
Chapter III 
Fundamental Models on the Lattice 

Here we shall give a complete list of results pertaining to the Toda 
model, a fundamental model on the lattice. We will show that the r-matrix 
approach applies to this case and may be used to prove the complete inte­
grability of the model in the quasi-periodic case. For the rapidly decreasing 
boundary conditions we will analyze the mapping .2T from the initial data 
of the auxiliary linear problem to the transition coefficients and outline a 
method for solving the inverse problem, i.e. for constructing .2T- 1• On the 
basis of the r-matrix approach it will be shown that .2T is a canonical trans­
formation to action-angle type variables establishing the complete integra­
bility of the Toda model in the rapidly decreasing case. We shall also define 
a lattice version of the LL model, the most general integrable lattice system 
with two-dimensional auxiliary space. 

§ 1. Complete Integrability of the Toda Model in the 
Quasi-Periodic Case 

The equations of motion for the model are 

dzqn = eq,.+,-q,._eq"-q"_, n 1 N 
dt2 ' = ' ... ' ' (1.1) 

where 

(1.2) 

This is a Hamiltonian system on the phase space 1= IR2 N with coordinates 
(P~> ... , PN, qh ... , qN), endowed with the standard Poisson structure 
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The Hamiltonian is 

(1.4) 

(see § 1.2). 
We will show that the model is completely integrable in the sense of clas­

sical mechanics with finitely many degrees of freedom. By the Liouville­
Arnold theorem, one need only to produce a set of N involutive integrals of 
the motion In 

{H,In}=O, {l"'Im}=O, n,m=l, ... ,N, (1.5) 

that are functionally independent, 

(1.6) 

on a dense subset of .1. The left hand side of (1.6) is an Nx 2N matrix 
composed of the first derivatives of the Im. 

For the proof we consider the auxiliary linear problem for the Toda 
model, 

'(1.7) 

where 

(1.8) 

(see § 1.2) and apply the r-matrix approach. A natural analogue of the funda­
mental Poisson brackets of Chapter II is given by 

(1.9) 

Indeed, Ln(A.) may be regarded as a transition matrix (over one lattice step), 
and so its Poisson brackets should be modelled on the corresponding ex­
pressions for T(x, y, A.). 

To calculate the r-matrix we express Ln(A.) as 

with 
I +u3 

(1'=-2-. 

(1.10) 

(1.11) 
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From 

(1.12) 

we find 

{Ln(A.) 6p Lm(.u)) = (ishqn(a ® az -az ®a) 

+chqn(a®a1-a1 ®a))Onm• (1.13) 

so that the left hand side of (1.9) is linear in shq" and chq" and does not 
depend on A., f.l or Pn· In the product Ln (A.) ® Ln (f.l) the terms linear in sh qn 
and chq" have the form 

and the remaining terms commute with the permutation matrix P. We shall 
therefore look for an r-matrix of the form 

r(A., f.l) = f(A., f.l) P, (1.14) 

wheref(A.,.u) is an unknown function. We have 

[P,A.a®a1 +.ua1 ®a]=(A.-p)P(a®a1-a1 ®a) 

=i(A. -.u)(a ® a 2 -a2 ®a), (1.15) 

[P, A. a® a 2 + .ua2 ® a]=(A.-.u)P(a ® a 2 -a2 ®a) 

=i(A.-.u)(a1 ®a-a®a1), (1.16) 

where we have used the expression 

P = ~ (I® I+ ± a a ® a a) 
a-l 

(1.17) 

and the multiplication formulae for the Pauli matrices. It follows that (1.9) 
will hold if /(A., J.l) is chosen to be 

1 
f(A., f.l) =-, . 

/1,-.u 
(1.18) 

As a result, Ln(A.) obeys the fundamental lattice Poisson brackets (1.9) with 
the r-matrix 

p 
r(A.,.u)=r(A.-.u) = -­

A.-.u 
(1.19) 
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that already occurred for the NS model in Part I. 
Introducing the monodromy matrix 

fii' 
TN(A)= IJ Ln(A), 

n=1 

we derive from (1.9) the corresponding Poisson brackets 

(1.20) 

(1.21) 

As was already observed in § 1.7, under the periodic boundary condi­
tions the trace of the monodromy matrix is a generating function for inte­
grals of the motion. In the quasi-periodic case 

LN+ 1(A-)= Q(c)L1(J.)Q- 1(c), (1.22) 

where 

ca3 
Q(c)=exp 2 , (1.23) 

a similar role is played by the function 

FN(A,) =tr TN(A) Q- 1 (c) (1.24) 

( cf. the NS model under the quasi-periodic boundary conditions in § 1.2, 
Part I), which is a polynomial in A, of degree N, 

c N 
FN(A)=e -z- A,N + L InA,N-n' (1.25) 

n-1 

the coefficients In in turn being polynomials inpj and e±qi. In particular, we 
have 

c N 

/1 =e -z- L Pn, (1.26) 
n-1 

(1.27) 

so that 
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(1.28) 

Since r(A.) commutes with Q(c) ® Q(c), (1.21) yields 

(1.29) 

hence Ih ... , IN is an involutive family of integrals of the motion which con­
tains the Hamiltonian of the model. 

To conclude the proof of complete integrability of the Toda model it 
only remains to verify that the integrals In are functionally independent. 
Obviously, 

c 

In =e - 2 Sn(Ph .. . ,pN)+I~, (1.30) 

where Sn(Ph ... ,pN) is the n-th elementary symmetric function and I~ is a 
polynomial in Ph ... ,pN of degree not greater than n -1. Hence (1.6) holds 
for large Pm and since everything is polynomial, it holds in the whole phase 
space 1 with the exception of an algebraic subvariety (relative to the coor­
dinates Pn, e"·) of dimension less than N. 

An explicit description of action-angle variables requires recourse to 
methods of algebraic geometry, which are not our concern in this book. 

§ 2. The Auxiliary Linear Problem for the Toda Model in 
the Rapidly Decreasing Case 

Here we shall introduce the principal characteristics of the auxiliary 
linear problem 

(2.1) 

in the rapidly decreasing case 

lim qn=O, lim qn=C, lim Pn=O. (2.2) 
n--oo n-+oo lnl-oo 

We assume that the limiting values in (2.2) are attained sufficiently fast: 
the quantities q"' qn- c, Pn and their differencies of all orders decrease faster 
than any power of lnl- 1, as In I-+ oo (the lattice analogue of Schwartz's con­
ditions). 
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1. The transition matrix and Jost solutions 

The transition matrix T(n, m, A.) is defined to be the solution of (2.1) with 
the initial condition 

for n > m it is given by 

and for n<m 

T(n, m,A.)In=m=l; 

r, 
n-1 

T(n, m,A.)= II Lk(A.) 
k=m 

,... 
m-1 

T(n,m,A.)=T- 1(m,n,A.)= II L,;- 1(..1.). 
k=n 

(2.3) 

(2.4) 

(2.5) 

The matrix T(n, m, A.) is unimodular and is a polynomial in A. of degree 
ln-ml; it obeys the involution 

T(n, m, A.)= T(n, m, i). (2.6) 

As n-+ ± oo, the auxiliary linear problem (2.1) simplifies and becomes 

where 

L_(A.)=L(A.)= ( ~ 1 ~), 

L+(A.)= Q(c)L(A.)Q- 1(c). 

For ..1.~2, L(A.) can be reduced to diagonal form 

with 

U(A.)= (_;(A.) 

o ) u-1 (A.), 

z(A.) 

-z(A.)) 
1 ' 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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and z(A.) is determined from 

so that 

1 
z+-=A-, 

z 

A-+yA-2-4 
z(A.) = 2 . 

477 

(2.12) 

(2.13) 

The function z(A.) is the analogue of k(A.) for the NS model in the finite 
density case (see § 1.8 of Part I) and is well defined on the Riemann surface 
of the function yA-2 -4. It is often advantageous to use z instead of the spec­
tral parameter A.; in that case F(z) will stand for F(A.(z)) for any function 
F(A.). 

The solution of (2.7) is given by 

(2.14) 

and 

(2.15) 

The matrix En(z) obeys the involutions 

(2.16) 

(2.17) 

and the relation 

detEn(Z)= 1-z2 • (2.18) 

On the circle lzl = 1 the entries of En(z) are bounded for all n, which corre­
sponds to the continuous spectrum of the auxiliary linear problem (2. 7). In 
terms of ;t, the continuous spectrum fills in the interval -2os>;;toe;;2. The ma­
trix En(z) degenerates at z= ± 1 so that (2.7) has virtual levels on the bound­
ary of the spectrum ( cf. §§ 1.8-1.9 of Part I). The interior and exterior of the 
unit circle relative to the variable z play a similar role to the upper and 
lower half-planes of the variable k(A.) for the NS model in the finite density 
case. The analytic properties of En(z) are similar to those of Ev(x, k) in§ 1.8, 
Part I. 

The Jost solutions T ± (n, z) for lzl = 1 are defined to be the limits 
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T±(n,z)= lim T(n,m,z)E~.~l(z). (2.I9) 
m-±oo 

Alternatively, they can be identified as solutions of (2.I) with the asymp­
totic conditions 

(2.20) 

as n-+ ± oo. 

The matrices T ± (n, z) for lzl = I obey the involutions 

(2.2I) 

(2.22) 

and the relation 

det T±(n, z)= I-z2 • (2.23) 
Their analytic properties are as follows: the columns T<2>(n, z) and 
r<J:_>(n, z) can be analytically continued inside the unit circle, lzl ~ 1, whereas 
the columns r<J_>(n, z) and T<!_l(n, z) can be analytically continued outside 
it, lzl ~I, with the following asymptotic behaviour: 

z" T~l(n,z)= (~) +O(Izl), (2.24) 

lzl~ I 

z-" T~'(n, z)~ (, 0>) +O(Izl) (2.25) 

as z-+0 and 

(2.26) 

lzl~ I 

(2.27) 

as lzl-+ oo. 

To prove the existence of the Jost solutions and to study their properties 
it is convenient to make a gauge transformation 

F,,=Q,F,, (2.28) 

where 
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( 

q., ) e2 0 
Qn= ' qn -I 

0 -e -~z~ 
(2.29) 

which carries the inverse linear problem (2.1) into 

(2.30) 

with 

(2.31) 

Setting 

(2.32) 

we have gn+ 1 = fn and 

(2.33) 

with 

(2.34) 

Thus the auxiliary linear problem (2.1) is equivalent to the eigenvalue prob­
lem (2.33) for an infinite Jacobi matrix :?, 

(2.35) 

Let us show that this problem, for lzl = 1, has solutions If/± (n, z) with the 
asymptotic behaviour 

If/± (n, z) =~ + o(l) (2.36) 

as n-+ ±co (remind that A-=z + ~). We look for the solutions of the form 

lf/+(n,z)=zn+ L T(n,m)zm (2.37) 
m=n 
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and 

n 
If!- (n, z) =Zn + E f'(n, m)zm, (2.38) 

m=-oo 

where 

lim T(n, m)= lim f'(n, m)=O. (2.39) 
n,m-oo n,m-- oo 

Consider, for definiteness, (2.37) and substitute it into (2.33). Collecting 
the coefficients of a given power of z we deduce 

and 

Cn(1 +T(n-1, n-1))= 1 +T(n, n), 

cnT(n -1, n)-pn(l +T(n, n))=T(n, n + 1) 

T(n, m+ 1)+T(n, m-1)=Cn+ 1(om-n,J +T(n+ 1, m)) 

-pnT(n, m)+cnT(n-1, m) 

(2.40) 

(2.41) 

(2.42) 

for m > n. In the class of kernels T(n, m) satisfying (2.39), equations (2.40)­
(2.42) are uniquely solvable. In fact, (2.40) allows to determine .T(n, n) 
whereas (2.41) gives T(n, n + 1) for all n, so that (2.42), a second order finite 
difference equation, has a unique solution in the region m > n. The limiting 
values in (2.39) are attained in the sense of Schwartz. This establishes the 
existence of the solution If/+ (n, z). 

The existence of If!- (n, z) is proved in a similar manner. 
In terms of If/± (n, z), the Jost solutions T ± (n, z) are 

and clearly satisfy the above requirements. 

2. The reduced monodromy matrix and transition coefficients 

(2.43) 

The reduced monodromy matrix T(z) is defined for lzl = 1, zi= ± 1, as a 
ratio of the Jost solutions, 

T(z) = T:;: 1 (n, z) T _ (n, z), (2.44) 

and can be expressed as the limit 
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T(z) = lim E;; 1 (z) Q - 1 (c) T(n, m, z) Em (z). (2.45) 
m--oo 

T(z) is a unimodular matrix satisfying 

and can be written as 

T(z)=CT1 T(z)CT1, 

T(z)= T(i) 

T(z) = (a(z) b(z)) 
b(z) a(z) ' 

(2.46) 

(2.47) 

(2.48) 

where a(z) and b(z) are the transition coefficients for the continuous spectrum. 
These are defined for lzl = 1, zl= ± 1, satisfy the normalization condition 

la(zW-ib(zW= 1 

and are symmetric, 

a(z)=a(i), b(z)=b(i). 

For the coefficient a(z) we have 

a(z) = -1 
1 

2 det(T<.!.>(n, z), r<;>(n, z)), 
-z 

(2.49) 

(2.50) 

(2.51) 

which shows that it has an analytic continuation into the unit disk lzl < 1 
and 

c 
a(O)=e - 2 

A similar expression for b(z), 

b(z) = -1 
1 

2 det(T~>(n, z), T<].>(n, z)), 
-z 

(2.52) 

(2.53) 

shows that in general it has no continuation off the circle lzl = 1. Such a 
continuation is possible if there exists N> 0 such that Cn = 1, Pn = 0 for 
n>N. 
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We shall now discuss the alternatives for the behaviour of a(z) and b(z) 
in the vicinity of z= ± 1. If the columns r<!_>(n, z) and r<J_l(n, z) are 
linearly independent at z= 1 or z= -1, then a(z) is singular and has the ex­
pansion 

a± 
a(z) =--=- + 0(1), 

Z+1 
(2.54) 

with a± nonzero and real ( cf. the NS model in the case of finite density in 
§ 1.9, Part I). This is precisely what happens in a generic situation. In the 
special situation when T<!..>(n, z) and T<;>(n, z) become linearly dependent 
at z= 1 or z= -1, the coefficients a+ or a_ or both vanish, and a(z) is non­
singular near the corresponding points. In that case z = 1 or z = - 1 or both 
values are virtual levels. They are located on the boundary, A-= ±2, of the 
continuous spectrum of the auxiliary linear problem. 

The coefficient b(z) is either singular or regular near z = ± 1 simultaneously 
with a(z). Indeed, we have 

so that if a+ or a_ does not vanish, then 

In particular, under this assumption we have 

I. b(z) _ 1 liD--=+ . 
z-±1 a(z) 

(cf. the corresponding formulae in § 1.9, Part I). 

(2.55) 

(2.56) 

(2.57) 

In view of the normalization condition, the zeros of a(z) may only lie 
inside the circle lzl = 1 and their number N is finite. If a(zi) = 0, then 

To>( ) - r<2>( ) _ n, zi - Yi + n, zi , (2.58) 

and 

(2.59) 
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Thus A,j = zj + _!_ are the discrete eigenvalues of the self-adjoint operator 2, 
Zj 

hence Aj and consequently zj are real, - 1 < zj < 1, zr=fo 0, j = 1, ... , N. The as­
sociated transition coefficients for the discrete spectrum yj are also real. 

Let us show that the zeros zj are simple. From (2.43) we have 

a(z) =- 1::2 (lfl+(n,z)IJI_ (n-1, ~) -lfl+(n-1,z)IJI- (n, ~)). (2.60) 

Differentiating this with respect to z and setting z=zj we find 

(2.61) 

where the dot indicates differentiation with respect to z. From (2.33) and 

(2.62) 

we deduce that the quantities 

t/J + (n, z) = Cn (if/+ (n, z) If!- ( n- 1, ~) -if/+ (n- 1, z) If!- ( n, ~)) (2.63) 

and 

t/J _ (n, z) = :~ (If!+ (n- 1, z) if/_ ( n, ~) -If!+ (n, z) if/_ ( n- 1, ~)) (2.64) 

satisfy 

t/J ± (n + 1, z) = t/J ± (n, z) ± ( 1 - z12 ) If!+ (n, z) If!- ( n, ~). (2.65) 

Setting z=zj and using (2.59) we obtain 

(2.66) 

and 
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(2.67) 

so that 

00 

ti(zi)=Yi L 1/f:._(n,zi)=FO. (2.68) 
n- -oo 

This equation also shows that 

(2.69) 

( cf. the corresponding arguments in § 1.9, Part 1). 
The function a(z) is uniquely determined by the coefficient b(z) and the 

zeros Zt. ... , zN. To derive the corresponding dispersion relation consider 
Schwarz's formula 

1 I '+z d' /(z)=lm/(0)+-2 . Re/(0 r_ r' 
HI l"-l !> Z !> 

(2.70) 

where f(z) is analytic in the disk lzl EO 1, and apply this to 

N ZZ·-1 
f(z) =log IT signzi - 1 - a(z), 

i-l z-zi 
(2.71) 

where the principal branch of the logarithm is taken. Using a(O)>O and the 
normalization condition we find 

N 

II z-z. { 1 I '+z d'} a(z)= signzj--1 exp -. log(1+1h(012)-;;-- r. 
i=l zzi-1 4nr 1"_ 1 !>-z !> 

(2.72) 

Taking account of (2.50), we obtain the final expression for a(z) 

N Z-Z· { 1 1-z2 } 

a(z)= n signzj ZZj-11 exp 2ni I log(1+1h(012) (1-z0(,-z) d'' 
J-l c (2.73) 

where Cis the semi-circle 1'1 = 1, OEO arg' EOn. 
The data b(z), zi and care not independent. Firstly,from (2.52) it follows 

that 
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c N { 1 ds} e -z = D lz) exp 2ni [ log(1 + lb(01 2) T . (2.74) 

This relation will be called the condition (c). Secondly, in a generic situation 
when 

near z= ± 1, we have 

b+ 
b(z) = _:: + 0(1) 

Z+1 

N 

signb± = TI (+signzj) 
j-1 

(2.75) 

(2.76) 

(cf. the condition (0) and the conditions for the determination of signs in 
§ 1.9, Part I). 

To derive (2.76) we shall study the. asymptotic behaviour of a(z) as 
z-+ ± 1, lzl < 1 by using the dispersion relation (2.73). The dominant contri­
bution into (2.73) comes from the singular term (2.75) and has the form 

I±= _1_ J log~ 1-zz ds (2.77) 
2ni c Is+ W (1-z0(s -z) s ' 

± 

where C ± are small neighbourhoods of s = ± 1 on C. We have 

I+=_!_ I log lb+l·ls+11. 1-z2 ds + O(lz- 1l) 
ni c. 21s-11 (1-z0(s-z) s 

= _1__ I log I b + s + 11· s + z ds + O(lz- 11) 
2ml,l-1 2 s-1 s-z s 

( lb+l z+ 1) =log --·- +O(Iz-11), 
2 z-1 

(2.78) 

where the last equality made use of Schwarz's formula. This yields 

N 

lb+l I1 ( -signzj) 
a(z) =- j-l + 0(1) 

z-1 
(2.79) 
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as Z--+ 1. Comparing this with (2.57) we arrive at (2.76) for the sign+. 
The second formula in (2.76) is proved in a similar way. 
Let us emphasize that, as for the NS model in the finite density case, 

complications in the analytic properties of the transition coefficients are 
caused by the fact that the continuous spectrum of the auxiliary linear prob­
lem has boundary points A,= ± 2. 

This completes our analysis of the mapping ff: (pn, qn)--+ (b(z), b(z), 
zh yj,j = 1, ... , N) from the initial data of the Toda model to the characteris­
tics of the auxiliary linear problem (2.1 ). 

3. Time evolution of the transition coefficients 

We shall consider the evolution of the transition coefficients when Pn (t) 
and qn(t) satisfy the Toda model equations of motion. Using the zero curva­
ture representation (see § 1.2) we obtain 

with 

dT 
- (n, m, z)= Vn(z) T(n, m, z)- T(n, m, z) Vm(z), 
dt 

(2.80) 

(2.81) 

Letting in (2.80) n--+ oo, m--+- oo according to the definitions (2.19), (2.45) 
and using 

lim (E~±>(z))- 1 Vn(z)E~±>(z) 
n-±oo 

= lim (E~±>(z))- 1 L±(z)E~±>(z)= V(z), 
n-±oo 

with 

we derive the evolution equations for the Jost solutions 

dT±(n,z) 
----'=--:'--'----'- = V,, (z) T ± (n, z)- T ± (n, z) V(z) 

dt 

(2.82) 

(2.83) 

(2.84) 
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and for the reduced monodromy matrix, 

dT 1 ( 1) dt (z) = 2 z - -; [a3 , T(z)]. (2.85) 

These lead to the following explicit time dependence of the transition coeffi­
cients: 

a(z, t)=a(z, 0), b(z, t)=e -(z-}) 1 b(z, 0), (2.86) 

(2.87) 

As in the cases considered earlier, the coefficient a(z) is a generating 
function for integrals of the motion. We close this section by describing a 
family of local integrals of the motion. The latter are understood to have the 
form 

F= L J,, (2.88) 
n= -co 

where J, is a polynomial in Pn, cn and their higher differencies. 

4. Local integrals of the motion 

We will show that the expansion ofloga(z) into a Taylor series at z=O, 

c ~ 

loga(z) = -- + L Inzn, 
2 n-l 

(2.89) 

gives a sequence of local integrals of the motion for the Toda model including 
its Hamiltonian. In the previous examples of continuous models we were 
dealing with the asymptotic expansion of loga(A) near the points A= oo or 
A=O where b(A) was rapidly decreasing. This enabled us to start with the 
asymptotic expansion of the transition matrix T(x, y, A) and then let 
X-++ oo, y-+- oo. For the Toda model, b(z) in general is not defined near 
z=O, so this method does not apply. We will outline another method for 
computing the coefficients In based on a direct analysis of the auxiliary lin­
ear problem (2.33) in the rapidly decreasing case. 

Consider (2.60) for izl < 1 and let n-+ + oo. Taking account of (2.36) we 
have 
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a(z)=~ lim (zn- 1q>(n,z)-znq>(n-1,z)), (2.90) 
1-z n-+= 

where we have set q>(n, z) =If!- (n, _!_). For z small, q>(n, z) can be expressed 
as z 

q>(n, z)=z-n tr X(k, z). 
k= -= Ck 

(2.91) 

Substituting this expression into (2.90) and using (2.2) and (2.34) yields 

a(z) = ~ lim (_!_ tr x(k, z) - z rr x(k, z)) 
1 - z n- + 00 z k = - = ck k - - = ck 

IT= x(n, z) -f rr= ( ) 
= --=e xn,z. 

Cn 
n~-~ n=-~ 

(2.92) 

We shall now present a procedure for computing x(n, z). Substituting 
(2.91) into (2.33) gives the equation 

which has a solution of the form 

= 
x<n, z) = L: x<n, m)zm, 

m=O 

where 

x(n,0)=1, x(n,1)=Pn-h 

x(n, 2)= 1-c~-1 

and for m>2 

m-1 

(2.93) 

(2.94) 

(2.95) 

(2.96) 

x<n,m)=c~-1x<n-1,m-2)- L: x(n,k)X(n-1,m-k). (2.97) 
k=3 

Formulae (2.92) and (2.94)-(2.97) allow us to express the Im in terms of 
the Pn and en. In particular, we have 

(2.98) 
n= -oo 



§ 3. The Inverse Problem and Soliton Dynamics 489 

and 

I 2 = -H=- f Gp~+c~-1). 
n=- oo 

(2.99) 

By means of the dispersion relation (2.73), In can be expressed in terms 
of the transition coefficients and the discrete spectrum of the auxiliary lin­
ear problem. The corresponding trace identities are 

n=1, 2, ... 

(2.100) 

In § 4 we shall discuss whether the functionals In belong the algebra of ob­
servables on the phase space of our model. 

This completes the analysis of the auxiliary linear problem and the map­
ping .f!T for the Toda model. 

§ 3. The Inverse Problem and Soliton Dynamics for the 
Toda Model in the Rapidly Decreasing Case 

In this section we shall describe the mapping .f!T -I, i.e. solve the in­
verse problem of reconstructing the Pn and qn from the transition coeffi­
cients and the discrete spectrum. As before, we may take two routes, the 
matrix Riemann problem or the Gelfand-Levitan-Marchenko formulation. 
The presence of a boundary in the continuous spectrum of the auxiliary 
linear problem and the ensuing constraints on the transition coefficients and 
the discrete spectrum (the condition (c) etc.) lead to complications in the 
first approach ( cf. the NS model in the case of finite density in § 11.6, Part I). 
We shall therefore only deal with the Gelfand-Levitan-Marchenko formula­
tion. At the end of this section it will be used to describe soliton dynamics 
for the Toda model. 

1. The Gelfand-Levitan-Marchenko formulation 

The formulation is based on the relationship between the Jost solutions 
for lzl= 1, 

T _ (n, z)= T +(n, z) T(z), (3.1) 

which in terms of lfl ± (n, z) is written as 
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- 1- ljl_ (n, _!_) = ljl + (n, _!_) + r(z) ljl + (n, z) 
a(z) z z 

-(1 ljl + (n, z) = ljl_ (n, z) + r(z) ljl_ (n, !) ' 
a z) z 

b(z) 
r(z)= -z­

a(z)' 
r(z) = b(z) . 

za(z) 

(3.2) 

(3.3) 

(3.4) 

Let us consider, for definiteness, (3.2) and make the following opera­

tions. Insert (2.37)-(2.38) into (3.2), multiply by - 1-. zm -I, m ~ n, and inte-
21Cl 

grate over the circle lzl = 1. Using (2.52), (2.59) and Cauchy's formula, we 
deduce 

~ c 

Dn,m +T(n, m)+K(n+m)+ L: T(n, l)K(l+m)=e2 Dn,m(l +T(n, n)), (3.5) 
1-n 

where 

1 d N 

K(n) = -. J r(z)zn ___!_ + L mjzJ, 
27il lzl-1 z j-1 

(3.6) 

and 

m. = _Ij__ ;· 1 N 
J ' = ' ... , ' a(zj) 

(3.7) 

the dot indicating differentiation with respect to z. 
In contrast to the previous examples of continuous models, (3.5) con­

tains an additional term on the right hand side induced by the residue of 
1 

-ljl_(n, z)zm-l at z=O. It can be expressed through T(n, n) as follows. 
a(z) 
Consider (2.40); from (2.1 ), (2.34) and (2.39) we derive 

qn-C 

1 +T(n, n)=e_2_ (3.8) 

An analogous equation for T(n, n), 

Cn+ 1(1 +T(n+ 1, n+ 1))= 1 +T(n, n) (3.9) 
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yields 

qn 

1 +f(n, n)=e - 2 (3.10) 

hence 

c 

e2 (1 +f(n, n))=(l +r(n, n))- 1 • (3.11) 

As a result, (3.5) becomes 

On,m = On,m +T(n, m)+K(n+m)+ L T(n, l)K(l+m). (3.12) 
1 + T(n, n) 1-n 

Unfortunately, this is a nonlinear equation for T(n, m). 
To reduce (3.12) to a linear equation, set 

X( ) = T(n,m) n,m , m>n, 
1 +T(n, n) 

(3.13) 

and multiply (3.12) by (1 + T(n, n)) -t. For m > n we obtain a linear equa­
tion, 

co 

X(n, m)+K(n+m)+ .L X(n, l)K(l+m)=O, (3.14) 
l-n+1 

and for m=n 

1 co 

(1 T( ))2 = 1 +K(2n)+ L X(n, l)K(l+n). (3.15) + n, n l=n+1 

Equation (3.14) is precisely the Gelfand-Levitan-Marchenko equation from 
the right, and (3.15) allows to recover T(n, n) from X(n, m). 

In a similar manner, (3.3) yields the Gelfand-Levitan-Marchenko equa­
tion from the left: 

n-1 

X(n,m)+K(n+m)+ L X(n,l)K(l+m)=O, n>m, (3.16) 
1- -co 

where 
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- 1 1 mj=-.-(-)' j= , ... ,N, yja zj 

X T(n, m) 
(n, m) = 1 +T(n, n)' 

with the relation 

1 _ n-1 _ _ 

- 2 = 1+K(2n)+ l: X(n,l)K(l+n). 
(1+T(n,n)) 1--= 

Let us now outline a procedure for solving the inverse problem. 

(3.18) 

(3.19) 

(3.20) 

The input data consist of functions r(z), r(z) and of a set of real numbers 
mj, mh zhj= 1, ... , N; c with the following properties. 

I. r(z), r(z) are smooth functions on the circle lzl = 1 and obey the involu­
tion 

i(z) = r(i)' r(z) = r(i) (3.21) 

and the relation 

lr(z)l = IF(z)l ~ 1, (3.22) 

where equality in the estimate can only be attained at z= ± 1, in which case 

r(± 1)= -r(± 1)= 1. (3.23) 

II. The pairwise distinct numbers zj -1= 0 lie in the interval - 1 < zj < 1, while 
mj and mj are positive, j = 1, ... , N. 

III. The condition (c) holds, 

IV. The relations 

r(z) =- a(z) 
i(z) a(z) 

(3.24) 

(3.25) 
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hold and 

j=1, ... ,N, (3.26) 

where 

N IT Z-Z· 
a(z) = signzj --1 

zz.-1 
j-1 J 

{ 1 J z+{; d{;} xexp -. Iog(t-lr(sW) _r 7 . 
4Jrl 1<;'1-1 z ~ ~ 

(3.27) 

Given these data, construct the kernels K(n), K(n) and consider (3.14), 
(3.16). We claim that 

1'. Equations (3.14), (3.16) are uniquely solvable in the spaces 11 (n + 1, oo) 
and /1 (- oo, n -1), respectively. Their solutions X(n, m) and X(n, m) are rap­
idly decreasing as n, m-+ + oo or n, m-+- oo, respectively. 

II'. The right hand sides of (3.15) and (3.20) are positive, and hence 
1 +r(n, n) and 1 +f(n, n) can be taken positive. 

III'. Let 

r(n, m)=(l +T(n, n))X(n, m) (3.28) 

and 

f(n, m)=(1 +f(n, n))X(n, m). (3.29) 

Then the functions 11f ± (n, z) defined by (2.37)-(2.38) satisfy 

with c~±J positive, 

<+l_ 1+T(n,n) 
Cn - ' 1+T(n-1,n-1) 

<-l_ 1+f(n-1,n-1) 
Cn - -

1 +r(n, n) 
(3.31) 

and 

<+J_ c~+lr(n-1,n)-T(n,n+1) 
Pn - 1+T(n,n) ' 

(3.32) 

<-J _ c~-J f(n + 1, n)-f(n, n -1) 
Pn - - · 1+T(n,n) 

(3.33) 
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IV'. The relations 

lim c~±l= 1, lim p~±l=O (3.34) 
n-±oo n-±oo 

hold, where the limiting values are attained in the sense of Schwartz. 
V'. The relations 

qn -qn -1 

p~ + l =p~-l =Pn, c~ + > =C~-> =e 2 (3.35) 

hold, so that 

lim qn=O, lim qn=C, lim Pn=O, (3.36) 
n--oo n-+oo lnl-oo 

where the limiting values are attained in the sense of Schwartz. 
. a(z)r(z) 

VI'. The functwns a(z) and b(z) = - are the transition coeffi-
cients for the auxiliary linear problem z 

(3.37) 

where 

(3.38) 

1 Its discrete spectrum consists of the eigenvalues Aj =zj +- with transition 
coefficients rj =mjti(zj),j = 1, ... , N. Zj 

We will not give the proof of these assertions since it is a straightforward 
lattice transcription of the argument of§ II. 7, Part I. In conclusion, we only 
note that the Gelfand-Levitan-Marchenko formalism can be used to show 
that if the time dependence of the inverse problem data is given by (2.86)­
(2.87), then the reconstructed Pn (t) and qn (t) satisfy the Toda equations. 

2. Soliton solutions 

Soliton solutions of the Toda model correspond to 

b(z)=O (3.39) 

for all z on the circle lzl = 1. In this case the requirements on the data 
{c, zb mb mj,j = 1, ... , N) simplify and amount to the following. 

I. The quantities zj =I= 0 lie in the interval - 1 < zj < 1 and are pairwise dis­
tinct. 

II. The condition (c) holds, 
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N 

e-c=IJzJ. (3.40) 
j-1 

III. The quantities mj, mj are positive and related by 

j=1, ... ,N, (3.41) 

where 

N II Z-Z· 
a(z)= signzj --1 • 

zz.-1 j-1 J 

(3.42) 

For such data the Gelfand-Levitan-Marchenko equations (3.14)-(3.16) re­
duce to linear algebraic equations and can be solved in closed form. 

Consider first the case N = 1. The kernel K (n) of (3.14) has the form 

(3.43) 

and is one-dimensional. Setting 

X(n, m)=X(n)m1zi (3.44) 

we find from (3.14) 

X(n)+z1+X(n)ml L: zf1=0, (3.45) 
1-n+l 

so that 

(3.46) 

where we have used 

(3.47) 

Substituting (3.44) and (3.46) into (3.15) gives 

Now from (3.8) we find 
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(3.49) 

(Remind that in this case e - c = zt.) 
The time dependence is introduced by replacing y 1 with y 1 (t), 

YI(t)=e -(z,-i;-) 1 Y1· (3.50) 

If we denote 

(3.51) 

the solutions qn(t) and Pn(t) of the equations of motion for the Toda model 
are finally given by 

and 

with 

() I 1 +exp{-2a1(n+ 1-vlt+noJ)} 
qn t = c + og ---,--=-..:----,--:....:.._---,----=-------'-='":...:.. 

1 +exp{-2a1(n-vl t+noJ)} 

dqn 
Pn(t) = dt (t), 

sha1 
Vl=t:l--, 

a1 

(3.52) 

(3.53) 

(3.54) 

The solution (3.52) represents a wave propagating along the lattice with 
velocity vh lv11 > 1, whose center of inertia position at t = 0 is n01 . By the 
general definition of Part I, it should be called a soliton for the Toda model. 
The soliton is characterized by two real parameters, v1 and n01. 

Let us now consider the general case of arbitrary N. As before, the kernel 
K (n + m) is degenerate, 

N 

K(n+m)= L vmizJ vmizj, (3.55) 
j-1 

wherevmi>O; we look for a solution of(3.14) of the form 

N 

X(n, m)= L ~(n)vmJzj. (3.56) 
j=l 

Substituting (3.56) into (3.14) yields a system of equations 
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M(n)X(n)=- Y(n), (3.57) 

where X(n) is a column-vector with entries Xj(n) and Y(n) is one with entries 
-{rii;z'j,j= 1, ... , N, and M(n) is an Nx N matrix with entries given by 

(3.58) 

i,j=1, ... , N. 
From (3.56)-(3.57) we deduce 

X(n, m)=- Y'"(n)M- 1(n) Y(m). (3.59) 

Substituting this into (3.15) gives 

1 
(1 + T(n, n))2 = 1 + Y'"(n) Y(n)+ Y'"(n)(M(n)- l)X(n) 

= 1- Y'"(n)X(n)= 1 + Y'"(n)M- 1(n) Y(n). (3.60) 

The last formula can be simplified. Notice that (3.58) yields 

M(n -1)-M(n)= Y(n) Y'"(n), (3.61) 

or 

M(n -1)M- 1(n)=l + Y(n) Y'"(n)M- 1(n). (3.62) 

The matrix B(n)= Y(n) Y'"(n)M- 1(n) is one-dimensional and 

B2(n)=a(n)B(n), a(n)= Y'"(n)M- 1(n) Y(n). (3.63) 

By comparing (3.60) and (3.62)-(3.63) it follows that 

(1 + T(n, n))2 = detM(n) . 
detM(n-1) 

Introducing the time dependence by 

(3.64) 

(3.65) 

we derive from (3.64) an expression for the N-soliton solution of the Toda 
model, 
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() 1 detM(n, t) 
qn t = c + og __ ___;__;__.:....._ 

detM(n -1, t) 
(3.66) 

The expression for Pn (t) is given by (3.53) as usual. 
As in the earlier examples, the N-soliton solution describes a scattering 

process of N solitons. Specifically, for large ltl the solution qn(t) can be ex­
pressed as the sum of one-soliton solutions, 

N 

qn(t)= L q~+j)(t)+ O(e-a 1) (3.67) 
j-1 

fort-++ oo and 

N 

qn(t)= L q~-j)(t)+O(ea 1) (3.68) 
j-1 

for t-+-oo. Here a=minajminlv;-vjl, and q~±j>(t) are solitons with pa-
<±>. i#j rameters ch vh n oj • 

(3.69) 

where 

cj = -logzJ, (3.70) 

and 

(3.71) 

(3.72) 

The proof of these formulae is based on computations essentially analo­
gous to those of § 11.8, Part I. 

As for the NS model in the finite density case, the N-soliton solution 
qn(t) with parameter c breaks up into solitons q~±j>(t) with distinct parame­
ters cj. Thus, only solitons with cj distinct interact. The relation 
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N 

C= L Cj 
j=l 
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(3.73) 

can be thought of as a conservation law. The interpretation of (3.67)-(3.72) 
in terms of scattering theory is similar to that for the previous examples. 

This concludes our discussion of the inverse problem techniques and 
soliton dynamics for the Toda model. 

§ 4. Complete Integrability of the Toda Model in the 
Rapidly Decreasing Case 

In this section we shall consider the mapping ff from the standpoint of 
canonical transformations in phase space. We shall see that, as in the finite 
density case of the NS model, the programme of constructing canonical ac­
tion-angle variables for the Toda model reveals some interesting peculiari­
ties connected with the presence of boundary points in the continuous spec­
trum of the auxiliary linear problem. We will demonstrate their effect on the 
Hamiltonian interpretation of soliton scattering theory. 

1. The Poisson structure and the algebra of observables 

The phase space 1c of the Toda model is parametrized by coordinates 
p,, q, subject to the rapidly decreasing boundary conditions 

lim q, = 0, lim q, = c, lim p, = 0. (4.1) 
n--oo n-+oo lnl-oo 

The Poisson structure on 1, is given by the formal Poisson brackets 

(4.2) 

The algebra of observables is composed of admissible functionals F(p,, q,). A 
functional F(pm q,) is admissible if the induced Hamiltonian flow leaves 
1c invariant. In particular, such a functional must satisfy 

I. oF 1. oF O lm -= lm -= . 
lnl-oo ap, lnl-oo aq, 

A simplest example of an inadmissible functional is 

P= L p,, 
n- -oo 

(4.3) 

(4.4) 
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which is the first coefficient in the expansion of loga(z) into a Taylor series 
at z = 0 (see Subsection 4 of§ 2). Its flow shifts all the q, simultaneously and 
so violates the boundary conditions ( 4.1 ). 

There is the following analogy with the NS model in the finite density 
case: the quantity c, as well as the phase 0, stands for the index of the phase 
space 1c and is related to the transition coefficients and the discrete spec­
trum by the condition (c). The functional Pis analogous to Nv in the finite 
density case of the NS model. This model has taught us that care is needed 
when studying the formal Poisson brackets of the transition coefficients on 
the boundary of the discrete spectrum. In what follows, we shall pay special 
attention to selecting admissible observables out of the family of local inte­
grals of the motion I, produced by the trace identities. 

2. The Poisson brackets of transition coefficients and discrete spectrum 

Consider the Poisson brackets for the transition matrix T(n, m, z) that 
follow from the fundamental Poisson brackets (1.9): 

{T(n, m, z) ® T(n, m, z')} = [r(z, z'), T(n, m, z) ® T(n, m, z')], m < n, ( 4.5) 
' 

where 

r(z, z') = r(A.(z)- A.(z')), (4.6) 

and r(A.) is given by (1.19), and let n-+ + oo, m-+ ± oo according to the defi­
nitions (2.19), (2.45). As a result, we obtain the following expressions for the 
Poisson brackets of the Jost solutions T ± (n, z) and of the reduced mono­
dromy matrix T(z): 

{T ± (n, z) ~ T ± (n, z')J 

= +r(z, z') T ± (n, z) ® T ±(n, z')± T ±(n, z) ® T ±(n, z')r ± (z, z'), (4.7) 

{T+(n,z)® T_(n,z)}=O (4.8) 
' 

and 

{T(z) ~ T(z')} = r + (z, z') T(z) ® T(z')- T(z) ® T(z') r _ (z, z'). ( 4.9) 

Here 



r ± (z, z')= 
zz'a(z,z') 

p.v. 
(z-z')(zz'-1) 

0 

0 

0 
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0 

z z' fJ(z, z') 
p.v. 

(z-z')(zz' -1) 

+ .8(zz'- 1)z 
_Jrl 1-z2 

0 

0 

_ .8(zz'- 1)z 
+Jrl 1-z2 

z z' fJ(z, z') 
p.v. 

(z-z')(zz'-1) 

0 
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0 

0 

0 

zz'a(z,z') 
p.v. 

(z-z')(zz'-1) 
(4.10) 

and 

(4.11) 

so that 

a(z, z')+fl(z, z')= 1, (4.12) 

and in view of the involutions (2.21) and (2.47), we assume that lzl = lz'l = 1, 
lmz, Imz'>O where z,z'l= ±1; the delta function 8(zz'- 1) is defined in a 
natural way, 

dz' J 8(zz'- 1)j(z')-, =f(z). 
1='1~ I z 

(4.13) 

When deriving ( 4.1 0)-( 4.11) we have also made use of 

(zz'- 1)" • 
lim p.v. 1 ,_ 1 = +nz8(zz'- 1), 

n-±oo -ZZ 
(4.14) 

where lzl = lz'l = 1. 
The Sochocki-Plemelj formula 

1 . 1 1 .o(zz'- 1) 
, _ 0 = hm --- = p. v. --, + nz (4.15) 

z-z e z-z· z-z z-z z 
lil<l 

together with ( 4. 7)-( 4.11) leads to following Poisson brackets of the transi­
tion coefficients and the discrete spectrum: 

{a(z), a(z')} = {a(z), a(z')} =0, (4.16) 

{b(z), b(z')} =0, (4.17) 
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{a(z), b(z')} = zz'((1-zzY+(z-zY)a(z)b(z') , (4.19) 
(ze -o- z') (1- z z') (1- z2) (1- z'2) 

{a(z) b(z')} = zz'((1-zzY+(z-z')2)a(z)b(z') (4.20) 
' (ze- 0 -z')(1-zz')(1-z2)(1-z'2) 

{b(z), zj} = {b(z), yj} =0, 

{z;, zj} = {y;, rjl =0, 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

Due to the analyticity of a(z), (4.19)-(4.21) remain valid for lzl < 1 as well. 
As in the case of the NS model, this gives a set of independent variables 

with simple Poisson brackets. Namely, consider (4.19) and (4.21) for lzl < 1, 
let lzl--+ 1 and split off the imaginary and real part, respectively. Then for 
lzl=lz'l=1, Imz;;;.O, Imz'>O, we get 

n8(zz'- 1)z nz' 
{logla(z)l, argb(z')} =- 1_z2 + 1_z,2 (8(z)+8( -z)) (4.25) 

and 

niz-
{logla(z)l, log IrA= --12 (8(z)+8( -z)). 

1-zj 
(4.26) 

The terms containing 8( ± z) result from the singular denominator (1- z2) -I 

in (4.19) and (4.21); the delta function 8(±z) is defined by 

I dz 1 
8(±z)f(z)- = -2 f(± 1), 

c z 
(4.27) 

where Cis the semi-circle lzl = 1, 0~ argz~n. (Cf. the analogous formulae in 
§ 111.9, Part 1.) 

Let us introduce a set of variables 
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sinO . 
1)(0) = -log(1 + lb(e' 9W), qJ(O)= -argb(ei9), O<.O<.n, (4.28) 

7r 

tl;=logly), j=1, ... ,N, (4.29) 

with the following ranges 

0<.1)(0)< oo, 0<.qJ(0)<2n, (4.30) 

(4.31) 

Using (4.24)-(4.26) we see that the nonvanishing Poisson brackets of these 
variables are 

sinO 
{1)(0), qJ(O')} = 8(0-0')- -:---0 (8(0)+8(0-n)), (4.32) 

Sln I 

{1)(0), ti;} =- 2:!~0tj (8(0)+8(0-n)), (4.33) 
1 

{p;, ti;} = 8ii, i,j= 1, ... , N. (4.34) 

These Poisson brackets would have canonical form if the right 
hand sides of (4.32)-(4.33) did not contain terms proportional to 
sin0(8(0)+8(0-n)). These additional terms should be interpreted in the same 
spirit as in§ Il/.9, Part I. They must be taken into account every time we are 
dealing with functionals of the form 

F(f.J)= I" ~(O) f(O)dO, 
0 smO 

(4.35) 

wheref(O) is smooth for O<.O<.n,f(O)=f(n)-:/=0. We shall encounter such 
functionals in the next subsection. 

3. Hamiltonian dynamics and integrals of the motion in terms of the var­
iables (1(8), tp(8), Pi, i; 

The variables introduced above may be regarded as coordinates on the 
phase space 1.: in whose terms the Poisson structure (4.2) takes the form 
(4.32)-(4.34). These variables, however, are not completely independent. Spe­
cifically, we have the condition (c) 
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n (8) N 

c=- I ~d8-L logz]. 
0 sm8 J-l 

(4.36) 

B "d . 1 . . p(8) h . 1 . f h 1 I est es, m genera posttlon -.- as a smgu anty o t e type og -. -8- as 
sm8 Ism I 

8-+0, n, whereas qJ(O) and qJ(n) are fixed and equal to 0 or n according to 

(2.76). If 8=0 or 8=n or both are virtual levels, ~(8) is finite at these 
points and qJ(8) takes the value 0 or n. sm8 

As an illustration let us show that although at first sight the right hand side 
of (4.36) depends on the dynamical variables p(8) and Ph it is actually in in­
volution with qJ(8) and ij1 (cf. § III.9, Part I). Indeed, from (4.32)-(4.34) we 
have 

JC 

{c, qJ(8)} = - ~8 + ~8 I s~n 88: (8(8')+8(8' -n))d8' = 0 
sm sm 0 sm 

(4.37) 

and 

I -} 2z; {1 2 -} 0 c, qJ = - 2--- ogzJ, qJ = . 
Z· -I .I 

(4.38) 

We will now show that the introduction of the new variables trivializes the 
dynamics of the Toda model. The Hamiltonian H and the equations of mo­
tion can be written as 

H= _ j c~s28 p(8)d8 + ]_ £ (_]__ _ z2), 

0 sm8 2 J-I z] .J 

(4.39) 

0~~8) ={H,p(8))=0, ?: ={H,ftJ)=O, (4.40) 

oqJ(8) cos 2 8 I . 
-- = {H, qJ(8)} =- -.- + -.- = 2sm8, ot sm8 sm8 

( 4.4I) 

dijJ = {H ij} = zj+ I _ _}:!L_ = _ (z _ _!_) 
dt ' .! ZJ(I-zj) I-zj 1 z1 

(4.42) 

and their solution is a trivial matter. The result is equivalent to (2.86)-(2.87). 
We emphasize that if the additional terms in the Poisson brackets ( 4.32)­

( 4.34) were neglected, the time dependence of the transition coefficients would 
be incorrect. 
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The trace identities (2.1 00) yield expressions for the local integrals I,, 

n N 

J cosn() 1 ~ , _, 
I,= -. - 0-p(O)d() +- LJ (zj -zj ), 

0 Sln n j-l 

(4.43) 

so that these depend only on the variables p(O) and~· These expressions 
show that the functionals I 2 , + 1 are inadmissible. In fact, the equations of 
motion 

(4.44) 

have the form 

oqJ(O) = cos(2n+1)0 
ot sin() 

(4.45) 

(an additional term in the Poisson bracket (4.32) gives no contribution into 
(4.44)). The solution 

(() ) = (O O) cos (2 n + 1) () 
qJ ,t qJ ' + . () t sm 

(4.46) 

for t>O is singular at 0=0 and O=n and hence the dynamics induced by 
I 2 ,+ 1 does not preserve the phase space~. In particular, this shows once 
again that P= - I 1 is inadmissible. 

The functionals I2 , are admissible and correspond to observables on the 
phase space 1c. The induced equations of motion in the variables 
p(O), qJ(O), Pb ijj are 

oqJ(O) ={I (O)} = cos2n0-1 = _ 2sin2 n0 
"t z,, qJ . (} . (} ' u sm sm 

(zJ -zj_,)z 

Zj-Zj-l 

(4.47) 

(4.48) 

(now there is a contribution from the additional terms in (4.32)-(4.33)). The 
time evolution of the transition coefficients is given by 
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{
(Z 11 -z- 11

)
2 } 

b(z,t)=exp _ 1 t b(z,O), 
z-z 

(4.49) 

j=1, ... ,N. (4.50) 

For n = 1 this gives (upon reversing the sign of time) the familiar expressions 
(2.86)-(2.87). 

One should not be misled into thinking that the other "half" of the local 
integrals are inadmissible. In fact, the quantities 

(4.51) 

with 10 = -care already admissible. They may be expressed as 

ill= j cosnO-~os(n-2)0 p(O)dO+ ± (zJ-zj-ll zr 2 -z]-ll) (4_52) 

0 sm (} j _ 1 n - n - 2 ' 

cosnO-cos(n-2)0 . 
and the integrand . ts nonsingular at (} = 0 and (} = n. 

smO 
Hence the functionals i 11 correspond to observables on the phase space 1c, 
and when writing down the induced equations of motion one may neglect the 
additional terms in (4.32)-(4.33). A similar regularization was made for the 
NS model in the finite density case. The only quantity that does not admit 
this kind of regularization is P ( cf. § 111.9, Part 1). 

Hamilton's equations of motion 

(4.53) 

n = - oo, ... , oo, are naturally called the higher Toda equations. All of them 
are exactly solvable. 

The above results imply that the Toda model and all its higher analogues 
are completely integrable Hamiltonian systems. The variables p(O), <p(O), ~' 
and ijj are effectively their action-angle variables. 

The regularized integrals of the motion t display separation of modes in 
a natural manner. Thus for il = - i 2 = H- c we have 

- = 1 N 

H =2 J sinOp(O)d(} + "2 L (zj- 2 -zJ+2logzJ), 
0 }-1 

(4.54) 
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which can be interpreted as a sum over independent modes. The continuous 
spectrum mode with index (} has positive energy given by 

h(8)=2sin8, O:s;;(}:s;;:n, (4.55) 

and the discrete spectrum mode (soliton) also has positive energy 

(4.56) 

4. Soliton dynamics 

The Poisson brackets (4.32)-(4.33) show that in general soliton dynamics 
cannot be decoupled from the continuous spectrum modes dynamics in a 
Hamiltonian manner. In other words, the constraint p(8)=0 is inconsistent 
with these Poisson brackets. Nevertheless (cf. the NS model in the finite 
density case in § III.9, Part I), the equations of motion generated by the 
regularized functionals Z have an independent Hamiltonian formulation in 
theN-soliton submanifold of the phase space. Namely, on the phase space 
with coordinates~. ijbj = 1, ... , N, subject to 1~1 > 2 endowed with the Pois­
son structure 

(4.57) 

the Hamiltonians 

(4.58) 

induce an evolution that coincides with soliton dynamics governed by the 
higher Toda equations. 

Just as in the finite density case of the NS model, soliton scattering given 
by (3.67)-(3.72) is not described by a canonical transformation if the asymp­
totic variables ~. ij} ± > = ijj ±L1 ijb where 

(4.59) 

are supposed to have the same Poisson brackets as ~. ijj. 
In fact, for the two-soliton scattering we have 

(4.60) 

for ftt >ft2, and this is clearly not a function of the difference ft1 -ft2 only. 
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This means, of course, that the a priori hypothesis that the Pb ij} ± > form 
a canonical set is false. The correct choice of canonical asymptotic variables 
for soliton dynamics (and also for continuous spectrum modes) requires a 
separate analysis and is not our concern here. 

The example of the Toda model shows that the inverse scattering 
method for lattice models is no less efficient than for continuous ones. The 
fundamental Poisson brackets (1.9) for Ln(A) are of crucial importance for 
the Hamiltonian interpretation of the method. This ends our description of 
the Toda model. 

§ 5. The Lattice LL Model as a Universal Integrable 
System with Two-Dimensional Auxiliary Space 

In § 11.8 we have seen that the LL model is in some sense universal 
among integrable models with two-dimensional phase space for fixed x, 
which admit a zero curvature representation with two-dimensional auxiliary 
space. In particular, the SG, NS and HM models were interpreted as its 
limiting cases. Here we shall introduce a lattice analogue of the LL model, 
the LLL model, and consider the corresponding limiting cases. In this way, 
besides the LHM and LNS 1 models described in § 1.2 we shall obtain a nat­
ural lattice analogue of the SG model - the LSG model. 

As was observed in § 1.2, the easiest thing to define when passing from 
continuous to discrete models is the matrix Ln (A.) of the zero curvature 
representation. It is a more direct descendant of its continuous counterpart, 
the matrix U(x, A.) of the auxiliary linear problem, than other entities such as 
Vn (A.) and the associated equations of motion, or the Poisson structure and 
the Hamiltonian. We shall therefore proceed as follows: first, guided by nat­
ural requirements we shall define Ln (A.) and then describe the LLL model 
itself. 

The principal condition is that Ln(A.) should satisfy the fundamental lat­
tice Poisson brackets 

(5.1) 

The significance of these relations was illustrated above by the Toda model. 
We shall take r(A.) to be the r-matrix of the LL model 

(5.2) 

where 



and 

1 
u1(A-)=p sn(A-, k)' 
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(A,)- dn(A-, k) 
Uz -p sn(A-, k) ' 

(A,)- cn(A-, k) 
u3 -p sn(A-, k) ' 
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(5.3) 

(5.4) 

with J1 < J2 < J3 (see § 11.8). This is quite natural since (5.1) may be inter­
preted as the Poisson brackets of the one step transition matrix to the next 
lattice site, i.e. for a small interval L1 in the corresponding continuous model 
(see§ 111.1 of Part I and§ 1). 

Using this analogy, we can approximately write Ln(A-) as 

Ln(A-)=1+ J U(x,A-)dx+O(L1 2) 

L1., 

1 3 

=1+ j L U0 (A) J Sa(x)dx+O(L1 2) 

a-! L1., 

(5.5) 

(see the expression (11.8.2) for U(x, A-)). Terms of order 0(.1 2) in (5.5) are not 
specified by the initial continuous model. The discussion of the LHM and 
LNS 1 models in § 1.2 shows that these terms are determined from the zero 
curvature representation. We will presently see that they are also uniquely 
determined by the fundamental Poisson brackets (5.1). As suggested by 
(5.5), it is natural to look for Ln(A-) in the form 

Ln(A)=Y"h") 1 + ~ ± U0 (A)Y"~")O"a, 
l a-! 

(5.6) 

where ggr>, a=O, 1, 2, 3, are some new dynamical variables. To recover the 
LL model in the continuum limit, these must have the asymptotic behav­
iour 

(5.7) 

with L1 n =x, Li--+0, Si(x) + S~(x) + S~(x) = 1. 
Remarkably, the fundamental Poisson brackets (5.1) with the r-matrix 

(5.2)-(5.3) are satisfied for Ln(A-) of the form (5.6) if Y"&"l, Y"~"l have the 
following Poisson brackets 

(5.8) 

and 
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(5.9) 

Here and below (a, b, c) is a cyclic permutation of the indices 1, 2, 3, and we 
have set 

(5.10) 

To derive (5.8)-(5.9) one should use (11.8.8) and the identities 

(5.11) 

which are a consequence of addition theorems for the Jacobi elliptic func­
tions. They can also be verified directly by comparing the poles in It on the 
right and on the left of (5.11) and using the Liouville theorem. 

Let us discuss the Poisson brackets (5.8)-(5.9). 
1. These Poisson brackets are ultralocal: the variables ._9'~> that be­

long to different sites are in involution. Hence we can first consider (5.8)­
(5.9) in one site (suppressing the dependence on n) as the Poisson brackets 
on IR4 

(5.12) 

(5.13) 

2. The Jacobi identity for the Poisson brackets (5.8)-(5.9) and (5.12)­
(5.13) is ensured by the equation (11.8.12) for r(lt). However, it can easily be 
verified directly by making use of the obvious relation 

(5.14) 

3. Unlike the Lie-Poisson brackets that occur for the HM and LHM 
models (see§§ I.1-1.2), the Poisson brackets (5.12)-(5.13) are quadratic in the 
generators Sli}, ~. Yz, ._93. In a natural sense, they are a deformation of the 
Poisson brackets for the LHM model. In particular, in the continuum limit 
(5.7) they go over into the Lie-Poisson brackets for the HM model. 

4. The Poisson structure (5.12)-(5.13) is degenerate. Its annihilator is 
generated by two polynomials, 

3 

~= l: ..9'~ (5.15) 
a=J 

and 

<@'I= ..9'~- _41 ± Ja ..9'~ • 
a-J 

(5.16) 
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The equations 

(5.17) 

where c0 and c1 are real, define a symplectic submanifold T=T(Ja, c0 , c1) 

in IR4 • 

5. The manifold T is in general disconnected. Under the condition 

(5.18) 

Tis homeomorphic to a disjoint union of two spheres S 2• The additional 
requirement 9o > 0 selects one of them; the corresponding phase space will 
be denoted by T0 • If 

(5.19) 

T is homeomorphic to the union of two spheres as before. However, if 
Jz J1 - 4 Co< C1 < - 4 Co, T is COnnected and homeomorphic to the torus 

T 2 = S 1 x S 1 ; this type of phase space will occur later on when describing 

the LSG model. If c1 < - d c0, (5.17) has no solution in IR4 • 

6. Let us return to the lattice Poisson brackets (5.8)-(5.9). Their natural 
domain is the product of N copies of lR 4 , N being the number of lattice sites. 
The phase space ..A' of the LLL model will be the product of the T0's where 
c0 and c1 do not depend on the index n, so that the model is homogeneous in 
space. In the continuum limit, with 

(5.20) 

..A' goes into the phase space of the LL model. 
We thus have defined the phase space 1 of the LLL model and the ma­

trix Ln (A,) of the corresponding auxiliary linear problem 

The latter leads to the monodromy matrix 

N' 
TN(A)= IT Ln(A), 

n=l 

whose Poisson brackets have the same form as for Ln(A-), 

(5.21) 

(5.22) 
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(5.23) 

It follows that the functions 

(5.24) 

form an involutive family of observables on 1, 

(5.25) 

The choice of the family (5.24) corresponds to the periodic boundary condi­
tions 

(5.26) 

Let us show that this family contains local observables representable as the 
sum over lattice sites 

N 

Gk= L g(,?~n>, ... ,,?~n+k)), (5.27) 
n=l 

with k<N. We shall say that Gk describes the interaction of k+ 1 nearest 
neighbours on the lattice. In particular, H will describe the interaction of 
two nearest neighbours. 

To define it we proceed as follows. Observe that the expression (5.24) for 
FN(A,) simplifies if A=A0 , where Ao is a point at which Ln(A) degenerates. In 
fact, we have 

(5.28) 

where an and fJn are column-vectors and r indicates transposition. It follows 

that 
N 

FN(Ao) = I1 {JJ, +I an' fJN+ I= fJI' (5.29) 
n-1 

so that logFN(A,0) is a local observable describing a nearest neighbour inter­

action. Unfortunately, this quantity is complex in general. To define a real­
valued observable one should use two involutions satisfied by Ln(A), 

(5.30) 

and 

(5.31) 
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(these are immediate consequences of (5.3) and (5.6)). The first one implies 
FN(JL)=FN(,i"), so that 

(5.32) 

also belongs to the involutive family generated by FN(JL). The second involu­
tion allows us to calculate H explicitly. 

Indeed, from 

(5.33) 

and (5.18) it follows that JL0 can be taken pure imaginary, which yields 

(5.34) 

hence 

N 

FN(,i"o) =FN( -Jlo) = IT a~+ 1fJn, aN+ 1 =a1. (5.35) 
n-1 

This implies 

N pr T f3 N H= '\ll n+lanan+l n = '\ll h(._9"(n) ._9"(n+l)) LJ og 2 LJ og a ' a ' 
n-1 n-1 

(5.36) 

with 

h(._9"~n), ._9"~+ I))=~ tr Ln+l (Jlo)Ln(Jlo) 

3 

=..9"b")._9"bn+l)+ L (~+ Ja) g~n)._9"~n+l). (5.37) 
a-l Co 4 

To derive the last equation we have made use of (5.6), (5.15)-(5.17) and 
(5.33). 

The quantity His what we shall take to be the Hamiltonian of the LLL 
model. The corresponding equations of motion 

d._9"(n) 
__ a_= {H ._9"(n)) 0 1 2 3 

dt ' a ' a= ' ' ' ' (5.38) 

are not so very instructive and will not be stated here explicitly. We will 
rather discuss their general properties. 
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1) In the continuum limit defined by (5.7) and (5.20), H goes into the 
Hamiltonian of the LL model (see§ /.1) 

and (5.38) gives the LL equation. 
2) The LLL model is a completely integrable Hamiltonian system. Indeed, 

a family of N- 1 independent integrals of the motion in involution compris­
ing H may be produced as follows: 

k=O, ... , N-2. (5.40) 

The quantities h are local and describe the interaction of k+ 2 nearest 
neighbours. The missing integral can be taken in the form argFN(A-0). 

3) The equations of motion (5.38) are representable as a zero curvature 
condition, 

(5.41) 

In fact, arguing in complete analogy to § 111.3, we find 

where 

and we have used the notation tr1 explained there. It follows from (5.32) that 
{H, Ln(A.)J coincides with the right hand side of (5.41) where 

(5.44) 

Thus the equations of motion 

d~n (A.)= {H, Ln(A.)J (5.45) 

are representable in the form (5.41). 
The expression for Vn(A.) can be simplified by using (5.29), (5.35) and 

(5.37). We have 
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V: (A)= tri(an_IfJ;.®I)r(Ao-A) _ tri(a2Pn-Ia~a2®l)r(Ao+A) 
n 2p;.an-I 2a~Pn-I 

1 
h(S~-1), S~l) tri((Ln-I(Ao)Ln(A0)®l)r(A-Ao) 

+ (Ln-I( -Ao)Ln( -Ao)®l)r(A+Ao)). (5.46) 

The last formula shows that Vn(A) depends only on the two nearest neigh­
bours. 

We emphasize that, as in the continuum case, the fundamental Poisson 
brackets can replace the zero curvature representation. This is yet another 
demonstration of the utility and universality of the notion of r-matrix. 

This concludes our description of the LLL model. We shall now con­
sider its limiting cases obtained by degenerating the elliptic curve E (see 
§ 11.8). 

The simplest limit corresponds to k-+0 so that J 1 =12 <J3 . The corre­
sponding Ln (A) becomes 

(5.47) 

where the variables ..9'~l satisfy the Poisson brackets (5.8)-(5.9) with 
J12 = 0, J13 = J23 = {/. In this case there is an explicit expression for the ..?a 
(in each site) in terms of the usual variables S~o S2, S3 on a sphere of radius 
R in lR3 

with the Lie-Poisson brackets 

Namely, we set 

where 

F(x)= 
sh2pR-sh2 px 

R2-x2 

(5.48) 

(5.49) 

(5.50) 

(5.51) 
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The variables ..9a then have the Poisson brackets (5.12)-(5.13); the invar­
iants ~0 and ~1 take the values 

(5.52) 

Substituting (5.50)-(5.51) into (5.47) gives the matrix Ln(ll) for a model 
which for obvious reasons will be called the partially anisotropic LHM model; 
its r-matrix results from (5.2)-(5.3) in the limit as k-+0 and is given by 

(5.53) 

The same r-matrix serves for the partially anisotropic HM model (see§ 1.8), 
which is a continuum limit of our model upon the naive replacement 

(5.54) 

The partially anisotropic LHM model admits further degeneration. 

Specifically, in the limit as p-+0 (and replacing ll by 2t) we come down 

to the isotropic case J 1 = J 2 = J3 that corresponds to the LHM model of§ 1.2. 
The associated r-matrix results from (5.53) in this limit and coincides with 
the r-matrix for the HM model in § 11.3. As was explained in § 1.2, this also 
gives the LNS1 model. 

Let us now describe a lattice analogue of the SG model, the LSG model. It 
is in essence just another real form of the partially anisotropic LHM model 
considered above. More precisely, we interchange the roles of Jh J2 , J 3 and 
assume that 11 =12 >13, whereas (5.3)-(5.4) (with k=O) and the form of 
Ln(ll) (5.47) are left intact. The constraints (5.19) become 

(5.55) 

and the phase space of the model in one lattice site is homeomorphic to the 
torus T 2• The variables ..9a are expressed as functions of the canonical var­
iables n and lfJ on the torus, 

{n, lfJ) = 1. (5.56) 

Namely, let 



where 
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c?n = scos f3qJ 
0 2 ' 

g,J = - j(qJ) sin f3n 
y 4 ' 

~3 =!___sin /3({) 
y 2 ' 

..9;2 = - j(qJ) cos f3n 
y 4 ' 

f ) = v1 s2 cosf3x 
(x + 2 ' 

517 

(5.57) 

(5.58) 

with y = /3: > 0 and s > 0 arbitrary constants. Then the .9,;; have the Poisson 

brackets ( 5 .12)-( 5.13) with parameters 

s2 +2 
Co= 2y2 ' 

s2 -2 
Cl =-2-. 

Consider now the matrix L~G(a) of the form 

(5.59) 

(5.60) 

(5.61) 

where Ln(A) is given by (5.47) with (J=iy. Expressing ._?~nJ through 1Cn and 
(/Jn according to (5.57)-(5.58) we find 

(5.62) 

The matrix L~G(a) satisfies the fundamental Poisson brackets (5.1) with the 
r-matrix given by (5.53) for A=ia, (J=iy. The matrix r(a) coincides (up to 
an irrelevant summand proportional to 1®1) with the r-matrix for the SG 
model of § 11.6. 

The Hamiltonian of the LSG model is 
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HLSG= £log(~:;; (-.!7\">.!7\"+1>+g~n>g~n+1>) 
n=1 

(5.63) 

where the .!7~> should be replaced by their expressions (5.57)-(5.58) in 
terms of the 11:"' lfJn; H results from (5.36)-(5.37) by taking account of (5.60)­
(5.61). Notice that the opposite sign of .!7\">.!7\"+1> and g~n>g~n+n as 
compared to (5.37) agrees with (5.61) which may be interpreted as the opera­
tion of alternating the sign, 

(5.64) 

( cf. the argument of § 1.2). 
The auxiliary linear problem (upon the replacement A.= e'"), the Hamil­

tonian H, and other characteristics of the LSG model in the continuum 
limit 

1T:n =Lin(x), (/Jn =qJ(X), 
mL1 

s=-
2 

(5.65) 

tum into the corresponding entities for the SG model, see § 1.1. This is the 
reason for referring to the above completely integrable lattice model as the 
lattice SG model. 

We point out that although the LSG and the partially anisotropic LHM 
models are essentially equivalent on the lattice, their continuous counter­
parts lie far apart, since they result from different continuum limits. 

The list of models generated by the LLL model is in no way exhausted 
by the above examples. We may consider the higher analogues of the LLL 
model with the Hamiltonians h, their contractions, and also other values of 
the parameters la and of the invariants <&0, <&1. We may, moreover, vary the 
structure of Ln(A.) by replacing 

Ln (A.)-+ A Ln(A.), (5.66) 

where A ®A commutes with the r-matrix. In this way one can derive the 
Toda model as well. 

Still, we have chosen the Toda model to be our basic example of a lattice 
model because its investigation is technically simpler. At the same time, it 
gives a fairly satisfactory illustration of the main features of the inverse scat­
tering formalism for lattice models. 
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§ 6. Notes and References 

1. The complete integrability of the Toda model in the periodic case was 
established by S. V. Manakov [M 1974a] and H. Flaschka [F 1974a, b], who 
made use of the Lax representation with the matrix .!? given by (2.35), 

(6.1) 

with On+N.m=On.N+m=Onm• The functions tr.!?\ k=1, ... ,N, form an in­
volutive family on the phase space of the model, and H =itr .:?2• The ma­
trix Ln(A) of the form (1.8) was introduced in [TF 1979]. 

2. The general solution of the periodic Toda model in terms of theta 
functions was derived in [K 1978]. The corresponding canonical action-an­
gle variables were introduced in [FM 1976]. 

3. The auxiliary linear problem (2.33) (for N = oo ), 

.!?f=.Af, (6.2) 

and the related inverse problem were investigated in [M 1974a], [F 1974a, b] 
(without discussing the peculiarities connected with the boundary of 
the continuous spectrum and the condition (c)); see also the books 
[ZMNP 1980] and [T 1981]. The latter contains various physical applications 
of the Toda model. 

4. For Pn =0, (6.2) turns into the auxiliary linear problem for the Vol­
terra model introduced in § 1.2, 

(6.3) 

where en= {ii;; (see [M 1974a]). In that case the transition coefficients a(z) 
and b(z) obey an additional involution 

a(z)=a( -z), b(z)= -b( -z). (6.4) 

Equation (6.3) is a lattice analogue of the one-dimensional Schrodinger 
equation and was studied for that reason in [CK 1973]. 

5. In the continuum limit, the Toda equations of motion go over into the 
equation of a nonlinear string, 

(6.5) 

which can be solved by the inverse scattering method as well (see [Z 1973]), 
while the Volterra equations of motion go over into the KdV equation (see 
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[M 1974a], [ZMNP 1980]). Also, the zero curvature representations for lat­
tice models go over into their continuous counterparts. 

6. The action-angle variables of§ 4 (but ignoring the additional terms in 
the Poisson brackets (4.32)-(4.33)) were introduced in [M 1974 b] (see also 
[E 1981]) which from the very beginning used the Hamiltonian H. 

7. It would be interesting to describe the topology of the phase space 
1.: in terms of the variables Q(O), qJ(O), fti, fL and the associated algebra of 
observables. 

8. For models whose continuous spectrum has a boundary, the correct 
choice of canonical asymptotic variables for soliton dynamics (and of con­
tinuous spectrum modes) presents a nontrivial problem (cf. the NS model in 
the case of finite density). For the KdV equation, the problem was solved in 
[BFT 1986]. The method of this paper can in principle be applied to the 
Toda model and the NS model in the case of finite density. 

9. As in the case of the NS and KdV models, a hierarchy of Poisson 
structures can be defined for the Toda model, starting with the Poisson 
brackets (1.3). The second Poisson structure for the Toda model was defined 
in [A 1979]; in terms of the variablespn, Un=eqn-qn-• it is given by 

(6.6) 

Unlike the Poisson structure (1.3), the Poisson brackets (6.6) have a nontriv­
ial restriction to the submanifold Pn = 0. The resulting Poisson structure 

(6.7) 

gives rise to the equations of motion for the Volterra model 

(6.8) 

if the Hamiltonian is set to be 

(6.9) 
n 

In the continuum limit Un-+ 1-L1 u(x), the Poisson brackets (6.7) go over into 
the Poisson brackets (1.3.15) for the KdV model. 

The Poisson brackets (1.2.18) for the Volterra model result from the third 
Poisson structure for the Toda model by restricting to the submanifold 
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Pn = 0. In the continuum limit, as Un--+ 1-L12 u(x), this gives the second Pois­
son structure for the KdV model (see § 111.10 of Part I). 

10. The LLL model and the quadratic algebra of Poisson brackets were 
introduced by E. K. Sklyanin [S 1982]. The rapidly decreasing case of the 
model was investigated in [V 1985] where action-angle variables were also 
described. 

11. The LSG model was stated in [IK 1981 a, b]. In [T 1982] the rapidly 
decreasing case of the model was shown to be completely integrable and 
action-angle variables were reported. 

12. In [T 1982] and [V 1985] it was shown that the action-angle variables 
for the LLL and LSG models coincide with their analogues for the LL and 
SG models, and it was pointed out that this fact is due the coincidence of 
the associated r-matrices. 

13. The scheme for constructing the local Hamiltonians for lattice mod­
els outlined above was developed in [IK 1982a, b]. We note that the Hamil­
tonian defined in [IK 1982a, b] and considered in [T 1982] differs from the 
one discussed in § 5. 

14. Our derivation of the lattice analogue of the LL model was based on 
the construction of the matrix Ln(A.) of the auxiliary linear problem which 
satisfies the fundamental Poisson brackets. We believe this to be the most 
fruitful principle for deriving integrable lattice analogues of continuous 
models. 
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