hi−1 + Ki + Wi

fi = ei−1

gi = fi−1

hi = gi−1

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

The fIF and the fMAJ are three variable bitwise boolean functions If and Ma-
jority respectively. For detailed information on the function Σ0, Σ1 and the
message expansion of SHA-2 family, see [11].

Non-linear Reduced Round Attacks against SHA-2 Hash Family 257

The aim of collision attacks against hash functions is to obtain two different
messages which produce the same digest under that hash function. The hash
functions use one word of the message in each step and process the message for
multiple steps. Typically, an attacker introduces a small difference in one word
of the message. Using the terminology from [1], this initial difference is called
the “perturbation message difference”. Next few message words are chosen to
differ in such a manner that all the introduced differences cancel themselves
with high probability. These later message word differences are called “correction
differences”.

Only the first 16 words are free in the SHA-2 design, with the rest of the
message words being defined by the “message expansion”. In a local collision, a
differential path for small number of steps is considered in which the message
expansion is ignored. We present our new nonlinear local collision next.

4 A General Class of Nonlinear Local Collisions

Table 1 shows the general structure of a 9-step local collision for SHA-2 family. The
perturbation message difference is taken to be x and other message differences are
later computed. In Table 1, the registers (ai−1, . . . , hi−1) and Wi are inputs to
Step i of the hash evaluation and this step outputs the registers (ai, . . . , hi).

Table 1. A 9-step nonlinear local collision for SHA-256

Step i δWi δai δbi δci δdi δei δfi δgi δhi

i − 1 0 0 0 0 0 0 0 0 0

i x x 0 0 0 x 0 0 0

i + 1 δWi+1 0 x 0 0 y x 0 0

i + 2 δWi+2 0 0 x 0 z y x 0

i + 3 δWi+3 0 0 0 x 0 z y x

i + 4 δWi+4 0 0 0 0 x 0 z y

i + 5 δWi+5 0 0 0 0 0 x 0 z

i + 6 δWi+6 0 0 0 0 0 0 x 0

i + 7 δWi+7 0 0 0 0 0 0 0 x

i + 8 δWi+8 0 0 0 0 0 0 0 0

4.1 Obtaining a Local Collision

In Step i of SHA-2, only the registers ai and ei are computed. Rest of the registers
are copies of the old ones. Therefore we focus on these two register evaluations
only. From (1), we get:

δei = δΣ1(ei−1) + δfIF (δei−1, δfi−1, δgi−1) + δdi−1 + δhi−1 + δWi, (2)

δai = δΣ0(ai−1) + δfMAJ(δai−1, δbi−1, δci−1) + δΣ1(ei−1) +
δfIF (δei−1, δfi−1, δgi−1) + δhi−1 + δWi,

= δΣ0(ai−1) + δfMAJ(δai−1, δbi−1, δci−1) + δei − δdi−1. (3)

258 S.K. Sanadhya and P. Sarkar

Table 2. Message word differences for the local collision of Table 1

1 y = −δΣ0(ai) − δf i
MAJ (x, 0, 0) 2 z = −δf i+1

MAJ (0, x, 0)

3 δWi = x 4 δWi+1 = y − δf i
IF (x, 0, 0) − δΣ1(ei)

4 δWi+2 = z − δf i+1
IF (y, x, 0) − δΣ1(ei+1) 5 δWi+3 = −δf i+2

IF (z, y, x) − δΣ1(ei+2)

6 δWi+4 = −x − δf i+3
IF (0, z, y) 7 δWi+5 = −y − δf i+4

IF (x, 0, z)
−δΣ1(ei+4)

8 δWi+6 = −z − δf i+5
IF (0, x, 0) 9 δWi+7 = −δf i+6

IF (0, 0, x)

10 δWi+8 = −x 11 δf i+2
MAJ (0, 0, x) = 0

The differential path of Table 1 defines the message word differences as shown
in Table 2. The derivation of these differences can be done by techniques similar
to [6]. For details on this derivation, refer to [9].

To obtain the 9-step local collision as in Table 1, we first select the perturba-
tion message difference δWi as a randomly generated 32-bit (or 64-bit) quantity
x. The differences δWj for j ∈ {(i + 1), . . . , (i + 8)} are defined as in Table 2. In
addition, we need to choose Wi+2 such that ai+2 = ai+1 to ensure the success
of condition 11 in Table 2. Rest of the message words could be any randomly
chosen 32-bit (or 64-bit) words. This local collision holds with probability 1,
since all the steps are deterministic and feasible. For details, see [9].

5 Extending a Single Local Collision to Obtain 18-Step
Collisions

In this section we briefly explain how to obtain 18-step collisions using the local
collision shown in this paper. We discuss three different types of differential paths
depending on the value of the differential z used in δei+2 to δhi+5 in Table 1.
These values of z are −1, 0 and 1.

For all the different cases, we choose to span the 9-step local collision from
Step 3 to Step 11. The message differentials δWi for i ∈ {3, 4, . . . , 11} are
defined by the local collision. We use a single local collision, which implies that
all the other free message words are equal. That is, δWi = 0 for i ∈ {0, 1, 2, 12,
13, 14, 15}.

First two steps of message expansion of SHA-2 define the message words W16

and W17 as follows:

W16 = σ1(W14) + W9 + σ0(W1) + W0

W17 = σ1(W15) + W10 + σ0(W2) + W1

From these two equations, it is clear that if δW9 = δW10 = 0 then the two
expanded message words will be equal for Steps 17 and 18. This will result in
an 18-step collision for SHA-2. Note that δW9 and δW10 correspond to Steps
7 and 8 of the local collision used. Hence our target is to get differentials of
the message in these two steps to vanish. The 18-step collisions as suggested
above can be found with probability 1. For detailed analysis of this case and the
colliding message pairs, see [9].

Non-linear Reduced Round Attacks against SHA-2 Hash Family 259

6 Extending a Single Local Collision to Obtain 20-Step
Collisions

We follow the technique used in [6] to obtain 20-step collisions for SHA-256. This
time we need to handle first 4 steps of message expansion. These steps are:

W16 = σ1(W14) + W9 + σ0(W1) + W0

W17 = σ1(W15) + W10 + σ0(W2) + W1

W18 = σ1(W16) + W11 + σ0(W3) + W2

W19 = σ1(W17) + W12 + σ0(W4) + W3

If a single local collision spanning from Step 5 to Step 13 is used and all other
messages outside the scope of this local collision are taken to have zero differen-
tials, then δWi = 0 for i ∈ {0, 1, 2, 3, 4, 14, 15}. This implies that if we can have
δW9 = δW10 = δW11 = δW12 = 0, then the differentials of the first 4 expanded
message words will be zero. In this case the message expansion will not play a
role and we will be able to extend a single local collision to 20 steps.

The local collision presented in [6] is such that the message differentials at
steps i+4 to i+7 are zero for it (i = 5 is the starting step of the local collision).
Hence it can be used to obtain 20-step collisions directly. The local collision we
presented is more general but does not necessarily have 4 consecutive message
differentials equal to zero. Now we find particular instances of our local collision
such that we have zero differentials as desired. This time we work with sufficient
conditions as in [6].

To obtain the 4 consecutive zero differentials in the local collision, we need to
have differentials generated by δWi+4, δWi+5, δWi+6 and δWi+7 (corresponding
to Steps 9, 10, 11 and 12 of the differential path) to be equal to zero. We next
discuss the conditions put by these equations. We also need to control the values
of y and z. As in [6], we start the local collision by choosing x = 1.

Condition on the value of y: This condition contains the term δΣ0(a5) =
Σ0(a′

5) − Σ0(a5). From the differential path we know that δa5 = a′
5 − a5 = x.

Differential behavior of the non-linear function Σ0 is difficult to analyze. To
make it tractable, we choose δΣ0(a5) = x = 1. For this case, the only solutions
are a5 = −1 = 0xffffffff and a′

5 = 0. We also put restriction that the fMAJ

term doesn’t propagate any difference. This condition f5
MAJ (x, 0, 0) = 0 implies

b5 = c5, i.e. a4 = a3. Conditions on a4 and a5 registers can be deterministically
satisfied by choosing W4 and W5 suitably. By the choices made above, this
equation gives y = −1.

Condition on the value of δWi+5: This condition contains the term δΣ1(e9)
= Σ1(e′9) − Σ1(e9). From the differential path we know that δe9 = e′9 − e9 =
x. Differential behaviour of the non-linear function Σ1 is difficult to analyze.
Similar to the previous equation, we choose δΣ1(e9) = x = 1. Once again, the
only solutions are e9 = −1 = 0xffffffff and e′9 = 0. This condition can be

260 S.K. Sanadhya and P. Sarkar

deterministically satisfied by choosing W9 suitably. Finally, we wish to make the
following difference zero:

δW10 = −y − δf9
IF (x, 0, z)− δΣ1(e9)

= −(−1)− (fIF (e9 + 1, e8, e7 + z)− fIF (e9, e8, e7))
−(Σ(e9 + 1)−Σ1(e9))

= 1− fIF (0, e8, e7 + z) + fIF (−1, e8, e7)− 1
= e8 − e7 − z

We have already chosen suitable values for x and y but z is still free. Having
worked with the 18-step collisions earlier, we realize that only suitable values for
z are 0, +1 and −1.

Condition on the value of δWi+7: This condition is the easiest to satisfy.
We need δW12 = 0. But δW12 = δf11

IF (0, 0, x). If the fIF function chooses its
middle argument then we will have the desired value. Hence we need to ensure
e11 = −1. This can be done deterministically by choosing W11 suitably.

Condition 11 from Table 2: To get δf7
MAJ (0, 0, x) = 0, it is sufficient to

ensure that a7 = a6. This can be done deterministically by choosing W7 suitably.
All the resulting conditions are summarized in Table 3.

Table 3. Conditions put on the registers and differential path along with conditions
yet to be satisfied

1 x = 1, y = −1 5 e8 − z − e7 = 0 (Condition 7, Table 2)

2 a4 = a3, a5 = −1 6 δf6
MAJ (0, x, 0) = −z (Condition 2, Table 2)

3 a7 = a6 7 −x = δf8
IF (0, z, y) (Condition 6, Table 2)

4 e9 = −1, e11 = −1 8 δf10
IF (0, x, 0) = −z (Condition 8, Table 2)

We need to consider three choices for z: 0, 1 and −1. The middle arguments
to the δf6

MAJ function are a5 + 1 and a5, both of which have already been
set to specific values 0 and −1 respectively (Cf. Condition 2 in Table 3). This
causes difficulty in the satisfaction of Condition 6 in Table 3 for z = 1. Hence
we consider the other two values for z now.

6.1 When z = 0

This is the same 20-step differential path considered in [6]. We now attempt to
satisfy conditions 5 to 8 in Table 3.

– Taking a6 = a4 satisfies condition 6. This can be done by suitably choosing
W6.

– Taking e8 = e7 satisfies condition 5. This can be done by suitably choosing
W8.

– Taking e10 = 0 satisfies condition 8. This can be done by suitably choosing
W10.

Non-linear Reduced Round Attacks against SHA-2 Hash Family 261

The only condition remaining now is Condition 7 which is δf8
IF (0, 0, −1) =

−1. There is no message freedom left to satisfy this condition. In [6], this condi-
tion is let to be free and is satisfied with probability 1/3 by random choices of
messages. We now show that it is possible to satisfy even this condition deter-
ministically.

It is clear that if we have e8 = 0 then fIF will select its last argument which
has a difference of −1. Thus the output of fIF will be −1 as desired. But we
have already chosen W8 such that e8 = e7. All the earlier message words starting
from W4 have also been used to satisfy some condition or the other. We now
look at the calculation of e7:

e7 = d6 + Σ1(e6) + fIF (e6, f6, g6) + h6 + K7 + W7

= d6 + a7 −Σ0(a6)− fMAJ (a6, b6, c6)
= a3 + a7 −Σ0(a6)− fMAJ(a6, a5, a4)
= a4 + a6 −Σ0(a6)− fMAJ(a6,−1, a4)

If we can ensure that a6 = a4 = 0 then e7 = e8 = 0 will be deterministic, which
in turn will lead to a 20-step collision with probability 1. We used W4 to get
a4 = a3 earlier. Now we choose the free word W3 to get a3 = 0. Rest of the
conditions remain the same as in [6] and we get 20-step deterministic collisions
for SHA-2. Examples of colliding message pairs for 20-step SHA-256 and SHA-
512 are given in [9]. The set of conditions on the registers are given as Case 1 in
Table 4.

Table 4. Conditions on the registers for 20-step deterministic collisions for SHA-2.
Satisfaction of these conditions lead to 20-step collisions for SHA-2 with probability 1.
A condition on ai (or ei) can be satisfied by suitable choice of Wi. The condition on
e7 in each case gets satisfied automatically when other conditions are met.

Case 1 x = 1, y = −1, z = 0

1 a3 = a4 = 0, a5 = −1, a6 = a7 = 0

2 e7 = e8 = 0, e10 = 0, e9 = e11 = −1

Case 2-A x = 1, y = −1, z = −1

1 a3 = a4 = −1, a5 = −1, a6 = a7 = 0

2 e7 = 0, e8 = −1, e9 = −1, e10 = e11 = −1

Case 2-B x = 1, y = −1, z = −1

1 a3 = a4 = 0, a5 = −1, a6 = a7 = −1

2 e7 = 1, e8 = 0, e9 = −1, e10 = e11 = −1

6.2 When z = −1

Similar to the case z = 0 above, we can determine conditions for 20-step collisions
in SHA-2 and deterministically satisfy all the conditions. This time we get two
sets of conditions. These are listed as Case 2-A and 2-B in Table 4. Note that
this case gives rise to a new 20-step differential path for SHA-2. Colliding pairs
of messages satisfying these conditions are given in Section A.

262 S.K. Sanadhya and P. Sarkar

7 Extending a Single Local Collision to Obtain 21-Step
Collisions

Using a single local collision to obtain 21-step collisions appears difficult because
initial message words start repeating in the recursion of the message expansion
this time. In [6], a single local collision spanning from Step 6 to Step 14 is used
and a 21-step collision for SHA-256 is obtained probabilistically. Note that the
earlier 20-step collisions had the local collision spanning from Step 5 to Step 13.
This time the local collision has been slid down by one step. We first describe
the method used in [6].

First 5 steps of message expansion for SHA-2 are:

W16 = σ1(W14) + W9 + σ0(W1) + W0

W17 = σ1(W15) + W10 + σ0(W2) + W1

W18 = σ1(W16) + W11 + σ0(W3) + W2

W19 = σ1(W17) + W12 + σ0(W4) + W3

W20 = σ1(W18) + W13 + σ0(W5) + W4

Since the chosen local collision has 4 consecutive zero message differentials
within its span, we have δWi = 0 for i ∈ {10, 11, 12, 13}. Further, this being the
only local collision, messages outside the span of the local collision do not have
any difference. Thus, we also have δWi = 0 for i ∈ {0, 1, 2, 3, 4, 5, 15}. Terms
which may have non-zero differentials in the above equations are underlined.

All these zero differentials imply that if δσ1(W14) + δW9 = 0 then the first
5 steps of the message expansion will not produce any difference, and we will
have a 21-step collision. Since both W14 and W9 are random, it can be expected
that they will cancel the differences in this manner. The probability for this
cancellation to happen is estimated to be about 2−17.5 in [6]. Since their local
collision has probability roughly 1/3, the probability of the 21-step collision is
estimated to be approximately 2−19.

We use the same technique for our deterministic 20-step collisions and slide the
single local collision one step to attempt a 21-step collision. We first observe that
in having the 20-step collisions with probability 1, we have lost some message
freedom and consequently, δW9 is no more random for two of the three cases
described in Table 4. This happens for Case 1 and Case 2-B from this table. For
proof of this claim, refer to [9].

To use the 20-step collision described by Case 1 in Table 4, we need to relax
some of the conditions there and obtain some randomness in δW9. An example of
such a relaxation is not to enforce a3 = a4 = 0, rather only ensure a3 = a4. This
also causes relaxation on the condition on e7, and the 20-step collision becomes
probabilistic now. In fact, this is exactly the same 20-step collision described
in [6]. The 21-step collision can now be found for this case as described in [6]. We
describe an improvement to the search for messages satisfying δσ1(W14)+δW9 =
0 a little later.

We note that the conditions in case 2-B of Table 4 cannot be relaxed to
obtain randomness in δW9 and consequently this case can not be used for

Non-linear Reduced Round Attacks against SHA-2 Hash Family 263

21-step collisions. We also note that Case 2-A introduces randomness in δW9

by default, so we do not need to relax any condition for this case. This is a good
case for obtaining 21-step collisions, since it has probability 1 for all the steps
other than the cancellation of δW9 as described above. Next we describe our
improved method of searching for suitable messages such that the difference in
W14 and W9 cancels the difference in W18.

7.1 Obtaining Messages Satisfying δσ1(δW14) + δW9 = 0

We have that δW14 = W ′
14 −W14 = −1. We expect δW9 to be random. It is

stated in [6] that by random choice of message words, the condition above can
be satisfied with probability 2−17.5. This expectation seems to be based on the
randomness of δσ1(W14). We note that the difference of two σ1 terms when their
inputs differ by −1 is highly non-random.

The choices made in the local collision make the term δW9 biased towards
values which are small in magnitude. A rough idea of the distribution of δW9

can be had from the following example: We ran the code for 21-step collisions
of [6] 5× 105 times and observed that only 174 times the value of δW9 came out
to be larger than 1000 in magnitude. Further, there were only 334 values larger
than 500, 594 values larger than 300 and 1870 values larger than 100.

At the same time, σ1(W14 − 1)− σ1(W14) is biased towards large magnitudes
for random values of W14. In fact, for a large number of points p ∈ {0, 1}32 there
is no solution to the equation σ1(W14−1)−σ1(W14) = −δW9 = p. Interestingly,
this equation does not have any solution for W14 for even values of p. The
distribution of the left hand side of this equation is so non-uniform that there
are only 4 values of δW9 in {−300, 300} for which a solution for W14 exists. We
list these 4 values of δW9 and corresponding values of W14 in Table 5.

Table 5. Some solutions to the equation σ1(W14−1)−σ1(W14)+δW9 = 0 for SHA-256

No. δW9 W14

1 00000041 7fc00000, 80400000

2 00000101 d5000000, 81000000, 7f000000, 2b000000

3 ffffff41 4c400000, b3c00000

4 ffffff01 19000000, 4d000000, b3000000, e7000000

This analysis suggests that a specific suitable value of δW9 should first be
selected and then we should search for corresponding W14. Even if this procedure
is used, the probability of being able to get the correct W14 is of the order of
2−32. This implies that the search in [6] is not over random messages, rather
a pre-computed value of W14 is used for a specific δW9. From the colliding
message pair given in [6], we observe that the value of δW9 used is ffffff01
and the corresponding W14 is 19000000. This particular choice of δW9 occurs
with probability 2−17.5 which corresponds to the estimate given in [6].

264 S.K. Sanadhya and P. Sarkar

We use a speed-up in the search for the correct W14. First we create a list
of pairs (σ1(p) − σ1(p − 1), p) for all p ∈ {0, 1}32. We sort this list on the first
element. While running the code for 21-step collision, we compute δW9 and do a
binary search over this list. If this value matches with the first element of a pair in
the list, then we use the second element to define W14. With this modification,
we obtain a 16 fold improvement to the probability of obtaining the correct
δW9. Since W14 is pre-computed, the only probability is in getting the right
difference δW9.

We have extended two types of 20-step collisions to obtain 21-step collisions for
SHA-256. One of the local collisions is the Case 1 of Table 4 with some conditions
relaxed. As already mentioned, this is the Nikolić-Biryukov local collision [6]
having probability 1/3. For this case our method succeeds in finding correct
δW9 with probability roughly 2−13.5. Thus the overall probability of the 21-step
SHA-256 collision is about 2−15.

The second 20-step collision we extend to 21 steps is described by Case 2-A
of Table 4. For this case, we could find suitable δW9 with probability roughly
2−17. Since the probability of the 20-step collision is 1 in this case, we get the
21-step collision with probability roughly 2−17.

8 Conclusions

In this paper we presented a generalized local collision for SHA-2. Using a single
instance of this local collision, we obtained 18-step collisions with an arbitrary
starting message difference. These collisions hold with probability 1. We then
presented two different differential paths for 20-step collisions in SHA-2 both of
which hold with probability 1. Finally, we improved on the search for 21-step
collisions in SHA-256 increasing the probability of success 16 fold. Apart from
the colliding message pairs for different cases and different number of steps for
SHA-256, we also show colliding message pairs for up to 20-step SHA-512 for
the first time in the literature.

Acknowledgements

We would like to thank anonymous reviewers for giving useful suggestions.

References

1. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

2. Gilbert, H., Handschuh, H.: Security Analysis of SHA-256 and Sisters. In: Mat-
sui, M., Zuccherato, R.J. (eds.) Selected Areas in Cryptography, 10th Annual In-
ternational Workshop, SAC 2003, Ottawa, Canada, August 14-15, 2003. LNCS,
vol. 3006, pp. 175–193. Springer, Heidelberg (2003)

3. Hawkes, P., Paddon, M., Rose, G.G.: On Corrective Patterns for the SHA-2 Family.
Cryptology eprint Archive (August 2004), http://eprint.iacr.org/2004/207

http://eprint.iacr.org/2004/207

Non-linear Reduced Round Attacks against SHA-2 Hash Family 265

4. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of Step-Reduced
SHA-256. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 126–143.
Springer, Heidelberg (2006)

5. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of Step-Reduced
SHA-256. Cryptology eprint Archive (March 2008),
http://eprint.iacr.org/2008/130

6. Nikolić, I., Biryukov, A.: Collisions for Step-Reduced SHA-256. In: Nyberg, K.
(ed.) Fast Software Encryption 2008. LNCS, pp. 1–16. Springer, Heidelberg (2008)

7. Sanadhya, S.K., Sarkar, P.: New Local Collisions for the SHA-2 Hash Family. In:
Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 193–205. Springer,
Heidelberg (2007)

8. Sanadhya, S.K., Sarkar, P.: Attacking Reduced Round SHA-256. In: Bellovin, S.,
Gennaro, R. (eds.) ACNS 2008. LNCS. Springer, Heidelberg (to appear, 2008)

9. Sanadhya, S.K., Sarkar, P.: Non-Linear Reduced Round Attacks Against SHA-2
Hash family. Cryptology eprint Archive (April 2008),
http://eprint.iacr.org/2008/174

10. Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)
11. Secure Hash Standard. Federal Information Processing Standard Publication 180-

2. U.S. Department of Commerce, National Institute of Standards and Tech-
nology(NIST) (2002), http://csrc.nist.gov/publications/fips/fips180-2/

fips180-2withchangenotice.pdf

12. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup (ed.)
[10], pp. 17–36

13. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

14. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In: Shoup
[10], pp. 1–16

http://eprint.iacr.org/2008/130
http://eprint.iacr.org/2008/174
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

266 S.K. Sanadhya and P. Sarkar

A Colliding Message Pairs

Table 6. Colliding message pair for 20-step SHA-256 with standard IV. These messages
follow the differential path of Table 1 with x = 1, y = -1, z = -1. These messages
satisfy Case 2-A of Table 4.

W1 0-7 5a603c44 0f5fdd15 69e8c2a4 1754c271 60518701 feef6b5f c7f50d13 fdc492ca

8-15 d5d49f53 d4c9d37f bf796ac4 aaf3823e a24e8e62 8d8898c8 fc4456f3 8d557ae5

W2 0-7 5a603c44 0f5fdd15 69e8c2a4 1754c271 60518701 feef6b60 d3d50e93 f9a49248

8-15 d2326157 d4c9d37f bf796ac4 aaf3823e a24e8e62 8d8898c7 fc4456f3 8d557ae5

Table 7. Colliding message pair for 21-step SHA-256 with standard IV. These messages
follow the differential path of Table 1 with x = 1, y = -1, z = -1. For these messages
δW9 = ffffe191.

W1 0-7 4158ecc7 3a3ffe61 ba7149f0 ed452440 4d9ab924 f016459f 22f5578c c56333c1

8-15 ff1941ff 19b8055b fb2876ba ca4d6044 8d41a28d 8194372b 7e100000 5240bb72

W2 0-7 4158ecc7 3a3ffe61 ba7149f0 ed452440 4d9ab924 f016459f 22f5578d c1433241

8-15 fb39427d 19b7e6ec fb2876ba ca4d6044 8d41a28d 8194372b 7e0fffff 5240bb72

Table 8. Colliding message pair for 20-step SHA-512 with standard IV. These messages
follow the differential path of Table 1 with x = 1, y = -1, z = -1. These messages
satisfy Case 2-A of Table 4.

W1 0-3 1c99041525eeeeb3 7dfc74f74bab1a89 aaca442cddb37351 21d1684a782a5b87

4-7 3d374aed94c9d766 296c28f080eced7a 62f73e6df90ce266 d4c85286272c52c1

8-11 e2d8e832fb623115 5c43e3fc9bee94c3 5ef6f726192a4213 aaf3823c2a004b1f

12-15 fa18ffe92868d117 8584328bd3146ed0 c3ce87104858e6cb 6dc9cd6519344c6a

W2 0-3 1c99041525eeeeb3 7dfc74f74bab1a89 aaca442cddb37351 21d1684a782a5b87

4-7 3d374aed94c9d766 296c28f080eced7b 62fafe6df88ce264 d4cc928628ac52c0

8-11 f73a261982122135 5c43e3fc9bee94c3 5ef6f726192a4213 aaf3823c2a004b1f

12-15 fa18ffe92868d117 8584328bd3146ecf c3ce87104858e6cb 6dc9cd6519344c6a

Collisions for Round-Reduced LAKE�

Florian Mendel and Martin Schläffer

Graz University of Technology,
Institute for Applied Information Processing and Communications,

Inffeldgasse 16a, A-8010 Graz, Austria
{florian.mendel,martin.schlaeffer}@iaik.tugraz.at

Abstract. LAKE is a family of cryptographic hash functions presented
at FSE 2008. It is an iterated hash function and defines two main in-
stances with a 256 bit and 512 bit hash value. In this paper, we present
the first security analysis of LAKE. We show how collision attacks, ex-
ploiting the non-bijectiveness of the internal compression function of
LAKE, can be mounted on reduced variants of LAKE. We show an effi-
cient attack on the 256 bit hash function LAKE-256 reduced to 3 rounds
and present an actual colliding message pair. Furthermore, we present a
theoretical attack on LAKE-256 reduced to 4 rounds with a complexity
of 2109. By using more sophisticated message modification techniques
we expect that the attack can be extended to 5 rounds. However, for
the moment our approach does not appear to be applicable to the full
LAKE-256 hash function (with all 8 rounds).

Keywords: cryptanalysis, hash functions, collision attack.

1 Introduction

A cryptographic hash function H maps a message M of arbitrary length to
a fixed-length hash value h. A cryptographic hash function has to fulfill the
following security requirements:

– Collision resistance: it is infeasible to find two messages M and M∗, with
M∗ �= M , such that H(M) = H(M∗).

– Second preimage resistance: for a given message M , it is infeasible to find a
second message M∗ �= M such that H(M) = H(M∗).

– Preimage resistance: for a given hash value h, it is infeasible to find a message
M such that H(M) = h.

The resistance of a hash function to collision and (second) preimage attacks
depends on the length n of the hash value. Based on the birthday paradox the
generic complexity for a collision attack is about 2n/2 hash computations, where
n is the size of the hash value. For a preimage attack and a second preimage
� The work in this paper has been supported in part by the European Commission

under contract IST-2002-507932 (ECRYPT) and through the Austrian Science Fund
(FWF) under grant number P19863.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 267–281, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

268 F. Mendel and M. Schläffer

attack the generic complexity is about 2n hash computations. If collisions and
(second) preimages can be found with a complexity less than 2n/2 and 2n the
hash function is considered to be broken.

Recent cryptanalytic results focus on the collision resistance of hash functions.
Collision attacks have been shown for many commonly used hash functions, like
MD5 [13] and SHA-1 [4,12]. In the upcoming NIST competition [9] to find an
alternative hash function to SHA-2, many new hash function designs will be pro-
posed. Therefore, the cryptanalysis of new and alternative hash function designs
like LAKE is of great interest. In this article, we will present a security analysis
with respect to collision resistance for the hash function LAKE, proposed at
FSE 2008 [2]. We are not aware of any published security analysis of this hash
function until now.

The hash function LAKE is a new iterated hash function based on the HAIFA
framework [3]. It is a software-oriented design and uses an internal wide-pipe
strategy [7,8]. The two proposed variants of LAKE compute a 256-bit and 512-
bit hash value and use an 8- and 10-round compression function, respectively.
In our analysis we focus on the 256-bit variant LAKE-256 but the same attack
applies to LAKE-512 as well. In the following we omit the bit size in the name if
we refer to LAKE-256. We show collisions for round-reduced variants of LAKE
where we exploit a structural weakness in the internal compression functions.
We construct collisions in the used Boolean functions which are then extended
to an attack on round-reduced variants of LAKE.

The remainder of this article is structured as follows. In the next section, we
give a short description of the hash function LAKE with a focus on the relevant
parts for our attacks. In Sect. 3, we explain the basic attack strategy and show
a collision for a simplified variant of the full hash function. The results of the
collision attacks on round-reduced variants are presented in Sect. 4. Finally, we
conclude this paper with a short recommendation on how the LAKE design
could be improved to withstand our attack.

2 Description of LAKE

The LAKE hash function is an iterated hash function based on the HAIFA
framework [3]. It takes a salt and the message as its input. The message is padded
by a specific padding rule and the initial chaining variable H0 is computed form
the initial value (IV) and parameterized by the (variable) output bit length d
of the hash function. The LAKE family defines two main instances LAKE-256
and LAKE-512 which differ only in their used bit sizes, constants and rotation
values. While our attack is not limited to LAKE-256 we focus on this instance
of the LAKE family for the remainder of this paper.

The compression function of LAKE computes the next chaining variable Ht

from the previous Ht−1, the current message block Mt the salt S and the current
block index t. It consists of three parts which are shown in Fig. 1. The function
saltstate mixes the global chaining variable Ht with the salt S, and the block
index t using 8 calls to the function g. The output of saltstate is written into the

Collisions for Round-Reduced LAKE 269

process-
message

(8 rounds)

16 calls to f
16 calls to g

 saltstate

 8 calls to g

feedforward

 8 calls to f

S0...3

t0,1

m0...15

Ht-1

S0...3

t0,1

Ht

Ht-1

8 calls to g

16 calls to f

16 calls to g

8 calls to f

S0...3

S0...3

t0,1

t0,1

m0...15

Ht-1

Ht

(8
 r

ou
nd

s)

L(r-1)

F(r)

L(r)

. .
 .

Fig. 1. The compression function of LAKE-256 consists of the three main parts salt-
state, processmessage and feedforward which call two nonlinear internal compression
functions f and g

internal chaining variable L(r−1) which is twice as large as Ht−1. The function
processmessage is the main part of the LAKE compression function and takes
the current message block Mt and the current internal chaining variable L(r−1)

as its input. The message block is first expanded by the message permutation
σr(i) and then incorporated into the internal chaining variables within r rounds.
Every round of processmessage uses 16 calls to two nonlinear internal compres-
sion functions f and g. The feedforward function compresses the previous global
chaining variable Ht−1, the salt S, the block index t, and the last internal chain-
ing variable L(r) by 8 calls of the function f and produces the next chaining
variable Ht.

Table 1. The index k = σr(i) of the message permutation of LAKE-256 for the rounds
R1-R8 of processmessage

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R2 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12
R3 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
R4 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

R5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R6 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12
R7 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
R8 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

270 F. Mendel and M. Schläffer

In the case of LAKE-256, the compression function uses r = 8 rounds and the
message permutation of Table 1. The nonlinear internal compression functions
f and g are defined by

f(a, b, c, d) = ((a + (b ∨C0)) + (c + (a ∧ C1)) ≫ 7) + ((b + (c⊕ d)) ≫ 13)
g(a, b, c, d) = ((a + b) ≫ 1)⊕ (c + d).

Depending on whether they are used in saltstate, processmessage or feedforward,
these functions are parameterized by some constants C0, . . . , C15, which are ex-
tracted from π:

C0 = 452821E6 C4 = C0AC29B7 C8 = 9216D5D9 C12 = 2FFD72DB
C1 = 38D01377 C5 = C97C50DD C9 = 8979FB1B C13 = D01ADFB7
C2 = BE5466CF C6 = 3F84D5B5 C10 = D1310BA6 C14 = B8E1AFED
C3 = 34E90C6C C7 = B5470917 C11 = 98DFB5AC C15 = 6A267E96

In case of processmessage, the inputs of f are the previous internal chaining
variables L(r−1), the current internal chaining variables F (r), the constants Ci,
and the expanded message words mk with k = σr(i). The function g takes as
input the current internal chaining variables F (r), the previous internal chaining
variables L(r−1) using feed-forward and the new internal chaining variables L(r):

F
(r)
i = f(a, b, c, d) = f(F (r)

i−1, L
(r−1)
i , mk, Ci)

L
(r)
i = g(a, b, c, d) = g(L(r)

i−1, F
(r)
i , L

(r−1)
i , F

(r)
i+1)

Note that F (r) gets initialized by L(r−1) and L(r) gets initialized by F (r). We
get for the sequence of chaining variables Ht and internal chaining variables L(r)

and F (r):

Ht−1 → salt→ L(r−1) → f → F (r) → g → L(r)

︸ ︷︷ ︸

8 rounds

→ feedforward→ Ht

3 Basic Attack Strategy

The basic observation for the attack on the compression function of LAKE is
that the internal compression function f of processmessage is not bijective (not
injective) regarding the chaining variables and message words. This means, that
at least two message words exist, which result in the same output of f for
fixed internal chaining variables. In fact, it is possible to find many different
message words mk and m∗

k which result in the same output of f . Using these
inner collisions of the internal compression function f we can construct collisions
for round-reduced versions of LAKE. Note that the same idea applies to both
variants, LAKE-256 and LAKE-512 because the two variants differ only in the
used word size, constants and rotation values.

Collisions for Round-Reduced LAKE 271

3.1 Collisions for 1 Round of LAKE

In every round, each message word mk is used only once by one of the 16 calls to
the f function. Hence, we can construct a collision for one round of LAKE using
a single inner collision in f (this has been independently observed by Stefan
Lucks). By performing a collision attack on the 32-bit output of f we have been
able to efficiently find many message pairs mk and m∗

k for many internal chaining
values F

(r)
i−1, L

(r−1)
i and all constants Ci such that the output of f collides:

f(F (r)
i−1, L

(r−1)
i , mk, Ci) = f(F (r)

i−1, L
(r−1)
i , m∗

k, Ci)

Note that the authors of LAKE have proposed to analyze a reduced variant
of the hash function which uses the same constant in every round [1]. In this
case we can simply use the same inner collision in f for every round of LAKE.
Table 2 shows a collision for 8 rounds of LAKE using the same constant C0 in
each round which can be computed instantly on a standard PC.

Table 2. A colliding message pair for LAKE using the same constant C0 in each round

H0 243F6A88 85A308D3 13198A2E 03707344 A4093822 299F31D0 082EFA98 EC4E6C89

M0
7901FB66 7120239A 75018D7B 38EFC240 04BA14F4 54B5A198 60842D9A 05CE0AF7
1A31E11B 40B1C10C 55F91C02 559DF366 74D6D973 455E48F2 31072B72 4DB56283

M∗
0

7D11BC59 7120239A 75018D7B 38EFC240 04BA14F4 54B5A198 60842D9A 05CE0AF7
1A31E11B 40B1C10C 55F91C02 559DF366 74D6D973 455E48F2 31072B72 4DB56283

ΔM0
0410473F 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H1 289B5613 0295350F CA661380 699C892A 80CC3678 91B6F85B FD0332EB D89C925A

H∗
1 289B5613 0295350F CA661380 699C892A 80CC3678 91B6F85B FD0332EB D89C925A

3.2 Collisions for More Than 1 Round of LAKE

The original LAKE specification defines different constants for each round and
we cannot use the same inner collision for every round anymore. However, the
idea of constructing collisions in f can still be extended to attack more rounds
of LAKE. Then, the same message pair mk and m∗

k has to result in an inner
collision of f for each of the attacked rounds. Due to the message expansion, the
message word mk is used in a different call of f in each round. However, in each
call i, the f function differs only in the used constant Ci. For instance, if we
want to construct a collision for the first two rounds of LAKE, we need to find
a message pair mk and m∗

k such that we have a collision in f in both rounds.
Assume we are using message word m0. In the first round, m0 is used in call

i = 0 of the function f and in the second round, m0 is used in call i = 3 of f (see
Table 1). Hence, we need to find a message pair m0 and m∗

0, which results in an
inner collision of f and applies to both constants C0 and C3 simultaneously. One
method to find such a pair is to search for each constant separately and check
for matching message pairs. This method might work for two constants but is
insufficient for more constants. In the following we show how this can be done
more efficiently.

272 F. Mendel and M. Schläffer

3.3 Inner Collisions in f Using Different Constants

A better method is to analyze the differential behaviour of the f function and
choose message differences Δmk, which are independent of the used constants.
To find a message differences which results in a collision and thus, in a zero
difference of the f function, we simplify the f function to:

f(a, b, mk, Ci) = c1 + ((mk + c2) ≫ 7) + ((c3 + (mk ⊕ Ci)) ≫ 13) (1)

where the values c1, c2 and c3 depend on the internal chaining variables L
(r−1)
i

and F
(r)
i−1. Because the majority of the remaining operations are modular addi-

tions and rotations we use signed bit differences in our attack. Note that more
advanced techniques like generalized characteristics as used in the most recent
attacks on SHA-1 are not needed in this case [5]. Signed bit differences have been
introduced by Wang et al. in the analysis of the MD4-family of hash functions
[11]. Using these differences, the carry expansions of the modular additions in
Equation (1) can be controlled by imposing conditions on the absolute values (c1,
c2 and c3) and rotated without imposing further conditions. In the xor-addition
Δmk ⊕ Ci the sign of the signed bit difference Δmk is flipped at each position
where the constant Ci is one and does not change where Ci is zero. For a detailed
description of signed bit differences, we refer to [6].

Before constructing a zero output difference of the f function, we define the
differential representation of f regarding the message difference Δmk by

Δf = (Δmk
︸ ︷︷ ︸

Δx

≫ 7) + ((Δmk ⊕ Ci)
︸ ︷︷ ︸

Δy

≫ 13) = 0 (2)

where the differences Δx and Δy need to cancel each other after the rotations.
For a collision over more than one round of LAKE, we need to fulfill equation 2
for different constants Ci but with the same message difference Δmk. Therefore,
we allow a signed bit difference in the message only at positions, where the values
of the used constants are equal. In this case the difference Δy is independent of
the used Ci. We define the equal positions of all used constants Ci1 , Ci2 , . . . by:

C(p)
eq =

{

1 if C
(p)
i1

= C
(p)
i2

= . . .

0 otherwise
(3)

where C(p) denotes the bit position p of the value C. Note that the difference
Δx is independent of each round. To get a zero difference of f for all rounds,
the differences Δy has to be the same for each round and every used constant.

The more rounds we attack, the more constants Ci are used and the less
is the Hamming weight of the equal positions Ceq of these constants. Since at
each position we can choose between a negative, a positive or no difference, the
number of the allowed signed message differences is 3hw(Ceq). If less differences
are allowed in Δmk the probability of a collision decreases. However, the search
space gets reduced as well and we can check more (or even all) signed message

Collisions for Round-Reduced LAKE 273

differences. We have implemented a search tool similar as in [10], which uses
carry expansions for the differences Δx = Δmk and Δy = Δmk ⊕Ci. After the
rotations we check whether the resulting differences cancel each other.

Note that two signed bit differences in the MSB always cancel each other
in the addition and are thus considered to be equal. Therefore, we can allow
additional message differences at the MSB of each modular addition. A flip of
the message difference in the MSB because of xoring it with different constants
Ci results in the same difference. Since we can omit the sign of the regarding
MSB in each of the 3 modular additions, we allow additional message differences
at position 32, 13 and 6. A difference at position 13 in Δmk⊕Ci gets rotated to
the MSB in Δy and a difference at position 6 in Δmk ⊕ Ci gets rotated to the
same position as the MSB of Δmk in Δx. By including these three cases, the
search space can be increased and even includes all inner collisions of f .

4 Results of the Collision Attack

To attack more than one round of LAKE we have implemented a tool which
checks for collisions in f depending on the used constants Ci. We first compute
Ceq and determine all possible message differences Δmk. Then, we use signed
carry expansions of the message difference in Δx and Δy and check whether the
differences cancel each other after the rotation. Table 3 shows which constant Ci

is used for each message word mk in each round. With our tool we are able to
check all possible message differences if more than three different constants are
used. In this case, the Hamming weight of Ceq and the search space is low enough
to try all possible expanded differences. For all cases where only two constants
are involved, we have limited the search to high probability differentials (with a
short carry expansion) and can therefore find collisions with a high probability
as well.

Table 3. For each message word mk different constants Ci are used in every round
due to the message permutation. The constants for R5-R8 are the same as for R1-R4.

m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

R1 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

R2 C3 C0 C13 C10 C7 C4 C1 C14 C11 C8 C5 C2 C15 C12 C9 C6

R3 C9 C4 C15 C10 C5 C0 C11 C6 C1 C12 C7 C2 C13 C8 C3 C14

R4 C0 C7 C14 C5 C12 C3 C10 C1 C8 C15 C6 C13 C4 C11 C2 C9

4.1 2 Rounds

For an attack on two rounds of LAKE, we need a collision in f with two different
values of Ci. When attacking the first two rounds of LAKE we can choose one of
the first two constants of Table 3. We have found the best result for the message
word m3. In the first round this message word is used in call 3 to f and thus,
it is xored with the constant C3. In the second round, m3 is used in call 10 and

274 F. Mendel and M. Schläffer

xored with the constant C10. Hence, we need to fulfill the following differential
equations for f simultaneously:

Δf3 = (Δm3 ≫ 7) + ((Δm3 ⊕ C3) ≫ 13) = 0 (4)
Δf10 = (Δm3 ≫ 7) + ((Δm3 ⊕ C10) ≫ 13) = 0 (5)

We allow signed differences in Δm3 at all positions, where the constants C3 and
C10 are equal:

C3 = 34E90C6C

C10 = D1310BA6

Ceq = 1A27F835

Δm3 = 9A27F835

The number of the equal positions in C3 and C10 is 16 and by including the three
MSBs we get a maximum Hamming weight for the allowed message differences
of HW (Δm3) = 17.

Using our tool we have found the following four message differences, where
each of them results in a zero difference of the f function. Note that each inverted
message difference results in a collision as well.

Δm3 = 8207E820 Δm3 = [±32,−26, 19, 18, 17, 16, 15, 14, 12, 6]
Δm3 = 8207E821 Δm3 = [±32,−26, 19, 18, 17, 16, 15, 14, 12, 6, 1]
Δm3 = 8207F820 Δm3 = [±32,−26, 19, 18, 17, 16, 15, 14, 13,−12, 6]
Δm3 = 8207F821 Δm3 = [±32,−26, 19, 18, 17, 16, 15, 14, 13,−12, 6, 1]

For these message difference we get many expanded differences Δx and Δy
which cancel each other. For example, if we consider the message difference
Δm3 = 8207E820, the signed differences Δx and Δy with the best probabilities
are:

Δx = [−32, 26,−20, 13, 12,−8, 7, 6]
Δy = [−32, 26,−20, 18, 14, 12, 6]

where the difference Δx occurs with probability 2−8 and Δy with probability
2−7. After rotating these difference by 7 and by 13 we get the following two
differences, which cancel each other in the third modular addition:

Δx ≫ 7 = [32, 31,−25, 19,−13, 6, 5,−1]
Δy ≫ 13 = [31, 25,−19, 13,−7, 5, 1]

Therefore, we get an inner collision in f for both rounds with a probability
of 2−15 each. Usually the expanded differences with the highest probabilities
determine the complexity of the attack. However, if many expanded differences
cancel each other, the actual complexity is determined by the sum of all probabil-
ities. For the message difference Δm3 = 8207E820 we have found 2600 expanded
signed differences Δx and 5486 expanded signed differences for Δy. By adding
all possible combined probabilities of Δx and Δy we get an overall probability
of 2−4.38 instead of 2−15.

Collisions for Round-Reduced LAKE 275

4.2 3 Rounds

The previous collision in f over two rounds can be easily extended to a collision
over 3 rounds. To extend the attack we use a weakness in the message permu-
tation. The message word m3 is used in call 3 of the first round and in call 10
of the second and third round. Thus, the constant C10 is used twice and we can
use the same collision for f as in the attack on two rounds. Note that we could
do the same for message word m11 which uses the constant C2 twice.

A Colliding Message for 3 Rounds of LAKE. By using the message differ-
ence Δm3 = 8207E820 we can construct a collision for LAKE reduced to three
rounds with a complexity of about 23·4.38 ≈ 213.2 round evaluations (less than
1 second on a standard PC), since we can get a collision for each round with a
probability of 2−4.38. The colliding message pair is given in Table 4. Note that
h0 is the initial value and h1 is the final hash value.

Table 4. A colliding message pair for LAKE reduced to 3 rounds

H0 243F6A88 85A308D3 13198A2E 03707344 A4093822 299F31D0 082EFA98 EC4E6C89

M0
2ED54018 259E7BED 6A7D12A0 12780007 57979D36 619A5DE1 2F1FA8A0 09D72979
3428C041 1439951D 63537711 144840C4 7C75D35E 70C613E9 23DCA632 52DB6AB9

M∗
0

2ED54018 259E7BED 6A7D12A0 907FE827 57979D36 619A5DE1 2F1FA8A0 09D72979
3428C041 1439951D 63537711 144840C4 7C75D35E 70C613E9 23DCA632 52DB6AB9

ΔM0
00000000 00000000 00000000 8207E820 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H1 0969AF41 101EA7CE CBF3F2FE E47832EB 60FFD511 DA156A75 150B3A20 F003BA7E

H∗
1 0969AF41 101EA7CE CBF3F2FE E47832EB 60FFD511 DA156A75 150B3A20 F003BA7E

4.3 More Than 3 Rounds

To attack more than 3 rounds we have first tried to construct a collision which
uses only 3 different constants. This could be done for the message words m0, m3,
m8 and m11 (see Table 3). However, even by checking all possible message differ-
ences and carry expansions, we did not find a collision in these message words.
Anyway, by trying all message words which use four different constants, we have
found solutions for m4 and m7. The involved constants are C4, C7, C5, C12 for
m4 and C7, C14, C6, C1 for m7.

For the 4 round collision we have only found a characteristic with low prob-
ability. The possible message differences are Δm7 = Δm4 = ±1. Thus, we
allow a difference only in the LSB of the message word. Note that the LSB of
the involved constants is 1 and the xor operation flips the message difference.
Therefore, the differences in Δx and Δy have a opposite sign and cancel each
other if the following conditions are fulfilled (i = 4, 7, 5, 12):

F
(r)
i−1 ∧ C1 = 0 (6)

L
(r−1)
i + Ci = FFFFFFFF (7)

276 F. Mendel and M. Schläffer

Under these conditions, the differences do not get changed by the rotations and
we can get an inner collision in f for every round of LAKE.

Let us consider the case Δm4 = −1 with m4 = 0. By fulfilling the previous
conditions the resulting values before the rotation are always either 00000000
or FFFFFFFF. These values do not get changed by the rotation and we get for
m4 = 0:

(0 + F
(r)
i−1 ∧ C1

︸ ︷︷ ︸

F
(r)
i−1∧C1=0

) ≫ 7 + (L(r−1)
i + (0⊕ Ci)

︸ ︷︷ ︸

L
(r−1)
i +Ci=FFFFFFFF

) ≫ 13 = FFFFFFFF (8)

and for m∗
4 = m4 − 1 = 0− 1 :

(0− 1 + F
(r)
i−1 ∧ C1

︸ ︷︷ ︸

(F
(r)
i−1∧C1)−1=FFFFFFFF

) ≫ 7 + (L(r−1)
i + ((0− 1)⊕ Ci

︸ ︷︷ ︸

L
(r−1)
i +1+Ci=0

) ≫ 13 = FFFFFFFF (9)

The two equations (6) and (7) hold in each round with a probability of
2−32−15 = 2−47, since the Hamming weight of C1 is 15. Hence, we can get a
collision for LAKE reduced to r rounds with a probability of 2−r·47 and for
r = 4 rounds we get a probability of 2−188.

Note that the difference Δmk = ±1 works for any message word and any
number of rounds, as long as the LSB of all involved constants is 1. However, due
to the low probability we have only attacked 4 rounds of LAKE using message
modification. By more sophisticated message modification techniques, we expect
that an attack up to 5 rounds of the LAKE compression function is possible.

4.4 A Collision Attack for 4 Rounds of LAKE

The attack complexity of 2188 for 4 rounds of LAKE can be improved by using
message modification techniques introduced by Wang et al. in the analysis of
MD5 and SHA-1 [13,12]. In general, the idea of message modification is to use
the degrees of freedom in the message to fulfill conditions on the state variables.
This improves the probability of the attack and in the following we will show how
message modification can be done for the first 2 rounds of LAKE. The sequence
of internal chaining variables and calls to f and g are illustrated in App. A to
comprehend the message modification steps.

Message Modification. In the first round we use basic message modification
which simply adjusts the message words such that the conditions in the internal
chaining variables are fulfilled. To fulfill the conditions on F

(1)
3 ∧C1 = 0 we adjust

F
(1)
3 by modifying m3 since F

(1)
3 = f(F (1)

2 , L
(0)
3 , m3, C3). Because of the right

rotation, we can start by modifying bit 7 of the message and proceed up to bit
25 without getting any conflict due to carries. The remaining 6 bits are fulfilled
by brute force which results in a complexity of 26. Since all further modifications
change message words after call 3 of f , we perform this modification only once
at the beginning. Therefore, this modification does not increase the overall com-
plexity. Next we need to fulfill the conditions of L

(0)
4 +C4 = FFFFFFFF. Note that

Collisions for Round-Reduced LAKE 277

L
(0)
4 depends on the IV or previous chaining value Ht−1. By using an arbitrary

first message block we can construct the needed value of L
(0)
4 by brute force.

This has a complexity of 232 but needs do be done only once as well.
For the second round of LAKE we need to use advanced message modification

techniques. Without message modification, equation F
(2)
6 ∧C1 = 0 of the second

round is fulfilled with a probability of 2−15 and equation L
(1)
7 + C7 = FFFFFFFF

is fulfilled with a probability of 2−32. Note that L
(1)
7 depends on F

(1)
8 of the first

round. This means that we can correct L
(1)
7 by F

(1)
8 , which in turn gets modified

by message word m8. The undesired changes in the following steps (F (1)
9 to F

(1)
15)

can be corrected by advanced message modification using message word m15.
This ensures that L

(1)
0 to L

(1)
6 do not get changed as a result of the modification

of m8.

The Collision Search for 4 Rounds of LAKE. The search for a collision of
LAKE reduced to 4 rounds can be summarized by the following steps:

1. We fulfill the 32 conditions on L
(0)
4 by choosing an arbitrary first message

block M0. This has a complexity of 232 evaluations of the compression func-
tion and needs to be done only once at the beginning of the search.

2. Next we choose random message words m0, . . . , m3 to compute the internal
chaining variables F

(1)
0 , . . . , F

(1)
3 .

3. The 15 conditions on F
(1)
3 can be fulfilled by adjusting m3 using basic mes-

sage modification. This step has a complexity of about 26 calls to F
(1)
3 =

f(F (1)
2 , L

(0)
3 , m3, C3). Since we do not change m0, . . . , m3 later on, this step

needs to be done only once as well.
4. The remaining message words m4, . . . , m15 are chosen at random to compute

the internal chaining variables F
(1)
4 , . . . , F

(1)
15 and L

(1)
0 , . . . , L

(1)
7 to check the

conditions on L
(1)
7 .

5. To fulfill the conditions on L
(1)
7 we compute the required value of F

(1)
8 by

simply inverting the function L
(1)
7 = g(L(1)

6 , F
(1)
7 , L

(0)
7 , F

(1)
8) and get for

F
(1)
8 = (L(1)

7 ⊕ ((L(1)
6 + F

(1)
7) ≫ 1))− L

(0)
7 .

6. We can generate this required value of F
(1)
8 by modifying m8 in F

(1)
8 =

f(F (1)
7 , L

(0)
8 , m8, C8) using basic message modification with a complexity of

about 26 calls to f .
7. The modification of m8 and F

(1)
8 leads to new values in the internal chain-

ing variables starting from F
(1)
9 . Note that L

(1)
7 = g(L(1)

6 , F
(1)
7 , L

(0)
7 , F

(1)
8)

depends only on L
(1)
6 and values prior to F

(1)
8 . To guarantee that L

(1)
7 does

not get changed again, it is sufficient to require that F
(1)
15 does not change.

8. We can ensure this by adjusting the message word m15 such that F
(1)
15 has the

same value as prior to the modification of m8. Then, the values L
(1)
0 , . . . , L

(1)
7

do not change and the conditions on L
(1)
7 stay fulfilled. This modification of

m15 has again a complexity of about 26 calls to f .

278 F. Mendel and M. Schläffer

9. The conditions on F
(2)
6 and on the internal chaining variable of round 3

and 4 can be fulfill by randomly choosing message words m9, . . . , m14. We
ensure the conditions on L

(1)
7 by modifying m15 again. Note that we have

enough degrees of freedom in these 6 message words to fulfill these remaining
15 + 47 + 47 = 109 conditions by brute-force.

These message modification techniques improve the attack complexity significantly.
By performing the collision search as described above we can construct collisions
for LAKE reduced to 4 rounds with an overall complexity of about 2109 compres-
sion function evaluations. Note that the complexity can actually be smaller if early
stopping techniques are used. By applying more advanced message modification
techniques we expect to be able to break up to 5 rounds of LAKE.

5 Conclusion

In this paper we have presented the first cryptanalytic results on the hash func-
tion family LAKE. We have shown how collision attacks, exploiting inner colli-
sions in the nonlinear functions of LAKE, can be mounted on reduced variants
of the hash function. We have presented an efficient attack on LAKE reduced
to 3 (out of 8) rounds. Moreover, we have shown a theoretical attack on LAKE
reduced to 4 rounds with a complexity of 2109. We expect that our attack can
also be extended to LAKE reduced to 5 rounds by using more sophisticated
message modification techniques. Note that the same strategy can be used to
attack LAKE-512 as well. For the moment our approach does not appear to be
applicable to the full hash function.

However, this does not prove that the hash function is secure. Further analysis
is required to get a good view on the security margins of LAKE. In our analysis
we have shown that the security of LAKE strongly depends on the choice of the
constants. Due to a weak combination of constants, attacks on round-reduced
versions of LAKE are possible. Further, we note that the non-bijectiveness re-
garding the chaining variables can be used to cancel differences in the internal
chaining variables as well. To prevent our attack we suggest to design internal
compression functions which are bijective and thus, invertible regarding the mes-
sage words and each chaining variable. Further, the security of these functions
should not depend on the (good) choice of the used constants.

Acknowledgments

We thank the authors of LAKE for sending us a preliminary version of their
paper and for helpful discussions.

References

1. Aumasson, J.-P.: The Hash Function Family LAKE. FSE talk (2008),
http://fse2008.epfl.ch/docs/slides/day 1 sess 3/

aumasson%20lake slides.pdf

http://fse2008.epfl.ch/docs/slides/day_1_sess_3/aumasson%20lake_slides.pdf
http://fse2008.epfl.ch/docs/slides/day_1_sess_3/aumasson%20lake_slides.pdf

Collisions for Round-Reduced LAKE 279

2. Aumasson, J.-P., Meier, W., Phan, R.C.-W.: The Hash Function Family LAKE.
In: Nyberg, K. (ed.) FSE. LNCS. Springer, Heidelberg (to appear, 2008)

3. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions - HAIFA.
Cryptology ePrint Archive, Report 2007/278 (2007), http://eprint.iacr.org

4. De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On the
Full Cost of Collision Search. In: Adams, C.M., Miri, A., Wiener, M.J. (eds.) SAC
2007. LNCS, vol. 4876, pp. 56–73. Springer, Heidelberg (2007)

5. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

6. Daum, M.: Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr-
Universität Bochum (May 2005)

7. Lucks, S.: Design Principles for Iterated Hash Functions. Cryptology ePrint
Archive, Report 2004/253 (2004), http://eprint.iacr.org

8. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

9. National Institute of Standards and Technology (NIST). Cryptographic Hash
Project (2007), http://www.nist.gov/hash-competition

10. Schläffer, M., Oswald, E.: Searching for Differential Paths in MD4. In: Robshaw,
M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 242–261. Springer, Heidelberg (2006)

11. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

12. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Galbraith,
S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 17–36. Springer,
Heidelberg (2007)

13. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

http://eprint.iacr.org
http://eprint.iacr.org
http://www.nist.gov/hash-competition

280 F. Mendel and M. Schläffer

A Advanced Message Modification

The step update functions f and g for the first two rounds of LAKE. The internal
chaining variables on which we impose conditions for the attack on 4 rounds of
LAKE are underlined.

A.1 Round 1

F
(1)
0 = f(L(0)

15 , L
(0)
0 , m0, C0) L

(1)
0 = g(F (1)

15 , F
(1)
0 , L

(0)
0 , F

(1)
1) (10)

F
(1)
1 = f(F (1)

0 , L
(0)
1 , m1, C1) L

(1)
1 = g(L(1)

0 , F
(1)
1 , L

(0)
1 , F

(1)
2) (11)

F
(1)
2 = f(F (1)

1 , L
(0)
2 , m2, C2) L

(1)
2 = g(L(1)

1 , F
(1)
2 , L

(0)
2 , F

(1)
3) (12)

F
(1)
3 = f(F (1)

2 , L
(0)
3 , m3, C3) L

(1)
3 = g(L(1)

2 , F
(1)
3 , L

(0)
3 , F

(1)
4) (13)

F
(1)
4 = f(F (1)

3 , L
(0)
4 , m4, C4) L

(1)
4 = g(L(1)

3 , F
(1)
4 , L

(0)
4 , F

(1)
5) (14)

F
(1)
5 = f(F (1)

4 , L
(0)
5 , m5, C5) L

(1)
5 = g(L(1)

4 , F
(1)
5 , L

(0)
5 , F

(1)
6) (15)

F
(1)
6 = f(F (1)

5 , L
(0)
6 , m6, C6) L

(1)
6 = g(L(1)

5 , F
(1)
6 , L

(0)
6 , F

(1)
7) (16)

F
(1)
7 = f(F (1)

6 , L
(0)
7 , m7, C7) L

(1)
7 = g(L(1)

6 , F
(1)
7 , L

(0)
7 , F

(1)
8) (17)

F
(1)
8 = f(F (1)

7 , L
(0)
8 , m8, C8) L

(1)
8 = g(L(1)

7 , F
(1)
8 , L

(0)
8 , F

(1)
9) (18)

F
(1)
9 = f(F (1)

8 , L
(0)
9 , m9, C9) L

(1)
9 = g(L(1)

8 , F
(1)
9 , L

(0)
9 , F

(1)
10) (19)

F
(1)
10 = f(F (1)

9 , L
(0)
10 , m10, C10) L

(1)
10 = g(L(1)

9 , F
(1)
10 , L

(0)
10 , F

(1)
11) (20)

F
(1)
11 = f(F (1)

10 , L
(0)
11 , m11, C11) L

(1)
11 = g(L(1)

10 , F
(1)
11 , L

(0)
11 , F

(1)
12) (21)

F
(1)
12 = f(F (1)

11 , L
(0)
12 , m12, C12) L

(1)
12 = g(L(1)

11 , F
(1)
12 , L

(0)
12 , F

(1)
13) (22)

F
(1)
13 = f(F (1)

12 , L
(0)
13 , m13, C13) L

(1)
13 = g(L(1)

12 , F
(1)
13 , L

(0)
13 , F

(1)
14) (23)

F
(1)
14 = f(F (1)

13 , L
(0)
14 , m14, C14) L

(1)
14 = g(L(1)

13 , F
(1)
14 , L

(0)
14 , F

(1)
15) (24)

F
(1)
15 = f(F (1)

14 , L
(0)
15 , m15, C15) L

(1)
15 = g(L(1)

14 , F
(1)
15 , L

(0)
15 , L

(1)
0) (25)

A.2 Round 2

F
(2)
0 = f(L(1)

15 , L
(1)
0 , m1, C0) L

(2)
0 = g(F (2)

15 , F
(2)
0 , L

(1)
0 , F

(2)
1) (26)

F
(2)
1 = f(F (2)

0 , L
(1)
1 , m6, C1) L

(2)
1 = g(L(2)

0 , F
(2)
1 , L

(1)
1 , F

(2)
2) (27)

F
(2)
2 = f(F (2)

1 , L
(1)
2 , m11, C2) L

(2)
2 = g(L(2)

1 , F
(2)
2 , L

(1)
2 , F

(2)
3) (28)

F
(2)
3 = f(F (2)

2 , L
(1)
3 , m0, C3) L

(2)
3 = g(L(2)

2 , F
(2)
3 , L

(1)
3 , F

(2)
4) (29)

F
(2)
4 = f(F (2)

3 , L
(1)
4 , m5, C4) L

(2)
4 = g(L(2)

3 , F
(2)
4 , L

(1)
4 , F

(2)
5) (30)

F
(2)
5 = f(F (2)

4 , L
(1)
5 , m10, C5) L

(2)
5 = g(L(2)

4 , F
(2)
5 , L

(1)
5 , F

(2)
6) (31)

Collisions for Round-Reduced LAKE 281

F
(2)
6 = f(F (2)

5 , L
(1)
6 , m15, C6) L

(2)
6 = g(L(2)

5 , F
(2)
6 , L

(1)
6 , F

(2)
7) (32)

F
(2)
7 = f(F (2)

6 , L
(1)
7 , m4, C7) L

(2)
7 = g(L(2)

6 , F
(2)
7 , L

(1)
7 , F

(2)
8) (33)

F
(2)
8 = f(F (2)

7 , L
(1)
8 , m9, C8) L

(2)
8 = g(L(2)

7 , F
(2)
8 , L

(1)
8 , F

(2)
9) (34)

F
(2)
9 = f(F (2)

8 , L
(1)
9 , m14, C9) L

(2)
9 = g(L(2)

8 , F
(2)
9 , L

(1)
9 , F

(2)
10) (35)

F
(2)
10 = f(F (2)

9 , L
(1)
10 , m3, C10) L

(2)
10 = g(L(2)

9 , F
(2)
10 , L

(1)
10 , F

(2)
11) (36)

F
(2)
11 = f(F (2)

10 , L
(1)
11 , m8, C11) L

(2)
11 = g(L(2)

10 , F
(2)
11 , L

(1)
11 , F

(2)
12) (37)

F
(2)
12 = f(F (2)

11 , L
(1)
12 , m13, C12) L

(2)
12 = g(L(2)

11 , F
(2)
12 , L

(1)
12 , F

(2)
13) (38)

F
(2)
13 = f(F (2)

12 , L
(1)
13 , m2, C13) L

(2)
13 = g(L(2)

12 , F
(2)
13 , L

(1)
13 , F

(2)
14) (39)

F
(2)
14 = f(F (2)

13 , L
(1)
14 , m7, C14) L

(2)
14 = g(L(2)

13 , F
(2)
14 , L

(1)
14 , F

(2)
15) (40)

F
(2)
15 = f(F (2)

14 , L
(1)
15 , m12, C15) L

(2)
15 = g(L(2)

14 , F
(2)
15 , L

(1)
15 , L

(2)
0) (41)

Preimage Attacks on Step-Reduced MD5

Yu Sasaki and Kazumaro Aoki

NTT Information Sharing Platform Laboratories,
NTT Corporation 3-9-11 Midoricho, Musashino-shi, Tokyo, 180-8585, Japan

sasaki.yu@lab.ntt.co.jp

Abstract. In this paper, we propose preimage attacks on step-reduced
MD5. We show that a preimage of a 44-step MD5 can be computed to
a complexity of 296. We also consider a preimage attack against variants
of MD5 where the round order is modified from the real MD5. In such a
case, a preimage of a 51-step round-reordered MD5 can be computed to
a complexity of 296. Our attack uses “local collisions” of MD5 to create
a degree of message freedom. This freedom enables us to match the two
128-bit intermediate values efficiently.

Keywords: Preimage Attack, One-Way, MD5, Hash Function, Message
Expansion, Local Collision.

1 Introduction

Hash functions are cryptographic primitives that compress arbitrary length mes-
sages into n-bit hash values. Hash functions are used in many protocols, so their
security is important. For hash function H , there are three important properties.

Preimage Resistance: For given y, it must be computationally hard to find
x such that H(x) = y.

Second Preimage Resistance: For given x, it must be computationally hard
to find x′ such that H(x) = H(x′), x �= x′.

Collision Resistance: It must be computationally hard to find a pair of (x, x′)
such that H(x) = H(x′), x �= x′.

Because hash values are n-bit, computing a hash value of 2n input messages
should produce y. Due to this, any method to find a preimage of a given hash
value faster than 2n computations is a threat for hash functions. Such meth-
ods are called preimage attacks. More formal definitions of these properties are
introduced by [17].

MD5 [16] is a hash function that is designed to be highly efficient in terms of
computation time. It is used in a huge number of protocols all over the world, so
a security analysis of it is interesting from both an academic and an industrial
position. So far, many pseudo-collision attacks [3, 6, 7] and collision attacks
[2, 9, 13, 18, 19] (the complexity of the best one being 223 MD5 computations)
have been proposed. However, no attack has succeeded in breaking the second
preimage resistance or preimage resistance of MD5.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 282–296, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Preimage Attacks on Step-Reduced MD5 283

There are some papers in which preimage attacks are proposed. Regarding
MD2, Muller proposed a preimage attack [15] and Knudsen and Mathiassen
improved its result [10]. Dobbertin proposed a preimage attack against the step-
reduced version of MD4 in 1998 [5]. Let a hash function that consists of round i
and j of MD-x be MDx(ij). This attack can find a preimage of MD4(12). There
are claims that MD4(23) can also be attacked by a similar approach. In 2000,
Kuwakado and Tanaka proposed a preimage attack against a variant of MD4
where the round order is modified, MD4(13) [11]. In 2007, De et al. showed that
a preimage of the first 39 steps of MD4 could be found in less than 8 hours [4].
In 2008, Leurent proposed the first preimage attack against the full MD4 [12],
which has a complexity of 2102 MD4 computations. Regarding MD5, in 2007, De
et al. also showed that the first 26 steps of MD5 were invertible [4]. To the best
of our knowledge, no other preimage attack is known against MD5 or variants
of MD5.

Our Contribution

In this paper, we propose preimage attacks against variants of MD5.
First, we show a preimage attack against 51 steps of round-reordered MD5

(steps 7-57 of MD5(1133)), which has a complexity of 296. Second, we show a
preimage attack against 44 steps of the real MD5 (steps 3-47 of MD5), which
has a complexity of 296. A comparison of our results and previously published
results is shown in Table 11.

Table 1. Previous preimage attacks against MD-family and our new results

Target Attack Number of steps Complexity

MD4 MD4 [5] 32 232

(Total 48 steps) MD4(13) [11] 32 232

MD4 [4] 39 Not given (8 hours)
MD4 [12] 48 (Full) 2102

MD5 MD5 [4] 26 Not given
(Total 64 steps) MD5 Our result 44 296

MD5(1133) Our result 51 296

Similar to the previous preimage attacks against MD4, our attacks analyze
the behaviors of intermediate chaining variables word-by-word not bit-by-bit.
However, our attacks use a local-collision approach, which has been considered
bit-by-bit in many collision attacks. By using local collision, we create message
freedom, and this freedom enables us to match the two 128-bit intermediate
values efficiently. We also analyze the message expansion and determine the
implications on hash function design by analyzing the strong and weak message
expansions against our attacks.
1 Very recently, Aumasson et al. proposed a preimage attack against the first 47 steps

of MD5 [1].

284 Y. Sasaki and K. Aoki

Our attacks can find preimages for any hash value, IV, and message length.
By using these properties, the following attacks can be constructed.

1. For any message m and hash value h, we can find a message x such that
MD5(m||x) = h.

2. Let a value of multi-collision be MC. (The multi-collision attacks proposed
by Joux [8] or Yu and Wang [20] can generate multi-collisions.) By finding
a preimage that starts from MC and ends with h, many preimages can be
generated by computing one preimage.

This paper is organized as follows. Section 2 explains the specifications of
MD5. In section 3, we describe the previous preimage attack against MD4 and
why it is difficult to apply to MD5. In section 4, we propose a preimage attack
against 51 steps of the round-reordered MD5 and determine the implications
on hash function design by analyzing the strong and weak message expansion
structures against our attack. In section 5, we propose a preimage attack against
44 steps of the real MD5. In section 6, we conclude this paper.

2 Description of MD5

MD5 [16] uses a Merkle-Damg̊ard structure, which takes an arbitrary length
message M as input and outputs a 128-bit hash value H(M). First, M is padded
to be a multiple of a 512-bit length. In the padding process, first a single bit ‘1’
is added to M . Then, ‘0’s are added until the message length reaches 448 mod
512. Finally, the original message length is added into the last 64 bits.

The padded message is divided into 512-bit block messages (M0, M1, · · · ,
Mn−1). These messages go through a compression function (CF) with a 128-bit
chaining variable. The initial chaining variable (H0) is set as follows:
a0 = 0x67452301, b0 = 0xefcdab89, c0 = 0x98badcfe, d0 = 0x10325476.

The procedure of the MD5 algorithm is as follows:
H1 = CF (M0, H0), H2 = CF (M1, H1), · · · , Hn = CF (Mn−1, Hn−1).

Finally, Hn is output as the hash value of M .

MD5 Compression Function

The compression function of MD5 takes Mi and Hi as input and outputs Hi+1.
First, the message block Mi is divided into sixteen 32-bit length messages (m0,
m1, · · · , m15). The hash value Hi is divided into four 32-bit length chaining
variables (Q−4, Q−1, Q−2, Q−3). The compression function consists of 64 steps.
Steps 0-15, steps 16-31, steps 32-47, and steps 48-63 are called the first, second,
third and fourth rounds. In step j, the chaining variables Qj are updated by the
step-update expression:

Qj = Qj−1 + (Qj−4 + Φj(Qj−1, Qj−2, Qj−3) + mπ(j) + kj) ≪ sj .

Hereafter, ‘+’ denotes the addition on modulo 232. Similarly, we use ‘−’ to
denote the subtraction on modulo 232. Φj and π(j) are defined in Table 2. kj is

Preimage Attacks on Step-Reduced MD5 285

Table 2. Boolean functions and message expansion of MD5

0 ≤ j ≤ 15 Φj(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z)
16 ≤ j ≤ 31 Φj(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z)
32 ≤ j ≤ 47 Φj(X, Y, Z) = X ⊕ Y ⊕ Z
48 ≤ j ≤ 63 Φj(X, Y, Z) = Y ⊕ (X ∨ ¬Z)

π(0) · · ·π(15) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
π(16) · · ·π(31) 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12
π(32) · · ·π(47) 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2
π(48) · · ·π(63) 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9

a constant value defined in each step, and ≪ sj denotes the left rotation by sj

bits. The value of sj is defined in each step. Because our attacks work for any
kj and sj , we omit their description. Finally, the compression function outputs
the following values:

Hi+1 = (h0, h1, h2, h3) = (Q−4 + Q60, Q−1 + Q63, Q−2 + Q62, Q−3 + Q61).

3 Related Work

In this section, we briefly describe the preimage attack against MD4 proposed
by Leurent [12] and explain why this attack is difficult to apply to MD5.

3.1 Summary of Differences between MD4 and MD5

Before we explain the preimage attack against MD4, we will clarify the differ-
ences between MD4 and MD5.

– The compression function of MD4 consists of 3 rounds (48 steps).
– The step-update expression in step j is

Qj = (Qj−4 + Φj(Qj−1, Qj−2, Qj−3) + mπ(j) + kj) ≪ sj .
Note that Qj−1 is only used in Φj , while it is directly added in MD5. Graphs
of step-update expressions of MD4 and MD5 are shown in Fig. 1. MD5 has
an addition shown by the bold arrow.

– The Boolean function Φj and the values of π(j), kj , and sj are different.

3.2 Converting Pseudo-Preimage Attack to Preimage Attack

For a given hash value y, pseudo-preimage is a pair of (M, x), x �= IV such
that CF (M, x) = y. There is a generic approach to constructing a preimage
attack from a pseudo-preimage attack [14, Fact 9.99]. Assume there is an attack
that finds a pseudo-preimage of a target hash value with a complexity of 2k. If
we generate 2(n−k)/2 pseudo-preimages by this attack and take hash values of
2(n+k)/2 random messages that start from the IV, we can expect that one of these
hash values will be matched with high probability by the birthday paradox. The
complexity is 21+(n+k)/2. Therefore, a pseudo-preimage attack with a complexity
less than 2n−2 can be converted to a preimage attack.

286 Y. Sasaki and K. Aoki

Fig. 1. Step-update expressions of MD4 (left) and MD5 (right)

3.3 Previous Preimage Attack on MD4

At FSE 2008, Leurent proposed a preimage attack against MD4 [12]. In this
attack, message freedom in a late step in the third round is necessary for gener-
ating a desired hash value. However, because of the message expansion structure,
modifying a message in the third round always changes the value of a message
in the first and second rounds. Therefore, it is necessary to cancel these changes
in the first and second rounds by constructing a differential path such that any
selection of a mi in the third round can be accepted.

The key to this preimage attack is the construction of the differential path.
There are several techniques for this.

– In the first round, the change of a message is cancelled by changing the initial
value to guarantee that the other chaining variables in the first round are
left unchanged. Because the initial value is used only in the first 4 steps of
the first round, only mπ(0), mπ(1), mπ(2), and mπ(3) can be changed.

– In the second round, a differential path has been constructed in advance so
that the propagation of changes of messages in the second round correspond-
ing to mπ(0), mπ(1), mπ(2), and mπ(3) can be controlled. To achieve such a
situation, the absorption properties of Φj explained below, are appropriately
used.

Absorption Properties of Φj

Φ0 to Φ31 of MD4 have an absorption property, namely, the output of Φj can be
kept unchanged even if one input element of Φj is changed. To check the absorp-
tion properties of MD4, please refer to [12]. We show the absorption properties of
Φj of MD5 in Table 3. Here, 0 represents 0x00000000, 1 represents 0xffffffff,
and C represents a constant.

Table 3. Absorption properties of Φj of MD5

Absorb 1st input Absorb 2nd input Absorb 3rd input

0 ≤ j ≤ 15 Φj(x,C,C) = C Φj(0, x,C) = C Φj(1, C, x) = C

16 ≤ j ≤ 31 Φj(x,C,0) = C Φj(C, x,1) = C Φj(C,C, x) = C

32 ≤ j ≤ 47 - - -

48 ≤ j ≤ 63 Φj(x,C,0) = C - Φj(1, C, x) = C

Preimage Attacks on Step-Reduced MD5 287

3.4 Difficulties of Applying Previous Attack to MD5

MD5 consists of 64 steps, which is 16 steps longer than MD4. Therefore, finding
preimage attacks on MD5 seems harder than that on MD4. However, even if we
do not consider the increased number of steps, the construction of MD5 seems
to be harder than that of MD4.

As explained in section 3.3, the key point of the previous preimage attack
is the construction of a differential path in the second round. In the attack by
Leurent, only messages corresponding to mπ(0), mπ(1), mπ(2) and mπ(3) can be
changed. Fortunately, a very good differential path in the second round can be
constructed by only using these four messages. However, the same strategy does
not seem to be applicable to MD5 for the following reasons.

– In the step-update expression of MD5, Qi−1 is directly added to Qi (Fig. 1).
Therefore, to cancel the change of Qi−1, we need to change a message. (In
MD4, the change of Qi−1 can be absorbed by only the absorption property of
Φi.) This makes the construction of a differential path harder than in MD4.

– Φj of MD5 in round 4, which is not used in MD4, does not have an absorption
property when the second input element is changed as shown in Table 3. This
makes the control of values harder than in MD4.

– The message expansion of MD5 is different from MD4. Therefore, construct-
ing an efficient differential path in the second round by using only messages
corresponding to mπ(0), mπ(1), mπ(2), and mπ(3) is hard.

4 A Preimage Attack Against 51 Steps of MD5(1133)

As explained in section 3, the previous attack against MD4 cannot be directly
applied to MD5. One reason is the structure of the MD5 message expansion.
However, which message expansion is strong has not been well-analyzed. In this
section, we propose an attack against modified MD5 whose message expansion
is weak. Then, in the next section, we consider applying it to the real MD5.

We found that 51 steps of an MD5 variant, where the round order is modified
to MD5(1133), does not have preimage resistance. We confirmed that this round
order is the weakest as long as our strategy is used. We also show the strong
round orders, and determine some implications on hash function design.

4.1 Outline of Our Attack

We considered the reduced MD5(1133) that starts from step 7 and ends at step
57. The outline of our attack is given below. The message expansion of MD5(1133)

is shown in Fig. 2 and the schematic explanation in Fig. 3.

1. We focused on (m2, m3, m6), which can form a local collision in the second
round. We call these messages Local-Collision Messages, steps where the
local collision is inserted Local Collision Part, and steps where the local-
collision messages are used in the third round Matching Part.

288 Y. Sasaki and K. Aoki

Fig. 2. Message expansion of MD5(1133)

Fig. 3. Schematic explanation of attack procedure

2. Randomly determine all messages except for the local-collision messages.
3. Compute chaining variables from the initial value to the matching part.
4. From a given IV and hash value, compute chaining variables in the last step.
5. Inversely compute chaining variables from the last step to the matching part.
6. Both input and output chaining variables of the matching part (128 bits) are

now fixed. In the matching part, because the local-collision messages have
232 freedom, 32 bits out of 128 bits can be matched with a probability of 1.
Therefore, the 128 bits are matched with a probability of 2−96.

Preimage Attacks on Step-Reduced MD5 289

The first seven and last six steps are excluded from the attack target (Fig. 2).
Therefore, m2, m3, and m6 appear only twice. A local collision can be formed
for any m2, so there is 32-bit freedom in (m2, m3, m6).

4.2 Detailed Procedure of Preimage Attack

First, we strictly define a modified MD5. We rewrite steps 7-57 in Fig. 2 to steps
0-50. This is shown in Fig. 4. This means π(0) to π(50) of the modified MD5 are
shown in Fig. 4.

Fig. 4. Message expansion of modified MD5

We also rewrite Φj as follows.

0 ≤ j ≤ 8 : Φj(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z),
9 ≤ j ≤ 24 : Φj(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z),

25 ≤ j ≤ 40 : Φj(X, Y, Z) = X ⊕ Y ⊕ Z,

41 ≤ j ≤ 50 : Φj(X, Y, Z) = X ⊕ Y ⊕ Z.

sj and kj , (0 ≤ j ≤ 50) of the modified MD5 are sj+7 and kj+7 of the real
MD5. We use the same IV and padding rule as the real MD5. The final output
is computed as follows: Hi+1 = (h0, h1, h2, h3) = (Q−4 + Q47, Q−1 + Q50,
Q−2 + Q49, Q−3 + Q48).

The attack procedure is as follows.

1. Randomly determine the values of Q0, . . . , Q5.
2. Determine the values of m13, . . . , m15 to satisfy MD5 message padding.
3. Compute Q6, . . . , Q8 by the step-update expression.
4. Randomly determine the values of Q9, Q10, Q14, and Q15.
5. To make Φ13(Q12, Q11, Q10) independent of Q11, we use the absorption prop-

erty of Φ13. Therefore, we set Q12 to be 0x00000000.
6. Similarly, to make Φ14(Q13, Q12, Q11) independent of Q11, we set Q13 to be

0xffffffff.
7. For j = 0, . . . , 5, 9, 10, 13, 14, compute mπ(j) by the following equation:

mπ(j) = ((Qj −Qj−1) ≫ sj)−Qj−4 − Φj(Qj−1, Qj−2, Qj−3)− kj .

290 Y. Sasaki and K. Aoki

8. Compute Q16, . . . , Q34 by the step-update expression.
9. Compute Q47, . . . , Q50 by the following equations:

Q47 = h0 −Q−4, Q50 = h1 −Q−1, Q49 = h2 −Q−2, Q48 = h3 −Q−3.
10. Compute Q46, . . . , Q37 by the following equation:

Qj−4 = ((Qj −Qj−1) ≫ sj)−mπ(j) − Φj(Qj−1, Qj−2, Qj−3)− kj .
11. Check whether the chaining variables in the matching part are matched by

executing the matching method explained in section 4.3. By this method, all
chaining variables are matched with a probability of 2−96.

12. If all chaining variables are matched, output m0, . . . , m15, then halt this
algorithm. Otherwise, repeat this procedure from Step 4 or 1.

Steps 4–11 of the above procedure have the dominant complexity 296.

4.3 Matching Method

The matching method is executed in the matching part. The input is the values of
Q31, . . . , Q34, Q37, . . . , Q40, and mπ(37), . . . , mπ(39). The purpose is to determine
the values of (m2, m3, m6) so that 32 bits out of 128 bits of the chaining variables
are matched with a probability of 1 and to check whether the other 96 bits are
matched or not. Equations in the matching part are as follows. (Known fixed
variables are underlined.)

Q35 = Q34 + (Q31 + (Q34 ⊕Q33 ⊕Q32) + m3 + k35) ≪ s35 (1)
Q36 = Q35 + (Q32 + (Q35 ⊕Q34 ⊕Q33) + m6 + k36) ≪ s36 (2)
Q37 = Q36 + (Q33 + (Q36 ⊕Q35 ⊕Q34) + mπ(37) + k37) ≪ s37 (3)

Q38 = Q37 + (Q34 + (Q37 ⊕Q36 ⊕Q35) + mπ(38) + k38) ≪ s38 (4)

Q39 = Q38 + (Q35 + (Q38 ⊕Q37 ⊕Q36) + mπ(39) + k39) ≪ s39 (5)

Q40 = Q39 + (Q36 + (Q39 ⊕Q38 ⊕Q37) + m2 + k40) ≪ s40 (6)

The procedure of the matching method is as follows.

1. Define X as follows:
X = Q35 ⊕Q36. (7)

2. From equation 4, compute the value of X :

X = (((Q38 −Q37) ≫ s38)−Q34 −mπ(38) − k38)⊕Q37. (8)

3. From equation 3, compute the value of Q36:

Q36 = Q37 − ((Q33 + (X ⊕Q34) + mπ(37) + k37) ≪ s37). (9)

4. From equation 7, compute the value of Q35:

Q35 = X ⊕Q36. (10)

5. From equation 6, compute the value of m2:

m2 = ((Q40 −Q39) ≫ s40)−Q36 − (Q39 ⊕Q38 ⊕Q37)− k40. (11)

Preimage Attacks on Step-Reduced MD5 291

6. From the equations for steps 11, 12, and 15 in the local collision part, com-
pute the values of Q11, m3, and m6:

Q11 = Q10 + (Q7 + Φ11(Q10, Q9, Q8) + m2 + k11) ≪ s11, (12)
m3 = ((Q12 −Q11) ≫ s12)−Q8 − Φ12(Q11, Q10, Q9)− k12, (13)
m6 = ((Q15 −Q14) ≫ s15)−Q11 − Φ15(Q14, Q13, Q12)− k15. (14)

7. Finally, check whether equations 1, 2, and 5 are correct or not. This succeeds
with a probability of 2−96; therefore, the matching method succeeds with a
probability of 2−96.

4.4 A Study of Round Orders

The message expansion structure seems to be heavily related to security. How-
ever, the strength of the message expansion is not well-analyzed. In this paper,
we try all possible round orders of MD5 to detect strong and weak round orders
against our attack. The outline is as follows. (Details are shown in Appendix B.)

1. For all possible round orders and selection of local-collision messages, do the
followings.

2. Reduce the steps from the first and last steps until all the selected local-
collision messages are excluded from the attack target in the first and fourth
rounds.

3. The remaining steps are the attack target. If the attack target is long, we
say such a round order is weak against our attack. If the attack target is
short, the round order is strong.

We denote each round of the original MD5 as “R1,” “R2,” “R3,” and “R4.”
Then, we denote each round of the modified MD5 before the step number is
reduced as “first round,” “second round,” “third round,” and “fourth round.”

As a result of this analysis, we confirmed that MD5(1133) is the weakest round
order against our attack2. We also found the strong round orders. We show 20
round orders that can be attacked at 35 or 36 steps at most in Table 4.

The number of steps that can be attacked depends on Ri used as the first,
second, and fourth rounds. In Table 4, we denote the third round by *, which
means any Ri is acceptable.

Table 4. Strong round orders against our preimage attack

Upper-bound of attackable steps Round order

35 1-3-*-1,

36 1-3-*-4, 2-3-*-2, 4-3-*-1, 4-3-*-4

All the strong round orders in Table 4 use R3 as the second round. This is
because making the local collision in R3 involves more messages than in the
other Ri. We show the pattern of local-collision messages in Table 5. As we can
2 Details and other weak round orders are in Appendix C.

292 Y. Sasaki and K. Aoki

Table 5. Local-collision messages for Ri

Round function Local-collision messages (0 ≤ j ≤ 11)

R1 mπ(j), mπ(j+1), mπ(j+4)

R2 mπ(j), mπ(j+1), mπ(j+4)

R3 mπ(j), mπ(j+1), mπ(j+2), mπ(j+3), mπ(j+4)

R4 mπ(j), mπ(j+1), mπ(j+2), mπ(j+4)

Why these messages form local collisions is explained in
Appendix A.

see, the local-collision messages in R3 involve five messages while the other Ri

involve only three or four messages. Therefore, selecting R3 as the second round
can efficiently prevent our attack.

4.5 Implications on Hash Function Design

What we can learn from our analysis is summarized as follows.

– A local collision may damage the one-wayness of hash functions.
– As the number of messages necessary to make the local collision increases,

attacking long steps by our approach becomes difficult. In the case of MD5,
selecting R3 as the second round efficiently prevents our attack.

– The number of messages necessary to make the local collision depends on
the existence of the absorption property of non-linear functions. Therefore,
eliminating the absorption property in the design of non-linear functions is
important for preventing this kind of analysis.

– If the absorption property cannot be eliminated, a direct addition from a
chaining variable to another can be a solution. In fact, MD5 is harder to
analyze than MD4 because of the addition from Qi−1 to Qi.

5 A Preimage Attack Against 44 Steps of MD5

5.1 Selecting Step Number

First, we select the local-collision messages in the second round. The number of
steps that can be attacked is maximized (46 steps) when we select m4, m9 and
m8 as the local-collision messages. However, in such a case, the matching part
becomes too long, and an efficient matching method cannot be constructed. As
a consequence, our strategy cannot be efficiently applied to the real MD5.

The other way to construct a preimage attack is to remove the local collision
part and use only the matching part. Such an attack needs a message that
appears only once in the message expansion. As seen in Table 2, if we take steps
3-46 (total of 44 steps), m2 will appear only once. By using this property, our
attack succeeds with a complexity of 296 reduced-MD5 computations.

Preimage Attacks on Step-Reduced MD5 293

5.2 Procedure of Preimage Attack

A reduced MD5 is defined similarly to the modified MD5. The attack procedure
is as follows.

1. Randomly determine the values of m0, m1, m3, . . . , m12, and determine
m13, . . . , m15 to satisfy MD5 message padding.

2. Compute Q0, . . . , Q25 by the step-update expression.
3. Compute Q40, . . . , Q43 by the following equations:

Q40 = h0 −Q−4, Q43 = h1 −Q−1, Q42 = h2 −Q−2, Q41 = h3 −Q−3.
4. Compute Q39, . . . , Q27 by the following equation:

Qj−4 = ((Qj −Qj−1) ≫ sj)−mπ(j) − Φj(Qj−1, Qj−2, Qj−3)− kj .
5. Check that all chaining variables in the matching part can be matched by

the matching method explained in section 5.3. By this method, all chaining
variables are matched with a probability of 2−96.

6. If all chaining variables are matched, output m0, . . . , m15, then halt this
algorithm. Otherwise, repeat this procedure from Step 1.

The above procedure is repeated 296 times, so the complexity is 296.

5.3 Matching Method

The input of the matching method is the values of Q22, . . . , Q25, Q27, . . . , Q30

and mπ(27), . . . , mπ(30). Equations in the matching part are as follows. (Known
fixed values are underlined.)

Q26 = Q25 + (Q22 + Φ26(Q25, Q24, Q23) + m2 + k26) ≪ s26 (15)
Q27 = Q26 + (Q23 + Φ27(Q26, Q25, Q24) + mπ(27) + k27) ≪ s27 (16)

Q28 = Q27 + (Q24 + Φ28(Q27, Q26, Q25) + mπ(28) + k28) ≪ s28 (17)

Q29 = Q28 + (Q25 + Φ29(Q28, Q27, Q26) + mπ(29) + k29) ≪ s29 (18)

Q30 = Q29 + (Q26 + Φ30(Q29, Q28, Q27) + mπ(30) + k30) ≪ s30 (19)

The procedure of the matching method is as follows.

1. From equation 19, compute the value of Q26.
2. From equation 15, compute the value of m2.
3. Finally, check whether equations 16, 17, and 18 are correct or not. This

succeeds with a probability of 2−96.

6 Conclusion

In this paper, we considered preimage attacks against MD5. Our approach ap-
plies local collision to construct preimage attacks. As a result, we developed a
preimage attack that finds a preimage of 51 steps of MD5(1133) with the com-
plexity 296. We also proposed a preimage attack against 44 steps of the real
MD5. The complexity of this attack is 296. Our attacks easily satisfy the mes-
sage padding rule and work for any IV. Finally, we analyzed message expansion,
and showed the strong and weak round orders against our attack.

294 Y. Sasaki and K. Aoki

Acknowledgement

We thank Jean-Philippe Aumasson, Willi Meier, and Florian Mendel for inform-
ing us of their research result.

References

1. Aumasson, J.-P., Meier, W., Mendel, F.: Preimage Attacks on 3-Pass
HAVAL and Step-Reduced MD5. Cryptology ePrint Archive, Report 2008/183,
http://eprint.iacr.org/2008/183.pdf

2. Black, J., Cochran, M., Highland, T.: A Study of the MD5 Attacks: Insights and
Improvements. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 262–277.
Springer, Heidelberg (2006)

3. den Boer, B., Bosselaers, A.: Collisions for the Compression Function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

4. De, D., Kumarasubramanian, A., Venkatesan, R.: Inversion Attacks on Secure
Hash Functions Using SAT Solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.)
SAT 2007. LNCS, vol. 4501, pp. 377–382. Springer, Heidelberg (2007)

5. Dobbertin, H.: The First Two Rounds of MD4 are Not One-Way. In: Vaudenay, S.
(ed.) FSE 1998. LNCS, vol. 1372, pp. 284–292. Springer, Heidelberg (1998)

6. Dobbertin, H.: Cryptanalysis of MD5 compress. In: Announcement at the Rump
session of Eyrocrypt 1996 (1996)

7. Dobbertin, H.: The Status of MD5 After a Recent Attack. CryptoBytes The tech-
nical newsletter of RSA Laboratories, a division of RSA Data Security, Inc. 2(2),
Summer 1996 (1996)

8. Joux, A.: Multicollisions in Iterated Hash Functions. Applications to Cascaded
Constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–
316. Springer, Heidelberg (2004)

9. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptol-
ogy ePrint Archive, Report 2006/105, http://eprint.iacr.org/2006/105.pdf

10. Knudsen, L.R., Mathiassen, J.E.: Preimage and Collision Attacks on MD2. In:
Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 255–267.
Springer, Heidelberg (2005)

11. Kuwakado, H., Tanaka, H.: New Algorithm for Finding Preimages in a Reduced
Version of the MD4 Compression Function. IEICE TRANSACTIONS on Funda-
mentals of Electronics, Communications and Computer Sciences E83-A(1), 97–100
(2000)

12. Leurent, G.: MD4 is Not One-Way. In: Preproceedings of Fast Software Encryption
- FSE 2008 (2008)

13. Liang, J., Lai, X.: Improved Collision Attack on Hash Function MD5. Journal of
Computer Science and Technology 22(1), 79–87 (2007)

14. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC Press, Boca Raton (1997)

15. Muller, F.: The MD2 Hash Function Is Not One-Way. In: Lee, P.J. (ed.) ASI-
ACRYPT 2004. LNCS, vol. 3329, pp. 214–229. Springer, Heidelberg (2004)

16. Rivest, R.L.: The MD5 Message Digest Algorithm. RFC 1321 (April 1992),
http://www.ietf.org/rfc/rfc1321.txt

http://eprint.iacr.org/2008/183.pdf
http://eprint.iacr.org/2006/105.pdf
http://www.ietf.org/rfc/rfc1321.txt

Preimage Attacks on Step-Reduced MD5 295

17. Rogaway, P.: Formalizing human ignorance. In: Nguyên, P.Q. (ed.) VIETCRYPT
2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006)

18. Sasaki, Y., Naito, Y., Kunihiro, N., Ohta, K.: Improved Collision Attacks on MD4
and MD5. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences E90-A(1), 36–47 (2007)

19. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–25. Springer, Heidelberg
(2005)

20. Yu, H., Wang, X.: Multi-collision Attack on the Compression Functions of MD4
and 3-Pass HAVAL. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817,
pp. 206–226. Springer, Heidelberg (2007)

A Patterns of Local-Collision Messages in Each Round

Fig. 5. Patterns of local collision in each round

0 ≤ j ≤ 15 : Φj(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z),

16 ≤ j ≤ 31 : Φj(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z),

32 ≤ j ≤ 47 : Φj(X, Y, Z) = X ⊕ Y ⊕ Z,

48 ≤ j ≤ 63 : Φj(X, Y, Z) = Y ⊕ (X ∨ ¬Z).

The left diagram describes the local collision in the first and second rounds. The
center and right describe that in the third and fourth rounds, respectively. In any
round, we change mπ(i+1) and mπ(i+4) to offset the change of mπ(i). In the third and
fourth rounds, we change mπ(i+2) and mπ(i+3) because Φj cannot absorb the change.
(In step i + 1, the change of mπ(i) can be offset without the absorption properties by
modifying mπ(i+1).)

296 Y. Sasaki and K. Aoki

B Round Order Search Algorithm

The round order search algorithm searches for strong and weak round orders
against our attack. It is as follows.
1. Generate all possible round orders. Because each round has 4 options, 44 =

256 round orders exist.
2. For each round order, consider all possible local-collision messages in the

second round. The pattern of local-collision messages for Ri is shown in
Table 5. For any Ri, there are 12 options for the local-collision messages.
Therefore, consider 256× 12 = 3072 patterns.

3. For each of the 3072 patterns, reduce the steps from the first and last steps until
all the local-collision messages are excluded from the first and fourth rounds.

4. Finally, output the number of remaining steps for each of the 3072 patterns.

We coded the above algorithm, then we found the strong and weak round
orders against our attack. Strong round orders are discussed in section 4.4. Weak
round orders are shown in Table 6 of Appendix C.

C Weak Round Orders Against Our Preimage Attack

We show weak round orders that may be attacked more than three rounds (48
steps) in Table 6.

Table 6. Weak round orders against our preimage attack

Number of steps where Round order Local-collision messages Range of
preimage can be found matching part

51 steps 1-1-1-3 m2, m3, m6 5 steps
1-1-2-3 m2, m3, m6 13 steps
1-1-3-3 m2, m3, m6 6 steps
1-1-4-3 m2, m3, m6 10 steps

50 steps 3-1-1-1 m10, m11, m14 5 steps
3-1-2-1 m10, m11, m14 8 steps
3-1-3-1 m10, m11, m14 6 steps
3-1-4-1 m10, m11, m14 12 steps

49 steps 1-2-1-2 m3, m7, m8 6 steps
1-2-2-2 m3, m7, m8 5 steps
1-2-3-2 m3, m7, m8 10 steps
1-2-4-2 m3, m7, m8 8 steps

49 steps 4-2-1-2 m3, m7, m8 6 steps
4-2-2-2 m3, m7, m8 5 steps
4-2-3-2 m3, m7, m8 10 steps
4-2-4-2 m3, m7, m8 8 steps

From Table 6, we can see that the weakest order may be attacked up to 51
steps. The range of the matching part is important for constructing an efficient
matching method. By considering these facts, we decided to use the round order
1R− 1R− 3R− 3R, and the local-collision messages (m2, m3, m6).

Linear Distinguishing Attack on Shannon

Risto M. Hakala1 and Kaisa Nyberg1,2

1 Helsinki University of Technology, Finland
2 Nokia Research Center, Finland

{risto.m.hakala,kaisa.nyberg}@tkk.fi

Abstract. In this paper, we present a linear distinguishing attack on
the stream cipher Shannon. Our distinguisher can distinguish the out-
put keystream of Shannon from 2107 keystream words while using an
array of 232 counters. The distinguisher makes use of a multidimensional
linear transformation instead of a one-dimensional transformation, which
is traditionally used in linear distinguishing attacks. This gives a clear
improvement to the keystream requirement: we need approximately 25

times less keystream than when a one-dimensional transform is used.

Keywords: Distinguishing attacks, linear cryptanalysis, stream ciphers,
Shannon.

1 Introduction

Stream ciphers are symmetric encryption primitives that are used to ensure
confidentiality in digital communication. Compared to block ciphers, stream ci-
phers are often more efficient and allow a more compact implementation. How-
ever, their security has not been on the same level with the most secure block
ciphers. Since there does not seem to be any specific reason for this, stream ci-
phers have started to gain more attention from the cryptographic community.
To strengthen the scientific foundations of the security of stream ciphers, the
ECRYPT Network of Excellence has launched the eSTREAM project [1], whose
main objective is to identify new stream ciphers that might become suitable for
wide-spread adoption.

The security of a stream cipher is highly dependent on how random the
keystream can be made to appear. To analyze this property, statistical and al-
gebraic distinguishing attacks have been developed. Distinguishing attacks are
attacks where the attacker is able to tell whether a sequence has been generated
by the keystream generator or not. In linear distinguishing attacks, the attacker
tries to find statistical bias in the sequence that is obtained after a linear trans-
form has been applied to the original sequence. In this paper, we present a linear
distinguishing attack on the stream cipher Shannon [2]. Shannon is a recently
proposed synchronous stream cipher designed by Hawkes et al. [2] of Qualcomm
Australia. It has been designed according to PROFILE 1A of the ECRYPT call
for stream cipher primitives, and it uses a secret key that may be up to 256
bits in length. In addition to keystream generation, Shannon also offers message

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 297–305, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

298 R.M. Hakala and K. Nyberg

authentication functionality. However, we consider only the keystream generator
part of Shannon in this paper. To our knowledge, there are no publications with
cryptographic analysis of Shannon.

Linear distinguishing attacks on stream ciphers are often based on a bi-
ased linear combination of keystream bits. In other words, these attacks em-
ploy a one-dimensional transform which is applied to the given sequence. In
our attack, a multidimensional transform is used instead. We also consider the
one-dimensional approach and show that the multidimensional approach signifi-
cantly reduces the attack complexity. Our distinguisher can distinguish the out-
put keystream of Shannon from approximately 2107 keystream words. The one-
dimensional distinguishing attack requires approximately 2112 keystream words.
Similar multidimensional distinguishing attacks have been presented previously,
e.g., on SNOW 2.0 by Maximov and Johansson [3] and on Dragon by Englund
and Maximov [4]. However, such attacks appear less frequently since the com-
putational effort required for constructing a multidimensional attack is usually
far too big for current techniques. In this paper, we use the Walsh-Hadamard
transform for efficient computation of the probability distribution related to
the multidimensional linear distinguishers. The theoretical basis for multidimen-
sional linear distinguishing attacks has only recently started to take form. In [5],
Baignères et al. present several useful results in this direction. Also relevant is
the work on multiple linear approximations by Kaliski and Robshaw [6] and by
Biryukov et al. [7].

The outline of the paper is as follows. In Sect. 2, we introduce those definitions
and notations that are used in the paper. We give a short description of Shannon
in Sect. 3. In Sect. 4, we discuss linear distinguishers on a general level. In Sect. 5,
we describe our linear distinguisher for Shannon and estimate its complexity. Our
conclusions are given in Sect. 6.

2 Preliminaries

Let n be a positive integer. We denote by Vn the n-dimensional binary vector
space and use x to denote the n-bit vector (x[0], . . . , x[n− 1]) ∈ Vn. The vectors
in Vn are identified with the integers in ZZ2n using the natural correspondence
x ↔ ∑n−1

i=0 x[i]2i. Addition of vectors in Vn (i.e., the bitwise exclusive-OR) is
denoted by ⊕. For vectors u ∈ Vn and x ∈ Vn, we let u · x denote the standard
inner product u · x = u[0]x[0]⊕ · · · ⊕ u[n− 1]x[n− 1] ∈ V1. The linear function
lu : Vn → V1 is defined by lu(x) = u · x. The circular shift of x to left by a
coordinates is denoted by x ≪ a. We use ∨ to denote the bitwise OR of two
vectors in Vn.

Let X be a random variable with the sample space Vn. We denote by PX(x) =
Pr[X = x], for all x ∈ Vn. PX is called the probability function or the distribution
of X . The n-dimensional uniform distribution PU is a probability distribution
such that PU (x) = 2−n, for all x ∈ Vn. For a Bernoulli distributed random
variable Y , we call the value

εY = PY (0)− PY (1)

Linear Distinguishing Attack on Shannon 299

the bias of Y . In linear cryptanalysis [8], one commonly studies biases of expres-
sions such as u · f(X) ⊕ v · X , where u ∈ Vm, v ∈ Vn, and f : Vn → Vm is a
vector-valued Boolean function. The vectors u and v are often called the linear
output and input masks, respectively.

2.1 Walsh-Hadamard Transform

Given a real-valued function f : Vn → IR the Walsh-Hadamard transform of f is
defined by

F [f](u) =
∑

x∈Vn

f(x)(−1)u·x, for all u ∈ Vn.

The Walsh-Hadamard transform is easily inverted. Given the transform F (u) =
F [f](u), for all u ∈ Vn, the values of f can be determined from the inverse
transform:

F−1[F](x) = 2−n
∑

u∈Vn

F (u)(−1)u·x, for all x ∈ Vn.

We have f(x) = F−1[F](x), for all x ∈ Vn. Parseval’s theorem for the Walsh-
Hadamard transform (see, e.g., [9]) gives us the result

∑

x∈Vn

f(x)2 = 2−n
∑

u∈Vn

F (u)2.

3 Description of Shannon

The keystream generator of Shannon [2] produces a keystream of 32-bit words
based on a 256-bit secret key. It is based on a single nonlinear feedback shift
register and a nonlinear filter. The state of the shift register at time t ≥ 0 consists
of 16 elements st+i, i = 0, . . . , 15, from V32. In the specification of Shannon [2],
the state update procedure is defined as

{

st+16 = f1(st+12 ⊕ st+13 ⊕K)⊕ (Rt ≪ 1),
Rt+1 = st+1 ⊕ f2(st+3 ⊕ st+16),

where f1, f2 : V32 → V32 are nonlinear Boolean functions and K ∈ V32 is a 32-bit
secret constant that is derived in the initialization process. The state update
procedure can also be written as a single relation:

st+16 = f1(st+12 ⊕ st+13 ⊕K)⊕ ((st ⊕ f2(st+2 ⊕ st+15)) ≪ 1). (1)

The output zt at time t ≥ 0 is given by

zt = st+9 ⊕ st+13 ⊕ f2(st+3 ⊕ st+16).

300 R.M. Hakala and K. Nyberg

The functions f1 and f2 are defined by
{

f1(x) = g(g(x, 5, 7), 19, 22),
f2(x) = g(g(x, 7, 22), 5, 19),

with the function g : V32 × ZZ × ZZ → V32 defined by

g(x, a, b) = x⊕ ((x ≪ a) ∨ (x ≪ b)).

Clearly, g(x ≪ c, a, b) = g(x, a, b) ≪ c, for all 1 ≤ c ≤ 32. Hence, fi(x ≪
c) = fi(x) ≪ c, for i = 1, 2 and c = 1, . . . , 32. The functions f1 and f2 are
not surjective: according to [2], their ranges cover about 84.74% and 84.34%
of the codomain V32, respectively. For further details of Shannon, such as the
initialization procedure and message authentication functionality, we refer to the
specification [2].

4 Linear Distinguishers

A distinguisher is essentially an implementation of a statistical hypothesis test:
a sequence (xt)t≥0 over Vn is given as input to the distinguisher and the distin-
guisher decides whether the input sequence is from a specific cipher or appears to
be random. In other words, the distinguisher compares a sampling distribution
constructed from the input to the uniform distribution PU and the distribution
PC that sequences generated by the cipher are estimated to have. The distin-
guisher should be able to make the decision with high confidence level.

A linear distinguisher is a distinguisher which operates in two phases. In the
first phase, a linear transformation is applied to the input sequence (xt)t≥0 to
get a new sequence (x̂t)t≥0 over Vm, where m ≤ n. The distribution of (x̂t)t≥0

is examined in the second phase in order to make the decision. In this paper, we
assume that the transformation is a linear transform T : (Vn)|I| → Vm such that

x̂t = T ((xt+i)i∈I), for all t ≥ 0,

where I is an index set. To create an efficient distinguisher, the transform T
should be chosen such that given a sequence produced by the keystream gener-
ator the sequence (x̂t)t≥0 should deviate from the uniform distribution as much
as possible with respect to the test statistic used in the distinguisher. On the
other hand, (x̂t)t≥0 should not be biased if the input sequence (xt)t≥0 is not
from the cipher. We use PC to denote the expected distribution of (x̂t)t≥0 when
a keystream sequence has been given as input.

A distinguisher uses a test statistic to perform the hypothesis test. In [5],
Baignères et al. showed that the log-likelihood ratio statistic is an optimal statis-
tic for a linear distinguisher. For a sufficiently large number N of samples (x̂t)t≥0,
one can perform the hypothesis test reliably. In the hypothesis test, the distribu-
tion of (x̂t)t≥0 is compared to the m-dimensional distributions PC and PU using
the log-likelihood ratio

Λ =
N−1∑

t=0

log2

PC(x̂t)
2−m

. (2)

Linear Distinguishing Attack on Shannon 301

The sample size requirement N is inversely proportional to the squared Euclidean
distance between distributions PC and PU . More accurately, we have

N ∝ 1
2m‖PC − PU‖22

,

where ‖·‖2 is the �2-norm. In [5], Baignères et al. call the denominator 2m‖PC −
PU‖22 = 2m

∑

x∈Vm
(PC(x) − 2−m)2 the Squared Euclidean Imbalance of PC .

Hence, to find an efficient distinguisher, one needs to find a linear transforma-
tion for the input sequence (xt)t≥0 such that the squared Euclidean distance
between (x̂t)t≥0 and a uniformly distributed sequence is large whenever the in-
put sequence has been generated by the keystream generator. Note that if m = 1,
the linear distinguisher examines linear combinations of input sequence bits. In
this case, PC is the Bernoulli distribution and we have 2m‖PC − PU‖22 = ε2C ,
where εC is the expected bias in (x̂t)t≥0.

5 Linear Distinguishers for Shannon

To build a linear distinguisher for Shannon, we find a linear transform T which
is applied to the sequence (xt)t≥0 over V32 given as input for the distinguisher.
This transformation should be chosen such that the squared Euclidean distance
between the distribution of (x̂t)t≥0 and the uniform distribution is large if the
input sequence (xt)t≥0 has been generated by Shannon. Since all of the nonlin-
earity in the keystream generator is achieved with the functions f1 and f2, we
strive to find a transform T such that the distribution of (x̂t)t≥0 is affected by
f1 and f2 as little as possible if (xt)t≥0 is a keystream. This way, we try to make
the distribution of (x̂t)t≥0 as nonuniform as possible whenever a keystream is
given as input. The best linear distinguisher that we found for Shannon relies
on the transformation

T : (xt, xt+16)
→ (xt ≪ 1)⊕ xt+16, for all t ≥ 0.

In the next sections, we show how this transform is constructed and how the
distribution of (x̂t)t≥0 can be estimated when a keystream has been given as
input.

5.1 Constructing the Distinguisher

We construct the linear distinguisher for Shannon by taking a linear combination
of the keystream variables zt, t ≥ 0, such that the combination will have a
nonuniform time-invariant distribution, denoted by PC . We use the state update
function (1) to cancel out the internal state variables not given as input to f1

or f2. Hence, if the system was linear, this linear combination would always be
equal to 0. With Shannon, however, such clear distinguishing is not possible
since the functions f1 and f2 have nonuniform value distributions. Using a linear
combination of the outputs of f1 and f2, deviation from the uniform distribution

302 R.M. Hakala and K. Nyberg

can still be detected. This linear combination is used as the linear transform T
in the distinguisher.

The distribution PC of (zt ≪ 1) ⊕ zt+16 can be estimated as follows. Since
f2(x) ≪ 1 = f2(x ≪ 1), the state update function (1) can be rewritten as

(st ≪ 1)⊕ st+16 = f1(st+12 ⊕ st+13 ⊕K)⊕ f2((st+2 ⊕ st+15) ≪ 1). (3)

Recall that the output zt is given by

zt = st+9 ⊕ st+13 ⊕ f2(st+3 ⊕ st+16).

Now, by adding the keystream variables zt ≪ 1 and zt+16 together, the rela-
tion (3) can be used twice. We get

(zt ≪ 1)⊕ zt+16 = ((st+9 ⊕ st+13 ⊕ f2(st+3 ⊕ st+16)) ≪ 1)
⊕ st+25 ⊕ st+29 ⊕ f2(st+19 ⊕ st+32)

= f1(st+21 ⊕ st+22 ⊕K)⊕ f2((st+11 ⊕ st+24) ≪ 1)
⊕ f1(st+25 ⊕ st+26 ⊕K)⊕ f2((st+15 ⊕ st+28) ≪ 1)
⊕ f2(st+19 ⊕ st+32)⊕ f2((st+3 ⊕ st+16) ≪ 1).

(4)

Here, we have again used the fact that f2(x) ≪ 1 = f2(x ≪ 1). None of the
state variables appear more than once in the inputs of f1 or f2 in (4). Hence,
it is justified to assume that the inputs to f1 and f2 are independent uniformly
distributed random variables for all t ≥ 0. In that case, (zt ≪ 1) ⊕ zt+16 has
a time-invariant distribution, which is determined from the value distributions
of f1 and f2. Note that it is not possible to gain information about the secret
constant K by using this linear transform—the distribution is independent of K
when the transform is constructed this way.

A linear distinguishing attack can be performed if we know the distribution
PC of (zt ≪ 1) ⊕ zt+16. The decision is made based on the value of the log-
likelihood ratio Λ given in (2): if Λ ≥ 0, the distinguisher decides that the input
sequence has been generated by Shannon; otherwise, the input is decided to be
random.

5.2 Calculating the Distribution PC

Let P1 and P2 denote the probability distributions of the outputs of f1 and
f2, respectively. The distribution PC of (zt ≪ 1) ⊕ zt+16 is defined as the
convolution (over the exclusive-OR) of six random variables: two of them have
the distribution P1 and four of them have the distribution P2. We make use of
the Walsh-Hadamard transform for calculating PC efficiently. Let X be a random
variable with the sample space Vd and the probability distribution PX , where
PX(x) = Pr[X = x], for all x ∈ Vd. Now, the random variable lu(X) = u ·X has
the Bernoulli distribution Pu·X . Denote by ε(u) the bias of u ·X . We get

ε(u) = Pu·X(0)− Pu·X(1) =
∑

x∈Vd

PX(x)(−1)u·x, for all u ∈ Vd.

Linear Distinguishing Attack on Shannon 303

Hence, the bias ε(u) is given by the transform F [PX] at u ∈ Vd. Using the
well-known fast Walsh-Hadamard transform, it is possible to compute F [PX] in
O(d2d) operations. Since computation of PX takes O(2d) operations, the biases
ε(u), u ∈ Vd, can be determined in O((d+1)2d) operations. Conversely, if the bi-
ases ε(u), u ∈ Vd, are known, the distribution PX can be computed by taking the
inverse transform F−1[ε] (see [10, Lemma 1]). Using the fast Walsh-Hadamard
transform, this takes O(d2d) operations.

In order to determine the biases εC(u), u ∈ V32, we first compute the distri-
butions P1 and P2. Using the fast Walsh-Hadamard transform, we compute the
biases ε1(u) and ε2(u) for the distributions P1 and P2 for all u ∈ V32. Since we
have d = 32, these procedures take roughly 2 · (32 + 1) · 232 ≈ 238 operations.
Next, we determine the bias εC(u) of u · ((zt ≪ 1)⊕ zt+16) for all u ∈ V32. Since
all six random variables in (4) are statistically independent, the biases can be
computed using the Piling-Up Lemma [8]:

εC(u) = ε1(u)2ε2(u)4, for all u ∈ V32. (5)

Thus, the distribution PC can be calculated by taking the inverse transform
F−1[εC]. In the attack, the distribution PC is used to evaluate the log-likelihood
ratio Λ. Calculation of PC and the inverse Walsh-Hadamard transform is not
necessary, however, if one simply wants to determine the sample size requirement
N for the distinguisher. Using Parseval’s theorem, it is not hard to show that
2m‖PC−PU‖22 =

∑

u�=0 εC(u)2 [5, Proposition 11]. Hence, the sample size N can
be expressed as a function of the biases εC(u), u ∈ Vd:

N ∝ 1
∑

u�=0 εC(u)2
. (6)

5.3 Results

To estimate the complexity of the distinguisher, we determined the sample size
requirement N using (6). The biases εC(u), u ∈ V32, were computed for all
u ∈ V32 using (5). We also determined the highest bias εC(u), u �= 0, from
these values in order to compare the complexity of one-dimensional and 32-
dimensional distinguishing attacks. In the one-dimensional distinguishing attack,
the distinguisher makes use of the transform lu ◦T instead of T . The highest bias
εC(u) = 2−56 was achieved with the mask u = 0x0410a4a1. In order to compute
the log-likelihood ratio Λ, we need to store the distribution PC to memory. For
this, we need to have memory space for 232 counters when the transform T is
used and a single counter when the transform lu ◦ T is used. The results are
presented in Table 1. For completeness, we present the absolute biases |ε1(u)|
and |ε2(u)| for u = 0x0410a4a1 in Table 2. We also present the masks which
induce the highest individual biases |ε1(u)| and |ε2(u)| in the same table.

The results in Table 1 show a clear advantage of using a multidimensional
transform T instead of lu ◦ T in the distinguisher: we need approximately 25

times less keystream in the former case. From (6), it is possible to see how
different masks u affect the requirement N . Since fi(u) ≪ c = fi(u ≪ c),

304 R.M. Hakala and K. Nyberg

Table 1. The keystream requirement N and the memory requirement M for the dis-
tinguisher that uses the transform T and for the distinguisher that uses the transform
lu ◦ T , where u = 0x0410a4a1. In the latter case, N is simply given by εC(u)−2.

T lu ◦ T

N 2106.996 2112

M 232 1

Table 2. Properties of distributions of f1 and f2. The mask u = 0x0410a4a1 gives
the highest εC(u); the mask u = 0x00021021 gives the highest |ε1(u)|; the mask u =
0x25252525 gives the highest |ε2(u)|.

u |ε1(u)| |ε2(u)|
0x0410a4a1 2−12 2−8

0x00021021 2−8.415 0
0x25252525 0 2−7.997

i = 1, 2, we have εC(u) = εC(u ≪ c), for c = 1, . . . , 32. If all nonzero masks
would induce the same bias as the masks 0x0410a4a1 ≪ c, c = 1, . . . , 32, the
keystream requirement N would reduce by a factor of 232. Since the reduction
factor is 25.004, all other masks have a negligible effect on the requirement: they
reduce it by a factor of 20.004. As shown in Table 2, the largest |ε2(u)| is greater
than the largest |ε1(u)|. Perhaps it is because the coverage of f2 is slightly smaller
than the coverage of f1.

6 Conclusions

We have presented a multidimensional linear distinguishing attack on Shannon.
The attack requires about 2107 keystream words and memory space for 232 coun-
ters. The distinguisher makes use of the transform

T : (xt, xt+16)
→ (xt ≪ 1)⊕ xt+16, for all t ≥ 0.

We have also studied the complexity of a distinguishing attack where the one-
dimensional transform lu ◦T , u = 0x0410a4a1, is used instead. The multidimen-
sional transform T gives a clear improvement over the transform lu ◦ T in the
complexity: the distinguisher needs 25 times less input in the former case. How-
ever, the memory requirement is larger (but still reasonable) in the multidimen-
sional case. A crucial method in our analysis has been the fast Walsh-Hadamard
transform. This has allowed handling of large probability distributions efficiently.
Generally, building a multidimensional distinguisher is not possible since it re-
quires too much computational effort to examine and handle large distributions.

In the specification for Shannon [2], the authors state that the intention of
the design is to ensure that there are no distinguishing attacks on Shannon

Linear Distinguishing Attack on Shannon 305

requiring less than 280 keystream words and less than 2128 computations. The
results obtained in this paper do not break these limits, and Shannon seems to be
as robust against distinguishing attacks as intended. The authors also claim that
Shannon should be resistant against distinguishing attacks when used subject
to the condition that no key/nonce pair is ever reused, and that no more than
248 words of data are processed with one key/nonce pair, and no more than 280

words are processed with one key. These limitations do not affect distinguishers
which work independently of the initial state of the cipher. For example, the
distinguisher in this paper should work with all key/nonce pairs because the
distribution of (zt ≪ 1)⊕ zt+16 does not depend on either the key or the nonce.
In theory, one could generate enough keystream for the distinguisher by rekeying
the cipher repeatedly with different keys. Hence, the security requirements are
not fulfilled in comparison to this claim.

References

1. ECRYPT Network of Excellence: The homepage for eSTREAM (2008),
http://www.ecrypt.eu.org/stream/

2. Hawkes, P., McDonald, C., Paddon, M., Rose, G.G., Wiggers de Vries, M.: Design
and primitive specification for Shannon. Technical report, Qualcomm Australia
(2007), http://eprint.iacr.org/2007/044.pdf

3. Maximov, A., Johansson, T.: Fast computation of large distributions and its cryp-
tographic applications. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
313–332. Springer, Heidelberg (2005)

4. Englund, H., Maximov, A.: Attack the Dragon. In: Maitra, S., Veni Madhavan,
C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 130–142.
Springer, Heidelberg (2005)

5. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004)

6. Kaliski, B., Robshaw, M.: Linear cryptanalysis using multiple approximations. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidel-
berg (1994)

7. Biryukov, A., Cannière, C.D., Quisquater, M.: On multiple linear approximations.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer, Hei-
delberg (2004)

8. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

9. Beauchamp, K.G.: Applications of Walsh and Related Functions. Academic Press,
London (1984)

10. Nyberg, K., Hermelin, M.: Multidimensional Walsh transform and a characteri-
zation of bent functions. In: Proceedings of the 2007 IEEE Information Theory
Workshop on Information Theory for Wireless Networks, pp. 83–86. IEEE, Los
Alamitos (2007)

http://www.ecrypt.eu.org/stream/
http://eprint.iacr.org/2007/044.pdf

Recovering RC4 Permutation from 2048

Keystream Bytes if j Is Stuck

Subhamoy Maitra1 and Goutam Paul2

1 Applied Statistics Unit, Indian Statistical Institute,
Kolkata 700 108, India
subho@isical.ac.in

2 Department of Computer Science and Engineering,
Jadavpur University, Kolkata 700 032, India

goutam paul@cse.jdvu.ac.in

Abstract. In this paper, we study the behaviour of RC4 when the in-
dex j is stuck at a certain value not known to the attacker. Though it
seems quite natural that RC4 would be weak if j does not change, it has
never been studied earlier in a disciplined manner. This work presents
the nontrivial issues involved in the analysis, identifying how the infor-
mation regarding S starts leaking with as low as 258 keystream output
bytes. The leakage of information increases as more bytes are available
and finally the complete S is recovered with 211 bytes in around 225

time complexity. The attack considers that “the deterministic index i at
the point when j got stuck” and “the value at which j remains stuck”
are unknown. Further, the study presents a nice combinatorial structure
that is relevant to the fault analysis of RC4.

Keywords: Cryptanalysis, Fault Analysis, Keystream, Permutation,
RC4, Stream Cipher.

1 Introduction

RC4 is one of the most well known stream ciphers in cryptographic literature.
The cipher has been analysed for around two decades, and many weaknesses have
been identified. However, none of the weaknesses could seriously affect RC4 and
it can very well be used in a secure manner if certain precautions are taken. That
is the reason RC4 is still being used in commercial domain.

One more motivating point behind the study of RC4 is its simplicity. The Key
Scheduling Algorithm (KSA) and the Pseudo Random Generation Algorithm
(PRGA) of RC4 are presented below. The data structure consists of an array S of
size N (typically, 256), which contains a permutation of the integers {0, . . . , N−
1}, two indices i, j and the secret key array K. Given a secret key k of l bytes
(typically 5 to 32), the array K of size N is such that K[y] = k[y mod l] for any
y, 0 ≤ y ≤ N − 1.

We consider a stuck-at fault where the value of the index j is stuck at some
value x during the PRGA, 0 ≤ x ≤ N − 1. With this, we term the PRGA as
StuckPRGA.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 306–320, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Recovering RC4 Permutation from 2048 Keystream Bytes if j Is Stuck 307

Algorithm KSA
Initialization:

For i = 0, . . . , N − 1
S[i] = i;

j = 0;
Scrambling:

For i = 0, . . . , N − 1
j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

Algorithm PRGA
Initialization:

i = j = 0;
Output Keystream Generation Loop:

i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

Algorithm StuckPRGA
Initialization:

i = j = 0;
Output Keystream Generation Loop:

i = i + 1;
j = x;
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

The simple structure of RC4 has invited substantial attention towards its
analysis. RC4 can be completely attacked if one can reconstruct the permutation
S looking at the keystream output bytes. In [4, Table 2], it has been estimated
that this kind of attack would require around 2779 to 2797 complexity. Later in [9,
Table 7], an improved idea has been presented that estimates a complexity of
2731. These results are interesting if one considers RC4 with key of size greater
than 731 bits (approximately 92 bytes). However, these estimates, in no way,
affect the security of RC4 if the key size of 32 bytes (256 bits) is considered. A
very recent and important work [8] in this area shows that the permutation can
be recovered much faster than that have been shown in [4,9] and the complexity
is estimated as 2241. This shows that RC4 is not secure when the key length is
more than 30 bytes. Fortunately, this result does not affect RC4 for the typical
secret key size of 5 to 16 bytes.

Another important kind of analysis in RC4 is to study how the keystream
output bytes can be distinguished from random stream or how they are biased
towards the secret key. These results can be exploited to mount certain attacks.
One may refer to [5,6,7] and the references therein for more details.

Since RC4 cannot be comprehensively attacked, some easier models of RC4
have been studied in literature. In [4, Section 3], the behaviour of RC4 is studied
when there is no swap or reduced number of swaps (i.e., swap would work after
generation of more than one keystream output bytes during PRGA). While for
no swap, it has been demonstrated that RC4 can be broken easily, in case of
reduced swap, the attack requires more time complexity [4] and may not be
achievable in certain cases.

The fault attacks are also an interesting area of study. Based on certain models
of the fault during the execution of the cipher, the security parameters of the ci-
pher degrade. The fault attack on RC4 has been initially studied in [3, Section 3.3].
The model in [3] is to introduce a fault on a single byte of S and then analyze the
resulting stream to get back the permutation S. Empirical results show that get-
ting certain information on S requires more than 10,000 keystream output bytes.
In [1], fault is introduced in the indices i, j such that the RC4 state lands into a
Finney cycle [2]. Then it becomes easier to get back the permutation S. The result
of [1, Section 3] (impossible fault analysis) shows that at least 216 keystream out-
put bytes are required to mount such an attack. In [1, Table 1], it was shown that
the work of [3] requires injection of 216 faults and it needs 226 amount of keystream
bytes; whereas the work of [1, Section 4] (differential fault analysis) requires injec-
tion of 210 faults and it needs 216 bytes. Fault attack has also been considered in [7]
where 20,000 iterations are required and 214 many faults need to be injected.

In our work, we consider that the index j is stuck at a certain value during
the execution of RC4 PRGA. Under this situation, the complete permutation S

308 S. Maitra and G. Paul

can be recovered with 2048 keystream output bytes. Our strategy is to interleave
the RC4 output bytes in a logical manner so that we can identify sequences of
two or more consecutive elements in the permutation.

It is acceptable that the fault models always rely on optimistic assumptions
and considers a weaker version of the cipher than the original one. Also it has
been commented in [3, Section 1.3] that the attacker should have partial control
in terms of number, location and timing of fault injections. Thus, getting a
situation where j would get stuck at a certain value for some period of time is
rather optimistic. However, if one accepts this model, then the attempt should
be to recover the permutation with as less keystream output bytes as possible
when the value of j, where it is stuck, is not known. That is what we target in
this paper.

In Section 2, we build the theoretical framework considering j is stuck at 0
and it happens at the beginning of the PRGA (just after the KSA) when i = 1.
This helps in understanding the situation clearly. In Section 3, we present the
general scenario that none of i, j is known and j is stuck at an unknown value.

In [1, Page 364], a stronger fault model is mentioned where one can select the
exact value of the indices i or j or one value in the permutation S. Further, it
has been commented [1, Page 364] that in this case much stronger attack would
exist specifically for this model. We complete the task in this paper by showing
that such an attack exists by recovering the permutation S with very few (as
low as 2048) keystream output bytes.

Apart from the cryptographic significance, studying RC4 with j stuck at some
value reveals nice combinatorial structures. First, an internal state on any step is
a restricted permutation over some fixed initial state. Secondly, if one considers
consecutive outputs at steps say r, r + 257, r + 514 and so on, then the resulting
keystream sequence (i) either consists of the same values (in very few cases),
or (ii) is exactly the subarray (e.g., indices y, y + 1, y + 2, . . .) of the initial
permutation (in most of the cases), or (iii) the subarray (e.g., indices y, y+1, y+
3, y + 4, . . .) of the initial permutation with a jump in the initial permutation
(in very few cases). These facts allow to recover the full state given only 2048
keystream bytes and this will be clear looking at Table 1.

Though the basic idea is not complicated, the formal analysis is quite involved.
The complete structure of the permutation S is studied in detail in such a situ-
ation and the reconstruction of S is explained in proper theoretical framework.
We show that even with 258 keystream output bytes, one can start getting infor-
mation about the permutation S and increasing amount of knowledge is leaked
with more bytes. The complete information on S is revealed when 2048 output
bytes are known.

2 Recovering Permutation from Keystream

First we introduce a few notations and definitions and then present the theoret-
ical analysis.

Recovering RC4 Permutation from 2048 Keystream Bytes if j Is Stuck 309

Let SG
r be the permutation and zr be the keystream output byte after r many

rounds of the PRGA, r ≥ 1. Also, let tr be the index (in SG
r) from where zr

is chosen. We also denote by SG
0 the original permutation before the PRGA

starts. For the rest of the paper, we assume, without loss of generality, that
SG

0 = < a0, a1, a2, . . . , aN−1 >. The subscripts in ay’s are implicitly assumed to
follow arithmetic modulo N . For example, a−y, aN−y and in general aρN−y for
any integer ρ represent the same element.

We now state a few definitions that would be needed in the subsequent
analysis.

Definition 1. A run of the RC4 PRGA is defined to be a set of any N consec-
utive rounds of keystream output byte generation during which the deterministic
index i takes each value in {0, . . . , N − 1} exactly once.

Definition 2. Given a permutation S, the n-th successor of an element u in
S, denoted by sucn(u), is defined to be the element which appears n locations
after u, if we move from left to right in S in a circular fashion. If S = <
b0, b1, b2, . . . , bN−1 >, then sucn(by) = by+n.

Definition 3. Given a permutation S, the n-rotated permutation, denoted by
rotn(S), is defined to be the permutation obtained by circularly right-shifting S
by n positions. If S = < b0, b1, b2, . . . , bN−1 >, then

rotn(S) = < bn, bn+1, . . . , bN−1, b0, b1, . . . , bn−2, bn−1 >.

Definition 4. An ordered pair (u, v) is called a candidate pair, if u appears
N + 1 rounds after v in the keystream and both u, v come from the same index
in the respective permutations.

Definition 5. A set {(u, v1), (u, v2)} of two candidate pairs is called a conflict
set, if v1 �= v2 and it is not known whether v1 = suc1(u) or v2 = suc1(u).

Definition 6. A candidate pair (u, v) is called a resolved pair for a permutation
S, if it is known that v = suc1(u).

Definition 7. A permutation S of N elements is said to be resolved, if for each
element u in S, suc1(u) is known, or in other words, if N − 1 many distinct
candidate pairs are resolved.

Note that since the permutation has N distinct elements, knowledge of N − 1
successors for any N−1 elements reveals the successor of the remaining element.

Definition 8. A permutation S of N elements is said to be partially resolved,
if for some element u in S, suc1(u) is not known, or in other words, if less than
N − 1 many distinct candidate pairs are resolved.

Definition 9. Given two partially resolved permutations S1 and S2 of the same
N elements, we say S1 > S2 or S1 = S2 or S1 < S2, if the number of resolved
pairs for S1 is more than or equal to or less than the number of resolved pairs
for S2 respectively.

310 S. Maitra and G. Paul

Table 1. Evolution of the permutation during StuckPRGA with j stuck at 0

Round r i Bytes of the Permutation SG
r Output Index tr

0 1 2 3 4 5 . . . N − 2 N − 1
0 a0 a1 a2 a3 a4 a5 . . . a254 a255
1 1 a1 a0 a2 a3 a4 a5 . . . a254 a255 a0 + a1
2 2 a2 a0 a1 a3 a4 a5 . . . a254 a255 a1 + a2
3 3 a3 a0 a1 a2 a4 a5 . . . a254 a255 a2 + a3
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
255 255 a255 a0 a1 a2 a3 a4 . . . a253 a254 a254 + a255
256 0 a255 a0 a1 a2 a3 a4 . . . a253 a254 2a255
257 1 a0 a255 a1 a2 a3 a4 . . . a253 a254 a0 + a255
258 2 a1 a255 a0 a2 a3 a4 . . . a253 a254 a0 + a1
259 3 a2 a255 a0 a1 a3 a4 . . . a253 a254 a1 + a2
260 4 a3 a255 a0 a1 a2 a4 . . . a253 a254 a2 + a3
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
511 255 a254 a255 a0 a1 a2 a3 . . . a252 a253 a253 + a254
512 0 a254 a255 a0 a1 a2 a3 . . . a252 a253 2a254
513 1 a255 a254 a0 a1 a2 a3 . . . a252 a253 a254 + a255
514 2 a0 a254 a255 a1 a2 a3 . . . a252 a253 a0 + a255
515 3 a1 a254 a255 a0 a2 a3 . . . a252 a253 a0 + a1
516 4 a2 a254 a255 a0 a1 a3 . . . a252 a253 a1 + a2
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Before we formally discuss our main results, let us illustrate the structure of the
permutation under the above fault model at different rounds of the PRGA in
Table 1. We consider N = 256.

Without loss of generality, throughout this section, we assume that j is stuck
at x = 0 from round 1 onwards. Since the index i visits 0 to N − 1 cyclically,
similar results hold for x �= 0 also, which will be discussed in Section 3.

Proposition 1. Suppose the permutation after round ρN of the PRGA, ρ ≥ 0,
is SG

ρN = < b0, b1, . . . , bN−1 >. Then the permutation after round ρN + y of the
PRGA, 1 ≤ y ≤ N−1, is given by SG

ρN+y = < by, b0, . . . , by−1, by+1, . . . , bN−1 >.

Proof. We prove it by induction on y.
Base Case: When y = 1, the deterministic index i takes the value 1. So, b0, b1

are swapped and SG
ρN+1 = < b1, b0, b2, . . . , bN−1 >. Hence the result holds for

y = 1.
Inductive Case: Suppose for some y, 1 ≤ y ≤ N − 2, the result holds, i.e.,
SG

ρN+y = < by, b0, . . . , by−1, by+1, . . . , bN−1 > (inductive hypothesis).
Now, in round ρN + y + 1, the index i becomes y + 1 and the other index j

remains fixed at 0. Thus, the values by and by+1 are swapped. Hence,
SG

ρN+y+1 = < by+1, b0, . . . , by, by+2, . . . , bN−1 >, i.e., the result also holds for
y + 1. ��
Lemma 1
(1) After round ρN + y of the PRGA, ρ ≥ 0, 1 ≤ y ≤ N − 1, the permutation
is given by SG

ρN+y = < aN−ρ+y, aN−ρ, aN−ρ+1, . . . , aN−ρ+y−1, aN−ρ+y+1, . . .,
aN−ρ−2, aN−ρ−1 > and the permutation S(ρ+1)N after round ρN + N is the
same as the permutation SρN+N−1 after round ρN + N − 1.

Recovering RC4 Permutation from 2048 Keystream Bytes if j Is Stuck 311

(2) The index where the keystream output byte is chosen from is given by

tρN+y =
{

aN−ρ+y−1 + aN−ρ+y if ρ ≥ 0, 1 ≤ y ≤ N − 1;
2aN−ρ if ρ ≥ 1, y = 0.

Proof. The proof of item (1) will be based on induction on ρ.
Base Case: Take ρ = 0. We need to prove that
SG

y = < ay, a0, a1, . . . , ay−1, ay+1, . . . , aN−2, aN−1 >, 1 ≤ y ≤ N − 1. This
immediately follows from Proposition 1 above, taking ρ = 0.
Inductive Case: Suppose the result holds for some ρ ≥ 0, i.e., SG

ρN+y =
< aN−ρ+y, aN−ρ, aN−ρ+1, . . . , aN−ρ+y−1, aN−ρ+y+1, . . . , aN−ρ−2, aN−ρ−1 >,
for 1 ≤ y ≤ N − 1 (inductive hypothesis).

Thus, in round ρN + N − 1, we have
SG

ρN+N−1 = < aN−ρ−1, aN−ρ, aN−ρ+1, . . . , aN−ρ−2 >.
In the next round, i.e. in round ρN + N , the deterministic index i becomes 0

which is equal to the value of j and hence no swap is involved. Thus, SG
(ρ+1)N =

SG
ρN+N−1 = < aN−ρ−1, aN−ρ, aN−ρ+1, . . . , aN−ρ−2 >, which can be rewritten

as < b0, b1, . . . , bN−1 >, where by = aN−ρ−1+y, 0 ≤ y ≤ N − 1. According to
Proposition 1, SG

(ρ+1)N+y =< by, b0, b1, . . . , by−1, by+1, . . . , bN−2, bN−1 >
= < aN−(ρ+1)+y, aN−(ρ+1), aN−(ρ+1)+1, . . . , aN−(ρ+1)+y−1, aN−(ρ+1)+y+1, . . .,
aN−(ρ+1)−1 >. Hence, the result holds for the case ρ + 1 also.

Now we prove item (2). In round ρN + y, the value of the deterministic index
i is y (modN) and that of the index j remains fixed at 0. Hence the output is
generated from the index tρN+y = SG

ρN+y[y]+SG
ρN+y[0]. Writing the permutation

bytes in terms of the ay’s, we get the result. ��
Theorem 1. Consider the two rounds ρN +y and (ρ+1)N +(y+1), ρ ≥ 0, 1 ≤
y ≤ N − 2. The two keystream output bytes zρN+y and z(ρ+1)N+(y+1) come from
the same location t = aN−ρ+y−1 +aN−ρ+y in the respective permutations SρN+y

and S(ρ+1)N+(y+1) with the following characteristics.

1. t = 0 ⇐⇒ zρN+y = z(ρ+1)N+(y+1) = SG
0 [N − ρ + y].

2. t = y + 1 ⇐⇒ zρN+y = suc2(z(ρ+1)N+(y+1)) with respect to SG
0 .

3. t ∈ {0, 1, . . . , y − 1, y, y + 2, y + 3, . . . , N − 1}
⇐⇒ zρN+y = suc1(z(ρ+1)N+(y+1)) with respect to SG

0 .

Proof. Consider ρ ≥ 0, 1 ≤ y ≤ N − 2. From Lemma 1, we get tρN+y =
t(ρ+1)N+(y+1) = aN−ρ+y−1 + aN−ρ+y = t (say).

Again from Lemma 1, SρN+y and S(ρ+1)N+(y+1) are respectively given by
< aN−ρ+y, aN−ρ, aN−ρ+1, . . . , aN−ρ+y−1, aN−ρ+y+1, aN−ρ+y+2, . . .,
aN−ρ−2, aN−ρ−1 >, and < aN−ρ+y, aN−ρ−1, aN−ρ, . . .,
aN−ρ+y−2, aN−ρ+y−1, aN−ρ+y+1, . . . , aN−ρ−3, aN−ρ−2 >.

Thus, t = 0 if and only if zρN+y = z(ρ+1)N+(y+1) = z (say). And in that case,
z reveals aN−ρ+y, i.e., the value at index 0 in SG

ρN+y or equivalently the value
at index N − ρ + y in the original permutation SG

0 . This proves item 1.
Of the N − 1 other possible values of t, if t = y + 1, then zρN+y = aN−ρ+y+1

and z(ρ+1)N+(y+1) = aN−ρ+y−1; and vice versa. This proves item 2.

312 S. Maitra and G. Paul

If, however, t takes any of the remaining N−2 values (other than 0 and y+1),
then zρN+y appears next to z(ρ+1)N+(y+1) in SG

0 ; and vice versa. This proves
item 3. ��
Note that the keystream output bytes that come from the same index in two
consecutive run’s are always N + 1 rounds apart.

For the sake of clarity, let us elaborate the pattern considered in the above
Theorem. Consider the indices of the keystream output bytes in two consecutive
run’s as follows.

y 1 2 . . . N − 2 N − 1 N

run ρ aN−ρ + aN−ρ+1 aN−ρ+1 + aN−ρ+2 . . . aN−ρ−3 + aN−ρ−2 aN−ρ−2 + aN−ρ−1 2aN−ρ−1
run ρ + 1 aN−ρ−1 + aN−ρ aN−ρ + aN−ρ+1 . . . aN−ρ−4 + aN−ρ−3 aN−ρ−3 + aN−ρ−2 2aN−ρ−2

Observe that the keystream output indices in run ρ for y = 1 to N − 2 exactly
match with those in run ρ + 1 for y = 2 to N − 1 respectively. Moreover, as
discussed in the proof of Theorem 1, the permutations in run ρ + 1 for y = 2 to
N−1 are right shifts of the permutations in run ρ for y = 1 to N−2 respectively
except at two locations.

We can exploit the above combinatorial structure identified in Theorem 1 to
devise an efficient algorithm PartResolvePerm for getting a partially resolved
permutation from the keystream bytes.

Algorithm PartResolvePerm

Inputs:

1. The RN many keystream output bytes from the first R(≥ 2) run’s of the PRGA.
Outputs:

1. A partially resolved permutation in the form of an array Next.
2. A set of conflict pairs in an array Conflict.

Steps:

1. For u = 0 to N − 1 do
1.1. Set Next[u] = −1;

2. NumConflicts = 0;
3. For ρ = 0 to R − 2 do

3.1. For y = 1 to N − 2 do
3.1.1 If zρN+y = z(ρ+1)N+(y+1) then do

3.1.1.1 Set SG
0 [N − ρ + y] = zρN+y;

3.1.2 Else do
3.1.2.1 If Next[z(ρ+1)N+(y+1)] = −1 then do

3.1.2.1.1 Set Next[z(ρ+1)N+(y+1)] = zρN+y;
3.1.2.2 Else if Next[z(ρ+1)N+(y+1)] �= zρN+y then do

3.1.2.2.1 Set NumConflicts = NumConflicts + 1;
3.1.2.2.2 Set Conflict[NumConflicts].value = z(ρ+1)N+(y+1);
3.1.2.2.3 Set Conflict[NumConflicts].first =

Next[z(ρ+1)N+(y+1)];
3.1.2.2.4 Set Conflict[NumConflicts].second = zρN+y;

In the algorithm, Next[u] denotes the value that comes immediately after the
value u in the permutation SG

0 . If Next[u] is unassigned (i.e., Next[u] = −1),

Recovering RC4 Permutation from 2048 Keystream Bytes if j Is Stuck 313

it means that the element next to the element u in SG
0 is not yet known. Essen-

tially, we tally two consecutive run’s of the PRGA and fill in the array Next by
observing the candidate pairs, i.e., the keystream output bytes that come from
the same index in the respective permutations. Due to item 2 of Theorem 1, for
some u, one may record suc2(u) as suc1(u) resulting in some conflict sets, i.e.
candidate pairs (u, v1) and (u, v2) such that v1 �= v2. Then it is not known which
one of v1, v2 is suc1(u). We keep an array Conflict where each entry corresponds
to a conflict set of the form {(u, v1), (u, v2)} and consists of three fields, namely,
(i) value for storing u, (ii) first for storing v1 and (iii) second for storing v2.

Remark 1. The fact that j is stuck provides a regular structure in the secret
permutation and therefore in the output bytes. At the point j gets stuck, the
permutation S can be considered to be a random permutation. Thus each byte
of the first run, coming out after j got stuck, can be considered to be chosen
uniformly at random from {0, . . . , N − 1}. Since we are using any two consec-
utive run’s for getting the candidate pairs, the values in each such pair can be
considered uniformly random for estimating the expected numbers of distinct
candidate pairs and conflict sets. This we have also confirmed by experimenta-
tion. This uniformity assumption is followed in the technical results in the rest
of this paper.

Theorem 2. The expected number of unassigned entries in the array Next after
the execution of the PartResolvePerm algorithm is N · (N−1

N)(R−1)(N−2).

Proof. The candidate pairs are of the form (z(ρ+1)N+(y+1), zρN+y), 0 ≤ ρ ≤ R−2,
1 ≤ y ≤ N−2. Thus, each distinct value of zρN+y, 0 ≤ ρ ≤ R−2, 1 ≤ y ≤ N−2,
would give rise to a candidate pair and hence assign exactly one entry of the array
Next.

Let xu = 1, if the value u does not occur in any of the (R − 1)(N − 2)
many keystream bytes zρN+y, 0 ≤ ρ ≤ R − 2, 1 ≤ y ≤ N − 2; otherwise,
let xu = 0, 0 ≤ u ≤ N − 1. Hence, the total number of values that did not

occur in those keystream bytes is given by X =
N−1∑

u=0

xu. Assuming that each

keystream byte is uniformly randomly distributed in {0, . . . , N − 1}, we have
P (xu = 1) = (N−1

N)(R−1)(N−2). Thus, E(xu) = (N−1
N)(R−1)(N−2) and E(X) =

N−1∑

u=0

E(xu) = N · (N−1
N)(R−1)(N−2). ��

Corollary 1. The expected number of distinct candidate pairs after the execu-
tion of the PartResolvePerm algorithm is N ·

(

1− (N−1
N)(R−1)(N−2)

)

.

Theorem 3. The expected number of conflict sets after the execution of the
PartResolvePerm algorithm is bounded by (R− 1) · (N−2

N).

Proof. The candidate pairs are of the form (z(ρ+1)N+(y+1), zρN+y) and the cor-
responding output indices are tρ,y = aN−ρ+y−1 + aN−ρ+y, 0 ≤ ρ ≤ R − 2,

314 S. Maitra and G. Paul

1 ≤ y ≤ N − 2. According as item 2 of Theorem 1, if tρ,y = y + 1, then
zρN+y = suc2(z(ρ+1)N+(y+1)), but due to Step 3.1.2.1.1 of the PartResolvePerm
algorithm, zρN+y is wrongly recorded as suc1(z(ρ+1)N+(y+1)). For 0 ≤ ρ ≤ R−2,
1 ≤ y ≤ N−2, let xρ,y = 1 if tρ,y = y+1; otherwise, let xρ,y = 0. Hence, the total
number of wrong entries in the array Next after the execution of the PartRe-

solvePerm algorithm is given by X =
R−2∑

ρ=0

N−2∑

y=1

xρ,y . Each wrong entry in Next is

a potential contributor to one conflict set, i.e., NumConflicts ≤ X . Assuming
that each output index is uniformly randomly distributed, we have P (xρ,y =

1) = 1
N . Thus, E(xy) = 1

N and E(X) =
R−2∑

ρ=0

N−2∑

y=1

E(xρ,y) = (R− 1) · (N−2
N). ��

Given a conflict set {(u, v1), (u, v2)}, if we are able to find v1, v2 in a candidate
pair, then the conflict is resolved and we know the exact order of u, v1, v2. Using
this observation, we can devise an algorithm ResolveConflicts which takes as
input a partially resolved permutation S1 and a collection of conflict sets and
generates as output another partially resolved permutation S2 such that S2 ≥ S1.

Algorithm ResolveConflicts

Inputs:

1. A partially resolved permutation S1 in the form of an array Next.
2. A set of conflict pairs in an array Conflict.
Output:

1. A partially resolved permutation S2 ≥ S1 in the form of the array Next.

Steps:

1. For u = 1 to NumConflicts do
1.1 For ρ = 0 to R − 2 do

1.1.1 For y = 1 to N − 2 do
1.1.1.1 If Conflict[u].first = z(ρ+1)N+(y+1) and

Conflict[u].second = zρN+y then do
1.1.1.1.1 Set Next[Conflict[u].value] = Conflict[u].first;
1.1.1.1.2 Set Next[Next[Conflict[u].value]] = Conflict[u].second;

1.1.1.2 If Conflict[u].second = z(ρ+1)N+(y+1) and
Conflict[u].first = zρN+y then do

1.1.1.2.1 Set Next[Conflict[u].value] = Conflict[u].second;
1.1.1.2.2 Set Next[Next[Conflict[u].value]] = Conflict[u].first;

After R many run’s of the PRGA, the permutation may still remain partially
resolved. We then need to exhaustively fill in the remaining unassigned entries
in the array Next to form possible resolved permutations. We run PRGA on
each resolved permutation in turn, in order to determine its first element, and
thereby recover the entire permutation.

Lemma 2. If the initial permutation SG
0 becomes resolved at any stage of the

RC4 PRGA, then SG
0 can be retrieved completely in O(N) average time.

Proof. Suppose one runs PRGA for M rounds starting with an arbitrary per-
mutation S. Assuming that the keystream output bytes are uniformly randomly

Recovering RC4 Permutation from 2048 Keystream Bytes if j Is Stuck 315

distributed, the probability that the set of M random keystream bytes obtained
by running PRGA on S would match with the M keystream bytes in hand (ob-
tained by running PRGA on SG

0) is 1
NM . With N = 256, a small value of M such

as M = 8 yields a negligibly small value 1
264 (close to 0) of this probability. Thus,

running PRGA on S for only 8 rounds, with almost certainty one would be able
to determine if that permutation indeed was the original permutation SG

0 .
Now, suppose S is a resolved permutation. So for any arbitrary element in S,

we know what is its successor. Starting from any element u as the first element,
if we write all the elements in sequence, then we get a permutation T = <
u, suc1(u), suc2(u), . . . , sucN−1(u) > such that S = rotn(T) for some n, 0 ≤ n ≤
N − 1. We run PRGA starting with the initial permutation once as T , next as
rot1(T), next as rot2(T), and so on, until the first 8 keystream bytes match with
the observed keystream bytes in hand. With at most N such trials, the entire
permutation can be constructed. ��
The above Lemma readily gives an algorithm ConstructPerm to construct SG

0

from a resolved permutation.

Algorithm ConstructPerm

Inputs:

1. A partially resolved permutation S in the form of an array Next.
Output:

1. The original permutation SG
0 before the PRGA begins.

Steps:

1. Set m = the number of unassigned (i.e., −1) entries in the array Next;
2. For each possible assignment of those m entries do

2.1 Get the corresponding resolved permutation T ;
2.2 For n = 0 to N − 1 do

2.2.1 Run PRGA starting with rotn(T) as the initial permutation for
8 rounds and generate the first 8 keystream bytes;

2.2.2 If the above 8 keystream bytes match with the first 8 keystream
bytes obtained in the actual execution of PRGA, then do

2.2.2.1 Set SG
0 = rotn(T) and Exit.

We can combine the algorithms PartResolvePerm, ResolveConflicts and Con-
structPerm to devise an efficient algorithm RecoverPerm to retrieve the original
permutation SG

0 from the first few run’s of keystream output bytes generation.

Algorithm RecoverPerm

Inputs:

1. The RN many keystream output bytes from the first R(≥ 2) run’s of the PRGA.
Output:

1. The original permutation SG
0 before the PRGA begins.

Steps:

1. Run PartResolvePerm with the given keystream bytes and
generate the arrays Next and Conflict;

2. Run ResolveConflicts on Next;
3. Run ConstructPerm on updated Next;

316 S. Maitra and G. Paul

Theorem 4. The average case time complexity of the RecoverPerm algorithm
is O

((

R2 +
E�!)N
)

, where E = N · (N−1
N)(R−1)(N−2).

Proof. The time complexity of Step 1 in RecoverPerm is O(RN), since there are
two nested ‘for’ loops in PartResolvePerm of R − 1 and N − 2 many iterations
respectively and one execution of the steps inside the ‘for’ loops takes O(1) time.

The time complexity of Step 2 in RecoverPerm is O(R2N), since from Theo-
rem 3, the average value of NumConflicts is O(R) and resolving each of them
in the two nested ‘for’ loops in ResolveConflicts takes O(RN) time.

According to Theorem 2, just before the execution of ConstructPerm in Step
3 of RecoverPerm, the average value of the number m of unassigned entries in
the array Next is E = N · (N−1

N)(R−1)(N−2). Hence the ‘for’ loop in Step 2 of
ConstructPerm is iterated
E�! times on the average. Again, from Lemma 2, the
time complexity of each iteration of the ‘for’ loop in Step 2 of ConstructPerm is
O(N). Hence the overall complexity of Step 3 in RecoverPerm is O(
E�!N).

Thus, the time complexity of RecoverPerm is O
((

R2 +
E�!)N
)

. ��

Remark 2. If zρN+y = z(ρ+1)N+(y+1) for some ρ ≥ 0 and some y ∈ {1, . . . , N−2},
i.e., if the two values in a candidate pair turn out to be equal, then according to
item 1 of Theorem 1, we would have SG

0 [N − ρ + y] = zρN+y. Once the location
of one entry of a resolved permutation is known, the positions of all other entries
are immediately known. If one makes use of this fact in the PartResolvePerm
algorithm, then rotating T in Step 2.2 of the ConstructPerm algorithm is not
needed at all. After Step 2.1, one can run PRGA for 8 rounds on T itself to
check whether T = SG

0 or not. In that case, the average case time complexity of
the RecoverPerm algorithm would be reduced to O

(

R2N +
E�!
)

. However, this
requires the knowledge of i. Since in general i will not be known to the attacker
(see Section 3 for details), we do not make use of item 1 of Theorem 1 in our
strategy.

The quantity log2(
E�!) can be considered as a measure of uncertainty in re-
solving the permutation. Considering N = 256, Table 2 below lists the values
of E and log2(
E�!) for few values of R. Observe that if all the successors are
unresolved (the case R = 1 is an example of this), then the uncertainty is
log2(256!) = 1683.9961.

We see that as one considers more number of run’s, the uncertainty in resolving
the permutation decreases. In fact, the uncertainty starts decreasing when only
the first 258 keystream output bytes are available, as z1 and z258 come from
the same index a0 + a1 (see Table 1) and constitute a candidate pair. Table 2
also shows that theoretically 7 run’s are enough to reduce the uncertainty in
resolving the permutation to zero and recover the permutation in O(R2N) time.
However, we empirically found that 8 run’s provide a conservative estimate when
there is no uncertainty in resolving the permutation. In all the experiments we
performed with 8 run’s, we could successfully recover the complete permutation.
Zero uncertainty implies that the permutation obtained after ResolveConflicts

Recovering RC4 Permutation from 2048 Keystream Bytes if j Is Stuck 317

Table 2. Decrease in uncertainty of resolving the permutation with increasing run’s

Runs Avg. No. of Elements with Uncertainty in Permutation
R Unassigned Successors E log2(�E�!)
1 256 1684

2 94.73 491.69

3 35.05 138.09

4 12.97 32.54

5 4.80 6.91

6 1.78 1.00

7 0.66 0.00

8 0.24 0.00

in Step 2 of RecoverPerm algorithm is a resolved permutation. In this case, the
time complexity reduces to 82 · 256 = 214.

We can completely recover the permutation even if we have less keystream
bytes at our disposal, except at the cost of increased time complexity due to ex-
haustive assignment of successor elements. For example, when R = 4, i.e., when
we start with the first 1024 keystream output bytes, the average number of per-
mutation elements whose next elements are not known is 256·(255

256)3∗254 = 12.97.
If we exhaustively fill in these
12.97� = 13 successor values, we would gen-
erate 13! ≈ 232 possible resolved permutations. The time complexity of com-
pletely recovering the permutation with 1024 keystream bytes would be around
(42 + 232) · 256 ≈ 248.

Interestingly, if we go for R = N run’s, i.e. we have a total of N2 (= 216

for N = 256) many keystream output bytes, then we can construct the per-
mutation in O(N) time. From Lemma 1, when ρ = N , we have SρN = <
a0, a1, a2, . . . , aN−1 >= SG

0 , and hence after the first N run’s, the structure
of the permutation, the output indices as well as the keystream output bytes
start repeating in the same order. So if we consider the keystream output bytes
coming from a fixed index ay−1 + ay, i.e., the values zρN+ρ+y for a fixed y,
0 ≤ ρ ≤ N − 1, then we can readily get a resolved permutation and do not need
to perform exhaustive assignments.

3 Indices i, j Unknown and j Stuck

All the results above can easily be extended when j is stuck at any value x ∈
{0, . . . , N − 1}. Suppose rst is the round from which onwards j is stuck at x,
rst ≥ 1. The value of the deterministic index i at round rst is ist = rst mod N .
Then after d = (x− ist) mod N more rounds, i.e., at round rst +d+1, i becomes
x + 1 for the first time after j got stuck. One can denote the indices of the
permutation and the corresponding values after the end of round rst + d as
follows.

Permutation Index 0 1 . . . x − 1 x x + 1 . . . N − 2 N − 1

Permutation Bytes bN−x bN−x+1 . . . bN−1 b0 b1 . . . bN−2−x bN−1−x

318 S. Maitra and G. Paul

Thus, “the evolution of the permutation from round rst + d + 1 onwards with j
stuck at x from round rst” is analogous to “the x-rotation of the permutation
evolving from round 1 onwards with j stuck at 0 from round 1”.

Suppose that the keystream bytes from the point when j got stuck is available
to the attacker. Because of the above cyclic pattern, and because of the relative
gap of N + 1 rounds between the values in any candidate pair as demonstrated
in the discussion following Theorem 1 in Section 2, the attacker does not need
to know rst or ist. If the attacker starts counting the first run from the point
when he has the first keystream byte at his disposal, he can efficiently recover
the permutation at the point when j got stuck. In the subsequent analysis, we
assume that the attacker does not know

1. the round rst from which j got stuck,
2. the value ist of the deterministic index i when j got stuck and
3. the value x at which j is stuck.

We here like to point out the modification corresponding to Step 3.1 of the
algorithm PartResolvePerm (and similarly Step 1.1.1 of algorithm ResolveCon-
flicts), where y varies from 1 to N − 2. In Section 2, j was assumed to be stuck
at 0 from round rst = 1 (when ist was also 1). Thus, it was known in advance
that the candidate pairs (z(ρ+1)N+(y+1), zρN+y), for y = N −1, N (i.e., when the
deterministic index i takes the values j − 1, j), should be ignored. Here, rst as
well as ist are both unknown. For the sake of processing the keystream bytes
using the algorithms PartResolvePerm and ResolveConflicts), we initialize ρ to
0 at the point j gets stuck and from that point onwards the keystream bytes
are named as z1, z2, . . . and so on. Given that j is stuck at an unknown value
x, when the deterministic index i takes the values x − 1 and x, the two corre-
sponding candidate pairs should be ignored. However, these two cases cannot be
eliminated here as x is not known. Hence, in Step 3.1 of the algorithm PartRe-
solvePerm and Step 1.1.1 of algorithm ResolveConflicts, we should consider that
y varies from 1 to N for each value of ρ ∈ {0, 1, . . . , R− 3} and y varies from 1
to N − 1 for ρ = R − 2.

In this approach, utilizing all the RN many keystream bytes yield total
(R− 1)N − 1 many candidate pairs. Following the same line of arguments as in
Theorem 2, we get the expected number of unassigned entries in the array Next
just before the execution of Step 3 of RecoverPerm as E′ = N · (N−1

N)(R−1)N−1

which, for large N (such as N = 256), is approximately equal to E = N ·
(N−1

N)(R−1)(N−2). Since we get two extra wrong entries in each of the R − 1
run’s, the number of conflict sets would increase by 2(R− 1) from the value es-
timated in Theorem 3. Thus, the new bound on the expected number of conflict
sets after the execution of the PartResolvePerm algorithm, when the candidate
pairs are formed by considering all the keystream bytes in each run, is given
by (R − 1) · (2 + N−2

N). Observe that the bound is still O(R) as in Theorem 3.
However, since ist and x are not known, we need to run Step 2.2 of the Con-
structPerm Algorithm for each possible values of ist and x in {0, . . . , N − 1},
until Step 2.2.2 of ConstructPerm reveals the true initial permutation. Thus, we
need at most N2 executions of Step 2.2 of ConstructPerm for each of the
E�!

Recovering RC4 Permutation from 2048 Keystream Bytes if j Is Stuck 319

resolved permutations where E = N ·(N−1
N)(R−1)(N−2). Thus, when ist and x are

unknown, the average case time complexity of ConstructPerm is
E�!N3, and
following the same analysis as in Theorem 4, the average case time complexity of
RecoverPerm is O

(

R2N +
E�!N3
)

. With N = 256 and R = 8, we have E = 0

and the time complexity becomes 82 · 256 + 2563 ≈ 225.
In the above analysis we assumed that the keystream bytes from the point

when j got stuck is available to the attacker. In practical scenario, the attacker
has access to the keystream output bytes only. He should be able to determine
the interval during which j remains stuck at a certain value by analyzing the
keystream. Then he can run the RecoverPerm algorithm on the keystream bytes
obtained during that interval. Theoretically determining the exact point when
j got stuck seems extremely tedious. However, we are going to provide a simple
test which can distinguish between a sequence of normal RC4 keystream bytes
when j is pseudo-randomly updated and a sequence of RC4 keystream bytes
when j is stuck. We use the following theorem that shows that the number of
conflict sets from the PartResolvePerm algorithm when j is pseudo-randomly
updated is much more than that when j is stuck at a certain value.

Theorem 5. Assume that the index j is pseudo-randomly updated in each round
of the PRGA. Then the expected number of conflict sets after the execution of the
PartResolvePerm algorithm, when the candidate pairs are formed by considering
all the keystream bytes in each run, is bounded by (R− 1) · (N − 1)− N−1

N .

Proof. The candidate pairs are of the form (z(ρ+1)N+(y+1), zρN+y) and the cor-
responding output indices are tρ,y = aN−ρ+y−1 + aN−ρ+y, 1 ≤ y ≤ N for
0 ≤ ρ ≤ R − 3, and 1 ≤ y ≤ N − 1 for ρ = R − 2. Let xρ,y = 1 if zρN+y �=
suc1(z(ρ+1)N+(y+1)); otherwise, let xρ,y = 0. Then the total number of wrong
entries in the array Next after the execution of the PartResolvePerm algorithm

is given by X =
R−3∑

ρ=0

N∑

y=1

xρ,y+
N−1∑

y=1

xR−2,y . Each wrong entry in Next is a po-

tential contributor to one conflict set, i.e., NumConflicts ≤ X . Assuming that
the index j is pseudo-randomly updated and each output index is uniformly
randomly distributed, we have P (xρ,y = 1) = N−1

N . Thus, E(xρ,y) = N−1
N and

E(X) =
R−3∑

ρ=0

N∑

y=1

E(xρ,y)+
N−1∑

y=1

E(xR−2,y) = (R− 1) · (N − 1)− N−1
N . ��

Thus, one can run the PartResolvePerm algorithm once on the sequence of avail-
able keystream bytes and count the number of conflict sets. Numconflits will be
O(R) if j is stuck during the interval when those keystream bytes were generated;
otherwise, Numconflits will be O(RN).

4 Conclusion

We theoretically show how to recover the RC4 permutation completely when
the value of the pseudo-random index j is stuck at some value x from a point

320 S. Maitra and G. Paul

when i = ist. In such a case, 8N keystream output bytes suffice to retrieve the
permutation in around O(N) time when x and ist are known and in O(N3)
time when they are unknown, N being the size of the permutation (N = 256
in standard RC4 applications). Our analysis of the evolution of the permutation
and that of the output indices reveals interesting combinatorial structures.

Acknowledgments. The authors like to thank the anonymous reviewers for
their comments that helped improve the editorial as well as the technical quality
of the paper. Also we like to thank Prof. Palash Sarkar and Prof. Murari Mitra
for discussion and valuable comments.

References

1. Biham, E., Granboulan, L., Nguyen, P.Q.: Impossible Fault Analysis of RC4 and
Differential Fault Analysis of RC4. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005.
LNCS, vol. 3557, pp. 359–367. Springer, Heidelberg (2005)

2. Finney, H.: An RC4 cycle that can’t happen (September 1994)
3. Hoch, J.J., Shamir, A.: Fault Analysis of Stream Ciphers. In: Joye, M., Quisquater,

J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240–253. Springer, Heidelberg (2004)
4. Knudsen, L.R., Meier, W., Preneel, B., Rijmen, V., Verdoolaege, S.: Analysis Meth-

ods for (Alleged) RCA. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 327–341. Springer, Heidelberg (1998)

5. Maitra, S., Paul, G.: New Form of Permutation Bias and Secret Key Leakage in
Keystream Bytes of RC4. In: Workshop on Fast Software Encryption, FSE 2008
(2008)

6. Mantin, I.: Predicting and Distinguishing Attacks on RC4 Keystream Generator.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 491–506. Springer,
Heidelberg (2005)

7. Mantin, I.: A Practical Attack on the Fixed RC4 in the WEP Mode. In: Roy, B.
(ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 395–411. Springer, Heidelberg (2005)

8. Maximov, A., Khovratovich, D.: New State Recovering Attack on RC4 (Full Ver-
sion). IACR Eprint Server, eprint.iacr.org, number 2008/017 (January 10, 2008)

9. Tomasevic, V., Bojanic, S., Nieto-Taladriz, O.: Finding an internal state of RC4
stream cipher. Information Sciences 177, 1715–1727 (2007)

Related-Key Chosen IV Attacks

on Grain-v1 and Grain-128�

Yuseop Lee1, Kitae Jeong1, Jaechul Sung2, and Seokhie Hong1

1 Center for Information Security Technologies(CIST),
Korea University, Seoul, Korea

{yusubi,kite,hsh}@cist.korea.ac.kr
2 Department of Mathematics, University of Seoul, Seoul, Korea

jcsung@uos.ac.kr

Abstract. The slide resynchronization attack on Grain was proposed
in [6]. This attack finds related keys and initialization vectors of Grain
that generate the 1-bit shifted keystream sequence. In this paper, we
extend the attack proposed in [6] and propose related-key chosen IV at-
tacks on Grain-v1 and Grain-128. The attack on Grain-v1 recovers the
secret key with 222.59 chosen IV s, 226.29-bit keystream sequences and
222.90 computational complexity. To recover the secret key of Grain-128,
our attack requires 226.59 chosen IV s, 231.39-bit keystream sequences and
227.01 computational complexity. These works are the first known key re-
covery attacks on Grain-v1 and Grain-128.

Keywords: Stream cipher, Grain-v1, Grain-128, Related-key chosen IV
attack, Cryptanalysis.

1 Introduction

A bit-oriented synchronous stream cipher Grain [2] was designed by M. Hell,
T. Johansson and W. Meier. Their main goal was to design an algorithm which
can be implemented efficiently in hardware. Grain consists of two 80-bit shift
registers, a linear feedback shift register (LFSR) and a nonlinear feedback shift
register (NFSR), and a 5-input filter function. The key size is specified with 80
bits and additionally an initialization vector of 64 bits is required. But because
of weakness in the filter function, a key recovery attack [1] and a distinguishing
attack [5] on Grain were proposed.

In order to solve the security problem of Grain, the designers of Grain pro-
posed the tweak versions of Grain, called Grain-v1 [3] and Grain-128 [4]. Simi-
larly to Grain, Grain-v1 uses a 80-bit secret key and a 64-bit initialization vector
to fill in an internal state of size 160 bits divided into LFSR and NFSR of length
80 bits each. The feedback function of NFSR used in Grain-v1 is not equal to
� This research was supported by the MKE(Ministry of Knowledge Economy), Ko-

rea, under the ITRC(Information Technology Research Center) support program
supervised by the IITA(Institute of Information Technology Advancement) (IITA-
2008-(C1090-0801-0025)).

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 321–335, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

322 Y. Lee et al.

that used in Grain. Grain-v1 generate a keystream bit by XORing 7-bit values
from NFSR with the output value of the filter function, in contrast to XORing
1-bit value from NFSR with the output value of the filter function in Grain.
The Grain-128 supports a 128-bit secret key and a 96-bit initialization vector.
It consists of an 128-bit LFSR, an 128-bit NFSR and a 9-input filter function.

On the other hand, Grain, Grain-v1 and Grain-128 use the same setup mode
similar to the keystream generation mode. The slide resynchronization attack
(SRA) on Grain was suggested with this property [6], finds related keys and
initialization vectors of Grain that generate the 1-bit shifted keystream sequence
with probability 2−2. In this paper, we extend the attack in [6] and propose
related-key chosen IV attacks on Grain-v1 and Grain-128. To attack Grain-v1
and Grain-128, our attack uses m + 1 keys and does m steps repeatedly, i.e., we
run the fist step by using the secret key and the first related key and then the
second step by using the first related key and the second related key and so on. In
each step, we apply three methods, D-Test, ∗-Change and †-Change which will
be explained in Section 3. At first, in order to construct α linear equations for
the secret key, we find the initialization vector passing D-Test for the secret key
and the α-bit left rotated key among chosen initialization vectors adequately.
Then we apply †-Change to recover additional α-bit key. We repeat this step
m times. In case of Grain-v1 we can find 2mα-bit information of the key, the
remained key bits can be recovered by the exhaustive search with computational
complexity 280−2mα. The attack on Grain-128 is similar to that of Grain-v1. It
decrease the computational complexity of the exhaustive search from 2128 to
2128−3mα. Table 1 summarizes our results.

This paper is organized as follows: in Section 2, we briefly describe Grain-v1,
Grain-128 and the attack proposed in [6]. We present key recovery attacks on
Grain-v1 and Grain-128 in Section 3 and 4, respectively. Finally, we conclude in
Section 5.

Table 1. Results on Grain-v1 and Grain-128

Stream Cipher
Related Data Complexity Computational

Keys Chosen IV s Keystream Bits Complexity

Grain-v1 3 222.59 226.29 222.90 240-clock cycles

Grain-128 3 226.59 231.39 227.01 384-clock cycles

2 Preliminaries

In this section, we briefly describe Grain-v1, Grain-128 and the attack proposed
in [6]. The following notations are used throughout the paper.

– St: the internal state of Grain-v1 and Grain-128 at time t.
– Lt: the internal state of LFSR at time t.
– N t: the internal state of NFSR at time t.
– nt: a feedback bit of the NFSR at time t.

Related-Key Chosen IV Attacks on Grain-v1 and Grain-128 323

NFSR LFSR

()h x

to

tn

tl
(a)

1 bit
7 bits

(b)

NFSR LFSR

()h x

Fig. 1. (a) the keystream generation mode (b) the setup mode of Grain-v1

– lt: a feedback bit of the LFSR at time t.
– ot: an output bit of Grain-v1 or Grain-128 at time t.
– Z = (z0, z1, · · ·): the keystream sequence of Grain-v1 or Grain-128.
– Z[α]: the α-bit shifted keystream sequence of Z, i.e., Z[α] = (zα, zα+1, · · ·).

2.1 Grain-v1 and Gain-128

Grain-v1 consists of an 80-bit LFSR, an 80-bit NFSR and a 5-input filter func-
tion h. It generates the keystream sequence from an 80-bit secret key K =
(k0, · · · , k79) and a 64-bit initialization vector IV = (iv0, · · · , iv63).

At time t, LFSR and NFSR are denoted by Lt = (Lt
0, · · · , Lt

79) and N t =
(N t

0, · · · , N t
79), respectively, where Lt

79, N
t
79 are the most significant bits. The

feedback bits of LFSR and NFSR, lt and nt, are computed as follows:

lt = Lt
62 ⊕ Lt

51 ⊕ Lt
38 ⊕ Lt

23 ⊕ Lt
13 ⊕ Lt

0.

nt = Lt
0 ⊕N t

62 ⊕N t
60 ⊕N t

52 ⊕N t
45 ⊕N t

37 ⊕N t
33 ⊕N t

28 ⊕N t
21 ⊕N t

14 ⊕N t
9 ⊕N t

0

⊕N t
63N

t
60 ⊕N t

37N
t
33 ⊕N t

15N
t
9 ⊕N t

60N
t
52N

t
45 ⊕N t

33N
t
28N

t
21 ⊕N t

63N
t
45N

t
28N

t
9

⊕N t
60N

t
52N

t
37N

t
33 ⊕N t

63N
t
60N

t
21N

t
15 ⊕N t

63N
t
60N

t
52N

t
45N

t
37

⊕N t
33N

t
28N

t
21N

t
15N

t
9 ⊕N t

52N
t
45N

t
37N

t
33N

t
28N

t
21.

The filter function h takes 5-bit input values from LFSR and NFSR as follows:

h(Lt
3, L

t
25, L

t
46, L

t
64, N

t
63) = Lt

25 ⊕N t
63 ⊕ Lt

3L
t
64 ⊕ Lt

46L
t
64 ⊕ Lt

64N
t
63 ⊕ Lt

3L
t
25L

t
46

⊕ Lt
3L

t
46L

t
64 ⊕ Lt

3L
t
46N

t
63 ⊕ Lt

25L
t
46N

t
63 ⊕ Lt

46L
t
64N

t
63.

At time t, the output bit ot of Grain-v1 is generated as follows.

ot =
∑

k∈A

N t
k ⊕ h(Lt

3, L
t
25, L

t
46, L

t
64, N

t
63),

where A = {1, 2, 4, 10, 31, 43, 56}. Note that z0 is equal to o160, since Grain-v1
is clocked for 160 clock cycles without producing the keystream sequence.

324 Y. Lee et al.

NFSR LFSR

()h x

to

(a)

1 bit
7 bits

(b)

NFSR LFSR

()h x

tn
tl

Fig. 2. (a) the keystream generation mode (b) the setup mode of Grain-128

The setup process is carried out using (K, IV) in three steps:

1. The internal state of NFSR is loaded with K as follows: N0
i = ki (0 ≤ i ≤ 79).

2. The internal state of LFSR is loaded with IV as follows:

L0
i =

{

ivi, where 0 ≤ i ≤ 63
1, where 64 ≤ i ≤ 80

.

3. The two registers are clocked for 160 clock cycles without producing the
keystream sequence, where the output bit is fed back and XORed with the
input, both to LFSR and to NFSR. See Fig. 1-(b).

Grain-128 consists of a 128-bit LFSR, a 128-bit NFSR and a 9-input filter
function h. It generates keystream sequence from a 128-bit secret key K =
(k0, · · · , k127) and a 96-bit initialization vector IV = (iv0, · · · , iv95). At time t,
the feedback bits of LFSR and NFSR are computed as follows.

lt = Lt
96 ⊕ Lt

81 ⊕ Lt
70 ⊕ Lt

38 ⊕ Lt
7 ⊕ Lt

0.

nt = Lt
0 ⊕N t

96 ⊕N t
91 ⊕N t

56 ⊕N t
26 ⊕N t

0 ⊕N t
84N

t
68 ⊕N t

65N
t
61 ⊕N t

48N
t
40

⊕N t
59N

t
27 ⊕N t

18N
t
17 ⊕N t

13N
t
11 ⊕N t

67N
t
3.

The filter function h takes an input values as 7-bit values from LFSR and 2-bit
values from NFSR, respectively. It is defined as follows:

h(Lt
8, L

t
13, L

t
20, L

t
42, L

t
60, L

t
79, L

t
95, N

t
12, N

t
95) = N t

12L
t
8 ⊕ Lt

13L
t
20 ⊕N t

95L
t
42

⊕ Lt
60L

t
79 ⊕N t

12N
t
95L

t
95.

The output bit ot of Grain-128 at time t is generated as follows.

ot =
∑

k∈A

N t
k ⊕ h(Lt

8, L
t
13, L

t
20, L

t
42, L

t
60, L

t
79, L

t
95, N

t
12, N

t
95)⊕ Lt

93,

where A = {2, 15, 36, 45, 64, 73, 89} and z0 = o256.
The setup process of Grain-128 is similar to that of Grain-v1 except that

the number of clocking without producing the keystream sequence is 256. See
Fig. 2-(b).

Related-Key Chosen IV Attacks on Grain-v1 and Grain-128 325

Table 2. Conditions used in the attack on Grain

K = (k0, · · · , k79), K′ = (k1, · · · , k79, n
0 ⊕ o0),

ConditionIV = (iv0, · · · , iv79) IV ′ = (iv1, · · · , iv63, 1)

t N t
79 Lt

79 t N ′t
79 L′t

79

0 k79 1

1 n0 ⊕ o0 l0 ⊕ o0 0 n0 ⊕ o0 1 l0 ⊕ o0 = 1

2 n1 ⊕ o1 l1 ⊕ o1 1 n′0 ⊕ o′0 l′0 ⊕ o′0

...
...

...
...

...
...

...

160 n159 ⊕ o159 l159 ⊕ o159 159 n′158 ⊕ o′158 l′158 ⊕ o′158

161 n160 l160 160 n′159 ⊕ o′159 l′159 ⊕ o′159 o′159 = 0

162 n161 l161 161 n′160 ⊕ o′160 l′160 ⊕ o′160

...
...

...
...

...
...

...

2.2 Slide Resynchronization Attack on Grain

In [6], Kücük showed that it is possible to find related keys and initialization
vectors of Grain. For any pair (K, IV), slide resynchronization attack (SRA)
on Grain finds the related pair (K ′, IV ′) = ((k′

0, · · · , k′
79), (iv′0, · · · , iv′63)) that

generates the 1-bit shifted keystream sequence with probability 2−2. It is based
on two observations:

1. The number of updated bits for 1 clock is only 2.
2. The setup process and the keystream generation procedure are similar.

SRA is done by assuming two conditions as shown in Table 2. The relation of
(K, IV) and (K ′, IV ′) is as follows:

K = (k0, · · · , k79)⇒ K ′ = (k1, · · · , k79, b), where b ∈ {0, 1}.
IV = (iv0, · · · , iv63)⇒ IV ′ = (iv1, · · · , iv63, 1).

Let St and S′t be internal states generated from (K, IV) and (K ′, IV ′) at time
t, respectively. We assume that S1 = S′0 which is equal to l0 ⊕ o0 = 1 from
Table 2. Then St+1 = S′t (0 ≤ t ≤ 159). S161 is updated by the keystream
generation mode but S′160 is updated by the setup mode. If o′159 = 0, then S161

is equal to S′160. Thus if l0 ⊕ o0 = 1 and o′159 = 0, then (K ′, IV ′) generates the
1-bit shifted keystream sequence Z[1] of Z generated from (K, IV). Assuming
that l0⊕o0 and o′159 are uniformly distributed, we find the related pair (K ′, IV ′)
with probability 2−2.

3 Related-Key Chosen IV Attack on Grain-v1

In this section, we introduce a key recovery attack on Grain-v1. Firstly, we intro-
duce some properties of Grain-v1 and propose a key recovery attack on Grain-v1

326 Y. Lee et al.

by using same properties. Let K be a secret key and IV be an initialization vec-
tor. Our attack uses m + 1 keys K, K1, · · · , Km. Here, we only describe the case
that ((K, IV) , (K1, IV ′)) pair is used. Other cases can be done by repeating
the case that ((Ki, IV) and (Ki+1, IV ′)) is used, i.e., if we use three keys K, K1

and K2, we run the first attack by using K, K1 and then second one by using
K1, K2. The second attack procedure is almost similar to the first.

3.1 Constructing α Linear Equations for K

The related key K ′ and initialization vector IV ′ are defined as follows. Here, α
is a parameter such that 1 ≤ α ≤ 12.

K = (k0, · · · , k79)⇒ K ′ = (kα, · · · , k79, k0, · · · , kα−1). (1)
IV = (iv0, · · · , iv63)⇒ IV ′ = (ivα, · · · , iv63, 1, · · · , 1). (2)

Let Z and Z ′ be keystream sequences generated from (K, IV) and (K ′, IV ′).
Kücük assumed that S1 is equal to S′0 which implies St+1 is equal to S′t (0 ≤
t ≤ 159). We can get Property 1 by using this property.

Property 1. If Sα is equal to S′0, then Si is equal to S′i−α for α < i ≤ 160. It
means that oi is equal to o′i−α. That is,

Sα = S′0 ⇒ Si = S′i−α.

Proof. This property follows directly from the setup process of Grain-v1. Recall
that the number of clocking without producing the keystream sequence is 160
in the setup process. ��
If IV satisfies Sα = S′0, we say that IV is valid. Otherwise we say that the IV
is invalid. In Theorem 1, we prove that we can construct total 2α equations for
secret key using a valid IV and calculate the probability that a valid IV exists.

Theorem 1. For a valid IV , we can construct 2α equations of which unknown
values are K. And the valid IV exists with probability 2−2α. That is,

Pr
(

Sα = S′0) = 2−2α.

Proof. Since (K, IV) is loaded to NFSR and LFSR directly, the following holds:

Sα = S′0 ⇔ Nα = K ′, Lα = IV ′‖(1 · · · 1).

For 0 ≤ i < α, Nα = K ′ and Lα = IV ′‖(1 · · · 1) imply (3) and (4).

ni ⊕ oi = ki. (3)

li ⊕ oi = 1. (4)

So, we can construct 2α equations for K using the valid IV . If ni, oi, li and
ki are assumed statically independent, (3) and (4) hold with probability 2−1,
respectively. Thus Sα = S′0 holds with probability 2−2α. ��

Related-Key Chosen IV Attacks on Grain-v1 and Grain-128 327

We show that how to construct α linear equations for K in Property 2 and
Theorem 2.

Property 2. If h takes the input value of which some bits are fixed, then it is
approximated to h′ with probability 1, as follows.

Approx1: If Lt
46 = 0, Lt

64 = 1 then h′ = Lt
3 ⊕ Lt

25

Approx2: If Lt
3 = Lt

25, L
t
46 = 1, Lt

64 = 1 then h′ = N t
63 ⊕ 1

Using Theorem 1 and Property 2, we can induce the following theorem. This
theorem shows that there exists a valid IV among 22α IV s whose some bit
positions are fixed.

Theorem 2. For a fixed K, we choose 22α IV s where (iv45+1, · · · , iv45+α) =
(0, · · · , 0) , (iv12+1, · · · , iv12+α, iv24+1, · · · , iv24+α) are all 2α-bit values and the
remaining bits are fixed to b (∈ {0, 1}). Then there exists exactly one valid IV .
Thus we can construct α linear equations for K using (6) and the IV .

Proof. L0
64, · · · , L0

79 are fixed to 1 in the setup mode. Thus (3) and (4) are equal
to (5) and (6) respectively by Approx1 of Property 2, if iv45+1, · · · , iv45+α are
fixed 0.

ivi ⊕ (iv3+i ⊕ iv25+i) = (ni ⊕ ivi)⊕ ki ⊕
⊕

s∈A

ks+i, (5)

(ivi⊕iv13+i ⊕ iv23+i ⊕ iv38+i ⊕ iv51+i ⊕ iv62+i)⊕(iv3+i ⊕ iv25+i) = 1⊕
⊕

s∈A

ks+i,

(6)
where 0 ≤ i < α and A = {1, 2, 4, 10, 31, 43, 56}. Because the right hand side of
(5) and (6) are determined by K, these values are fixed for all chosen IV s. Also
the remaining bits of IV s except for (iv12+1, · · · , iv12+α, iv24+1, · · · , iv24+α) are
fixed for all chosen IV s by the assumption. Thus we can rewrite (5) as (7), where
the right hand side of (7) is fixed for all chosen IV s.

iv25+i = iv3+i ⊕ ni ⊕ ki ⊕
⊕

s∈A

ks+i. (7)

Since iv25+i ∈ {iv24+1, · · · , iv24+α}, there exist 2α IV s which satisfy (7) among
all 22α chosen IV s and these IV s are fixed except for (iv12+1, · · · , iv12+α).
Similarly to the case of (5), we can rewrite (6) as (8), where the right hand side
of (8) is fixed for all 2α IV s.

iv13+i = ivi⊕ iv23+i⊕ iv38+i⊕ iv51+i⊕ iv62+i⊕ iv3+i⊕ iv25+i⊕1⊕
⊕

s∈A

ks+i. (8)

So there exists exactly one IV satisfying (7) and (8) among all chosen 22α IV s.
By the definition of “valid IV ”, the IV satisfying (7) and (8) is valid. Hence
there exists exactly one valid IV . Moreover, we can construct α linear equations
by applying the valid IV to (6), since (6) is a linear equation for K. ��

328 Y. Lee et al.

Table 3. The changed bit positions of ∗-Change

Event The changed bit positions Event The changed bit positions

∗-Change1 iv15, iv40 ∗-Change5 iv15, iv40, iv16, iv41

∗-Change2 iv16, iv41 ∗-Change6 iv15, iv40, iv17, iv42

∗-Change3 iv17, iv42 ∗-Change7 iv15, iv40, iv18, iv43

∗-Change4 iv18, iv43 ∗-Change8 iv16, iv41, iv17, iv42

Let β be the maximum value such that zi = 0 (0 ≤ i < β) (Note that the
expected value of β is about 2, since 2 ≈ 1 · 1

2 + 2 · 1
4 + 3 · 1

8 + · · ·). Because
an updated bit affects to keystream bits after 16 clock cycles, we define ∼α as
follows:

Z ∼α Z ′ ⇔ zα+i = z′i (0 ≤ i < 16− α + β).

In our attack, we find a valid IV by checking that Z and Z ′ satisfy Z ∼α Z ′.
The following theorem enable us to distinguish a valid IV and an invalid IV .

Theorem 3. A valid IV always satisfies Z ∼α Z ′ but an invalid IV satisfies it
with probability 2−(16−α+β).

Proof. By Theorem 1, a valid IV satisfies S160 = S′160−α. Then o160 (= z0) is
equal to o′160−α. Since zi = 0 (0 ≤ i < b), o′160−α+i = zi = 0 (0 ≤ i < β) and
S160+β = S′160−α+β . After (α− β) clock cycles, L160+α and N160+α are always
equal to L′160 and N ′160 except the (α − β) most significant bits, respectively.
Since α used in our attack is less than or equal to 12, h takes the same input
values for additional (16 − α + β) clock cycles in two cases. Thus (K, IV) and
(K ′, IV ′) always generate the same keystream bits for additional (16 − α + β)
clock cycles. For an invalid IV, Z and Z ′ are uniformly generated. Thus the IV
satisfies Z ∼α Z ′ with 2−(16−α+β). ��
If α = 12 and β = 2, then the probability that an invalid IV satisfies Z ∼α Z ′

is 2−6 (we call it D-Test) which is not small. To decrease the probability that
an invalid IV passes D-Test, we use another method, ∗-Change. For any IV ,
we generate the corresponding IV ∗ by modifying the values of even positions
in the IV . We change the bits of IV that do not affect the results of (5) and
(6) as shown in Table 3. Since these bits are not used as input values of h for
1 ≤ α ≤ 12 and the left hand side of (6) is linear, the results of these equations
do not change. Thus an IV is valid if and only if the corresponding IV ∗ is valid.
Corollary 1 show that we can distinguish valid IV s and invalid IV s with very
high probability using ∗-changes. In our attack, we generate (γ − 1) IV ∗s for
an IV where γ is the integer satisfying 22α−γ(16−α+β) << 1. Hence, we can
find a valid IV by Corollary 1 and construct α linear equations for K using
Theorem 2 and the valid IV .

Corollary 1. If an IV is invalid, the probability that the IV and the corre-
sponding IV ∗ pass D-Test is 2−2(16−α+β). Further, the IV and the corresponding
(γ − 1) IV ∗s pass D-Test with probability 2−γ(16−α+β).

Related-Key Chosen IV Attacks on Grain-v1 and Grain-128 329

Proof. This property follows directly from the fact that each invalid IV ∗ passes
D-Test independently. ��

3.2 Recovering Another α-Bit Key

Up to now, we introduced the method to find a valid IV and construct α linear
equations for K by using the valid IV . From this, we can get the α-bit key
information. Now, we present the method, †-Change, to recover another α-bit
key. For a valid IV , we will generate the corresponding IV † by modifying the
values of some positions in the valid IV . In case of α = 12, Appendix A.1
presents the bit positions where †-Change modifies. The conditionally changed
bit positions in †-Changei are modified only if iv3+i is not equal to iv25+i. Here,
we focus only †-Change0. Other events †-Changei (1 ≤ i ≤ 11) can be done
similar to †-Change0. †-Change0 is done as follows:

1. Using Approx2 of Property 2, do the followings;
(a) Modify iv46 which is the third input value of h at time 0.
(b) If iv3 is not equal to iv25, then modify iv25. Here, iv3 and iv25 are the

first and second input values of h at time 0, respectively.
2. Modify bit positions of the IV such that the results of (5) and (6) that

time is not 0 do not change.
(a) Since iv46 changes the result of (6) at time 8, modify iv59 which is in

the linear part of (6) at time 8. Note that we can change other bits
which are in the linear part of (6) at time 8. But we found that the
number of the additional changed bits for iv59 are less than for other
bits.

(b) If iv25 in Step 1-(b) is changed, it changes the result of (6) at time 2.
Thus modify iv15 which is in the linear part of (6) at time 2.

Applying †-Change0, the results of (5) and (6) for (K, IV) are equal to them
for (K, IV †) except time 0. The equations for (K, IV †) at time 0 are (9) and
(10). Here, A = {1, 2, 4, 10, 31, 43, 56}.

iv0 ⊕ (k63 ⊕ 1) = (n0 ⊕ iv0)⊕ k0 ⊕
⊕

s∈A

ks. (9)

(iv0 ⊕ iv13 ⊕ iv23 ⊕ iv38 ⊕ iv51 ⊕ iv62)⊕ (k63 ⊕ 1) = 1⊕
⊕

s∈A

ks. (10)

If the IV † is valid, (5) and (6) are equal to (9) and (10) at time 0, respectively.
Thus we get (11). Otherwise we get (12). Applying other events similarly, we
can recover k63, · · · , k74.

iv3 ⊕ iv25 = k63 ⊕ 1. (11)
iv3 ⊕ iv25 = k63. (12)

330 Y. Lee et al.

3.3 Description of Our Attack on Grain-v1

We are ready to present our attack on Grain-v1. This attack uses m + 1 keys
K, K1, · · · , Km and consists of m steps. For 0 ≤ i < m, the i-th step use Ki and
Ki+1 satisfying the following relation:

Ki = (k0, · · · , k79)⇒ Ki+1 = (kα, · · · , k79, k0, · · · , kα−1).

Note that K0 = K. In each step, we construct α linear equations for K and re-
cover the α-bit key. Finally we find the remaining bits by the exhaustive search.
Each step runs three algorithms, the FilterIV algorithm, the CheckValid algo-
rithm and the RecoverKey algorithm. Firstly, the FilterIV algorithm finds a valid
IV among 22α IV s that satisfies Corollary 1 as follows:

1. Generate 22α (16 + βi)-bit keystream sequences Zi by using K and
IVi (1 ≤ i < 22α) from Corollary 1. Here, βi is the value such that the
first βi bits of Zi are zeros.

2. Calculate the corresponding IV ′
i to IVi from (2) and generate the (16−

α + βi)-bit keystream sequence Z ′
i by using K ′ and IV ′

i .
3. Check D-test for each (Zi, Z

′
i) and store all IVi which the corresponding

Zi and Z ′
i pass D-test.

4. Until only one IV remains, repeat the followings;
(a) Set j=1;
(b) Calculate IV ∗s by applying ∗-Changej to the remaining IV s.
(c) Calculate the IV ∗′s corresponding IV ∗s.
(d) Generate keystream sequences using (K, IV ∗) and (K ′, IV ∗′).
(e) Check D-Test for the generated keystream sequences and discard IV s

that the corresponding keystream sequences do not pass D-test.
(f) Add 1 to j.

5. Return the remaining IV .

On average, the number of IV s used in this algorithm is

2
γ−1
∑

i=0

(

22α−i(16−α+β)
)

,

where α is parameter which is chosen by the attacker, β is maximum value such
that zi = 0 (0 ≤ i < β) and γ is the number satisfying 22α−γ(16−α+β) << 1.

From an IV , this algorithm generates the (16+β)-bit keystream sequence for
K and the (16− α + β)-bit keystream sequence for K ′. Thus it requires the

(16 + β)
γ−1
∑

i=0

(

22α−i(16−α+β)
)

+ (16− α + β)
γ−1
∑

i=0

(

22α−i(16−α+β)
)

-bit keystream sequence on average.

Related-Key Chosen IV Attacks on Grain-v1 and Grain-128 331

The CheckValid algorithm takes an IV and checks the validity of it as follows:

1. Generate Z and Z ′ using (K, IV) and (K ′, IV ′), respectively. Check D-
test for (Z, Z ′). If it does not pass D-test, then return “invalid”.

2. Set i = 1 and if i < γ, then repeat the followings;
(a) Calculate the IV ∗ by applying ∗-Changei to the IV .
(b) Generate keystream sequences by using (K, IV ∗), (K ′, IV ∗′) and

check D-Test for the generated keystream sequences. If they do not
pass, then return “invalid”.

(c) Add 1 to i.
3. Return “valid”.

This algorithm uses 2γ IV s and ((16 + β)γ + (16 − α + β)γ)-bit keystream
sequence.

Finally, the RecoverKey algorithm takes a valid IV and recover the α-bit key
(

k(62+mα+1) mod 80, · · · , k(62+mα+α) mod 80

)

in the m-th step. Since this algorithm calls the CheckValid algorithm α times, it
requires 2αγ IV s and the α((16 + β)γ + (16−α + β)γ)-bit keystream sequence.
It is done as follows:

Input : a valid IV = (iv0, · · · iv63)
1. Set i = 0 and if i < α, then repeat the followings;

(a) Calculate the corresponding IV †
i by applying †-Changei to the IV .

(b) Check that IV †
i is valid by using the CheckValid algorithm.

(c) If IV †
i is valid, k(63+mα+i) mod 80 = iv3+i ⊕ iv25+i ⊕ 1. Otherwise

k(63+mα+i) mod 80 = iv3+i ⊕ iv25+i.
(d) Add 1 to i.

We find the right secret key by the exhaustive search by using the 2mα-bit
key information obtained in previous steps. We generate the 80-bit keystream
sequence from each candidate key and check that it is equal to the original
keystream sequence. Thus, this test requires 240-clock cycles of Grain-v1. Our
attack procedure on Grain-v1 is done as follows:

1. Generate 22α IV s from Theorem 2.
2. Set i = 0 and if i < m, repeat the followings;

(a) For Ki and Ki+1, find an valid IV by using the FilterIV algorithm.
(b) Construct α linear equations by using (6) and the valid IV .
(c) Recover the α-bit key by using the RecoverKey algorithm.

3. Find the right secret key K by the exhaustive search using the 2mα-bit
key information obtained in Step 2.

The number of chosen IV s used in our attack is 2m(
∑γ−1

i=0 (22α−i(16−α+β)) +
γα) and our attack requires m((32 − α + 2β)(

∑γ−1
i=0 (22α−i(16−α+β)) + γα))-bit

keystream sequence. The computational complexity of Step 2 is m((352−α+2β)
240

332 Y. Lee et al.

Table 4. Our results on Grain-v1

m α γ
Data Complexity

Computational Complexity
Chosen IV s Keystream Bits

1 12 6 225.02 228.61 256

2 12 6 226.02 229.61 232.02

3 10 4 222.59 226.29 222.90

3 12 6 226.61 230.19 226.70

Computation complexity unit: 240-clock cycles of Grain-v1

(
∑γ−1

i=0 (22α−i(16−α+β))+γα)) 240-clock cycles of Grain-v1. Since we get the 2mα-
bit key information, the computational complexity of Step 3 is 280−2mα 240-clock
cycles of Grain-v1. Table 4 shows the complexities of our attack for parameters
m, α and γ. For m = 3, α = 10 and γ = 4, we recover the secret key of Grain-v1
with 226.29 bits keystream sequence and 222.90 computational complexity. If we
use more related keys, we need less complexities to attack Grain-v1, i.e., if we use
40 related keys, then the computational complexity decrease to 28.21 240-clock
cycles of Grain-v1 and the data complexity is as follows: 28.64 chosen IV s and
212.77-bit keystream sequence. The usage of 3 related keys and the computational
complexity of 222.90 is reasonable. For m = 3, α = 10 and γ = 4, we practically
recovered the secret key within 3 minutes on average.

4 Related-Key Chosen IV Attack on Grain-128

Since the attack on Grain-128 is similar to that on Grain-v1, we briefly present
our attack on Grain-128 using one related key K ′. K ′, IV ′ and ∼α are defined
as follows:

K = (k0, · · · , k127)⇒ K ′ = (kα, · · · , k127, k0, · · · , kα−1).
IV = (iv0, · · · , iv95)⇒ IV ′ = (ivα, · · · , iv95, 1, · · · , 1).

Z ∼α Z ′ ⇔ zα+i = z′i (0 ≤ i < 32− α + β).

In case of Grain-128, a valid IV always satisfy Z ∼α Z ′ but an invalid IV
passes D-test with probability 2−(32−α+β). Similarly to the attack on Grain-v1,
we apply ∗-Change to decreases the probability that an invalid IV passes D-test.
The changed bit positions are shown in Table 5. In the attack on Grain-v1, we
change the values of even positions in IV but the positions of Table 5 do not
affect all equations for α ≤ 15. Thus we choose just one position in IV .

Table 5. The changed bit positions of ∗-Change on Grain-128

Event The changed bit positions Event The changed bit positions

∗-change1 iv38 ∗-change3 iv40

∗-change2 iv39 ∗-change4 iv41

Related-Key Chosen IV Attacks on Grain-v1 and Grain-128 333

Table 6. The modification of h

Event Fixed value Approximated function h′

Approx1 Lt
8 = 0, Lt

13 = 0, Lt
42 = 0, Lt

60 = 0, Lt
95 = 1 N t

12N
t
95

Approx2 Lt
8 = 1, Lt

13 = 0, Lt
42 = 0, Lt

60 = 0, Lt
95 = 1 N t

12 ⊕ N t
12N

t
95

Approx3 Lt
8 = 0, Lt

13 = 0, Lt
42 = 1, Lt

60 = 0, Lt
95 = 1 N t

95 ⊕ N t
12N

t
95

Table 7. Our results on Grain-128

m α γ
Data Complexity

Computational Complexity
Chosen IV s Keystream Bits

1 15 2 231 235.73 283

2 15 2 232 236.73 238.03

3 12 2 226.59 231.39 227

3 15 2 232.59 237.31 232.98

Computation complexity unit: 384-clock cycles of Grain-128

As shown in Table 6, h is approximated to h′ with probability 1. Since h
takes two input value from NFSR, we can recover the 2α-bit key by applying
†-Change as shown in Appendix A.2. For 0 ≤ i < α, the events †-Change1

i and †-
Change2

i can be used to recover k12+i and k95+i, respectively. The conditionally
changed bit positions in †-Changei are modified only if iv20+i = 0. Note that
iv87, · · · , iv95 are fixed to 1 in order to apply †-Change.

Our attack on Grain-128 uses 22α IV s that satisfy conditions of Approx1 in
Table 6. Then there exists a valid IV among these IV s. But ui ⊕ oi = 1 (0 ≤
i < α) is quadratic equation for K. So we construct α quadratic equations for
K as follows:

li ⊕ k12+ik95+i ⊕ (k2+i ⊕ k15+i ⊕ k36+i ⊕ k45+i ⊕ k64+i ⊕ k73+i ⊕ k89+i) = 1.

Since we can recover k12+i and k95+i by using the RecoverKey algorithm, we
can construct α linear equations as follows:

li⊕(k2+i⊕k15+i⊕k36+i⊕k45+i⊕k64+i⊕k73+i⊕k89+i) = 1⊕vi (vi = k12+ik95+i).

Because the RecoverKey algorithm recovers the key bits that are quadratic part
of these equations, we can construct α linear equations for K. The bit positions
that are modified in †-changei is presented in Appendix A.2.

As shown in Table 7, we need 226.59 chosen IV s, the 231.39-bit keystream
sequence and 227 384-clock cycles of Grain-128 to recover the secret key of Grain-
128. If we use more related keys, we need less complexities to attack Grain-128.

5 Conclusion

In this paper, we have presented related-key chosen IV attacks on Grain-v1 and
Grain-128 with the weakness that the setup mode is similar to the keystream

334 Y. Lee et al.

Table 8. Simulation results of our attack

Stream Cipher m α γ Attack Time Success Rate (success trials/total trials)

Grain-v1 3 10 4 145 sec 1 (100/100)

Grain-128 3 12 2 95 min 1 (100/100)

generation mode. As summarized in Table 1, these results imply that Grain-v1
and Grain-128 have still the weakness, though they are designed to advance
Grain which has been cryptanalyzed by a key recovery attack and a distinguish-
ing attack by the weakness in the filter function. Our attack on Grain-v1 recovers
the secret key with 222.59 chosen IV s, 226.29-bit keystream sequences and 222.90

computational complexity. In case of Grain-128, our attack needs 226.59 cho-
sen IV s, 231.39-bit keystream sequences and 227.01 computational complexity.
Table 8 presents simulation results that our attacks. The simulation was im-
plemented on Pentium-4, CPU 2.4GHz, 2.0 Gb RAM, OS Windows XP Pro
SP2. We could always recover the secret key of Grain-v1 and Grain-128 within
3 minutes and 100 minutes on average, respectively.

References

1. Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of Grain. In: Robshaw, M.J.B.
(ed.) FSE 2006. LNCS, vol. 4047, pp. 15–29. Springer, Heidelberg (2006)

2. Hell, M., Johansson, T., Meier, W.: Grain - A Stream Cipher for Constrained Envi-
ronments, eSTREAM - ECRYPT Stream Cipher Project, Report 2005/010 (2005),
http://www.ecrypt.eu.org/stream/ciphers/grain/grain.pdf

3. Hell, M., Johansson, T., Meier, W.: Grain - A Stream Cipher for Constrained En-
vironments, eSTREAM - ECRYPT Stream Cipher Project (2007),
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain p3.pdf

4. Hell, M., Johansson, T., Meier, W.: A Stream Cipher Proposal: Grain-128,
eSTREAM - ECRYPT Stream Cipher Project (2007),
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain128 p3.pdf

5. Khazaei, S., Hassanzadeh, M., Kiaei, M.: Distinguishing Attack on Grain,
eSTREAM - ECRYPT Stream Cipher Project, Report 2005/071 (2005),
http://www.ecrypt.eu.org/stream/papersdir/071.pdf

6. Kücük, O.: Slide Resynchronization Attack on the Initialization of Grain 1.0,
eSTREAM - ECRYPT Stream Cipher Project, Report 2006/044 (2006),
http://www.ecrypt.eu.org/stream/papersdir/2006/044.ps

7. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential At-
tack, Cryptology ePrint Archive: Report 2007/413 (2007),
http://eprint.iacr.org/2007/413.pdf

http://www.ecrypt.eu.org/stream/ciphers/grain/grain.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain128_p3.pdf
http://www.ecrypt.eu.org/stream/papersdir/071.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/044.ps
 http://eprint.iacr.org/2007/413.pdf

Related-Key Chosen IV Attacks on Grain-v1 and Grain-128 335

A †-Change on Grain-v1 and Grain-128

A.1 The Changed Bit Positions of †-Change on Grain-v1 (α = 12)

Event Recovered key bit The changed bit positions
†-Change0 k63 iv46, iv59, ivc

25, iv
c
15

†-Change1 k64 iv47, iv60, ivc
26, iv

c
16

†-Change2 k65 iv48, iv61, ivc
27, iv

c
17

†-Change3 k66 iv49, iv62, iv38 , ivc
28, iv

c
18

†-Change4 k67 iv50 , ivc
29, iv

c
19

†-Change5 k68 iv51, iv38, ivc
30, iv

c
20

†-Change6 k69 iv52, iv39, ivc
31, iv

c
21

†-Change7 k70 iv53, iv40, ivc
32, iv

c
22

†-Change8 k71 iv54, iv41, ivc
33, iv

c
37, iv

c
61

†-Change9 k72 iv55, iv42, ivc
34, iv

c
38, iv

c
62

†-Change10 k73 iv56, iv43, ivc
35

†-Change11 k74 iv57, iv44, ivc
36

ivc
i : the changed bit position conditionally.

A.2 The Changed Bit Positions of †-Change on Grain-128 (α = 15)

Event Recovered The changed Event Recovered The changed
Key bit bit positions Key bit bit positions

†-change1
0 k12 iv8, iv68, iv39 †-change2

0 k95 iv42, iv85

†-change1
1 k13 iv9, iv69, iv40 †-change2

1 k96 iv43, iv86

†-change1
2 k14 iv10, iv70, iv41, iv38 †-change2

2 k97 iv44, iv87

†-change1
3 k15 iv11, iv71, iv85, iv39 †-change2

3 k98 iv45, iv88

†-change1
4 k16 iv12, iv72, iv86, iv40 †-change2

4 k99 iv46, iv89

†-change1
5 k17 iv13, iv73, iv87, iv41 †-change2

5 k100 iv47, iv90

†-change1
6 k18 iv14, iv74, iv77, iv85 †-change2

6 k101 iv48, iv91

†-change1
7 k19 iv15, iv78 †-change2

7 k102 iv49, iv92

†-change1
8 k20 iv16, iv79 †-change2

8 k103 iv50, iv39

†-change1
9 k21 iv17, iv80 †-change2

9 k104 iv51, iv40

†-change1
10 k22 iv18, iv92 †-change2

10 k105 iv52, iv41

†-change1
11 k23 iv19, iv82, iv39 †-change2

11 k106 iv53

†-change1
12 k24 iv20, iv83, iv40 , ivc

0 †-change2
12 k107 iv54

†-change1
13 k25 iv21, iv84, iv41 , ivc

1 †-change2
13 k108 iv55

†-change1
14 k26 iv22, ivc

2 †-change2
14 k109 iv56

ivc
i : the conditional changed bit position.

Signature Generation and Detection of

Malware Families

V. Sai Sathyanarayan, Pankaj Kohli, and Bezawada Bruhadeshwar

Centre for Security, Theory and Algorithmic Research (C-STAR)
International Institute of Information Technology

Hyderabad - 500032, India
{satya vs,pankaj kohli}@research.iiit.ac.in, bezawada@iiit.ac.in

Abstract. Malware detection and prevention is critical for the protec-
tion of computing systems across the Internet. The problem in detecting
malware is that they evolve over a period of time and hence, traditional
signature-based malware detectors fail to detect obfuscated and previ-
ously unseen malware executables. However, as malware evolves, some
semantics of the original malware are preserved as these semantics are
necessary for the effectiveness of the malware. Using this observation, we
present a novel method for detection of malware using the correlation be-
tween the semantics of the malware and its API calls. We construct a
base signature for an entire malware class rather than for a single speci-
men of malware. Such a signature is capable of detecting even unknown
and advanced variants that belong to that class. We demonstrate our ap-
proach on some well known malware classes and show that any advanced
variant of the malware class is detected from the base signature.

Keywords: Malware Detection, Signature Generation, Static Analysis.

1 Introduction

Malware or malicious code refers to the broad class of software threats to com-
puter systems and networks. It includes any code that modifies, destroys or steals
data, allows unauthorized access, exploits or damages a system, or does some-
thing that the user does not intend to do. Perhaps the most sophisticated types
of threats to computer systems are presented by malicious codes that exploit
vulnerabilities in applications. Pattern based signatures are the most common
technique employed for malware detection. Implicit in a signature-based method
is an apriori knowledge of distinctive patterns of malicious code. The advantage
of such malware detectors lies in their simplicity and speed. While the signature-
based approach is successful in detecting known malware, it does not work for
new malware for which signatures have not yet been prepared. There is a need
to train the detector often in order to detect new malware.

One of the most common reasons that the signature-based approaches fail
is when the malware mutates, making signature based detection difficult. The
presence of such a metamorphism has already been witnessed in the past [5, 9].

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 336–349, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Signature Generation and Detection of Malware Families 337

Malware authors often tend to obfuscate the executable so as to make analysis
difficult and to evade detection. Four techniques [15] are commonly employed
for obfuscating executables. The first approach, insertion of dead code involves
insertion of code that does not change the malware behavior, such as a sequence
of NOPs (no operation instructions). The second approach, register reassignment
involves changing the usage of one register with another such as eax with ebx to
evade detection. The third approach, instruction substitution replaces a sequence
of instructions with an equivalent instruction sequence. Finally, the fourth ap-
proach, code transposition involves jumbling the sequences of instructions in such
a way that the behavior of the code remains the same. We note that, although
all of these approaches change the code pattern in order to evade detection, the
behavior of the malware still remains the same.

Past research has focused on modeling program behavior for intrusion and
malware detection. Such modeling of program behavior was first studied by
Forrest et al [24]. Their approach called N-Grams used short sequences of system
calls to model normal program behavior. Sekar et al [25], used system calls to
construct a control flow graph of normal program behavior. Peisert et al [26], use
sequence of function calls to represent program behavior. Based on such results,
in our approach, we have used API calls as measure of the malware program
behavior. Specifically, we use only a subset of API calls, called critical API calls
in our analysis. These critical API calls are the ones that can possibly cause
malicious behavior. API calls have been used in the past research for modeling
program behavior [20, 22] and for detecting malware [19, 21, 27].

We use static analysis to extract critical API calls from known malicious
programs to construct signatures for an entire malware class rather than for a
single specimen of malware. In our approach, a malicious program is detected by
statistical comparison of its API calls with that of a malware class. The technique
presented in this paper aims to detect known and unknown malicious programs,
including self-mutating malware. Also, it is capable of detecting malware that
use common obfuscations. Our approach relies on the fact that the behavior
of the malicious programs in a specific malware class differs considerably from
programs in other malware classes and benign programs. The main contributions
of this paper include:

– Detection using API calls. We extract critical API calls from the binary
executable of a program to classify it as malicious or benign. The extracted
calls are subjected to a statistical likelihood test to determine the malware
class.

– Effective against common obfuscations. Common obfuscations such as
those explained above change the code pattern but do not affect the behavior
of the malware. By generating a signature that reflects the behavior of the
malware, our technique is able to defeat such common obfuscations. Also,
since we consider only critical API calls, such obfuscations have no effect on
our signature generation approach.

338 V.S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar

– Effective against new variants. By constructing a signature for a malware
family, our approach is automatically able to detect future variants that
belong to that family.

Paper Organization. In Section 2, we present the related work done in the
field of malware detection. In Section 3, we describe our approach for malware
detection. In Section 4, we describe a prototype implementation of our approach,
present experimental results and evaluate the effectiveness of our approach. Fi-
nally, we conclude in Section 5.

2 Related Work

Several techniques have been studied in the past for malware detection. Cohen
[11] and Chess & White [12] use sandboxing to detect viruses. They proved that
in general the problem of virus detection is undecidable. Christodorescu and
Jha [15] use static analysis to detect malicious code in executables. Their im-
plementation called SAFE handles most common types of obfuscations used by
malware writers, such as insertion of NOPs between instructions, that are used
to evade detection. In [4], Christodorescu et al exploited semantic heuristics to
detect obfuscated malware. Although, their approach works well for obfuscated
malicious programs, the time taken (over a minute to classify) by their approach
makes it impractical for use in commercial antivirus scanners. Kruegel et al [16]
use control flow graph information and statistical methods for disassembling
obfuscated executables. Bergeron et al [18] consider critical API calls and se-
curity policies to test for presence of malicious code. Their approach does not
work for obfuscated malicious executables. Zhang et al [19] use fuzzy pattern
recognition to detect unknown malicious code. The approach does not handle
obfuscated program binaries and gives many false positives. Martignoni et al
[7] use real-time program monitoring to detect deobfuscation in memory. Their
implementation OmniUnpack detects obfuscation for both known and unknown
packers. MetaAware [27] identifies patterns of system or library functions called
from a malware sample to detect its metamorphic version. Bilar [10] uses sta-
tistical structures such as opcode frequency distribution and graph structure
fingerprints to detect malicious programs. The approach presented in this paper
detects malicious programs including those with common obfuscations as well
as previously unknown variants of malware families.

In [17], Krugel et al use dynamic analysis to detect obfuscated malicious code,
using mining algorithm. Their approach works well for obfuscated malicious
programs but takes several seconds to test a single program. DOME [23] uses
static analysis to detect system call locations and run-time monitoring to check
all system calls are made from a location identified during static analysis. Min-
Sun et al [22] use dynamic monitoring to detect worms and other exploits. Their
approach is limited to detection of worms and exploits that use hard-coded
addresses of API calls, and does not work for other malware types such as trojans
or backdoors. Also, as evident by our experimental results, our approach is much
faster than all other approaches described above.

Signature Generation and Detection of Malware Families 339

3 Our Approach for Malware Detection

In this section, first, we briefly outline our approach for malware signature gener-
ation and classification. Next, we describe our program behavior model used for
signature generation and the statistical comparison technique. Then, we present
our malware detection algorithm using our program behavior model. Finally, we
describe our prototype implementation in detail and show a sample signature of
a malware extracted using our approach.

Test
File

Test
File

Trojans

IDA Pro Disassembler

Trojans

API Calls

Malicious

Classifier

Backdoors

Benign

Backdoors

Signature

Signature Signature

Worms

Worms

Fig. 1. Architecture of our malware detector

3.1 Malware Signature Generation and Classification Approach

We create signatures based on the characteristics of an entire malware class
rather than a single sample of malware. Malware classes are defined based on
similar behavior. The behavior of a malware class can be specified based on
the API calls that the members of the malware calls use. For instance, a virus
trying to search for executable files will typically make use of API calls such
as FindFirstFileA, FindNextFileA and FindClose in KERNEL32.DLL. The be-
havior of searching files is captured by the use of these API calls. Rather than
considering all API calls, we consider only critical API calls [17, 18]. Critical
API calls include all API calls that can lead to security compromise such as calls
that change the way the operating system behaves or those used for communi-
cation, such as Registry API, File I/O API, WinSock etc. We do not consider
API calls which can be added or removed in a sample of malware without chang-
ing its malicious behavior, such as MessageBox, printf, malloc etc. For each
malware class, we extract API calls and their call frequency from several ma-
licious programs. The signature for the malware class is then computed using

340 V.S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar

several samples that are known to belong to that class. From our results, we
have observed that 2 or 3 samples from a malware class are adequate to cre-
ate a signature. Given any test file, it is classified as malicious or benign by
statistical comparison of the frequency of its critical API calls with that of the
malware classes. Figure 1 shows the architecture of our malware detector. Next,
we describe our strategy for malware behavior profiling and show our method is
used to generate signatures and classify programs as benign or malicious. In our
classification, we not only differentiate between benign and malicious programs,
but also between different malware classes.

Malware Behavior Profiling. Malicious programs exhibit a behavior that
can be distinguished from behavior of benign programs. The signature for a
malware class is based on the frequency of critical API calls. Let the vector
P = (f1, f2, . . . , fn) be a profile created from a program by extracting its critical
API calls, where fi represents the frequency of ith critical API call and n being
the total number of critical API calls.

We use a statistical measure to differentiate between malware and benign
programs. To detect malware, we measure the difference between the propor-
tions of the critical API calls in a signature and that of a test program using
Chi-square test [6]. Chi-square test is a likelihood-ratio or maximum likelihood
statistical significance test that measures the difference between proportions in
two independent samples. The signature Si for a malware class Mi specifies the
frequencies of critical API calls that a sample of malware which belongs to Mi

is expected to have. To test the membership of a given test file in a malware
class, its API calls are extracted and compared to that in the signature. The
Chi-square is then computed as:

χ2
i =

(Oi − Ei)2

Ei
; 1 ≤ i ≤ n

Here, Oi is the observed frequency of the ith critical API call in the test file
and Ei is its expected frequency, i.e. frequency in the signature of a malware
class. Now, χ2 is compared against a threshold value ε from a standard Chi-
square distribution table with one degree of freedom. The degrees of freedom is
associated with the number of parameters that can vary in a statistical model.
A significance level of 0.05 was selected. This means that 95% of the time we
expect χ2 to be less than or equal to ε. For one degree of freedom and signif-
icance level 0.05, ε = 3.84. Let U = {APIi | χ2

i ≤ εi}. We define a degree of
membership λ as

λ =
|U |
n

Degree of membership λ is a measure of belongingness of test file to a malware
class. The statistical profiling algorithm is shown in Algorithm 1.

Signature Generation and Detection of Malware Families 341

Input: API frequency set for a file, P = {O1, O2, . . . , On}, and another API
frequency set M = {E1, E2, . . . , En}

Output: Degree of membership, λ
for i = 1 to n do1

χ2
i = (Oi−Ei)

2

Ei
;2

end3

U = {APIi | χ2
i ≤ 3.84};4

λ = |U|
n

;5

return λ6

Algorithm 1. STAT(P, M)

Signature Generation. The signature for a malware class is then computed
as follows. Let Ri = {P i

1, P
i
2, . . . , P

i
m} be the set of profiles of samples in malware

class Mi. The signature vector Si for the malware class Mi is then defined as
the set of the mean frequency of every critical API call occurring in Mi.

Si =
1
m

m∑

j=0

P i
j

This signature vector is then tested against samples T = {T1, T2, . . . , Tk} known
to belong to the same malware class Mi using the statistical analysis. We here
define a threshold δ as

δi =
1
k

k∑

j=0

λj

Here λ is the outcome of a statistical analysis test. This signature Si and thresh-
old δi is computed for every malware class Mi. We note that each individual test
sample shows a distinct set of frequencies, which differ noticeably from those
shown by benign programs and other malware classes.

Classification Strategy. Let P be the profile obtained from a test file T. Let
Si be a signature for the malware class Mi, and δi be the corresponding degree
of membership. Let B be the benign set and t be the total number of malware
classes.

Then, if

∃ i, 1 ≤ i ≤ t, δT ≥ δi

⇒ T ∈ Mi

Otherwise, if

∀ i, 1 ≤ i ≤ t, δT < δi

⇒ T ∈ B

342 V.S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar

Also, if

∃ i, j, 1 ≤ i, j ≤ t, δT ≥ δi AND δT ≥ δj

⇒ T ∈ Mi ∪Mj

Note that if δT ≥ δi and δT ≥ δj , then it means the test file T contains features
of both malware classes Mi and Mj .

A false positive occurs when a benign program is classified as malicious. A
false positive for a signature Si is defined as the probability

Pr (δT ≥ δi | T ∈ B)

A false negative occurs when a malicious program is classified as benign. For a
specific malware class Mi and signature Si, this is defined as

Pr (δT < δi | T ∈Mi)

This usually happens when the data in the profile is distorted and therefore
Mi cannot be detected. We now formally state our malware detection algo-
rithm. The algorithm is composed of two parts: the signature generator SIGNA-
TURE GENERATE (Algorithm 2) and the detector DETECT (Algorithm 3).

Input: The set of profiles Ri = {P i
1 , P i

2 . . . , P i
m} for a malware class Mi

Output: Signature Si and threshold δi

Select an arbitrary set U ⊂ Mi. Let U = {U1, U2, . . . , Uk}.1

Let Q = Mi − U . Let Q = {Q1, Q2, . . . , Qm−k}.2

Compute signature as Si = 1
m−k

∑m−k
j=1 Qj ;3

for j = 1 to k do4

λj = STAT (Si, Uj);5

end6

Compute threshold as δi = 1
k

∑k
j=1 λj .7

Algorithm 2. SIGNATURE GENERATE(Mi)

3.2 Prototype Implementation Details

We have implemented a prototype of the technique. Our implementation is writ-
ten for malware on Win32 platform and it consists of two components - API call
extractor and Classifier.

API Call Extractor. The API Call Extractor component is implemented as
a plugin to the IDA Pro Disassembler [8]. It begins by locating the .idata seg-
ment which is an EXTERN segment that contains list of addresses of API functions
imported by the PE file. For each address in the .idata segment, it retrieves
the corresponding API function name and its set of cross-references. The API

Signature Generation and Detection of Malware Families 343

Input: A test file T with API frequency set P = {f1, f2, . . . , fn}, a signature Si

and corresponding threshold δi for a malware class Mi

Output: TRUE if T ∈ Mi, FALSE otherwise
δT = STAT (P,Si);1

if δT ≥ δi then2

return TRUE3

end4

return FALSE5

Algorithm 3. DETECT(T, Mi)

.idata :0040 F2F0 ; int __stdcall send(SOCKET s, const char *buf , int len , int flags)

.idata :0040 F2F0 extrn __imp_send:dword ; DATA XREF: send

Fig. 2. API function send in .idata segment

.text :004019 A7 loc_4019A7:
; CODE XREF: sub_401990 +31
.text :004019 A7 push 0 ; flags
.text :004019 A9 push 1 ; len
.text :004019 AB push esi ; buf
.text :004019 AC push ebx ; s
.text :004019 AD call send
....
....
....
.text :004019 C3 loc_4019C3:
; CODE XREF: sub_401990 +13
.text :004019 C3 push 0 ; flags
.text :004019 C5 add edi , ebp
.text :004019 C7 push 1 ; len
.text :004019 C9 push edi ; buf
.text :004019 CA push ebx ; s
.text :004019 CB call send

Fig. 3. Calls to API function send that actually transfer control to an intermediate
thunk

.text :00401 FE6

.text :00401 FE6 ; Attributes : thunk

.text :00401 FE6

.text :00401 FE6 ; int __stdcall send(SOCKET s, const char *buf , int len , int flags)

.text :00401 FE6 send proc near
; CODE XREF: sub_401990 +1D
.text :00401 FE6 ; sub_401990 +3B
.text :00401 FE6 jmp ds:__imp_send
.text :00401 FE6 send endp

Fig. 4. Thunk for API function send

call frequency is given by the number of cross-references in the code region. Note
that, in many cases compiler generates code in such a way that a call to an
API function is made through an intermediate jmp instruction, called a thunk.

344 V.S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar

...

...
GetWindowsDirectory 1.625000
WriteFile 9.375000
GetFileAttributes 1.125000
CopyFile 3.000000
DeleteFile 6.375000
CreateFile 9.000000
SetFileAttributes 1.125000
GetTempPath 2.375000
GetSystemDirectory 3.250000
GetModuleFileName 6.500000
...
...

Fig. 5. Signature for MyDoom worm family

In such a case, if a cross-reference is a thunk, it may lead to an incorrect API call
frequency since several API calls will transfer control to the thunk which in turn
would jump to the actual API function. Therefore, we check each cross-reference
and if it is a thunk, we retrieve all cross-references for this thunk as well to
get the correct API call frequency. Such a code taken from the disassembly of
Borzella worm [3] is shown in Figures 2,3 and 4.

Classifier. The classifier reads the entire set of profiles produced by the API
call extractor for each malware class and produces a signature. When given a
file containing API call frequencies of a test file, it uses the above algorithm
to classify the test file as benign or as the appropriate malware class. Figure 5
shows a sample signature created for MyDoom worm family.

4 Experimental Analysis

The testing environment consisted of a Windows XP Service Pack 2 machine.
The hardware configuration included a Pentium 4 3.2 GHz processor and 512
MB of RAM. We used IDA Pro version 5.2.0.

4.1 Effectiveness

Testing on new variants. To test the effectiveness of our malware detector
against new variants of malware families, we tested it on eight malware families.
The malware families were gathered from VX Heavens [2]. For each malware
family, we used two earliest possible variants to construct the signature and the
rest for testing the signature. We tested our approach on the following malware
families: MyDoom(30 variants), Bifrose (18 variants), Agent (14 variants), Delf
(13 variants), InvictusDLL (13 variants), Netsky (10 variants), Bagle (9 variants)
and Chiton (19 variants). Our approach was able to detect all variants in the
above malware families except one variant in Netsky family. The detailed results
are presented in Table 1 and 2.

Although, from Table 1, Netsky.r could not be detected when using the signa-
ture created from Netsky.c and Netsky.d, but it was detected when the signature

Signature Generation and Detection of Malware Families 345

was generated from Netsky.c and Netsky.p. From these results, we note that our
approach is most suited for detecting many variants of a malware family. This
implies that if there is a new variant that is not classified by our approach, it
is probable that the malware writer has made some significant changes in its
behavior. In such a case, that variant can be used for training which will be
sufficient for detecting many more advanced variants of the family. We have
illustrated this from the Netsky worm example.

Testing on generic malware classes. Above experiments tested specific mal-
ware families. We wanted to test our approach for detecting arbitrary and un-
known malware classes by using only signatures generated from some known
broad classes of malware. So, we constructed signatures for broad classes of mal-
ware such as trojans, worms, backdoors and viruses. To test the effectiveness
of our detection method and to identify potential false negatives, we gathered
800 malicious programs in Portable Executable (PE) [1] format. To test the
false positive rate, we gathered 200 benign programs from a fresh installation
of Windows XP service pack 2. Signatures for malware classes were constructed
by incrementally chosing higher number of training samples such 10, 20 and so
on upto 60 samples from each malware class. 29 benign programs out of 200
were incorrectly classified as malicious. The evaluation results are presented in
Table 3.

We found that several benign programs share behavior (for instance, searching
files, copying files to network drives etc.) with certain malicious programs. The
observed false positive rate is due to such shared behavior. Figure 6 shows the
plot of detection rate, false negative rate and false positive rate with increasing

Table 1. Effectiveness evaluation to detect malware variants

Malware Variants in
training set

Variants
Tested

Detected Malware Variants in
training set

Variants
Tested

Detected

Netsky

e �

Chiton

c �
c gen � a d �
d l � b e �

m � f �
n � h �
p � i �
r ✕ j �
x � k �

Bagle

b � l �
a ab � m �
bb ad � n �

ae � o �
al � p �
as � q �
bi � r �

t �
Chiton �

346 V.S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar

Table 2. Effectiveness evaluation to detect malware variants (contd.)

Malware Variants in
training set

Variants
Tested

Detected Malware Variants in
training set

Variants
Tested

Detected

MyDoom

d �

Bifrose

ae �
a e � a ag �
c f � ab aq �

g � at �
h � ax �
l � bb �
o � bc �
q � bf �
r � bg �
u � bh �
v � bk �
y � bl �
aa � bo �
ae � bs �
af � ca �
ag � cc �
ai �

Agent

ad �
aj � a ae �
ak � ab ah �
al � aj �
an � bc �
aq � bd �
ar � abz �
as � aci �
at � acx �
av � adr �
ay � ads �
az � aec �

Delf

d �

InvictusDLL

099 �
62976 f � 101.a 201.b �

c g � 101.b 102 �
h � 103.a �
j � 200.b �
k � 201.a �
m � 200.a �
n � a �
r � b �
v � c �
w � d �

number of training samples. As shown in the figure, the false positive and false
negative rate falls and the detection rate increases with an increase in the number
of training samples. Hence, it can be inferred from the plot that the accuracy
of the signature increases with an increase in the number of training samples.
The results show that even in the absence of the base signature, our technique
was able to detect a new malware using the signature constructed from broad
malware classes with reasonable accuracy. Once the new malware is detected,
its base signature can easily be constructed to detect its future variants.

Signature Generation and Detection of Malware Families 347

Table 3. Evaluation Results

Class Tested Detected False negatives

Worms 131 121 10

Trojans 362 300 62

Backdoors 161 103 58

Viruses 146 146 0

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250

M
al

w
ar

e
S

am
pl

es

Training Samples

False Positives
False Negatives

Detected

Fig. 6. Change in Detection Rate and False Negative Rate with change in number of
training samples

Table 4. Time (in seconds) comparison with SAFE

Malware Annotator/API Call Extractor Detector
SAFE Our Approach SAFE Our Approach

Chernobyl 1.444 2.172 0.535 0.0138

zombie-6.b 4.600 1.718 1.149 0.0314

f0sf0r0 4.900 1.781 0.923 0.0256

Hare 9.142 1.665 1.604 0.0282

4.2 Performance Testing

We tested the time it requires to classify a given file as malicious or benign. We
consider the time taken by our approach to extract the API calls and to classify it
as malicious or benign. We compare our approach to SAFE [15]. SAFE creates
an abstraction pattern of the malicious code and converts it into an internal
representation. Given a test program, it creates a control flow graph (CFG) of
the test program, and checks whether the internal representation of malicious

348 V.S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar

code is present in the CFG. SAFE has been tested only on a very few malware
samples. Table 4 compares the time taken by our approach with that of SAFE
for four samples of malware. Clearly, our approach is much faster than SAFE.

5 Conclusion and Future Work

We presented a method to generate signatures for malware classes to detect pre-
viously unknown malicious programs. Our malware detection approach is space
efficient. Rather than creating a new signature for every variant in a malware
family, it creates a single signature that reflects the behavior of the entire family.
It reduces the human effort required to generate a signature for a new malware.
Also, it is able to detect malicious programs with common obfuscations, a prob-
lem which the commercial antivirus scanners being used today do not address.
Thus, our malware detection approach is most suitable for use in commercial
antivirus scanners.

The accuracy of our signature generation method for detecting future variants
of a malware family is good. Although the detection error rate for new malware
in broad classes such as trojans and backdoors seems high in our experiments
but the results are encouraging. Malware authors often tend to pack malware
in order to evade detection and to make analysis difficult. Such malware use
a decompression or decryption routine to extract the compressed or encrypted
malicious code in memory. A limitation of our approach is that it does not work
for packed malware. The future work involves incorporating a generic unpack-
ing technique to detect even the packed malware and extending the signature
generation algorithm to better utilize API calls to reduce the error rate.

References

[1] Pietrek, M.: An In-Depth Look into the Win32 Portable Executable File Format,
in MSDN Magazine (March 2002)

[2] VX Heavens, http://vx.netlux.org
[3] Viruslist.com - Email-Worm.Win32.Borzella,

http://www.viruslist.com/en/viruses/encyclopedia?virusid=21991

[4] Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-
Aware Malware Detection. In: Proceedings of the 2005 IEEE Symposium on Se-
curity and Privacy, May 08-11, 2005, pp. 32–46 (2005)

[5] Marinescu, A.: An Analysis of Simile,
http://www.securityfocus.com/infocus/1671

[6] Sokal, R.R., Rohlf, F.J.: Biometry: The principles and practice of statistics in
biological research, 3rd edn. Freeman, New York (1994)

[7] Martignoni, L., Christodorescu, M., Jha, S.: OmniUnpack: Fast, Generic, and Safe
Unpacking of Malware. In: Twenty-Third Annual Computer Security Applications
Conference (ACSAC), Miami Beach, FL (December 2007)

[8] Guilfanov, I.: An Advanced Interactive Multi-processor Disassembler (2000),
http://www.datarescue.com

[9] Ferrie, P., Ször, P.: Zmist opportunities. Virus Bullettin (2001)

http://vx.netlux.org
http://www.viruslist.com/en/viruses/encyclopedia?virusid=21991
http://www.securityfocus.com/infocus/1671
http://www.datarescue.com

Signature Generation and Detection of Malware Families 349

[10] Bilar, D.: Statistical Structures: Tolerant Fingerprinting for Classification and
Analysis given at BH 2006, Las Vegas, NV. Blackhat Briefings USA (August
2006)

[11] Cohen, F.: Computer Virus: Theory and experiments. Computers and Security 6,
22–35 (1987)

[12] Chess, D.M., White, S.R.: An undetectable computer virus. In: Proceedings of
Virus Bulletin Conference (2000)

[13] Landi, N.: Undecidability of static analysis. ACM Letters on Programming Lan-
guage and systems (LOPLAS) 1(4), 323–337 (1992)

[14] Myres, E.M.: A precise interprocedural data flow algorithm. In: Conference Record
of the 8th Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages (POPL 1981), pp. 219–230. ACM Press, New York (1981)

[15] Christodorescu, M., Jha, S.: Static Anlaysis of Executables to Detect Malicious
Patterns. In: Proceeding of the 12th USENIX Security Symp (Security 2003), pp.
169–186 (August 2003)

[16] Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Static disassembly of obfus-
cated binaries. In: Proceedings of USENIX Security, San Diego, CA, pp. 255–270
(August 2004)

[17] Christodorescu, M., Jha, S., Krugel, C.: Mining Specification of Malicious Behav-
ior. In: Proceeding of the 6th joint meeting of the European Software Engineering
Conference. ACM SIGSOFT Symp. On ESES/FSE 2007 (2007)

[18] Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M.M., Lavoie, Y., Tawbi, N.:
Static Detection of Malicious Code in Executable Programs. In: Symposium on
Requirements Engineering for Information Security (SREIS 2001) (2001)

[19] Zhang, B., Yin, J., Hao, J.: Using Fuzzy Pattern Recognition to Detect Unknown
Malicious Executables Code. In: Wang, L., Jin, Y. (eds.) Fuzzy Systems and Knowl-
edge Discovery. LNCS (LNAI), vol. 3613, pp. 629–634. Springer, Heidelberg (2005)

[20] Peisert, S., Bishop, M., Karin, S., Marzullo, K.: Analysis of Computer Intrusions
Using Sequences of Function Calls. IEEE Transactions on Dependable and Secure
Computing (TDSC) 4(2) (April-June, 2007)

[21] Bergeron, J., Debbabi, M., Erhioui, M.M., Ktari, B.: Static Analysis of Binary
Code to Isolate Malicious Behaviors. In: Proceedings of the 8th Workshop on
Enabling Technologies on Infrastructure for Collaborative Enterprises, June 16-
18, 1999, pp. 184–189 (1999)

[22] Sun, H.-M., Lin, Y.-H., Wu, M.-F.: API Monitoring System for Defeating Worms
and Exploits in MS-Windows System. In: Batten, L.M., Safavi-Naini, R. (eds.)
ACISP 2006. LNCS, vol. 4058. Springer, Heidelberg (2006)

[23] Jesse, C., Rabek, R., Khazan, I., Scott, M., Robert, L., Cunningham, K.: Detection
of Injected, Dynamically Generated,and Obfuscated Malicious Code. In: Proc. of
2003 ACM workshop on Rapid Malcode (October 2003)

[24] Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A Sense of Self for Unix
Processes. In: IEEE Symposium on Security and Privacy 1996 (1996)

[25] Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A Fast Automaton-Based
Method for Detecting Anomalous Program Behaviors. In: IEEE Symposium on
Security and Privacy (2001)

[26] Peisert, S., Bishop, M., Karin, S., Marzullo, K.: Analysis of Computer Intrusions
Using Sequences of Function Calls. IEEE Transactions On Dependable and Secure
Computing 4(2) (April-June, 2007)

[27] Zhang, Q., Reeves, D.S.: MetaAware: Identifying Metamorphic Malware. In: Choi,
L., Paek, Y., Cho, S. (eds.) ACSAC 2007. LNCS, vol. 4697, Springer, Heidelberg
(2007)

Reducing Payload Scans for Attack Signature Matching
Using Rule Classification

Sunghyun Kim and Heejo Lee�

Korea University, Seoul 136-713, South Korea
{afshkim,heejo}@korea.ac.kr

Abstract. Network intrusion detection systems rely on a signature-based detec-
tion engine. When under attack or during heavy traffic, the detection engines need
to make fast decision whether a packet or a sequence of packets is normal or ma-
licious. However, if packets have a heavy payload or the system has a great deal
of attack patterns, the high cost of payload inspection severely diminishes the de-
tection performance. Therefore, it would be better to avoid unnecessary payload
scans by checking the protocol fields in the packet header first, before executing
their heavy operations of payload inspection. Furthermore, when payload inspec-
tion is necessary, it is better to compare attack patterns as few as possible. In this
paper, we propose a method which reduces payload scans by an integration of
processing protocol fields and classifying payload signatures. While performance
improvements are dependent on a given networking environment, the experimen-
tal results with the DARPA data set show that the proposed method outperforms
the latest Snort over 6.5% for web traffic.

1 Introduction

Intrusion detection is a set of techniques and methods that are used to detect suspicious
activities both at the network and host level. The process of intrusion detection aims
to find data packets that contain any known intrusion-related signatures or anomalies
related to the Internet protocols. Intrusion detection methods fall into two basic cate-
gories: signature-based intrusion detection and anomaly-based detection.

Signature-based detection is used to compare against activity in the network or host
with predefined signatures which are produced by an analysis of an attack or malicious
packets. This method relies on a database of attack signatures. Therefore, it is only
as effective as its database. Most signatures have patterns to search known attacks.
Anomaly-based intrusion detection, by contrast, utilizes a more generalized approach
when searching for and detecting threats in a network. A rule of normal behavior is
developed and when an event falls outside that norm, it is detected and logged. The
behavior is a characterization of the state of the protected system, which is a reflective of
the system health and is sensitive to attacks. In this context, an anomaly-based method
of intrusion detection has the potential to detect new or unknown attacks. In a manner
to similar to the signature-based method, anomaly-based intrusion detection relies on
information that signifies what is normal and what is an anomaly.

� Corresponding author.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 350–360, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reducing Payload Scans for Attack Signature Matching Using Rule Classification 351

Network Intrusion Detection System(NIDS) captures data from the network and ap-
plies rules to that data or detects anomalies. NIDS detects malicious activities such as
denial of service attacks, port scans or even attempts to hack into computers by moni-
toring network traffic. Based on a set of signatures and rules, after a match is found, the
detection system takes some actions, such as logging the event or sending an alarm to a
management console. Numerous studies about NIDS have attempted to rapidly decide
which packets are malicious.

Recently, a large number of signatures are associated with well known ports, such
as HTTP and SMTP. Also, because volume of multi-media data, such as video, file
download services of web sites and P2P services, is increasing at an amazing rate, the
cost of pattern matching in the packet payload is increasing. Therefore, to reduce the
cost of payload scanning, it is reasonable to check the protocol fields before searching
the payload to compare patterns. This is why we proposed the method whereby the
protocol fields have a great priority than the packet payload for signature matching. The
proposed method is similar to research on rule classification by protocol fields such as a
decision tree [8] or an evaluation tree [9]. However, our method calculates all possible
results, based on expected values of the protocol fields and makes small rule groups.
Thus, the payload inspection of the packets is performed only when it is necessary. Our
method has some advantages compared with previous methods, which are as follows:

• It processes the rules without considering the values of protocol fields.
• It is a flexible structure such that we can change the examining sequence of protocol

fields and add or remove some of the protocol fields.
• It is more effective to handle the complex rules.

The contribution of this study is to propose a new method of rule set classification
and the integrated processing of protocol signatures. In spite of additional overhead, it
can yield small rule groups and provide fast detection. In the remainder of this paper,
§2 briefly provides related works. §3 describes the proposed method. §4 analyzes the
performance. §5 presents experimental results. In §6, we summarize our experience.

2 Related Works

Just as a network packet consists of the header and the payload, the research about
signature matching can be classified into two categories. One is a pattern matching for
a packet data, which consists mainly of string matching. The other is the classification
of a rule set by the protocol fields. The former focuses on reducing the number of
rules to be searched by grouping, in other words classification or clustering. The latter
mainly focuses on the means to rapidly certain strings. We will briefly discuss some of
the methods for signature matching and explore Snort’s internal.

For the payload matching, several pattern matching algorithms have been proposed.
Among the single pattern matching, a well-known algorithm is the Boyer and More
algorithm [2]. It preprocesses the target string that is being searched for to generate a
table of mismatch skip values based on the pattern position involved in the mismatch.
Another well-known algorithm, Knuth-Morris-Pratt(KMP) [3] also preprocessed pat-
terns, to generate a look-up table that indicates how many positions the pattern can be
shifted to the right based on the position in the pattern where a mismatch occurs.

352 S. Kim and H. Lee

The multi-pattern matching method searches a text string for the occurrence of any
pattern in a set of patterns, using only a single iteration. A well known algorithm is the
Aho-Corasick(AC) algorithm [4] which preprocesses the set of patterns, to construct a
pattern matching machine based on a deterministic finite automaton (DFA). The match-
ing procedure works by reading successive characters from the input string, making
state transitions based on each character, and producing output after a complete pat-
tern is matched. The Wu-Manber algorithm [5], is based on the bad character heuristic,
which is similar to Boyer-Moore, but uses a one or two-byte bad shift table constructed
by re-processing all the patterns, instead of only one. Also it uses the hashing table to
index the patterns in the actual matching phase, thus saving a great deal of time. An-
other method, Exclusion-based signature Matching(E2xB) [6] is designed to provide
rapid negatives, when the search string does not exist in the packet payload.

At well as this, research about the classification of rules has progressed. Kruegel
and Toth proposed a decision tree method to improve signature-based intrusion detec-
tion [8]. In order to create an optimized decision tree, which is used to find malicious
events, using a minimum of redundant comparisons, this method uses a well-known
clustering algorithm which is applied in machine learning. The algorithm builds a de-
cision tree from a classified set of data items with different features using the notion of
information gain. Sinha et al [9] proposed an evaluation tree which determines which
rule groups are maintained in memory by choosing protocol fields and values recur-
sively. Initially, the method selects the protocol field that is most effective in rejecting
the rules, and then separates those groups by values of the chosen protocol field. After
forming groups for each of these values, the algorithm recursively splits the groups by
other protocol fields that reject at least a threshold number of rules, producing smaller
groups. By this means, it generates a hierarchy of protocol fields and values, for which
groups are maintained. As discussed above, these methods are used for IDSes’ detection
engines.

Among several NIDSes, Snort [1,10] is an open source network intrusion prevention
and detection system utilizing a rule-driven language, which combines the benefits of
protocol and payload signature. Snort is commonly used to actively block or passively
detect a variety of attacks and probes performing protocol analysis and content match-
ing. Snort considers rules to be composed of 2 components, a rule header and a rule
option. The rule header has predicates of the protocol fields. The rule option mainly
has strings for pattern matching, and other predicates. After parsing the rules, based on
the port, Snort makes 3 port groups, which consist of; a destination port group for rules
having a unique destination port, a source port group for rules having a unique source
port and a generic port group for rules without a unique destination port and source port.
Each port in a port group has two multi-pattern matchers. One is for content, which is a
keyword that searches for specific content in the packet payload. The other is for uricon-
tent, which is a keyword that searches the normalized request URI field. Also each port
has rule chains for rules without content or uricontent. A generic port group is copied
to other port groups for efficiency. Snort provides the Wo-manber and the Aho-corasick
pattern matching algorithm. When packets are going through, based on port number,
multi-pattern matchers of the corresponding port group are called. In the worst case, a
packet is scanned three times, once for the destination port group, once for the source

Reducing Payload Scans for Attack Signature Matching Using Rule Classification 353

port group and once for the generic rule group. In the best case, a packet is only scanned
once for one of the three groups. Snort only uses one protocol field for grouping rules.
Under the condition of a heavy payload or a large number of patterns, a great deal of
time is required for inspecting the payload. Our method integrates rules’ predicates into
each protocol field and pre-calculates all possible results. Because we inspect the pro-
tocol fields first, we avoid unnecessary payload scanning. In what follows, Our method
is discussed in detail.

3 Detection and Classification by Grouping Predicates

NIDS has been deployed behind a firewall which inspects network traffic passing through
it and denies or permits passage based on policy. Thus, a large number of signatures are
associated with specific ports. In table 1, based on our analysis of snort’s rules[1] (VRT
Certified Rules for Snort v2.7), among 6985 default rules related to TCP, 4935 (70%)
rules are associated with 3 destination ports(80,445,139) and 1 source port(80).

Table 1. Top 5 lists of Snort’s TCP rules classified by port

Our method integrates each predicate of protocol field used in the rule set into a
single data structure, we call a protocol filter, and calculates all possible results based
on the values of the protocol field in advance. After pre-calculating the results, it makes
small rule groups by the combination of the pre-calculated results. When a packet is
moving through the system, it searches each result based on value of a packet’s protocol
fields. Combining these results, it identifies a single pre-calculated rule group. Only
checking this rule group, our method can reduce the chance of payload scanning and
alleviates the load of pattern matching. Figure 1 shows our method briefly. We shall
explain this in more detail.

3.1 Formal Description

We will restrict our description to relationships of protocol fields. Let R be the set of n
rules, i.e., R = {r1, r2, ...rn}. Let F = {f1, f2,, fm} denote the set of m protocol
fields present in the rule set. Let Pfi = {p1

fi
, p2

fi
,, pk

fi
} denote the set of the predi-

cates associated with a protocol field fi in the rule set. Also let Vfi = {v1
fi

, v2
fi

, ..., vj
fi
}

denote the set of unique values which are extracted from a protocol field fi’s predicates
used in R and sorted in ascending order. A rule in R can be described as the rela-
tionship of predicates of protocol fields like rt = pj

f1

∧
pj

f2

∧
....pk

fm
. And a predicate

354 S. Kim and H. Lee

Fig. 1. Detecting and grouping by protocol filters

used in R can be presented like pj
fi

= fi

⊙
vk

fi
where

⊙
is an operator used in the

predicate(=,≤,≥,etc.). Based on values of fi, each predicate in Pfi can be true or false.
Likewise, based on each predicate results of Pfi , each rule in R can be false or true.
Therefore, Based on values of fi, each rule in R has various result. Let sj

fi
denote all

rules’ results depending on an element of Vfi . Let dom(fi) denote fi’s domain.
Like Figure 2, dom(fi) can be divided into (2k + 1)’s sub range or sub domain,

where k = |Vfi |. Let sj
fi

denote rule set’s result in the jth subrange of dom(fi). And

we describe Sfi = {s1
fi

, s2
fi

,s2k+1
fi
} to present the set of all possible results which

depend on all values of fi. We can find the all results of the rule set by each value of the
protocol field fi used in the rule set in advance. Based on values of fi, Pfi is decided and
then depending on Pfi , which rules among r1, r2, ...rn is matched or not is determined.
s2j

fi
of Sfi has the results of r1, r2, ...rn regarding to vj

fi
of Vfi . Likewise, s2j+1

fi
of

Sfi has the results of r1, r2, ...rn depending on all values between vj
fi

and vj+1
fi

of Vfi .

Because the rule set includes vj
fi

, we can calculate sj
fi

. Also, we can compute s2j+1
fi

if we generate any value which is included in between vj
fi

and vj+1
fi

. The proposed
method is to pre-calculate possible results, i.e., Sfi and stores them for decision about
rules’ matching.

Fig. 2. Rules’ results based on values of the protocol field fi

For example, if r1 has a predicate for destination port, like p1
dport = {dport, >, 3},

r1 obtains 3 results which is one for values of less than 3, one for a value of 3, and one
for values of greater than 3. If r2 having a predicate for destination port, like p2

dport =
{dport, =, 6}, is added, r1 and r2 can obtain 5 results which is one for values of less
than 3, one for a value of 3, one for values of greater than 3 and less than 6, one for

Reducing Payload Scans for Attack Signature Matching Using Rule Classification 355

values of 6, and one for values greater than 6. The number of results of the rule set
including a predicate of protocol field fi is 5 because of 2 ∗ n|Vfi |+ 1.

3.2 Detection by Protocol Filters

As has demonstrated, we pre-calculate all the rules’ results and save them into an array
data structure, so called a protocol filter. Figure 3 shows the proposed method. When
a packet is reached, based on the value of the packet’s protocol field, we search the
results of the rule set in protocol filters. Based on the combined results of the rule set,
we identify whether the packet need a payload scan or not. For example, we have two
rules similar to Snort’s rule such as the following.

r1: alert tcp 10.1.1.1 25 –>!$HOME NET 80 . . . ;content:login;. . .
r2: alert tcp 20.1.1.1 1024:2024 –>$HOME NET !143 . . . ;content:root;. . .

Fig. 3. Detection using protocol filters

Figure 4 shows in detail the proposed method. Let’s make the protocol filter for
destination port with r1 and r2. If a packet’s destination port is less than 80, greater than
80 and less than 143, or greater than 143, only r2 is matched. In case of the destination
port 80, both rules are matched. However, for port 143, both rules are not matched.
We represent the rules’ result as bit strings. We call this structure ”protocol filter”.
We made the protocol filter for the source port in the same way. In this case, we only
used two protocol fields and made two protocol filters. When a packet P1 is moving
through, we search for the results of rules in protocol filter based on protocol field’s
value. If we obtain all corresponding result bit strings of the protocol filters, the final
result is decided by ‘AND’ bit operation to each result bit strings. The other predicates
including pattern matching are indexed by the position of bit strings. Based on value of
bits, we filter out unnecessary rules.

356 S. Kim and H. Lee

Fig. 4. Example of protocol filters

As well as reducing the cost of payload searching, the proposed method has the ad-
vantage that upon execution. It only performs search operation, irrespective of the rule
set’s predicates. Therefore, the greater the complexity of rules’ predicates, the better the
performance. Also, because protocol filters do not have a fixed order, we can change the
search order. For example, if we can obtain information that a certain protocol field can
drop early normal packets, we can change the checking order of protocol filters.

3.3 Grouping by Protocol Filters

As noted previously, a protocol filter for fi provides the integrated processing of pred-
icates and result of the rule set related to fi. Taking this idea further, if we calculate
all combinations of protocol filters for f1,f2, . . . fm in advance, we obtain all possible
results of the rule set, i.e., Sf1 , Sf2 , ...Sfm . The maximum number of these results is 2n

if there are n rules.
In Figure 4, when we have two rules, we can make the maximum four distinct results

of the rule set, because of 22. However, if we calculate the combination of 2 protocol
filters’ result bit strings, we can obtain 2 result bit strings such as ‘01’,‘10’. Based on
the number of result bit strings, we can classify rules into 2 small groups. We ignore
result ‘00’, which means all rules are not matched and ’11’, which is impossible results
bit strings. The reason we do not make rule groups as much as 2n, is that we can remove
unnecessary rule groups by a combination of protocol filters. The greater the number of
results, the smaller number of rules in a group. The rule grouping by protocol filters can
easily tune the degree of grouping. Whereas smaller rule groups are made when many
protocol filters are used, larger rule groups are made when few protocol filters are used.
By contrast, the overhead of protocol fields matching is proportional to the number of
protocol filters.

4 Performance Analysis

The proposed method is based on the fact that, in general, pattern matching of payload
needs more processing time than protocol fields matching. In the case of TCP, while
the packet header has 20 bytes without option, the packet data can have 1460 bytes,

Reducing Payload Scans for Attack Signature Matching Using Rule Classification 357

considering MTU(Maximum Transmission Unit). The size of the packet data and values
of the protocol field depend on network environment. Therefore, if a packet has little or
no data, checking the payload first can yield inferior results. Also the number of patterns
which affects performance can be scattered in proportional to the number of protocol
fields used in grouping. We analyze performance these two aspects.

We compare a single protocol field grouping with multiple protocol fields grouping.
To simplify our analysis, we assume that rule set, R, has n rules and that each rule has
a single predicate of f1, f2, ..., fm. So, every rule has m predicates. As noted above,
Vfi is the set of unique values which are extracted from a protocol field fi’s predicates
used in R and Pfi is the set of the predicates associated with a protocol field fi used in
R. In addition, let Dfi denote fi’s domain and let Afi denote all fi’s value ranges used
in Pfi . If fi’ value is within Afi , at least one among Pfi satisfy the predicate. In the
case of a single protocol field grouping, the average rule count of subgroups is n

|Vfi
| and

probability of payload scanning is
Afi

Dfi
. However, if we make rule groups with multiple

protocol fields, such as f1, f2, . . . fm, the average rule count of subgroups is n
∏

k
i=1 |Vfk

| .
In a manner similar to the average rule count of subgroups, the probability of payload
scanning is

∏k
i=1(

Afi

Dfi
). Clearly, the more protocol fields are used, the few rules are

included in a subgroup and the lower the probability of payload scanning is. Small rule
groups mean few patterns to search in the payload, in other words, the pattern match
engines have a light work load.

For example, if rules are grouped only by the destination port, n rules can be scat-
tered with 216 because the destination port has 2 bytes. However, if rules are grouped by
a combination of the destination port, source port, destination IP and source IP, which
consist of 12 bytes, n rules can be scattered with 296. Also, the probability of payload
scanning for subgroups is lowered in the same manner. However, the performance of the
proposed method is strongly dependent on the environment of network and distribution
of rules.

5 Experiments

To implement the proposed method, we have modified Snort version 2.7.0.1. The ex-
perimental platform is a personal computer with a Pentium 4 Core 2 6,400 CPU and 3
Gbytes RAM. We used the Linux operating system, Fedora 6.

The rule set used for the experiments consisted of only the TCP rules among the
VRT Certified Rules for Snort version 2.7. We used well-known data sets, the DARPA
Intrusion Detection Evaluation Data Set from MIT Lincoln Lab [11]. We analyzed three
types of the DARPA data files and selected ports which have a large number of rules and
frequently appeared in data files at the same time. Table 2 shows the average payload
size and the percentage of several destination ports in data files.

We made 4 protocol filters using destination port, source port, destination IP, and
source IP. Table 3 shows how the rule set can be grouped by 4 protocol fields, compare
to Snort’s a single protocol field grouping. In the case of the destination port 80, whereas
Snort makes one port group with 2026 rules, the proposed method make 4 small groups.

358 S. Kim and H. Lee

Table 2. Destination port’s characteristics of DARPA data set

Table 3. Rule classification by protocol fields

Table 4. CPU times of DARPA data set

We used the default IP address setting, consisting of only a home net and an external
net. Therefore, the effect of the grouping rules was tiny.

After the method was executed 10 times, we recorded the average time of detection.
We only evaluated the packets over 20 bytes which is the TCP header size, considering
overhead. In Table 4, the proposed method improved the processing time to various

Reducing Payload Scans for Attack Signature Matching Using Rule Classification 359

degrees, compared with Snort. In the case of port 80 and port 25, improved performance
results from the port’s small rule groups, because the proportion of packets that skipped
payload inspection is below 0.01%. In the other cases, improvement of port 23 and port
139 results from skipped payload inspection, because the proportion of skipped packets
is between 37% and 100%. In the case of data file LLDOS1.0 and 139 port, while all
packets have the external network addresses in the source IP field, all rules have the
internal network addresses in the source IP field. Thus the protocol filters dropped all
packets without payload inspection. Clearly, grouping by multiple protocol fields can
improve performance in that the amount of pattern matching and the probability of
payload scanning are reduced. Because of a packet’s payload size and the distribution
of the protocol fields’ values, there will be a variety of results. If we use the more
protocol fields to classify a rule set, we can make the smaller rule groups and avoid
a great number of payload scanning. Also if the packets have a heavy payload, the
performance will be much better.

6 Conclusions

In this paper, we proposed the method to reduce the cost of payload matching. The
proposed method involves integrated detection of protocol fields and the separation of
a large signature group into several small signature groups, by multiple protocol fields.
The effect of the proposed method can be various depending on rules and packets.
However, the proposed method can reduce the payload scanning for patterns matching
and reduce the number of patterns for packets to check, because packets which do not
match protocol fields can be dropped before payload scanning. In addition, the pro-
posed method is independent of a predicate’s operand, because of the pre-calculation of
all the predicates. Also this allows a detailed rule description, which enables us to easily
represent complex and complicated predicates. Unfortunately, it suffers from rule repli-
cation and bit operation overhead. However, the memory requirement can be tolerated
by system, if we use only some overloaded rule groups. For a bits operation, if we adapt
the proposed method to only heavy payload packets, the advantage generally more than
compensates for the overhead. In the future, we intend to include some protocol fields
which are frequently used in rules and can reject packet early. Also we will evaluate our
method in real network environments.

Acknowledgments

This work was supported in part by the ITRC program of the Korea Ministry of Knowl-
edge Economy. Additionally supported by a Korea University Grant.

References

1. Snort: Open source Network Intrusion Detection System, http://www.snort.org
2. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of the ACM 20,

762–772 (1977)

http://www.snort.org

360 S. Kim and H. Lee

3. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM Journal of
Computing 6, 323–350 (1977)

4. Aho, A.V., Corasick, M.J.: Fast pattern matching: an aid to bibliographic search. Communi-
cations of the ACM 18, 333–340 (1975)

5. Wu, S., Manber, U.: A Fast Algorithm for Multi-Pattern Seaching, Technical Report TR-94-
17, Department of Computer Science. University of Arizona (May 1994)

6. Wang, X., Li, H.: Improvement and Implementation of Network Intrusion Detection System.
Journal of Communication and Computer, 49–52 (January 2006)

7. Fisk, M., Varghese, G.: Fast Content-Based Packet Handling for Intrusion Detection, UCSD
Technical Report CS2001-0670. University of California, San Diego (May 2001)

8. Kruegel, C., Toth, T.: Using Decision Trees to Improve Signature-based Intrusion Detection.
In: Vigna, G., Krügel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 173–191.
Springer, Heidelberg (2003)

9. Sinha, S., Jahanian, F., Patel, J.M.: WIND:Workload-Aware INtrusion Detection Recent
Advances in Intrusion Detection. In: Zamboni, D., Krügel, C. (eds.) RAID 2006. LNCS,
vol. 4219, pp. 290–390. Springer, Heidelberg (2006)

10. Roesch, M.: Snort: Lightweight Intrusion Detection for Networks. In: Proc. of the USENIX
LISA 1999 Conference, pp. 229–238 (November 1999)

11. McHugh, J.: Testing Intrusion Detection Systems: A Critique of the 1998 and 1999 DARPA
Intrusion Detection System Evaluations as Performed by Lincoln Lab. ACM Trans. Informa-
tion and Systems Security(TISSEC) 3(4), 262–294 (2000)

12. Commentz-Walter, B.: String Matching Algorithm Fast on the Average. In: Proc. of the 6th
International Colloquium on Automata, Languages, and Programming, pp. 118–132 (1979)

13. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Computer Net-
works 31(23-24), 2435–2463 (1999)

14. Sommer, R., Paxson, V.: Enhancing byte-level network intrusion detection signatures with
context. In: Proc. of the 10th ACM Conference on Computer and Communication Security
(CCS 2003), pp. 262–271 (October 2003)

15. Kruegel, C., Toth, T.: Automatic rule clustering for improved signature-based intrusion de-
tection, Technical report, Distributed systems group:Technical Univ. Vienna, Austria (2002)

16. Dreger, H., Feldmann, A., Mai, M., Paxson, V., Sommer, R.: Dynamic Application-Layer
Protocol Analysis for Network Intrusion Detection. In: Proc. of the 15th USENIX Security
Symposium, pp. 257–272 (July 2006)

17. Allen, W.H.: Mixing Wheat with the Chaff: Creating Useful Test Data for IDS Evaluation.
IEEE Security & Privacy, 65–67 (July 2007)

18. Antonatos, S., Anagnostakis, K.G., Polychronakis, M., Markatos, E.P.: Performance analy-
sis of content matching intrusion detection systems. In: Proc. of the 4th IEEE/IPSJ SAINT
(January 2004)

19. Mell, P., Hu, V., Lippmann, R.: An overview of issues in testing intrusion detection systems
(June 2003),
http://csrcnist.gov/publications/nistir/nistir-7007.pdf

http://csrcnist.gov/publications/nistir/nistir-7007.pdf

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 361–375, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Implicit Detection of Hidden Processes with a
Feather-Weight Hardware-Assisted Virtual Machine

Monitor

Yan Wen1, Jinjing Zhao2, Huaimin Wang1, and Jiannong Cao3

1 School of Computer, National University of Defense Technology,
Changsha, China

wenyan@nudt.edu.cn, whm_w@163.com
2 Beijing Institute of System Engineering, Beijing, China

misszhaojinjing@sina.com.cn
3 Department of Computing, Hong Kong Polytechnic University,

Kowloon, Hong Kong, China
csjcao@comp.polyu.edu.hk

Abstract. Process hiding is a commonly used stealth technique which facilitates
the evasion from the detection by anti-malware programs. In this paper, we
propose a new approach called Aries to implicitly detect the hidden processes.
Aries introduces a novel feather-weight hardware-assisted virtual machine
monitor (VMM) to obtain the True Process List (TPL). Compared to existing
VMM-based approaches, Aries offers three distinct advantages: dynamic OS
migration, implicit introspection of TPL and non-bypassable interfaces for
exposing TPL. Unlike typical VMMs, Aries can dynamically migrate a booted
OS on it. By tracking the low-level interactions between the OS and the
memory management structures, Aries is decoupled with the explicit OS
implementation information which is subvertable for the privileged malware.
Our functionality evaluation shows Aries can detect more process-hiding
malware than existing detectors while the performance evaluation shows
desktop-oriented workloads achieve 95.2% of native speed on average.

Keywords: Virtual machine monitor, stealth malware, hardware-assisted
VMM.

1 Introduction

Over the past few years more and more desktop PC users are willing to download and
execute freeware/shareware to benefit from the rich software resource on the Internet.
Stealth malware programs which may be accompanied with the downloaded untrusted
software are becoming a major threat to the Internet users [1]. The term “stealth
malware” refers to a large class of software programs that try to hide their presence
from the resource enumeration utilities commonly used by computer users and
malware detectors. Hackers have proposed many stealth techniques among which
process hiding is the most widely used one. According to statistics released by

362 Y. Wen et al.

Microsoft’s widely deployed Malicious Software Removal Tool [2], a significant
fraction of the malware it encounters and removes consists of stealth rootkits with the
capability of process hiding [3]. Thus, the ability to detect process-hiding malware is
a clear advantage in the race to protect the computers against stealth malware.

The most effective mechanism to detect hidden processes is so-called cross-view
validation [4]. It works by observing the process list from two perspectives and finding
out the inconsistencies between them. One view is retrieved from an untrusted, high-
level point. The other is obtained from within a lower layer in the system that is
unlikely to have been tampered by malware. So, this information is considered
trustworthy. If a process exists in the trusted view but does not appear in the untrusted
view, a cross-view detector can draw a conclusion that the process has been hidden.

A significant challenge of cross-view validation is the inevitable race that develops
between attackers and defenders to control the lowest reaches of a system. Obviously,
cross-view validation will fail if an attacker subverts the level from which the trusted
view is obtained.

From the defense point of view, building cross-view validation based on the
explicit OS kernel data structures is not resistant against the attacks from the
privileged malware [5-7]. Compared to these host-based methods, VMM-based
mechanisms are better shielded from malicious attacks in virtue of their location in an
isolated virtualization layer [8]. However, the OSes within the VMs cannot reproduce
the environment of the underlying preinstalled host OSes, which are just the
protecting concern on the PC platforms. In other words, they only deal with the OS
deployed in the VM instead of our daily used host OS. Moreover, to retrieve the
trusted view, existing VMM-based cross-view validators assume that the VMM has
detailed implementation information about the OSes they observe [9; 10]. Such
approaches dependent on explicit information are effective, but still susceptible to
evasion by the privileged malware which has compromised the guest OS.

In this paper, we propose a new VMM-based cross-view validation approach called
Aries for detecting hidden processes. Aries introduces a novel lightweight hardware-
assisted Type I VMM [9] to deprivilege a running preinstalled OS and obtain the
trusted view from deep within the VMM. Compared to previous VMM-based
approaches, Aries holds three unique advantages: dynamic OS migration, implicit
introspection of TPL and non-bypassable interfaces for exposing TPL.

Dynamic OS migration. The Aries VMM named with AriesVMM is a lightweight
VMM based on the hardware-assisted virtualization technology, such as Intel
Virtualization Technology (Intel VT) [10] and AMD Virtualization (AMD-V) [11].
Unlike typical VMMs which have to be started up before they construct their guest
VMs, AriesVMM can migrate a running OS on it on-the-fly. The migrated OS can
switch between native mode and migrated mode dynamically. In the native mode, the
OS just runs above the naked computer hardware without any performance penalty. In
the migrated mode, Aries will activate the hidden process detection mechanism while
only imposes acceptable performance overhead. Thus, Aries provides the capability of
detecting the process-hiding malware in the preinstalled OS.

Implicit introspection of TPL. Aries adopts a novel technology to facilitate the
implicit introspection of TPL. By monitoring low-level interactions between OS and the
memory management components, AriesVMM can accurately determine when an OS

 Implicit Detection of Hidden Processes 363

creates processes and destroys them. With this implicit introspecting technology, we
decouple Aries from the subvertable explicit OS data structures. So, Aries can detect
more process-hiding malware than existing anti-malware programs.

Non-bypassable interfaces for exposing TPL. Aries also provides a set of non-
bypassable interfaces for providing TPL to the security services or other system tools,
such as stealth malware detector and so on. The information about hidden processes
will enable a more effective malware analysis.

In view of the prevalent combination of Windows and Intel on the PC platforms,
Aries has been firstly implemented on Windows with VT-supported Intel x86
processors. Our experimental results with real-world rootkits which are widely applied
to hide processes demonstrate Aries’ unique detection capability. The performance
evaluation, including CPU, graphic 2D, graphic 3D and memory, presents that Aries
exacts only a reasonable performance overhead to the migrated OS, 4.8% on average.

The rest of the paper is organized as follows. Section 2 discusses the architecture
of Aries. In section 3, we firstly outline the Intel VT technology, and then describe the
implementation details about how Aries achieves the three advantages. Section 4
provides an evaluation for Aries, including functionalities and performance. Section 5
reviews previous related works. Section 6 discusses the potential attack against Aries
and our solutions. We summarize the main features of Aries and introduce the future
work in the last section.

2 Overview

Most of existing VMM-based security services are built on the Xen VMM [12], an
open source Type I VMM [9]. A Type I VMM just runs above a bare computer
hardware platform. It tends to be implemented as a lightweight OS with the
virtualization capabilities. A Type I VMM has to be started before they create the
guest VMs, viz., every OS should run above a VM. Unlike the mainframes that are
configured and managed by experienced system administrators, desktop PC’s are
often preinstalled with a standard OS and managed by the end-user. Ignoring the
difficulty of proposing a practical and seamless migration approach for the PC
platforms, it will maybe take several years to migrate all of them to the Type I VMM.

Fig. 1. The Architecture of Aries

364 Y. Wen et al.

It also might be unacceptable for a PC user to completely replace an existing OS with
a Type I VMM.

In contrast, instead of introducing multiple OSes running above relevant VMs to
serve as the execution environments we will introspect on, Aries switches the booted
OS, the only OS in the execution model of Aries, between two states: native mode and
migrated mode, as shown in Fig 1.

In the native mode, the OS runs just above the bare computer hardware,
consequently it does not suffer from any performance degradation. If the users wish to
detect the potential hidden processes, Aries will switch the booted OS to the migrated
mode. In this mode, Aries will activate the hidden processes detecting and exposing
mechanism. If a process has been hidden, it will not appear in the untrusted list but
exist in a suitably obtained TPL.

Aries obtains TPL from within the AriesVMM. Aries differs from the existing
VMM-based approaches, such as VMI [13], in the way how to obtain TPL. Previous
approaches exploit detailed information about the location and semantics of private
kernel data structures to retrieve a low-level process list. Contrarily, True Process List
Introspector of Aries obtains its low-level information implicitly, i.e., no detailed
implementation information about the OS is required. Aries uses a technology to
implicitly obtain the information about process creations and exits by observing
closely related events, i.e., virtual address space creation and destruction. With Intel
VT enabled, such information about virtual address spaces is explicitly visible for
AriesVMM by tracking CR3 register on Intel x86 processors.

Aries obtains its untrusted view of processes just like other common applications
running in this OS. As a result, anti-Aries malware cannot judge accurately whether a
query is invoked by Aries.

Aries obtains the untrusted process lists at short random intervals. A window of the
most recent samples is preserved for use in hypothesis testing. The size of the window
and the sample interval are configurable. In our implementation, samples are obtained
every one second.

To reveal the Hidden Process List securely, Aries provides a set of Non-bypassable
Exposure Interfaces. The communication requests are sent by issuing port I/O
instructions (in/out on Intel processors) with Aries-specific port number. With Intel
VT enabled, the execution port I/O instructions will generate traps which can be
caught by AriesVMM immediately. AriesVMM responses such requests by returning
the input-relative information through the specific registers. The trap/catch operations
sequences cannot be intercepted with Intel VT support. Thus, AriesVMM constructs a
non-bypassable communication channel with the applications which wish to get the
hidden processes information.

3 Implementation

The architecture of Aries discussed in Section 2 is obvious OS-independent and also
independent of the hardware-assisted virtualization technologies. However,
considering the prevalence of Windows and Intel processors on the desktop PCs, we
firstly implement Aries on Windows with VT-supported Intel x86 processors. In this
section, we will briefly introduce the framework of the Intel VT technology, and then

 Implicit Detection of Hidden Processes 365

describe the details about how we accomplish the three key features: dynamic
migration, implicit detection of hidden processes and non-bypassable communication
interfaces.

3.1 Intel VT Framework Overview

Intel virtualization technology includes VT-x support for the IA-32 processor
virtualization and VT-i support for the Itanium architecture [10]. AriesVMM is just
built based on Intel VT-x.

VT-x augments IA-32 processors with two new forms of CPU operation: VMX root
operation and VMX non-root operation. VMX root operation is intended for use by a
VMM. VMX non-root operation provides an alternative IA-32 environment
controlled by a VMM and designed to support a VM. Software running in VMX non-
root operation is deprivileged in certain ways, regardless of privilege level. VT-x
defines two new transitions: a transition from VMX root operation to VMX non-root
operation—that is, from VMM to guest—called a VM entry, and a transition from
VMX non-root operation to VMX root operation—that is, from guest to VMM—
called a VM exit. VM entries and VM exits are managed by a new data structure
called the Virtual Machine Control Structure (VMCS).

Processor behavior is changed substantially in VMX non-root operation. The most
important change is that many instructions and events cause VM exits. Some
instructions (e.g., CPUID, INVD, MOV from/to CR3) cause VM exits unconditionally
and thus can never directly be executed in VMX non-root operation. Other
instructions (e.g., CLTS, HLT, INVLPG) and all events can be configured to do so
conditionally using VM-execution control fields in the VMCS.

3.2 Dynamic OS Migration with AriesVMM

There are two key issues in implementing the AriesVMM: managing the VMCS
region and handling the VM exit events. Aries deals with two types of VM exit
events: modifying CR3 and executing I/O port instructions. Accordingly, the former
indicates the virtual address space switches while the latter is used to establish the
non-bypassable communication channel.

The instruction flow of dynamic migration is illustrated in Fig 2. The central
functionality in AriesVMM is a loop of VMLAUNCH/VMRESUME followed by
VM exits processing. AriesVMM initiates guest operation by issuing VMLAUNCH,
providing the appropriate VMCS configuration. Execution of the guest continues until
a conditional/unconditional VM exit occurs. The guest state, including the reason for
VM exit, is placed in the guest-state area of the VMCS. AriesVMM may emulate,
deny, or alter the execution of the intercepted instruction by making changes to the
VMCS.

As explained in Fig 2, AriesVMM runs in VMX root operation. The migrated OS
runs in VMX non-root operation, so it is more restricted, meaning that certain actions
will cause a VM exit to occur. AriesVMM works out TPL and exposes the hidden
processes just in the VM exit handlers.

366 Y. Wen et al.

Fig. 2. Instruction Flow of Dynamic Migration

Load AriesVMM. To execute the privileged Intel VT-x instructions, AriesVMM
should be implemented as a Windows kernel driver and loaded by the Windows
driver management APIs.

Enable VMX Operation on All Processors. For IA-32 processors, Intel adds a part
to the CR4 control register to enable VMX or not. Therefore, we must set this bit to
enable VMX on the processor. Then we create a VMXON region in a non-pageable
memory block and align it to a 4-byte boundary. The VMXON region must be hosted
in cache-coherent memory. Finally, we issue VMXON with the physical address of
the VMXON region to enable VMX operation. This process must be repeatedly
executed on all the logical processors.

Prepare VMCS. After calling VMXON, the processor is now in VMX root
operation. We then create a VMCS region in non-pageable memory pages and
initialize the version identifier in the VMCS. The next operations are to initialize the
VMCS properly for CR3 register tracking and communicating through
reading/writing Aries-specific I/O port.

 Implicit Detection of Hidden Processes 367

Referring to the Intel VT-x specification, the instruction of reading CR3 will cause
VM exit unconditionally while writing CR3 triggers VM exit event conditionally via
setting CR3-target count in VMCS to 0. The I/O bitmap in VMCS defines the port
numbers through which the I/O operations will incur VM exits. In fact, there are two
4KB I/O bitmaps, A and B, which control I/O instructions on various ports.
Respectively, bitmap A manages the ports from 0000 to 7FFF while bitmap B is in
charge of the ports in the range of 8000-FFFF. We only set the bits for the Aries-
specific port (0x7981 in our prototype) through which the covert communication
channels of Aries is constructed.

Then, we call VMWRITE to initialize various guest-state area fields in the working
VMCS. This sets up the context and entry-point for guest execution upon VM entry.
Finally, we set stack point (ESP), instruction pointer (EIP) for both host and guest
execution context.

Launch VM. After the above complex preparations, we can now launch VM just by
invoking the instruction of VMLAUNCH.

VM Exit Handlers. After setting the relevant fields in VMCS, the instructions
writing CR3 or the I/O instructions accessing Aries-specific port will incur VM exits.
AriesVMM will catch these exit events to track CR3 modification and transfer data
through specific I/O port. The implementation details of these two types of exiting
handlers will be described in Section 3.3 and 3.4.

Disable VMX Operation on All Processors. If the users desire to switch back to the
native mode, AriesVMM will release all allocated memory resource and invoke
VMXOFF on all processors.

3.3 Implicit Detection of Hidden Process

The detailed description about how we implement the implicit detection of hidden
process has been presented in our previous work [14]. This section only presents the
framework of this technology.

The key to figure out TPL is being aware of the process creation and destruction.
Intel x86 processors use a two-level, in-memory, architecturally-defined page table.
The page table is organized as a tree with a single fixed-sized, commonly 4KB,
memory page called the page directory at its root. Each 4-byte entry in the page
directory can point to a 4KB page of the page table for a process. A page directory
serves as the root of the page table tree that describes each address space. A single
address space is active per processor at any given time. The address of the page
directory is therefore characteristic of a single address space.

Examining existing community OSes supporting x86 processors, they informs the
processor’s memory management unit (MMU) that a new address space should become
active by writing the physical address of the page directory for the new address space
into a specific control register - CR3 register for x86 processors. This mechanism
facilitates the implicit awareness of the process activating behavior. With Intel VT
enabled, accessing to CR3 register will trigger a VM exit event to enter into the VMX
root operation. AriesVMM will catch such events and retrieve the new CR3 value.
Based on tracking the process activating/deactivating indicated via the CR3 changes,

368 Y. Wen et al.

Input: AriesVMM State, New CR3 Value
Output: None
Method:

1. if New CR3 Value refers to the System process
2. for all existing processes in TPL
3. Remap the EPROCESS address of the process;
4. if the remapped mapped page is set un-present
5. Remove this process from TPL;
6. break;
7. end if
8. end for
9. else
10. if New CR3 Value is not present in TPL
11. Create a new tree node to contain the information for this new process;
12. Insert this node into TPL;
13. Retrieve the OS-level semantic information of this process;
14. else
15. Update the schedule count of this process;
16. if the OS-level semantic information of this process has not been

initialized
17. Retrieve the OS-level semantic information of this process;
18. end if
19. end if
20. end if
21. End Algorithm Introspecting True Process List

Fig. 3. Introspecting True Process List

Aries works out TPL. An outlined description of TPL introspection algorithm is listed
in Fig 3.

In addition, Aries should map a PUID to an OS-understandable process ID for the
malware detectors which use it to get the detailed process information. We select the
process Id which is widely used by Windows API as the OS-understandable process
ID. When detecting a process creation, we call the kernel function
PsGetCurrentProcessId and PsGetCurrentProcess to retrieve the process Id and
EPROCESS (the kernel data structure containing the process information). Then we
create a list entry for them and their key (PUID) in TPL.

Thus, with the accurate trace of process creation and destruction, AriesVMM
implements the capability of retrieving TPL at virtualization-layer.

To construct the untrusted process view, we call a Windows native API, namely
ZwSetSystemInformation, with a process information related parameter termed of
SystemProcessesAndThreadsInformation to enumerate all the processes. This is the
most common API to list the running processes. In Aries implementation, untrusted
process view is sampled every one second and then subtracted from TPL to generate
the hidden process list.

 Implicit Detection of Hidden Processes 369

From the security point of view, anti-Aries malware cannot ascertain whether an
API call is issued by AriesVMM because AriesVMM invokes this function just in the
process contexts of other common applications. So this is infeasible to bypass
AriesVMM by hooking the APIs used by AriesVMM.

3.4 TPL Exposure Interfaces

To reveal the hidden process list to the applications, Aries provides a set of non-
bypassable interfaces. This mechanism enables a more effective post-mortem mal-
ware analysis. These interfaces are implemented by issuing I/O instructions (in/out in
Intel processors) with Aries-specific port number. As discussed in Section 3.2, the
execution of I/O port instructions will be caught by AriesVMM. AriesVMM returns
the input-relative information through specific registers. The basic communication
framework can be described with the following assembly code.

// for the application retains information
MOV EAX, 0x79068104; // set magic number
MOV ECX, Command Number;
MOV DX, 0x7981; // Aries-specific port
IN EAX, DX;

// For the AriesVMM VM exit handler for I/O port
MOV Register, ReturnResult // function-specific

In the above snippet, the program first loads the hexadecimal value 0x79068104,
acting rather like a fixed password for the channel, into register EAX. Next, it loads
the value into register ECX, which will tell the Aries communications channel what
the application wants to do. We then load into register EDX a value of 0x7981, a
specialized I/O port for Aries. Finally, the program is ready to retrieve the information
of the hidden processes from Aries by using the IN instruction.

Aries has provided two functions through these interfaces.

Enumerating the process IDs of hidden processes. Process ID is the OS-wide unique
identifier for a process. With process ID, user-mode programs can open a process and
obtain the process-related information. The applications should input the address of a
page-aligned memory area, which is to contain the snapshot of the hidden process
IDs, through EBX. Then Aries will copy the ID list to this memory area directly
through physical memory page access, and then set ECX the count of the IDs. If this
memory region is not enough for the current ID list, Aries will also set ECX the count
of the IDs but set EBX 0xFFFFFFFF and return. In this case, the application should
allocate more memory pages and try again. It’s maybe easier to transfer hidden
process IDs by returning them through a register one by one, but it will likely fail to
achieve the state consistency of a running OS because of the frequent processes
creation and destruction.

Retrieving the indicated process information. Although the Aries has exposed the
hidden process IDs to the user-mode applications, these applications perhaps still
cannot get the relevant process information because some malware may have
intercepted the process-related APIs. So, Aries also provides an API-independent way
to obtain the process information. All the process-related information indeed can be

370 Y. Wen et al.

obtained from kernel mode, such as EPROCESS on Windows. Aries implements an
interface to copy these contents to the use-mode applications. They can be easily
dissected according to the detailed definitions in Windows Driver Development Kit.
The information transferring is accomplished similar with previous function.

4 Evaluation

Our testbed host is a notebook PC, containing Intel Core 2 Duo CPU T7300 2.0GHz
with VT-x enabled, and 2G bytes memory. The host OS are Windows XP SP2.

Hidden Processes Detection. We also evaluate Aries with five popular process-hiding
rootkits. Aphex [15] modifies the Import Address Table entry for the
ZwQuerySystemInformation API to intercept the process list queries . Hacker Defender
[16] also hijacks the queries with another technique: tempering the first few machine
codes of NtQuerySystemInformation with a “jmp” instruction. FU [17] hides a process by
using so-called Direct Kernel Object Manipulation (DKOM) technique to remove its
corresponding entry from the Active Process List (a kernel data structure in Windows).
FUTo [5] (an improved version of the FU rootkit) has the added ability to manipulate
the PspCidTable without using any function calls. The PspCidTable is a “handle table
for process and thread client IDs”. Every process’s Id corresponds to its location in
the PspCidTable, i.e., the job of the PspCidTable is to keep track of all the processes
and threads. PE386 proposed another powerful DKOM-based process-hiding rootkit
called phide_ex [18] which have bypassed several existing hidden process detectors.

We compare Aries to the anti-rootkit programs recommended by Anti Rootkit
Group [19], including F-Secure BlackLight 2.2 [20], DarkSpy 1.0.5 (normal and super
mode) [21], IceSword 1.20 [22], RkUnhooker 3.7.3 [23], UnHackMe 4.6 [24], GMER
1.0 [25], KProcCheck 0.2 [26], Process Hunter 1.1 [27] and TaskInfo 6.2 [28].

The first two rootkits, Aphex, Hacker Defender, can be found out by using the
Active Process List as the truth. FU can be detected by all the above anti-rootkit programs
while Icesword and F-Secure Blacklight fail to find the FUTo-hiding processes. Aries can
detect all the processes hidden by the above five rootkits. Evaluation results show that Aries is the
only detector which can identify the hidden process of phide_ex (phide_ex.exe).

Performance Overhead. To measure the time discrepancies due to the operation of
tracking CR3 modification, we use the familiar UNIX kernel microbenchmark
forkwait and port it to Windows, which stresses the virtualization overhead by process
creation and destruction. This program repeats the operation of creating a process and
waiting until the process exits. In our evaluation, the iteration count is 10000. The
program is perhaps most concisely described by its ported source:

if (argc > 1) return 0;
PROCESS_INFORMATION ProcessInfo; STARTUPINFO StartupInfo;
memset (&StartupInfo, 0, sizeof (StartupInfo));
for (int i = 0; i < 10000; i++) {

CreateProcess (NULL, "ForkWait.exe child", NULL,
NULL, FALSE, 0, NULL, NULL, &StartupInfo, &ProcessInfo);

WaitForSingleObject (ProcessInfo.hProcess, INFINITE);
CloseHandle (ProcessInfo.hProcess);
CloseHandle (ProcessInfo.hThread); }

 Implicit Detection of Hidden Processes 371

Fig. 4. Benchmark of Aries using PerformanceTest

forkwait focuses intensely on virtualization-sensitive operations, resulting in low
performance relative to native execution. Measuring forkwait, our host required
35.926 seconds to create and destroy 10000 processes, while AriesVMM consumed
41.324 seconds, only incurring 15.0% overhead. The overhead of VMware
Workstation 6.0, VirtualPC 2007 and Parallels Workstation 2.2 is respectively 19.6%,
20.2% and 23.4%. Of course, comparing a lightweight VMM to a heavyweight VMM
is unfair. Our evaluation only illustrates the low performance overhead incurred by
AriesVMM.

For a desktop-oriented workload, we run Passmark PerformanceTest 6.1 both in
the native mode and in the migrated mode. PerformanceTest is a synthetic suite of
microbenchmarks intended to isolate various aspects of workstation performance.
Since user-level computation is almost not taxing for VMMs, we expect that the
migrated Windows above AriesVMM should run to score close to native. The CPU
microbenchmarks in Fig 4 confirm this expectation, showing a slowdown over native
of 0-18.28%. Exploring all the test results, including CPU, graphic 2D, graphic 3D
and memory, the migrated Windows achieves 95.2% of native performance on
average. The results show that the graphic system suffers the most significant
performance penalty. This is because the graphics workloads issues much more VMX
exits events than the computing-sensitive workloads. However, such performance
penalty is definitely much less than the performance overhead exacted by a
heavyweight VMM, such as Xen, VMware ESX Server and so on [29].

5 Related Work

Cross-view validation for hiding detection has been studied and variously
implemented in user applications [30], within the OS kernel [4], inside a virtual
machine monitor [13], and using dedicated coprocessor hardware [30]. The key aspect

372 Y. Wen et al.

of cross-view validation that differentiates these efforts is the mechanism used to
obtain the low-level, trusted view of the resource of interest.

One serious problem with cross-view validation is the inevitable race that develops
between attackers and defenders to control the lowest reaches of a system. If an
attacker subverts the level from which the trusted view is obtained, cross-view
validation fails. Clearly, the deeper within a system a trusted view can be extracted
the better.

Garfinkel et al., have shown the value of VMM-level cross-view validation for
detecting hidden processes with VMI [13]. VMI uses the explicit OS debugging
information like the memory addresses of variables and the layout and semantics of
compound structures to locate and interpret private kernel data types at runtime. This
insight into OS data structures is used to obtain a trusted view of the guest OS process
list. Other kinds of information are only available via careful study of system source
code or reverse engineering [31]. These services use information about the memory
locations of private OS variables and functions, the layout of compound structures,
and detailed semantics of various OS components to perform their work. Some of this
information can be obtained automatically from debugging symbols [13].

VMM-level services based on explicit implementation information are effective,
but there are drawbacks. One drawback is that they may be just as susceptible to
evasion by an attacker that has subverted the guest OS as if they were located within
the guest itself. In spite of their location at the VMM-layer, these services depend on
guest-level information which is still open to simple guest-level manipulation. For
example, if a service depends on the correctness of the guest OS process list, a kernel-
resident attacker can modify the list to hide its presence. If a security system depends
on monitoring the location of a function like fork to be informed of process creation,
it may be thwarted by an attacker that re-directs invocations of the system call to their
own implementation.

From the usability point of view, constructing an environment above a
heavyweight VMM will suffer remarkable performance overhead, especially for the
virtualized devices [29]. In addition, unlike mainframes that are configured and
managed by experienced system administrators, desktop and workstation PC’s are
often preinstalled with a standard OS and managed by the end-user. Existing VMM-
based solutions cannot provide the capability of introspecting on the preinstalled
running OS.

Our previous work called Libra [14] makes use of the local-booted virtual machine
[32] to reproduce the execution environment of the preinstalled OS and detect the
hidden processes within this local-booted OS. But Libra can only find out the process-
hiding malware which starts up with the OS. In contrast, Aries provides the unique
advantage of catching the hidden processes in a running OS no matter whether they
are launched with the OS or not.

6 Further Discussion

From a security point of view, Aries is less vulnerable to evasion by guest software
than previously presented VMM-based security services. Demonstrating that one
system is more secure than another in general is notoriously difficult (or impossible).

 Implicit Detection of Hidden Processes 373

In this section we describe our rationale for the claim and why we believe implicit
techniques can represent a net benefit for VMM-level system defense.

If a VMM-based security service depends on the correctness of any guest-level
component, it is vulnerable to malicious corruption of that component [33]. Aries is
based on implicitly obtained process information. Aries obtains its process
information by observing how an OS manages its virtual address spaces. To evade
Aries, an attacker must modify how the OS implements a fundamental feature (virtual
memory) and must do so in a way that remains consistent with its desired user-level
view of processes.

In summary, Aries is perhaps best described as “differently” subject to gaming and
evasion on the part of compromised guests. We believe the effort required to deceive
Aries about ongoing process hiding while still maintaining a fully consistent outward
appearance exceeds that of earlier VMM-based detectors. This is a feature of VMM-
based security services based on implicitly obtained information and raises the bar
against malicious process hiding.

Aries depends on an untrusted process view. One way to attack Aries is to
manipulate this view. In this attack, an adversary hides the presence of a malicious
process from a defender, but doesn’t hide it from Aries. In this way Aries fails to
detect hiding because, from its perspective, no hiding takes place.

But in fact, this style of attack is infeasible, as well as impractical from an
engineering standpoint. An adversary must be able to reliably identify the
enumeration requests made on behalf of Aries. In the general case, this task will be
difficult because Aries uses the same standard APIs to enumerate processes as any
other process introspection tool like ps or the Windows task manager.

7 Conclusions and Future Work

Stealth malware are a current and alarming security issue. In this paper, we have
described, implemented, and evaluated a novel VMM-based approach called Aries to
detect hidden process implicitly. Like previous VMM-based security services, Aries
is resilient to kernel-mode malware attack by virtue of its location within a VMM.

Unlike prior VMM-layer process hiding detectors, Aries achieves coexisting with
preinstalled OS by introducing a lightweight hardware-assisted VMM called
AriesVMM. Besides, Aries adopts a new implicit processes introspection technique
which is independent on the subvertable OS implementation information. By
decoupling Aries with a specific OS version and patch-level, the service can be
deployed in diverse environments without the burden of maintaining version-specific
implementation information. Aries also provides a set of non-bypassable interfaces
for providing the hidden process list to other security services. This information will
enable a more effective malware analysis.

In our evaluation, Aries correctly detects process hiding in each of hundreds of
trials. The evaluation results show that Aries has more powerful detection ability than
existing detectors. The performance evaluation, exploring CPU, graphic 2D, graphic
3D and memory, presents that Aries only exacts an average performance overhead of
4.8% to the migrated OS.

374 Y. Wen et al.

Aries is likely less susceptible to evasion attacks on the part of a compromised OS.
Aries also implements a non-bypassable mechanism to protect the Aries-related
memory pages.

To make Aries a more complete anti-malware solution, we are to integrate more
stealth malware detection techniques into Aries, such as hidden modules, hidden files
and other hidden resources.

Acknowledgements

This research is supported by National Basic Research Program of China (Grant No.
2005CB321801), National Natural Science Foundation of China (Grant No.
60673169), and National Science Fund for Outstanding Youths under Grant No.
60625203.

References

1. Zombie PCs: Silent, Growing Threat. PC World (July 2004),
http://www.pcworld.com/news/article/0,aid,116841,00.asp

2. Microsoft: Windows Malicious Software Removal Tool,
http://www.microsoft.com/security/malwareremove/

3. Naraine, R.: Microsoft: Stealth Rootkits Are Bombarding XP SP2 Boxes (December
2005), http://www.eweek.com/article2/0,1895,1896605,00.asp

4. Wang, Y.-M., Beck, D., Vo, B., Roussev, R., Verbowski, C.: Detecting Stealth Software
with Strider GhostBuster. In: Proceedings of 35th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2005), pp. 368–377 (2005)

5. Silberman, P., C.H.A.O.S. : FUTo: Bypassing Blacklight and IceSword (2007),
https://www.rootkit.com/newsread.php?newsid=433

6. Effective file hiding : Bypassing Raw File System I/O Rootkit Detector,
http://www.rootkit.com/newsread.php?newsid=690

7. Bypassing Klister 0.4 with No Hooks or Running a Controlled Thread Scheduler,
http://hi-tech.nsys.by/33/

8. Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast Portscan Detection Using
Sequential Hypothesis Testing. In: IEEE Symposium on Security and Privacy (2004)

9. Goldberg, R.P.: Architectural Principles for Virtual Computer Systems, Ph.D. Thesis.
Harvard University, Cambridge, MA (1972)

10. Uhlig, R., Neiger, G., Rodgers, D., Santoni, A.L., Martins, F.C.M., Anderson, A.V.,
Bennett, S.M., Kägi, A., Leung, F.H., Smith, L.: Intel Virtualization Technology. IEEE
Computer 38, 48–56 (2005)

11. AMD: AMD64 Vrtualization Codenamed pacifica Technology: Secure Virtual Machine
Architecture Reference Manual (May 2005)

12. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauery, R., Pratt,
I., Warfield, A.: Xen and the Art of Virtualization. In: Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP 2003), pp. 164–177 (2003)

13. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture for
Intrusion Detection. In: Proceedings of Network and Distributed System Security
Symposium (NDSS 2003) (2003)

14. Wen, Y., Zhao, J., Wang, H.: Implicit Detection of Hidden Processes with a Local-Booted
Virtual Machine. In: Proceedings of 2th International Conference on Information Security
and Assurance (ISA 2008), pp. 150–155 (2008)

 Implicit Detection of Hidden Processes 375

15. Aphex: AFX Windows Rootkit (2003), http://www.iamaphex.cjb.net
16. Hacker Defender, http://hxdef.org/
17. fuzen_op: FU Rootkit, http://www.rootkit.com/project.php?id=12
18. PE386: phide_ex -untimate process hiding example,

http://forum.sysinternals.com/
printer_friendly_posts.asp?TID=8527

19. Anti Rootkit Group, http://www.antirootkit.com/blog/
20. F-Secure Blacklight, http://www.f-secure.com/blacklight/
21. DarkSpy, http://www.fyyre.net/~cardmagic/index_en.html
22. Icesword, http://pjf.blogcn.com/index.shtml
23. RootKit Unhooker,

http://www.antirootkit.com/software/RootKit-Unhooker.htm
24. UnHackMe, http://www.greatis.com/unhackme/
25. Gmer, http://www.gmer.net/index.php
26. Kernel Hidden Process/Module Checker,

http://www.security.org.sg/code/kproccheck.html
27. Process Hunter, http://ms-rem.dot-link.net/
28. TaskInfo, http://www.iarsn.com/taskinfo.html
29. Adams, K., Agesen, O.: A Comparison of Software and Hardware Techniques for x86

Virtualization. In: Proceedings of The 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2006), pp. 2–13
(2006)

30. Petroni, N.L., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot - a Coprocessor-based
Kernel Runtime Integrity Monitor. In: Proceedings of the 13th USENIX Security
Symposium, pp. 179–194 (2004)

31. Joshi, A., King, S.T., Dunlap, G.W., Chen, P.M.: Detecting Past and Present Intrusions
through Vulnerability-Specific Predicates. In: Proceedings of the 20th ACM Symposium
on Operating Systems Principles (SOSP 2005), Brighton, United Kingdom, pp. 91–104
(2005)

32. Wen, Y., Wang, H.: A Secure Virtual Execution Environment for Untrusted Code. In:
Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 156–167. Springer,
Heidelberg (2007)

33. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: ReVirt: Enabling Intrusion
Analysis through Virtual-Machine Logging and Replay. In: Proceedings of the 5th
Symposium on Operating Systems Design and Implementation (OSDI 2002), pp. 211–224
(2002)

FormatShield: A Binary Rewriting Defense

against Format String Attacks

Pankaj Kohli and Bezawada Bruhadeshwar

Centre for Security, Theory and Algorithmic Research (C-STAR)
International Institute of Information Technology

Hyderabad - 500032, India
pankaj kohli@research.iiit.ac.in, bezawada@iiit.ac.in

Abstract. Format string attacks allow an attacker to read or write any-
where in the memory of a process. Previous solutions designed to detect
format string attacks either require source code and recompilation of the
program, or aim to defend only against write attempts to security crit-
ical control information. They do not protect against arbitrary memory
read attempts and non-control data attacks. This paper presents For-
matShield, a comprehensive defense against format string attacks. For-
matShield identifies potentially vulnerable call sites in a running process
and dumps the corresponding context information in the program bi-
nary. Attacks are detected when malicious input is found at vulnerable
call sites with an exploitable context. It does not require source code or
recompilation of the program and can defend against arbitrary memory
read and write attempts, including non-control data attacks. Also, our
experiments show that FormatShield incurs minimal performance over-
heads and is better than existing solutions.

Keywords: Format String Attacks, Binary Rewriting, Intrusion Detec-
tion, System Security.

1 Introduction

Format string vulnerabilities are a result of the flexible features in the C pro-
gramming language in the representation of data and the use of pointers. These
features have made C the language of choice for system programming. Unfortu-
nately, this flexibility comes at a cost of lack of type safety and function argument
checking. The format string vulnerability applies to all format string functions
in the C library, and exists in several popular software and server programs
[4, 6, 9, 14, 16, 28]. Attackers have exploited format string vulnerabilities on a
large scale [12, 36], gaining root access on vulnerable systems. As of January
2008, Mitre’s CVE project [3] lists more than 400 entries containing the term
“format string”.

Format string vulnerabilities occur when programmers pass user supplied in-
put to a format function, such as printf, as the format string argument i.e.,
using code constructs such as printf(str) instead of printf("%s", str). This

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 376–390, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

FormatShield: A Binary Rewriting Defense 377

int main(int argc , char **argv) {

char string [8] = "DATA";

if (argc > 1)

printf(argv [1]);

return 0;

}

Fig. 1. A program vulnerable to format string attack

...

...

...

...

...

...

High memory
addresses

Low memory
addresses

...

...
...
...

Address of argv[1]

D

A

T

A

\0

Address of argv[1]

D

A

T

A

H

E

\0

\0

L

O

St
ac

k
gr

ow
th

a. b.

L

...

\0

%x

%x

%x

%x

Fig. 2. Stack layout for the program given in Figure 1 when printf is called. a. On
giving a legitimate input, the program prints HELLO. b. On giving a malicious input
(“%x%x%x%x”), the program prints 44415441 (hex equivalent of “DATA”).

input is interpreted by the format function as a format string, and is scanned for
the presence of format specifiers such as %x, %s, %n etc. For each format specifier,
corresponding value or address is picked from the stack and is read or written,
depending on the format specifier. For example, the format specifier %d specifies
an integer value to be read from the stack, while the format specifier %n specifies
a value to be written to the address picked from the stack. An attacker can
use this to perform reads or writes to arbitrary memory locations. Vulnerable
functions in libc include printf family, warn and err family, syslog, vsyslog
and several others.

In Figure 1, we show an example of a program vulnerable to a format string
attack that passes the user input to printf. Here a malicious user could insert
format specifiers in the input to cause the program to misbehave. Figure 2 shows
the stack for this program when a legitimate and a malicious input in given.
The malicious user gives as input %x%x%x%x, which causes printf to pick and
display the next few bytes from the stack (44415441 - hex representation of
“DATA” in this case), allowing him to read the stack. Similarly, use of %s format
specifier makes the format function interpret the four bytes on the stack as the
address of the string to be displayed. Using direct parameter access, i.e. %N$d,

378 P. Kohli and B. Bruhadeshwar

allows an attacker to access the N th argument on the stack without accessing
the previous N − 1 arguments. The value of N is so specified by the attacker
such that the corresponding address is picked from the format string itself and
hence can be controlled by the attacker. This allows an attacker to read any
memory location within the address space of the process. The common form of
the attack uses %n format specifier, which takes an address to an integer as an
argument, and writes the number of bytes printed so far to the location specified
by the address. The number of bytes printed so far can easily be controlled by
printing an integer with large amount of padding such as %656d. Using %n format
specifier, an attacker can overwrite the stored return address on the stack with
the address of his own code, taking control of the program when the function
returns. Other targets include address of destructor functions in DTORS table,
address of library functions in Global Offset Table (GOT), function pointers and
other security critical data. Also, an attacker can crash the process using several
%s format specifiers, when an illegal address is picked from the stack, the program
terminates with a segmentation fault.

Many techniques have been devised to defend against format string attacks
[18, 15, 13, 10, 8, 30, 25, 19, 7]. All these approaches are valuable and defend
against arbitrary code execution attacks. However, each of them suffers from at
least one of the two drawbacks: either they require source code and recompilation
of the program to be protected, or they aim to defend only against write attempts
to security critical control information, such as return address, GOT and DTORS
entries, etc. They do not guard against arbitrary memory read attempts, which
can lead to critical information disclosure leading to further attacks. Also, none
of the previously proposed solutions protects against non-control data attacks,
in which an attacker targets a program specific security critical data, such as
a variable storing user privileges, instead of control information. Such attacks
have been studied in the past [20].

In this paper, we present FormatShield, a comprehensive solution to format
string attacks. FormatShield does not require source code and recompilation,
and can be used to protect legacy or proprietary programs for which source
code may not be available. It does not take into consideration the presence of
any specific format specifier such as %n in the format string, and thus, it can
defend against both types of format string attacks, i.e. arbitrary memory read
attempts and arbitrary memory write attempts. Also, FormatShield is capable
of defending against non-control data attacks. It does not rely on the target
of the format specifiers, and thus can protect against both, attacks that target
control information such as return address on the stack, and those which target
program specific security sensitive non-control information.

Organization of the Paper. The rest of the paper is organized as follows. Sec-
tion 2 presents the technical description of the approach used by FormatShield.
Section 3 describes the design and implementation of FormatShield. Section 4
presents experimental results on the effectiveness and performance evaluation.
Limitations are discussed in section 5, followed by related work in section 6.
Finally, section 7 concludes the paper.

FormatShield: A Binary Rewriting Defense 379

2 Overview of Our Approach

FormatShield works by identifying call sites in a running process that are po-
tentially vulnerable to format string attacks. A potentially vulnerable call site is
identified when a format function is called with a probable legitimate user input
as a format string argument. Further, a probable legitimate user input can be
identified by checking whether the format string is writable and without any for-
mat specifiers. The format string argument of a non-vulnerable call site, such as
in printf("%s", argv[1]), would lie in a non-writable memory segment, while
that of a vulnerable call site, such as in printf(argv[1]), would lie in a writable
memory segment. The key idea here is to augment the program binary with the
program context information at the vulnerable call sites. A program context rep-
resents an execution path within a program and is specified by the set of return
addresses on the stack. Since all execution paths to the vulnerable call site may
not lead to an attack, FormatShield considers only those with an exploitable
program context. For e.g., Figure 3 shows a vulnerable code fragment. Here the
vulnerability lies in the function output(), which passes its argument as the for-
mat string to printf. Although output() has been called from three different
call sites in main(), note that only one of these three, i.e. output(argv[1]),
is exploitable. Here, the contexts, i.e. the set of return addresses on the stack,
corresponding to all the three calls will be different, and thus the context cor-
responding to output(argv[1]) can easily be differentiated from those of other
two calls to output(). As the process executes, the exploitable program con-
texts are identified. The next time, if the vulnerable call site is called with an
exploitable program context with format specifiers in the format string, a vio-
lation is raised. When the process exits, the entire list of exploitable program
contexts is dumped into the binary as a new loadable read-only section, which
is made available at runtime for subsequent runs of the program. If the section
already exists, the list of exploitable program contexts is updated in the section.
The program binary is updated with context information over use and becomes
immune to format string attacks.

void output(char *str) {

printf(str);

}

int main(int argc , char **argv) {

output ("alpha ");

.....

output ("beta ");

.....

output(argv [1]);

.....

}

Fig. 3. Only the third call to output() is exploitable

380 P. Kohli and B. Bruhadeshwar

3 Implementation

FormatShield is implemented as a shared library that intercepts calls to the
vulnerable functions in libc, preloaded using LD PRELOAD environment variable.
This section explains the design and implementation of FormatShield. First we
explain how FormatShield identifies vulnerable call sites in a running process.
Then we describe the binary rewriting approach used to augment the binary
with the context information.

3.1 Identifying Vulnerable Call Sites

During process startup, FormatShield checks if the new section (named
fsprotect) is present in the binary of the process. This is done by resolving the
symbol fsprotect. If present, the list of exploitable program contexts is loaded.
During process execution, whenever the control is transferred to a vulnerable
function intercepted by FormatShield, it checks if the format string is writable.
This is done by looking at the process memory map in /proc/pid/maps. If
the format string is non-writable, corresponding equivalent function (such as
vprintf for printf) in libc is called since a non-writable format string cannot
be user input and hence cannot lead to an attack. However, if the format string is
writable, FormatShield identifies the current context of the program, and checks
if this context is in the list of exploitable program contexts. The current con-
text of the program, i.e. the set of return addresses on the stack, is retrieved by
following the chain of stored frame pointers on the stack. Instead of storing the
entire set of return addresses on the stack, FormatShield computes a lightweight
hash of the return addresses. If the current context is not present in the list
of exploitable contexts, FormatShield checks if the format string is without any
format specifiers. If the format string does not contain any format specifiers, it is
identified as a legitimate user input, and the current context is added to the list
of exploitable contexts. Any future occurrences of format specifiers in the format
string of such a call with an exploitable context is flagged as an attack. Other-
wise, if the format string contains format specifiers, it is not added to the list of
exploitable contexts. In either case, FormatShield calls the equivalent function
in libc. However, if the current context is already in the list of exploitable con-
texts, FormatShield checks if there are any format specifiers in the format string.
If the format string does not contains any format specifiers, FormatShield calls
the equivalent function in libc. Otherwise, if the format string contains format
specifiers, FormatShield raises a violation. On detecting an attack, the victim
process is killed, and a log is written to syslog.

Note that, if the format string is writable and contains format specifiers, it
could be a case when an exploitable context is not yet identified by FormatShield
and is being exploited by an attacker. However, FormatShield takes a safer step
of not identifying it as an attack, since dynamically created format strings with
format specifiers are commonly encountered and identifying such cases as attacks
would terminate an innocent process which is not under attack. Also, the default

FormatShield: A Binary Rewriting Defense 381

Space for
new sections
(multiple of
page size)ELF Header

Section Headers

.dynsym
.dynstr
.hash

.dynsym (old)

a. b.

.dynamic

.dynsym
.dynstr
.hash

Program Headers

fsprotect (new section)

Program Headers

.dynstr (old)
.hash (old)

.dynamic

ELF Header

Section Headers

Fig. 4. ELF binary a. before rewriting b. after rewriting

....

[003] 0x08048148 a------ .hash sz :00000040 link :04

[004] 0x08048170 a------ .dynsym sz :00000080 link :05

[005] 0x080481C0 a------ .dynstr sz :00000076 link :00

....

Fig. 5. Sections before rewriting the binary

....

[003] 0x080480E8 a------ .hash sz :00000044 link :04

[004] 0x08048030 a------ .dynsym sz :00000096 link :05

[005] 0x08048090 a------ .dynstr sz :00000088 link :00

....

[026] 0x08047114 a------ fsprotect sz :00003868 link :00

[027] 0x08048170 a------ sz :00000080 link :00

[028] 0x080481C0 a------ sz :00000076 link :00

[029] 0x08048148 a------ sz :00000040 link :00

Fig. 6. Sections after rewriting the binary. A new loadable read-only section named
fsprotect is added which holds the context information. The .dynsym, .dynstr and
.hash sections shown are extended copies of the original ones. The original .dynsym,
.dynstr and .hash are still loaded at their original load addresses.

action to terminate the process can be used as a basis to launch denial of service
(DoS) attack against the victim process by an attacker. However, silently return-
ing from the vulnerable function without terminating the process may lead to an
application specific error. For e.g., if the vulnerability lies in a call to vfprintf,
skipping the call may lead to no output being printed to terminal if the string is
being printed to stdout, which may not be fatal. However, if the string is being
printed to a file, skipping the vfprintf call may lead to a corrupted file. Termi-
nating the victim process would create “noise” that a conventional host-based
intrusion detection system can detect the intrusion attempt.

382 P. Kohli and B. Bruhadeshwar

DYNAMIC SYMBOL TABLE:

00000000 DF *UND* 000000 e7 __libc_start_main

00000000 DF *UND* 00000039 printf

080484 a4 g DO .rodata 00000004 _IO_stdin_used

00000000 w D *UND* 00000000 __gmon_start__

Fig. 7. Dynamic symbol table before rewriting the binary

DYNAMIC SYMBOL TABLE:

00000000 DF *UND* 000000 e7 __libc_start_main

00000000 DF *UND* 00000039 printf

080484 a4 g DO .rodata 00000004 _IO_stdin_used

00000000 w D *UND* 00000000 __gmon_start__

08047114 g DO fsprotect 0000000a fsprotect

Fig. 8. Dynamic symbol table after rewriting the binary. A new dynamic symbol named
fsprotect is added while rewriting the binary which points to the new section at
address 0x08047114.

3.2 Binary Rewriting

FormatShield uses an approach (Figure 4) similar to that used by TIED [22]
to insert context information in the program binary. FormatShield currently
supports only ELF [11] executables. In the ELF binary format, .dynsym section
of binary contains symbols needed for dynamic linking, .dynstr section contains
the corresponding symbol names, and .hash section holds a hash look up table
to quickly resolve symbols. .dynamic section holds the addresses of these three
sections. The information to be inserted is a list of hashes of stored return
addresses corresponding to exploitable contexts at different vulnerable call sites
in the program. During process exit, the entire list is dumped into the executable
as a new read-only loadable section. If the section is already present, the context
information in the section is updated. A typical ELF binary loads at virtual
address 0x08048000. To add a new section (Figures 5,6), FormatShield extends
the binary towards lower addresses, i.e. lower than address 0x08048000. This
is done to ensure that the addresses of existing code and data do not change.
To make the context information available at run time, a new dynamic symbol
(Figures 7,8) is added to the .dynsym section and the corresponding address is
set to that of the new section. Since this requires extending .dynsym, .dynstr
and .hash sections which cannot be done without changing the addresses of
other sections, FormatShield creates an extended copy of these sections, i.e.
.dynsym, .dynstr and .hash, and changes their addresses in .dynamic section.
The address of the new section is so chosen such that the sum of the sizes of the
four new sections is a multiple of page size1. The space overhead is of the order
of few kilobytes (less than 10 KB for most binaries).

1 As per ELF specification [11], loadable process segments must have congruent values
of the load address, modulo the page size.

FormatShield: A Binary Rewriting Defense 383

3.3 Implementation Issues

One of the issues with FormatShield is when the program uses some kind of
Address Space Randomization (ASR) [2, 21, 23]. ASR involves randomizing base
addresses of various segments so as to make it difficult for an attacker to guess
an address. Since the base addresses of various code segments are randomized,
the absolute memory locations associated with the set of return addresses will
change from one execution of the program to the next. To compensate for this,
we decompose each return address into a pair {name, offset}, where name
identifies the executable or the shared library, and offset identifies the relative
distance from the base of the executable or shared library.

4 Evaluation

We conducted a series of experiments to evaluate the effectiveness and perfor-
mance of FormatShield. All tests were run in single user mode on a Pentium-4
3.2 GHz machine with 512 MB RAM running Linux kernel 2.6.18. All programs
were compiled with gcc 4.1.2 with default options and linked with glibc 2.3.6.

4.1 Effectiveness

WetestedFormatShield onfive programswith known format string vulnerabilities:

– wuftpd version 2.6.0 and earlier suffer from a format string vulnerability [6]
in the “SITE EXEC” implementation. A remote user can gain a root shell by
exploiting this vulnerability.

– tcpflow 0.2.0 suffers from a format string vulnerability [28], that can be
exploited by injecting format specifiers in command line arguments. A local
user can gain a root shell by exploiting this vulnerability.

– xlock 4.16 suffers from a format string vulnerability [29] when using com-
mand line argument -d, that can be used by a local user to gain root privi-
leges.

– rpc.statd (nfs-utils versions 0.1.9.1 and earlier) suffers from a format
string vulnerability [9], which allows a remote user to execute arbitrary code
as root.

– splitvt version 1.6.5 and earlier suffer from a format string vulnerability
when handling the command line argument -rcfile. A local user can gain
a root shell2 by exploiting this vulnerability.

The above programs were trained “synthetically” with legitimate inputs be-
fore launching the attacks so as to identify the vulnerable call sites and the
corresponding exploitable contexts. FormatShield successfully detected all the
above attacks, and terminated the programs to prevent execution of malicious
code. The results are presented in Table 1.
2 The attack gives a root shell if the program is installed suid root, otherwise it gives

a user shell.

384 P. Kohli and B. Bruhadeshwar

Table 1. Results of effectiveness evaluation

Vulnerable
program

CVE # Results without
FormatShield

Results with
FormatShield

wuftpd CVE-2000-0573 Root Shell acquired Process Killed

tcpflow CAN-2003-0671 Root Shell acquired Process Killed

xlock CVE-2000-0763 Root Shell acquired Process Killed

rpc.statd CVE-2000-0666 Root Shell acquired Process Killed

splitvt CAN-2001-0112 Root Shell acquired 2 Process Killed

Table 2. Comparison with previous approaches

Feature LibFormat Format-
Guard

Libsafe White-
Listing

Format-
Shield

Works without source code � ✕ � ✕ �
Supports vprintf like functions � ✕ � � �
Supports wrapper functions ✕ ✕ � � �
Prevents read attacks ✕ �3 ✕ ✕ �
Prevents write attacks � � �4 � �
Prevents non control data attacks ✕ �3 ✕ ✕ �
Not format string specific � � � ✕ �

To check the effectiveness of FormatShield on non-control data attacks, we
modified the publicly available exploit for the wuftpd 2.6.0 format string vulner-
ability [6] to overwrite the cached copy of user ID pw->pw uid with 0 so as to to
disable the server’s ability to drop privileges. FormatShield successfully detected
the write attempt to the user ID field and terminated the child process. Table 2
shows a detailed comparison of FormatShield and the previous approaches to
detection of format string attacks.

4.2 Performance Testing

To test the performance overhead of FormatShield, we performed micro bench-
marks to measure the overhead at function call level, and then macro benchmarks
to measure the overhead at application level.

Micro benchmarks. To measure the overhead per function call, we ran a set
of simple benchmarks consisting of a single loop containing a single sprintf

3 FormatGuard protects by counting arguments and number of format specifiers, and
thus can protect against arbitrary memory reads and non-control data attacks. How-
ever, it does not work for format functions called from within a wrapper function
and those with variable argument lists such as vprintf.

4 Libsafe defends against writes to stored return address and frame pointer, but does
not protect against writes to GOT and DTORS entries.

FormatShield: A Binary Rewriting Defense 385

Table 3. Micro benchmarks

Benchmark FormatGuard White-Listing FormatShield

sprintf, no format specifiers 7.5% 10.2% 12.2%

sprintf, 2 %d format specifiers 20.9% 28.6% 4.6%

sprintf, 2 %n format specifiers 38.1% 60.0% 3.3%

vsprintf, no format specifiers No protection 26.4% 15.5%

vsprintf, 2 %d format specifiers No protection 39.8% 1.9%

vsprintf, 2 %n format specifiers No protection 74.7% 3.4%

call. A six character writable string was used as the format string. With no
format specifiers, FormatShield added an overhead of 12.2%. With two %d format
specifiers, overhead was found to be 4.6%, while with two %n format specifiers the
overhead was 3.3%. We also tested vsprintf using the same loop. The overheads
were found to be 15.5%, 1.9% and 3.4% for no format specifiers, two %d format
specifiers, and two %n format specifiers respectively. The overheads were found to
be much less than those with the previous approaches. Table 3 compares micro
benchmarks of FormatShield with those of FormatGuard and White-Listing.

Macro benchmarks. To test the overhead at the application level, we used
man2html since it uses printf extensively to write HTML-formatted man pages
to standard output. The test was to translate 4.6 MB of man pages. The test
was performed multiple times. It took man2html 0.468 seconds to convert with-
out FormatShield, and 0.484 seconds with FormatShield. Thus, FormatShield
imposed 3.42% run-time overhead.

5 Discussion

In this section, we discuss the false positives and false negatives of FormatShield,
and its limitations when applied to the software protection.

5.1 False Positives and False Negatives

FormatShield can give false positives or false negatives in certain cases. It is
when a format string is dynamically constructed as a result of a conditional
statement and then passed to a format function. A false positive can be there
if one outcome of the condition creates a format string with format specifiers
and the other outcome creates one without format specifiers. Similarly, a false
negative can be there when one outcome of the condition reads user input into
the format string and the other outcome creates a format string with format
specifiers. Also, there can be a false negative when format specifiers are present
at the vulnerable call site but the corresponding context is not yet identified.

5.2 Limitations

FormatShield requires frame pointers to obtain the set of stored return addresses
on the stack, which are available in most cases. However, it may not be able to

386 P. Kohli and B. Bruhadeshwar

protect programs compiled without frame pointers, such as those compiled with
-fomit-frame-pointerflag of gcc. Also, FormatShield requires that exploitable
contexts of the vulnerable call sites are identified before it can detect attacks.
This may require the program to be trained, either by deploying or by exercising
“synthetically”. Another limitation of FormatShield is that it requires programs
to be dynamically linked (since library call interpositioning works only with dy-
namic linked programs). However, this is not a problem if we consider Xiao’s
study [31] according to which 99.78% applications on Unix platform are dynam-
ically linked. Also, since FormatShield keeps updating the context information
in the program binary till it becomes immune to format string attacks, it may
interfere with some integrity checkers.

6 Related Work

Several techniques have been proposed to defend against format string attacks.
These can be divided into three categories: compile-time approaches, run-time
approaches, and combined compile-time and run-time approaches.

6.1 Compile-Time Approaches

PScan [7] works by looking for printf-style functions where the last parameter
is a non-static format string. Similar to PScan’s functionality, gcc itself provides
flags such as “-Wformat=2” to statically check the format string and issue warn-
ings for dangerous or suspect formats. Both PScan and gcc work at the lexical
level. They require source code, are subject to missing format string vulnerabil-
ities and even issue warnings about safe code. Another compile-time technique
for detecting format string attacks is presented by Shankar et al [8]. In their
approach, all untrusted inputs are marked as tainted, and the propagation of
tainted data is tracked throughout the program operation. Any data derived
from tainted data is itself marked as tainted. If at some point in the program,
the tainted data is used as a format string, an error is raised. This approach does
not work for already compiled code. Moreover, it requires programmers’ efforts
to specify which objects are tainted.

6.2 Run-Time Approaches

LibFormat [10] works by intercepting calls to printf family of functions, and
aborts any process if the format string is writable and contains %n format spec-
ifier. This technique is quite effective in defending against real format string
attacks, but in most cases writable format strings containing %n format specifier
are legal, and consequently it generates many false alarms. Libsafe [13] imple-
ments a safe subset of format functions that will abort the running process if the
address corresponding to a %n format specifier points to a return address or a
frame pointer. However, it still allows writes to GOT and DTORS entries, and there-
fore is subject to missing many attack attempts. Lin et al [15] use dynamic taint

FormatShield: A Binary Rewriting Defense 387

and validation to detect format string attacks. In their approach, if the format
string is non-static and contains %n format specifier, and if the corresponding
address points to the return address, frame pointer, or GOT or DTORS entries,
an attack is detected and the process is aborted. The approach is effective in
preventing arbitrary memory write attempts to control sensitive addresses, but
does not defends against arbitrary memory read attempts and non-control data
attacks. Kimchi [25] is another binary rewriting defense technique, that inserts
code in the binary which prevents a format string to access memory beyond
the stack frame of its parent function. However, it is subject to missing many
attack attempts when the format string itself is declared in the parent function,
and therefore lies in the parent function’s stack frame. Lisbon [30] identifies the
input argument list, and places a canary word immediately after the list’s end.
A violation is raised if the program attempts to access the canary word. This
approach works for attacks that aim to probe the underlying stack using a series
of %x%x%x... format specifiers. However, the approach will miss all the read and
write attempts where the attacker uses a format specifiers with direct parame-
ter access. For example, the input %18$x will read the 18th argument without
accessing the canary. All the above approaches detect write attempts using %n
format specifiers but fail to detect arbitrary memory read attempts.

Address Space Randomization (ASR) [2, 21, 23, 34] is a generic technique to
defend against any kind of memory corruption attack. The idea behind ASR is
that the successful exploitation of such an attack requires an attacker to have
knowledge of the addresses where the critical information is stored and/or where
the attacker specified code is present. By randomizing the locations of various
memory segments and other security critical structures, ASR makes it hard for an
attacker to guess the correct address. For the Intel x86 architecture, PaX ASLR
[1, 2] provides 16, 16 and 24 bits of randomness for the executable, mapped
and stack areas respectively. However, many successful derandomization attacks
against PaX have been studied in the past. Durden [32] uses a format string
attack to deduce the value of delta mmap. Another brute force derandomization
attack has been presented by Shacham et al [17], which defeats PaX ASLR in
less than 4 minutes. Instruction Set Randomization (ISR) [24, 27] is another
generic defense technique that defends against code injection attacks by ran-
domizing the underlying instruction set. Since the attacker does not know the
randomizing key, his injected code will be invalid for the injected process, caus-
ing a runtime exception. However, overheads associated with ISR make it an
impractical approach to defend against attacks. Also, attacks have been pub-
lished [33] capable of defeating ISR in about 6 minutes. Moreover, both kinds of
randomizations still allow information disclosure attacks.

6.3 Combined Compile-Time and Run-Time Approaches

FormatGuard [18] provides argument number checking for printf-like functions
using GNU C compiler. Programs need to be recompiled without any modifica-
tion. It provides protection against only a subset of functions and does not work
for functions that expect variable argument lists such as vprintf. White-listing

388 P. Kohli and B. Bruhadeshwar

[19] uses source code transformation to automatically insert code and maintains
checks against the whitelist containing safe %n writable address ranges via knowl-
edge gained from static analysis. Both FormatGuard and White-Listing require
source code and recompilation of the program.

7 Conclusion and Future Work

Format string vulnerabilities are one of the few truly threats to software secu-
rity. This paper described the design, implementation and evaluation of Format-
Shield, a tool that protects vulnerable programs by inserting context information
in program binaries. Although the current implementation is designed to work
on Linux platform, the same approach can be made to work on Win32 platform
as well, using the Detours [35] framework. We have shown that FormatShield
is effective in stopping format string attacks, and incurs a very nominal perfor-
mance penalty of less than 4%. However, FormatShield requires the process to
be trained using synthetic data or by deploying in order to identify vulnerable
call sites. We believe static analysis can be used to identify such vulnerable call
sites. Hence, the future work involves covering this limitation of FormatShield
to make it much more effective in defending against format string attacks.

References

[1] PaX. Published on World-Wide Web (2001), http://pax.grsecurity.net
[2] PaX Team. PaX address space layout randomization (ASLR),

http://pax.grsecurity.net/docs/aslr.txt

[3] CVE - Common Vulnerabilities and Exposures, http://www.cve.mitre.org
[4] Kaempf, M.: Splitvt Format String Vulnerability,

http://www.securityfocus.com/bid/2210/

[5] CWE - Vulnerability Type Distributions in CVE,
http://cve.mitre.org/docs/vuln-trends/index.html

[6] tf8.: Wu-Ftpd Remote Format String Stack Overwrite Vulnerability,
http://www.securityfocus.com/bid/1387

[7] De Kok, A.: PScan: A limited problem scanner for C source files,
http://www.striker.ottawa.on.ca/∼aland/pscan/

[8] Shankar, U., Talwar, K., Foster, J.S., Wagner, D.: Detecting format string vul-
nerabilities with type qualifiers. In: Proceedings of the 10th USENIX Security
Symposium (Security 2001), Washington, DC (2001)

[9] Jacobowitz, D.: Multiple Linux Vendor rpc.statd Remote Format String Vulner-
ability, http://www.securityfocus.com/bid/1480

[10] Robbins, T.: Libformat,
http://www.wiretapped.net/∼fyre/software/libformat.html

[11] Tool Interface Standard (TIS) Committee: Executable and linking format (ELF)
specification, version 1.2 (1995)

[12] CERT Incident Note IN-2000-10, Widespread Exploitation of rpc.statd and wu-
ftpd Vulnerabilities (September 15, 2000)

[13] Tsai, T., Singh, N.: Libsafe 2.0: Detection of Format String Vulnerability Exploits,
http://www.research.avayalabs.com/project/libsafe/doc/

whitepaper-20.pdf

http://pax.grsecurity.net
http://pax.grsecurity.net/docs/aslr.txt
http://www.cve.mitre.org
http://www.securityfocus.com/bid/2210/
http://cve.mitre.org/docs/vuln-trends/index.html
http://www.securityfocus.com/bid/1387
http://www.striker.ottawa.on.ca/~aland/pscan/
http://www.securityfocus.com/bid/1480
http://www.wiretapped.net/~fyre/software/libformat.html
http://www.research.avayalabs.com/project/libsafe/doc/whitepaper-20.pdf
http://www.research.avayalabs.com/project/libsafe/doc/whitepaper-20.pdf

FormatShield: A Binary Rewriting Defense 389

[14] Pelat, G.: PFinger Format String Vulnerability,
http://www.securityfocus.com/bid/3725

[15] Lin, Z., Xia, N., Li, G., Mao, B., Xie, L.: Transparent Run-Time Prevention of
Format-String Attacks Via Dynamic Taint and Flexible Validation. In: De Meuter,
W. (ed.) ISC 2006. LNCS, vol. 4406, Springer, Heidelberg (2007)

[16] NSI Rwhoisd Remote Format String Vulnerability,
http://www.securityfocus.com/bid/3474

[17] Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of the 11th ACM
conference on Computer and communications security, Washington DC, USA,
October 25-29 (2004)

[18] Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman, G.: FormatGuard: Auto-
matic protection from printf format string vulnerabilities. In: Proceedings of the
10th USENIX Security Symposium (Security 2001), Washington, DC (2001)

[19] Ringenburg, M., Grossman, D.: Preventing Format-String Attacks via Automatic
and Efficient Dynamic Checking. In: Proceedings of the 12th ACM Conference on
Computer and Communications Security (CCS 2005), Alexandria, Virginia (2005)

[20] Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks
are realistic threats. In: Proceedings of the 14th conference on USENIX Security
Symposium, Baltimore, MD (2005)

[21] Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: An efficient ap-
proach to combat a broad range of memory error exploits. In: USENIX Security
Symposium, Washington, DC (August 2003)

[22] Avijit, K., Gupta, P., Gupta, D.: TIED, LibsafePlus: Tools for Runtime Buffer
Overflow Protection. In: Proceedings of the 13th USENIX Security Symposium,
San Diego, CA (2004)

[23] Bhatkar, S., Sekar, R., DuVarney, D.C.: Efficient Techniques for Comprehensive
Protection from Memory Error Exploits. In: Proceedings of the 14th USENIX
Security Symposium, July 31-August 05, p. 17 (2005)

[24] Barrantes, E.G., Ackley, D.H., Palmer, T.S., Stefanovic, D., Zovi, D.D.: Ran-
domized Instruction Set Emulation to Disrupt Binary Code Injection Attacks.
In: Proceedings of the 10th ACM conference on Computer and communications
security, Washington D.C, USA (October 27-30, 2003)

[25] You, J.H., Seo, S.C., Kim, Y.D., Choi, J.Y., Lee, S.J., Kim, B.K.: Kimchi: A
Binary Rewriting Defense Against Format String Attacks. In: WISA 2005 (2005)

[26] Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q.: Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In: Proceedings of the 7th USENIX Security
Symposium, San Antonio, TX, pp. 63–78 (January 1998)

[27] Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering Code-Injection Attacks
with Instruction-Set Randomization. In: Proceedings of the 10th ACM conference
on Computer and Communications Security, Washington D.C, USA, October 27-
30 (2003)

[28] @stake, Inc. tcpflow 0.2.0 format string vulnerability (August 2003),
http://www.securityfocus.com/advisories/5686

[29] bind: xlockmore User Supplied Format String Vulnerability,
http://www.securityfocus.com/bid/1585

[30] Li, W., Chiueh, T.-c.: Automated Format String Attack Prevention for
Win32/X86 Binaries. In: Proceedings of 23rd Annual Computer Security Ap-
plications Conference, Florida (December 2007)

http://www.securityfocus.com/bid/3725
http://www.securityfocus.com/bid/3474
http://www.securityfocus.com/advisories/5686
http://www.securityfocus.com/bid/1585

390 P. Kohli and B. Bruhadeshwar

[31] Xiao, Z.: An Automated Approach to Software Reliability and Security. Invited
Talk, Department of Computer Science. University of California at Berkeley
(2003)

[32] Durden, T.: Bypassing PaX ASLR protection. Phrack Magazine 59(9) (June
2002), http://www.phrack.org/phrack/59/p59-0x09

[33] Sovarel, N., Evans, D., Paul, N.: Where’s the FEEB? The Effectiveness of Instruc-
tion Set Randomization. In: 14th USENIX Security Symposium (August 2005)

[34] Xu, J., Kalbarczyk, Z., Iyer, R.: Transparent Runtime Randomization for Security.
In: Fantechi, A. (ed.) Proc. 22nd Symp. on Reliable Distributed Systems –SRDS
2003, pp. 260–269. IEEE Computer Society, Los Alamitos (2003)

[35] Hunt, G., Brubacher, D.: Detours: Binary interception of Win32 functions. In:
Proceedings of the 3rd USENIX Windows NT Symposium, Seattle, WA, pp. 135–
143 (1999)

[36] Lemos, R.: Internet worm squirms into Linux servers. Special to CNET News.com
(January 17, 2001), http://news.cnet.com/news/0-1003-200-4508359.html

http://www.phrack.org/phrack/59/p59-0x09
http://news.cnet.com/news/0-1003-200-4508359.html

Advanced Permission-Role Relationship in

Role-Based Access Control�

Min Li1, Hua Wang1, Ashley Plank1, and Jianming Yong2

1 Department of Mathematics & Computing
University of Southern Queensland, Australia

{limin,wang,plank}@usq.edu.au
2 School of Information Systems, Faculty of Business

University of Southern Queensland, Australia
yongj@usq.edu.au

Abstract. Permission-role assignment is an important issue in role-
based access control (RBAC). There are two types of problems that
may arise in permission-role assignment. One is related to authorization
granting process. Conflicting permissions may be granted to a role, and
as a result, users with the role may have or derive a high level of author-
ity. The other is related to authorization revocation. When a permission
is revoked from a role, the role may still have the permission from other
roles. In this paper, we discuss granting and revocation models related to
mobile and immobile memberships between permissions and roles, then
provide proposed authorization granting algorithm to check conflicts and
help allocate the permissions without compromising the security. To our
best knowledge, the new revocation models, local and global revocation,
have not been studied before. The local and global revocation algorithms
based on relational algebra and operations provide a rich variety. We also
apply the new algorithms to an anonymity scalable payment scheme.

1 Introduction

Role-based access control (RBAC) is a flexible and policy-neutral access control
technology and is a promising access control technology for the modern com-
puting environment [1,3,6,16]. In RBAC, permissions(each permission is a pair
of objects and operations) are associated with roles and users are assigned to
appropriate roles thereby acquiring the roles’ permissions. As such, a user in
RBAC is a human being. It can be easily reassigned from one role to another.
A role is a job function or job title and created for various job functions in an
organization and users are assigned roles based on responsibilities and qualifi-
cations. A permission is an approval of a particular mode of access to one or
more objects. The user-role and permission-role assignment relations are many-
to-many between users and roles, and between roles and permissions as depicted
in Fig. 1. Roles can be granted new permissions as new applications come on

� The research is support by an ARC Discovery Grant DP0663414.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 391–403, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

392 M. Li et al.

User Name

USERS

Role Name

Senior-Junior

ROLES

OBJECT

OPERATION

User role Assignment (UA) Permission-role assignment (PA)

m n

m n

m n

m

n

Indicated many to many relationships

Fig. 1. RBAC relationship

line and permissions can be revoked from roles as needed. Within RBAC, users
are not granted permission to perform operations on an individual object, but
permissions are associated with roles.

Significant developments have been made within RBAC. The NIST model of
RBAC [2] and Web implementation of RBAC incorporates an administrative
tool that provides rudimentary support for an RBAC database that stores in-
formation about user and permission role assignments and role hierarchies [4].
Nyanchama and Osborn [7] define a role graph model that rigorously specifies
operational semantics for manipulating role relations in the contexts of a role
hierarchy. ARBAC97 builds on these previous attempts to construct adminis-
trative models [10] over all aspects of the RBAC model. Sandhu and Munawer
[11] extends the ARBAC97 model by adding the concept of mobile and immo-
bile permissions for the first time in this area. In [11], the authors distinguished
two kinds of membership in a role. Immobile membership grants the role to
have the permission, but does not make that permission eligible for further role
assignment. Mobile membership on the other hand, covers both aspects.

However, there is a consistency problem when using RBAC management. For
instance, if there are hundreds of permissions and thousands of roles in a system,
it is very difficult to maintain consistency because it may change the authorization
level, or imply high-level confidential information when more then one permission
is requested and granted. Specifically, [11] does not mention conflicts when assign-
ing permissions to roles. Therefore, there is no support to deal administrative role
with regular roles, especially mobile and immobile members.

In this paper, we develop formal approaches to check the conflicts and there-
fore help allocate the permissions without compromising the security. We analyze
authorization granting and revocation models with the mobility of permission-
role relationship. Our main contribution in this paper is the relational
algebra-based authorization granting and local, global revocation algorithms.
Furthermore, we include an applicable example to illustrate our algorithms.
Another contribution is that our algorithms could check conflicts when granting

Advanced Permission-Role Relationship in Role-Based Access Control 393

Manager

Auditor Teller

Bank

Bank Security Officer (BankSO)

DSD

Fig. 2. Administrative role and role relationships in a bank

more than one permission as mobile or immobile member to a role in the sys-
tem. As far as we know, there is no previous work addressing these issues for
permission allocation and conflict detection concerning on mobile memberships.

The organization of the paper is as follows. In section 2, we consider the
mobility of permission-role relationship and problems related to permission as-
signment and revocation. The relational algebra-based authorization granting
and revocation algorithms are given in section 3. In section 4, we review an
anonymity scalable electronic commerce payment scheme and apply algorithms
to this scheme. Comparisons with previous work are discussed in section 5. Fi-
nally, we conclude the paper in section 6.

2 Motivation and Problem Definitions

There are two kinds of membership between permissions and roles, namely mo-
bile and immobile [11]. Immobile membership grants the role the permission
but does not make that permission eligible for further role assignments. Mobile
membership on the other hand covers both aspects which means the role has
the permission and the permission also becomes eligible for assignment to other
roles by appropriate administrative roles.

The distinction between mobile and immobile membership can be very impor-
tant in practice. Fig. 2 shows the administrative and regular roles that exist in a
bank department. The permission-role assignment allows us to give BankSo the
authority to take a permission assigned to Manager and grant it to roles Teller,
Auditor, and Bank. The idea is that each administrative role can delegate per-
missions of the senior role to more junior roles. While this may be acceptable
for most permissions of a senior role, it is likely that some permissions are not
suitable for such delegation. For instance in Fig. 2, suppose ‘approving a loan’ is
a permission of the role Manger, which should only be executed by the Manger.
Consider the two kinds of membership between permissions and roles, if this
permission is assigned to the role Manger as a mobile member, it is possible that
all the roles junior to the Manger can hold this permission through permission-

394 M. Li et al.

Table 1. Example of the relation PERM

PermName Oper Object ConfPerm

Approval approve cash / check Funding

Funding invest cash Approval

Audit audit record Teller

Teller transfer cash Audit

role assignment, which leads to security breach. So this permission can only be
assigned to Manager as immobile while the others can be assigned as mobile.

This example demonstrates that the situations with mobile and immobile
relationship between permissions and roles can be very useful in practice to
avoid the security breach. Throughout the paper, we consider the following two
problems that may arise in permission-role assignment.

Authorization granting problem: Is a permission in conflict with the permissions
of a role when granting the permission to the role as a mobile or immobile member?

Authorization revocation problem: Has a permission with mobile or immobile
membership of a role been revoked from the role?

Conflicting permissions may be granted to a role in permission-role assign-
ment. For example, the permission for approving a loan in a bank and that of
funding a loan are conflicting. These two permissions can not be assigned to
a role at the same time. It is easy to find conflicts between permissions when
assigning permissions to a role in a small database but it is hard to find them
when there are thousands of permissions in a system. Moreover, it is even more
complicated if taking mobile and immobile permissions into account. Our aim
is to provide relational algebra algorithms to solve these problems and then
automatically check conflicts when assigning and revoking.

For convenience, we recall some basic definitions in paper [15] with no further
explanation. Let D be a database with a set of relations REL and a set of
attributes Attri. REL includes PERM, ROLE-PERM and SEN-JUN etc. Attri
includes attributes such as Role-Name, PermName, Senior and Junior, etc.

PERM is a relation of PermName, Oper, Object and ConfPerm. Perm-Name
is the primary key for the table and is the name of the permission in the system.
Oper is the name of the operation granted. It contains information about the
object to which the operation is granted. Object is the item that can be accessed
by the operation, which may be a database, a table, a view, an index or a
database package. ConfPerm is a set of permissions that is conflicting with the
PermName in the relation. For example, a staff in a bank cannot have permissions
of approval and funding at the same time (as well as permissions of audit and
teller). The relation of PERM is expressed in Table 1.

SEN-JUN is a relation of roles in a system. SEN and JUN are the senior and
junior of the two roles, senior roles are shown at the top of the role hierarchies.
Senior roles inherit permissions from junior roles. For example, in Fig. 2 role
‘Manager’ is the senior role of role ‘Teller’ and inherit all permissions of ‘Teller’.

Advanced Permission-Role Relationship in Role-Based Access Control 395

Table 2. Example of can-assignp-M in Fig. 2

Admin.role Prereq.condition Role Range

BankSO Manager∧Teller [Auditor, Auditor]

BankSO Manager∧Auditor [Teller, Teller]

Table 3. Example of can-assignp-IM in Fig. 2

Admin.role Prereq.condition Role Range

BankSO Manager [Auditor, Audior]

BankSO Manager [Teller, Teller]

ROLE-PERM is a relation between the roles and the permissions, listing what
permissions are granted to what roles. For example, permission ‘Approval’ is
assigned to role ‘Teller’ and the permission ‘Funding’ to role ‘Manager’.

3 Authorization Granting and Revocation Algorithms
Based on Relational Algebra

In this section, we provide granting and revocation algorithms based on relational
algebra. As discussed before, a permission’s membership in a role can be mobile
or immobile, so each role x is separated into two sub-roles Mx and IMx. Note
that membership in Mx is mobile whereas membership in IMx is immobile.

A role x′ has all permissions of a role x when x′ > x 1. A permission p is
an explicit member of a role x if (p, x) ∈ PA and p is an implicit member of
a role x if for some role x′ < x, (p, x′) ∈ PA. Combining mobile and immobile
membership with the notion of explicit and implicit membership gives us four
distinct kinds of role membership:

(1) Explicit mobile member EMx = {p|(p, Mx) ∈ PA}
(2) Explicit immobile member EIMx={p|(p, IMx) ∈ PA}
(3) Implicit mobile member ImMx = {p|∃x′ < x, (p, Mx′) ∈ PA}
(4) Implicit immobile member ImIMx = {p|∃x′ < x, (p, IMx′) ∈ PA}

It is possible for a permission to have more than one kind of membership in a
role at the same time. Hence there is strict precedence among these four kinds
of membership 2.

EMx > EIMx > ImMx > ImIMx

A prerequisite condition is evaluated for a permission p by interpreting role
x to be true if p ∈ EMx ∨ (p ∈ ImMx ∧ p /∈ EIMx) and x to be true if
p /∈ EMx ∧ p /∈ EIMx ∧ p /∈ ImMx ∧ p /∈ ImIMx.
1 x′ > x means role x′ is senior than x; x′ < x means role x′ is junior than x.
2 Even though a role can have multiple kinds of membership in a permission, at any

time only one of those is actually in effect.

396 M. Li et al.

Table 4. can-revokep-M in Fig. 2

Admin.role Prereq.condition Role Range

BankSO Bank [Bank, Manager]

Table 5. can-revokep-IM in Fig. 2

Admin.role Prereq.condition Role Range

BankSO Bank [Bank, Bank]

For a given set of roles R, let AR be a set of administrative roles and CR
denote all possible prerequisite conditions that can be formed using the roles
in R. Not every administrator can assign a permission to a role. The following
relations provide what permissions an administrator can assign mobile members
or immobile members with prerequisite conditions.

Can-assignp-M , used to assign the permission as mobile members, is a re-
lation in AR × CR × 2R. While can-assignp-IM assigns the permission as im-
mobile members. Table 2 and 3 show the example of these two relations. The
meaning of (BankSO, Manager ∧ Teller, [Auditor, Auditor]) ⊆ can-assignp-M
is that BankSO can assign a permission whose current membership satisfies the
prerequisite condition Manager ∧ Teller to role Auditor as a mobile member.
(BankSO, Manager, [Teller, T eller]) ⊆ can-assignp-IM means that BankSO
can assign a permission whose current membership satisfies the prerequisite con-
dition Manager to role Teller as an immobile member. To identify a role range
within the role hierarchy, the following closed and open interval notation is used:

[x, y]={r ∈ R|x ≥ r ∧ r ≥ y}, (x, y]={r ∈ R|x > r ∧ r ≥ y}
[x, y)={r ∈ R|x ≥ r ∧ r > y}, (x, y) = {r ∈ R|x > r ∧ r > y}

Suppose an administrator role (ADrole) wants to assign a permission pj to a
role r with a set of permissions P which may include mobile and immobile mem-
bers. The permission pj may be assigned as a mobile and immobile member if
there is no conflict between pj and the permissions in P . We analyze both mobile
and immobile members in the following algorithm, which deals with whether the
ADrole can assign the permission pj to r with no conflicts. In algorithm 1, P ∗

is the extension of P , which includes the explicit and implicit members of P ; i.
e. P ∗ = {p|p ∈ P} ∪ {p|∀r′ < r, (p, r′) ∈ PA}.

Algorithm 1 provides a way to check whether or not a permission can be
assigned as mobile or immobile member to a role. It can prevent conflicts when
assign a permission to a role with mobile or immobile memberships as well.
After considering the authorization, we consider the revocation of permission-
role membership.

In the revocation model, a prerequisite condition is evaluated for a permission
p by interpreting role x to be true if p ∈ EMx ∨ p ∈ EIMx ∨ p ∈ ImMx ∨ p ∈
ImIMx and x to be true if p /∈ EMx∧ p /∈ EIMx∧x /∈ ImMx∧ p /∈ ImIMx).
Permission-role revocation of mobile and immobile memberships are authorized
by the relations can-revokep-M ⊆ AR×CR×2R and can-revokep-IM ⊆ AR×
CR× 2R respectively.

(BankSO, Manager, [Bank, Manager)) ⊆ can-revokep-M in Table 4 means
that BankSO can revoke the mobile membership of a permission from any role in

Advanced Permission-Role Relationship in Role-Based Access Control 397

Algorithm 1. Authorization granting algorithm; Grantp(ADrole, r, pj)

Input: ADrole, role r and a permission pj

Output: true if ADrole can assign pj to r with no conflicts; false otherwise

Step 1. /*whether the ADrole can assign the permission pj to r or not*/
Let SM1 = πprereq.condition(σadmin.role=ADrole(can-assignp-M)),

SIM1 = πprereq.condition(σadmin.role=ADrole(can-assignp-IM)),
and R = πRolename(σPermname=pj (ROLE-PERM))
Suppose pj is a mobile member of the role r.
If S1 = SM1 ∩ R �= ∅, there exists a role r1 ∈ S1, such that (pj , r1) ∈ PA and

r1 ∈ πprereq.condition(σadmin.role=ADrole(can-assignp-M))
Go to Step 2 ;
Suppose pj is a immobile member of the role r.
If S2 = SIM1 ∩ R �= ∅, there exists a role r2 ∈ S2, such that (pj , r2) ∈ PA and

r2 ∈ πprereq.condition(σadmin.role=ADrole(can-assignp-IM))
Go to Step 2 ;
else
return false and stop

Step 2. /* whether the permission pj is conflicting with permissions of r or not*/
Let ConfPermS = πConfPerm(σPermName=pj (PERM))
If ConfPermS ∩ P ∗ �= ∅, then pj is a conflicting permission with role r
return false;
else
return true;

[Bank, Manager) which satisfies the revoke prerequisite condition Bank. Simi-
larly, the can-revokep-IM in Table 5 refers to revoking the immobile member-
ship.

R

r1

r2
r3

p

r4

×

Fig. 3. Local revocation

R

r1

r2
r3

p

r4

×××××
××

×

Fig. 4. Global revocation

Before giving out our revocation algorithms, first we introduce the concept of
local and global revocation [12]. Local revocation only happens to the explicit
relationship between permissions and roles, while global revocation effects all
other roles which are junior to the role with the revoked permission. For local
revocation, the permission is revoked only if the permission is an explicit member
of the role. For example in Fig. 3, the role r1 still has the permission p which has
been locally revoked since the role is senior to role r2 and r3 which are associated

398 M. Li et al.

Algorithm 2. Local Revocation Algorithm; Local-revoke(ADrole, r, pj)

Input: ADrole, role r and a permission pj

Output: true if ADrole can locally revoke pj from r; false otherwise

Step 1. If pj /∈ {p|(p, r) ∈ PA}
return false and stop.
/*there is no effect with the operation of the local revocation since the perm-
ission Pj is not an explicit member of the role r*/
else Go to Step 2. /*pj is an explicit member of r*/

Step 2. /*whether the ADrole can revoke the permission pj from r or not*/
Let RoleRange1 = πRoleRange(σadmin.role=ADrole(can-revokep-M)),

RoleRange2 = πRoleRange(σadmin.role=ADrole(can-revokep-IM))
and Roleswithpj = πRoleName(σPerName=pj (ROLE-PERM)).
Suppose r ∈ EMpj

If r ∈ RoleRange1 ∩ Roleswithpj �= ∅; /*r is in the role range to be revoked
by ADrole in can-revokep-M and the mobile membership with Pj*/
return true;
Suppose r ∈ EIMpj

If r ∈ RoleRange2 ∩ Roleswithpj �= ∅; /*r is in the role range to be revoked
by ADrole in can-revokep-IM and the immobile membership with Pj*/
return true;
else
return false and stop. /*ADrole has no right to revoke the permission Pj

from the role r*/

with the permission p. Therefore, local revocation from a role has no effect when
a permission is an implicit member of the role. However, global revocation re-
quires revocation of both explicit memberships and implicit memberships. If we
globally revoke permission p from the role r1, all the relationships between the
permission p and roles junior to r1 are revoked (see Fig. 4). Global revocation
therefore has a cascading effect downwards in the role hierarchy. Global revo-
cation of a permission’s mobile and immobile membership from role r requires
that the permission be removed not only from the explicit mobile and immo-
bile membership in r, but also from explicit and implicit mobile and immobile
membership in all roles junior to r.

Algorithms 2 and 3 are used to revoke permission pj ∈ P from a role r by
ADrole, where P is the set of permissions which have been assigned to the role r.
Algorithm 2 can be used revoke explicit mobile and immobile memberships, while
Algorithm 3 can revoke explicit and implicit mobile and immobile members. It
should be noted that the global revocation algorithm does not work if ADrole
has no right to revoke pj from any role in Jun.

4 Applying the Relational Algebra Algorithms

In this section, we apply the new relational algebra algorithms to a consumer
anonymity scalable payment scheme. We first briefly introduce the payment

Advanced Permission-Role Relationship in Role-Based Access Control 399

Algorithm 3. Global Revocation Algorithm; Global-revoke(ADrole, r, pj)

Input: ADrole, role r and a permission pj

Output: true if ADrole can globally revoke pj from r; false otherwise

Begin. If pj /∈ P ∗

return false; /*there is no effect with the operation of the local revocation
since pj is not an explicit and implicit member of r*/
else
(1) If pj ∈ P is a mobile member of the role and r ∈ EMpj ,
Local-revoke(ADrole, r, pj); /*pj is locally revoked as a mobile member*/
If pj ∈ P is an immobile member of the role and r ∈ EIMpj ,
Local-revoke(ADrole, r, pj); /*pj is locally revoked as an immobile member*/
(2) Suppose Jun = πjunior(σSenior=r(SEN-JUN))
For all y ∈ Jun with mobile membership with the permission
Local-revoke(ADrole, y, pj) as y ∈ EMpj ;
For all y ∈ Jun with immobile membership with the permission
Local-revoke(ADrole, y, pj) as y ∈ EIMpj ;
/*Pj is locally revoked from all such y ∈ Jun*/
If all local revocations are successful,
return true;
otherwise
return false.

scheme and consider the relationships of the roles in the scheme, and then analyze
applications of our relational algebra algorithms.

4.1 The Anonymity Scalable Electronic Payment Scheme

The payment scheme provides different degrees of anonymity for consumers.
Consumers can decide the levels of anonymity. They can have a low level of
anonymity if they want to spend coins directly after withdrawing them from the
bank. Consumers can achieve a high level of anonymity through an anonymity
provider (AP) agent without revealing their private information and are secure
in relation to the bank because the new certificate of a coin comes from the AP
agent who is not involved in the payment process.

Electronic cash has sparked wide interest among cryptographers [5,8,9]. In its
simplest form, an e-cash system consists of three parts (a bank, a consumer and

AP AGENT

CONSUMER

SHOP

BANK

anonymity
scalability

payment

withdrawl

deposit

Fig. 5. Electronic cash model

Table 6. ROLE-PERM relation

RoleName PermName

Director(DIR) Funding

Director(DIR) Approval

Director(DIR) Teller

TELLER Approval

FPS Approval

Bank Teller

400 M. Li et al.

Director(DIR)

MANAGER(M2)

MANAGER(M1)

QUALITY
OPERATOR(OP)

AP agent(AP)

AUDITOR(AU) ACCOUNT-REP TELLER(TE)

DSD DSD
SSD SSD

Bank

New System(FPS)

Employee(E)

MANAGER(M3)

AUDITOR SELLER

Shop

CONTROLER(QC)

(AC)

(AU3)

AP agent:

The Manager inherits the Operator

and Quality controler.They are

employees

Bank:

The Manager inherits the TELLER,

Auditor and Account-rep, they are employees.

The Account-rep has DSD relationships

Shop:

The Manager inherits the Saler and the Auditor,

They are employees. The saler has

DSD relationship with Auditor

with the Teller, SSD relationship with the Auditor

Fig. 6. User-role assignment in the payment scheme

a shop) and three main procedures (withdrawal, payment and deposit). Besides
the basic participants, a third party named anonymity provider (AP) agent is
involved in the scheme. The AP agent helps the consumer to get the required
anonymity but is not involved in the purchase process. The model is shown in
Fig. 5. The AP agent gives a certificate to the consumer when he/she needs a
high level of anonymity.

From the viewpoint of banks, consumers can improve anonymity if they are
worried about disclosure of their identities. This is a practical payment scheme
for internet purchases because it has provided a solution with different anonymity
requirements for consumers. However, consumers cannot get the required level
of anonymity if the role BANK and AP are assigned to one user. It shows the
management importance of the payment scheme. To simplify the management,
we analyze its management with the relational algebra algorithms.

4.2 Applying the Authorization Granting Algorithm

Due to the length limit, we only include an application of the authorization
granting algorithm. A hierarchy of roles and a hierarchy of administrative roles
are show in Fig. 6 and 7 respectively, we define the can-assignp-M in Table 7.
Here, we only show the process of assigning a permission to a role as a mobile
member.

Here, we only analyze NSSO tuples in Table 7 (the analysis for APSO, BankSO
and ShopSO are similar). The first tuple authorizes NSSO to assign permissions
whose current membership satisfies the prerequisite condition role DIR to role
M1 in the AP agent as mobile members. The second and third tuples authorize
NSSO to assign permissions whose current membership satisfies the prerequisite

Advanced Permission-Role Relationship in Role-Based Access Control 401

Senior Security Officer(SSO)

New System Security Officer(NSSO)

AP Security Officer

(APSO)

Bank Security Officer

(BankSO)

Shop Security Officer

(ShopSO)

Fig. 7. Administrative role assignment in the scheme

Table 7. Can-assignp-M of Fig. 6

Admin.role Prereq.condition Role Range

NSSO DIR [M1, M1]

NSSO DIR [M2, M2]

NSSO DIR [M3, M3]

APSO M1 ∧OP [QC, QC]

APSO M1 ∧QC [OP, OP]

BankSO M1 ∧TE ∧ AU [AC, AC]

BankSO M1 ∧TE ∧ AC [AU, AU]

BankSO M1 ∧AU ∧ AC [TE, TE]

ShopSO M1 ∧SALER [AUDITOR, AUDITOR]

ShopSO M1 ∧AUDITOR [SALER, SALER]

condition role DIR to role M2 and M3 respectively as mobile members. Table 6
shows parts of the relations between permissions and roles in the scheme. Assume
the role FPS with permission set P = {Approval} and P ∗ = P = {Approval}.
The administrative role NSSO wants to assign the permission Teller to the
role FPS as a mobile member. Using the first step of the granting algorithm
Grantp(NSSO, FPS, Teller), we could get:

S = πprereq.condition(σadmin.role=NSSO(can-assignp-M)) = {DIR} and R =
πRolename(σPermname=Teller(ROLE-PERM)) = {DIR, Bank};
Since R

⋂
S = {DIR}
= ∅, NSSO can assign permission Teller to the role

FPS as a mobile member. Applying the second step based on Table 1, we
could get: ConfPermS=πConfPerm(σPermName=Teller(PERM)) = {Audit}
and ConfPermS ∩P ∗ = ∅. Hence there are no conflicts when assigning permis-
sion Teller to the role FPS as a mobile member.

5 Comparisons

Our work substantially differs from [11] in two aspects. First, the paper [11] only in-
troduce the definition of mobility of permission-role membership in permission-role

402 M. Li et al.

assignment. By contrast, we discuss various cases in detail and focus on possible
problems with mobility of permission-role relationship. Second, the authors only
described the management of permission-role assignment with mobility in [11], but
do not mention conflicts when assigning permissions to roles. Therefore, there is no
support to deal administrative roles with regular roles in the proposal, especially
mobile and immobile members. In this paper, we present a number of special au-
thorization algorithms for access control, especially the local and global revocation
algorithms which have not been studied before. These algorithms provide a rich
variety of options that can handle the document of administrative roles with per-
missions as mobile and immobile members. In our earlier work [14], we developed
authorization approaches for permission-role assignment. This paper is an exten-
sion of that study. Actually, if all membership is restricted to being mobile, our
algorithms can imply the algorithms described in [14]. Moreover, compared with
[14], mobile, immobile memberships and prerequisite conditions are discussed in
this paper.

6 Conclusion

In this paper, we provide new authorization allocation algorithms for RBAC
along with mobility that is based on relational algebra operations. The autho-
rization granting algorithm, local and global revocation algorithm defined in this
paper can automatically check conflicts when granting more than one permission
as mobile or immobile member to a role in the system. We have also discussed
how to use the algorithms for an electronic payment scheme.

References

1. Bertino, E., Ferrari, E., Atluri, V.: Specification and enforcement of authorization
constraints in workflow management systems. ACM Transactions on Information
and System Security 2(1) (February 1999)

2. Feinstein, H.L., et al.: Small Business Innovation Research (SBIR): Role-Based
Access Control: Phase 1, McLean, VA, SETA Corporation (January 20, 1995)

3. Ferraiolo, D.F., Barkley, J.F., Richard Kuhn, D.: A role based access control model
and reference implementation within a corporate intranet. ACM Transactions on
Information and System Security 2(1) (February 1999)

4. Ferraiolo, D.F., Barkley, J.F.: Specifying and Managing Role-Based Access Control
Within a Corporate Intranet. In: Proc.of the 2ed ACM Workshop on Role-Based
Access Control, pp. 77–82 (1997)

5. Frankel, Y., Tsiounis, Y., Yung, M.: Fair off-line e-cash made Easy. in Advance in
Cryptology. In: Proc. of Asiacrypt 1998. LNCS, vol. 1294, pp. 257–270. Springer,
Heidelberg (1998)

6. Gligor, V.D., Gavrila, S.T., Ferraiolo, D.: On the formal denition of separation-
of-duty policies and their composition. In: Proceedings of IEEE Symposium on
Research in Security and Privacy, Oakland, CA, pp. 172–183 (May 1998)

7. Nyanchama, M., Osborn, S.: The Role Graph Model and Conflict of Internet. ACM
Transaction on Information and System Security 2(1), 3–33 (1999)

Advanced Permission-Role Relationship in Role-Based Access Control 403

8. Okamoto.: On efficient divisible electronic cash scheme. In: Advances in
Cryptology-CRYPTO 1995. LNCS, vol. 963, pp. 438–451. Springer, Heidelberg
(1995)

9. Rivest, R.: The MD5 Message-Digest Algorithm. RFC 1321. MIT Laboratory for
Computer Science and RSA DATA Security Inc. (April 1992)

10. Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based
administration of roles. ACM Transaction on Information and System Secu-
rity 1(2), 105–135 (1999)

11. Sandhu, R., Munawer, Q.: The ARBAC99 Model for Administration of Roles. In:
The Annual Computer Security Applications Conference, pp. 229–238. ACM Press,
New York (1999)

12. Wang, H., Cao, J.: Delegating revocations and authorizations. In: 1st International
Workshop on Collaborative Business Processes, Brisbane, Australia (2007)

13. Wang, H., Cao, J., Kambayashi, Y.: Building a Consumer Anonymity Scalable Pay-
ment Protocol for the Internet Purchases. In: The 12th International Workshop on
Research Issues on Data Engineering: Engineering E-Commerce/E-Business Sys-
tems, San Jose, USA, February 25-26, 2002, pp. 159–168 (2002)

14. Wang, H., Cao, J., Zhang, Y.: Formal authorization approaches for permission-role
assignment using relational algebra operations. In: Proceedings of the 14th Aus-
tralasian Database Conference, Adelaide, Australia, February 2-7, 2003, vol. 25(1),
pp. 125–134 (2003)

15. Wang, H., Cao, J., Zhang, Y.: Formal Authorization Allocation Approaches for
Role-Based Access Control Based on Relational Algebra Operations. In: The 3rd
International Conference on Web Information Systems Engineering (WISE 2002),
Singapore, December 3-6, 2002, pp. 301–310 (2002)

16. Zurko, M., Simon, R., Sanlippo, T.: A user-centered modular authorization service
built on an rbac foundation. In: Proceedings of IEEE Symposium on Research in
Security and Privacy, Oak-land, CA, pp. 57–71 (May 1999)

Enhancing Micro-Aggregation Technique by

Utilizing Dependence-Based Information in
Secure Statistical Databases

B. John Oommen� and Ebaa Fayyoumi

School of Computer Science, Carleton University, Ottawa, Canada: K1S 5B6
oommen@scs.carleton.ca, efayyoum@scs.carleton.ca

Abstract. We consider the Micro-Aggregation Problem (MAP) in se-
cure statistical databases which involves partitioning a set of individual
records in a micro-data file into a number of mutually exclusive and ex-
haustive groups. This problem, which seeks for the best partition of the
micro-data file, is known to be NP-hard, and has been tackled using many
heuristic solutions. In this paper, we would like to demonstrate that in
the process of developing Micro-Aggregation Techniques (MATs), it is
expedient to incorporate information about the dependence between the
random variables in the micro-data file. This can be achieved by pre-
processing the micro-data before invoking any MAT , in order to extract
the useful dependence information1 from the joint probability distribu-
tion of the variables in the micro-data file, and then accomplishing the
micro-aggregation on the “maximally independent” variables. Our re-
sults, on real life data sets, show that including such information will
enhance the process of determining how many variables are to be used,
and which of them should be used in the micro-aggregation process.

1 Introduction

A lot of attention has recently been dedicated to the problem of maintaining
the confidentiality of statistical databases through the application of statistical
tools, so as to limit the identification of information on individuals and enter-
prises. Statistical Disclosure Control (SDC) seeks a balance between the confi-
dentiality and the data utility criteria. For example, federal agencies and their
contractors who release statistical tables or micro-data files are often required
by law or by established policies to protect the confidentiality of released infor-
mation. However, this restriction should not affect public policy decisions which
are made by accessing only non-confidential summary statistics [1, 2]. There-
fore, optimizing the Information Loss (IL) and the Disclosure Risk (DR) so as
to reach an equilibrium point between them is not an easy task [1].

� This author is also an Adjunct Professor with the University of Agder in Grimstad,
Norway.

1 To the best of our knowledge, the inference of dependence information has not been
used in enhancing the MAT in secure statistical databases.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 404–418, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Enhancing MAT by Utilizing Dependence-Based Information 405

Micro-aggregation is one of the most recent techniques that has been used to
maskmicro-datafileswith the intentionofprotecting themagainst re-identification
in secure statistical databases [3, 4, 5, 6, 7, 8]. Moreover, it can be modeled as
a clustering mechanism with group size constraints, where the primitive goal is
to group a set of records into clusters of size at least k, based on a proximity
measure involving the variables of interest [8, 9, 10, 11, 12, 13, 14].

The Micro-Aggregation Problem (MAP), as formulated in [5, 7, 9, 12, 13],
can be stated as follows: A micro-data set U = {U1, U2, . . . , Un} is specified in
terms of the n “micro-records”, namely the U ′

is, each representing a data vector
whose components are d continuous variables. Each data vector can be viewed
as Ui = [ui1, ui2, . . . , uid]T , where uij specifies the value of the jth variable in the
ith data vector. Micro-aggregation involves partitioning the n data vectors into,
say m, mutually exclusive and exhaustive groups so as to obtain a k-partition
Pk = {Gi | 1 ≤ i ≤ m}, such that each group, Gi, of size, ni, contains either
k data vectors or between k and 2k − 1 data vectors.

The optimal k-partition, P
∗
k, is defined to be the one that maximizes the

within-group similarity, which is defined as the Sum of Squares Error, SSE =
∑m

i=1

∑ni

j=1(Xij−X̄i)T (Xij−X̄i). This quantity is computed on the basis of the
Euclidean distance of each data vector Xij to the centroid X̄i of the group to
which it belongs. The Information Loss is measured as IL = SSE

SST , where SST is
the squared error that would result if all records were included in a single group,
and is given as SST =

∑m
i=1

∑ni

j=1(Xij− X̄)T (Xij− X̄), where X̄ = 1
n

∑n
i=1 Xi.

Understanding the presence and structure of dependency between a set of
random variables is a fundamental problem in the design and analysis of many
types of systems including filtering, pattern recognition etc. As far as we know
its application in SDC has been minimal. Utilizing this information is the goal of
this paper. Typically, in modern day systems, the data protector has been able to
choose the technique and set its parameters without a thorough understanding
of the characteristics of the micro-data file, and the stochastic dependence of the
variables. Although gleaning this information could be particularly difficult and
even time-consuming, our hypothesis is that this information is central to the
micro-data file, especially when working in a high dimensional space.

In general, the result of the multi-variate MATs depends on the number of
variables used in the micro-aggregation process. In other words, deciding on
the number of variables to be taken into account, and on the identity of the
variables to be micro-aggregated, is far from trivial. The authors of [11] have
reported that multi-variate micro-aggregation on unprojected data taking two
or three variables at a time (rather than incorporating the information in all the
variables) offers the best trade-off between IL and DR. The unanswered question
is that of inferring which variables should be used in this process. We believe
that a solution to this puzzle lies in the inter-variable “dependence” information.

The authors of [15] have emphasized that the decision about which variables
are to be chosen has to be gleaned from a priori “knowledge about the char-
acteristics of each variable from the experts”. While this is a feasible approach,
we argue that it is subjective, and that a formal objective method is desirable.

406 B.J. Oommen and E. Fayyoumi

Indeed, what will happen if the researcher encounters a new project for which
there is no prior knowledge? Or how we will proceed if an expert for a specific
data domain is not available? Our aim is to minimize the necessity to depend
on a human expert, but rather to have the ability to study the characteristics of
each variable objectively. Thus, we seek a systematic process by which we can
choose the desired variables automatically and micro-aggregate the file.

This paper involves MATs, but rather from a different perspective. We pro-
pose a scheme by which we can avoid using the information in all the dimensions.
Furthermore, neither will we resort to projecting the micro-data file onto a single
axis, nor will we attempt to micro-aggregate it using any specific sorting method
[7, 8, 16, 17, 18, 19, 20, 21]. The main contribution of this paper is to extract
useful information from the joint probability distribution of the variables in the
file to be micro-aggregated. Then, rather than use all the variables in the micro-
data file, we propose to only process the “maximally independent” variables in
the subsequent multi-variate micro-aggregation. Indeed, we propose to use such
a method as a pre-processing step before any MAT is invoked, and to test the
effect of using such a dependency analysis on the micro-aggregation process so
as to reduce the computational time, and IL.

The structure of this paper is as follows: In Section 2 we summarize the back-
ground about the most recent MATs. In Section 3 we present a brief description
of the Maximum Distance Average Vector (MDAV) method. In Section 4 the
enhanced micro-aggregation dependence is presented informally and algorithmi-
cally. Then, in Section 5, we present the results of experiments we have carried
out for real data sets. The paper finishes in Section 6 with some conclusions.

2 Micro-Aggregation

As mentioned in Section 1, the MAP has been tackled using different techniques,
which can be further classified as below.

– Uni-variate vs. Multi-variate
The difference between the uni-variate and the multi-variate MATs depends
on the number of random variables used in the micro-aggregation process.
Uni-variate MATs deal with multi-variate data sets by micro-aggregating
one variable at a time such as Individual ranking [17, 18, 19]. Multi-variate
MATs either rank multi-variate data by projecting them onto a single
axis2, or dealing directly with the unprojected data. Examples of unpro-
jected multi-variate MATs are the Maximum Distance to Average Vec-
tor (MDAV)[5, 22], the Minimum Spanning Tree (MST) [13], the Ob-
ject Migrating Micro-aggregated Automaton (OMMA) [23], and Interactive-
Associative Micro-Aggregation Technique (IAMAT) [24].

2 The multi-variate data is projected onto a single axis by using either a particular vari-
able, the sum-z-scores or a principle component analysis prior to micro-aggregation
[7, 21].

Enhancing MAT by Utilizing Dependence-Based Information 407

– Fixed-size vs. Data-oriented
The difference between the fixed-size and the data-oriented MATs depends
on the number of records in each group. Fixed-size MATs require all groups
to be of size k except for a single group whose cardinality is greater than k
when the total number of records, n, is not a multiple of k. Data-oriented
MATs allow groups to be of size greater than k and less than 2k − 1 de-
pending on the structure of the data. These methods yield more homoge-
nous groups which help to further minimize the IL [4, 5, 7]. Examples of
data-oriented MATs are those which use a genetic algorithm [5, 7, 21], the
k-Ward MAT [5, 7, 21, 25] and the Variable-size Maximum Distance to
Average Vector scheme (V −MDAV) [26].

– Optimal vs. Heuristic
The first reported optimal uni-variate MAT with a polynomial complexity is
given in [12], which solves the MAP as a shortest path problem on a graph.
Unfortunately, the optimal MAP for multi-variate micro-aggregation is an
NP -hard problem [27]. Therefore, researchers seek heuristic MATs that
provide a good solution - close to the optimal.

3 Maximum Distance Average Vector (MDAV)

The first algorithm to accomplish micro-aggregation without projecting the
multi-variate data onto a single axis was proposed in [5], and is known as the
Maximum Distance to Average Vector (MDAV). It micro-aggregates the multi-
variate micro-data file based on the concept of the diameter distance of the data
set. In 2005, an enhanced version of MDAV appeared in [22] is based on utiliz-
ing the centroid concept in the micro-aggregation. In a nutshell, the process is as
follows: First of all, the algorithm computes the centroid of the data. After this,
a quick search for the most distant record from the centroid, say Xr, is done.
Subsequently, a new search for the most distant record from the record Xr, say
Xs, is accomplished. The next step consists of creating two clusters, the first
one comprising of Xr and its k − 1 nearest records, while the second comprises
of Xs with its nearest k − 1 records. At the end of this stage, the two clusters
are micro-aggregated and removed from the original data set. The latter steps
are iteratively repeated until there are no more records remaining in the original
data set. The advantages of this new modified version of the MDAV are the
increased speed of the micro-aggregation, and the reduction in the IL.

4 Enhancing Micro-Aggregation with Dependence

It is well-known that the result of the multi-variate MATs depends on the
number and the identity of the variables used in the micro-aggregation process.
Since multi-variate micro-aggregation using two or three variables at a time offers
the best trade-off between the IL and the DR [11], the question we intend to
resolve involves understanding why we have to use vast dimension-dependent
resources in the clustering phase in order to compute the distance between the

408 B.J. Oommen and E. Fayyoumi

micro-records. We shall also study how we can minimize the computation time
needed to evaluate the distance between a single micro-data record and the mean
of the group it belongs to. This computation involves evaluating

D(X, Y) =

√
√
√
√

d∑

i=1

(xi − yi)2. (1)

where X and Y are two multi-variate data vectors with their components being
{xi} and {yi} respectively, and d represents the dimension of the space.

We consider the problem of determining the dependencies between the differ-
ent variables within a micro-data file, and then combining the latter with the
MAT in such a way as to reduce the overall required computational time, and/or
reduce the corresponding IL.

The primary goal of any MAT is to reduce the loss in the data utility by
choosing the most suitable sub-set of variables with size equal to three [11] prior
to invoking the multi-variate micro-aggregate. Theoretically, to know the best
sub-set of variables that has to be used in order to obtain the minimum value
of the IL, we have to consider all different possibilities of combinations, namely
the

(
S
C

)

= S!
C!(S−C)! combinations, where S is the number of variables in the

original micro-data file, and C is the number of chosen variables which are used
in projecting and micro-aggregating the data file.

We propose that the key idea in choosing a sub-set of the variables by avoiding
the combinatorial solution, should be based on the dependence model of the
micro-data file. If the variables are highly-correlated, then using any one of them
will somehow reflect the stochastic nature of the others. If we, thus, incorporate
this logic into our consideration, we believe that we can reduce the number of
variables which will be used to measure either the distance between the micro-
unit and the mean of the group it belongs to, or the distance between the micro-
units themselves. Thus, in turn, this will reduce the dimensionality of the space
to d′ < d. The new distance that will thus be computed will be:

D′(X, Y) =

√
√
√
√

d′
∑

i=1

(xi − yi)2 where d′ < d. (2)

The reader should observe that our goal is quite distinct from the reported
methods of projecting the multi-dimensional space onto a single axis using a
particular variable, the sum z-scores scheme, or a principle component analysis.
The reduction in the dimensionality is not done randomly. Rather it is to be done
based on a formal criterion. Our aim is to micro-aggregate the multi-dimensional
vector by maximally using the information in the almost independent variables,
and we plan to do this by finding the best dependence tree. We believe that
we can achieve this by evaluating the dependence between the variables in the
micro-data file by using either the method due to Chow and Liu [28] or the
method due to Valiveti and Oommen [29, 30].

Enhancing MAT by Utilizing Dependence-Based Information 409

We formalize these concepts. The joint probability distribution of the random
vector V = [V1, V2, . . . , Vd]T in terms of conditional probabilities is given as

P (V) = P (V1)P (V2|V1)P (V3|V1, V2) . . . P (Vd|V1, V2, . . . , Vd−1). (3)

where each Vi is a random variable.
It is obvious, from the above expression, that each variable is conditioned on

an increasing number of other variables. Therefore, estimating the kth term of
this equation requires maintaining the estimates of all the kth order marginals.
Clearly, it is impractical to gather the estimates for the joint density function
P (V) for all the different values which V could assume. We, therefore, simplify
the dependency model by restricting ourselves to the lower-order marginals,
using the approximation which ignores the conditioning on multiple variables,
and retaining only dependencies on at most a single variable at a time. This
leads us to the following [29]:

Pa(V) =
d∏

i=1

Pr(Vi|Vj(i)). (4)

where Pa(V) is the approximated form of P (V), and Vi is conditioned on Vj(i)

for 0 ≤ j(i) < i.
The dependence of the variables can be represented as a graph G = (V,E,W)

where V = {V1, V2, . . . , Vd} is a finite set of vertices, which represents the set
of random variables in the micro-data file with d dimensions, E is a finite set
of edges {〈Vi, Vj〉}, where 〈Vi, Vj〉 represents an edge between the vertices Vi

and Vj . Finally, W = {wi,j} is a finite set of weights, where wi,j is the weight
assigned to the edge 〈Vi, Vj〉 in the graph. The values of these weights can be
calculated based on a number of measures, as will be explained presently.

In G, the edge between any two nodes represents the fact that these variables
are statistically dependent [28]. In such a case, the weight, wi,j , can be assigned to
the edge as being equal to the Expected Mutual Information Measure (EMIM)
metric between them. In general, the EMIM metric between two variables,
given by I∗(Vi, V j) for discrete distributions, has the form:

I∗(Vi, Vj) =
∑

vi,vj

Pr(vi, vj) log
Pr(vi, vj)

Pr(vi)Pr(vj)
. (5)

where the summation above is done over all values of vi and vj which Vi and Vj

can assume.
We observed that any edge, say 〈Vi, Vj〉 with the edge weight I∗(Vi, Vj) repre-

sents the fact that Vi is stochastically dependent on Vj , or that Vj is stochastically
dependent on Vi. Although, in the worst case, any variable pair could be depen-
dent, the model expressed by Eq.(4) imposes a tree-like dependence. It is easy
to see that this graph includes a large number of trees (actually, an ©(d(d−2))
of such spanning trees). Each of these trees represents a unique approximated
form for the density function P (V). Chow and Liu proved that searching for

410 B.J. Oommen and E. Fayyoumi

Fig. 1. The fully-connected undirected graph represents the dependence between six
random variables

the best “dependence tree” is exactly equivalent to searching for the Maximum
Spanning Tree3(MST) of the graph [28]. Further, since the probabilities that are
required for computing the edge weights are not known a priori, Valiveti and
Oommen showed that this could be achieved by estimating them in a maximum
likelihood manner [29, 30]. They showed that the maximum likelihood estimate
(ML) for the best dependence tree, can be obtained by computing the MST
of the graph, where the edge weights are computed using the EMIM of the
estimated probabilities.

By way of example, consider a micro-data file which incorporates 6 variables
(as in Figure 1) and thousands of records. Let us assume that we intend to
micro-aggregate this file using any MAT , for example, the MDAV method.
In such a case, the prior art will process all the six variables to quantify the
relevant distances during the clustering stage. We could choose a sub-set of size
three to be used in the micro-aggregation process. In general, we will have to
go through the 20 different combinations of size three in order to attain the
minimum value of the IL. However, if we are able to discover any existing inter-
variable dependencies, this could render the problem simpler. Let us assume that
we compute the EMIM -based edge weights for all pairs of nodes, and create
the fully-connected undirected graph G, as in Figure 1. By using the strategy
alluded to above, we obtain a tree as in Figure 2.a, which shows the case when
the MST leads to the ML condition that the variables B, C, and D depend on
the variable A, and that variables E and F depend on variable D. Since these
dependent variables are maximally-correlated to the variable that they depend

3 Two generic greedy algorithms can be used to solve the Minimum Spanning Tree
problem, namely, the so-called Kruskal and the so-called Prim algorithms [31].We
have used the Kruskal algorithm in our experiments.

Enhancing MAT by Utilizing Dependence-Based Information 411

Fig. 2. An example of a dependence tree used to micro-aggregate the data file contain-
ing 6 variables

on, we propose to use the vertices that have the maximum number of In/Out
edges in the graph to micro-aggregate the micro-file. We believe that the nodes
which possess this property are the best candidates to reflect the characteristics
of the entire multi-variate data set because they connect to the maximum number
of nodes that statistically depend on it, as argued in Conjecture 1. The rationale
for Conjecture is omitted here in the interest of brevity.

Conjecture 1. Micro-aggregating the micro-data file can be best achieved if the
nodes which possess the maximum number of In/Out edges in the tree obtained
as the MST of the underlying graph G, are used as an input to solve the MAT .

In order to involve this property, we first rank the nodes of the graph based
on the number of In/Out edges in a descending order and choose the first d′

variables, where d′ is usually determined by the data protector and is usually
equal to 3 or 4. Thus, for example, the data represented by the variables of
Figure 2, based on the above discussion, the micro-aggregation process will be
invoked by using two variables instead of using the entire set of six variables in
the micro-data file. Figure 2.b. shows that the selected sub-set of the variables is
{A, D}, since both of them connect to 3 variables while the other variables in the
micro-data file connect to only a single variable. The outline process has been
formalized in Algorithm 1, which gives an automated way to select a sub-set of
the variables to be used in the micro-aggregation process.

5 Experimental Results

5.1 Data Sets

In order to verify the validity of our methodology in projecting the multi-variate
data set into a subset of random variables to be used in the micro-aggregation
process. Two benchmark real data sets have been used as benchmarks in previous
studies: (i)Tarragona Data Set contains 834 records with 13 variables [5].
(ii)Census Data Set contains 1, 080 records with 13 variables [32].

412 B.J. Oommen and E. Fayyoumi

Algorithm 1. Enhanced Micro-Aggregation Dependence
Input: U : the micro-data file, and C: the number of variables that will be used
in the micro-aggregation process.
Output: d′: the sub-set of the variables that will be used in the multi-variate
MAT .
Method:
1: Estimate the first and second order marginals of the random variables from

the various micro-records.
2: Create a fully-connected undirected graph, where the

Nodes: Represent the random variables in the micro-data file.
Edges: Represent the statistically dependent variables.
Weights of the edges are computed either by using:

EMIM ⇒ I∗(Vi, Vj) =
∑

vi,vj
Pr(vi, vj) log Pr(vi,vj)

Pr(vi)Pr(vj)
, OR

χ2 ⇒ Iχ(Vi, Vj) =
∑

vi,vj

(Pr(vi,vj)−P (vi)P (vj))
2

P (vi)P (vj) .

3: Invoke Kruskal’s algorithm to compute the Maximum Spanning Tree of the
graph.

4: Rank the nodes of the graph based on the number of In/Out edges in a
decreasing order, and add the first C variables to the d′ sub-set.

5: Return the sub-set of variables which will be used in the micro-aggregation
process before invoking the MAT

6: End Algorithm Enhanced Micro-Aggregation Dependence.

5.2 Results

The experiments conducted were of two categories: In the first set of experiments
the intention was primarily focused on testing whether the best dependence tree
can be learned (or rather, inferred) from the continuous micro-data file, and if it
sufficiently reflected the dependence model. In the second set of experiments, the
goal was primarily to validate our strategy of determining the subset of variables
(from the entire set of variables) to micro-aggregate the micro-data file, and to
study its effect on the value of the IL.

Experiment Sets 1
The first set of experiments was done on the real data sets which possess an
unknown dependence model between the variables. It is worth mentioning that
we could not approximate the dependence information of the multi-variate data
set in its current form due to the inaccurate estimation for the joint and marginal
probability distributions for continuous variables. This is a consequence of having
a large domain space with only few records (sometimes only one or two) for each
value in the random variable. Consequently, most of the estimated marginal and
joint probability values were close to zero. Clearly, in these cases, the estimated
probabilities will not reflect the actual dependence relationship between any
corresponding variables.

Enhancing MAT by Utilizing Dependence-Based Information 413

In order to overcome this challenging problem that prevents us from utilizing
the dependence information, we were forced to reduce the domain space by
categorizing the micro-data file as follows: We first scanned the micro-data file
to specify the domain space of each variable in the file, and then divided it
into a number of sub-interval sharing the same width. After that, we achieved a
categorization phase by replacing the values belonging to a certain sub-interval
in each variable by the corresponding category/code. The above procedure was
repeated for all the variables so as to generate the categorical micro-data file.

From the above discussion, it is clearly shown that “width” parameter plays a
predominant role in controlling the degree of smoothing and estimating the best
dependence tree. Our experiments indicated that assigning a suitable value to the
width parameter guaranteed the convergence of the MST to the true underlying
(unknown) structure of the best dependence tree. The most important point that
one has to be aware of in a practical scenario is that a larger value for the width
parameter implies a lower variance and a higher bias, because we are essentially
assuming a constant value within the sub-interval. Generally speaking, the value
of the width parameter should be large enough to generate a sufficient num-
ber of sub-intervals from the defined domain space to guarantee a satisfactory
level of smoothing. The actual value used is specified in the experimental results.

1

2

3 4

5

6

8

7

9

1 01 1

1 2

1 3

(a) Width = 50, 000

1

2 3 4

56

8

7

9

1 0

1 1 1 2

1 3

(b) Width = 100, 000

1

2

3

4 5

6

8

7

9 1 0 1 1 1 2

1 3

(c) Width = 150, 000

Fig. 3. The best dependence tree for the Tarragona data Set obtained by using the
EMIM metric with various values of the width parameter

Approximating the dependence information for the real data sets was tricky,
because of the unknown structure for the best dependence tree. Changing the
value of the width parameter has an effect on the structure of the best de-
pendence tree to which the algorithm converged. Figures 3 and 4 clearly show
different structures for the best dependence tree by changing the value of the
width parameter for the Tarragona and Census data sets, respectively.

Experiment Sets 2
The second set of experiments verified our conjecture that using the sub-set of
the variables obtained (from the best dependence tree) by projecting the micro-
data file into 3, 4 or 5 variables before invoking the micro-aggregation process.

Since a MAT seeks to reduce the loss in the data utility, it must be pointed
out here that the value of the IL depends on the sub-set of variables used to
micro-aggregate the multi-variate data file. As mentioned earlier, to infer the

414 B.J. Oommen and E. Fayyoumi

1

2 3

4

5 68 791 0

1 1 1 2

1 3

(a) Width = 1, 000

1

2

3

4

56

8

7

9

1 0

1 1 1 2

1 3

(b) Width = 5, 000

1

2 3

4

5

6

8

7 9

1 0

1 1

1 2

1 3

(c) Width = 10, 000

Fig. 4. The best dependence tree for the Census data set obtained by using the EMIM
metric with various values of the width parameter

Table 1. The value of the IL using the MDAV multi-variate MAT after projecting
various data sets into the specific number of variables

Indices of Indices of
the variables the variables

No. of No. of used to obtained The min. used to obtained The max. The ave.
Data Set projected possible the min. value value of IL the max. value value of IL value of IL

variables combin. of IL of IL

1 13 10 37.6374 8 48.1006 43.1017
2 78 11,13 24.7415 5,8 45.6925 31.6609

Tarragona 3 286 2,3,10 20.7141 5,6,11 34.1569 25.1587
4 715 2,3,10,11 20.7141 5,6,11,12 34.1569 25.4997
5 1287 2,3,10,11,12 20.7141 5,6,11,12,13 34.1569 25.6141

1 13 10 38.2133 1 62.9093 45.79787
2 78 4,13 22.5795 1,8 55.634 31.618

Census 3 286 7,8,10 15.6043 1,8,9 45.815 21.2046
4 715 7,8,10,11 15.6043 1,8,9,10 45.815 22.0308
5 1287 7,8,10,11,12 15.6043 1,8,9,10,11 45.815 22.8299

best sub-set of variables to be used in the micro-aggregation, we have to go
through all the different projection possibilities. The results (Table 1) show that
the estimation of the percentage value of the IL for real data sets obtained by
projecting the entire data set into specified number of variables prior to invoking
the MDAV method. The value of the IL was bounded between the minimum
value (in the fourth column) that was obtained by using the variable indices
addressed in the third column, and the maximum value (in the sixth column)
that was obtained by using the indices addressed in the fifth column. The last
column in Table 1 represents the average value of the IL over all the different
combinations of projected variables in the micro-data file.

The most interesting observation was that the minimum value of the IL ob-
tained by using 3, 4 or 5 projected variables in the Tarragona and Census data
sets were exactly the same. This implies using the same “most independent vari-
ables”, which in turn, preserve the same high a mount of the variance. Therefore,
we recommend projecting the entire micro-data file using 3 variables, since using
a larger number of variables to project the micro-data file requires more time
without leading to significant reduction in the IL value.

Enhancing MAT by Utilizing Dependence-Based Information 415

Practically, due to the exponential number of combinations, we could not cover
the entire solution space so as to reach to the best sub-set of the variables to be
used in the micro-aggregation4. As opposed to this, by involving only the vertices
that have the maximum number of I/O edges in the connected undirected graph
to micro-aggregate the micro-data file, we were able to obtain an acceptable value
of the IL close to its lower bound, and always remains below the average value in
all the cases. Thus, such an automated strategy for projecting the multi-variate
data sets will reduce the solution space to be searched which, in turn, reduces
the computation time required to test the candidate variables, and to choose the
best sub-set from them.

Tables 2 shows the percentage value of the IL obtained by using our strategy
in projecting the micro-data file into sub-sets of size 3, prior to invoking the
MDAV method. The minimum values of the IL for Census data set when the
width value was set to 1, 000, 5, 000 and 10, 000 were equal to 17.47%, 16.23% and
18.29%, respectively. It is worth mentioning that the values obtained were quite
close to the lower bound of the IL, i.e., 15.60%, as shown in Table 1, besides
being superior to the average values over all the different combinations (i.e.,
21.20%). In Tarragona data set, the minimum values of the IL when the width
value was set to 50, 000, 100, 000 and 150, 000 were equal to 24.13%, 24.13% and
25.04%, respectively. The values obtained were quite close to the lower bound of
the IL, i.e., 20.71%, as shown in Table 1, besides being superior to the average
values over all the different combinations (i.e., 25.16%).

Table 2. The value of the IL using the MDAV multi-variate MAT after projecting
various data sets using 3 variables by using the EMIM metric to calculate the edge
weights in the connected undirected graph

Data set Width value No. of possibilities Variable indices IL

7,4,1 24.1333
7,4,10 24.1881

50,000 5 7,4,2 25.0465
7,4,12 25.6574
7,4,6 25.6826
7,4,1 24.1333

Tarragona 100,000 3 7,4,2 25.0465
7,4,12 25.6574
7,4,2 25.0465

150,000 2 7,4,12 25.6574

1,10,7 17.4700
1,000 2 1,10,12 25.3632

2,10,8 16.2332
2,10,5 17.3421
2,10,1 17.7012

Census 5,000 6 2,10,13 21.0694
2,10,7 21.1128
2,10,12 21.5828

10,000 1 1,2,12 18.2996

4 On our processor, it took up to a few hours depending on the dimensionality and
cardinality of the data set, to exhaustively search the entire space.

416 B.J. Oommen and E. Fayyoumi

6 Conclusions

In this paper, we have shown how the information about the structure of the
dependence between the variables in the micro-data file can be used as a funda-
mental indicator before invoking any MAT . By using this information, we have
proposed a new automated scheme as a pre-processing phase to determine the
number and the identity of the variables that are to be used to micro-aggregate
the micro-data file for minimizing the IL in secure statistical databases. This is
achieved by constructing a connected undirected graph whose nodes represent
the random variables in the micro-data file, edges represent the statistically de-
pendencies, and the edges weights are computed by using the EMIM metric.
The experimental results show that such a methodology involving projecting
the multi-variate data sets reduces the solution space, which further directly re-
duces the computation time required to search the entire space combinatorially.
In spite of this, this methodology leads to a solution whose IL values are close
to the minimum value of the IL that can be obtained by exhaustively searching
over the entire search space.

In conclusion, our work has demonstrated the intractability of the MAP and
presented a promising tool for enhancing the data utility. We are looking to
extend this work by studying the effect of using the χ2 metric and the correlation
matrix (assuming Normality) on calculating the edges weight of the connected
dependence graph with respect to the computation time required to search the
entire space and the accuracy for estimating the dependence model.

References

1. Adam, N., Wortmann, J.: Security-Control Methods for Statistical Databases: A
Comparative Study. ACM Computing Surveys 21(4), 515–556 (1989)

2. Kim, J., Winkler, W.: Masking Microdata Files. In: Proceedings of the Section on
Survey Research Methods, pp. 114–119 (1995)

3. Baeyens, Y., Defays, D.: Estimation of Variance Loss Following Microaggregation
by the Individual Ranking Method. In: Proceedings of Statistical Data Protection
1998, Luxembourg: Office for Official Publications of the European Communities,
pp. 101–108 (1999)

4. Cuppen, M.: Secure Data Perturbation in Statistical Disclosure Control. PhD the-
sis, Statistics Netherlands (2000)

5. Domingo-Ferrer, J., Mateo-Sanz, J.: Practical Data-Oriented Microaggregation for
Statistical Disclosure Control. IEEE Transactions on Knowledge and Data Engi-
neering 14(1), 189–201 (2002)

6. Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Lenz, R., Longhurst,
J., Nordholt, E., Seri, G., Wolf, P.: Handbook on Statistical Disclosure Control. A
CENtre of EXcellence for Statistical Disclosure Control CENEX SDC (2006)

7. Mateo-Sanz, J., Domingo-Ferrer, J.: A Method for Data-Oriented Multivariate Mi-
croaggregation. In: Proceedings of Statistical Data Protection 1998, Luxembourg:
Office for Official Publications of the European Communities, pp. 89–99 (1999)

8. Panaretos, J., Tzyvidis, N.: Aspects of Estimation Procedures at Eurostat with
Some Emphasis on Over-Space Harmonisation. In: HERCMA 2001 Conference
(2001)

Enhancing MAT by Utilizing Dependence-Based Information 417

9. Crises, G.: Microaggregation for Privacy Protection in Statistical Databases. Tech-
nical report (2004)

10. Domingo-Ferrer, J.: Statistical Disclosure Control in Catalonia and the CRISES
Group. Technical report (1999)

11. Domingo-Ferrer, J., Torra, V.: Aggregation Techniques for Statistical confidential-
ity. In: Aggregation operators: new trends and applications, pp. 260–271. Physica-
Verlag GmbH, Heidelberg (2002)

12. Hansen, S., Mukherjee, S.: A Polynomial Algorithm for Univariate Optimal Mi-
croaggregation. IEEE Transactions on Knowledge and Data Engineering 15(4),
1043–1044 (2003)

13. Laszlo, M., Mukherjee, S.: Minimum Spanning Tree Partitioning Algorithm for
Microaggregation. IEEE Transactions on Knowledge and Data Engineering 17(7),
902–911 (2005)

14. Torra, V.: Microaggregation for Categorical Variables: A Median Based Approach.
In: Domingo-Ferrer, J., Torra, V. (eds.) Privacy in Statistical Databases: CASC
Project International Workshop, PSD 2004 Proceedings, pp. 162–174. Springer,
Berlin (2004)

15. Sanchez, J., Urrutia, J., Ripoll, E.: Trade-Off between Disclosure Risk and Infor-
mation Loss Using Multivariate Microaggregation: A Case Study on Business Data.
In: Domingo-Ferrer, J., Torra, V. (eds.) Privacy in Statistical Databases: CASC
Project International Workshop, PSD 2004 Proceedings, pp. 307–322. Springer,
Berlin (2004)

16. Defays, D.: Protecting Microdata by Microaggregation: the Experience in Eurostat.
Questiio 21, 221–231 (1997)

17. Defays, D., Anwar, M.: Masking Micro-data Using Micro-Aggregation. Journal of
Official Statistics 14(4), 449–461 (1998)

18. Defays, D., Anwar, N.: Micro-Aggregation: A Generic Method. In: Proceedings
of the 2nd International Symposium on Statistical Confidentiality, Luxembourg:
Office for Official Publications of the European Communities, pp. 69–78 (1995)

19. Defays, D., Nanopoulos, P.: Panels of Enterprises and Confidentiality: the Small
Aggregates Method. In: Proceedings of 1992 Symposium on Design and Analysis
of Longitudinal Surveys, pp. 195–204. Statistics Canada, Ottawa (1993)

20. Mas, M.: Statistical Data Protection Techniques. Technical report, Eustat: Euskal
Estatistika Erakundea,Instituto Vasco De Estadistica (2006)

21. Mateo-Sanz, J., Domingo-Ferrer, J.: A Comparative Study of Microaggregation
Methods. Questiio 22(3), 511–526 (1998)

22. Domingo-Ferrer, J., Torra, V.: Ordinal, Continuous and Heterogeneous k-
Anonymity Through Microaggregation. Data Mining and Knowledge Discov-
ery 11(2), 195–212 (2005)

23. Fayyoumi, E., Oommen, B.: A Fixed Structure Learning Automaton Micro-
Aggregation Technique for Secure Statistical Databases. In: Privacy Statistical
Databases, Rome, Italy, pp. 114–128 (2006)

24. Oommen, B., Fayyoumi, E.: A Novel Method for Micro-Aggregation in Secure Sta-
tistical Databases Using Association and Interaction. In: Information and Com-
munications Security, 9th International Conference on Information and Communi-
cations Security. LNCS, vol. 4861, pp. 126–140. Springer, Heidelberg (2007)

25. Fayyoumi, E., Oommen, B.: On Optimizing the k-Ward Micro-Aggregation Tech-
nique for Secure Statistical Databases. In: 11th Austratasian Conference on In-
formation Security and Privacy Proceeding, Australia, Melbourne, pp. 324–335
(2006)

418 B.J. Oommen and E. Fayyoumi

26. Solanas, A., Mart̀ınez-Ballestè, A.: V-MDAV: A Multivariate Microaggregation
With Variable Group Size. In: 17th COMPSTAT Symposium of the IASC, Rome
(2006)

27. Oganian, A., Domingo-Ferrer, J.: On The Complexity of Optimal Microaggrega-
tion for Statistical Disclosure Control. Statistical Journal of the United Nations
Economic Comission for Europe 18(4), 345–354 (2001)

28. Chow, C., Liu, C.: Approximating Discrete Probability Distributions with Depen-
dence Trees. IEEE Trans. Information Theory 14(11), 462–467 (1968)

29. Valiveti, R., Oommen, B.: On Using the Chi-Squared Metric for Determining
Stochastic Dependence. Pattern Recognition 25(11), 1389–1400 (1992)

30. Valiveti, R., Oommen, B.: Determining Stochastic Dependence for Normally Dis-
tributed Vectors Using the Chi-squared Metric. Pattern Recognition 26(6), 975–987
(1993)

31. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press,
McGraw-Hill (1990)

32. Domingo-Ferrer, J., Torra, V.: A Quantitative Comparison of Disclosure Control
Methods for Microdata. In: Confidentiality, Disclosure and Data Access: Theory
and Practical Applications for Statistical Agencies, pp. 113–134. North-Holland,
Springer (2002)

Montgomery Residue Representation

Fault-Tolerant Computation in GF (2k)

Silvana Medoš� and Serdar Boztaş

School of Mathematical and Geospatial Sciences,
RMIT University, GPO Box 2476V, Melbourne 3001, Australia

{silvana.medos,serdar.boztas}@ems.rmit.edu.au

Abstract. In this paper, we are concerned with protecting elliptic curve
computation in a tamper proof device by protecting finite field compu-
tation against active side channel attacks, i.e., fault attacks. We propose
residue representation of the field elements for fault tolerant Montgomery
residue representation multiplication algorithm, by providing fault mod-
els for fault attacks, and countermeasures to some fault inducing attacks.

Keywords: finite field, fault tolerant computation, fault attacks.

1 Introduction

Finite field arithmetic is fundamental for Elliptic Curve Cryptography (ECC)
which was proposed independently by Koblitz [13] and Miller [20] in 1985. ECC
has received commercial acceptance and has been included in numerous stan-
dards. Its computation relies on a very large finite field (with more than 2160

elements). Security of ECC is based on the difficulty of the discrete logarithm
problem (DLP), but it is proven that security of cryptosystems does not only de-
pend on the mathematical properties. Side channel attacks provide information
which reveals important and compromising details about secret data. Some of
these details can be used as a new trapdoor to invert a trapdoor one-way func-
tion without the secret key. This allows an adversary to break a cryptographic
protocol, even if it proved to be secure in the mathematical sense. Specifically, in
case of fault attacks which are active attacks, an adversary has to tamper with
an attacked device in order to create faults. E.g. if an adversary can inflict some
physical stress on the smartcard, he can induce faults into circuitry or memory,
as a result these faults are manifested in computation as a errors. Therefore,
faulty final result is computed. Moreover, if computation depends on some se-
cret key, facts about secret key can be concluded. For further references please
see [4], [7], [10], [12].

In this paper we are concerned with protecting elliptic curve computation in
a tamper proof device by protecting finite field computation against active side
channel attacks, i.e., fault attacks where an adversary induces faults into a de-
vice, while it executes the correct program. Our paper is organized as follows.
� The first author was supported by ARC Linkage grant LP0455324.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 419–432, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

420 S. Medoš and S. Boztaş

After outlining the background in the section 1, fault attacks in section 2, and
Montgomery multiplication algorithm in section 3, we present fault tolerant Mont-
gomery Residue Representation (RR) multiplication algorithm in section 4. In
section 5 we provide possible fault models, while in section 6 is described possi-
ble Euclid’s Algorithm which is used for decoding of redundant residue polynomial
codes [27]. Also in this section we discuss computation efficiency, and demonstrate
our idea through an example. Paper is concluded by section 7.

2 Fault Attacks

An elliptic curve (non-supersingular) over field GF (2k) is given by simplified
Weierstrass equation:

E/F2k : y2 + xy = x3 + a2x
2 + a6, (1)

along with a point at infinity O. Given two points P = (x1, y1) ∈ E(F2k), and
Q = (x2, y2) ∈ E(F2k) where P �= ±Q then P + Q = (x3, y3), where

x3 = λ2 + λ + x1 + x2 + a2 and y3 = λ (x1 + x3) + x3 + y1 (2)

with λ = (y1 + y2) / (x1 + x2). Also, if P = Q then 2P = (x3, y3) where

x3 = λ2 + λ + a2 and y3 = x2
1 + λx3 + x3, (3)

with λ = (x1 + y1) /x1.
Security of elliptic curve cryptosystem relies on the hardness of solving the

elliptic curve discrete logarithm problem (ECDLP), i.e., given P and Q = dP on
an elliptic curve, one has to recover the scalar d. In many practical applications
of ECC the secret key is stored inside a tamper-resistant device, i.e., smartcard.
Since cryptographic algorithms are public, an adversary can determine what
variables are used and what values they have. This makes it easy to deter-
mine what kind of error will cause a certain reaction which may be observable
by an adversary. In [6] Biehl, Meyer and Müller considered an elliptic curve
(1), and they have noticed that parameter a6 is not involved in the addition.
Therefore, if a cryptographic device (e.g. smartcard) receives on input a point
P̃ = (x̃, ỹ) ∈ F2k × F2k , but P̃ /∈ E then scalar multiplication dP̃ will take place
over the curve Ẽ/F2k : Y 2+XY = X3+a2X

2+ ã6, with ã6 = ỹ2+ x̃ỹ+ x̃3+a2x̃
2

instead over the original curve E.

Case1. Assume that point P̃ is chosen such that Ẽ (a2, ã6) is an elliptic curve
whose order has a small factor h and ordẼ

(

P̃
)

= h. Then the value d(modh)

can be recovered given the subgroup < P̃ > of order h. With sufficiently many
different chosen points P̃i we get dmodh from dP̃i, and by Chinese Remainder
Theorem whole value of d.

Case 2. Let the point P = (x, y) be a system parameter that is stored in the
non-volatile memory of the cryptographic device. It is read from that memory for

Montgomery Residue Representation Fault-Tolerant Computation 421

computation of dP . Assume that only the x coordinate of point P is corrupted
(or only y is corrupted). The cryptographic device then computes Q̃ = dP̃ ,
where P̃ = (x̃, y) is unknown, but fixed, (see [8]). It is easy to recover value of
P̃ from output value Q̃ = d(x̃, y) = (x̃d, ỹd). Point Q̃ defines a curve Ẽ(a2, ã6)
with

ã6 = ỹd
2 + x̃dỹd + x̃d

3 + a2x̃d
2. (4)

Since P̃ = (x̃, y), x̃ is a root in GF (2k) of the polynomial

X3 + a2X
2 + yX + ã6 + y2. (5)

By assuming that (5) has a unique root x̃, where h = ordẼ(P̃) is small enough
so that discrete logarithm of Q̃ is computable then value of dmodh can be
recovered. Otherwise, there are 2, or 3 candidates for x̃, since x̃ is a root of (5).
In permanent-fault model it is assumed that only portion of x is corrupted, so
the candidate having the most bits matching those of x is likely to be x̃. In
transient fault model, the whole value of x is likely to be corrupted.

Case 3. Assume that both coordinates x, y are corrupted, such that P̃ = (x̃, ỹ)
is the corresponding point. Output value Q̃ = dP̃ = d(x̃d, ỹd) yields the value
ã6 as in (4). We only know that point P̃ lies on the curve Ẽ(a2, ã6). Further
assumptions are needed to completely recover P̃ .

The authors of [6], [8] claim that if the smartcard checks if the final result
is a valid point on the original curve then the faulty point is captured with
overwhelming probability. By this, any attack that yields faulty result which is
a valid point on the original curve, would be undetectable by standard coun-
termeasures. Therefore, those undetectable points can be used for a new at-
tacks. E.g., fault induced into the addition or doubling formulas for elliptic curve
points might be useful to recover secret data. Assume faut attack on y3 in (2),
and that fault is induced into λ, i.e. λ �→ λ + e, e ∈ GF (2k), then computed
faulty value is: ỹ3 = y3 + e(x1 + x3). Faulty point P̃3 = (x3, ỹ3) is a valid
faulty point only if y2 + xy + x3 + a2x

2 + a6 = 0 over GF (2k). Therefore,
ỹ2
3 + x3ỹ3 + x3

3 + a2x
2
3 + a6 = e(x3(x1 + x3) + e(x1 + x3)2) + T = 0, where

T = ỹ3 + x3
3 + a2x

2
3 + a6 = 0. Therefore, valid faulty point happens if e = x3

x1+x3
,

x1 �= x3. Similarly, if fault is induced into x1 of y3 in (2), i.e., x1 �→ x1 + e,
e ∈ GF (2k), then valid faulty point will occur if e = x3

λ , λ �= 0.

3 Montgomery Multiplication in GF (2k)

In [14] is given finite field GF (2k) analogue of the Montgomery multiplication for
modular multiplication of integers [21]. Elements of the finite field are considered
as a polynomials of degree < k, while p(x) = xk is used as a Montgomery factor,
since reduction modulo xk, and division modulo xk consist in ignoring the terms
of order larger then k for the remainder operation, and shifting the polynomial
to the right by k places for the division. Instead of computing a(x)b(x) ∈ GF (2k)
for a(x), b(x) ∈ GF (2k) it computes a(x)b(x)p−1(x)mod f(x), where f(x) is a

422 S. Medoš and S. Boztaş

irreducible polynomial of degree k with coefficients in GF (2), and p−1(x) is
inverse of p(x) modulo f(x). The Montgomery multiplication method requires
that p(x) and f(x) are relatively prime, i.e., gcd(p(x), f(x)) = 1, such that by
an Extended Euclidean Algorithm p(x)p−1(x) + f(x)f ′(x) = 1. Bajard et al. [2]
extended the same idea to any extension field GF (pk) and to any polynomial
of degree k as a Montgomery factor such that gcd(p(x), f(x)) = 1. Also, in-
stead of division by p(x) in Step 2 of Algorithm 1, it is used multiplication by
p−1(x) (mod p′(x)). Therefore, Algorithm 1 computes a(x)b(x)p−1(x)mod f(x)
such that gcd (p(x), p′(x)) = (p(x), f(x)) = 1, and deg (p(x)) = deg (p′(x)) ≥ k.
Bajard et al. [3] have proposed first general Montgomery multiplication

Algorithm 1. Montgomery Multiplication in GF (2k)

Inputs: a(x), b(x) ∈ GF (p)[x]/ < f(x) >, irreducible polynomial f(x), deg(f(x)) = k,
deg(a(x)), deg(b(x)) ≤ k−1, p(x) = p′(x) ≥ k, s.t. gcd(p(x), f(x)) = gcd(p(x), p′(x)) =
1
Output: a(x)b(x)p−1(x)modf(x)

1. q(x) ← −a(x)b(x)f ′(x)modp(x)
2. r(x) ← (a (x) b (x) + q (x) f (x)) p−1(x)modp′(x)

algorithm based on the trinomial residue arithmetic. We consider that algorithm,
i.e., Algorithm 2 to the residues in Mersenne form, or pseudo-Mersenne form
and extend its use to the fault tolerant computation in the field GF (2k) by use
of redundancy. Here, finite field GF (2k) is considered as a the set of polynomials

Algorithm 2. Residue Representation Modular Multiplication

Inputs: ai(x), bi(x), av+j(x), bv+j(x), fv+j(x), i, j = 1, . . . , v. Precomputed: f ′
i(x),

p′−1
v+j(x), kv+j(x), ki(x), i, j = 1, . . . , v, v × v matrices ω, ω′.

Output: (r1(x), . . . , rv(x)).

1. (t1(x), . . . , tv(x)) ← (a1(x), . . . , av(x)) ⊗ (b1(x), . . . , bv(x))
2. (q1(x), . . . , qv(x)) ← (t1(x), . . . , tv(x)) ⊗ (f ′

1(x), . . . , f ′
v(x))

3. Change of RR: (q1(x), . . . , qv(x)) → (qv+1(x), . . . , q2v(x))
4. (rv+1(x), . . . , r2v(x)) ← [(tv+1(x), . . . , t2v(x)) ⊕ (qv+1(x), . . . , q2v(x))

⊗ (fv+1(x), . . . , f2v(x)) ⊗ (p′−1
v+1(x), . . . , p′−1

2v (x)
)

5. Change of RR: (rv+1(x), . . . , r2v(x)) → (r1(x), . . . , rv(x)).

modulo a irreducible polynomial f(x), deg(f(x)) = k, i.e., GF (2)[x]/ < f(x) >=
{a0 + . . . + ak−1x

k−1|ai ∈ GF (2)}, and {m1(x), . . . , mv(x)} is set of v relatively
prime polynomials from polynomial ring GF (2)[x], such that

n = deg (m1 (x)) + . . . + deg (mv (x)) ≥ k,

Montgomery Residue Representation Fault-Tolerant Computation 423

where m(x) =
∏v

i=1 mi(x), m(x) ∈ GF (2)[x]. Then by Chinese Remainder
Theorem (CRT) there exist ring isomorphism, i.e.,

GF (2)[x]/ < m(x) >∼= GF (2)[x]/ < m1(x) > × . . .×GF (2)[x]/ < mv(x) > .

Therefore, all a(x) ∈ GF (2k) have corresponding residue representation, i.e.,

a(x)↔ a = (a1(x), . . . , av(x)) ,

where ai(x) = a(x)(modmi(x)) for i = 1 . . . v. Montgomery factor is p(x) =
∏v

i=1 mi(x) such that gcd(p(x), f(x)) = 1, and p′(x) =
∏2v

i=v+1 mi(x) where
gcd(p(x), p′(x)) = 1, such that gcd(mi(x), mj(x)) = 1 for i �= j, i, j = 1 . . . 2v.
Also, in Algorithm 2, ⊗ is componentwise multiplication, ⊕ is componentwise
addition. More details follows in next section.

Algorithm 3. Fault Tolerant RR Modular Multiplication

Inputs: ai(x), bi(x), ac+j(x), bc+j(x), fc+j(x), i, j = 1, . . . , c, c > v. Precomputed:
f ′

i(x), p′−1
c+j(x), kc+j(x), ki(x), i, j = 1, . . . , c, c × c matrices ω,ω′, c > v.

Output: r(x) ∈ GF (2)[x]/ < m1(x) > × . . . × GF (2)[x]/ < mc(x) >.

1. (t1(x), . . . , tc(x)) ← (a1(x), . . . , ac(x)) ⊗ (b1(x), . . . , bc(x))
2. (q1(x), . . . , qc(x)) ← (t1(x), . . . , tc(x)) ⊗ (f ′

1(x), . . . , f ′
c(x))

3. Change of RR: (q1(x), . . . , qc(x)) → (qc+1(x), . . . , q2c(x))
4. (rc+1(x), . . . , r2c(x)) ← [(tc+1(x), . . . , t2c(x)) ⊕ (qc+1(x), . . . , q2c(x))⊗

(fc+1(x), . . . , f2c(x)) ⊗ (p′−1
c+1(x), . . . , p′−1

2c (x)
)

5. Change of RR: (rc+1(x), . . . , r2c(x)) → (r1(x), . . . , rc(x)).
6. CRT interpolation: r(x) ←(r1(x), . . . , rc(x)).

4 Fault Tolerant Residue Representation Multiplication

Depending on the security required, to protect computation in the finite field
we add redundancy by adding more (c > v) parallel, modular channels than
what is required by minimum, i.e., see Fig. 1. Added redundant modular chan-
nels mv+1(x), . . . , mc(x) ∈ GF (2)[x] have to be relatively prime to each other
and to the non-redundant modular channels m1(x), . . . , mv(x). Therefore, now
computation happens in the larger direct product ring R′′

GF (2)[x]/<m1(x)>× . . .×GF (2)[x]/ < mv(x) > × . . .×GF (2)[x]/ < mc(x) >,

where

m′(x) = m1(x) · . . . ·mv(x) · . . . ·mc(x), m′(x) ∈ GF (2)[x], deg (m′(x)) > n,

such that R′′ ∼= GF (2)[x]/ < m′(x) >. The redundant polynomial modulus have
to be of degree larger then the largest degree of the non-redundant moduli, i.e.,

deg(mv+j(x)) > max{deg{m1(x), . . . , mv(x)}}

424 S. Medoš and S. Boztaş

and

deg

{
m′(x)

max{mj1(x) · . . . ·mjc−v (x)}
}

≥ n ≥ k (6)

where c−v is added redundancy. Therefore, all a(x) ∈ GF (2k) have correspond-
ing redundant residue representation, i.e.,

a(x)↔ a = (a1(x), . . . , av(x), . . . , ac(x)) ,

where ai(x) = a(x)(modmi(x)) for i = 1 . . . c. Now, p(x) =
∏c

i=1 mi(x), i =
1, . . . , c is Montgomery factor, such that gcd(p(x), f(x)) = 1, and computa-
tion is done in parallel, i.e. qi(x) = ai(x)bi(x)f ′

i(x), i = 1 . . . c, where f ′(x) ≡
f−1(x)(mod p(x)). Since, inverse modulo p(x) of p(x) does not exist, r(x) =
(a(x)b(x) + q(x)f(x)) p−1(x) is evaluated by choosing polynomial
p′(x) =

∏2c
i=c+1 mi(x), where gcd(p(x), p′(x)) = 1, and gcd(mi(x), mj(x)) =

1 for i �= j, i, j = 1 . . . 2c. Therefore, change of the residue representation
(q1(x), . . . , qc(x)) to (qc+1(x), . . . , q2c(x)) is done by:

⎛

⎜
⎜
⎜
⎝

qc+1(x)
qc+2(x)

...
q2c(x)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

w1,c+1(x) w2,c+1(x) . . . wc,c+1(x)
w1,c+2(x) w2,c+2(x) . . . wc,c+2(x)

...
...

...
...

w1,2c(x) w2,2c(x) . . . wc,2c(x)

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

k1(x)
...

kc−1(x)
kc(x)

⎞

⎟
⎟
⎟
⎠

,

where

wi,c+j(x) =
(

p(x)
mi(x)

)

(modmc+j(x)) , i, j = 1, . . . , c, and

ki(x) =

(

qi(x)
(

p(x)
mi(x)

)−1

modmi(x)

)

modmi(x),

i = 1, . . . , c. Now, computation of step 4 of Algorithm 3 happens in the following
ring:

GF (2)[x]/ < mc+1(x) > × . . .×GF (2)[x]/ < m2c(x) >

Change of the residue representation (rc+1(x), . . . , r2c(x)) to (r1(x), . . . , rc(x))
is done by:

⎛

⎜
⎜
⎜
⎝

r1(x)
r2(x)

...
rc(x)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

w′
c+1,1(x) w′

c+2,1(x) . . . w′
2c,1(x)

w′
c+1,2(x) w′

c+2,2(x) . . . w′
2c,2(x)

...
...

...
...

w′
c+1,c(x) w′

c+2,c(x) . . . w′
2c,c(x)

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

kc+1(x)
kc+2(x)

...
k2c(x)

⎞

⎟
⎟
⎟
⎠

,

where

w′
c+i,j(x) =

(
p′(x)

mc+i(x)

)

(modmj(x)) , i, j = 1, . . . , c, and

kc+j =

(

rc+j(x)
(

p′(x)
mc+j(x)

)−1

modmc+j(x)

)

modmc+j(x), j = 1 . . . c.

Montgomery Residue Representation Fault-Tolerant Computation 425

t1(x) = a1 (x)b1(x) t2(x) = a2 (x)b2 (x) tc(x) = ac (x)bc (x)

q2(x) = t2(x)f2(x)' qc (x) = tc(x)fc(x)

. . .

. . .

Change of RR representation

q c+1(x) qc+2(x)

. . .

Change of RR representation

CRT Interpolation

Error detection and correction

 r c+1 (x)

''

(r1(x), r2(x),...,rc(x))

r(x)

q1(x) = t1(x)f1(x)

 r c+2 (x)

P
R

O
C

E
S

S
O

R

1

P
R

O
C

E
S

S
O

R

2

P
R

O
C

E
S

S
O

R

C

' ' '

r 2c (x)

q2c(x)

Fig. 1. Fault tolerant computation of the finite field GF (2k)

By Chinese Remainder Algorithm (CRA) [9], if there are no fault effects, c
output components will determine a unique polynomial of degree < n ≥ k with
coefficients ai ∈ GF (2), otherwise, it will be of degree ≥ n ≥ k.

Definition 1. The set of correct results of computation is

C = {r (x) ∈ GF (2)[x]/ < m′ (x) > |deg (r(x)) < n ≥ k} .

4.1 Complexity

Chinese Remainder Algorithm([9]) is only applied at the end of the computation,
and its complexity is:

Theorem 1 ([9]). Let GF (2)[x] be polynomial ring over a field GF (2), m1(x),
. . . , mc(x) ∈ GF (2)[x], di = deg(mi(x)) for 1 ≤ i ≤ c , l = deg(m′(x)) =
∑

1≤i≤c di, and ri(x) ∈ GF (2)[x] with deg(ri(x)) < di. Then the unique solution
r′(x) ∈ GF (2)[x] with deg(r′(x)) < l of the Chinese Remainder Problem r′(x) ≡
ri(x)(modmi(x)) for 1 ≤ i ≤ c for polynomials can be computed using O(l2)
operations in GF(2).

Theorem 2. Computation complexity of the Algorithm 3 is O(l2).

Proof. Let deg (m1 (x)) = d1, . . . , deg (mc (x)) = dc, and d1 + . . . + dc = l.
Then complexity of step 1 is

∑c
i=1 O

(

d2
i

)

< O
(

(
∑c

i=1 di)2
)

= O(l2), same as of

426 S. Medoš and S. Boztaş

step 2. In step 3, matrix and vector are precomputed, and their multiplication has
complexity O(sc2)+

∑c
i=1 O(di+c) < O(l2), where s is degree of two polynomials

multiplied such that s ≤ max
i

(2di), i = 1, . . . , c. Complexity of computing step 4

is 4
∑c

i=1 O(d2
i+c) +

∑c
i=1 O(di+c) < O(l2). In step 5, O(s′(c2)) +

∑c
i=1 O(di) <

O(l2), where s′ is degree of two polynomials multiplied such that s′ ≤ max
i

(2di),

i = c + 1, . . . 2c. Step 6 has complexity O(l2). Therefore, complexity of the
algorithm 3 is O(l2).

5 Error Detection and Correction

Assume that here is one processor per independent channel as in Fig. 1. Let us as-
sume that we have c processors, where each processor computes i -th polynomial
residue and i -th residue operations. Also, we assume that Chinese Remainder
Algorithm [9] on the end of the computation is error free.

As fault attacks, we consider methods, approaches and algorithms which when
applied to the attacked processor return the effect desired by an attacker, e.g., by
applying cosmic rays, heat/infrared radiation, power spikes, clock glitches, etc.
An adversary can run the processor several times until the desired effects occur.
As a reaction attacked processor malfunctions, and its output is erroneous such
that computation assigned to the faulty processor is disturbed, and its channel
is affected. The fault manifests itself in a modified data, or a modified program
execution. We identify memory cells with their values, and we say that faults
are induced into variables, or bits. Note that any fault induced in a variable x
can be described by means of an additive error term x �→ x′ = x + e(x) but the
error term e(x) can itself take on quite different characteristics, depending on
the type of the fault:

Stuck-at Faults. Let b be an arbitrary bit stored in memory. Assume that b is
modified by a stuck-at fault. Then b �→ b′ = c, where the constant c = 1 or c = 0.
The value of the affected bit is not changed any more, even if a variable x, which
uses these bits, is overwritten. Clearly stuck-at faults will have a noticeable effect
only if the variable is overwritten at some point.

Bitflip Faults. Let b be an arbitrary bit stored in memory. Assume that b
is modified by a bitflip fault. Then b �→ b′ = b + 1 (mod 2). The effect may
be transient, permanent or destructive. A bitflip fault is easy to visualize, and
always results in a fault on a variable using the bit which is faulty.

Random Faults. Let b be an arbitrary bit stored in memory. Assume that b is
modified by a random fault. Then b �→ b′ where b′ is a random variable taking
on the values 0 or 1. The effect may be transient, permanent or destructive.
Since several physical methods of fault induction are difficult to control precisely,
random faults are considered to be the most realistic fault type. The random
variable which models the fault may be uniform or non-uniform. Note that the
above faults can be considered for an arbitrary but unknown set of bits B, where
assumptions about how the adversary controls the choice of B can also model

Montgomery Residue Representation Fault-Tolerant Computation 427

different attack scenarios. Therefore, following fault models (inspired by [22]) are
assumed which appear in [18], but are necessary for completeness of presentation:

Random Fault Model (RFM). Assume that an adversary does not know
much about his induced faults to know its effect, but he knows the affected
variable at specific channel. Therefore, we assume that affected variable rj ∈
GF (2)[x]/ < mj(x) > at specific channel j is changed to some random value from
the GF (2)[x]/ < mj(x) >, where all values can occur with the same probability.
This model is used if attacker knows that an induced fault at j-th channel will
set affected variable to a random uniformly distributed value from GF (2)[x]/ <
mj(x) >, or if his fault attack does not depend on some special values that have
to appear at some time. This fault model relies on the random fault type.

Arbitrary Fault Model (AFM). An adversary can target specific line of
code at specific channel, but no specific variable in that line, i.e., adversary has
limited control over induced faults, does not know much about his induced faults
to know its type, or error distribution. In AFM, transient faults on any variable,
or operation in the affected line of code at specific channel is the same as if the
result of the targeted line of code is changed by some fault at specific channel.
In the situation of permanent fault, we assume that all variables used in the
targeted line of code are hit with the same uniform probability. This attack is
successful if attacker does not need the assumptions about distribution of the
error value, or does not need to be able to guess the error term to get information.
Also, we can assume that an adversary can not target specific line of code, but
will hit any line with known probability.

Mathematically, the effect of an attack using these fault models can be mod-
eled as an addition of an unknown error ei ∈ GF (2)[x]/ < mi(x) >. In case
of RFM we assume that a variable rj at specific channel j is changed to some
random value rj + ej , where ej ∈ GF (2)[x]/ < mj(x) > with the same uniform
probability, i.e., fault may result in any faulty value, while for AFM if we let ri

be component to which is assigned the result of the affected line of code, then the
faulty value is ri + ei, where ei ∈ GF (2)[x]/ < mi(x) >, and whose probability
distribution is arbitrary and unknown.

Since computation is decomposed into parallel, mutually independent chan-
nels, the adversary can use either RFM , or AFM per channel. Assume that
at most c − v channels have faults. Let r′ ∈ R′′ be computed vector with
c components, where ej ∈ GF (2)[x]/ < mj(x) > is the error polynomial at
j -th position; then the computed component at the j-th positions is bj =
r(x)(modmj(x)) + ej(x)(modmj(x)), and each processor will have as an output
component

bj =
{

(r(x) + ej(x))(modmj(x)), j ∈ {j1, . . . , jλ},
r(x)(modmj(x)), else.

428 S. Medoš and S. Boztaş

Here, we have assumed that the set of error positions are {j1, . . . , jλ}. By CRA
the computed vector r′ ∈ R′′ with corresponding set of c modulus mi(x), gives
as a output polynomial r′(x) ∈ GF (2)[x]/ < m′(x) >,

r′(x) ≡
⎛

⎝
∑

1≤i≤c

ri(x)Ti(x)Mi(x)

⎞

⎠ (modm′(x))

=

⎛

⎝
∑

1≤i≤c

ri(x)Ti(x)Mi(x) +
∑

1≤i≤λ

eji(x)Tji(x)Mji (x)

⎞

⎠ (modm′(x))

= (r(x) + e(x)) (modm′(x)) , (7)

where Mi(x) = m′(x)
mi(x) , polynomials Ti(x) are computed by solving congruences

Ti(x)Mi(x) ≡ 1(modmi(x)), Mji(x) = m′(x)
mji

(x) . Moreover, r(x) (modm′(x)) is
correct polynomial of degree < n and e(x) (modm′(x)) ∈ GF (2)[x]/ < m′(x) >
is the error polynomial such that

Theorem 1. Let eji ∈ GF (2)[x]/ < mji(x) > be error polynomial at positions
ji, i ∈ {1, . . . , λ}, λ ≤ c− v then deg(e(x)) ≥ n ≥ k.

Proof. We have that

e(x) =

⎛

⎝
∑

1≤i≤λ

eji(x)Tji (x)Mji(x)

⎞

⎠ (modm′(x))

= ej1(x)Tj1 (x)Mj1(x) + . . . + ejλ
(x)Tjλ

(x)Mjλ
(x)

=
m′(x)

mj1(x) · . . . ·mjλ
(x)

λ∑

i=1

mj1(x) · . . . ·mjλ
(x)

mji(x)
Tji(x)eji (x). (8)

Since, deg
(
∑λ

i=1

∏λ
l=1 mjl

mji
(x) Tji(x)eji(x)

)

< deg
(

m′(x)
∏

λ
l=1 mjl

(x)

)

, and by (6),

deg
(

m′(x)
∏

λ
l=1 mjl

)

≥ n ≥ k, we have that deg(e(x)) ≥ n ≥ k.

Therefore, faulty processors affect the result in an additive manner.

Lemma 1. The error is masked iff deg(e(x)) < n ≥ k.

Proof. Let deg (e (x)) < n, n ≥ k in (7), then deg(r′(x)) < n, i.e., r′(x) ∈ C.

Lemma 2. Let the degree of the ring modulus m′(x) be greater then n ≥ k, and
let c > v be the number of parallel, independent, modular channels (or number of
processors). Then if up to c− v channels fail, the output polynomial r′(x) �∈ C.

Proof. By referring to (7), since if deg(e(x)) ≥ n, the output polynomial r′(x)
has to be such that deg(r′(x)) ≥ n. By Definition 1, r′(x) �∈ C.

Montgomery Residue Representation Fault-Tolerant Computation 429

Lemma 3. Let the degree of the ring modulus m′(x) be greater then n ≥ k, and
let c > v be number of parallel, independent, modular channels (or number of
processors). If there is no faulty processors then r′(x) ∈ GF (2)[x]/ < f(x) >.

Proof. If there are no faulty processors, then clearly no errors occurred, and
deg(r′(x)) < n, n ≥ k so that r′(x) = r(x), r′(x) ∈ C. Therefore, r′(x) ∈
GF (2)[x]/ < f(x) >.

Theorem 2. (i) If the number of parallel, mutually independent, modular, re-
dundant channels is d + t ≤ c − k (d ≥ t), then up to t faulty processors can
be corrected, and up to d simultaneously detected. (ii) By adding 2t redundant
independent channels at most t faulty processors can be corrected.

6 Decoding Based on the Euclidean Algorithm

Extended Euclid’s algorithm yields two polynomials s(x), t(x) such that
s(x)m′(x) + t(x)r′(x) = gcd(m′(x), r′(x)) = d(x), where we set s1(x) = 1, s2(x)
= 0, t2(x) = 0, t2(x) = 1. Let m+(x) =

∏λ
i=1 mji(x), ν =

∑v
i=1 deg (mi (x)) +

∑λ
i=1 deg (mji (x))− 1, u =

∑λ
i=1 deg (mji (x)), then

Lemma 3 ([27]). If ν ≥ deg (gcd(m′(x), r′(x))), u + ν = deg (m′(x))− 1, then
there is unique index j in the algorithm such that deg (tj) ≤ u, deg (dj) ≤ ν.

Theorem 4 ([27]). If t(x), d(x) are nonzero and t(x)r′(x) ≡ d(x) (modm′(x)),
deg (t(x)) + deg (d(x)) < deg (m′(x)), then there exist a unique index j and a
polynomial ζ(x) such that t(x) = ζ(x)tj(x), d(x) = ζ(x)dj(x).

By (7) and (8) we have r′(x) = r(x) + m′(x)
m+(x)

∑λ
i=1

m+(x)
mji

(x)Tji(x)eji(x), i.e.,

r′(x)m+(x)−m′(x)
λ∑

i=1

m+(x)
mji(x)

Tji(x)eji (x) = r(x)m+(x) (9)

Using (9) we applay Theorem (4) with t(x) = m+(x), and d(x) = r(x)m+(x),
then correct output residue is r(x) = r(x)m+(x)

m+(x) = d(x)
t(x) = dj(x)

tj(x) where j is the

first index for which deg (dj(x)) <
∑v

i=1 deg (mi (x)) +
∑λ

i=1 deg(mji (x)). If
deg (dj (x))− deg (tj (x)) ≥∑v

i=1 deg (mi (x)), or tj (x) � dj (x), then more then
λ errors occurred.

6.1 Computational Efficiency

To have efficient reduction in the smaller polynomial rings GF (2)[x]/ < mi(x) >,
i = 1, . . . , c, modulus m′(x) have to be chosen as a product of the pairwise rela-
tively prime polynomials which are of the special low Hamming weight, leading
to efficient modular reduction. Therefore, smaller ring modulus can be chosen
to be in the Mersenne form xn − 1, or pseudo-Mersenne form xn + u(x), where

430 S. Medoš and S. Boztaş

polynomial u(x) is of low weight. In GF (2k), the reduction is relatively inex-
pensive if the field is constructed by choosing the reduction polynomial to be
a trinomial, i.e., xk + xm + 1 with m < k/2, or a pentanomial (if no trinomial
available) xk + xm + xn + xh + 1 with h < n < m < k/2.

Example 1. Assume that we want to protect computation in the finite binary
field GF (23) ∼= GF (2)[x]/ < x3 + x + 1 >. Let the inputs to the computation be
the following finite field elements: a(x) = x, b(x) = x + 1. We want to compute
following expression (a(x)b(x)) mod f(x), where f(x) = x3 + x + 1. Let R[x] =
GF (2)[x]/ < m′(x) >, where m′(x)=x2

(

x2 + x + 1
) (

x3 + x2 + 1
) (

x4 + x + 1
)

.
Now, v = 2, c − v = 2 and error correction capability is t = 1. Therefore,
computation will happen with encoded field elements in the following direct prod-
uct ring: GF (2)[x]/ < m1(x) > × . . . × GF (2)[x]/ < m4(x) >, where a(x) ↔
a = (x, x, x, x), b(x)↔ b = (x + 1, x + 1, x + 1, x + 1), f ′(x)↔ f ′ = (x + 1, x +
1, x, x2+1), such that a⊗b =

(

x, 1, x2 + x, x2 + x
)

, q =
(

x, x + 1, 1, x3 + x2 + 1
)

,
where ⊗ is componentwise multiplication and ⊕ is componentwise addition.
Let {m5(x), m6(x), m7(x), m8(x)} be new set of residues, such that gcd(mi(x),
mj(x)) = 1, i, j = 1, . . . , 8, and p′(x) =

∏8
i=5 mi(x), gcd(m′(x), p′(x)) = 1, i.e.,

p′(x) = (x4 + x3 + 1)(x5 + x3 + x2 + x + 1)
(

x6 + x5 + x2 + x + 1
) (

x7 + x + 1
)

.
Therefore, change of residue representation of q is done by:

ω=

⎛

⎜
⎜
⎝

x2 + x x3 + x2 + x x3 + 1 x3 + x + 1
x4 + x3 + 1 x2 + x + 1 x3 + x2 + x + 1 x4 + x3 + x2 + x + 1
∑5

i=0 xi x5 + x2 x4 + x3 + x2 + x + 1 x5 + x2 + 1
x6 + x4 + x3 + 1 x4 + x2 + x x6 + x5 + 1 x3 + x2 + x + 1

⎞

⎟
⎟
⎠

k =

⎛

⎜
⎜
⎝

x
x

x2 + x
x3

⎞

⎟
⎟
⎠

,

such that q′ = ωk =
(

x + 1, x2, x3 + x2 + x, x5 + x2 + 1
)

. Now, computatin hap-
pens in the new ring: GF (2)[x]/ < m5(x) > × . . .×GF (2)[x]/ < m8(x) >, with,
a(x) ↔ a′ = (x, x, x, x), b(x) ↔ b′ = (x + 1, x + 1, x + 1, x + 1), f(x) ↔ f =
(

x3 + x + 1, x3 + x + 1, x3 + x + 1, x3 + x + 1
)

, p−1(x)↔ p−1 = (1, x3 +1, x5 +
x+1, x5+x4+x3+x), such that a′⊗b′ =

(

x2 + x, x2 + x, x2 + x, x2 + x
)

, q′⊗f =
(

x2, x + 1, x2 + 1, x6 + 1
)

, a′ ⊗ b′ ⊕ q′ ⊗ f =
(

x, x2 + 1, x + 1, x6 + x2 + x + 1
)

,
i.e., result of computation is r′ = (a′ ⊗ b′ ⊕ q′ ⊗ f)⊗ p−1 = (x, x, x, x). Now, we
do change of residue representation by:
⎛

⎜
⎜
⎝

r1(x)
r2(x)
r3(x)
r4(x)

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

x + 1 1 1 1
x + 1 x + 1 x + 1 1
x2 1 x2 + x x2 + x
1 x2 + x + 1 x3 + x2 + x x3 + x2

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1
x2 + x + 1

x5 + x3 + x + 1
x6 + x5 + x4 + x2 + 1

⎞

⎟
⎟
⎠

,

so that final result of computation is:

r = (x, x, x, x) . (10)

Montgomery Residue Representation Fault-Tolerant Computation 431

By applaying CRA on (10) we get r(x) = x. Since, deg(r(x)) < 4, r(x) ∈ C, i.e.,
r(x) ∈ GF (2)[x]/ < f(x) > . Now assume that an adversary induces faults into
point P ∈ E/F2k by inducing faults into one of 8 processors by some physical
set up, causing attacked processor to be faulty, such that erroneous output of the
computation is

r′(x) = (x + 1, x, x, x) (11)

By applying CRA on (11) we get

r′(x) = x9 + x6 + x4 + x2 + x + 1. (12)

Since deg(r′(x)) > 4 we detect error, and by extended Euclid’s algorithm for
gcd (r′(x), m′(x)) we have that at j = 1 d(x) = x3, and t(x) = x2. Therefore,
correct residue output is r(x) = d(x)/t(x) = x.

7 Conclusion

We have presented protection of the elliptic curve computation in a tamper proof
device by protection of the finite field computation against active side channel
attacks, i.e., fault attacks. Our method where field elements are represented
by the redundant residue representation enables us to overcome the problem if
one, or both coordinates x, y ∈ GF (2k) of the point P ∈ E/F2k are corrupted.
We decompose computation of the field elements into parallel, mutually inde-
pendent, modular channels, so that in case of fault at one channel, errors will
not distribute to others. Since computation happens over modular channels for
efficiency, we suggest smaller ring modulus to be of the special low Hamming
weight. Arbitrarily powerful adversaries can create faults in enough channels
and overwhelm the system proposed here, but it is part of the design process to
decide on how much security is enough, since all security (i.e. extra channels)
has a cost.

References

1. Anderson, R., Kuhn, M.: Tamper Resistance - a Cautionary Note. In: Proceedings
of the Second Usenix Workshop on Electronic Commerce, vol. 2, pp. 1–11 (1996)

2. Bajard, J.C.B., Imbert, L., Negre, C., Plantard, T.: Efficient Multiplication GF (pk)
for Elliptic Curve Cryptography. In: Proceedings of the 16th IEEE Symposium on
Computer Arithmetic (ARITH 2003), p. 182 (2003)

3. Bajard, J.C., Imbert, L., Jullien, A.G.: Parallel Montgomery Multiplication in
GF (2k) using Trinomial Residue Arithmetic. In: Proceedings of the 17th IEEE
Symposium on Computer Arithmetic(ARITH 2005), pp. 164–171 (2005)

4. Bao, F., Deng, R.H., Han, Y., Jeng, A.B., Narasimhalu, A.D., Ngair, T.-H.: Break-
ing Public Key Cryptosystems on Tamper Resistant Devices in the Presence of
Transient Faults. In: Christianson, B., Lomas, M. (eds.) Security Protocols 1997.
LNCS, vol. 1361, pp. 115–124. Springer, Heidelberg (1998)

5. Beckmann, P.E., Musicus, B.R.: Fast Fault-Tolerant Digital Convolution Using
a Polynomial Residue Number System. IEEE Transactions on Signal Process-
ing 41(7), 2300–2313 (1993)

432 S. Medoš and S. Boztaş

6. Biehl, I., Meyer, B., Muller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Proceedings of the 20th Annual International Cryptology Conference
on Advances in Cryptology, vol. 1880, pp. 131–146 (2000)

7. Boneh, D., DeMilo, R.A., Lipton, R.J.: On the Importance of Eliminating Errors
in Cryptographic Computations. Journal of Cryptology 14, 101–119 (2001)

8. Ciet, M., Joye, M.: Elliptic Curve Cryptosystems in the Presence of Permanent
and Transient Faults. Designs, Codes and Cryptography 36 (July 2005)

9. Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press,
UK (1999)

10. Gaubatz, G., Sunar, B.: Robust Finite Field Arithmetic for Fault-Tolerant Public-
Key Cryptography. In: Workshop on Fault Diagnosis and Tolerance in Cryptogra-
phy, Edinburgh, Scotland (September 2005)

11. Halbutoǧullari, A., Koç, Ç.: Mastrovito Multiplier for General Irreducible Polyno-
mials. IEEE Transactions on Computers 49(5), 503–518 (2000)

12. Imbert, L., Dimitrov, L.S., Jullien, G.A.: Fault-Tolerant Computation Over Repli-
cated Finite Rings. IEEE Transaction on the Circuits Systems-I: Fundamental
Theory and Applications 50(7) (July 2003)

13. Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computation 48(177),
203–209 (1987)

14. Koç, C.K., Acar, T.: Montgomery Multiplication in GF (2k). Design, Codes and
Cryptography 14(1), 57–69 (1998)

15. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: CRYPTO 1999.
LNCS, vol. 1966, pp. 388–397. Springer, Heidelberg (1999)

16. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications.
Cambridge University Press, London (1986)

17. VLSI Designs for Multiplication over Finite Fields GF (2m). In: Proceedings of
the 6th International Conference on Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, vol. 357, pp. 297–309 (1988)

18. Medoš, S., Boztaş, S.: Fault-Tolerant Finite Field Computation in the Public Key
Cryptosystems. In: Boztaş, S., Lu, H.-F(F.) (eds.) AAECC 2007. LNCS, vol. 4851,
pp. 120–129. Springer, Heidelberg (2007)

19. Medo, S., Boztaş, S.: Fault-Tolerant Lagrange Representation Multiplication in
the Finite Field GF (2k). In: Proceedings of Information Security and Cryptology
Conference, December 2007, pp. 90–95 (2007)

20. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

21. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44(170), 519–521 (1985)

22. Otto, M.: Fault Attacks and Countermeasures, PhD Thesis (December 2004)
23. Reed, I.S., Solomon, G.: Polynomial Codes over Certain Finite Fields. Journal of

the Society for Industrial and Applied Mathematics 8(2), 300–304 (1960)
24. Reyhani-Masoleh, A., Hasan, M.A.: Towards Fault-Tolerant Cryptographic Com-

putations over Finite Field. ACM Transaction on Embedded Computing Sys-
tems 3(3), 593–613 (2004)

25. Welch, L., Berlekamp, E.R.: Error corrections for algebraic block codes, U.S. Patent
4 633, 470 (September 1983)

26. Wicker, S.B., Bhargava, V.K.: Reed-Solomon Codes and Their Applications. IEEE
Press, New York (1994)

27. Shiozaki, A.: Decoding of Redundant Residue Polynomial Codes Using Euclid’s
Algorithm. IEEE Transactions on Information Theory 34(5), 1351–1354 (1988)

A Tree-Based Approach for Computing
Double-Base Chains

Christophe Doche1,� and Laurent Habsieger2

1 Department of Computing
Macquarie University, Australia

doche@ics.mq.edu.au
2 Institut Camille Jordan, CNRS UMR 5208

Université Lyon 1, 69622 Villeurbanne Cedex, France
Laurent.Habsieger@math.univ-lyon1.fr

Abstract. We introduce a tree-based method to find short Double-Base
chains. As compared to the classical greedy approach, this new method
is not only simpler to implement and faster, experimentally it also re-
turns shorter chains on average. The complexity analysis shows that the
average length of a chain returned by this tree-based approach is log2 n

4.6419
·

This tends to suggest that the average length of DB-chains generated by
the greedy approach is not O(log n/ log log n). We also discuss generaliza-
tions of this method, namely to compute Step Multi-Base Representation
chains involving more than 2 bases and extended DB-chains having non-
trivial coefficients.

Keywords: Double-base number system, scalar multiplication, elliptic
curve cryptography.

1 Introduction

In the context of public-key cryptography, elliptic curves have attracted more
and more attention since their introduction about twenty years ago by Miller
and Koblitz [19, 21]. The main reason is that the only known algorithms to
solve the discrete logarithm problem on a well-chosen elliptic curve all have
an exponential-time complexity. This is in contrast with the existence of sub-
exponential time algorithms to factor integers or to solve discrete logarithm
problems in finite fields.

For a general presentation of elliptic curves, we recommend [22]. We refer to
the following books [1, 7, 8, 18] for a discussion of elliptic curves in the context
of cryptography.

Given a point P on a curve E and a integer n, the operation to compute
the point [n]P is called a scalar multiplication. It is the most time-consuming
operation in many curve-based cryptographic protocols. Not surprisingly, this
operation has been the subject of intense research, as indicated by the abundant

� This work was partially supported by ARC Discovery grant DP0881473.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 433–446, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

434 C. Doche and L. Habsieger

literature on this particular topic. The standard method to efficiently compute
such a scalar multiplication is the double and add, also known as the left-to-
right since it scans the bits of n from the left to the right and performs a
doubling for each bit, followed by an addition in case the current bit of n is
1. The number of doublings is therefore equal to log2 n whereas the number
of additions depends on the density of the binary representation of n, which
is equal to 1

2 log2 n, on average. Scalar multiplications being similar to expo-
nentiations, all the techniques used to speed up the computation of xn can be
used to obtain [n]P . See [17] for an exhaustive presentation of exponentiation
techniques. For instance, we can consider windowing methods, which rely on
the representation of the scalar in a larger basis. The expansion is then shorter
and it includes nontrivial coefficients. As a result, less additions are necessary
to compute [n]P but precomputations must be used to take advantage of this
approach.

Also, since computing the negative of a point P can be done virtually at no
cost, a further gain can be obtained by considering signed digit representations
of the scalar n, involving negative coefficients and giving a smaller density. This
is the principle of the NAF whose density is 1

3 · Using signed coefficients greater
than one leads to window NAF methods having an even smaller density.

Another possibility to accelerate the computation of [n]P is to make use of
special endomorphisms. An endomorphism of E is a rational map which sends
the point at infinity onto itself. Examples of such endomorphisms include [k],
the multiplication by k map, for any integer k. We have seen that the double
and add method relies on doublings and additions to compute [n]P . Other endo-
morphisms, potentially faster than doublings, could be used to compute scalar
multiplications more efficiently. For instance, on Koblitz curves, cf. [16], the
Frobenius endomorphism φ defined by φ(x, y) = (x2, y2) is trivial to compute
and for any integer n, the map [n] can always be expressed as

∑

i diφ
i, for some

di’s in {−1, 0, 1}. From this observation, it is possible to devise a very efficient
Frobenius and add scalar multiplication algorithm which does not require any
doubling.

Tripling that sends P on [3]P , is also a very natural endomorphism to consider.
Using triplings to compute scalar multiplications can be traced back to 2003,
cf. [9]. For elliptic curves defined over a finite field of large characteristic, Ciet et
al., managed to eliminate an inversion to obtain a tripling in affine coordinates
with 1 field inversion, 7 multiplications, and 4 squarings, which we abbreviate
by 1I + 7M + 4S. Note that the naïve computation of [3]P as [2]P + P requires
2I + 4M + 3S. Later Dimitrov et al. [14], showed how to compute [3]P with
10M + 6S. Then Doche et al. considered a special family of curves for which a
tripling can be obtained with as little as 6M+6S, cf. [5, 13]. Recently, Bernstein
et al. [6] described a tripling on well chosen Edwards curves that needs only
9M + 4S.

New representations are needed to fully take advantage of these efficient
tripling maps.

A Tree-Based Approach for Computing Double-Base Chains 435

2 Double-Base Number System

In [9], Ciet et al. propose a binary/ternary method to perform a scalar multipli-
cation by means of doublings, triplings, and additions. Let vp(m) denotes the
p-adic valuation of the integer m, then the principle of this method is as follows.
Starting from some integer n and a point P , divide n by 2v2(n) and perform
v2(n) doublings, then divide the result by 3v3(n) and perform v3(n) triplings.
At this point, we have some integer m that is coprime to 6. This implies that
m mod 6 must be equal to 1 or 5. Setting m = m − 1 or m = m + 1 allows to
repeat the process at the cost of a subtraction or an addition.

In fact, the binary/ternary method computes an expansion that is a particular
case of a more general type of representation, called the Double-Base Number
System, DBNS for short. It was initially introduced by Dimitrov and Cook-
lev [11] and later used in the context of elliptic curve cryptography [14]. With
this system, an integer n is represented as

n =
�∑

i=1

di2ai3bi , with di ∈ {−1, 1}. (1)

It is not hard to see that there is no unique DBNS representation of n. In fact,
this system is highly redundant and among all the possibilities, it seems always
possible to find an expansion involving very few terms. Let us be more precise.
A greedy approach is used to find such an expansion. Its principle is to find at
each step the best approximation of a certain integer (n initially) in terms of a
{2, 3}-integer, i.e. an integer of the form 2a3b. Then compute the difference and
reapply the process.

Example 1. Take the integer n = 841232.We have the sequence of approximations

841232 = 2738 + 1424,

1424 = 2136 − 34,

34 = 2232 − 2.

As a consequence, 841232 = 2738 + 2136 − 2232 + 21.

In [15], Dimitrov et al. showed that for any integer n, this greedy approach
returns a DBNS expansion of n involving at most O

(
log n

log log n

)

signed {2, 3}-
integers.

Even if this class of DBNS is very sparse, it is in general not suitable to
compute scalar multiplications. Indeed, we need at least max ai doublings and
max bi triplings to compute [n]P using (1). It is easy to perform only max ai

doublings or max bi triplings. For that simply order the terms with respect to
the powers of 2 or to the powers of 3. However, the challenge with this type of
DBNS is to attain these two lower bounds simultaneously. Now, if by chance the
sequences of exponents are simultaneously decreasing, i.e. a1 � a2 � · · · � a�

and b1 � b2 � · · · � b�, it becomes trivial to compute [n]P with max ai doublings
and max bi triplings.

436 C. Doche and L. Habsieger

This remark leads to the concept of Double-Base chain, DB-chain for short,
introduced in [14], where we explicitly look for expansions having this property.
In fact, the binary/ternary method discussed in [9] implicitly produces a DB-
chain. Another way to obtain a DB-chain is to modify the greedy algorithm. At
each step, simply restrain the search of the best exponents (aj+1, bj+1) to the
interval [0, aj]× [0, bj].

Example 2. A DB-chain for n can be derived from the following sequence of
equalities

841232 = 2738 + 1424,

1424 = 2136 − 34,

34 = 33 + 7,

7 = 32 − 2,

2 = 31 − 1.

As a consequence, 841232 = 2738 + 2136 − 33 − 32 + 31 − 1 and [841232]P can
be obtained by the following Horner-like computation

[841232]P = [3]
(

[3]
(

[3]
(

[2133]([2632]P + P)− P
)− P

)

+ P
)− P.

We can see that this DB-chain is strictly longer than the DBNS expansion given
in Example 1. Experiments show that this is true in general as well but it is not
known whether the bound O

(
log n

log log n

)

on the number of terms is still valid for
DB-chains. Another concern for DB-chains, which also affects DBNS expansions,
is the time required to actually find such an expansion. In particular, the search
of the closest approximation of an integer in terms of a {2, 3}-integer can be
relatively long. See [4, 12] for a review of different methods to find such an
approximation.

Remark 3. The DBNS has still some merit in cryptography, for instance on
supersingular curves defined over F3. In this case, a tripling is virtually free, so
that [n]P can be computed with max ai doublings, O

(
log n

log log n

)

additions, and the
necessary number of triplings [10]. The same holds for a generalization of the
DBNS in the context of Koblitz curves [2].

Recent developments regarding DB-chains include the use of new endomor-
phisms, such as optimized quintupling [20]. This leads to a new type of rep-
resentation, called Step Multi-Base Representation, SMBR for short, where an
integer n is represented as

n =
�∑

i=1

di2ai3bi5ci with di ∈ {−1, 1} (2)

and the exponents (ai), (bi), (ci) form three separate monotonic decreasing se-
quences. Again, a variant of the greedy algorithm is used to derive such an
expansion. However, finding the best approximation of an integer in terms of a

A Tree-Based Approach for Computing Double-Base Chains 437

{2, 3, 5}-integer is not easy and thus finding a short SMBR of an integer on the
fly can be a problem, at least for certain devices.

Also, the concept of extended DBNS has been proposed in [12]. The idea is
to introduce nontrivial coefficients in DBNS expansions, namely represent an
integer by

n =
�∑

i=1

di2ai3bi with |di| ∈ S, (3)

where S is a set of predefined coefficients. The computation of [n]P then relies
on the set of precomputed values [d]P for all d in S.

3 A New Approach

The proposed method to compute DB-chains can be seen as a generalization
of the binary/ternary approach. First, let us assume that n is coprime to 6.
We can start building a tree by considering two leaves corresponding to n − 1
and n + 1. After removing the powers of 2 and 3 from n − 1 and n + 1, we
can reapply the process and for each node, add and subtract 1. Repeating this
will create a binary tree. Eventually, one of its branch will reach 1 leading to a
DB-chain expansion. Obviously, this approach is too costly for integers in the
cryptographic range, say those of length 160 bits and above. However, we can
eliminate certain branches and hope that the overall length of the DB-chain will
not be affected too much. Fixing a bound B at the beginning, we can keep only
the B smallest nodes before creating the next level of the tree. Note that it is
very important that the nodes that are kept are all different. The algorithm is
as follows.

Algorithm 1. Tree-based DB-chain search

Input: An integer n and a bound B.
Output: A binary tree containing a DB-chain computing n.

1. Set t ← f(n) [f(n) = n/
(

2v2(n)3v3(n)
)

]

2. Initialize a binary tree T with root node t

3. repeat

4. for each leaf node m in T insert 2 children

5. Left child ← f(m − 1)

6. Right child ← f(m + 1)

7. Discard any redundant leaf node

8. Discard all but the B smallest leaf nodes

9. until a leaf node is equal to 1

10. return T

438 C. Doche and L. Habsieger

Example 4. Let us compute a DB-chain for n = 841232 using Algorithm 1.
First, set B = 2. We obtain the chain

841232 = 21831 + 21431 − 21131 + 29 + 24.

Then setting B = 4, we obtain the even shorter chain

841232 = 2738 + 2633 − 2532 − 24.

See the appendix for details, including the trees returned by Algorithm 1 in each
case.

Remark 5. As sketched in the previous example and as we will see in Sec-
tion 6, the size of the bound B has a great impact on the length of the DB-chain.
Experimentally, B = 4 is a good compromise between the size of the tree and
the quality of the expansion found. With these settings, the computation of the
DB-chain is very fast since every operation in Algorithm 1 is totally elementary.

4 Complexity Analysis

First, let us analyze the binary/ternary method. We show that the average length
of the DB-chain of an integer n returned by the binary/ternary method has the
upper bound log2 n

4.3774 · For that, we investigate the average number of bits gained at
each step. Take an integer m > 1 coprime to 6. Setting m′ = m−1 or m′ = m+1
so that 6 is a divisor of m′, it is not hard to see that the probability for α � 1
to be v2(m′) and for β � 1 to be v3(m′) is

1
2α−1

(

1− 1
2

)
1

3β−1

(

1− 1
3

)

·

The corresponding gain in that case is α + β log2 3. So, the average number of
bits gained is

∞∑

α=1

∞∑

β=1

α + β log2 3
2α−13β

= 2 +
3
2

log2 3 = 4.3774 . . .

Since each step is independent of the other ones, we deduce that the average
number of iterations, and therefore the average length of the DB-chain returned
by the binary/ternary method, is bounded above by log2 n

4.3774
. Also, the average

values for α and β at each step are respectively 2 and 3
2
, which implies that on

average

a1 =
log2 n

1 + 3
4 log2 3

≈ 0.4569 log2 n and b1 =
log2 n

4
3 + log2 3

≈ 0.3427 log2 n

A Tree-Based Approach for Computing Double-Base Chains 439

in the DB-chain computed by the binary/ternary method. Since a1 = maxai,
b1 = max bi and the sequences of exponents are simultaneously decreasing, we
need a1 doublings and b1 triplings, on top of log2 n

4.3774 additions to compute [n]P
on average.

We use a similar probabilistic argument to analyze Algorithm 1 and obtain
the following result.

Theorem 1. The average number of bits gained at each step in Algorithm 1 is
4.6419 It follows that the average length of a DB-chain returned by Algo-
rithm 1 is approximately equal to log2 n

4.6419 · Also the average values for a1 and b1

are approximately equal to 0.5569 log2 n and 0.2795 log2 n, respectively.

Proof. Let us fix B = 1. This means that of the two leaf nodes created at
each step, only the smallest is kept before reapplying the process. Now imagine
that m > 1 is an integer coprime to 6. Let α1 = v2(m− 1) and β1 = v3(m− 1).
Similarly, let α2 = v2(m+1) and β2 = v3(m+1). Set α = α1+α2 and β = β1+β2.
Then it is easy to show that α � 3 and β � 1. Furthermore, we can show that
there are four possibilities for (α1, β1) and (α2, β2), namely

(α− 1, β), (1, 0)
(1, 0), (α− 1, β)
(α− 1, 0), (1, β)
(1, β), (α− 1, 0).

Considering residues modulo 2α+13β+1, we see that all the cases occur with the
same probability 1

2α−13β ·
The maximal gain for the first two cases is α − 1 + β log2 3, whereas it is

max(α− 1, 1 + β log2 3), for the last two. It follows that on average, the gain at
each step is

∞∑

α=3

∞∑

β=1

2(α− 1) + 2β log2 3 + 2 max(α− 1, 1 + β log2 3)
2α−13β

· (4)

Computing only the first few terms in this sum, we find that the gain is equal to
4.6419 . . . This shows that Algorithm 1 performs better than the binary/ternary
approach whose average gain is 4.3774 . . .

When B > 1, we cannot precisely compute the average gain at each step for
we do not know which branch will be selected in the end to compute a DB-chain
for n. However, it is clear that on average the gain at each step will be larger
than or equal to the gain when B = 1. In fact, tests show that even for very
small B > 1, Algorithm 1 finds strictly shorter chains than when B = 1. For
instance, the average gain at each step when B = 4 is close to 4.90, cf. Section 6,
especially Table 1. Note that for very particular integers, a larger B can increase
the length of the chain. The smallest example of this unexpected phenomenon
is 31363, for which Algorithm 1 returns a DB-chain of length 5 when B = 1 and
of length 6 when B = 2.

440 C. Doche and L. Habsieger

Concerning the average value of a1 and b1, a similar computation to (4) shows
that we divide on average by 22.5851 and 31.2976 at each step. Multiplying by the
average length of the chain, we deduce the quantities claimed in Theorem 1. ��
To close this section, let us investigate the worst case for Algorithm 1 when
B = 1. It corresponds to a minimal gain at each step. Based on the proof of
Theorem 1, we see that this occurs when (α1, β1) = (2, 0) and (α2, β2) = (1, 1)
or the converse. Given an integer �, let us consider the DB-chain of length �

2�−13�−1 −
�−2∑

i=0

2i3i

and let us denote by m� the actual integer corresponding to this chain. Then it
is easy to see that m� is the smallest integer for which Algorithm 1 returns a
DB-chain having at least � terms. Indeed, it is clear that m� − 1 is congruent
to 4 mod 8 and to 1 mod 3. In the same way, m� + 1 is congruent to 6 mod 36.
Applying Algorithm 1 to m�, it follows that (α1, β1) = (2, 0) and (α2, β2) =
(1, 1). So, the next nodes in the tree are (m�−1)/4 and (m� +1)/6. The smallest
that is kept, i.e. (m� + 1)/6 is in fact m�−1.

The case (α1, β1) = (1, 1) and (α2, β2) = (2, 0), corresponds to the slightly
larger integer

∑�−1
i=0 2i3i.

5 Generalizations

We can generalize the tree-based search in order to obtain other kinds of DB-
chains. The first variant is to produce extended DB-chains, i.e. including non-
trivial coefficients as in (3). This approach has been successfully exploited in
[12] to compute very short DB-chains and to perform scalar multiplications us-
ing precomputations. In our case, given a set of coefficients S, it is enough to
slightly modify Algorithm 1, namely Lines 4, 5, and 6, to return extended DB-
chains. Given a leave node in the tree, the only change is to insert 2|S| children
instead of just 2. More precisely, for each integer d ∈ S, create 2 leave nodes
corresponding to f(m − d) and f(m + d). The rest of the algorithm remains
unchanged.

Another DB-chain variant is the SMBR. Again a simple change in Algorithm 1
allows to easily find short SMBRs. For instance, to find expansions as in (2), set
the function f(n) to return n/(2v2(n)3v3(n)5v5(n)). The number of nodes created
at each step is the same as for regular DB-chains so that the computation of
SMBRs is very fast. Note that it is also possible to mix the two ideas, i.e.
return a SMBR with coefficients. For the bases 2, 3, and 5, the set of coefficients
S = {1, 7, 11, 13} is a particularly effective choice. Indeed, after applying f to
a certain node, we obtain an integer congruent to ±1,±7,±11, or ±13 modulo
30. This implies that one of the eight children created for this node is divisible
by 30. So, the gain at each step is larger than log2 30, giving rise to a very short
chain.

A Tree-Based Approach for Computing Double-Base Chains 441

6 Experiments

In this part, we analyze results of computations performed on random integers
of various sizes. The first observation is that even when B = 1, the length of the
DB-chain returned by Algorithm 1 is in general less than what is obtained from
the greedy approach. The impact of B on the average length of the chains has
also been particularly tested. For each size, we ran Algorithm 1 on a thousand
random integers with different choices of B, namely B = 1, 2, 4, 8, 16, 32, 64, and
128. As expected, the length of the DB-chains tends to decrease when we increase
B. However, experiments show that this decrease is quite slow, cf. Figure 1. As
a result, there is little benefit in choosing a large B, especially since the time
complexity to compute a chain linearly depends on B. That is why for subsequent
DB-chain computations, B was set to 4, as it is a good compromise between the
length of the chain and the time necessary to find it.

40

60

80

100

120

0 1 2 4 8 16 32 64 128

Expansion length �

Bound B

• • • • • • • • 256 bits

• • • • • • • • 320 bits

• • • • • • • • 384 bits

•
• • • • • • • 448 bits

•
• • • • • • • 512 bits

Fig. 1. Impact of B on the average length of DB-chains returned by Algorithm 1

Next, we compare the lengths of DB-chains obtained with various methods:
binary/ternary, more importantly the greedy algorithm, and our new tree-based
approach. We include the NAF for the record. In each case, ten thousand integers
were tested. The average length of tree-based DB-chains is approximately 10%
shorter than the length of chains returned by the greedy method, cf. Table 1.
Note also that Algorithm 1 is somewhat easier to implement and faster in practice
than the greedy approach.

Finally, we investigate the cost of a scalar multiplication on an elliptic curve
in Edwards form

x2 + y2 = (1 + dx2y2)

using inverted Edwards coordinates [6]. Furthermore, we assume that multipli-
cations by d can be neglected, so that the complexities of addition, doubling,

442 C. Doche and L. Habsieger

Table 1. Parameters of DB-chains obtained by various methods

Size 256 bits 320 bits 384 bits 448 bits 512 bits

Method � a1 b1 � a1 b1 � a1 b1 � a1 b1 � a1 b1
NAF 85.3 256 0 106.7 320 0 128.0 384 0 149.3 448 0 170.7 512 0

Bin./tern. 58.0 116.5 87.1 72.5 145.7 109.0 87.2 175.1 130.9 101.8 204.3 152.9 116.5 233.5 174.9

Greedy 58.0 150.7 65.5 72.5 189.1 81.6 87.0 228.5 97.2 101.5 266.7 113.4 116.2 305.1 129.6

Tree 52.5 145.7 68.6 65.5 182.0 86.2 78.4 218.4 103.5 91.4 255.2 120.7 104.3 291.3 138.3

Table 2. Complexity of various scalar multiplication methods for different sizes

Size 256 bits 320 bits 384 bits 448 bits 512 bits

Method NM Gain NM Gain NM Gain NM Gain NM Gain

NAF 1817.60 — 2423.47 — 3029.33 — 3635.20 — 4241.06 —

Bin./tern. 1761.19 3.10% 2353.59 2.88% 2944.94 2.79% 3537.21 2.70% 4129.57 2.63%

Greedy 1725.45 5.07% 2301.96 5.01% 2879.12 4.96% 3455.23 4.95% 4032.41 4.92%

Tree 1691.31 6.95% 2255.80 6.92% 2820.99 6.88% 3385.97 6.86% 3950.26 6.86%

and tripling are respectively 9M + S, 3M + 4S, and 9M + 4S, cf. [5]. To simplify
comparisons between the different methods used to produce DB-chains, we make
the usual assumption S = 0.8M. We these settings, NM is the number of field
multiplications necessary to compute [n]P with each method, cf. Table 2. Note
that the speed-up is expressed with respect to the NAF representation.

In case the device performing the computations allows some precomputations,
it is possible to build DB-chains having nontrivial coefficients, cf. Section 5. In
this case as well, tests show that the tree-based approach returns chains 10%
shorter than the greedy algorithm. However, in this situation it is probably best
to express the scalar multiple in some window-NAF representation and to take
advantage of the very fast doublings provided by inverted Edwards coordinates,
as pointed out in [3].

7 Conclusion

In this work, we describe a new method to find short DB-chains. So far DB-
chains have been exclusively obtained with a greedy approach, relying on the
search of the closest {2, 3}-integer to a given number. However to accommodate
the main proprerty of DB-chains, that is simultaneously decreasing sequences of
exponents, this search is done under constraints that tends to increase the length
of the chain. Our new method, called tree-based search, only produces DB-chains.
Given a parameter B, it consists in building a binary tree and eliminating all but
the smallest B nodes at each step. Quite surprisingly, even for very small B, the
algorithm performs extremely well. In fact, the tree-based approach outclasses
the greedy algorithm for every choice of B we tested. As a side effect of its
simplicity, this method is very easy to implement, cf. Algorithm 1. It is also
straightforward to analyze. As shown in Section 4, the average length of a DB-
chain returned by the tree-based method is approximately equal to log2 n

4.6419 when

A Tree-Based Approach for Computing Double-Base Chains 443

B = 1. This is interesting because the complexity of the greedy algorithm is not
well understood, when it comes to compute DB-chains. For instance, it is an
open question to decide if the average length of DB-chains returned the greedy
approach is O

(
log n

log log n

)

or not. This work suggests that it is not the case. Note
however that for scalar multiples n routinely used in elliptic curve cryptography,
typically in the range 192 to 320 bits, log log n is between 4.8910 and 5.4018,
so not too far away from 4.6419. Regarding scalar multiplications, our method
suits devices where the use of precomputations is limited, if not impossible. In
this situation, the tree-based approach induces an overall speed-up close to 7%
over the NAF that is still widely used in practice.

References

1. Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Nguyen, K., Lange, T., Vercauteren,
F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. In: Discrete Math-
ematics and its Applications, Chapman & Hall/CRC, Boca Raton (2005)

2. Avanzi, R.M., Dimitrov, V.S., Doche, C., Sica, F.: Extending Scalar Multiplica-
tion Using Double Bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 130–144. Springer, Heidelberg (2006)

3. Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: Optimizing double-base elliptic-
curve single-scalar multiplication. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 167–182. Springer, Heidelberg (2007)

4. Berthé, V., Imbert, L.: On Converting Numbers to the Double-Base Number Sys-
tem. In: Luk, F.T. (ed.) Advanced Signal Processing Algorithms, Architecture and
Implementations XIV. Proceedings of SPIE, vol. 5559, pp. 70–78 (2004)

5. Bernstein, D.J., Lange, T.: Explicit-formulas database,
http://www.hyperelliptic.org/EFD/

6. Bernstein, D.J., Lange, T.: Inverted Edwards Coordinates. In: Boztaş, S., Lu, H.-
F(F.) (eds.) AAECC 2007. LNCS, vol. 4851, pp. 20–27. Springer, Heidelberg (2007)

7. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. London
Mathematical Society Lecture Note Series, vol. 265. Cambridge University Press,
Cambridge (1999)

8. Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography.
London Mathematical Society Lecture Note Series, vol. 317. Cambridge University
Press, Cambridge (2005)

9. Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading Inversions for Multi-
plications in Elliptic Curve Cryptography. Des. Codes Cryptogr. 39(2), 189–206
(2006)

10. Ciet, M., Sica, F.: An Analysis of Double Base Number Systems and a Sublinear
Scalar Multiplication Algorithm. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt
2005. LNCS, vol. 3715, pp. 171–182. Springer, Heidelberg (2005)

11. Dimitrov, V.S., Cooklev, T.: Hybrid Algorithm for the Computation of the Matrix
Polynomial I+A+· · ·+AN−1. IEEE Trans. on Circuits and Systems 42(7), 377–380
(1995)

12. Doche, C., Imbert, L.: Extended Double-Base Number System with Applications to
Elliptic Curve Cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)

444 C. Doche and L. Habsieger

13. Doche, C., Icart, T., Kohel, D.R.: Efficient Scalar Multiplication by Isogeny De-
compositions. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 191–206. Springer, Heidelberg (2006)

14. Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and Secure Elliptic Curve Point
Multiplication Using Double-Base Chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

15. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: An Algorithm for Modular Exponen-
tiation. Information Processing Letters 66(3), 155–159 (1998)

16. Doche, C., Lange, T.: Arithmetic of Special Curves. In: [1], pp. 355–388
17. Doche, C.: Exponentiation. In: [1], pp. 145–168
18. Hankerson, D., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptogra-

phy. Springer, Heidelberg (2003)
19. Koblitz, N.: Elliptic Curve Cryptosystems. Math. Comp. 48(177), 203–209 (1987)
20. Mishra, P.K., Dimitrov, V.S.: Efficient Quintuple Formulas for Elliptic Curves and

Efficient Scalar Multiplication Using Multibase Number Representation. In: Garay,
J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp.
390–406. Springer, Heidelberg (2007)

21. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

22. Washington, L.C.: Elliptic Curves. In: Discrete Mathematics and its Applications.
Number theory and cryptography, Chapman and Hall, Boca Raton (2003)

A Tree-Based Approach for Computing Double-Base Chains 445

Appendix: Detailed Examples

Let us build a binary tree and find a DB-chain for n = 841232. First, set B = 2.
Some extra information has been added to the tree returned by Algorithm 1 in
order to facilitate the computation of the DB-chain. The branch that is actually
used to compute the DB-chain appears in dashed line.

841232

24

���
�
�

52577

����������������
+

��� � � � � � �

52576

25

���
�
� 52578

��
1643

−

���
�

�
�

�����������
2921

���
��

��
��

����
��

��
��

1642

��

1644

2231

���
�
� 2920

��

2922

��
821///// 137

			
		

		
		

+

365

			
		

		
		

487/////

136

23

���
�
� 138

��

364

��

366

��
17

���
��
��
�

+

���
�
�

23

���
��
��
�

����
��
��

91/// 61///

16

24

���
�
� 18

��

22

��

24

��
1 1/ 11 1/

From this tree we deduce that

841232 = 24
(

25
(

2231
(

23(24 + 1) + 1
)− 1

)

+ 1
)

which implies that

841232 = 21831 + 21431 − 21131 + 29 + 24.

That is one term less than for the chain obtained with the greedy algorithm,
cf. Example 2.

446 C. Doche and L. Habsieger

If we execute the algorithm again with B = 4, we obtain the following tree

841232

24

���
�
�

52577

��
−

���������

52576

��

52578

2132

���
�
�

1643

��
��

��
��

����
��

��
��

2921
−

�
�

�
�

����
��

��
��

1642

��

1644

��

2920

��

2922

2131

���
�
�

821

		�
��

��
�

��
��
��

137

��
��
��

		�
��

��
� 365

		�
��

��
�

��
��
��

487
+

�
�

�

		�
��

��
�

820

��

822

��

136

��

138

��

364

��

366

��

486

2135

���
�
� 488

��
205///// 137///// 17 23 91/// 61 1 61///

from which we derive the expansion

841232 = 24
(

2132
(

2131(2135 + 1)− 1
)− 1

)

that leads to the even shorter DB-chain

841232 = 2738 + 2633 − 2532 − 24.

Extractors for Jacobians

of Binary Genus-2 Hyperelliptic Curves

Reza Rezaeian Farashahi1,2

1 Dept. of Mathematics and Computer Science, TU Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2 Dept. of Mathematical Sciences, Isfahan University of Technology,
P.O. Box 85145 Isfahan, Iran

Abstract. Extractors are an important ingredient in designing key ex-
change protocols and secure pseudorandom sequences in the standard
model. Elliptic and hyperelliptic curves are gaining more and more in-
terest due to their fast arithmetic and the fact that no subexponential
attacks against the discrete logarithm problem are known.

In this paper we propose two simple and efficient deterministic extrac-
tors for J(Fq), the Jacobian of a genus 2 hyperelliptic curve H defined
over Fq, where q = 2n, called the sum and product extractors.

For non-supersingular hyperelliptic curves having a Jacobian with
group order 2m, where m is odd, we propose the modified sum and
product extractors for the main subgroup of J(Fq). We show that, if
D ∈ J(Fq) is chosen uniformly at random, the bits extracted from D are
indistinguishable from a uniformly random bit-string of length n.

Keywords: Jacobian, Hyperelliptic curve, Deterministic extractor.

1 Introduction

The problem of converting random points of a group into random bits has several
cryptographic applications. Examples are key derivation functions, key exchange
protocols and the design of cryptographically secure pseudorandom number gen-
erators. For instance, at the end of the Diffie-Hellman key exchange protocol
(e.g. the well-known (hyper)elliptic curve Diffie-Hellman protocol), the parties
agree on a common secret element of the group. This element is indistinguish-
able from a uniformly random group element under the decisional Diffie-Hellman
assumption (denoted by DDH). However, the binary representation of the com-
mon secret element is distinguishable from a uniformly random bit-string of the
same length. Therefore one has to convert this group element into a bit string
statistically close to uniformly random. The classical solution is to use a hash
function. Then the indistinguishability cannot be proved in the standard model
but only in the random oracle model. A deterministic extractor for a group G is
a function that converts a random group element to a fixed length bit-string that
is statistically close to uniformly random. The security of extractors is based on
standard assumptions and so they allow us to avoid the random oracle model
for key exchange protocols.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 447–462, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

448 R.R. Farashahi

The DLP in a group can always be solved in time O(
√

#G) and for suitably
chosen groups there are no faster attacks known. To match security levels, the
key for a symmetric cipher with n bits key should be derived from a group
element of a group of size 2n bits, i.e. the extractor should reduce the bit-length
by at least a factor of 2.

Koblitz, [14], was the first to suggest using the discrete logarithm problem in
the Jacobian of a hyperelliptic curve over a finite field in public key cryptography.
Hyperelliptic curves of genus 2 are undergoing intensive study (e.g. see [3]) and
have been shown to be competitive with elliptic curves in speed and security and
for suitably chosen curves the best attacks run in O(

√
#G). Many researchers

have optimized genus 2 arithmetic so that in several families of curves they are
faster than elliptic curves [8,9,17]. The security of genus 2 hyperelliptic curves
is in general assumed to be similar to that of elliptic curves of the same group
size [7].

In this paper, we suggest the sum and product extractors for J(Fq), the Jaco-
bian of a hyperelliptic curve H defined over a finite field Fq, with q = 2n. Binary
fields offer particularly good performance for hardware implementations (see,
e.g., [11]) and genus 2 curves over binary fields were the first ones to beat ellip-
tic curves in speed. Then we propose the modified sum and product extractors
for the main subgroup of J(Fq), where H is a non-supersingular hyperelliptic
curve having a Jacobian group order 2m, for odd integer m. We analyse these
extractors and show that if the point D is chosen uniformly at random, the
bits extracted from the point D are indistinguishable from a uniformly random
bit-string of length n.

Sequences of the abscissas of pseudorandom points on elliptic curves have been
studied in [12,15,16,21]. So far, several deterministic randomness extractors for
elliptic curves are known. The TAU technique, [2], allows to extract almost all the
bits of the abscissa of a point of the union of an elliptic curve and its quadratic
twist. This technique uses the idea in [13], that if a point is taken uniformly
at random from the union of an elliptic curve and its quadratic twist then the
abscissa of this point is uniformly distributed in the finite field. The proposed
extractors in [5,6,10] do extract almost half of the bits of the abscissa of a point
on particular families of curves. The proof techniques used in [6] required to work
with elliptic curves defined over a binary field of the form F22m in order to find
a geometric description of the points having fixed bits in their representation.
For the genus 2 curves studied in this paper no such restriction is necessary, in
particular, the extractors can be applied to curves defined over fields F2n , where
n is a prime. This is the most common choice in cryptographic applications
to avoid Weil descent attacks. So the results presented in this paper are more
practical than earlier ones. It is possible to extend the results to curves of larger
genus but then the statements get more involved and the curves are less useful
for cryptography. Recently in [4], the sum and product extractors have been
proposed for the Jacobian of a genus 2 hyperelliptic curve defined over a finite
field of odd characteristic. Furthermore, the modified version of the sum and

Extractors for Jacobians of Binary Genus-2 Hyperelliptic Curves 449

product extractors are suggested for the associated Kummer surface. This paper
fills the gap by providing an extractor for genus 2 curves over binary fields.

2 Preliminaries

In this section we give some important notations and recall the basic definitions
that are used throughout the paper.

Notation. The finite field with q elements is denoted by Fq, and its algebraic
closure by Fq. Denote by F

∗
q the set of nonzero elements of Fq. Let C be a curve

defined over Fq. Then the set of Fq-rational points on C is denoted by C(Fq).
The x-coordinate of a point P on a curve is denoted by xP . The cardinality of a
finite set S is denoted by #S. We make a distinction between a variable x and
a specific value x in F.

2.1 Binary Genus 2 Hyperelliptic Curve H

An imaginary hyperelliptic curve H of genus 2 over Fq, with q = 2n, is defined
by an equation of the form

y2 + h(x)y = f(x),

where h = h2x2 + h1x + h0 and f = x5 + f4x4 + f3x3 + f2x2 + f1x + f0. For
any subfield K of Fq containing Fq, the set

H(K) = {(x, y) ∈ K×K : y2 + h(x)y = f(x)} ∪ {P∞},
is called the set of K-rational points on H . The point P∞ is called the point at
infinity for H . A point P on H , also written P ∈ H , is a point P ∈ H(Fq).
The negative of a point P = (x, y) on H is defined as −P = (x, y + h(x)) and
−P∞ = P∞.

2.2 On the Jacobian of H

For elliptic curves one can take the set of points together with a point at infinity
as a group. This is no longer possible for hyperelliptic curves: Instead a group law
is defined via the Jacobian of H over Fq, denoted by J(Fq). One can efficiently
compute the sum of two points in the Jacobian of H over Fq, using the algorithms
described in [3,14]. There are two isomorphic representations of the Jacobian of
an imaginary hyperelliptic curve H , namely as the divisor class group of H and
as the ideal class group of the maximal order in the function field of H . The
latter representation is often called Mumford representation.

For each nontrivial point on the Jacobian of H over Fq there exist a unique
divisor D on H defined over Fq of the form

D =
r∑

i=1

Pi − rP∞,

450 R.R. Farashahi

where Pi = (xi, yi) ∈ H(Fq), Pi �= P∞ and Pi �= −Pj , for i �= j, r ≤ 2. By
means of Mumford’s representation [19], each nontrivial point on J(Fq) can be
uniquely represented by a pair of polynomials [u(x), v(x)], u, v ∈ Fq[x], where u
is monic, deg(v) < deg(u) ≤ 2 and u divides (v2 +hv +f). The neutral element
of J(Fq), denoted by O, is represented by [1, 0].

2.3 Deterministic Extractor

In our analysis we use the notion of a deterministic extractor and a quality
measure called statistical distance, so we recall them briefly. For general definition
of extractors we refer to [20,22].

Definition 1. Let A and B be S-valued random variables, where S is a finite set.
Then the statistical distance Δ(A, B) of A and B is

Δ(A, B) = 1
2

∑

s∈S |Pr[A = s]− Pr[B = s] | .

Let US denote a random variable uniformly distributed on S. We say that a
random variable A on S is δ-uniform, if Δ(A, US) ≤ δ.

Note that if the random variable A is δ-uniform, then no algorithm can dis-
tinguish A from U S with advantage larger than δ, that is, for all algorithms
D : S −→ {0, 1}

|Pr[D (A) = 1]− Pr[D (U S) = 1]| ≤ δ.

See [18].

Definition 2. Let S, T be finite sets. Consider the function ext : S −→ T . We
say that ext is a deterministic (T, δ)-extractor for S if ext(US) is δ-uniform on
T . That means

Δ(ext(US), UT) ≤ δ.

If T = {0, 1}k, we say ext is a δ-deterministic extractor for S.

3 The Extractors for the Jacobian

The sum and product extractors have been proposed, [4], for the Jacobian of a
genus-2 hyperelliptic curve defined over a finite field of odd characteristic. In this
section we define the sum and product extractors for the Jacobian of a genus-2
hyperelliptic curve defied over a binary finite field.

3.1 The Sum Extractor

We shall now define the sum extractor for J(Fq) using the notation of divisor
classes to explain the name. Then we translate the definition to the Mumford
representation.

Extractors for Jacobians of Binary Genus-2 Hyperelliptic Curves 451

Definition 3. The sum extractor SE for the Jacobian of H over Fq is defined
as the function SE : J(Fq) −→ Fq, by

SE(D) =

{ ∑r
i=1 xPi , if D =

∑r
i=1 Pi − rP∞, 1 ≤ r ≤ 2,

0, if D = O.

By means of Mumford’s representation for the points of J(Fq), the function SE

can alternatively be defined by

SE(D) =

⎧

⎪⎨

⎪⎩

u1, if D = [x2 + u1x + u0, v(x)],
u0, if D = [x + u0, v(x)],
0, if D = [1, 0].

To analyse the extractor SE, we need to examine the distribution of the random
variable SE(D), for D chosen uniformly at random in J(Fq). So we need to obtain
estimates for the cardinalities of preimages of SE(D). We note that by the Hasse-
Weil bound #J(Fq) ≈ q2 and that J(Fq) =

⋃

a∈Fq
SE

−1(a). For a uniformly
distributed sequence we expect #SE

−1(a) ≈ q, for a ∈ Fq. The following theorem
shows that the expected cardinality of each fiber essentially equals q. It also gives
a precise bound on the deviation. Furthermore an exceptional case is discussed,
which rarely occurs. To state the number of preimages, we first need a rather
technical definition. We refer to Subsection 5.1 for an explanation of the case
distinction.

Definition 4. We define the set ISE ⊂ F
∗
q, corresponding to the hyperelliptic

curve H, as

ISE =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

{h1

h2
}, if h2 �= 0 and d1 = 0,

{z ∈ F
∗
q : z5 + zf2

3 + h2
0 = 0}, if h2 = h1 = 0,

{}, otherwise,

where d1 = h4
2h

3
1f4 +h4

2h1f
2
3 +h5

2(h2h0 +h2
1)f3 +h6

2h1f2 +h7
2f1 +h5

2h
2
0 +h4

2h
2
1h0 +

h3
2h

4
1 + h5

1.

We will show later that for a ∈ ISE we can only give a trivial estimate for
#SE

−1(a)−q. However, we note that #ISE ≤ 1 unless the curve has h2 = h1 = 0.
Curves of the latter type are supersingular. They are interesting for pairing based
protocols but should be avoided if only the DL setting is needed. Even in this
case, the cardinality of ISE is easily bounded by 5.

Theorem 1. For all a ∈ F
∗
q, we have

∣
∣#SE

−1(a)− (q + 1)
∣
∣ ≤

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

6
√

q + 2, if h2 �= 0 and a /∈ ISE,

6
√

q + 1, if h2 = 0 and h1 �= 0,

4
√

q + 1, if h2 = h1 = 0 and a /∈ ISE,

q + 4
√

q + 1, if a ∈ ISE.

452 R.R. Farashahi

We also have
∣
∣#SE

−1(0)− (q + 1)
∣
∣ ≤ 4

√
q + 2.

We give a proof of this theorem in Section 5.

3.2 The Product Extractor

In a similar way we propose the product extractor for J(Fq).

Definition 5. The product extractor PE for the Jacobian of H over Fq is defined
as the function PE : J(Fq) −→ Fq, by

PE(D) =

{ ∏r
i=1 xPi , if D =

∑r
i=1 Pi − rP∞, 1 ≤ r ≤ 2,

0, if D = O.

Using Mumford’s representation for the points of J(Fq), we can alternatively
define the extractor PE by

PE(D) =

{

u(0), if D = [u(x), v(x)],
0, if D = [1, 0].

In the next theorem we give the estimates for the number of points on the
fibers of PE. The proof of this theorem is similar to the proof of Theorem 1.

Definition 6. We define the set IPE ⊂ F
∗
q, corresponding to the hyperelliptic

curve H, as

IPE =

⎧

⎨

⎩

{(h1

h2
)2}, if h2 �= 0, h0 = 0 and d = 0,

∅, otherwise,

where d = h4
2(f1 + h1

√
f0) + h4

1.

Theorem 2. For all b ∈ F
∗
q, we have

∣
∣#PE

−1(b)− q
∣
∣ ≤

⎧

⎪⎨

⎪⎩

8
√

q + 2, if h0 �= 0,

6
√

q + 2, if h0 = 0 and b /∈ IPE,

q + 4
√

q + 2, if b ∈ IPE.

We also have
∣
∣#PE

−1(0)− (eq + 1)
∣
∣ ≤ 4e

√
q ,

where e = #{(x, y) ∈ H(Fq) : x = 0}.

We note that 0 ≤ e ≤ 2.

Extractors for Jacobians of Binary Genus-2 Hyperelliptic Curves 453

3.3 Analysis of the Extractors

In this subsection we show that, provided the divisor D is chosen uniformly at
random in J(Fq), the bits extracted from the divisor D by the extractors SE or
PE are indistinguishable from a uniformly random bit-string of length n.

Let UFq be a uniform random variable. Let A be a Fq-valued random variable
that is defined as A = SE(D), for D ∈R J(Fq).

Proposition 1. The random variable A is statistically close to uniform.

Δ(A, UFq) = O

(
1√
q

)

.

Proof. Let a ∈ Fq. For UFq as uniform random variable we have Pr[UFq = a] =

1/q. For the Fq-valued random variable A we have Pr[A = a] = #SE−1(a)
#J(Fq) . The

genus of the curves we consider is 2 and so the Hasse-Weil theorem bounds the
number of points as follows.

(
√

q − 1)4 ≤ #J(Fq) ≤ (
√

q + 1)4.

Theorem 1 gives the bound for #SE
−1(a), for all a ∈ Fq. Hence

Δ(A, UFq) =
1
2

∑

a∈Fq

∣
∣Pr[A = a]− Pr[UFq = a]

∣
∣ =

1
2

∑

a∈Fq

∣
∣
∣
∣

#SE
−1(a)

#J(Fq)
− 1

q

∣
∣
∣
∣

=
∑

a∈ISE

∣
∣q#SE

−1(a)−#J(Fq)
∣
∣

2q#J(Fq)
+

∑

a∈Fq\ISE

∣
∣q#SE

−1(a)−#J(Fq)
∣
∣

2q#J(Fq)
.

Let w = #ISE. Then

Δ(A, UFq) ≤ (q2+8q
√

q−4q+4
√

q−1)w+(10q
√

q−3q+4
√

q−1)(q−w)

2q(
√

q−1)4

= (q−2
√

q−1)w+10q
√

q−3q+4
√

q−1

2(
√

q−1)4 = 5+ε(q)√
q ,

where ε(q) =
√

q(q−2
√

q−1)w+37q
√

q−56q+39
√

q−10

2(
√

q−1)4 . In general w equals 0. Then,
ε(q) < 1 for n ≥ 9. In case that w equals 5, ε(q) < 1 for n ≥ 10. �

Corollary 1. SE is a deterministic 6√
q -extractor for J(Fq), for n ≥ 10.

Similarly, by the result of Theorem 2, we obtain the following analysis for the
product extractor.

Corollary 2. PE is a deterministic 7√
q -extractor for J(Fq), for n ≥ 10.

4 Extractor for a Subgroup

We note that the number of points of the Jacobian of any genus 2 non-supersingular
binary hyperelliptic curve is even. Therefore, the DDH problem in the full group

454 R.R. Farashahi

is easy. Then the main subgroup G of J(Fq) is suggested for cryptographic
applications. In particular, the order of G can be chosen to be prime, so the
DDH problem in G can be assumed to be intractable.

Let H be an imaginary hyperelliptic curve of genus 2 defined over Fq, such
that the order of J(Fq) is even. In particular let #J(Fq) = 2m, where m is odd.
In this section we propose a new extractor for the main subgroup of J(Fq) by
means of an extractor for J(Fq), where the main order subgroup is the group of
m-torsion points.

Let G be the main subgroup of J(Fq) of order m. Assume T is the point of
order 2 in J(Fq). Let β be a bit distinguishing D from −D satisfying

β : J(Fq)→ {0, 1},
β(D) = 0, if D = −D,

β(D) + β(−D) = 1, if D �= −D.

Assume Ext is an extractor for J(Fq) such that Ext(D) = Ext(−D) for all
D ∈ J(Fq). Examples are the sum and product extractors. Furthermore, assume
Ext(O) = Ext(T). We propose an extractor ext for G as a modified version of
Ext. The extractor ext is defined as the function

ext : G→ Fq,

ext(D) = Ext(D + β(D)T).

Proposition 2. Let z ∈ Fq. Then

#Ext
−1(z) = 2#ext

−1(z).

Proof. We consider the map ξ : Ext−1(z) −→ ext
−1(z) defined by

ξ(D) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

D if D ∈ G, β(D) = 0,

−D if D ∈ G, β(D) = 1,

−D + T if D /∈ G, β(D + T) = 0,

D + T if D /∈ G, β(D + T) = 1.

The map ξ is surjective. Indeed it is a 2 : 1 map, since Ext(D) = Ext(−D) for
all D ∈ J(Fq) and Ext(O) = Ext(T). �

Proposition 3. Ext is an (Fq, δ)-deterministic extractor for J(Fq) if and only
if ext is an (Fq, δ)-deterministic extractor for G.

Proof. Proposition 2 concludes the proof of this proposition.

Example 1. Let H1 be a hyperelliptic curve defined over F2113 by the equation
y2+xy = x5+x2+1. Then #J(F2113) = 2p, where p = 5391989333430127871582
3297673841230760642802715019043549764193368381 is a prime number. Let G1

be the main subgroup of J(F2113) of order p. Let se1 be a modified version of
the sum extractor for G1. Then se1 is a deterministic 3.83√

2113 -extractor for G1.

Extractors for Jacobians of Binary Genus-2 Hyperelliptic Curves 455

Example 2. Let H2 be a hyperelliptic curve defined over F2167 by the equation
y2+xy = x5+x2+1. Then #J(F2167) = 2p, where p = 1749800579826409539498
002018017070262005393320797160760139803906342208135194781865436692471
7497887493 is a prime number. Let G2 be the main subgroup of J(F2167) of
order p. Let se2 be a modified version of the sum extractor for G2. Then se2 is
a deterministic 2.08√

2167 -extractor for G2.

5 Proofs of Theorems

In this section we give a proof of Theorem 1. The proof of Theorem 2 can
be followed in a similar approach. First we discuss the background of the case
distinction in Theorems 1 and 2, then we recall some properties of hyperelliptic
curves which will be used in the proofs.

5.1 Relation between Discriminant and the Case Distinction

In the following remark we discuss about the nonsingularity of the hyperelliptic
curve H . The description of the extractors required stating some special cases.
The parameter d1 in the definition of the sum extractor is intimately related to
the discriminant of H . Indeed the description of the discriminant of H is needed
to explain the nonsingularity of the fibers of the extractors.

Remark 1. We note that a genus 2 hyperelliptic curve is nonsingular by defini-
tion. So for H : y2 + h(x)y = f(x) the following system of equations has no
solution in Fq × Fq.

⎧

⎪⎨

⎪⎩

y2 + h(x)y = f(x)
h′(x)y = f ′(x)
h(x) = 0,

(1)

where h′ and f ′ are respectively the derivatives of h and f . System (1) has a
solution in Fq×Fq if and only if the following equations have a common root
in Fq.

{

ζ(x) = h′2(x)f(x) + f ′2(x) = 0,

h(x) = 0.
(2)

Let D = Res(h, ζ). System (2) has a solution in Fq if and only if D = 0. That
means D �= 0, since the curve H is nonsingular. We consider the following types
for H .
1. If h2 �= 0, then

D =
h0h

4
1d

2
1 + h3

1d1d0 + h2d
2
0

h7
2

,

where
d1 = h4

2h
3
1f4 + h4

2h1f
2
3 + h5

2(h2h0 + h2
1)f3 + h6

2h1f2 + h7
2f1 + h5

2h
2
0

+ h4
2h

2
1h0 + h3

2h
4
1 + h5

1,

d0 = h4
2h

2
1h0(h2h0 + h2

1)f4 + h4
2h0(h2h0 + h2

1)f2
3 + h5

2h
3
1h0f3 + h6

2h
2
1h0f2

+ h7
2f

2
1 + h7

2h
2
1f0 + h3

2h
5
1h0 + h3

2h
4
0 + h2h

4
1h

2
0 + h6

1h0.

456 R.R. Farashahi

2. If h2 = 0 and h1 �= 0, then

D = h6
1h

4
0f4 +h4

1h
4
0f

2
3 +h7

1h
3
0f3 +h8

1h
2
0f2 +h8

1f
2
1 +h9

1h0f1 +h10
1 f0 +h5

1h
5
0 +h8

0.

3. If h2 = h1 = 0 and h0 �= 0, then D = h8
0.

5.2 Details of the Divisor Class Group Representation

We defined SE and PE both in terms of divisor classes and of ideal classes. While
for the definition via the Mumford representation it is instantly clear that the
values are in Fq it is not completely obvious for the divisor class group setting.
Here we explain what it means for the points constituting the reduced divisor
class that the class is defined over Fq.

Let φ : Fq −→ Fq be the Frobenius map defined by φ(x) = xq. This map is
extended to the Jacobian of H as follows. For a divisor D =

∑r
i=1 Pi − rP∞ in

the Jacobian of H , φ(D) =
∑r

i=1 φ(Pi) − rφ(P∞), where φ(Pi) = (xq
i , y

q
i) for

Pi = (xi, yi) and φ(P∞) = P∞. Furthermore φ(D) = D, for all D ∈ J(Fq).
We partition J(Fq) as J(Fq) = J0 ∪ J1 ∪ J2, where J0 = {O} and Jr, for

r = 1, 2, is defined as

Jr = {D ∈ J(Fq) : D =
∑r

i=1 Pi − rP∞} .

If D ∈ J1, then D = P − P∞, where P �= P∞ and P = (xP , yP) ∈ H(Fq).
Furthermore, D is represented by [x−xP , yP]. If D ∈ J2, then D = P +Q−2P∞
for some points P, Q, where P, Q �= P∞ and P �= −Q. Then D is represented by
[u(x), v(x)], where u(x) = (x− xP)(x− xQ), v(xP) = yP and v(xQ) = yQ.

Remark 2. We partition J2 as follows. Let D ∈ J2.

1. Suppose φ(P) = P . Since φ(D) = D, then φ(Q) = Q. Thus P , Q ∈ H(Fq).
Hence xP , xQ ∈ Fq. That means u is a reducible polynomial over Fq.

2. Suppose φ(P) �= P . Since φ(D) = D, so φ(P) = Q and φ(Q) = P . Then
φ(φ(P)) = P and φ(P) �= ±P . Hence P ∈ H(Fq2). Furthermore, u is an
irreducible polynomial over Fq.

Let
J = {(P, Q) : P, Q ∈ H(Fq), P, Q �= P∞, Q �= −P},
J φ = {(P, φ(P)) : P ∈ H(Fq2), P �= P∞, φ(P) �= −P}.

Remark 3. Let σ : J −→ J2 be the map defined by σ(P, Q) = P + Q − 2P∞
and let σφ : J φ −→ J2 be the map defined by σφ(P, φ(P)) = P + φ(P) − 2P∞.
Then #σ−1(D) + #σ−1

φ (D) = 2, for all D ∈ J2.

5.3 Proof of Theorem 1

For the proof of Theorem 1, we need several lemmas and propositions. First
we modify the problem to a corresponding problem via Proposition 4. The new
problem is to find estimates for the sum of the cardinalities of two related sets.

Extractors for Jacobians of Binary Genus-2 Hyperelliptic Curves 457

These sets are defined by Definition 7. Second, by Proposition 5, we give a
formula for this sum in terms of the numbers of Fq-rational points on H and a
particular curve. Finally we obtain tight estimates for all fibers of SE, by means
of Proposition 8 and the Hasse-Weil theorem.

Definition 7. Let a ∈ Fq. Let

Σa = {(P, Q) : P, Q ∈ H(Fq), P, Q �= P∞, xP + xQ = a},

Σφ
a = {(P, φ(P)) : P ∈ H(Fq2), P �= P∞, xP + xφ(P) = a}.

Proposition 4. For all a ∈ F
∗
q,

#(SE−1(a) ∩ J2) =
#Σa + #Σφ

a

2
.

Proof. Let a ∈ F
∗
q . Let Sa = σ−1(SE−1(a)∩J2) and Sφ

a = σ−1
φ (SE−1(a)∩J2) (see

Remark 3). It is easy to see that Σa = Sa and Σφ
a = Sφ

a , since a �= 0. Remark 3
implies that #Sa + #Sφ

a = 2#(SE−1(a) ∩ J2). That concludes the proof of this
proposition. �

Let ν and ω be the polynomials in Fq[x1,x2] defined as

ν(x1,x2) = h(x1)h(x2),

ω(x1,x2) = f(x1)h2(x2) + f(x2)h2(x1).

Clearly ν and ω are symmetric polynomials. Consider the two-variable polyno-
mials θ, ψ ∈ Fq[a,b] such that

θ(x1 + x2,x1x2) = ν(x1,x2), ψ(x1 + x2,x1x2) = ω(x1,x2).

One can show that

θ(a,b) =h2h0a2 + h2h1ab + h1h0a + h2
2b

2 + h2
1b + h2

0,

ψ(a,b) =h2
0a

5 + (h2
2f0 + h2

0f4)a4 + h2
1a

3b2 + (h2
2f1 + h2

0)a3b + h2
0f3a3+

(h2
2f2 + h2

1f4)a2b2 + (h2
1f0 + h2

0f2)a2 + h2
2ab

4 + (h2
2f3 + h2

1)ab3+

(h2
2f1 + h2

1f3 + h2
0)ab2 + (h2

1f1 + h2
0f3)ab + h2

0f1a.

Let X be the algebraic set defined over Fq, by the equation

F (a,b, z) = z2 + θ(a,b)z + ψ(a,b) = 0.

Let a ∈ Fq. Let Xa be the affine curve defined by the equation

Fa(b, z) = z2 + θa(b)z + ψa(b) = 0, (3)

where θa(b) = θ(a,b) and ψa(b) = ψ(a,b).

458 R.R. Farashahi

Proposition 5. Let a ∈ Fq. Then

#Σa + #Σφ
a = 2(#H(Fq) + #Xa(Fq)− q − 1).

The proof of Proposition 5 can be followed in a similar way to the proof of
Proposition 12 in [4].

For almost all a ∈ F
∗
q the affine curve Xa is absolutely irreducible and non-

singular. We will now show that in fact the curve Xa is reducible if and only
if a ∈ ISE. Provided that the curve Xa is absolutely irreducible, the genus of
the nonsingular model of Xa is at most 1. We give conditions for Xa to be non-
singular. For a nonsingular curve we can use the Hasse-Weil theorem to bound
#Xa(Fq) which leads to a proof of Theorem 1.

Proposition 6. The affine curve Xa, for a ∈ F
∗
q, is absolutely irreducible if and

only if a /∈ ISE.

Proof. The affine curve Xa, for a ∈ F
∗
q , is defined by Equation (3). So we consider

the polynomial
Fa(b, z) = z2 + θa(b)z + ψa(b).

First, we assume h2 �= 0. Then the leading terms of θa and ψa are respectively
h2

2b
2 and h2

2ab
4. Suppose Fa is reducible. So there exists a bivariate polynomial

M in Fq[b, z], which is a nontrivial factor of Fa and thus has degree 1. We can
put

M(b, z) = z + e(b) = z + e2b2 + e1b + e0,

where e2, e1 and e0 are unknowns in Fq. Since M is a factor of Fa, the substi-
tution of e(b) for z in Fa must lead to Fa(b, e(b)) = 0. The remainder is

r(b) = r4b4 + r3b3 + r2b2 + r1b + r0
!= 0.

We obtain the following set of equations:
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r4 = e2
2 + h2

2e2 + h2
2a = 0

r3 = te2 + h2
2e1 + (h2

2f3 + h2
1)a = 0

r2 = se2 + e2
1 + te1 + h2

2e0 + h2
1a

3 + (h2
2f2 + h2

1f4)a2

+ (h2
2f1 + h2

1f3 + h2
0)a = 0

r1 = se1 + te0 + (h2
2f1 + h2

0)a3 + (h2
1f1 + h2

0f3)a = 0

r0 = e2
0 + se0 + h2

0a
5 + (h2

2f0 + h2
0f4)a4 + h2

0f3a
3

+ (h2
1f0 + h2

0f2)a2 + h2
0f1a = 0,

(4)

where s = h0(h2a
2 + h1a + h0) and t = h1(h2a + h1). We compute e1 from

the equation of r3 and substitute in equations r2 and r1. Then from the new
equation of r2, we compute e0 and substitute in equations r1 and r0. Then

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r4 = e2
2 + h2

2e2 + h2
2a = 0,

h6
2r1 = t3r4 + a2(h2a + h1)d1 = 0,

h12
2 h2

1r0 = t4r2
4 + h6

2h
2
1(h2

2s
2 + st2)r4

+ a2(a2d2
1 + h5

2(h2a + h1)2d0 + h5
2h

2
1h0(h2a + h1)d1) = 0.

Extractors for Jacobians of Binary Genus-2 Hyperelliptic Curves 459

From the first and second equations of above, we have (h2a + h1)d1 = 0, since
a �= 0. If h2a + h1 = 0, by the third equation, d1 = 0. And if d1 = 0, then
h2a + h1 = 0, since d0 �= 0 (see Remark 1). So a ∈ ISE.

Now, for the inverse direction, suppose a ∈ ISE. Hence (h2a+h1) = d1 = 0. We
note that h1 �= 0, since a �= 0. The above shows that System (4) has a solution.
So Fa is reducible.

Second we assume h2 = 0 and h1 �= 0. Then the leading terms of θa and ψa are
respectively h2

1b and h2
1ab

3. Clearly Fa, for all a ∈ Fq, is absolutely irreducible.
Indeed in this case ISE = ∅.

Finally we assume h2 = h1 = 0 and h0 �= 0. The leading terms of θa and
ψa are respectively h2

0 and h2
0ab

2. Suppose the polynomial z + e(b) in Fq[b, z],
where e(b) = e1b + e0, is a factor of Fa. We substitute z by e in the equation
of Fa. Then we have a reminder r2b2 + r1b + r0. Then

⎧

⎪⎨

⎪⎩

r2 = e2
1 + h2

0a = 0,

r1 = h2
0e1 + h2

0a(a2 + f3) = 0,

r0 = e2
0 + h2

0e0 + h2
0(a5 + f4a

4 + f3a
3 + f2a

2 + f1a) = 0.

We compute e1 from the second equation and substitute in the first one. We
obtain a(a5 + f2

3 a+h2
0) = 0. So Fa is reducible if and only if a5 + f2

3 a+h2
0, since

a �= 0. �

Proposition 7. The affine curve Xa, for a ∈ F
∗
q, is singular if and only if

h2 �= 0 and ah2 + h1 = 0.

Proof. Suppose the affine curve Xa, for a ∈ F
∗
q , is singular. Then the following

system of equations has a solution in Fq × Fq.

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Fa(b, z) = z2 + θa(b)z + ψa(b) = 0
∂Fa

∂b
(b, z) = θ′a(b)z + ψ′

a(b) = 0

∂Fa

∂z
(b, z) = θa(b) = 0,

(5)

where θ′a and ψ′
a are respectively the derivatives of θa and ψa with respect to b.

Then, from System (5), the following equations have a common root in Fq.

{

ζa(b) = θ′2a(b)ψa(b) + ψ′2
a(b) = 0

θa(b) = 0.

So the resultant of ζa and θa equals 0. Let R = Res(ζa, θa). First assume h2 �= 0.
Then R = a4(ah2 + h1)8D. So ah2 + h1 = 0, since D �= 0. Now assume h2 = 0.
If h1 �= 0, then R = a2h4

1D. Hence R �= 0, which is a contradiction. If h1 = 0
and h0 �= 0, then θa(b) = h2

0 �= 0. �

460 R.R. Farashahi

Proposition 8. For all a ∈ F
∗
q, we have

|#Xa(Fq)− q| ≤

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

2
√

q + 1, if h2 �= 0 and a /∈ ISE,

2
√

q, if h2 = 0 and h1 �= 0,

0, if h2 = h1 = 0 and a /∈ ISE,

q, if a ∈ ISE.

Proof. Let a ∈ F
∗
q . Let X̃a be the nonsingular projective model of Xa. First

assume h2 �= 0. Suppose a /∈ ISE. From Proposition 6, the affine curve Xa is
absolutely irreducible. The projective model of Xa has one point at infinity
which is a singular point. By means of the Newton polygon of Fa, one can see
that the genus of X̃a is at most 1. If a �= h1

h2
, by Proposition 7, the affine curve

Xa is nonsingular. If a = h1
h2

, the curve Xa has a singular point, so the genus

of X̃a equals 0. The number of Fq-rational points on X̃a, which are lying over
this singular point in the resolution map, equals 1 (see e.g. see [1], Remark 3.16
and 3.18). The number of Fq-rational points on X̃a, which are lying over the

point at infinity, is at most 2. Hence
∣
∣
∣#Xa(Fq)−#X̃a(Fq) + 1

∣
∣
∣ ≤ 1. By means

of Hasse-Weil’s Theorem for X̃a, we obtain an estimate for #Xa(Fq).
Second assume h2 = 0 and h1 �= 0. From Propositions 6 and 7, Xa is an

absolutely irreducible nonsingular curve. Indeed the projective model of Xa is
an elliptic curve. Hence |#Xa(Fq)− q| ≤ 2

√
q.

Now assume h2 = h1 = 0 and h0 �= 0. Suppose a /∈ ISE. Then Xa is an abso-
lutely irreducible nonsingular curve (see Propositions 6 and 7). The projective
model of Xa is a nonsingular curve of genus 0. It has one point at infinity. Hence
#Xa(Fq) = q.

If a ∈ ISE the curve Xa is reducible. So, we just obtain a trivial bound for
#Xa(Fq). �

Proof of Theorem 1. Let a ∈ F
∗
q . From Propositions 4 and 5 we have

#(SE−1(a) ∩ J2) =
#Σa + #Σφ

a

2
= #H(Fq) + #Xa(Fq)− q − 1.

Since SE
−1(a) ⊂ J(Fq) and J(Fq) = J0 ∪ J1 ∪ J2 we can bound #SE

−1(a) from
bounds on #(SE−1(a) ∩ J1) and #(SE−1(a) ∩ J0). The latter is 0 since a �= 0
while the former equals 0, 1 or 2. Hence

∣
∣#SE

−1(a)−#H(Fq)−#Xa(Fq) + q
∣
∣ ≤ 1.

By Hasse-Weil’s Theorem, we have |#H(Fq)− q − 1| ≤ 4
√

q. Then Proposition
8 concludes the proof of Theorem 1, for all a ∈ F

∗
q .

If a = 0, then it is easy to show that #SE
−1(0) = #H(Fq) + e − s, where

e = #{(x, y) ∈ H(Fq) : x = 0} and s = #{(x, y) ∈ H(Fq) : h(x) = 0}. Hence,
the proof of this theorem is completed. �

Extractors for Jacobians of Binary Genus-2 Hyperelliptic Curves 461

6 Conclusion

In this paper we proposed the first extractors for binary hyperelliptic curves of
genus 2. We gave bounds on the number of preimages for the two generators and
showed that the resulting bit strings are close to uniform. We also proposed a
way to construct an extractor for the main subgroup based on an extractor of
the full group in order to use only the subgroup of cryptographic interest.

Acknowledgment. The author would like to thank T. Lange for her fruitful
suggestions and valuable remarks on this paper. The author also thanks anony-
mous referees for their helpful comments.

References

1. Beelen, P., Pellikaan, R.: The Newton Polygon of Plane Curves with Many Rational
Points. Designs Codes and Cryptography 21, 41–67 (2000)

2. Chevassut, O., Fouque, P., Gaudry, P., Pointcheval, D.: The Twist-AUgmented
Technique for Key Exchange. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G.
(eds.) PKC 2006. LNCS, vol. 3958, pp. 410–426. Springer, Heidelberg (2006)

3. Cohen, H., Frey, G.: Handbook of Elliptic and Hyperelliptic Curve Cryptography.
Chapman & Hall/CRC, New York (2006)

4. Farashahi, R.R.: Extractors for Jacobian of Hyperelliptic Curves of Genus 2 in Odd
Characteristic. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS,
vol. 4887, pp. 313–335. Springer, Heidelberg (2007)

5. Farashahi, R.R., Pellikaan, R.: The Quadratic Extension Extractor for (Hy-
per)Elliptic Curves in Odd Characteristic. In: Carlet, C., Sunar, B. (eds.) WAIFI
2007. LNCS, vol. 4547, pp. 219–236. Springer, Heidelberg (2007)

6. Farashahi, R.R., Pellikaan, R., Sidorenko, A.: Extractors for Binary Elliptic
Curves. In: Workshop on Coding and Cryptography–WCC 2007. Designs, Codes
and Cryptography, pp. 127–136. Codes and Cryptography, Open access (2007),
http://www.springerlink.com/content/lm35kv103x34j754

7. Gaudry, P.: An Algorithm for Solving the Discrete Log Problem on Hyperelliptic
Curves. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 3419–3448.
Springer, Heidelberg (2000)

8. Gaudry, P.: Fast genus 2 arithmetic based on Theta functions. J. Math. Crypt. 1,
243–265 (2007)

9. Gaudry, P., Lubicz, D.: The arithmetic of characteristic 2 Kummer surfaces (2008),
http://www.loria.fr/∼gaudry/tmp/c2.pdf

10. Gürel, N.: Extracting bits from coordinates of a point of an elliptic curve, Cryp-
tology ePrint Archive, Report 2005/324 (2005), http://eprint.iacr.org/

11. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, New York (2004)

12. Hess, F., Shparlinski, I.E.: On the Linear Complexity and Multidimensional Dis-
tribution of Congruential Generators over Elliptic Curves. Designs, Codes and
Cryptography 35(1), 111–117 (2005)

13. Kaliski, J.B.S.: A Pseudo-random Bit Generator Based on Elliptic Logarithms.
In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 84–103. Springer,
Heidelberg (1987)

http://www.springerlink.com/content/lm35kv103x34j754
http://www.loria.fr/~gaudry/tmp/c2.pdf
http://eprint.iacr.org/

462 R.R. Farashahi

14. Koblitz, N.: Hyperelliptic Cryptosystem. J. of Cryptology 1, 139–150 (1989)
15. Lange, T., Shparlinski, I.E.: Certain Exponential Sums and Random Walks on

Elliptic Curves. Canad. J. Math. 57(2), 338–350 (2005)
16. Lange, T., Shparlinski, I.E.: Distribution of Some Sequences of Points on Elliptic

Curves. J. Math. Crypt. 1, 1–11 (2007)
17. Lange, T., Stevens, M.: Efficient Doubling on Genus Two Curves over Binary

Fields. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
170–181. Springer, Heidelberg (2004)

18. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton Univer-
sity Press, USA (1994)

19. Mumford, D.: Tata Lectures on Theta II. Progress in Mathematics 43 (1984)
20. Shaltiel, R.: Recent Developments in Explicit Constructions of Extractors. Bulletin

of the EATCS 77, 67–95 (2002)
21. Shparlinski, I.E.: On the Naor-Reingold Pseudo-Random Function from Elliptic

Curves. Applicable Algebra in Engineering, Communication and Computing—
AAECC 11(1), 27–34 (2000)

22. Trevisan, L., Vadhan, S.: Extracting Randomness from Samplable Distributions.
In: IEEE Symposium on Foundations of Computer Science, pp. 32–42 (2000)

Efficient Modular Arithmetic in Adapted

Modular Number System Using Lagrange
Representation

Christophe Negre1 and Thomas Plantard2

1 Team DALI, University of Perpignan, France
2 Centre for Information Security Research

School of Computer Science and Software Engineering
University of Wollongong, Australia

Abstract. In 2004, Bajard, Imbert and Plantard introduced a new sys-
tem of representation to perform arithmetic modulo a prime integer p,
the Adapted Modular Number System (AMNS). In this system, the el-
ements are seen as polynomial of degree n − 1 with the coefficients of
size p1/n. The best method for multiplication in AMNS works only for
some specific moduli p. In this paper, we propose a novel algorithm to
perform the modular multiplication in the AMNS. This method works
for any AMNS, and does not use a special form of the modulo p. We also
present a version of this algorithm in Lagrange Representation which
performs the polynomial multiplication part of the first algorithm effi-
ciently using Fast Fourier Transform.

Keywords: Prime Field, Modular Multiplication, Modular Number Sys-
tem, Lagrange Representation.

1 Introduction

Several cryptographic applications like the Diffie-Hellman key exchange proto-
col [12], ECC [16,14], RSA [19] or pairing based protocol require efficient modular
integer arithmetic. Specifically, for Diffie-Hellman key exchange the main oper-
ation is an exponentiation modulo a prime integer p: this operation is generally
done using a chain of squaring and multiplication modulo p. For ECC, the main
operation is the scalar multiplication which requires also a chain of additions
and multiplications modulo a prime integer p.

The multiplication modulo p consists to multiply two integers A and B and
after that to compute the remainder modulo p. The methods to perform this
operation differ if the integer p has a special form or not. If p is arbitrary,
the most used methods are the method of Montgomery [18] and the method of
Barrett [9]. But the cost of these two methods is roughly equal to the cost of
three integer multiplications.

When the integer p has a sparse binary representation [23] the reduction
modulo p can be done really efficiently. This last case is, for now, the most
efficient, consequently standards recommends these types of prime integer [1].

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 463–477, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

464 C. Negre and T. Plantard

On the other hand these types of prime are rare, and it thus interesting have
efficient modular arithmetic modulo any prime.

Recently Bajard, Imbert and Plantard [6] proposed a new method to perform
modular arithmetic by using a new representation of the elements. An integer
A modulo p is expressed as A =

∑n−1
i=0 aiγ

i with γn ≡ λ mod p with λ a
very small constant. The coefficients ai are small relatively to p and γ (roughly
|ai| ≤ ρ ∼= p1/n and γ ∼= p).

In this representation the multiplication of A and B is done in two steps: the
first step consists to multiply the polynomials A and B in γ modulo γn−λ, the
second step consists to reduce the coefficients.

In this paper, we will present a modified version of the multiplier of [6]. The
initial proposition in [6] use lookup table which can’t be used for big size modu-
lus. Our approach is similar to Montgomery’s [18,3] to perform the reduction of
the coefficients. We add a multiple of the moduli p to kill the lower part of the
coefficients of the polynomial product C = A×B mod (γn − λ).

To use Fast Fourier Transform, to perform the polynomial multiplication, we
slightly modify the first algorithm, and use a Lagrange approach to perform
arithmetic modulo (γn − λ). We then obtain an algorithm with a sub-quadratic
complexity.

This article is organized as follows: in the first section we will briefly recall
the AMNS representation, we will present our new multiplication in AMNS
representation, and we will study the construction of the shortest polynomial
which is required in the multiplication. After that, we will recall the Lagrange
representation (LR) approach [5,4] to perform polynomial modular arithmetic,
and present the Lagrange form of our algorithm. We conclude by a study of its
cost and by a presentation of an implementation.

2 Modular Number System

2.1 Definition

Efficient arithmetic modulo a prime integer p is generally deeply related to the
system of representation used to represent the elements. Generally integers are
expressed as a sum A =

∑n
i=0 aiβ

i where 0 ≤ ai < β (in practice β is often
chosen as a power of 2). Here we are interested in integer multiplication modulo
a prime integer p, and specifically for p of cryptographic size 2160 ≤ p.

We will use a modified version of this classical representation: the Modular
Number System [6] to represent the elements modulo p.

Definition 1 (MNS [6]). A Modular Number System (MNS) B, is a quadruple
(p, n, γ, ρ), such that for all positive integers 0 ≤ a < p there exists a polynomial
A(X) =

∑n−1
=0 aiX

i such that

A(γ) = a mod p,
deg(A(X)) < n,
‖A‖∞ < ρ.

(1)

The polynomial A(X) is a representation of a in B.

Efficient Modular Arithmetic in Adapted Modular Number System 465

The Modular Number System is a system of representation which includes the
modulo p used in the modular arithmetic. Generally the MNS have a basis γ ∼= p
and small coefficients |ai| < ρ ∼= p1/n.

Example 1. In the table 1, we prove that the quadruplet (17, 3, 7, 2) is a MNS.

Table 1. The elements of Z17 in B = MNS(17, 3, 7, 2)

0 1 2 3 4 5

0 1 −X2 1 − X2 −1 + X + X2 X + X2

6 7 8 9 10 11

−1 + X X 1 + X −X − 1 −X −X + 1

12 13 14 15 16
−X − X2 1 − X − X2 −1 + X2 X2 −1

In particular, we can verify that if we evaluate (−1 + X + X2) in γ, we have
−1 + γ + γ2 = −1 + 7 + 49 = 55 ≡ 4 mod 17. We have also deg(−1 + X + X2) =
2 < 3 and ‖ − 1 + X + X2‖∞ = 1 < 2.

The second definition of this section corresponds to a sub-family of the Mod-
ular Number System. We use the possibility to choose freely the basis γ to
have advantageous properties for the modular arithmetic. That’s why Bajard et
al. said that these systems are adapted to the modular arithmetic: this is the
Adapted Modular Number System.

Definition 2 (AMNS [6]). A Modular Number System B = (p, n, γ, ρ) is
called Adapted (AMNS) if there exists a small integer λ such that γn = λ mod p.
We call E the polynomial Xn−λ. γ is a root of the polynomial E in Z/pZ: E(γ) ≡
0 (mod p). We also note (p, n, γ, ρ)E the Modular Number System (p, n, γ, ρ)
which is adapted to the polynomial E.

The difficulty in the construction of AMNS is to find an n-th roots of a fixed
element λ in Z/pZ. Since p is prime the problem can be easily solved [11] (when
such root exists) and in this paper we will focus on AMNS associated to p prime.
If p were a composite number, for example an RSA number, the problem could
be solved using the factorization of p. This means that the method presented in
this paper, could be extended to multiply two integers modulo an RSA number
which admits such n-th roots.

2.2 Multiplication in AMNS

As described in [6] the multiplication of two elements A and B in AMNS is done
through the three following steps

466 C. Negre and T. Plantard

1. Polynomial multiplication C(X) = A(X)×B(X).
2. Polynomial reduction C′(X) = C(X) mod E(X).
3. Coefficient reduction R = CoeffRed(C′) : the coefficients of C′ lie in the

interval]− nρ2λ, nρ2λ[, they must be reduced such that they have absolute
value smaller than ρ.

The first step can be done using usual methods: polynomial school-book,
Karatsuba, or FFT methods. The second step is quite easy because of the form
of E: we have only to add the lower part of C with λ times the high part of C
to get C′. The last part, is for now the most complicated: in [7] Bajard, Imbert
and Plantard proposed a method using look up table, the performance of such
algorithm is not easy to evaluate, it depends on the size of the table, and the
memory access delay.

Consequently some improvements need to be done to have efficient coefficient
reduction and thus efficient multiplication in AMNS.

3 Novel AMNS Multiplication

In this section, we will present a new AMNS-multiplication algorithm. Let us fix
an AMNS (p, n, γ, ρ) and M(X) a polynomial such that M(γ) = 0 mod p and
gcd(M, E) = 1. As we will see later, M must be chosen in practice with small
coefficients.

To perform the multiplication in the AMNS, we use a trick similar to Mont-
gomery’s method [18]. We will use the polynomial M to kill the lower part of
the coefficients of the product C = A×B mod E. This method work as follows.

Algorithm 1. AMNS Multiplication (Polynomial version)

Input : A, B ∈ B = AMNS(p, n, γ, ρ)E with E = Xn − λ
Data : M such that M(γ) ≡ 0 (mod p)

an integer m and M ′ = −M−1 mod (E, m)
Output: R such that R(γ) = A(γ)B(γ)m−1 mod p
begin

C ← A×B mod E;
Q← C ×M ′ mod (E, m);
R← (C + Q×M mod E)/m;

end

We remark that if we take m = 2k, in the third step we add some multiple
of the modulo p (i.e. Q×M is a multiple of p since Q(γ)M(γ) ≡ 0 mod p) to
annihilate the lest significant bit of the coefficients of C in the same way as in
classical Montgomery Multiplication.

Let us check that Algorithm 3 is exact: we have to verify that R(γ) =
A(γ)B(γ)m−1 mod p. We know that E(γ) ≡ 0 (mod p) (See Definition 2), thus
we have C(γ) ≡ A(γ)B(γ) mod p. We know also that M(γ) ≡ 0 (mod p) thus
we have

C(γ) + Q(γ)M(γ) ≡ C(γ) ≡ A(γ)B(γ) mod p

Efficient Modular Arithmetic in Adapted Modular Number System 467

We now prove that the division by m is exact. This is equivalent to prove that
(C + Q ×M mod E) ≡ 0 mod m. We have by definition that Q ≡ Q mod m
and also that Q = C × P mod E and that P = −M−1 mod E. We obtain that

C + Q×M mod E ≡ (C + C × (−M−1 ×M) mod E) mod m
≡ (C − C mod E) mod m
≡ 0 mod m

as required. At the end, we have R(γ) ≡ A(γ)B(γ)m−1 mod p since an ex-
act division (the division by m) is equal to the multiplication by an inverse
modulo p. �
At this step we know that the resulting polynomial R of the previous algorithm
satisfies R(γ) = A(γ)B(γ)m−1 mod p, but we do not know whether it is ex-
pressed in the AMNS, i.e., when the coefficients of R are smaller than ρ. This is
the goal of the following theorem.

Theorem 1. Let B = AMNS(p, n, γ, ρ)E an Adapted Modular Number System,
M a polynomial of B such that M(γ) ≡ 0 (mod p) and σ = ‖M‖∞, and A, B
two elements of B, if we have ρ and an integer m such that ρ > 2|λ|nσ and m >
2|λ|nρ then the polynomial R output by the Algorithm 3 with input B,M ,m,A
and B is in the Adapted Modular Number System B.

Proof. From the Definition 1, the polynomial R is in the Modular Number Sys-
tem B = (p, n, γ, ρ)E , if deg R < n and if ‖R‖∞ < ρ. The fact that deg R < n
is easy to see since all the computation in the Algorithm 3 are done modulo
E = Xn − λ.

Thus we have only to prove that ‖R‖∞ < ρ. We first have the following
inequalities

‖R‖∞ = ‖A×B + Q×M mod E‖∞/m
≤ |λ|n(‖A‖∞‖B‖∞ + ‖Q‖∞‖M‖∞)/m

≤ |λ|n(ρ2 + mσ)/m = |λ|n(ρ2

m + σ)

using that ‖A‖∞, ‖B‖∞ ≤ ρ.
But, by hypothesis, we have ρ > 2|λ|nσ, m > 2|λ|nρ. Thus if we use the

fact that m > 2|λ|nρ, we obtain:

‖R‖∞ < |λ|n(ρ2

2|λ|nρ + σ) ≤ ρ
2 + |λ|nσ.

And with ρ > 2|λ|nσ, i.e., σ < ρ
2|λ|n , we get the required result

‖R‖∞ <
ρ

2
+ |λ|n ρ

2|λ|n ≤
ρ

2
+

ρ

2
= ρ.

An important remark on the Theorem 1 is that the length of the coefficients of the
representation depends on the length ‖M‖∞ of the polynomial M , specifically if
σ is small then ρ can be also taken small. So now we will focus on the construction
of such short polynomial M .

468 C. Negre and T. Plantard

3.1 The Shortest Polynomial

To construct such polynomial we will use technique provided by lattice theory.
Indeed the Modular Number System has an interesting link with lattice theory.
We recall the definition of Lattice.

Definition 3 (Lattice)
A lattice L is a discrete sub-group of R

n, or equivalently the set of all the integral
combinations of d ≤ n linearly independent vectors over R.

L = Z b1 + · · ·+ Z bd = {λ1b1 + · · ·+ λdbd : λi ∈ Z}.
The set of vector B = (b1, . . . , bd) is called a basis of L.

The lattice associated to an MNS is a subset of the polynomials Z[X] of degree
n− 1

L = {A ∈ Z[X] such that deg A ≤ n− 1 and A(γ) ≡ 0 mod p} .

It is easy to check that such set form a subgroup of Zn[X] = {Q ∈ Z[X] with
deg Q ≤ n− 1} ∼= Z

n. Indeed let A, B ∈ L, then A±B ∈ L since (A±B)(γ) ≡
A(γ)±B(γ) ≡ 0 mod p.

If we associate each polynomial in Zn[X] a vector with entries in Z, we get
the following set vectors of the lattice L

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p 0 0 0 . . . 0
−γ 1 0 0 . . . 0
−γ2 0 1 0 . . . 0

...
. . .

...
−γn−2 0 0 . . . 1 0
−γn−1 0 0 . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

← p
← X − γ
← X2 − γ2

...
← Xn−2 − γn−2

← Xn−1 − γn−1

.

If we define by L′ the lattice spanned by these n vectors, we can easily note
that the vectors b ∈ B are clearly linearly independent and thus the dimension
of L′ (and thus of L) is equal to n: L and L′ are full dimensional lattices.

In Algorithm 3 we need a polynomial M such that M(γ) ≡ 0 mod p and
‖M‖∞ is small. This is related to the classical problem in lattice to find the
shortest vector since, M ∈ L′: the best choice for M is the shortest polynomial
in L′.
Definition 4 (Shortest Polynomial). A polynomial M is called Shortest
Polynomial of a MNS B = (p, n, γ, ρ) if we have

M �= 0
M(γ)=0 mod p
deg(M) < n

⎫

⎬

⎭
and ∀A ∈ Z[X], if

⎧

⎨

⎩

A �= 0
A(γ)=0 mod p
deg(A) < n

⎫

⎬

⎭
then ‖M‖∞ ≤ ‖A‖∞

(2)
We note σ the length of M : σ = ‖M‖∞.

Efficient Modular Arithmetic in Adapted Modular Number System 469

In 1896 [17], Minkowski gave a bound for the length of the shortest vector of
a lattice L for all norm, precisely in the case of the norm ‖ · ‖∞ the shortest
vector v satisfies ‖v‖∞ ≤ |detL′|1/d if d = dimL.

A straightforward consequence of the Theorem of Minkowski is the following
corollary which gives an upper bound on σ = ‖M‖∞ the length of the shortest
polynomial.

Corollary 1. If the polynomial M is the Shortest Polynomial of the MNS B =
(p, n, γ, ρ), we have ‖M‖∞ ≤ p1/n.

Proof. This is trivial if we note that det(L′) = p.

For practical application we will need to compute efficiently an approximation of
the shortest polynomial M of a given AMNS (only an approximation is sufficient
since we only need an M with small ‖M‖∞). There is several algorithm to
compute such M (cf. [20,21,13,8]), but LLL [15] might be the most efficient in
our case.

In practice, in actual computers, LLL could not compute an LLL basis (and
thus the M) for lattices of dimension bigger than 250. This restrict the use
of AMNS to small range of n, we will discuss the consequences of this fact in
Section 6.

4 Improved AMNS Multiplication

The AMNS multiplication (Algorithm 3) requires several polynomial multiplica-
tions modulo E = Xn−λ. There is different strategies to perform this operation
efficiently: the polynomial multiplication can be done with classical methods
(schoolbook method, Karatsuba, Toom-Cook or FFT algorithm), followed by a
reduction modulo E.

Here we will study a modified version of Algorithm 3 by using a Lagrange
representation of the polynomials. Our method performs the polynomial multi-
plication and the reduction modulo E at the same time. We begin by a brief
review on Lagrange representation [5].

4.1 Lagrange Representation

The Lagrange representation represents a polynomial by its values at n points,
the roots of E =

∏n
i=1(X − αi) modulo an integer m. In an arithmetic point of

view, this is related to the Chinese Remainder Theorem which asserts that the
following application is an isomorphism.

Z/mZ[X]/(E) −→ Z/mZ[X]/(X − α1)× · · · × Z/mZ[X]/(X − αn)
A �−→ (A mod (X − α1), . . . , A mod (X − αn)) .

(3)

We remark that the computation of A mod (X−αi) is simply the computation
of A(αi). In other words the image of A(X) by the isomorphism (3) is nothing
other than the multi-points evaluation of A at the roots of E.

470 C. Negre and T. Plantard

Definition 5 (Lagrange representation). Let A ∈ Z[X] with deg A < n,
and α1, . . . , αn be the n distinct roots modulo m of E(X).

E(X) =
r∏

i=1

(X − αi) mod m

If ai = A(αi) mod m for 1 ≤ i ≤ k, the Lagrange representation (LR) of A(X)
modulo m is defined by LR(A(X), m) = (a1, . . . , an).

The advantage of the LR representation to perform operations modulo E is
a consequence of the Chinese Remainder Theorem. Specifically the arithmetic
modulo E in classical polynomial representation can be costly if E has a high
degree, in LR representation this arithmetic is decomposed into n independent
arithmetic units, each does arithmetic modulo a very simple polynomial (X−αi).
But arithmetic modulo (X − αi) is the arithmetic modulo m since the product
of two degree zero polynomials is just the product modulo m of the two constant
coefficients.

4.2 Improved AMNS Algorithm Using Lagrange Representation

Let us go back to the Algorithm 3 and let us see how to use Lagrange represen-
tation to perform polynomial arithmetic in each step of the algorithm.

In view to use Lagrange representation, we select two integers m1 and m2

such that the polynomial E = (Xn − λ) splits in Z/miZ[X]

E =
n∏

i=1

(X − αi) mod m1, E =
n∏

i=1

(X − α′
i) mod m2.

We can then represent the polynomials A and B in Algorithm 3 in Lagrange
representation modulo m1 and m2.

Notation 1. We will use in the sequel the following notation : for a polynomial
A of degree n−1 we will denote A the Lagrange representation in αi modulo m1

and A the Lagrange representation in α′
i modulo m2.

In this situation we can do the following modification in the Algorithm 3:

– the computation of C in the Algorithm 3 can be done in Lagrange represen-
tation modulo m1;

– the last step of the Algorithm 3 can be done in Lagrange representation
modulo m2, providing that m2 ≥ 2ρ.

We have to deal with some troubleshooting provided by this strategy. Indeed,
at the end of the first step we only know Q, but we do not know Q which
is required in the modified step 3 of the AMNS multiplication. So we must
perform a change of Lagrange representation to compute Q from Q. Similarly,
to get a complete multiplication algorithm, we need to know the R at the end

Efficient Modular Arithmetic in Adapted Modular Number System 471

of the AMNS multiplication to get the Lagrange representation of R modulo m1

and m2.
Let us call ChangeLR the routine which performs the change between two

Lagrange representations. We will show later how this ChangeLR works. For
now we can set the Lagrange version of the Algorithm 3.

Algorithm 2. Lagrange-AMNS Multiplication

Input : A, A, B, B the Lagrange representation modulo m1 and m2 of A
and B

Data : M the LR representation of the shortest polynomial M ,
M ′ the LR representation of M ′ = −M−1 mod E.

Output: R, R such that R ∈ B and R(γ) = A(γ)B(γ)m−1
1 mod p

begin
Q← A×B ×M ′;
Q← ChangeLRm1→m2(Q));
R← (A×B) + Q×M)×m−1

1 ;
R← ChangeLRm2→m1(R);

end

4.3 The Change of Lagrange Representation

Let us fix A a polynomial of degree (n−1) and A, A its Lagrange representations
modulo m1 and m2. The basic method to perform the change of representation
from A to A consists

1. to first reconstruct the polynomial form A(X) from its Lagrange represen-
tation A

2. secondly, to evaluate the polynomial A(X) at the root of E modulo m2.

• We first deal with the problem to compute the Lagrange representation A
from the polynomial representation of A. Recall that E = Xn−λ split totally
modulo m, thus the roots αj of E modulo m are of the form αj = μωj where
μ is an arbitrary roots of E modulo m and ω is a primitive n-th roots.
To compute A(μωj) for j = 1, . . . , n we first determine

Ã(X) = A(μX) =
n−1∑

i=0

aiμ
iX i.

After that we get A = (Ã(1), Ã(ω), . . . , Ã(ωn−1)) = DFT (m, n, Ã, ω).
• For the reverse problem which consists to reconstruct the polynomial A(X)

from its Lagrange representation A we simply reverse the previous process:
1. we first compute Ã = DFT−1(m, n, A, ω),
2. and after that A(X) = Ã(μ−1X) =

∑n−1
i=0 ãiμ

−iX i.

472 C. Negre and T. Plantard

So now, by joining these two methods we get the overall algorithm to perform
the change of Lagrange representation A→ A.

Algorithm 3. ChangeLR

Input : A

Output: A
Ã← DFT−1(m1, n, ω1, A) ;
A(X)← A(μ−1

1 X) mod m1 ;
Ã(X)← A(μ2X) mod m2 ;
A← DFT (m2, n, ω2, Ã(X));

Finally the change of the representation is mainly reduced to the computation
of one DFT and one DFT−1. This is really interesting when the integer n is a
power of 2 since is in this case we can use the so-called Fast Fourier Transform
which performs this efficiently. This algorithm compute the DFT using n

2 log2(n)
multiplications modulo m and n log2(n) additions modulo m. (see [24] for a
complete presentation of this algorithm).

Example 2. In the table 2, we present an example of the Lagrange-AMNS multi-
plication for the prime p = 247649 and for the two elements A and B expressed
in the AMNS

A = 236 + 176X − 66X2 − 248X3, B = −199 + 122X + 73X2 − 148X3.

Table 2. Example of AMNS Multiplication

AMNS/Lagrange System

B = (p = 247649, n = 4, γ = 106581, ρ = 28),
m2 = 28 + 1, m1 = 212 + 1,

E = X4 + 1

E =
∏3

i=0(X − μ1ω
i
1) mod m2,

E =
∏3

i=0(X − μ2ω
i
2) mod m1.

M = −8 − 5X − 17X2 + 11X3

M ′ mod m1 = 497 + 3175X + 338X2 + 895X3

Entries

Lag.E, m1 LagE, m2

A (1548, 2454, 2767, 2369) (203, 256, 213, 15)
B (3419, 3148, 1430, 3498) (209, 195, 187, 155)
M (147, 245, 64, 26)
M ′ (1838, 1504, 1450, 1293)

AMNS Multiplication

Step 1. Q = ABM ′ = (2384, 2371, 1252, 1591)

Step 2. Q = ChangeLRm1→m2(Q) = (23, 176, 248, 182)

Step 3. R = (AB + QM)m−1
1 = (13, 51, 210, 232)

Step 4. Q = ChangeLRm2→m1(R) = (3454, 1159, 2560, 1013)

Efficient Modular Arithmetic in Adapted Modular Number System 473

To verify that the result is exact, we have to build the polynomial form R =
−2− 8X − 17X2 + 9X3 and then we can easily check that R(γ) = ABm−1

1 mod
p = 114760.

See [7], for other needed operations in a AMNS.

5 Complexity Evaluation and Comparison

Let us now evaluate the cost of AMNS multiplication in Lagrange Representa-
tion. We evaluate the cost of the algorithm in term of the number of additions
and multiplications modulo m1 and m2. We assume that that m1 and m2 have
the same size (generally m1 is bigger since m1 ≥ 2λρ and m2 ≥ 2ρ). Conse-
quently an operation modulo m1 and m2 is assumed to have the same cost. In
the table below we give the cost of each step of the Lagrange AMNS multipli-
cation and the cost of the overall algorithm, in the case n is a power of 2 and
FFT is used in the ChangeLR routine.

Table 3. Complexity of basic operations

Computation # Multiplications # Additions

ABM ′ n 0

ChangeLRm1→m2(Q) n log2(n) + 2(n − 1) 2n log2(n)

(AB + QM)m−1
1 3n n

ChangeLRm2→m1(Q) n log2(n) + 2(n − 1) 2n log2(n)

Total 2n log2(n) + 6n − 2 4n log2(n) + n

Let us briefly compare our scheme with a strategy Montgomery Multiplication
using Schönage-Strassen for integer multiplication, which seems to be the best
strategy for large integer arithmetic. Recall that Montgomery algorithm has a
cost of 3 integer multiplications of size ∼= p.

In Schönage-Strassen [22] integer a are expressed in the first step of the re-
cursive algorithm as a =

∑n−1
i=0 aiX

i where n ∼= log2(p)/2 and ai ≤ p1/n.
Interpolation using FFT modulo an integer m ∼= p2/n is done to compute ab

mod X2n − 1. Thus each integer multiplication requires 3FFT (counting only
the first step of the recursion) at 2n points with a modulo m with size p2/n.

Consequently: we have 9FFT in 2n points computations at for the overall
Montgomery algorithm, with coefficients size p2/n in FFT compared to 4FFT
in n points with coefficient size p1/n for AMNS.

We must mention that in Schönage-Strassen products with roots of unity in
the FFT has a cost of one addition because of the choice of m, but such strategy
could also be also applied in AMNS.

474 C. Negre and T. Plantard

6 Practical Aspects and Implementation

Let us discuss some troubleshouting which can appear in the implementation of
AMNS-Lagrange multiplication.

First of all, due to the discussion on the construction of M in Section 2, and
the fact that n must be a power of 2 to have efficient ChangeRep, n must be
taken be taken in the set {2, 4, 8, 16, 32, 64, 128}.

For these special values of n, we prove that we can always find for any prime
p a integer γ which is a root of a polynomial Xn − λ modulo p with λ not too
big (see Lemma 1)

Lemma 1. Let m be an odd integer, and n an integer such that there exits an
integer k > 0 with n = 2k, there exists a polynomial Xn − λ such that:

i) Xn − λ is irreducible in Z

ii) there exist a root γ of Xn − λ in Z/mZ

iii) |λ| ≤ 2
n
2

Proof. Let be g a generator of the group of the invertible of Z/pZ and φ(p) be
the length of this group.

We decompose φ(p) with a positive integer k1 and an odd integer p1 such that
φ(p) = 2k1p1.

2 is invertible in Z/pZ, so there exist an integer i such that gi mod φ(p) =
2 mod p. We decompose i with an positive integer k2 and an odd integer p2 such
that i = 2k2p2.

p is odd, so we have φ(p) even (k1 ≥ 1). We also know that g2k1−1p1 =
−1 mod p.

We have now four case:

1. If k < k1, we choose λ = −1 and γ = gx with x = 2k1−1−kp1 and we have
i) Xn + 1 is irreducible in Z

ii) γn = gxn = g2k1−1−kp12k

= g2k1−1p1 = −1 mod p
iii) |λ| = 1 < 2

n
2

We can easily verify that x is an integer.

2. If k ≤ k2, we choose λ = 2 and γ = gx x = 2k2−kp2, then we have
i) Xn − 2 is irreducible in Z

ii) γn = gxn = g2k2−kp22k

= g2k2p2 = λ mod p
iii) |λ| = 2 ≤ 2

n
2

We can easily verify that x is an integer.

3. If k > k2 ≥ k1, we choose λ = 2 and γ = gx with x = 2k2−k1p2+yp1
2k1−k with

y = −2k2−k1p2p
−1
1 mod 2k−k1

i) Xn − 2 is irreducible in Z

ii) γn = gxn = g(2k2−k1p2+yp1)2k1−k2k

= g2k2p2+yp12
k1 = 2

iii) |λ| = 2 ≤ 2
n
2

Efficient Modular Arithmetic in Adapted Modular Number System 475

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 0 2000 4000 6000 8000 10000 12000

GMP
AMNS with E=X^2+1

Fig. 1. Comparison between GMP’s modular multiplication and Algorithm 2 with
E = X2 + 1

We verify that x is an integer, that s the case if 2k2−kp2 + yp12k1−k can be
divide by 2k−k1 .

2k2−kp2 + yp12k1−k ≡ (2k2−k1p2+(−2k2−k1p2p
−1
1 mod 2k−k1)p1) mod 2k−k1

≡ 2k2−k1p2 − 2k2−k1p2p
−1
1 p1) mod 2k−k1

≡ 2k2−k1p2 − 2k2−k1p2) mod 2k−k1

≡ 0 mod 2k−k1

4. If k ≥ k1 > k2 then we choose λ = −22k1−k2−1
and γ = gx with x =

p1+p2
2 +yp1

2k1−k with y = − p1+p2
2 p−1

1 mod 2k−k1

i) Xn + 22k1−k2 is irreducible in Z

ii) γn = gxn = g(
p1+p2

2 +yp1)2
k1−k2k

= g(p1+p2)2k1−1+yp12
k
1

= g(p12k1−1+p22
k1−1+yφ(p) = −gp22

k1−1
= −gp22

k2+k1−k2−1
= −22k1−k2−1

iii) |λ| = 22k1−k2−1 ≤ 22k−1 ≤ 2
n
2

We verify that x is an integer, that’s the case if p1+p2
2 + yp1 is divisible by

2k−k1

p1+p2
2 + yp1 ≡ p1+p2

2 + yp1 mod 2k−k1

≡ p1+p2
2 + (− p1+p2

2 p−1
1)p1 mod 2k−k1

≡ p1+p2
2 − p1+p2

2 mod 2k−k1

≡ 0 mod 2k−k1 �

So, we can construct AMNS for all prime with good conditions on n and λ.
There is an alternative strategy on the drawback due to the restriction of the

size of n : in AMNS-Lagrange multiplication if m1 and m2 are Fermat number,

476 C. Negre and T. Plantard

we can use Schönage-Strassen [10] method to perform arithmetic modulo m1

and m2, and keep the advantageous of the method.
Let us now present a result on the implementation of AMNS-LR multiplica-

tion. Figure 1 give the time in function of the modulus size of an implementation
of Algorithm 2 in the special case n = 2 and λ = −1 on a Pentium 4, 2 GHz. The
case n = 2 and λ = −1 is an interesting case, since AMNS can be constructed
for prime p when p− 1 is divisible by 4 (this is the case for 50% of prime p).

We compare this implementation of Algorithm 2 with GMP 4.2.1 [2] modular
multiplication. For GMP, we use the modular multiplication of the modular
exponentiation, to have its best one. Our implementation use also GMP [2]
tools to construct AMNS-Lagrange system, and to perform the multiplication
itself. Our code, could be highly optimized, for example, by using astuciously
the fact that m1 and m2 are Fermat numbers.

We can see that even if we don’t use the advantageous form of Fermat moduli,
Algorithm 2 begin to be faster when p have a size around 5000 bits. We expect
that we could get better result with bigger n, since the complexity decrease
with n.

7 Conclusion

In this paper we have presented a novel algorithm to perform integer modular
arithmetic. Primarily, we gave a polynomial formulation of our algorithm which
uses the AMNS [6] representation of integer and a Montgomery-like method
to reduce the coefficients. Secondly we modify this algorithm in view to use a
Lagrange representation to speed-up the polynomial multiplication part of the
algorithm. From practical implementation, we expect that it should improve
classical algorithm (Montgomery, Barrett) to perform modular multiplication
modulo arbitrary for prime p of size several thousand bits.

References

1. FIPS PUB 197: Advanced Encryption Standard (AES). FIPS PUB. NIST (2001)
2. The GNU Multiple Precision arithmetic librairy (May 2006)
3. Bajard, J.-C., Didier, L.-S., Kornerup, P.: An RNS Montgomery modular multi-

plication algorithm. IEEE Transactions on Computers 47, 766–776 (1998)
4. Bajard, J.-C., Imbert, L., Nègre, C.: Arithmetic operations in finite fields of

medium prime characteristic using the lagrange representation. IEEE Trans. Com-
puters 55(9), 1167–1177 (2006)

5. Bajard, J.-C., Imbert, L., Negre, C., Plantard, T.: Efficient multiplication in gf(pk)
for elliptic curve cryptography. In: ARITH’16: IEEE Symposium on Computer
Arithmetic, June 2003, pp. 181–187 (2003)

6. Bajard, J.-C., Imbert, L., Plantard, T.: Modular Number Systems: Beyond the
Mersenne Family. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS,
vol. 3357, pp. 159–169. Springer, Heidelberg (2004)

7. Bajard, J.-C., Imbert, L., Plantard, T.: Arithmetic operations in the polynomial
modular number system. In: ARITH’17: IEEE Symposium on Computer Arith-
metic (June 2005)

Efficient Modular Arithmetic in Adapted Modular Number System 477

8. Banihashemi, A.H., Khandani, A.K.: On the complexity of decoding lattices us-
ing the Korkin-Zolotarev reduced basis. IEEE Transactions on Information The-
ory 44(1), 162–171 (1998)

9. Barrett, P.: Implementing the Rivest Shamir and Adleman Public Key Encryp-
tion Algorithm on a Standard Digital Signal Processor. In: Odlyzko, A.M. (ed.)
CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)

10. Brassard, G., Monet, S., Zuffellato, D.: Algorithms for very large integer arithmetic.
Tech. Sci. Inf. 5(2), 89–102 (1986)

11. Cohen, H.: A course in computational algebraic number theory. In: Grad. Texts
Math, vol. 138, Springer, Heidelberg (1993)

12. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. on Inf.
Theory IT-22(6), 644–654 (1976)

13. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

14. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177),
203–209 (1987)

15. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. In: Mathematische Annalen, vol. 261, pp. 513–534. Springer, Heidelberg
(1982)

16. Miller, V.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

17. Minkowski, H.: Geometrie der Zahlen. In: Teubner, B.G. (ed.) Leipzig (1896)
18. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of

Computation 44(170), 519–521 (1985)
19. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and

public-key cryptosystems. Com. of the ACM 21(2), 120–126 (1978)
20. Schnorr, C.-P.: Block Korkin-Zolotarev bases and successive minima (1996)
21. Schnorr, C.-P.: Fast LLL-type lattice reduction. Information and Computa-

tion 204(1), 1–25 (2006)
22. Schonhage, A., Strassen, V.: Schnelle multiplikation grosser zahlen. Computing 7,

281–292 (1971)
23. Solinas, J.: Generalized Mersenne numbers. Research Report CORR-99-39, Center

for Applied Cryptographic Research, University of Waterloo, Canada (1999)
24. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University

Press, Cambridge (2003)

Author Index

Aoki, Kazumaro 282

Barbosa, Manuel 21
Billet, Olivier 239
Boyd, Colin 69
Boyen, Xavier 1
Boztaş, Serdar 419
Brouard, Thierry 21
Bruhadeshwar, Bezawada 336, 376

Cao, Jiannong 361
Cauchie, Stéphane 21
Cho, Joo Yeon 203
Choudhary, Ashish 170
Cichoń, Jacek 128
Cliff, Yvonne 69
Cook, Debra L. 187

Doche, Christophe 433

Farashahi, Reza Rezaeian 447
Fayyoumi, Ebaa 404
Feng, Dengguo 230

Gajek, Sebastian 6
Gonzalez Nieto, Juan 69
Guo, Jian 84

Habsieger, Laurent 433
Hakala, Risto M. 297
Hermelin, Miia 203
Hirano, Takato 98
Hong, Seokhie 321

Jeong, Kitae 321

Keromytis, Angelos D. 187
Kim, Sunghyun 350
Klonowski, Marek 128
Kohli, Pankaj 336, 376
Kuty�lowski, Miros�law 128

Lee, Heejo 350
Lee, Yuseop 321
Li, Min 391

Maitra, Subhamoy 306
Manulis, Mark 6
Medoš, Silvana 419
Mendel, Florian 267
Menezes, Alfred 53

Negre, Christophe 463
Nyberg, Kaisa 203, 297

Ogata, Wakaha 113
Oommen, B. John 404

Pandu Rangan, C. 170
Paterson, Kenneth G. 69
Patra, Arpita 170
Paul, Goutam 306
Pieprzyk, Josef 155
Plank, Ashley 391
Plantard, Thomas 463

Robshaw, Matthew J.B. 239

Sanadhya, Somitra Kumar 254
Sarkar, Palash 254
Sasaki, Yu 282
Sathyanarayan, V. Sai 336
Schläffer, Martin 267
Schwenk, Jörg 6
Seurin, Yannick 239
Sousa, Simão Melo de 21
Stinson, Douglas R. 37
Sui, Jiayuan 37
Sun, Hung-Min 84
Sung, Jaechul 321

Tanaka, Keisuke 98
Teranishi, Isamu 113

Ustaoglu, Berkant 53

Vaidyanathan, Madhu 170

Wada, Koichiro 98
Wang, Hua 391
Wang, Huaimin 361

480 Author Index

Wang, Huaxiong 84, 155

Wang, Peng 230

Wen, Yan 361
Wu, Mu-En 84

Wu, Wenling 216, 230

Ye, Qingsong 155

Yin, Yiqun Lisa 239

Yong, Jianming 391
Yung, Moti 187

Zhang, Lei 216
Zhang, Liting 230
Zhang, Wentao 216
Zhang, Xian-Mo 155
Zhao, Jinjing 361
Zhu, Huafei 141

	Title Page
	Preface
	Organization
	Table of Contents
	New Paradigms for Password Security (Abstract from the Keynote Lecture)
	Halting Puzzles against Brute-Force Dictionary Attacks
	Hardened Protocols toward Universal Authentication
	Conclusion

	Enforcing User-Aware Browser-Based Mutual Authentication with Strong Locked Same Origin Policy
	Introduction
	Related Work
	Modeling BBMA with SLSO Policy
	Protocol Participants and Communication Model
	Security Model

	User-Aware BBMA over TLS with the SLSO Policy
	Building Blocks of BBMA-SLSO
	Protocol Description
	Security Analysis

	Conclusion

	Secure Biometric Authentication with Improved Accuracy
	Introduction
	Related Work
	Biometric Systems
	Proposed Authentication Protocol
	Participants and Their Roles
	Enrolment and System Set-Up
	Authentication Protocol Definition
	Security Model

	A Concrete Implementation
	The SVM Classifier
	Algorithm Implementations
	Security Analysis

	Discussion and Conclusion

	A Critical Analysis and Improvement of AACS Drive-Host Authentication
	Introduction
	Mutual Authentication Protocol and Key Agreement Protocol
	Our Contributions
	Organization

	AACS Drive-Host Authentication Scheme
	Analysis of the AACS Drive-Host Authentication Scheme
	Weakness 1: Design Error
	Weakness 2: Unknown Key-Share Attack
	Weakness 3: Man-in-the-Middle Attack
	Improved Scheme

	Security of the Improved Drive-Host Authentication Scheme
	Secure Mutual Authentication
	Implicit Key Confirmation

	Conclusion
	Improved Drive-Host Authentication Scheme

	Comparing the Pre- and Post-specified Peer Models for Key Agreement
	Introduction
	Security Definitions for Key Agreement
	Pre-specified Peer Model
	Post-specified Peer Model

	Differences between the Two Models
	Protocol P
	HMQV Protocol
	0 Protocol

	Combining the Two Models
	Modifiable Protocols
	Hybrid Protocols
	Combined Security Model

	NAXOS-C Protocol
	Conclusions

	Efficient One-Round Key Exchange in the Standard Model
	Introduction
	Related Work

	Preliminaries
	Canetti-Krawczyk Model
	Generic 2XKEM Protocols
	Protocol Comparison: ID-Based Case
	Protocol Comparison: PKI-Based Case
	Conclusion

	On the Improvement of the BDF Attack on LSBS-RSA
	Introduction
	Preliminary
	RSA, LSBS-RSA and Some Notations
	The BDF Attack on LSBS-RSA

	The Revised BDF Attack on LSBS-RSA
	The Process of the BDF Attack
	Searching k in LSBS-RSA

	The Complexity Analysis
	LSBS-RSA with Small Public Exponent e (min{ ,2} -)
	LSBS-RSA with Large Public Exponent e (>min{ ,2} -)
	Summary of the Revised BDF Attack on LSBS-RSA

	Further Discussions
	The Relation between (,,) and (,0,)-LSBS RSA
	Feasibility and Further Reducing the Cost of Searching k

	Conclusion and Future Work

	Public-Key Cryptosystems with Primitive Power Roots of Unity
	Introduction
	Preliminaries
	A Variant of the Schmidt-Samoa--Takagi Encryption Scheme
	The Schmidt-Samoa--Takagi Encryption Scheme
	Our Encryption Scheme

	Constructions Based on Primitive Power Roots of Unity
	New Cryptographic Properties
	Our Extended Function
	Our Extended Scheme

	Properties on Primitive Power Roots of Unity
	Square Roots
	Power Roots

	Relationship between Two Approaches for Defining the Standard Model PA-ness
	Introduction
	Background
	Our Contributions

	Standard Model PA-ness
	Definition of Overwhelming-Based Standard Model PA
	Definition
	The Decryption Oracle Strengthens the Definition

	OWB-PA Security Implies Statistical PA
	Result
	Why Are the Modified Definitions Required?

	The Statistical PA Is Equivalent to the OWB-PA Security, under Very Weak Condition
	Equivalency under Very Weak Condition
	Effect of sk-non-Redundancy

	The sk-PA Security
	Conclusion

	Distributed Verification of Mixing - Local Forking Proofs Model
	Introduction
	k-Local Forking Proofs
	Mathematical Modeling
	Mathematical Preliminaries
	Proof of the Main Result

	Fully-Simulatable Oblivious Set Transfer
	Introduction
	The State-of-the-Art
	Our Results

	Definitions
	Building Blocks
	Paillier's Additively Homomorphic Encryptions
	Perfectly Hiding Commitment Schemes and Perfectly Binding Commitment Schemes

	Oblivious Set Transfer
	Description of Oblivious Set Transfer Protocol
	The Proof of Security

	Conclusion

	Efficient Disjointness Tests for Private Datasets
	Introduction
	Preliminaries
	Sylvester Matrix
	Building Blocks

	Model and Definition
	Intuition of Set Disjointness Test from Sylvester Matrix Construction
	Private Disjointness Test
	Protocol without Bob-Verifiability
	Verifiable Disjointness Test Protocol
	Computation and Communication Complexity

	Conclusion

	Efficient Perfectly Reliable and Secure Message Transmission Tolerating Mobile Adversary
	Introduction
	Proactive PRMT and PSMT in Terms of Phases
	Proactive PRMT with Constant Factor Overhead
	Constant Phase Bit Optimal Proactive PSMT Protocol
	Proactive PSMT in Directed Networks

	Proactive PRMT and PSMT in Terms of Rounds
	Computing Minimum Number of Rounds for PRMT with ${\rho}$ = 1
	Proactive PRMT and PSMT Protocols in Terms of Rounds

	Methods for Linear and Differential Cryptanalysis of Elastic Block Ciphers
	Introduction
	Elastic Block Cipher Review
	Overview

	Linear Cryptanalysis
	Differential Cryptanalysis
	Overview
	General Observation
	State Transition Method
	Examples

	Conclusions

	Multidimensional Linear Cryptanalysis of Reduced Round Serpent
	Introduction
	Probability Distribution of a Boolean Function
	Multidimensional Approximation of Boolean Functions
	From One-Dimensional Probability Distributions to Multiple Dimensions
	One vs. Multidimensional Linear Distinguishers
	Key Recovery Attack

	Multidimensional Linear Attack on 4-Round Serpent
	Multidimensional Linear Attack on 4-Round Serpent

	Conclusions
	Brief Description of Serpent Algorithm

	Cryptanalysis of Reduced-Round SMS4 Block Cipher
	Introduction
	Description of SMS4
	Notation
	Encryption Procedure of SMS4

	5-Round Iterative Differential Characteristic of SMS4
	Rectangle Attack on 16-Round SMS4
	The 14-Round Rectangle Distinguisher
	Rectangle Attack Procedure
	Analysis of the Attack

	Differential Cryptanalysis on 21-Round SMS4
	Attack Procedure
	Analysis of the Attack

	Conclusion

	On the Unprovable Security of 2-Key XCBC
	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Construction of a Special PRP
	Unprovable Security of 2-Key XCBC

	Looking Back at a New Hash Function
	Introduction
	Background, Goals, and Design Criteria
	The Specification of dash-256 and dash-512
	The Encryption Routine for A256
	The Key Schedule for A256
	The Full Specification of dash-256
	The Specification of dash-512

	Security Analysis
	The Encryption Routine in the Component A256
	The Key Schedule in the Component A256

	Performance
	Conclusions

	Non-linear Reduced Round Attacks against SHA-2 Hash Family
	Introduction
	Notation
	Collision Attacks Against the SHA-2 Hash Family
	A General Class of Nonlinear Local Collisions
	Obtaining a Local Collision

	Extending a Single Local Collision to Obtain 18-Step Collisions
	Extending a Single Local Collision to Obtain 20-Step Collisions
	When z = 0
	When z = -1

	Extending a Single Local Collision to Obtain 21-Step Collisions
	Obtaining Messages Satisfying 1(W14) + W9 = 0

	Conclusions
	Colliding Message Pairs

	Collisions for Round-Reduced LAKE
	Introduction
	Description of LAKE
	Basic Attack Strategy
	Collisions for 1 Round of LAKE
	Collisions for More Than 1 Round of LAKE
	Inner Collisions in f Using Different Constants

	Results of the Collision Attack
	2 Rounds
	3 Rounds
	More Than 3 Rounds
	A Collision Attack for 4 Rounds of LAKE

	Conclusion
	Advanced Message Modification
	Round 1
	Round 2

	Preimage Attacks on Step-Reduced MD5
	Introduction
	Description of MD5
	Related Work
	Summary of Differences between MD4 and MD5
	Converting Pseudo-Preimage Attack to Preimage Attack
	Previous Preimage Attack on MD4
	Difficulties of Applying Previous Attack to MD5

	A Preimage Attack Against 51 Steps of MD5(1133)
	Outline of Our Attack
	Detailed Procedure of Preimage Attack
	Matching Method
	A Study of Round Orders
	Implications on Hash Function Design

	A Preimage Attack Against 44 Steps of MD5
	Selecting Step Number
	Procedure of Preimage Attack
	Matching Method

	Conclusion
	Patterns of Local-Collision Messages in Each Round
	Round Order Search Algorithm
	Weak Round Orders Against Our Preimage Attack

	Linear Distinguishing Attack on Shannon
	Introduction
	Preliminaries
	Walsh-Hadamard Transform

	Description of Shannon
	Linear Distinguishers
	Linear Distinguishers for Shannon
	Constructing the Distinguisher
	Calculating the Distribution PC
	Results

	Conclusions

	Recovering RC4 Permutation from 2048 Keystream Bytes if j Is Stuck
	Introduction
	Recovering Permutation from Keystream
	Indices i, j Unknown and j Stuck
	Conclusion

	Related-Key Chosen IV Attacks on Grain-v1 and Grain-128
	Introduction
	Preliminaries
	Grain-v1 and Gain-128
	Slide Resynchronization Attack on Grain

	Related-Key Chosen IV Attack on Grain-v1
	Constructing Linear Equations for K
	Recovering Another -Bit Key
	Description of Our Attack on Grain-v1

	Related-Key Chosen IV Attack on Grain-128
	Conclusion
	-Change on Grain-v1 and Grain-128
	The Changed Bit Positions of -Change on Grain-v1 (= 12)
	The Changed Bit Positions of -Change on Grain-128 (= 15)

	Signature Generation and Detection of Malware Families
	Introduction
	Paper Organization.

	Related Work
	Our Approach for Malware Detection
	Malware Signature Generation and Classification Approach
	Malware Behavior Profiling.
	Signature Generation.
	Classification Strategy.

	Prototype Implementation Details
	API Call Extractor.
	Classifier.

	Experimental Analysis
	Effectiveness
	Testing on new variants.
	Testing on generic malware classes.

	Performance Testing

	Conclusion and Future Work

	Reducing Payload Scans for Attack Signature Matching Using Rule Classification
	Introduction
	Related Works
	Detection and Classification by Grouping Predicates
	Formal Description
	Detection by Protocol Filters
	Grouping by Protocol Filters

	Performance Analysis
	Experiments
	Conclusions

	Implicit Detection of Hidden Processes with a Feather-Weight Hardware-Assisted Virtual Machine Monitor
	Introduction
	Overview
	Implementation
	Intel VT Framework Overview
	Dynamic OS Migration with AriesVMM
	Implicit Detection of Hidden Process
	TPL Exposure Interfaces

	Evaluation
	Related Work
	Further Discussion
	Conclusions and Future Work
	References

	FormatShield: A Binary Rewriting Defense against Format String Attacks
	Introduction
	Overview of Our Approach
	Implementation
	Identifying Vulnerable Call Sites
	Binary Rewriting
	Implementation Issues

	Evaluation
	Effectiveness
	Performance Testing

	Discussion
	False Positives and False Negatives
	Limitations

	Related Work
	Compile-Time Approaches
	Run-Time Approaches
	Combined Compile-Time and Run-Time Approaches

	Conclusion and Future Work

	Advanced Permission-Role Relationship in Role-Based Access Control
	Introduction
	Motivation and Problem Definitions
	Authorization Granting and Revocation Algorithms Based on Relational Algebra
	Applying the Relational Algebra Algorithms
	The Anonymity Scalable Electronic Payment Scheme
	Applying the Authorization Granting Algorithm

	Comparisons
	Conclusion

	Enhancing Micro-Aggregation Technique by Utilizing Dependence-Based Information in Secure Statistical Databases
	Introduction
	Micro-Aggregation
	Maximum Distance Average Vector (MDAV)
	Enhancing Micro-Aggregation with Dependence
	Experimental Results
	Data Sets
	Results

	Conclusions

	Montgomery Residue RepresentationFault-Tolerant Computation in GF(2k)
	Introduction
	Fault Attacks
	Montgomery Multiplication in GF(2k)
	Fault Tolerant Residue Representation Multiplication
	Complexity

	Error Detection and Correction
	Decoding Based on the Euclidean Algorithm
	Computational Efficiency

	Conclusion

	A Tree-Based Approach for Computing Double-Base Chains
	Introduction
	Double-Base Number System
	A New Approach
	Complexity Analysis
	Generalizations
	Experiments
	Conclusion

	Extractors for Jacobiansof Binary Genus-2 Hyperelliptic Curves
	Introduction
	 Preliminaries
	Binary Genus 2 Hyperelliptic Curve H
	On the Jacobian of H
	 Deterministic Extractor

	The Extractors for the Jacobian
	The Sum Extractor
	The Product Extractor
	Analysis of the Extractors

	Extractor for a Subgroup
	Proofs of Theorems
	Relation between Discriminant and the Case Distinction
	Details of the Divisor Class Group Representation
	Proof of Theorem 1

	Conclusion

	Efficient Modular Arithmetic in Adapted Modular Number System Using Lagrange Representation
	Introduction
	Modular Number System
	Definition
	Multiplication in AMNS

	Novel AMNS Multiplication
	The Shortest Polynomial

	Improved AMNS Multiplication
	Lagrange Representation
	Improved AMNS Algorithm Using Lagrange Representation
	The Change of Lagrange Representation

	Complexity Evaluation and Comparison
	Practical Aspects and Implementation
	Conclusion

	Author Index

