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Abstract. We have implemented a speech command system which can under-
stand simple command sentences like “Bot lift ball” or “Bot go table” using 
hidden Markov models (HMMs) and associative memories with sparse distrib-
uted representations. The system is composed of three modules: (1) A set of 
HMMs is used on phoneme level to get a phonetic transcription of the spoken 
sentence, (2) a network of associative memories is used to determine the word 
belonging to the phonetic transcription and (3) a neural network is used on the 
sentence level to determine the meaning of the sentence. The system is also able 
to learn new object words during performance.  

Keywords: Associative Memories, Hidden Markov Models, Hebbian Learning, 
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1   Introduction 

A variety of speech recognition systems are currently in use in applications such as 
command & control, data entry, and document preparation. In this study, we have 
applied neural associative memories to a speech processing system in a hybrid ap-
proach with hidden Markov models (HMMs) [1][2]. The system is able to recognize  
spoken command sentences such as “Bot show plum” or “Bot pick blue plum”. Those 
sentences are processed in three stages: At the first stage, the auditory signal is trans-
formed into a sequence of corresponding triphones via a HMM based triphone recog-
nizer. At the second stage, the generated stream of triphones is forwarded to a word 
recognition module, which consists of a number of binary heteroassociative memories 
and is able to recognize single words. The module determines the best matching 
words from the triphone data. As last processing step, the words are forwarded to  
a sentence recognition module which parses the sentence with respect to a given 
grammar. After successful processing, each word in the sentence is labeled with its 
grammatical role, giving a relatively straightforward representation of the meaning of 
the sentence. 

The system is able to learn new object words. Learning is triggered by the special 
phrase “This is” followed by a novel word, e.g. “This is lemon”. After learning, the 
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system is able to understand this new object word like any other object and can  
successfully process sentences like “Bot show lemon” or “Bot pick yellow lemon”.  

2   Neural Associative Memories 

A neural associative memory (NAM) is a single layer neural network which maps a 
set of input patterns to a set of corresponding output patterns. The patterns are binary 
and sparsely coded. A NAM can be represented as a synaptic connectivity matrix. 
Pairs of patterns are stored in the binary matrix using clipped binary Hebbian learning 
[3][4]. In case of autoassociation, input and output patterns are identical. Autoassocia-
tion allows for pattern completion, fault tolerance and long-term activation of patterns 
via feedback links. Heteroassociation is used to map one pattern onto another (e.g. to 
map a pattern “X” to a representation “Y”). They are also often used to translate be-
tween different neural coding schemes of different populations. 

We have decided to use Willshaws model of associative memory [5][6] as the ba-
sic model. Different retrieval strategies are employed in different parts of the system. 
One of these strategies is one step retrieval with threshold [4][7], where the threshold 
is set to a global value: 

( ) ΘWX=Y j
kk

j ≥⇔1 , (1) 

where Θ  is the global threshold, X is the input, Y is the output and W is the matrix of 
synaptic strengths. A special case of this strategy is the Willshaw strategy, where the 
threshold is set to the number of ones in the binary input vector X. 

In more complex memories we also use the so-called spike counter model [8]. 
With this model, the network is simulated in global steps, where in each global step a 
complete retrieval is calculated by each of the associative memories. In contrast to 
Willshaws model [5][6] which interprets incoming activation as membrane potential 
values, incoming activation levels per neuron are interpreted as value of the mem-
brane potentials derivative in the spike counter model. Thus, if a neuron receives 
strong input, its membrane potential is rising fast, while with low input, the mem-
brane potential is increasing only slowly. In this simple model, the membrane poten-
tial is modified linearly. The neurons spike whenever the membrane potential reaches 
a given threshold and the membrane potential is reset to zero after the spike is emit-
ted. In each retrieval, every neuron is allowed to spike at most twice and the retrieval 
is stopped when no more neuron is able to spike (which happens either when each 
neuron has spiked twice or there is no more neuron left that receives any positive 
postsynaptic input). The spike patterns are then forwarded through the heteroassocia-
tive connections and the next global time step starts. 

3   The System 

The system is composed of a chain of three modules. The first module is a triphone 
recognizer based on hidden Markov models, which is responsible for generating a 
sequence of triphones corresponding to the spoken command sentence. The second 
module is an isolated word recognizer from which single words are retrieved. The last  
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Fig. 1. Overview of the language processing system. The three main components of the system 
are connected in a feed-forward manner. Besides the triphone recognizer, all boxes are imple-
mented as neural networks. Communication between the boxes is based on neural representa-
tions that allow ambiguities to be forwarded between the different units of the system. In case 
the word recognizer cannot decide between “ball” and “wall”, a superposition of both words is 
sent to the sentence recognizer which can then use additional contextual input to resolve the 
ambiguity (see examples in text below). 

module in the system is the sentence recognition network which analyzes the re-
trieved words with respect to simple grammar rules. Fig. 1 shows a block diagram of 
the system. 

The triphone recognizer module, based on hidden Markov models, receives audio 
input via a microphone and converts it to a stream of triphones. This stream is then 
transfered to the isolated word recognizer module which extracts words from the 
stream of triphones. Afterwards, the output of the word recognizer is sent to the sen-
tence recognition module which parses the stream of words against a given grammar 
and assigns grammatical roles to the words. The last two modules are networks of 
neural associative memories.  

In the following, the three parts are described in more detail. 

3.1   Triphone Recognizer 

Speech Material. To train triphone HMMs, the training data set of TIMIT continuous 
speech corpus without the “SA”-type sentences has been used [9]. TIMIT is manually 
labeled and includes time-aligned, manually verified phonetic and word segmenta-
tions. The original set of 61 phonemes was reduced to a set of 39 phonemes in this 
study. The TIMIT training data consists of 462 speakers and 1716 sentences. 

We added our own recordings to the training material in order to adapt the system 
to our scenario. A set of 105 different sentences with a vocabulary of 43 words has 
been recorded from four different speakers of our institute. From this data, 70 sen-
tences were used for training and the remaining 35 sentences were used for testing. 
For training and testing the same speakers were used. The total number of words in 
the test set of our own data is 504, the training set consists of 1068 words in total. 
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Hidden Markov Models and Language Models. The HMMs used in the triphone 
recognizer utilize three-state continuous 8-Gaussian triphone models, i.e, a set of 
7421 triphones that are seen in the training set of TIMIT speech corpus and in our 
own speech data consisting of 105 sentences. Word internal models are used to de-
termine the word boundaries in the sentence. The models are trained using the deci-
sion tree based state tying procedure using HTK [2]. The triphone models are trained 
with TIMIT speech corpus. To adapt the HMMs to our scenario, the models are also 
trained with our own training data.  

To recognize the triphone sequence for a given sentence, a bigram language model 
on triphone level is also used, which is created with respect to the triphone transcrip-
tions of the sentences in the training set of TIMIT speech corpus and our speech data. 

3.2   Isolated Word Recognition 

The isolated word recognition module consists of five heteroassociative memories. 
Fig. 2 shows the general structure of the module. Each box denotes a heteroassocia-
tive memory, the arrows correspond to auto- or heteroassociative connections. Due to 
the large number of triphones, we decided to use diphones as basic processing units in 
the neural network for isolated word recognition. This requires a translation of the 
triphones from the HMMs into diphones before they are processed by the word rec-
ognition network. The total number of diphones used in the memories is 1600. 

HM1

HM2

HM3 HM5

HM4

Input

Outpu
t

 

Fig. 2. Isolated word recognition module. It consists of five heteroassociative memories (de-
picted as gray boxes) that are connected by auto- or heteroassociations respectively (arrows). 
The input diphones extracted from the HMMs is sent to HM1, while the output words are taken 
from HM4 after a complete word has been processed (see text for details). 

The word boundaries are determined with respect to diphones in the input sequen-
ce: The HMMs detect diphones due to a language model which knows about common 
di- and triphones. In our experiments word boundaries were recognized quite stable 
using this approach. 

The tasks of the heteroassociative memories HM1 through HM5 are described in 
more detail in the following: 

HM1 is a matrix of dimension nL × , where L is the length of the input code vector 
and n is the number of diphones, (n=1600 in our system). The memory receives input 
diphones from the HMMs and presents them to the word recognition network as 1 out 
of n code. 

HM2 has the same structure as HM1, but receives  diphones expected as input in the 
next step (see HM5 below). 
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HM3 is a matrix of dimension nn × . It stores diphone transitions of the words in 
the vocabulary.  

The memories HM1, HM2 and HM3 can be regarded as one combined memory 
HM*. In each retrieval step, HM1 represents the diphones from the HMMs, while HM2 
and HM3 represent the diphones predicted by the network from the previous input. 
The outputs of the three memories are summed up such that the influence of HM2 and 
HM3 is reduced compared to that of HM1, giving the acoustic input a higher priority.  
After summation, a global threshold is applied. 

The network generates a list of already heard diphones and presents it to memory 
HM4. Meanwhile, the currently heard diphone(s) are presented to memory HM5. 

HM4 is a matrix of dimension Mn × , where M is the number of output units, 
(M=200). The memory is used to store all words known to the system and to activate 
those that match the current list of diphones, generating a list of word hypotheses. 
During retrieval, the activated words are forwarded to memory HM5. The output pat-
tern is a randomly generated 5 out of 200 code vector. 

HM5 is used to predict the diphones expected in the next step. It takes the word hy-
potheses from HM4 and the currently heard diphone into account and tries to predict 
which diphones are to be expected in the next step. 

HM5 is organized in columns. Each column belongs to one specific diphone. For 
each word containing that diphone, the corresponding column stores a heteroassocia-
tion from the word representation (input) to the diphone following the column-
specific diphone in that word (output). By exciting only those columns that belong to 
diphones matching the current output of memory HM*, HM5 generates a prediction 
which diphones are about to enter the network in the next time step. 

In praxis, the input to HM5 is not a single word but a superposition of possible 
words generated in HM4, thus, the output is usually not unique but also a superposi-
tion of possible diphones. Furthermore it is possible that the same diphone occurs 
twice in a word and thus the output can be ambiguous even if the memory is ad-
dressed with a single word. 

Retrieval. When input is given to the network as a sequence of triphones from the 
HMMs, e.g. “sil b+ow b-ow+t ow-t  sh+ow sh-ow b+l b-l+uw l-uw p+l p-l+ah l-ah+m 
ah-m sil” for the spoken sentence “bot show blue plum”, the first step is to divide it 
into subsequences for isolated words with respect to diphones, e.g. “sil b+ow b-ow+t 
ow-t  / sh+ow sh-ow ...”, where “/” denotes the word boundaries. Afterwards, the sub-
sequence of triphones is decomposed into diphones, because the following parts of the 
network are processing diphones to limit the use of memory resources. 

For the subsequence “b+l l+uw uw”, firstly the diphone “b+l” enters the network. 
For the first diphone of each word,  the memories  HM2 and HM3  are not activated 
and the output of HM* is the input diphone itself. The resulting diphone is then for-
warded to HM4 to generate a superposition of the words which contain the diphone 
“b+l”. For the first diphone “b+l”, the words  “blue”, “black” and “table” are acti-
vated simultaneously. The output words from HM4 are then sent to HM5 to predict the 
next possible diphones. 

Fig. 3 illustrates the module when processing the last two diphones. In the next 
step, HM1 receives the second diphone “l+uw”, HM5 predicts the next diphones and  
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Fig. 3. The isolated word recognition module when processing (a) the second diphone “l+uw” 
and (b) the last phoneme “uw”. The text on the arrows denotes the input that the areas receive 
via the corresponding connection. * means that the input is from the previous step (delay), ** 
means delay by two time steps. 

forwards them to HM2. HM3 takes the output diphones of HM* in the previous step as 
input. The resulting diphone “l+uw” in HM* is added to the diphone in the first re-
trieval step and forwarded to HM4. In HM4, the word “blue” is activated. In the fol-
lowing step, the last phoneme “uw” is processed by the network in the same way.    

After retrieving a complete word, the module is reset to its initial state in order to 
start with the next word in the input stream. In particular, to “reset” the module means 
to delete the list of already processed diphones that is fed into HM4. After successfully 
retrieving a word it is forwarded to the sentence recognition system.  

The experimental result on our test set (see Section 3.1) shows that our system 
slightly outperforms the adapted HMMs: the system recognized 98% of the words 
(2% word level error), while a set of adapted HMMs recognized 96% of the words 
correctly. Due to the fault-tolerance property of associative memories, the system is 
able to deal with spurious inputs, such as incorrectly recognized subword units. Thus, 
the correct word can be retrieved in spite of possible a corresponding noisy or incom-
plete subword-unit transcriptions to a certain degree. 

3.3   Sentence Recognition 

The sentence recognition network parses the stream of words detected by the isolated 
word recognizer with respect to a certain grammar. Fig. 4 gives a short overview of 
this module. 

 



 Sentence Understanding and Learning of New Words 223 

 

Fig. 4. The sentence recognition network. Each box corresponds to one autoassociative mem-
ory, arrows denote heteroassociations. Boxes with circular arrows use the autoassociative short-
term memory (e.g. they stabilize patterns in time). 

The module is composed of several autoassociative memories (depicted as boxes in  
Fig. 4) that are connected by heteroassociations (arrows in Fig. 4). Heteroassociations 
are used to exchange activation between the associative memories and to translate 
between the different neural representations used in different autoassociative memo-
ries. After a sentence is successfully processed, the sentence module has determined 
the type of sentence (e.g. Subject-predicate-object, SPO) and assigned to each word 
its grammatical role.  

The memories in the sentence module use the so called “spike counter model” of 
associative memory [10]. Each memory stores a set of different patterns (assemblies). 
To allow for easy display of the network state, each pattern has an associated name 
stored in a simple look-up table. Whenever a network activity is displayed or a name 
of a pattern is mentioned, we really mean that the underlying group of neurons is acti-
vated. 

The different memories in the module serve the following purposes: 
A1 is the input memory. Activation from the isolated word recognizer arrives here. 

This memory is only required to allow for developing and testing the module indi-
vidually. A1 holds all words known to the system in the 5 out of 200-code from the 
isolated word recognition module. 

A2 and A3 distinguish between semantical elements (words, A3) and syntactical 
elements like word boundary signals and sentence end markers (arbitrary patterns, 
A2) respectively. 

A4-S is a sequence memory. Sequences are realized by an additional hetero-
association from the memory onto itself that stores the state transitions of the  
sequence elements. The heteroassociation is delayed and weaker than the auto-
association, so normally an active pattern is stable. With short inhibition, the autoas-
sociation can be inhibited and the heteroassociation, which is still effective because of 
its higher delay, will activate the next pattern in the sequence. 

A4-S holds the grammatical information, i.e. the sentence types that are known to 
the system. It stores sequences like S->P->O->OK_SPO or S->P->A->O->A->O, 
where S means subject, P means predicate, A adjective and O object. 

A5S, A5P, A5O1a, A5O1, A5O2a, A5O2: These memories hold the subject, predi-
cate, attribute to first object, first object, attribute to second object and second object 
of the sentence, respectively. They are subsequently filled while the sentence is 
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parsed against the grammar. Because these memories use a short term mechanism, the 
words assigned to them are active for a longer period of time, allowing to access the 
information later, e.g. for action planning. 

The other fields (Sentence, Quality, Learning) are additional status information 
fields that can distinguish between only two states. The Sentence-memory activates a 
“complete”-state when a complete sentence was correctly parsed, the Quality-memory 
activates a “good”-pattern when there were no ambiguities on single word level (see 
below) and the Learning-box activates a special learn signal when a “this is”-sentence 
is recognized. 

4   Disambiguation 

The system is able to deal with ambiguities on the single word level. When a word 
was not uniquely understood by the HMM (e.g. an ambiguity between “ball” and 
“wall”), the isolated word recognition module is not able to assign a unique interpre-
tation to the stream of triphones generated by the HMMs. In this case, a superposition 
of several words that all match the stream closely is activated and forwarded to the 
sentence recognition network. The sentence recognizer is able to deal with that ambi-
guity and keeps it active until further context information can be used to resolve the 
ambiguity. The ambiguous sentence “bot lift bwall”, where “bwall” is an ambiguity 
between ball and wall, can be resolved to “bot lift ball” in the sentence processing 
network because a wall is not a liftable object. To achieve this disambiguation a bidi-
rectional link between A5P and A5O1 is used, which supports matching pairs of 
predicates and objects. 

5   Online Learning 

New object words can be learned by the system during performance without further 
training the triphone models or changing the structure of the system. The online learn-
ing performance highly depends on the performance of HMMs that need to be trained 
with enough speech data and have a comprehensive language model in order to enable 
the HMMs to generate a plausible phonetic representation for novel words. Learning 
of a new word is initiated by a sentence of the type “This is cup”, where “cup” is the 
word that has to be learned. “This is” arouses the system to learn a new object word.  

While learning of a novel word, in the isolated word recognition module, HM1 and 
HM2 are not updated, whereas HM3 is updated according to the sequence of diphones 
of the novel word. To store the new object word in HM4 and HM5, a new word vector 
is randomly generated and stored in the associative memories. 

The representation of the novel word is then forwarded to the sentence recognition 
network. The associative memories used here employ the so called “spike counter 
model” [10] which allows for automatic detection of novel address patterns. The 
modules are able to measure the retrieval quality, where a low quality indicates that 
the address pattern did not match any of the stored patterns closely. If this is the case 
and an additional learn signal is applied to the memory, it generates a new pattern and 
stores it autoassociatively. If however the address pattern matches a stored pattern 
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closely, no new pattern is generated even if a learn signal is applied. This ensures that 
already known stimuli will be recognized. After learning a new pattern, the heteroas-
sociations between the concerned memories are updated according to a simple binary 
Hebbian learning rule. 

In the special case of learning new object words, the sentence recognition network 
uses the phrase “This is” to determine that a new word is probably going to be 
learned. If “This is” was heard, the Learning-memory (see Fig. 4) activates a special 
pattern responsible for learning new object words. If this pattern is active, the neurons 
emit a special learn signal to all memories in the sentence module that are concerned 
with object words. 

After learning a new object word, the system is able to deal with it in exactly the 
same way as it deals with the vocabulary it knows from initialization. If e.g. “cup” 
was learned during performance by the command “this is cup”, the system can after-
wards understand sentences like “bot show cup”, “bot lift cup” etc. 

At the current state of our work, in order to demonstrate the online learning capa-
bility of the system, we initially stored 40 out of 43 words in the system and the re-
maining 3 words were used for learning during performance. This is due to the fact 
that we did not yet record enough speech material for our own speakers to train the 
HMMs such that they can generate plausible phonetic representation for arbitrary new 
words. 

6   Discussion 

We have presented a system that is able to understand spoken language and to trans-
form low level subsymbolic auditory data into corresponding symbolic representa-
tions that allow for easy deduction of the meaning of the sentence. 

The system is composed of three rather independent main components, the HMM 
triphone recognizer, the isolated word recognizer and the grammar parser (also called 
sentence recognizer). Currently, this three components are interconnected in a feed 
forward manner due to the early stage of development of especially the isolated word 
recognizer. In particular a feedback connection from the grammar parser to the iso-
lated word recognizer would be beneficial as a connection would allow the word rec-
ognizer to focus on words that fit for example grammatical or semantical constraints 
arising while the current sentence is parsed. Although we did not yet implement this 
kind of connection, we plan to add feedback connections in the near future. 

The system is expected to scale well with the size of the vocabulary. It is well 
known that associative memories store information efficiently in terms of storage 
capacity [6][7]. 

The word recognition network additionally allows for different coding schemes 
and subword units to be used. In particular, the latter can be either phonemes, context 
dependent phonemes such as diphones or triphones, semi-syllables or syllables. The 
dimensionality of the memories will then scale with respect to the number of subword 
units. For the vocabularies of small size, it is convenient to work with phonemes or 
diphones in heteroassociative memories instead of triphones (e.g. for a given set of 40 
phonemes, the corresponding set of diphones is composed of up to 1600 diphones 
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whereas the total number of corresponding triphones is around 10000). On the other 
hand, for large vocabularies it is more convenient to use triphones or semi-syllabels. 

The sentence understanding network can operate using random k-out-of-n codes 
for word representation and the dimensionality of the memories can be chosen such 
that high storage capacity can be reached for a given vocabulary. This means in par-
ticular, that memory requirements grow less then linearly with the number of words to 
be stored. For increased, more complex grammars, population A4-G has to be scaled. 
Almost the same arguments apply here. Due to the efficient tree-like structure of the 
grammatical representation, the network scales rather well with respect to a more 
complex grammar also. The computational complexity in terms of computing time 
scales basically linearly with the number of neurons in the system, as long as the 
overall spike activity does not increase significantly (i.e., if the number of active one 
entries in the code vectors is held constant). As additional sparseness also increases 
the storage capacity, the above constraint is however fulfilled in practical systems. 
Note further that the number of neurons does increase less than linearly with the size 
of the vocabulary, this is also true for the computational time required. 

To show the correct semantical understanding of parsed sentences by the system, 
the model is embedded into a robot [11]. Therefore, the system is extended by a neu-
ral action planning part, some simple motor programs (e.g. to pan and tilt the camera) 
and a RBF-based object recognition system. The scenario is a robot standing in front 
of a white table with fruits lying on it, and the robot has to perform actions corre-
sponding to spoken commands. We can demonstrate that the robot is able to perform 
simple actions like e.g. showing a plum by centering it in its camera image after a 
corresponding command like “bot show plum” was given. 

In the robotics scenario described above, the system is not only able to learn new 
object words but also to bind the words to visual representations (this happens in the 
action planning network) and also to learn new visual object representations and bind 
them to object words (new or already known objects). This allows e.g. to generate 
synonyms by introducing new object words and to bind them to an already known 
visual object. 

If we compare the system represented in this study with a HMM based word rec-
ognition system in terms of learning of new words, HMMs have to make some modi-
fications to the pronouncing dictionary and task grammar at each time to add a new 
word. In contrast, the presented system is capable of learning new word representa-
tions by simply adding new patterns to associative memories; it does not need struc-
tural and time-consuming modifications as long as the associative memories are not 
overloaded. 

Our approach to language understanding should be understood in the context of a 
larger model that integrates language understanding, visual object recognition, and 
action planning in a functional, large-scale neural network in a robotics scenario Parts 
of the presented work have been developed earlier within the MirrorBot project of the 
European Union1, and results on sentence understanding [10] and the robotics appli-
cation [11] have been published earlier. Most other approaches deal only with one of 
the aspects mentioned above at a time. Closely related to our work are the approaches 
of Arbib [12], Roy [13], Kirchmar and Edelmann [14] and of Billard and Hayes [15]. 

                                                           
1 See http://www.his.sunderland.ac.uk/mirrorbot/ 
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However, to our knowledge this is the first robot control architecture including simple 
language understanding, visual object recognition and action planning, that is realized 
completely by neural networks [11] and that is able to resolve ambiguities and to 
learn new words during performance [10]. It also represents the first real-time func-
tional simulation of populations of spiking neurons in more than ten cortex areas in 
cooperation. 
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