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Abstract. In this paper we introduce a variant of alternating pushdown
automata, Synchronized Alternating Pushdown Automata, which accept
the same class of languages as those generated by conjunctive grammars.

1 Introduction

Many well known computational models support non-deterministic computa-
tions with existential acceptance conditions, thereby leading to an inherent dis-
junctive quality of the class of languages accepted. When looking at the dual
form of these models (e.g., Co-NP), universal acceptance conditions lead to con-
junction: all computations must accept. This type of acceptance is useful in such
fields as concurrent programming where all processes must meet correctness de-
mands. In this paper we explore several extensions of models for context-free
languages which combine both the notion of conjunction and of disjunction,
leading to a richer set of languages.

Conjunctive Grammars (CG) are an example of such a model. Introduced
by Okhotin in [1], CG are a generalization of context-free grammars. Explicit
intersection operations are allowed in rules thereby adding the power of conjunc-
tion. CG were shown by Okhotin to accept all finite conjunctions of context-free
languages, as well as some additional languages. However, there is no known
non-trivial technique to prove a language cannot be derived by a CG, so their
exact placing in the Chomsky hierarchy is unknown. Okhotin proved the lan-
guages generated by these grammars to be polynomially parsable [1,2], making
the model practical from a computational standpoint, and therefore of interest
for applications in various fields such as programming languages, etc. In this
paper we introduce a new model of alternating automata, Synchronized Alter-
nating Pushdown Automata (SAPDA), which is equivalent to the Conjunctive
Grammar model.1

The concept of alternating automata models was first introduced by Chan-
dra et.al. in [3]. In these models, computations alternate between existential
and universal modes of acceptance, hence their name. This behavior is achieved
1 We call two models equivalent if they accept/generate the same class of languages.
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by splitting the state-set into two disjoint groups, existential states and univer-
sal states. The acceptance model dictates that all possible computations from
universal states must be accepting whereas only one must be accepting from
existential states. Thus, for a word to be accepted it must meet both disjunctive
and conjunctive conditions. In the case of Alternating Finite State Automata
and Alternating Turing Machines, the alternating models have been shown to
be equivalent in expressive power to their non-alternating counterparts, see [3].

Alternating Pushdown Automata (APDA) were also introduced in [3] and
were further explored in [4]. Like Conjunctive Grammars, APDA add the power
of conjunction over context-free languages. Therefore, unlike Finite Automata
and Turing Machines, here alternation increases the expressiveness of the model.
In fact, APDA accept exactly the exponential-time languages, see [3,4].

It is well known that Context-Free Grammars and Pushdown Automata are
equivalent, e.g., see [5, pp. 115–119]. Yet, the APDA model is stronger than the
CG model [1]. Our Synchronized Alternating Pushdown Automata are weaker
than general APDA, and accept exactly the class of languages derived by
Okhotin’s Conjunctive Grammars. Okhotin showed in [6,7] that Linear Con-
junctive Grammars, a subfamily of the Conjunctive Grammars, are equivalent
to Trellis Automata [8], however SAPDA are the first class of automata shown
to be equivalent to general CG.

The paper is organized as follows. In Section 2 we define the Conjunctive
Grammar model. In Section 3 we introduce our SAPDA model. Section 4 details
our main results, namely the equivalence of the CG and SAPDA models. Sections
5 and 6 contain discussions of mildly context-sensitive languages and related
work respectively, and Section 7 is a short conclusion of our work.

2 Conjunctive Grammars

The following definitions are taken from [1].

Definition 1. A Conjunctive Grammar is a quadruple G = (V, Σ, P, S) where:

1. V, Σ are disjoint finite sets of non-terminal and terminal symbols
respectively.

2. S ∈ V is the designated start symbol.
3. P is a finite set of rules of the form A → (α1& . . .&αn) s.t. A ∈ V and

αi ∈ (V ∪Σ)∗. If n = 1 then we write A→ α.

Definition 2. Conjunctive Formulas are defined over the alphabet V ∪ Σ ∪
{(, ), &}. The set of conjunctive formulas corresponding to a grammar G is de-
fined as follows:

1. ε is a formula.
2. Every symbol in V ∪Σ is a formula.
3. If A and B are formulas then AB is a formula.
4. If A1, . . . ,An are formulas then (A1& · · ·&An) is a formula.
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Notation. Below we use the following notation: σ, τ denote terminal symbols,
u, w, y denote terminal words, X, Y denote non-terminal symbols, α, β denote
non-terminal words, and A,B denote conjunctive formulas.

Definition 3. For every conjunctive formula A = (B1& . . .&Bn), Bis, i =
1, . . . , n, are called are called conjuncts of A,2 and A is called the enclosing
formula. If Bi contains no &-s, then Bi is a simple conjunct.

Definition 4. Given a grammar G, the relation of immediate derivability on
the set of conjunctive formulas, ⇒G, is defined as follows:

1. s1Xs2 ⇒G s1(α1& · · ·&αn)s2 for all X → (α1& · · ·&αn) ∈ P
2. s1(w& · · ·&w)s2 ⇒G s1ws2 for all w ∈ T ∗

where si ∈ (V ∪T ∪{(, ), &})∗. As usual, ⇒∗G is the reflexive transitive closure of
⇒G, and the language of a grammar G is defined as L(G) = {w ∈ T ∗|S ⇒∗G w}.
We refer to (1) as production rules and to (2) as contraction rules.

Informally, a terminal word w is derived from a formula (A1& · · ·&An) if and
only if it is derived from each Ai.

Example 1. The following conjunctive grammar derives the non-context-free
multiple-agreement language {anbncn|n ∈ N}. G = (V, T, P, S) where:

– V = {S, A, B, C, X, Y } , T = {a, b, c},
– P contains the following derivation rules:

S → (C & A)
C → Cc | X ; A→ aA | Y
X → aXb | ε ; Y → bY c | ε

The derivation of the word aabbcc is as follows:

S ⇒ (C & A)⇒ (Cc & A)⇒ (Ccc & A)⇒ (Xcc & A)
⇒ (aXbcc & A)⇒ (aaXbbcc & A)⇒ (aabbcc & A)
⇒ (aabbcc & aA)⇒ (aabbcc & aaA)⇒ (aabbcc & aaY )
⇒ (aabbcc & aabY c)⇒ (aabbcc & aabbY cc)⇒ (aabbcc & aabbcc)⇒ aabbcc

Example 2. The following linear conjunctive grammar derives the non-context-
free cross-agreement language {anbmcndm|n, m ∈ N}. G = (V, T, P, S) where:

– V = {S, A, B, C, D, X, Y } , T = {a, b, c, d},
– P contains the following derivation rules:

S → (A & D)
A → aA | X ; D → Dd | Y
X → bXd | C ; Y → aY c | B
C → cC | ε ; B → bB | ε

2 Note that this definition is different from Okhotin’s definition in [1].
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The non-terminal A derives words of the form aibmcjdm for m, i, j ∈ N, while
D derives words of the form anbicndj for n, i, j ∈ N. Therefore, the conjunction
of the two generates the cross-agreement language.

Example 3. The following linear conjunctive grammar, taken from [1] derives
the non-context-free reduplication language with a center marker {wcw | w ∈
{a, b}∗}. G = (V, T, P, S) where:

– V = {S, A, B, C, D, E} , T = {a, b, c},
– P contains the following derivation rules:

S → (C&D) ; C → aCa | aCb | bCa | bCb | c
D → (aA&aD) | (bB&bD) | cE ; A→ aAa | aAb | bAa | bAb | cEa
B → aBa | aBb | bBa | bBb | cEb ; E → aE | bE | ε

The non-terminal C verifies that the lengths of the words before and after the
c marker are equal, while D validates that the letters are the same. For a more
detailed description see [1].

2.1 Linear Conjunctive Grammars

Okhotin defines in [1] a sub-family of conjunctive grammars called Linear Con-
junctive Grammars (LCG). The definition is analogues to the definition of linear
grammars as a sub-family of context-free grammars. LCG are an interesting sub-
family of CG as they have particularly efficient parsing algorithms [6], making
them practical from a computational standpoint. Okhotin proved in [7] that
LCGs are equivalent to Trellis Automata.

Definition 5. A conjunctive grammar G = (V, T, P, S) is said to be linear if all
rules in P are of the forms:

– X → (u1Y1v1 & · · ·& unYnvn) ; ui, vi ∈ T ∗, X, Yi ∈ V
– X → w ; w ∈ T ∗, X ∈ V

The grammars presented in Examples 1, 2, 3 are all linear.

3 Synchronized Alternating Pushdown Automata

We define a class of automata called Synchronized Alternating Pushdown Au-
tomata (SAPDA) as a variation on the standard PDA model. Similarly to stan-
dard Alternating Pushdown Automata [3,4], SAPDA have both the power of
existential and universal choice.

We use a different (equivalent) definition from the existential and universal
state-sets one presented in [3]. Instead, transitions are made to a conjunction of
states. The model is non-deterministic, therefore several different conjunctions
may be possible from a given configuration. If all conjunctions are of one state
only, the automaton is a standard PDA.
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The stack memory of an SAPDA is a tree. Each leaf has a processing head
which reads the input and writes to its branch independently. When a multiple-
state conjunctive transition is applied, the stack branch splits into multiple
branches, one for each conjunct.3 The branches process the input independently,
however sibling branches must empty synchronously, after which the computa-
tion continues from the parent branch.

Definition 6. A synchronized alternating pushdown automaton is a tuple A =
(Q, Σ, Γ, δ, q0,⊥) where the domain of δ is Q × (Σ ∪ {ε}) × Γ . For every such
(q, σ, X), δ is a finite subset of

{(q1, α1) ∧ · · · ∧ (qn, αn) | qi ∈ Q, αi ∈ Γ ∗, n ∈ N} .

Everything else is defined as in the standard PDA model; Q is a finite set of
states, Γ, Σ are the stack and input alphabets respectively, q0 ∈ Q is the initial
state and ⊥ ∈ Γ is the initial stack symbol, see, e.g., [5, pp. 107–112].

We describe the current state of the automaton as a labelled tree. The tree
encodes the stack contents, the current states of the stack-branches, and the
remaining input to be read for each stack-branch. States and remaining inputs
are saved in leaves only, as these encode the stack-branches currently processed.

Definition 7. A configuration of an SAPDA is a labelled tree. Each internal
node is labelled α ∈ Γ ∗ denoting the stack-branch contents, and each leaf node
is labelled (q, w, α) where q ∈ Q denotes the current state, w ∈ Σ∗ denotes the
remaining input to be read and α ∈ Γ ∗ denotes the stack-branch contents.

For a node v in a configuration T , we denote the label of v in T by T (v). If
a configuration has a single node only, it is denoted by the label of that node.
For example, if a configuration T has a single node labelled (q, w, α) then T is
denoted by (q, w, α).

At each computation step, a transition is applied to one stack-branch. If a
branch empties, it cannot be chosen for the next transition (because it has no
top symbol). If all sibling branches are empty, and each branch emptied with
the same remaining input (i.e., after processing the same portion of the input)
and with the same state, the branches are collapsed back to the parent branch.

Definition 8. Let A be an SAPDA and let T , T ′ be two configurations of A.
We write T �A T ′ (A is omitted if understood from the context), if:

– There exists a leaf node v in T s.t. T (v) = (q, σw, Xα) and a transition
(q1, α1) ∧ · · · ∧ (qk, αk) ∈ δ(q, σ, X) s.t.:
• If k = 1 then T ′ can be obtained from T by relabelling v s.t. T ′(v) =

(q1, w, α1α).

3 This is similar to the concept of a transition from a universal state in the standard
formulation of alternating automata, as all branches must accept.
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• If k > 1 then T ′ can be obtained from T by relabelling v s.t. T ′(v) = α,
and adding k child nodes to v, v1, . . . , vk s.t. T ′(vj) = (qj , w, αj) for
j = 1, . . . , k.

– There is a node v in T s.t. T (v) = α, v has k children v1, . . . , vk s.t. all
vjs, j = 1, . . . , k, are leaves labelled with the same (p, w, ε), and T ′ can be
obtained from T by removing nodes vj and relabelling v s.t. T ′(v) = (p, w, α).

We denote by T �∗A T ′ the reflexive transitive closure of �A.

Definition 9. Let A be an SAPDA and let w ∈ Σ∗.

– An initial configuration of A on w is the configuration (q0, w,⊥).
– An accepting configuration of A is a configuration of the form (q, ε, ε).
– A computation of A on w is a series of configurations T0, . . . , Tn where T0

is the initial configuration, Ti−1 �A Ti for i = 1, . . . , n, and all leaves v of
Tn are labelled (q, ε, α), i.e., the entire input string has been read.

– An accepting computation of A on w is a computation where the final con-
figuration Tn is accepting.4

The language of A, denoted L(A), is the set of all w ∈ Σ∗ s.t. A has an
accepting computation on w.

Example 4. The SAPDA, A = (Q, Σ, Γ, δ, q0,⊥), accepts the non-context-free
language {w | #a(w) = #b(w) = #c(w)} over Σ = {a, b, c}, where Q =
{q0, q1, q2}, Γ = {⊥,⊥1,⊥2, a, b, c} and δ is defined as follows:

– δ(q0, ε,⊥) = {(q1,⊥1) ∧ (q2,⊥2)}
– δ(qi, σ,⊥i) = {(qi, σ⊥i)} , (i, σ) ∈ {1} × {a, b} ∪ {2} × {b, c}
– δ(qi, σ, σ) = {(qi, σσ)}, (i, σ) ∈ {1} × {a, b} ∪ {2} × {b, c}
– δ(q1, σj , σk) = {(q1, ε)}, (σj , σk) ∈ {(a, b), (b, a)}
– δ(q2, σj , σk) = {(q2, ε)}, (σj , σk) ∈ {(b, c), (c, b)}
– δ(qi, ε,⊥i) = {(q0, ε)}, i ∈ {1, 2}

The first step of the computation opens two branches, one for verifying that
#a = #b and one for verifying that #b = #c. If both branches manage to empty
their stack then the word is accepted.

Figure 1 shows the contents of the stack-tree at an intermediate stage of a
computation on the word abbcccabb. The left branch has read abbcc and shows
that one more b-s than a-s have been read, while the right branch has read
abbccc and shows that two more c-s than b-s have been read. Figure 2 shows the
configuration describing the state of the automaton.

4 Note that this is acceptance by empty stack. It is possible to define acceptance by
accepting states. Let F ⊆ Q be a set of accepting states. An accepting configuration
is of the form (q, ε, α) where q ∈ F . Both models of acceptance are equivalent.
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Fig. 1. Intermediate state of a computation
on abbcccaab

(q1,caab,b    )1

(q2,aab,cc    )2

Fig. 2. The configuration matching the
state in Fig. 1

4 Main Results

In this section we state the main results of our paper, namely that the SAPDA
and CG models are equivalent.

Theorem 1. If a language is generated by a CG then it is accepted by a SAPDA.

Theorem 2. If a language is accepted by an SAPDA then it is generated by
a CG.

The proofs of Theorems 1 and 2 are extensions of the classical ones,5 see, e.g.,
[5, Theorem 5.3, pp. 115–116] and [5, Theorem 5.4, pp. 116–119] respectively.
Both proofs are omitted due to lack of space.

5 Mildly Context-Sensitive Languages

The field of computational linguistics focuses on defining a computational model
for natural languages. Originally, context-free languages were considered, and
many natural language models are in fact models for context-free languages.
However, certain natural language structures that cannot be expressed in context
free languages, led to an interest in a slightly wider class of languages which came
to be known as mildly context-sensitive languages (MCSL). Several formalisms
for grammar specification are known to converge to this class [9].

Mildly context sensitive languages are loosely categorized as having the fol-
lowing properties: (1) They contain the context-free languages; (2) They con-
tain such languages as multiple-agreement, cross-agreement and reduplication;
(3) They are polynomially parsable; (4) They are semi-linear6. It is clear that
there is a strong relation between the class of languages derived by conjunctive
grammars (and accepted by SAPDA) and the class of mildly context sensitive
languages. The first criterion of MCSL is obviously met, as both CG and SAPDA
5 The proof of Theorem 1 is more involved, and requires several preliminary steps.
6 A language L is semi-linear if {|w| | w ∈ L} is a finite union of sets of integers of

the form {l + im | i = 0, 1, . . .}, l, m ≥ 0.
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contain their context free counterparts, CFG and PDA respectively. The third
criterion is also met by Okhotin’s proof that CG membership is polynomial.

Multiple-agreement and cross-agreement are covered as shown in Examples
1, 2 respectively. Reduplication with a center marker is shown in Example 3.
Okhotin has conjectured that reduplication without a center marker cannot be
generated by any CG. However, this is still an open problem.

Surprisingly, it is the fourth criterion of semi-linearity which is not met, as
demonstrated by the following example due to Okhotin [10].

Example 5. The following linear conjunctive grammar derives the non-context-
free language {ba2ba4 · · · ba2n

b|n ∈ N}. G = (V, T, P, S) where:

– V = {S, A, B, C, D, U, V } , T = {a, b},
– P contains the following derivation rules:

S → (U & V ) | b
U → Ua | Ub | b ; V → Ab | (B & D)
A → aA | a ; B → Ba | Bb | Cb
C → aCa | baa ; D → aD | bV

For more details regarding this example see [10].

The language generated in Example 5 has super-linear growth, which means
that, in this respect, CG and SAPDA accept some languages not characterized
as mildly context-sensitive. In this respect, it may be that the CG and SAPDA
models are too strong for natural language processing.

6 Related Work

6.1 Alternating Grammars

Moriya introduced in [11] the concept of Alternating Context-Free Grammars
(ACFG), as a suggested grammatization for APDA. In ACFG, when a conjunc-
tive rule is applied in a derivation, the currently derived formula is duplicated,
and each duplicate continues its derivation independently. Therefore, a deriva-
tion of a grammar is in fact a tree where a conjunctive rule with k conjuncts
yields k child nodes in the derivation tree. The root of the derivation tree is
always labelled with the start symbol S. If all leaves of a derivation tree are
labelled w then the tree is a derivation of w.

The difference between Moriya’s ACFGs and Okhotin’s CGs is that conjunc-
tions in CGs are local leaving the rest of the thus far derived formula untouched
whereas in ACFGs, when a conjunctive rule is applied, the entire formula is du-
plicated. It is the locality of conjunctions in CGs which renders them so similar
in many respects to context-free grammars.

In [11], Moriya claimed that ACFG are equivalent to APDA. However, Ibarra
et.al. showed in [12] that the equivalence proof was flawed. Namely, the proof
was based on the claim that leftmost derivations of ACFGs are equivalent to
general derivations. This claim, however, is surprisingly false. The question of
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whether ACFG and APDA are equivalent remains an open one. It would seem
that ACFG are stronger than CGs (as APDAs are stronger than SAPDAs) but
this too has yet to be proven. Possibly the introduction of an automata model
for CG can help solve some of these questions.

6.2 Conjunction in Lambek Categorial Grammars

Categorial Grammar is a formal system for analyzing the syntax and semantics of
both formal and natural languages. Categorial grammars contain only a small set
of universal rules, which are applicable to all languages; the differences between
languages stemming solely from the lexicon. The universal rules of categorial
grammars are treated as a logical calculus. Therefore, the syntactic analysis of
an expression is reduced to a logical derivation. For more information see [13].

There are several frameworks for categorial grammars, each defining a set of
universal derivation rules. One of the most widely accepted is the (associative)
Lambek-calculus (L) as defined in [14]. Figure 3 shows the calculus, where Γ
(Γi) denotes a finite sequence of categories, and c (ci) denotes a single category.
The expression Γ 
 c is understood as: Γ is reducible to c in the given calculus.

(Ax) c � c

Γ1 � c1 Γ2 c2 Γ3 � c3
(→ L)

Γ2 Γ1 (c1 → c2) Γ3 � c3

c1 Γ � c2
(→ R)

Γ � (c1 → c2)

Γ1 � c1 Γ2 c2 Γ3 � c3
(← L)

Γ2 (c2 ← c1) Γ1 Γ3 � c3

Γ c1 � c2
(← R)

Γ � (c2 ← c1)

Fig. 3. Lambek Calculus – Sequent calculus style

Definition 10. A Lambek categorial grammar is a tuple G = (Σ,B, c0, α)
where:

– Σ is a finite set, the alphabet
– B is a set of basic categories with an associated category system C (the

reflexive-transitive closure of B under → and ←)
– c0 is the target category
– α : Σ −→ Pf (C) is the lexicon, a mapping assigning each terminal symbol

in Σ a finite non-empty subset of categories from C
The language generated by G is defined to be:

L(G) = {w = σ1 . . . σn ∈ Σ+ |∃c1 . . . cn : ci ∈ α[σi], i = 1 . . . n,�L c1 . . . cn 
 c0}

Lambek categorial grammars have been proven to derive exactly the class of
context free languages, see [15,16,17]. However, as context-free languages do not
cover all natural language structures, several extensions have been explored. One
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Γ1 c1 Γ2 � c3
(∩ L1)

Γ1 c1 ∩ c2 Γ2 � c3

Γ1 c1 Γ2 � c3
(∩ L2)

Γ1 c2 ∩ c1 Γ2 � c3

Γ � c1 Γ � c2
(∩ R)

Γ � c1 ∩ c2

Fig. 4. Kanazawa’s intersective conjunction rules

such extension is Kanazawa’s work [18] in which he suggests an enrichment of
the Lambek calculus with intersective conjunction (see Fig. 4).

Similarly to CG, Kanazawa’s grammars accept all finite intersections of
context-free languages, e.g., the multiple-agreement and cross-agreement lan-
guages etc. Kanazawa also shows that his extended grammars accept languages
not obtained as a finite intersection of context-free languages by proving that
they can accept the langauge L = {a2n2 | n ∈ N}.7 This is a super-linear lan-
guage, similarly to the CG generated language from Example 5.

It would be interesting to compare Kanazawa’s model to CG and SAPDA as
there seem to be many similarities between them. Categorial grammars are used
mainly in the field of computational linguistics, so such a comparison could have
a bearing on natural language processing as well as formal language theory.

7 Concluding Remarks

We have introduced a synchronized model of Alternating Pushdown Automata,
SAPDA, which is equivalent to the CG model. As the exact class of languages
generated by CG-s is not yet known, the exact class of languages accepted by
SAPDA is not known either. Perhaps the formalization as an automaton will
help find methods to prove that languages are not accepted by the model, thus
answering some open questions.

An interesting direction for further research is the exploration of the relation
between LCG and SAPDA. It is a well known result, due to Ginsberg and Spanier
[19], that linear grammars are equivalent to 1turn-PDA. 1turn-PDA are a sub-
family of PDA where in each computation the stack hight switches only once from
non-decreasing to decreasing. A similar notion of 1turn-SAPDA can be defined,
where each stack branch can make only one turn in the course of a computa-
tion. Our initial results point towards an equivalence between 1turn-SAPDA and
LCG. If this equivalence holds, it will deepen the correlation between SAPDA
and CG, strengthening the claim that SAPDA are a natural model for CG.

In [20], Kutrib and Malcher explore a wide range of finite-turn automata
with and without turn conditions, and their relationships with closures of linear
context-free languages under regular operations. It would also prove interesting
to explore the general case of finite-turn SAPDA, perhaps finding models for
closures of linear conjunctive languages under regular operations.

7 L is not a finite intersection of context-free languages, as all unary context-free
languages are regular, and regular languages are closed under intersection [18].
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