

Lecture Notes in Artificial Intelligence 5064
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Lionel Prevost Simone Marinai
Friedhelm Schwenker (Eds.)

Artificial
Neural Networks
in Pattern Recognition

Third IAPR Workshop, ANNPR 2008
Paris, France, July 2-4, 2008
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Lionel Prevost
ISIR, Université Pierre et Marie Curie - Paris 6
75252 Paris, France
E-mail: lionel.prevost@upmc.fr

Simone Marinai
Dipartimento di Sistemi e Informatica
Università di Firenze
50139 Firenze, Italy
E-mail: marinai@dsi.unifi.it

Friedhelm Schwenker
Institute of Neural Information Processing
University of Ulm
89069 Ulm, Germany
E-mail: friedhelm.schwenker@uni-ulm.de

Library of Congress Control Number: 2008929582

CR Subject Classification (1998): I.2.6, I.2, I.5, I.4, H.3, F.2.2, J.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-69938-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69938-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12435340 06/3180 5 4 3 2 1 0

Preface

The Third IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recog-
nition, ANNPR 2008, was held at Pierre and Marie Curie University in Paris
(France), July 2–4, 2008. The workshop was organized by the Technical Com-
mittee on Neural Networks and Computational Intelligence (TC3) that is one
of the 20 TCs of the International Association for Pattern Recognition (IAPR).
The scope of TC3 includes computational intelligence approaches, such as fuzzy
systems, evolutionary computing and artificial neural networks and their use in
various pattern recognition applications. ANNPR 2008 followed the success of
the previous workshops: ANNPR 2003 held at the University of Florence (Italy)
and ANPPR 2006 held at Reisensburg Castle, University of Ulm (Germany). All
the workshops featured a single-track program including both oral sessions and
posters with a focus on active participation from every participant.

In recent years, the field of neural networks has matured considerably in both
methodology and real-world applications. As reflected in this book, artificial neu-
ral networks in pattern recognition combine many ideas from machine learning,
advanced statistics, signal and image processing for solving complex real-world
pattern recognition problems.

High quality across such a diverse field of research can only be achieved
through a rigorous and selective review process. For this workshop, 57 papers
were submitted out of which 29 were selected for inclusion in the proceedings.
The oral sessions included 18 papers, while 11 contributions were presented as
posters. ANNPR 2008 featured research works in the areas of supervised and
unsupervised learning, multiple classifier systems, pattern recognition in signal
and image processing, and feature selection.

We would like to thank all authors for the effort they put into their submis-
sions, and the Scientific Committee for taking the time to provide high-quality
reviews and selecting the best contributions for the final workshop program.

A number of organizations supported ANNPR 2008 including the IAPR,
TC3, and the Pierre and Marie Curie University. Last, but not least, we are grate-
ful to Springer for publishing the ANNPR 2008 proceedings in their LNCS/LNAI
series.

April 2008 Lionel Prevost
Simone Marinai

Friedhelm Schwenker

Organization

Organization Committee

Lionel Prevost, Université Pierre and Marie Curie - Paris 6, (France)
Simone Marinai, University of Florence, (Italy)

Program Committee

Shigeo Abe
Monica Bianchini
Hervé Bourlard
Horst Bunke
Mohamed Cheriet
Abdel Ennaji
Patrick Gallinari
Marco Gori
Barbara Hammer

Laurent Heutte
Tom Heskes
José Manuel Inesta
Rudolf Kruse
Cheng-Lin Liu
Marco Maggini
Maurice Milgram
Erkki Oja
Günther Palm

Marcello Pelillo
Raul Rojas
Fabio Roli
Robert Sabourin
Friedhelm Schwenker
Edmondo Trentin
Michel Verleysen

Local Arrangements

Pablo Negri, Shehzad Muhammad Hanif, Mohamed Chetouani, Michle Vié

Sponsoring Institutions

International Association for Pattern Recognition (IAPR)
Pierre and Marie Curie University Paris (France)

Table of Contents

Unsupervised Learning

Patch Relational Neural Gas – Clustering of Huge Dissimilarity
Datasets . 1

Alexander Hasenfuss, Barbara Hammer, and Fabrice Rossi

The Block Generative Topographic Mapping . 13
Rodolphe Priam, Mohamed Nadif, and Gérard Govaert

Kernel k-Means Clustering Applied to Vector Space Embeddings of
Graphs . 24

Kaspar Riesen and Horst Bunke

Probabilistic Models Based on the Π-Sigmoid Distribution 36
Anastasios Alivanoglou and Aristidis Likas

How Robust Is a Probabilistic Neural VLSI System Against
Environmental Noise . 44

C.C. Lu, C.C. Li, and H. Chen

Supervised Learning

Sparse Least Squares Support Vector Machines by Forward Selection
Based on Linear Discriminant Analysis . 54

Shigeo Abe

Supervised Incremental Learning with the Fuzzy ARTMAP Neural
Network . 66

Jean-François Connolly, Eric Granger, and Robert Sabourin

Discriminatory Data Mapping by Matrix-Based Supervised Learning
Metrics . 78

M. Strickert, P. Schneider, J. Keilwagen, T. Villmann,
M. Biehl, and B. Hammer

Neural Approximation of Monte Carlo Policy Evaluation Deployed in
Connect Four . 90

Stefan Faußer and Friedhelm Schwenker

Cyclostationary Neural Networks for Air Pollutant Concentration
Prediction . 101

Monica Bianchini, Ernesto Di Iorio, Marco Maggini, and
Augusto Pucci

VIII Table of Contents

Fuzzy Evolutionary Probabilistic Neural Networks 113
V.L. Georgiou, Ph.D. Alevizos, and M.N. Vrahatis

Experiments with Supervised Fuzzy LVQ . 125
Christian Thiel, Britta Sonntag, and Friedhelm Schwenker

A Neural Network Approach to Similarity Learning 133
Stefano Melacci, Lorenzo Sarti, Marco Maggini, and
Monica Bianchini

Partial Discriminative Training of Neural Networks for Classification of
Overlapping Classes . 137

Cheng-Lin Liu

Multiple Classifiers

Boosting Threshold Classifiers for High–Dimensional Data in Functional
Genomics . 147

Ludwig Lausser, Malte Buchholz, and Hans A. Kestler

Decision Fusion on Boosting Ensembles . 157
Joaqúın Torres-Sospedra, Carlos Hernández-Espinosa, and
Mercedes Fernández-Redondo

The Mixture of Neural Networks as Ensemble Combiner 168
Mercedes Fernández-Redondo, Joaqúın Torres-Sospedra, and
Carlos Hernández-Espinosa

Combining Methods for Dynamic Multiple Classifier Systems 180
Amber Tomas

Researching on Multi-net Systems Based on Stacked Generalization 193
Carlos Hernández-Espinosa, Joaqúın Torres-Sospedra, and
Mercedes Fernández-Redondo

Applications

Real-Time Emotion Recognition from Speech Using Echo State
Networks . 205

Stefan Scherer, Mohamed Oubbati, Friedhelm Schwenker, and
Günther Palm

Sentence Understanding and Learning of New Words with Large-Scale
Neural Networks . 217

Heiner Markert, Zöhre Kara Kayikci, and Günther Palm

Multi-class Vehicle Type Recognition System . 228
Xavier Clady, Pablo Negri, Maurice Milgram, and Raphael Poulenard

Table of Contents IX

A Bio-inspired Neural Model for Colour Image Segmentation 240
Francisco Javier Dı́az-Pernas, Mı́riam Antón-Rodŕıguez,
José Fernando Dı́ez-Higuera, and Mario Mart́ınez-Zarzuela

Mining Software Aging Patterns by Artificial Neural Networks 252
Hisham El-Shishiny, Sally Deraz, and Omar Bahy

Bayesian Classifiers for Predicting the Outcome of Breast Cancer
Preoperative Chemotherapy . 263

Antônio P. Braga, Euler G. Horta, René Natowicz, Roman Rouzier,
Roberto Incitti, Thiago S. Rodrigues, Marcelo A. Costa,
Carmen D.M. Pataro, and Arben Çela

Feature Selection

Feature Ranking Ensembles for Facial Action Unit Classification 267
Terry Windeatt and Kaushala Dias

Texture Classification with Generalized Fourier Descriptors in
Dimensionality Reduction Context: An Overview Exploration 280

Ludovic Journaux, Marie-France Destain, Johel Miteran,
Alexis Piron, and Frederic Cointault

Improving Features Subset Selection Using Genetic Algorithms for Iris
Recognition . 292

Kaushik Roy and Prabir Bhattacharya

Artificial Neural Network Based Automatic Face Model Generation
System from Only One Fingerprint . 305

Seref Sagiroglu and Necla Ozkaya

Author Index . 317

Patch Relational Neural Gas – Clustering of
Huge Dissimilarity Datasets

Alexander Hasenfuss1, Barbara Hammer1, and Fabrice Rossi2

1 Clausthal University of Technology, Department of Informatics,
Clausthal-Zellerfeld, Germany

2 Projet AxIS, INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt,
B.P. 105, 78153 Le Chesnay Cedex, France

Abstract. Clustering constitutes an ubiquitous problem when dealing
with huge data sets for data compression, visualization, or preprocessing.
Prototype-based neural methods such as neural gas or the self-organizing
map offer an intuitive and fast variant which represents data by means of
typical representatives, thereby running in linear time. Recently, an ex-
tension of these methods towards relational clustering has been proposed
which can handle general non-vectorial data characterized by dissimilar-
ities only, such as alignment or general kernels. This extension, relational
neural gas, is directly applicable in important domains such as bioinfor-
matics or text clustering. However, it is quadratic in m both in memory
and in time (m being the number of data points). Hence, it is infeasi-
ble for huge data sets. In this contribution we introduce an approximate
patch version of relational neural gas which relies on the same cost func-
tion but it dramatically reduces time and memory requirements. It offers
a single pass clustering algorithm for huge data sets, running in constant
space and linear time only.

1 Introduction

The presence of huge data sets, often several GB or even TB, poses particular
challenges towards standard data clustering and visualization such as neural gas
or the self-organizing map [10,12]. At most a single pass over the data is still
affordable such that online adaptation which requires several runs over the data
is not applicable. At the same time, alternative fast batch optimization cannot
be applied due to memory constraints. In recent years, researchers have worked
on so-called single pass clustering algorithms which run in a single or few passes
over the data and which require only a priorly fixed amount of allocated mem-
ory. Popular methods include heuristics such as CURE, STING, and BIRCH
[5,16,18] and approximations of k-means clustering as proposed in [4,9]. In ad-
dition, dynamic methods such as growing neural gas have been adapted to cope
with the scenario of life-long adaptivity, see e.g. [15].

The situation becomes even more complicated if data are non-vectorial and
distance-based clustering methods have to be applied, which often display a
quadratic time complexity [8]. Although a variety of methods which can directly
work with relational data based on general principles such as extensions of the

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 A. Hasenfuss, B. Hammer, and F. Rossi

self-organizing map and neural gas have been proposed [3,7,11], these methods
are not suited for huge data sets. For complex metrics such as alignment of DNA
strings or complex kernels for text data, it is infeasable to compute all pairs of
the distance matrix and at most a small fraction can effectively be addressed. A
common challenge today, arising especially in Computational Biology, are huge
datasets whose pairwise dissimilarities cannot be hold at once within random-
access memory during computation, due to the sheer amount of data.

In this work, we present a new technique based on the Relational Neural Gas
approach [7] that is able to handle this situation by a single pass technique based
on patches that can be chosen in accordance to the size of the available random-
access memory. This results in a linear time and finite memory algorithm for
general dissimilarity data which shares the intuitivity and robustness of NG.

2 Neural Gas

Neural Gas (NG), introduced by Martinetz et al. [12], is a vector quantization
technique aiming for representing given data v ∈ V ⊆ R

d faithfully by prototypes
wi ∈ R

d, i = 1, . . . , n. For a continuous input distribution given by a probability
density function P (v), the cost function minimized by NG is

E ∼ 1
2

n∑

i=1

∫
hλ(k(wi, v)) · ‖v − wi‖2 P (v)dv,

where k(wi, v) = |{wj : ‖v − wj‖ < ‖v − wi‖}| denotes the rank of neuron wi

arranged according to the distance from data point v. The parameter λ > 0
controls the neighbourhood range through the exponential function hλ(t) =
exp(−t/λ).

Typically, NG is optimized in an online mode using a stochastic gradient
descent method. However, for a given discrete training set {v1, v2, . . . , vm} the
cost function of NG becomes

E(W) ∼ 1
2
·

n∑

i=1

m∑

j=1

hλ(k(wi, v)) · ‖vj − wi‖2 (1)

For this case, an alternative batch optimization technique has been introduced
[3]. It, in turn, determines the ranks kij = k(wi, vj) for fixed prototype locations
wi and then determines new prototype locations via the update formula

wi =
∑

j

hλ(kij) · vj/
∑

j

hλ(kij)

for the fixed ranks kij . Batch NG shows the same accuracy and behaviour as
NG, whereby its convergence is quadratic instead of linear as for NG.

3 Relational Neural Gas

Relational data do not necessarily originate from an Euclidean vector space,
instead only a pairwise dissimilarity measure dij is given for the underlying

Patch Relational Neural Gas – Clustering of Huge Dissimilarity Datasets 3

datapoints vi, vj ∈ V . The only demands made on dissimilarity measures are
non-negativity dij ≥ 0 and reflexivity dii = 0, so they are not necessarily metric
or even symmetric by nature. Obviously, NG cannot directly deal with such data
and its original formulation is restricted to vectorial updates.

One way to deal with relational data is Median clustering [3]. This technique
restricts prototype locations to given data points, such that distances are well
defined in the cost function of NG. Batch optimization can be directly tranferred
to this case. However, median clustering has the inherent drawback that only
discrete adaptation steps can be performed which can dramatically reduce the
representation quality of the clustering.

Relational Neural Gas (RNG) [7] overcomes the problem of discrete adap-
tation steps by using convex combinations of Euclidean embedded data points
as prototypes. For that purpose, we assume that there exists a set of (in gen-
eral unknown and presumably high dimensional) Euclidean points V such that
dij = ‖vi− vj‖ for all vi, vj ∈ V holds, i.e. we assume there exists an (unknown)
isometric embedding into an Euclidean space. The key observation is based on
the fact that, under the assumptions made, the squared distances ‖wi − vj‖2
between (unknown) embedded data points and optimum prototypes can be ex-
pressed merely in terms of known distances dij .

In detail, we express the prototypes as wi =
∑

j αijvj with
∑

j αij = 1. With
optimal prototypes, this assumption is necessarily fulfilled. Given a coefficient
matrix (αij) ∈ �n×m and a matrix Δ =

(
d2

ij

) ∈ �m×m of squared distances, it
then holds

‖wi − vj‖2 = (αi∗ ·Δ)j − 1
2
· αi∗ΔαT

i∗ (2)

where ∗ indicates vector indices. Because of this fact, we are able to substitute all
terms ‖wi− vj‖2 in Batch NG by (2) and derive new update rules. For optimum
prototype locations given fixed ranks we find

αij = hλ(ki(vj))/
∑

t

hλ(ki(vt)). (3)

This allows to reformulate the batch optimization schemes in terms of relational
data as done in [7].

Note that, if an isometric embedding into Euclidean space exists, this scheme
is equivalent to Batch NG and it yields identical results. Otherwise, the con-
secutive optimization scheme can still be applied. It has been shown in [7] that
Relational NG converges for every nonsingular symmetric matrix Δ and it opti-
mizes the relational dual cost function of NG which can be defined solely based
on distances Δ.

Relational neural gas displays very robust results in several applications as
shown in [7]. Compared to original NG, however, it has the severe drawback
that the computation time is O(m2), m being the number of data points, and
the required space is also quadratic (because of Δ). Thus, this method becomes
infeasible for huge data sets. Recently, an intuitive and powerful method has
been proposed to extend batch neural gas towards a single pass optimization
scheme which can be applied even if the training points do not fit into the main

4 A. Hasenfuss, B. Hammer, and F. Rossi

memory [1]. The key idea is to process data in patches, whereby prototypes serve
as a sufficient statistics of the already processed data. Here we transfer this idea
to relational clustering.

4 Patch Relational Neural Gas

Assume as before that data are given as a dissimilarity matrix D = (dij)i,j=1,...,m

with entries dij = d(vi, vj) representing the dissimilarity of the datapoints vi

and vj . During processing of Patch Relational NG, np patches of fixed size p =
�m/np	 are cutted consecutively from the dissimilarity matrix D1, where every
patch

Pi = (dst)s,t=(i−1)·p+1,...,i·p ∈ �p×p

is a submatrix of D centered around the matrix diagonal.
The idea of the original patch scheme is to add the prototypes from the pro-

cessing of the former patch Pi−1 as additional datapoints to the current patch Pi,
forming an extended patch P ∗

i which includes the previous points in the form of
a compressed statistics. The additional datapoints – the former prototypes – are
weighted according to the size of their receptive fields, i.e. how many datapoints
do they represent in the former patch. To implement this fact, every datapoint
vj is equipped with a multiplicity mj , which is initialized with mj = 1 for data
points from the training set and it is set to the size of the receptive fields for
data points stemming from prototypes. This way, all data are processed without
loss of previous information which is represented by the sufficient statistics. So
far, the method has only been tested for stationary distributions. However, it
can expected that the method works equally well for nonstationary distributions
due to the weighting of already processed information according to the number
of already seen data points. In contrast to dynamic approaches such as [15] the
number of prototypes can be fixed a priori.

Unlike the situation of original Patch NG [1], where prototypes can simply be
converted to datapoints and the inter-patch distances can always be recalculated
using the Euclidean metric, the situation becomes more difficult for relational
clustering. In Relational NG prototypes are expressed as convex combinations of
unknown Euclidean datapoints, only the distances can be calculated. Moreover,
the relational prototypes gained from processing of a patch cannot be simply
converted to datapoints for the next patch. They are defined only on the data-
points of the former patch. To calculate the necessary distances between these
prototypes and the datapoints of the next patch, the distances between former
and next patch must be taken into account, as shown in [7]. But that means
touching all elements of the upper half of the distance matrix at least once dur-
ing processing of all patches, what foils the idea of the patch scheme to reduce
computation and memory-access costs.

In this contribution, another way is proposed. In between patches not the
relational prototypes itselves but representative datapoints obtained from a so
1 The remainder is no further considered here for simplicity. In the practical imple-

mentation the remaining datapoints are simply distributed over the first (M −p ·np)
patches.

Patch Relational Neural Gas – Clustering of Huge Dissimilarity Datasets 5

called k-approximation are used to extend the next patch. As for standard patch
clustering, the points are equipped with multiplicities. On each extended patch
a modified Relational NG is applied taking into account the multiplicities.

k-Approximation. Assume there are given n relational prototypes by their
coefficient matrix (αij) ∈ �n×m defined on Euclidean datapoints V . These pro-
totypes are taken after convergence of the Relational NG method, i.e. these
prototypes are situated at optimal locations.

As can be seen from the update rule (3), after convergence in the limit λ→ 0
it holds

αij −→
{

1/|Ri| : vj ∈ Ri

0 : vj �∈ Ri
, because

{
hλ(kij) = 1 for vj ∈ Ri

hλ(kij)→ 0 for vj �∈ Ri

}
,

where Ri = {vj ∈ V : ‖wi − vj‖ ≤ ‖wk − vj‖ for all k} denotes the receptive
field of prototype wi. That means, in the limit only datapoints from the receptive
fields have positive coefficients and equally contribute to the winning prototype
that is located in the center of gravity of its receptive field.

A k-approximation of an optimal relational prototype wi is a subset R′ ⊆
Ri with |R′| = min{k, |Ri|} such that

∑
r′ ∈ R′ ‖wi − r′‖2 is minimized. That

means, we choose the k nearest points from the receptive field of a prototype as
representatives. If there are less than k points in the receptive field, the whole
field is taken. This computation can be done in time O(|Ri| · k). For a set W of
relational prototypes, we refer to the set containing a k-approximation for each
relational prototype wi ∈W a k-approximation of W .

These k-approximations in combination with their corresponding coefficients
can be interpreted as a convex-combined point in the relational model, defined
just over the points of the k-approximation. Therefore, if merged into the next
patch, the number of the prototype coefficients remains limited, and the distances
of these approximated prototypes to points of the next patch can be calculated
using the original equations. This way, only a fraction of the inter-patch distances
needs to be considered.

Construction of Extended Patches. Let Wt be a set of optimal relational
prototypes gained in a step t. Assume Nt denotes the index set of all points
included in the union of a k-approximation of Wt pointing onto elements of
the dissimilarity matrix D. The extended patch P ∗

t is then characterized by the
distance matrix

P ∗
t =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d(Nt−1) d(Nt−1, Pt)

d(Nt−1, Pt)T Pt

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

6 A. Hasenfuss, B. Hammer, and F. Rossi

where
d(Nt−1) = (duv)u,v ∈ Nt−1

∈ �nt×nt

d(Nt−1, Pt) = (duv)u ∈ Nt−1,v=(t−1)·p+1,...,t·p ∈ �nt×p

denote the inter-distances of points from the k-approximation and the distances
between points from the k-approximation and current patch points, respectively.
The size nt is bounded by |Wt| · k.

Integrating Multiplicities. The original Relational Neural Gas method has
to be modified to handle datapoints vj equipped with multiplicities mj which are
given by the size of the receptive fields divided by k. Incorporating multiplicities
into the cost function yields the update rule

ᾱij =
mj · hλ(ki(vj))∑
t mt · hλ(ki(vt))

for prototype coefficients. The computation of distances is not changed.

Patch Relational Neural Gas. Assembling the pieces, we obtain:

Algorithm

Cut the first Patch P1

Apply Relational NG on P1 −→ Relational prototypes W1

Use k-Approximation on W1 −→ Index set N1

Update Multiplicities mj according to the receptive fields

Repeat for t = 2, . . . , np

Cut patch Pt

Construct Extended Patch P ∗
t using Pt and index set Nt−1

Apply modified RNG with Multiplicities −→ Relational prototypes Wt

Use k-Approximation on Wt −→ Index set Nt

Update Multiplicities mj according to the receptive fields

Return k-approximation of final prototypes Nnp

Complexity. Obviously, the size of extended patches is bounded by the size of
the new patch read from the distance matrix and the distances of the at most k·n
points representing the n prototypes of the last run by their k approximation.
Assume a bounded extended patch size p independent of the number of data-
points, as it would be the case when the patch size is chosen according to memory
limitations. The algorithm then works only on O(m

p · p2) = O(m · p) = O(m)
entries of the dissimilarity matrix, compared to O(m2) in the original Median
NG method. Moreover, the algorithm uses at most O(p2) = const entries at a
specific point in time.

In case of fixed patch size, also the time complexity is linear, because the
Median NG step is O(p2) what results in O(p2 · m

p) = O(p · m) = O(m), an

Patch Relational Neural Gas – Clustering of Huge Dissimilarity Datasets 7

advantage compared to the O(m2) time complexity of the original Median NG.
Further, the algorithm can be run in a single pass over the data.

These advantages in space and time complexity are obtained by an approx-
imation of the prototypes. As we will see in experiments, this leads only to a
small loss in accuracy.

5 Experiments

Practioners often handle huge datasets whose dissimilarities cannot be hold at
once within random-access memory due to the sheer amount of data (O(m2)).
At that point, Patch Relational NG comes into play providing a single pass tech-
nique based on patches that can be chosen in accordance to the available random-
access memory. To show the overall performance of the proposed method, we
have chosen some representative dissimilarity datasets. Due to limited comput-
ing power and hardware available, the chosen datasets do not represent real-life
huge datasets, they should be understood as a proof-of-concept that nevertheless
can instantly be transfered to the real problems.

We evaluate the clustering results by means of the classification error for
supervised settings, whereby class labels are obtained by posterior labeling of
prototypes. Note, however, that the goal of the algorithms is meaningful clus-
tering of data based on a chosen similarity measure and cost function. Hence,
the classification error gives only a hint about the quality of the clustering, de-
pending on whether the class labels are compatible to the data clusters and
chosen metric or not. We accompany this supervised evaluation be the standard
quantization error of the clustering.

For all experiments the initial neighborhood range λ0 is chosen as n/2 with
n the number of neurons used. The neighborhood range λ(t) is decreased ex-
ponentially with the number of adaptation steps t according to λ(t) = λ0 ·
(0.01/λ0)t/tmax (cf. [12]). The value tmax is chosen as the number of epochs.

5.1 Synthetic Dataset

To analyze the relation between the number of patches and the quantization
error on one hand, and the effect of k-approximation of relational prototypes
on the other hand, an artificial dataset from [3] was taken. It consists of 1250
datapoints in the Euclidean plane gained from three Gaussian clusters.

Effect of k-Approximation. For an empirical study of the effect of k-approxi-
mation on the quantization error, we trained 50 neurons with the original Rela-
tional NG for 100 epochs, i.e. on average every neuron represents 25 datapoints.
On the outcoming relational neurons, k-Approximation for k = 1, . . . , 20 were
applied. Figure 1 shows a comparison of the quantization errors yielded with
the different approximations to the quantization error gained by the original
relational neurons. For each step the average over 10 runs is reported.

As expected, the quantization error decreases with higher numbers k of data-
points used to approximate each relational neuron. Concerning the patch ap-
proach, applying a k-approximation to the relational neurons of each patch

8 A. Hasenfuss, B. Hammer, and F. Rossi

2 4 6 8 10 12 14 16 18 20
26

26.5

27

27.5

28

28.5

29

29.5

30

k

Q
ua

nt
iz

at
io

n
E

rr
or

Relational NG
k-Approximated RNG

Fig. 1. Quantization error (i.e. E(W) for λ → ∞) of original relational neurons com-
pared to different k-approximations on a synthetic dataset

clearly results in a loss of accuracy depending on the choice of parameter k.
But as can be seen later on, even with k-approximation the quality of the results
is still convincing.

Effect of Patch Sizes. Analyzing the relation between the number of patches
chosen and the quantization error, we trained median and relational NG with 20
neurons for 50 epochs. The results presented in figure 2 show the quantization
error averaged over 10 runs for each number of patches. As expected, the quan-
tization error increases with the number of patches used. But compared to the
Median Patch NG approach the presented Patch Relational NG performs very
well with only a small loss even for a larger number of patches used.

5.2 Chicken Pieces Silhouettes Dataset

The task is to classify 446 silhouettes of chicken pieces into the categories wing,
back, drumstick, thigh and back, breast. Data silhouettes are represented as a
string of the angles of consecutive tangential pieces of length 20, including appro-
priate scaling. Strings are compared using a (rotation invariant) edit distance,
where insertions/deletions cost 60, and the angle difference is taken otherwise.

For training we used 30 neurons. For Patch Median NG the dataset was
divided into 4 patches, i.e. a patch size of around 111 datapoints. The results
reported in Table 1 are gained from a repeated 10-fold stratified crossvalidation
averaged over 100 repetitions and 100 epochs per run. The k-approximation for
Patch Relational NG was done with k = 3.

Patch Relational Neural Gas – Clustering of Huge Dissimilarity Datasets 9

2 4 6 8 10 12 14
60

70

80

90

100

110

120

130

140

150

Number of Patches

Q
ua

nt
iz

at
io

n
E

rr
or

Median kMeans
Median NG
Patch Median NG
Relational NG
Patch Relational NG

Fig. 2. Quantization error for different patch sizes on a synthetic dataset

Table 1. Classification accuracy on Chicken Pieces Dataset gained from repeated 10-
fold stratified crossvalidation over 100 repetitions, four patches were used

Accuracy on Chicken Pieces Dataset

Relational Patch Median Patch Median

NG Relational NG Batch NG Median NG k-Means

Mean 84.7 85.4 66.4 68.8 72.9

StdDev 1.0 1.1 1.9 2.3 1.7

5.3 Protein Classification

The evolutionary distance of 226 globin proteins is determined by alignment
as described in [13]. These samples originate from different protein families:
hemoglobin-α, hemoglobin-β, myoglobin, etc. Here, we distinguish five classes
as proposed in [6]: HA, HB, MY, GG/GP, and others. Table 2 shows the class
distribution of the dataset.

For training we used 20 neurons. For Patch Median NG the dataset was
divided into 4 patches, i.e. a patch size of around 57 datapoints. The results
reported in Table 3 are gained from a repeated 10-fold stratified crossvalidation
averaged over 100 repetitions and 100 epochs per run.

Despite the small size of this dataset – acting more as a proof-of-concept
example – the results clearly show a good performance of Patch Median NG.

10 A. Hasenfuss, B. Hammer, and F. Rossi

Table 2. Class Statistics of the Protein Dataset

Class No. Count Percentage
HA 72 31.86%
HB 72 31.86%
MY 39 17.26%
GG/GP 30 13.27%
Others 13 5.75%

Table 3. Classification accuracy on Protein Dataset gained from repeated 10-fold
stratified crossvalidation over 100 repetitions, four patches were used

Accuracy on Protein Dataset

Relational Patch Median Patch Median

NG Relational NG Batch NG Median NG k-Means

Mean 92.62 92.61 79.9 77.7 80.6

StdDev 0.92 0.88 1.5 2.4 1.3

Nevertheless, the price of reduced accuracy is obvious, but faster computation
and less space requirements are gained in return. The k-approximation for Patch
Relational NG was done with k = 3.

5.4 Wisconsin Breast Cancer

The Wisconsin breast cancer diagnostic database is a standard benchmark set
from clinical proteomics [17]. It consists of 569 data points described by 30 real-
valued input features: digitized images of a fine needle aspirate of breast mass are
described by characteristics such as form and texture of the cell nuclei present
in the image. Data are labeled by two classes, benign and malignant.

Dissimilarities were derived by applying the Cosine Measure

dcos(vi, vj) = 1− vi · vj

‖vi‖2 · ‖vj‖2 .

We trained 40 neurons for 100 epochs. As result the accuracy on the test set for
a repeated 10-fold stratified crossvalidation averaged over 100 runs is reported.
The number of patches chosen for Patch Median NG and Patch Relational NG
was 5, i.e. around 114 datapoints per patch. The k-approximation for Patch
Relational NG was done with k = 2.

Also on this dataset, Patch Relational NG acts merely worse than the original
Relational NG. Though, the reduction in accuracy is clearly observable.

5.5 Chromosome Images Dataset

The Copenhagen chromosomes database is a benchmark from cytogenetics. A
set of 4200 human chromosomes from 22 classes (the autosomal chromosomes)
are represented by the grey levels of their images. These images were transferred

Patch Relational Neural Gas – Clustering of Huge Dissimilarity Datasets 11

Table 4. Classification accuracy on Wisconsin Breast Cancer Dataset with Cosine
Measure gained from repeated 10-fold stratified crossvalidation over 100 repetitions,
five patches and a 2-approximation were used

Accuracy on Wisconsin Breast Cancer Dataset

Relational Patch Median Patch Median

NG Relational NG Batch NG Median NG k-Means

Mean 95.0 94.8 94.7 94.4 94.6
StdDev 0.6 0.7 0.7 0.7 0.7

Table 5. Classification accuracy on Copenhagen Chromosome Image Dataset gained
from repeated 2-fold stratified crossvalidation over 10 repetitions, 10 patches and a
3-approximation were used

Accuracy on Copenhagen Chromosome Image Dataset

Relational Patch Median Patch Median

NG Relational NG Batch NG Median NG k-Means

Mean 89.6 87.0 80.0 67.9 77.1
StdDev 0.6 0.8 1.4 3.1 2.2

to strings representing the profile of the chromosome by the thickness of their
silhouettes. Strings were compared using edit distance with substitution costs
given by the signed difference of the entries and insertion/deletion costs given
by 4.5 [14]. The methods have been trained using 60 neurons for 100 epochs. As
result the accuracy on the test set for a repeated 2-fold stratified crossvalidation
averaged over 10 runs is reported. The number of patches chosen for Patch
Median NG and Patch Relational NG was 10, i.e. around 420 datapoints per
patch. The k-approximation for Patch Relational NG was done with k = 3.

Also on this dataset, Patch Relational NG acts well. Though, the reduction
in accuracy is clearly observable.

6 Summary

In this paper, we proposed a special computation scheme, based on Relational
Neural Gas, that allows to process huge dissimilarity datasets by a single pass
technique of fixed sized patches. The patch size can be chosen to match the
given memory constraints. As explained throughout the paper, the proposed
patch version reduces the computation and space complexity with a small loss
in accuracy, depending on the patch sizes. We further demonstrated the ability
of the proposed method on several representative clustering and classification
problems. In all experiments, relational adaptation increased the accuracy of
Median clustering.

Note that relational and patch optimization are based on a cost function re-
lated to NG such that extensions including semisupervised learning and metric

12 A. Hasenfuss, B. Hammer, and F. Rossi

adaptation can directly be transferred to this settings. In future work, the method
will be applied to more real-world datasets. The patch scheme also opens a way
towards parallelizing the method as demonstrated in [2].

References

1. Alex, N., Hammer, B., Klawonn, F.: Single pass clustering for large data sets. In:
WSOM (2007)

2. Alex, N., Hammer, B.: Parallelizing single patch pass clustering (submitted,
ESANN 2008)

3. Cottrell, M., Hammer, B., Hasenfuss, A., Villmann, T.: Batch and median neural
gas. Neural Networks 19, 762–771 (2006)

4. Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering Data Streams. In:
IEEE Symposium on Foundations of Computer Science, pp. 359–366 (2000)

5. Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large
datasets. In: Proceedings of ACM SIGMOD International Conference on Manage-
ment of Data, pp. 73–84 (1998)

6. Haasdonk, B., Bahlmann, C.: Learning with distance substitution kernels. In: Ras-
mussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS,
vol. 3175, pp. 220–227. Springer, Heidelberg (2004)

7. Hammer, B., Hasenfuss, A.: Relational Neural Gas. In: Hertzberg, J., Beetz, M.,
Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 190–204. Springer, Hei-
delberg (2007)

8. Hartigan, J.A.: Clustering Algorithms. Wiley, Chichester (1975)
9. Jin, R., Goswami, A., Agrawal, G.: Fast and Exact Out-of-Core and Distributed

K-Means Clustering. Knowledge and Information System (to appear)
10. Kohonen, T.: Self-Organized formation of topologically correct feature maps. Bio-

logical Cybernetics 43, 59–69 (1982)
11. Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvecto-

rial data. Neural Networks 15, 945–952 (2002)
12. Martinetz, T., Berkovich, S., Schulten, K.: ‘Neural gas’ network for vector quanti-

zation and its application to time series prediction. IEEE Transactions on Neural
Networks 4(4), 558–569 (1993)

13. Mevissen, H., Vingron, M.: Quantifying the local reliability of a sequence alignment.
Protein Engineering 9, 127–132 (1996)

14. Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern
classification. Pattern Recognition 39(10), 1852–1863 (2006)

15. Prudent, Y., Ennaji, A.: An incremental growing neural gas learns topology. In:
IJCNN 2005 (2005)

16. Wang, W., Yang, J., Muntz, R.R.: STING: a statistical information grid approach
to spatial data mining. In: Proceedings of the 23rd VLDB Conference, pp. 186–195
(1997)

17. Wolberg, W.H., Street, W.N., Heisey, D.M., Mangasarian, O.L.: Computer-derived
nuclear features distinguish malignant from benign breast cytology. Human Pathol-
ogy 26, 792–796 (1995)

18. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering
method for very large databases. In: Proceedings of the 15th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 103–114
(1996)

The Block Generative Topographic Mapping

Rodolphe Priam1, Mohamed Nadif2, and Gérard Govaert3

1 LMA Poitiers UMR 6086, Université de Poitiers,
86962 Futuroscope Chasseneuil, France

2 CRIP5 EA No2517, Université Paris Descartes,
UFR de Mathématiques et Informatique, 75006 Paris, France

3 Heudiasyc UMR 6599, UTC, BP 20529, 60205 Compiègne, France

Abstract. This paper presents a generative model and its estimation
allowing to visualize binary data. Our approach is based on the Bernoulli
block mixture model and the probabilistic self-organizing maps. This
leads to an efficient variant of Generative Topographic Mapping. The
obtained method is parsimonious and relevant on real data.

1 Introduction

Linear methods for exploratory visualization [1] are very powerful and contribute
effectively to data analysis every days, but large datasets require new efficient
methods. Indeed, the algorithms based on the matricial decomposition become
useless for large matrices; moreover, the construction of many maps due to high-
dimensionality makes the task of interpretation difficult from the information
disseminated on the different maps. Finally a great quantity of data implies a
great quantity of information to be synthesized and complex relations between
individuals and studied variables. It is then relevant, in this context, to use a
self-organizing map (SOM) of Kohonen [2]. SOM is a clustering method with a
vicinity constraint on the cluster centers to give a topological sense to the ob-
tained final partition. The SOM can be seen like an alternative of the k-means
algorithm integrating a topological constraint on the centers. Bishop et al. [3]
has re-formulated SOM within a probabilistic setting to give the Generative To-
pographic Mapping (GTM). GTM is a method similar to the self-organizing map
with constraints of vicinity embedded in a mixture model of gaussian densities.
In contrast to SOM, GTM is based on a well-defined criterion; the model im-
plements an EM algorithm [4] which guarantees the convergence. Recently, to
tackle the visualization of binary data, we have proposed a variant of GTM based
on the classical Bernoulli mixture model [5]. The obtained results are encour-
aging but when the number of parameters increases with the high-dimensional
data, the projection is therefore problematic. To cope with this problem, we
propose in this work to use a parsimonious model in order to overcome the
high-dimensionality problem.

When the data matrix x is defined on a set I of objects (rows, observations)
and a set J of variables (columns, attributes), the block clustering methods,
in contrast to the classical clustering methods, consider the two sets I and J

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 13–23, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

14 R. Priam, M. Nadif, and G. Govaert

simultaneously [6],[7,8],[9]. Recently, these kind of methods were embedded in
the mixture approach [10],[11],[12] and a parsimonious model called Block La-
tent Model has been proposed [13,14]. The developed hard and soft algorithms
appeared more profitable than the clustering applied separately on I and J [15].
For these reasons, we propose to tackle the problem of visualization of I, by
combining the block mixture model and the probabilistic self-organizing maps.
This leads to propose a new generative topographic model.

This paper is organized as follows. In Section 2, to give the necessary back-
ground of the block clustering approach under the mixture model, we review the
block latent model. In Section 3, we focus on the binary data and we propose
a Block Generative Topographic Mapping based on a block Bernoulli model. In
Section 4 devoted to the numerical experiments, we illustrate our method with
three binary benchmarks. Finally, the last section summarizes the main points
of work and indicates some perspectives.

Hereafter, the partition z into g clusters of a sample I will be represented by
the classification matrix (zik, i = 1, . . . , n, k = 1, . . . , g) where zik = 1 if i belongs
to cluster k and 0 otherwise. A similar notation will be used for a partition w
into m clusters of the set J . Moreover, to simplify the notation, the sums and
the products relating to rows, columns, row clusters and column clusters will
be subscripted respectively by the letters i, j, k and �, without indicating the
limits of variation which will be implicit. So, for example, the sum

∑
i stands

for
∑n

i=1, and
∑

i,j,k,� stands for
∑n

i=1

∑d
j=1

∑g
k=1

∑m
�=1.

2 The Latent Block Model

2.1 Block Clustering

In the following, the n× d matrix data is defined by x = {(xij); i ∈ I and ∈ J}
where xij ∈ {0, 1}. The aim of block clustering is to try to summary this matrix
by homogeneous blocks. This problem can be studied under the simultaneous
partition approach of two sets I and J into g and m clusters respectively. Go-
vaert [7,8] has proposed several algorithms which perform block clustering on
contingency tables, binary, continuous and categorical data. These algorithms
consist in optimizing a criterion E(z,w, a), where z is a partition of I into g
clusters, w is a partition of J into m clusters and a is a g ×m matrix which
can be viewed as a summary of the data matrix x. A more precise definition of
this summary and criterion E will depend on the nature of data. The search of
the optimal partitions z and w was made using an iterative algorithm. This one
is based on the alternated k-means with appropriate metric applied on reduced
intermediate g×d and n×m matrices. In [13,14], these methods were modeled in
the mixture approach. Hard and soft algorithms were then developed. Efficient
and scalability are the advantages of these new methods. Next, we review this
approach.

The Block Generative Topographic Mapping 15

2.2 Definition of the Model

Some of the most popular heuristic clustering methods can be viewed as ap-
proximate estimations of probability models. For instance, the inertia crite-
rion optimized by the k-means algorithm corresponds to the hypothesis of a
population arising from a gaussian mixture. For the classical mixture model,
the probability density function (pdf) of a mixture sample x = (x1, . . . , xn)
can be also written [13] f(x; θ) =

∑
z∈Z p(z; θ)f(x|z; θ) where Z denotes the

set of all possible assignments z of I into g clusters, p(z; θ) =
∏

i,k pzik

k and
f(x|z; θ) =

∏
i,k ϕ(xi; αk)zik . In the context of the block clustering problem,

this formulation can be extended to propose a latent block model defined by the
following pdf f(x; θ) =

∑
u∈U p(u; θ)f(x|u; θ) where U denotes the set of all

possible assignments of I × J , and θ is the parameter of this mixture model.
In restricting this model to a set of assignments of I×J defined by a product

of assignments of I and J , assumed to be independent, we obtain the following
decomposition

f(x; θ) =
∑

(z,w)∈Z×W
p(z; θ)p(w; θ)f(x|z,w; θ),

where Z and W denote the sets of all possible assignments z of I and w of
J . Now, as in latent class analysis, the n × d random variables generating the
observed xij cells are assumed to be independent once z and w are fixed; we
then have

f(x|z,w; θ) =
∏

i,j,k,�

ϕ(xij ; αk�)zikwj� ,

where ϕ(.; αk�) is a pdf defined on the real set R and αk� an unknown parameter.
The parameter θ is formed by α = (α11, . . . , αgm), p and q; p = (p1, . . . , pg)
and q = (q1, . . . , qm) are the vectors of probabilities pk and q� that a row and a
column belong to the kth component and to the �th component respectively.

For instance, for binary data, we obtain a Bernoulli latent block model defined
by the following pdf

f(x; θ) =
∑

(z,w)∈Z×W

∏

i,k

pzik

k

∏

j,�

q
wj�

�

∏

i,j,k,�

(αk�)xij (1− αk�)1−xij ,

where xij ∈ {0, 1}, and αk� ∈ (0, 1). Using this block model is dramatically
more parsimonious than using a classical mixture model on each set I and J :
for instance, with n = 1000 objects and d = 500 variables and equal class
probabilities pk = 1/g and q� = 1/m, if we need to cluster the binary data
matrix into g = 4 clusters of rows and m = 3 clusters of columns, the Bernoulli
latent block model will involve the estimation of 12 parameters α = (αk�, k =
1, . . . , 4, � = 1, . . . , 3), instead of (4 × 500 + 3 × 1000) parameters with two
Bernoulli mixture models applied on I and J separately.

2.3 Estimation of the Parameters

Now we focus on the estimation of an optimal value of θ by the maximum
likelihood approach associated to this block mixture model. For this model, the

16 R. Priam, M. Nadif, and G. Govaert

complete data are taken to be the vector (x, z,w) where unobservable vectors z
and w are the labels; the classification log-likelihood

LC(z,w, θ) = L(θ;x, z,w) = log f(x, z,w; θ)

can then be written

LC(z,w, θ) =
∑

i,k zik log pk +
∑

j,� wj� log q� +
∑

i,j,k,� zikwj� log ϕ(xij ; αk�).

The EM algorithm [4] maximizes the log-likelihood LM (θ) w. r. to θ iteratively
by maximizing the conditional expectation of the complete data log-likelihood
LC(z,w, θ) w. r. to θ given a previous current estimate θ(t) and the observed
data x

Q(θ, θ(t))=
∑

i,k c
(t)
ik log pk +

∑
j,� d

(t)
j� log q� +

∑
i,j,k,� e

(t)
ikj� log ϕ(xij ; αk�), (1)

with
c
(t)
ik = P (Zik = 1|θ(t),X = x),

d
(t)
j� = P (Wj� = 1|θ(t),X = x),

e
(t)
ikj� = P (ZikWj� = 1|θ(t),X = x),

where the upper case letters X, Zik and Wj� denote the random variables.
Unfortunately, difficulties arise owing to the dependence structure among the

variables Xij of the model, and more precisely, to the determination of e
(t)
ikj�.

To solve this problem a variational approximation by the product c
(t)
ik d

(t)
j� and

a use of the Generalized EM algorithm (GEM) provide a good solution in the
clustering and estimation contexts [14].

Next we develop the Generative Topographic Mapping which is based on a
constrained block Bernoulli mixture whose parameters can be optimized by using
a Generalized EM algorithm.

3 Block Generative Topographic Mapping

The Generative Topographic Mapping is a method similar to SOM but based
on a constrained gaussian mixture density estimation. The clusters are typically
arranged in a regular grid, which is the latent discretized space. The parameters
are parameterized as a linear combination of g vectors of h smooth nonlinear
basis functions φ evaluated on g coordinates of a rectangular grid {sk}k=g

k=1, so
for k = 1, · · · , g we note

ξk = Φ(sk) = (φ1(sk), φ2(sk), · · · , φh(sk))T ,

where each basis function φ is a kernel-like function,

φ(sk) = exp
(
− ||sk − μφ||2

2ν2
φ

)
,

The Block Generative Topographic Mapping 17

with μφ ∈ R
2 a mean center and νφ a standard deviation. More formally, we

parameterize the αk�’s of the block latent model by using the latent space pro-
jected into a higher space of h dimensions and we obtain m new h-dimensional
unknown vectors noted w� to be estimated. To keep the dependence on � and k of
αk�, we use the inner product wT

� ξk which is then normalized to a probability by
the sigmoid function σ(.) as a parameter of the Bernoulli pdf. With this formu-
lation, the g×m matrix α is replaced by the h×m matrix Ω = [w1|w2| · · · |wm].
As h is small in practice, as several tens, the model remains parsimonious. In the
previous example where the binary data consists of 1000 rows and 500 columns,
we end to about several hundred h ×m parameters because h is typically less
than 40 and m less than 10. The number of parameters is still less than in the
case of a classical mixture approach applied to the both sets separately. Our
model has a good foundation to avoid overfitting and its estimation may be less
prone to fall into local optima thanks to the small number of parameters: alter-
native models have a linear increasing of the number of their parameters when
the dimension of the data space becomes higher, contrary to the Block GTM.
The following figure 1 shows how the discretized plane becomes a non linear
space of probability with the constraints of vicinity.

sk

ξk

Fig. 1. The graphic illustrates the parameterization of the non linear sigmoid with
transformation from a bidimensional Euclidean space to a space of parametric proba-
bilities. In the left the rectangular mesh of the sk’s coordinates is drawn, and in the
right the distribution space from ϕ. Each coordinate of the mesh sk, k = 1, · · · , g, is
mapped in order to become a Bernoulli pdf by writing σ(wT

� ξk), � = 1, · · · , m.

The maximization of the new expression of (1) depending on Ω can also be per-
formed by the alternated maximization of conditional expectations Q(θ, θ(t)|d)
and Q(θ, θ(t)|c) [14]. When the proportions are supposed equal, the two criteria
take the following form

Q(θ, θ(t)|d) =
∑

i,k c
(t)
ik

{∑
� ui�w

T
� ξk − d� log(1 + ewT

� ξk)
}

,

Q(θ, θ(t)|c) =
∑

j,� d
(t)
j�

{∑
k vjkwT

� ξk − ck log(1 + ewT
� ξk)

}
,

18 R. Priam, M. Nadif, and G. Govaert

with ui� =
∑

j d
(t)
j� xij , d� =

∑
j dj� and c

(t)
ik ∝

∏
�(σ(wT

� ξk))ui�(1−σ(wT
� ξk))d�−ui� ,

and vjk =
∑

i c
(t)
ik xij , ck =

∑
i cik and d

(t)
j� ∝

∏
k(σ(wT

� ξk))vjk (1−σ(wT
� ξk))ck−vjk .

A closed form for maximizing these two expectations does not exist yet because
of the non linearities from the sigmoid functions, so we use a gradient approach
to calculate

w(t+ 1
2) = argmaxw Q(θ, θ(t)|d) and w(t+1) = argmaxw Q(θ, θ(t+ 1

2)|c).

By derivative of the two criteria, we get the gradient vectors Q(t)
u , Q(t)

v , and
the Hessian matrices H(t)

u , H(t)
v . As the Hessian are block diagonal matrices, we

are able to increase the log-likelihood at each step of EM, by two consecutive
Newton-Raphson ascents for � = 1, . . . , m. This leads to the Generalized EM
algorithm. If we note Φ = [ξ1|ξ2| · · · |ξg]T the g × h matrix of basis functions,
each w� is then expressed as

w
(t+ 1

2)

� = w
(t)
� + 1

d(�)

(
ΦT GF�Φ

)−1(
ΦT Cu� − d(�) ΦT Gα�

)
,

w
(t+1)
� = w

(t+ 1
2)

� + 1
d(�)

(
ΦT GF�Φ

)−1(
ΦT V d� − d(�) ΦT Gα�

)
,

where C = (c(t)
ik) is a g × n matrix of posterior probabilities, V = (v(t)

jk) a

g × d matrix of sufficient statistics, G = (c(t)
k) and F� = (α(t)

k� (1 − α
(t)
k�)) are

g × g diagonal matrices, α� = (α(t)
k�) a g × 1 vector, u� = (u(t)

i�) a n × 1 vector,
d� = (d(t)

j�) a d× 1 vector, and d(�) = d
(t)
� is a scalar.

Finally, for each �, the current parameters w
(t)
� ∈ R

h converges towards the
solution ŵ�. To avoid overfitting and bad numerical solutions, we use a bayesian
gaussian prior [16] inducing the bias −η�||w�||2/2 for each w�. The correction
of the estimates is then done by adding −η�w� to the gradient and −η�Ih to
the diagonal of the Hessian, where Ih is the h-dimensional identity matrix. The
value of the hyperparameters η� can be manually chosen or estimated.

This Newton-Raphson process in a matrix form sounds like an IRLS [17]
step, a crude alternative is a simple gradient with training constant ρu and ρv

instead of the Hessian inverse. Finally, one can notice that the symmetry of the
two original mirrored formulas for each side of the matrix is lost because only
rows are mapped. Next we illustrate the proposed model on several datasets and
demonstrate its good behavior in practice.

4 Numerical Experiments

We experiment our new mapping method on three classical datasets to illustrate
the approach. The initialization of the map is done with the help of the first
factorial plane from Correspondence Analysis [18], by drawing a mesh over this
plane and constructing the initial Bernoulli parameters α

(0)
k� according to this

crude clustering.

The Block Generative Topographic Mapping 19

Fig. 2. The Block GTM mapping of the 2000×240 image matrix from binarized digits

The first dataset is compound of 2000 binarized images from a database of
handwritten digits. For each of the 10 digits ’0’, ’1’ and ’9’, there are 200 images
which were digitalized into 240 multi-dimensional vectors, so the data matrix
is 2000 × 240 with 10 classes for the row side. No information about class for
the column side is provided. The mapping of these data is presented in figure 2
which shows quite good separation of the classes, close to that of the early work
of [19,20]. We used a map of size 10 by 10, and 9 nonlinear basis functions plus
one intercept and the linear position of the node over the plane, so h = 12, and
g = 100. We choose empirically the value of m = 20 as a good number of classes
for columns after several manual trials. On the figure 2, the posterior means,∑

k ĉiksk, are visualized by a different symbol and color plot for each different
class label.

To check more easily the block latent model property and the behavior of the
proposed algorithm, two textual datasets are studied with m = 10, g = 81 and
h = 28.

The second dataset is compound of 400 selected documents from a textual
database of 20000 news. Four newsgroups among the twenty existing ones were
kept: ”sci.cryp”, ”sci.space”, ”sci.med”, ”soc.religion.christian”. For each news-
group, 100 mails were chosen randomly. The data matrix was then constructed
as following. From all the texts, the whole vocabulary of the stemmed words is
sought for the entire corpus. Then, a first matrix is constructed with its rows
corresponding to texts, and columns corresponding to terms. The value of a cell
in this matrix is the number of occurrence of the word in the text. The final
list of words is chosen by evaluating mutual information to maximize separa-
tion between classes of document thanks to known labels. The final matrix is
400 × 100 with 4 clusters of documents [19,20]. The mapping of this texts on

20 R. Priam, M. Nadif, and G. Govaert

Fig. 3. The Block GTM mapping of the 400×100 textual matrix from four newsgroups

Fig. 4. The Block GTM mapping of the 449× 167 textual matrix from three scientific
datasets

figure 3 reveals the four topics of discussion which are easily recognizable. The
classes are well separated with precise frontiers and we were able to interpret
clusters of words too.

The third dataset is a sample of the Classic3 [21] matrix which is a bag of
words coding of scientific articles. They come from the three bases Medline,
Cisia, Cranfield. We select 450 documents from this file, by randomly drawing

The Block Generative Topographic Mapping 21

150 documents from each cluster. We select the more frequent words over 30
from all the vocabulary of 4303 terms and we end to a random matrix with
approximately 450 rows and 170 columns while discarding the empty rows. One
of these matrices was then mapped. Our approach permits us to observe the
behavior of the algorithm and we noticed that the solution was stable with only
some few outliers badly placed over the plane. The reason is that the clusters
are not perfectly separated and that binary coding is not the optimal way to
see textual contents. Moreover, we observe quite similar mapping by our binary
solution when comparing with the state of art multinomial model-based mapping
for the newsgroups file. In future, a contingency table should be modeled to get
an even better result in the textual case. Despite this remark, we are still able
to visualize the three classes almost perfectly well separated by the non linear
mapping in the Figure 4.

5 Conclusion

Considering clustering and visualization within the mixture model approach, we
have proposed a new generative self-organizing map for binary data. The pro-
posed Block Generative Topographic Mapping achieves topological organization
of the cluster centers basing on a parsimonious block latent model. It counts far
fewer parameters than the previously existing models based on a multivariate
Bernoulli mixture model [19], a multinomial pLSA [22] or a Bernoulli pLSA [5].
In table 1, when we consider the clustering only on the rows and the proportions
pk and q� being equal, we report the number of parameters used from the cited
models. We note that with our model, the number of parameters increases only
with the number of column clusters.

In the visualization context, our variant of GTM gives encouraging results
on three applications in two real domains (images and texts). While the linear
correspondence analysis is not able to show separately the different clusters over
this first plane, our algorithm appears more efficient. Furthermore, the number of
parameters of an alternative of the multinomial model in [23,24] for binary data
remains the same as for the unconstrained model. So the Block GTM appears
clearly as the best candidate to scale for data mining problems.

A first appealing perspective of the model is in domain of textual analysis.
Thanks to the clustering of the columns, we are able to map clusters for texts

Table 1. The number of parameters for Bernoulli probabilistic SOMs with m � d

Model unconstrained constrained

Bernoulli mixture model gd hd

Bernoulli pLSA (n + d)g ng + dh

Multinomial pLSA gd hd

Block latent model gm hm

22 R. Priam, M. Nadif, and G. Govaert

and words together, by evaluating the new heuristic probability that the j-st
word belongs to the k-st class, with the following formula

djk ∝
∑

�

dj�αk�

which appears as a crude marginalization over an hidden random variable classi-
fying the columns. The first experiments provide promising results. The vocab-
ulary from each topic appears clearly more probable where each corresponding
topic lies on the map. This clustering is very different from the usual one: in
the literature, it is usually shown the most probable terms for each cluster of
document. A distribution over the map is learned for rows and indirectly for
columns, so an original perspective is to construct a non linear biplot as [25] by
a fully probabilistic and automatic method.

References

1. Lebart, L., Morineau, A., Warwick, K.: Multivariate Descriptive Statistical Anal-
ysis. J. Wiley, Chichester (1984)

2. Kohonen, T.: Self-organizing maps. Springer, Heidelberg (1997)
3. Bishop, C.M., Svensén, M., Williams, C.K.I.: Developpements of generative topo-

graphic mapping. Neurocomputing 21, 203–224 (1998)
4. Dempster, A., Laird, N., Rubin, D.: Maximum-likelihood from incomplete data via

the EM algorithm. J. Royal Statist. Soc. Ser. B. 39, 1–38 (1977)
5. Priam, R., Nadif, M.: Carte auto-organisatrice probabiliste sur données binaires

(in french). In: RNTI (EGC 2006 proceedings), pp. 445–456 (2006)
6. Bock, H.: Simultaneous clustering of objects and variables. In: Diday, E. (ed.)

Analyse des Données et Informatique, INRIA, pp. 187–203 (1979)
7. Govaert, G.: Classification croisée. In: Thèse d’état, Université Paris 6, France

(1983)
8. Govaert, G.: Simultaneous clustering of rows and columns. Control and Cybernet-

ics 24(4), 437–458 (1995)
9. Cottrell, M., Ibbou, S., Letrémy, P.: Som-based algorithms for qualitative variables.

Neural Networks 17(89), 1149–1167 (2004)
10. Symons, M.J.: Clustering criteria and multivariate normal mixture. Biometrics 37,

35–43 (1981)
11. McLachlan, G.J., Basford, K.E.: Mixture Models, Inference and applications to

clustering. Marcel Dekker, New York (1988)
12. McLachlan, G.J., Peel, D.: Finite Mixture Models. John Wiley and Sons, New York

(2000)
13. Govaert, G., Nadif, M.: Clustering with block mixture models. Pattern Recogni-

tion 36, 463–473 (2003)
14. Govaert, G., Nadif, M.: An EM algorithm for the block mixture model. IEEE

Trans. Pattern Anal. Mach. Intell. 27(4), 643–647 (2005)
15. Govaert, G., Nadif, M.: Block clustering with bernoulli mixture models: Compar-

ison of different approaches. Computational Statistics & Data Analysis 52, 3233–
3245 (2008)

16. MacKay, D.J.C.: Bayesian interpolation. Neural Computation 4(3), 415–447 (1992)

The Block Generative Topographic Mapping 23

17. McCullagh, P., Nelder, J.: Generalized linear models. Chapman and Hall, London
(1983)

18. Benzecri, J.P.: Correspondence Analysis Handbook. Dekker, New-York (1992)
19. Girolami, M.: The topographic organization and visualization of binary data us-

ing multivariate-bernoulli latent variable models. IEEE Transactions on Neural
Networks 20(6), 1367–1374 (2001)

20. Kabán, A., Girolami, M.: A combined latent class and trait model for analysis
and visualisation of discrete data. IEEE Trans. Pattern Anal. and Mach. Intell.,
859–872 (2001)

21. Dhillon, I.: Co-clustering documents and words using bipartite spectral graph par-
titioning. In: Seventh ACM SIGKDD Conference, San Francisco, California, USA,
pp. 269–274 (2001)

22. Hofmann, T.: Probmap - a probabilistic approach for mapping large document
collections. Intell. Data Anal. 4(2), 149–164 (2000)

23. Kaban, A.: A scalable generative topographic mapping for sparse data sequences.
In: ITCC 2005: Proceedings of the International Conference on Information Tech-
nology: Coding and Computing (ITCC 2005), Washington, DC, USA, vol. I, pp.
51–56. IEEE Computer Society, Los Alamitos (2005)

24. Kaban, A.: Predictive modelling of heterogeneous sequence collections by topo-
graphic ordering of histories. Machine Learning 68(1), 63–95 (2007)

25. Priam, R.: CASOM: Som for contingency tables and biplot. In: 5th Workshop on
Self-Organizing Maps (WSOM 2005), pp. 379–385 (2005)

Kernel k-Means Clustering Applied to Vector

Space Embeddings of Graphs

Kaspar Riesen and Horst Bunke

Institute of Computer Science and Applied Mathematics, University of Bern,
Neubrückstrasse 10, CH-3012 Bern, Switzerland

{riesen,bunke}@iam.unibe.ch

Abstract. In the present paper a novel approach to clustering objects
given in terms of graphs is introduced. The proposed method is based
on an embedding procedure that maps graphs to an n-dimensional real
vector space. The basic idea is to view the edit distance of an input graph
g to a number of prototype graphs as a vectorial description of g. Based
on the embedded graphs, kernel k-means clustering is applied. In several
experiments conducted on different graph data sets we demonstrate the
robustness and flexibility of our novel graph clustering approach and
compare it with a standard clustering procedure directly applied in the
domain of graphs.

1 Introduction

Clustering, a common task in pattern recognition, data mining, machine learning,
and related fields, refers to the process of dividing a set of given objects into homo-
geneous groups. Whereas a large amount of clustering algorithms based on pattern
representations in terms of feature vectors have been proposed in the literature
(see [1] for a survey), there are only few works where symbolic data structures,
and in particular graphs, are used [2]. This is rather surprising since the use of
feature vectors implicates two severe limitations. First, as vectors describe a pre-
defined set of features, all vectors in one particular application have to preserve
the same length regardless of the size or complexity of the corresponding objects.
Furthermore, there is no direct possibility to describe relationships among differ-
ent parts of an object. However, both constraints can be overcome by graph based
object representation [3], as graphs allow us to adapt their size to the complexity
of the underlying objects and they also offer a convenient possibility to describe
relationships among different parts of an object.

The lack of graph clustering algorithms arises from the fact that there is little
mathematical structure in the domain of graphs. For example, computing the
sum, the weighted sum, or the product of a pair of entities (which are elemen-
tary operations, required in many clustering algorithms) is not possible or not
defined in a standardized way in the domain of graphs. However, graph kernels,
a relatively novel class of algorithms for pattern recognition, offer an elegant so-
lution to overcome this drawback of graph based representation [4]. Originally,
kernel methods have been developed for transforming a given feature space into

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 24–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Kernel k-Means Clustering Applied to Vector Space Embeddings of Graphs 25

another one of higher dimensionality without computing the transformation ex-
plicitly for each individual feature vector. Recently, however, as a fundamental
extension, the existence of kernels for symbolic data structures, especially for
graphs, has been shown [5].

In the present paper we address the problem of graph clustering by means of
kernel k-means clustering. The underlying graph kernel functions are based on a
dissimilarity space embedding procedure that has been introduced recently. With
a comparison based on four different validation indices we empirically confirm
that our novel procedure results in better clusterings when compared to results
achieved with an approach directly applied in the domain of graphs.

2 Dissimilarity Space Embedding Graph Kernel

In recent years, kernel methods have become one of the most rapidly emerging
sub-fields in intelligent information processing [4]. The fundamental observation
in kernel theory is that, given a valid kernel function κ : R

n×R
n → R, there exists

a (possibly infinite dimensional) feature space F endowed with an inner product
〈., .〉 : F ×F → R and a mapping φ : R

n → F such that κ(x,x′) = 〈φ(x), φ(x′)〉,
for all x,x′ ∈ R

n. That is, instead of mapping patterns from R
n to the feature

space F and computing their scalar product in F , one can simply evaluate
the value of the kernel function κ in the original space R

n. This procedure is
commonly referred to as kernel trick.

What makes kernel theory very interesting is the fact that many algorithms
can be kernelized, i.e. reformulated such that only pairwise scalar products rather
than explicit vectors are needed1. Obviously, by replacing the scalar product by
a valid kernel function it is possible to run kernelizable algorithms in a higher
dimensional feature vector space F .

Recently, kernel theory has been generalized to the domain of graphs [5]. That
is, by means of suitable kernel functions, graphs can be implicitly mapped to
vector spaces. Consequently, the whole theory of kernel machines, which has been
developed for feature vectors originally, become applicable to graphs. Hence by
means of kernel functions one can benefit from both the high representational
power of graphs and the rich repository of algorithms available in vector spaces.

Definition 1 (Graph Kernel). Let G be a finite or infinite set of graphs,
g1, g2 ∈ G, and ϕ : G → R

n a function with n ∈ N. A graph kernel function is a
mapping κ : G × G → R such that κ(g1, g2) = 〈ϕ(g1), ϕ(g2)〉. �

According to this definition a graph kernel function takes two graphs g1 and g2

as arguments and returns a real number that is equal to the result achieved by
first mapping the two graphs by a function ϕ to a vector space R

n and then
computing the scalar product 〈ϕ(g1), ϕ(g2)〉 in R

n. The kernel function κ(g1, g2)
provides us with a shortcut (kernel trick) that eliminates the need for computing
ϕ(.) explicitly.
1 Such algorithms together with a kernel function κ are commonly termed kernel

machines.

26 K. Riesen and H. Bunke

The embedding procedure proposed in this paper makes use of graph edit
distance. The key idea of graph edit distance is to define the dissimilarity, or
distance, of graphs by the minimum amount of distortion that is needed to
transform one graph into another. A standard set of distortion operations is
given by insertions, deletions, and substitutions of nodes and edges.

Given two graphs, the source graph g1 and the target graph g2, the idea of
graph edit distance is to delete some nodes and edges from g1, relabel (substi-
tute) some of the remaining nodes and edges, and insert some nodes and edges
in g2, such that g1 is finally transformed into g2. A sequence of edit operations
e1, . . . , ek that transform g1 into g2 is called an edit path between g1 and g2. In
order to find the most suitable edit path out of all possible edit paths, one intro-
duces a cost for each edit operation, measuring the strength of the corresponding
operation. The idea of such cost functions is to define whether or not an edit
operation represents a strong modification of the graph. Consequently, the edit
distance of two graphs is defined by the minimum cost edit path between two
graphs. The edit distance of graphs can be computed, for example, by a tree
search algorithm [6] or by faster, suboptimal methods which have been proposed
recently (e.g. [7]).

The idea underlying our graph embedding method was originally developed
for the problem of embedding sets of feature vectors in a dissimilarity space
[8]. In this paper we use the extension of this method to the domain of graphs
proposed in [9] for the problem of classification and apply it to clustering. Assume
we have available a set of graphs G = {g1, . . . , gN} and a graph dissimilarity
measure d(gi, gj) (in our case graph edit distance). After having selected a set
P = {p1, . . . , pn} of n ≤ N prototypes from G, we compute the dissimilarity of
a given graph g ∈ G to each prototype p ∈ P . This leads to n dissimilarities,
d1 = d(g, p1), . . . , dn = d(g, pn), which can be arranged in an n-dimensional
vector (d1, . . . , dn). In this way we can transform any graph from G into a vector
of real numbers.

Definition 2 (Graph Embedding). If G = {g1, . . . , gN} is a set of graphs and
P = {p1, . . . , pn} ⊆ G is a set of prototype graphs, the mapping ϕP

n : G → R
n is

defined as the function

ϕP
n (g) �→ (d(g, p1), . . . , d(g, pn)),

where d(g, pi) is the graph edit distance between graph g and the i-th prototype.

Regarding the graph embedding procedure, the importance of the prototype
set P = {p1, . . . , pn} ⊆ G is obvious. Recently, different prototype selectors have
been proposed in the literature which we adopt in this work [8,9]. Note that P can
be an arbitrary set of graphs in principle. However, for the sake of convenience
we always use subsets of G which are obtained by means of prototype selection
methods.

Since the computation of graph edit distance is exponential in the number of
nodes for general graphs, the complexity of this graph embedding is exponential
as well. However, one can use efficient approximation algorithms for graph edit

Kernel k-Means Clustering Applied to Vector Space Embeddings of Graphs 27

φ()

φ()

ℝnG ℝ

ϕ(φ())

ϕ(φ())
〈ϕ(φ()),ϕ(φ())〉

shortcut: kernel trick

〈.,.〉

(φ(),φ())

F

Fig. 1. Graph kernel trick illustrated

distance (e.g. [7] with cubic time complexity). Consequently, given n predefined
prototypes the embedding of one particular graph is established by means of n
distance computations with polynomial time.

Clearly, the graph embedding procedure described above provides a founda-
tion for a novel class of graph kernels. Based on the mapping ϕP

n , one can define
a valid graph kernel κ by computing the standard scalar product of two graph
maps in the resulting vector space

κ(gi, gj) = 〈ϕP
n (gi), ϕP

n (gj)〉

Note that, in contrast to some other kernel methods, the approach proposed
in this paper results in an explicit embedding of the considered graphs in a
vector space. Hence, not only scalar products, but individual graph maps are
available in the target space. We observe that this approach is more powerful
than conventional graph kernels as not only kernel machines, but also other non-
kernelizable algorithms can be applied to the resulting vector representation.
Furthermore, based on the resulting graph maps standard kernel functions for
feature vectors in R

n can be applied, mapping the vector space embedded graphs
implicitly into a higher dimensional feature space F . An example is the RBF
kernel.

κRBF (gi, gj) = exp
(−γ||ϕP

n (gi)− ϕP
n (gj)||2

)
, with γ > 0.

Obviously, in every kernel machine the scalar product can be replaced by κ(gi, gj)
such that these algorithms can be applied to objects originally given in terms of
graphs. In Fig. 1 this procedure is schematically illustrated.

3 Kernel k-Means Clustering

The k-means algorithm [10] is one of the most popular clustering algorithms
in pattern recognition and related areas. Let us assume that N objects O =
{o1, . . . ,oN} are given. Starting with an initial set of k cluster centers, i.e. a
set of k < N objects Mk = {o(1), . . . ,o(k)} ⊂ O, we assign each of the N
objects to the closest cluster centers. Based on this clustering, the cluster centers
are recomputed. The two preceding steps, i.e. the assignment of objects to the
nearest cluster center and the recomputation of the centers, are repeated until

28 K. Riesen and H. Bunke

a predefined termination criterion is met (e.g. no reassignment of objects from
one cluster to another has taken place during the last iteration).

The initialization of k-means is commonly done with a random selection of
k objects. However, in the present paper a deterministic procedure is applied.
The set of initial cluster centers Mk is constructed by iteratively retrieving the
median of set O minus the objects already selected. The median of set O is
the object o ∈ O that minimizes the sum of distances to all other objects in O,
i.e. median = argmino1∈O

∑
o2∈O d(o1,o2). Obviously, this procedure initializes

k-means with objects situated in, or near, the center of the set O.
K-means clustering makes use of the squared error criterion as an objective

function. Formally, the k-means algorithms finds k clusters C1, . . . , Ck such that
the objective function

f
({Cj}kj=1

)
=

k∑

j=1

∑

oi∈Cj

d(oi,mj)

is minimized. In this formula, the j-th cluster is denoted by Cj , a clustering by
{Cj}kj=1, d is an appropriate distance function, and mj refers to the mean of
cluster Cj .

Note that the objects oi can either be graphs or vectors. If the objects are
given in terms of graphs, the distance function d is given by the graph edit
distance and the mean mj of the j-th cluster is defined as the set median graph
(mj = argming1∈Cj

∑
g2∈Cj

d(g1, g2)). In the remainder of the present paper
we denote k-means applied to graphs as k-medians. If the objects are given in
terms of feature vectors2, the dissimilarity function d is defined as the Euclidean
distance, and mj is the mean vector of Cj (i.e. mj = 1

|Cj|
∑

xi∈Cj
xi).

A well known drawback of k-means clustering is that the individual clusters
Cj need to be spherical in order to achieve satisfactory results. (This drawback
directly follows from the minimization of the squared error.) Now let us assume
that a function φ is given, mapping n-dimensional vectors xi into a higher di-
mensional feature space F . Applying k-means clustering in the resulting feature
space F , i.e. finding spherical clusters Cj in F , corresponds to finding (possi-
bly) non-spherical clusters in the original vector space R

n. Hence, this clustering
procedure is much more powerful than the conventional k-means algorithm.

The objective function for k-means clustering in the higher dimensional fea-
ture space F can be written as the minimization of

f
({Cj}kj=1

)
=

k∑

j=1

∑

xi∈Cj

||(φ(xi)−mj|| , where mj =

∑
xi∈Cj

φ(xi)

|Cj |

In fact, it turns out that the k-means algorithm can be written as a kernel
machine, i.e. can be reformulated in terms of pairwise scalar products only.

2 Note that the vectors xi in the present paper are embedded graphs by means of the
embeddding function ϕP

n (.)

Kernel k-Means Clustering Applied to Vector Space Embeddings of Graphs 29

Formally, the squared Euclidean distance ||(φ(x) −m||2 between vector x and
the mean m of cluster C can be rewritten as

||φ(x) −m||2 = 〈φ(x), φ(x)〉 + 1
n2

∑

xi∈C

∑

xj∈C

〈φ(xi), φ(xj)〉 − 2
n

∑

xi∈C

〈φ(x), φ(xi)〉

Obviously, now we can replace the scalar products 〈., .〉 with a valid vector
kernel function κ to represent the scalar product in an implicit feature space F
without explicitly computing the transformation φ : R

n → F . That is, one can
apply k-means in an implicitly existing feature space F . The resulting procedure
is commonly referred to as kernel k-means clustering.

4 Clustering Validation

In order to compare the novel kernel k-means clustering algorithm proposed
in this paper with the conventional k-medians algorithm in the graph domain,
we use four different validation indices, viz. Dunn [11], C [12], Rand [13], and
the Bipartite index. Whereas the two former indices (Dunn and C) do not
need any ground truth information, the latter ones (Rand and Bipartite) are
defined with respect to the class memberships of the underlying objects. Note
that all indices can be applied to both graphs and vectors.

4.1 Dunn Index

We define the distance between two clusters C and C′ as d(C, C′)=min{d(oi,oj) |
oi ∈ C,oj ∈ C′}. The diameter of a cluster C is given by ∅(C) = max{d(oi,oj) |
oi,oj ∈ C} and accordingly the maximum diameter of all k clusters is defined by
∅max = max{∅(Ci)|1 � i � k}. Dunn index measures the ratio of the minimum
distance of two different clusters and the maximum diameter of a cluster. Formally,

Dunn = min

{
d(Ci, Cj)

∅max
|1 � i < j � K

}

Dunn is considered to be positively-correlated such that higher values indicate
higher clustering quality.

4.2 C Index

One defines

c(oi,oj) =

{
1 if oi and oj belong to the same cluster
0 else

Furthermore, Γ is defined by the sum of all distances of objects belonging to the
same cluster, and the number of pairs of objects in the same cluster is denoted
by a. Formally,

Γ =
n−1∑

i=1

n∑

j=i+1

d(oi,oj)c(oi,oj) a =
n−1∑

i=1

n∑

j=i+1

c(oi,oj)

30 K. Riesen and H. Bunke

With min(max) we denote the sum of the a smallest (largest) distances d(oi,oj)
where oi
= oj . The C index is then defined as

C =
Γ −min

max−min

Obviously, the numerator of the C index measures how many pairs of objects of
the a nearest neighboring pairs belong to the same cluster. The denominator is
a scale factor ensuring that 0 ≤ C ≤ 1. The smaller the C index value is, the
more frequently do pairs with a small distance belong to the same cluster, i.e.
the higher is the clustering quality.

4.3 Rand Index

For computing the Rand index we regard all pairs of objects (oi,oj) with oi
=
oj . We denote the number of pairs (oi,oj) belonging to the same class and to
the same cluster with N11, whereas N00 denotes the number of pairs that neither
belong to the same class nor to the same cluster. The number of pairs belonging
to the same class but not to the same cluster is denoted by N10, and conversely
N01 represents the number of pairs belonging to different classes but to the same
cluster. The Rand index is defined by

Rand =
N11 + N00

N11 + N00 + N01 + N10

Rand index measures the consistency of a given clustering, and therefore higher
values indicate better clusterings.

4.4 Bipartite Index

In order to compute the Bipartite index, we first define the confusion matrix
M. Assume a clustering with k clusters (C1, . . . , Ck), and a set of l classes
(Ω1, . . . , Ωl) are given. Note that ∪k

i=1Ci = ∪l
i=1Ωi, i.e. the elements underlying

the clustering and the classes are identical. Moreover, we define k = l, i.e. the
number of clusters is equal to the number of classes3. The k×k confusion matrix
is defined by

M =

⎡

⎢⎣
m1,1 · · · m1,k

...
. . .

...
mk,1 · · · mk,k

⎤

⎥⎦

where mi,j represents the number of elements from class Ωj occuring in cluster
Ci. The problem to be solved with this confusion matrix is to find an optimal
assignment of the k clusters to the k classes. Such an optimal assignment maxi-
mizes the sum of the corresponding cluster-class values mi,j . Formally, one has
to find a permuation p of the integers 1, 2, . . . , k maximizing

∑k
i=1 mipi . Let p be

3 For the sake of convenience we use k to denote both the number of clusters and the
number of classes from now on.

Kernel k-Means Clustering Applied to Vector Space Embeddings of Graphs 31

the optimal permuation. The Bipartite index (BP index for short) is defined
as

BP =
∑k

i=1 mipi

N
Note that BP gives us the maximum possible classification accuracy of the given
clustering. The computation of the BP index can be efficiently accomplished by
means of Munkres’ algorithm [14].

Note that other validation indices could be also used. However, we feel that
a validation based on the four indices proposed covers the different aspects of
cluster quality evaluation quite well and we leave an analysis involving additional
indices to future work.

5 Experimental Results

The intention of the experimental evaluation is to empirically investigate whether
kernel k-means based on the proposed graph embedding outperforms the stan-
dard k-medians clustering algorithm in the original graph domain. For our novel
approach the most widely used RBF kernel κRBF (gi, gj) as defined in Section 2
is used. Class information is available for all of our graph data sets. Therefore
the number of clusters k is defined for each data set as the number of classes in
the underlying graph set.

5.1 Databases

For our experimental evaluation, six data sets with quite different characteristics
are used. The data sets vary with respect to graph size, edge density, type of
labels for the nodes and edges, and meaning of the underlying objects. Lack-
ing space we give a short description of the data only. For a more thorough
description we refer to [9] where the same data sets are used for the task of
classification.

The first database used in the experiments consists of graphs representing
distorted letter drawings out of 15 classes (Letter). Next we apply the proposed
method to the problem of image clustering, i.e. we use graphs representing images
out of two categories (cups, cars) from the COIL-100 database [15] (COIL). The
third data set is given by graphs representing fingerprint images of the NIST-4
database [16] out of the four classes arch, left, right, and whorl (Fingerprint).
The fourth set is given by the Enzyme data set. The graphs are constructed
from the Protein Data Bank [17] and labeled with their corresponding enzyme
class labels (EC 1,. . ., EC 6) (Enzymes). The fifth graph set is constructed from
the AIDS Antiviral Screen Database of Active Compounds [18]. Graphs from
this database belong to two classes (active, inactive), and represent molecules
with activity against HIV or not (AIDS). The last data set consists of graphs
representing webpages [19] that originate from 20 different categories (Business,
Health, Politics, . . .) (Webgraphs).

Each of our graph sets is divided into two disjoint subsets, viz. validation
and test set. The validation set is used to determine those meta parameters of

32 K. Riesen and H. Bunke

the clustering algorithm which cannot be directly inferred from the specific ap-
plication. For k-medians clustering in the original graph domain only the cost
function for graph edit distance has to be validated. For our novel approach,
however, there are three additional parameters to tune, viz. the prototype se-
lection method (PS), the number of prototypes n (dimensionality of the vector
space R

n), and the parameter γ in the RBF kernel. For each of the four vali-
dation indices, these three meta parameters are optimized individually on the
validation set. Thereafter the best performing parameter combination is applied
to the independent test set.

5.2 Results and Discussion

In Table 1 the clustering validation indices for both the k-medians clustering in
the original graph domain (GD) and kernel k-means in the embedding vector
space (VS) are given for all test data sets. Regarding the Dunn index we observe
that the clustering based on the vector space embedded graphs outperforms
the clustering in the original graph domain in three out of six cases, i.e. the
clusterings in the vector space are not necessarily better than the clusterings
in the original graph domain. This finding can be explained by the fact that
Dunn’s index is very instable in presence of outliers since only two distances are
considered. Regarding the other indices the superiority of our novel approach
compared to the reference system becomes obvious. Kernel k-means outperforms
the k-medians clustering under C, Rand, and BP on all data sets. That is,
with the novel procedure pairs with small distances are more frequently in the
same cluster, and the clusterings in the embedding space are more accurate and
consistent according to the ground truth.

At first glance the meta parameters to be tuned in our novel approach seem
to be a kind of drawback. However, since the k-means algorithm is able to find
spherical clusters only, these meta parameters establish a powerful possibility
to optimize the underlying vector space embedding with respect to a specific
validation index. In Fig. 2 clusterings on the COIL database are illustrated as
an example. Note that in these illustrations the different colors (black and white)
refer to the cluster assignment, while the different shapes (circle and diamond)
reflect the class membership of the respective points.

In Fig. 2 (a) the original graphs and the clustering found by the reference
system (k-medians) are projected onto the plane by multidimensional scaling

Table 1. Clustering results on the data sets in the graph domain (GD) and the vector
space (VS). Bold numbers indicate superior performance over the other system.

Dunn C Rand BP

Data Set GD VS GD VS GD VS GD VS

Letter 0.016 0.157 0.419 0.026 87.30 90.76 22.90 46.27
COIL 0.132 0.142 0.377 0.053 69.01 76.63 81.11 86.67
Fingerprint 0.209 0.057 0.094 0.017 32.20 77.66 45.20 68.40
Enzymes 0.027 0.036 0.591 0.021 49.23 72.37 22.00 27.00
AIDS 0.054 0.044 0.015 0.000 83.06 83.17 90.67 90.73
Webgraphs 0.064 0.042 0.111 0.016 88.51 90.08 53.72 53.97

Kernel k-Means Clustering Applied to Vector Space Embeddings of Graphs 33

(a) Clustering in the graph domain. (b) Clustering in the vector space
(Dunn and C optimized)

(c) Clustering in the vector space
(Rand and BP optimized)

Fig. 2. Different clusterings of the same data. (Different shapes refer to different classes
while different colors refer to different clusters.)

(MDS) [20]. In Fig. 2 (b) and (c) the same graphs processed by different vector
space embeddings and kernel k-means clustering in the embedding space are
displayed. Fig. 2 (b) shows the vector space embedded graphs and the clustering
which is optimized with respect to the validation indices Dunn and C4. In this
case the underlying vector space is optimized such that the resulting clusters are
more compact and better separable than the clusters achieved in the original
graph domain (Fig. 2 (a)). In other words, the two clusters of white and black
elements can be much better approximated by non-overlapping ellipses than in
Fig. 2 (a). Note that for both indices Dunn and C the class membership is not
taken into account but only the size and shape of the clusters. In Fig. 2 (c) the
embedding and clustering are optimized with respect to Rand and BP. In this
case the embedding and clustering are optimized such that spherical clusters
are able to seperate the data with a high degree of consistency and accuracy
according to ground truth. This can also be seen in Fig. 2 (c) where the shape
and color, i.e. class- and cluster membership, correspond to each other more
often than in Fig. 2 (a).

4 Coincidentally, for both indices the best performing parameter values are the same.

34 K. Riesen and H. Bunke

Summarizing, the embedding process lends itself to a methodology for adjust-
ing a given data distribution such that the clustering algorithm becomes able
to achieve good results according to a specific validation criterion. This explains
the findings reported in Table 1.

6 Conclusions

In the present paper we propose a procedure for embedding graphs in an n-
dimensional vector space by means of prototype selection and graph edit
distance. Based on this vector space embedding of graphs, a standard kernel
function for feature vectors – the RBF kernel – is applied. This leads to an
implicit embedding of the graph maps in a feature space F . These implicit em-
beddings are then fed into a kernel k-means clustering algorithm. The power
of our novel approach is threefold. First, it makes the k-means clustering algo-
rithm available to the graph domain. Because of the lack of suitable procedures
for computing the mean of a graph population, only k-medians algorithm has
been traditionally applied to graphs. Secondly, by means of the embedding pro-
cedure we gain the possibility to apply kernel k-means clustering to data that
are not spherically structured, as implicitly assumed by the k-means clustering
algorithm. Thirdly, by means of the embedding parameters, the resulting vector
space can be adjusted with respect to a specific validation index. The applica-
bility and performance of our novel approach is tested on six different graph
sets with four clustering validation indices. According to the Dunn index our
novel approach outperforms the reference system in three out of six cases. The
other indices C, Rand, and BP indicate that our novel approach outperforms
the reference system even on all data sets.

In future work we will study additional clustering validation indices and per-
formance measures, for example, cluster stability [21]. Moreover, other clustering
algorithms applicable to vector space embedded graphs will be investigated.

Acknowledgements

This work has been supported by the Swiss National Science Foundation (Project
200021-113198/1).

References

1. Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Sur-
veys 31(3), 264–323 (1999)

2. Englert, R., Glantz, R.: Towards the clustering of graphs. In: Kropatsch, W., Jo-
lion, J. (eds.) Proc.2nd Int.Workshop on Graph Based Representations in Pattern
Recognition, pp. 125–133 (2000)

3. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching
in pattern recognition. Int.Journal of Pattern Recognition and Artificial Intelli-
gence 18(3), 265–298 (2004)

Kernel k-Means Clustering Applied to Vector Space Embeddings of Graphs 35

4. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)
5. Gärtner, T.: A survey of kernels for structured data. SIGKDD Explorations 5(1),

49–58 (2003)
6. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recogni-

tion. Pattern Recognition Letters 1, 245–253 (1983)
7. Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the

edit distance of graphs. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538,
pp. 1–12. Springer, Heidelberg (2007)

8. Duin, R., Pekalska, E.: The Dissimilarity Representations for Pattern Recognition:
Foundations and Applications. World Scientific, Singapore (2005)

9. Riesen, K., Neuhaus, M., Bunke, H.: Graph embedding in vector spaces by means
of prototype selection. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538,
pp. 383–393. Springer, Heidelberg (2007)

10. MacQueen, J.: Some methods for classification and analysis of multivariant obser-
vations. In: Proc. 5th. Berkeley Symp., vol. 1, pp. 281–297. University of California
Press 1 (1966)

11. Dunn, J.: Well-separated clusters and optimal fuzzy partitions. Journal of Cyber-
netics 4, 95–104 (1974)

12. Hubert, L., Schultz, J.: Quadratic assignment as a general data analysis strategy.
British Journal of Mathematical and Statistical Psychology 29, 190–241 (1976)

13. Rand, W.: Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical Association 66(336), 846–850 (1971)

14. Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics 5, 32–38 (1957)

15. Nene, S., Nayar, S., Murase, H.: Columbia Object Image Library: COIL-100. Tech-
nical report, Department of Computer Science, Columbia University, New York
(1996)

16. Watson, C., Wilson, C.: NIST Special Database 4, Fingerprint Database. National
Institute of Standards and Technology (1992)

17. Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shidyalov,
I., Bourne, P.: The protein data bank. Nucleic Acids Research 28, 235–242 (2000)

18. DTP, DTP.: AIDS antiviral screen (2004),
http://dtp.nci.nih.gov/docs/aids/aids data.html

19. Schenker, A., Bunke, H., Last, M., Kandel, A.: Graph-Theoretic Techniques for
Web Content Mining. World Scientific, Singapore (2005)

20. Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall, Boca Raton (1994)
21. Kuncheva, L., Vetrov, D.: Evaluation of stability of k-means cluster ensembles

with respect to random initialization. IEEE Transactions on Pattern Analysis and
Machine Intelligence 28(11), 1798–1808 (2006)

http://dtp.nci.nih.gov/docs/aids/aids_data.html

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 36–43, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Probabilistic Models Based
on the Π-Sigmoid Distribution

Anastasios Alivanoglou and Aristidis Likas

Department of Computer Science, University of Ioannina
GR 45110, Ioannina, Greece

{aalivano,arly}@cs.uoi.gr

Abstract. Mixture models constitute a popular type of probabilistic neural
networks which model the density of a dataset using a convex combination of
statistical distributions, with the Gaussian distribution being the one most
commonly used. In this work we propose a new probability density function,
called the Π-sigmoid, from its ability to form the shape of the letter “Π” by
appropriately combining two sigmoid functions. We demonstrate its modeling
properties and the different shapes that can take for particular values of its
parameters. We then present the Π-sigmoid mixture model and propose a
maximum likelihood estimation method to estimate the parameters of such a
mixture model using the Generalized Expectation Maximization algorithm. We
assess the performance of the proposed method using synthetic datasets and
also on image segmentation and illustrate its superiority over Gaussian mixture
models.

Keywords: Probabilistic neural networks, mixture models, Π-sigmoid distribu-
tion, orthogonal clustering, image segmentation.

1 Introduction

Gaussian mixture models (GMM) are a valuable statistical tool for modeling
densities. They are flexible enough to approximate any given density with high
accuracy, and in addition they can be interpreted as a soft clustering solution. Thus,
they have been widely used in both supervised and unsupervised learning, and have
been extensively studied, e.g. [3]. They can be trained through a convenient EM
procedure [4] that yields maximum likelihood estimates for the parameters of the
mixture. However, it exhibits some weaknesses, the most notable being its lack of
interpretability, since it provides spherical (or ellipsoidal in the most general case)
shaped clusters that are inherently hard to be understood by humans. It is widely
acknowledged that humans prefer solutions in the form of rectangular shaped clusters
which are directly interpretable. Another weakness of the GMM approach is that it is
not efficient when used to model data that are uniformly distributed in some regions.

With the aim to adequately treat the above issues, in this work we propose a new
probability distribution called the Π-sigmoid (Πs) distribution. This distribution is
obtained as the difference of two translated sigmoid functions and is flexible enough

 Probabilistic Models Based on the Π-Sigmoid Distribution 37

to approximate data distributions ranging from Gaussian to uniform depending on the
slope of the sigmoids. We also propose a mixture model with Π-sigmoid distributions
called Π-sigmoid mixture model (ΠsMM) and show that it is capable of providing
probabilistic clustering solutions for the case of rectangular-shaped clusters that are
straightforward to transform into an interpretable set of rules. We present a maximum
likelihood technique to estimate the parameters of ΠsMM using the Generalized EM
algorithm [3,4]. As experimental results indicate, due to its flexibility to approximate
both the rectangular uniform and bell-shaped distributions, the ΠsMM provides
superior solutions compared to GMMs when the data are not Gaussian.

2 The Π-Sigmoid Distribution

The one-dimensional Π-sigmoid distribution is computed as the difference between
two logistic sigmoid functions with the same slope. The logistic sigmoid with slope λ
is given by:

1
()

1 x
x

e λσ
−

=
+

(1)

The Π-sigmoid pdf with parameters α, b, λ (with b>α) is defined by subtracting two
translated sigmoids:

() ()

1 1 1
() , , 0

1 1x a x b
s x b a

b a e eλ λ λ
− − − −

Π = − > >
− + +

⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

(2)

The term 1/(b-α) is the normalization constant to ensure that the integral of

Πs(x) is unit. It is interesting to note that the integral []() ()x a x b dx b aσ σ− − − = −∫

independently of λ. Figure 1 describes two translated sigmoids and the resulting Π-
sigmoid distribution.

(a) (b)

Fig. 1. The one-dimensional Π-sigmoid distribution (b) obtained as the difference of two
translated sigmoid functions (a)

38 A. Alivanoglou and A. Likas

(a) (b)

(c) (d)

Fig. 2. Several shapes of the Π-sigmoid distribution by varying the values of its parameters

In Fig.2 we present several shapes of the Π-sigmoid distribution by varying the
values of its parameters. It is clear that both uniform (Fig. 2b) and bell-shaped
distributed (Fig. 2d) can be adequately approximated.

The multidimensional Π-sigmoid distribution is obtained under the assumption of
independence along each dimension. More specifically, for a vector x=(x1, x2,…, xD)T:

() ()

1 1

1 1
1 1() ()

d d d d d d
D D x a x b

d
d d d d

e es x s x
b a

−λ − −λ −

= =

−
+ +Π = Π =

−∏ ∏

(3)

with bd>αd and λd>0. Fig. 3 illustrates how a two-dimensional Π-sigmoid distribution
that approximates a uniform distribution on rectangular domain.

2.1 Maximum Likelihood Estimation

Suppose we are given a dataset 1{ ,..., }NX x x= , i Dx R∈ , to be modeled by a Π-

sigmoid distribution. The parameters of the distribution can be estimated by
maximizing the likelihood of the dataset X:

 Probabilistic Models Based on the Π-Sigmoid Distribution 39

() ()

1 1 1

1 1

1 1(; , ,) log () log
i i

d d d d d d
N N D x a x b

i

i i d d d

e eL X A B s x
b a

−λ − −λ −

= = =

−
+ +Λ = Π =

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑∑

(4)

with respect to the set of parameters { }, { }, { }d d dA a B b λ= = Λ = , d=1,…D.

Fig. 3. A two-dimensional Π-sigmoid probability density function

The maximum likelihood solution cannot be obtained in closed form. However,
since the gradient of the likelihood with respect to the parameters can be computed,
gradient-based maximization methods can be employed (for example the simple
gradient ascent or the more sophisticated quasi-Newton methods such as the BFGS).

3 The Π-Sigmoid Mixture Model

Using the proposed Π-sigmoid distribution, a mixture model can be defined called
ΠsMM (Π-sigmoid Mixture Model) can be defined as follows

1

() (; , ,)
K

k k k k
k

p x s x A B
=

= π Π Λ∑ (5)

where K is the number of Π-sigmoid components, { }, { }, { }k kd k kd k kdA a B b λ= = Λ =

are the parameters of k-th component and the mixing weights
k

π satisfy the constraints:

K

k=1

0, 1k kπ π≥ =∑ .

40 A. Alivanoglou and A. Likas

Given a dataset 1{ ,..., }NX x x= , i Dx R∈ the parameters of the ΠsMM can be

estimated through maximum likelihood using the EM algorithm as is the also the case

with GMMs. The EM algorithm is an iterative approach involving two steps at each
iteration. The E-step is the same in all mixture models and computes the posterior

probability that ix belongs to component k:

1

(; , ,)
(|)

(; , ,)

i
i k k k k

K
i

j j j j
j

s x A B
P k x

s x A B
=

π

π

Π Λ=
Π Λ∑

(6)

The M-step requires the maximization of the complete likelihood Lc (eq. (7)) with
respect to the parameters of the ΠsMM model.

1 1

(|) log[(, ,)];
N K

i i
c k k k

i k

L P k x s x A Bκ
= =

= π Π Λ∑∑ (7)

For the parameters πk the update equation is the same for all mixture models:

1

1
(|)

N
i

k
i

P k x
N =

π = ∑ (8)

In contrast to the GMM case, the M-step does not lead to closed form update

equations for the parameters , ,
k k k

A B Λ of the Π-sigmoid components. Thus we resort

to the GEM (generalized EM) algorithm [3,4], which suggests to update the model
parameters so that obtain higher (not necessarily maximum) values of the complete
likelihood are obtained. In this work a few updates of each parameter θ along the

direction of the gradient /
c

L θ∂ ∂ are computed. The GEM algorithm ensures that, at

each iteration, the parameters θ are updated so that the likelihood increases, until a
local maximum is reached.

It is well known that the EM algorithm is very sensitive to the initialization of the
model parameters. To deal with this issue, we first apply the Greedy-EM algorithm
[2] to fit a GMM with K components (and diagonal covariance matrices) on the
dataset. Then the parameters of the k-th ΠsMM component are initialized using the
obtained parameters (mean and variance) of the k-th GMM component. The values of
λ are always initialized to 1.5, although the performance is not sensitive to this choice.

4 Experimental Results

We have compared the modeling capabilities of ΠsMM against the widely used
GMM. First artificial datasets were considered with a) only uniform rectangular, (Fig.
4a) b) only Gaussian (Fig. 4b) and c) mixed (uniform and Gaussian) clusters (Fig. 4c).
We considered the case D=2, K=4 (as in Fig. 4) and D=5, K=4. Each dataset
contained 5000 data points used for training and 5000 used for testing. It must be
emphasized that we are not interested in data clustering, but in building accurate
models of the density of the given datasets. In this spirit, the obtained mixture models

 Probabilistic Models Based on the Π-Sigmoid Distribution 41

(a) (b) (c)

Fig. 4. Three types of artificial datasets: (a) rectangular uniform, (b) Gaussian, (c) mixed

Table 1. Test set likelihood values for three types of datasets (Gaussian, uniform, mixed) for
the cases with D=2, K=4 and D=5, K=4

D=2, K=4 D=5, K=4
Uniform Gaussian Mixed Uniform Gaussian Mixed

sMM -8572 3802 -11558 -10167 -8168 -46616
GMM -11118 3836 -12653 -8856 -8352 -49044

were compared in terms of the likelihood on the test set which constitutes the most
reliable measure to compare statistical models.

The results are summarized in Table 1. In the case of uniform clusters the ΠsMM
was highly superior to GMM, in the case of Gaussian clusters the GMM was only
slightly superior, while in the case of mixed clusters the performance of ΠsMM was
much better. The inability of GMMs to efficiently approximate the uniform
distribution is an old and well-known problem and the proposed ΠsMM model
provides an efficient solution to modeling uniformly distributed data, while at the
same time is able to adequately model Gaussian data.

Since GMMs have been successfully employed for image modeling and
segmentation using pixel intensity information, we tested the performance of the
proposed ΠsMM model on the image segmentation task and compare against GMM.
We considered 256x256 grey level images and for each image the intensities of 5000
randomly selected pixels were used as the training set to fit a GMM and a ΠsΜΜ
with the same number of components (K=5). After training, the remaining pixels were
assigned to the component (cluster) with the maximum posterior probability (eq (8)).
The segmentation results for two example images are shown in Fig. 5.

It must be noted that the likelihood values on the large set of pixels not used for
training (test set) of the PsMM and GMM were -28229 and -30185, respectively, for
the top image and -23487 and -26576 for the bottom image of Fig. 5, also indicating
that the ΠsMM provides superior statistical models of the images compared to GMM.
This superiority is also confirmed from visual inspection of the segmented images
(which is more clear in the top row images).

42 A. Alivanoglou and A. Likas

Original image Segmentation with sMM Segmentation with GMM

Fig. 5. Segmentation results for two natural images (first column) using ΠsMM (second
column) and GMM (third column)

5 Conclusions

We have proposed a new probability density function (Π-sigmoid) defined as the
difference of two translated logistic sigmoids. Depending on the slope value of the
sigmoids, the shape of the distribution may vary from bell-shaped to uniform allowing
the flexibility to model a variety of datasets from Gaussian to uniform. We have also
presented the Π-sigmoid mixture model (ΠsMM) and show how to estimate its
parameters under the maximum likelihood framework using the Generalized EM
algorithm. Experimental comparison with the Gaussian Mixture Models indicate that
ΠsMM is more flexible than GMM providing solutions of higher likelihood. Also a
notable characteristic of ΠsMM is its ability to accurately identify rectangular shaped
clusters, which constitutes a well-known weakness of GMMs.

It must be noted that another probabilistic model cabable of identifying rectangular
shaped clusters has been proposed in [1], called mixture of rectangles. In that model a
component distribution is a uniform distribution with a Gaussian tail and it is difficult
to train, due to the inability to define the gradient of the likelihood with respect to the
parameters. Thus one has to resort to line search optimization methods to perform
training of the model.

Our current work is focused on extending the Π-sigmoid distribution with the aim
to describe rotated rectangles. The main issue to be addressed is how to develop an
efficient training algorithm to adjust the additional parameters defining the rotation
matrix. Another important issue is to develop a methodology to estimate the number
of mixture components in ΠsMM, based on recent methods developed in the context
of GMMs.

 Probabilistic Models Based on the Π-Sigmoid Distribution 43

Acknowledgement. Information dissemination of this work was supported by the
European Union in the framework of the project “Support of Computer Science
Studies in the University of Ioannina” of the “Operational Program for Education and
Initial Vocational Training” of the 3rd Community Support Framework of the
Hellenic Ministry of Education, funded by national sources and by the European
Social Fund (ESF).

References

[1] Pelleg, D., Moore, A.: Mixture of rectangles: Interpretable soft clustering. In: Proc. ICML
(2001)

[2] Vlassis, N., Likas, A.: A greedy EM algorithm for Gaussian mixture learning. Neural
Processing Letters 15, 77–87 (2002)

[3] McLachlan, J.G., Krishnan, T.: Finite Mixture Models. Wiley, Chichester (2000)
[4] McLachlan, J.G., Krishnan, T.: The EM algorithm and extensions. Marcel Dekker, New

York (1997)

How Robust Is a Probabilistic Neural VLSI System
Against Environmental Noise

C.C. Lu, C.C. Li, and H. Chen

The Dept. of Electrical Engineering,
The National Tsing-Hua University, Hsin-Chu, Taiwan 30013

hchen@ee.nthu.edu.tw

Abstract. Implementing probabilistic models in the Very-Large-Scale-
Integration (VLSI) has been attractive to implantable biomedical devices for im-
proving sensor fusion and power management. However, implantable devices
are normally exposed to noisy environments which can introduce non-negligible
computational errors and hinder optimal modelling on-chip. While the probab-
listic model called the Continuous Restricted Boltzmann Machine (CRBM) has
been shown useful and realised as a VLSI system with noise-induced stochas-
tic behaviour, this paper investigates the suggestion that the stochastic behaviour
in VLSI could enhance the tolerance against the interferences of environmen-
tal noise. The behavioural simulation of the CRBM system is used to examine
the system’s performance in the presence of environmental noise. Furthermore,
the possibility of using environmental noise to induce stochasticity in VLSI for
computation is investigated.

1 Introduction

In the development of implantable devices [1][2] and bioelectrical interfaces [3][4],
exposing electronic systems to the noisy environment becomes inevitable. Although
noisy data could be transmitted wirelessly out of implanted devices and processed
by sophisticated algorithms, transmitting all raw data is power-consuming, and is un-
favourable for long-term monitoring. Therefore, an intelligent embedded system which
is robust against noise and able to extract useful information from high dimensional,
noisy biomedical signals becomes essential. The Continuous Restricted Boltzmann
Machine (CRBM) is a probabilistic model both useful in classifying biomedical data
and amenable to the VLSI implementation [5]. The usefulness comes from the use of
noise-induced stochasticity to represent natural variability in data. The VLSI imple-
mentation further explores the utility of noise-induced, continuous-valued stochastic
behaviour in VLSI circuits [5]. This leads to the suggestion that stochastic behaviour
in VLSI could be useful for discouraging environmental noise and computation er-
rors. Therefore, based on the well-defined software-hardware mapping derived in [5]
this paper use behavioural simulation to examines the maximum external noise that the
CRBM system can tolerate to model both artificial and real biomedical (ECG) data.
The possibility of using environmental noise to replace on-chip noise generators is also
investigated.

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 44–53, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

How Robust Is a Probabilistic Neural VLSI System Against Environmental Noise 45

h1 h2 h3 h4

v1 v2v0

h0

W(1)

Fig. 1. The architecture of a CRBM model with two visible and four hidden neurons. v0 and h0
represent biasing unit with invariant outputs v0 = h0 = 1.

2 The CRBM Model

The CRBM model consists of one visible and one hidden layers of continuous-valued,
stochastic neurons with inter-layer connections, as shown in Fig.1. Circle vi represents
visible neurons while circle h j represents hidden neurons. The number of visible neu-
rons corresponds to the dimensions of modeled data, while that of hidden neurons is
chosen according to data complexity. Let si denotes the state of neuron vi or h j, and wi j

represents the bi-directional connection between vi and h j. The stochastic behaviour of
a neuron si is described by [5]

si = ϕi (ai · (Σ jwi j · s j + Ni (σ ,0))) (1)

where Ni (σ ,0) represents a zero-mean Gaussian noise with variance σ2, and ϕi (·) a
sigmoid function with asymptotes at ±1 and slope controlled by ai. As a generative
model, the CRBM learns to ”regenerate” training data distributions in its visible neu-
rons. Testing data can then be categorised according to the responses of hidden neurons
[5]. The training algorithm implemented in the CRBM system is defined by the follow-
ing equation [6]

�λ = ηλ · (
〈
si · s j

〉
4−

〈
ŝi · ŝ j

〉
4) (2)

where λ represent parameters wi j or ai, ηλ the updating rate, ŝi and ŝ j the one-step
Gibbs-sampled states. 〈·〉4 stands for taking the expectation over four training data. For
parameter ai, the training algorithm is the same with Eq.(2) but simply replace s j and
ŝ j by si and ŝi, respectively.

The modelled distribution of a trained CRBM is obtained by initializing visible neu-
rons with random values, and then Gibbs sampling hidden and visible neurons alterna-
tively for multiple steps. The N-th step samples of visible neurons are called the N-step
reconstruction, and it approximates the modelled distribution when N is large. The sim-
ilarity between N-step reconstruction and training data indicates how well training data
is modelled.

46 C.C. Lu, C.C. Li, and H. Chen

3 The Robustness Against Environmental Noise

Following a brief introduction to the architecture of the CRBM system, this section inves-
tigates the influences of environmental noise on the performance of the CRBM system.

3.1 The CRBM System

The prototype CRBM system containing two visible and four hidden neurons has been
demonstrated able to reconstruct two-dimensional artificial data with noise-induced
stochastic behaviour in VLSI [5]. Fig.2 shows the modular diagram of the CRBM sys-
tems excluding its learning circuits. The CRBM neurons mainly comprise of multipliers
to calculate the products (wi j · s j) in Eq.(1), and sigmoid circuits with {ai} controlling

Fig. 2. The modular diagram of the CRBM system with two visible and four hidden neurons

Table 1. The mapping of parameter values between software simulation and hardware implemen-
tation

Matlab VLSI(V)

si [-1.0, 1.0] [1.5, 3.5]

wi j [-2.5, 2.5] [0.0, 5.0]

ai [0.5, 9.0] [1.0, 3.0]

How Robust Is a Probabilistic Neural VLSI System Against Environmental Noise 47

the slope of ϕi. On the other hand, multi-channel, uncorrelated noise {ni} are injected
into the neurons to make the outputs, {vi} and {hi}, probabilistic. Parameters {wi j}
and {ai} are stored as voltages across capacitors, and are adaptable by on-chip learning
circuits. The learning circuits can also refresh {wi j} and {ai} to specific values after
training. Table 1 summarises the mapping for all parameters between software simula-
tion and VLSI implementation, which has been proved useful for simulating the effects
of non-ideal training offsets on the performance of the CRBM system [5].

In an implantable device containing digital-signal-processing circuits, multi-purpose
sensors, and wireless transceivers, a VLSI system unavoidably suffers from various en-
vironmental noise including substrate noise, sensory noise, and electromagnetic inter-
ferences. As these interferences mainly affect the precision of voltage signals in VLSI,
voltage-represented si, wi j, and ai in the CRBM system are expected to experience se-
rious effects, while the influence on current-mode learning circuits are assumed to be
negligible. Therefore, the influence of environmental noise on the CRBM system was
simulated by replacing si, wi j, and ai in Eq.(1) and Eq.(2) by the following equations

w′ = w+ nw

a′ = a + na (3)

s′ = s+ ns

where ns, nw, and na represent zero-mean, uncorrelated noise with either Gaussian or
Uniform distributions.

3.2 Modelling Artificial Data in the Presence of Environmental Noise

To illustrate the characteristics of the CRBM, as well as to identify a quantitative index
for how well the CRBM models a dataset, the CRBM with two visible and four hid-
den neurons was first trained to model the artificial data in Fig.3(a) in the absence of
environmental noise. The training data contains one elliptic and one circular clusters of
1000 Gaussian-distributed data points. With σ = 0.2, ηw = 0.02, ηa = 0.2, and after
15,000 training epochs, the CRBM regenerated the 20-step reconstruction of 1000 data
points as shown in Fig.3(b), indicating that the CRBM has modelled data. While visual
comparison between Fig.3(a) and (b) can hardly tell how well the data is modelled, the
following index is employed to measure the similarity quantitatively.

Let PT (v) and PM(v) represent the probability distribution of training data and that
modelled by the CRBM, respectively. The Kulback-Leibler (KL) Divergence defined as
Eq.(4) [7] measures the difference between PT (v) and PM(v).

G = ΣvPT (v)log
PT (v)
PM(v)

(4)

where v denotes the subset of visible space, and G equals zero when PT (v) = PM(v).
As explicit equations for describing the modelled distribution, PM(v), are normally in-
tractable, PT (v) and PM(v) were statically-estimated by dividing the two-dimensional
space into 10x10 square grids, counting the number of data points in each grid, and

48 C.C. Lu, C.C. Li, and H. Chen

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a) (b)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

G = 0.62

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

G = 0.45

(c) (d)

Fig. 3. (a)Artificial training data. (b)The 20-step reconstruction with 1000 points generated by
the CRBM trained after 15,000 epochs. (c)The statistical density after 12,500 epochs. (d)The
statistical density corresponding to (b).

normalising the counts with respect to the total number of data points. Fig.3(c)-(d)
shows the statistical density of the 20-step reconstructions generated by the CRBM after
12,500 and 15,000 training epochs, respectively. The G values calculated according to
Eq.(4) are also shown at the bottom-left corners. This result indicates the probability
distribution of training data is modelled with negligible errors as G is smaller than
0.45(Fig.3(d)).

Based on the criterion of G ≤ 0.45, the maximum environmental noise, both
Gaussian- and uniformly-distributed, the CRBM can tolerate to model the artificial
data are identified and summarised in Table 2. The maximum tolerable noise levels
are expressed in terms of voltages based on the mapping in Table 1, and obviously, the
tolerable levels are much greater than the noise levels existing in contemporary VLSI
technologies. The first three rows in Table 2 show the tolerance identified when only
one type of parameters experiences noise. Parameter {ai} has slightly smaller tolerance
than {wi j} and {si} because the mapping for {ai} has a largest ratio between the nu-
merical and voltage ranges. This leads {ai} to experience largest numerical errors in the
existence of the same noise levels. The forth row in Table 2 shows the tolerance when
noise exists in all parameters, the more realistic case. The tolerance is not seriously de-
graded, indicating that the training algorithm of the CRBM system can compensate for
noise-induced errors among parameters and maintain a satisfactory tolerance. Finally,
Table 2 reveals that the tolerance against Gaussian-distributed noise is much better than

How Robust Is a Probabilistic Neural VLSI System Against Environmental Noise 49

Table 2. The maximum gaussian- and uniformly-distributed noise tolerable by the CRBM system
during modelling artificial data

Gaussian-distributed noise Uniformly-distributed noise

nw [-0.27V, 0.27V] [-0.18V, 0.18V]

na [-0.16V, 0.16V] [-0.08V, 0.08V]

ns [-0.18V, 0.18V] [-0.06V, 0.06V]

nw,na,ns [-0.13V, 0.13V] [-0.04V, 0.04V]

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
overlapped
abnormal heartbeat

Fig. 4. The projection of 500 ECG training data to its first two principle components. The projec-
tion of the five abnormal ECGs in the dataset are denoted by black crosses.

that against uniformly-distributed noise. This is attributed to the fact that the training
data and the noise incorporated in the CRBM neurons are Gaussian-distributed. From
another point of view, if the distribution of environmental noise is known, training the
CRBM system with noise inputs {ni} modified to have the known distribution can en-
hance the tolerance against a specific type of noise.

3.3 Modelling Biomedical Data in the Presence of Environmental Noise

The tolerable environmental noise for modelling high-dimensional, real-world data was
examined in the context of recognising electrocardiograms (ECG), extracted from the
MIT-BIH database as in [6]. The training dataset contains 500 heartbeats with only 5
abnormal heartbeats. The testing dataset contains 1700 heartbeats with 27 abnormal
heartbeats. Each heartbeat is sampled as a 65-dimemsional datum, and Fig.4 shows the
projection of the training dataset onto its first two principle components. Although the
dimension reduction makes the quantitative index G remain applicable, pilot simula-
tion showed that modelling training data satisfactorily does not guarantee the detection
of abnormal heartbeats with 100% accuracy. This is because the distributions of nor-
mal and abnormal heartbeats overlap with each other, as shown in Fig.4. Therefore,
detecting abnormal heartbeats with 100% accuracy was used as a stricter criterion for
identifying the tolerable noise during modelling ECG data.

50 C.C. Lu, C.C. Li, and H. Chen

1 65
−1

0

1

Normal Recon.

Normal hearbeat

1 65
−1

0

1

Recon.Abnormal

Abnormal hearbeat

(a) (b)

200 400 600 800 1000 1200 1400 1600
−1

0

1

0.2

Vth = 0.19

Vth = 0.12

maxV

minQ

minV

maxQ

(c)

1 65
−1

0

1

Normal Recon.

Normal hearbeat with noise

1 65
−1

0

1

Abnormal Recon.

Abnornal hearbeat with noise

(d) (e)

Fig. 5. (a) (b) Heartbeat signals sampled from training data (solid) and reconstruction generated
by the trained CRBM (dashed) without noise. (c) Corresponding response of hidden neuron to
1700 testing data. (d)(e) Heartbeat signals and reconstruction generated by the trained CRBM
with uniformly-distributed external noise in the range [-0.01, 0.01].

Fig.5(a)(b) shows heartbeat signals reconstructed by a CRBM system trained with-
out noise. Fig.5(c) shows the response of hidden neuron h2 to 1700 testing data {d},
calculated according to Eq.(5). The abnormal heartbeats can be detected with 100%
accuracy by setting any threshold between minV and maxQ.

h2 = ϕ2(a2 · (w(2) ·d)) (5)

With uniformly-distributed noise ranging between -0.01V and 0.01V, the trained
CRBM system was able to reconstruct both normal and abnormal ECG signal satis-
factorily, as shown in Fig.5(d)(e). Comparison between Fig.5(a)(b) and Fig.5(d)(e) in-
dicates that the influence of environmental noise injection introduce extra fluctuations
in the waveform.

How Robust Is a Probabilistic Neural VLSI System Against Environmental Noise 51

Table 3. The maximum gaussian- and uniformly-distributed noise tolerable by the CRBM system
to detect abnormal ECGs reliably

Gaussian-distributed noise Uniformly-distributed noise

nw [-0.39V, 0.39V] [-0.29V, 0.29V]

na [-0.15V, 0.15V] [-0.11V, 0.11V]

ns [-0.09V, 0.09V] [-0.05V, 0.05V]

nw,na,ns [-0.03V, 0.03V] [-0.03V, 0.03V]

Table 3 summarises the maximum environmental noise the CRBM can tolerate to
model and to detect abnormal ECGs with 100% accuracy. The tolerable noise levels in
Table 3 are mostly smaller than those in Table 2 because the ECG data require more
sophisticated modelling. On the contrary, parameter {wi j} has comparable tolerance
in both modelling tasks because the presence of nw simply distorts the weight vectors
and results in fluctuated reconstructions like those in Fig.5(d)(e), while these effects do
not impede the CRBM from modelling the distinguishable features between abnormal
and normal ECGs. This also explains the relatively smaller tolerance against ns, i.e. the
noise in {si}, as ns does distort the features of ECGs, making it difficult to identify any
distinguishable feature between normal and abnormal ECGs.

4 Noise-Enhanced Robustness in the CRBM System

By reducing the standard deviation of the noise injected into CRBM neurons to σ = 0.1
in Eq.(1), the maximum environmental noise the CRBM can tolerate to model the artifi-
cial data in Fig.3(a) is summarised in Table 4. Comparison between Table 2 and Table 4
indicates that reducing σ = 0.1 helps to enhance the robustness against environmental
noise, as part of environmental noise is incorporated to compensate for the reduction
of the“internal noise” ni, which is essential for inducing stochasticity for modelling the
variability of training data. Therefore, as shown by Table 4, the robustness against en-
vironment noise, especially for uniformly-distributed noise, is improved significantly.
The worst tolerable level is still greater than 110mV, corresponding to a signal-to-noise
ratio less than 20 for a CRBM system. The advantage of incorporating noise-induced
stochasticity in VLSI is clearly demonstrated.

Furthermore, it is interesting to investigate whether the internal noise ni could be
completely replaced by environmental noise to induce stochasticity for computation.
By substituting s j +ns for s j and setting Ni(σ ,0) = 0 in Eq.(1), the term ∑wi j ·(s j +ns)
becomes a random variable n′i with mean value ∑wi j · s j and a variance given as

var(n′i) = Σ jw
2
i j · var(ns) (6)

If n′i has the same variance as ni, the stochasticity induced by ns should have the same
level as that induced by ni in Fig.2. The CRBM trained on the artificial data was found

52 C.C. Lu, C.C. Li, and H. Chen

Table 4. The tolerable interference of external gaussian- and uniformity-distributed noise with
reduced variations of on-chip noise generator to model artificial data

Gaussian-distributed noise Uniformy-distributed noise

nw [-0.46V, 0.46V] [-0.46V, 0.46V]

na [-0.33V, 0.33V] [-0.14V, 0.14V]

ns [-0.28V, 0.28V] [-0.18V, 0.18V]

nw,na,ns [-0.16V, 0.16V] [-0.11V, 0.11V]

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−0.5 0 0.5

−0.5

0

0.5

G = 0.34

(a) (b)

Fig. 6. (a) The 20-step reconstruction with 1000 points to model artificial in Fig.3(a) generated
by the CRBM trained after 15,000 epochs. (b) The statistical density corresponding to (a).

to have an average value between 0.8 and 1 for Σ jw2
i j. According to Eq.6, a uniformly-

distributed noise ns ranging between [-0.3V, 0.3V] will yield an equivalent noise n′i with
a variance of 0.04. Fig.6 shows the results of training the CRBM to model the artificial
data in Fig.3(a) without ni, but with uniformly-distributed noise ns in the range [-0.3V,
0.3V]. Fig.6(a) and (b) depicts the 20-step reconstruction and its statistical density,
respectively. The corresponding G value is 0.34, revealing that the trained CRBM has
used the stochasticity induced by environmental noise in {si} to model data optimally.
This supports the suggestion in [8] that intrinsic noise of MOSFETs could be used rather
than suppressed to achieve robust computation, based on algorithms like the CRBM.
This is especially important when the VLSI technology moves towards the deep-sub-
micron era.

5 Conclusion

The behavioural simulation of the CRBM system demonstrates that the CRBM system
has satisfactory robustness against environmental noise, confirming the potential of us-
ing the CRBM system as an intelligent system in implantable devices. As the promising
performance mainly comes from the incorporation of noise-induced stochasticity, the
robustness can be further enhanced if the distribution of environmental noise is known
and incorporated during training, or by reducing the internal noise of the CRBM system.

How Robust Is a Probabilistic Neural VLSI System Against Environmental Noise 53

It is also demonstrated that environmental noise can be used to induce the stochasticity
essential for the CRBM system to model data optimally. In other words, the robust-
ness of the CRBM system can be optimised by training the CRBM to model data with
stochasticity induced by environmental noise the CRBM system is exposed to. All these
concepts will be further examined by hardware testing with the CRBM system.

References

1. Tong, B.T., Johannessen, E.A., Lei, W., Astaras, A., Ahmadian, M., Murray, A.F., Cooper,
J.M., Beaumont, S.P., Flynn, B.W., Cumming, D.R.S.: Toward a miniature wireless integrated
multisensor microsystem for industrial and biomedical applications. Sensors Journal 2(6),
628–635 (2002)

2. Johannessen, E.A., Lei, W., Li, C., Tong, B.T., Ahmadian, M., Astaras, A., Reid, S.W.J., Yam,
P.S., Murray, A.F., Flynn, B.W.A., Beaumont, S.P.A., Cumming, D.R.S., Cooper, J.M.A.: Im-
plementation of multichannel sensors for remote biomedical measurements in a microsystems
format. IEEE Transactions on Biomedical Engineering 51(3), 525–535 (2004)

3. Mingui, S., Mickle, M., Wei, L., Qiang, L., Sclabassi, R.J.: Data communication between
brain implants and computer. IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering 11(2), 189–192 (2003)

4. Nicolelis, M.A.L.: Actions from thoughts. Nature 409, 403–407 (2001)
5. Hsin, C., Fleury, P.C.D., Murray, A.F.: Continuous-valued probabilistic behavior in a VLSI

generative model. IEEE Transactions on Neural Networks 17(3), 755–770 (2006)
6. Chen, H., Murray, A.F.: Continuous restricted Boltzmann machine with an implementable

training algorithm. IEE Proceedings-Vision Image and Signal Processing 150(3), 153–158
(2003)

7. Hinton, G.E., Sejnowski, T.J.: Learning and Relearning in Boltzmann Machine. In: Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, pp. 283–317. MIT,
Cambridge (1986)

8. Hamid, N.H., Murray, A.F., Laurenson, D., Roy, S., Binjie, C.: Probabilistic computing with
future deep sub-micrometer devices: a modelling approach. In: IEEE International Sympo-
sium on Circuits and Systems, pp. 2510–2513 (2005)

Sparse Least Squares Support Vector Machines

by Forward Selection Based on
Linear Discriminant Analysis

Shigeo Abe

Graduate School of Engineering
Kobe University

Rokkodai, Nada, Kobe, Japan
abe@kobe-u.ac.jp

http://www2.eedept.kobe-u.ac.jp/~abe

Abstract. In our previous work, we have developed sparse least squares
support vector machines (sparse LS SVMs) trained in the reduced em-
pirical feature space, spanned by the independent training data selected
by the Cholesky factorization. In this paper, we propose selecting the
independent training data by forward selection based on linear discrim-
inant analysis in the empirical feature space. Namely, starting from the
empty set, we add a training datum that maximally separates two classes
in the empirical feature space. To calculate the separability in the em-
pirical feature space we use linear discriminant analysis (LDA), which
is equivalent to kernel discriminant analysis in the feature space. If the
matrix associated with the LDA is singular, we consider that the datum
does not contribute to the class separation and permanently delete it
from the candidates of addition. We stop the addition of data when the
objective function of LDA does not increase more than the prescribed
value. By computer experiments for two-class and multi-class problems
we show that in most cases we can reduce the number of support vectors
more than with the previous method.

1 Introduction

A least squares support vector machine (LS SVM) [1] is a variant of a regular
SVM [2]. One of the advantages of LS SVMs over SVMs is that we only need to
solve a set of linear equations instead of a quadratic programming program. But
the major disadvantage of LS SVMs is that all the training data become support
vectors instead of sparse support vectors for SVMs. To solve this problem, in
[1], support vectors with small absolute values of the associated dual variables
are pruned and the LS SVM is retrained using the reduced training data set.
This process is iterated until sufficient sparsity is realized. In [3], LS SVMs
are reformulated using the kernel expansion of the square of Euclidian norm of
the weight vector in the decision function. But the above pruning method is
used to reduce support vectors. Because the training data are reduced during
pruning, information for the deleted training data is lost for the trained LS

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 54–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Sparse LS Support Vector Machines by Forward Selection Based on LDA 55

SVM. To overcome this problem, in [4], independent data in the feature space
are selected from the training data, and using the selected training data the
solution is obtained by the least squares method using all the training data.
Along the line of kernel expansion, there are some approaches to realize sparse
kernel expansion by forward selection of basis vectors based on some criterion
such as least squares errors [5,6,7]. Based on the concept of the empirical feature
space [8], which is closely related to kernel expansion, in [9] a sparse LS SVM
is developed restricting the dimension of the empirical feature space by the
Cholesky factorization.

Instead of the Cholesky factorization used in [9], in this paper we propose
using forward selection based on the class separability calculated by the linear
discriminant analysis (LDA) in the empirical feature space. Namely, starting
from the empty set, we add training datum, one at a time, that maximally sep-
arates two classes in the empirical feature space. To calculate the separability
in the empirical feature space we use LDA in the empirical feature space. Lin-
ear discriminant analysis in the empirical feature space is equivalent to kernel
discriminant analysis (KDA) in the feature space, but since the variables in the
empirical feature space are treated explicitly, the calculation of LDA is much
faster. If the matrix associated with LDA is singular, we consider that the da-
tum does not contribute to the class separation and permanently delete it from
the candidates of addition. In addition to this, using the incremental calculation
of LDA, we speed up forward selection. We stop the addition of data when the
objective function of LDA does not increase more than the prescribed value. We
evaluate the proposed method using two-class and multi-class problems.

In Section 2, we summarize sparse LS SVMs trained in the empirical feature
space, and in Section 3 we discuss forward selection of independent variables
based on LDA. In Section 4, we evaluate the validity of the proposed method by
computer experiments.

2 Sparse Least Squares Support Vector Machines

Let the M training data pairs be (x1, y1), . . . , (xM , yM), where xi and yi are
the m-dimensional input vector and the associated class label, and yi = 1 and
−1 if xi belongs to Classes 1 and 2, respectively. In training LS SVMs in the
empirical feature space we need to transform input variables into variables in
the empirical feature space. To speed up generating the empirical feature space
we select independent training data that span the empirical feature space [9].
Let the N (≤ M) training data xi1 , . . . ,xiN be independent in the empirical
feature space, where xij ∈ {x1, . . . ,xM} and j = 1, . . . , N . Then, we use the
following mapping function: h(x) = (H(xi1 ,x), . . . , H(xiN ,x))T , where H(x,x′)
is a kernel. By this formulation, xi1 , . . . ,xiN become support vectors. Thus,
support vectors do not change even if the margin parameter changes. And the
number of support vectors is the number of selected independent training data
that span the empirical feature space. Then reducing N without deteriorating
the generalization ability we can realize sparse LS SVMs.

56 S. Abe

The LS SVM in the empirical feature space is trained by solving

minimize Q(v, ξ, b) =
1
2

vT v +
C

2

M∑

i=1

ξ2
i (1)

subject to vT h(xi) + b = yi − ξi for i = 1, . . . , M, (2)

where v is the N -dimensional vector, b is the bias term, ξi is the slack variable
for xi, and C is the margin parameter.

Substituting (2) into (1) and minimizing the resultant objective function, we
obtain

b =
1
M

M∑

i=1

(yi − vT h(xi)), (3)

⎛

⎝ 1
C

+
M∑

i=1

h(xi)hT (xi)− 1
M

M∑

i,j=1

h(xi)hT (xj)

⎞

⎠v

=
M∑

i=1

yi h(xi)− 1
M

M∑

i,j=1

yi h(xj). (4)

We call the LS SVM obtained by solving (4) and (3) primal LS SVM if N is
the same as the dimension of the mapped training data in the feature space. If
N is smaller, the primal LS SVM is called sparse LS SVM. We call the LS SVM
in dual form [1] dual LS SVM.

3 Selection of Independent Data

3.1 Idea

In [9], independent data are selected by Cholesky factorization of the kernel
matrix. During factorization, if the argument of the square root associated with
the diagonal element is smaller than the prescribed threshold value, we delete the
associated row and column and continue decomposing the matrix. By increasing
the threshold value, we can increase the sparsity of the LS SVM.

So long as we select the independent data that span the empirical feature
space, different sets of independent data do not affect the generalization ability
of the LS SVM, because the different sets span the same empirical feature space.

But the different sets of the independent data for the reduced empirical feature
space span different reduced empirical feature spaces. Thus, the processing order
of the training data affects the generalization ability of the LS SVM. Therefore,
selection may be inefficient if the empirical feature space is reduced.

To overcome this problem, we consider selecting independent data that maxi-
mally separate two classes using LDA calculated in the reduced empirical feature
space. In the following first we summarize the selection of independent data by
the Cholesky factorization and then discuss our proposed method based on LDA.

Sparse LS Support Vector Machines by Forward Selection Based on LDA 57

3.2 Selection of Independent Data by Cholesky Factorization

Let the kernel matrix H = {H(xi,xj)} (i, j = 1, . . . , M) be positive definite.
Then H is decomposed by the Cholesky factorization into H = L LT , where L
is the regular lower triangular matrix and each element Lij is given by

Lop =
Hop −

p−1∑
n =1

LpnLon

Lpp
for o = 1, . . . , M, p = 1, . . . , o− 1, (5)

Laa =

√√√√Haa −
a−1∑

n =1

L2
an for a = 1, 2, . . . , M. (6)

Here, Hij = H(xi,xj).
Then during the Cholesky factorization, if the argument of the square root

associated with the diagonal element is smaller than the prescribed value ηC (>
0):

Haa −
a−1∑

n =1

L2
an ≤ ηC, (7)

we delete the associated row and column and continue decomposing the ma-
trix. The training data that are not deleted in the Cholesky factorization are
independent.

The above Cholesky factorization can be done incrementally [10,11]. Namely,
instead of calculating the full kernel matrix in advance, if (7) is not satisfied,
we overwrite the ath column and row with those newly calculated using the
previously selected data and xa+1. Thus the dimension of L is the number of
selected training data, not the number of training data.

To increase sparsity of LS SVMs, we increase the value of ηC. The optimal
value is determined by cross-validation. We call thus trained LS SVMs sparse
LS SVMs by Cholesky factorization, sparse LS SVMs (C) for short.

3.3 Linear Discriminant Analysis in the Empirical Feature Space

We formulate linear discriminant analysis in the empirical feature space, which
is equivalent to kernel discriminant analysis in the feature space. To make nota-
tions simpler, we redefine the training data: Let the sets of m-dimensional data
belonging to Class i (i = 1, 2) be {xi

1, . . . ,x
i
Mi
}, where Mi is the number of data

belonging to Class i. Now we find the N -dimensional vector w in which the two
classes are separated maximally in the direction of w in the empirical feature
space.

The projection of h(x) on w is wT h(x)/‖w‖. In the following we assume
that ‖w‖ = 1. We find such w that maximizes the difference of the centers and
minimizes the variance of the projected data.

The square difference of the centers of the projected data, d2, is

d2 = (wT (c1 − c2))2 = wT (c1 − c2) (c1 − c2)T w, (8)

58 S. Abe

where ci are the centers of class i data:

ci =
1

Mi

Mi∑

j=1

h(xi
j) for i = 1, 2. (9)

We define QB = (c1 − c2) (c1 − c2)T and call QB the between-class scatter
matrix.

The variance of the projected data is s2 = wT QW w, where

QW =
1
M

M∑

j=1

h(xj)h(xj)T − c cT , c =
1
M

M∑

j=1

h(xj) =
M1c1 + M2c2

M1 + M2
.(10)

We call QW the within-class scatter matrix.
Now, we want to maximize

J(w) =
d2

s2
=

wT QB w
wT QW w

. (11)

Taking the partial derivative of (11) with respect to w and equating the re-
sulting equation to zero, we obtain the following generalized eigenvalue problem:

QB w = λQW w, (12)

where λ is a generalized eigenvalue.
Substituting

QW w = c1 − c2 (13)

into the left-hand side of (12), we obtain (wT QW w)QW w = λQW w. Thus,
by letting λ = wT QW w, (13) is a solution of (12).

If QW is positive definite, the optimum w, wopt, is given by

wopt = Q−1
W (c1 − c2). (14)

If QW is positive semi-definite, i.e., singular, one way to overcome singularity
is to add positive values to the diagonal elements [12]:

wopt = (QW + εI)−1 (c1 − c2), (15)

where ε is a small positive parameter.
Assuming that QW is positive definite, we substitute (14) into (11) and obtain

J(wopt) = (c1 − c2)T wopt. (16)

Linear discriminant analysis in the empirical feature space discussed above
is equivalent to kernel discriminant analysis in the feature space, but since we
can explicitly treat the variables in the empirical feature space, the calculation
is much simpler.

Sparse LS Support Vector Machines by Forward Selection Based on LDA 59

3.4 Forward Selection

Starting from an empty set we add one datum at a time that maximizes (11) if the
datum is added. Let the set of selected data indices be Sk and the set of remaining
data indices be T k, where k denotes that k data points are selected. Initially
S0 = φ and T 0 = {1, . . . , M}. Let Sk

j denote that xj for j ∈ T k is temporarily
added to Sk. Let hk,j(x) be the mapping function with xj temporarily added to
the selected data with indices in Sk:

hk,j(x) = (H(xi1 ,x), . . . , H(xik
,x), H(xj ,x))T , (17)

where Sk = {i1, . . . , ik}. And let Jk,j
opt be the optimum value of the objective

function with the mapping function hk,j(x). Then we calculate

jopt = argj Jk,j
opt for j ∈ T k (18)

and if the addition of xjopt results in a sufficient increase in the objective function:

(
J

k,jopt
opt − Jk

opt

)
/J

k,jopt
opt ≥ ηL, (19)

where ηL is a positive parameter, we increment k by 1 and add jopt to Sk and
delete it from T k. If the above equation does not hold we stop forward selection.
We must notice that Jk,j

opt is non-decreasing for the addition of data [13]. Thus
the left-hand side of (19) is non-negative.

If the addition of a datum results in the singularity of Qk,j
w , where Qk,j

w is
the within-class scatter matrix evaluated using the data with Sk,j indices, we
consider the datum does not give useful information in addition to the already
selected data. Thus, instead of adding a small value we do not consider this
datum for a candidate of addition. This is equivalent to calculating the pseudo-
inverse of Qk,j

w .
The necessary and sufficient condition of a matrix being positive definite is

that all the principal minors are positive. And notice that the exchange of two
rows and then the exchange of the associated two columns do not change the
singularity of the matrix. Thus, if xj causes the singularity of Qk,j

w , later addition
will always cause singularity of the matrix. Namely, we can delete j from T k

permanently. If there are many training data that cause singularity of the matrix,
forward selection becomes efficient.

Thus the procedure of independent data selection is as follows.

1. Set S0 = φ, T 0 = {1, . . . , M}, and k = 0. Calculate jopt given by (18) and
set S1 = {jopt}, T 1 = T 0 − {jopt}, and k = 1.

2. If for some j ∈ T k, Qk,j
w is singular, permanently delete j from T k and

calculate jopt given by (18). If (19) is satisfied, go to Step 3. Otherwise
terminate the algorithm.

3. Set Sk+1 = Sk ∪ {jopt} and T k+1 = T k − {jopt}. Increment k by 1 and go
to Step2.

60 S. Abe

Keeping the Cholesky factorization of Qk
w, the Cholesky factorization of Qk,j

w

is done incrementally; namely, using the factorization of Qk
w, the factorization

of Qk,j
w is obtained by calculating the (k + 1)st diagonal element and column

elements. This accelerates the calculation of the inverse of the within-class scatter
matrix.

We call thus trained sparse LS SVM sparse LS SVM by forward selection,
sparse LS SVM (L) for short.

4 Performance Evaluation

We compared the generalization ability and sparsity of primal, sparse, and dual
LS SVMs using two groups of data sets: (1) two-class data sets [14,15] and
(2) multi-class data sets [11,16]. We also evaluated regular SVMs to compare
sparsity.

We normalized the input ranges into [0, 1] and used RBF kernels. For the
primal LS SVM we set ηC = 10−9 and for the primal and dual LS SVMs, we de-
termined the parameters C and γ by fivefold cross-validation; the value of C was
selected from among {1,10,50, 100, 500, 1000, 2000, 3000, 5000, 8000, 10000, 50000,
100000}, the value of γ from among {0.1, 0.5, 1, 5, 10, 15}. For the sparse LS
SVMs, we used the value of γ determined for the primal LS SVM, and deter-
mined the value of ηC from {10−4, 10−3, 10−2, 0.05, 0.2} and the value of ηL

from {10−4, 10−3} by fivefold cross-validation. We measured the computation
time using a workstation (3.6GHz, 2GB memory, Linux operating system).

Then we compared the sparse LS SVM (L) with the methods discussed in
[5]. We used diagonal Mahalanobis kernels [17] since in [5] the training inputs
were converted into those with zero means and unit variances. We selected the
value of the scale factor δ from [0.1, 0.5, 1.0, 1.5, 2.0] and the value of C from
[1, 10, 50, 100, 500, 1000]. We determined these values setting ηL = 10−2 and then
for the determined values we selected, from i × 10−4 (i = 1, . . . , 9), the largest
value of ηL that realize the generalization ability comparable with that in [5].

4.1 Evaluation for Two-Class Problems

The two-class classification problems have 100 or 20 training data sets and their
corresponding test data sets. We determined the parameter values by fivefold
cross-validation for the first five training data sets.

Table 1 lists the determined parameters. In the table “Sparse (C)” and “Sparse
(L)” denote the sparse LS SVM by the Cholesky factorization and that by for-
ward selection proposed in this paper, respectively. The values of γ are not always
the same for primal and dual problems. In most cases the values of ηL were 10−4

and were more stable than those of ηC. The table also lists the parameter values
for the SVM. The values of γ are similar for the LS SVM and SVM.

Table 2 shows the average classification errors and standard deviations. Ex-
cluding the SVM, we statistically analyzed the average and standard deviations
with the significance level of 0.05. Numerals in italic show that they are statis-
tically inferior. Primal and sparse solutions for the ringnorm problem, primal

Sparse LS Support Vector Machines by Forward Selection Based on LDA 61

Table 1. Parameter setting for two-class problems

Data Primal Sparse (C) Sparse (L) Dual SVM
γ C C ηC C ηL γ C γ C

Banana 10 105 106 10−4 105 10−4 10 500 15 100
B. Cancer 0.5 500 1000 10−4 1000 10−4 0.5 10 1 10
Diabetes 1 500 104 10−2 2000 10−3 10 1 10 1
German 1 100 50 10−3 100 10−4 0.5 50 5 1
Heart 0.1 100 50 10−4 1000 10−4 0.1 10 0.1 50
Image 10 106 107 10−4 108 10−4 10 3000 10 1000
Ringnorm 0.1 1 10 10−3 50 10−4 10 1 15 1
F. Solar 0.5 100 500 10−3 500 10−4 0.1 100 1 1
Splice 5 100 100 0.2 500 10−4 5 50 10 10
Thyroid 10 500 1000 10−4 105 10−4 10 50 5 1000
Titanic 5 100 100 10−2 10 10−3 0.5 500 10 10
Twonorm 0.1 1 100 10−5 3000 10−3 0.1 10 1 1
Waveform 10 10 1 5×10−2 10 10−4 10 1 5 10

Table 2. Comparison of the average classification errors (%) and the standard devia-
tions of the errors

Data Primal Sparse (C) Sparse (L) Dual SVM

Banana 11.0±0.55 10.9±0.54 11.2±0.63 10.7±0.52 10.4±0.46
B. Cancer 25.5±4.3 25.7±4.2 25.5±4.3 25.7±4.5 25.6±4.5
Diabetes 23.0±1.8 23.0±1.7 23.1±1.8 23.2±1.7 23.4±1.7
German 23.6±2.0 23.8±2.1 23.7±2.0 23.3±2.1 23.8±2.1
Heart 16.4±3.4 16.4±3.4 16.3±3.1 16.0±3.4 16.1±3.1
Image 2.89±0.37 2.85±0.38 3.08±0.38 2.66±0.37 2.84±0.50
Ringnorm 6.02±3.0 7.56±6.3 6.20±2.4 4.08±0.58 2.64±0.35
F. Solar 33.3±1.5 33.3±1.5 33.3±1.6 33.3±1.6 32.3±1.8
Splice 11.2±0.48 11.2±0.61 11.4±0.53 11.3±0.51 10.8±0.71
Thyroid 5.59±2.6 5.60±2.7 5.15±2.7 4.84±2.5 4.05±2.3
Titanic 22.5±0.94 22.5±0.94 22.7±0.85 22.5±0.97 22.4±1.0
Twonorm 3.91±1.9 2.10±0.63 2.68±0.22 1.90±0.61 2.02±0.64
Waveform 9.76±0.38 9.68±0.32 9.74±0.38 14.9±0.98 10.3±0.40

solutions for the twonorm problem and dual solutions for the waveform problem
show significantly inferior performance. The inferior solutions arose because of
imprecise model selection [9].

Comparing the results of the LS SVMs with the SVM, the SVM showed the
better generalization ability for some problems than LS SVMs. Or LS SVMs are
not robust for parameter changes.

Table 3 lists the number of support vectors. The smallest number of support
vectors in LS SVMs is shown in boldface. The number of support vectors for
primal solutions is the number of training data at most. The numbers of support
vectors for the sparse LS SVMs are, in general, much smaller than those for the
primal and dual LS SVM. This tendency is evident especially for the sparse LS
SVM (L); except for three problems it performed best.

62 S. Abe

Table 3. Comparison of support vectors

Data Primal Sparse (C) Sparse (L) Dual SVM

Banana 93 42 33 400 173
B. Cancer 187 101 67 200 118
Diabetes 447 22 34 468 268
German 700 386 351 700 416
Heart 170 68 34 170 74
Image 1215 476 198 1300 149
Ringnorm 400 21 10 400 131
F. Solar 82 16 37 666 522
Splice 977 921 619 1000 749
Thyroid 140 70 55 140 13
Titanic 11 11 9 150 113
Twonorm 400 169 8 400 193
Waveform 400 233 313 400 114

Table 4. Comparison of computation time in seconds

Data Primal Sparse (C) Sparse (L) Dual SVM

Banana 9.4 2.1 1.4 1.0 0.4
B. Cancer 6.2 1.8 1.0 0.05 0.3
Diabetes 283 0.9 2.0 0.4 1.3
German 1550 467 822 1.4 7.5
Heart 3.7 0.6 0.2 0.4 0.09
Image 16181 2489 1123 10.7 1.5
Ringnorm 168 0.9 0.6 1.8 0.9
F. Solar 20 4.8 7.5 1.2 7.8
Splice 6170 5503 6845 5.6 13
Thyroid 1.7 0.4 0.3 0.02 0.01
Titanic 0.04 0.04 0.05 0.11 0.2
Twonorm 167 30 0.6 1.9 1.4
Waveform 167 58 110 1.3 0.6

In calculating the classification errors listed in Table 2, we measured the com-
putation time of training and testing for the 100 or 20 data sets in a classification
problem. Then we calculated the average computation time for a training data
set and its associated test data set. Table 4 lists the results. As a reference we in-
clude the computation time for the SVM, which was trained by the primal-dual
interior-point methods combined with the decomposition technique. Training
of primal problems is slow especially for diabetes, german, image, and splice
problems. Except for german, image, splice, and waveform computation time for
sparse LS SVMs (L) is the shortest; speed-up was mostly caused by the frequent
matrix singularity. But for those four problems, matrix singularity was rare and
because of relatively large training data, forward selection took time.

4.2 Evaluation for Multi-class Problems

Each multi-class problem has one training data set and one test data set. We used
fuzzy pairwise LS SVMs with minimum operators [11] to resolve unclassifiable
regions. For comparisons we also used fuzzy pairwise SVMs.

Sparse LS Support Vector Machines by Forward Selection Based on LDA 63

Table 5. Parameter setting for multi-class problems

Data Sparse (C) Sparse (L) Dual SVM
C ηC C ηL C γ γ C

Iris 106 10−4 106 10−4 0.1 500 0.1 5000
Numeral 106 10−4 107 10−3 0.1 100 5 10
Thyroid (M) 108 10−3 109 10−4 10 106 5 105

Blood cell 107 10−4 107 10−4 1 7000 10 1000
H-50 108 10−3 105 10−4 5 7000 10 500
H-13 109 10−4 109 10−4 1 108 10 3000
H-105 3000 10−2 2000 10−3 10 50 10 50

Table 6. Comparison of classification errors (%) and the numbers of support vectors

Data Sparse (C) Sparse (L) Dual SVM
ERs SVs ERs SVs ERs SVs ERs SVs

Iris 2.67 8 4.00 4 2.67 50 5.33 10
Numeral 0.73 18 0.73 4 0.85 162 0.61 8
Thyroid (M) 4.87 354 4.96 160 4.52 2515 2.71 75
Blood cell 5.68 141 6.13 25 5.65 516 7.16 21
H-50 0.80 148 0.74 37 0.80 236 0.74 16
H-13 0.49 39 0.48 23 0.14 441 0.37 10
H-105 0 259 0.02 15 0 441 0 26

Table 7. Comparison of computation time in seconds

Data Sparse (C) Sparse (L) Dual SVM

Iris 0.005 0.007 0.02 0.01
Numeral 2.9 1.6 9.8 2.0
Thyroid (M) 39525 27487 524 9.1
Blood cell 364 181 210 9.6
H-50 12127 1652 2589 128
H-13 2387 1585 5108 368
H-105 112175 1176 14184 358

Table 5 lists the parameters determined by cross-validation. The values of C
of sparse solutions are larger than those of dual solutions. The dual LS SVM and
the SVM selected similar γ values, but unlike two-class problems, they selected
the similar C values.

Table 6 lists the classification errors and the average number of support vectors
per class pair. Excluding those of SVMs, the smallest errors and the support
vectors are shown in boldface. Including SVMs, the difference of the classification
errors is small. The number of support vectors for the sparse LS SVM (L) is the
smallest among LS SVMs and sometimes smaller than those of SVMs. Therefore,
sufficient sparsity is realized by the sparse LS SVMs (L).

Table 7 lists the computation time of training and testing. Between sparse LS
SVMs, the shorter computation time is shown in boldface. Except for the iris

64 S. Abe

problem, computation time of sparse LS SVMs (L) is shorter. Comparing with
the dual LS SVM and the SVM, the dual LS SVM is slower because of the slow
Cholesky factorization for large matrices.

4.3 Comparison with Other Methods

We used the two-class ringnorm data set with 3000 training data and 4400 test
data and the 6-class satimage data set with 4435 training data and 2000 test
data used in [5]. Since training took time, we used pairwise LS SVMs instead
of one-against-all LS SVMs in [5]. Table 8 shows the parameter setting for the
sparse LS SVM (L) and the comparison results. The results other than Sparse
(L) are from [5]. We measured the computation time by a 3.0GHz Windows
machine with 2Gbyte memory, while in [5] the training time was measured by
a 2.4GHz Windows machine with 1Gbyte memory. The “SVs” row denotes the
total number of distinct support vectors and the “Rate” row denotes the recog-
nition rate for the test data set. For the satimage data set we could not measure
time but it took long time. From the table, the numbers of support vectors for
Sparse (L) are smallest with comparable recognition rates. The training time for
the ringnorm data set is comparable, but for the satimage data set, it was very
slow because we did not use the subset selection method used in [5].

Table 8. Parameter setting and comparison with other methods

Data Parm Sparse (L) Term Sparse (L) PFSALS-SVM KMP SGGP

δ 1.5 SVs 6 661 77 74
Ringnorm C 1 Rate 98.64 98.52 98.11 98.27

ηL 10−3 Time 9.9 7.1 7.5 50
δ 1.5 SVs 1581 1726 — —

Satimage C 100 Rate 92.05 92.25 — —
ηL 2 × 10−4 Time — 50 — —

5 Conclusions

In this paper we proposed sparse LS SVMs by forward selection of independent
data based on linear discriminant analysis in the empirical feature space. Namely,
starting from the empty set, we add the training data that maximally separate
two-classes in the empirical feature space. We measure the class separability by
the objective function of linear discriminant analysis. To speed up forward selec-
tion, we exclude data that cause matrix singularity from later addition and use
the incremental calculation in calculating the inverse of the within-class scatter
matrix. For most of the two-class and multi-class problems tested, sparsity of the
solutions was increased drastically compared to the method using the Cholesky
factorization in reducing the dimension of the empirical feature space and for
most of the problems training of LS SVMs by forward selection was the fastest.
For comparison with other methods, sparsity of the solutions was the highest.

Sparse LS Support Vector Machines by Forward Selection Based on LDA 65

References

1. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.:
Least Squares Support Vector Machines. World Scientific Publishing, Singapore
(2002)

2. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, Chichester (1998)
3. Cawley, G.C., Talbot, N.L.C.: Improved sparse least-squares support vector ma-

chines. Neurocomputing 48, 1025–1031 (2002)
4. Valyon, J., Horváth, G.: A sparse least squares support vector machine classifier.

In: Proc. IJCNN 2004, vol. 1, pp. 543–548 (2004)
5. Jiao, L., Bo, L., Wang, L.: Fast sparse approximation for least squares support

vector machine. IEEE Trans. Neural Networks 18(3), 685–697 (2007)
6. Smola, A.J., Bartlett, P.L.: Sparse greedy Gaussian process regression. Advances

in Neural Information Processing Systems 13, 619–625 (2001)
7. Vincent, P., Bengio, Y.: Kernel matching pursuit. Machine Learning 48(1-3), 165–

187 (2002)
8. Xiong, H., Swamy, M.N.S., Ahmad, M.O.: Optimizing the kernel in the empirical

feature space. IEEE Trans. Neural Networks 16(2), 460–474 (2005)
9. Abe, S.: Sparse least squares support vector training in the reduced empirical

feature space. Pattern Analysis and Applications 10(3), 203–214 (2007)
10. Kaieda, K., Abe, S.: KPCA-based training of a kernel fuzzy classifier with el-

lipsoidal regions. International Journal of Approximate Reasoning 37(3), 145–253
(2004)

11. Abe, S.: Support Vector Machines for Pattern Classification. Springer, Heidelberg
(2005)

12. Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Müller, K.-R.: Fisher discriminant
analysis with kernels. In: Proc. NNSP 1999, pp. 41–48 (1999)

13. Ashihara, M., Abe, S.: Feature selection based on kernel discriminant analysis.
In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS,
vol. 4132, pp. 282–291. Springer, Heidelberg (2006)

14. Rätsch, G., Onoda, T., Müller, K.-R.: Soft margins for AdaBoost. Machine Learn-
ing 42(3), 287–320 (2001)

15. http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

16. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/

17. Abe, S.: Training of support vector machines with Mahalanobis kernels. In: Duch,
W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp.
571–576. Springer, Heidelberg (2005)

http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/

Supervised Incremental Learning with the
Fuzzy ARTMAP Neural Network

Jean-François Connolly, Eric Granger, and Robert Sabourin

Laboratoire d’imagerie, de vision et d’intelligence artificielle
Dépt. de génie de la production automatisée

École de technologie supérieure
1100 rue Notre-Dame Ouest,

Montreal, Quebec,
Canada, H3C 1K3�

jfconnolly@livia.etsmtl.ca, eric.granger@etsmtl.ca,
robert.sabourin@etsmtl.ca

Abstract. Automatic pattern classifiers that allow for on-line incremental learn-
ing can adapt internal class models efficiently in response to new information
without retraining from the start using all training data and without being subject
to catastrophic forgeting. In this paper, the performance of the fuzzy ARTMAP
neural network for supervised incremental learning is compared to that of su-
pervised batch learning. An experimental protocole is presented to assess this
network’s potential for incremental learning of new blocks of training data, in
terms of generalization error and resource requirements, using several synthetic
pattern recognition problems. The advantages and drawbacks of training fuzzy
ARTMAP incrementally are assessed for different data block sizes and data set
structures. Overall results indicate that error rate of fuzzy ARTMAP is signifi-
cantly higher when it is trained through incremental learning than through batch
learning. As the size of training blocs decreases, the error rate acheived through
incremental learning grows, but provides a more compact network using fewer
training epochs. In the cases where the class distributions overlap, incremental
learning shows signs of over-training. With a growing numbers of training pat-
terns, the error rate grows while the compression reaches a plateau.

1 Introduction

The performance of statistical and neural pattern classifiers depends heavily on the
availability of representative training data. The collection and analysis of such data
is expensive and time consuming in many practical applications. Training data may,
therefore, be incomplete in one of several ways. In an environments where class distri-
butions remain fixed, these include a limited number of training observations, missing
components of the input observations, missing class labels during training, and missing
classes (i.e., some classes that were not present in the training data set may be encoun-
tered during operations) [7].

� This research was supported in part by the Natural Sciences and Engineering Research Council
of Canada.

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 66–77, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Supervised Incremental Learning with the Fuzzy ARTMAP Neural Network 67

Fig. 1. A generic incremental learning scenario where blocks of data are used to update the clas-
sifier in an incremental fashion over time. Let D1, D2, ..., Dn+1 be the blocks of training data
available to the classifier at discrete instants in time t1, t2, ..., tn+1. The classifier starts with ini-
tial hypothesis h0 which constitutes the prior knowledge of the domain. Thus, h0 gets updated to
h1 on the basis of D1, and h1 gets updated to h2 on the basis of data D2, and so forth [5].

Given an environment where class distributions are fixed, and in which training data
is incomplete, a critical feature of future automatic classification systems is the ability
to update their class models incrementally during operational phases in order to adapt to
novelty encountered in the environment [5] [9]. As new information becomes available,
internal class models should be refined, and new ones should be created on the fly,
without having to retrain from the start using all the cumulative training data.

For instance, in many practical applications, additional training data may be acquired
from the environment at some point in time after the classification system has originally
been trained and deployed for operations (see Fig. 1). Assume that this data is charac-
terized and labeled by a domain expert, and may contain observations belonging to
classes that are not present in previous training data, and classes may have a wide range
of distributions. It may be too costly or not feasible to accumulate and store all the data
used thus far for supervised training, and to retrain a classifier using all the cumula-
tive data1. In this case, it may only be feasible to update the system through supervised
incremental learning.

Assuming that new training data becomes available, incremental learning provides
the means to efficiently maintain an accurate and up-to-date class models. Another ad-
vantage of incremental learning is the lower convergence time and memory complexity
required to update a classifier. Indeed, temporary storage of the new data is only re-
quired during training, and training is only performed with the new data. Strategies
adopted for incremental learning will depend on the application – the nature of training
data, the environment, performance constraints, etc. Regardless of the context, updating
a pattern classification system in an incremental fashion raises several technical issues.

In particular, accommodating new training data may corrupt the classifier’s previ-
ously acquired knowledge structure and compromise its ability to achieve a high level
of generalization during future operations. The stability-plasticity dilemma [1] refers to

1 The vast majority of statistical and neural pattern classifiers proposed in literature can only
perform supervised batch learning to learn new data. They must accumulate and store all
training data in memory, and retrain from the start using all previously-accumulated training
data.

68 J.-F. Connolly, E. Granger, and R. Sabourin

the problem of learning new information incrementally, yet overcoming the problem of
catastrophic forgetting.

This paper focuses on techniques that are suitable for supervised incremental learn-
ing in an environment where class distributions remain fixed over time. According to
Polikar [12], an incremental learning algorithm should:

1. allow to learn additional information from new data,
2. not require access to the previous training data,
3. preserve previously acquired knowledge, and
4. accommodate new classes that may be introduced with new data.

In literature, some promising pattern classification algorithms have been reported for
supervised incremental learning in environments where distributions are fixed. For ex-
ample, the ARTMAP [2] and Growing Self-Organizing [6] families of neural network
classifiers, have been designed with the inherent ability to perform incremental learning.
In addition, some well-known pattern classifiers, such as the Support Vector Machine
(SVM), and the Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) neu-
ral networks have been adapted to perform incremental learning [10] [11] [13]. Finally,
some high-level architectures, based on well-known pattern classifiers, e.g., Ensemble
of Classifiers, have also been proposed [12].

In this paper, the performance of the fuzzy ARTMAP [4] neural network is character-
ize for supervised incremental learning of new blocks of training data in an environment
where class distributions are fixed. Fuzzy ARTMAP is the most popular ARTMAP net-
work. While its incremental learning capabilities are often cited in literature, to the
authors knowledge, these capabilities have not been assessed. An experimental proto-
cole has thus been defined such that the impact on performance of learning a new block
of training data incrementally, after each network has previously been trained, is as-
sessed for different types of synthetic pattern recognition problems. The first type of
problem consists of data with overlapping class distributions, whereas the second type
involves data with complex decision boundaries but no overlap. With this protocole, the
advantages and drawbacks of the ARTMAP architectures are discussed for incremen-
tal learning data using different data block sizes, and using different data set structures
(overlap, dispersion, etc.).

In the next section, fuzzy ARTMAP is briefly reviewed. Then, the experimental pro-
tocol, performance measures and synthetic data sets, used for proof-of-concept com-
puter simulations, are described in Section 3. Finally, experimental results are presented
and discussed in Section 4.

2 ARTMAP Neural Networks

ARTMAP refers to a family of neural network architectures based on Adaptive Res-
onance Theory (ART) [1] that is capable of fast, stable, on-line, unsupervised or su-
pervised, incremental learning, classification, and prediction [2]. A key feature of the
ARTMAP networks is their unique solution to the stability - plasticity dilemma.

Several ARTMAP networks have been proposed in order to improve the perfor-
mance of these architectures. Members of the ARTMAP family can be broadly divided

Supervised Incremental Learning with the Fuzzy ARTMAP Neural Network 69

according to their internal matching process, which depends on either deterministic
or probabilistic category activation. The deterministic type consists of networks such as
fuzzy ARTMAP, ART-EMAP, ARTMAP-IC, default ARTMAP, simplified ARTMAP,
distributed ARTMAP, etc., and represent each class using one or more fuzzy set
hyper-rectangles. In contrast, the probabilistic type consists of networks such as PRO-
BART, PFAM, MLANS, Gaussian ARTMAP, ellipsoid ARTMAP, boosted ARTMAP,
μARTMAP, etc., and represent each class using one or more probability density
functions.

This paper focuses on the popular fuzzy ARTMAP neural network [4]. It integrates
the fuzzy ART [3] in order to process both analog and binary-valued input patterns to the
original ARTMAP architecture [2]. The rest of this section provides a brief description
of fuzzy ARTMAP.

2.1 Fuzzy ARTMAP

The fuzzy ART neural network consists of two fully connected layers of nodes: a
2M node input layer F1 to accomodate complement-coded input patterns, and an N
node competitive layer, F2. A set of real-valued weights W = {wij ∈ [0, 1] : i =
1, 2, ..., 2M ; j = 1, 2, ..., N} is associated with the F1-to-F2 layer connections. The
F2 layer is connected, through learned associative links, to an L node map field Fab,
where L is the number of classes in the output space. A set of binary weights Wab =
{wab

jk ∈ {0, 1} : j = 1, 2, ..., N ; k = 1, 2, ..., L} is associated with the F2-to-Fab

connections. Each F2 node j = 1, ..., N corresponds to a category that learns a proto-
type vector wj = (w1j , w2j , ..., w2Mj), and is associate with one of the output classes
K = 1, ..., L. During the training phase, fuzzy ARTMAP dynamics is govern by four
hyperparameters: the choice parameter α > 0, the learning parameter β ∈ [0, 1], the
baseline vigilance parameter ρ̄ ∈ [0, 1], and the matchtracking parameter ε. In term of
incremental learning, the learning algorithm is able to adjusts previously-learned cat-
egories, in response to familiar inputs, and to creates new categories dynamically in
response to inputs different enough from those already seen.

The following describes fuzzy ARTMAP during supervised learning of a finite data
set. When an input pattern a = (a1, ..., aM) is presented to the network and the vigi-
lance parameter ρ ∈ [0, 1] is set to its baseline value ρ̄. The original M dimensions input
pattern a is complement-coded to make a 2M dimensions network’s input pattern: A =
(a, ac) = (a1, a2, ..., aM ; ac

1, a
c
2, ..., a

c
M), where ac

i = (1−ai), and ai ∈ [0, 1]. Each F2

node is activated according to the Weber law choice function: T (A) = |A ∧wj |/(α +
|wj |), and the node with the strongest activation J = argmax{Tj : j = 1, ..., N} is
chosen. The algorithm then verifies if wJ is similar enough to A using the vigiliance
test: |A ∧ wJ |/2M ≥ ρ. If node J fails the vigilance test, it is disactivated and the
network searches for the next best node on the F2 layer. If the vigilance test is passed,
then the map field F ab is activated through the category J and fuzzy ARTMAP makes
a class prediction K = k(J). In the case of an incorrect class prediction K = k(J),
a match tracking signal raises ρ = (|A ∧wJ |/2M) + ε. Node J is disactivated, and
the search among F2 nodes begins anew. If node J passes the vigilance test, and makes
the correct prediction, its category is updated by adjusting its prototype vector: wJ to
w′

J = β(A ∧wJ) + (1 − β)wJ . On the other hand, if none of the nodes can satisfy

70 J.-F. Connolly, E. Granger, and R. Sabourin

both conditions (vigilance test and correct prediction), then a new F2 node is initialed.
This new node is assigned to class K by setting wab

Jk to 1 if k = K and 0 otherwise.
Once the weights W and Wab have been found through this process, the fuzzy

ARTMAP can predict a class label from a input pattern by activating the best F2 node
J , which activates a class K = k(J) on the Fab layer. Predictions are obtained without
vigilance and match tests.

3 Experimental Methodology

3.1 Experimental Protocole

In order to observe the impact on performance of training a classifier with supervised
incremental learning for different data structures, several data sets were selected for
computer simulations. The synthetic data sets are representative of pattern recognition
problems that involve either (1) simple decision boundaries with overlapping class dis-
tributions, or (2) complex decision boundaries without overlap on decision boundaries.
The synthetic data sets correspond to 2 classes problems, with a 2 dimensional input
feature space. Each data subset is composed of an equal number of 10,000 patterns per
class, for a total of 20,000 (2 classes) randomly-generated patterns.

Prior to a simulation trial, each data set is normalized according to the min-max tech-
nique and partitioned into two equal parts – the learning and test subsets. The learning
subset is divided into training and validation subsets. They respectively contain 2/3 and
1/3 of patterns from each class of the learning subset. In order to perform block-wise
hold-out validation over several training epochs2, the training and validation subsets are
again divided into b blocks. Each block Di (i = 1, 2, ..., b) contains an equal number
of patterns per class. To observe the impact on performance of learning new blocks of
training data incrementally for different data block sizes, two different cases are ob-
served. The first case consists in training with b = 10, where |Di| = 1000 patterns,
while the second one consists in training with b = 100, where |Di| = 100 patterns.

During each simulation trial, fuzzy ARTMAP is trained using a batch learning and
incremental learning process. For batch learning, |Di| is set to the smaller block size,
in our case |Di| = 100, and the number of blocks Dn used for training is progressively
increased from 1 to 100. For the nth trial, performance is assessed after initializing a
fuzzy ARTMAP network and training it until convergence on Bn = Di ∪ ... ∪ Dn.
Since there is 100 blocks Di, there will be 100 trials.

On the other hand, incremental learning consists in training the ARTMAP networks,
until convergence, over one or more training epochs on successive blocks of data Di.
The training of each data block is done in isolation without reinitializing the networks.
In the case of incremental learning two block sizes will be tested: |Di| = 100 and
when |Di| = 1000. At first, performance is assessed after initializing an ARTMAP net-
work and training on D1. Then it is assessed after training the same ARTMAP network
incrementally on D2, and so on, until all b blocks are learned.

For each trial, learning is performed using a hold-out validation technique, with net-
work training halted for validation after each epoch [8]. The performance of fuzzy

2 An epoch is defined as one complete presentation of all the patterns of a finite training data
set.

Supervised Incremental Learning with the Fuzzy ARTMAP Neural Network 71

ARTMAP was measured when using standard parameter settings that yield minimum
network resources (internal categories, epochs, etc.): β = 1, α = 0.001, ρ̄ = 0 and
ε = 0.001 [4].

Since ARTMAP performance is sensitive to the presentation order of the training
data, the pattern presentation orders were always randomized from one epoch to the
next. In addition, each simulation trial was repeated 10 times with 10 different randomly
generated data sets (learning and test). The average performance of fuzzy ARTMAP
was assessed in terms of resources requirements and generalisation error. The amount
of resources is measured by compression and convergence time. Compression refers to
the average number of training patterns per category prototype created in the F2 layer.
Convergence time is the number of epochs required to complete learning for a training
strategy. It does not include presentations of the validation subset used to perform hold-
out validation. Generalisation error is estimated as the ratio of incorrectly classified
test subset patterns over all test set patterns. The combination of compression and con-
vergence time provides useful insight into the amount of processing required by fuzzy
ARTMAP during training to produce its best asymptotic generalisation error. Average
results, with corresponding standard error, are always obtained, as a result of the 10
independent simulation trials.

3.2 Data Sets

Of the five synthetic data sets selected for simulations, two have simple decision bound-
aries with overlapping class distributions (D2N(ξtot) and DXOR(ξtot)) and three have
complex decision boundaries without overlap (DXOR-U, DCIS and DP2). The two classes
in D2N and DXOR are randomly generated with normal distributions and the total theoret-
ical probability of error associated with these problems is denoted by ξtot. Data from
the classes in DXOR-U, DCIS and DP2 are uniform distributions, and since class distribu-
tions do not overlap on decision boundaries, the total theoretical probability of error for
these data sets is 0.

The D2N(ξtot) data (Fig. 2a) consists of two classes, each one defined by a normal
distribution in a two dimensional input feature space [8]. Both sources are described
by variables that are independent, have equal covariance Σ, and their distributions are
hyperspherical. With the DXOR(ξtot) problem, data is generated by 2 classes according
to bi-modal distributions (Fig. 2b). The four normal distributions are centered in the
4 squares of a classical XOR problem. For those two problems, the degree of overlap

(a) D2N(13%) (b) DXOR(13%) (c) DXOR-U (d) DCIS (e) DP2

Fig. 2. Exemple of the five data sets generated for a replication of each problem

72 J.-F. Connolly, E. Granger, and R. Sabourin

is varied from a total probability of error ξtot = 1%, 13%, and 25%, by changing the
covariance of each normal distribution.

With the DXOR-U data, the ‘on’ and ‘off’ classes of the classical XOR problem are
divided by a horizontal decision bound at y = 0.5, and a vertical decision bound at
x = 0.5 (Fig. 2c). The Circle-in-Square problem DCIS (Fig. 2d) requires a classifier to
identify the points of a square that lie inside a circle, and those that lie outside a circle
[2]. The circle’s area equals half of the square. It consists of one non-linear decision
boundary where classes do not overlap. Finally, with the DP2 problem (Fig. 2e), each
decision region of its 2 classes is delimited by one or more of its four polynomial and
trigonometric functions, and belongs to one of the two classes [14].

4 Simulation Results

4.1 Overlapping Class Distributions

Figure 3 presents the average performance achieved as a function of the training sub-
set size, when fuzzy ARTMAP is trained using batch and incremental learning on the

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
24

25

26

27

28

29

30

31

Number of training patterns

E
rr

or
 r

at
e

(%
)

Batch
Incremental (|B| = 1000)
Incremental (|B| = 100)

(a) Generalisation error

2000 4000 6000 8000 10000
10

15

20

25

30

35

40

45

Number of training patterns

C
om

pr
es

si
on

 (
pa

tt
er

ns
/c

at
eg

or
y)

(b) Compression

2000 4000 6000 8000 10000
1

2

3

4

5

6

Number of training patterns

C
on

ve
rg

en
ce

 t
im

e
(t

ra
in

in
g

ep
oc

hs
)

(c) Convergence time

Fig. 3. Average performance of the fuzzy ARTMAP versus training subset size for DXOR(13%)
using batch and incremental learning. Each curve is shown along with 90% confidence interval.

Supervised Incremental Learning with the Fuzzy ARTMAP Neural Network 73

DXOR(13%) data set. For incremental learning, block sizes of 100 and 1000 are em-
ployed. Very similar tendencies are found in simulation results with other data sets with
class distributions overlap (D2N(ξ%) and DXOR(ξ%)).

As shown in Fig. 3a, the error rate obtained by training fuzzy ARTMAP through
incremental learning is generally significantly higher than that obtained through batch
learning. Using the smaller block size (|Di| = 100) yields a higher error rate that with
the larger block size (|Di| = 1000), but this difference is not significant. In addition,
error tends to grow with the number of blocks having been learned. For example, after
the fuzzy ARTMAP network undergoes incremental learning of 100 blocks with |Di| =
100, the average error is about 29.3%, yet after learning 10 blocks with |Di| = 1000,
the error is about 27,6%.

Although the error is greater, Fig. 3b indicates that the compression obtained when
fuzzy ARTMAP is trained through incremental learning is significantly higher than if
trained through batch learning, and it tends to grow as the block size is decreased. Incre-
mental learning also tends to reduce the number of training epochs required for fuzzy
ARTMAP to converge (see Fig. 3c). As the block size decreases, the convergence time
tends towards 1. With incremental learning, the first blocks have a tendency to require
a greater number of epochs. For example, after fuzzy ARTMAP undergoes incremental
learning of 100 blocks with |Di| = 100, the average compression and convergence time
are about 40 patterns/category and 1.0 epoch, respectively. After learning 10 blocks with
|Di| = 1000, the compression and convergence time are about 30 patterns/category and
1.8 epochs. This compares favorably to fuzzy ARTMAP trained through batch learn-
ing, where the compression and convergence time are about 10 patterns/category and
5.0 epochs. In this case, the performance of fuzzy ARTMAP as the training set size
grows is indicative of overtraining [8].

4.2 Complex Decision Boundaries

Fig. 4 presents the average performance achieved as a function of the training subset
size, when the fuzzy ARTMAP is trained using batch and incremental learning on the
DCIS data set. Very similar tendencies are found in simulation results for other data set
where complex boundaries and class distributions that do not overlap (DXOR-U and DP2).

As shown in Fig. 4a, when the training set size increases, the average generalisation
error of fuzzy ARTMAP trained with either batch or incremental learning decreases
asymptotically towards its minimum. However, the generalisation error obtained by
training fuzzy ARTMAP through incremental learning is generally significantly higher
than that obtained through batch learning. As with the data that has overlapping class
distributions, the error tends to grow as the block size decreases. However, after the
fuzzy ARTMAP network performs incremental learning of 100 blocks with |Di| = 100,
the average error is comparable to after learning 10 blocks with |Di| = 1000 (about
4.5%).

Again, training fuzzy ARTMAP through incremental learning yields a significantly
higher compression than with batch learning (Fig. 4b). Furthermore, the convergence
time associated with incremental learning is considerably lower than with batch learn-
ing (Fig. 4c). Results indicate that as the block size is decreased and the number of
learned blocks increases, the convergence time with incremental learning tends towards

74 J.-F. Connolly, E. Granger, and R. Sabourin

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
2

4

6

8

10

12

14

Number of training patterns

E
rr

or
 r

at
e

(%
)

Batch
Incremental (|B| = 1000)
Incremental (|B| = 100)

(a) Generalisation Error

2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

Number of training patterns

C
om

pr
es

si
on

 (
pa

tt
er

ns
/c

at
eg

or
y)

(b) Compression

2000 4000 6000 8000 10000
1

2

3

4

5

6

7

Number of training patterns

C
on

ve
rg

en
ce

 t
im

e
(t

ra
in

in
g

ep
oc

hs
)

(c) Convergence time

Fig. 4. Average performance of the fuzzy ARTMAP versus training subset size for DCIS using
batch and incremental learning. Each curve is shown along with 90% confidence interval.

1. For example, after fuzzy ARTMAP undergoes incremental learning of 100 blocks
with |Di| = 100, the average compression and convergence time are about 260 pat-
terns/category and 1.0 epoch, respectively. After learning 10 blocks with |Di| = 1000,
the compression and convergence time are about 280 patterns/category and 1.8 epochs.

4.3 Discussion

Overall results indicate that when fuzzy ARTMAP undergoes incremental learning, the
networks tend to become more compact, but the error rate tends to degrade. As shown
in Fig. 5, this is reflected by decision boundaries among classes that become coarser as
the block size decreases. Note that batch learning is equivalent to |D1| = 10000. Since
training on each block is performed in isolation, when fuzzy ARTMAP is trained on
large data blocks, it has sufficient information to converge toward an optimal solution.
Small data blocks represent the higher bound on the error rate. In our study, the small-
est block size considered is |Di| = 100 where each pattern must only be presented,
on average, one time to the neural network for convergence (Figs. 3c and 4c). In this
case, the network can create or update the model, but it appears to lack the necessary
information to truly converge toward a solution over several training epochs.

Supervised Incremental Learning with the Fuzzy ARTMAP Neural Network 75

Incremental learning (|Di| = 100)

Incremental learning (|Di| = 1000)

Batch learning

(a) D2N(13%) (b) DXOR(13%) (c) DXOR-U (d) DCIS (e) DP2

Fig. 5. Decision boundaries for the best replication after learning all of the training patterns
through batch and incremental learning, using the five data sets. The boundaries are shown for in-
cremental learning with |Di| = 100, incremental learning with |Di| = 1000, and batch learning
(i.e. |D1| = 10000).

Table 1. Average generalisation error of fuzzy ARTMAP classifiers trained using batch and in-
cremental learning with blocks of |Di| = 1000 and |Di| = 100 on all data from synthetic sets.
Values are shown with the 90% confidence interval.

Data Set
Average generalisation error (%)

Batch Incremental (|Di| = 1000) Incremental (|Di| = 100)

D2N(1%) 2.1 ± 0.3 3.2 ± 0.5 2.8 ± 0.3
D2N(13%) 21.6 ± 0.6 23.8 ± 0.9 24.9 ± 1.1
D2N(25%) 35.8 ± 0.4 37.8 ± 0.4 38.4 ± 0.4
DXOR(1%) 1.2 ± 0.1 1.7 ± 0.5 1.7 ± 0.4
DXOR(13%) 25.3 ± 0.8 27.6 ± 0.6 29.3 ± 1.1
DXOR(25%) 43.0 ± 0.5 44.0 ± 0.5 44.0 ± 0.6
DXOR-U 0.2 ± 0.1 0.6 ± 0.1 0.9 ± 1.1
DCIS 2.2 ± 0.1 4.3 ± 0.3 4.7 ± 0.5
DP2 5.1 ± 0.2 7.9 ± 0.3 9.4 ± 0.7

76 J.-F. Connolly, E. Granger, and R. Sabourin

With overlapping data, even when the geometry of decision bounds matches the
rectangular categories of fuzzy ARTMAP in DXOR(ξtot), the network still leads to the
well known category proliferation problem. Compared with D2N(ξtot), the region of
overlap isn’t localized, so the proliferation is amplified and the error rate is higher. If the
classes don’t overlap, or if the overlapping is very low, results show that the complexity
of boundaries with fuzzy ARTMAP is defined mainly by how well these boundaries
can be represented using hyper-rectangles.

One key issue here is the internal mechanisms used by the network to learn new
information. With the fuzzy ARTMAP network, only the internal vigilance parameter
(ρ) is allow to grow dynamically during the learning process, over a range define by the
baseline vigilance (ρ̄). Since all network hyperparameter play an important role in fuzzy
ARTAMP’s ability to learn new data, one potential solution could imply optimizing
the network’s hyperparameters for incremental learning [8]. This way, all four fuzzy
ARTMAP hyperparameters would be adapted such that the network would learn each
data block |Di| to the best of its capabilities.

Another potential solution could be to exploit the learning block by organising the
data in a specific way. Since the first blocks form the basis for future updates, results
underline the importance of initiating incremental learning with blocks that contain
enough representative data from the environment. With overlapping data, the first blocks
could be organized to grow classes from the inside towards the overlapping regions,
through some active learning strategy. With complex boundaries, the first blocks could
be organized to define the non-linear bounds between classes.

5 Conclusion

In many practical applications, classifiers found inside pattern recognition systems may
generalize poorly as they are designed prior to operations using limited training data.
Techniques for on-line incremental learning would allow classifiers to efficiently adapt
internal class models during operational phases, without having to retrain from the start
using all the cumulative training data, and without corrupting the previously-learned
knowledge structure. In this paper, fuzzy ARTMAP’s potential for supervised incre-
mental learning is assessed. An experimental protocole is proposed to characterize its
performances for supervised incremental learning of new blocks of training data in
an environment where class distributions are fixed. This protocole is based on a com-
prehensive set of synthetic data with overlapping class distributions and with complex
decision boundaries, but no overlap.

Simulation results indicate that the average error rate obtained by training fuzzy
ARTMAP through incremental learning is usually significantly higher than that ob-
tained through batch learning, and that error tends to grow as the block size decreases.
Results also indicate that training fuzzy ARTMAP through incremental learning of-
ten requires fewer training epochs to converge, and leads to more compact networks.
As the block size decreases, the compression tends to increase and the convergence
time tends towards one. The subject for futur work involve designing fuzzy ARTMAP
networks that can approach the error rates of batch learning with incremental learning.

Supervised Incremental Learning with the Fuzzy ARTMAP Neural Network 77

Some promising directions include organizing the blocks of training data through
active learning and optimizing fuzzy ARTMAP hyperparameter values for incremen-
tal learning.

References

1. Carpenter, G.A., Grossberg, S.: A Massively Parallel Architecture for a Self-Organizing.
Neural Pattern Recognition Machine, Computer, Vision, Graphics and Image Processing 37,
54–115 (1987)

2. Carpenter, G.A., Grossberg, S., Reynolds, J.H.: ARTMAP: Supervised Real-Time Learning
and Classification of Nonstationary Data by a SONN. Neural Networks 4, 565–588 (1991)

3. Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy ART: Fast Stable Learning and Cate-
gorization of Analog Patterns by an Adaptive Resonance System. Neural Networks 4(6),
759–771 (1991)

4. Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Reynolds, Rosen, D.B.: Fuzzy
ARTMAP: A Neural Network Architecture for Incremental Supervised Learning of Analog
Multidimensional Maps. IEEE Trans. on Neural Networks 3(5), 698–713 (1992)

5. Caragea, D., Silvescu, A., Honavar, V.: Towards a Theoretical Framework for Analysis and
Synthesis of Agents That Learn from Distributed Dynamic Data Sources. In: Emerging Neu-
ral Architectures Based on Neuroscience. Springer, Berlin (2001)

6. Fritzke, B.: Growing Self-Organizing Networks - Why? In: Proc. European Symposium on
Artificial Intelligence, pp. 61–72 (1996)

7. Granger, E., Rubin, M.A., Grossberg, S., Lavoie, P.: Classification of Incomplete Data Using
the Fuzzy ARTMAP Neural Network. In: Proc. Int’l Joint Conference on Neural Networks,
vol. iv, pp. 35–40 (2000)

8. Granger, E., Henniges, P., Sabourin, R., Oliveira, L.S.: Supervised Learning of Fuzzy
ARTMAP Neural Networks Through Particle Swarm Optimization. J. of Pattern Recogni-
tion Research 2(1), 27–60 (2007)

9. Kasabov, N.: Evolving Fuzzy Neural Networks for Supervised/Unsupervised Online
Knowledge-Based Learning. IEEE Trans. on Systems, Man, and Cybernetics 31(6), 902–
918 (2001)

10. Maloof, M.: Incremental Rule Learning with Partial Instance Memory for Changing Concept.
In: Proc. of the IEEE Int’l Joint Conf. on Neural Networks, vol. 14(1), pp. 1–14 (2003)

11. Okamoto, K., Ozawa, S., Abe, S.: A Fast Incremental Learning Algorithm with Long-Term
Memory. In: Proc. Int’l Joint Conf. on Neural Network, Portland, USA, July 20-24, vol. 1(1),
pp. 102–107 (2003)

12. Polikar, R., Udpa, L., Udpa, S., Honavar, V.: Learn++: An Incremental Learning Algorithm
for MLP Networks. IEEE Trans. Systems, Man, and Cybernetics 31(4), 497–508 (2001)

13. Ruping, S.: Incremental Learning with Support Vector Machines. In: Proc. IEEE Int’l Conf.
on Data Mining, San Jose, USA, November 29 - December 2, pp. 641–642 (2001)

14. Valentini, G.: An Experimental Bias-Variance Analysis of SVM Ensembles Based on Resam-
pling Techniques. IEEE Trans. Systems, Man, and Cybernetics – Part B: Cybernetics 35(6),
1252–1271 (2005)

Discriminatory Data Mapping by Matrix-Based

Supervised Learning Metrics

M. Strickert1,�, P. Schneider2, J. Keilwagen1,
T. Villmann3, M. Biehl2, and B. Hammer4

1 Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben
2 Institute for Mathematics and Computing Science, University of Groningen

3 Research group Computational Intelligence, University of Leipzig
4 Institute of Computer Science, Technical University of Clausthal

stricker@ipk-gatersleben.de

Abstract. Supervised attribute relevance detection using cross-compar-
isons (SARDUX), a recently proposed method for data-driven metric
learning, is extended from dimension-weighted Minkowski distances to
metrics induced by a data transformation matrix Ω for modeling mutual
attribute dependence. Given class labels, parameters of Ω are adapted
in such a manner that the inter-class distances are maximized, while the
intra-class distances get minimized. This results in an approach similar
to Fisher’s linear discriminant analysis (LDA), however, the involved dis-
tance matrix gets optimized, and it can be finally utilized for generating
discriminatory data mappings that outperform projection pursuit meth-
ods with LDA index. The power of matrix-based metric optimization is
demonstrated for spectrum data and for cancer gene expression data.

Keywords: Supervised feature characterization, adaptive matrix met-
rics, attribute dependence modeling, projection pursuit, LDA.

1 Introduction

Learning metrics constitute one of the most exciting topics in machine learn-
ing research [11,17,18]. The potential of metric adaptation needs exploration for
facing challenges connected to the curse of dimensionality in high-throughput
biomedical data sets. Mass spectra, gene expression arrays, or 2D electrophoretic
gels, given as vectors of real-value measurements, are often characterized by only
a low number of available experiments as compared to their huge dimensionality.
Data-driven adaptation of a data metric can be used in many helpful ways. Ap-
plications of metric optimization range from attribute weighting via dimension
reduction to data transformations into task-specific spaces.

The adaptive Euclidean distance dλ(x, y) = (
∑q

i=1 λi(xi−yi)2)1/2, for exam-
ple, relates attribute characterization to the choice of attribute scaling factors
λi beneficial for the separation of labeled and unlabeled data in supervised and

� Corresponding author.

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 78–89, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Discriminatory Data Mapping by Matrix-Based Supervised Learning Metrics 79

unsupervised manners. This aim is shared with projection pursuit methods for
which matrix parameters of a linear projection mapping are optimized with
respect to criteria of data spreading and clusterability of the low-dimensional
projections [4]. In this work, evaluation takes place in a space of original di-
mensionality where only the comparison criterion, the metric, is changed. If
desired, attribute-related parameters with low impact, for example expressed as
low scaling factors, can be pruned for dimension reduction, after adaptation. For
the parametric Euclidean distance, small attribute scaling factors λi would indi-
cate negligible attributes. Scaling factors can be also used for transforming the
data to the non-adapted Euclidean space for further utilization of standard Eu-
clidean methods. This kind of attribute characterization is different from many
other methods for feature extraction [6], such as the recently suggested Itera-
tive Relief algorithm [16] for which the attribute weights do not coincide with a
canonic rescaling of the data space.

Matrix-based metrics help to extend the view of individual attribute process-
ing to a model of dependence between pairs of attributes. Generally, matrix
methods can be used for optimizing linear data transformations aiming at crite-
ria related to the data spreading. In the unsupervised case, interesting transforms
include sphering of the data covariance matrix to the unity matrix, or the projec-
tion of data to directions of maximum variance (PCA) or to directions along max-
imum non-Gaussianity (ICA) [10]. The projection pursuit method [4] is a very
flexible approach to extract projections of interest by optimizing a target func-
tion, called the index of the projection. Such indices exist for unsupervised cases
aiming at mappings to continuous or sharply clustered views. In addition, there
are supervised indices like projection entropy and class separability according to
linear discriminant analysis (LDA) criteria. A good environment for the study of
projection pursuit and other matrix methods is, for example, provided by the free
R statistical language with rGGobi and classPP packages [2,12], an application
of classPP for the visualization of gene expression data, is provided in [3].

An alternative view on seeking optimum data transformations is data-driven
adaptation of the data metric or, more generally, of a data similarity measure.
Learning vector quantization (LVQ), for example, can implement metric adap-
tation for better data classification by boosting class-separating attributes be-
tween data prototype vectors. The generalized relevance LVQ method (GRLVQ)
realizes such metric adaptation by using a misclassification cost function – mini-
mized by gradient descent – making use of data labels for attribute rescaling [8].
For Euclidean distances, large-margin optimization is realized, but also non-
Euclidean similarity-measures profit from parameter adaptation [7,14]. Recently,
matrix learning has been integrated into the GRLVQ framework for modeling
attribute-attribute dependencies by generalized Mahalanobis distance [13]. This
allows to express scalings of the data space along arbitrary directions, and very
good classification accuracies are obtained on difficult classification problems
ranging from spectrum classification to image segmentation.

The success of matrix metric adaptation in GRLVQ classifiers initiated the
present work. Here, no classifier will be build though, but the data space will

80 M. Strickert et al.

be transformed: directions in the data space relevant to data label separation
will be emphasized, while within-class variations will be damped. After all, rel-
evant combinations of attributes, trained and expressed in form of a matrix, are
identified for the discrimination task. Since only few data samples per class can
be expected in costly and time-consuming biomedical studies, prototype-based
data abstraction, like provided by GRLVQ, is avoided in order to keep maximum
information. For the analyzed data sets it turned out that the transform matrix
could be effectively compressed to only a few prominent eigenvectors, possibly
only one, without significant loss of metric structure. After all, we are able to
compute relatively compact discriminatory data models that allow hypotheses
generation for supporting biomedical experts.

2 Method

Data. The q-dimensional row input vector x ∈ R
1×q is taken from a data set

containing n data vectors {x1, x2, . . . , xn}. The proposed metric adaptation re-
quires that each vector xk is labeled with one class-specific index c(k), assuming
at least two unique classes in the whole data set.

Metric. Most essential is the definition of the matrix-based metric dij
Ω ∈ [0;∞)

between data vectors xi and xj :

dij
Ω = dΩ(xi, xj) = (xi − xj) ·Λ · (xi − xj)

T

, (Λ = Ω ·ΩT

) ∈ R
q×q . (1)

Choosing the identity matrix Λ = Ω = I induces the special case of the squared
Euclidean distance; other diagonal matrices yield weighted squared Euclidean
distances as discussed in [15]. Generally, metrics are obtained for arbitrary
positive-definite matrices Λ. Then the value expressed by Δ ·Λ ·ΔT ≥ 0, getting
zero only for trivial difference vectors Δ = 0, is a metric. It is known that in
context of metrics non-symmetric positive-definite matrices can be replaced by
equivalent symmetric positive-definite matrices. Since any symmetric positive-
definite matrix Λ can be decomposed by Cholesky decomposition into a product
of a lower triangular matrix and its transposed, it is in principle sufficient to
learn a lower triangular matrix Ω for expressing Λ. Alternatively, symmetric
positive-definite Λ can be represented by the self-product Λ = Ω ·Ω of a sym-
metric Ω [13]. Here, we consider products Λ = Ω ·ΩT

with arbitrary Ω ∈ R
q×q.

These full matrices Ω, possess more adaptive matrix elements than degrees of
freedom needed for expressing the product solution space of Λ. For the data sets
discussed, the interaction of matrix element pairs Ωij and Ωji leads to a faster
convergence of Λ during optimization, compared to the convergence properties
obtained for symmetric or triangular matrices Ω.

Note that for some the data Λ might become positive-semidefinite during
optimization, i.e. Δ ·Λ ·ΔT = 0 with difference vectors Δ �= 0. Then, the met-
ric property gets relaxed to a mathematical distance with vanishing self-scalar

Discriminatory Data Mapping by Matrix-Based Supervised Learning Metrics 81

product (Δ · Ω) · (Δ · Ω)T = 〈Δ · Ω, Δ · Ω〉 = 0 becoming zero for certain
configurations of Ω with Δ ·Ω = 0, else positive.

Adaptation. Driven by the goal to minimize within-class differences while max-
imizing between class differences, the following cost function is minimized over
pairs of all n data items:

s(Ω) :=

∑n
i=1

∑n
j=1 dΩ(xi, xj) · δij∑n

i=1

∑n
j=1 dΩ(xi, xj) · (1− δij)

=
dC

dD
, δij =

{
0 : c(i) �=c(j)
1 : c(i)=c(j)

(2)

Distances dij
Ω between data vectors xi and xj depend on the adaptive matrix

parameters Ω = (Ωkl) k=1...q
l=1...m

of interest. The numerator represents within-class
data scatter, which should be small; the denominator is related to inter-class
distances, which should be large. Thus, optimization of s(Ω) handles both parts
of the fraction simultaneously. Compromise solutions must be found in cases
when within-class variation, potentially caused by outliers, needs compression,
while inter-class separability would require inflation.

Using the chain rule, the cost function s(Ω) is iteratively optimized by gra-
dient descent Ω ← Ω − γ · ∂s(Ω)

∂Ω , which requires adaptation of the matrix Ω in
small steps γ into the direction of steepest gradient

∂s(Ω)
∂Ω

=
n∑

i=1

n∑

j=1

∂s(Ω)
∂dij

Ω

· ∂dij
Ω

∂Ω
. (3)

The quotient rule applied to the fraction s(Ω) = dC/dD in Eqn. 2 yields

∂s(Ω)
∂dij

Ω

=
δij · dD

d2
D

+
(δij − 1) · dC

d2
D

=
{

1/dD : c(i) = c(j)
−dC/d2

D : c(i) �= c(j)
. (4)

The right factor in Eqn. 3 is obtained by matrix derivative of Eqn. 1:

∂dij
Ω

∂Ω
= 2 · (xi − xj)

T · (xi − xj) ·Ω . (5)

If desired, adaptation can be restricted to certain structures of Ω, such as to
the lower triangular elements. In that case, undesired elements must be initially
masked out by zeros in Ω. Additionally, the same zero masking pattern must
be applied to the matrix resulting from Eqn. 5, because the equation calculates
∂dij

Ω/∂Ω correctly only for full adaptive matrices Ω. By consistent masking op-
erations, though, the matrix of derivatives is mathematically correct. In practice,
the gradient from Eqn. 3 is computed and reused as long the cost function de-
creases. Potential increase of s(Ω) triggers a recomputation of the gradient. The
step size γ is dynamically determined as the initial size γ0, being exponentially
cooled down by rate η, divided by the maximum absolute element in the matrix
∂s(Ω)/∂Ω.

Initialization. Empirically, the initial step size γ0 can be chosen from the inter-
val [0.05; 1), such as 0.75 in the conducted experiments. The number of iterations

82 M. Strickert et al.

should be set to a value between 50 and 1000, depending on the saturation
characteristics of the cost function. The exponential cooling rate should diminish
the original step size by some orders of magnitude during training, for example,
set to η = 0.995 for 1000 iterations.

The initialization of matrix Ω is of particular interest. If chosen as identity
matrix Ω = I, the algorithm starts from the usual squared Euclidean distance.
For data sets with strong mutual attribute dependencies, i.e. prominent non-
diagonal elements, the uniform structure of the identity matrix might lead to
unnecessary iterations required for the symmetry breaking, as often encountered
in neural network adaptations. Therefore, the alternatively proposed method is
random matrix element sampling from uniform noise in the interval [−0.5; 0.5].
This noise matrix A ∈ R

q×q is broken by QR-decomposition into A = Q ·R, of
which the Q-part is known to form an orthonormal basis with Q ·QT = I. This
makes Ω = Q our preferred initial candidate.

Relation to LDA. At first glance, the proposed cost function looks quite similar
to the inverse fraction of the LDA cost function for C classes that is maximized:

SLDA =
v ·

[∑C
i=1 ni · (μi − μ)T · (μi − μ)

]
· vT

v ·
[∑C

i=1 Σi

]
· vT

, ni = |{xj : c(j) = i}| . (6)

The numerator contains the between-class variation as the squared difference
between class centers μi of all vectors xj belonging to class i and the overall
center μ = 1/n ·∑n

k=1 xk. The denominator describes the within-class variation
over all classes i expressed by the sum of squared differences from class centers
μi contained in the covariance matrices Σi =

∑
j:c(j)=i(x

j − μi)T · (xj − μi).
LDA seeks an optimum direction vector v representing a good compromise of

being collinear along the class centers (numerator, separating) and orthogonal
to maximum within-class variation (denominator, compressing).

If multiple directions V = (vk)T are computed simultaneously, the products
in the numerator and denominator of Eqn. 6, involving the matrices in square
brackets, become matrices as well. In order to circumvent the problem of valid
ratio calculation with matrices, determinants of the obtained matrices can be
taken, as discussed in the LDA-based projection pursuit approach [12]. As a
result, the LDA ratio optimizes low-dimensional projections onto discriminatory
directions.

Our approach is structurally different, because the (inverse) LDA ratio in
Eqn. 2 operates in the original data space, subject to the dynamically optimized
metric. This explains the higher computational demands compared to LDA for
which covariance matrices and class centers can be initially computed and then
reused. As a benefit of the new approach, numerator and denominator of the
new ratio in Eqn. 2 naturally contain sums of real-valued distances, which avoids
problems of handling singular determinants in low-rank matrices.

Discriminatory Data Mapping by Matrix-Based Supervised Learning Metrics 83

3 Experiments

3.1 Tecator Spectral Data Set

The benchmark spectral data set, taken from the UCI repository of machine
learning [1], contains 215 samples of 100-dimensional infrared absorbance spec-
tra recorded on a Tecator Infratec Food and Feed Analyzer working in the wave-
length range 850–1050nm by the Near Infrared Transmission (NIT) principle.
The original regression problem accompanying the data set is reformulated as
attribute identification task for explaining the separation of 183 samples with
low fat content and 77 high fat meat probes.

View 1. An exploratory data view is obtained from the left panel of Fig. 1 and
from the PCA projection shown in the left scatter plot of Fig. 2. As expected, the
strong spectrum overlap cannot be resolved by PCA projection. After application
of the matrix learning all spectra were transformed according to z = x ·Ω, which
realizes the left transformation part of the metric given in Eqn. 1; the right part
is just zT. The result of this data transformation leads to a good separation with

0 20 40 60 80 100

2.
0

3.
0

4.
0

5.
0

Original Tecator spectra

channel

va
lu

e

0 20 40 60 80 100

−
40

0
−

20
0

0
10

0

Tecator spectra transformed by ΩΩΩΩT

channel

va
lu

e

Fig. 1. Tecator spectra, raw (left) and transformed (right). Low fat content is reflected
by dashed lines, high fat content by solid lines.

●
●

●
● ●

●

● ● ●

●

●

●

●

●
●

●

●
●

●

● ●

●●

●

●

● ●

●

●

●

●●
●

●

●

●
●

●●
●

●● ●

●
● ●

●
●
●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●●
●

● ●

●

●
● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

● ●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●● ●● ●

●

●

●

●

−1 0 1 2 3

−
0.

3
−

0.
1

0.
1

0.
3

PCA projection of Tecator data

1st PC

2n
d

P
C

●

●

●
●

●
●

●●
●

●

●●●
●

●
●

●

●

●
●

●

●●
●

●●
●

●
●

●

●

●

●

●

●
● ●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●●

●

●
●

●

●
●

●●●
●

●

●

●

●
●

●

●

●●

●

●●
●●

●●● ●●

●

●

●

●

● ●
●

−1 0 1 2 3

−
0.

01
0

0.
00

0

PCA projection of transformed Tecator data

1st PC

2n
d

P
C

Fig. 2. Scatter plots of Tecator data. Bullets (◦) denote low-fat samples, squares (�)
high fat content. Left: PCA projection of original data. Right: PCA projection of data
transformed by Ω.

84 M. Strickert et al.

almost no overlap in the PCA projection. This is shown in the right panel of
Fig. 2.

View 2. By reformulating the metric definition in Eqn. 1 according to

dij
Ω = (xi − xj) ·Ω ·ΩT · (xi − xj)

T

= 〈xi ·Ω ·ΩT − xj ·Ω ·ΩT

, xi − xj〉 . (7)

another interesting perspective on the data is obtained. This is a formal metric
decomposition into a static part of difference vectors of the original data (right
part of the scalar product) and a dynamically adapted transformation space of
the data (left argument of the scalar product). A look into this space is obtained
by the transformation to x∗ = x ·Ω ·ΩT

. The resulting transformed spectra with
their amazingly separated attributes are shown in the right panel of Fig. 1.

The learned metric can be nicely presented by the matrices Ω and Λ shown
in the left and right panel of Fig. 3, respectively. As displayed for Λ, attribute
dependence is most prominent in the channel range 35–45. Strong emphasis of
these channels around the diagonal is accompanied by simultaneous repression
of the off-diagonal channels 5–30.

Matrix reduction. Since full matrices are quite big models, the study of their
compressibility is important. Eigen decomposition of Λ = S ·W ·W−1 into the
diagonal eigenvalue matrix S and the eigenvectors matrix W helps to reach sub-
stantial compressions. In the current case, the highest eigenvalue contributes an
amount of 95.3%, thus most variation in the learned matrix Ω can be explained
by the corresponding eigenvector w, a column vector. Therefore, up to a scaling
factor, a very good reconstruction of Λ by w ·wT is obtained, as confirmed in the
left matrix plot of Fig. 4. If the spectra are projected onto w, still a very good
class separation is obtained, as demonstrated by the corresponding class-specific
box plot in the right panel of Fig. 4.

The computational demands are quite high, though, requiring roughly one
hour for 1000 updates of the matrix gradient. In contrast to that, the classPP [12]
package is much faster, if only a class-separating projection is desired. In prin-
ciple, classPP takes only several seconds or minutes, depending on the choice of

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

−50

0

50

100

150

Fig. 3. Matrix representation of optimum metric for the 100-D Tecator data set. The
learned matrix Ω is shown on the left, its squared counterpart Λ = Ω · ΩT on the
right. Interesting dependencies are found around channel index 40.

Discriminatory Data Mapping by Matrix-Based Supervised Learning Metrics 85

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 −0.04

−0.02

0

0.02

0.04

0.06

0.08

●

●

0 1

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2

Tecator spectra projection to1st eigenvector of ΩΩΩΩT

fat category

va
lu

e

Fig. 4. Representation of Λ by its first eigenvector. Left: plot of reconstructed matrix.
Right projection of Tecator spectra to the eigenvector.

annealing parameters. However, no stable solution could be obtained, because of
the degeneration of the projection vectors, probably caused by near-singular ma-
trix determinants during the computation. Training with our proposed method
showed very stable results, converging to the presented solution for different
random initializations of Ω. Projection displays are just a by-product of our
method. It is important to remember that the original dimensionality of the
data space is preserved by the transformation, enabling further utilization with
any classification or projection method.

3.2 Gene Expression Analysis of AML/ALL Cancer

Many well-documented and deeply investigated data sets are freely available
in cancer research. Since its publication in 1999 the leukemia gene expression
dataset [5] used here has become a quasi-benchmark for testing feature selection
methods. The original research aimed at the identification of the most informa-
tive genes for modeling and classification of two cancer types, acute lymphoblas-
tic leukemia (ALL) and acute myeloid leukemia (AML). The training data covers
7129 genes by 27 cases of ALL and 11 cases of AML. The test data set contains
20 cases of ALL and 14 cases of AML.

The projection of the complete set of training and test data to the first two
principal components yields the scatter plot shown in the left panel of Fig. 5.
It is worth noticing that a systematic difference between AML training set and
test set is indicated by the unbalanced distribution of closed and open bullets.
Thus, a training set specific bias is induced during training. Matrix learning is
computationally very expensive, because Ω is a 7129x7129 matrix. Thus, it takes
roughly 40 hours on a 2.4 GHz system in order to achieve 500 gradient changes
expressed by Eqn. 5. Yet, gradients are reused until first cost function degrada-
tion, creating several thousand updates, after all. Since experiment preparation
in lab requires much more time, a two day calculation period is no principal
problem.

86 M. Strickert et al.

●

●

● ●
● ●

●

●
● ●

●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

● ●

●●
●

●

●

●

●

●

●● ●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

−2 −1 0 1 2

−
1

0
1

2

PCA projection of AML/ALL data

1st PC

2n
d

P
C

●

●

●

●

●
●

●

●

●●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●
● ●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

1e+08 2e+08 3e+08 4e+08

−
2e

+
06

0e
+

00
2e

+
06

4e
+

06
6e

+
06

8e
+

06
1e

+
07

Scatter plot of projected AML/ALL data

1st projection axis

2n
d

pr
oj

ec
tio

n
ax

is

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

Fig. 5. Scatter plots of AML/ALL gene expression data. Bullets (◦) denote expression
samples of AML, squares (�) are related to ALL cancer. Closed symbols indicate train-
ing data, open symbols test data. Left panel: principal component projection without
distinction between training and test data. Right panel: data projected to the first two
eigenvectors of the trained interaction matrix Ω · ΩT. The training data is perfectly
arranged, being very distinct and almost contracted to points.

●

●
● ● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

Scree plot of eigenvalues of Ω ΩT for AML/ALL data

index

ex
pl

ai
ne

d
va

ria
nc

e
[%

]

Histogram of first eigenvector components
of AML/ALL scaling matrix

values of first eigenvector

F
re

qu
en

cy

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

0
10

00
20

00
30

00

Fig. 6. Eigenvalues of the interaction matrix Ω ·ΩT (left) for the AML/ALL data, and
the distribution of values in the most prominent eigenvector (right)

Several interesting results are obtained after training. The top ten eigenvalues
of Ω ·ΩT, displayed in the left panel of Fig. 6, point out a very strong explicative
power of roughly 70% explained variance of the first eigenvector, dominating the
all other eigenvectors. The right panel in Fig. 6 further indicates that only a
small fraction of extreme values in that first eigenvector really contains interest-
ing attribute magnifications. In case of data projection, many other attributes
are transformed to near zero values, i.e. only few differentiating genes become
emphasized.

The projection to the first two eigenvectors of the interaction matrix already
yields a perfect separation of the training data into AML and ALL, as shown
in the right panel of Fig. 5. Also a very strong compression of the within-class
scatter almost to points is obtained. The test data, projected the same way
and added to the plot, is still well-separated, but shows much larger variability.
This is a clear indication of over-fitting. Sure, a huge 7129x7129 model has been

Discriminatory Data Mapping by Matrix-Based Supervised Learning Metrics 87

trained; yet, the displayed projection only contains several hundred effective
parameters, because the first two eigenvectors are much dominated by the few
most prominent entries of the first eigenvector. A simple center-of-gravity model
of the data, for example, would already be much larger.

For comparison, LDA indices of the projections shown in the right panel of
Fig. 5 were calculated according to Eqn. 6 using the classPP package. An almost
perfect near-one value of SLDA = 1−7.894 ·10−12 was achieved for the projected
training data and good value of SLDA = 0.8298 for the test data. Using the built-
in simulated annealing strategy, the classPP package itself reported a best seen
index value of SLDA = 1−2.825·10−6 for the optimized projections of the training
data. Since the corresponding projection matrix is not returned correctly from
the classPP package, an application to the test set was not possible. The authors
of classPP have identified internal rounding errors in their package.

Individual gene variances correspond to gene-specific scaling factors, compen-
sated by the cost function by adaptation of the related matrix entries. As a
consequence, components in the most prominent eigenvector show low correla-
tion with the variance in the original data set and, accordingly, systematically
separating low-variance genes were able to gain high rankings in the eigenvector.

The real benefit of the proposed method is the possibility to infer putative
gene-gene interactions responsible for cancer type separation. For that purpose
the indices i, j corresponding to the most extreme (high and low) values in the
matrix Ω ·ΩT are extracted and associated with the genes i and j. Because of
symmetry, only the lower triangular matrix, including diagonal, is considered.
The top 100 pairs extracted this way are compiled in Tab. 1. After all, 14 promi-
nent self-dependent genes are detected as individual factors on the diagonal,
three of them are coinciding with the list of Golub et al. of 50 genes. Three
more genes of that study are detected on non-diagonal elements as dependent.

Table 1. Table of genes specific to separation of AML/ALL cancer in alphabetic
reading order. The listed genes correspond to the 100 most extreme entries in the lower
triangular part of the obtained symmetric matrix Ω · ΩT. As single genes participate
multiple times in combination with others, only 30 different out of 200 possible genes
appear in the table. Numbers indicate the frequencies of occurrence. Underlined genes
appear also on the diagonal, stressing their individual importance. For illustration
purposes, bold face genes are those acting in combination with M19507 which is the
overall top-ranked gene. Asterisks mark genes coinciding with top-rated genes from the
study of Golub et al.

D49824 HG3576-HT3779 L06797 L20688 L20941 M11147
6 13 3 1 1 1

M14328 M17733 M19507 M24485 M27891* M28130 rna1*
1 1 26 1 3 1

M33600 M69043* M77232 rna1 M91036 rna1 M91438 M96326 rna1*
4 1 1 13 1 14

S73591 U01317 cds4 U14968 V00594 X14046 X17042*
1 13 1 1 1 12

X78992 Y00433 Y00787* Z19554 Z48501 Z70759
13 14 14 14 11 13

88 M. Strickert et al.

The most prominent gene found by the new method is M19507, which is not
mentioned in the Golub study. Yet, the gene is confirmed as relevant in more
recent publications, such as [9]. As this gene is connected to more than 20 other
top-rated genes, its central role in the discriminatory transcriptome is clearly
pointed out. Yet, the whole potential of the analysis, including proper interpre-
tation of the findings, must be thoroughly worked out together with biological
experts.

4 Conclusions and Outlook

A data-driven metric in flavor of a generalized Mahalanobis distance has been
proposed that makes use of label information for emphasizing or repressing
class-specific attribute combinations. Similar to LDA, metric optimization of
Λ = Ω ·ΩT seeks improved inter-class separation with simultaneous minimiza-
tion of within-class variation. In contrast to LDA, it is not the low-dimensional
projection to be optimized, but a transformation in the data space. The new
method is not primarily designed for visual projection or classification, but it
is a first step towards, because the resulting transformed data can be used as
a preprocessing step for subsequent standard methods. As illustrated, visual
data exploration is easily possible by projecting the data to the most prominent
eigenvectors of Λ. No sophisticated optimization method is required, simple gra-
dient descent works very reliably on the inverse LDA-like cost function. Both
investigated data sets led to convergence to very useful label-specific metrics for
different initializations of Ω. The main drawback of the new method is its long
runtime for handling the potentially large matrices. Yet, as the discussed cases
showed a strong dominance of only the first principal direction, future work will
focus on the development of a sparse learning scheme for computing only the
k most prominent eigenvectors instead of the whole matrix. This will help to
reduce the model size and to speed up the optimization procedure. Finally, a
better control of intra- and inter-class contributions to the cost function will be
investigated.

Acknowledgment

The work is supported by grant XP3624HP/0606T, Ministry of Culture Saxony-
Anhalt.

References

1. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
2. Cook, D., Swayne, D.: Interactive and Dynamic Graphics for Data Analysis with

R and GGobi. Springer, Heidelberg (2007)
3. Faith, J., Mintram, R., Angelova, M.: Targeted projection pursuit for visualizing

gene expression data classifications. Bioinformatics 22(21), 2667–2673 (2006)

Discriminatory Data Mapping by Matrix-Based Supervised Learning Metrics 89

4. Friedman, J.: Exploratory projection pursuit. Journal of the American Statistical
Association 82, 249–266 (1987)

5. Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller,
H., Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., Lander, E.: Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring. Science 286(5439), 531–537 (1999)

6. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature Extraction: Foundations
and Applications. Springer, Berlin (2006)

7. Hammer, B., Strickert, M., Villmann, T.: Supervised neural gas with general sim-
ilarity measure. Neural Processing Letters 21(1), 21–44 (2005)

8. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization.
Neural Networks 15, 1059–1068 (2002)

9. Hu, S., Rao, J.: Statistical redundancy testing for improved gene selection in cancer
classification using microarray data. Cancer Informatics 2, 29–41 (2007)

10. Hyvärinen, A., Oja, E.: Independent component analysis: Algorithms and applica-
tions. Neural Networks 13(4–5), 411–430 (2000)

11. Kaski, S.: From learning metrics towards dependency exploration. In: Cottrell,
M. (ed.) Proceedings of the 5th International Workshop on Self-Organizing Maps
(WSOM), pp. 307–314 (2005)

12. Lee, E., Cook, D., Klinke, S., Lumley, T.: Projection pursuit for exploratory su-
pervised classification. Journal of Computational and Graphical Statistics 14(4),
831–846 (2005)

13. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning
vector quantization (Submitted to Machine Learning) (2008)

14. Strickert, M., Seiffert, U., Sreenivasulu, N., Weschke, W., Villmann, T., Hammer,
B.: Generalized relevance LVQ (GRLVQ) with correlation measures for gene ex-
pression data. Neurocomputing 69, 651–659 (2006)

15. Strickert, M., Witzel, K., Mock, H.-P., Schleif, F.-M., Villmann, T.: Supervised
attribute relevance determination for protein identification in stress experiments.
In: Proc. of Machine Learning in Systems Biology (MLSB), pp. 81–86 (2007)

16. Sun, Y.: Iterative relief for feature weighting: Algorithms, theories, and appli-
cations. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6),
1035–1051 (2007)

17. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin near-
est neighbor classification. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in
Neural Information Processing Systems 18, pp. 1473–1480. MIT Press, Cambridge
(2006)

18. Xing, E., Ng, A., Jordan, M., Russell, S.: Distance metric learning, with application
to clustering with side-information. In: Becker, S., Thrun, S., Obermayer, K. (eds.)
Advances in Neural Information Processing Systems 15 (NIPS), pp. 505–512. MIT
Press, Cambridge (2003)

Neural Approximation of Monte Carlo Policy

Evaluation Deployed in Connect Four

Stefan Faußer and Friedhelm Schwenker

Institute of Neural Information Processing, University of Ulm, 89069 Ulm, Germany
{stefan.fausser,friedhelm.Schwenker}@uni-ulm.de

Abstract. To win a board-game or more generally to gain something
specific in a given Markov-environment, it is most important to have
a policy in choosing and taking actions that leads to one of several
qualitative good states. In this paper we describe a novel method to
learn a game-winning strategy. The method predicts statistical proba-
bilities to win in given game states using a state-value function that is
approximated by a Multi-layer perceptron. Those predictions will im-
prove according to rewards given in terminal states. We have deployed
that method in the game Connect Four and have compared its game-
performance with Velena [5].

1 Introduction

In the last 30 years, artificial intelligence methods like Minimax [8] have been
used to build intelligent agents that have the task to choose a qualitative good
move out of a set of all possible moves so they might win the game against
another agent or even a human player. The basic approach in these methods
are roughly the same: A game tree with a given depth will be calculated while
exploring possible states and the move yielding to a state with minimum loss will
be choosen using a heuristic evaluation function. While it is theoretical better
to choose a large game tree depth, it is pratical impossible for games having an
extensive set of possible states because of computing reasons. Furthermore such
agents have not the ability to improve their computed strategy, although some
agents might change it.

In contrast to the artificial intelligence methods above, the modern field of
Reinforcement learning as defined in [1] were available since the late 1980s. Using
those methods, the intelligent agent is learning by trial-and-error to estimate
state values instead of exploring a game tree and taking the move with minimal
maximum possible loss. In the specific case of Monte Carlo methods, this is
achieved by first assigning each state an arbitrary initialized floating-point value
that are then updated while playing in dependence of Return values, typically at
intervall [−1, +1], earned in terminal states. More generally, the intelligent agent
is learning by experience to estimate state values and improves those estimations
with each new generated episode. State values of all visited states in one episode
will be updated by averaging their collected Returns. The simplest policy to take

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 90–100, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Neural Approximation of Monte Carlo Policy Evaluation 91

the best move is to choose the state out of all current possible states with the
highest state-value.

While Monte Carlo methods require much computing time to estimate state
values, because they theoretical need an infinite set of generated episodes for
high quality estimations, it only takes linear time to use the derived policy to
choose the best move. Overall Monte Carlo methods exhaust much less com-
puting time than Minimax. Unfortunately in the classic way of assigning each
state a state value, which is saving those values in tables, Monte Carlo methods
cannot be used for environments with an extensive set of states because of the
large requirement of computing space. This statement is also true for other rein-
forcement learning methods like dynamic programming and temporal-tifference
learning.

Tesauro however has desribed a method of combining a Multi-Layer Percep-
tron with the Temporal-Difference learning to save a lot of computing space
which he has applied in TD-Gammon [2] in 1992-1995. The basic idea was to
approximate the state-value function V (s) using a neural network trained by
backpropagating TD errors. Although TD-Gammon performed well against hu-
man opponents as stated in [2], details like the used learning rate η and values
of the initialized weights w in the Backpropagation algorithm are not given.

Encouraged by such scientific progress in the field of game playing, we have
found a method to combine Monte Carlo Policy Evaluation with a Multi-Layer
Perceptron that will be described in Section 3. We have applied this method
to the well known game Connect Four, which has been choosen because of its
simple rules and extensive set of possible states.

In Section 2, the basic rules of Connect Four as well as the complexity of
the game will be presented. Afterwards the main ideas leading to our training
algorithm, the learning process and the assembly of the resulting Multi-Layer
perceptron will be discussed. Moreover, Section 4 provides the experimental
results following by a conclusion.

2 Connect Four Rules and Game Complexity

Connect Four is a two-player game whereas one player has 21 red and the other
player has 21 yellow discs. By turns, the players drop one disc into one of seven
columns, which is sliding down and landing on the bottom or on another disc.
The object of the game is to align four own discs horizontal, vertical or diagonal
prior to the opponent. As no fortune is involved in winning the game, it is 100%
a strategy game. Speaking of strategies, one of the better one is to arrange the
own discs so that there are multiple opportunities to set the forth disc and win
whilst preventing to loose.

Examining the game field, it is 42 fields, consisting of 7 columns and 6 rows,
large and has 3 possible states per field. These states are red disc, yellow disc
and empty. There are 342 different possibilities to place up to 42 tokens on
42 fields. Plainly comparing this to english draughts, which is another popular
board game, it has about 342 ∗ 1

532−5(32−24) ≈ 0.0047 ≈ 1
200 of its complexity.

92 S. Faußer and F. Schwenker

3 Derivation of the Training Algorithm

Suppose we want to estimate the state-value function V π(s) for a given policy
π using a standard Monte Carlo policy evaluation method as listed in [1]. It-
eratively two main steps are repeated, whereas in step one a game episode is
created using π and in step two the Return values following each visited s are
added to a set Return(s). The updated state value-function is then V π(s) =
average(Return(s)). Now assume only one Return ∈ {0, 1}, depending on the
outcome of the game, i.e. the terminal state, is given per episode for all visited
states s. This allows us to remove the neccessity of the set Return(s):

V π(s) = (n(s)V π(s) + Return)
1

n(s) + 1
, for each s visited in episode (1)

Therefore V π(s) is the mean of n(s) + 1 Return values that were received in
observed terminal states, starting from s under policy π. Now consider policy
π is a function that chooses one successor state s′ out of all possible states
Ssuccessor with the highest state-value:

π(s) = argmax
s′

(V π(s′)|s′ ∈ Ssuccessor) (2)

This equation implies that an improvement of the estimation of V π(s) results
in a more accurate choice of the successor state s′. Thus, learning to estimate
V π(s) results in learning policy π. In general, generating a game episode under
policy π is an interaction between our learning agent that does his move decision
under policy π and a more or less intelligent opponent agent or human player.
Note that in following notations, the state-value function is shortened to V (s)
because only one policy is targeted.

To evaluate and improve the policy, it is required to save the state-values
on a computer storage. Having the sizes of the Connect Four game field, as
introduced in Section 2, we calculate how much computing space the function
itself consumes, if saved in tables: 342 ∗ 4 bytes per state ≈ 40, 76 ∗ 1010 TByte.
As this is much more space than a state-of-the-art computer, at present time,
can deliver, it cannot be done in a straight-forward manner. Following Cybenko’s
Theorem [9] which denotes, that a Multi-Layer Perceptron (MLP) with at least
one hidden layer and a sigmoid transfer function is capable of approximating
any continuous function to an arbitrary degree of accuracy, we use a MLP to
neural approximate the state-value function V (s).

3.1 Neural Approximation of the State-Value Function V (s)

Assume we have generated an episode {s1, s2, ..., sTC} and have received one
Return value ∈ {0, 1} in terminal state sTC . Let us now train a Multi-Layer
Perceptron (MLP) as shown in Figure 1, so that the assigned output values
{V (s1), V (s2), ..., V (sTC)}, which shall represent the statistical probabilities to
win in given game states {s1, s2, ..., sTC}, will be approximately updated like it

Neural Approximation of Monte Carlo Policy Evaluation 93

...

...

input: state s

output: estimation of V (s)

k = 1, ..., m = 84

i = 1, ..., h = 40

j = 1, ..., n = 1

wki

wij

s1 s2 sk

Fig. 1. Multi-Layer Perceptron schemata

is done in Monte Carlo Policy evaluation described above. In general, we would
declare the training signals exactly like in equation (1), but we don’t have space
for the number of received Returns n(s), similar like we don’t have space for the
state-values V (s) as discussed in Section 3. Instead, our proposal is to define a
training signal that itself approximates equation (1) due to the nature of the
MLP to only slightly reducing the error function E if learning rate η is rather
small. Our training signals Ts for each state s are defined as follows:

Ts = ReturnγTC−t(s) (3)

In this equation, Ts equals the discounted Return value, whereas the discounting
factor is build up by TC which represents the amount of all visited states in
this episode and t(s) which returns the index number of state s between 1 and
TC. Apparently there is no discounting in the last state sTC and increasing
discounting of the Return value towards the first state s1 in the episode. The
discounting strength can be manipulated by discounting parameter 0 < γ ≤ 1,
whereas higher values cause smaller discounting steps. The Return value is given
in terminal state sTC :

Return =

{
1, if agent has won
0, if agent has lost

(4)

As V (s) for a specific s should converge Ts to a certain degree, both are used to
express the error function Es:

Es = ||Ts − V (s)||2 (5)

Using error Es, which is the mean squared error (MSE) between Ts and V (s),
we can define the error of the whole episode:

E =
∑

s

Es (6)

94 S. Faußer and F. Schwenker

Having target function E defined and properly introduced, it can be minimized
by updating the weights in the MLP. This can be achieved by calculating a
gradient vector in the error surface, build-up by given weights, with a starting
position equal to the current weight values and following the gradient vector in
opposite direction. Approach to derivate the weights wi1 in the output layer:

Δwi1 = η −∇Es = −η
∂Es(wi1)

∂wi1
= −η

∂Es(u(2))
∂u(2)

∂u(2)(wi1)
∂wi1

(7)

Approach to derivate the weights wki in the input layer:

Δwki = η −∇Es = −η
∂Es(wki)

∂wki
= −η

∂Es(u
(1)
i)

∂u
(1)
i

∂u
(1)
i (wki)
∂wki

(8)

Analyzing the target function (6), it has the following effects on our learning
agent:

– Due to the applied gradient descent method defined above, the weights are
not updated immediately to match E = 0 but rather will be updated to
minimize E slightly, taking a maximum step η of the gradient descent vector.
For small values of η, this has the impact, that V (s) for all s visited in episode
are increasing slightly if Return is 1 or are decreasing slightly if Return is 0.
Another view is that a new state value V (s) is calculated based on weighted
older state values of the same state s. State values occuring more often have a
stronger weight than state values occuring seldom. Summed up, the behavior
is similar to averaging Returns like it is done in the standard Monte Carlo
Policy Evaluation method

– Discounting factor γTC−t(s) causes states, that are more closely to the ter-
minal state, to get higher state values. This forces the intelligent agent to
maximize the received Return values in the long run

– As the error of the whole episode is minimized, the performance is not af-
fected by state ordering in the episode (Offline / Batch learning)

3.2 Implementation and Assembly Details of the MLP

Before actually feeding a game state s into the input layer of the MLP, it has to be
encoded. As stated in Section 2, Connect Four has 42 fields with 3 states per field
which means that we are in need of ≥ 2 neurons per field if one neuron equates
one bit. To reach a balanced distribution, we have choosen bit sequence 01 for
red disc, 10 for yellow disc and 00 for empty field. Counting from left to right,
the first two input neurons define the upper left and the last two input neurons
define the lower right portion of the game field as seen in Figure 2. The coding
of the output value is simple, as it represents one state-value V (s) at intervall
[0, 1], for which only one single neuron is needed. Considering the prior defined
coding scheme, the MLP needs m = 84 input neurons in the input layer and
n = 1 output neuron in the output layer. The accurate count of hidden neurons
h in the hidden layer does not result immediate out of the count of neurons m+n

Neural Approximation of Monte Carlo Policy Evaluation 95

neuron 1+2, neuron 3+4, . . . , neuron 13+14

neuron 15+16, neuron 17+18, . . . , neuron 27+28

neuron 71+72, neuron 73+74, . . . , neuron 83+84

...

example 1: input neuron 35 = 0, input neuron 36 = 1
example 2: input neuron 49 = 1, input neuron 50 = 0
example 3: input neuron 1 = 0, input neuron 2 = 0

column 0, column 2, . . . , column 6

row 0 ,

row2,

. . . ,

row 5

Fig. 2. Relation of the input neurons and the game field demonstrated by our Connect
Four software

but depends on it and on the complexity of the problem. Typical for Multi-Layer
Perceptrons, each neuron in the input layer is weighted connected to each neuron
in the hidden layer and each neuron in the hidden layer is weighted connected
to each neuron in the output layer. Positive weights are supporting and negative
weights inhibitoring to the dendritic potential of the target neuron. All weights
are initialized at intervall [−a, +a], whereas the exact value of a as well as hidden
neurons h is available in Section 4. For the transfer function in the hidden layer
and the output layer, we have choosen a nonlinear and sigmoid logistic function
which seems to be natural because we want to assign probabilities:

f(x) =
1

1 + exp(−x)
(9)

f ′(x) = f(x)(1 − f(x)) (10)

As usual, the transfer function in the input layer is the identity-function.

3.3 Overview of the Training Algorithm

Exploitation and Exploration. Following the interaction cycle between the
intelligent agent and an opponent as shown in Figure 3, the intelligent agent is
spawning a pseudo-random value at intervall [0, 1] after he received state st of the
opponent and has builded possible successor states sta, stb, ..., stg which result
through an own move starting in st. If this value is > ε he is exploring, else he is
exploiting the following game state stx. Exploiting denotes, that he calculates the
state-values V (sta), V (stb), ..., V (stg) by feeding the game states one by one into
the neural network to get the state values. Then he chooses the move resulting
in state stx ∈ {sta, stb, ..., stg} with the highest assigned state value V (stx).
Exploration is carried out at rate 1− ε which means, that the intelligent agent
randomly sets stx to one of successor states sta, stb, ..., stg that he will visit but
not include in the training set. This is not only important to speed up learning,

96 S. Faußer and F. Schwenker

intel l igent agent

opponent

s_ta
s_tb
...
s_tg

random value > epsi lon ?

yesno

1. bui ld new possible states 2. Exploitat ion or Explorat ion ?

3b. ca lculate state-values

V(s_ta)
V(s_tb)
...
V(s_tg)

4. choose state s_tx
element (s_ta , . . . ,s_tg) wi th
highest state-value V(s_tx)

3a. choose state s_tx
element (s_ta , . . . ,s_tg)
randomly

act ion a_t leading to state s_tx
new s ta te s_ t+1

Return r_ t +1 , i f s_ t+1 = termina l s ta te

s_t

r_t

opponent reacts to incoming action
a_t and spawns a new state

episode sequence:
(s_0, s_1,..., s_TC),
whereas TC = t ime in terminal state

0. save episode sequence,
in i t ia l ize t=0 once

Fig. 3. Modell showing the interaction between the intelligent agent and an opponent
(environment). Note that this cycle ends if the agent enters a terminal state or receives
a terminal state of the opponent. In that case he would get a Return value and train the
MLP with visited episode sequence and Return value to better estimate state-values
in general.

but rather crucial to make good learning possible. The explanation is, that the
once arbitrarily initialized weights in the MLP may have values so that certain
state values V (s) are fairly small. That in turn causes the intelligent agent to
never visit those states s using Exploitation because of their low state values V (s)
and his policy to choose the highest state value. Exploration however enables to
visit one of those states and to learn based on this state if the following state
will be exploited.

4 Experiments and Results

4.1 Setting

To train the intelligent agent, we use an opponent that shares the same knowl-
edge base, which is the weights of the MLP, to plan his moves. Additional, the
opponent does random moves at rate 1−ε to avoid generating same episodes and
to reach a balanced spawn of Return values. Having trained the intelligent agent
with a certain amount of episodes, we are using another different opponent that
does 100% random moves to plainly measure the quality of the learned policy.
The quantity of successes of the intelligent agent is given in a winning quota
after 500, 000 test-episodes:

winning-quota =
number of games won intelligent agent

number of games won opponent
(11)

Note that the upper defined winning-quota is disregarding the number of draw
games, which were in all test cases pretty low. As the behaviour of the intelligent

Neural Approximation of Monte Carlo Policy Evaluation 97

Table 1. Algorithm 1: Offline (Batch) training of a MLP to estimate state values using
Monte Carlo Policy Evaluation

– Given: Episode sequence {s1, s2, ..., sTC} consisting of TC game states s, Return
value Return and MLP weights and parameters

– for index = 1, ..., TC
• Choose pattern: s = sindex

• Calculate V (s):
∗ for i = 1, ..., h

· u
(1)
i =

�m
k=1 skw

(1)
ki − θ

(1)
i

· y
(1)
i = f(u

(1)
i)

∗ end for
∗ u(2) =

�h
i=1 y

(1)
i w

(2)
i1 − θ(2)

∗ V (s) = f(u(2))
• Calculate error on output neuron for pattern s:

∗ Ts = Return ∗ γTC−t(s)

∗ δ
(2)
index = 2(Ts − V (s)) ∗ f ′(u(2))

• Calculate error on hidden neurons for pattern s:
∗ for i = 1, ..., h: δ

(1)
index,i = δ

(2)
index ∗ w

(2)
i1 ∗ f ′(u(1)

i)
– Update weights:

• for k = 1, ..., m
∗ for i = 1, ..., h

· w
(2)
i1 = w

(2)
i1 + η

�TC
index=1 δ

(2)
index ∗ y

(1)
s,i

· w
(1)
ki = w

(1)
ki + η

�TC
index=1 δ

(1)
index,i ∗ sindex,k

· θ(2) = θ(2) − η
�TC

index=1 δ
(2)
index

· θ
(1)
i = θ

(1)
i − η

�TC
index=1 δ

(1)
index,i

∗ end for
• end for

agent is sensitive to six parameters, i.e. the number of hidden neurons h, gradient
step η, also referred as learning rate, the number of generated training-episodes,
weights intervall a, discounting parameter γ and exploitation parameter ε, we
have trained more than one agent to compare their performances and have as-
signed them a number. Prior each training, the weights of the MLPs have been
initialized once at weight intervall a. The results are listed in Table 2, whereas
parameters a = 0.77, γ = 0.97 and ε = 0.7 are identical for each MLP.

Further on we have developed a software interface, which allows the intelli-
gent agent to play against Velena [5]. Velena is a shannon C-type program that
is based on the theory of Victor Allis master thesis [6]. It combines eight rules
and a PN-search engine and claims to play Connect Four perfectly in difficulty
’C’. Further difficulty levels ’A’ and ’B’ are available, which limit Velena’s abil-
ity to look ahead. In various test runs we have observed that Velena is superior
in all difficulty levels to an opponent that does 100% random moves. Table 3
lists the results, whereas we have to note that Velena is not acting deterministic,

98 S. Faußer and F. Schwenker

Table 2. Winning-quota measure of multiple intelligent agents, performing versus
opponent that does 100% random moves

MLP No. winning-quota h η episodes

1 146.00 40 0.1 2, 000, 000
246.63 0.05 +4, 000, 000
317.66 0.025 +8, 000, 000

2 722.56 60 0.1 to 0.025 14, 000, 000

3 1245, 86 100 0.1 to 0.025 14, 000, 000

4 1514.14 120 0.5 to 0.03125 6, 000, 000

5 5049.42 250 0.5 to 0.0625 14, 000, 000

Table 3. Performance measure of multiple intelligent agents versus Velena. 1st notes
that our intelligent agent had the first move, ep diff is the observed count of different
episode sequences out of 500 possible.

MLP No. diffic. ep diff 1st ep diff 2nd won 1st won 2nd draw 1st draw 2nd

1 A 92 161 18.2% 11.4% 6.8% 3%
B 2 176 0% 16.8% 0% 1%

2 A 2 193 0% 25.4% 0% 10.8%
B 2 194 0% 18% 0% 10.4%

3 A 44 265 1.6% 21.4% 3% 17.2%
B 40 284 2% 25% 2.2% 18.4%

4 A 182 267 31% 40% 0.2% 14.6%
B 176 258 36% 35% 0% 13.8%

5 A 57 323 89.6% 46.6% 0.004% 38.6%
B 31 323 81% 47% 0% 36%
C 11 35 0% 0.002% 0% 0.004%

i.e. is using a pseudo-random number generator in his policy. Different observed
episode sequences are counted in column ep diff.

4.2 Discussing the Results

Analyzing the results in Table 2 it is apparent, that the success of gaining a
good game-winning strategy is in dependence of the right parameter values. As
expected, the winning rate improves with an increasing learning rate η as well
as with an increasing number of training episodes. However, both values have to
be limited, because if η or the number of training episodes get too large, then
the success measured by the winning-rate is flattening. Further concentrating on
the number of hidden neurons h, we have observed, that a MLP with a higher
amount of h and more training-episodes performs a cut above which shows a
well scaling behavior.

Recalling that our training signal Ts is just directing to the true value but is
not equal to it, it is intuitive clear that the learning rate has to be decreased with
an increasing amount of training episodes. Promising results have been reached

Neural Approximation of Monte Carlo Policy Evaluation 99

by starting with a higher gradient step η = 0.1 that is step-wise decreasing to
about η = 0.025. We have set the weights intervalls a = 0.77 as sugggested in
[3] where they have produced the best neural approximators with the highest
generalization rate:

An fixed weight intervall of 0.2, which corresponds to a weight range
of [−0.77, 0.77], gave the best mean performance for all the applications
tested in this study.

Overall, the best result was obtained by using a step-wise decreasing learning
rate η = 0.5 to η = 0.0625, hidden neurons h = 250, a = 0.77 and 14, 000, 000
generated training episodes, which rewarded us with a winning-rate of about
5, 000.

Observing the results of our intelligent agents performing against Velena in
Table 3, it is striking, that the intelligent agents with more hidden neurons h are
better than those with less ones. Analyzing agents 1-3, they won average 20% of
all games or ended about 10% draw, if they had the second move in difficulty ’A’
and ’B’. Having the first move, it is unlikely for them to win a game. Observing
this behavior, it is clear that they have not found their perfect opening position.
Furthermore, intelligent agent 5 performed best: He lost only about 10% of all
games in ’A’ and ’B’ while he even won once in difficulty ’C’ and reached two
draws.

5 Conclusion

We have described a method to approximate the Monte Carlo Policy Evaluation
using a Multi-Layer Perceptron in this paper. In the experiments, we have sta-
tistically determined parameters for that algorithm to apply well in gaining a
game-winning strategy in Connect Four. After the training had been carried out,
we have used that strategy to perform against Velena. Although Velena claims
to be unbeatable in difficulty ’C’ and slightly weaker in difficulty ’A’ and ’B’, our
intelligent agent 5 has experimental proven it’s strength in all difficulties, where
he has lost only about 10% of all games in ’A’ and ’B’ while he even won once
in difficulty ’C’ and reached two draws. Overall, we’ve achieved a good game-
winning policy in Connect Four that can compete against experienced human
players.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

2. Tesauro, G.: Temporal Difference Learning and TD-Gammon. Communications of
the ACM 38(3) (1995)

3. Thimm, G., Fiesler, E.: High order and multilayer perceptron initialization. IEEE
Transactions on Neural Networks 8(2), 249–259 (1997)

100 S. Faußer and F. Schwenker

4. Thimm, G., Fiesler, E.: Optimal Setting of Weights, Learning Rate and Gain. IDIAP
Research Report, Dalle Molle Institute for Perceptive Artificial Intelligence, Switzer-
land (April 2007)

5. Bertoletti, G.: Velena: A Shannon C-type program which plays connect four per-
fectly (1997), http://www.ce.unipr.it/∼gbe/velena.html

6. Allis, V.: A Knowledge-based Approach of Connect-Four, Department of Mathe-
matics and Computer Science, Vrije Universiteit, Amsterdam (1998)

7. Lenze, B.: Einführung in die Mathematik neuronaler Netze. Logos Verlag, Berlin
(2003)

8. Russel, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pren-
tice Hall, Englewood Cliffs (2002)

9. Cybenko, G.V.: Approximation by Superpositions of a Sigmoidal function. Mathe-
matics of Control, Signals and Systems 2, 303–314 (electronic version) (1989)

http://www.ce.unipr.it/~gbe/velena.html

Cyclostationary Neural Networks for

Air Pollutant Concentration Prediction

Monica Bianchini, Ernesto Di Iorio, Marco Maggini, and Augusto Pucci

Dipartimento di Ingegneria dell’Informazione
Via Roma 56, I-53100 Siena (Italy)

{monica,diiorio,maggini,augusto}@dii.unisi.it

Abstract. There are many substances in the air which may impair the
health of plants and animals, including humans, that arise both from nat-
ural processes and human activity. Nitrogen dioxide NO2 and particulate
matter (PM10, PM2.5) emissions constitute a major concern in urban ar-
eas pollution. The state of the air is, in fact, an important factor in the
quality of life in the cities, since it affects the health of the community
and directly influences the sustainability of our lifestyles and produc-
tion methods. In this paper we propose a cyclostationary neural network
(CNN) model for the prediction of the NO2 and PM10 concentrations.
The cyclostationary nature of the problem guides the construction of
the CNN architecture, which is composed by a number of MLP blocks
equal to the cyclostationary period in the analyzed phenomenon, and is
independent from exogenous inputs. Some experiments are also reported
in order to show how the CNN model significantly outperforms standard
statistical tools and linear regressors usually employed in these tasks.

1 Introduction

There are many substances in the air which may impair the health of plants and
animals, including humans, that arise both from natural processes and human
activity. Substances not naturally found in the air, or at greater concentrations,
or in different locations from usual, are referred to as pollutants. Pollutants can
be classified as either primary or secondary. Primary pollutants are substances
directly produced by a process, such as ash from a volcanic eruption or the
carbon monoxide gas from a motor vehicle exhaust. Instead, secondary pollutants
are not emitted. Rather, they form in the air when primary pollutants react
or interact. An important example of a secondary pollutant is ozone – one of
the many secondary pollutants that constitute the photochemical smog. Note
that some pollutants may be both primary and secondary: that is, they are
both emitted directly and formed as combinations of other primary pollutants.
Primary pollutants produced by human activity include:

– Oxides of sulfur, nitrogen and carbon;
– Organic compounds, such as hydrocarbons (fuel vapour and solvents);
– Particulate matter, such as smoke and dust;

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 101–112, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

102 M. Bianchini et al.

– Metal oxides, especially those of lead, cadmium, copper and iron;
– Toxic substances.

Secondary pollutants include some particles formed from gaseous primary pol-
lutants and compounds in the photochemical smog, such as nitrogen dioxide,
ozone and peroxyacetyl nitrate (PAN).

The main oxides of nitrogen present in the atmosphere are nitric oxide (NO),
nitrogen dioxide (NO2) and nitrous oxide (N2O). Nitrous oxide occurs in much
smaller quantities than the other two, but it is of interest as it represents a
powerful greenhouse gas and thus contributes to global warming. The major
human activity which generates oxides of nitrogen is fuel combustion, especially
in motor vehicles. Oxides of nitrogen form in the air when fuel is burnt at high
temperatures. This is mostly in the form of nitric oxide with usually less than
10% as nitrogen dioxide. Once emitted, nitric oxide combines with ozone (O3)
to form nitrogen dioxide, especially in warm sunny conditions. These oxides
of nitrogen may remain in the atmosphere for several days and, during this
time, chemical processes may generate nitric acid, and nitrates and nitrites as
particles. The oxides of nitrogen play a major role in the chemical reactions
which generate the photochemical smog. Nitrogen dioxide is also a respiratory
irritant which may worsen the symptoms of an existing respiratory illness.

On the other hand, particulate matter (PM10) pollution consists of very small
liquid and solid particles floating in the air. Sources of PM10 in both urban and
rural areas are motor vehicles, wood burning stoves and fireplaces, dust from
construction, landfills, and agriculture, wildfires and waste burning, industrial
sources, windblown dust from open lands. In particular, of greatest concern to
public health, are the PM10 particles small enough to be inhaled into the deepest
parts of the lung [16,19,20]. These particles are less than 10 microns in diameter,
and result from a mixture of materials that can include smoke, soot, dust, salt,
acids, and metals.

Many modelling efforts have been recently spent for controlling the NO2 and
PM10 concentrations in order to enable the development of tools for pollution
management and reduction. One approach to predict future pollutant concentra-
tions is to use detailed atmospheric diffusion models (see [2], for a review). Such
models aim at solving the underlying physical and chemical equations that con-
trol pollutant concentrations and, therefore, require clean emission data and me-
teorological fields. An alternative approach is to devise statistical models which
attempt to determine the underlying relationship between a set of input data and
targets. Regression modelling is an example of such a statistical approach and
has been applied to air quality modelling and prediction in a number of studies
[7,21,22]. One of the limitations imposed by linear regression tools is that they
will underperform when used to model non–linear systems. Instead, artificial
neural networks can model non–linear systems and have been succesfully used
for predicting air pollution concentrations (see, f.i., [5,6,9,11,12,13,14,15,18]).

In this paper, we propose a cyclostationary neural network (CNN) architec-
ture to model and estimate hourly the NO2 concetrations, and to obtain a 1–day
ahead prediction for the PM10. The cyclostationary nature of the problem guides

Cyclostationary Neural Networks for Air Pollutant Concentration Prediction 103

the construction of the CNN, which is composed by a number of MLP blocks equal
to the duration of the cyclostationary period in the analyzed phenomenon, specif-
ically 24 hours for the prediction of the NO2 concentration and a week (7 days)
for the PM10. The novelty of our approach particularly lies on its independence
from exogenous data, in that it uses only the time series of NO, NO2, and PM10,
respectively, to predict their future values. In fact, meteorological data are not
taken (explicitly) into account, suggesting that the network is able to detect the
necessary exogenous information directly from the pollution data. Therefore, the
proposed CNN architecture is robust w.r.t. geographical and seasonal changes.
Some experimentation was carried out on the data gathered by ARPA (Agenzia
Regionale per la Protezione dell’Ambiente — Regional Environmental Protection
Agency) of Lombardia (northern Italy). ARPA supplies a real–time air quality
monitoring system to defend the people health and the region ecosystem quality.
Experimental results are very promising and show that the CNN model signifi-
cantly outperforms standard statistical tools — like AutoRegressive eXogenous
(ARX) models — and linear regressors, usually employed for this task [4].

The paper is organized as follows. In the next section, the CNN architecture is
introduced and the data preprocessing, aimed at creating a learning set tailored
to the CNN model, is reported. Section 3 describes the experimental setup,
respectively for the nitrogen dioxide and the particulate matter concentrations,
comparing the performance of the proposed method with AR models and linear
regression tools. Finally, Section 4 reports the conclusions.

2 Cyclostationary Neural Networks

A discrete time random process X(t) is a rule for assigning to every outcome
of an experiment ζ a function X(t, ζ). The domain of ζ is the set of all the
experimental outcomes and the domain of t is a set of natural numbers [17].
Thus, a random process is a set of random variables, one for each time instant
t. If the statistics of a random process change over time, then the process is
called nonstationary. The subclass of nonstationary processes whose statistics
vary periodically with time are called cyclostationary.

Whenever the cyclostationarity period T is known, a set of T stationary
processes can be derived from the original one [10], on which different neural
networks can be trained independently to predict the outcomes of the related
random variables. Therefore, the CNN consists of a set of T independent —
but with an identical architecture — MLPs, each modelling a random variable
of the original cyclostationary process. Formally speaking, for a cyclostationary
process X with period T , the set of all the outcomes A∗ = {aj | j ∈ [0,∞)}
can be partitioned into T subsets, one for each random variable, that is A∗ =
{A0, A2, . . . , AT−1}, where Ai = {aj | i = j mod T }. The i–th MLP will be
trained on the subset of the outcomes concerning the i–th random variable of
the process.

104 M. Bianchini et al.

2.1 Prediction of the NO2 Concentration

This prediction task consists in modeling the NO2 time series, based on the
past concentrations of NO and NO2. In this case, it is easily verifiable that a
strong correlation exists between the past NO data and the current value of the
NO2 concentration, with a periodicity of 24 hours. This means that the NO2

pollution at time t depends on the NO sampled at t− 24, t− 48, etc. Therefore,
we claim that the process we are analyzing has a cyclostationary period T = 24,
i.e. a daily periodicity, and, consequently, a CNN model will be composed by
24 MLP blocks. In particular, each MLP — one for each random variable of
the cyclostationary process — will exploit NO(t− T) and NO2(t− 1) to predict
NO2(t). Formally:

NO2(t)= fk(NO2(t− 1),NO(t− T)), k = t mod T,

where T = 24 and fk, k = 0, . . . , T − 1, represents the k–th approximation
function realized by the k–th MLP block.

t−13

k=0 k=11 k=23

2 2 2

NO(t−13) NO(t−1)2 2 2

CNN

NO (t+10) NO (t+22)

NO (t+23)

t+22

NO(t)

NO (t)2

NO (t−1)

110 230

NO (t)

t

NO (t+11)

11

X X X

23

NO(t−24)

t+10t−1t−24

Fig. 1. The CNN architecture and the data sampling procedure

It is worth mentioning that the CNN model relies just on NO and NO2 time se-
ries values. In fact, it is completely independent of exogenous data, such as weather
condition (i.e. pressure, wind, humidity, etc.) and geographic conformation. This
is just an interesting feature, since we can avoid to predict such weather condi-
tions and focus only on the NO2 concentration prediction. The resulting model
will obviously be much more robust against noise and prediction error.

2.2 Prediction of the PM10 Concentration

In order to predict the particulate matter pollution, and since PM10 time series
underlies clear periodicities at the yearly and weekly level, we consider a CNN
neural network composed by 7 MLP blocks to forecast the PM10 daily average
concentration. To be used as an input for the predictor, each monitored param-
eter has to be grouped from the original hourly series to a daily time series; this
has been accomplished calculating the average over the whole day. Therefore, the

Cyclostationary Neural Networks for Air Pollutant Concentration Prediction 105

k–th MLP block calculates the function fk, for the 1–day prediction of PM10,
based on the today–value and on the concentration measured a week before:

PM10(t)= fk(PM10(t− 1),PM10(t−W)), k = t mod W,

where W = 7 and fk, k = 0, . . . , W − 1, represents the k–th approximation
function realized by the k–th MLP block.

As observed for the nitrogen dioxide, even for the case of the particulate
matter, the CNN network is able to make the 1–day prediction without taking
into account other environmental conditions except for the past concentrations
of the pollutant to be predicted.

3 Experimental Results

In order to assess the capability of the proposed neural network model to pre-
dict cyclostationary phenomena and, in particular, air pollutant concentrations,
several experiments have been performed to compare the CNN model to other
models both for the prediction of the NO2 hourly concentrations and for the pre-
diction of the daily concentration of the PM10, which is known to be a harder
task (see, f.i. [8,9,11]) to be faced with connectionist models.

In this work, we used data gathered by the ARPA of Lombardia (northern
Italy). ARPA supplies a real–time air quality monitoring system to defend the
people health and the region ecosystem quality. The ARPA air quality monitor-
ing system is composed by mobile and fixed stations.

The first dataset is made up by the nitric oxide and dioxide concentrations
detected hourly by several stations in Bergamo and Brescia (two important cities
in Lombardia) and by the unique station in Breno (a small city close to Bres-
cia)1. Instead, for the particulate matter prediction task, the data are gathered
from a monitoring station located in a residential area of Milan. The dataset is
constituted by a hourly time series, with a missing value rate ranging between
5% and 10%.

3.1 Experiments on the Prediction of the NO2 Concentration

To test the CNN model for the prediction of the nitrogen dioxide concentration,
we exploited 21 different sets of data, gathered from seven monitoring stations,
three in Bergamo (Via Garibaldi, Via Goisis, Via Meucci), three in Brescia (Bro-
letto, via Trimplina, Via Turati), and the unique one in Breno. Three different
datasets were defined corresponding to the measurements collected during dif-
ferent (or partially overlapped) time periods, as shown in Table 1.

For each dataset, the performance of the CNN architecture based on 24 MLPs,
as described in Section 2, was compared with a similar architecture based on a
set of 24 AutoRegressive eXogenous input (ARX) models. By a trial and error

1 The dataset and some related information are available at the web site
http://www.arpalombardia.it/qaria/doc RichiestaDati.asp

106 M. Bianchini et al.

Table 1. Datasets used in the experiments

Label Learning set Test set

1-1-2003 1:00 a.m. 1-1-2005 1:00 a.m.
2003-2004/2005 to to

1-1-2005 0:00 a.m. 1-1-2006 0:00 a.m.

1-1-2003 1:00 a.m. 1-1-2004 1:00 a.m.
2003/2004 to to

1-1-2004 0:00 a.m. 1-1-2005 0:00 a.m.

1-1-2004 1:00 a.m. 1-1-2005 1:00 a.m.
2004/2005 to to

1-1-2005 0:00 a.m. 1-1-2006 at 0:00 a.m.

Fig. 2. Average absolute error for the prediction of the NO2 hourly concentration at
the three station in Bergamo. Each column corresponds to one of the three datasets of
Table 1.

procedure, a two–layer neural network architecture with five hidden neurons was
chosen for the CNN model. Figure 2 shows the results for the three stations in
Bergamo. In each plot, the x–axis corresponds to the time of the day, while
the y–axis corresponds to the average value of the absolute prediction error
computed for all the days in the test set. The absolute prediction error is defined
as e(t) = |y(t)− ŷ(t)|, where y(t) is the current NO2 value at time t and ŷ(t) is
the model estimation. By comparing the two error curves, it can be noted that
the CNN absolute error is quite often significantly smaller than the error for the
ARX model, both with respect to the station and the time of the day. Similar
results were obtained for the stations in Brescia and Breno.

Cyclostationary Neural Networks for Air Pollutant Concentration Prediction 107

Fig. 3. Experimental results obtained by using the NO–NO2 hourly concentration of a
Bergamo’s station to train the CNN, whose performance is then tested based on data
gathered from another Bergamo’s station.

A second set of experiments was aimed at evaluating the generalization perfor-
mance of the CNN model with respect to the position of the monitoring station
used to train the model and to the station considered for the prediction. Thus,
the CNN was trained by using the NO–NO2 time series gathered at a specific
station and tested on the concentration collected, in the same period, at a dif-
ferent monitoring point. In particular, three different types of experiments were
carried out:

– Stations of the same city. For each city, a CNN was trained for each NO–
NO2 time series and then tested on the data gathered at the other stations
of the same city;

– Stations of close cities. A CNN was trained based on the NO–NO2 time
series measured at a certain station of a particular city, and then tested on
the data gathered at some stations of a close city (for example, we use the
concentration of the station at Brescia – Via Turati for the training and that
of the station of Breno for the testing phase);

– Stations of far cities. A CNN was trained based on the NO–NO2 time
series measured at a certain station of a particular city, and then tested on
the data gathered at some stations of a far city (e.g., using data from Brescia
for the training and from Bergamo for the testing phase).

Figure 3 reports the results when considering four different combinations of
the three measuring stations in Bergamo for the 2004/2005 dataset. The plots
show that even in this case the CNN model performs better than the ARX

108 M. Bianchini et al.

Fig. 4. Experimental results obtained on the 2004/2005 dataset by using the NO–NO2

hourly concentration of the Breno’s station for training and data gathered at some
Brescia’s stations for testing.

model. In particular, it is interesting to note that this experimental setup does
not lead to a relevant CNN performance degradation.

In Figure 4, the results obtained by training the CNN on the hourly concen-
tration of the Breno’s station and testing it on the Brescia’s stations are shown.
This is the case of stations in nearby cities, and, as shown in the plots, there
is not a significant performance degradation for the CNN model. We obtained
similar results also by training the CNN model on a given station in Brescia and
testing it on the data of the Breno’s station.

In Figure 5, the plots show the average absolute error when the CNN is
trained by using the hourly concentration of the Breno’s station and then tested
on the Bergamo’s stations (and vice versa). In this case, the geographic distance
among the stations is furthermore increased, nevertheless maintaining the CNN
performance almost unchanged.

Finally, we investigated how the size of the learning set affects the prediction
accuracy of the proposed model. We considered the 2004/2005 dataset that cor-
responds to two years of data and we adopted the following scheme. For each
week, we considered the previous w weeks with w = 1, . . . , 25. Starting from the
26–th week in the dataset, for each value of w, we predicted the hourly NO2

concentration for each day, using a CNN model trained on the data collected for
the days in the previous w weeks. For each learning set size w, we first computed
the Mean Square Error for the hourly prediction in each week, and then we fur-
therly averaged this value on all the weeks in the test set. The results are shown
in the plots in Figure 6, where the x–axis is labelled by the parameter w — the
number of weeks on which the model was trained — whereas the corresponding

Cyclostationary Neural Networks for Air Pollutant Concentration Prediction 109

Fig. 5. Experimental results obtained by using the NO–NO2 hourly concentration of
the Breno’s station for training and data gathered at some Bergamo’s stations for
testing and vice versa.

average MSE is reported on the y–axis. The different curves refer to the three
stations in Brescia — Figure 6 (a) — and in Bergamo — Figure 6 (b). It is easy
to note a common trend in each dataset, that corresponds to a performance im-
provement when the training window size increases up to 12–14 weeks, whereas
there are not very significant changes when w > 14. Interestingly, this size for w
corresponds exactly to an entire season. This result reveals a seasonal periodicity
in the considered phenomenon.

3.2 Experiments on the Prediction of the PM10 Concentration

The second experimental setup is aimed at presenting a comparison among
CNNs, a neural network approach (also based on MLPs) proposed in [1], and a
linear predictor described in [3], on the PM10 1–day ahead prediction. In this
case the CNN architecture is based on a set of 7 two–layer MLPs, with 15 hidden
neurons each. This architecture was determined by a trial and error procedure
and assumes a weekly cyclostationarity period. The dataset is constituted by a
hourly time series collected in the period 1999-2002 from a monitoring station
located in a residential area of Milan. The data are grouped from the original
hourly series into a daily time series and then splitted to form the training set
(1999-2000), the validation set (2001), and the test set (2002), respectively.

In [1], many exogenous features are used as inputs for the neural network
model to perform the PM10 1–day ahead prediction, including an autoregres-
sive PM10 term, the past concentrations of NO, NO2, and SO2, and a wide set
of meteorological variables, such as temperature, humidity, wind velocity, solar

110 M. Bianchini et al.

(a) (b)

Fig. 6. Weekly Mean Square Error on the hourly NO2 prediction task with respect
to the number w of past weeks in the learning set. (a) Brescia stations. (b) Bergamo
stations.

Table 2. Prediction Mean Absolute Error (MAE) on the PM10 1–day ahead prediction
task

CNNs Cecchetti et al. [1] Corani et al. [3]

MAE 8.34 mg/m3 8.71 mg/m3 11 mg/m3

radiation, atmospheric pressure and the Pasquill stability class, a commonly used
method of categorizing the amount of atmospheric turbulence2. Instead, in our
approach, we just exploited the ad hoc past values of the PM10 concetrations
(those calculated the day before and one week before).

Table 2 reports the results obatined on the same data by CNNs, and the other
approaches respectively proposed in [1] and [3].

4 Conclusions

In this paper, a connectionist model called Cyclostationary Neural Network
(CNN) was introduced, particularly tailored for the prediction of cyclostation-
ary phenomena. In particular, the CNN architecture was introduced to model
and estimate hourly the nitrogen dioxide (NO2) concetrations, and to obtain
a 1–day ahead prediction for the particulate matter (PM10), both pollutants
playing a major role in the chemical reactions which generate the photochemi-
cal smog. One fundamental peculiarity of the proposed model is that of being
independent of evironmental, tipically metereological, exogenous data, in that
the NO2 concentration prediction is based only on the previous level of NO2

2 The six stability classes are named A, B, C, D, E, and F, with class A being the
most unstable or most turbulent class, and class F the most stable or least turbulent
class. Each class is determined by the ranges of values for the surface windspeed,
the daytime incoming solar radiation, and the nighttime cloud cover.

Cyclostationary Neural Networks for Air Pollutant Concentration Prediction 111

and of the nitric oxide (NO) — which combines with ozone (O3) to form NO2 —,
whereas the PM10 prediction depends only on the previous values of the same
pollutant. Some experimentation, carried out on the data gathered by ARPA
Lombardia, looks very promising and shows that the CNN model significantly
outperforms standard statistical tools, like ARX models, usually employed for
the air pollutant prediction task.

References

1. Cecchetti, M., Corani, G., Guariso, G.: Artificial neural networks prediction of
PM10 in the Milan area. In: 2nd International Environmental Modelling and Soft-
ware Society Conference (2004)

2. Collet, R.S., Oduyemi, K.: Air quality modelling: A technical review of mathemat-
ical approaches. Metereological Applications 4(3), 235–246 (1997)

3. Corani, G., Barazzetta, S.: First results in the prediction of particulate matter in
the Milan area. In: 9th Int. Conf. on Harmonisation within Atmospheric Dispersion
Modelling for Regulatory Purposes (2004)

4. Finzi, G., Volta, M., Nucifora, A., Nunnari, G.: Real time ozone episode forecast:
A comparison between neural network and grey box models. In: Proceedings of
International ICSC/IFAC Symposium of Neural Computation, pp. 854–860. ICSC
Academic Press, London (1998)

5. Gardner, M.W., Dorling, S.R.: Artificial neural networks (the multilayer percep-
tron) – A review of applications in the atmospheric sciences. Atmospheric Envi-
ronment 32(14–15), 2627–2636 (1998)

6. Gardner, M.W., Dorling, S.R.: Neural network modelling and prediction of hourly
NOx and NO2 concentration in urban air in London. Atmospheric Environment 33,
709–719 (1999)

7. Goyal, P., Chanb, A.T., Jaiswa, N.: Statistical models for the prediction of
respirable suspended particulate matter in urban cities. Atmospheric Environ-
ment 40(11), 2068–2077 (2006)

8. Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F., Brasseur, O.: A neural
network forecast for daily average PM10 concentrations in Belgium. Atmospheric
Environment 39(18), 3279–3289 (2005)

9. Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H.,
Kolehmainen, M., Niska, H., Dorling, S.R., Chatterton, T., Foxall, R., Cawley,
G.: Extensive evaluation of neural network models for the prediction of NO2 and
PM10 concentrations, compared with a deterministic modelling system and mea-
surements in central Helsinki. Atmospheric Environment 37, 4539–4550 (2003)

10. Ljung, L.: System Identification — Theory for the User, 2nd edn. PTR Prentice
Hall, Upple Saddle River (1999)

11. Lu, W.Z., Fan, H.Y., Lo, S.M.: Application of evolutionary neural network method
in predicting pollutant levels in downtown area of Hong Kong. Neurocomputing 51,
387–400 (2003)

12. Lu, W.Z., Wang, W.J., Xu, Z.B., Leung, A.Y.: Using improved neural network
model to analyze RSP, NOx and NO2 levels in urban air in Mong Kok, Hong
Kong. Environmental Monitoring and Assessment 87(3), 235–254 (2003)

13. Morabito, F.C., Versaci, M.: Wavelet neural network processing of urban air pol-
lution. In: Proceedings of IJCNN 2002, Honolulu (Hawaii), vol. 1, pp. 432–437.
IEEE, Los Alamitos (2002)

112 M. Bianchini et al.

14. Nunnari, G., Cannavò, F.: Modified cost functions for modelling air quality time
series by using neural networks. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L.
(eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 723–728. Springer,
Heidelberg (2003)

15. Ordieres, J.B., Vergara, E.P., Capuz, R.S., Salazar, R.E.: Neural network predic-
tion model for fine particulate matter (PM2.5) on the US–Mexico border in El
Paso (Texas) and Ciudad Juárez (Chihuahua). Environmental Modelling and Soft-
ware 20(5), 547–559 (2005)

16. Ostro, B., Chestnut, L., Vichit-Vadakan, N., Laixuthai, A.: The impact of partic-
ulate matter on daily mortality in Bangkok, Thailand. Journal of Air and Waste
Management Association 49, 100–107 (1999)

17. Papoulis, A.: Probability, Random Variables, and Stochastic Processes, 3rd edn.
McGraw–Hill, New York (1991)

18. Perez, P., Reyes, J.: Prediction of maximum of 24–h average of PM10 concentrations
30 h in advance in Santiago, Chile. Atmospheric Environment 36, 4555–4561 (2002)

19. Pope, C.A., Burnett, R., Thun, M.J., Calle, E.E., Krewskik, D., Ito, K., Thurston,
G.D.: Lung cancer, cardiopulmonary mortality, and long term exposure to fine
particulate air pollution. Journal of the American Medical Association 287, 1132–
1141 (2002)

20. Pope, C.A., Thun, M.J., Namboodiri, M.M., Dockery, D.W., Evans, J.S., Speizer,
F.E., Heath, C.W.: Particulate air pollution as predictor of mortality in a prospec-
tive study of US adults. American Journal of Respiratory and Critical Care
Medicine 151, 669–674 (1995)

21. Wang, J.Y., Lord, E., Cannon, A., Walters, G.: Statistical models for spot air
quality forecasts (O3 and PM10) in British Columbia. In: Proceedings of the 2005
Puget Sound Georgia Basin Research Conference, Seattle (2005)

22. Zolghadri, A., Henry, D.: Minimax statistical models for air pollution time series,
Application to ozone time series data measured in Bordeaux. Environmental Mon-
itoring and Assessment 98(1–3), 275–294 (2004)

Fuzzy Evolutionary Probabilistic Neural

Networks

V.L. Georgiou�, Ph.D. Alevizos, and M.N. Vrahatis

Computational Intelligence Laboratory (CI Lab), Department of Mathematics,
University of Patras Artificial Intelligence Research Center (UPAIRC),

University of Patras, GR-26110 Patras, Greece
{vlg,philipos,vrahatis}@math.upatras.gr

Abstract. One of the most frequently used models for classification
tasks is the Probabilistic Neural Network. Several improvements of the
Probabilistic Neural Network have been proposed such as the Evolu-
tionary Probabilistic Neural Network that employs the Particle Swarm
Optimization stochastic algorithm for the proper selection of its spread
(smoothing) parameters and the prior probabilities. To further improve
its performance, a fuzzy class membership function has been incorpo-
rated for the weighting of its pattern layer neurons. For each neuron of
the pattern layer, a fuzzy class membership weight is computed and it is
multiplied to its output in order to magnify or decrease the neuron’s sig-
nal when applicable. Moreover, a novel scheme for multi–class problems
is proposed since the fuzzy membership function can be incorporated
only in binary classification tasks. The proposed model is entitled Fuzzy
Evolutionary Probabilistic Neural Network and is applied to several real-
world benchmark problem with promising results.

1 Introduction

A rapid development of Computational Intelligence methods has taken place re-
cently. A simple but promising model which combines statistical methods and
efficient evolutionary algorithms is the recently proposed Evolutionary Proba-
bilistic Neural Network (EPNN) [1,2]. Specifically, EPNN is based on the Prob-
abilistic Neural Network (PNN) introduced by Specht [3] that has been widely
used in several areas of science with promising results [4,5,6,7]. PNN is based on
discriminant analysis [8] and incorporates the Bayes decision rule for the final
classification of an unknown feature vector. In order to estimate the Probability
Density Function (PDF) of each class, the Parzen window estimator or in other
words the kernel density estimator is used [9]. The recently proposed EPNN em-
ploys the Particle Swarm Optimization (PSO) algorithm [10,11] for the selection
of the spread parameters of PNN’s kernels. Several other variants of PNN have
been proposed in the literature. A Fuzzy PNN is proposed in [12], where a mo-
dification of the typical misclassification proportion is minimized in the training
procedure.
� Corresponding author.

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 113–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

114 V.L. Georgiou, P.D. Alevizos, and M.N. Vrahatis

Several other remarkable efforts have taken place so that fuzzy logic [13,14]
can be incorporated into well known and widely used classification models. Such
an effort has been made in [15], where a Fuzzy Membership Function (FMF)
has been introduced and incorporated into the Perceptron algorithm. Moreover,
a Fuzzy Kernel Perceptron has been proposed in [16] in order to form a fuzzy
decision boundary that separates two classes. The FMF that was employed in
[16], is the one proposed by Keller and Hunt [15].

In this contribution an extension of the EPNN is proposed which incorporates
the aforementioned Fuzzy Membership Function (FMF). This function describes
the degree of certainty that a given datum belongs to each one of the predefined
classes. The FMF provides a way of weighting all the training vectors so that an
even better classification accuracy can be achieved.

2 Background Material

For completeness purposes, let us briefly present the necessary background ma-
terial. As it has already been mentioned, PNN is used mainly for classification
tasks. The training procedure of a PNN is quite simple and requires only a single
pass of the patterns of the training data which results to a short training time.
The architecture of a PNN always consists of four layers: the input layer , the
pattern layer , the summation layer and the output layer [1,3].

Suppose that an input feature vector X ∈ R
p has to be classified into one of

K predefined classes. The vector X is applied to the p neurons of PNN’s input
layer and is then passed to the pattern layer. The neurons of the pattern layer
are connected with all the input layers’ neurons and are organized into K groups.
Each group of neurons in the pattern layer consists of Nk neurons, where Nk is
the number of training vectors that belong to the class k, k = 1, 2, . . . , K. The
ith neuron in the kth group of the pattern layer computes its output using a
kernel function that is typically a Gaussian kernel function of the form:

fik(X) =
1

(2π)p/2|Σk|1/2
exp

(
−1

2
(X −Xik)T Σ−1

k (X −Xik)
)

, (1)

where Xik ∈ R
p is the center of the kernel and Σk is the matrix of spread

(smoothing) parameters of the kernel. The vector Xik corresponds to the ith
feature vector of the kth group of the training data set.

The summation layer comprises K neurons and each one estimates the con-
ditional probability of its class given an unknown vector X:

Gk(X) =
Nk∑

i=1

πkfik(X), k ∈ {1, 2, . . . , K}, (2)

where πk is the prior probability of class k,
∑K

k=1 πk = 1. Thus, a vector X is
classified to the class that has the maximum output of the summation neurons.

Instead of utilizing the whole training data set of size N and create a pattern
layer that consists of N neurons, a smaller training set is created so that the

Fuzzy Evolutionary Probabilistic Neural Networks 115

new PNN will have less memory requirements and will be much faster. The well-
known K-medoids clustering algorithm [17] is applied to the training data of each
class and K is set equal to 5% of the size of each class. Following this strategy,
the proportion of instances of a class to the whole training data set remains the
same. The adjacent training vectors are grouped as a cluster that is represented
by the corresponding medoid. Then, the obtained medoids are used as centers to
the corresponding PNN’s kernel functions of the pattern layer’s neurons. Thus,
the pattern layer’s size of the proposed PNN is about twenty times smaller than
the corresponding PNN which utilizes all the available training data resulting to
a much faster model.

For the estimation of the spread matrix Σk as well as the prior probabilities
πk, PSO algorithm is used. PSO is a stochastic population–based optimization
algorithm [10] and it is based on the idea that a population of particles are
released into a search space and travel with adaptable velocity in order to find
promising regions into it [11,18]. Moreover, they retain a memory of the best
position they have ever visited and at each step they intercommunicate to in-
form each other about their position and the value of the objective function at
that particular point. The velocity of each particle is updated according to the
particle’s best value and the swarm best value.

Let g(X) be the objective function that has to be minimized. Given a d–
dimensional search space S ⊂ R

d and a swarm consisting of NP particles, let
Zi ∈ S be the position of the ith particle and Vi be the velocity of this particle.
Moreover, let BP i be the best previous position encountered by the ith particle
in S. Assume gl to be the index of the particle that attained the best previous
position among all particles, and t to be the iteration counter. Then, the swarm
is manipulated by the equations

Vi(t + 1) = χ
[
Vi(t) + c1 r1

(
BP i(t)− Zi(t)

)
+ c2 r2

(
BPgl(t)− Zi(t)

)]
, (3)

Zi(t + 1) = Zi(t) + Vi(t + 1), (4)

where i = 1, 2, . . . ,NP; χ is a parameter called constriction coefficient; c1 and
c2 are two positive constants called cognitive and social parameter, respectively;
and r1, r2, are random vectors that are uniformly distributed within [0, 1]d [19].
All vector operations in Eqs. (3) and (4) are computed component-wise and the
best positions are then updated according to the equation

BP i(t + 1) =
{

Zi(t + 1), if g (Zi(t + 1)) < g (BP i(t)) ,
BP i(t), otherwise.

The particles are always bounded in the search space S and the constriction
coefficient is derived analytically through the formula

χ =
2κ

|2− ϕ−
√

ϕ2 − 4ϕ| , (5)

for ϕ > 4, where ϕ = c1 + c2, and κ = 1, based on the stability analysis of Clerc
and Kennedy [19,20].

116 V.L. Georgiou, P.D. Alevizos, and M.N. Vrahatis

A differentmatrix of spreadparameters Σk =diag(σ2
1k, . . . , σ2

pk), k=1, 2, . . . , K
is assumed for each class and a swarmof Σk created byPSO. The objective function
that PSO should minimize is the misclassificationproportion on the whole training
data set.

3 The Proposed Approach

One of the desirable properties that a supervised classification model should pos-
sess is the ability to adjust the impact of each training sample vector to the final
decision of the model. In other words, vectors of high uncertainty about their
class membership should have less influence on the final decision of the model,
while vectors of low uncertainty should affect more the model’s decision. One
way of obtaining this desirable property is to incorporate a Fuzzy Membership
Function (FMF) into the model. Among the large variety of classification models
we chose the EPNN due to its simplicity, effectiveness and efficiency [1,2] and we
have incorporated the FMF proposed in [15] for weighting the pattern neurons
of the EPNN. By this way, fuzzy class membership values are assigned to each
pattern neuron and for this reason the proposed model is named Fuzzy Evo-
lutionary Probabilistic Neural Network (FEPNN). The efficiency of the EPNNs
and their variants is clearly presented in [2] where the EPNNs are compared
with the best ever classification models on several problems.

Next, let us further analyze the proposed model. As it has already been men-
tioned in Section 2, Xik, i = 1, 2, . . . , Nk, k = 1, 2, . . . , K is the i–th training
sample vector that belongs to class k. Since we are dealing with a two-class clas-
sification problem, we consider K = 2. Suppose further that u(X) ∈ [0, 1] is a
fuzzy membership function, then we define:

u(Xik) ≡ uik = 0.5 +
exp

(
(−1)k [d1(Xik)− d2(Xik)] λ/d

)− exp(−λ)
2 (exp(λ)− exp(−λ))

,

where for k = 1, 2, Mk is the mean vector of class k, dk(X) = ‖X −Mk‖ is
the distance between vector X and mean vector of class k, d = ‖M1 −M2‖ is
the distance between the two mean vectors and λ is a constant that controls
the rate at which fuzzy membership values decrease towards 0.5 [15]. The fuzzy
membership values were designed so that if the vector is equal to the mean of
the class that it belongs, then it should be 1.0. Also, if the vector is equal to the
mean of the other class, it should be 0.5, meaning that this pattern neuron should
not consider the most to the final decision. Moreover, if the vector is equidistant
from the two means, then it should be near 0.5, since it cannot really help us to
the final classification. In other words, as the vector gets closer to its mean and
goes further away the other mean, its value should approach 1.0 exponentially.
Moreover, the pseudocode of the proposed approach is presented in Table 1.

As it was previously mentioned, the proposed approach can be applied only to
binary classification problems. In order to make it applicable to a wider spectrum
of tasks, we propose a way of applying it to multi-class classification problems by
using the following multi-class decomposition scheme. Assuming that K > 2, let

Fuzzy Evolutionary Probabilistic Neural Networks 117

Create the clustered training set Tcl tr of size Ncl tr from the
training data set Ttr.

Select initial random values for Σk and πk, k = 1, 2.
Construct PNN using Tcl tr, Σk and πk.
Compute M1, M2 and d.
For i = 1, Ncl k and k = 1, 2 do:

Compute fuzzy membership values uik using Eq. (3).
EndFor

Compute Σk and πk by PSO
For l = 1,NP do:

Initialize a swarm
Zl(0) = [σ1 1 l, σ1 2 l, . . . , σ1 p l, σ2 1 l, σ2 2 l, . . . , σ2 p l, π1 l, π2 l].

Initialize best positions BP l(0).
EndFor
For t=1,MaxGeners do:

For l = 1,NP do:
Update velocities Vl(t + 1) using Eq. (3).
Update particles Zl(t + 1) = Zl(t) + Vl(t + 1).

Constrain each particle Zl(t + 1) ∈ (0, γ]2 p × [0, 1]2.
Set MP l = 0. (Misclassification Proportion)
For m = 1, Ntr do:

Compute Out(m) = arg max
k

(
Gk(Xm) = πk

∑Ncl k
i=1 uik fik(Xm)

)

If (Out(m) �= Target(m)) Then MP l = MP l + 1.
EndFor
Set g(Zl(t + 1)) = MP l/Ntr

Update best position BP l(t + 1).
EndFor

EndFor

Write the optimal Σk and Π and the classification accuracy of the PNN
on Ttr and Tte.

Fig. 1. Pseudocode of the proposed approach

OM be the overall mean vector of the whole data set and OMk be the overall
mean vector of the data set excluding the vectors of class k, k = 1, 2, . . . , K. We
calculate the Euclidean distances Dk = ‖OM−Mk‖ and D′

k = ‖OMk −Mk‖
for all the classes and we sort the K classes according to their total distance
ODk = Dk + D′

k.
So, a sequence of K − 1 FEPNNs will be created for the final classification.

Let sk, k = 1, 2, . . . , K be the indices of the sorted classes. For the first FEPNN,
we will utilize a training set consisting of the vectors of class s1 as class 1 and
the rest of the training set as class 2. Since this is a binary classification training
set, we can use the proposed FEPNN in order to classify the “unknown” vectors
of the test set that belong to class s1. By this manner, we can record the number
of correctly classified vectors of s1 as Cs1 . This procedure is continued for the
rest of the sk, k = 2, 3, . . . , K − 1 and at every step we do not take into account

118 V.L. Georgiou, P.D. Alevizos, and M.N. Vrahatis

the vectors of the classes si, i < k and we compute the classification accuracies
Csk

. At K − 1 step, we have only the last two classes left, so only one FEPNN
is needed from which we compute CsK−1 and CsK . So the final classification
accuracy is the sum of Csk

, k = 1, 2, . . . , K.
Several other multi-class decomposition schemes can be used such as the one–

vs–others (1–vs–r) or the one–vs–one (1–vs–1) scheme. In the (1–vs–r) scheme,
the problem is decomposed into a set of K two-class problems where for each class
k = 1, 2, . . . , K a classifier is constructed that distinguishes between class k and
the composite class consisting of all other classes. By this way, the training set
always consists of all the exemplars of all classes while in our proposed scheme,
in every step one class is excluded and only K−1 classifiers are constructed that
results in a faster scheme. On the other hand, using the (1–vs–1) scheme also
known as pairwise coupling where a classifier is constructed for each distinct pair
of classes using only the training samples for those classes, K(K−1)/2 classifiers
are constructed. This demands K/2 times more classifiers to be constructed
compared to our proposed scheme although we should note that in our case the
training data sets will be larger in the first steps.

4 Experimental Results

The proposed model has been applied to four binary and two multi–class bench-
mark problems from several fields of science from Proben1 database [21] that
come from the UCI repository [22] in order to evaluate its efficiency and perfor-
mance.

(1) The first data set is the Wisconsin Breast Cancer Database (WBCD) and
the target of this problem is to predict whether a breast tumour is benign
or malignant[23]. We have 699 instances and for each one of them we have
9 continuous attributes based on cell descriptions gathered by microscopic
examination such as the uniformity of cell size and shape; bland chromatin;
single epithelial cell size; and mitoses.

(2) In the second data set (Card), we want to predict the approval or non-
approval of a credit card to a customer. There are 51 attributes which are
unexplained for confidential reasons and 690 customers.

(3) The third data set is the Pima Indians Diabetes data set and the input
features are the diastolic blood pressure; triceps skin fold thickness; plasma
glucose concentration in a glucose tolerance test; and diabetes pedigree func-
tion. The 8 inputs are all continuous without missing values and there are
768 instances. The aim is to classify whether someone is infected by diabetes
or not, therefore, there are two classes.

(4) In the last binary classification data set, namely Heart Disease, its aim is to
predict whether at least one of the four major vessels of the heart is reduced
in diameter by more than 50%. The 35 attributes of the 920 patients are
age, sex, smoking habits, subjective patient pain descriptions and results of
various medical examinations such as blood pressure and cardiogram.

Fuzzy Evolutionary Probabilistic Neural Networks 119

(5) The fifth data set, Glass, consists of 214 instances and its aim is to classify
a piece of glass into 6 different types, namely float processed or non float
processed building windows, vehicle windows, containers, tableware and heat
lamps. The classification is based on 9 inputs, which are the percentages of
content on 8 different elements plus the refractive index and this task is
motivated by forensic needs in criminal investigation.

(6) The last data set is the Horse data set and its task is to predict the fate of a
horse that has a colic. The prediction whether the horse would survive, would
die or would be euthanized is based on 58 inputs of a veterinary examination
of the horse and there are 364 instances.

Moreover, the proposed model was applied to the aforementioned benchmark
data sets using 10 times 10-fold cross-validation where the folds were randomly
selected and the obtained results are presented in Tables 1 and 2. In order to

Table 1. Test set classification accuracy percentage of two-class data sets

Data set Model Mean Median SD Min Max

WBCD PNN 95.79 95.85 0.25 95.27 96.14
GGEE.PNN 96.39 96.42 0.20 95.99 96.71
Hom.EPNN 95.82 95.85 0.28 95.28 96.28
Het.EPNN 95.32 95.21 0.57 94.42 96.14
Bag.EPNN 96.85 96.78 0.46 96.14 97.85
Bag.P.EPNN 97.17 97.14 0.16 96.86 97.43

FEPNN 97.61 97.56 0.19 97.42 97.85

Card PNN 82.10 81.96 0.76 80.87 83.48
GGEE.PNN 84.31 84.28 0.63 83.48 85.51
Hom.EPNN 85.35 85.22 0.38 84.93 86.09
Het.EPNN 87.67 87.76 0.51 86.96 88.55
Bag.EPNN 86.64 86.67 0.51 85.80 87.39
Bag.P.EPNN 86.83 86.81 0.34 86.38 87.39
FEPNN 87.42 87.39 0.28 87.10 87.97

Diabetes PNN 65.08 65.08 0.05 64.99 65.15
GGEE.PNN 69.43 69.24 0.68 68.53 70.38
Hom.EPNN 67.67 67.58 0.88 66.03 68.80
Het.EPNN 69.37 69.46 0.80 67.73 70.54
Bag.EPNN 71.00 71.16 1.02 68.90 72.09
Bag.P.EPNN 71.22 71.39 1.00 69.75 72.54

FEPNN 75.09 75.39 0.88 73.59 76.22

Heart PNN 79.23 79.13 0.48 78.59 80.00
GGEE.PNN 80.68 80.65 0.52 79.89 81.41
Hom.EPNN 81.50 81.52 0.27 80.87 81.74
Het.EPNN 82.60 82.45 0.40 82.07 83.26
Bag.EPNN 82.28 82.34 0.62 81.20 83.15
Bag.P.EPNN 82.35 82.50 1.05 80.43 84.13

FEPNN 83.01 82.94 0.32 82.72 83.80

120 V.L. Georgiou, P.D. Alevizos, and M.N. Vrahatis

Table 2. Test set classification accuracy percentage of multi-class data sets

Data set Model Mean Median SD Min Max

Glass PNN 33.25 32.61 3.40 27.96 39.01
GGEE.PNN 50.07 50.08 1.44 47.74 51.94
Hom.EPNN 68.52 68.15 1.55 66.80 70.78
Het.EPNN 75.36 75.30 1.77 73.31 77.60
Bag.EPNN 54.91 55.09 3.98 49.16 63.47
Bag.P.EPNN 52.74 51.54 4.13 48.84 63.14
Mult.EPNN 75.79 75.73 2.95 72.19 80.93
Mult.FEPNN 77.28 77.60 2.74 71.09 81.73

Horse PNN 64.63 64.74 0.72 63.05 65.42
GGEE.PNN 61.97 62.39 1.23 59.83 63.75
Hom.EPNN 66.54 66.74 0.79 65.33 67.55
Het.EPNN 68.48 68.36 0.97 67.08 69.75
Bag.EPNN 66.47 66.40 1.40 64.56 69.19
Bag.P.EPNN 66.16 66.33 1.56 63.33 67.97
Mult.EPNN 72.23 72.14 1.89 69.89 74.72

Mult.FEPNN 72.78 72.75 1.78 70.19 75.19

eliminate the influence of PSO initialization phase, we conducted 5 runs on each
cross-validated data set and selected the results (σ’s and π’s) that were obtained
by the run on which the classification accuracy was the median of the classifica-
tion accuracies on each training set. In particular, the mean, median, standard
deviation, minimum and maximum classification accuracy on the test sets is pre-
sented in the aforementioned tables. Moreover, the CPU training times are also
reported in Tables 3 and 4. In order to evaluate the performance of our model, we
have applied these six benchmark problems to Homoscedastic and Heteroscedas-
tic Evolutionary Probabilistic Neural Networks [1] as well as to original PNNs
and Bagging EPNNs [2]. For the original PNN’s implementation, an exhaustive
search for the selection of the spread parameter σ has been conducted in the
interval [10−3, 5] and the σ that resulted to the best classification accuracy on
the training set has been used for the calculation of PNN’s classification accu-
racy on the test set. The number of functional evaluations for PNN’s exhaustive
search is the same with the one of EPNNs and FEPNNs. Moreover, a variation
of the PNN that is proposed by Gorunescu et al. [24] has also been used by the
name GGEE.PNN. In multi–class problems, the proposed approach that con-
structs a sequence of EPNNs or FEPNNs has been applied with and without
the incorporation of the fuzzy membership function and is named Mult.FEPNN
and Mult.EPNN respectively.

Searching for the most promising spread matrix Σk in EPNNs and FEPNNs,
a swarm of 5 particles has been evolved for 50 generations for EPNN’s ho-
moscedastic case and a swarm of 10 particles for 100 generations for the other
cases. The space that PSO was allowed to search in, was the aforementioned
interval [10−3, 5] for Hom.EPNN, [10−3, 5]K for Het.EPNN, [10−3, 5]Kp for
Bagging EPNN and [10−3, 5]2p for FEPNN. On the Bagging EPNN case, an

Fuzzy Evolutionary Probabilistic Neural Networks 121

Table 3. CPU time for the training of the models (seconds)

Data set Model Mean Median SD Min Max

WBCD PNN 42.09 42.42 0.66 40.66 42.69
GGEE.PNN 1.52 1.61 0.17 1.22 1.65
Hom.EPNN 89.12 88.82 1.07 88.12 91.73
Het.EPNN 171.78 171.75 1.07 170.21 174.04
Bag.EPNN 82.78 78.07 8.86 76.22 99.75
Bag.P.EPNN 90.01 89.86 0.92 88.97 92.12
FEPNN 8.59 8.56 0.14 8.39 8.82

Card PNN 182.01 186.37 7.88 169.82 187.93
GGEE.PNN 5.46 5.45 0.06 5.38 5.53
Hom.EPNN 266.10 274.39 74.56 168.72 342.27
Het.EPNN 521.60 510.24 142.74 327.08 671.83
Bag.EPNN 309.85 309.36 1.88 307.58 314.33
Bag.P.EPN 309.73 309.84 2.62 305.26 314.95
FEPNN 28.94 28.80 0.47 28.37 29.94

Diabetes PNN 49.58 49.64 0.38 49.06 50.09
GGEE.PNN 1.87 1.87 0.03 1.83 1.90
Hom.EPNN 101.17 101.13 0.48 100.40 102.01
Het.EPNN 195.27 195.66 0.92 193.82 196.62
Bag.EPNN 106.42 106.53 0.92 104.25 107.73
Bag.P.EPNN 106.24 106.26 0.81 105.31 108.06
FEPNN 10.03 10.08 0.14 9.79 10.19

Heart PNN 207.99 223.48 45.27 125.62 241.32
GGEE.PNN 6.47 6.94 0.92 4.95 7.18
Hom.EPNN 223.28 224.35 4.28 215.15 228.97
Het.EPNN 438.10 440.29 6.82 422.45 449.24
Bag.EPNN 394.49 392.36 5.93 387.13 404.55
Bag.P.EPNN 393.22 391.47 4.95 388.02 401.03
FEPNN 38.00 38.03 0.86 36.81 39.18

ensemble of 11 EPNNs was constructed. The value of the parameter f in the
FMF was set to 0.5 after a trial-and-error procedure. In order to decide whether
parametric or non parametric statistical tests should be conducted for the sta-
tistical comparison of the models’ performance, a Kolmogorov-Smirnov test has
been conducted on each sample of runs [25]. In all the samples, the normality
assumption was met so a corrected resampled t–test was employed for the com-
parisons [26,27]. The level of significance in all the statistical tests was set to 0.05
and if a model’s mean performance is statistically significantly superior than the
second best performance, then it is depicted in a box. On the cancer data set,
the best mean performance was achieved by the FEPNN and there was a sta-
tistically significant difference between its performance and the Bag.P.EPNN’s
performance which achieved the second best performance. Moreover, FEPNN
obtained the lowest standard deviation of the classification accuracies. The best
mean performance on the Card data set was obtained by the Het. EPNN but it
was quite similar to the one that FEPNN obtained. However, FEPNN’s standard

122 V.L. Georgiou, P.D. Alevizos, and M.N. Vrahatis

Table 4. CPU time for the training of the models (seconds)

Data set Model Mean Median SD Min Max

Glass PNN 3.82 3.80 0.02 3.79 3.85
GGEE.PNN 3.66 3.64 0.08 3.57 3.79
Hom.EPNN 9.16 9.26 0.65 7.99 9.95
Het.EPNN 17.21 17.47 0.76 16.04 18.27
Bag.EPNN 29.03 29.03 0.14 28.80 29.19
Bag.P.EPNN 28.30 28.31 0.11 28.10 28.48
Mult.EPNN 6.02 6.08 0.31 5.40 6.41
Mult.FEPNN 6.17 6.25 0.31 5.68 6.67

Horse PNN 29.29 29.53 0.88 26.92 30.00
GGEE.PNN 5.46 5.56 0.14 5.26 5.58
Hom.EPNN 76.10 77.98 7.97 66.17 87.37
Het.EPNN 169.92 169.92 23.39 147.73 192.11
Bag.EPNN 126.76 126.84 2.02 124.68 129.96
Bag.P.EPNN 123.03 121.61 2.24 121.35 126.92
Mult.EPNN 17.61 17.69 0.74 16.50 18.65
Mult.FEPNN 17.65 17.74 0.67 16.53 18.48

deviation was almost half of the Het.EPNN’s. Besides that, the number of pat-
tern layer’s neurons of Het.EPNN was about 690 while in the FEPNN there
were 34 neurons, which has as a result a much faster model both in training and
response time as it is confirmed in Table 3.

On the diabetes data set, the statistically significant superiority of FEPNN
is clear compared with the rest of the models. FEPNN’s standard deviation is
moreover similar to the rest of models’ standard deviation except of the one
obtained by the PNN which is much smaller but since there is such a great
difference between the mean classification accuracies, it is not worth noting. On
the heart data set, FEPNN obtained the best mean accuracy and there is a
statistically significant difference with Het.EPNN’s mean accuracy.

On the two multi–class problems, the proposed approach achieved the best
performance and especially in Horse there was a statistically significant superior-
ity than Het.EPNN. Summarizing the above, in five out of six cases the FEPNN
had a superior performance and in four of them, the superiority was statistically
significant.

Moreover, the proposed approach needs much less CPU training time than
Bagging EPNNs and Het.EPNNs in all the benchmark problems as we can ob-
serve from Tables 3 and 4.

5 Concluding Remarks

In this contribution, a novel classification model has been proposed, namely
the Fuzzy Evolutionary Probabilistic Neural Network that incorporates a fuzzy
membership function for binary classification. A novel way of handling multi–
class problems using binary classification models is also proposed.

Fuzzy Evolutionary Probabilistic Neural Networks 123

It has been shown that the FEPNN can achieve similar or superior perfor-
mance compared to other PNN variations both in binary and multi–class prob-
lems. Nevertheless, it is much faster in training and response times since it
utilizes only a small fraction of the training data and achieves similar or supe-
rior accuracy. It is clear that the incorporation of the fuzzy membership function
into Evolutionary Probabilistic Neural Network, helped it to obtain even more
promising results.

The proposed approach is a general purpose method since it achieves promis-
ing results in classification problems on several areas of science either binary
classification or multi-class classification problems.

Acknowledgment

We thank the European Social Fund (ESF), the Operational Program for Edu-
cational and Vocational Training II (EPEAEK II) and particularly the IRAK-
LEITOS Program for funding the above work.

References

1. Georgiou, V.L., Pavlidis, N.G., Parsopoulos, K.E., Alevizos, Ph.D., Vrahatis, M.N.:
New self–adaptive probabilistic neural networks in bioinformatic and medical tasks.
International Journal on Artificial Intelligence Tools 15(3), 371–396 (2006)

2. Georgiou, V.L., Alevizos, Ph.D., Vrahatis, M.N.: Novel approaches to probabilistic
neural networks through bagging and evolutionary estimating of prior probabilities.
Neural Processing Letters 27, 153–162 (2008)

3. Specht, D.F.: Probabilistic neural networks. Neural Networks 1(3), 109–118 (1990)

4. Ganchev, T., Tasoulis, D.K., Vrahatis, M.N., Fakotakis, N.: Locally recurrent prob-
abilistic neural networks with application to speaker verification. GESTS Interna-
tional Transaction on Speech Science and Engineering 1(2), 1–13 (2004)

5. Ganchev, T., Tasoulis, D.K., Vrahatis, M.N., Fakotakis, N.: Generalized locally re-
current probabilistic neural networks with application to text-independent speaker
verification. Neurocomputing 70(7–9), 1424–1438 (2007)

6. Guo, J., Lin, Y., Sun, Z.: A novel method for protein subcellular localization based
on boosting and probabilistic neural network. In: Proceedings of the 2nd Asia-
Pacific Bioinformatics Conference (APBC 2004), Dunedin, New Zealand, pp. 20–27
(2004)

7. Huang, C.J.: A performance analysis of cancer classification using feature extrac-
tion and probabilistic neural networks. In: Proceedings of the 7th Conference on
Artificial Intelligence and Applications, Wufon, Taiwan, pp. 374–378 (2002)

8. Hand, J.D.: Kernel Discriminant Analysis. Research Studies Press, Chichester
(1982)

9. Parzen, E.: On the estimation of a probability density function and mode. Annals
of Mathematical Statistics 3, 1065–1076 (1962)

10. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings IEEE
International Conference on Neural Networks, Piscataway, NJ, vol. IV, pp. 1942–
1948. IEEE Service Center, Los Alamitos (1995)

124 V.L. Georgiou, P.D. Alevizos, and M.N. Vrahatis

11. Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization prob-
lems through particle swarm optimization. Natural Computing 1(2–3), 235–306
(2002)

12. Delgosha, F., Menhaj, M.B.: Fuzzy probabilistic neural networks: A practical ap-
proach to the implementation of bayesian classifier. In: Reusch, B. (ed.) Fuzzy Days
2001. LNCS, vol. 2206, pp. 76–85. Springer, Heidelberg (2001)

13. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)
14. Zadeh, L.A.: Fuzzy logic. IEEE Computer 21(4), 83–93 (1988)
15. Keller, J.M., Hunt, D.J.: Incorporating fuzzy membership functions into the per-

ceptron algorithm. IEEE Trans. Pattern Anal. Machine Intell. 7(6), 693–699 (1985)
16. Chen, J., Chen, C.: Fuzzy kernel perceptron. IEEE Transactions on Neural Net-

works 13(6), 1364–1373 (2002)
17. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster

Analysis. John Wiley and Sons, New York (1990)
18. Parsopoulos, K.E., Vrahatis, M.N.: On the computation of all global minimizers

through particle swarm optimization. IEEE Transactions on Evolutionary Compu-
tation 8(3), 211–224 (2004)

19. Clerc, M., Kennedy, J.: The particle swarm–explosion, stability, and convergence
in a multidimensional complex space. IEEE Transactions on Evolutionary Compu-
tation 6(1), 58–73 (2002)

20. Trelea, I.C.: The particle swarm optimization algorithm: Convergence analysis and
parameter selection. Information Processing Letters 85, 317–325 (2003)

21. Prechelt, L.: Proben1: A set of neural network benchmark problems and bench-
marking rules. Technical Report 21/94, Fakultät für Informatik, Universität Karl-
sruhe (1994)

22. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine
learning databases (1998)

23. Mangasarian, O.L., Wolberg, W.H.: Cancer diagnosis via linear programming.
SIAM News 23, 1–18 (1990)

24. Gorunescu, F., Gorunescu, M., Revett, K., Ene, M.: A hybrid incremental/monte
carlo searching technique for the smoothing parameter of probabilistic neural net-
works. In: Proceedings of the International Conference on Knowledge Engineer-
ing, Principles and Techniques, KEPT 2007, Cluj-Napoca, Romania, pp. 107–113
(2007)

25. Kanji, G.K.: 100 Statistical Tests. Sage Publications, Thousand Oaks (1999)
26. Bouckaert, R.R., Frank, E.: Evaluating the replicability of significance tests for

comparing learning algorithms. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD
2004. LNCS (LNAI), vol. 3056, pp. 3–12. Springer, Heidelberg (2004)

27. Nadeau, C., Bengio, Y.: Inference for the generalization error. Machine Learn-
ing 52(3), 239–281 (2003)

Experiments with Supervised Fuzzy LVQ

Christian Thiel, Britta Sonntag, and Friedhelm Schwenker

Institute of Neural Information Processing, University of Ulm, 89069 Ulm, Germany
christian.thiel@uni-ulm.de

Abstract. Prototype based classifiers so far can only work with hard
labels on the training data. In order to allow for soft labels as input
label and answer, we enhanced the original LVQ algorithm. The key idea
is adapting the prototypes depending on the similarity of their fuzzy
labels to the ones of training samples. In experiments, the performance
of the fuzzy LVQ was compared against the original approach. Of special
interest was the behaviour of the two approaches, once noise was added
to the training labels, and here a clear advantage of fuzzy versus hard
training labels could be shown.

1 Introduction

Prototype based classification is popular because an expert familiar with the
data can look at the representatives found and understand why they might be
typical. Current approaches require the training data to be hard labeled, that
is each sample is exclusively associated with a specific class. However, there are
situations where not only hard labels are available, but soft ones. This means
that each object is assigned to several classes with a different degree. For such
cases, several classification algorithms are available, for example fuzzy Radial
Basis Function (RBF) networks [1] or fuzzy-input fuzzy-output Support Vector
Machines (SVMs) [2], but none of them allows for an easy interpretation of
typical representatives. Thus, we decided to take the well-known Learning Vector
Quantisation (LVQ) approach and enhance it with the ability to work with
soft labels, both as training data and for the prototypes. The learning rules we
propose are presented in section 2.

A related approach is the Soft Nearest Prototype Classification [3] with its
extension in [4], where prototypes also are assigned fuzzy labels in the training
process. However, the training data is still hard labeled. Note that also some
variants of fuzzy LVQ exist, for example those of Karayiannis and Bezdek [5]
or in [6], that have a hard labeling of the prototypes, and a soft neighbourhood
function, exactly the opposite of our approach in this respect.

To assess the classification power of the suggested fuzzy LVQ, we compare
its performance experimentally against LVQ1, and study the impact of adding
various levels of noise to the training labels.

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 125–132, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

126 C. Thiel, B. Sonntag, and F. Schwenker

2 Supervised Fuzzy LVQ

Like the original Learning Vector Quantisation approach proposed by Kohonen
[7], we employ r prototypes, and learn the locations of those. But, our fuzzy
LVQ does not work with hard labels, but soft or fuzzy ones. It is provided with
a training set M

M = {(xμ, lμ)| μ = 1, . . . , n}
xμ ∈ R

z : the samples

lμ ∈ [0; 1]c,
c∑

i=1

lμi = 1 : their soft class labels
(1)

where n is the number of training samples, z their dimension, and c the number
of classes. Feeding a hitherto unseen sample xnew to the trained algorithm, we
get a response lnew estimating a soft class label, of the form described just above.

As second major difference to the original LVQ network, each prototype pη ∈
R

z is associated with a soft class label plη, which will influence the degree to
which the prototypes (and their labels) are adapted to the data during training.

Note that the techniques presented can be applied to various prototype based
learning procedures, for example LVQ3 or OLVQ.

The basic procedure to use the algorithm for classification purposes is split
into three stages: initialisation, training and answer elicitation. The initialisation
part will be explained in section 3, while obtaining an answer for the new sample
xnew is quite simple: look for the prototype pη closest to xnew (using the distance
measure of your choice, we employed the Euclidean distance), and answer with
its label plη. The training of the network is the most interesting part and will
be described in the following.

2.1 Adapting the Prototypes

The basic training procedure of LVQ adapts the locations of the prototypes. For
each training sample, the nearest prototype p∗ is determined. If the label pl∗of
the winner p∗ matches the label lμ of the presented sample xμ, the prototype is
shifted into the direction of the sample. When they do not match, the prototype
is shifted away from the sample. This is done for multiple iterations.

Working with fuzzy labels, the similarity between two labels should no longer
be measured in a binary manner. Hence, we no longer speak of a match, but of
a similarity S between labels. Presenting a training sample xμ, the update rule
for our fuzzy LVQ is:

p∗ = p∗ + θ · (S(lμ, pl∗) − e) · (xμ − p∗) (2)

Still, the prototype is shifted to or away from the sample. The direction now
is determined by the similarity S of their labels: if S is higher than the preset
threshold e, p∗ is shifted towards xμ, otherwise away from it. The learning rate
θ controls the influence of each update step.

Experiments with Supervised Fuzzy LVQ 127

As similarity measure S between two fuzzy labels, we opted to use alterna-
tively the simple scalar product (component wise multiplication, then summing
up) and the S1 measure introduced by Prade in 1980 [8] and made popular again
by Kuncheva (for example in [9]):

S1(la, lb) =
||la ∩ lb||
||la ∪ lb|| =

∑
i min(lai , lbi)∑
i max(lai , lbi)

(3)

2.2 Adapting the Labels

The label of the prototypes does not have to stay fixed. In the learning process,
the winners’ labels pl∗ can be updated according to how close the training sample
sμ ∈M is. This is accomplished with the following update rule:

pl∗ = pl∗ + θ · (lμ − pl∗) · exp(−||x
μ − p∗||2

σ2
) (4)

The scaling parameter σ2 of the exponential function is set to the mean Eu-
clidean distance of all prototypes to all training samples. Again, θ is the learning
rate.

3 Experimental Setup

The purpose of our experiments was twofold: Assessing the classification power
of fuzzy LVQ, and its ability to stand up to noise added to the labels of its
training data, all in comparison with standard LVQ1.

As test bed, we employed a fruits data set coming from a robotic environ-
ment, consisting of 840 pictures from 7 different classes (apples, oranges, plums,
lemons,... [10]). Using results from Fay [11], we decided to use five features:
Colour Histograms in the RGB space. Orientation histograms on the edges in
a greyscale version of the picture (we used both the Sobel operator and the
Canny algorithm to detect edges). As weakest features, colour histograms in
the black-white opponent colour space APQBW were calculated, and the mean
color information in HSV space. Details on these features as well as references
can be found in the dissertation mentioned just above.

The fruits data set originally only has hard labels (a banana is quite clearly
a banana). As we need soft labels for our experiments, the original ones had
to be fuzzified, which we accomplished using two different methods, K-Means
and Keller. In the fuzzy K-Means [12] approach, we clustered the data, then
assigned a label to each cluster centre according to the hard labels of the samples
associated with it to varying degrees. Then, each sample was assigned a new soft
label as a sum of products of its cluster memberships with the centres’ labels.
The fuzzifier parameter of the fuzzy K-Means algorithm, which controls the
smoothness or entropy of the resulting labels, was chosen by hand so that the
correspondence between hardened new labels and original ones was around 70%.
The number of clusters was set to 35. In the second approach, based on work

128 C. Thiel, B. Sonntag, and F. Schwenker

by Keller [13], the fuzzyness of a new soft label lnew can be controlled very
straightforwardly, and using a mixture parameter α > 0.5 it can now be ensured
that the hardened lnew is the same as the original class Corig:

lnew
i =

{
α + (1− α) · ni

k , if i = Corig

(1− α) · ni

k , otherwise

The fraction counts what portion of the k nearest neighbours are of class i. In
our experiments, α = 0.51 and k = 5 were used.

All results were obtained using 5-fold cross validation. Hardening a soft label
was simply accomplished by selecting the class i in the label with the highest
value li, and our accuracy measure compares the hardened label with the original
hard one.

Finding a suitable value for the threshold e in equation 2, which controls at
what similarity levels winning prototypes are attracted to or driven away from
samples, is not straightforward. We looked at intra- versus inter-class similarity
values1, whose distributions of course overlap, but in our case seemed to allow
a good distinction at e = 0.5.

The 35 starting prototypes for the algorithms were selected randomly from
the training data. With a learning rate of θ = 0.1 we performed 20 iterations.
One iteration means that all training samples were presented to the network
and prototypes and labels adjusted. The experiments were run in online mode,
adjusting after every single presentation of a sample.

As mentioned, we also wanted to study the impact of noise on the training
labels on the classification accuracy. To be able to compare the noise level on
hard and fuzzy labels, noise was simply added to the hard labels, imparting
corresponding noise levels to the soft labels derived from the noised hard ones.
The procedure for adding noise to the hard labels consisted simply of randomly
choosing a fraction (0% to 100%, the noise level) of the training labels, and
randomly flipping their individual label to a different class.

4 Results and Interesting Observations

The experiments on the five different features gave rather clear answers. As had
to be expected, if no noise is present, the original LVQ1 approach performs best2.
Then, depending on the feature, at a noise level between 10% and 30%, its accu-
racy drops rather sharply, and one of the fuzzy LVQ approaches wins (see figure 1).
Right after LVQ1 drops, the fuzzy approach with the Keller-initialisation and
scalar product as similarity measure remains most stable. Adding more noise, the
approach initialised with K-Means and similarity measure S1 now becomes the
clear winner with the highest classification accuracy. This means that once there
is a not insignificant level of noise on the (training) labels, a fuzzy LVQ approach
is to be preferred over the basic hard LVQ one.
1 Intra- and inter-class determined with respect to the original hard labels.
2 Keep in mind that the correspondence between hardened new labels and original ones

was only around 70%, giving the LVQ1 approach a headstart.

Experiments with Supervised Fuzzy LVQ 129

Fig. 1. Plotting the performance (accuracy given in %) of the original LVQ1 algorithm
and our fuzzy LVQ approach when adding noise (noise level given in %). The fuzzy
LVQ is plotted with different fuzzy label initialisation techniques (K-Means, Keller) and
distance measures on the labels (S1 and scalar product). Results given for two features,
APQBW and Canny. The combination of K-Means and scalar product is omitted from
this graph for clarity, as it is very similar to the one with Keller initialisation.

The poor performance of the fuzzy LVQ with Keller fuzzification and S1 sim-
ilarity measure has a simple explanation: setting the Keller mixing parameter
α to 0.5 and k := 5, the possible values for intra- [0.34;1] and inter-class simi-
larities [0;0.96] overlap largely. A similar explanation, experimentally obtained

130 C. Thiel, B. Sonntag, and F. Schwenker

1 20

0
1
2

0 %

1 20

0
1
2

10 %

1 20

0
1
2

20 %

1 20

0
1
2

30 %

1 20

0
1
2

40 %

1 20

0
1
2

50 %

1 20

0
1
2

60 %

1 20

0
1
2

70 %

1 20

0
1
2

80 %

1 20

0
1
2

90 %

1 20

0
1
2

100 %

KMeans+S1

1 20

0
1
2

0 %

1 20

0
1
2

10 %

1 20

0
1
2

20 %

1 20

0
1
2

30 %

1 20

0
1
2

40 %

1 20

0
1
2

50 %

1 20

0
1
2

60 %

1 20

0
1
2

70 %

1 20

0
1
2

80 %

1 20

0
1
2

90 %

1 20

0
1
2

100 %

Keller+Scalar

Fig. 2. Showing how much the location of the prototypes changes from iteration to
iteration (x-axis, 20 training epochs), depending on how much noise is present (0 %
to 100%). Location change is the sum of quadratic distances between the prototypes’
position before and after each iteration, logarithmised to base 10. Plots given for Canny
feature, and two fuzzy LVQ algorithm variants: K-Means coupled with S1 and Keller
coupled with scalar product.

Experiments with Supervised Fuzzy LVQ 131

this time, holds for K-Means fuzzification and the scalar product as distance
measure. Initially, the same accuracy as with the S1 measure is achieved, but
this does not hold once noise is added (results not present in figure 1 for reasons
of readability).

For higher noise levels, the winning approach is a fuzzy LVQ with K-Means
label fuzzification, and S1 similarity measure. This shows nicely the effect we
were hoping to achieve with the process of fuzzifying the labels; the clustering of
the training data, and usage of neighbouring labels for the soft labels, encodes
knowledge about the label space into the labels itself. Knowledge, which can
then be exploited by the fuzzy LVQ approach.

Examining how the labels of the prototypes changed from iteration to iteration
(equation 4) of the fuzzy LVQ, we found that they remain rather stable after
the first 10 rounds.

Looking closer at how the locations of the prototypes change (compare
figure 2, and equation 2) across iterations, we could make an interesting obser-
vation. When no noise was added, the movement of the prototypes went down
continuously with each iteration. But as soon as we added noise to the labels,
the situation changed. The tendency of the volume of the movement was not so
clear any more, for some algorithms it would even go up after some iterations
before going down again. Reaching a noise level of 40 to 60 percent, the trend
even reversed, and the movements got bigger with each iteration, not stabilising
any more. The only exception here was the Fuzzy LVQ with K-Means initiali-
sation and S1 as similarity measure, which explains why it performs best of all
variants on high noise levels.

The non-settling of the prototype locations also solves the question why, at a
noise level of 100%, the original LVQ has an accuracy of 14%, which is exactly
the random guess. It turned out that the cloud of prototypes shifts far away
from the cloud of samples, in the end forming a circle around the samples. One
random but fixed prototype is now the closest to all the samples, leading to the
effect described.

5 Summary

We presented a prototype-based classification algorithm that can take soft la-
bels as training data, and give soft answers. Being an extension of LVQ1, the
prototypes are assigned soft labels, and a similarity function between those and
a training sample’s label controls where the prototype is shifted. Concerning
the classification performance, in a noise free situation, the original approach
yields the best results. This quickly changes once noise is added to the train-
ing labels, here our fuzzy approaches are the clear winners. This is due to in-
formation about the label-distribution inherently encoded in each of the soft
labels. A finding which seems to hold for other hard-vs-soft scenarios, too, so
we are currently investigating RBFs and SVMs in a multiple classifier systems
scenario.

132 C. Thiel, B. Sonntag, and F. Schwenker

References

1. Powell, M.J.D.: Radial basis functions for multivariate interpolation: A review.
In: Mason, J.C., Cox, M.G. (eds.) Algorithms for Approximation, pp. 143–168.
Clarendon Press, Oxford (1987)

2. Thiel, C., Scherer, S., Schwenker, F.: Fuzzy-Input Fuzzy-Output One-Against-All
Support Vector Machines. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007,
Part III. LNCS (LNAI), vol. 4694, pp. 156–165. Springer, Heidelberg (2007)

3. Seo, S.: Clustering and Prototype Based Classification. PhD thesis, Fakultät IV
Elektrotechnik und Informatik, Technische Universität Berlin, Germany (Novem-
ber 2005)

4. Villmann, T., Schleif, F.M., Hammer, B.: Fuzzy Labeled Soft Nearest Neigbor
Classification with Relevance Learning. In: Fourth International Conference on
Machine Learning and Applications, pp. 11–15 (2005)

5. Karayiannis, N.B., Bezdek, J.C.: An integrated approach to fuzzy learning vec-
tor quantization andfuzzy c-means clustering. IEEE Transactions on Fuzzy Sys-
tems 5(4), 622–628 (1997)

6. Wu, K.L., Yang, M.S.: A fuzzy-soft learning vector quantization. Neurocomput-
ing 55(3), 681–697 (2003)

7. Kohonen, T.: Self-organizing maps. Springer, Heidelberg (1995)
8. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Aca-

demic Press, London (1980)
9. Kuncheva, L.I.: Using measures of similarity and inclusion for multiple classifier

fusion by decision templates. Fuzzy Sets and Systems 122(3), 401–407 (2001)
10. Fay, R., Kaufmann, U., Schwenker, F., Palm, G.: Learning Object Recognition in a

NeuroBotic System. In: Groß, H.M., Debes, K., Böhme, H.J. (eds.) 3rd Workshop
on SelfOrganization of AdaptiVE Behavior SOAVE 2004. Fortschritt-Berichte VDI,
Reihe 10, vol. 743, pp. 198–209. VDI (2004)

11. Fay, R.: Feature Selection and Information Fusion in Hierarchical Neural Net-
works for Iterative 3D-Object Recognition. PhD thesis, University of Ulm, Ger-
many (2007)

12. MacQueen, J.B.: Some methods for classification and analysis of multivariate obser-
vations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability,
pp. 281–298. University of California Press (1967)

13. Keller, J., Gray, M., Givens, J.: A Fuzzy K Nearest Neighbor Algorithm. IEEE
Transactions on Systems, Man and Cybernetics 15(4), 580–585 (1985)

A Neural Network Approach to

Similarity Learning

Stefano Melacci, Lorenzo Sarti, Marco Maggini, and Monica Bianchini

DII, Università degli Studi di Siena
Via Roma, 56 — 53100 Siena (Italy)

{mela,sarti,maggini,monica}@dii.unisi.it

Abstract. This paper presents a novel neural network model, called
similarity neural network (SNN), designed to learn similarity measures
for pairs of patterns. The model guarantees to compute a non negative
and symmetric measure, and shows good generalization capabilities even
if a very small set of supervised examples is used for training. Preliminary
experiments, carried out on some UCI datasets, are presented, showing
promising results.

1 Introduction

In many pattern recognition tasks, appropriately defining the distance function
over the input feature space plays a crucial role. Generally, in order to com-
pare patterns, the input space is assumed to be a metric space, and Euclidean
or Mahalanobis distances are used. In some situations, this assumption is too
restrictive, and the similarity measure could be learnt from examples.

In the last few decades, the perception of similarity received a growing at-
tention from psychological researchers [1], and, more recently, how to learn a
similarity measure has attracted also the machine learning community. Some
approaches are proposed to compute iteratively the similarity measure, solving
a convex optimization problem, using a small set of pairs to define the prob-
lem constraints [2,3]. Other techniques exploit EM–like algorithms [4], Hidden
Markov Random Fields [5], and constrained kernel mappings [6,7]. However, the
existing approaches are generally strictly related to semi–supervised clustering,
and the presence of some class labels or pairwise constraints on a subset of data
is exploited to improve the clustering process.

In this paper a similarity learning approach based on SNNs is presented. The
SNN architecture guarantees to learn a non negative and symmetric function,
and preliminary results, carried out using some UCI datasets, show that the
generalization performances are promising, even if a very small set is used for
training.

The paper is organized as follows. In the next section, the network architecture
and its properties are presented. In Section 3 some experimental results are
reported, comparing them with commonly used distance functions. Finally, some
conclusions are drawn in Section 4.

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 133–136, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

134 S. Melacci et al.

2 Similarity Neural Networks

A SNN consists in a feed–forward multilayer perceptron (MLP) trained to learn
a similarity measure between couples of patterns xi, xj ∈ IRn.

Humans are generally able to provide a supervision on the similarity of ob-
ject pairs in a dyadic form (similar/dissimilar), instead of to associate inter-
mediate degrees of similarity, that cannot be easily defined in a coherent way.
Hence, SNNs are trained using dyadic supervisions. In detail, a training set
T = {(xi, xj , ti,j); i = 1, ..., m; j = 1, ..., m}, collects a set of triples (xi, xj , ti,j),
being ti,j the similar/dissimilar label of (xi, xj) ∈ IR2n, which represents the in-
put vector to the SNN.

The SNN model is composed by a single hidden layer with an even number
of units and by a unique output neuron with sigmoidal activation function, that
encloses the output range in the interval [0, 1]. The hidden neurons are fully
connected both with the inputs and the output. The training is performed using
Backpropagation for the minimization of the squared error function. Learning
a similarity measure is a regression task but, due to the dyadic supervision, it
could also be considered as a two-class classification task by applying a threshold
to the output of the network.

If sim() : IR2n → [0, 1] is the function computed by a trained SNN, then the
following properties hold for any pair xi, xj : sim(xi, xj) ≥ 0, and sim(xi, xj) =
sim(xj , xi). The first property is guaranteed by the sigmoidal activation function
of the output unit. The second one is forced by exploiting weight sharing along
the structure of the network. In Fig. 1(a) the shared weights can be observed,
while Fig. 1(b) shows the unfolding of the network over the shared weights. The
SNN is essentially composed by a “duplicated” input layer, formed by the orig-
inal and the exchanged pair, and by two networks that share the corresponding
weights (see Fig. 1(b)).

The learnt function is a similarity measure but not necessarily a metric, since
sim(xi, xi) = 0 and the triangle inequality are not guaranteed. Those properties
could be learnt from data, but they are not forced in any way by the structure
of the network. SNNs are an instance of the neural networks proposed in [8] to
process Directed Acyclic Graphs, hence it can be shown that they are universal
approximators.

O

H0 H2

I0 I1 I2 I3

H1 H3

O

H0

I0 I1 I2 I3

H1 H3H2

I0 I1I2 I3

(a) (b)

Fig. 1. The SNN architecture. Shared weights between two layers of neurons are drawn
with the same gray level and mark. For the sake of simplicity, only some connections
are depicted. (a) SNN for pairs of bidimensional vectors, xi = [I0, I1]

′, xj = [I2, I3]
′.

(b) SNN unfolded over the shared weights.

A Neural Network Approach to Similarity Learning 135

3 Experimental Results

SNNs were trained over some datasets from the UCI repository, whose patterns
are divided in distinct classes. In order to approach the described similarity
measure learning problem, pairs of patterns that belong to the same class were
considered similar, otherwise they were labeled dissimilar. The training set for
SNNs contains both similarity and dissimilarity pairs, collected in the sets S
and D respectively. Such sets have been iteratively created by adding a new
randomly selected similarity or dissimilarity pair until a target number of con-
nected components of GS = (Dataset, S) and GD = (Dataset, D) (the similarity
and dissimilarity graphs) has been obtained, following the sampling criterion of
similarity pairs defined in [2].

Moreover, the S set has been enriched by applying the transitive closure over
the similarity graph, whereas other dissimilarity pairs were added to D exploiting
both the similarity and dissimilarity relationships (if a is similar to b and b is
dissimilar to c, then a is dissimilar to c), as suggested in [4]. The training set
generation allows also to define the test set; as a matter of fact, given a training
set T , the test set collects all the pattern pairs except those belonging to T .

The accuracies of many SNNs were evaluated varying both the network ar-
chitecture (the number of hidden units) and the amount of supervision; the ob-
tained results are reported in Table 1. Accuracy has been computed by rejecting
all outputs oi,j such that |oi,j− ti,j | > ε, where ti,j is the target label, in order to
evaluate the capability of the network to correctly separate examples belonging
to different classes. Constraints size is expressed by Kc ∗ |Dataset|, that rep-
resents the number of connected components of the similarity and dissimilarity
graphs generated with the given supervisions.

The quality of the learned similarity measure has been compared against com-
mon distance functions (Euclidean and Mahalanobis distances), over the cumula-
tive neighbor purity index. Cumulative neighbor purity measures the percentage
of correct neighbors up to the K-th neighbor, averaged over all the data points.

Table 1. SNNs accuracy on 3 UCI datasets. Results are averaged over 20 random
generations of constraints for each Kc. Best results for each architecture/supervision
are reported in bold.

Dataset
Iris Balance Wine

Kc ε Hidden
4 6 10 16 10 12 16 30 18 22 28 36

0.3 90.9 90.7 90.4 89.1 81.1 81.9 80.4 79.8 78.6 79.6 79.5 80.1
0.9 0.2 90.3 90.1 89.6 88.2 80.4 81.1 79.3 78.2 75.9 76.9 76.5 76.9

0.1 89.7 89.1 88.5 86.9 79.3 79.9 77.4 75.7 71.7 72.4 71.6 71.6

0.3 92.3 93.1 92.3 92.4 85.4 84.7 84.9 85.0 90.4 89.7 90.4 90.2
0.8 0.2 92.1 92.7 91.9 91.9 84.6 84.0 84.3 84.4 88.8 87.9 88.5 88.4

0.1 91.6 92.1 91.2 91.3 83.3 82.9 83.4 83.5 86.0 84.9 85.2 84.8

0.3 93.4 93.4 93.4 92.9 87.1 86.8 86.7 87.9 94.9 95.1 95.0 95.1
0.7 0.2 93.1 93.2 93.1 92.5 85.9 85.9 85.9 87.4 94.1 94.2 94.1 94.1

0.1 92.7 92.8 92.8 91.9 84.1 84.3 84.5 86.5 92.6 92.5 92.4 92.5

136 S. Melacci et al.

10 20 30 40 50

0.6

0.7

0.8

0.9

1

Iris (Size: 150, Dim: 4, Classes: 3)

Number of neighbors

%
 N

ei
gh

bo
r

pu
rit

y

Euclidean
Mahalanobis
SNN Kc=0.9
SNN Kc=0.8
SNN Kc=0.7

50 100 150 200

0.6

0.7

0.8

0.9

1

Balance (Size: 625, Dim: 4, Classes: 3)

Number of neighbors
%

 N
ei

gh
bo

r
pu

rit
y

Euclidean
Mahalanobis
SNN Kc=0.9
SNN Kc=0.8
SNN Kc=0.7

10 20 30 40 50 60

0.5

0.6

0.7

0.8

0.9

1

Wine (Size: 178, Dim: 13, Classes: 3)

Number of neighbors

%
 N

ei
gh

bo
r

pu
rit

y

Euclidean
Mahalanobis
SNN Kc=0.9
SNN Kc=0.8
SNN Kc=0.7

Fig. 2. Cumulative neighbor purity calculated over 3 datasets from the UCI repository.
For each dataset, three results obtained by the SNNs trained with three differently sized
sets of constraints, are shown. Each result is averaged over 10 random realization of
constraints.

The maximum number of neighbors has been chosen such that K ≈ |Dataset|
3 .

Results are reported in Fig. 2, showing that SNNs outperform common distance
functions even if a small supervision is used.

4 Conclusions and Future Work

In this paper a neural network approach to similarity learning has been pre-
sented, showing encouraging results compared to common distance functions
even with a small supervision. The proposed architecture assures to learn sym-
metric and non negative similarity relationship, and can also be trained to in-
corporate other properties of the data. Future work includes the application of
the proposed similarity measure to clustering tasks.

References

1. Tversky, A.: Features of Similarity. Psychological Review 84(4), 327–352 (1977)
2. Xing, E., Ng, A., Jordan, M., Russell, S.: Distance metric learning, with applica-

tion to clustering with side-information. Advances in Neural Information Processing
Systems 15, 505–512 (2003)

3. De Bie, T., Momma, M., Cristianini, N.: Efficiently learning the metric using side-
information. In: Proc. Int. Conf. on Algorithmic Learning Theory, pp. 175–189 (2003)

4. Bilenko, M., Basu, S., Mooney, R.: Integrating constraints and metric learning in semi-
supervised clustering. In: Proc. Int. Conf. on Machine Learning, pp. 81–88 (2004)

5. Basu, S., Bilenko, M., Mooney, R.: A probabilistic framework for semi-supervised
clustering. In: Proc. Int. Conf. on Knowledge Discovery and Data Mining, pp. 59–68
(2004)

6. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning a Mahalanobis Metric
from Equivalence Constraints. J. Machine Learning Research 6, 937–965 (2005)

7. Tsang, I., Kwok, J.: Distance metric learning with kernels. In: Proc. Int. Conf. on
Artificial Neural Networks, pp. 126–129 (2003)

8. Bianchini, M., Gori, M., Scarselli, F.: Processing directed acyclic graphs with recur-
sive neural networks. IEEE Trans. on Neural Networks 12(6), 1464–1470 (2001)

Partial Discriminative Training of Neural

Networks for Classification of Overlapping
Classes

Cheng-Lin Liu

National Laboratory of Pattern Recognition (NLPR)
Institute of Automation, Chinese Academy of Sciences

95 Zongguancun East Road, Beijing 100190, P.R. China
liucl@nlpr.ia.ac.cn

Abstract. In applications such as character recognition, some classes
are heavily overlapped but are not necessarily to be separated. For clas-
sification of such overlapping classes, either discriminating between them
or merging them into a metaclass does not satisfy. Merging the overlap-
ping classes into a metaclass implies that within-metaclass substitution
is considered as correct classification. For such classification problems, I
propose a partial discriminative training (PDT) scheme for neural net-
works, in which, a training pattern of an overlapping class is used as
a positive sample of its labeled class, and neither positive nor negative
sample for its allied classes (classes overlapping with the labeled class).
In experiments of handwritten letter recognition using neural networks
and support vector machines, the PDT scheme mostly outperforms cross-
training (a scheme for multi-labeled classification), ordinary discrimina-
tive training and metaclass classification.

1 Introduction

In some pattern recognition applications, some patterns from different classes
have very similar characteristics. In the feature space, such patterns of different
classes correspond to co-incident or very close points, residing in an overlapping
region. We call such classes as overlapping classes. A typical application is hand-
written character recognition, where some classes such as letters ‘O’, ‘o’ and
numeral ‘0’ have identical shape, and it is neither possible nor necessary to sep-
arate them. Some other classes, such as upper-case letters ‘A’, ‘M’ and ‘N’, have
many samples written in lower-case shapes (see Fig. 1). Thus, the upper-case
letter and its corresponding lower-case have partially overlapping regions in the
feature space. For such overlapping classes and all the pairs of upper-case/lower-
case letters, it is not necessary to separate them at character level because it is
easy to disambiguate according to the context.

Generally, there are two ways to deal with the overlapping classification prob-
lem. One way is to simply merge the overlapping classes into a metaclass and
ignore the boundary between the classes. In metaclass classification, the substi-
tution between overlapping classes (within a metaclass) is considered as correct.

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 137–146, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

138 C.-L. Liu

Fig. 1. Many samples of “AMN” are written in lower-case shape

In English letter recognition, the 52 letters can be merged into 26 case-insensitive
classes. The 52-class letter classifier can also be evaluated at metaclass level by
ignoring the substitution between upper and lower cases. Another way is to
separate the overlapping classes by refining the classification boundary in the
feature space, using multi-stage classifier or combining multiple classifiers [1,2].
Nevertheless, such attempt of discrimination is not necessary in the context of
character recognition. The accuracy of overlapping classes separation is also lim-
ited by the inherent feature space overlap.

The problem of overlapping classification is similar to multi-labeled classifica-
tion [3,4], where a pattern may belong to multiple classes. If we enhance the class
label of a pattern from an overlapping class such that it belongs to the labeled
class as well as the allied classes (those overlapping with the labeled class), the
overlapping classification problem becomes a multi-labeled one. In evaluation,
the classification of a pattern to any of its allied classes is considered correct.

For overlapping classification ignoring within-metaclass substitution, I pro-
pose a new scheme for training neural networks and support vector machines
(SVMs). In my training scheme, called partial discriminative training (PDT),
the pattern of an overlapping class is used as a positive sample of its labeled
class, and neither positive nor negative sample of the allied classes. By contrast,
in ordinary discriminative training of neural networks and SVMs, the pattern of
a class is used as negative sample of all the other classes, and in multi-labeled
classification (cross-training [3]), the pattern is used as positive sample of its
allied classes.

To evaluate the performance of the proposed PDT method, I experimented on
the C-Cube handwritten letter database [5,6] using neural networks and SVMs
for classification. The results show that PDT mostly outperforms cross-training,

Partial Discriminative Training of Neural Networks 139

ordinary discriminative training, and metaclass classification when evaluated at
metaclass level.

In the rest of this paper, Section 2 briefly reviews the related works; Section
3 describes the proposed PDT scheme for neural networks and SVMs; Section 4
presents the experimental results, and Section 5 offers concluding remarks.

2 Related Works

Statistical classifiers [7] and artificial neural networks [8] have been popularly ap-
plied to pattern recognition. A parametric statistical classifier, which estimates
the probability density function of each class without considering the boundary
between classes, is ready for classification of overlapping classes. The overlap be-
tween classes will not affect the estimation of parameters of parametric statisti-
cal classifiers. In training neural networks, the connecting weights are iteratively
adjusted by optimizing an objective of minimum squared error or cross-entropy
between class outputs and desired targets [8]. The overlap between classes will
affect the complexity of decision boundary. I will show in Section 3 that the
training objective of neural networks can be decomposed into multiple binary
(two-class) classification problems.

The support vector machine (SVM) [9] is an emerging classifier for solving
difficult classification problems. Multi-class classification is usually accomplished
by combining multiple binary SVMs encoded as one-versus-all, pairwise, or other
ways. The binary SVM is trained (coefficients of kernel functions estimated) by
maximizing the margin between two classes. The overlap between two classes
also affects the boundary of the trained SVM.

Both neural networks and SVMs, as discriminative classifiers, attempt to sep-
arate different classes in the feature space. For overlapping classes, the decision
boundary tends to be complicated. If we ignore the substitution between over-
lapping classes, as for handwritten letter recognition, the overlapping classes can
be merged into a metaclass and then the ordinary discriminative classifiers can
be applied to this reduced class set problem. Koerich [10] designed several neural
network classifiers for recognizing 52 letters, 26 upper-case letters, 26 lower-case
letters and 26 metaclasses, respectively, and showed that the metaclass clas-
sifier outperforms the 52-class classifier (evaluated at metaclass level) and the
combination of upper-case and lower-case classifiers.

Blumenstein et al. [11] merged 52 letters into 36 metaclasses: all upper-case
letters except “ABDEGHNQRT” are merged with their lower-case letters, and
use a neural network for 36-class classification. Camastra et al. [6] use one-versus-
all SVM classifiers for classifying handwritten letters in 52 classes, 26 classes and
adaptively merged classes according to the overlap degree between upper and
lower cases. Using classifiers of 52 classes, 38 classes and 26 classes, they obtained
test accuracies (evaluated at 26-metaclass level) of 89.20%, 90.05% and 89.61%,
respectively.

Multi-labeled classification methods have not been applied to overlapping
classes problems, but I will test it in this case. Multi-labeled classification is

140 C.-L. Liu

generally transformed to multiple binary classification tasks, and different meth-
ods differ in the way of attaching binary labels to the training samples [4]. An
effective method, called cross-training [3], uses each multi-labeled sample as the
positive sample of each class it belongs to and not as negative sample for any of
the labeled classes. For example, if a sample belongs to classes ‘A’ and ‘a’, it is
used as positive sample when training the binary classifiers for ‘A’ and ‘a’, and
as negative samples for the binary classifiers of other classes.

3 Partial Discriminative Training

Before describing the proposed partial discriminative training (PDT) scheme, I
briefly review the training objectives of neural network classifiers.

3.1 Training of Neural Networks

Assume to classify a pattern (represented by a feature vector x) to one of M
classes {ω1, . . . , ωM}. There are N training samples (xn, cn) (cn is the class
label of sample xn), n = 1, . . . , N , for training a multi-class classifier. On an
input pattern x, the classifier outputs (sigmoidal) confidence values yk(x, W)
(W denotes the set of parameters) for classes k = 1, . . . , M . The objective of
neural network training is to minimize the squared error (SE):

min
W

SE = min
W

N∑

n=1

M∑

k=1

[yk(xn, W)− tnk]2, (1)

where tnk denotes the target output:

tnk = δ(cn, k) =
{

1, k = cn,
0, otherwise. (2)

The SE in Eq. (1) can be re-written as

SE =
M∑

k=1

N∑

n=1

[yk(xn, W)− tnk]2 =
M∑

k=1

Ek, (3)

where Ek =
∑N

n=1[yk(xn, W)− tnk]2 is the squared error of a binary classifier for
class ωk versus the others. Thus, the training of the multi-class neural network
is equivalent to the training of multiple binary one-versus-all classifiers. Accord-
ingly, the class output yk(x, W) functions as the discriminant for separating class
ωk from the others.

The cross-entropy (CE) objective for neural networks can be similarly decom-
posed into multiple binary classifiers:

CE = −∑N
n=1

∑M
k=1[t

n
k log yk + (1− tnk) log(1− yk)]2

= −∑M
k=1

∑N
n=1[t

n
k log yk + (1− tnk) log(1− yk)]2

=
∑M

k=1 CEk.

(4)

Partial Discriminative Training of Neural Networks 141

For multi-labeled classification, each sample xn is labeled to belong to a subset
of classes Cn. For training neural networks in such case, the objective is the same
as Eq. (1), (3) or (4) except that the target output is changed to

tnk =
{

1, k ∈ Cn,
0, otherwise. (5)

Due to the class modularity of objective functions SE and CE, for either
single-labeled or multi-labeled classification, we can either train a multi-class
classifier or multiple binary one-versus-all classifiers.

The overlapping classification problem is different from multi-labeled classi-
fication in that the training samples have single class labels, but I enhance the
label of each sample with the allied classes (those overlapping with the labeled
class) to convert the problem to be multi-labeled.

3.2 Partial Discriminative Training (PDT)

For overlapping classification with classifiers trained with single-labeled samples,
the boundary between overlapping classes will be complicated by discrimina-
tive training to maximize the separation between overlapping classes. The over-
complicated boundary will deteriorate the generalized classification performance
and also affect the boundary between metaclasses. On the other hand, simply
merging the overlapping classes into a metaclass will complicate the distribution
of the metaclass.

If the substitution between overlapping classes is to be ignored, the training
objective of neural networks, squared error (SE) or cross-entropy (CE), can be
modified to ignore the error of the allied classes of each training sample. Denote
the allied classes of ωk as a set Λ(k) (e.g., in alphanumeric recognition, the allied
classes of ‘O’ are “o0”), the squared error of Eq. (3) is modified as

SE =
M∑

k=1

N∑

n=1,k �∈Λ(cn)

[yk(xn, W)− tnk]2. (6)

This implies, the training pattern xn is not used as negative sample for the allied
classes of cn. Note that the relation of alliance is symmetric, i.e., k ∈ Λ(c) ⇔
c ∈ Λ(k).

Excluding a training pattern from the negative samples of the allied classes
of the label prevents the classifier from over-fitting the boundary between the
labeled class and its allied classes (which are overlapping with the labeled class).
Still, the number of classes remains unchanged (the structure of the multi-class
classifier does not change), unlike in metaclass merging, the number of classes
is reduced. Remaining the number of classes has the benefit that the classifier
outputs confidence scores to each of the overlapping classes. If two allied classes
are partially overlapped, a sample from the un-overlapped region can be classified
to its class unambiguously. By class merging, however, the boundary between
allied classes are totally ignored.

142 C.-L. Liu

The PDT scheme can be applied to all types of binary classifiers, with multiple
binary classifiers combined to perform multi-class classification. For multi-class
classification using one-versus-all SVMs, when training an SVM for a class ωk,
if ωk is an allied class of a sample from a different class, this sample is excluded
from the negative samples of ωk.

3.3 Specific Classifiers

I have applied the PDT scheme to five types of neural networks and SVMs
with two types of kernel functions. The neural classifiers are single-layer neu-
ral network (SLNN), multi-layer perceptron (MLP), radial basis function (RBF)
network [8], polynomial network classifier (PNC) [12,13], and class-specific fea-
ture polynomial classifier (CFPC) [14]. Two one-versus-all SVM classifiers use a
polynomial kernel and an RBF kernel, respectively.

The neural classifiers have a common nature that each class output is the
sigmoidal (logistic) function of the weighted sum of values of the previous layer.
In SLNN, the input feature values are directly linked to the output layer. The
MLP that I use has one layer of hidden units and all the connecting weights
are trained by back-propagation. The RBF network has one hidden layer of
Gaussian kernel units, and in training, the Gaussian centers and variance values
are initialized by clustering and are optimized together with the weights by error
minimization. The PNC is a single-layer network with the polynomials of feature
values as inputs. For reducing the number of polynomial terms, I use a PNC with
the binomial terms of the principal components [13]. Unlike the PNC that uses
a class-independent principal subspace, the CFPC uses class-specific subspaces
as well as the residuals of subspace projection [14].

For saving the computation of projection onto class-specific subspaces, the
CFPC is trained class by class [14], i.e., the binary one-versus-all classifiers are
trained separately. The other four neural networks are trained for all classes
simultaneously. The weights of the neural networks are trained by minimizing
the squared error criterion by stochastic gradient descent.

The one-versus-all SVM classifier has multiple binary SVMs each separating
one class from the others. In my implementation of SVMs using two types of
kernel functions, the pattern vectors are appropriately scaled for the polynomial
kernel, with the scaling factor estimated from the lengths of the sample vec-
tors. For the Gaussian (RBF) kernel, the kernel width σ2 is estimated from the
variance of the sample vectors. I call the SVM classifier using polynomial kernel
SVM-poly and the one using Gaussian kernel SVM-rbf. In partial discriminative
training (PDT) of a binary SVM for class ωk, the only change is to remove from
negative samples the ones of the allied classes of ωk.

4 Experimental Results

I evaluated the partial discriminative training (PDT) scheme and related meth-
ods with different classifiers on a public database of handwritten letters, C-Cube

Partial Discriminative Training of Neural Networks 143

[5,6]1. This database contains 57,293 samples of 52 English letters, partitioned
into 38,160 training samples and 19,133 test samples. The samples were seg-
mented from handwritten words, so the character shapes are very cursive and
the number of samples per class is seriously imbalanced. In addition to confu-
sion between upper-case and lower-case letters, the confusion between different
case-insensitive letters is also considerable. By k-NN classification based on vec-
tor quantization, the authors ordered the overlap degree of upper/lower cases
of each letter for merging the cases of selected letters. The database provides
binary images as well as extracted feature values (34D) of the samples. Since
my intention is to evaluate classifiers, I do not improve the features, but use the
given features in the database.

I consider three numbers of classes as those in [5,6]: 52 case-sensitive letters,
38 classes by merging the upper/lower cases of 14 letters (“CXOWYZMKJUN-
FVA”), and 26 case-insensitive letters. In the cases of 38 classes and 26 letters,
each merged upper-case letter is allied with its lower-case and vice versa. In all
cases, I set the number of hidden units of MLP as 100, the number of hidden
units of RBF network as 150. The PNC uses linear and binomial terms of the
original features without dimensionality reduction. The CFPC uses 25D class-
specific subspaces. The SVM-poly uses 4-th order polynomial kernel, and the
SVM-rbf uses an RBF kernel with kernel width fixed at 0.5 times the average
within-class variance.

First, I trained four multi-class neural networks (SLNN, MLP, RBF, and
PNC) with three training schemes optimizing the squared error criterion: ordi-
nary discriminative training, PDT, and cross-training (enhancing the label of
each sample with its allied classes). The accuracies on test samples are shown
in Table 1, where each row gives the accuracies evaluated at a number of meta-
classes (52, 38 or 26, within-metaclass substitution is ignored), and each column
corresponds to a number of metaclasses in training. By ordinary discriminative
training, the number of classes is reduced by class merging, whereas by PDT
and cross-training, the number of classes remains unchanged but the samples
are attached allied classes or multi-labeled. Each classifier can be evaluated at a
reduced number of classes by ignoring within-metaclass substitution. At each row
(evaluated at a number of metaclasses), the highest accuracy is highlighted in
bold face, and the accuracies of merged metaclass training and PDT are boxed.

Apparently, the ordinary all-class discriminative training (3rd column of
Table 1) gives the highest accuracy for 52-class classification. This is reason-
able because all the classes are aimed to be separated in this case, while PDT
ignores the separation between allied classes. When evaluated at reduced num-
ber of classes, however, merged metaclass training (4th and 5th columns) and
PDT (6th and 7th columns) may give higher accuracies than all-class training.
In seven of eight cases (two class numbers 38 and 26 combined with four classi-
fiers), PDT gives higher accuracies than all-class training and merged metaclass
training. The inferior performance of cross-training can be explained that the

1 Downloadable at http://ccc.idiap.ch/

144 C.-L. Liu

Table 1. Test accuracies (%) of multi-class neural networks on the C-Cube Letter
database. Each row gives the accuracies evaluated at a number of metaclasses, and
each column corresponds to a number of metaclasses in training. 4th and 5th columns
correspond to merged metaclass training.

Discriminative training Partial training Cross-training

Classifier #Class 52 38 26 38 26 38 26

52 66.15 65.49 65.23 52.66 34.18

SLNN 38 71.93 70.40 72.75 72.47 70.38 52.66

26 72.53 70.94 67.94 73.36 73.44 70.92 67.98

52 78.97 78.21 78.20 60.83 45.46

MLP 38 84.64 84.98 85.42 85.06 84.37 68.08

26 85.00 84.34 84.42 85.79 85.57 84.81 83.62

52 78.06 77.71 77.75 61.20 44.84

RBF 38 83.76 84.37 84.25 84.31 84.00 66.68

26 84.16 84.72 84.28 84.61 84.81 84.36 83.70

52 81.09 80.67 80.64 63.34 43.34

PNC 38 86.87 87.11 87.62 87.61 86.80 65.41

26 87.18 87.42 86.29 87.93 88.03 87.10 85.65

framework of multi-labeled classification does not match the problem of overlap-
ping classification.

On three one-versus-all classifiers (CFPC, SVM-poly and SVM-rbf), I used
two training schemes: ordinary discriminative training and PDT. The test accu-
racies are shown in Table 2. Again, all-class discriminative training (3rd column
of Table 2) gives the highest accuracies for 52-class classification. When eval-
uated at reduced number of metaclasses, both merged metaclass training (4th
and 5th columns) and PDT (6th and 7th columns) gives higher accuracies than
all-class training. For the CFPC, PDT outperforms merged metaclass training.
For the SVM classifiers, merged metaclass training gives the highest accuracies
of metaclass classification, but the accuracies of PDT are closely competitive.

Overall, when evaluated at metaclass level, PDT gives higher accuracies than
ordinary all-class discriminative training on all the seven classifiers, outperforms
merged metaclass training on five neural classifiers, and performs comparably
with merged metaclass training on two SVM classifiers. On the C-Cube database
of handwritten letters, the remaining classification error rate of 26 metaclasses
is still appreciable (over 10%) because of the inherent confusion of handwrit-
ten shapes between different letters. This can be alleviated by extracting more
discriminant features which provide better between-class separation.

Compared to merged metaclass training, PDT has an advantage that it still
outputs confidence scores for all classes. Thus, if a pattern of partially overlap-
ping classes resides in the non-overlape region, it can still be classified unambigu-
ously. By merged metaclass training, however, the boundary between partially
overlapping classes is totally ignored.

Partial Discriminative Training of Neural Networks 145

Table 2. Test accuracies (%) of one-versus-all classifiers on the C-Cube Letter
database. Each row gives the accuracies evaluated at a number of metaclasses, and
each column corresponds to a number of metaclasses in training. 4th and 5th columns
correspond to merged metaclass training.

Discriminative training Partial training

Classifier #Class 52 38 26 38 26

52 81.07 80.73 80.71

CFPC 38 86.76 86.65 87.22 87.21

26 87.09 86.99 85.86 87.56 87.70

52 82.19 81.97 81.88

SVM-poly 38 88.13 88.66 88.61 88.51

26 88.41 88.94 89.03 88.88 88.99

52 82.65 82.42 82.35

SVM-rbf 38 88.73 89.12 89.10 89.02

26 89.00 89.33 89.43 89.39 89.40

5 Conclusion

This paper proposed a partial discriminative training (PDT) scheme for classi-
fication of overlapping classes. It is applicable to all types of binary one-versus-
all classifiers, including neural networks and SVM classifiers. The rationale of
PDT is to ignore the difference between overlapping classes in training so as to
improve the separation between metaclasses. Experiments in handwritten letter
recognition show that when evaluated at metaclass level, the PDT scheme mostly
outperforms ordinary all-class discriminative training. Compared to merged
metaclass training, the PDT gives higher or comparable accuracies at meta-
class level and provides more informative confidence scores. The PDT scheme is
especially useful for such applications where overlapping classes are not neces-
sarily discriminated before contextual information is exploited. This work will
be extended by experimenting with different datasets.

Acknowledgements

This work is supported by the Hundred Talents Program of Chinese Academy of
Sciences and the National Natural Science Foundation of China (NSFC) under
grant no. 60775004 and grant no.60723005.

References

1. Lu, B.-L., Ito, M.: Task decomposition and modular combination based on class
relations: a modular neural network for pattern classification. IEEE Trans. Neural
Networks 10(5), 1244–1256 (1999)

2. Podolak, I.T.: Hierarchical classifier with overlapping class groups. Expert Systems
with Applications 34(1), 673–682 (2008)

146 C.-L. Liu

3. Boutell, M.R., Luo, J., Shen, X., Browm, C.M.: Learning multi-label scene classi-
fication. Pattern Recognition 37(9), 1757–1771 (2004)

4. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data
Warehousing and Mining 3(3), 1–13 (2007)

5. Camastra, F., Spinetti, M., Vinciarelli, A.: Offline cursive character challenge: a
new benchmark for machine learning and pattern recognition algorithms. In: Proc.
18th ICPR, Hong Kong, pp. 913–916 (2006)

6. Camastra, F.: A SVM-based cursive character recognizer. Pattern Recogni-
tion 40(12), 3721–3727 (2007)

7. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic
Press, London (1990)

8. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

9. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition.
Knowledge Discovery and Data Mining 2(2), 1–43 (1998)

10. Koerich, A.L.: Unconstrained handwritten character recognition using different
classification strategies. In: Gori, M., Marinai, S. (eds.) Proc. 1st IAPR Workshop
on Artificial Neural Networks in Pattern Recognition, pp. 52–56 (2003)

11. Blumenstein, M., Liu, X.Y., Verma, B.: An investigation of the modified direction
feature for cursive character recognition. Pattern Recognition 40(2), 376–388 (2007)

12. Shürmann, J.: Pattern Classification: A Unified View of Statistical and Neural
Approaches. Wiley Interscience, Chichester (1996)

13. Kreßel, U., Schürmann, J.: Pattern classification techniques based on function ap-
proximation. In: Bunke, H., Wang, P.S.P. (eds.) Handbook of Character Recogni-
tion and Document Image Analysis, pp. 49–78. World Scientific, Singapore (1997)

14. Liu, C.-L., Sako, H.: Class-specific feature polynomial classifier for pattern classi-
fication and its application to handwritten numeral recognition. Pattern Recogni-
tion 39(4), 669–681 (2006)

Boosting Threshold Classifiers for High–

Dimensional Data in Functional Genomics

Ludwig Lausser1, Malte Buchholz3, and Hans A. Kestler1,2,�

1 Department of Internal Medicine I, University Hospital Ulm, Germany
2 Institute of Neural Information Processing, University of Ulm, Germany

3 Internal Medicine, SP Gastroenterology, University Hospital Marburg, Germany
ludwig.lausser@uni-ulm.de, malte.buchholz@staff.uni-marburg.de,

hans.kestler@uni-ulm.de

Abstract. Diagnosis of disease based on the classification of DNA mi-
croarray gene expression profiles of clinical samples is a promising novel
approach to improve the performance and accuracy of current routine
diagnostic procedures. In many applications ensembles outperform sin-
gle classifiers. In a clinical setting a combination of simple classification
rules, such as single threshold classifiers on individual gene expression
values, may provide valuable insights and facilitate the diagnostic pro-
cess. A boosting algorithm can be used for building such decision rules
by utilizing single threshold classifiers as base classifiers. AdaBoost can
be seen as the predecessor of many boosting algorithms developed, un-
fortunately its performance degrades on high-dimensional data. Here we
compare extensions of AdaBoost namely MultiBoost, MadaBoost and
AdaBoost-VC in cross-validation experiments on noisy high-dimensional
artifical and real data sets. The artifical data sets are so constructed,
that features, which are relevant for the class distinction, can easily be
read out. Our special interest is in the features the ensembles select for
classification and how many of them are effectively related to the original
class distinction.

1 Introduction

The onset and progress of many human diseases, including most if not all hu-
man cancers, is associated with profound changes in the activity status of large
numbers of genes. DNA Microarrays are high–throughput molecular biology de-
vices capable of monitoring the expression levels of up to several thousand genes
simultaneously. One important goal in biomedical research is to make use of this
biological principle to develop novel approaches for the accurate differential di-
agnosis of diseases based on microarray analyses of clinical samples (e.g. tissue
biopsy samples). Often single classifiers trained are not able to fulfill certain
tasks satisfactorily. If this is the case, better results might be achieved by inte-
grating the results of a whole ensemble of classifiers. Meta algorithms, which do
so, are called ensemble methods. They use a basic learing algorithm, generate
� Corresponding author.

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 147–156, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

148 L. Lausser, M. Buchholz, and H.A. Kestler

a set of base classifiers and combine them in order to get an improved classi-
fier. Boosting algorithms are a subgroup of these methods. Boosting methodes
have the characteristic to be able to combine classifiers with moderate accu-
racy (weak classifiers) to an ensemble with high accuracy [1]. One of the most
popular Boosting algorithms is AdaBoost from Freund and Schapire [2]. The
use of AdaBoost was evaluated for many different data sets, but it has also been
shown that its performance did not match the expectations on high–dimensional
data [3]. The concept of combining several, sometimes weak categorization rules,
resembles in some aspects human medical decision making. This makes the re-
presentation more suitable for further investigation of functional dependencies.
We here investigate its use in the context of expression profile classification. We
apply several variants of AdaBoost to published gene expression profile data
from different tumor types. Furthermore we investigate the performance on ar-
tificial high-dimensional data with different noise levels and a varying number of
discriminating features among many irrelevant, which reflects the current belief
(of biologists) of only a small number of genes (among all) being relevant for
categorization.

2 AdaBoost

A pseudocode description of AdaBoost can be seen in Algorithm 2. AdaBoost
iteratively creates an ensemble of T members. The algorithm receives an sample
S of N training examples (xi, yi), where xi is an element of the input space
and yi ∈ {−1, 1} is its label. Before starting the iterations, an N -dimensional
weight vector D1 = (1/N, . . . , 1/N)T is initialized. This vector influences the
training of the weak classifier ht in one of two ways. If AdaBoost is used as a
Boosting by resampling algorithm, Dt will be used as a distribution for choosing
the weak classifier’s training examples. If AdaBoost is used as a Boosting by
reweighting algorithm, the whole training set and the weight vector are used
as input arguments for a weak learning algorithm which can deal itself with
weighted training examples. This means that an example with an high weight
influences the training of the weak classifier more than an example with an low
weight (step 1). After ht has been chosen, Dt is used to compute a weighted
training error εt (step 2). With εt the parameter αt is calculated (step 3), which
determines the influence of ht on the final ensemble hf . According to αt the
weight vector Dt is updated as well (step 4). The weight of an example will
be decreased if it was classified correctly and increased otherwise. In this way
the training of new ensemble members will always concentrate such misclassified
examples.

2.1 Base Classifier

The base classifier used in these experiments is chosen from the class hc,d,e(x):

hc,d,e(x) =

{
sign(1l[e≤xd] − 0.5), if c = 1
sign(1l[e≥xd] − 0.5), otherwise

(1)

Boosting Threshold Classifiers for High–Dimensional Data 149

Algorithm 1. AdaBoost(S,WeakLearn,T)
Input:

– sequence S of N labeled examples 〈(x1, y1) , . . . , (xN , yN)〉
where xi ∈ X and yi ∈ {−1, 1}

– weak learning algorithm WeakLearn
– integer T specifying number of iterations

Init:

distribution D1 with Di
1 = 1

N
for all i ∈ {1, . . . , N}

Procedure:

Do for t = 1, 2, . . . , T
1. Call WeakLearn, providing it with the distribution Dt;

get back a hypothesis ht : X → {−1, 1}.
2. Calculate the error of ht : εt =

�N
i=1 Dt(i)1l[ht(xi) �=yi].

3. Set αt = ln
�

1−εt
εt

�
4. Update weights vector

Di
t+1 =

Di
t exp

�−αt1l[ht(xi)=yi]

�
Zt

where Zt is a normalization factor

Output:

A hypothesis hf

hf (x) =

�
1, if

�T
t=1 αtht(x) > 0

−1, otherwise

This class contains all simple threshold classifiers working on only one feature
dimension. Here d is the chosen dimension and e is the chosen threshold. The
parameter c determines the kind of inequation used by the classifier. In each
iteration t the best classifier ht is chosen:

ht = arg min
hc,d,e

∑
N
i=1Dt1l[hc,d,e(x) �=yi] (2)

2.2 Tested Algorithms

Most of the Boosting algorithms proposed after 1995 are more or less based on
the AdaBoost algorithm. Differences appear most often in weighting schemes or
in the used error formula. In this section the algorithms, which were used in these
tests shall be described and their differences to AdaBoost shall be highlighted.

150 L. Lausser, M. Buchholz, and H.A. Kestler

MultiBoost. In this methode the boosting idea is coupled with wagging [4].
Wagging is a derivate from Breiman’s Bagging approach [5]. In the original
Bagging methode the base classifiers are trained on bootstrap replicates from the
original training data. For each example of the training set it is randomly chosen,
if an example is placed into the replicate set or not. This process is continued until
the replicate set is from the same size than the original training set. In this way
some examples will be in the bootstrap replicate more than once and others won’t
be in there at all. The trained base classifiers are combined to an unweighted
sum. Wagging is a variante of Bagging for base classifiers, which can deal with
weighted examples. Here each base classifier is trained on a weighted version
of the original data. The single weights are chosen after an distribution, which
simulates the bootstrapping process. In the MultiBoost algorithm a continuous
Poisson distribution is used for this simulation. The MultiBoost [6] algorithm
itself builds a wagging ensemble of AdaBoost ensembles. This means that after
a certain number of boostingsteps, all example weights are reset like in the
Wagging approach. The next ensemble members will again be chosen as in the
AdaBoost algorithm with the reseted weights as its initial weight vector. The
final ensemble is a sum of all weighted base classifiers. Normally the MultiBoost
algorithm receives a number of timesteps determining the sizes of the AdaBoost
ensembles. In this work MultiBoost’s default settings are used, which determine
the size of a single AdaBoost ensemble to

⌊√
T

⌋
.

MadaBoost. The MadaBoost1 algorithm was proposed by Carlos Domingo and
Osamu Watanabe [7]. The algorithm differs from the original AdaBoost in its
sample weighting scheme. If the weight of an single data point xi Di

t ≥ Di
0 this

weight is reset to Di
0. In this way MadaBoost counteracts the fact, that noisy

data receives very high weights in the original AdaBoost weighting scheme.

AdaBoost-VC. The main difference between AdaBoost and AdaBoost-VC [9] is
the new error formular εV C that is used by this algorithm:

εV C
t = εt +

d

N

(
log N +

√
1 +

εtN

d

)
(3)

Here N denotes the number of training examples and εt the weighted training
error as used in the original AdaBoost algorithm. The parameter d regulates the
influence of the additional term. This term is inspired by theoretical foundings
of Vapnik about an upper bound to the expectation error of classifiers [10].
Within these experiments d is set to (1, 2, 3, 4). Another difference to the original
AdaBoost is that each feature can only be used once in an ensemble. If a feature
exists, which seperates the training data perfectly, a classifier using it will always
minimize a weighted training error and will be selected in each iteration.
1 Actually Carlos Domingo and Osamu Watanabe proposed different sub-versions of

their algorithm [7] [8]. The version, which is talked about here is the batch learning
version of MB1.

Boosting Threshold Classifiers for High–Dimensional Data 151

3 Data Sets

For the shown tests both artificial and real data sets are used. The main tests
were done under the controlled conditions of the artificial data sets. How these
sets are built is shown in 3.1. The real data sets are described in 3.2.

3.1 Artificial Data

An data set contains 200 data points x ∈ [−1, 1]100. Each entry of x is drawn
independently after a uniform distribution. The labels y ∈ [−1, 1] are given by
a function fj(x) which depends on the first j dimensions of x:

fj(x) =

{
+1, if

√∑j
i=1(xi − 1)2 <

√∑j
i=1(xi − (−1))2

−1, else
(4)

The function fj(x) signals if the distance from the subvector (x1, · · · , xj)T to
the j-dimensional unit vector is smaller than the distance from (x1, · · · , xj)T the
the j-dimensional negative unit vector. In this way the number of real features
can easily be regulated by changing the parameter j. This methode will create
approximately the same number of positiv and negativ examples. In the exper-
iments perturbed labels y′ are used. These labels are generated according to a
noise rate ρ. For each x an random variable τ ∈ [0, 1] is drawn after a uniform
distribution. The new label is built as follows:

y′ =

{
+y, if τ >= ρ

−y, else
(5)

Tests were made for j ∈ {2, 10, 20} and ρ ∈ {0, 0.1, 0.2}.

3.2 Real Data

ALL-AML-Leukemia. The ALL-AML-Leukemia data set presented by Golub et
al. [11] contains data from a microarray experiment concerning accute Leukemia.
The data set contains examples for two different subtypes of the disease called
ALL (acute lymphoblastic leukemia) and AML (acute myeloid leukemia). The
47 ALL and 25 AML examples contain 7129 probes for 6817 human genes.

Breast cancer. The breast cancer data set presented by van’t Veer et al. [12]
contains microarray data from patients who had developed distant metastases
within 5 years (relapsed patients) and patients who remained healthy from the
disease for at least 5 years (non-relapsed patients). The 34 relapse and the 44
non-relapse examples contain data from 24481 gene fragments. If the value of an
attribute is not avaible in a single example the mean value is calculated over al
values from the same class.

152 L. Lausser, M. Buchholz, and H.A. Kestler

Colon cancer. The colon cancer data set presented by Alon et al. [13] contains
40 biopsis of tumor tissues (negative examples)and 22 of normal tissues (positive
examples). Each expression profile consists of 2000 genes.

4 Results and Conclusion

We performed 10–fold cross–validation tests on the previously described gene
expression profiles. The ensemble size was stepwise increased by 10 from 10 to
100. The results are given in Table 1.

Table 1. Error rates on gene expression data form different tumor types [11,12,13]
(AdaBoost-VC: d = 1 . . . 4). The number of ensemble members was increased from 10
to 100 by a stepsize of 10.

breast cancer colon cancer leukemia

min mean var min mean var min mean var

AdaBoost 0.27 0.31 6.0·10−4 0.16 0.21 6.0·10−4 0.03 0.06 3.0·10−4

MadaBoost 0.27 0.31 0.001 0.20 0.23 4.0·10−4 0.03 0.04 2.0·10−4

MultiBoost 0.25 0.30 8.0·10−4 0.15 0.19 5.0·10−4 0.04 0.06 1.0·10−4

Adaboost-VC1 0.25 0.28 6.0·10−4 0.15 0.17 4.0·10−4 0.025 0.038 1.9·10−4

Adaboost-VC2 0.28 0.29 1.7·10−4 0.13 0.14 1.3·10−4 0.038 0.04 8.5·10−5

Adaboost-VC3 0.27 0.56 0.012 0.23 0.61 0.018 0.0375 0.0379 1.7·10−6

Adaboost-VC4 0.66 0.68 3.2·10−4 0.70 0.72 8.8·10−4 0.0625 0.2733 0.0272

Table 2. Minimal errors on the artificial training set. Here ρ and j determine the noise
rate and the number of real features used for building the artificial data set. The labels
err and iter determine the minimal test error and the iteration when it was achieved.

j = 2 j = 10 j = 20
ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0 ρ = 0.1 ρ = 0.2

err iter err iter err iter err iter err iter err iter err iter err iter err iter
AdaBoost 0.09 14 0.14 3 0.26 3 0.15 72 0.21 130 0.31 30 0.21 118 0.28 13 0.34 9
MadaBoost 0.08 7 0.13 3 0.22 8 0.14 30 0.21 16 0.30 11 0.21 127 0.27 13 0.33 49
MultiBoost 0.07 134 0.13 86 0.21 16 0.13 150 0.18 139 0.29 150 0.25 138 0.27 125 0.31 116

AdaBoost-VC 0.20 3 0.22 100 0.24 12 0.17 9 0.21 13 0.30 26 0.27 48 0.26 16 0.34 24

On the artificially generated data we estimated the expected classification
error by 10-fold cross-validation tests. Ensembles of different sizes from 1 to 150
were trained for the algorithms, AdaBoost, MultiBoost and MadaBoost. Because
AdaBoost-VC discards on feature-dimension per iteration, AdaBoost-VC can
only be evaluated up to an ensemble size of 100. The algorithms are tested on
artificial data sets differing in their number of real features j ∈ {2, 10, 20} and
the used noise level ρ ∈ {0, 0.1, 0.2}, see Figure 1. The minimal test errors are
shown in Table 2. Reference experiments with other standard classifiers are listed
in Table 3.

Boosting Threshold Classifiers for High–Dimensional Data 153

Table 3. Reference experiments on the artificial data set. The classifiers, which were
used for these experiments are 1-nearest neighbour (1NN), 5-nearest neighbour (5NN),
support vector machine (SV M) with linear kernel and C = 1, nearest centroid (NCen)
and nearest shrunken centroid classifier (SCen) with Δ = 0.1 and 30 steps. The pa-
rameters ρ and j denote the noise rate and the number of real features respectively.

ρ

1NN 5NN SV M NCen SCen

j 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2

2 0.41 0.35 0.42 0.41 0.33 0.39 0.15 0.22 0.32 0.23 0.20 0.24 0.20 0.17 0.22

10 0.37 0.43 0.41 0.39 0.39 0.37 0.23 0.31 0.35 0.24 0.25 0.29 0.25 0.29 0.28

20 0.37 0.34 0.43 0.36 0.33 0.37 0.18 0.24 0.32 0.23 0.23 0.28 0.22 0.23 0.29

Fig. 1. Results of AdaBoost (AB, black line), MadaBoost (MaB, green), MultiBoost
(MuB, red), AdaBoost-VC (VC1, pink) on the artifical data set. Please note that
AdaBoost-VC can use at most 100 weak classifiers in this setting.

In a second round of experiments on the artificial data it was tested which fea-
tures are selected by the different algorithms. Ensembles of 2 up to 50 members
are trained as described for the cross-validation experiment. It was recorded how
many relevant features were used. The training set contained all 200 points. The

154 L. Lausser, M. Buchholz, and H.A. Kestler

Fig. 2. Results of the feature selection test on the artifical data set

experiment was repeated 10 times with different permutations of the training
set. The mean of these 10 experiments is given in Figures 2.

4.1 Results

The results for the experiments on the artificial data sets can be seen in Fig. 1.
In the noise free case (ρ = 0), AdaBoost and MadaBoost achieve in the earlier
iterations lower error rates than the other algorithms. This effect increases if
the number of real features increases (j ∈ {10, 20}). If more noise is added, the
effect is reduced. In the case of few real features MultiBoost achieves lowest error
rates, if large ensembles are used. This effect decreases if j raises. The AdaBoost-
VC experiments show, that the use of an higher value for d also increases the
error rate. In the best tested case (d = 1), the error rate of AdaBoost-VC is the
highest one in case ρ = 0 and j = 2. As the ensemble increases the error rate of
AdaBoost-VC tends to increase.

The results on the real data sets can be seen in Table 1. For the ALL-AML-
Leukemia data set and the colon cancer data set the accuracy of AdaBoost-VC
outperformes the other algorithms. In all real data experiments, the error rates
of MultiBoost outperform the error rates of AdaBoost if large ensembles are

Boosting Threshold Classifiers for High–Dimensional Data 155

used. The results given for the ALL-AML-Leukemia and the colon cancer data
set are comparable to those given in [9]. For the classifier, published with the
breast cancer data set, a classification error of 17% is reported [12]. Note that
for this classifier manually set cut-off parameters are used.

The results of the second round of experiment on the artificial data are given
in Fig. 2. In this experiment MultiBoost choses more often real features than
the other algorithms. This effect depends on the parameter f . As f raises, the
effect is decreased. The maximal number of real features used by AdaBoost-VC
is also determined by f . For higher values of f the number of used real features
varies among the different varients of these algorithm. In thes case the varients
with small d use more real features than the other.

4.2 Conclusion

The behaviour of MultiBoost can be attributed to its internal AdaBoost ensem-
ble of size

⌊√
T

⌋
which depends on the size T of the whole MultiBoost ensemble.

If T is small, a single AdaBoost ensemble will not contain enough weak classifiers
according to the number of effective features j. If the single AdaBoost ensembles
reaches an appropriate size, MultiBoost outperforms AdaBoost. As no feature
is presented twice, AdaBoost-VC can only choose j useful weak classifiers. So
after T ≥ j iterations an AdaBoost-VC ensemble contains at least T − j useless
classifiers. The benefit of including these classifiers is mere chance. Note that this
is also the reason why the ensembles outperform most of the mentioned distance
based classifiers in this scenario. On the real data sets AdaBoost-VC seems to
be more robust in the choise of parameter d. This phenomenon originates possi-
bly from a greater number of informative features in the tumor gene expression
profiles which may also be attributed to co-regulation or prior gene selection.

References

1. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. Machine Learning 37(3), 297–336 (1999)

2. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learn-
ing and an application to boosting. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS,
vol. 904, pp. 23–37. Springer, Heidelberg (1995)

3. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for
the classification of tumors using gene expression data. Journal of the American
Statistical Association 97(457), 77–87 (2002)

4. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning 36(1-2), 105–139 (1999)

5. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
6. Webb, G.I.: Multiboosting: A technique for combining boosting and wagging. Ma-

chine Learning 40(2), 159–196 (2000)
7. Domingo, C., Watanabe, O.: Madaboost: A modification of adaboost. In: COLT

2000: Proceedings of the Thirteenth Annual Conference on Computational Learn-
ing Theory, pp. 180–189. Morgan Kaufmann Publishers Inc., San Francisco (2000)

156 L. Lausser, M. Buchholz, and H.A. Kestler

8. Domingo, C., Watanabe, O.: Experimental evaluation of an adaptive boosting by
filtering algorithm. Technical Report C-139, Tokyo Institut of Technology Depart-
ment of Mathematical and Computing Sciences, Tokyo, Japan (December 1999)

9. Long, P.M., Vega, V.B.: Boosting and microarray data. Mach. Learn. 52(1-2), 31–
44 (2003)

10. Vapnik, V.: Estimation of Dependences Based on Empirical Data: Springer Series in
Statistics (Springer Series in Statistics). Springer-Verlag New York, Inc., Secaucus
(1982)

11. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P.,
Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.C., Bloomfield, C.D., Lander,
E.S.: Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring. Science 286(5439), 531–537 (1999)

12. van ’t Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Mao, M.,
Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber, G.J.,
Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., Friend, S.H.: Gene ex-
pression profiling predicts clinical outcome of breast cancer. Nature 415(6871),
530–536 (2002)

13. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine,
A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor
and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci.
USA 96(12), 6745–6750 (1999)

Decision Fusion on Boosting Ensembles

Joaquı́n Torres-Sospedra, Carlos Hernández-Espinosa,
and Mercedes Fernández-Redondo

Departamento de Ingenieria y Ciencia de los Computadores, Universitat Jaume I,
Avda. Sos Baynat s/n, C.P. 12071, Castellon, Spain

{jtorres,espinosa,redondo}@icc.uji.es

Abstract. Training an ensemble of neural networks is an interesting way to build
a Multi-net System. One of the key factors to design an ensemble is how to com-
bine the networks to give a single output. Although there are some important
methods to build ensembles, Boosting is one of the most important ones. Most of
methods based on Boosting use an specific combiner (Boosting Combiner). Al-
though the Boosting combiner provides good results on boosting ensembles, the
results of previouses papers show that the simple combiner Output Average can
work better than the Boosting combiner. In this paper, we study the performance
of sixteen different combination methods for ensembles previously trained with
Adaptive Boosting and Average Boosting. The results show that the accuracy of
the ensembles trained with these original boosting methods can be improved by
using the appropriate alternative combiner.

1 Introduction

One technique often used to increase the generalization capability with respect to a
single neural network consists on training an ensemble of neural networks . This proce-
dure consists on training a set of neural network with different weight initialization or
properties in the training process and combining them in a suitable way.

The two key factors to design an ensemble are how to train the individual networks
and how to combine the outputs provided by the networks to give a single output.
Among the methods of training the individual networks and combining them there are
an important number of alternatives. Our research group has performed some compar-
isons on methods to build and combine ensembles.

Reviewing the bibliography we can see that Adaptive Boosting (Adaboost) is one
of the best performing methods to create an ensemble [3]. Adaboost is a method that
construct a sequence of networks which overfits the training set used to train a neural
network with hard to learn patterns. A sampling distribution is used to select the patterns
we use to train the network.

In previouses papers, we successfully proposed three new boosting methods [13,14,
15]. In those papers we noticed that in the majority of cases the Output average was
better than the specific Boosting combiner.

Some authors like Breiman [1], Kuncheva [9] or Oza [11] have deeply studied and
successfully improved Adaboost but any study on combining boosting methods has not
been done.

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 157–167, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

158 J. Torres-Sospedra, C. Hernández-Espinosa, and M. Fernández-Redondo

In this paper, we present a comparison of sixteen different combiners on ensembles
previously trained with Adaboost and Aveboost, two of the most important boosting
methods, in order to test if the Boosting combiner is the most appropriate way to com-
bine boosting ensembles.

This paper is organized as follows. Firstly, some theoretical concepts are reviewed
in section 2. Then, the ten databases used and the experimental setup are described in
section 3. Finally, the experimental results and their discussion are in section 4.

2 Theory

2.1 Adaptive Boosting - Adaboost

In Adaboost, the successive networks are trained with a training data set T ′ selected at
random from the original training data set T , the probability of selecting a pattern from
T is given by a sampling distribution associated to the network Distnet. The sampling
distribution associated to a network is calculated when the previous network learning
process has finished. Adaboost is described in algorithm 1.

Algorithm 1. AdaBoost {T , V , k}
Initialize Sampling Distribution: Dist1x = 1/m ∀x ∈ T
for net = 1 to k do

Create T
′

sampling from T using Distnet

MF Network Training T ′ , V
Calculate missclassified vector:

missnet
x =

�
0 if x is correctly classified
1 otherwise

Calculate error:
εnet =

�m
x=1 Distnet

x · missnet
x

Update sampling distribution:

Distnet+1
x = Distnet

x ·
�

1
(2εnet)

if missnet
x

1
2(1−εnet)

otherwise

end for

Adaboost and Aveboost use an specific combination method, Boosting combiner, to
combine the networks and get the final output or hypothesis eq.1.

h(x) = arg max
c=1,...,classes

k∑

net:hnet(x)=c

log
1− εnet

εnet
(1)

2.2 Averaged Boosting - Aveboost

Oza proposed in [11] Averaged Boosting (Algorithm 2). Aveboost is a method based on
Adaboost in which the sampling distribution related to a neural network is also based
on the number of networks previously trained. The whole description is detailed in
algorithm 2.

Decision Fusion on Boosting Ensembles 159

Algorithm 2. Aveboost {T , V , k}
Initialize Sampling Distribution: Dist1x = 1/m ∀x ∈ T
for net = 1 to k do

Create T
′

sampling from T using Distnet

MF Network Training T ′ , V
Calculate missclassified vector:

missnet
x =

�
0 if x is correctly classified
1 otherwise

Calculate error:
εnet =

�m
x=1 Distnet

x · missnet
x

Update sampling distribution:

Cnet
x = Distnet

x ·
�

1
(2εnet)

if missnet
x

1
2(1−εnet)

otherwise

Distnet+1
x =

net·Distnet
x +Cnet

x
net+1

end for

2.3 Alternative Combiners

In this subsection, we briefly review the alternative combiners we have used to obtain
the experimental results.

Average. This approach simply averages the individual classifier outputs across the
different classifiers. The output yielding the maximum of the averaged values is chosen
as the correct class.

Majority Vote. Each classifier provides a vote to a class, given by the highest output.
The correct class is the one most often voted by the classifiers.

Winner Takes All (WTA). In this method, the class with overall maximum output
across all classifier and outputs is selected as the correct class.

Borda Count. For any class c, the Borda count is the sum of the number of classes
ranked below c by each classifier [5, 16]. The class with highest count is selected as
correct class.

Bayesian Combination. This combination method was proposed in references [19].
According to this reference a belief value that the pattern x belongs to class c can be ap-
proximated by the following equation based on the values of the confusion matrix [16]

Bel(c) =

k∏
net=1

P (x ∈ qc|λnet(x) = jnet)

classes∑
i=1

k∏
net=1

P (x ∈ qi|λnet(x) = jnet)
(2)

160 J. Torres-Sospedra, C. Hernández-Espinosa, and M. Fernández-Redondo

Weighted Average. This method introduces weights to the outputs of the different
networks prior to averaging. The weights try to minimize the difference between the
output of the ensemble and the desired or true output. The weights can be estimated
from the error correlation matrix. The full description of the method can be found in
[8, 16].

Choquet Integral. This method is based in the fuzzy integral [2, 4] and the Choquet
integral. The method is complex, its full description can be found in [16].

Fuzzy Integral with Data Dependent Densities. It is another method based on the
fuzzy integral and the Choquet integral. But in this case, prior to the application of
the method it is performed a partition of the input space into n regions by frequency
sensitive learning algorithm (FSL). The full description can be found in reference [16].

Weighted Average with Data Dependent weights. This method is the weighted av-
erage described above. But in this case, a partition of the space is performed by FSL
algorithm and the weights are calculated for each partition. We have a different com-
bination scheme for the different partitions of the space. The method is fully described
in [16].

BADD Defuzzification Strategy. It is another combination method based on fuzzy
logic concepts. The method is complex and the description can also be found in [16].

Zimmermann’s Compensatory Operator. This combination method is based in the
Zimmermann’s compensatory operator described in [20]. The method is complex and
can be found in [16].

Dynamically Averaged Networks. Two versions of Dinamically Averaged Networks
were proposed by Jimenez [6, 7]. In these methods instead of choosing static weights
derived from the network output on a sample of the input space, we allow the weights
to adjust to be proportional to the certainties of the respective network output.

Nash Vote. In this method each voter assigns a number between zero and one for each
candidate output. The product of the voter’s values is compared for all candidates. The
higher is the winner. The method is reviewed in reference [17].

Stacked Combiners (Stacked and Stacked+). The training in Stacked Generalization
is divided into two steps. In the first one, the expert networks are trained. In the second
one, the combination networks are trained with the outputs provided by the experts.

Stacked Generalization [18] can be adapted to combine ensembles of neural net-
works if the networks of the ensembles are used as expert networks. In [12], Stacked and
Stacked+, two combiners based on Stacked Generalization, were successfully
proposed.

3 Experimental Setup

In the experiments, the Boosting combiner and the alternative combiners have been
applied on ensembles of 3, 9, 20 and 40 MF networks previously trained with Adaptive

Decision Fusion on Boosting Ensembles 161

Boosting and Averaged Boosting on the databases described in subsection 3.1 using the
training parameters described in table 1. In the case of Stacked combiners, a single MF
combination network has been applied.

Moreover, we have repeated the whole learning process 10 times using different
training, validation and test sets. With this procedure we can obtain a mean perfor-
mance of the ensemble for each database and an error in the performance calculated by
standard error theory.

3.1 Datasets

We have used the following ten classification problems from the UCI repository of ma-
chine learning databases [10]:Arrhythmia (aritm), Dermatology (derma), Ecoli (ecoli),
Solar Flares (flare), Image segmentation (img), Ionosphere Database (ionos), Pima In-
dians Diabetes (pima), Haberman’s Survival Data (survi), Vowel Database (vowel) and
Wisconsin Breast Cancer (wdbc).

The optimal parameters of the Multilayer Feedforward networks (Hidden units,
Adaptation step, Momentum rate and Number of iterations) we have used to train the
networks of the ensembles are shown in table 1.

Table 1. MF training parameters

database hidden step mom ite accuracy
aritm 9 0.1 0.05 2500 75.6 ± 0.7
derma 4 0.1 0.05 1000 96.7 ± 0.4
ecoli 5 0.1 0.05 10000 84.4 ± 0.7
flare 11 0.6 0.05 10000 82.1 ± 0.3
img 14 0.4 0.05 1500 96.3 ± 0.2

ionos 8 0.1 0.05 5000 87.9 ± 0.7
pima 14 0.4 0.05 10000 76.7 ± 0.6
survi 9 0.1 0.2 20000 74.2 ± 0.8
vowel 15 0.2 0.2 4000 83.4 ± 0.6
wdbc 6 0.1 0.05 4000 97.4 ± 0.3

The optimal parameters of the Multilayer Feedforward networks we have used to
train the combination networks of combiners Stacked and Stacked+ on ensembles
trained with Adaboost and Aveboost is shown in table 2.

Finally, we set to n = 5 the numbers of regions used in the combiners based on
data depend densities. The parameters have been set after an exhaustive trial and error
procedure using the training and validation sets.

4 Results and Discussion

Due to the lack of space, the general results on combining ensembles trained with Ad-
aboost and Aveboost are shown in this section instead of showing the complete results.
The general measurements used in this paper are described in subsection 4.1.

162 J. Torres-Sospedra, C. Hernández-Espinosa, and M. Fernández-Redondo

Table 2. Training parameters - Combiners Stacked and Stacked+

Adaboost Aveboost
Stacked Stacked+ Stacked Stacked+

nets h.u step mom ite h.u step mom ite h.u step mom ite h.u step mom ite

aritm

3 30 0.40 0.10 500 15 0.40 0.05 1750 30 0.40 0.01 500 24 0.40 0.20 4000
9 24 0.05 0.05 500 14 0.40 0.20 500 19 0.40 0.20 500 21 0.40 0.20 1750
20 25 0.05 0.01 500 5 0.40 0.20 500 28 0.05 0.20 500 30 0.10 0.20 500
40 2 0.20 0.10 500 24 0.20 0.20 500 2 0.05 0.01 500 9 0.40 0.20 500

derma

3 4 0.40 0.20 2500 3 0.40 0.20 7500 24 0.10 0.10 1500 3 0.40 0.20 1500
9 3 0.10 0.20 4000 3 0.10 0.05 7500 3 0.40 0.05 3000 3 0.20 0.10 3000
20 3 0.20 0.20 6000 3 0.05 0.10 7500 3 0.20 0.05 4000 3 0.40 0.10 3000
40 5 0.10 0.10 7500 3 0.10 0.01 2500 4 0.10 0.20 7500 3 0.40 0.05 1500

ecoli

3 3 0.10 0.20 1750 4 0.20 0.05 1750 3 0.40 0.05 1500 11 0.40 0.05 2500
9 5 0.10 0.20 1500 3 0.40 0.10 6500 6 0.40 0.01 1500 7 0.40 0.10 4000
20 25 0.40 0.20 500 26 0.40 0.20 500 29 0.40 0.20 500 7 0.40 0.05 5000
40 19 0.40 0.10 1500 16 0.40 0.01 1500 25 0.10 0.01 2500 23 0.10 0.10 1750

flare

3 20 0.10 0.05 7500 2 0.10 0.01 7500 28 0.05 0.01 500 9 0.05 0.05 7500
9 11 0.05 0.20 7500 30 0.05 0.10 500 30 0.05 0.10 500 21 0.40 0.01 4500
20 16 0.10 0.05 2500 30 0.20 0.20 500 8 0.40 0.10 7500 27 0.05 0.05 500
40 2 0.40 0.20 500 2 0.40 0.05 500 30 0.40 0.05 1500 5 0.10 0.10 6500

img

3 3 0.40 0.05 1500 5 0.40 0.20 500 13 0.40 0.20 500 8 0.40 0.10 500
9 2 0.40 0.01 4000 3 0.10 0.05 1500 3 0.05 0.20 1500 2 0.20 0.10 7500
20 2 0.40 0.05 4500 2 0.40 0.05 2500 2 0.20 0.01 3000 3 0.05 0.20 1500
40 2 0.20 0.01 1750 3 0.05 0.05 7500 4 0.10 0.05 1500 3 0.05 0.05 1500

ionos

3 3 0.40 0.01 500 29 0.05 0.05 500 18 0.05 0.01 500 8 0.05 0.01 1500
9 3 0.20 0.10 500 5 0.05 0.05 500 6 0.40 0.20 500 29 0.05 0.05 500
20 2 0.40 0.20 500 2 0.40 0.05 500 16 0.05 0.20 500 21 0.05 0.05 500
40 23 0.05 0.10 500 19 0.05 0.01 500 2 0.05 0.20 500 3 0.10 0.10 500

pima

3 28 0.05 0.10 500 30 0.05 0.20 500 2 0.20 0.20 1750 20 0.05 0.10 500
9 7 0.20 0.10 500 13 0.20 0.10 500 16 0.10 0.05 500 21 0.40 0.05 500
20 9 0.05 0.20 500 14 0.05 0.20 500 10 0.20 0.05 500 7 0.20 0.10 500
40 10 0.05 0.01 500 4 0.05 0.05 500 7 0.20 0.20 500 20 0.40 0.20 1750

survi

3 2 0.40 0.20 1500 9 0.40 0.05 3000 5 0.40 0.20 500 10 0.20 0.20 500
9 6 0.20 0.20 7500 2 0.40 0.20 1500 9 0.40 0.01 6500 8 0.20 0.20 4000
20 2 0.40 0.20 1500 8 0.40 0.01 7500 25 0.20 0.20 3000 6 0.40 0.20 500
40 3 0.40 0.05 1500 2 0.40 0.20 1500 24 0.40 0.10 6000 21 0.40 0.20 1500

vowel

3 14 0.10 0.05 1500 4 0.20 0.20 2500 11 0.05 0.01 5000 19 0.20 0.20 3000
9 24 0.40 0.10 1500 11 0.20 0.01 7500 5 0.40 0.10 4000 6 0.10 0.01 7500
20 6 0.10 0.05 6500 4 0.05 0.05 7500 6 0.10 0.05 7500 7 0.20 0.01 7500
40 11 0.10 0.05 7500 12 0.05 0.20 7500 6 0.40 0.01 7500 4 0.20 0.01 4000

wdbc

3 29 0.40 0.20 500 29 0.40 0.20 500 30 0.40 0.20 500 28 0.40 0.20 500
9 11 0.40 0.20 3000 14 0.40 0.20 7500 30 0.10 0.05 500 29 0.05 0.10 500
20 15 0.05 0.20 4500 13 0.10 0.10 2500 30 0.20 0.01 500 30 0.10 0.05 500
40 28 0.05 0.01 500 30 0.05 0.10 500 28 0.10 0.01 500 30 0.05 0.10 500

Decision Fusion on Boosting Ensembles 163

4.1 General Measurements

In our experiments, we have calculated the Increase of Performance (IoP eq.3) and
the Percentage of Error Reduction (PER eq.4) of the results with respect to a single
network in order to perform an exhaustive comparison. The IoP value is an absolute
measurement whereas the PER value is a relative measurement. A negative value on
these measurements mean that the ensemble performs worse than a single network.

IoP = ErrorSingleNet − ErrorEnsemble (3)

PER = 100 · ErrorSingleNet − ErrorEnsemble

ErrorSingleNet
(4)

Finally, we have calculated the mean IoP and the mean PER across all databases
to get a general measurement to compare the methods presented in the paper. The re-
sults on combining Adaboost are presented in subsection 4.2 whereas the results on
combining Aveboost are in subsection 4.3.

4.2 Adaboost Results

In this subsection the results of the different combiners on ensembles trained with Adap-
tive Boosting are shown. Table 3 shows the mean IoP and the mean PER for the en-
sembles trained and combined with the Boosting combiner as in the original method
Adaboost and for the same ensembles combined with the alternative combiners de-
scribed in subsection 2.3.

Table 3. Adaptive Boosting - Mean IoP and PER among all databases

Mean IoP Mean PER
Method 3 Nets 9 Nets 20 Nets 40 Nets 3 Nets 9 Nets 20 Nets 40 Nets

adaboost 0.3 0.86 1.15 1.26 1.33 4.26 9.38 12.21
average −0.18 −0.15 −0.36 −0.35 −20.49 −19.71 −18.81 −22.05
voting −0.97 −1.48 −1.74 −1.26 −27.18 −27.2 −25.53 −26.21

wta −1.07 −4.78 −8.22 −11.07 −16.66 −78.22 −132.97 −184.84
borda −2.74 −2.76 −2.84 −2.07 −50.55 −35.57 −32.71 −32.13

bayesian −0.36 −1.28 −3.22 −5.46 −6.28 −16.17 −38.15 −65.05
wave 0.59 1.19 0.41 0.44 1.15 6.5 3.7 7.3

choquet −1.26 −6.23 − − −23.68 −107.65 − −
fidd −1.37 −6.91 − − −27.85 −123.9 − −

wave dd 0.68 0.72 − − 4.18 0.67 − −
badd −0.18 −0.15 −0.36 −0.35 −20.49 −19.71 −18.81 −22.05
zimm 0.35 −1.16 −13.37 −13.02 −0.28 −28.25 −150.69 −212.35
dan −12.54 −17.08 −20.23 −19.13 −123.17 −199.31 −244.94 −278.47

dan2 −12.59 −17.45 −20.46 −19.47 −123.5 −202.67 −248.34 −282.06
nash −1.27 −1.76 −1.71 −1.57 −16.55 −30.14 −28.14 −29.13

stacked 0.69 0.83 0.7 0.51 3.39 2.87 4.7 4.27
stacked+ 0.71 0.95 0.64 −0.14 5.43 6.25 4.39 1.81

164 J. Torres-Sospedra, C. Hernández-Espinosa, and M. Fernández-Redondo

Table 4. Averaged Boosting - Mean IoP and PER among all databases

Mean IoP Mean PER
Method 3 Nets 9 Nets 20 Nets 40 Nets 3 Nets 9 Nets 20 Nets 40 Nets
aveboost 0.5 1.49 1.83 1.82 1.13 10.46 11.7 10.79
average 0.87 1.61 2 1.8 4.26 11.64 12.93 12.99
voting 0.37 1.54 1.76 1.91 0.28 11.15 12.67 13.01

wta 0.49 0.36 −0.38 −0.88 −0.1 −2.31 −9.2 −10.88
borda −0.34 1.15 1.57 1.73 −6.73 8.13 11.05 12.12

bayesian 0.02 −0.13 −1.3 −2.87 −4.14 −7.94 −23.39 −40.81
wave 0.85 1.17 1.19 0.32 4.29 8.36 7.65 3.78

choquet 0.21 −0.19 − − −3.69 −10.02 − −
fidd 0.14 −0.35 − − −3.76 −11.14 − −

wave dd 0.92 1.62 − − 5.62 11.88 − −
badd 0.87 1.61 2 1.8 4.26 11.64 12.93 12.99
zimm 0.74 0.59 −2.75 −7.53 4.17 5.17 −18.5 −63.01
dan −2.65 −3.04 −5.06 −5.13 −30.32 −25.63 −34.57 −34.21
dan2 −2.64 −3.13 −5.1 −5.27 −30.37 −26.56 −34.89 −35.38
nash −0.09 1.03 1.63 1.4 −2.56 7.33 11.34 8.86

stacked 0.9 0.99 0.95 0.96 6.67 7.79 7.15 8.43
stacked+ 0.95 1.02 0.83 0.8 6.42 6.22 7.64 6.84

Table 5. Adaboost - Best performance

Boosting Combiner Alternative Combiners
Database Performance Nets Performance Method Nets

aritm 73.8 ± 1.1 40 75.3 ± 0.9 bayes 9
derma 98 ± 0.5 3 98.1 ± 0.7 stacked+ 3
ecoli 86 ± 1.3 20 87.2 ± 1.0 w.ave 3
flare 81.7 ± 0.6 3 82.2 ± 0.6 w.ave 3
img 97.3 ± 0.2 20 97.4 ± 0.3 average 20

ionos 91.6 ± 0.7 40 92 ± 0.9 average 20
pima 75.7 ± 1.0 3 76.6 ± 1.1 average 3
survi 75.4 ± 1.6 3 74.8 ± 1.0 zimm 3
vowel 97 ± 0.6 40 97.1 ± 0.6 average 40
wdbc 96.7 ± 0.9 40 96.6 ± 0.6 bayes 20

Moreover, table 5 shows the best performance for each database on ensembles
trained with the original Adaboost (applying the Boosting combiner). The table also
shows the best performance of these ensembles combined with the sixteen alternative
combiners.

4.3 Aveboost Results

In this subsection the results of the different combiners on ensembles trained with Av-
eraged Boosting are shown. Table 4 shows the mean IoP and the mean PER for the
ensembles trained and combined with the Boosting combiner as in the original method
Aveboost and for the same ensembles combined with the alternative combiners.

Decision Fusion on Boosting Ensembles 165

Table 6. Aveboost - Best performance

Boosting Combiner Alternative Combiners
Database Performance Nets Performance Method Nets

aritm 76.3 ± 1.0 40 77.0 ± 1.1 average 20
derma 97.9 ± 0.5 20 97.8 ± 0.6 w.avedd 3
ecoli 86.5 ± 1.2 9 87.6 ± 0.9 w.ave 3
flare 82.4 ± 0.7 20 82.5 ± 0.6 stacked+ 3
img 97.5 ± 0.2 40 97.6 ± 0.2 stacked 40

ionos 91.6 ± 0.9 40 92.4 ± 1 zimm 3
pima 76.6 ± 1.0 9 77.1 ± 1 w.ave 3
survi 75.1 ± 1.2 3 75.1 ± 1.2 voting 3
vowel 96.4 ± 0.6 40 96.7 ± 0.4 w.ave 40
wdbc 96.6 ± 0.4 9 96.7 ± 0.3 zimm 9

Moreover, table 6 shows the best performance for each database on ensembles
trained with the original Aveboost (applying the Boosting combiner). The table also
shows the best performance of these ensembles combined with the sixteen alternative
combiners.

4.4 Discussion

We see that the Boosting combiner is not the best alternative in Adaboost in all cases,
Stacked combiners and Weighted Average with Data-Depend Densities are better
(table 3) when the number of networks is reduced. If we analyse table 5, we can see
that the boosting combiner only provides the best result on databases survi and wdbc.

We can also see in Aveboost that, in the majority of cases, the mean IoP and PER of
the boosting combiner is always lower than for the Output average (table 4). Moreover,
the boosting combiner only provides the best result for database derma (table 6).

Moreover, we can notice that in some cases the accuracy is highly improved by
applying an alternative combiner while the number of networks required to get the best
performance is reduced. We got better results by combining a smaller set of networks.

5 Conclusions

In this paper, we have performed a comparison among sixteen combiners on ensembles
trained with Adaptive Boosting and Averaged Boosting. To carry out our comparison
we have used ensembles of 3, 9, 20 and 40 networks previously trained with Adaptive
boosting and Averaged boosting and the accuracy of the ensemble using the Boosting
Combiner. In our experiments we have selected ten databases whose results are not
easy to improve with an ensemble of neural networks. Alternatively, we have applied
sixteen different combiners on these ensembles to test if the boosting combiner is the
best method to combine the networks of a boosting ensemble. Moreover, we also want
to know which is the most appropriate combiner in each case. Finally, we have calcu-
lated the mean Increase of Performance and the mean Percentage of Error Reduction

166 J. Torres-Sospedra, C. Hernández-Espinosa, and M. Fernández-Redondo

with respect to a single network to compare the combiners. Furthermore, the best accu-
racy for each database with the original methods, Boosting combiner on Adaboost and
Aveboost, and applying the sixteen alternative combiners on these ensembles have been
shown.

According the general results, the Boosting combiner is not the most effective way
to combine an ensemble trained with Boosting in a wide number of cases. The orig-
inal results have been improved with the use of the appropriate alternative combiner.
In general, the Output average, the Weighted average and the Stacked combiners are
the best combiners on ensembles trained with Adaboost. In a similar way, the Output
average, the Voting and the Borda Count are the best combiners on ensembles trained
with Aveboost.

According the best performance for each database (tables 5 and 6), we can see that
the Output average and both versions of the Weighted average should be seriously con-
sidered for combining boosting ensembles because the Boosting combiner provides the
best results only in 16.6% of the cases. In addition, in a some cases not only have the
accuracy of the ensembles been improved with the use of an alternative combiner, the
numbers of networks to get the best result is also reduced. For instance, the best accu-
racy for database ecoli using the original Adaboost (applying the Boosting combiner)
was got with the 20-network ensembles (86 ± 1.3). The best overall accuracy for this
database using Adaboost was got by applying the Weighted average to the 3-networks
ensembles (87.2±1.0). The accuracy was improved in 1.2%, the error rate was reduced
in 0.3% and the number of networks required were reduced from 20 to 3.

Nowadays, we are extending the comparison we have performed adding more meth-
ods and databases. The results we are getting also show that the Boosting combiner
does not provide either the best general results (best mean IoP or PER) or the best
performance for each database. Furthermore, we are working on an advanced combi-
nation method based on the boosting combiner we think could increase the accuracy of
the Boosting ensembles.

We can conclude by remarking that the accuracy of a boosting ensemble can be
improved and its size can be reduced by applying the Output average or advanced
combiners like the Weighted average or the Stacked combiners on ensembles previously
trained with Adaboost or Aveboost.

References

1. Breiman, L.: Arcing classifiers. The Annals of Statistics 26(3), 801–849 (1998)
2. Cho, S.-B., Kim, J.H.: Combining multiple neural networks by fuzzy integral for robust

classification. IEEE Transactions on System, Man, and Cybernetics 25(2), 380–384 (1995)
3. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: International

Conference on Machine Learning, pp. 148–156 (1996)
4. Gader, P.D., Mohamed, M.A., Keller, J.M.: Fusion of handwritten word classifiers. Pattern

Recogn. Lett. 17(6), 577–584 (1996)
5. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE

Transactions on Pattern Analysis and Machine Intelligence 16(1), 66–75 (1994)
6. Jimenez, D.: Dynamically weighted ensemble neural networks for classification. In: Pro-

ceedings of the 1998 International Joint Conference on Neural Networks, IJCNN 1998, pp.
753–756 (1998)

Decision Fusion on Boosting Ensembles 167

7. Jimenez, D., Darm, T., Rogers, B., Walsh, N.: Locating anatomical landmarks for prosthetics
design using ensemble neural networks. In: Proceedings of the 1997 International Confer-
ence on Neural Networks, IJCNN 1997 (1997)

8. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning.
In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing
Systems, vol. 7, pp. 231–238. The MIT Press, Cambridge (1995)

9. Kuncheva, L., Whitaker, C.J.: Using diversity with three variants of boosting: Aggressive.
In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364. Springer, Heidelberg (2002)

10. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning
databases (1998),
http://www.ics.uci.edu/\simmlearn/MLRepository.html

11. Oza, N.C.: Boosting with averaged weight vectors. In: Windeatt, T., Roli, F. (eds.) MCS
2003. LNCS, vol. 2709, pp. 973–978. Springer, Heidelberg (2003)

12. Torres-Sospedra, J., Hernndez-Espinosa, C., Fernández-Redondo, M.: Combining MF net-
works: A comparison among statistical methods and stacked generalization. In: Schwenker,
F., Marinai, S. (eds.) ANNPR 2006. LNCS (LNAI), vol. 4087, pp. 210–220. Springer, Hei-
delberg (2006)

13. Torres-Sospedra, J., Hernndez-Espinosa, C., Fernández-Redondo, M.: Designing a multi-
layer feedforward ensembles with cross validated boosting algorithm. In: IJCNN 2006 pro-
ceedings, pp. 2257–2262 (2006)

14. Torres-Sospedra, J., Hernndez-Espinosa, C., Fernndez-Redondo, M.: Designing a multilayer
feedforward ensemble with the weighted conservative boosting algorithm. In: IJCNN 2007
Proceedings, pp. 684–689. IEEE, Los Alamitos (2007)

15. Torres-Sospedra, J., Hernndez-Espinosa, C., Fernndez-Redondo, M.: Mixing aveboost and
conserboost to improve boosting methods. In: IJCNN 2007 Proceedings, pp. 672–677. IEEE,
Los Alamitos (2007)

16. Verikas, A., Lipnickas, A., Malmqvist, K., Bacauskiene, M., Gelzinis, A.: Soft combination
of neural classifiers: A comparative study. Pattern Recognition Letters 20(4), 429–444 (1999)

17. Wanas, N.M., Kamel, M.S.: Decision fusion in neural network ensembles. In: Proceedings
of the 2001 International Joint Conference on Neural Networks, IJCNN 2001, vol. 4, pp.
2952–2957 (2001)

18. Wolpert, D.H.: Stacked generalization. Neural Networks 5(6), 1289–1301 (1994)
19. Xu, L., Krzyzak, A., Suen, C.Y.: Methods of combining multiple classifiers and their ap-

plications to handwriting recognition. IEEE Transactions on Systems, Man, and Cybernet-
ics 22(3), 418–435 (1992)

20. Zimmermann, H.-J., Zysno, P.: Decision and evaluations by hierarchical aggregation of in-
formation. Fuzzy Sets and Systems 10(3), 243–260 (1984)

http://www.ics.uci.edu/$sim $mlearn/MLRepository.html

The Mixture of Neural Networks as Ensemble Combiner

Mercedes Fernández-Redondo1, Joaquı́n Torres-Sospedra1,
and Carlos Hernández-Espinosa1

Departamento de Ingenieria y Ciencia de los Computadores, Universitat Jaume I,
Avda. Sos Baynat s/n, C.P. 12071, Castellon, Spain

{redondo,jtorres,espinosa}@icc.uji.es

Abstract. In this paper we propose two new ensemble combiners based on the
Mixture of Neural Networks model. In our experiments, we have applied two dif-
ferent network architectures on the methods based on the Mixture of Neural Net-
works: the Basic Network (BN) and the Multilayer Feedforward Network (MF).
Moreover, we have used ensembles of MF networks previously trained with Sim-
ple Ensemble to test the performance of the combiners we propose. Finally, we
compare the mixture combiners proposed with three different mixture models and
other traditional combiners. The results show that the mixture combiners pro-
posed are the best way to build Multi-net systems among the methods studied in
the paper in general.

1 Introduction

The most important property of an artificial neural network is the ability to correctly re-
spond to inputs which were not used in the learning set. One technique commonly used
to increase this ability consists on training some Multilayer Feedforward networks with
different weights initialization. Then the mean of the outputs is applied to get the final
output. This method, known as Simple Ensemble (Fig.1) increases the generalization
capability with respect to a single network [17].

NN
1

NN
2

NN
k

x x x

y1(x)

x

y(x)

y2(x) yk(x)

Fig. 1. Simple Ensemble diagram

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 168–179, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Mixture of Neural Networks as Ensemble Combiner 169

The Mixture of Neural Networks (Fig.2) is a modular model to build a Multi-Net
system which consist on training different neural networks, also called expert networks
or experts, with a gating network. The method divides the problem into subproblems,
each subproblem tends to be solved by one expert. The gating network is used to weight
and combine the outputs of the experts to get the final output of the system.

NN
1

NN
2

NN
k

x x x

y1(x)

x

y(x)

y2(x) yk(x)

Gating

x

g(x)

Fig. 2. Mixture of Neural Networks diagram

In a previous paper [16], we analysed the original Mixture of Neural Networks model
[13] which uses the Basic Network as expert and gating networks. Moreover, we suc-
cessfully proposed a model based on the use of the Multilayer Feedforward network.

In this paper we propose two ensemble combiners based on that idea. We think that
the the accuracy of an ensemble of MF networks can be increased by applying the
gating network of the mixture model to combine the ensemble.

In our experiments, we have applied the proposed combiners to ensembles previously
trained with Simple Ensemble (SE). We have named them, Mix-SE-BN and Mix-SE-
MF, depending on the method used to train the ensemble (SE in this case) and the
architecture applied to the gating net (BN or MF).

Finally, we compare the accuracy of the mixture models and the mixture combiners
on Simple Ensemble. Moreover, we also compare the general results of the mixture
combiners with seven traditional combiners also applied to the ensembles previously
trained with Simple Ensemble.

This paper is organized as follows. Firstly, some theoretical concepts are briefly re-
viewed in section 2. Then, the eight databases used and the experimental setup are
described in section 3. Finally, the experimental results and their discussion are in
section 4.

2 Theory

2.1 Network Architectures

The Basic Network. The Basic Network (Figure 3) consists of two layers of neurons
that apply the identity function. This network can only solve linear problems [10].

170 M. Fernández-Redondo, J. Torres-Sospedra, and C. Hernández-Espinosa

y
1

y
2

y
q

x
1

x
2

x
n

Fig. 3. Basic Network Structure

The Multilayer Feedforward network. The Multilayer Feedforward architecture
(Figure 4) is the most known network architecture. This kind of networks consists of
three layers of computational units. The neurons of the first layer apply the identity
function whereas the neurons of the second and third layer apply the sigmoid function.
This kind of networks can approximate any function with a specified precision [1,10].

sig

y
1

sig

y
2

sig

y
q

sig sig sig

x
1

x
2

x
n

lin lin lin

Output
layer

Input
layer

Hidden
layer

Fig. 4. Multilayer Feedforward Structure

2.2 Simple Ensemble

A simple ensemble can be constructed by training different networks with the same
training set, but with different random initialization [3].

Algorithm 1. Simple Ensemble {T ,V }
for i = 1 to k do

Traditional Network Training {T ,V }
end for
Save Ensemble Configuration

The Mixture of Neural Networks as Ensemble Combiner 171

Algorithm 2. Traditional Network Training{T ,V }
Set initial weights randomly
for i = 1 to iterations do

Train the network on the training set T
Calculate MSE over validation set V
Save epoch weights and calculated MSE

end for
Select epoch with minimum MSE
Assign best epoch configuration to the network
Save network configuration

In our experiments we have trained the networks for few iterations. In each itera-
tion, the weights have been adapted with Back-Propagation over the training set. At
the end of each iteration the Mean Square Error (MSE) has been calculated over
the Validation set. When the learning process has finished, we assign the weights of
the iteration with minimum MSE to the final network. For this reason the original
learning set L is divided into two subsets: The Training set T and the Validation
set V .

2.3 Mixture of Neural Networks

The Mixture of Neural Networks is a Multi-net system which consists on training k
expert networks along with a gating network that weights the output of the experts.
In the original version of the method [7] the Basic Network was applied as expert
and gating networks. In the version Mixture of Multilayer Feedforward Networks [16],
the Multilayer feedforward network was applied as expert and gating networks. In
both cases, the objective function L, eq. 1, was applied to adapt the weights of the
networks.

L = log

(
k∑

net=1

gnet · exp
(

−1
2

·
∥∥d − ynet

∥∥2
))

(1)

Where d refers to the desired output or target.
In reference [16] we can found the basic description of the training algorithm carried

out when the Basic Network or the Multilayer Feedforward network are applied.
Finally, in the experiments carried out in the current paper, we have added a new

method based in the networks previously described. We have build a modular system
system with the Mixture of Neural Networks where the Multilayer Feedforward network
has been applied to the experts and the Basic Network has been applied to the gating
network.

The basic algorithm carried out to build a Multi-net system with the Mixture of Neu-
ral Networks is described in the following algorithm.

172 M. Fernández-Redondo, J. Torres-Sospedra, and C. Hernández-Espinosa

Algorithm 3. Mixture of Neural Networks
Random initialization of networks
for ite = 1 to iterations do

for each pattern from training set do
for net = 1 to k do

Adapt expert weights
end for
Adapt gating weights

end for
Calculate Lite over Validation set
Save weights

end for
Select iteration with maximum L (best iteration)
Set best iteration weights to network
Save final configuration

Resuming, we have applied three versions of the Mixture of Neural Networks model
using the Basic Network and the Multilayer Feedforward. These Mixture models are:

– Mix-BN-BN: BN as experts and gating net.
– Mix-BN-MF: MF as experts and BN as gating net.
– Mix-MF-MF: MF as experts and gating net.

2.4 Mixture as Combiner

The Mixture of Neural Networks approach can be applied as ensemble combiner if
the weights of the ensembles are assigned to the experts and they are keep unchanged
during the training process. With this simple procedure the Mixture of Neural Networks
can be applied to combine the networks of ensemble of neural networks.

In this paper, the mixture model is modified in order to get the mixture combiner, an
efficient ensemble combiner. The mixture combiner is described in algorithm 4.

Algorithm 4. Mixture Combiner
Assign ensemble weights to experts
Random initialization of gating network weights
for ite = 1 to iterations do

for each pattern from training set do
Adapt gating weights

end for
Calculate Lite over Validation set
Save weights

end for
Select iteration with maximum L (best iteration)
Set best iteration weights to network
Save final configuration

In our experiments, we have only used ensembles previously trained with Simple
Ensemble (SE). Moreover, we have applied to the gating network the two network
architectures previously described so two different new mixture combiners are proposed
in this paper. These proposed combiners are:

The Mixture of Neural Networks as Ensemble Combiner 173

– Mix-SE-BN: BN as gating net to combine a SE.
– Mix-SE-MF: MF as gating net to combine a SE.

3 Experimental Testing

In our experiments we have trained Multi-net systems of 3, 9, 20 and 40 MF experts
with Simple Ensemble and the three different Mixture models on the eight problems
from the UCI repository of machine learning [12]. Moreover, we have applied two new
combiners based on the Mixture of Neural Networks to ensembles previously trained
with Simple Ensemble.

Finally, we have repeated ten times the whole learning process in order to get a
mean performance of the ensemble for each database and an error in the performance
calculated by standard error theory.

3.1 Datasets

We have used the following eight different classification problems from the UCI repos-
itory of machine learning databases [12] to test the performance of methods: Bal-
ance Scale Database (bala), Dermatology Database (derma), Ecoli Database (ecoli),
Glass Identification Database (glas), The Monk’s Problem 1 (mok1), The Monk’s Prob-
lem 2 (mok2), Haberman’s Survival Data (survi) and Congressional Voting Records
Database (vote).

The training parameters of the networks have been set after performing a deep trial
and error procedure on a validation set.

4 Results and Discussion

4.1 Results

In this section we present the experimental results we have obtained with the ensembles
of MF networks trained with Simple Ensemble, the Mixture models and the Mixture
combiners proposed.

Table 1 shows the results we got with Simple Ensemble.

Table 1. Simple Ensemble results

Database 3 Nets 9 Nets 20 Nets 40 Nets
bala 96 ± 0.5 95.8 ± 0.5 95.8 ± 0.6 95.9 ± 0.5

derma 97.2 ± 0.7 97.5 ± 0.7 97.3 ± 0.7 97.6 ± 0.7
ecoli 86.6 ± 0.8 86.9 ± 0.8 86.9 ± 0.8 86.9 ± 0.7
glas 94 ± 0.8 94 ± 0.7 94 ± 0.7 94.2 ± 0.6

mok1 98.3 ± 0.9 98.8 ± 0.8 98.3 ± 0.9 98.3 ± 0.9
mok2 88 ± 2 90.8 ± 1.8 91.1 ± 1.1 91.1 ± 1.2
survi 74.3 ± 1.3 74.2 ± 1.3 74.3 ± 1.3 74.3 ± 1.3
vote 95.6 ± 0.5 95.6 ± 0.5 95.6 ± 0.5 95.6 ± 0.5

Tables 2-4 show the results of the Mixture models reviewed in this paper (Mix-BN-
BN, Mix-BN-MF and Mix-MF-MF).

174 M. Fernández-Redondo, J. Torres-Sospedra, and C. Hernández-Espinosa

Table 2. Mix-BN-BN results

Database 3 Nets 9 Nets 20 Nets 40 Nets
bala 90.5 ± 0.9 90.2 ± 1 91 ± 0.7 89.8 ± 0.8

derma 96.8 ± 0.7 97 ± 0.6 97.3 ± 0.6 97.2 ± 0.8
ecoli 52.5 ± 1.1 48 ± 2 69.9 ± 1.5 74.7 ± 1.4
glas 89.4 ± 1 91.2 ± 1.1 90.2 ± 1.3 91 ± 1.1

mok1 88 ± 2 94 ± 3 94 ± 2 94 ± 3
mok2 62.1 ± 1.7 67.5 ± 2 66.8 ± 1.6 68 ± 2
survi 72.3 ± 1.2 72.6 ± 0.9 73.8 ± 0.9 73.6 ± 1.2
vote 95 ± 1.2 96.1 ± 0.6 96.1 ± 0.6 96.5 ± 0.7

Table 3. Mix-MF-BN results

Database 3 Nets 9 Nets 20 Nets 40 Nets
bala 94.1 ± 1 93.9 ± 1.2 94.6 ± 1.1 95.2 ± 0.7

derma 97 ± 0.8 97.2 ± 0.8 97 ± 0.7 96.9 ± 0.8
ecoli 85 ± 0.8 86.5 ± 1 85.9 ± 0.7 84.6 ± 1.3
glas 94.6 ± 1 94.6 ± 1.2 94.2 ± 1.3 95 ± 1.2

mok1 99.3 ± 0.8 99.3 ± 0.8 98.8 ± 0.9 100 ± 0
mok2 77 ± 3 77 ± 2 84 ± 1.8 80.3 ± 1.8
survi 74.6 ± 1.3 74.9 ± 1.2 74.6 ± 1.1 75.1 ± 1.2
vote 96.1 ± 0.6 96.1 ± 0.6 96.1 ± 0.6 95.8 ± 0.6

Table 4. Mix-MF-MF results

Database 3 Nets 9 Nets 20 Nets 40 Nets
bala 95.1 ± 0.6 95 ± 1 94.2 ± 0.9 94.9 ± 0.6

derma 97.2 ± 0.7 96.9 ± 0.9 97 ± 0.8 96.3 ± 1.1
ecoli 85.4 ± 0.6 84.3 ± 0.8 86.3 ± 1 86.5 ± 0.8
glas 95.2 ± 0.7 94.6 ± 1 95.2 ± 1 93.8 ± 1

mok1 98.6 ± 0.9 98.3 ± 0.9 99.5 ± 0.5 98.4 ± 0.8
mok2 90.3 ± 1.2 87.3 ± 1.5 88.5 ± 1.5 90.8 ± 1.6
survi 74.6 ± 1.2 74.8 ± 1.4 74.4 ± 1.2 74.3 ± 1.3
vote 96 ± 0.6 96 ± 0.6 96 ± 0.6 96.1 ± 0.6

Table 5. Mix-SE-BN results

Database 3 Nets 9 Nets 20 Nets 40 Nets
bala 96.2 ± 0.6 96.1 ± 0.7 96.5 ± 0.5 96.6 ± 0.5

derma 97 ± 0.7 97.3 ± 0.7 97.3 ± 0.7 97.3 ± 0.7
ecoli 86.2 ± 0.9 87.4 ± 0.8 87.2 ± 0.6 86.9 ± 0.6
glas 93.8 ± 0.6 94.4 ± 0.6 94.4 ± 0.6 94.8 ± 0.7

mok1 98.5 ± 0.8 99.8 ± 0.3 100 ± 0 100 ± 0
mok2 87 ± 2 91.1 ± 1.5 91.8 ± 1.4 91.1 ± 0.9
survi 74.1 ± 1.6 74.8 ± 1.6 74.3 ± 1.2 74.3 ± 1.2
vote 95.6 ± 0.5 95.6 ± 0.5 95.6 ± 0.5 95.6 ± 0.5

The Mixture of Neural Networks as Ensemble Combiner 175

Table 6. Mix-SE-MF results

Database 3 Nets 9 Nets 20 Nets 40 Nets
bala 96.2 ± 0.5 96.2 ± 0.5 95.9 ± 0.8 96.2 ± 0.7

derma 97.2 ± 0.7 97.2 ± 0.7 97.3 ± 0.7 97.3 ± 0.7
ecoli 86.5 ± 0.9 87.5 ± 0.7 86.8 ± 0.8 86.9 ± 0.6
glas 94 ± 0.8 94 ± 0.7 94.4 ± 0.7 94.2 ± 0.6

mok1 98.5 ± 0.8 99.8 ± 0.3 100 ± 0 100 ± 0
mok2 88 ± 2 91.5 ± 1.3 91.8 ± 0.9 91.6 ± 1.4
survi 74.3 ± 1.5 74.4 ± 1.5 74.3 ± 1.3 74.3 ± 1.3
vote 95.6 ± 0.5 95.6 ± 0.5 95.6 ± 0.5 95.6 ± 0.5

The results of the Mixture combiners proposed (Mix-SE-BN and Mix-SE-MF) are in
tables 5-6.

4.2 General Measurements

We have also calculated the Increase of Performance (IoP eq.2) and the Percentage of
Error Reduction (PER eq.3) of the results with respect to a single network in order to
get a general value for the comparison among the studied methods.

The IoP value is an absolute measurement that denotes the increase of performance
of the ensemble with respect to a single network.

IoP = ErrorSingleNet − ErrorEnsemble (2)

The PER value is a relative measurement which ranges from 0%, where there is
no improvement by the use of an ensemble method with respect to a single network, to
100%.

PER = 100 · ErrorSingleNet − ErrorEnsemble

ErrorSingleNet
(3)

Table 7. Global Results - Mean Increase of Performance

method 3 nets 9 nets 20 nets 40 nets
simple ensemble 9.17 9.61 9.59 9.67

mix-bn-bn −1.29 −0.1 2.76 3.56
mix-mf-bn 7.61 7.84 8.58 8.27
mix-mf-mf 9.48 8.81 9.32 9.3

mix-se-bn 9.01 9.98 10.06 10
mix-se-mf 9.14 9.94 9.93 9.94

bayesian 9.2 8.91 8.51 8.37
borda 9.12 9.33 9.34 9.53

choquet 8.99 9.61 − −
dan 8.44 8.55 8.47 8.52
nash 9.18 9.76 9.73 9.81
w.ave 9.08 9.86 9.84 9.25
zimm 9.18 9.71 8.81 7.34

176 M. Fernández-Redondo, J. Torres-Sospedra, and C. Hernández-Espinosa

Table 8. Global Results - Mean Percentage of Error Reduction

method 3 nets 9 nets 20 nets 40 nets
simple ensemble 42.51 44.85 44.11 45.45

mix-bn-bn −11.85 −6.27 13.29 17.48
mix-mf-bn 36.79 38.54 40.24 38.2
mix-mf-mf 43.39 39.75 42.3 40.2

mix-se-bn 41.36 45.97 46.38 46.22
mix-se-mf 42.41 45.39 45.45 45.65

bayesian 41.18 37.14 32.21 29.2
borda 41.21 42.9 42.39 44.26

choquet 41.53 44.18 − −
dan 37.44 38.81 37.41 39.27
nash 42.7 45.01 45.34 45.45
w.ave 39.63 44.72 44.75 38.69
zimm 42.92 45.11 38.94 25.92

There can also be negative values in both measurements, IoP and PER,
which means that the performance of the ensemble is worse than the performance of
a single net.

Finally, we have calculated the mean IoP and the mean PER across all databases
to get a global measurement to compare the methods presented in the paper. Table 7
shows the results of the mean IoP whereas table 8 shows the results of the mean PER.
In these tables we have also included the general results of seven traditional combiners:
Bayesian Combination (bayesian) [20,11,6], Borda Count (borda) [5], Choquet Integral
(choquet) [2,4,18], Dinamically Averaged Networks (dan) [8], Nash Vote (nash) [18,19],
Weighted Average (w.ave) [9] and Zimmermann’s Operator (zimm) [18,21].

The results of these seven traditional combiners on ensembles trained with Simple
Ensemble were published in [14,15]. Moreover, we could not apply the choquet integral
to 20 and 40 network ensembles due to its complexity.

4.3 Discussion

Although some important conclusions can be derived by analysing the results, this dis-
cussion will be focused on the comparison of the combiners proposed with the mixture
models and with the seven traditional combiners.

In a previous paper we concluded that the idea of applying a sophisticated weighted
average based on the gating network of the mixture model should be seriously consid-
ered. As we thought, the results show that the mixture combiners we propose in this
paper provides the best overall global results. In fact the best overall results is got by
the mixture model composed by a simple ensemble as experts and a basic network as
gating network mix-se-bn.

We can also see that the accuracy of the combiners proposed increases as the number
of expert networks increases even if the performance of the ensemble (expert networks)
do not increase. The performance of the 20-network ensemble trained with simple en-
semble is lower than the 9-network one.

The Mixture of Neural Networks as Ensemble Combiner 177

The combiners proposed are more robust than the traditional combiners. For in-
stance, the Zimmermann’s operator provides the best mean PER for the case of 3-
network ensembles but it also provides the worst mean PER for the case of 40-network
ensembles. The Nash vote also provides good results for the case of 3-network but the
accuracy of the combiner in the other cases are better than Simple Ensemble but worse
than the Mixture Combiners proposed.

5 Conclusions

In this paper, we have proposed two combiners based on the Mixture of Neural Net-
works. We have applied them to ensembles of Multilayer Feedforward networks previ-
ously trained with Simple ensemble. In the first combiner, Mix-SE-BN, we have applied
the Basic Network as gating network to weight and combine the outputs provided by the
networks of the ensemble previously trained with Simple Ensemble. In the second one,
Mix-SE-MF, we have applied the Multilayer Feedforward network as gating network to
combine the ensemble previously trained with Simple ensemble.

In our experiments we have compared the two new Mixture combiners with three
different Mixture models and seven traditional combiners. In the first mixture model,
Mix-BN-BN, the Basic Network is used as expert and gating networks. In the second,
Mix-MF-BN, the Multilayer Feedforward network is used as expert networks whereas
the Basic Network is used as gating network. In the last one, Mix-MF-MF, the Multi-
layer Feedforward network is used as expert and gating networks.

To compare the combiners proposed with the seven traditional combiners, we have
used ensembles of 3, 9, 20 and 40 networks previously trained with Simple Ensemble.
Then, to compare the Mixture Combiners with the Mixture Models, we have built the
Mixture models with 3, 9, 20 and 40 experts and a single gating network.

Finally, we have calculated the mean Increase of Performance and the mean Per-
centage of Error Reduction with respect to a single MF network to compare all the
methods.

According the general measurements, the mixture combiners on Simple Ensemble
are the best way to build Multi-Net systems among the models and combiners studied
in this paper. In fact, the best results are provided by ensembles of 20 networks trained
with Simple Ensemble and combined with a Basic network as gating network, Mix-SE-
BN. Moreover, the combiners proposed are more robust than the traditional ones. The
Zimmermann’s operator provides the best and the worst mean PER whereas the Nash
vote provides, in the majority of cases, better results than Simple Ensemble but worse
than the mixture combiners proposed.

Moreover, the mixture models (Mix-BN-BN, Mix-MF-BN Mix-MF-MF) perform
worse than Simple Ensemble in general. In fact, Mix-BN-BN works worse than a single
MF network in two cases, 3-network and 9-network ensembles. The complexity of the
mixture model is its main problem, all the networks are trained at the same time and
the experts tend to be more cooperative and less competitive. Some authors defend the
idea that competitive systems provides good results and are less complex than coopera-
tive systems. The mixture combiners are less complex, a previously trained ensemble is
assigned to the expert networks and their weights are keep unchanged, only the gating

178 M. Fernández-Redondo, J. Torres-Sospedra, and C. Hernández-Espinosa

network is trained so adding a new expert only requires the training of the new expert
and the gating net.

We can conclude by remarking that the accuracy of an ensemble of Multilayer feed-
forward networks can be improved by applying the gating network of the Mixture of
Neural Networks as ensemble combiner.

References

1. Bishop, C.M.: Neural Networks for Pattern Recognition, New York, NY, USA. Oxford Uni-
versity Press, Inc., Oxford (1995)

2. Cho, S.-B., Kim, J.H.: Combining multiple neural networks by fuzzy integral for robust
classification. IEEE Transactions on System, Man, and Cybernetics 25(2), 380–384 (1995)

3. Fernndez-Redondo, M., Hernndez-Espinosa, C., Torres-Sospedra, J.: Multilayer feedforward
ensembles for classification problems. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui,
S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 744–749. Springer, Heidelberg (2004)

4. Gader, P.D., Mohamed, M.A., Keller, J.M.: Fusion of handwritten word classifiers. Pattern
Recogn. Lett. 17(6), 577–584 (1996)

5. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE
Transactions on Pattern Analysis and Machine Intelligence 16(1), 66–75 (1994)

6. Jacobs, R.A.: Methods for combining experts’ probability assessments. Neural Comput. 7(5),
867–888 (1995)

7. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts.
Neural Computation 3, 79–87 (1991)

8. Jimenez, D.: Dynamically weighted ensemble neural networks for classification. In: Pro-
ceedings of the 1998 International Joint Conference on Neural Networks, IJCNN 1998, pp.
753–756 (1998)

9. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning.
In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing
Systems, vol. 7, pp. 231–238. The MIT Press, Cambridge (1995)

10. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience,
Chichester (2004)

11. Lam, L., Suen, C.Y.: Optimal combinations of pattern classifiers. Pattern Recogn. Lett. 16(9),
945–954 (1995)

12. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning
databases (1998), http://www.ics.uci.edu/∼mlearn/MLRepository.html

13. Sharkey, A.J. (ed.): Combining Artificial Neural Nets: Ensemble and Modular Multi-Net
Systems. Springer, Heidelberg (1999)

14. Torres-Sospedra, J., Fernndez-Redondo, M., Hernndez-Espinosa, C.: A research on combi-
nation methods for ensembles of multilayer feedforward. In: IJCNN 2005 Proceedings, pp.
1125–1130 (2005)

15. Torres-Sospedra, J., Hernndez-Espinosa, C., Fernndez-Redondo, M.: Combinacin de conjun-
tos de redes MF. In: SICO 2005 Proceedings, pp. 11–18. Thomson (2005)

16. Torres-Sospedra, J., Hernndez-Espinosa, C., Fernndez-Redondo, M.: Designing a new multi-
layer feedforward modular network for classification problems. In: WCCI 2006 proceedings,
pp. 2263–2268 (2006)

17. Tumer, K., Ghosh, J.: Error correlation and error reduction in ensemble classifiers. Connec-
tion Science 8(3-4), 385–403 (1996)

18. Verikas, A., Lipnickas, A., Malmqvist, K., Bacauskiene, M., Gelzinis, A.: Soft combination
of neural classifiers: A comparative study. Pattern Recognition Letters 20(4), 429–444 (1999)

http://www.ics.uci.edu/~mlearn/MLRepository.html

The Mixture of Neural Networks as Ensemble Combiner 179

19. Wanas, N.M., Kamel, M.S.: Decision fusion in neural network ensembles. In: Proceedings
of the 2001 International Joint Conference on Neural Networks, IJCNN 2001, vol. 4, pp.
2952–2957 (2001)

20. Xu, L., Krzyzak, A., Suen, C.Y.: Methods of combining multiple classifiers and their ap-
plications to handwriting recognition. IEEE Transactions on Systems, Man, and Cybernet-
ics 22(3), 418–435 (1992)

21. Zimmermann, H.-J., Zysno, P.: Decision and evaluations by hierarchical aggregation of in-
formation. Fuzzy Sets and Systems 10(3), 243–260 (1984)

Combining Methods for Dynamic Multiple

Classifier Systems

Amber Tomas

The University of Oxford, Department of Statistics
1 South Parks Road, Oxford OX2 3TG, United Kingdom

Abstract. Most of what we know about multiple classifier systems is
based on empirical findings, rather than theoretical results. Although
there exist some theoretical results for simple and weighted averaging,
it is difficult to gain an intuitive feel for classifier combination. In this
paper we derive a bound on the region of the feature space in which the
decision boundary can lie, for several methods of classifier combination
using non-negative weights. This includes simple and weighted averaging
of classifier outputs, and allows for a more intuitive understanding of the
influence of the classifiers combined. We then apply this result to the
design of a multiple logistic model for classifier combination in dynamic
scenarios, and discuss its relevance to the concept of diversity amongst
a set of classifiers. We consider the use of pairs of classifiers trained on
label-swapped data, and deduce that although non-negative weights may
be beneficial in stationary classification scenarios, for dynamic problems
it is often necessary to use unconstrained weights for the combination.

Keywords: Dynamic Classification, Multiple Classifier Systems, Classi-
fier Diversity.

1 Introduction

In this paper we are concerned with methods of combining classifiers in mul-
tiple classifier systems. Because the performance of multiple classifier systems
depends both on the component classifiers chosen and the method of combining,
we consider both of these issues together. The methods of combining most com-
monly studied have been simple and weighted averaging of classifier outputs,
in the latter case with the weights constrained to be non-negative. Tumer and
Ghosh [8] laid the framework for theoretical analysis of simple averaging of com-
ponent classifiers, and this was later extended to weighted averages by Fumera
and Roli [2]. More recently, Fumera and Roli [3] have investigated the proper-
ties of component classifiers needed for weighted averaging to be a significant
improvement on simple averaging. Although this work answers many questions
about combining classifier outputs, it does not provide a framework which lends
itself to an intuitive understanding of the problem.

The work presented here we hope goes some way to remedying this situa-
tion. We present a simple yet powerful result which can be used to recommend

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 180–192, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Combining Methods for Dynamic Multiple Classifier Systems 181

a particular method of combination for a given problem and set of component
classifiers. We then apply this result to dynamic classification problems. For the
purposes of this paper, we define a dynamic classification problem as a classifi-
cation problem where the process generating the observations is changing over
time. Multiple classifier systems have been used on dynamic classification by
many researchers. A summary of the approaches is given by Kuncheva [5].

The structure of this paper is as follows: in section 2 we present the model
for classifier combination that we will be using. We then present our main result
in section 3, and discuss its relevance to dynamic classification and classifier
diversity. In section 4 we explore the use of component classifier pairs which
disagree over the whole feature space, and then in section 5 demonstrate our
results on an artificial example.

2 The Model

Because we are interested in dynamic problems, the model we use is time de-
pendent. Elements which are time dependent are denoted by the use of a sub-
script t. We assume that the population of interest consists of K classes, labelled
1, 2, . . . , K. At some time t, an observation xt and label yt are generated accord-
ing to the joint probability distribution Pt(Xt, Yt). Given an observation xt, we
denote the estimate output by the ith component classifier of Prob{Yt = k|xt}
by p̂i(k|xt), for k = 1, 2, . . . , K and i = 1, 2, . . . , M .

Our final estimate of Pt(Yt|xt) is obtained by combining the component clas-
sifier outputs according to the multiple logistic model

p̂t(k|xt) =
exp(βT

t ηk(xt))∑M
i=1 exp(βT

t ηi(xt))
, k = 1, 2, . . . , K, (1)

where βt = (βt1, βt2, . . . , βtM) is a vector of parameters, the ith component of
ηk(xt), ηki(xt), is a function of p̂i(k|xt), and η1(xt) = 0 for all xt. In this model
we use the same set of component classifiers for all t. Changes in the population
over time are modelled by changes in the parameters of the model, βt.

Before we can apply (1) to a classification problem, we must specify the com-
ponent classifiers as well as the form of the functions ηk(xt), k = 1, 2, . . . , K.
Specifying the model in terms of the ηk(xt) allows flexibility for the form of the
combining rule. In this paper we consider two options:

1. ηki(xt) = p̂i(k|xt) − p̂i(1|xt), and (2)

2. ηki(xt) = log
(

p̂i(k|xt)
p̂i(1|xt)

)
. (3)

Both options allow ηki(xt) to take either positive or negative values. Note that
when using option (3), the model (1) can be written as a linear combination of
classifier outputs

log
(

p̂(k|xt)
p̂(1|xt)

)
=

M∑

i=1

βti log
(

p̂i(k|xt)
p̂i(1|xt)

)
. (4)

182 A. Tomas

3 Bounding the Decision Boundary

In this section we present our main result. We consider how the decision bound-
ary of a classifier based on (1) is related to the decision boundaries of the compo-
nent classifiers. The following theorem holds only in the case of 0–1 loss, i.e. when
the penalty incurred for classifying an observation from class j as an observation
from class j′ is defined by

L(j, j′) =
{

1 if j �= j′

0 if j = j′ . (5)

In this case, minimising the loss is equivalent to minimising the error rate of the
classifier. At time t, we classify xt to the class with label ŷt, where

ŷt = argmaxk p̂t(k|xt), (6)

and p̂t(k|xt) is given by (1).

Theorem 1. When using a 0–1 loss function and non-negative parameter values
βt, the decision boundary of the classifier (6) must lie in regions of the feature
space where the component classifiers “disagree”.

Proof. Assuming 0–1 loss, the decision boundary of the ith component classifier
between the jth and j′th classes is a subset of the set

{x : p̂i(j|x) = p̂i(j′|x)}. (7)

Define Ri
j as the region of the feature space in which the ith component classifier

would classify an observation as class j. That is,

Ri
j = {x : j = argmaxc p̂i(c|x)}, j = 1, 2, . . . , K. (8)

Hence for all x ∈ Ri
j ,

p̂i(j|x) > p̂i(j′|x), for j �= j′. (9)

Define
R∗

j = ∩i Ri
j . (10)

Then for all i, for all x ∈ R∗
j ,

p̂i(j|x) > p̂i(j′|x). (11)

From (11), for βti ≥ 0, i = 1, 2, . . . , M , it follows that for all x ∈ R∗
j ,

M∑

i=1

βti{p̂i(j|x) − p̂i(1|x)} >

M∑

i=1

βti{p̂i(j′|x) − p̂i(1|x)}. (12)

Combining Methods for Dynamic Multiple Classifier Systems 183

Similarly, from (11), we can show that for βti ≥ 0, i = 1, 2, . . . , M , for x ∈ R∗
j ,

M∑

i=1

βti log
(

p̂i(j|x)
p̂i(1|x)

)
>

M∑

i=1

βti log
(

p̂i(j′|x)
p̂i(1|x)

)
. (13)

For the classification model (6), the decision boundary between the jth and j′th
classes can be written as

{x : βT
t ηj(xt) = βT

t ηj′ (xt)}. (14)

Therefore, for the definitions of ηj(xt) considered in section 2, we can see from
(12) and (13) that R∗

j does not intersect with the set (14). That is, there is no
point on the decision boundary of our final classifier that lies in the region where
all component classifiers agree.

Note that from (11) it is easy to show that this result also holds for the combining
rules used in [8] and [2], in which case the result can be extended to any loss
function. For example, figure 1 shows the decision boundaries of three component
classifiers in a two-class problem with two-dimensional feature space. The shaded
areas represent the regions of the feature space where all component classifiers
agree, and therefore the decision boundary of the classifier must lie outside of
these shaded regions.

This result helps us to gain an intuitive understanding of classifier combination
in simple cases. If the Bayes boundary does not lie in the region of disagreement
of the component classifiers, then the classifier is unlikely to do well. If the

μ1

μ2

R∗
1

R∗
2

Fig. 1. The decision boundaries of the component classifiers are shown in black, and
the regions in which they all agree are shaded grey. μ1 and μ2 denote the means
of classes one and two respectively. When using non-negative parameter values, the
decision boundary of the classifier (6) must lie outside of the shaded regions.

184 A. Tomas

region of disagreement does contain the Bayes boundary (at least in the region
of highest probability density), then the smaller this region the closer the decision
boundary of the classifier must be to the optimal boundary. However, clearly in
practice we do not know the location of the Bayes boundary. If the component
classifiers are unbiased, then they should “straddle” the Bayes boundary. If the
component classifiers are biased, then the Bayes boundary may lie outside the
region of disagreement, and so it is possible that one of the component classifiers
will have a lower error rate than a simple average of the classifier outputs. In this
case, using a weighted average should result in improved performance over the
simple average combining rule. This corresponds to the conclusions of Fumera
and Roli [3].

3.1 Relevance to Dynamic Scenarios

If the population of interest is dynamic, then in general so is the Bayes boundary
and hence optimal classifier [4]. However, because our model uses the same set
of component classifiers for all time points, the region of disagreement is fixed.
Therefore, even if the Bayes boundary is initially contained within the region
of disagreement, after some time this may cease to be the case. If the Bayes
boundary moves outside the region of disagreement, then it is likely the perfor-
mance of the classifier will deteriorate. Therefore, if using non-negative weights,
it is important to ensure the region of disagreement is as large as possible when
selecting the component classifiers for a dynamic problem.

3.2 On the Definition of Diversity

Consider defining the diversity of a set of classifiers as the volume of the feature
space on which at least two of the component classifiers disagree, i.e. the “region
of disagreement” discussed above. Initially this may seem like a reasonable defi-
nition. However, it is easy to construct a counter example to its appropriateness.
Consider two classifiers c1 and c2 on a two class problem which are such that
whenever one of the classifiers predicts class one, the other classifier will predict
class two. Then according to the definition suggested above, the set of compo-
nent classifiers {c1, c2} is maximally diverse. This set is also maximally diverse
according to the difficulty measure introduced by Kuncheva and Whitaker [6].
However, using the combining rule (1), for all values of the parameters βt1 and
βt2, the final classifier will be equivalent to either c1 or c2 (this is proved in
section 4). Thus although the region of disagreement is maximised, there is very
little flexibility in the decision boundary of the classifier as βt varies.

The problem with considering the volume of the region of disagreement as a
diversity measure is that this is a bound on the flexibility of the combined classi-
fier. Ideally, a measure of diversity would reflect the actual variation in decision
boundaries that it is possible to obtain with a particular set of classifiers and
combining rule. However, the region of disagreement is still a useful concept for
the design of dynamic classifiers. For a classifier to perform well on a dynamic
scenario it is necessary that the region of disagreement is maximised as well as

Combining Methods for Dynamic Multiple Classifier Systems 185

the flexibility of the decision boundary within that region. One way to improve
the flexibility of the decision boundary whilst maximising the region of disagree-
ment (and maintaining an optimal level of “difficulty” amongst the component
classifiers) is now discussed.

4 Label-Swapped Component Classifiers

Consider again the pair of component classifiers discussed in section 3.2 which
when given the same input on a two-class problem will always output different
labels. One way in which to produce such a pair of classifiers is to train both
classifiers on the same data, except that the labels of the observations are re-
versed for the second classifier. We refer to a pair of classifiers trained in this
way as a label-swapped pair.

In this section we consider combining several pairs of label-swapped classifiers
on a two-class problem. The region of disagreement is maximised (as each pair
disagrees over the entire feature space), and we increase the flexibility of the
decision boundary within the feature space by combining several such pairs.

Suppose we combine M pairs of label-swapped classifiers using model (1), so
that we have 2M component classifiers in total. An observation xt is classified
as being from class 1 if p̂t(1|xt) > p̂t(2|xt), i.e.

2M∑

i=1

βtiη2i(xt) < 0. (15)

Theorem 2. Suppose η2i(xt) > 0 if and only if p̂i(2|xt) > p̂i(1|xt), and that

η22(xt) = −η21(xt). (16)

Then the classifier obtained by using (6) with two label-swapped classifiers c1

and c2 and parameters βt1 and βt2 is equivalent to the classifier ci, where i =
argmaxjβtj.

Proof. From (15), with M = 1, we see that p̂t(1|xt) > p̂t(2|xt) whenever

(βt1 − βt2)η21(xt) < 0. (17)

Therefore, p̂t(1|xt) > p̂t(2|xt) when either

βt1 < βt2 and η21(xt) > 0,

or βt1 > βt2 and η21(xt) < 0,

i.e. when

βt1 < βt2 and p̂2(1|xt) > p̂2(2|xt),
or βt1 > βt2 and p̂1(1|xt) > p̂1(2|xt).

So if βt1 > βt2, the combined classifier is equivalent to using only c1, and if
βt2 > βt1 the combined classifier is equivalent to using only c2.

186 A. Tomas

Note that the conditions required by theorem 2 hold for the two definitions of
η2(xt) recommended in section 2, namely

η2i(xt) = log
(

p̂i(2|xt)
p̂i(1|xt)

)
, and

η2i(xt) = p̂i(2|xt) − p̂i(1|xt).

Corollary 1. For all βt1 and βt2, when using label-swapped component classi-
fiers c1 and c2, the decision boundary of the combined classifier (6) is the same
as the decision boundary of c1 (and c2).

This follows directly from theorem 2.
Now suppose we combine M pairs of label-swapped classifiers and label them

such that c2i is the label-swapped partner of c2i−1, for i = 1, 2, . . . , M .

Theorem 3. Using M pairs of label-swapped classifiers with parameters βt1,
βt2, . . . , βt,2M is equivalent to the model which uses only classifiers c1,
c3, . . . , c2M−1 with parameters β∗

t1, β
∗
t2, . . . , β

∗
tM , where

β∗
ti

�
= βt,2i−1 − βt,2i. (18)

Proof. From (15),
p̂t(1|xt) > p̂t(2|xt) (19)

when
2M∑

i=1

βtiη2i(xt) < 0, (20)

i.e. when

(βt1 − βt2)η21(xt) + (βt3 − βt4)η23(xt)
+ . . . + (βt,2M−1 − βt,2M)η2(2M−1)(xt) < 0

i.e. when
M∑

i=1

β∗
tiη2(2i−1)(xt) < 0, (21)

where
β∗

ti = βt,2i−1 − βt,2i. (22)

Comparing (21) with (15), we can see this is equivalent to the classifier which
combines c1, c3, . . . , c2M−1 with parameters β∗

t1, β
∗
t2, . . . , β

∗
tM .

Importantly, although the βtj may be restricted to taking non-negative values,
in general the β∗

ti can take negative values. Hence we have shown that using
label-swapped component classifiers and non-negative parameter estimates is
equivalent to a classifier with unconstrained parameter estimates and which
does not use label-swapped pairs. However, because in practice we must esti-
mate the parameter values for a given set of component classifiers, using label-
swapped classifiers with a non-negativity constraint will not necessarily give the
same classification performance as using non-label-swapped classifiers with un-
constrained parameter estimates. For example, LeBlanc and Tibshirani [7] and

Combining Methods for Dynamic Multiple Classifier Systems 187

Breiman [1] reported improved classification performance when constraining the
parameters of the weighted average of classifier outputs to be non-negative. The
benefit of the label-swapped approach is that it combines the flexibility of uncon-
strained parameters required for dynamic problems with the potential improved
accuracy of parameter estimation obtained when imposing a non-negativity con-
straint. Clearly then the benefit of using label-swapped classifiers (if any) will
be dependent on the algorithm used for parameter estimation.

It is important to note that using label-swapped classifiers leads us to requiring
twice as many component classifiers and hence parameters as the corresponding
model with unconstrained parameters. In addition, the additional computational
effort involved in enforcing the non-negativity constraint means that the label-
swapped approach is significantly more computationally intensive than using
standard unconstrained estimates.

5 Example

In this section we demonstrate some of our results on an artificial dynamic clas-
sification problem. There exist two classes, class 1 and class 2, and observations
from each class are distributed normally with a common covariance matrix. The
probability that an observation is generated from class 1 is 0.7. At time t = 0 the
mean of class 1 is μ1 = (1, 1), and the mean of class 2 is μ2 = (−1, −1). The mean
of population 1 changes in equal increments from (1, 1) to (1, −4) over 1000 time
steps, so that at time t, μ1 = (1, 1 − 0.005t). It is assumed that observations ar-
rive independently without delay, and that after each classification is made the
true label of the observation is revealed before the following observation arrives.

Before we can apply the classification model (1) to this problem, we need to
decide on how many component classifiers to use, train the component classi-
fiers, decide on the form of ηk(xt) and decide on an algorithm to estimate the
parameter values βt for every t. Clearly each one of these tasks requires careful
thought in order to maximise the performance of the classifier. However, because
this is not the subject of this paper, we omit the details behind our choices. For
the following simulations we used three component classifiers, each of which was
trained using linear discriminant analysis on an independent random sample of
10 observations from the population at time t = 0. Figure 2 shows the Bayes
boundary at times t = 0, t = 500 and time t = 1000, along with the decision
boundaries of the three component classifiers. We choose to use ηk(xt) defined
by (3) (so for this example the decision boundary of the classifier is also linear),
and used a particle filter approximation to the posterior distribution of βt at
each time step. The model for parameter evolution used was

βt+1 = βt + ωt, (23)

where ωt has a normal distribution with mean 0 and covariance matrix equal to
0.005 times the identity matrix. 300 particles were used for the approximation.
An observation xt was classified as belonging to class k if

k = argmaxj Êβt
[p̂t(j|xt)]. (24)

188 A. Tomas

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x1

x
2

Fig. 2. The decision boundaries of the component classifiers (black) and the Bayes
boundary (grey) at times t = 0 (solid), t = 500 (dashed) and t = 1000 (dot-dashed)

Denote by Err−i the error rate of the ith component classifier on the training
data of the other component classifiers, for i = 1, 2, 3. The value of β0i was
chosen to be proportional to 1 − Err−i for i = 1, 2, 3. Each simulation involved
repeating the data generation, classification and updating procedure 100 times,
and the errors of each run were averaged to produce an estimate of the error
rate of the classifier at every time t.

We repeated the simulation three times. In the first case, we constrained the
parameters βt to be non-negative. A smooth of the estimated average error rate
is shown in figure 3(a), along with the Bayes error (grey line) and the error of the
the component classifier corresponding to the smallest value of Err−i (included
to demonstrate the deterioration in performance of the “best” component clas-
sifier at time t = 0, dashed line). The error rate of the classifier is reasonably
close to the Bayes error for the first 200 updates, but then the performance de-
teriorates. After t = 200, the Bayes boundary has moved enough that it can no
longer be well approximated by a linear decision boundary lying in the region of
disagreement.

In the second case, we use the same three classifiers as above, but include
their label-swapped pairs. We hence have six component classifiers in total. A
smooth of the estimated error rate is shown in figure 3(b), and it is clear that
this classifier does not succumb to the same level of decreased performance as
seen in figure 3(a).

Thirdly, we used the same set of three component classifiers but without
constraining the parameter values to be non-negative. The resulting error rate,
shown in figure 3(c), is very similar to that using label-swapped classifiers.

Combining Methods for Dynamic Multiple Classifier Systems 189

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

t

er
ro

r
ra

te

(a) Non-negative parameter values

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

t

er
ro

r
ra

te

(b) Label-swapped classifiers

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

t

er
ro

r
ra

te

(c) Unconstrained parameter values

Fig. 3. Smoothed average error rates for the three scenarios described (solid black line)
along with the Bayes error (grey) and error rate of the component classifier with the
lowest estimated error rate at time t = 0 (dashed black line)

190 A. Tomas

0 200 400 600 800 1000

−
2

−
1

0
1

2
3

t

β
ti

(a) Unconstrained parameter values

0 200 400 600 800 1000

−
2

−
1

0
1

2
3

t

β
ti

(b) Label-swapped classifiers: βt

0 200 400 600 800 1000

−
2

−
1

0
1

2
3

t

β
∗ ti

(c) Label-swapped classifiers: β∗
t

Fig. 4. Average expected parameter values βi, for i = 1 (solid line), i = 2 (dashed)
and i = 3 (dotted). In figure 4(b) the grey and black lines of each type correspond to
a label-swapped pair.

Combining Methods for Dynamic Multiple Classifier Systems 191

In figure 4, we show the average expected parameter values returned by the
updating algorithm in cases two and three. Clearly the values of β∗

ti shown
in figure 4(c) are very similar to the unconstrained parameter values in figure
4(a), which explains the similarity of classification performance between the
label-swapped and unconstrained cases. Furthermore, we can see from figure 4
that negative parameter values become necessary after about 200 updates, again
explaining the behaviour seen in figure 3(a).

This example shows that it is important to consider the region of disagreement
in dynamic classification problems. Furthermore, we found no clear difference in
performance between the classifier using label-swapped component classifiers
with non-negative parameter values, and the classifier using unconstrained pa-
rameter estimates.

6 Conclusions

When using a combining model of the form (1) or a linear combiner with non-
negative parameter values, it can be useful to consider the region of disagreement
of the component classifiers. This becomes of even greater relevance when the
population is believed to be dynamic, as the region of disagreement is a bound
on the region in which the decision boundary of the classifier can lie. If the
Bayes boundary lies outside the region of disagreement, then it is unlikely that
the classifier will perform well. In stationary problems it may be beneficial to
constrain the region of disagreement. However, in dynamic scenarios when the
Bayes boundary is subject to possibly large movement, it seems most sensible
to maximise this region. This can be done for a two-class problem by using
label-swapped classifiers with non-negative parameter estimates, or more simply
and efficiently by allowing negative parameter values. Which of these approaches
results in better classification performance is likely to depend on the parameter
estimation algorithm, and should be further investigated.

References

1. Breiman, L.: Stacked Regressions. Machine Learning 24, 49–64 (1996)
2. Fumera, G., Roli, F.: Performance Analysis and Comparison of Linear Combiners

for Classifier Fusion. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de
Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 424–432. Springer,
Heidelberg (2002)

3. Fumera, G., Roli, F.: A Theoretical and Experimental Analysis of Linear Combiners
for Multiple Classifier Systems. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 942–
956 (2005)

4. Kelly, M., Hand, D., Adams, N.: The Impact of Changing Populations on Classifier
Performance. In: KDD 1999: Proc. 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Diego, California, United States, pp.
367–371. ACM, New York (1999)

5. Kuncheva, L.I.: Classifier Ensembles for Changing Environments. In: Roli, F., Kit-
tler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1–15. Springer, Hei-
delberg (2004)

192 A. Tomas

6. Kuncheva, L.I., Whitaker, C.J.: Measures of Diversity in Classifier Ensembles and
Their Relationship with the Ensemble Accuracy. Machine Learning 51, 181–207
(2003)

7. Le Blanc, M., Tibshirani, R.: Combining Estimates in Regression and Classification.
Technical Report 9318, Dept. of Statistics, Univ. of Toronto (1993)

8. Tumer, K., Ghosh, J.: Analysis of Decision Boundaries in Linearly Combined Neural
Classifiers. Pattern Recognition 29, 341–348 (1996)

Researching on Multi-net Systems Based on Stacked
Generalization

Carlos Hernández-Espinosa, Joaquı́n Torres-Sospedra,
and Mercedes Fernández-Redondo

Departamento de Ingenieria y Ciencia de los Computadores, Universitat Jaume I,
Avda. Sos Baynat s/n, C.P. 12071, Castellon, Spain

{espinosa,jtorres,redondo}@icc.uji.es

Abstract. Among the approaches to build a Multi-Net system, Stacked General-
ization is a well-known model. The classification system is divided into two steps.
Firstly, the level-0 generalizers are built using the original input data and the class
label. Secondly, the level-1 generalizers networks are built using the outputs of
the level-0 generalizers and the class label. Then, the model is ready for pattern
recognition. We have found two important adaptations of Stacked Generalization
that can be applyied to artificial neural networks. Moreover, two combination
methods, Stacked and Stacked+, based on the Stacked Generalization idea were
successfully introduced by our research group. In this paper, we want to em-
pirically compare the version of the original Stacked Generalization along with
other traditional methodologies to build Multi-Net systems. Moreover, we have
also compared the combiners we proposed. The best results are provided by the
combiners Stacked and Stacked+ when they are applied to ensembles previously
trained with Simple Ensemble.

1 Introduction

Perhaps, the most important property of a neural network is the generalization capa-
bility. The ability to correctly respond to inputs which were not used in the training
set.

It is clear from the bibliography that the use of an ensemble of neural networks
increases the generalization capability, [13] and [7], for the case of Multilayer Feedfor-
ward and other classifiers. The two key factors to design an ensemble are how to train
the individual networks and how to combine them.

Although most of the methods to create a Multi-Net System are based on the Ensem-
ble approach (Boosting, Bagging, Cross-Validation) [2,4] or in the Modular approach
(Mixture of Neural Networks) [8,12], we have also analyzed other complex methodolo-
gies and models to perform an exhaustive comparison. Stacked Generalization is one of
the most known alternatives to the traditional methods previously mentioned.

Stacked Generalization was introduced by Wolpert in 1994 [14]. Firstly, a set of
cross-validated generalizers called level-0 generalizers are trained with the original
input data and class label. Then, a set of generalizers called level-1 generalizers are
trained using the information provided by level-0 generalizers along with the class
label. Unfortunately, Stacked Generalization can not be directly applied to artificial

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 193–204, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

194 C. Hernández-Espinosa, J. Torres-Sospedra, and M. Fernández-Redondo

neural networks because it can not be applied to methods that require being trained
before classification.

Some authors like Ghorbani & Owrangh [3] and Ting & Witten [9,10] have
proposed some versions based on the Wolpert’s model which can be directly applied
to neural networks. Moreover, we proposed in [11] two combination methods based on
Stacked Generalization model, Stacked and Stacked+. Unfortunately there is not any
comparison among them.

The original Stacked Generalization can be incorrectly identified as a method to
combine an ensemble. In the original model specifications, the process to create the
combiners highly depends on the process to create the experts so the stacked models
can not be considered as a traditional ensemble. Moreover, the stacked combiners we
proposed should not be considered as pure 2-leveled models.

The Stacked Generalization model applied to neural networks is shown in figure 1.
We can see that the level-0 generalizers are called Expert Networks (EN) whereas the
level-1 generalizers are called Combination Networks (CN).

Fig. 1. Stacked Generalization Model

In this paper, we want to compare Ghorbani & Owrangh and Ting & Witten models
with other ensemble models and with combiners Stacked Stacked+. To perform this
comparison, ten databases from the UCI repository have been chosen.

This paper is organized as follows. Firstly, some theoretical concepts are briefly re-
viewed in section 2. Then, the databases used and the experimental setup are described
in section 3. Finally, the experimental results and their discussion are in section 4.

Researching on Multi-net Systems Based on Stacked Generalization 195

2 Theory

2.1 The Multilayer Feedforward Network

The Multilayer Feedforward architecture is the most known network architecture. This
kind of networks consists of three layers of computational units. The neurons of the
first layer apply the identity function whereas the neurons of the second and third layer
apply the sigmoid function. It has been proved that MF networks with one hidden layer
and threshold nodes can approximate any function with a specified precision [1] and
[5]. Figure 2 shows the diagram of the Multilayer Feedforward network.

sig

y
1

sig

y
2

sig

y
q

sig sig sig

x
1

x
2

x
n

lin lin lin

Output
layer

Input
layer

Hidden
layer

Fig. 2. Multilayer Feedforward Structure

In our experiments we have trained the networks with the following algorithm.

Algorithm 1. Neural Network Training {T ,V }
Set initial weights values
for i = 1 to iterations do

Train the network with the patterns from the training set T
Calculate MSE over validation set V
Save epoch weights and calculated MSE

end for
Select epoch with minimum MSE
Assign best epoch configuration to the network
Save network configuration

2.2 Traditional Multi-net Models

Simple Ensemble. A simple ensemble can be constructed by training different net-
works with the same training set, but with different random initialization [2].

196 C. Hernández-Espinosa, J. Torres-Sospedra, and M. Fernández-Redondo

Bagging. This method consists on generating different datasets drawn at random with
replacement from the original training set [2].

Adaptive Boosting. In Adaptive Boosting, also known as Adaboost, the successive
networks are trained with a training set selected randomly from the original set, but the
probability of selecting a pattern changes depending on the correct classification of the
pattern and on the performance of the last trained network [2].

Cross-Validation. We have used two different versions of k-fold cross-validation: CVC
[2] and CVCv2 [4]. In CVC, the training set is divided into k subsets being k−1 subsets
used to train the network. In this case, the subset which is left out is not used in the
training and validation process. In CVCv2, cross-validation is applied to the learning
set to get k different subsets. In this case, k − 1 subsets are used to train the network
and the left one is used for validation.

In both cases, we can construct k classifiers with different sets by changing the subset
that is left out.

2.3 Stacked Generalization

Stacked Generalization was introduced by Wolpert [14]. Some authors have adapted the
Wolpert’s method to use with neural networks like Ghorbani & Owrangh [3] and Ting
& Witten [9,10].

The training in Stacked Generalization is divided into two steps. In the first one, the
expert networks are trained. In the second one, the combination networks are trained
with the outputs provided by the experts. However, there are some constraints related
to the datasets used to train the expert and combination networks. The method is fully
described in [14]. In fact, it has been suggested that Stacked Generalization is a sophis-
ticated version of Cross-Validation.

Unfortunately, the method proposed by Wolpert can not be directly applied to gen-
eralizers that requires being trained before classificating patterns. Although this draw-
back, there are some authors that have adapted Stacked Generalization to specific clas-
sifiers. There are two versions that have to be taken into account: The version proposed
by Ghorbani & Owrangh [3] and the version proposed by Ting & Witten [9,10]. Those
authors described their procedure to create the different training sets for the experts and
combination networks.

Stacked Generalization - Version 1. Ting & Witten proposed a version of Stacked
Generalization that can be applied to the Multilayer Feedforward architecture [9,10].
The training set was randomly splitted into k equal subsets: T = {T1, T2, ..., Tk}. Then,
T−j = {T − Tj} was used to train the experts networks and the experts output on Tj

were used to train the combination networks.

Stacked Generalization - Version 2. Ghorbani & Owrangh proposed a version of
Stacked Generalization that was applied directly to Artificial Neural Networks [3]. They
applied cross-validation to create the different training sets of the experts by randomly
splitting the training set into k equal subsets: T = {T1, T2, ..., Tk}. With this procedure,

Researching on Multi-net Systems Based on Stacked Generalization 197

k different classifiers can be built with different training sets by changing the subset
that is left out as in CVC. Then, the outputs of the experts on T were used to train the
combination networks.

Combining networks with Stacked and Stacked+. Moreover, Stacked Generalization
can be used as a combiner of ensembles of neural networks as we proposed in [11] in
which we introduced Stacked and Stacked+.

In those combiners, the networks of an ensemble previously trained with Simple
Ensemble were used as expert networks. Then, the outputs provided by the ensemble
on the original training set were used to train the combination networks. Additionally,
in the combiner stacked+, the original input data was also used to train the combination
network.

3 Experimental Setup

To test the performance of the methods described in this paper, we have used ensembles
of 3, 9, 20 and 40 expert networks. In the case of two versions of Stacked Generalization
we have used classification systems with 3, 9, 20 and 40 expert networks that have
been combined by a single combination network. Finally, in the case of Stacked and
Stacked+, we have used ensembles of 3, 9, 20 and 40 networks previously trained with
Simple Ensemble, these networks have been combined by a single combination network.

In addition, the whole learning process have been repeated ten times, using different
partitions of data in training, validation and test sets. With this procedure we can obtain
a mean performance of the ensemble and the error calculated by standard error theory.

3.1 Databases

We have used ten different classification problems from the UCI repository of machine
learning databases [6] to test the performance of the methods and combiners reviewed
in this paper. These databases are:

– Arrhythmia Database (aritm)
– Dermatology Database (derma)
– Ecoli Database (ecoli)
– Solar Flares Database (flare)
– Image segmentation Database (img)
– Ionosphere Database (ionos)
– Pima Indians Diabetes Database (pima)
– Haberman’s Survival Data (survi)
– Vowel Database (vowel)
– Wisconsin Breast Cancer Database (wdbc)

All the training parameters (Hidden units, Adaptation step, Momentum rate and
Number of iterations of Back-propagation) have been set after an exhaustive trial and
error procedure. Due to the lack of space, the parameters are omitted.

198 C. Hernández-Espinosa, J. Torres-Sospedra, and M. Fernández-Redondo

4 Results and discussion

4.1 Results

The main results of our work are presented in this subsection. Tables 1-5 show the
performance of the ensembles of 3, 9, 20 and 40 networks trained with the traditional
ensemble methods described in subsection 2.2.

Table 1. Simple Ensemble results

3 Nets 9 Nets 20 Nets 40 Nets
aritm 73.4 ± 1 73.8 ± 1.1 73.8 ± 1.1 73.8 ± 1.1
derma 97.2 ± 0.7 97.5 ± 0.7 97.3 ± 0.7 97.6 ± 0.7
ecoli 86.6 ± 0.8 86.9 ± 0.8 86.9 ± 0.8 86.9 ± 0.7
flare 81.8 ± 0.5 81.6 ± 0.4 81.5 ± 0.5 81.6 ± 0.5
img 96.5 ± 0.2 96.7 ± 0.3 96.7 ± 0.2 96.8 ± 0.2

ionos 91.1 ± 1.1 90.3 ± 1.1 90.4 ± 1 90.3 ± 1
pima 75.9 ± 1.2 75.9 ± 1.2 75.9 ± 1.2 75.9 ± 1.2
survi 74.3 ± 1.3 74.2 ± 1.3 74.3 ± 1.3 74.3 ± 1.3
vowel 88 ± 0.9 91 ± 0.5 91.4 ± 0.8 92.2 ± 0.7
wdbc 96.9 ± 0.5 96.9 ± 0.5 96.9 ± 0.5 96.9 ± 0.5

Table 2. Bagging results

3 Nets 9 Nets 20 Nets 40 Nets
aritm 74.7 ± 1.6 75.9 ± 1.7 75.9 ± 1.7 74.7 ± 1.5
derma 97.5 ± 0.6 97.7 ± 0.6 97.6 ± 0.6 97.6 ± 0.6
ecoli 86.3 ± 1.1 87.2 ± 1 87.1 ± 1 86.9 ± 1.1
flare 81.9 ± 0.6 82.4 ± 0.6 82.2 ± 0.5 82 ± 0.6
img 96.6 ± 0.3 96.7 ± 0.3 97 ± 0.3 97.1 ± 0.3

ionos 90.7 ± 0.9 90.1 ± 1.1 89.6 ± 1.1 90 ± 1.1
pima 76.9 ± 0.8 76.6 ± 0.9 77 ± 1 77 ± 1.1
survi 74.2 ± 1.1 74.4 ± 1.5 74.6 ± 1.7 74.2 ± 1.3
vowel 87.4 ± 0.7 90.8 ± 0.7 91.3 ± 0.6 91.2 ± 0.8
wdbc 96.9 ± 0.4 97.3 ± 0.4 97.5 ± 0.4 97.4 ± 0.3

Tables 6-7 show the results we have obtained with the combiners Stacked and
Stacked+ on ensembles previoulsly trained with Simple Ensemble.

Tables 8-9 show the results related to the first version of Stacked Generalization.
These tables show the performance of the experts combined as an ensemble and the
performance of the whole model.

In a similar way, tables 10-11 show the results related to the second version of
Stacked Generalization.

Researching on Multi-net Systems Based on Stacked Generalization 199

Table 3. Adaptive Boosting results

3 Nets 9 Nets 20 Nets 40 Nets
aritm 71.8 ± 1.8 73.2 ± 1.6 71.4 ± 1.5 73.8 ± 1.1
derma 98 ± 0.5 97.3 ± 0.5 97.5 ± 0.6 97.8 ± 0.5
ecoli 85.9 ± 1.2 84.7 ± 1.4 86 ± 1.3 85.7 ± 1.4
flare 81.7 ± 0.6 81.1 ± 0.7 81.1 ± 0.8 81.1 ± 0.7
img 96.8 ± 0.2 97.3 ± 0.3 97.29 ± 0.19 97.3 ± 0.2

ionos 88.3 ± 1.3 89.4 ± 0.8 91.4 ± 0.8 91.6 ± 0.7
pima 75.7 ± 1 75.5 ± 0.9 74.8 ± 1 73.3 ± 1
survi 75.4 ± 1.6 74.3 ± 1.4 74.3 ± 1.5 73 ± 2
vowel 88.4 ± 0.9 94.8 ± 0.7 96.1 ± 0.7 97 ± 0.6
wdbc 95.7 ± 0.6 95.7 ± 0.7 96.3 ± 0.5 96.7 ± 0.9

Table 4. CVC results

3 Nets 9 Nets 20 Nets 40 Nets
aritm 74 ± 1 74.8 ± 1.3 74.8 ± 1.3 73.4 ± 1.9
derma 97.3 ± 0.7 97.6 ± 0.6 97.3 ± 0.6 97.3 ± 0.6
ecoli 86.8 ± 0.8 87.1 ± 1 86.5 ± 1 86.8 ± 0.9
flare 82.7 ± 0.5 81.9 ± 0.6 81.7 ± 0.7 81.7 ± 0.7
img 96.4 ± 0.2 96.6 ± 0.2 96.8 ± 0.2 96.6 ± 0.2

ionos 87.7 ± 1.3 89.6 ± 1.2 89.6 ± 1.3 88.3 ± 1
pima 76 ± 1.1 76.9 ± 1.1 76.2 ± 1.3 76.6 ± 1
survi 74.1 ± 1.4 75.2 ± 1.5 73.8 ± 0.9 74.6 ± 1
vowel 89 ± 1 90.9 ± 0.7 91.9 ± 0.5 92.2 ± 0.8
wdbc 97.4 ± 0.3 96.5 ± 0.5 97.4 ± 0.4 96.8 ± 0.5

Table 5. CVCv2 results

3 Nets 9 Nets 20 Nets 40 Nets
aritm 76.1 ± 1.6 75.4 ± 1.5 74.3 ± 1.2 77 ± 0.8
derma 98 ± 0.3 97.3 ± 0.5 97.5 ± 0.6 97.2 ± 0.6
ecoli 86.8 ± 0.9 86.6 ± 1 86.6 ± 1.1 86.3 ± 0.9
flare 82.5 ± 0.6 82.1 ± 0.5 81.8 ± 0.4 82.2 ± 0.5
img 96.9 ± 0.3 97 ± 0.3 97.03 ± 0.17 96.7 ± 0.3

ionos 89.7 ± 1.4 90.4 ± 1.3 91 ± 0.9 92 ± 1
pima 76.8 ± 1 76.8 ± 1.1 76.7 ± 0.8 76.1 ± 0.9
survi 74.1 ± 1.2 73 ± 1 73.6 ± 1 73.4 ± 1.2
vowel 89.8 ± 0.9 92.7 ± 0.7 93.3 ± 0.6 92.9 ± 0.7
wdbc 96.7 ± 0.3 96.8 ± 0.3 95.9 ± 0.6 96 ± 0.5

200 C. Hernández-Espinosa, J. Torres-Sospedra, and M. Fernández-Redondo

Table 6. Simple Ensemble - Stacked Combiner results

3 Nets 9 Nets 20 Nets 40 Nets
aritm 75.4 ± 1.4 75.1 ± 1.2 73.8 ± 1.3 73.9 ± 1.4
derma 97.2 ± 0.7 97.5 ± 0.7 97.5 ± 0.7 97.6 ± 0.7
ecoli 86.6 ± 0.9 86.8 ± 1.1 86.8 ± 0.9 86.8 ± 1.1
flare 81.4 ± 0.6 81.1 ± 0.5 81.4 ± 0.6 81.3 ± 0.8
img 96.5 ± 0.2 96.6 ± 0.3 97 ± 0.2 97.2 ± 0.2

ionos 92 ± 0.8 92.9 ± 1 92.7 ± 1.1 92.4 ± 1
pima 76.1 ± 1 76.1 ± 1.1 76.4 ± 0.9 75.9 ± 0.9
survi 74.4 ± 1.4 73.8 ± 1.5 73.8 ± 1.3 74.1 ± 1.2
vowel 89.4 ± 0.8 92.3 ± 0.5 93.3 ± 0.6 94.2 ± 0.8
wdbc 97.1 ± 0.5 97.2 ± 0.4 97.2 ± 0.5 97.2 ± 0.5

Table 7. Simple Ensemble - Stacked+ Combiner results

3 Nets 9 Nets 20 Nets 40 Nets
aritm 74.4 ± 1.4 73.6 ± 1.7 74.7 ± 1.1 74.5 ± 1.3
derma 97.2 ± 0.7 97.3 ± 0.7 97.5 ± 0.7 97.6 ± 0.7
ecoli 86.8 ± 1 86.3 ± 1.2 86.8 ± 1.1 86.8 ± 1
flare 81.9 ± 0.4 81.7 ± 0.7 81.5 ± 0.7 81.1 ± 0.7
img 96.7 ± 0.3 96.8 ± 0.3 97 ± 0.3 96.8 ± 0.2

ionos 92 ± 0.9 92.7 ± 1 92.9 ± 1.2 92.4 ± 1.2
pima 76.1 ± 1 75.7 ± 1 75.9 ± 1.2 75.9 ± 1
survi 73.9 ± 1.4 73.6 ± 1.4 73.8 ± 1.2 73.9 ± 1.4
vowel 89.8 ± 0.8 92.3 ± 0.6 93.3 ± 0.7 94.1 ± 0.7
wdbc 97.2 ± 0.5 97.4 ± 0.5 97.3 ± 0.5 97.3 ± 0.5

Table 8. Stacked Generalization Version 2 Results - Expert networks as Ensemble

3 Nets 9 Nets 20 Nets 40 Nets
aritm 72.5 ± 1.5 72.4 ± 1.5 72.4 ± 1.5 72.4 ± 1.5
derma 96.6 ± 0.7 96.8 ± 0.6 96.6 ± 0.9 96.3 ± 0.9
ecoli 86 ± 1 86 ± 0.9 85.7 ± 1 85.4 ± 1.1
flare 82 ± 0.6 81.8 ± 0.6 81.8 ± 0.6 81.9 ± 0.6
img 96.5 ± 0.2 96.6 ± 0.2 96.6 ± 0.3 96.6 ± 0.2

ionos 88 ± 1.3 89 ± 1.2 88.9 ± 1.2 89.1 ± 1.1
pima 77.4 ± 0.8 77.2 ± 0.7 77.4 ± 0.7 77.2 ± 0.8
survi 74.9 ± 1.4 74.9 ± 1.4 75.1 ± 1.4 75.3 ± 1.4
vowel 86.7 ± 0.7 88.6 ± 0.6 89.7 ± 0.7 89.8 ± 0.4
wdbc 96.9 ± 0.6 97 ± 0.6 97 ± 0.6 97 ± 0.6

Researching on Multi-net Systems Based on Stacked Generalization 201

Table 9. Stacked Generalization Version 2 Results - Whole model

3 Nets 9 Nets 20 Nets 40 Nets
aritm 74.8 ± 1.5 74 ± 2 75 ± 2 74.9 ± 1.9
derma 96.6 ± 0.9 96.5 ± 1 96.5 ± 1 96.6 ± 1.1
ecoli 85 ± 1.2 84.3 ± 1 85.4 ± 1.3 84.6 ± 1.1
flare 81.8 ± 0.7 81.8 ± 0.7 82 ± 0.8 81.8 ± 0.7
img 96.9 ± 0.2 97.1 ± 0.3 97.1 ± 0.3 97.2 ± 0.2

ionos 89.4 ± 1.2 90.6 ± 0.9 90.6 ± 0.7 91.1 ± 1
pima 76.3 ± 1.1 76.2 ± 1.1 76.5 ± 0.9 75.9 ± 1.4
survi 73.1 ± 1.2 73.4 ± 0.6 73.1 ± 1 73.4 ± 1.1
vowel 87 ± 0.5 90.7 ± 0.6 92.6 ± 0.8 92.7 ± 0.7
wdbc 96.7 ± 0.6 96.6 ± 0.5 96.6 ± 0.5 96.5 ± 0.6

Table 10. Stacked Generalization Version 2 Results - Expert networks as Ensemble

3 Nets 9 Nets 20 Nets 40 Nets
aritm 74.5 ± 1.3 74.3 ± 1 74.3 ± 1.4 74 ± 1
derma 97.5 ± 0.7 97.8 ± 0.6 97.3 ± 0.6 97.3 ± 0.4
ecoli 87.5 ± 0.9 87.2 ± 1 87.2 ± 0.9 86.6 ± 1.2
flare 82.1 ± 0.5 81.9 ± 0.7 82.1 ± 0.6 81.7 ± 0.7
img 96 ± 0.3 96.7 ± 0.2 96.9 ± 0.3 96.7 ± 0.3

ionos 88.9 ± 0.9 89.1 ± 0.9 89.7 ± 1.6 88.9 ± 1.5
pima 76.1 ± 1.2 76.8 ± 0.9 77.4 ± 1 75.8 ± 0.6
survi 74.1 ± 1.4 74.1 ± 1.5 75.1 ± 1.1 74.4 ± 1.3
vowel 86.9 ± 0.5 90.6 ± 0.5 91.1 ± 0.6 91.5 ± 0.7
wdbc 96.8 ± 0.5 97 ± 0.5 96.9 ± 0.5 96.7 ± 0.6

Table 11. Stacked Generalization Version 2 Results - Whole Stacked Model

3 Nets 9 Nets 20 Nets 40 Nets
aritm 74.9 ± 1.3 74.5 ± 1 72.9 ± 1.3 75.6 ± 1
derma 97.5 ± 0.7 97.6 ± 0.7 97.3 ± 0.6 97.3 ± 0.4
ecoli 86.5 ± 0.9 86.3 ± 0.9 84.4 ± 1.1 86 ± 1.1
flare 81.6 ± 0.9 82.1 ± 0.8 81.4 ± 0.9 81.7 ± 0.7
img 97 ± 0.2 96.8 ± 0.3 96.8 ± 0.2 97 ± 0.2

ionos 90 ± 0.9 91 ± 1 90.1 ± 1.2 89.3 ± 1.5
pima 76.4 ± 1 76.7 ± 1 76.5 ± 1.4 74.5 ± 1
survi 73.9 ± 1.1 72.6 ± 1.1 72.8 ± 1.5 73.8 ± 1
vowel 88.1 ± 0.6 92.2 ± 0.5 92.8 ± 0.7 93.6 ± 0.6
wdbc 96.5 ± 0.5 96.9 ± 0.4 96.5 ± 0.6 96.6 ± 0.6

4.2 General Measurements

We have calculated the mean Increase of Performance (IoP eq.1) and the mean Percent-
age of Error Reduction (PER eq.2) across all databases to get a global measurement to

202 C. Hernández-Espinosa, J. Torres-Sospedra, and M. Fernández-Redondo

Table 12. General Results

Mean Increase of Performance
method 3 nets 9 nets 20 nets 40 nets

Simple Ensemble 0.69 1.01 1.04 1.16
Bagging 0.84 1.44 1.51 1.34

CVC 0.66 1.24 1.13 0.95
CVCv2 1.26 1.33 1.3 1.51

Adaboost 0.3 0.85 1.14 1.26

stacked on simple ensemble 1.13 1.44 1.51 1.59
stacked+ on simple ensemble 1.12 1.26 1.58 1.57

SG Ver.1 - Experts 0.28 0.56 0.64 0.62
SG Ver.2 - Experts 0.57 1.08 1.31 0.9

SG Ver.1 - Whole model 0.29 0.67 1.05 1.01
SG Ver.2 - Whole model 0.76 1.19 0.67 1.07

Mean Percentage of Error Reduction
method 3 nets 9 nets 20 nets 40 nets

Simple Ensemble 5.58 8.38 8.08 9.72
Bagging 6.85 12.12 13.36 12.63

CVC 6.17 7.76 10.12 6.47
CVCv2 10.25 10.02 7.57 7.48

Adaboost 1.32 4.26 9.38 12.2

stacked on simple ensemble 8.48 12.04 13.43 14.6
stacked+ on simple ensemble 9.4 11.8 14 13.89

SG Version 1 - Experts 0.7 3.46 3.52 2.78
SG Version 2 - Experts 3.44 9.22 9.48 6.31

SG Version 1 - Whole model 1.4 3.91 6.07 5.94
SG Version 2 - Whole model 5.57 10.14 4.86 7.82

compare the methods (Table 12). A negative value on these measurements means that
the the ensemble performs worse than a single network.

IoP = ErrorSingleNet − ErrorEnsemble (1)

PER = 100 · ErrorSingleNet − ErrorEnsemble

ErrorSingleNet
(2)

4.3 Discussion

Before the results discussion, the main results have been resumed in table 13 in which
the best performance for each database is shown along with the method and number of
networks we got it with.

In the resumed table, we can see that any version of the Stacked Generalization
model do not appear on it. Although there are two cases in which the experts of Stacked
Generalization Ver.2 as ensemble is the best method, these experts are trained as in

Researching on Multi-net Systems Based on Stacked Generalization 203

Table 13. Best Resutls

Performance Method Networks
aritm 77 ± 0.8 CVCv2 40
derma 98 ± 0.3 CVCv2 3
ecoli 87.5 ± 0.9 SG Version 2 - Experts 3
flare 82.7 ± 0.5 CVC 3
img 97.3 ± 0.3 Adaboost 9

ionos 92.9 ± 1 Stacked 9
pima 77.4 ± 1 SG Version 2 - Experts 20
survi 75.4 ± 1.6 Adaboost 3
vowel 97 ± 0.6 Adaboost 40
wdbc 97.5 ± 0.4 Bagging 20

CVC. We can extract from the table that the best individual results are provided by
Adaboost and Cross-Validation.

Finally, we can see in the global measurements tables that the best results are got by
Cross-Validation methods, Bagging and the combiners Stacked and Stacked+.

5 Conclusions

In this paper we have elaborated a comparison among traditional methodologies to build
ensembles, two combiners based on Stacked Generalization and two stacked models
proposed by Ting & Witten (SG Ver.1) by and Ghorbani & Owrangh (SG Ver.2).

Firstly, we can notice that Bagging and Cross-Validation are the best methods among
the results related to the traditional ensemble methods according to the general results.

Secondly, we can see that the stacked combiners, Stacked and Stacked+, consider-
ably improve the results got by the ensembles trained with Simple Ensemble. Moreover,
these combiners on Simple Ensemble provide better results than some traditional ensem-
ble methods. The best overall general measurements is provided by applying Stacked to
a 40-network ensemble trained with Simple Ensemble.

Thirdly, we can see that the second version of the original Stacked Generalization
model is better than first one. We can also see that the experts trained with the second
version are also better. In fact, the first version is not on the top of the best performing
methods, being similar to Adaboost.

Finally, comparing the results related to the first and second version of the original
Stacked Generalization model, we can see that the performance of the whole stacked
models is similar to the performance of their experts as ensemble. There is not a high
increase of performance by the use of the combination network. Incredibly, the increase
of performance got by the combiners Stacked and Stacked+ with respect to their experts
is considerable higher.

In conclusion, Cross-Validation, Adaboost and the combiners Stacked and Stadked+
on Simple Ensemble are the best ways to build a Multi-Net system. Adaboost and the
Cross-Validation methods got the best individual results whereas the general results
show that the best Multi-Net system is provided by the 40-network version of Simple

204 C. Hernández-Espinosa, J. Torres-Sospedra, and M. Fernández-Redondo

Ensemble combined with Stacked. The two versions of the original Stacked Generaliza-
tion model do not get neither the best individual performance for a database nor the best
global results. Moreover, there are some cases in which the two versions of the original
Stacked Generalization perform worse than a Simple Ensemble.

References

1. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Inc., New
York (1995)

2. Fernndez-Redondo, M., Hernndez-Espinosa, C., Torres-Sospedra, J.: Multilayer feedforward
ensembles for classification problems. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui,
S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 744–749. Springer, Heidelberg (2004)

3. Ghorbani, A.A., Owrangh, K.: Stacked generalization in neural networks: Generalization on
statistically neutral problems. In: Proceedings of the International Joint conference on Neural
Networks, IJCNN 2001, Washington D.C., USA, pp. 1715–1720. IEEE, Los Alamitos (2001)

4. Hernndez-Espinosa, C., Torres-Sospedra, J., Fernndez-Redondo, M.: New experiments on
ensembles of multilayer feedforward for classification problems. In: IJCNN 2005 proceed-
ings, pp. 1120–1124 (2005)

5. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience,
Chichester (2004)

6. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning
databases (1998),
http://www.ics.uci.edu/∼mlearn/MLRepository.html

7. Raviv, Y., Intratorr, N.: Bootstrapping with noise: An effective regularization technique. Con-
nection Science, Special issue on Combining Estimators 8, 356–372 (1996)

8. Sharkey, A.J. (ed.): Combining Artificial Neural Nets: Ensemble and Modular Multi-Net
Systems. Springer, Heidelberg (1999)

9. Ting, K.M., Witten, I.H.: Stacked generalizations: When does it work? In: International Joint
Conference on Artificial Intelligence proceedings, vol. 2, pp. 866–873 (1997)

10. Ting, K.M., Witten, I.H.: Issues in stacked generalization. Journal of Artificial Intelligence
Research 10, 271–289 (1999)

11. Torres-Sospedra, J., Hernndez-Espinosa, C., Fernndez-Redondo, M.: Combining MF net-
works: A comparison among statistical methods and stacked generalization. In: Schwenker,
F., Marinai, S. (eds.) ANNPR 2006. LNCS (LNAI), vol. 4087, pp. 210–220. Springer, Hei-
delberg (2006)

12. Torres-Sospedra, J., Hernndez-Espinosa, C., Fernndez-Redondo, M.: Designing a new multi-
layer feedforward modular network for classification problems. In: WCCI 2006 proceedings,
pp. 2263–2268 (2006)

13. Tumer, K., Ghosh, J.: Error correlation and error reduction in ensemble classifiers. Connec-
tion Science 8(3-4), 385–403 (1996)

14. Wolpert, D.H.: Stacked generalization. Neural Networks 5(6), 1289–1301 (1994)

http://www.ics.uci.edu/~mlearn/MLRepository.html

Real-Time Emotion Recognition from Speech

Using Echo State Networks

Stefan Scherer, Mohamed Oubbati, Friedhelm Schwenker, and Günther Palm

Institute of Neural Information Processing, Ulm University, Germany
{stefan.scherer,mohamed.oubbati,friedhelm.schwenker,

guenther.palm}@uni-ulm.de

Abstract. The goal of this work is to investigate real-time emotion
recognition in noisy environments. Our approach is to solve this prob-
lem using novel recurrent neural networks called echo state networks
(ESN). ESNs utilizing the sequential characteristics of biologically moti-
vated modulation spectrum features are easy to train and robust towards
noisy real world conditions. The standard Berlin Database of Emotional
Speech is used to evaluate the performance of the proposed approach.
The experiments reveal promising results overcoming known difficulties
and drawbacks of common approaches.

1 Introduction

The present innovations in affective computing aim to provide simpler and more
natural interfaces for human-computer interaction applications. Detecting and
recognizing the emotional status of a user is important in designing and devel-
oping efficient and productive human-computer interaction interfaces [2]. The
efficiency gain is well founded on the fact that in healthy human to human in-
teraction emotion is essential in every bit of communication. For example, while
explaining something to another person, one could communicate understanding
with a simple smile, with no need to say “I understand, what you are telling
me” [15]. Hence, emotion analysis and processing is a multi-disciplinary topic,
which has been emerging as a rich research area in recent times [2,4,6,13,18].
The visual cues, such as facial expressions and hand gestures are the natural
indicators of emotions. However, these require additional hardware and compu-
tational resources for processing. Alternatively, speech can be used for emotion
recognition which is not only simple to process, but can also be incorporated
into the existing speech processing applications [2,6,17]. Most commonly used
features are pitch, energy and speech spectral based features [13]. In this work,
a novel approach based on long term modulation spectrum of speech is used to
detect the emotions close to real-time using a recurrent neural network called
echo state network (ESN).

One of the main issues in designing an automatic emotion recognition system
is the selection of the features that can represent the corresponding emotions.
In [12], pitch and linear predictive coding (LPC) features were used as input

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 205–216, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

206 S. Scherer et al.

to an artificial neural network (ANN). After detecting the start and end points
of the utterances, a 300 dimensional vector was used, which resulted in classi-
fication rates of around 50% detecting eight different emotions. In earlier work
multi classifier systems (MCS) were trained with three feature types, comprising
modulation spectrum, as in this work, relative spectral transform - perceptual
linear prediction (RASTA-PLP), and perceived loudness features, in a MCS to
recognize seven different emotions with an accuracy of more than 70% [18]. The
Mel Frequency Cepstral Coefficients (MFCC) based features were used in [11],
which were obtained with a window of 25 ms sampled every 10 ms. The Hid-
den Markov Model (HMM) was then used for training each of the four targeted
emotions. After training a combination of all the phoneme class based HMMs
on the TIMIT database, for each of the emotions, the classification performance
reached around 76%. In [3], k-nearest neighbor (KNN) algorithm was applied to
classify four emotions, which resulted in 65 % accuracy. The pitch based statis-
tics, such as contour of pitch, maximum, minimum, and slope were considered as
features. Broadly speaking, differences in the various approaches arise from the
overall goal (recognizing single vs. multiple emotions), the specific features used,
and the classification framework. The anger vs. neutral emotion classification
was studied, particularly in the context of interactive voice response systems
with specific application to call centers in [19]. 37 prosody features related to
pitch, energy, and duration were used as features, and for classification neural
networks, support vector machines (SVM), and KNN were applied. With the
most significant feature set of 19 features, the best recognition accuracy about
90% was achieved using SVMs. In another study, agitation vs. calm emotion clas-
sification was performed with KNN, ANN, and set of experts [14]. “Agitation”
included happiness, anger, and fear, and “calm” comprised neutral, and sadness
emotional states. Pitch, energy, speaking rate, formants, and their bandwidths
were used as features, which resulted in an accuracy of 77%.

However, commonly used features and classifiers are sensitive towards noise.
In this work, a system overcoming these issues is targeted. Furthermore, clas-
sifiers still require time to classify the utterances as they rely on statistics of
the features and are computationally intensive. Here we use a special charac-
teristic of long term modulation spectrum, which reflects syllabic and phonetic
temporal structures of speech [5,7]. Recently, a novel recurrent neural network
(RNN) called echo state network (ESN) is developed. An ESN has an easy train-
ing algorithm, where only the output weights are to be adjusted. The basic idea
of ESN is to use a Dynamic Reservoir (DR), which contains a large number of
sparsely interconnected neurons with non-trainable weights. The previously men-
tioned features are used as inputs to an ESN classifier. Since, the only weights
that need to be adjusted in an ESN are the output weights, the training is not
computationally expensive using the direct pseudo inverse calculation instead of
gradient descent training. The performance is close to real-time, as the decisions
are made on short-segments of the signal (100 ms), rather than over the entire
utterance. This is of great advantage since emotions are constantly changing and
aggregating statistics of pitch or other similar features may not suffice [17]. An

Real-Time Emotion Recognition from Speech Using Echo State Networks 207

example of a scenario where emotions change rapidly can be found in [15]. In
this scenario a tennis player feels a piercing pain in his lower back and he first
turns around clenching his fist and feeling angry, but as he sees that a woman in
a wheelchair hit him his feelings changed to sadness and sympathy. This small
example illustrates the possible rapid changes of how we value situations. There-
fore, it is necessary to build a system that does not need to aggregate information
over several seconds, but is able to classify emotions close to real time. In this
work we present a feature extraction system that extracts after a lead time of
400 ms feature vectors with a frequency of 25 Hz, which is sufficient for emotion
recognition in many applications.

The paper is organized and presented in four sections: Section 2 gives an
overview of the database used for experiments, Sect. 3 describes the feature
extraction, Sect. 4 introduces the echo state networks used for classifictation,
Sect. 5 presents the experiments and results, and finally Sect. 6 concludes.

2 Database Description

The Berlin Database of Emotional Speech is used as a test bed for our approach.
This corpus is a collection of around 800 utterances spoken in seven different
emotions: anger, boredom, disgust, fear, happiness, sadness, and neutral [1]. The
database is publicly available at http://pascal.kgw.tu-berlin.de/emodb/.
Ten professional actors (five male and five female) read the predefined utter-
ances in an anechoic chamber, under supervised conditions. The text was taken
from everyday life situations, and did not include any emotional bias. The ut-
terances are available at a sampling rate of 16 kHz with a 16 bit resolution and
mono channel. A human perception test to recognize various emotions with 20
participants resulted in a mean accuracy of around 84% [1].

3 Feature Extraction

Short term analysis of the speech signal, such as extracting spectral features from
frames not more than several milliseconds, dominates speech processing for many
years. However, these features are strongly influenced by environmental noise
and are therefore unstable. In [8], it is suggested to use the so called modulation
spectrum of speech to obtain information about the temporal dynamics of the
speech signal to extract reliable cues for the linguistic context. Since emotion in
speech is often communicated by varying temporal dynamics in the signal the
same features are used to classify emotional speech in the following experiments
[17].

The proposed features are based on long term modulation spectrum. In this
work, the features based on slow temporal evolution of the speech are used to
represent the emotional status of the speaker. These slow temporal modulations
of speech emulate the perception ability of the human auditory system. Ear-
lier studies reported that the modulation frequency components from the range

http://pascal.kgw.tu-berlin.de/emodb/

208 S. Scherer et al.

Fig. 1. Schematic description for feature extraction

between 2 and 16 Hz, with dominant component at around 4 Hz , contain impor-
tant linguistic information [5,7,10]. Dominant components represent strong rate
of change of the vocal tract shape. This particular property, along with the other
features has been used to discriminate speech and music [16]. In this work, the
proposed features are based on this specific characteristic of speech, to recognize
the emotional state of the speaker.

The block diagram for the feature extraction for a system to recognize emo-
tions is shown in Fig. 1. The fast Fourier transform (FFT) for the input signal
x(t) is computed over N points with a shift of n samples, which results in a N

2
dimensional FFT vector. Then, the Mel-scale transformation, motivated by the
human auditory system, is applied to these vectors. The Mel-filter bank with
eight triangular filters Hi[k], is defined by:

Hi[k] =

⎧
⎪⎨

⎪⎩

2(k−bi)
(di−bi)(ci−bi)

bi ≤ k ≤ ci

2(di−k)
(di−bi)(di−ci)

ci ≤ k ≤ di

, (1)

where i = 1, ..., 8 indicates the index of the i-th filter. bi and di indicate the fre-
quency range of filter Hi and the center frequency ci is defined as ci = (bi+di)/2.
These ranges are equally distributed in the Mel-scale, and the corresponding fre-
quencies bi and di are listed in Table 1. For k < bi and k > di Hi[k] = 0.

Real-Time Emotion Recognition from Speech Using Echo State Networks 209

Table 1. Start and end frequencies of the triangular Mel-filters

Band Start Freq. (Hz) End Freq. (Hz)

1 32 578
2 257 964
3 578 1501
4 966 2217
5 1501 3180
6 2217 4433
7 3180 6972
8 4433 8256

Band:1

50 100 150

10

20

30

40

50

Band:2

50 100 150

10

20

30

40

50

Band:3

50 100 150

10

20

30

40

50

Band:4

50 100 150

10

20

30

40

50

Fig. 2. Modulation spectrum for the first four bands of a single angry utterance. The
x-axis represents the time scale, in frames and the y-axis, the frequency in Hz.

For each of the bands, the modulations of the signal are computed by taking
FFT over the P points, shifted by p samples, resulting in a sequence of P

2
dimensional modulation vectors. Most of the prominent energies can be observed
within the frequencies between 2 - 16 Hz. Figure 2 illustrates the modulation
spectrum based energies for a single angry utterance, for the values N = 512,
n = 160, P = 100 and p = 1 for the first four bands. For the classification task
following values were used: N = 1600, n = 640, P = 10, p = 1. Since the signal
is sampled with 16 kHz, N corresponds to 100 ms and n to 40 ms resulting in
a feature extraction frequency of 25 Hz. According to the window size P a lead
time of 400 ms is necessary. Therefore, one feature vector in the modulation
spectrum takes 400 ms into account with an overlap of 360 ms, due to p.

4 Echo State Networks

Feed forward neural networks have been successfully used to solve problems that
require the computation of a static function, i.e. a function whose output depends
only upon the current input. In the real world however, many problems cannot
be solved by learning a static function because the function being computed
may produce different outputs for the same input if it is in different states. Since

210 S. Scherer et al.

Fig. 3. Basic architecture of ESN. Dotted arrows indicate connections that are possible
but not required.

expressing emotions is a constantly changing signal, emotion recognition falls
into this category of problems. Thus, to solve such problems, the network must
have some notion of how the past inputs affect the processing of the present
input. In other words, the network must have a memory of the past input and
a way to use that memory to process the current input. This limitation can
be rectified by the introduction of feedback connections in the network. The
class of Neural Networks which contain feedback connections are called RNNs.
In principle RNNs can implement almost arbitrary sequential behavior, which
makes them promising for adaptive dynamical systems. However, they are often
regarded as difficult to train. Using ESNs only two steps are necessary for train-
ing: First, one forms a DR, with input neurons and input connections, which
has the echo state property. The echo state property says: “if the network has
been run for a very long time, the current network state is uniquely determined
by the history of the input and the (teacher-forced) output.” [9]. According to
experience, it is better to ensure that the internal weight matrix has maximum
eingenvalue |λmax| < 1. Second, one attaches output neurons to the network and
trains suitable output weights.

As presented in (Fig. 3), we consider a network with K inputs, N internal
neurons and L output neurons. Activations of input neurons at time step n
are U(n) = (u1(n), . . . , uk(n)), of internal units are X(n) = (x1(n), . . . , xN (n)),
and of output neurons are Y (n) = (y1(n), . . . , yL(n)). Weights for the input
connection in a (NxK) matrix are W in = (win

ij), for the internal connection in
a (NxN) matrix are W = (wij), and for the connection to the output neurons
in an L x (K + N + L) matrix are W out = (wout

ij), and in a (NxL) matrix
W back = (wback

ij) for the connection from the output to the internal units.
The activation of internal and output units is updated according to:

X(n + 1) = f(W inU(n + 1) + WX(n) + W backY (n)) (2)

Real-Time Emotion Recognition from Speech Using Echo State Networks 211

where f = (f1, . . . , fN) are the internal neurons output sigmoid functions. The
outputs are computed according to:

Y (n + 1) = fout(W out(U(n + 1), X(n + 1), Y (n))) (3)

where fout = (fout
1 , . . . , fout

L) are the output neurons output sigmoid functions.
The term (U(n + 1), X(n+ 1), Y (n)) is the concatenation of the input, internal,
and previous output activation vectors. The idea of this network is that only the
weights for connections from the internal neurons to the output (W out) are to
be adjusted.

Here we present briefly an off-line algorithm for the learning procedure:

1. Given I/O training sequence (U(n), D(n))
2. Generate randomly the matrices (W in, W, W back), scaling the weight matrix

W such that it’s maximum eingenvalue |λmax| ≤ 1.
3. Drive the network using the training I/O training data, by computing

X(n + 1) = f(W inU(n + 1) + WX(n) + W backD(n)) (4)

4. Collect at each time the state X(n) as a new row into a state collecting
matrix M , and collect similarly at each time the sigmoid-inverted teacher
output tanh−1D(n) into a teacher collection matrix T .

5. Compute the pseudo inverse of M and put

W out = (M+T)t (5)

t: indicates transpose operation.

For exploitation, the trained network can be driven by new input sequences and
using the equations (2) and (3).

5 Experiments and Results

All the experiments were carried out on the German Berlin Database of Emo-
tional Speech, which is described in Sect. 2. The utterances comprising anger
and neutral are specifically used with regard to the most important task in call
center applications, where it is necessary to recognize angry customers for the
system to react properly.

In the first experiment especially the real-time recognition capability of the
ESN is tested. After thorough tuning the following parameters revealed optimal
results. A randomly initialized network of 500 neurons was used. The connec-
tivity within the network was 0.5 which indicates that 50% of the connections
were set within the network. Additionally, the spectral width λmax was set to
0.2. Figure 4 (a) shows the cumulative sums over frame wise decisions of three
different utterances taken from the first fold of the 10 fold cross validation ex-
periment. The vertical bars represent borders of single utterances taken from
the database. The ESN needs some time to adapt to the new portrayed emotion

212 S. Scherer et al.

580 600 620 640 660 680 700 720 740
0

0.2

0.4

0.6

0.8

1

(a)

cu
m

m
ul

at
iv

e
su

m

Anger
Neutral

580 600 620 640 660 680 700 720 740

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

frame number

E
S

N
 o

ut
pu

t

(b)

Teacher

ESN output
Anger votes

Neutral votes

Fig. 4. Example results of ESN generalization behavior: (a) cumulative sum over frame
wise decisions; (b) median filtered ESN output with superimposed plotted frame wise
decisions and teacher signal

in the following utterance. However, after only a few frames the ESN achieves
adoption and recognizes the correct emotion fast. The output of the ESN counts
as a vote for anger if the sign of the output is + and a vote for neutral if it is
−. It is seen that the cumulative sum of the correct emotion is above the other
only a few frames after an emotional shift and hardly any errors are made in
most of the cases. At every point in time a possible shift from neutral to angry
and vice versa is possible. Only once in the 10 folds of the cross validation the
correct emotion is overruled by around 52% of the votes, leading to an accuracy
of more than 99%. In every other case the correct emotion wins at least at the
end of an utterance, most of the cases behave similarly to the three in Fig. 4
(a). In Fig. 4 (b) the dashed line corresponds to the median filtered ESN output
signal. The median filter used had the magnitude 10. However, the circles and

Real-Time Emotion Recognition from Speech Using Echo State Networks 213

580 600 620 640 660 680 700 720 740
0

0.2

0.4

0.6

0.8

1

(a)

cu
m

m
ul

at
iv

e
su

m

580 600 620 640 660 680 700 720 740

−1

−0.5

0

0.5

1

frame number

N
N

 o
ut

pu
t

(b)

Anger
Neutral

Teacher
Anger votes
Neutral votes

Fig. 5. Example results of NN generalization behavior: (a) cumulative sum over frame
wise decisions; (b) frame wise decisions with superimposed plotted teacher signal

crosses correspond to the frame wise decisions not the median filtered output in
order to show the real-time performance of the network. Additionally, the plot
of the ESN output is superimposed by the teacher signal. Each circle or cross
that does not lie on the solid line resembles an error of the network on a single
frame. These errors may occur, but oscillating outputs could just be filtered out
and only if a series of the same decisions follow each other an emotion will be
recognized in future applications.

In Fig. 5 (a) the cumulative sums over the frame wise decisions of a simple
NN classifier are shown. In most of the cases the NN errs more often than the
ESN. This may be the result of the ESN’s capability to take earlier frames
into account. Due to the recurrent architecture of the ESN it is possible to
“keep several frames in mind”. In a similar way HMMs are capable to process
sequences of frames. The cumulative sums of the wrong emotion overruled the
correct emotion in the 10 fold cross validation 6 times using the NN classifier.
Furthermore, the calculation of the nearest neighbor is far more computationally
expensive as the output for a single frame of the ESN. In Fig. 5 (b) again circles
or crosses not lying on the line resembling the teacher signal count as errors. To
be able to calculate the outputs in real-time it would be necessary to reduce the
search space for the NN classifier. For example, by using a clustering method
such as Learning Vector Quantization (LVQ) or K-Means. However, using these
methods may result in more errors.

214 S. Scherer et al.

Table 2. Frame wise error rate of the two classifiers according to differing conditions
of noise

Type of Noise Frame wise error rates
ESN NN

no noise 0.15 0.21
coffee machine 0.14 0.23

office 0.16 0.22
vacuum cleaner 0.16 0.23

inside car 0.18 0.26
city/street 0.18 0.27

In a second experiment we added different amounts of noise to the audio
signals in order to check whether the ESN or the NN are capable of dealing
with noise and how the classification performance develops. Theoretically the
modulation spectrum features should be quite stable towards noise, since only
voice relevant frequencies pass through the Mel filtering. Additionally, it is pos-
sible to compensate noise using ESNs [9]. Table 2 shows the recognition results
adding noise to the audio signal. The error rates correspond to the average rate
of misclassified frames. In the first row no additional noise was added. In the
following rows the amount of noise slowly increases from a quiet coffee machine
up to noise recorded in Helsinki on a sidewalk. The noise of the coffee machine is
mostly due to dripping water. The office environment corresponds to people typ-
ing, chatting in the background, and copying some papers. The vacuum cleaner
is a very constant but loud noise. Inside the car mostly the engine of the own car
is heard. The last type of noise comprises passing trucks, cars, motorbikes, and
people passing by. All the noise was added to the original signal before feature
extraction. The audio material was taken from the homepage of the “Freesound
Project”1. It is seen that the results using modulation spectrum based features
are quite robust using both classifiers. However, the recognition stays more sta-
ble using the ESN, which confirms the abilities of the ESN to compensate noise
to a certain amount.

6 Conclusions

This paper presented an approach towards recognizing emotions from speech
close to real-time. Features motivated by the human auditory system were used
as input for an ESN. The real-time recognition performance of the network in
one of the most important tasks in automatic call centers is impressive. Fur-
thermore, the utilized features as well as the ESN are very stable towards noise
of different types, like cars, office environment, or a running vacuum cleaner.
The data was tested using a standard emotional speech database. However, the
recognition task was rather limited and could be extended further to recognize
1 Data is freely available: http://freesound.iua.upf.edu/

http://freesound.iua.upf.edu/

Real-Time Emotion Recognition from Speech Using Echo State Networks 215

various other emotions such as happiness, fear, disgust, and sadness, and to-
wards the classification of real-world data. In earlier work, these emotions were
recognized using additional feature types and multi classifier systems [18]. In this
work emotions can not be recognized in real-time, which is a major drawback as
it was illustrated in an example in this paper. However, this could be improved
using ESNs. These issues will be studied in the future.

Acknowledgements

This work is supported by the competence center Perception and Interactive
Technologies (PIT) in the scope of the Landesforschungsschwerpunkt project:
“Der Computer als Dialogpartner: Perception and Interaction in Multi-User En-
vironments” funded by the Ministry of Science, Research and the Arts of Baden-
Württemberg.

References

1. Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W., Weiss, B.: A database of
german emotional speech. In: Proceedings of Interspeech 2005 (2005)

2. Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W.,
Taylor, J.G.: Emotion recognition in human-computer interaction. IEEE Signal
Processing Magazine 18(1), 32–80 (2001)

3. Dellaert, F., Polzin, T., Waibel, A.: Recognizing emotion in speech. In: Proceedings
of ICSLP, pp. 1970–1973 (1996)

4. Devillers, L., Vidrascu, L., Lamel, L.: Challanges in real-life emotion annotation
and machine learning based detection. Neural Networks 18, 407–422 (2005)

5. Drullman, R., Festen, J., Plomp, R.: Effect of reducing slow temporal modulations
on speech reception. Journal of the Acousic Society 95, 2670–2680 (1994)

6. Fragopanagos, N., Taylor, J.G.: Emotion recognition in human-computer interac-
tion. Neural Networks 18, 389–405 (2005)

7. Hermansky, H.: Auditory modeling in automatic recognition of speech. In: Pro-
ceedings of Keele Workshop (1996)

8. Hermansky, H.: The modulation spectrum in automatic recognition of speech. In:
Proceedings of IEEE Workshop on Automatic Speech Recognition and Understand-
ing (1997)

9. Jaeger, H.: Tutorial on training recurrent neural networks, covering bppt, rtrl,
ekf and the echo state network approach. Technical Report 159, Fraunhofer-
Gesellschaft, St. Augustin Germany (2002)

10. Kanederaa, N., Araib, T., Hermansky, H., Pavele, M.: On the relative importance of
various components of the modulation spectrum for automatic speech recognition.
Speech Communications 28, 43–55 (1999)

11. Lee, C.M., Yildirim, S., Bulut, M., Kazemzadeh, A., Busso, C., Deng, Z., Lee, S.,
Narayanan, S.S.: Emotion recognition based on phoneme classes. In: Proceedings
of ICSLP 2004 (2004)

12. Nicholson, J., Takahashi, K., Nakatsu, R.: Emotion recognition in speech using
neural networks. Neural Computing and Applications 9, 290–296 (2000)

216 S. Scherer et al.

13. Oudeyer, P.-Y.: The production and recognition of emotions in speech: features
and algorithms. International Journal of Human Computer Interaction 59(1-2),
157–183 (2003)

14. Petrushin, V.: Emotion in speech: recognition and application to call centers. In:
Proceedings of Artificial Neural Networks in Engineering (1999)

15. Picard, R.W.: Affective Computing. MIT Press, Cambridge (2000)
16. Scheirer, E., Slaney, M.: Construction and evaluation of a robust multifeature

speech/music discriminator. In: Proceedings of ICASSP, vol. 1, pp. 1331–1334
(1997)

17. Scherer, K.R., Johnstone, T., Klasmeyer, G.: Affective Science. In: Handbook of
Affective Sciences - Vocal expression of emotion, pp. 433–456. Oxford University
Press, Oxford (2003)

18. Scherer, S., Schwenker, F., Palm, G.: Classifier fusion for emotion recognition from
speech. In: Proceedings of Intelligent Environments 2007 (2007)

19. Yacoub, S., Simske, S., Lin, X., Burns, J.: Recognition of emotions in interactive
voice response systems. In: Proceedings of Eurospeech 2003 (2003)

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 217–227, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Sentence Understanding and Learning of New Words
with Large-Scale Neural Networks

Heiner Markert, Zöhre Kara Kayikci, and Günther Palm

University of Ulm
Institute of Neural Information Processing

89069 Ulm, Germany
{heiner.markert,zoehre.kara,guenther.palm}@uni-ulm.de

http://www.informatik.uni-ulm.de/neuro/

Abstract. We have implemented a speech command system which can under-
stand simple command sentences like “Bot lift ball” or “Bot go table” using
hidden Markov models (HMMs) and associative memories with sparse distrib-
uted representations. The system is composed of three modules: (1) A set of
HMMs is used on phoneme level to get a phonetic transcription of the spoken
sentence, (2) a network of associative memories is used to determine the word
belonging to the phonetic transcription and (3) a neural network is used on the
sentence level to determine the meaning of the sentence. The system is also able
to learn new object words during performance.

Keywords: Associative Memories, Hidden Markov Models, Hebbian Learning,
Speech Recognition, Language Understanding.

1 Introduction

A variety of speech recognition systems are currently in use in applications such as
command & control, data entry, and document preparation. In this study, we have
applied neural associative memories to a speech processing system in a hybrid ap-
proach with hidden Markov models (HMMs) [1][2]. The system is able to recognize
spoken command sentences such as “Bot show plum” or “Bot pick blue plum”. Those
sentences are processed in three stages: At the first stage, the auditory signal is trans-
formed into a sequence of corresponding triphones via a HMM based triphone recog-
nizer. At the second stage, the generated stream of triphones is forwarded to a word
recognition module, which consists of a number of binary heteroassociative memories
and is able to recognize single words. The module determines the best matching
words from the triphone data. As last processing step, the words are forwarded to
a sentence recognition module which parses the sentence with respect to a given
grammar. After successful processing, each word in the sentence is labeled with its
grammatical role, giving a relatively straightforward representation of the meaning of
the sentence.

The system is able to learn new object words. Learning is triggered by the special
phrase “This is” followed by a novel word, e.g. “This is lemon”. After learning, the

218 H. Markert, Z.K. Kayikci, and G. Palm

system is able to understand this new object word like any other object and can
successfully process sentences like “Bot show lemon” or “Bot pick yellow lemon”.

2 Neural Associative Memories

A neural associative memory (NAM) is a single layer neural network which maps a
set of input patterns to a set of corresponding output patterns. The patterns are binary
and sparsely coded. A NAM can be represented as a synaptic connectivity matrix.
Pairs of patterns are stored in the binary matrix using clipped binary Hebbian learning
[3][4]. In case of autoassociation, input and output patterns are identical. Autoassocia-
tion allows for pattern completion, fault tolerance and long-term activation of patterns
via feedback links. Heteroassociation is used to map one pattern onto another (e.g. to
map a pattern “X” to a representation “Y”). They are also often used to translate be-
tween different neural coding schemes of different populations.

We have decided to use Willshaws model of associative memory [5][6] as the ba-
sic model. Different retrieval strategies are employed in different parts of the system.
One of these strategies is one step retrieval with threshold [4][7], where the threshold
is set to a global value:

() ΘWX=Y j
kk

j ≥⇔1 , (1)

where Θ is the global threshold, X is the input, Y is the output and W is the matrix of
synaptic strengths. A special case of this strategy is the Willshaw strategy, where the
threshold is set to the number of ones in the binary input vector X.

In more complex memories we also use the so-called spike counter model [8].
With this model, the network is simulated in global steps, where in each global step a
complete retrieval is calculated by each of the associative memories. In contrast to
Willshaws model [5][6] which interprets incoming activation as membrane potential
values, incoming activation levels per neuron are interpreted as value of the mem-
brane potentials derivative in the spike counter model. Thus, if a neuron receives
strong input, its membrane potential is rising fast, while with low input, the mem-
brane potential is increasing only slowly. In this simple model, the membrane poten-
tial is modified linearly. The neurons spike whenever the membrane potential reaches
a given threshold and the membrane potential is reset to zero after the spike is emit-
ted. In each retrieval, every neuron is allowed to spike at most twice and the retrieval
is stopped when no more neuron is able to spike (which happens either when each
neuron has spiked twice or there is no more neuron left that receives any positive
postsynaptic input). The spike patterns are then forwarded through the heteroassocia-
tive connections and the next global time step starts.

3 The System

The system is composed of a chain of three modules. The first module is a triphone
recognizer based on hidden Markov models, which is responsible for generating a
sequence of triphones corresponding to the spoken command sentence. The second
module is an isolated word recognizer from which single words are retrieved. The last

 Sentence Understanding and Learning of New Words 219

Audio Input

Triphones

Triphone Recognizer

Isolated Word Recognition

Sentence Recognition

Words

Sentence

Fig. 1. Overview of the language processing system. The three main components of the system
are connected in a feed-forward manner. Besides the triphone recognizer, all boxes are imple-
mented as neural networks. Communication between the boxes is based on neural representa-
tions that allow ambiguities to be forwarded between the different units of the system. In case
the word recognizer cannot decide between “ball” and “wall”, a superposition of both words is
sent to the sentence recognizer which can then use additional contextual input to resolve the
ambiguity (see examples in text below).

module in the system is the sentence recognition network which analyzes the re-
trieved words with respect to simple grammar rules. Fig. 1 shows a block diagram of
the system.

The triphone recognizer module, based on hidden Markov models, receives audio
input via a microphone and converts it to a stream of triphones. This stream is then
transfered to the isolated word recognizer module which extracts words from the
stream of triphones. Afterwards, the output of the word recognizer is sent to the sen-
tence recognition module which parses the stream of words against a given grammar
and assigns grammatical roles to the words. The last two modules are networks of
neural associative memories.

In the following, the three parts are described in more detail.

3.1 Triphone Recognizer

Speech Material. To train triphone HMMs, the training data set of TIMIT continuous
speech corpus without the “SA”-type sentences has been used [9]. TIMIT is manually
labeled and includes time-aligned, manually verified phonetic and word segmenta-
tions. The original set of 61 phonemes was reduced to a set of 39 phonemes in this
study. The TIMIT training data consists of 462 speakers and 1716 sentences.

We added our own recordings to the training material in order to adapt the system
to our scenario. A set of 105 different sentences with a vocabulary of 43 words has
been recorded from four different speakers of our institute. From this data, 70 sen-
tences were used for training and the remaining 35 sentences were used for testing.
For training and testing the same speakers were used. The total number of words in
the test set of our own data is 504, the training set consists of 1068 words in total.

220 H. Markert, Z.K. Kayikci, and G. Palm

Hidden Markov Models and Language Models. The HMMs used in the triphone
recognizer utilize three-state continuous 8-Gaussian triphone models, i.e, a set of
7421 triphones that are seen in the training set of TIMIT speech corpus and in our
own speech data consisting of 105 sentences. Word internal models are used to de-
termine the word boundaries in the sentence. The models are trained using the deci-
sion tree based state tying procedure using HTK [2]. The triphone models are trained
with TIMIT speech corpus. To adapt the HMMs to our scenario, the models are also
trained with our own training data.

To recognize the triphone sequence for a given sentence, a bigram language model
on triphone level is also used, which is created with respect to the triphone transcrip-
tions of the sentences in the training set of TIMIT speech corpus and our speech data.

3.2 Isolated Word Recognition

The isolated word recognition module consists of five heteroassociative memories.
Fig. 2 shows the general structure of the module. Each box denotes a heteroassocia-
tive memory, the arrows correspond to auto- or heteroassociative connections. Due to
the large number of triphones, we decided to use diphones as basic processing units in
the neural network for isolated word recognition. This requires a translation of the
triphones from the HMMs into diphones before they are processed by the word rec-
ognition network. The total number of diphones used in the memories is 1600.

HM1

HM2

HM3 HM5

HM4

Input

Outpu
t

Fig. 2. Isolated word recognition module. It consists of five heteroassociative memories (de-
picted as gray boxes) that are connected by auto- or heteroassociations respectively (arrows).
The input diphones extracted from the HMMs is sent to HM1, while the output words are taken
from HM4 after a complete word has been processed (see text for details).

The word boundaries are determined with respect to diphones in the input sequen-
ce: The HMMs detect diphones due to a language model which knows about common
di- and triphones. In our experiments word boundaries were recognized quite stable
using this approach.

The tasks of the heteroassociative memories HM1 through HM5 are described in
more detail in the following:

HM1 is a matrix of dimension nL × , where L is the length of the input code vector
and n is the number of diphones, (n=1600 in our system). The memory receives input
diphones from the HMMs and presents them to the word recognition network as 1 out
of n code.

HM2 has the same structure as HM1, but receives diphones expected as input in the
next step (see HM5 below).

 Sentence Understanding and Learning of New Words 221

HM3 is a matrix of dimension nn × . It stores diphone transitions of the words in
the vocabulary.

The memories HM1, HM2 and HM3 can be regarded as one combined memory
HM*. In each retrieval step, HM1 represents the diphones from the HMMs, while HM2
and HM3 represent the diphones predicted by the network from the previous input.
The outputs of the three memories are summed up such that the influence of HM2 and
HM3 is reduced compared to that of HM1, giving the acoustic input a higher priority.
After summation, a global threshold is applied.

The network generates a list of already heard diphones and presents it to memory
HM4. Meanwhile, the currently heard diphone(s) are presented to memory HM5.

HM4 is a matrix of dimension Mn × , where M is the number of output units,
(M=200). The memory is used to store all words known to the system and to activate
those that match the current list of diphones, generating a list of word hypotheses.
During retrieval, the activated words are forwarded to memory HM5. The output pat-
tern is a randomly generated 5 out of 200 code vector.

HM5 is used to predict the diphones expected in the next step. It takes the word hy-
potheses from HM4 and the currently heard diphone into account and tries to predict
which diphones are to be expected in the next step.

HM5 is organized in columns. Each column belongs to one specific diphone. For
each word containing that diphone, the corresponding column stores a heteroassocia-
tion from the word representation (input) to the diphone following the column-
specific diphone in that word (output). By exciting only those columns that belong to
diphones matching the current output of memory HM*, HM5 generates a prediction
which diphones are about to enter the network in the next time step.

In praxis, the input to HM5 is not a single word but a superposition of possible
words generated in HM4, thus, the output is usually not unique but also a superposi-
tion of possible diphones. Furthermore it is possible that the same diphone occurs
twice in a word and thus the output can be ambiguous even if the memory is ad-
dressed with a single word.

Retrieval. When input is given to the network as a sequence of triphones from the
HMMs, e.g. “sil b+ow b-ow+t ow-t sh+ow sh-ow b+l b-l+uw l-uw p+l p-l+ah l-ah+m
ah-m sil” for the spoken sentence “bot show blue plum”, the first step is to divide it
into subsequences for isolated words with respect to diphones, e.g. “sil b+ow b-ow+t
ow-t / sh+ow sh-ow ...”, where “/” denotes the word boundaries. Afterwards, the sub-
sequence of triphones is decomposed into diphones, because the following parts of the
network are processing diphones to limit the use of memory resources.

For the subsequence “b+l l+uw uw”, firstly the diphone “b+l” enters the network.
For the first diphone of each word, the memories HM2 and HM3 are not activated
and the output of HM* is the input diphone itself. The resulting diphone is then for-
warded to HM4 to generate a superposition of the words which contain the diphone
“b+l”. For the first diphone “b+l”, the words “blue”, “black” and “table” are acti-
vated simultaneously. The output words from HM4 are then sent to HM5 to predict the
next possible diphones.

Fig. 3 illustrates the module when processing the last two diphones. In the next
step, HM1 receives the second diphone “l+uw”, HM5 predicts the next diphones and

222 H. Markert, Z.K. Kayikci, and G. Palm

HM1

HM2

Input

Output

HM4

"blue"

"l+uw"
"l+ae"

"l"

HM5
"l+uw"
"l+ae"

"l"

"b+l"*

"blue"*
"black"*
"table"*

"b+l"*
"l+uw"

"l+uw"

HM3
"l+uw"
"l+ae"

"l"
Output:
"l+uw"

"b+l"*

"l+uw" "l+ae" "l"

"l+uw"

HM1

HM2

Input

Output

HM4

"blue""uw"

"uw"

HM5

"uw"

"l+uw"*

"blue"*

"b+l"**
"l+uw"*

"uw"

"uw"

HM3

"uw"

Output:
"uw"

"l+uw"*

"uw"

Step 2 (a) Step 3 (b)

Fig. 3. The isolated word recognition module when processing (a) the second diphone “l+uw”
and (b) the last phoneme “uw”. The text on the arrows denotes the input that the areas receive
via the corresponding connection. * means that the input is from the previous step (delay), **
means delay by two time steps.

forwards them to HM2. HM3 takes the output diphones of HM* in the previous step as
input. The resulting diphone “l+uw” in HM* is added to the diphone in the first re-
trieval step and forwarded to HM4. In HM4, the word “blue” is activated. In the fol-
lowing step, the last phoneme “uw” is processed by the network in the same way.

After retrieving a complete word, the module is reset to its initial state in order to
start with the next word in the input stream. In particular, to “reset” the module means
to delete the list of already processed diphones that is fed into HM4. After successfully
retrieving a word it is forwarded to the sentence recognition system.

The experimental result on our test set (see Section 3.1) shows that our system
slightly outperforms the adapted HMMs: the system recognized 98% of the words
(2% word level error), while a set of adapted HMMs recognized 96% of the words
correctly. Due to the fault-tolerance property of associative memories, the system is
able to deal with spurious inputs, such as incorrectly recognized subword units. Thus,
the correct word can be retrieved in spite of possible a corresponding noisy or incom-
plete subword-unit transcriptions to a certain degree.

3.3 Sentence Recognition

The sentence recognition network parses the stream of words detected by the isolated
word recognizer with respect to a certain grammar. Fig. 4 gives a short overview of
this module.

 Sentence Understanding and Learning of New Words 223

Fig. 4. The sentence recognition network. Each box corresponds to one autoassociative mem-
ory, arrows denote heteroassociations. Boxes with circular arrows use the autoassociative short-
term memory (e.g. they stabilize patterns in time).

The module is composed of several autoassociative memories (depicted as boxes in
Fig. 4) that are connected by heteroassociations (arrows in Fig. 4). Heteroassociations
are used to exchange activation between the associative memories and to translate
between the different neural representations used in different autoassociative memo-
ries. After a sentence is successfully processed, the sentence module has determined
the type of sentence (e.g. Subject-predicate-object, SPO) and assigned to each word
its grammatical role.

The memories in the sentence module use the so called “spike counter model” of
associative memory [10]. Each memory stores a set of different patterns (assemblies).
To allow for easy display of the network state, each pattern has an associated name
stored in a simple look-up table. Whenever a network activity is displayed or a name
of a pattern is mentioned, we really mean that the underlying group of neurons is acti-
vated.

The different memories in the module serve the following purposes:
A1 is the input memory. Activation from the isolated word recognizer arrives here.

This memory is only required to allow for developing and testing the module indi-
vidually. A1 holds all words known to the system in the 5 out of 200-code from the
isolated word recognition module.

A2 and A3 distinguish between semantical elements (words, A3) and syntactical
elements like word boundary signals and sentence end markers (arbitrary patterns,
A2) respectively.

A4-S is a sequence memory. Sequences are realized by an additional hetero-
association from the memory onto itself that stores the state transitions of the
sequence elements. The heteroassociation is delayed and weaker than the auto-
association, so normally an active pattern is stable. With short inhibition, the autoas-
sociation can be inhibited and the heteroassociation, which is still effective because of
its higher delay, will activate the next pattern in the sequence.

A4-S holds the grammatical information, i.e. the sentence types that are known to
the system. It stores sequences like S->P->O->OK_SPO or S->P->A->O->A->O,
where S means subject, P means predicate, A adjective and O object.

A5S, A5P, A5O1a, A5O1, A5O2a, A5O2: These memories hold the subject, predi-
cate, attribute to first object, first object, attribute to second object and second object
of the sentence, respectively. They are subsequently filled while the sentence is

224 H. Markert, Z.K. Kayikci, and G. Palm

parsed against the grammar. Because these memories use a short term mechanism, the
words assigned to them are active for a longer period of time, allowing to access the
information later, e.g. for action planning.

The other fields (Sentence, Quality, Learning) are additional status information
fields that can distinguish between only two states. The Sentence-memory activates a
“complete”-state when a complete sentence was correctly parsed, the Quality-memory
activates a “good”-pattern when there were no ambiguities on single word level (see
below) and the Learning-box activates a special learn signal when a “this is”-sentence
is recognized.

4 Disambiguation

The system is able to deal with ambiguities on the single word level. When a word
was not uniquely understood by the HMM (e.g. an ambiguity between “ball” and
“wall”), the isolated word recognition module is not able to assign a unique interpre-
tation to the stream of triphones generated by the HMMs. In this case, a superposition
of several words that all match the stream closely is activated and forwarded to the
sentence recognition network. The sentence recognizer is able to deal with that ambi-
guity and keeps it active until further context information can be used to resolve the
ambiguity. The ambiguous sentence “bot lift bwall”, where “bwall” is an ambiguity
between ball and wall, can be resolved to “bot lift ball” in the sentence processing
network because a wall is not a liftable object. To achieve this disambiguation a bidi-
rectional link between A5P and A5O1 is used, which supports matching pairs of
predicates and objects.

5 Online Learning

New object words can be learned by the system during performance without further
training the triphone models or changing the structure of the system. The online learn-
ing performance highly depends on the performance of HMMs that need to be trained
with enough speech data and have a comprehensive language model in order to enable
the HMMs to generate a plausible phonetic representation for novel words. Learning
of a new word is initiated by a sentence of the type “This is cup”, where “cup” is the
word that has to be learned. “This is” arouses the system to learn a new object word.

While learning of a novel word, in the isolated word recognition module, HM1 and
HM2 are not updated, whereas HM3 is updated according to the sequence of diphones
of the novel word. To store the new object word in HM4 and HM5, a new word vector
is randomly generated and stored in the associative memories.

The representation of the novel word is then forwarded to the sentence recognition
network. The associative memories used here employ the so called “spike counter
model” [10] which allows for automatic detection of novel address patterns. The
modules are able to measure the retrieval quality, where a low quality indicates that
the address pattern did not match any of the stored patterns closely. If this is the case
and an additional learn signal is applied to the memory, it generates a new pattern and
stores it autoassociatively. If however the address pattern matches a stored pattern

 Sentence Understanding and Learning of New Words 225

closely, no new pattern is generated even if a learn signal is applied. This ensures that
already known stimuli will be recognized. After learning a new pattern, the heteroas-
sociations between the concerned memories are updated according to a simple binary
Hebbian learning rule.

In the special case of learning new object words, the sentence recognition network
uses the phrase “This is” to determine that a new word is probably going to be
learned. If “This is” was heard, the Learning-memory (see Fig. 4) activates a special
pattern responsible for learning new object words. If this pattern is active, the neurons
emit a special learn signal to all memories in the sentence module that are concerned
with object words.

After learning a new object word, the system is able to deal with it in exactly the
same way as it deals with the vocabulary it knows from initialization. If e.g. “cup”
was learned during performance by the command “this is cup”, the system can after-
wards understand sentences like “bot show cup”, “bot lift cup” etc.

At the current state of our work, in order to demonstrate the online learning capa-
bility of the system, we initially stored 40 out of 43 words in the system and the re-
maining 3 words were used for learning during performance. This is due to the fact
that we did not yet record enough speech material for our own speakers to train the
HMMs such that they can generate plausible phonetic representation for arbitrary new
words.

6 Discussion

We have presented a system that is able to understand spoken language and to trans-
form low level subsymbolic auditory data into corresponding symbolic representa-
tions that allow for easy deduction of the meaning of the sentence.

The system is composed of three rather independent main components, the HMM
triphone recognizer, the isolated word recognizer and the grammar parser (also called
sentence recognizer). Currently, this three components are interconnected in a feed
forward manner due to the early stage of development of especially the isolated word
recognizer. In particular a feedback connection from the grammar parser to the iso-
lated word recognizer would be beneficial as a connection would allow the word rec-
ognizer to focus on words that fit for example grammatical or semantical constraints
arising while the current sentence is parsed. Although we did not yet implement this
kind of connection, we plan to add feedback connections in the near future.

The system is expected to scale well with the size of the vocabulary. It is well
known that associative memories store information efficiently in terms of storage
capacity [6][7].

The word recognition network additionally allows for different coding schemes
and subword units to be used. In particular, the latter can be either phonemes, context
dependent phonemes such as diphones or triphones, semi-syllables or syllables. The
dimensionality of the memories will then scale with respect to the number of subword
units. For the vocabularies of small size, it is convenient to work with phonemes or
diphones in heteroassociative memories instead of triphones (e.g. for a given set of 40
phonemes, the corresponding set of diphones is composed of up to 1600 diphones

226 H. Markert, Z.K. Kayikci, and G. Palm

whereas the total number of corresponding triphones is around 10000). On the other
hand, for large vocabularies it is more convenient to use triphones or semi-syllabels.

The sentence understanding network can operate using random k-out-of-n codes
for word representation and the dimensionality of the memories can be chosen such
that high storage capacity can be reached for a given vocabulary. This means in par-
ticular, that memory requirements grow less then linearly with the number of words to
be stored. For increased, more complex grammars, population A4-G has to be scaled.
Almost the same arguments apply here. Due to the efficient tree-like structure of the
grammatical representation, the network scales rather well with respect to a more
complex grammar also. The computational complexity in terms of computing time
scales basically linearly with the number of neurons in the system, as long as the
overall spike activity does not increase significantly (i.e., if the number of active one
entries in the code vectors is held constant). As additional sparseness also increases
the storage capacity, the above constraint is however fulfilled in practical systems.
Note further that the number of neurons does increase less than linearly with the size
of the vocabulary, this is also true for the computational time required.

To show the correct semantical understanding of parsed sentences by the system,
the model is embedded into a robot [11]. Therefore, the system is extended by a neu-
ral action planning part, some simple motor programs (e.g. to pan and tilt the camera)
and a RBF-based object recognition system. The scenario is a robot standing in front
of a white table with fruits lying on it, and the robot has to perform actions corre-
sponding to spoken commands. We can demonstrate that the robot is able to perform
simple actions like e.g. showing a plum by centering it in its camera image after a
corresponding command like “bot show plum” was given.

In the robotics scenario described above, the system is not only able to learn new
object words but also to bind the words to visual representations (this happens in the
action planning network) and also to learn new visual object representations and bind
them to object words (new or already known objects). This allows e.g. to generate
synonyms by introducing new object words and to bind them to an already known
visual object.

If we compare the system represented in this study with a HMM based word rec-
ognition system in terms of learning of new words, HMMs have to make some modi-
fications to the pronouncing dictionary and task grammar at each time to add a new
word. In contrast, the presented system is capable of learning new word representa-
tions by simply adding new patterns to associative memories; it does not need struc-
tural and time-consuming modifications as long as the associative memories are not
overloaded.

Our approach to language understanding should be understood in the context of a
larger model that integrates language understanding, visual object recognition, and
action planning in a functional, large-scale neural network in a robotics scenario Parts
of the presented work have been developed earlier within the MirrorBot project of the
European Union1, and results on sentence understanding [10] and the robotics appli-
cation [11] have been published earlier. Most other approaches deal only with one of
the aspects mentioned above at a time. Closely related to our work are the approaches
of Arbib [12], Roy [13], Kirchmar and Edelmann [14] and of Billard and Hayes [15].

1 See http://www.his.sunderland.ac.uk/mirrorbot/

 Sentence Understanding and Learning of New Words 227

However, to our knowledge this is the first robot control architecture including simple
language understanding, visual object recognition and action planning, that is realized
completely by neural networks [11] and that is able to resolve ambiguities and to
learn new words during performance [10]. It also represents the first real-time func-
tional simulation of populations of spiking neurons in more than ten cortex areas in
cooperation.

References

1. Rabiner, L., Juang, B.H.: Fundamentals of Speech Recognition. Prentice-Hall, Inc, Engle-
wood Cliffs (1993)

2. Young, S., et al.: The HTK Book (for HTK Version 3.2.1). Cambridge University Engi-
neering Department, Cambridge (2002)

3. Hebb, D.O.: The Organization of Behaviour. John Wiley, New York (1949)
4. Schwenker, F., Sommer, F., Palm, G.: Iterative Retrieval of Sparsely Coded Associative

Memory Patterns. Neural Networks 9, 445–455 (1996)
5. Willshaw, D., Buneman, O., Longuet-Higgins, H.: Non-holographic Associative Memory.

Nature 222, 960–962 (1969)
6. Palm, G.: On Associative Memory. Biological Cybernetics 36, 19–31 (1980)
7. Palm, G.: Memory Capacities of Local Rules for Synaptic Modification. A Comparative

Review, Concepts in Neuroscience 2, 97–128 (1991)
8. Knoblauch, A., Palm, G.: Pattern Separation and Synchronization in Spiking Associative

Memories and Visual Areas. Neural Networks 14, 763–780 (2001)
9. TIMIT Acoustic-Phonetic Continuous Speech Corpus. National Institute of Standards and

Technology, Speech Disc 1-1.1, NTIS Order No. PB91-505065 (1990)
10. Markert, H., Knoblauch, A., Palm, G.: Modelling of syntactical processing in the cortex.

Biosystems 89, 300–315 (2007)
11. Fay, R., Kaufmann, U., Knoblauch, A., Markert, H., Palm, G.: Combining Visual Atten-

tion, Object Recognition and Associative Information Processing in a Neurobotic System.
In: Wermter, S., Palm, G., Elshaw, M. (eds.) Biomimetic Neural Learning for Intelligent
Robots. LNCS (LNAI), vol. 3575, pp. 118–143. Springer, Heidelberg (2005)

12. Arbib, M.A., Billard, A., Iacoboni, M., Oztop, E.: Synthetic brain imaging: grasping, mir-
ror neurons and imitation. Neural Networks 13(8/9), 931–997 (2000)

13. Roy, D.: Learning visually grounded words and syntax for a scene description task. Com-
put. Speech Lang. 16(3), 353–385 (2002)

14. Kirchmar, J.L., Edelman, G.: Machine psychology: autonomous behavior, perceptual cate-
gorization and conditioning in a brain-based device. Cereb. Cortex 12(8), 818–830 (2002)

15. Billard, A., Hayes, G.: DRAMA, a connectionist architecture for control and learning in
autonomous robots. Adapt. Behav. J. 7(1), 35–64 (1999)

Multi-class Vehicle Type Recognition System

Xavier Clady1, Pablo Negri1, Maurice Milgram1, and Raphael Poulenard2

1 Université Pierre et Marie Curie-Paris 6, CNRS FRE 2907
Institut des Systèmes Intelligents et Robotique

2 LPR Editor - Montpellier
xavier.clady@upmc.fr

Abstract. This paper presents a framework for multiclass vehicle type
(Make and Model) identification based on oriented contour points. A
method to construct a model from several frontal vehicle images is pre-
sented. Employing this model, three voting algorithms and a distance
error allows to measure the similarity between an input instance and the
data bases classes. These scores could be combined to design a discrimi-
nant function. We present too a second classification stage that employ
scores like vectors. A nearest-neighbor algorithm is used to determine the
vehicle type. This method have been tested on a realistic data set (830
images containing 50 different vehicle classes) obtaining similar results
for equivalent recognition frameworks with different features selections
[12]. The system also shows to be robust to partial occlusions.

1 Introduction

Many vision based Intelligent Transport Systems are dedicated to detect, track
or recognize vehicles in image sequences. Three main applications can be dis-
tinguished. Firstly, embedded cameras allow to detect obstacles and to compute
distances from the equiped vehicle [15]. Secondly, road monitoring measures traf-
fic flow [2], notifies the health services in case of an accident or informes the police
in case of a driving fault. Finally, Vehicle based access control systems for build-
ings or outdoor sites have to authentify incoming (or outcoming) cars [12]. The
first application has to classify region-of-interest (ROI) in two classes: vehicles
or background. Vehicles are localized in an image with 2D or 3D bounding box
[10,15]. The second one can use geometric models in addition to classify vehicles
in some categories such sedans, minivans or SUV. These 2D or 3D geometric
models are defined by deformable or parametric vehicle templates [5,6,7].

Rather than these two systems, the third one uses often only the recognition
of a small part of vehicle : the license plate. It is enough to identify a vehicle,
but in practice the vision based number plate recognition system can provide
a wrong information, due to a poor image quality or a fake plate. Combining
such systems with others process dedicated to identify vehicle type (brand and
model) the authentication can be increased in robustness (see fig. 1). This paper
adresses the identification problem of a vehicle type from a vehicle greyscale
frontal image: the input of the system is an unknown vehicle class, that the
system has to determine from a data base.

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 228–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Multi-class Vehicle Type Recognition System 229

Fig. 1. The fusion system

Few papers deal with a similar problem. In a recognition framework for rigid
object recognition, Petrovic and Cootes [12] tested various features for vehicle
type classification. Their decision module is based on two distance measures
(with or without Principal Component Analysis pre-stage): the dot product
d = 1 − f1f2 and the Euclidean measure d = |f1 − f2|, where fi is the feature
vectors. The dot product gives slighthly outperforming results. Best results are
obtained with gradients based representations. These results can be explained
because the vehicle rigid structure is standardized by the manufacturer for each
model. The relevant information contained in contour edge and orientation is
independent of the vehicle color. Daniel T.Munroe et al [14] studied machine
learning classification techniques applied on features vectors (extracted with a
Canny edge detector). L. Dlagnekov [3] used Scale Invariant Feature Transforms
(SIFT) to compute and match keypoints. Zafar et al. [18] used a similar algo-
rithm. David A. Torres[16] extended the work of Dlagnekov by replacing the
SIFT features with features which characterize contour lines. In [9], Kazemi
et al investigated use of Fast Fourier Transforms, Discrete Wavelet Transforms
and Discrete Curvelet Transforms based image features. All these works used
gradient or contour based features.

Fig. 2. Real vehicle images with the tollgate presence

230 X. Clady et al.

In this paper, a multiclass recognition system is developed using the oriented-
contour pixels to represent each vehicle class. The system analyses a vehicle
frontal view identifying the instance as the most similar model class in the data
base. The classification is based on a voting process and a Euclidean edge dis-
tance. The algorithm have to deal with partial occlusions. Tollgates hide a part
of the vehicle (see fig. 2) and making inadequate the appearance-based methods.
In spite of tollgate presence, our system doesn’t have to change the training base
or apply time-consuming reconstruction process.

In section 2, we explain how we define a model for every class in the data base
using the oriented-contour points. Section 3 employs this model to obtain scores
measuring the similarity between the input instance and the data bases classes.
These scores could be combined to design a discriminant function. We present too
a second classification stage that employ scores like vectors. A nearest-neighbor
algorithm is used to classify the vehicle type. Results of our system are presented
in the section 4. We finish with conclusions and perspectives.

2 Model Creation

During the initial phase of our algorithm, we produce a model for all the K
vehicle types classes composing the system knowledge. The list of classes the
system is capable to recognize is called Knowledge Base (KnB). In our system,
the Knowledge Base will be the 50 vehicle type classes.

2.1 Images Databases

All ours experiments have been carried out on the Training Base (TrB) and
on the Test Base (TsB). The TrB samples (291 images) are used to produce
the oriented-contour point models of the vehicle classes. While the TsB samples
(830 images) are utilized to evaluate the performance of the classification system.
In figure 3, the upper row shows samples from TrB and in the bottom row, the
figure shows the corresponding vehicle type class of the TsB. These databases
are composed of frontal vehicle views, captured in different car parks, under
different light conditions and different points of view.

Fig. 3. In the upper row, the figure shows samples from TrB. In the bottom row, the
figure shows the corresponding vehicle type class of the TsB.

Multi-class Vehicle Type Recognition System 231

2.2 Prototype Image

We create a canonical rear-viewed vehicle image I from the four corner points
of the license plate {A,B,C,D} (see fig. 4). The image templates are called pro-
totypes and in the present work are 600 * 252 pixels (rows * columns). A ROI
defined by the points {A,B,C,D} is independent of the vehicle location in the
image and the scale (fig.4.a). In order to correct the orientation of the origi-
nal image (see example in fig.3), an affine transformation moves original points
{A,B,C,D} to the desired {A’,B’,C’,D’} reference position, considering the ve-
hicle grille and the license plate in the same plane. A license plate recognition
system provides the corners of the vehicle license plate.

(a) (b)

Fig. 4. (a) original image, (b) prototype I

The Sobel operator is used to compute the gradient’s magnitude and orienta-
tion of the greyscale prototype I (|∇gI |, φI). An oriented-contours points matrix
EI is obtained using an histogram based threshold process. Each edge point pi of
EI is considered as a vector in �3: pi=[x,y,o]’, where (x,y) is the point position,
and o is the gradient orientation of pi [11]. We sample the gradient orientations
to N bins. To manage the cases of vehicles of the same type but with differ-
ent colors, the modulus π is used instead of the modulus 2π [1]. In the present
application, N = 4.

2.3 Model Features

Oriented-Contour points features array. Each class in the KnB is repre-
sented by n prototypes in the TrB. This quantity n varies from class to class,
having some defined with one prototype only.

Superposing the n prototypes of the class k, we find an array of the redundant
oriented-contour points. This feature array of Oriented-Contour based points
models this class in the KnB. The algorithm operates the n prototypes of the
class k in the TrB by couples (having Cn,2 couples at all). Let be (Ei,Ej) a
couple of Oriented-Contour Points matrix of the prototypes 1 and 2 from the k
class. We define an 600x252xN accumulator matrix Aij and the vote process is
as follow: a) taking a point pi of Ei, we seek in Ej the nearest point pj with
the same gradient orientation; b) the algorithm increments the accumulator Aij

232 X. Clady et al.

Fig. 5. Model creation

in the middle point of pipj at the same gradient orientation; c) the procedure is
repeated for all the points pi of Ei. Considering the addition of all Aij we obtain
the accumulator array Ak: Ak =

∑
i,j Aij . The most voted points am=[x,y,o] of

Ak are selected iteratively. We impose a distance of 5 pixels between the am in
order to obtain a homogeneous distribution of the model points. We store am in
a feature array Mk. The array Mk contains the Oriented-Contour Points that
are rather stable through the n samples of the class k.

When n = 1, the accumulator matrix Ak cannot be computed: the feature ar-
ray Mk is then determined from the maximum values of the gradient magnitude
|∇gI |.

Weighted Matrix. The Chamfer distance is applied to determine the distance
from every picture element to the given Mk set (fig. 6). This figure shows the
four Rk

i Chamfer region matrix (one for each gradient orientation) obtained after
threshold the Chamfer chart matrix Dk

i with the distances smaller than r.
Two weighted regions arrays W k

+ and W k
− will be created for each class k. W k

+

is based on the Rk region matrix where each pixel point has a weight related
to the discrimination power of the corresponding oriented-contour points. Pixel

I Mk Rk
1 Rk

2

Dk Rk
3 Rk

4

Fig. 6. Obtaining Chamfer region matrix

Multi-class Vehicle Type Recognition System 233

points rarely present in the others classes obtain highest weights. We give lowest
weights to the points present in the majority of the Knowledge Base classes.

W k
+ =

1
K − 1

∑

i,i�=k

(Rk − Ri ∩ Rk)

W k
− gives a negative weight to the points of the other models which are not

present in the matrix Rk of the model k. Pixel points that are present in most
of the other classes obtain highest weight values. In the other hand, pixel points
present in few classes get lowest weight values.

W k
− = − 1

K − 1

∑

i,i�=k

(Ri − Ri ∩ Rk)

The K classes in the KnB are modelled by {M1, ..., MK}, where each Mk =
{Mk, W k

+, W k
−}.

3 Classification

This section develops the methods to classify the samples providing from the
T ∫B using the models Mk. A new instance t is evaluated on the classification
function G(t) = ArgMax{g1(t), ..., gK(t)} using the winner-take-all rule. The
example t is labelled by k ∈ K from the highest score of the gk. Two types
of matching scores compose the gk (see fig. 7). The first obtains a score based
on three kind of votes (positive, negative and class votes) for each class k. The
second score evaluates the distance between the oriented-contour points of the
model Mk to the oriented-contour points of t.

Obtaining the image prototype of the sample t from the Test Base, we calcu-
late the oriented-contour points matrix Et (section 2.2). Considering the large
number of points in Et, we have to choose a limited set of T points. The value

Fig. 7. Obtaining the discriminant function

234 X. Clady et al.

of T is a compromise between the computing time and a good rate of correct
classifications (in our algorithm, T = 3500). To select these points, we construct
a sorted list of the prototype positions (x, y, o). We sort in decreasing order, the
values of the weighted arrays W i

+ i = 1, ..., K, placing the discriminant pixels
(highest values) in the firsts positions of the list. Looking iteratively if the pixels
in the list are present in Et, we pick up the T points, and place them in Pt.

3.1 Designing the Discriminant Function

Positive votes. The methodology consists in accumulating votes for the class
k, whenever a point of Pt falls in a neighbourhood of a Mk point. We define
the neighbourhood of the point Mk as a circle of radius r around the point of
interest. This neighbourhood representation is modelled in the Chamfer regions
Rk

i . Moreover, each point of Pt votes for the class k with a different weight
depending on its value in the matrix W k

+.
The nonzero points of the dot product of Pt and W k

+ correspond to the points
of Pt, that belong to a neighbourhood of the Mk’s points. Thereafter, we cal-
culate the amount of positive votes in equation 1 where [•] is the dot product.

vk
+ =

∑

x

∑

y

∑

o

Pt • W k
+ (1)

Negative votes. The negative votes take into account the points of Pt that
did not fall into the neighbourhood of the Mk points. We punish the class k by
accumulating these points weighted by the matrix W k

−. The amount of negative
votes is defined as:

vk
− =

∑

x

∑

y

∑

o

Pt • W k
−

Votes to test. We calculate the votes from the models to the sample test. In
short, the method is the same as the one detailed in the preceding section. We
first build the chart of Chamfer Distances for Et. We keep the regions around
the oriented-contour points of Et which are at a distance lower than r pixels
in the matrix Rt. Then, randomly selecting T points from the array Mk, we
obtain a representation of this set in an array Pk. Each point of the matrix Pk

is weighted by the matrix W k
+. Total votes from the class k to the sample test t

are calculated as:
vt
+ =

∑

x

∑

y

∑

o

Rt • Pk • W k
+

Distance Error. The last score is the error measure of matching the Pt points
with their nearest point in Mk. Calculating the average of all the minimal dis-
tances, we obtain the error distance dk [4]:

H(Pt,Mk) = max(h(Pt,Mk), h(Mk,Pt))

with :
h(Pt,Mk) = meana∈Pt(minb∈Mk

‖a − b‖))

Multi-class Vehicle Type Recognition System 235

Furthermore, values in the error vector have to be processed by a decreasing
function considering that in the vote vectors we search for the maximum and for
the error vector we search for the minimum.

3.2 Classification Strategies

We have developed two strategies for classification. The first combines the scores
in a discriminant function. The second creates voting vector spaces from the
scores : the decision is based on a nearest-neighbor process.

First Strategy : Discriminant Function. The four matching scores {vk
+, vk

−,
vt
+, dk} are combined in a discriminant function gk(t) matching the sample test

t to the class k. A pseudo-distance of Mahalanobis normalizes the scores: v̄ =
(v − μ)/σ, where (μ, σ) are the mean and the standard deviation of v. The
discriminant function is defined as a fusion of scores:

gk(t) = α1 v̄k
+ + α2 v̄k

− + α3 v̄k
+ + α4 d̄k (2)

The αi are coefficients which weight each classifier. In our system, we give the
same value for all αi.

Finally, given the test sample t, its class label k is determined from:

k = G(t) = ArgMax{g1(t), ...gK(t)}

Second Strategy : Voting Spaces. We construct vector spaces with the
results from the voting process. We define:

– v(t) =
[
vmh
+k , vmh

−k , vmh
+t , dmh

k

]
k=1..K

as a vector in a 200(=4 ∗ K) dimension
space, called Ωwf (wf = without fusion).

– vPCAX(t) =
[
vmh
+k , vmh

−k , vmh
+t , dmh

k

]PCAX

k=1..K
as a vector in a X dimension space,

called ΩPCAX
wf , (with a Principal Component Analysis pre-stage).

– g(t) = [gk(t)]k=1..K as a vector in a 50 (=K) dimension space, called Ωf

(f = with fusion).

In these spaces, given the test sample t, its class label is determined as the
nearest-neighbor class. It needs reference samples. We use a cross-validation
process : the test database is decomposed in two equal parts. The first is used
as references. The second is used for the test.

4 Results

With the first strategy, the system correctly identifies 80,2% of 830 test samples.
The mean of the recognition rates per class is 69,4%.

The second strategy obtains better results (in mean, with 100 randomly dif-
ferent repartitions):

– in the first space, Ωwf , we obtain 93,1% for the correctly identification rate
(83,5% for the mean of the recognition rates per class).

236 X. Clady et al.

Fig. 8. CMC curves in the Ωwf space (solid line) and in the Ωf space (dashed line)

– in a second space, ΩPCA50
wf , we obtain 86,2% for the correctly identification

rate (78,8% for the mean of the recognition rates per class).
– in the last space Ωf , we obtain 90,6% for the correctly identification rate

(86,4% for the mean of the recognition rates per class).

The figure 8 shows the Cumulative Match Characteristic curves (CMC1). We
clearly see that the second strategy in the first space (without fusion and without
PCA) gives better results, but with a higher computational cost (due to a high
dimensional space). The figure 9 shows us that, without fusion, we have to keep a
space dimension higher than 100. Furthermore, a better algorithm performance
could be obtained by choosing optimized values for the αi in the equation22.
Moreover, the recognition rate depends on the used reference samples proportion
(see figure 10).

Another test simulates the presence of a tollgate at four different locations;
in a car park access control system it is difficult to define the relative vertical
position between the barrier and the vehicle even if the license plate is always
visible. The results for each tollgate position are showed in figure 11. The better
recognition are obtained if the virtual tollgate hides the upper part of the images:
a lot of noise points are extracted from this part (see figure 13). These points

1 A Cumulative Match Characteristic (CMC) curve plots the probability of identifi-
cation against the returned 1:N candidate list size. It shows the probability that a
given user appears in different sized candidate lists. The faster the CMC curve ap-
proaches 1, indicating that the user always appears in the candidate list of specified
size, the better the matching algorithm.

2 A training algorithm method could be used, but we have to capture more frontal
view vehicle samples.

Multi-class Vehicle Type Recognition System 237

Fig. 9. Recognition rates related to the
X dimension in the ΩPCAX

wf

Fig. 10. Recognition rates related to the
samples proportion used as reference, in
Ωf

Virtual tollgate position First Stategy Ωwf space ΩPCA50
wf space Ωf space

1 84,0 % 87,3 % 87,1 % 89,0 %
2 78,5 % 84,5 % 84,1 % 85,6 %
3 78,6 % 84,5 % 83,8 % 85,3 %
4 80,2 % 87,5 % 85,9 % 87,4 %

Fig. 11. The four positions of a virtual tollgate and the recognition rates

Fig. 12. Mean of the recognition rates par class, re-
lated to the images number used in the model cre-
ation.

Fig. 13. Results of the con-
tour extraction process

238 X. Clady et al.

perturb the recognition system. They are filtered if the number of images used
in the model creation is sufficient (> 5) as we can see in the figure 12.

5 Conclusions

This article has presented a voting system for the multiclass vehicle type recogni-
tion based on Oriented-Contour Points Set. Each vehicle class is composed from
one or many grayscale frontal images of one vehicle type (make and model).
A discriminant function combines the scores provided from three voting based
classifiers and an error distance. A second strategy consists in considering the
scores as elements of a vector. A nearest-neighbor process is used to determine
the vehicle type. We have tested this method on a realistic data sets of 830
frontal images of cars. The results showed that the method is robust to a partial
occlusion of the patterns. The second strategy obtains better results, particu-
larly if the fusion scores are used. Our recognition rate is over 90%. Without
occlusion, our system obtains similar results as others works [12]. Future works
will be oriented to reduce the influence of the images number used in the model
creation process : it could be interesting to recognize the type of a vehicle with
only one reference image per class.

References

1. Cootes, T., Taylor, C.: On representing edge structure for model matching. In:
Conference on Vision and Pattern Recognition, Hawai, USA, December 2001, vol. 1,
pp. 1114–1119 (2001)

2. Douret, J., Benosman, R.: A multi-cameras 3d volumetric method for outdoor
scenes: a road traffic monitoring application. In: International Conference on Pat-
tern Recognition, pp. III: 334–337 (2004)

3. Dlagnekov, L.: Video-based car surveillance: License plate make and model recog-
nition. Masters Thesis, University of California at San Diego (2005)

4. Dubuisson, M., Jain, A.: A modified hausdorff distance for object matching. In:
International Conference on Pattern Recognition, vol. A, pp. 566–569 (1994)

5. Dubuisson-Jolly, M., Lakshmanan, S., Jain, A.: Vehicle segmentation and classi-
fication using deformable templates. IEEE Transactions on Pattern Analysis and
Machine Intelligence 18(3), 293–308 (1996)

6. Ferryman, J.M., Worrall, A.D., Sullivan, G.D., Baker, K.D.: A generic deformable
model for vehicle recognition. In: British Machine Vision Conference, pp. 127–136
(1995)

7. Han, D., Leotta, M.J., Cooper, D.B., Mundy, J.L.: Vehicle class recognition from
video-based on 3d curve probes. In: VS-PETS, pp. 285–292 (2005)

8. Hond, D., Spacek, L.: Distinctive descriptions for face processing. In: British Ma-
chine Vision Conference, University of Essex, UK (1997)

9. Kazemi, F.M., Samadi, S., Pooreza, H.R., Akbarzadeh-T, M.R.: Vehicle Recogni-
tion Based on Fourier, Wavelets and Curvelet Transforms - a Comparative Study.
In: IEEE International conference on Information Technology, ITNG 2007 (2007)

10. Lai, A.H.S., Fung, G.S.K., Yung, N.H.C.: Vehicle type classification from visual-
based dimension estimation. In: IEEE International System Conference, pp. 201–
206 (2001)

Multi-class Vehicle Type Recognition System 239

11. Olson, C.F., Huttenlocher, D.P.: Automatic target recognition by matching ori-
ented edge pixels. IEEE Transactions on Image Processing 6(1), 103–113 (1997)

12. Petrovic, V.S., Cootes, T.F.: Analysis of features for rigid structure vehicle type
recognition. In: British Machine Vision Conference, vol. 2, pp. 587–596 (2004)

13. Petrovic, V.S., Cootes, T.F.: Vehicle Type Recognition with Match Refinement.
In: International Conference on Pattern Recogntion, vol. 3, pp. 95–98 (2004)

14. Munroe, D.T., Madden, M.G.: Multi-Class and Single-Class Classification Ap-
proaches to Vehicle Model Recognition from Images. In: AICS (2005)

15. Sun, Z., Bebis, G., Miller, R.: On-road vehicle detection: A review. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 28(5), 694–711 (2006)

16. Torres, D.A.: More Local Structure for Make-Model Recognition (2007)
17. Zafar, I., Acar, B.S., Edirisinghe, E.A.: Vehicle Make and Model Identification

using Scale Invariant Transforms. In: IASTED (2007)
18. Zafar, I., Edirisinghe, E.A., Acar, B.S., Bez, H.E.: Two Dimensional Statistical

Linear Discriminant Analysis for Real-Time Robust Vehicle Type Recognition. In:
SPIE, vol. 6496 (2007)

19. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature
survey. ACM Computing Surveys 35(4), 399–458 (2003)

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 240–251, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Bio-inspired Neural Model for Colour Image
Segmentation

Francisco Javier Díaz-Pernas, Míriam Antón-Rodríguez,
José Fernando Díez-Higuera, and Mario Martínez-Zarzuela

Department of Signal Theory, Communications and Telematics Engineering
Telecommunications Engineering School, University of Valladolid, Valladolid, Spain

{pacper,mirant,josdie,marmar}@tel.uva.es

Abstract. This paper describes a multi-scale neural model to enhance regions
and extract contours of colour-texture image taking into consideration the
theory for visual information processing in the early stages of human visual
system. It is composed of two main components: the Colour Opponent System
(COS) and the Chromatic Segmentation System (CSS). The structure of the
CSS architecture is based on BCS/FCS systems, so the proposed architecture
maintains the essential qualities of the base model such as illusory contours
extraction, perceptual grouping and discounting the illuminant. Experiments
performed show the good visual results obtained and the robustness of the
model when processing images presenting different levels of noise.

Keywords: image analysis; image segmentation; neural network; multiple scale
model; Boundary Contour System; Feature Contour System; enhancing colour
image regions; colour-opponent processes.

1 Introduction

Image segmentation is a difficult yet very important task in many image analysis or
computer vision applications. Segmentation subdivides an image into its constituent
parts or object. It depends on the global characteristics of an image, which is similar
to the judgment of human perception. The proposed model covers the processing of
the segmentation stage in a biological way, processing colour and textural information
for intensifying regions and extracting perceptual boundaries as a previous
processing, prior to region labelling, in order to form up the segmented image. This
image enhancing makes labelling easier during the segmentation process and also
makes it more efficient by reducing the uncertainty of the images’ region allocation.

The skill of identifying, grouping and distinguishing among textures and colours is
inherent to the human visual system. For the last few years many techniques and
models have been proposed in the area of textures and colour analysis [5], resulting in
a detailed characterisation of both parameters. Many of these initiatives, however,
have used geometric models, omitting the human vision physiologic base. The main
difference, and advantage, of the human visual system is the context dependence [8];
this implies that its processing cannot be simulated by means of geometric techniques

 A Bio-inspired Neural Model for Colour Image Segmentation 241

that obviate this information. A clear example of such a feature is the illusory contour
formation, in which context data is used to complete the received information, which
is partial or incomplete in many cases.

The architecture described in this work is based on the BCS/FCS neural model,
composed of the Boundary Contour System and the Feature Contour System
introduced by [7] and [3]. This model suggests a neural dynamics for perceptual
segmentation of monochromatic visual stimuli and offers a unified analysis process
for different data referring to monocular perception, grouping, textural segmentation
and illusory figures perception. The BCS system obtains a map of image contours
based on contrast detection processes, whereas the FCS performs diffusion processes
with luminance filling-in within those regions limited by high contour activities.
Consequently, regions that show certain homogeneity and are globally independent
are intensified. Later versions of BCS/FCS models, [9] [15] have considered multi-
scale processing, in which the system is sensitive to boundaries and surfaces of
different sizes. Recent publications within the Theory of Neural Dynamics of the
Visual Perception focus on the modelling of retinal processes in order to solve the
problem of consistent interpretation of surface lightness under varying illumination.

In this manner, the main improvement introduced to the original model hereby in
this paper, resides in offering a complete colour image processing neural architecture
for extracting contours and enhancing the homogeneous areas in an image. In order to
do this, the neural architecture develops processing stages, coming from the original
RGB image up to the segmentation level, following analogous behaviours to those of
the early mammalian visual system. This adaptation has been performed by trying to
preserve the original BCS/FCS model structure and its qualities, establishing a
parallelism among different visual information channels and modelling physiological
behaviours of the visual system processes. Therefore, the region enhancement is
based on the feature extraction and perceptual grouping of region points with similar
and distinctive values of luminance, colour, texture and shading information.

The paper is organized as follows. In Section 2, we review the segmentation
algorithm. Section 3 studies its performance over input images presenting different
noise levels; and finally a conclusion is drawn in Section 4.

2 Proposed Neural Model

The architecture of the proposed model (Fig. 1) comprises of two main components,
designated respectively Colour Opponent System (COS) and Chromatic Segmentation
System (CSS).

The COS module transforms the chromatic components of the input signals (RGB)
into a bio-inspired codification system, made up of two opponent chromatic channels,
L-M and S-(L+M), and an achromatic channel. Resulting signals from COS are used
as inputs for the CSS module where the contour map extraction and two intensified
region images, corresponding to the enhancement of L-M and S-(L+M) opponent
chromatic channels, are generated in multiple scale processing.

The final output is constituted by three components: an image contour map and
two intensified region images corresponding to the enhancement of aforementioned
L-M and S-(L+M) opponent chromatic channels.

242 F.J. Díaz-Pernas et al.

Fig. 1. Proposed model architecture. At the bottom, the detailed COS module structure: on the
left, it shows type 1 cells whereas on the right, elements correspond to type 2 opponent cells. At
the top, the detailed structure of the CSS based on the BCS/FCS model.

2.1 Colour Opponent System (COS)

The COS module performs colour opponent processes based on opponent
mechanisms that are present on the retina and on the LGN of the mammalian visual
system [10] [17]. Firstly, luminance (I signal) and activations of the long (L), middle
(M), short (S) wavelength cones and (L+M) channel activation (Y signal) are
generated from R, G and B input signals. The I signal is computed as a weighted sum
[5]; the L, M and S signals are obtained as the transformation matrix [11].

In the COS stage, two kinds of cells are suggested; type 1 and type 2 cells (see
Fig. 1). These follow opponent profiles intended for detecting contours (type 1,
simple opponency) and colour diffusion (type 2 cells initiate double opponent
processes).

 A Bio-inspired Neural Model for Colour Image Segmentation 243

Type 1 Opponent Cells
Type 1 opponent cells perform a colour codification system represented by the
existence of opponent L-M, S-(L+M), and luminance channels (see Fig. 1). These
cells are modelled through two centre-surround multiple scale competitive networks,
and form the ON and OFF channels composed of ON-centre OFF-surround and OFF-
centre ON-surround competitive fields, respectively. These competitive processes
establish a gain control network over the inputs from chromatic and luminance
channels, maintaining the sensibility of cells to contrasts, compensating variable
illumination, and normalising image intensity [6] [8]. The equations governing the
activation of type 1 cells (1) have been taken from the Contrast Enhancement Stage in
[9] [15], but adapted to compute colour images.

++
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++
−+

=
sg
ij

c
ij

sg
ij

c
ijg

ij
SSA

CSBSAD
y ;

+−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++
−+

=
c
ij

sg
ij

c
ij

sg
ijg

ij
SSA

BSCSAD
y (1)

∑ ++=
pq

c
pq

c
qjpi

c
ij GeS ,

;

∑ ++=
pq

sg
pq

sg
qjpi

sg
ij GeS ,

(2)

with A, B, C and D as model parameters, [w]+=max(w,0), ec as central signal, es as
peripheral signal (see Table 1), the superscript g=0,1,2 for small, medium and large
scales. The weight functions have been defined as normalised Gaussian functions for
central (Gc) and peripheral (Gsg) connectivity.

Table 1. Inputs of different channels on type 1 opponent cells

 L-M Opponency S-(L+M) Opponency Luminance
ec Lij Sij Iij
esg Mij Yij Iij

Type 2 Opponent Cells
The type 2 opponent cells initiate the double opponent process that take place in superior
level, chromatic diffusion stages (see Fig. 1). The double opponent mechanisms are
fundamental in human visual colour processing [10].

The receptive fields of type 2 cells are composed of a unique Gaussian profile.
Two opponent colour processes occur, corresponding L-M and S-(L+M) channels
(see Fig. 1). Each opponent process is modelled by a multiplicative competitive
central field, presenting simultaneously an excitation and an inhibition caused by
different types of cone signals (L, M, S and Y as sum of L and M). These processes
are applied over three different spatial scales in the multiple scale model shown.
Equations (3) model the behaviour of these cells, ON and OFF channels, respectively.

g
ijg

ij g
ij

AD BS
x

A S

++ +
+

Ε

⎡ ⎤+
= ⎢ ⎥

+⎢ ⎥⎣ ⎦

;

g
ijg

ij g
ij

AD BS
x

A S

+− −
−

Ε

⎡ ⎤+
= ⎢ ⎥

+⎢ ⎥⎣ ⎦

(3)

244 F.J. Díaz-Pernas et al.

()∑ ++++
+ −=

pq
qjpiqjpi

g
pq

g
ij eeGS)2(

,
)1(

,
;

()∑ ++++
− −=

pq
qjpiqjpi

g
pq

g
ij eeGS)1(

,
)2(

,

(4)

() ()()1 2
, ,

g g
ij pq i p j q i p j q

pq

S G e eΕ
+ + + += +∑

(5)

with A, B, C and D as model parameters, [w]+=max(w,0), e(1) and e(2) being the input
signals of the opponent process (see Table 2). The weight functions have been defined
as normalised Gaussians with different central connectivity (Gg) for the different
spatial scales g=0, 1, 2 (see Table 4).

Table 2. Inputs for different type 2 cells channels

 L-M Opponency S-(L+M) Opponency
e(1) Lij Sij
e(2) Mij Yij

2.2 Chromatic Segmentation System (CSS)

As previously mentioned, the Chromatic Segmentation System bases its structure on
the modified BCS/FCS model [9] [15], adapting its functionality for colour image
processing. The CSS module (see Fig. 1) consists of the Colour BCS stage and two
chromatic diffusion stages, processing one chromatic channel each.

Colour BCS stage
The Colour BCS stage constitutes our colour extension of the original BCS model. It
processes visual information from three parallel channels, two chromatic and a
luminance channels to obtain a unified contour map. Analogous to the original model,
the Colour BCS module has two differentiated phases: the first one (simple and
complex cells) extracts real contours from the output signals of the COS and the
second is represented by a competition and cooperation loop, in which real contours
are completed and refined, thus generating contour interpolation and illusory contours
(see Fig. 1). Colour BCS preserves all of the original model perceptual characteristics
such as perceptual grouping, emergent features and illusory perception.

The achieved output coming from the competition stage is a contour map of the
original image. This output is transmitted to the diffusion stages where it will act as a
control signal serving as a barrier in chromatic diffusions.

Simple cells are in charge of extracting real contours from each of the chromatic
and luminance channels. In this stage, the filters from the original model have been
replaced by two pairs of Gabor filters with opposite polarity, due to their high
sensibility to orientation, spatial frequency and position [4] [13]. Their presence has
been proved on the simple cells situated at V1 area of visual cortex [16]. Fig. 2 shows
a visual representation of Gabor filter pair profiles.

 A Bio-inspired Neural Model for Colour Image Segmentation 245

a) b) c) d)

Fig. 2. Receptive fields of the filters used to model simple cells. a) Anti-symmetric light-dark
receptive field. b) Anti-symmetric dark-light receptive field. c) Symmetric receptive field with
central excitation. d) Symmetric receptive field with central inhibition.

The complex cell stage, using two cellular layers, fuses information from simple
cells giving rise to a map which contains real contours for each of the three scales
used (see Fig. 1). Detected real contours are passed into a cooperative-competitive
loop. This nonlinear feedback network detects, regulates, and completes boundaries
into globally consistent contrast positions and orientations, while it suppresses
activations from redundant and less important contours, thus eliminating image noise.
The loop completes the real contours in a consistent way generating, as a result, the
illusory contours [9] [15].

Cooperation is carried out by dipole cells, which have been placed just before
cortical cells in V2 area. These cells have been used to model processes such as
illusory contour generation, neon colour spreading or texture segregation [7]. Dipole
cells act like long-range statistical AND gates, providing active responses if they
perceive enough activity over both dipole receptive fields lobes (left and right). Thus,
this module performs a long-range orientation-dependent cooperation in such a way
that dipole cells are excited by collinear (or close to collinearity) competition outputs
and inhibited by perpendicularly oriented cells. This property is known as spatial
impermeability and prevents boundary completions towards regions containing
substantial amounts of perpendicular or oblique contours. The equations used in
competitive and cooperative stages are taken from the original model [9].

Chromatic diffusion stages
As mentioned above, the chromatic diffusion stage has undergone changes that
entailed the introduction of Chromatic Double Opponency Cells (CDOC), resulting in
a new stage in the segmentation process.

In human visual system, double opponency occurs in visual striate cortex cells,
contained in blobs [10]. The model for these cells has the same receptive field as COS
type 1 opponent cells (centre-surround competition), but their behaviour is quite a lot
more complex since they are highly sensitive to chromatic contrasts. Double opponent
cell receptive fields are excited on their central region by COS type 2 opponent cells,
and are inhibited by the same cell type. We apply a greater sensibility to contrast as
well as a more correct attenuation toward illumination effects, therefore bringing a
positive solution to the noise-saturation dilemma.

The mathematical pattern that governs the behaviour of CDOC cells is the one
defined by (1) and successive equations, by varying only their inputs, that is, the
outputs of the COS type 2 opponent cells for each chromatic channel (see Table 3).

246 F.J. Díaz-Pernas et al.

Table 3. Inputs of included Chromatic Double Opponency Cells

 L-M Opponency S-(L+M) Opponency
ec (L+-M-)ij (L--M+)ij (S+-Y-)ij (S--Y+)ij
esg (L+-M-)ij (L--M+)ij (S+-Y-)ij (S--Y+)ij

Chromatic diffusion stages perform four nonlinear and independent diffusions for

L-M (ON and OFF) and S-Y (ON and OFF) chromatic channels. These diffusions are
controlled by means of a final contour map obtained from the competition-
cooperation loop while the outputs of CDOC are the signals being diffused. At this
stage, each spatial position diffuses its chromatic features in all directions except
those in which a boundary is detected. When boundary signals take part, they inhibit
diffusion obtaining differentiated activities at each of their sides (thus separating
regions with different features) [15]. By means of this process, image regions that are
surrounded by closed boundaries tend to obtain uniform chromatic features, even in
noise presence, and therefore producing the enhancement of the regions detected in
the image. The equations that model the diffusive filling-in can be found in [9].

Scale fusion constitutes the last stage of this pre-processing architecture. A simple
linear combination of the three scales (6), obtains suitable visual results at this point.

01 02 11 12 21 22
0 1 2() () ()ij ij ij ij ij ij ijV A F F A F F A F F= − + − + −

(6)

where A0, A1 and A2 are linear combination parameters, gt
ijF represents diffusion

outputs, with g indicating the spatial scale (g=0,1,2) and t denoting the diffused
double opponent cell, 1 for ON and 2 for OFF.

3 Tests and Results

This section introduces our tests’ simulations over the proposed architecture. Selected
colour images are shown in Fig. 3. The format of the images is RGB, with 24 bits per
pixel. Each of them shows diverse features that, altogether, validate the model in a
general way and also against changing requirements (scale, chromatic, texture…).

Fig. 3. Colour images included in the tests: Mandrill, Aerial, and Pyramid

The offset model parameters were adjusted to obtain the best visual results (see
Table 4).

 A Bio-inspired Neural Model for Colour Image Segmentation 247

Table 4. Parameter values of the proposed architecture for test simulations

Type 1 COS cells
L-M, S-(L+M) and Luminance Opponencies

Type 2 COS cells
L-M and S-(L+M) Opponencies

A 1000.0 σc 0.3 A 10000.0 σs 0.3
C 1.0 σss 0.5 B 10.0 σm 0.8
B 1.0 σsm 1.0 D+ 10.0 σl 1.6

D+, D- 1.0 σsl 1.8 D- 10.0
Simple cells

L-M, S-(L+M) and Luminance Opponencies
Complex cells

L-M, S-(L+M) and Luminance Opponencies
Fs 12.0 σss 8.0 γ 1.0 ξ 0.01

Fm 8.0 σsm 12.0 κ 1.0 υ 0.01
Fl 5.0 σsl 15.0

Competition cells Cooperation cells
A 3.0 σs 4.0 A 3.0
B 1.0 σm 8.0 B 1.0

Cws,Cwm,
Cwl

4.0

C 0.2 σl 16.0 Cls 0.2 T 2.0
Gf 1.0 σk 45.0 Clm 1.0 µ 11.0
Gb 15.0 Cll 15.0 β 0.8

CDOC cells
L-M and S-(L+M) Opponencies

Diffusion stage Scale fusion

A 10000.0 σss 1.2 D 150.0 A0 8.0
D+ 1.0 σsm 5.2 δ 20000.0 A1 2.0
D- 1.0 σsl 10.8 ε 30.0 A2 1.0
σc 0.3 σss 1.2

Fig. 4. Final boundary maps at three spatial scales, obtained from the competition stage

In Fig. 4, the final boundary maps obtained from the Colour BCS module are
depicted. Small scale performs higher precision and contrast sensitivity even though it
presents higher noise level (e.g. mandrill hair), while large scale obtains lesser
precision and contrast sensitivity but also higher noise filtering. The BCS colour
module has extracted the mandrill’s nose contour in a continuous way. This is due to
the interaction among the competition and cooperation processes which generate
mechanisms of contour interpolation and illusory contour extraction.

In order to evaluate the contour extraction capabilities of the described model, we
compared it to the well known Canny extractor [1], using the cvCanny() function
from Intel Computer Vision Library, OpenCv [12]. Parameters were assigned using
best visual result criteria. For mandrill’s image we use: threshold1=2000,

248 F.J. Díaz-Pernas et al.

Fig. 5. Comparison with Canny’s contour extraction. Top row: Our model, Bottom row: Canny.

threshold2=1000, and aperture size=5; for Aerial image: t1=200, t2=200, and a=3;
and for Pyramid image: t1=10000, t2=5000, and a=7.

In Fig. 5, top row shows the contour’s structure of our model while bottom row
shows the output of the Canny extractor. It can be note that Canny’s could not extract
the mandrill’s nose as a continuous contour, unlike our model. The Aerial image
processing shows how the model responds to very detailed images with fine contours,
demonstrating a great level of precision at small scales. Finally, the Pyramid image
allows us to observe the behaviour of the model when processing large scale,
obtaining well defined contours and achieving a strong elimination of the noise,
which exists in Canny extraction.

Fig. 6 depicts the final outputs of the model after fusing information from the
diffusion stage with the three spatial scales (see Table 4). As it can be noted,
chromatic and textural features appear now levelled within each enhanced region. Our

Fig. 6. Final outputs of the model. Top row: L-M channel. Bottom row: S-Y channel.

 A Bio-inspired Neural Model for Colour Image Segmentation 249

Fig. 7. Labelling of the featured model’s output using a Fuzzy ART Network. Supervision
parameter (ρ) is 0.9. Left: Mandrill, 7 categories/regions. Right: Aerial, 9 categories/regions.

Fig. 8. Comparison with other segmentation schemas. Left: Original RGB image labelling.
Right: Results from the pyramidal segmentation.

model has enhanced the homogeneous regions of Mandrill and Aerial images. The
enhancement could be used to estimate towns or places’ population from aerial
images. The Pyramid image, however, contains a heterogeneous sky with clouds
which are distinguished as different enhanced regions by the model. This image also
obtains a good visual result from a textured region such as the pyramid’s surface.

In order to obtain segmentation, after enhancing regions of the image, the
immediate following process will be the region labelling, that is, making all the points
belonging the same region have the same region label. In fact, enhancing regions
makes the labelling process easier and so more efficient. So as to prove this statement,
a Fuzzy ART categorisation model [2] was chosen to run the labelling process. For
each point in the image, a four component pattern, composed of the output values
from chromatic diffusion stages and their complement coding, is taken, thus the
segmentation image is generated by labelling all of the points in accordance with their
pattern category, giving a different grey level to each category for result visualization.
Fig. 7 shows the categorisation for the Mandrill and Aerial images. In both cases the
Fuzzy ART supervision value ρ was 0.9; 7 and 9 categories were created respectively.

To show how the results coming from our architecture favour the segmentation
process in comparison with other segmentation models, we used the Aerial image
from Fig. 3. Fig. 8-left shows the RGB original image labelling using the same Fuzzy
ART model, with the same value for the supervision parameter (ρ=0.9). This
categorisation created 10 categories. Aerial image was also segmented through a
pyramidal process (Fig. 8-right) using the cvPyrSegmentation() function from the
OpenCv library [12]. The parameters’ values were assigned using the best visual
results criterion (t1=70, t2=30). By comparing Fig. 7-right with Fig. 8, it can be easily
observed that the introduced model takes into account the colour and textural

250 F.J. Díaz-Pernas et al.

Fig. 9. Results for image with 30% of additive Gaussian noise on each channel. It can be seen
that the enhancement results are visually satisfactory even with a high level of noise.

information and this is the reason why it detects a wide central region, in a compatible
way with human visual perception, unlike the two other methods. Hence, it can be
inferred that the presented architecture obtains far more satisfactory results than the
pyramidal method.

In order to validate the architecture against adverse circumstances, some Gaussian
noise has been added to each of the R, G, and B input channels. This kind of noise is
usually introduced by acquisition devices on industrial applications. Consequently,
noise is individually measured as a percentage of noise power over the input channel
total power (noise + signal). When additive Gaussian noise is applied to input images,
the system responses are satisfying up to the point when a 30% noise level is reached
on each channel. As shown in Fig. 9, obtained segmentation give good visual results
although detected regions are not as homogeneous as with clean images, they appear
notoriously defined. It is important to stress the better performance at larger scales
when noise increases, as their weight becomes higher on fusion stages.

4 Conclusion

This work presents a multiple scale neural model for extracting contours and
enhancing regions in colour images. The model processes chromatic information to
obtain a coherent region enhancing. BCS/FCS systems have been used as a baseline
due to their broad validation and acceptance. Furthermore, these systems have been
extended with the addition of the stages performing chromatic processing. The use of
a multiple scale model has demonstrated a great level of flexibility and adaptation to
multiple images, which lays the foundations to obtain a more general purpose
architecture for colour image segmentation.

Although it increases the system’s complexity and the computational load (more
parallel processing and more stages are added), colour processing through type 1 and
2 COS cells and CDOC cells provides significant improvements on the segmentation
and discriminates better among regions with similar luminance values but different
chromatic features. Furthermore, the architecture shows a great level of parallelism
and therefore computation load can be shared among different processors.

We included test simulations in order to validate the model, obtaining really
satisfactory visual results. When comparing it to Canny’s contour extractor we have
observed that the perceptual contour extraction used by our model displays features
not present in Canny's like, for example, illusory contours detection and perceptual
grouping which helps us to obtain results much more in line with those of human

 A Bio-inspired Neural Model for Colour Image Segmentation 251

visual perception. The results shown have covered different areas in which computer
vision systems have become a helpful solution and a means of automating tools such
as face recognition systems or aerial images analysis.

Finally, this paper demonstrates that the described architecture displays a visually
satisfactory response against the standard Gaussian noise present in most image
acquisition devices.

References

1. Canny, J.: A computational approach to edge detection. IEEE Trans. Pat. Anal. Mach.
Intell. 8(6), 679–698 (1986)

2. Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy ART: Fast Stable Learning and
Categorization of Analog Patterns by an Adaptive Resonance System. Neural Networks 4,
759–771 (1991)

3. Cohen, M.A., Grossberg, S.: Neural dynamics of brightness perception: features,
boundaries, diffusion, and resonance. Perception and Psychophysics 36, 428–456 (1984)

4. Daugman, J.G.: Two-dimensional spectral analysis of cortical receptive field profiles.
Vision Research 20, 847–856 (1980)

5. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2/E. Prentice Hall, Englewood
Cliffs (2002)

6. Grossberg, S.: Contour enhancement, short term memory, and constancies in reverberating
neural networks. Studies in Applied Mathematics 52, 217–257 (1973)

7. Grossberg, S.: Outline of a theory of brightness, colour, and form perception. In: Degreef,
E., van Buggenhault, J. (eds.) Trends in mathematical psychology. North Holland,
Amsterdam (1984)

8. Grossberg, S., Mingolla, E.: Neural dynamics of perceptual grouping: textures, boundaries,
and emergent segmentations. In: Grossberg, S. (ed.) The adaptive brain II, ch. 3. North
Holland, Amsterdam (1988)

9. Grossberg, S., Mingolla, E., Williamson, J.: Synthethic aperture radar processing by a
multiple scale neural system for boundary and surface representation. Neural Networks 8,
1005–1028 (1995)

10. Hubel, D.H.: Eye, Brain and Vision. Scientific American Library 22, 70 (1995)
11. Hubel, D.H., Livingstone, M.S.: Color and contrast sensitivity in lateral geniculate body

and Primary Visual Cortex of the Macaque Monkey. The Journal of Neuroscience 10(7),
2223–2237 (1990)

12. Intel Corporation, Open Source Computer Vision Library (2006),
 http://www.intel.com/technology/computing/opencv/

13. Landy, M.S., Bergen, J.R.: Texture segregation and orientation gradient. Vision
Research 31(4), 679–693 (1991)

14. Mirmehdi, M., Petrou, M.: Segmentation of color textures. IEEE Trans. Pattern Analysis
and Machine Intelligence 22(2), 142–159 (2000)

15. Mingolla, E., Ross, W., Grossberg, S.: A neural network for enhancing boundaries and
surfaces in synthetic aperture radar images. Neural Networks 12, 499–511 (1999)

16. Pollen, D.A., Ronner, S.F.: Visual cortical neurons as localized spatial frequency filters.
IEEE Transactions on Systems, Man, and Cybernetics SMC-13(15), 907–916 (1983)

17. Wilson, H.R., Levi, D., Maffei, L., Rovamo, J., De Valois, R.: The Perception of Form:
Retina to Striate Cortex. In: En Spillmann, L., Werner, J.S. (eds.) Visual Perception: The
Neurophysiological Foundations, ch.10. Academic Press, San Diego (1990)

Mining Software Aging Patterns by Artificial

Neural Networks

Hisham El-Shishiny, Sally Deraz, and Omar Bahy

IBM Cairo Technology Development Center
P.O.B. 166 Ahram, Giza, Egypt

shishiny@eg.ibm.com,sally@eg.ibm.com,obadr024@uottawa.ca

Abstract. This paper investigates the use of Artificial Neural Networks
(ANN) to mine and predict patterns in software aging phenomenon. We
analyze resource usage data collected on a typical long-running software
system: a web server. A Multi-Layer Perceptron feed forward Artificial
Neural Network was trained on an Apache web server dataset to predict
future server swap space and physical free memory resource exhaustion
through ANN univariate time series forecasting and ANN nonlinear mul-
tivariate time series empirical modeling. The results were benchmarked
against those obtained from non-parametric statistical techniques, para-
metric time series models and other empirical modeling techniques re-
ported in the literature.

Keywords: Data Mining, Artificial Neural Network, Pattern Recogni-
tion, Software Aging.

1 Introduction

It has been observed that software applications executing continuously over a long
period of time, such as Web Servers, show a degraded performance and increas-
ing rate of failures [5]. This phenomenon has been called software aging [4]. This
may be due to memory leaks, unreleased file-locks and round-off errors. Currently,
researchers are looking for methods to counteract this phenomenon by what is so
called software rejuvenation methods such as applying a form of preventive main-
tenance. This could be done by, for example, occasionally stopping the software
application, cleaning its internal state and then restarting [9] to prevent unex-
pected future system outages. This allows for scheduled downtime at the discre-
tion of the user, which suggests an optimal timing of software rejuvenation.

In this work, we investigate the use of Artificial Neural Networks (ANN)
univariate time series forecasting and ANN nonlinear multivariate time series
empirical modeling to mine and predict software aging patterns in a typical
long-range software system: a web server, in order to assess ANN suitability for
the analysis of the software aging phenomenon. ANN are used to forecast swap
space and free physical memory of an Apache web server and results are cross
benchmarked against those reported in the literature based on parametric and
non-parametric statistical techniques and other empirical modeling techniques.

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 252–262, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Mining Software Aging Patterns by Artificial Neural Networks 253

This research aims at providing some empirical evidence on the effectiveness
of artificial neural networks on modeling, mining and predicting software aging
patterns, and the ultimate goal is an optimization model that uses the predic-
tion of resources exhaustion as well as further information for deriving the best
rejuvenation schedule.

The rest of this paper is organized as follows: in Section 2, we review related
work and in section3, the data collected is described. The adopted Neural Net-
work approach is illustrated in section 4. Finally, conclusion and future work are
presented in section 5.

2 Related Work

The software aging problem is currently approached either by building analytical
models for system degradation such as probability models, linear and nonlinear
statistical models, expert systems and fractal base models [1, 3, 7], or by empir-
ically studying the software systems based on measurements. Few attenpts were
reported on the use of Wavelet Networks in software aging [10, 12].

The rate to which software ages is usually not constant, but depends on the
time-varying system workload. Therefore, time series models are usually fitted
to the data collected to help predicting the future resource usage. Attributes
subject to software aging are monitored and related data is collected aiming at
predicting the expected exhaustion of resources like real memory and swap space.
Then, non-parametric statistical techniques and parametric time series models
are employed to analyze the collected data and estimate time to exhaustion via
extrapolation for each resource [5], usually assuming linear functions of time.

3 Software Aging Data

We make use of the data reported in [5] and [7] to carry on further analysis
using an Artificial Neural Network approach. The collected data is from a Linux
web server with an artificial load approaching its maximum optimal load level.

The setup that was used for collecting the data consisted of a server run-
ning Apache version 1.3.14 on a Linux platform, and a client connected via an
Ethernet local area network. Among the system parameters of the web server
monitored during a period of more than 3.5 weeks are the free physical mem-
ory and the used swap space. Data were collected during experiments in which
the web server was put in a near overload condition indicating the presence of
software aging.

4 The Neural Network Approach

4.1 Artificial Neural Networks

ANN is a class of flexible nonlinear models that can discover patterns adaptively
from the data. Given an appropriate number of nonlinear processing units, neural

254 H. El-Shishiny, S. Deraz, and O. Bahy

Fig. 1. The implemented MLP Neural Network

networks can learn from experience and estimate any complex functional rela-
tionship with high accuracy. Numerous successful ANN applications have been
reported in the literature in a variety of fields including pattern recognition and
forecasting. For a comprehensive overview of ANN the reader is referred to [8].

4.2 ANN for Mining Patterns in Software Aging

In software aging, we do not have a well defined model describing the aging
process that one would like to study. All that is available are measurements of
the variables of interest (i.e. time series). Therefore, we propose, in this work,
an artificial neural network approach for mining software aging patterns, with
the objective of predicting the expected exhaustion patterns of resources like
real memory and swap space used. We investigate in this work two ANN based
methods for this problem; a univariate time series forecasting method and a
multivariate time series empirical modeling method.

4.3 The Proposed Neural Network Structure

Although many types of neural network models have been proposed, the most
popular one is the Multi-Layer Perceptron (MLP) feed forward model [13]. A
multi layer feed forward network with at least one hidden layer and a sufficient
number of hidden neurons is capable of approximating any measurable function
[11]. A feed-forward network can map a finite time sequence into the value that
the sequence will have at some point in the future [6]. Feed forward ANNs
are intrinsically non-linear, non-parametric approximators, which makes them
suitable for complex prediction tasks.

For this problem, we choose to use a fully connected, MLP, feed forward ANN
with one hidden layer, a logistic activation function as in figure 1, and the back
propagation learning algorithm [6].

4.4 Forecasting the Exhaustion of the Apache Server Resources

We use the ANN described above and the data introduced in [5] and [7] to pre-
dict the Apache server Free Physical Memory and Swap Space Used performance
variables, in order to obtain predictions about possible impending failures due
to resource exhaustion. An ANN based univariate time series method is used
for forecasting the Swap Space Used and an ANN based non-linear multivari-
ate time series empirical modeling method is used to predict the Free Physical
Memory.

Mining Software Aging Patterns by Artificial Neural Networks 255

This dataset was split into three segments; the first segment is used to train
the ANN and the second segment is used to tune the ANN parameters (i.e.
number of time lags and number of neurons in the hidden layer) and validation.
The third segment is used to measure the ANN generalization performance on
data which has not been presented to the NN during parameter tuning.

Forecasting Swap Space Used of the Apache server. The Swap Space
Used of the Apache server is forecasted using ANN based univariate time series
forecasting. The usage of ANN for time series analysis relies entirely on the data
that were observed and is powerful enough to represent any form of time series.
ANN can learn even in the case of noisy data and can represent nonlinear time
series. For example, Given a series of values of the variable x at time step t and
at past time steps x(t), x(t − 1), x(t − 2) · · · x(t − m), we look for an unknown
function F such that; X(t + n) = F [x(t), x(t − 1), x(t − 2) · · ·x(t − m)], which
gives an n − step predictor of order m for the quantity x.

The ANN sees the time series X1, · · · , Xn in the form of many mappings of
an input vector to an output value [2]. The time-lagged values x(t), x(t − 1),
x(t − 2) · · · x(t − m) are fed as inputs to the network which once trained on
many input-output pairs, gives as output the predicted value for yet unseen x
values. The ANN input nodes in this case are the previous lagged observations
while the output nodes are the forecast for the future values. Hidden nodes with
appropriate non-linear transfer (activation) functions are used to process the
information received by the input nodes.

The number of ANN input neurons determine the number of periods the neu-
ral network looks into the past when predicting the future. Whereas it has been
shown that one hidden layer is generally sufficient to approximate continuous
function [8], the number of hidden units necessary is not known in general.
To examine the distribution of the ANN main parameters (i.e. number of time
lags and number of neurons in the hidden layer), we conducted a number of ex-
periments, where these parameters were systematically changed to explore their
effect on the forecasting capabilities. These estimations of the networks most im-
portant parameters although rough, allowed us to choose reasonable parameters
for our ANN.

The Swap Space Used dataset was collected on a 25-day period with connec-
tion rate of 400 per second. We divided the collected data into three segments,
one to train the ANN, one for validation, and the third for testing. The testing
segment is used to evaluate the forecasting performance of the ANN in predicting
the performance parameters values.

The training and forecasting accuracy is measured by Root Mean Square Error
(RMSE) and two other common error measures, MAPE and SMAPE.

Mean Absolute Percentage Error (MAPE). MAPE is calculated by averaging the
percentage difference between the fitted (forecast) line and the original data:

MAPE =
∑

t |et/yt| ∗ 100/n

Where y represents the original series and e the original series minus the forecast,
and n the number of observations.

256 H. El-Shishiny, S. Deraz, and O. Bahy

Fig. 2. Swap Space Used

Table 1. Swap Space Used evaluation

Error measures for
the predicted data

SMAPE (Symmetric
Mean Absolute Per-
cent Error)

MAPE (Mean Abso-
lute Percent Error)

RMSE (Root Mean
Square Error)

Non-Parametric
Statistical approach

4.313% 4.47% 612.46

ANN approach 0.354% 0.357% 116.68

Symmetric Mean Absolute Percentage Error (SMAPE). SMAPE calculates the
symmetric absolute error in percent between the actual X and the forecast F
across all observations t of the test set of size n. The formula is

MAPE = 1
n

∑n
t=1

|Xt−Ft|
(Xt+Ft)/2 ∗ 100

Results. Figure 2 shows Swap Space Usage for the Apache server. It is clear
that it follows a seasonal pattern and that considerable increases in used swap
space occur at fixed intervals.

Table 1 shows the RMSE, MAPE and SMAPE for the forecasts of Swap Space
Used of the Apache server for the testing dataset using the MLP described in
Figure 1 with 3 input neurons (time lags), 3 neurons in the hidden layer and
a sigmoid nonlinear transfer function. As seen in Table 1, the results obtained
by the ANN approach are far more accurate than the results obtained by the
non-parametric statistical approach reported in [5].

Mining Software Aging Patterns by Artificial Neural Networks 257

Fig. 3. Swap Space Used results

In Figure 3, we show a plot of the last 3208 observations of the measured
SwapSpaceUsed (the testing dataset) and the predicted values obtained by the
ANN approach, which shows accurate predictions.

Forecasting Free Physical Memory of Apache Server. In order to model
and predict the Apache server Physical Free Memory performance variable, we
have developed an ANN based non-linear multivariate time series empirical mod-
eling procedure that involves parameter set reduction and selection, model build-
ing and sensitivity analysis.

Parameter set reduction and selection. Since there are 100 different Apache pa-
rameters that were monitored in addition to Free Physical Memory, an important
question will be which of these parameters are the most important predictors.
Some parameters may encode the same information and therefore are redundant
and some others may have a trivial or no effect at all on future values of Free
Physical Memory. Since parameter set reduction is a subset selection problem,
therefore for 100 parameters we have 2 to the power of 100 possible subsets,
which is not practical to evaluate.

In order to determine the smallest subset of input parameters which are nec-
essary and sufficient for Free Physical Memory prediction, we have adopted the
following approach:

258 H. El-Shishiny, S. Deraz, and O. Bahy

(a) We have excluded 41 parameters because they had constant values during
the monitoring period.

(b) We have performed non-linear logistic regression for the remaining 59 param-
eters in addition to the Free Physical Memory at time (t − 1), taking them
as inputs to a simple one neuron ANN with a sigmoid activation function
(Figure 4).

(c) We have selected seven parameters that had ANN weights values above an
arbitrary small threshold (Fig. 5).

(d) We have repeated step (c) above but using a tan-sigmoid activation function
and obtained nine parameters that had ANN weight values above the same
threshold in step (c).

(e) We have selected the parameters in common between step (c) and (d) which
were: si tcp tw bucket, si tcp bind bucket, si mm struct, si files cache,
si size 1024, udp socks high and PhysicalMemoryFree at time t − 1.

Fig. 4. A single neuron for logistic regression

Fig. 5. ANN weights for the Apache web server parameters (Sigmoid activation func-
tion)

Mining Software Aging Patterns by Artificial Neural Networks 259

Fig. 6. Physical Free Memory

Emperical model building. Having selected the seven parameters that look more
significant in section 4.4 above, we have used them as input nodes for the MLP
feed forward ANN of Figure 1. We have used a sigmoid activation function and
two neurons in one hidden layer (2 neurons gave the least MAPE, SMAPE and
RMSE during validation of this dataset). The output node was selected to be the
Free Physical memory. We therefore have formulated the problem as a non-linear
multivariate time series model.

Parameter sensitivity analysis. We have conducted sensitivity analysis on the
parameters of the ANN model developed in section 4.4 above in order to gain
some insight into the type of interactions among the different parameters and
the Free Physical Memory and to assess the contribution of each parameter on
the predicted value of Free Physical Memory.

We removed one parameter at a time from the input of the developed ANN
above and each time we computed the SMAPE, MAPE and RMSE on the testing
dataset and recorded the change. We noted that the developed ANN model
was particularly sensitive to the Free Physical Memory at time (t − 1) and the
si files cache which is in accordance with the results reported in [7].

Results. Figure 6 shows a plot over time of the Free Physical Memory of the
Apache server that was collected in a 7-day period with a connection rate of 350
per second. The shown irregular utilization pattern can be explained by the fact
that the Free Physical Memory cannot be lower than a preset threshold value.

260 H. El-Shishiny, S. Deraz, and O. Bahy

Table 2. Physical Free Memory evaluation

Error measures for
the predicted data

SMAPE (Symmetric
Mean Absolute Per-
cent Error)

MAPE (Mean Abso-
lute Percent Error)

RMSE (Root Mean
Square Error)

ANN approach 1.295% 1.275% 0.01354

Fig. 7. Physical Free Memory results

If physical memory approaches the lower limit, the system frees up memory by
paging [7].

Table 2 shows the RMSE, MAPE and SMAPE for the forecasted Free Physical
Memory of the Apache server for the testing dataset using the ANN empirical
model.

In Figure 7, we show a plot of the last 2483 observations of the measured
physical free memory (the testing dataset) and the predicted values obtained by
the ANN empirical model, which shows accurate forecasts. Based on RMSE the
obtained results are more accurate than the results reported in [7] obtained from
universal basis functions, multivariate linear regression, support vector machines
and radial basis functions empirical modeling techniques.

5 Conclusion

In this work we have investigated the use of ANN for mining the software ag-
ing patterns in a typical long-running software system: an Apache web server.

Mining Software Aging Patterns by Artificial Neural Networks 261

ANN based univariate time series forecasting method and ANN nonlinear mul-
tivariate time series empirical model were developed to predict swap space used
and memory usage that are related to software aging, of an Apache web server
subjected to a synthetic load for 25 days. We showed that a Multi-Layer Percep-
tron (MLP) feed forward ANN is able to accurately predict the future behavior
of these performance variables. The results obtained were benchmarked against
those reported in the literature that are based on parametric and non-parametric
statistical techniques and other empirical modeling techniques and were more
accurate.

Future work involves extending the proposed Artificial Neural Network ap-
proach to attempt to define an optimal software rejuvenation policy.

Acknowledgements

The authors would like to thank Professor Kishor S. Trivedi, the Hudson Chair
in the Department of Electrical and Computer Engineering at Duke University,
for valuable discussions during the development of this work and for his review
of the manuscript and Michael Grottke for providing the Apache performance
dataset.

This work is part of a research project conducted at IBM Center for Advanced
Studies in Cairo.

References

1. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing networks and Markov
chains: modeling and performance evaluation with computer science applications.
Wiley-Interscience, New York (1998)

2. Chakraborty, K., Mehrota, K., Mohan Chilukuri, K., Ranka, S.: Forecasting the
behaviour of multivariate time series using neural networks. Neural Networks 5,
961–970 (1992)

3. Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pinpoint: Problem
determination in large, dynamic internet services. In: DSN 2002: Proceedings of the
2002 International Conference on Dependable Systems and Networks, Washington,
DC, USA, pp. 595–604. IEEE Computer Society, Los Alamitos (2002)

4. Dohi, T., Goseva-Popstojanova, K., Trivedi, K.S.: Analysis of software cost models
with rejuvenation. hase, 00:25 (2000)

5. Grottke, M., Li, L., Vaidyanathan, K., Trivedi, K.S.: Analysis of software aging in
a web server. IEEE Transactions on Reliability 55(3), 411–420 (2006)

6. Hassoun, M.H.: Fundamentals of Artificial Neural Networks. MIT Press, Cam-
bridge (1995)

7. Hoffmann, G.A., Trivedi, K.S., Malek, M.: A best practice guide to resource fore-
casting for computing systems. IEEE Transactions on Reliability, 615–628 (2007)

8. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Netw. 2(5), 359–366 (1989)

9. Kolettis, N., Fulton, N.D.: Software rejuvenation: Analysis, module and applica-
tions. In: FTCS 1995: Proceedings of the Twenty-Fifth International Symposium
on Fault-Tolerant Computing, Washington, DC, USA, p. 381. IEEE Computer
Society, Los Alamitos (1995)

262 H. El-Shishiny, S. Deraz, and O. Bahy

10. Ning, M.H., Yong, Q., Di, H., Ying, C., Zhong, Z.J.: Software aging prediction
model based on fuzzy wavelet network with adaptive genetic algorithm. In: Pro-
ceedings of the 18th IEEE International Conference on Tools with Artificial Intel-
ligence, pp. 659–666 (2006)

11. Siegelmann, H., Sontag Eduardo, D.: Neural nets are universal computing devices.
Technical Report SYSCON-91-08, Rugters Center for Systems and Control (1991)

12. Xu, J., You, J., Zhang, K.: A neural-wavelet based methodology for software aging
forecasting. In: IEEE International Conference on Systems, Man and Cybernetics,
pp. 59–63 (2005)

13. Zhang, G.P., Qi, M.: Neural network forecasting for seasonal and trend time series.
European Journal of Operational Research, 501–514 (2005)

Bayesian Classifiers for Predicting the Outcome

of Breast Cancer Preoperative Chemotherapy

Antônio P. Braga1, Euler G. Horta1, René Natowicz2, Roman Rouzier3,
Roberto Incitti4, Thiago S. Rodrigues5, Marcelo A. Costa1,

Carmen D.M. Pataro1, and Arben Çela2

1 Universidade Federal de Minas Gerais, Depto. Engenharia Eletrônica, Brazil
2 Université Paris-Est, ESIEE-Paris, France

3 Hôpital Tenon, Service de gynécologie, France
4 Institut Mondor de Médecine Moléculaire, Plate-forme génomique, France

5 Universidade Federal de Lavras, Depto. Ciência da Computação, Brazil

Abstract. Efficient predictors of the response to chemotherapy is an
important issue because such predictors would make it possible to give
the patients the most appropriate chemotherapy regimen. DNA microar-
rays appear to be of high interest for the design of such predictors. In
this article we propose bayesian classifiers taking as input the expression
levels of DNA probes, and a ‘filtering’ method for DNA probes selection.

1 Introduction

We consider the question of predicting the response of the patients to neoadju-
vant chemotherapy (treatment given prior to surgery). A pathologic complete
response (PCR) at surgery is correlated with an positive outcome while residual
disease (NoPCR) is associated with a negative outcome. An accurate prediction
of tumor sensitivity to preoperative chemotherapy is important to avoid the pre-
scription of an inefficient treatment to patients with predicted residual disease
while allocating the treatment to all the PCR patients

In [4,5] we have proposed a new method for DNA probes selection. In this
paper we investigate the performances of bayesian classifiers taking as input
the expression levels of the selected probes. We also compare the results with
SVMs [2] and Multi-objective neural networks [6].

2 Previous Studies

The data comes from a clinical trail jointly conducted at the MD Anderson
Cancer Center (MDACC) in Houston (USA) and at the Institut Gustave Roussy
(IGR) in Villejuif (France) and it was used previously in K. Hess & al. [3]. The
dataset was composed of 82 cases in the training set and 51 cases in the test
set. A pathologic complete response (PCR) was defined as no histopathologic
evidence of any residual invasive cancer cells in the breast, and a non pathologic
complete response as any residual cancer cells after histopathologic study. For

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 263–266, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

264 A.P. Braga et al.

each patient case, the data was the outcome of the treatment and the expression
levels of 22283 DNA probes of an Affymetrix U133A microarray, measured on
tumor cells.

Method of probes selection [5,4]. We assigned two sets of expression levels to any
probe s, the sets Ep(s) and En(s), computed from the training data as follows [5].
Let mp(s) et sdp(s) be the mean and standard deviation of the expression levels
of probe s for the PCR training cases, and let mn(s) and sdn(s) be that of the
NoPCR training cases. The set of expression levels of the PCR training cases
was defined as the set difference Ep(s),

Ep(s) = [mp(s) − sdp(s), mp(s) + sdp(s)] \ [mn(s) − sdn(s), mn(s) + sdn(s)]

and conversely for the NoPCR training cases,

En(s) = [mn(s) − sdn(s), mn(s) + sdn(s)] \ [mp(s) − sdp(s), mp(s) + sdp(s)].

For any patient case, the individual prediction of a probe was a discrete value
in set {pcr, nopcr, unspecified} : pcr if the expression level of patient p lied
within the interval Ep(s) and nopcr if it lied within En(s). Otherwise, the indi-
vidual prediction value was unspecified.

Let p(s) be the number of PCR training cases correctly predicted pcr by probe
s, and let n(s) be the number of the NoPCR training cases correctly predicted
nopcr by the probe. The valuation function of the probes was defined so as
to favor probes which correctly predicted high numbers of training cases and
moreover, whose sets of correctly predicted training cases were ‘good’ samplings
of the training set. To this end, we have considered the ratios p(s)/P and n(s)/N
of correctly predicted training cases. The valuation function v(s), v(s) ∈ [0, 1],
was defined as:

v(s) = 0.5 ×
(

p(s)
P

+
n(s)
N

)
(1)

In our previous studies ([4,5]) we had defined the k-probes majority decision
predictor as the set of the k top ranked probes together with the majority de-
cision criterion: for any patient case, when the majority of ‘pcr’ and ‘nopcr’
predictions of the k top ranked probes was ‘pcr’, the patient was predicted to
be ‘PCR’, and when the majority was ‘nopcr’ the patient was predicted to be
‘NoPCR’. In case of tie the patient was predicted ‘UNSPECIFIED’. When com-
puting the performances of the predictor, a false negative was a PCR patient
case predicted NoPCR or UNSPECIFIED, and conversely for the false positives.

The best k-probes predictor was for k = 30 probes. This number of probes
was in accordance with the result of a previous study by K. Hess & al. [3].

3 Bayes Classification and Results

In order to obtain the majority classification rule, the marginal distributions
of each one of the 30 probes were estimate separately for the two classes, PCR

Bayesian Classifiers for Predicting the Outcome 265

Table 1. Comparison between all the classifiers on the test set

Hess Majority Bayes Bayes discretized SVM MOBJ
et al decision equal priors diff. priors equal priors diff. priors NN

accuracy 0.76 0.86 0.88 0.86 0.88 0.82 0.88 0.88
sensitivity 0.92 0.92 0.84 0.77 0.92 0.38 0.92 0.92
specificity 0.71 0.84 0.89 0.89 0.87 0.97 0.87 0.87

PPV 0.52 0.67 0.73 0.71 0.71 0.83 0.71 0.71
NPV 0.96 0.97 0.94 0.92 0.97 0.82 0.97 0.97

(class C+1) and NoPCR (class C−1). Therefore, for each probe i the distributions
P (xi|C+1) and P (xi|C−1) are known in advance. The majority decision rule can
be viewed as:

30∏

i=1

P (xi|C+1)
P (xi|C−1)

=
n+1s

n−1s
> 1 (2)

where n+1s and n−1s are, respectively, the number of +1s and -1s in the final
discretized vector of the majority decision rule.

So, we can consider the majority rule as a Bayes rule with equal prior proba-
bilities (P (C+1) = P (C−1)). The effect of this is to force a linear separation in
the input space. If the priors were used, this linear surface would bend in the
direction of the minority class, since the NoPCR class is more likely and has
larger variance.

The likelihoods P (x|C+1) and P (x|C−1) were estimated by considering inde-
pendence between the probes, by P (x|C+1) =

∏30
i=1 P (xi|C+1) and P (x|C−1) =∏30

i=1 P (xi|C−1), where P (xi|C+1) and P (xi|C−1) are, respectively, the marginal
distributions of probe i for classes C+1 and C−1.

The Bayesian rule [1] that assigns a pattern to class C+1 is given by Equa-
tion 3. ∏30

i=1 P (xi|C+1)Np+1s∏30
i=1 P (xi|C−1)Np−1s

> 1 (3)

The results for Equations 2 and 3, with and without estimated prior prob-
abilities for both discretized and non-discretized input vectors are presented in
Table 1. SVMs and Multi-Objective neural networks results [4] are also presented
in Table 1.

As can be observed in Table 1, the results of SVM and MOBJ-NN were identi-
cal. This can be explained by the low complexity models, bearing linear separa-
tion, yielded by these models. The resulting norm of the MOBJ neural network
weights was very small, what suggests a strong smoothing effect at the network
output.This interpretation is also supported by the identical results achieved by
the Bayes rule with equal priors that tends to yield a smooth separation. It is
surprising, however, that the Bayes rule with estimated prior probability has
performed worse than Bayes with equal priors and the other models. This may
be due to the small samples effect or to the independence assumption. Sparsity in
the data set and small sample sizes may also favor smoother separating surfaces.

266 A.P. Braga et al.

4 Conclusion

The trade-off between bias and variance [1] of a model is usually achieved
by complexity control, re-sampling or data-set partition strategies like cross-
validation [1]. SVMs and the MONJ-NN embody complexity control in their
formulations, what makes as believe that the results achieved with these models
point out to limit performance indexes that may be achieved with the current
data set. This assumption is reinforced by the fact that the results, obtained by
different training strategies, are very close to each other. For such a small data
set, representativeness in data set partition may be difficult to achieve, so we
rely on the results presented on Table 1 as reliable estimations of the separating
boundaries of the generator functions. We believe also that the use or not of esti-
mated priors in the Bayes/majority decision rule is a model design decision and
is not against any statistical principle. For our problem, the smoother decision
surface yielded results that are quite close to those obtained with the complexity
control models.

Acknowledgments. The authors would like to thank CAPES, COFECUB and
CNPq for the support.

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

2. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–279
(1995)

3. Hess, K.R., Anderson, K., Symmans, W.F., Valero, V., Ibrahim, N., Mejia, J.A.,
Booser, D., Theriault, R.L., Buzdar, A.U., Dempsey, P.J., Rouzier, R., Sneige, N.,
Ross, J.S., Vidaurre, T., Gomez, H.L., Hortobagyi, G.N., Pusztai, L.: Pharmacoge-
nomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and flu-
orouracil, doxorubicin, and cyclophosphamide in breast cancer. Journal of Clinical
Oncology 24(26), 4236–4244 (2006)

4. Natowicz, R., Braga, A.P., Incitti, R., Horta, E.G., Rouzier, R., Rodrigues, T.S.,
Costa, M.A.: A new method of dna probes selection and its use with multi-objective
neural networks for predicting the outcome of breast cancer preoperative chemother-
apy. In: European Symposium on Neural Networks (ESANN 2008) (Accepted, 2008)

5. Natowicz, R., Incitti, R., Charles, B., Guinot, P., Horta, E.G., Pusztai, L., Rouzier,
R.: Prediction of the outcome of preoperative chemotherapy in breast cancer by
dna probes that convey information on both complete and non complete responses.
BMC Bioinformatics (Accepted, 2008)

6. Teixeira, R.A., Braga, A.P., Takahashi, R.H.C., Saldanha, R.R.: Improving gener-
alization of mlps with multi-objective optimization. Neurocomputing (35), 189–194
(2000)

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 267–279, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Feature Ranking Ensembles for Facial Action Unit
Classification

Terry Windeatt and Kaushala Dias

Centre for Vision, Speech and Signal Proc (CVSSP), University of Surrey,
Guildford, Surrey, United Kingdom GU2 7XH

t.windeatt@surrey.ac.uk

Abstract. Recursive Feature Elimination RFE combined with feature-ranking is
an effective technique for eliminating irrelevant features. In this paper, an
ensemble of MLP base classifiers with feature-ranking based on the magnitude
of MLP weights is proposed. This approach is compared experimentally with
other popular feature-ranking methods, and with a Support Vector Classifier
SVC. Experimental results on natural benchmark data and on a problem in
facial action unit classification demonstrate that the MLP ensemble is relatively
insensitive to the feature-ranking method, and simple ranking methods perform
as well as more sophisticated schemes. The results are interpreted with the
assistance of bias/variance of 0/1 loss function.

1 Introduction

Consider a supervised learning problem, in which many features are suspected to be
irrelevant. To ensure good generalisation performance dimensionality needs to be
reduced, otherwise there is the danger that the classifier will specialise on features
that are not relevant for discrimination, that is the classifier may over-fit the data. It is
particularly important to reduce the number of features for small sample size
problems, where the number of patterns is less than or of comparable size to the
number of features [1]. To reduce dimensionality, features may be extracted (for
example Principal Component Analysis PCA) or selected. Feature extraction
techniques make use of all the original features when mapping to new features but,
compared with feature selection, are difficult to interpret in terms of the importance of
original features.

Feature selection has received attention for many years from researchers in the
fields of pattern recognition, machine learning and statistics. The aim of feature
selection is to find a feature subset from the original set of features such that an
induction algorithm that is run on data containing only those features generates a
classifier that has the highest possible accuracy [2]. Typically with tens of features in
the original set, an exhaustive search is computationally prohibitive. Indeed the
problem is known to be NP-hard [2], and a greedy search scheme is required. For
problems with hundreds of features, classical feature selection schemes are not greedy
enough, and filter, wrapper and embedded approaches have been developed [3].

Although feature-ranking has received much attention in the literature, there has
been relatively little work devoted to handling feature-ranking explicitly in the

268 T. Windeatt and K. Dias

context of Multiple Classifier System (MCS). Most previous approaches have focused
on determining feature subsets to combine, but differ in the way the subsets are
chosen. The Random Subspace Method (RSM) is the best-known method, and it was
shown that a random choice of feature subset, (allowing a single feature to be in more
than one subset), improves performance for high-dimensional problems. In [1],
forward feature and random (without replacement) selection methods are used to
sequentially determine disjoint optimal subsets. In [4], feature subsets are chosen
based on how well a feature correlates with a particular class. Ranking subsets of
randomly chosen features before combining was reported in [5].

In this paper an MLP ensemble using Recursive Feature Elimination RFE [12] is
experimentally compared for different feature-ranking methods. Ensemble techniques
are discussed in Section 2, and feature-ranking strategies in Section 3. The datasets,
which include a problem in face expression recognition, are described in Section 4,
with experimental results in Section 5.

2 Ensembles, Bootstrapping and Bias/Variance Analysis

In this paper, we assume a simple parallel Multiple Classifier System (MCS)
architecture with homogenous MLP base classifiers and majority vote combiner. A
good strategy for improving generalisation performance in MCS is to inject
randomness, the most popular strategy being Bootstrapping. An advantage of
Bootstrapping is that the Out-of-Bootstrap (OOB) error estimate may be used to tune
base classifier parameters, and furthermore, the OOB is a good estimator of when to
stop eliminating features [6]. Normally, deciding when to stop eliminating irrelevant
features is difficult and requires a validation set or cross-validation techniques.

Bootstrapping is an ensemble technique which implies that if μ training patterns
are randomly sampled with replacement, (1-1/μ))μ ≅ 37% are removed with remaining
patterns occurring one or more times. The base classifier OOB estimate uses the
patterns left out of training, and should be distinguished from the ensemble OOB. For
the ensemble OOB, all training patterns contribute to the estimate, but the only
participating classifiers for each pattern are those that have not been used with that
pattern for training (that is, approximately thirty-seven percent of classifiers). Note
that OOB gives a biased estimate of the absolute value of generalisation error [7], but
for tuning purposes the estimate of the absolute value is not important [8]. Bagging,
that is Bootstrapping with majority vote combiner, and Boosting (Section 3.3) are
probably the most popular MCS methods.

The use of Bias and Variance for analysing multiple classifiers is motivated by
what appears to be analogous concepts in regression theory. The notion is that
averaging a large number of classifiers leads to a smoothing out of error rates.
Visualisation of simple two-dimensional problems appears to support the idea that
Bias/Variance is a good way of quantifying the difference between the Bayes decision
boundary and the ensemble classifier boundary. However, there are difficulties with
the various Bias/Variance definitions for 0/1 loss functions. A comparison of
Bias/Variance definitions [9] shows that no definition satisfies all properties that
would ideally be expected for 0/1 loss function. In particular, it is shown that it is
impossible for a single definition to satisfy both zero Bias and Variance for Bayes

 Feature Ranking Ensembles for Facial Action Unit Classification 269

classifier, and additive Bias and Variance decomposition of error (as in regression
theory).

Also, the effect of bias and variance on error rate cannot be guaranteed. It is easy to
think of example probability distributions for which bias and variance are constant but
error rate changes with distribution, or for which reduction in variance leads to
increase in error rate [9] [11]. Besides these theoretical difficulties, there is the
additional consideration that for real problems the Bayes classification needs to be
known or estimated. Although some definitions, for example [10], do not require this,
the consequence is that the Bayes error is ignored.

In our experiments, we use Breiman’s definition [11] which is based on defining
Variance as the component of classification error that is eliminated by aggregation.
Patterns are divided into two sets, the Bias set B containing patterns for which the
Bayes classification disagrees with the aggregate classifier and the Unbias set U
containing the remainder. Bias is computed using B patterns and Variance is
computed using U patterns, but both Bias and Variance are defined as the difference
between the probabilities that the Bayes and base classifier predict the correct class
label. Therefore, the reducible error (what we have control over) with respect to a
pattern is either assigned to Bias or Variance, an assumption that has been criticised
[9]. However, this definition has the nice property that the error of the base classifiers
can be decomposed into additive components of Bayes error, Bias and Variance.

3 Feature-Ranking and RFE

RFE is a simple algorithm [12], and operates recursively as follows:

1) Rank the features according to a suitable feature-ranking method
2) Identify and remove the r least ranked features

If r≥2, which is usually desirable from an efficiency viewpoint, this produces a
feature subset ranking. The main advantage of RFE is that the only requirement to be
successful is that at each recursion the least ranked subset does not contain a strongly
relevant feature [13]. In this paper we use RFE with MLP weights, SVC weights
(Section 3.1), and noisy bootstrap (Section 3.2).

The issues in feature-ranking can be quite complex, and feature relevance,
redundancy and irrelevance has been explicitly addressed in many papers. As noted in
[13] it is possible to think up examples for which two features may appear irrelevant
by themselves but be relevant when considered together. Also adding redundant
features can provide the desirable effect of noise reduction.

One-dimensional feature-ranking methods consider each feature in isolation and
rank the features according to a scoring function Score(j) where j=1…p is a feature,
for which higher scores usually indicate more influential features. One-dimensional
functions ignore all p-1 remaining features whereas a multi-dimensional scoring
function considers correlations with remaining features. According to [3] one-
dimensional methods are disadvantaged by implicit orthogonality assumption, and
have been shown to be inferior to multi-dimensional methods that consider all
features simultaneously. However, there has not been any systematic comparison of
single and multi-dimensional methods in the context of ensembles.

270 T. Windeatt and K. Dias

In this paper, the assumption is that all feature-ranking strategies use the training
set for computing ranking criterion (but see Section 5 in which the test set is used for
best case scenario). In Sections 3.1-3.4 we describe the ranking strategies that are
compared in Section 5, denoted as rfenn, rfesvc (Section 3.1) rfenb (Section 3.2) boost
(Section 3.3) and SFFS, 1dim (Section 3.4). Note that SVC, Boosting and statistical
ranking methods are well-known so that the technical details are omitted.

3.1 Ranking by Classifier Weights (rfenn, rfesvc)

The equation for the output O of a single output single hidden-layer MLP, assuming
sigmoid activation function S is given by

21)(jij
j i

i WWxSO ∗= ∑ ∑ (1)

where i,j are the input and hidden node indices, xi is input feature, W1 is the first layer
weight matrix and W2 is the output weight vector. In [14], a local feature selection
gain wi is derived form equation (1)

∑ ∗=
j

jiji WWw 21 (2)

This product of weights strategy has been found in general not to give a reliable
feature-ranking [15]. However, when used with RFE it is only required to find the
least relevant features. The ranking using product of weights is performed once for
each MLP base classifier. Then individual rankings are summed for each feature,
giving an overall ranking that is used for eliminating the set of least relevant features
in RFE.

For SVC the weights of the decision function are based on a small subset of
patterns, known as support vectors. In this paper we restrict ourselves to the linear
SVC in which linear decision function consists of the support vector weights, that is
the weights that have not been driven to zero.

3.2 Ranking by Noisy Bootstrap (rfenb)

Fisher’s criterion measures the separation between two sets of patterns in a direction
w, and is defined for the projected patterns as the difference in means normalised by
the averaged variance. FLD is defined as the linear discriminant function for which
J(w) is maximized

wWSTw

wBSTw

wJ =)(
(3)

where, SB is the between-class scatter matrix and SW is the within-class scatter matrix
(Section 3.4). The objective of FLD is to find the transformation matrix w* that
maximises J(w) in equation (3) and w* is known to be the solution of the following
eigenvalue problem SB - SWΛ = 0 where Λ is a diagonal matrix whose elements are

 Feature Ranking Ensembles for Facial Action Unit Classification 271

the eigenvalues of matrix SW
-1SB. Since in practice SW is nearly always singular,

dimensionality reduction is required. The idea behind the noisy bootstrap [16] is to
estimate the noise in the data and extend the training set by re-sampling with
simulated noise. Therefore, the number of patterns may be increased by using a re-
sampling rate greater than 100 percent. The noise model assumes a multi-variate
Gaussian distribution with zero mean and diagonal covariance matrix, since there are
generally insufficient number of patterns to make a reliable estimate of any
correlations between features. Two parameters to tune are the noise added γ and the
sample to feature ratio s2f. We set for our experiments γ = 0.25 and s2f = 1 [17].

3.3 Ranking by Boosting (boost)

Boosting, which combines with a fixed weighted vote is more complex than Bagging
in that the distribution of the training set is adaptively changed based upon the
performance of sequentially constructed classifiers. Each new classifier is used to
adaptively filter and re-weight the training set, so that the next classifier in the
sequence has increased probability of selecting patterns that have been previously
misclassified. The algorithm is well-known and has proved successful as a
classification procedure that ‘boosts’ a weak learner, with the advantage of minimal
tuning. More recently, particularly in the Computer Vision community, Boosting has
become popular as a feature selection routine, in which a single feature is selected on
each Boosting iteration [18]. Specifically, the Boosting algorithm is modified so that,
on each iteration, the individual feature is chosen which minimises the classification
error on the weighted samples [19]. In our implementation, we use Adaboost with
decision stump as weak learner.

3.4 Ranking by Statistical Criteria (1dim, SFFS)

Class separability measures are popular for feature-ranking, and many definitions use
SB and SW (equation (3)) [20]. Recall that SW is defined as the scatter of samples
around respective class expected vectors and SB as the scatter of the expected vectors
around the mixture mean. Although many definitions have been proposed, we use
trace(SW

-1 * SB), a one-dimensional method.
A fast multi-dimensional search method that has been shown to give good results

with individual classifiers is Sequential Floating Forward Search (SFFS). It improves
on (plus l – take away r) algorithms by introducing dynamic backtracking. After each
forward step, a number of backward steps are applied, as long as the resulting subsets
are improved compared with previously evaluated subsets at that level. We use the
implementation in [21] for our comparative study.

4 Datasets

The first set of experiments use natural benchmark two-class problems selected from
[22] and [23] and are shown in Table 1. For datasets with missing values the scheme
suggested in [22] is used. The original features are normalised to mean 0 std 1 and the
number of features increased to one hundred by adding noisy features (Gaussian std

272 T. Windeatt and K. Dias

Table 1. Benchmark Datasets showing numbers of patterns, continuous and discrete features
and estimated Bayes error rate

DATASET #pat #con #dis %error
cancer 699 0 9 3.1
card 690 6 9 12.8

credita 690 3 11 14.1
diabetes 768 8 0 22.0

heart 920 5 30 16.1
ion 351 31 3 6.8
vote 435 0 16 2.8

0.25). All experiments use random training/testing splits, and the results are reported
as mean over twenty runs. Two-class benchmark problems are split 20/80 (20%
training, 80% testing) 10/90, 5/95 and use 100 base classifiers.

The second set of experiments addresses a problem in face expression recognition,
which has potential application in many areas including human-computer interaction,
talking heads, image retrieval, virtual reality, human emotion analysis, face
animation, biometric authentication [24]. The problem is difficult because facial
expression depends on age, ethnicity, gender, and occlusions due to cosmetics, hair,
glasses. Furthermore, images may be subject to pose and lighting variation. There are
two approaches to automating the task, the first concentrating on what meaning is
conveyed by facial expression and the second on categorising deformation and motion
into visual classes. The latter approach has the advantage that the interpretation of
facial expression is decoupled from individual actions. In FACS (facial action coding
system) [25], the problem is decomposed into forty-four facial action units (e.g. au1
inner brow raiser). The coding process requires skilled practitioners and is time-
consuming so that typically there are a limited number of training patterns. These
characteristics make the problem of face expression classification relevant and
suitable to the feature-ranking techniques proposed in this paper.

The database we use is Cohn-Kanade [26], which contains posed (as opposed to
the more difficult spontaneous) expression sequences from a frontal camera from 97
university students. Each sequence goes from neutral to target display but only the
last image is au coded. Facial expressions in general contain combinations of action
units (aus), and in some cases aus are non-additive (one action unit is dependent on
another). To automate the task of au classification, a number of design decisions
need to be made, which relate to the following a) subset of image sequences chosen
from the database b) whether or not the neutral image is included in training c) image
resolution d) normalisation procedure e) size of window extracted from the image, if
at all f) features chosen for discrimination, g) feature selection or feature extraction
procedure h) classifier type and parameters, and i) training/testing protocol.
Researchers make different decisions in these nine areas, and in some cases are not
explicit about which choice has been made. Therefore it is difficult to make a fair
comparison with previous results.

We concentrate on the upper face around the eyes, (involving au1, au2, au4, au5,
au6, au7) and consider the two-class problem of distinguishing images containing

 Feature Ranking Ensembles for Facial Action Unit Classification 273

inner brow raised (au1), from images not containing au1. The design decisions we
made were

a) all image sequences of size 640 x 480 chosen from the database
b) last image in sequence (no neutral) chosen giving 424 images, 115 containing

au1
c) full image resolution, no compression
d) manually located eye centres plus rotation/scaling into 2 common eye

coordinates
e) window extracted of size 150 x 75 pixels centred on eye coordinates
f) Forty Gabor filters [18], five special frequencies at five orientations with top 4

principle components for each Gabor filter, giving 160-dimensional feature
vector

g) Comparison of feature selection schemes described in Section 3
h) Comparison of MLP ensemble and Support Vector Classifier
i) Random training/test split of 90/10 and 50/50 repeated twenty times and

averaged

With reference to b), some studies use only the last image in the sequence but
others use the neutral image to increase the numbers of non-aus. Furthermore, some
researchers consider only images with single au, while others use combinations of
aus. We consider the more difficult problem, in which neutral images are excluded
and images contain combinations of aus. With reference to d) there are different
approaches to normalisation and extraction of the relevant facial region. To ensure
that our results are independent of any eye detection software, we manually annotate
the eye centres of all images, and subsequently rotate and scale the images to align the
eye centres horizontally. A further problem is that some papers only report overall
error rate. This may be mis-leading since class distributions are unequal, and it is
possible to get an apparently low error rate by a simplistic classifier that classifies all
images as non-au1. For the reason we report area under ROC curve, similar to [18].

5 Experimental Evidence

The purpose of the experiments is to compare the various feature-ranking schemes
described in Section 3, using an MLP ensemble and a Support Vector Classifier. The
SVC is generally recognised to give superior results when compared with other single
classifiers. A difficulty with both MLPs and SVCs is that parameters need to be
tuned. In the case of SVC, this is the kernel and regularisation constant C. For MLP
ensemble, it is the number of hidden nodes and number of training epochs. There are
other tuning parameters for MLPs, such as learning rate but the ensemble has been
shown to be robust to these parameters [8]. When the number of features is reduced,
the ratio of the number of patterns to features is changing, so that optimal classifier
parameters will be varying. In general, this makes it a very complex problem, since
theoretically an optimisation needs to be carried out after each feature reduction. To
make a full comparison between MLP and SVC, we would need to search over the
full parameter space, which is not feasible. For the two-class problems in table 1, we
compare linear SVC with linear perceptron ensemble. We found that the differences

274 T. Windeatt and K. Dias

100 65 42 27 18 11 7 5 3 2

8

10

12

14

16

E
rr

or
 R

at
es

 %

(a) Base Test

20
10
 5

100 65 42 27 18 11 7 5 3 2

5

6

7

8

(b) Ensemble Test

100 65 42 27 18 11 7 5 3 2

1

2

3

E
rr

or
 R

at
es

 %

number of features

(c) Bias

100 65 42 27 18 11 7 5 3 2
2

4

6

8

10

number of features

(d) Variance

Fig. 1. Mean test error rates, Bias, Variance for RFE perceptron ensemble with Cancer Dataset
80/20, 10/90. 5/95 train/test split

between feature selection schemes were not statistically significant (McNemar test
5% [27]), and we show results graphically and report the mean over all datasets.

Random perturbation of the MLP base classifiers is caused by different starting
weights on each run, combined with bootstrapped training patterns, Section 2. The
experiment is performed with one hundred single hidden-layer MLP base classifiers,
using the Levenberg-Marquardt training algorithm with default parameters. The
feature-ranking criterion is given in equ. (2). In our framework, we vary the number
of hidden nodes, and use a single node for linear perceptron. We checked that results
were consistent for Single layer perceptron (SLP), using absolute value of orientation
weights to rank features.

In order to compute bias and variance we need to estimate the Bayes classifier for
the 2-class benchmark problems. The estimation is performed for 90/10 split using
original features in Table 1, and a SVC with polynomial kernel run 100 times. The
polynomial degree is varied as well as the regularisation constant. The lowest test
error found is given in Table 1, and the classifications are stored for the bias/variance
computation. All datasets achieved minimum with linear SVC, with the exception of
‘Ion’ (degree 2).

Figure 1 shows RFE linear MLP ensemble results for ‘Cancer’ 20/80, 10/90, 5/95
which has 140, 70, 35 training patterns respectively. With 100 features the latter two
splits give rise to small sample size problem, that is number of patterns less than
number of features [1]. The recursive step size for RFE is chosen using a logarithmic
scale to start at 100 and finish at 2 features. Figure 1 (a) (b) show base classifier and
ensemble test error rates, and (c) (d) the bias and variance as described in Section 2.
Consider the 20/80 split for which Figure 1 (a) shows that minimum base classifier
error is achieved with 5 features compared with figure (b) 7 features for the ensemble.
Notice that the ensemble is more robust than base classifiers with respect to noisy

 Feature Ranking Ensembles for Facial Action Unit Classification 275

100 65 42 27 18 11 7 5 3 2

20

25

30

E
rr

or
 R

at
es

 %

(a) Base Test

20
10
 5

100 65 42 27 18 11 7 5 3 2

16

18

20

22

(b) Ensemble Test

100 65 42 27 18 11 7 5 3 2
2

3

4

5

6

E
rr

or
 R

at
es

 %

number of features

(c) Bias

100 65 42 27 18 11 7 5 3 2

6

8

10

12

number of features

(d) Variance

Fig. 2. Mean test error rates, Bias, Variance for RFE MLP ensemble over seven 2-class
Datasets 80/20, 10/90. 5/95 train/test split

features. In fact, Figure 1 (c) shows that bias is minimised at 27 features, demonstrat-
ing that the linear perceptron with bootstrapping benefits (in bias reduction) from a
few extra noisy features. Figure 1 (d) shows that Variance is reduced monotonically
as number of features is reduced, and between 27 and 7 features the Variance
reduction more than compensates for bias increase. Note also that according to
Breiman’s decomposition (Section 2), (c) + (d) + 3.1 (Bayes) equals (a).

Figure 2 shows RFE linear MLP ensemble mean test error rates, bias and variance
over all seven datasets from table 1. On average, the base classifier achieves
minimum error rate at 5 features and the ensemble at 7 features. Bias is minimised at
11 features and Variance at 3 features. For the 5/95 split there appears to be too few
patterns to reduce bias, which stays approximately constant as features are reduced.
Note that for SVC (not shown) the error is due entirely to bias, since variance is zero.

The comparison for various schemes defined in Section 3 can be found in Table 2.
It may be seen that the ensemble is fairly insensitive to the ranking scheme and the
linear perceptron ensemble performs similarly to SVC. In particular, the more
sophisticated schemes of SFFS and Boosting are slightly worse on average than the
simpler schemes. Although the 1-dimensional method (Section 3.4) is best on average
for 20/80 split, as number of training patterns decreases, performance is slightly
worse than RFE methods. We also tried MLP base classifier with 8 nodes 7 epochs
which was found to be the best setting without added noisy features [8]. The mean
ensemble rate for 20/80, 10/90 5/95 was 14.5%,15.7%, 17.9% respectively the
improvement due mostly to ‘ion’ dataset which has a high bias with respect to Bayes
classifier.

To determine the potential effect of using a validation set with a feature selection
strategy, we chose SVC plus SFFS with the unrealistic case of full test set for tuning.
The mean ensemble rate for 20/80, 10/90 5/95 was 13.3%, 14.0%, 15.0% for SVC

276 T. Windeatt and K. Dias

Table 2. Mean best error rates (%)/number of features for seven two-class problems (20/80)
with five feature-ranking schemes (Mean 10/90, 5/95 also shown)

perceptron-ensemble classifier SVC-classifier

rfenn rfenb 1dim SFFS boost rfesvc rfenb 1dim SFFS boost

diab 24.9/2 25.3/2 25.3/2 25.8/2 25.6/2 24.5/3 24.8/5 24.9/2 25.3/2 25.3/2

credita 16.5/5 15.7/3 14.6/2 15.6/2 15.5/2 15.7/2 15.1/2 14.6/2 15.4/2 15.1/2

cancer 4/7 4/5 4.1/5 4.4/3 4.9/7 3.7/7 3.7/7 3.8/11 4.2/5 4.5/7

heart 21/27 21/18 21/11 23/5 23/18 20/18 20/11 20/18 22/7 24/18

vote 5.5/5 5.3/7 5.6/18 5.7/2 5.5/2 4.8/2 4.8/2 4.7/2 4.3/3 4.7/2

ion 18/11 16.7/3 14.8/3 15.8/3 18.1/2 15/11 15.9/7 15.3/5 17.9/5 19.5/5

card 15.7/7 15/2 14.7/2 16.9/2 14.8/2 15.5/2 14.8/2 14.5/2 16.6/2 14.5/2

Mean20/80 15.1 14.6 14.2 15.4 15.4 14.2 14.2 13.9 15.1 15.3

Mean10/90 16.3 16.3 16.6 18.0 17.6 15.5 15.7 15.8 17.5 17.3

Mean5/95 18.4 18.5 20.0 21.3 21.3 17.0 17.7 18.4 20.3 20.7

Table 3. Mean best error rates (%)/number of features for au1 classification 90/10 with five
feature ranking schemes

MLP-ensemble classifier SVC-classifier

rfenn rfenb 1dim SFFS boost rfesvc rfenb 1dim SFFS boost

10.0/28 10.9/43 10.9/43 12.3/104 11.9/43 11.6/28 12.1/28 11.9/67 13.9/67 12.4/43

and 13.5%, 14.1%, 15.4% for MLP. We also repeated rfenn without Bootstrapping,
showing that although variance is lower, bias is higher and achieved 15.7%, 17.6%,
20.0% respectively, demonstrating that Bootstrapping has beneficial effect on
performance.

Table 3 shows feature-ranking comparison for au1 classification from the Cohn-
Kanade database as described in Section 4. It was found that lower test error was
obtained with non-linear base classifier and Figure 3 shows test error rates, using an
MLP ensemble with 16 nodes 10 epochs. The minimum base error rate for 90/10 split
is 16.5% achieved for 28 features, while the ensemble is 10.0% at 28 features. Note
that for 50/50 split there are too few training patterns for feature selection to have
much effect. Since class distributions are unbalanced, the overall error rate may be
mis-leading, as explained in Section 4. Therefore, we show the true positive rate in
Figure 3 c) and area under ROC in Figure d). Note that only 71% of au1s are
correctly recognised. However, by changing the threshold for calculating the ROC, it
is clearly possible to increase the true positive rate at the expense of false negatives.
Nevertheless, it is believed that the overall ensemble rate of 10% is among the best
for au1 on this database (recognising the difficulty of making fair comparison as
explained in Section 4). We did try SVC for degree 2,3,4 polynomials with C varying,

 Feature Ranking Ensembles for Facial Action Unit Classification 277

160 104 67 43 28 18 12 8 5 3

17

18

19

20

E
rr

or
 R

at
es

 %

(a) Base

90
50

160 104 67 43 28 18 12 8 5 3

12

14

16

(b) Ensemble

160 104 67 43 28 18 12 8 5 3
55

60

65

70

 R
at

e
%

number of features

(c) true pos

160 104 67 43 28 18 12 8 5 3
0.82

0.84

0.86

0.88

0.9

0.92

C
oe

ffi
ci

en
t

number of features

(d) Area under ROC

Fig. 3. Mean test error rates, True Positive and area under ROC for RFE MLP ensemble for au1
classification 90/10. 50/50 train/test split

but did not improve on degree 1 results. The results are not presented but the
performance of SVC was very sensitive to regularisation constant C, which makes it
difficult to tune and we did not try different kernels.

6 Discussion

There is conflicting evidence over whether an SVC ensemble gives superior results
compared with single SVC, but in [28] it is claimed that an SVC ensemble with low
bias classifiers gives better results. However, it is not possible to be definitive,
without searching over all kernels and regularisation constants C. In our experiments,
we chose to consider only linear SVC, and found the performance to be sensitive to C.
In contrast, the ensemble is relatively insensitive to number of nodes and epochs [8],
and this is an advantage of the MLP ensemble. However, we believe it is likely that
we could have achieved comparable results to MLP ensemble by searching over
different kernels and values of C for SVC.

The feature-ranking approaches have been applied to a two-class problem in facial
action unit classification. The problem of detecting action units is naturally a multi-
class problem, and the intention is to employ multi-class approaches that decompose
the problem into two-class problems, such as Error-Correcting Output Coding
(ECOC) [29].

7 Conclusion

A bootstrapped MLP ensemble, combined with RFE and product of weights feature-
ranking, is an effective way of eliminating irrelevant features. The accuracy is
comparable to SVC but has the advantage that the OOB estimate may be used to tune
parameters and to determine when to stop eliminating features. Simple feature-

278 T. Windeatt and K. Dias

ranking techniques, such as 1-dimensional class separability measure or product of
MLP weights plus RFE, perform at least as well as more sophisticated techniques
such as multi-dimensional methods of SFFS and Boosting.

References

1. Skuruchina, M., Duin, R.P.W.: Combining feature subsets in feature selection. In: Oza, N.,
Polikar, R., Roli, F., Kittler, J. (eds.) Proc. 6th Int. Workshop Multiple Classifier Systems,
Seaside, Calif. USA, June 2005. LNCS, pp. 165–174. Springer, Heidelberg (2005)

2. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence
Journal, special issueon relevance 97(1-2), 273–324 (1997)

3. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of
Machine Learning Research 3, 1157–1182 (2003)

4. Oza, N., Tumer, K.: Input Decimation ensembles: decorrelation through dimensionality
reduction. In: Kittler, J., Roli, F. (eds.) Proc. 2nd Int. Workshop Multiple Classifier
Systems, Cambridge, UK. LNCS, pp. 238–247. Springer, Heidelberg (2001)

5. Bryll, R., Gutierrez-Osuna, R., Quek, F.: Attribute bagging: improving accuracy of
classifier ensembles by using random feature subsets. Pattern Recognition 36, 1291–1302
(2003)

6. Windeatt, T., Prior, M.: Stopping Criteria for Ensemble-based Feature Selection. In: Proc.
7th Int. Workshop Multiple Classifier Systems, Prague, May 2007. LNCS, pp. 271–281.
Springer, Heidelberg (2007)

7. Bylander, T.: Estimating generalisation error two-class datasets using out-of-bag estimate.
Machine Learning 48, 287–297 (2002)

8. Windeatt, T.: Accuracy/ Diversity and Ensemble Classifier Design. IEEE Trans Neural
Networks 17(5), 1194–1211 (2006)

9. James, G.: Variance and Bias for General Loss Functions. Machine Learning 51(2), 115–
135 (2003)

10. Kong, E.B., Dietterich, T.G.: Error- Correcting Output Coding corrects Bias and Variance.
In: 12th Int. Conf. Machine Learning, San Francisco, pp. 313–321 (1995)

11. Breiman, L.: Arcing Classifiers. The Annals of Statistics 26(3), 801–849 (1998)
12. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification

using support vector machines. Machine Learning 46(1-3), 389–422 (2002)
13. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy.

Journal of Machine Learning Research 5, 1205–1224 (2004)
14. Hsu, C., Huang, H., Schuschel, D.: The ANNIGMA-wrapper approach to fast feature

selection for neural nets. IEEE Trans. System, Man and Cybernetics-Part B:Cybernetics
32(2), 207–212 (2002)

15. Wang, W., Jones, P., Partridge, D.: Assessing the impact of input features in a feedforward
neural network. Neural Computing and Applications 9, 101–112 (2000)

16. Efron, N., Intrator, N.: The effect of noisy bootstrapping on the robustness of supervised
classification of gene expression data. In: IEEE Int. Workshop on Machine Learning for
Signal Processing, Brazil, pp. 411–420 (2004)

17. Windeatt, T., Prior, M., Effron, N., Intrator, N.: Ensemble-based Feature Selection
Criteria. In: Proc. Conference on Machine Learning Data Mining MLDM2007, Leipzig,
July 2007, pp. 168–182 (2007) ISBN 978-3-940501-00-4

 Feature Ranking Ensembles for Facial Action Unit Classification 279

18. Bartlett, M.S., Littlewort, G., Lainscsek, C., Fasel, I., Movellan, J.: Machine learning
methods for fully automatic recognition of facial expressions and facial actions. In: IEEE
Conf. Systems, Man and Cybernetics, October 2004, vol. 1, pp. 592–597 (2004)

19. Silapachote, P., Karuppiah, D.R., Hanson, A.R.: Feature Selection using Adaboost for
Face Expression Recognition. In: Proc. Conf. on Visualisation, Imaging and Image
Processing, Marbella, Spain, September 2004, pp. 84–89 (2004)

20. Fukunaga, K.: Introduction to statistical pattern recognition. Academic Press, London
(1990)

21. Heijden, F., Duin, R.P.W., Ridder, D., Tax, D.M.J.: Classification, Parameter Estimation
and State Estimation. Wiley, Chichester (2004)

22. Prechelt, L.: Proben1: A set of neural network Benchmark Problems and Benchmarking
Rules, Tech Report 21/94, Univ. Karlsruhe, Germany (1994)

23. Merz, C.J., Murphy, P.M.: UCI repository of machine learning databases (1998),
 http://www.ics.uci.edu/~mlearn/MLRepository.html

24. Fasel, B., Luettin, J.: Automatic facial expression analysis: a survey. Pattern
Recognition 36, 259–275 (2003)

25. Tian, Y., Kanade, T., Cohn, J.F.: Recognising action units for facial expression analysis.
IEEE Trans. PAMI 23(2), 97–115 (2001)

26. Kanade, T., Cohn, J.F., Tian, Y.: Comprehenive Database for facial expression analysis.
In: Proc. 4th Int. Conf. automatic face and gesture recognition, Grenoble, France, pp. 46–53
(2000)

27. Dietterich, T.G.: Approx. statistical tests for comparing supervised classification learning
algorithms. Neural Computation 10, 1895–1923 (1998)

28. Valentini, G., Dietterich, T.G.: Bias-Variance Analysis for Development of SVM-Based
Ensemble Methods. Journal of Machine Learning Research 4, 725–775 (2004)

29. Windeatt, T., Ghaderi, R.: Coding and Decoding Strategies for Multi-class Learning
Problems. Information Fusion 4(1), 11–21 (2003)

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 280–291, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Texture Classification with Generalized Fourier
Descriptors in Dimensionality Reduction Context: An

Overview Exploration

Ludovic Journaux1, Marie-France Destain1, Johel Miteran2, Alexis Piron1,
and Frederic Cointault3

1 Unité de Mécanique et Construction, Faculté Universitaire des Sciences Agronomiques de
Gembloux, Passage des Déportés 2, B-5030 Gembloux, Belgique

2 Lab. Le2i, Université de Bourgogne, BP 47870, 21078 Dijon Cedex, France
3 ENESAD UP GAP, 26 Bd Dr Petitjean BP 87999, 21079 Dijon Cedex, France

journaux.l@fsagx.ac.be

Abstract. In the context of texture classification, this article explores the
capacity and the performance of some combinations of feature extraction, linear
and nonlinear dimensionality reduction techniques and several kinds of
classification methods. The performances are evaluated and compared in term
of classification error. In order to test our texture classification protocol, the
experiment carried out images from two different sources, the well known
Brodatz database and our leaf texture images database.

Keywords: Texture classification, Motion Descriptors, Dimensionality reduction.

1 Introduction

For natural images the texture is a fundamental characteristic which plays an
important role in pattern recognition and computer vision. Thus, texture analysis is an
essential step for any image processing applications such as medical and biological
imaging, industrial control, document segmentation, remote sensing of earth
resources. A successful classification or segmentation requires an efficient feature
extraction methodology but the major difficulty is that textures in the real world are
often not uniform, due to changes in orientation, scale, illumination conditions, or
other visual appearance. To overcome these problems, numerous approaches are
proposed in the literature, often based on the computation of invariants followed by a
classification method as in [1]. In the case of a large size texture image, these
invariants texture features often lead to very high-dimensional data, the dimension of
the data being in the hundreds or thousands. Unfortunately, in a classification context
these kinds of high-dimensional datasets are difficult to handle and tend to suffer from
the problem of the “curse of dimensionality”, well known as “Hughes phenomenon”
[2], which cause inaccurate classification. One possible solution to improve the
classification performance is to use Dimensionality Reduction (DR) techniques in
order to transform high-dimensional data into a meaningful representation of reduced

 Texture Classification with Generalized Fourier Descriptors 281

dimensionality. Numerous studies have aimed at comparing DR algorithms, usually
using synthetic data [3 , 4] but less for natural tasks as in [5] or [6].

In this paper, considering one family of invariants called Motion descriptors (MD)
or Generalized Fourier Descriptors (GFD) [7] which provide well-proven robust
features in complex areas of pattern recognition (faces, objects, forms) [8], we
propose to compare in 6 classification methods context, the high-dimensional original
features datasets extracted from two different textures databases to reduced textures
features dataset obtained by 11 DR methods. This paper is organized as follows :
section 2 presents the textured images databases, review the definition of invariants
features used for classification methods which are also quickly described. In section 3
we propose a review of Dimensionality Reduction techniques and the section 4
presents the results allowing to compare the performances of some combinations of
feature extraction, dimensionality reduction and classification. The performances are
evaluated and compared in term of classification error.

2 Materials and Methods

2.1 Textures Images Databases

In order to test our texture classification protocol, the experiment carried out images
from two different sources:

 The well known Brodatz textures dataset [9] adapted from the Machine Vision
Group of Oulun University and first used by Valkealahti [10]. The dataset is
composed of 32 different textures (Fig. 1). The original images are grey levels images
with a 256 256× pixels resolution. Each image has been cropped into 16 disjoint
64x64 samples. In order to evaluate scale and rotation invariance, three additional
samples were generated per original sample (90° degrees rotation, 64 64× scaling,
combinations of rotation and scaling). Finally, the set contains almost 2048 images,
64 samples per texture.

Fig. 1. The 32 Brodatz textures used in the experiments

 The second textures images used in this study have been provided by the
Matters and Materials laboratory at the “Free University of Brussels” for agronomic
application. They are grey levels images acquired with a scanning electron
microscope (SEM) and representing different kinds of leaf surfaces coming from six
leaf plant species (Fig. 2). Thus, the image database contains 6 classes of leaf textures
images. For each class 150 to 200 images have been acquired. Each image consists of
a 100 µm scale image, with a resolution of 512 × 512 pixels adapting the scale to our
biological application (1242 textures images in six classes).

282 L. Journaux et al.

Fig. 2. The six classes of leaf texture images

2.2 Texture Characterisation Using Generalized Fourier Descriptors (GFD)

The GFD are defined as follows. Let f be a square summable function on the plane,

and f̂ its Fourier transform:

()
2

(̂) ()exp .f f x j x dxξ ξ= −∫ (1)

If (),λ θ are polar coordinates of the point ξ , we shall denote again ()ˆ ,f λ θ the

Fourier transform of f at the point (),λ θ . Gauthier et al. [7] defined the mapping

fD from + into + by

()
2

2

0

ˆ= (,) .
f
D f d

π

λ λ θ θ∫ (2)

So, fD is the feature vector (the GFD) which describes each texture image and will

be used as an input of the supervised classification method and be reduced by DR
methods.

Motion descriptors, calculated according to equation (2), have several properties
useful for object recognition : they are translation, rotation and reflexion-invariant
[7, 8].

2.3 Classification Methods

Classification is a central problem of pattern recognition [11] and many approaches to
solve it have been proposed such as connectionist approach [12] or metrics based
methods, k-nearest neighbours (k-nn) and kernel-based methods like Support Vector
Machines (SVM) [13], to name the most common. In our experiments, we want to
evaluate the average performance of the dimensionality reduction methods and one
basic feature selection method applied on the GFD features. In this context, we have
chosen and evaluated six efficient classification approaches coming from four
classification families: The boosting (adaboost) family [14] using three weak
classifiers, (Hyperplan, Hyperinterval and Hyperrectangle), the Hyperrectangle
(Polytope) method [15], the Support Vector Machine (SVM) method [13, 16] and the
connectionist family with a Multilayers perceptron (MLP) [17]. We have excluded the
majority of neural networks methods due to the high variability of textures from
natural images; Variability which included an infinite number of samples required for
the learning step (Kind of leaves, growth stage, pedo-climatic conditions, roughness,
hydration state,…). In order to validate the classification performance and estimate

 Texture Classification with Generalized Fourier Descriptors 283

the average error rate for each classification method, we performed 20 iterative
experiments with a 10-fold cross validation procedure.

3 Dimensionality Reduction Methods

The GFD provide features that are of great potential in pattern recognition as it was
shown by Smach et al. in [8]. Unfortunately, these high dimensional datasets are
however difficult to handle, the information is often redundant and highly correlated
with one another. Moreover, data are also typically large, and the computational cost
of elaborate data processing tasks may be prohibitive. Thus, to improve the
classification performance it is well interesting to use Dimensionality Reduction (DR)
techniques in order to transform high-dimensional data into a meaningful
representation of reduced dimensionality. At this time of our work, we selected a
dozen of DR methods. However, it is important to note that works employing recent
approaches as it could be find in [18] are being finalized (another distance, topology
or angle preservation methods like Kernel Discriminant Analysis, Generative
Topographic Mapping, Isotop, Conformal Eigenmaps,…).

3.1 Estimating Intrinsic Dimensionality

Let 1(,...,)T
n=X x x be the n×m data matrix. The number n represents the number of

images examples contained in each texture dataset, and m the dimension of the vector

ix , which his the vector corresponding to the discrete computing of the fD (from eq.

(2)). We have in our case n=2048 and m=32 for Brodatz textures database and
n=1034 and m=254 for plants leaf textures database. This dataset represent
respectively 32 and 6 classes of textures surfaces.

Ideally, the reduced representation has a dimensionality that corresponds to the
intrinsic dimensionality of the data. One of our working hypotheses is that, though
data points (all texture image) are points in m , there exists a p-dimensional manifold

1(,...,)Tn= y yM that can satisfyingly approximate the space spanned by the data

points. The meaning of “satisfyingly” depends on the dimensionality reduction
technique that is used. The so-called intrinsic dimension (ID) of X in m is the
lowest possible value of p (p<m) for which the approximation of X by M is
reasonable. In order to estimate the ID of our two datasets, we used a geometric
approach that estimates the equivalent notion of fractal dimension [19]. Using this
method, we estimated and fixed the intrinsic dimensionality of our two datasets as
being p=5.

3.2 Review of DR Methods

DR methods can be classified according to three characteristics:

- Linearity : DR can be Linear or nonlinear. This describes the type of
transformation applied to the data matrix, mapping it from m to p .

284 L. Journaux et al.

- Scale analysis : DR can be Local or global. This reflects the kind of
properties the transformation does preserve. In most nonlinear methods, there is a
compromise to be made between the preservation of local topological relationships
between data points, or of the global structure of X .

- Metric : Euclidean or geodesic. This defines the distance function used to
estimate whether two data points are close to each other in m , and should con-
sequently remain close in p , after the DR transformation.

In this context, we retained 11 methods based on these various criteria, 3 are linear
methods and 8 are nonlinear. In order to complete this review of dimensionality
reduction methods, we opposed them to one classical feature selection method. This
comparison will show which approaches are the most relevant.

3.2.1 Linear Methods

3.2.1.1 Principal Components Analysis. Principal Components Analysis (PCA, [11])
is the best known DR method. PCA finds a linear transformation for keeping
the subspace that has largest variance. PCA aims at solving the following problem:
given p<m, find an orthonormal basis 1 2, ,..., pu u u< > that minimizes the so-called

reconstruction error:

2

1

(X,) ,
n

PCA i i
i

J p
=

= −∑ x y (3)

It can be shown that PCAJ is minimized for the iu being the eigenvectors of the

covariance matrix of X . In practice, it is implemented using singular value
decomposition. PCA is linear, global and Euclidean technique.

3.2.1.2 Second-Order Blind Identification. Second Order Blind Identification (SOBI)
[20] relies only on stationary second-order statistics that are based on a joint
diagonalization of a set of covariance matrices. The set X is assimilated to a set of
signals ()iX t and the p features of the destination space we are searching are

assimilated to a fixed number of original sources ()is t . Each ()iX t is assumed to be

an instantaneous linear mixture of n unknown components (sources) ()is t , via the

unknown mixing matrix A .

() ()X t As t= (5)

This algorithm can be described by the following steps (more details on SOBI
algorithm can be found in [20]) : (1) Estimate the sample covariance matrix (0)xR and

compute the whitening matrix W with *(0) ((). ())xR E X t X t= . (2) Estimate the

covariance matrices ()zR τ of the whitened process ()z t for fixed lag times τ . (3)

Jointly diagonalize the set{ () / 1,..., }z jR j kτ = , by minimizing the criterion

2

,
1,..., 1,...,

(,) (()t
i j

k n i j n

J M V V M V
= ≠ =

= ∑ ∑ (6)

 Texture Classification with Generalized Fourier Descriptors 285

where M is a set of matrices in the form k kM VD V= , where V is a unitary matrix, and

kD is a diagonal matrix. (4) Determinate an estimation Âof the mixing matrix A such

as 1Â W −= . (5) Determinate the source matrix and then extracting the p components.
SOBI is a linear, global and Euclidean method.

3.2.1.3 Projection Pursuit (PP). This projection method [21] is based on the
optimization of the gradient descent. Our algorithm uses the Fast-ICA procedure [22]
that allows estimating the new components one by one by deflation. The symmetric
decorrelation of the vectors at each iteration was replaced by a Gram-Schmidt
orthogonalization procedure. When p components 1,..., pw w have been estimated, the

fix point algorithm determines 1pw + . After each iteration, the projections

1 (1,...,)T
p j jw w w j p+ = of the p precedent estimated vectors are subtracted from 1pw + .

Then, 1pw + is re-normalized:

1
1 1 11

1 1

p pT
p p p j jj T

p p

w
w w w w w

w w

+
+ + +=

+ +

= − =∑ (7)

The algorithm stops when p components have been estimated. Projection Pursuit is
linear, global and Euclidean.

3.2.2 Nonlinear Methods : Global Approaches

3.2.2.1 Sammon's Mapping (Sammon). Sammon's mapping is a projection method
that tries to preserve the topology of the set of data (neighbourhood) in preserving
distances between points [23]. To evaluate the preservation of the neighbourhood
topology, we use the following stress function

2
, ,

, 1 ,,, 1

()1
m pn
i j i j

sam n mm
i j i ji ji j

d d
J

dd =
=

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑

∑
 (8)

Where ,
m
i jd and ,

p
i jd are the distances between points ith and jth points, in m and p .

This function, minimized by a gradient descent, allows adapting the distances in
the projection space at best as distances in the initial space. Sammon’s mapping is a
nonlinear, global, and Euclidean method.

3.2.2.2 Isometric Feature Mapping (Isomap). Isometric Feature Mapping (Isomap)
[24] estimates the geodesic distance along the manifold using the shortest path in the
nearest neighbours’ graph. It then looks for a low-dimensional representation that
approximates those geodesic distances in the least square sense (which amounts to
MDS). It consists of three steps: (1) Build mD (X) , the all-pairs distance matrix. (2)

Build a graph from X (k nearest neighbours). For a given point ix in m , a neighbour

is either one of the K nearest data points from ix or one for which m
ijd ε< . Build the

all-pairs geodesic distance matrix m (X)Δ , using Dijkstra’s all-pairs shortest path

286 L. Journaux et al.

algorithm. (3) Use classical MDS to find the transformation from m to p that
minimizes

2

,

(,) ()
n

m p
ISOMAP ij ij

i j

J X p δ δ= −∑ (9)

Isomap is nonlinear, global and geodesic.

3.2.2.3 Kernel Methods (K-PCA, K-Isomap). Recently, several well-known algo-
rithms for dimensionality reduction of manifolds have been developed in a new way,
taking the kernel machine viewpoint [25, 26]. We retain here the two most known :
the kernel-PCA (K-PCA) [27] and the kernel Isomap (K-Isomap) [28]. The non-
linearity is introduced via a mapping of the data from the input space m to a feature
space F . Projection methods (PCA or Isomap) are then performed in this new
feature space. This feature space is expressed by a kernel K in terms of a Mercer
Kernel function [29]. More details on K-PCA and K-Isomap algorithm can be found
respectively in [27] and [28]. These methods are nonlinear and global, K-PCA is
Euclidean and K-Isomap is geodesic.

3.2.3 Nonlinear Methods: Local Approaches

3.2.3.1 Local Linear Embedding (LLE). The LLE algorithm [30] estimates the local
coordinates of each data point in the basis of its nearest neighbours, then looks for a
low-dimensional coordinate system that has about the same expansion. The 3 steps
are: (1) Find the neighbourhood graph (see steps 1 and 2 of Isomap). (2) Compute the
weights ijW that best reconstruct ix from its neighbours, thus minimizing the

reconstruction error, ˆi i−x x , where ˆ i ij j i
j

W= ≈∑x x x . (3) Compute vectors iy in

p reconstructed by the weights ijW . Solve for all iy simultaneously.

i ij j
j

W≈∑y y (10)

LLE is nonlinear, local and Euclidean. It finds the local affine structure of the data
manifold, and identifies the manifold by joining the affine patches.

3.2.3.2 Laplacian Eigenmaps (Laplacian). Similar to LLE, Laplacian Eigenmaps
find a low-dimensional data representation by preserving local properties of
the manifold [31]. The three steps of the algorithm are the following: (1) Build
the non-oriented symmetric neighbourhood graph. (2) Associate a positive weight

ijW to each link of the graph. These weights can be constant (1/ijW k=), or

exponentially decreasing (()2 2exp /ij i jW σ= − −x x). (3) Obtain the final coordinates

iy of the points in p by minimizing the cost function

 Texture Classification with Generalized Fourier Descriptors 287

()2
/LE ij i j ii jj

ij

J W D D= −∑ y y (11)

where D is the diagonal matrix ii ijj
D W=∑ . The minimum of the cost function is

found with the eigenvectors of the Laplacian matrix:
1 1

2 2L I D WD
− −

= − − . LE is a
nonlinear, local, Euclidean method.

3.2.3.3 Curvilinear Components Analysis (CCA). CCA is an evolution of the
nonlinear Multidimensional Scaling (MDS) and Sammon’s mapping algorithms [32].
Instead of the optimization of a reconstruction error, CCA and the related Curvilinear
Distance Analysis (CDA) aim at preserving of the so-called distance matrix while
projecting data onto a lower dimensional manifold.

Let (X)mD be the 2 2n n× matrix of distances between pairs of points in X

(X) (),m
m ijD d= where m

ij i jd = −x x (12)

After DR transformation to p , we also have

(X) (),p
p ijD d= where p

ij i jd = −y y (13)

As with PCA, the iy are the transformed approximations of the ix . CCA tries to find

the best suitable transformation, minimizing

2

, 1

(X,) () (),
n

m p p
CCA ij ij ij

i j

J p d d F d
=

= −∑ (14)

Where F is a decreasing, positive function. It acts as a weighting function, giving
more importance to the preservation of small distances. In practice, CCAJ is

minimized using stochastic gradient descent and vector quantization to limit the
optimization to a reduced set of representative points. CCA is nonlinear, local and
Euclidean.

CDA is a refinement of CCA [4], minimizing

2

, 1

(X,) () (),
n

m p p
CDA ij ij ij

i j

J p d F dδ
=

= −∑ (15)

Where m
ijδ measures the geodesic distance between ix and jx , approximated by the

shortest path distance along a neighbourhood graph. CDA is nonlinear, local and
geodesic.

3.2.4 Feature Selection Method
Parameter selection with an exhaustive search is impractical due to the large amount
of possible feature subsets. To select the 5 best parameters, we use sequential forward
selection (SFS) [33]. The criteria function is the average correct classification rate
over all classes, obtained by quadratic discriminant analysis (QDA) on all

288 L. Journaux et al.

observations. The QDA approach was chosen because it is not dependant on
parameters other than the observations and that the goal is not to compute the optimal
classification rate but a measure of the feature subsets efficiencies. At the end of the
process, the 5 best features have been selected.

4 Results

In order to compare the classification performance and estimate the average error rate
for each classification method, we performed 20 iterative experiments with a 10-fold
cross validation procedure. In the case of SVM, we used the gaussian kernel, for
which we tuned the determined the optimum value of :

2

(,)K e
σ

⎛ ⎞−⎜ ⎟−
⎜ ⎟
⎝ ⎠=

x y

x y
(16)

Table 1. Classification results on the Brodatz dataset (% error rate)

Hyperplan Hyperinterval Hyperrectangle
17,26 12,2 22,5 15,5 2,65 41,4

Selection 21,3 19,7 13,4 8,3 3,06 15,3
PCA 23,4 18,5 13,2 7,4 8,4 11,2
SOBI 46,6 27,1 25,7 24,8 10,46 16,4
PP 84 82 69 75 61,4 73,0

Sammon 23,8 21,2 12,9 15,6 7,8 13,3
Isomap 23,4 19,5 12,9 7,3 6,55 12,1
LLE 22,5 23,4 15,3 8 4,5 15,9
CCA 23,7 20,7 13,9 9,1 5,7 18,2
CDA 22,6 20 15,3 7,4 3,9 15,6
Laplacian 16,7 11,8 14 5,56 1,20 10,2
K-PCA 23,6 19,1 14,2 7,2 6,65 11,8
K-Isomap 21,3 17,7 15,1 6,13 1,9 9,6

no
nl

in
ea

r

SVM MLP

Original features

lin
ea

r

Methods
Boosting

Hyperrectangle

In the case of Brodatz texture dataset (Table 1), regarding to the classification error

using the original feature space, the best result are obtained using SVM (e=2.65%). In
this case, the backpropagation algorithm of the MLP seems to converge to a local
minimum and not to the global one. The use of a second order optimization method,
such as BFGS or Levenberg-Marquart method [34] could overcome this problem. All
the other methods give poorer results (from 12.2% to 22.5%). Their performances are
generally improved by DR: the optimum error is obtained combining Laplacian
Eigenmaps and SVM (e=1.2%, i.e. the error is divided by a factor 2). The K-Isomap
combination with SVM gives some similar results. One can note that the use of kernel
in DR methods generally improve performances compared to original ones (Isomap
vs K-Isomap, PCA vs K-PCA). In the family of fast decision methods, the best result
is obtained using Hyperrectangle also combined with Laplacian Eigenmaps.

These results are generally confirmed by the experiments performed using the
plants Leaf dataset (Table 2), although the original dimensional space is significantly
higher than in the previous case (254 vs 32) and the number of classes is lower (6 vs
32). In this case, the gain factor is 1.18 (comparing SVM using original feature space,
and SVM combined with Laplacian Eigenmaps).

 Texture Classification with Generalized Fourier Descriptors 289

Table 2. Classification results on the Plants leaf dataset (% error rate)

Hyperplan Hyperinterval Hyperrectangle
6,52 3,3 16,87 27,61 1,47 35,7

Selection 18,19 14,97 3,7 10,5 5,71 9,7
PCA 7,64 3,94 8,62 9,66 2,35 11,9
SOBI 15,29 4,99 9,56 13,2 4,8 15,8
PP 87,2 85,58 87,45 84,54 82 81,2

Sammon 26,9 25,84 10,89 10,1 5,48 13
Isomap 7,2 5,12 4,25 7,8 2,28 11,2
LLE 22,86 17,87 7,81 8,29 1,96 14,1
CCA 31,07 17,47 5,23 9,98 2,89 16,2
CDA 34,13 7,6 4,83 9,75 1,92 15,4
Laplacian 5,2 2,5 10,38 8,1 1,25 7,8
K-PCA 7,05 13,2 11,75 11,51 1,86 13,9
K-Isomap 6,8 3,9 11,43 6,3 1,31 10,2

no
nl

in
ea

r

SVM MLP

Original features

lin
ea

r

Methods
Boosting

Hyperrectangle

In order to classify the DR methods, we computed the average rank of each method
for both datasets (Table 3). Laplacian Eigenmaps and K-Isomap are the best ranked,
but the standard PCA (linear) is still a good compromise between computation time
and performances.

Table 3. Average rank mean for each classification results for the two dataset

Hyperplan Hyperinterval Hyperrectangle
Laplacian 1 1 7 2 1 1,5 2,25
K-Isomap 3 3 9 1,5 2 2 3,42
Isomap 6 6 1,5 3 7,5 4,5 4,75
PCA 7 4 4,5 5,5 9,5 4 5,75
Selection 6 8 2,5 8,5 8 4,5 6,25
K-PCA 6,5 6,5 9 6,5 6,5 5,5 6,75
Original data 2 2 11,5 11 3 12 6,92
CDA 9 7,5 6 5,5 5 8,5 6,92
LLE 7 11 7,5 5,5 6 8,5 7,58
CCA 10,5 9,5 4,5 8 8 11 8,58
Sammon 10,5 11 5,5 9,5 10,5 6 8,83
SOBI 9,5 8,5 9,5 11,5 11 10 10,00
PP 13 13 13 13 13 13 13,00

MLP rank meansMethods
Boosting

Hyperrectangle SVM

Moreover, it is interesting to note that DR methods allow to minimize the number
of support vectors needed for the decision function of SVM (Table 4). For Laplacian
Eigenmaps, the gain is 29% in the case of Brodatz dataset and 47% in the case of
Plants leaf dataset. Since the computation time of the SVM decision function depends
linearly of this number, the process is accelerated. This is particularly true using PCA,
since it is not always necessary to update the PCA transformation during the
classification step.

Table 4. Number of support vectors needed for the decision function of SVM

Dataset
Original

data
Selection CCA SOBI PCA K-PCA CDA LLE Lapl K-iso Iso Sam PP

Brodatz 1545 1120 1006 1025 1035 1050 1059 1078 1095 1155 1163 1189 1467

Plants leaf 504 209 363 172 232 332 419 291 267 296 328 272 1090

290 L. Journaux et al.

5 Conclusion

In this paper we proposed a comparison of DR methods combined with several
classification methods, in the context of texture classification of natural images using
GFD. We used the powerful Generalized Fourier Descriptors which have interesting
properties such as translation, rotation and reflexion invariants.

In any case, the SVM classifier outperforms all other classification methods using
the original feature space. However, we experimentally demonstrated that some DR
methods still improve final classification performances, and we proposed a rank
classification of these methods. The best DR methods are the Laplacian Eigenmaps
and K-Isomap, even if the standard PCA is still a good compromise between
computation time and performances. In any case, the use of DR methods allows to
minimize the number of support vectors, thus optimizing the computational cost of
the final decision step.

In our future work, we will apply this comparison review to multispectral textures
images for which the original dimensional space is higher and for which the
correlation between spectral bands are often very important.

References

1. Arivazhagan, S., Ganesan, L., Priyal, S.P.: Texture classification using Gabor wavelets
based rotation invariant features. Pattern Recognition Letters 27, 1976–1982 (2006)

2. Hughes, G.F.: On the mean accuracy of statistical pattern recognizers. IEEE Transactions
on Information Theory 14, 55–63 (1968)

3. Aldo Lee, J., Archambeau, C., Verleysen, M.: Locally Linear Embedding versus Isotop.
In: ESANN 2003 proceedings, Bruges (Belgium), pp. 527–534 (2003)

4. Aldo Lee, J., Lendasse, A., Verleysen, M.: Nonlinear projection with curvilinear distances:
Isomap versus curvilinear distance analysis. Neurocomputing 57, 49–76 (2004)

5. Journaux, L., Foucherot, I., Gouton, P.: Reduction of the number of spectral bands in
Landsat images: a comparison of linear and nonlinear methods. Optical Engineering 45,
67002 (2006)

6. Niskanen, M., Silven, O.: Comparison of dimensionality reduction methods for wood
surface inspection. In: QCAV 2003 proceedings, Gatlinburg, Tennessee, USA, pp. 178–
188 (2003)

7. Gauthier, J.-P., Bornard, G., Silbermann, M.: Harmonic analysis on motion groups and
their homogeneous spaces. IEEE Transactions on Systems, Man and Cybernetics 21, 159–
172 (1991)

8. Lemaître, C., Smach, F., Miteran, J., Gauthier, J.-P., Atri, M.: A comparative study of
motion descriptors and Zernike moments in color object recognition. In: proceeding of
International Multi-Conference on Systems, Signal and Devices. IEEE, Hammamet,
Tunisia (2007)

9. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York
(1966)

10. Valkealahti, K., Oja, E.: Reduced multidimensional cooccurrence histograms in texture
classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 90–94
(1998)

11. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. (2001)

 Texture Classification with Generalized Fourier Descriptors 291

12. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford
(1995)

13. Vapnik, V.: Statistical learning theory. John Wiley & sons, inc., Chichester (1998)
14. Schapire, R.E.: The strenght of weak learnability. Machine Learning 5, 197–227 (1990)
15. Miteran, J., Gorria, P., Robert, M.: Geometric classification by stress polytopes.

Performances and integrations. Traitement du signal 11, 393–407 (1994)
16. Abe, S.: Support Vector Machines for Pattern Classification. Springer, Heidelberg (2005)
17. Rumelhart, D.E., McClelland, J.L., Group, a.t.P.R.: Parallel Distributed Processing, vol. 1.

MIT Press, Cambridge (1986)
18. Aldo Lee, J., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer, Heidelberg

(2007)
19. Camastra, F., Vinciarelli, A.: Estimating the Intrinsic Dimension of Data with a Fractal-

Based Method. IEEE Transactions on Pattern Analysis and Machine Intelligence 24,
1404–1407 (2002)

20. Belouchrani, A., Abed-Meraim, K., Cardoso, J.F., Moulines, E.: A blind source separation
technique using second order statistics. IEEE Transactions on signal processing 45, 434–
444 (1997)

21. Friedman, J.H., Tukey, J.W.: A projection pursuit algorithm for exploratory data analysis.
IEEE Transactions on computers C23, 881–890 (1974)

22. HyvÄarinen, A.: Fast and Robust Fixed-Point Algorithms for Independent Component
Analysis. IEEE Transactions on Neural Networks 10, 626–634 (1999)

23. Sammon, J.W.: A nonlinear mapping for data analysis. IEEE Transactions on
Computers C-18, 401–409 (1969)

24. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for
Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)

25. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge
University Press, Cambridge (2004)

26. Ham, J., Lee, D.D., Mika, S., Schölkopf, B.: A kernel view of the dimensionality reduction
of manifolds. In: 21th ICML 2004, Banff, Canada, pp. 369–376 (2004)

27. Schölkopf, B., Smola, A.J., Müller, K.-R.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation 10, 1299–1319 (1998)

28. Choi, H., Choi, S.: Robust kernel Isomap. Pattern Recognition 40, 853–862 (2007)
29. Schölkopf, B., Burges, J.C.C., Smola, A.J.: Advances in Kernel Methods - Support Vector

Learning. MIT Press, Cambridge (1999)
30. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.

Science 290, 2323–2326 (2000)
31. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data

representation. Neural Computation 15, 1373–1396 (2003)
32. Demartines, P., Hérault, J.: Curvilinear Component Analysis: A self-organizing neural

network for nonlinear mapping of data sets. IEEE Transactions on neural networks 8, 148–
154 (1997)

33. Kittler, J.: Feature set search algorithms. In: Noordhoff, S. (ed.) Pattern Recognition and
Signal Processing. Chen, H., pp. 41–60 (1978)

34. Fletcher, R.: Practical Methods of Optimization. John Wiley & Sons, Chichester (2000)

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 292–304, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Improving Features Subset Selection Using Genetic
Algorithms for Iris Recognition

Kaushik Roy and Prabir Bhattacharya

Concordia Institute For Information Systems Engineering (CIISE)
Concordia University, Montreal, QC, Canada H3G 1M8
{kaush_ro,prabir}@ciise.concordia.ca

Abstract. In this paper, we propose an iris recognition method based on genetic
algorithms (GA) to select the optimal features subset. The iris data usually
contains huge number of textural features and a comparatively small number of
samples per subject, which make the accurate iris patterns classification
challenging. Feature selection scheme is used to identify the most important and
irrelevant features from extracted features set of relatively high dimension
based on some selection criterions. The traditional feature selection schemes
require sufficient number of samples per subject to select the most representa-
tive features sequence; however, it is not always practical to accumulate a large
number of samples due to some security issues. In this paper, we propose GA to
improve the feature subset selection by combining valuable outcomes from
multiple feature selection methods. The main objective of GA is to achieve a
balance among the recognition rate, the false accept rate, the false reject rate
and the selected features subset size. This paper also motivates and introduces
the use of Gaussian Mixture Model for iris pattern classification. The proposed
technique is computationally effective with the recognition rates of 97.81 % and
96.23% on the ICE (Iris Challenge Evaluation) and the WVU (West Virginia
University) iris datasets respectively.

Keywords: Biometrics, Gaussian mixture model, genetic algorithms, collarette
area localization.

1 Introduction

The popularity of the iris biometric has grown considerably over the past three to four
years. The iris has been known as a biometric for some time [1, 5]. However, it has
gained substantial attention to both the research community and governmental
organizations recently. Five crucial factors that influenced the increased interest in the
iris biometric are as follows: 1) unique structure of iris; 2) stability of iris pattern
throughout the person’s lifetime; 3) public acceptance; 4) new user-friendly capture
devices with broad improved capabilities; and 5) a wide range of applications. As a
result, a large number of new iris encoding and processing techniques have been
developed over this short period of time [1]. Based on the technology developed by
Daugman [2], iris scans have been used in several international airports for the rapid
processing of passengers through the immigration who have pre-registered their iris

 Improving Features Subset Selection Using Genetic Algorithms for Iris Recognition 293

images. Iris technology has also been widely used in several countries for various
security purposes (and also by the United Nations High Commission for refugees). A
new technology development project for iris recognition namely, the Iris Challenge
Evaluation (ICE) has been conducted by the National Institute of Standards and
Technology (NIST) [10]. While most of the literatures are focused on preprocessing
of iris images [1], recently, there have been important new directions identified in iris
biometric research. These include optimal feature selection and iris pattern
classification.

The optimal features set selection from a feature sequence with a relative high
dimension has become an important factor in the field of iris recognition [3]. The
conventional feature selection techniques (e.g., Principal components analysis,
Independent components analysis, Singular valued decomposition etc.) require
sufficient number of samples per subject to select the most representative features
sequence. However, it is not realistic to accumulate a large number of samples due to
some security issues. Moreover, different feature selection algorithm based on various
theoretical arguments may produce different results on the same data set [15]. This
makes selecting the optimal features subset for a data set difficult. In this paper, we
emphasize on the utilization of the useful information from different feature selection
methods to select the most important features subset and also to improve the
classification accuracy. We propose Genetic algorithms (GA) to select the significant
features subset by combining the multiple feature selection criteria. The proposed
approach provides the convenient way of selecting a better feature subset based on the
performance of the different feature selection schemes, and this approach is regarded
as independent of the inductive learning algorithm used to build the classifier. To
evaluate the proposed scheme, support vector machines (SVM)-recursive feature
elimination (RFE), k-NN, T-statistics, and entropy-based methods are used to provide
the candidate features for the selection of features subset using GA.

In this paper, we also introduce a new iris-subject model based on the Gaussian
mixture model (GMM). GMM is used to take into account the interpersonal and
intrapersonal variations due to occlusion occurred by the eyelids and the eyelashes
and also due to changing light conditions, head tilt etc. The GMM is also applied to
satisfy several security requirements with high matching accuracy based on the
variation of the Gaussian mixture components.

Fig. 1. Samples of iris images form ICE and WVU datasets

2 Iris Image Preprocessing

The iris is surrounded by various non-relevant regions such as the pupil, the sclera,
the eyelids, and also has some noise that include the eyelashes, the eyebrows, the
reflections and the surrounding skin [5]. In order to isolate the iris, pupil, and

294 K. Roy and P. Bhattacharya

collarette boundaries from digital eye’s image, we use an efficient approach proposed
in our previous work in [16]. Though collarette region is less affected by the eyelids
and the eyelashes, there are few cases where this region is occluded by the eyelids and
the eyelashes [16]. These noisy regions are required to be eliminated in order to
improve the performance, and this approach is also illustrated in [16]. Fig. 2 shows
the localized iris images. We use the rubber sheet model to normalize or unwrap the
isolated collarette area [2]. Fig. 3 shows the unwrapping procedure. Since the
normalized iris image has relatively low contrast and may have non-uniform intensity
values due to the position of the light sources, a local intensity based histogram
equalization technique is applied to enhance the contrast of the quality of the
normalized iris image to improve the subsequent recognition accuracy. Fig. 3 also
shows the effect of enhancement on the unwrapped iris image.

Original Iris Image Pupillary Detection Collarette Area Detection

Iris Boundary Localization Eyelids Detection Eyelashes Detection

Fig. 2. Iris Image preprocessing on ICE dataset

Isolated Collarette Region

Enhanced Image

Black portion represents
region of interest of the
unwrapped iris image

White regions
denote noise

Unwrapped Image

oise Mask

Fig. 3. Unwrapping and enhancement of an iris image on WVU dataset

 Improving Features Subset Selection Using Genetic Algorithms for Iris Recognition 295

3 Feature Extraction

Gabor filters based methods have been widely used as feature extractor in computer
vision, especially for the texture analysis [2, 16, 17]. However, one weakness of the
Gabor filter in which the even symmetric filter will have a DC component whenever
the bandwidth is larger than one octave. To overcome this disadvantage, a type of
Gabor filter known as log-Gabor filter, which is Gaussian on a logarithmic scale, can
be used to produce zero DC components for any bandwidth. The log-Gabor function
more closely reflects the frequency response for the task of analyzing natural images
and is consistent with measurement of the mammalian visual system. The log-Gabor
filters are obtained by multiplying the radial and the angular components together
where each even and odd symmetric pair of log-Gabor filters comprises a complex
log-Gabor filter at one scale. The frequency response of a log-Gabor filter is given as

 () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛−=

0

2

0
log2/logexp ff

ffG σ (1)

where 0f is the centre frequency, and σ provides the bandwidth of the filter. In

order to extract the discriminating features from the normalized collarette area, the
normalized pattern is convolved with 1D log-Gabor filters [16].

4 Feature Subset Selection Using Genetic Algorithms

In this paper, we propose GA to select the prominent features based on the outcomes
of the four feature selection algorithms, namely: the Entropy-based approach, k-NN
based method, T-statistics and the SVM-RFE approach. Usually, the feature selection
algorithms can be divided into two categories: the filter approach and wrapper
approach based on whether the selection method is performed independently of the
learning algorithm used to construct the classifier. If the feature selection is done
independently of the learning algorithm, the technique is referred as the filter
approach. Otherwise, it is referred to as a wrapper approach [15]. Several feature
selection schemes produce different results on the same data set because of the feature
redundancy, interactions and correlations between features, and the biases in the
selection or ranking criteria. In order to obtain the most significant feature subset
from the different feature selection algorithms, we use a hybrid approach as shown in
Fig. 4.

We adopt GA to combine multiple feature selection criteria to find the optimal
subset of informative features. The GA searches the pool of hypotheses (denoted as
population) consisting of complex interaction parts. Each hypothesis or individual of
the current population is evaluated based on the specific fitness function. A new
population is generated by applying genetic operations like selection, mutation and
crossover. In this paper, we select sets of features by utilizing four feature selection
algorithms instead of using all features set from the original extracted iris features
sequence to form the collection of candidate features called the feature pool. The
selection of features subset from these feature selection algorithm can be subjective to
their performance. In order to choose the sets of feature selected by several feature

296 K. Roy and P. Bhattacharya

 Iris
Training
 Data

Feature
selection using
Entropy-based
algorithm

Feature
selection using
SVM-RFE
algorithm

Feature Pool

Generation

Selection

Induction
Algorithm

Meet Stopping
Criteria?

Feature
Subset

Yes

No

Feature
selection using
T-Statistics

Feature
selection using
k-NN

 GA

Fig. 4. Feature Selection Procedure using GA (Hybrid approach)

selection algorithms instead of using all the features from the original data set, we
deploy four existing feature selection algorithms, two filters (entropy-based, T-
statistics) approaches and two wrapper (SVM-RFE, k-NN) approaches to form the
feature pool. We apply each algorithm to the extracted features sequence and generate
a ranking of those features. Given a ranking of features, we pick a number of top
ranked features from each algorithm and provide these top-ranked features into the
feature pool. Here, we briefly describe four feature selection algorithms.

In entropy-based method, entropy is lower for orderly configurations and higher
for disorderly configurations. Therefore, when an irrelevant feature is eliminated, the
entropy is reduced more than that for a relevant feature. This algorithm ranks the
features in descending order of the entropies after removing each feature one at a
time. We can estimate the entropy measure of a data set of N instances as follows:

 (() ())ijij

N

i

N

j ijij ddddE −×−+×−= ∑ ∑= =
1log1log

1 1
 (2)

Where, ijED

ijd
×−= αexp and AD/5.0ln−=α .

Here, ijd denotes the similarity between two instances ix and jx ,
ijED is the

Euclidean distance between the two, and AD is the average distance among the
instances. This approach is used for unsupervised data since no class information is
required.

 Improving Features Subset Selection Using Genetic Algorithms for Iris Recognition 297

In [15], the SVM-RFE has been used for selecting the genes that are relevant for
cancer classification problem. Here, we adopt this approach to find top ranked iris
features form the extracted features sequence. The idea is to eliminate one worst
feature (i.e., the one that modified the objective function Obj least after being
eliminated) at one time. This method is based on backward sequential selection.

 2/
2

wObj = (3)

 ∑
=

=
sN

i
iii xyw

1

α (4)

Where sN denotes the number of support vectors that are defined to be the training

samples with Ci ≤< α0 . C is the penalty parameter for the error term. ix and jy

are the data instance and its class label respectively. The modification of Obj is
approximated by Optimal Brain Damage (OBD) algorithm so that

 () ()2
iwiObj Δ=Δ (5)

2
iw is considered as the ranking criteria. The iterative procedure of RFE is as follows:

• The SVM is trained with training data.
• The ranking criterion is measured for all features.
• Then the feature with smallest ranking criterion is eliminated.
• The procedure is stopped when all the features are ranked.

In T-statistics based feature selection approach, each sample is labeled with

{ }1,1 − . The mean, ()11 −
ii μμ and the standard deviation, ()11 −

ii δδ are calculated for

the samples labeled as 1 (-1) or each feature, if . Then a score ()ifT is obtained as

follows

()

() ()
1

21

1

21

11

−

−

−

+

−
=

nn

fT
ii

ii
i

δδ

μμ (6)

where ()11 −nn denotes the number of samples labeled as 1 (-1). In order to make

decision, the features with highest scores are considered as the most distinctive
features.

In k-NN based feature selection, a direct method based on nonparametric feature
subset selection evaluation is applied. The evaluation technique denoted as ‘leave-
one-out (LOO)’ method has been used. The main idea of LOO method is as follows:

• Design the decision rule using N-1 samples of the total N samples.
• Apply decision rule to the one remaining sample.

298 K. Roy and P. Bhattacharya

• This process is repeated for all partitions of size N-1 for the design
sample set and size one for the test

• Estimate the probability of error by the ratio of the test samples
incorrectly classified to the total number of samples classified.

The k-nearest neighbour (k-NN) has been used as non parametric classification
technique in the evaluation procedure. Overall the feature selection procedure is given
as below:

1. Apply k-NN as the classifier.
2. Use the LOO test for recognition rate estimation.
3. Select the first feature that has the highest LOO recognition rate among all

features.
4. Select the feature, among all unselected features, together with the selected

features that gives the highest recognition rate.
5. Repeat the previous process until enough number of features has been

selected, or until the recognition rate is good enough.

Each individual represents a feature subset. In this subsection, we present the

choice of a representation for encoding the candidate solutions to be manipulated by
the genetic algorithms, and each individual in the population represents a candidate
solution to the feature subset selection problem. If n be the total number of features
available to represent the patterns to be classified, the individual (chromosome) is
represented by a binary vector of dimension, n. If a bit is a 1, it means that the
corresponding feature is selected; otherwise the feature is not selected. This is the
simplest and most straightforward representation scheme [3]. In this paper, we
propose the following fitness function based on the nature of our problem:

 () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++−=

srOfFeatureTotalNumbe

eFeatureSiz
WFRRWFARWRRWFitness ...1. 4321

 (7)

Where 321 ,, WWW and 4W are constant weighting parameters which reflect the

relative importance between Recognition Rate (RR), False Accept Rate (FAR), False
Reject Rate (FRR) and Feature Size. The genetic algorithm is independent of the
inductive learning algorithm used by the classifier. In this paper, we use asymmetrical
SVM classifier as an induction algorithm in the experiments to separate the cases of
false accepts and false reject [12]. We use Roulette wheel selection to
probabilistically select individuals from a population for latter breeding. The

probability of selecting an individual ijind is estimated as;

 () ()
()∑ =

= p

i i

i
i

indF
indFindp

1

 (8)

The probability that an individual will be selected is proportional to its own fitness
and is inversely proportional to the fitness of the other competing hypothesis in the
current population. Here, we use single point crossover, and each individual has a

probability, nP to mutate. The number of n bits is randomly selected to be flipped in

every mutation stage.

 Improving Features Subset Selection Using Genetic Algorithms for Iris Recognition 299

5 Iris Pattern Classification Using Multi-class Gaussian Mixture
Model

In this paper, we propose Gaussian mixture model (GMM) to accurately classify the
iris pattern. We apply GMM to address the following two important issues. First issue
is the significant inter and intra personal variation and second issue is to obtain the
required false accept and false reject rates with a high recognition accuracy to meet
several security demands by changing the number of Gaussian mixtures. In the
following subsections, we briefly discuss the form of GMM. A detailed discussion on
GMM can be found at [14].

5.1 Model Description

A Gaussian mixture model is s weighted sum of M component densities and can be
described by the following equation

 () ()∑
=

=
M

i
ii xbpxp

1

| λ (9)

Where, x denotes the D-dimensional random vector, () ,,.....,2,1, Mixbi = are the

component densities and ,,...,1, Mipi = are the mixture weights. Each component

density is a D-variate Gaussian function of the following form [14]

 ()
()

() ()
⎭
⎬
⎫

⎩
⎨
⎧ −−−= ∑∑

− 1'

2/12/ 2

1
exp

||2

1

i
ii

i

Di xxxb μμ
π

 (10)

Here, iμ is the mean vector and ∑i
is the covariance matrix. The mixture weight

satisfies the constraint 1
1

=∑ =

M

i ip . Therefore, the Gaussian mixture density is

parameterized by the mean vectors, covariance matrix and mixture weights from
all the component weights. The parameters can be represented by the following
equation [14]

 ∑ (11)

For iris recognition, each subject is represented by a GMM and is denoted by the
model, λ .

5.2 Estimation of Maximum Likelihood Parameters

Given a training sample from a subject, the main objective of the person model
training is to estimate the parameters of the GMM, λ , that best matches the
distribution of the training feature vectors. The popular maximum likelihood
estimation (ML) is used to estimate the parameters of a GMM. The idea is to find the
model parameters that maximize the likelihood of the GMM provided the training

300 K. Roy and P. Bhattacharya

data is given. If T denotes the sequence of training vectors , the

GMM likelihood can be defined as

 () ()∏ =
= T

t txpXp
1

|| λλ (12)

However, this expression is a non linear function of the parameters λ and direct
maximization is not possible. Therefore, ML parameters estimation can be obtained
iteratively by using a special case of the expectation-maximization algorithm [14].
The basic idea of the EM algorithm is to begin with an initial model λ , then a new

model λ is estimated from the initial model such that () ()λλ || XpXp > . The new

model becomes the initial model for the next iteration and the process is repeated until
some convergence threshold is reached.

5.3 Subject Identification

For iris recognition, a group of subjects, S= { 1, 2, ……, S} represented by GMM’s

.,...,, 21 sλλλ The objective is to find the person model which has the maximum a

posteriori probability for a given observation sequence.
Formally,

| |

 (13)

Let us consider the equally likely subjects (i. e., () SP kr /1=λ) and, it is also

assumed that P(X) is the same for all subjects, the classification simplifies to

 ()XP kr
Sk

S |maxarg
1

λ
≤≤

∧

= (14)

By using independence between observations, the iris recognition system computes

∑ |

 (15)

Where, | ∑), the Gaussian mixture density which is weighted sum
of M components as given in (9).

6 Experimental Results

We conduct the experimentation on two iris data sets namely, the ICE (Iris Challenge
Evaluation) dataset created by the University of Notre Dame, USA, [10] and the
WVU (West Virginia University) dataset [11]. The ICE database consists of left and
right iris images for experimentation. We consider only the left iris images in our
experiments. There are 1528 left iris images corresponding to the 120 subjects in our

 Improving Features Subset Selection Using Genetic Algorithms for Iris Recognition 301

(a) (b)

1 6 11 16 21 26 302

3

4

5

6

7

umber of pixels increased

M
at

ch
in

g
Er

ro
r

(%
)

1 6 11 16 21 26 30
4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

umber of pixels increased

M
at

ch
in

g
Er

ro
r

(%
)

Fig. 5. Matching error vs. number of pixels increased on (a) ICE and (b) WVU datasets

experiments. We also evaluated the performance of the proposed iris recognition
scheme on the WVU dataset [11]. The WVU iris dataset has a total of 1852 iris
images from 380 different persons. The number of iris images for each person ranges
from 3-6 in this database. Since the number of samples from most iris research is
limited, cross-validation procedure is commonly used to evaluate the performance of
a classifier. In k-fold cross validation, the data is divided into k subsets of
(approximately) equal size. We train the classifier k times, each time leaving out one
of the subsets from training, but using only the omitted subset to compute the
classification accuracy. LOO cross-validation (LOOCV) is a special case of k-fold
cross-validation where k equals the sample size. LOOCV is used for ICE dataset, and
for WVU dataset, we use 3-fold cross-validation to obtain the training accuracy for
GA.We evaluate the success rate for the proposed method on the ICE and WVU
datasets by detecting the pupil boundary and the collarette area. The obtained success
rates are 98.80% and 97.95% for the ICE and WVU data sets respectively. From the
experimental results, it is found that a reasonable recognition accuracy is achieved
when the collarette area is isolated by increasing the previously detected radius value
of the pupil up to a certain number of pixels. A rapid drop of matching error from
3.61% to 2.48% is observed in Fig.5 (a) for the case of ICE data set when the pixel
value is increased from 20 to 21. Therefore, we choose to increase the pupil radius up
to 23 pixels because a stable matching accuracy of 97.54% is achieved in this case.
From Fig. 5(b) it is found that if we increase the pixel values up to 26 we obtain the
highest matching accuracy of 95.53% for WVU data set. Fig. 6 shows the accuracy of
the feature subsets with a different number of top-ranked features from the four
feature selection algorithms on two data sets. Fig.6 (a) shows that SVM-RFE achieves
the better accuracy than the other feature selection methods used in this paper with a
subset of 600 top-ranked features. In Fig. 6(b), we can see that SVM-RFE also find
the better accuracy among the four algorithms with the 800-top ranked features.
Therefore, after obtaining the top-ranked features subset from the SVM-RFE
algorithm on both of the two data sets, we input them to the feature pool used by the
GA. In order to select the optimum features for the improvement of the matching
accuracy, GA involves running the genetic process for several generations. We

302 K. Roy and P. Bhattacharya

 (a) (b)

100 600 1000 2400 3600 4800
50

60

70

80

90

100

Top Ranked Features

A
cc

ur
ac

y
(%

)

Entropy
SVM-RFE
k- R
T-Statistics

100 800 2400 3600 4800
50
55
60
65
70
75
80
85
90
94

Top Ranked Features

A
cc

ur
ac

y
(%

)

T-Statistics
SVM-RFE
k- R
Entropy

Fig. 6. Accuracy vs. top ranked features on (a) ICE (b) WVU datasets

Table 1. The Selected Values of the Arguments of GA for ICE and WVU Datasets

Parameters ICE Dataset WVU dataset
Population Size 120 (the scale

of iris sample)
380 (the scale of iris sample)

Length of
chromosome code

600
(selected
dimensionality of
top ranked feature sequence)

800
(selected dimensionality of top-
ranked feature sequence)

Crossover probability 0.40 0.89
Mutation probability 0.008 0.007
Number
of generation

130 80

Weighting Parameters W1= 2000, W2 =150
W3= 10, W4 =1000

W1= 3500, W2 =100
W3= 10, W4 =2000

 (a) (b)

5 10 15 20 25 30 35 40
60

70

80

90

100

o. of Gaussian Mixtures

R
ec

og
ni

tio
n

R
at

es
 (%

)

Inside Test
Outside Test

5 10 15 20 25 30 35 40
60

70

80

90

100

o. of Gaussian Mixtures

R
ec

og
ni

tio
n

R
at

e
(%

)

Inside Test
Outside Test

Fig. 7. Recognition accuracy vs. No. of Gaussian mixtures for (a) ICE and (b) (WVU) data sets

conduct several experimentations, and the arguments of the GA are set as shown in
Table 1. From experimentation, we find that the proposed GA scheme achieves the
highest accuracy of 97.60% at the generation 90 with reduced features subset of 520
for the ICE dataset. Based on the experimentation, we also find that at the generation

 Improving Features Subset Selection Using Genetic Algorithms for Iris Recognition 303

10-2 10-1 100 101
80

82

84

86

88

90

92

94

96

98

100

False Accept Rate (%)

G
en

ui
ne

 A
cc
ep

t R
at
e
(%

)

Traditional Approach
(WVU Data set)

Proposed Approach
(WVU Data set)

Traditional Approach
(ICE Data set)

Proposed Approach
(ICE Data set)

Fig. 8. ROC curve shows the comparison between GAR (%) and FAR (%) for the traditional
approach with the complete iris information and proposed approach with collarette information

of 60, the highest accuracy of 95.95% is obtained with the reduced features subset of
680 on the WVU data set. Fig 7 shows the classification accuracy vs. number of
Gaussian mixture components. From this figure, we can see that highest accuracy of
97.80% is achieved when the number of Gaussian components is 32 on the ICE data
set. For WVU data set, highest recognition accuracy of 96.20% is found at 28 mixture
components. In Fig. 8, ROC curve shows how the Genuine Accept Rate (GAR)
changes with the False Accept Rate (FAR). It is found form this figure that the
proposed approach performs better than the traditional approach with the complete
iris information for both of the data sets.

7 Conclusions

In this paper, we mainly focus on the feature subset selection of iris data based on
GA. The proposed GA incorporates four feature selection criterions, namely: the
SVM-RFE, the k-NN, the T-statistics, and the entropy-based methods to find the
subset of informative texture features that can improve the analysis of iris data. The
experimental results show that the proposed method is capable of finding feature
subsets with a better classification accuracy and/or smaller size than each single
individual feature selection algorithm does. This paper also introduces the use of
GMM as an iris patterns classifier. The experimental results indicate that the proposed
iris recognition scheme with GMM approach can be applied to a wide range of
security-related application fields with encouraging recognition rates.

References

1. Schuckers, S.A.C., Schmid, N.A., Abhyankar, A., Dorairaj, V., Boyce, C.K., Hornak,
L.A.: On techniques for angle compensation in nonideal iris recognition. IEEE Trans.
SMC-B 37(5), 1176–1190 (2007)

2. Daugman, J.: Demodulation by complex-valued wavelets for stochastic pattern
recognition. Internat. J. Wavelets, Multi-Res. and Info. Processing 1, 1–17 (2003)

304 K. Roy and P. Bhattacharya

3. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. J. Wiley Ltd.,
West Sussex (2004)

4. He, X., Shi, P.: An efficient iris segmentation method for recognition. In: Internat. Conf.
on Adv. Pattern Recog. LNCS, vol. 3687, pp. 120–126. Springer, Heidelberg (2005)

5. Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient iris recognition by characterizing key local
variations. IEEE Trans. Image Processing 13, 739–750 (2004)

6. Son, B., Won, H., Kee, G., Lee, Y.: Discriminant iris feature and support vector machines
for iris recognition. In: Internat. Conf. on Image Processing, vol. 2, pp. 865–868 (2004)

7. Sung, H., Lim, J., Park, J., Lee, Y.: Iris Recognition using collarette boundary localization.
In: Proc. of Internat. Conf. on Pattern Recog., vol. 4 (2004)

8. Vapnik, V.N.: Statistical Learning Theory. J. Wiley Ltd., New York (1998)
9. http://www.csie.ntu.edu.tw/~cjlin/libsvm

10. http://iris.nist.gov/ICE/
11. Iris Dataset obtained from West Virginia University (WVU), http://www.wvu.edu/
12. Ding, P., Chen, Z., Liu, Y., Xu, B.: Asymmetrical support vector machines and application

in speech processing. In: IEEE Internat. Conf. on Acousts, Speech, and Signal Process,
vol. 1, pp. 73–76 (2002)

13. Oliveira, L.S., Sabourin, R.F., Bortolozzi, C.Y., Suen, C.Y.: Feature selection using
multiobjective genetic algorithms for handwritten digit recognition. Internat. Conf. on
Pattern Recog. 1, 568–571 (2002)

14. Reynolds, D.A., Rose, R.C.: Robust text-independent speaker identification using
Gaussian mixture models. IEEE Trans. On speech and audio process 3(1), 72–83 (1995)

15. Tan, F., Fu, X., Zhang, Y., Bourgeois, A.G.: Improving feature subset selection using a
genetic algorithm for microarray gene expression data. IEEE congress on evolutionary
computation, 2529–2534 (2006)

16. Roy, K., Bhattacharya, P.: Iris Recognition Based on Collarette Region and Asymmetrical
Support Vector Machines. In: Kamel, M., Campilho, A. (eds.) ICIAR 2007. LNCS,
vol. 4633, pp. 854–865. Springer, Heidelberg (2007)

17. Roy, K., Bhattacharya, P.: Iris Recognition Using Support Vector Machine. In: IAPR
Internat. Conf. on Biometric Authentication. LNCS, vol. 3882, pp. 486–492. Springer,
Heidelberg (2006)

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAI 5064, pp. 305–316, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Artificial Neural Network Based Automatic Face Model
Generation System from Only One Fingerprint

Seref Sagiroglu1 and Necla Ozkaya2

1 Gazi University, Engineering and Architecture Faculty, Computer Engineering Department,
06570 Ankara, Turkey

2 Erciyes University, Engineering Faculty, Computer Engineering Department,
38039, Kayseri, Turkey

ss@gazi.edu.tr, neclaozkaya@erciyes.edu.tr

Abstract. Biometrics technology has received increasingly more attention
during the last three decades. Since the performance of biometric systems has
reached a satisfactory level for applications, a number of biometric features
have been deeply studied, tested and successfully deployed in applications.
Relationships among biometric features have not been studied so far. This study
focuses on analysing the existence of any relationships among fingerprints and
faces. For doing that an intelligent system based on artificial neural networks
for generating face models including eyes, nose, mouth, ears and face border
from only one fingerprint with the errors among 2.0-12.9 % was developed.
Experimental results have shown that there are close realitionships among
fingerprints and faces and it is possible to generate faces from only one
fingerprint image without knowing any information about faces. Although the
proposed system is an initial study and it is still under development, the results
are very encouraging and promising for the future developments and
applications.

Keywords: Biometrics, artificial neural network, intelligent systems, fingerprint
identification, face recognition.

1 Introduction

Biometrics is a science that extracts the physical or behavioral parameters of
individuals with the aim of identification. Several personal biological characteristics
such as fingerprint, face, iris, voice, or hand geometry are now used in biometric
systems that are more reliable to identify people than traditional methods based on
features that we have (key, card) or we know (password). Because a biometric system
relies on specific characteristics of a particular person to register an identity.
Therefore, it can differentiate between an authorized person and fraudulent impostor.
So, any system assuring reliable person identification must necessarily involve a
biometric component. Recently a number of biometric features have been successfully
applied to the applications including information security, law enforcement,
surveillance, forensics, smart cards, access control, time/place control points and
computer networks etc. Furthermore various biometric devices and complete systems

306 S. Sagiroglu and N. Ozkaya

that provide business and benefit management solutions that using biometric based
person identification systems have been produced and they are commercially
available. In spite of all these developments in biometrics, there is no study on
investigating relationships among the biometric features or obtaining one feature from
another. It should be emphasized that most of the works in biometrics have been
focused on how to improve the accuracy and processing time of the biometric
systems, to design the more intelligent systems, and to develop more effective and
robust techniques and algorithms [1], [2].

The aim of our study is intended to develop an automatic and intelligent system
capable of generating the face of a person from only one fingerprint of the same
person without having any priori knowledge about his or her face. In order to achieve
that, an artificial neural network based intelligent face model generation system from
only one fingerprint (fingerprint to face system: F2FS) has been developed and
introduced in this study.

This paper is organized as follows. Section 2 briefly describes background
information on biometrics, automatic fingerprint authentication systems (AFASs) and
face recognition systems (FRSs). Section 3 basically introduces artificial neural
networks (ANNs). Section 4 highlights the novelty of the proposed technique,
introduces basic information, notation and performance metrics related to the F2FS
and explains the various steps of the new approach. Section 5 demonstrates our
experimental results. Finally, the proposed work is concluded and discussed in
Section 6.

2 Background

In general, a biometric system gets a biometric data from a person, extracts a feature
set from the acquired data, and compares this feature set against the template feature
set in the database [3]. A biometric system works in four modes depending on the
application status [4]: the enrolment, the verification, the identification and the
screening. The enrolment is responsible for scanning, categorization and registration
of the biometric characteristics. All other modes use the biometric data that was
acquired to the system in the enrolment mode. In the verification, a person desired to
be identified by submitting to the system a claim to an identity, usually via a magnetic
card, login name, smart card etc., and the system either rejects or accepts the
submitted claim of the identity at the end [5]. Commercial applications, such as
physical access control, computer network logon, electronic data security, ATMs,
credit-card purchases, cellular phones, personal digital assistants, medical records
management and distance learning are samples of the verification applications [2],
[4]. In the identification, the system identifies a person’s identity without the person
having to claim an identity or it fails if the person is not enrolled in the system
database. The input and the output of the system are just a biometric feature and a
combination of a list of identities and the scores indicating the similarity among two
biometric features, respectively [5]. Welfare-disbursement, national ID cards, border
control, voter ID cards, driver’s license, criminal investigation, corpse identification,
parenthood determination, missing children identification are from typical
identification applications [2], [4]. In the screening, the results of determination

 Artificial Neural Network Based Automatic Face Model Generation System 307

Verification

Identification,
Screening

Enrolment Biometric data

Processing

Feature set of a
biometric data

Matching

Database

Accept or Reject
(Yes/No)

List of Identities &
similarity measures

Fig. 1. A generic biometric system

whether a person belongs to a watch list of identities or not is displayed. Security at
airports, public events and other surveillance applications are some of the screening
examples [4], [6]. A generic biometric system is given in Fig. 1.

It is expected that a biometric system always takes the correct decision when a
biometric feature is presented to the system. However, in practice a biometric system
can make two basic types of errors: false match rate (FMR) and false non-match rate
(FNMR) [1]. These errors generally used to show the accuracy and performance of
the system in the literature. Nevertheless it is more informative to report the system
accuracy in terms of a Receiver Operating Characteristic (ROC) curve that shows the
system performance at all operating points [6].

2.1 Automatic Fingerprint Authentication Systems

Fingerprint is the most widely used biometric feature due to its uniqueness,
immutability, reliability, permanence and universality [7]. It has a ridge-valley
structure, core and delta points called singular points, end points and bifurcations
called minutiaes. These structures are given in Fig. 2. Many approaches to AFASs
have been presented in the literature [1], [2], [5], [7]-[19]. Yet, it is still an actively
researched area.

The AFASs might be broadly classified as being minutiae-based, correlation-
based and image-based systems [8]. A good survey about these techniques was given
in [1]. The minutiae-based approaches rely on the comparisons for similarities and
differences of the local ridge attributes and their relationships to make a personal

Fig. 2. Ridge-valley structure and features of a fingerprint

308 S. Sagiroglu and N. Ozkaya

identification [9]-[11]. They attempt to align two sets of minutiaes from two

fingerprints and count the total number of matched minutiaes [4]. If minutaes and
their parameters are computed relative to the singular points which are highly stable,
rotation, translation and scale invariant, then these minutiaes will also become
rotation, translation and scale invariant [5], [12]-[14]. Core points are the points
where the innermost ridge loops are at their steepest. Delta points are the points from
which three patterns deviate [13], [15], [16]. The general methods to detect the
singular points are poincare-based methods [17], intersection-based methods [13] or
filter-based methods [18]. Main steps of the operations in the minutiae-based AFASs
are summarized as follows: selecting the image area, detecting the singular points,
enhancing, improving and thinning the fingerprint image, extracting the minutiae
points and calculating their parameters, eliminating the false minutiaes, properly
representing the fingerprint images with their feature sets, recording the feature sets
into a database, matching the feature sets, test and evaluating the system [19]. The
results of these processes are given in Fig. 3, respectively. The performance of the
minutiae-based techniques relies on the accuracy of all these processes. Especially the
feature extraction and the use of sophisticated matching techniques to compare two
minutiae sets often more affect the performance.

Fig. 3. Main operation steps of a minutiae-based AFAS [19]

In the correlation-based AFASs, global patterns of the ridges and valleys are
compared to determine if the two fingerprints align. The template and query
fingerprint images are spatially correlated to estimate the degree of similarity between
them. The performance of the correlation-based techniques is affected by non-linear
distortions and noise present in the image. In general, it has been observed that
minutiae-based techniques perform better than correlation-based ones [20]. In the
image-based approaches, the decision is made using the features that are extracted

10
-2

10
-1

10
0

10
-2

10
-1

10
0

F
N

M
R

(t
)

FMR(t)

ROC

ROC

 Artificial Neural Network Based Automatic Face Model Generation System 309

directly from the raw image that might be the only viable choice when image quality
is too low to allow reliable minutiae extraction [8].

2.2 Face Recognition Systems

Face is probably the most common biometric characteristic used by humans to make
personal recognition. Face recognition is an active area of research with several
applications ranging from static to dynamic [9]. So, face recognition technology is
well advanced. In general, a FRS consists of three main steps. These steps cover
detection of the faces in a complicated background, localization of the faces followed
by extraction of the features from the face regions and finally identification or
verification tasks [21]. Face detection and recognition process is really complex and
difficult due to numerous factors affecting the appearance of an individual’s facial
features such as 3D pose, facial expression, hair style, make-up, etc. [22]. In addition
to these varying factors, lighting, background, scale, noise and face occlusion and
many other possible factors make these tasks even more challenging [21]. The most
popular approaches to face detection and recognition are based on either the location
and shape of the facial attributes, such as the faces, eyebrows, nose, lips and chin and
their spatial relationships or the overall analysis of the face images that represents a
face as a weighted combination of a number of canonical faces [4], [21], [23]. Also
many effective and robust methods for the face recognition have been proposed [2],
[9], [21]-[25]. They are categorized as follows: Knowledge-based methods encode
human knowledge of what constitutes a typical face. Feature invariant methods aim to
find structural features that exist even when the pose, viewpoint or lighting conditions
vary to locate faces. In template matching based methods several standard patterns of
a face are used to describe the face as a whole or the facial features separately.
Appearance-based methods operate directly on images or appearances of the face
objects and process the images as two-dimensional holistic patterns [23].

3 Artificial Neural Networks

ANNs have been applied to solve many problems [26], [30]. Learning, generalization,
less data requirement, fast computation, ease of implementation and software and
hardware availability features have made the ANNs very attractive for many
applications [27], [28]. These fascinating features have also made them popular in
biometrics as well [23], [24], [28]-[30]. Multilayered perceptron (MLP) is one of the
most used ANN architectures. Because of the MLP structure can be trained by many
learning algorithms, it has been applied to a variety of problems successfully in the
literature. The MLP structure consists of three layers: input, output and hidden layers.
One or more hidden layers might be used. The neurons in the input layer can be
treated as buffers and distribute xi input signals to the neurons in the hidden layer. The
output of the each neuron yj in the hidden layer is obtained from sum of the
multiplication of all input signals xi and weights wji that follow all these input signals.
The sum can be calculated as a function of yj and can be expressed as:

()∑= ijij xwfy

(1)

310 S. Sagiroglu and N. Ozkaya

where f can be a simple threshold function, a hyperbolic tangent or a sigmoid
function. The outputs of the neurons in other layers are calculated in the same way.
The weights are adapted with the help of a learning algorithm according to the error
that can be calculated by subtracting the ANN output from the desired output. The
ANNs might be trained with many different learning algorithms [28].

4 Proposed ANN Based Intelligent Face Generation System

Fingerprint and face recognition topics have received significantly increased attention
due to possessing the merits of their reliability, performance and high accuracy. The
proposed F2FS generates the face of a person from only one fingerprint of the same
person without having any information about his or her face. It is thought that it will
be a very interesting innovation to biometrics.

Implementation steps of the F2FS to establish a relationship among fingerprints
and faces (Fs&Fs) can be mentioned as follows:

1. A database consisted of Fs&Fs was established.
2. Feature sets of Fs&Fs were obtained.
3. Training and test data sets were established for ANN application.
4. Suitable ANN parameters were selected.
5. Randomly selected 80 of 120 data sets covering pairs of Fs&Fs were used to

train the ANN based F2FS.
6. Feature sets of test sets covering only fingerprints of remaining 40 people

from the database were used to test the system.
7. In order to evaluate the accuracy of the F2FS, the test results were compared

with their desired values against to a variety of state-of-the-art methods [1].

The proposed F2FS has constructed by appropriately combining a data enrolment
module, a feature extraction module, an ANN module, an evaluation module and a
face reconstruction module. The first module of the system which is called the data
enrolment module helps store biometric data of individuals into the biometric system
database. During this process, Fs&Fs of an individual have been captured to produce
a digital representation of the characteristics. Two types of biometric data are used in
this study: Fs&Fs. The second module of the system extracts discriminative feature
sets from the acquired data. Extracting local and global feature sets of the fingerprints,
which include fingerprint singularities, minutiae points and their parameters, is
achieved. Similarly feature sets of the faces were obtained. The ANN module is used
to analyze the existence of any relationship among Fs&Fs. This part of the system
was implemented with the help of 3-layered ANN structure that is trained with the
scaled conjugate gradient (SCG) algorithm. The SCG algorithm is an ANN training
algorithm that adjusts the weights and biases of an ANN structure according to its
learning strategy. The SCG algorithm is based on conjugate directions. The details of
SCG algorithm can be found in the references [31] and [32]. Sigmoid transfer
function was used in the proposed study for generating the output of each neuron used
in the structure. The ANN module has only a hidden layer with 200 neurons. The
block diagram of the ANN Module is given in Fig. 4.

 Artificial Neural Network Based Automatic Face Model Generation System 311

ANN MODULE

Fe
at

ur
e

Se
ts

 o
f

Fs
&

Fs

Inputs
(Feature sets
of 80 of 120
Fingerprints)

ANN

Desired Outputs
(Feature Sets of
80 of 120 faces)

Test Inputs
(Remaining 40 of
120 Fingerprints) ANN

Test
Outputs

Evaluation
Process RESULTS

T
R

A
IN

T

E
ST

E

V
A

L
U

A
T

IO
N

Test Outputs

Desired
Outputs

Fig. 4. The block diagram of the ANN Module

The ANN module is the most critical and important module of the system.
Because, all modules of the system except the ANN module are on duty, either in pre-
processing or post-processing of the main process that is done by the ANN module.
So, if we investigate this module deeply, we can explain the working principles of the
F2FS properly.

The ANN module operates its task in two stages: the training and the testing. In the
training process, randomly selected input-output image sets covering Fs&Fs
belonging to the same people were used. The ANN structure and the training
parameters were determined for achieving the training stage accurately. The training
process is started with applying a person’s fingerprint feature set to the system as an
input and same person’s face feature set as the desired output. The system achieves
the training process with these feature sets according to the learning algorithm and the
ANN parameters. Both fingerprint and face feature sets are required in the training.
Only fingerprint feature sets are used in test. These fingerprints are unknown
biometric data to the F2FS.

Producing the faces as close to the real one as possible is critical for this study. The
traditional metrics of an ordinary biometric system are no longer appropriate to
characterize the performance of the F2FS. In addition to the FMR-FNMR and the
ROC curve representations, the results of the system were evaluated to give more
prices perceptions to the researchers by considering the following metrics: mean
squared error (MSE), sum squared error (SSE), average correlation, absolute percent
error (APE) and mean APE [33]. In addition to these numerical evaluations, a visual
evaluation platform was also created from face features by drawing the results of
desired and actual outputs together. Moreover, another visual evaluation platform was

312 S. Sagiroglu and N. Ozkaya

also established by drawing the results of actual and desired outputs on the involved
real face images of test people.

Consequently, for a more objective comparison, the performance and accuracy of
the system have been evaluated and presented on the basis of the combination of these
metrics for illustrating the qualitative properties of the proposed methods as well as a
quantitative evaluation of their performance. The face reconstruction module
facilitates the evaluation process, simplifies to understand the results and presents to
the users to evaluate the results perceptionally. To achieve all these processes easily
and efficiently, an automatic system has been proposed and a graphical interface was
designed to achieve the results and the metrics in the expected form.

5 Experimental Results

The concept of generating faces from only one fingerprint is a novel and challenging
idea to biometrics technology. The proposed ANN based face generation system from
only one fingerprint that was discussed in previous section is implemented. A
dedicated software has been developed to conduct the experiments easily and
efficiently. In the experiments, a multimodal database having Fs&Fs belonging to 120
people was established. The index finger of the right hand was used because of being
the most used finger in AFASs.

In the training processes, 80 of 120 image sets were randomly selected from the
database. The remaining 40 of 120 fingerprint images were used in the test. The
experimental image sets used in test processes contain only fingerprint images of the
test people and these data sets are unknown data for the system. The face images of
the test people were also used for evaluation of the system’s performance. The inputs
and the outputs of the system were vectors sized 298 and 148, respectively. These
vectors were the feature sets of fingerprints and faces, respectively. The feature
vectors of fingerprints were computed using a SDK developed by Neurotechnologija.
The reason of this preference was to prove the system’s success with a known method
for the F2FS. This software is known as an effective, robust and reliable AFAS in the
field of biometrics and it uses a minutiae-based algorithm. Detailed explanation of its
algorithms, detailed information of fingerprint feature sets and its storage format are
given in [34].

To get the feature sets of the faces a feature-based approach has been selected from
the face recognition literature and used by modifying fundamentally [35]. It can be
explained the reason of this preference is that it is used a minutiae-based approach to
get the feature sets of the fingerprints. Actually minutiae-based approaches rely on the
physical features of the fingerprints. Therefore it is reasonable that the feature sets of
both Fs&Fs should be obtained in the same way. So, a feature-based approach was
used to get the feature sets of the faces. A template was used for faces at the
beginning to provide appropriate features to the ANN model.

In order to evaluate the performance of the system effectively, we have
benchmarked our system against to the extra metrics in addition to the traditional
evaluation metrics of biometric systems that include FMR-FNMR representation and
ROC curve of the test results. The metrics MSE and SSE were computed before
rescaling, while the other metrics MSE, SSE, average APE and average correlation

 Artificial Neural Network Based Automatic Face Model Generation System 313

0

2

3

4

5

6

7

8

9

 FMR(t) →

 FNMR(t) →

-2 -1 0

2

1

Fig. 5. FMR-FNMR representation and ROC curve of the test results

were calculated after rescaling as 8.8583e-004, 5.2441, 132.2764, 7.8308e+005,
5.43656 and 0.993698, respectively. FMR-FNMR representation and ROC curve of
the test results are given in Fig. 5.

These results indicated that the proposed system performed the tasks with high
similarity measures to the desired values. For the purpose of more realistic and visual
evaluation, 12 of 40 desired and achieved test results were drawn on the same
platform as shown in Fig. 6. The same test results were shown on the real face images
as given in Fig. 7. It needs to be emphasized that because of the page limitation, only
12 of 40 test results are given. However it is possible to show the overall system
performance graphically for the all test results. The APE values belonging to all test
results were demonsrated in Fig. 8.

Fig. 6. Combined the test faces achieved from the F2FS and their desired values

314 S. Sagiroglu and N. Ozkaya

Fig. 7. Test faces obtained from the system are drawn on the real face images

SYSTEM ERRORS

0 %
2 %
4 %
6 %
8 %

10 %
12 %
14 %

1 4 7 10 13 16 19 22 25 28 31 34 37 40
No of Test Persons

A
P

E

Fig. 8. APE values for all test results

Besides the numerical results indicated the system success clearly, graphical results
also confirmed this success as well. As it can be seen from Figures 5-8, the system is
very successful in achieving the faces according to each standard metric defined in the
literature or extra metrics presented by us. Based on the observations, the fundamental
novelty and diversity of the proposed approach over the most other studies in
biometrics was to investigate the relationships between fingerprints and faces. In
addition, the proposed system can be used for an intelligent and efficient translator
that effectively converts a person’s fingerprint to the face of the same person without
any information about his or her face.

 Artificial Neural Network Based Automatic Face Model Generation System 315

6 Conclusions and Future Work

In this study, the existence of relationships among biometric features was experimentally
illustrated. In addition, it is demonstrated that it is possible to achieve an unknown
biometric feature from a known biometric feature, successfully.

It has a very simple structure. It is constructed by appropriately combining a data
enrolment module, a feature extraction module, an ANN module, a test & evaluation
module and a face reconstruction module. In order to achieve the experiments easily
and effectively, these modules were combined in the F2FS for generating the face
models from fingerprints without any need of face information. Because of
establishing the relationship among Fs&Fs, the structure of the ANN module plays an
important role in the system. The difficulty faced in the study was to explain the
relationships among Fs&Fs mathematically.

Finally it is hoped that this approach would lead to create new concepts, research
areas, and especially new applications in the field of biometrics.

References

1. Maio, D., Maltoni, D., Jain, A.K., Prabhakar, S.: Handbook of fingerprint recognition.
Springer, New York (2003)

2. Jain, L.C., Halici, U., Hayashi, I., Lee, S.B., Tsutsui, S.: Intelligent biometric techniques in
fingerprint and face recognition. CRC press, New York (1999)

3. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans.
on Circuits and Systems for Video Technology 14(1), 4–19 (2004)

4. Jain, A.K., Ross, A., Pankanti, S.: Biometrics: a tool for information security. IEEE Trans.
on Information Forensics and Security, 1(2), 125–143 (2006)

5. Jain, A.K., Hong, L., Pankanti, S., Bolle, R.: An identity authentication system using
fingerprints. Proceedings of the IEEE 85(9), 1365–1388 (1997)

6. Jain, A.K., Pankanti, S., Prabhakar, S., Hong, L., Ross, A., Wayman, J.L.: Biometrics: A
Grand Challenge. In: Proceedings of the Int. Conf. on Pattern Recognition, Cambridge,
UK, August, vol. II, pp. 935–942 (2004)

7. Kovács-Vajna, Z.M.: A fingerprint verification system based on triangular matching and
dynamic time warping. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1266–1276 (2000)

8. Lumini, A., Nanni, L.: Two-class Fingerprint matcher. Pattern Recognition 39(4), 714–716
(2006)

9. Hong, L., Jain, A.: Integrating faces and fingerprints for personal identification. IEEE
Trans. Pattern Analysis and Machine Intelligence 20(12), 1295–1307 (1998)

10. Jain, A.K., Hong, L., Bolle, R.: On-line fingerprint verification. IEEE Trans. on Pattern
Analysis and Machine Intelligence 19(4), 302–314 (1997)

11. Zhou, J., Gu, J.: Modeling orientation fields of fingerprints with rational complex
functions. Pattern Recognition 37(2), 389–391 (2004)

12. Hsieh, C.T., Lu, Z.Y., Li, T.C., Mei, K.C.: An Effective Method To Extract Fingerprint
Singular Point. In: The Fourth Int. Conf./Exhibition on High Performance Computing in
the Asia-Pacific Region, pp. 696–699 (2000)

13. Rämö, P., Tico, M., Onnia, V., Saarinen, J.: Optimized singular point detection algorithm
for fingerprint images. In: Int. Conf. on Image Processing, pp. 242–245 (2001)

316 S. Sagiroglu and N. Ozkaya

14. Zhang, Q., Yan, H.: Fingerprint classification based on extraction and analysis of
singularities and pseudo ridges. Pattern Recognition 11, 2233–2243 (2004)

15. Wang, X., Li, J., Niu, Y.: Definition and extraction of stable points from fingerprint
images. Pattern Recognition 40(6), 1804–1815 (2007)

16. Li, J., Yau, W.Y., Wang, H.: Combining singular points and orientation image information
for fingerprint classification. Pattern Recognition 41(1), 353–366 (2008)

17. Kawagoe, M., Tojo, A.: Fingerprint pattern classification. Pattern Recognition 17(3), 295–
303 (1984)

18. Nilsson, K., Bigun, J.: Localization of corresponding points in fingerprints by complex
filtering. Pattern Recognition Lett. 24, 2135–2144 (2003)

19. Ozkaya, N., Sagiroglu, S., Wani, A.: An intelligent automatic fingerprint recognition
system design. In: 5th Int. Conf. on Machine Learning and App., pp. 231–238 (2006)

20. Ross, A., Jain, A.K., Reisman, J.: A Hybrid Fingerprint Matcher. Pattern
Recognition 36(7), 1661–1673 (2003)

21. Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.: Discriminative common vectors for
face recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(1), 4–13
(2005)

22. Bouchaffra, D., Amira, A.: Structural Hidden Markov Models for Biometrics: Fusion of
Face and Fingerprint. Special Issue of Pattern Recognition Journal, Feature Extraction and
Machine Learning for Robust Multimodal Biometrics (Article in press, 2007) (available
online)

23. Li, S.Z., Jain, A.K.: Handbook of Face Recognition. Springer, NewYork (2004)
24. Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans.

on Pattern Analysis and Machine Intelligence 1(24), 34–58 (2002)
25. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey.

ACM Computing Surveys 35, 399–459 (2003)
26. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan College

Publishing Company, New York (1994)
27. Sagiroglu, S., Beşdok, E., Erler, M.: Artificial intelligence applications in Engineering I:

artificial neural networks. Ufuk publishing, Kayseri, Turkey (2003)
28. Sagar, V.K., Beng, K.J.A.: Hybrid Fuzzy Logic And Neural Network Model For

Fingerprint Minutiae Extraction. In: Int. Conf. on Neural Netw., pp. 3255–3259 (1999)
29. Nagaty, K.A.: Fingerprints classification using artificial neural networks: a combined

structural and statistical approach. Neural Networks 14, 1293–1305 (2001)
30. Maio, D., Maltoni, D.: Neural network based minutiae filtering in fingerprints. In: 14th Int.

Conf. on Pattern Recognition, pp. 1654–1658 (1998)
31. The Mathworks, Accelerating the Pace of Engineering and Science (2008), http://

www.mathworks.com/access/helpdesk/help/toolbox/nnet/nnet.html?/
access/helpdesk/help/toolbox

32. Moller, M.F.: A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning.
Neurall Networks 6, 525–533 (1993)

33. Novobilski, A., Kamangar, F.A.: Absolute percent error based fitness functions for
evolving forecast models. In: FLAIRS Conf., pp. 591–595 (2001)

34. Biometrical and Artificial intelligence Technologies (2008),
 http://www.neurotechnologija.com/vf_sdk.html

35. Cox, I.J., Ghosn, J., Yianilos, P.N.: Feature-Based Face Recognition Using Mixture
Distance. Computer Vision and Pattern Recognition, 209–216 (1996)

Author Index

Abe, Shigeo 54
Alevizos, Ph.D. 113
Alivanoglou, Anastasios 36
Antón-Rodŕıguez, Mı́riam 240

Bahy, Omar 252
Bhattacharya, Prabir 292
Bianchini, Monica 101, 133
Biehl, M. 78
Braga, Antônio P. 263
Buchholz, Malte 147
Bunke, Horst 24

Çela, Arben 263
Chen, H. 44
Clady, Xavier 228
Cointault, Frederic 280
Connolly, Jean-François 66
Costa, Marcelo A. 263

Deraz, Sally 252
Destain, Marie-France 280
Di Iorio, Ernesto 101
Dias, Kaushala 267
Dı́az-Pernas, Francisco Javier 240
Dı́ez-Higuera, José Fernando 240

El-Shishiny, Hisham 252

Faußer, Stefan 90
Fernández-Redondo, Mercedes 157,

168, 193

Georgiou, V.L. 113
Govaert, Gérard 13
Granger, Eric 66

Hammer, Barbara 1, 78
Hasenfuss, Alexander 1
Hernández-Espinosa, Carlos 157,

168, 193
Horta, Euler G. 263

Incitti, Roberto 263

Journaux, Ludovic 280

Kayikci, Zöhre Kara 217
Keilwagen, J. 78
Kestler, Hans A. 147

Lausser, Ludwig 147
Li, C.C. 44
Likas, Aristidis 36
Liu, Cheng-Lin 137
Lu, C.C. 44

Maggini, Marco 101, 133
Markert, Heiner 217
Mart́ınez-Zarzuela, Mario 240
Melacci, Stefano 133
Milgram, Maurice 228
Miteran, Johel 280

Nadif, Mohamed 13
Natowicz, René 263
Negri, Pablo 228

Oubbati, Mohamed 205
Ozkaya, Necla 305

Palm, Günther 205, 217
Pataro, Carmen D.M. 263
Piron, Alexis 280
Poulenard, Raphael 228
Priam, Rodolphe 13
Pucci, Augusto 101

Riesen, Kaspar 24
Rodrigues, Thiago S. 263
Rossi, Fabrice 1
Rouzier, Roman 263
Roy, Kaushik 292

Sabourin, Robert 66
Sagiroglu, Seref 305
Sarti, Lorenzo 133
Scherer, Stefan 205
Schneider, P. 78
Schwenker, Friedhelm 90, 125, 205
Sonntag, Britta 125
Strickert, M. 78

318 Author Index

Thiel, Christian 125
Tomas, Amber 180
Torres-Sospedra, Joaqúın 157,

168, 193

Villmann, T. 78
Vrahatis, M.N. 113

Windeatt, Terry 267

	Title Page
	Preface
	Organization
	Table of Contents
	Patch Relational Neural Gas – Clustering of Huge Dissimilarity Datasets
	Introduction
	Neural Gas
	Relational Neural Gas
	Patch Relational Neural Gas
	Experiments
	Synthetic Dataset
	Chicken Pieces Silhouettes Dataset
	Protein Classification
	Wisconsin Breast Cancer
	Chromosome Images Dataset

	Summary

	The Block Generative Topographic Mapping
	Introduction
	The Latent Block Model
	Block Clustering
	Definition of the Model
	Estimation of the Parameters

	Block Generative Topographic Mapping
	Numerical Experiments
	Conclusion

	Kernel k-Means Clustering Applied to Vector Space Embeddings of Graphs
	Introduction
	Dissimilarity Space Embedding Graph Kernel
	Kernel k-Means Clustering
	Clustering Validation
	Dunn Index
	C Index
	Rand Index
	Bipartite Index

	Experimental Results
	Databases
	Results and Discussion

	Conclusions

	Probabilistic Models Basedon the II-Sigmoid Distribution
	Introduction
	The II-Sigmoid Distribution
	Maximum Likelihood Estimation

	The II-Sigmoid Mixture Model
	Experimental Results
	Conclusions
	References

	How Robust Is a Probabilistic Neural VLSI System Against Environmental Noise
	Introduction
	The CRBM Model
	The Robustness Against Environmental Noise
	The CRBM System
	Modelling Artificial Data in the Presence of Environmental Noise
	Modelling Biomedical Data in the Presence of Environmental Noise

	Noise-Enhanced Robustness in the CRBM System
	Conclusion

	Sparse Least Squares Support Vector Machines by Forward Selection Based on Linear Discriminant Analysis
	Introduction
	Sparse Least Squares Support Vector Machines
	Selection of Independent Data
	Idea
	Selection of Independent Data by Cholesky Factorization
	Linear Discriminant Analysis in the Empirical Feature Space
	Forward Selection

	Performance Evaluation
	Evaluation for Two-Class Problems
	Evaluation for Multi-class Problems
	Comparison with Other Methods

	Conclusions

	Supervised Incremental Learning with the Fuzzy ARTMAP Neural Network
	Introduction
	ARTMAP Neural Networks
	Fuzzy ARTMAP

	Experimental Methodology
	Experimental Protocole
	Data Sets

	Simulation Results
	Overlapping Class Distributions
	Complex Decision Boundaries
	Discussion

	Conclusion

	Discriminatory Data Mapping by Matrix-Based Supervised Learning Metrics
	Introduction
	Method
	Experiments
	Tecator Spectral Data Set
	Gene Expression Analysis of AML/ALL Cancer

	Conclusions and Outlook

	Neural Approximation of Monte Carlo Policy Evaluation Deployed in Connect Four
	Introduction
	Connect Four Rules and Game Complexity
	Derivation of the Training Algorithm
	Neural Approximation of the State-Value Function V(\s)
	Implementation and Assembly Details of the MLP
	Overview of the Training Algorithm

	Experiments and Results
	Setting
	Discussing the Results

	Conclusion

	Cyclostationary Neural Networks for Air Pollutant Concentration Prediction
	Introduction
	Cyclostationary Neural Networks
	Prediction of the NO_{2} Concentration
	Prediction of the PM_{10} Concentration

	Experimental Results
	Experiments on the Prediction of the NO_{2} Concentration
	Experiments on the Prediction of the PM_{10} Concentration

	Conclusions

	Fuzzy Evolutionary Probabilistic Neural Networks
	Introduction
	Background Material
	The Proposed Approach
	Experimental Results
	Concluding Remarks

	Experiments with Supervised Fuzzy LVQ
	Introduction
	Supervised Fuzzy LVQ
	Adapting the Prototypes
	Adapting the Labels

	Experimental Setup
	Results and Interesting Observations
	Summary

	A Neural Network Approach to Similarity Learning
	Introduction
	Similarity Neural Networks
	Experimental Results
	Conclusions and Future Work

	Partial Discriminative Training of Neural Networks for Classification of Overlapping Classes
	Introduction
	Related Works
	Partial Discriminative Training
	Training of Neural Networks
	Partial Discriminative Training (PDT)
	Specific Classifiers

	Experimental Results
	Conclusion

	Boosting Threshold Classifiers for High– Dimensional Data in Functional Genomics
	Introduction
	AdaBoost
	Base Classifier
	Tested Algorithms

	Data Sets
	Artificial Data
	Real Data

	Results and Conclusion
	Results
	Conclusion

	Decision Fusion on Boosting Ensembles
	Introduction
	Theory
	Adaptive Boosting - Adaboost
	Averaged Boosting - Aveboost
	Alternative Combiners

	Experimental Setup
	Datasets

	Results and Discussion
	General Measurements
	Adaboost Results
	Aveboost Results
	Discussion

	Conclusions

	The Mixture of Neural Networks as Ensemble Combiner
	Introduction
	Theory
	Network Architectures
	Simple Ensemble
	Mixture of Neural Networks
	Mixture as Combiner

	Experimental Testing
	Datasets

	Results and Discussion
	Results
	General Measurements
	Discussion

	Conclusions

	Combining Methods for Dynamic Multiple Classifier Systems
	Introduction
	The Model
	Bounding the Decision Boundary
	Relevance to Dynamic Scenarios
	On the Definition of Diversity

	Label-Swapped Component Classifiers
	Example
	Conclusions

	Researching on Multi-net Systems Based on Stacked Generalization
	Introduction
	Theory
	The Multilayer Feedforward Network
	Traditional Multi-net Models
	Stacked Generalization

	Experimental Setup
	Databases

	Results and discussion
	Results
	General Measurements
	Discussion

	Conclusions

	Real-Time Emotion Recognition from Speech Using Echo State Networks
	Introduction
	Database Description
	Feature Extraction
	Echo State Networks
	Experiments and Results
	Conclusions

	Sentence Understanding and Learning of New Words with Large-Scale Neural Networks
	Introduction
	Neural Associative Memories
	The System
	Triphone Recognizer
	Isolated Word Recognition
	Sentence Recognition

	Disambiguation
	Online Learning
	Discussion
	References

	Multi-class Vehicle Type Recognition System
	Introduction
	Model Creation
	Images Databases
	Prototype Image
	Model Features

	Classification
	Designing the Discriminant Function
	Classification Strategies

	Results
	Conclusions

	A Bio-inspired Neural Model for Colour Image Segmentation
	Introduction
	Proposed Neural Model
	Colour Opponent System (COS)
	Chromatic Segmentation System (CSS)

	Tests and Results
	Conclusion
	References

	Mining Software Aging Patterns by Artificial Neural Networks
	Introduction
	Related Work
	Software Aging Data
	The Neural Network Approach
	Artificial Neural Networks
	ANN for Mining Patterns in Software Aging
	The Proposed Neural Network Structure
	Forecasting the Exhaustion of the Apache Server Resources

	Conclusion

	Bayesian Classifiers for Predicting the Outcome of Breast Cancer Preoperative Chemotherapy
	Introduction
	Previous Studies
	Bayes Classification and Results
	Conclusion

	Feature Ranking Ensembles for Facial Action Unit Classification
	Introduction
	Ensembles, Bootstrapping and Bias/Variance Analysis
	Feature-Ranking and RFE
	Ranking by Classifier Weights $(rfenn, rfesvc)$
	Ranking by Noisy Bootstrap $(rfenb)$
	Ranking by Boosting $(boost)$
	Ranking by Statistical Criteria $(1dim, SFFS)$

	Datasets
	Experimental Evidence
	Discussion
	Conclusion
	References

	Texture Classification with Generalized Fourier Descriptors in Dimensionality Reduction Context: An Overview Exploration
	Introduction
	Materials and Methods
	Textures Images Databases
	Texture Characterisation Using Generalized Fourier Descriptors (GFD)
	Classification Methods

	Dimensionality Reduction Methods
	Estimating Intrinsic Dimensionality
	Review of DR Methods

	Results
	Conclusion
	References

	Improving Features Subset Selection Using GeneticAlgorithms for Iris Recognition
	Introduction
	Iris Image Preprocessing
	Feature Extraction
	Feature Subset Selection Using Genetic Algorithms
	Iris Pattern Classification Using Multi-class Gaussian MixtureModel

	Artificial Neural Network Based Automatic Face Model Generation System from Only One Fingerprint
	Introduction
	Background
	Automatic Fingerprint Authentication Systems
	Face Recognition Systems

	Artificial Neural Networks
	Proposed ANN Based Intelligent Face Generation System
	Experimental Results
	Conclusions and Future Work
	References

	Author Index

