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1 Introduction

It has been known for decades that Montague’s (1974 [1970]) possible-worlds se-
mantics, which follows Kripke 1963 in treating worlds as unanalyzed primitives
and propositions as sets of worlds, does not provide enough meaning distinctions
to make correct predictions about a wide range of natural-language entailment
patterns.1 This granularity problem, as it has come to be known, has many
dimensions, of which the best known is that two declarative sentences which
entail each other must express the same proposition. This is because entailment
is modelled by the subset inclusion relation on the powerset of the set of propo-
sitions, and that relation is irretrievably antisymmetric. The most notorious
consequence of this antisymmetry of entailment is the so-called logical omni-
science problem, that (assuming knowledge is a relation between individuals
and propositions) anyone who knows at least one necessary truth (e.g. that s/he
is self-identical, or that two is even) must know every necessary truth, even
an unresolved mathematical conjecture or its denial (whichever is true). Thus,
e.g. if Paris Hilton knows that Paris Hilton is Paris Hilton, then she must also
know that every nontrivial zero of the zeta-function has real part 1/2, if that is
indeed the case, or else she must know that this is not the case, if indeed it is
not. In short, it seems to be a consequence of MS that a celebrity hotel heiress
devoted to parties and shopping knows whether the Riemann Hypothesis is true.
This is just one of the unsavory consequences of MS.

From the point of view of MS, the most conservative response to Granularity,
and one which remains popular among linguistic semanticists, is to argue, along
the lines of Stalnaker (1984), that it is naive to perceive it as a real problem.
In effect, Paris Hilton really does either know that R or know that not R, she
just doesn’t know that she does. On the other hand, Granularity has been quite
widely viewed as a serious foundational problem, and a wide range of ingenious
1 For much useful discussion, some of it in the distant past, and comments on earlier
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and technically sophisticated replacements for MS have been proposed in re-
sponse. Among these, to mention just a few of the best known proposals, have
been have been Intentional Semantics (Thomason 1980), Situation Semantics
(Barwise and Perry 1983), and Property Theory (Chierchia and Turner 1988).
For summaries and critical assessment of these and other proposals, together
with a more sophisticated version of Property Theory, see Fox and Lappin 2005.

In general, these alternative proposals depart radically from MS, e.g. by em-
bracing impossible worlds in addition to possible ones; by countenancing not
just possible worlds but also partial possible worlds; by rejecting possible worlds
altogether; by working in a type theory that abandons one or more of the usual
structural rules; by moving from typed to untyped lambda calculus, etc. By con-
trast, the approach adopted here, described in detail in Pollard 2008, holds that
MS was close to the mark, and that a relatively minor repair job eliminates the
Granularity problem along with certain other of MS’s foundational problems.2

The repair involves five ideas, of which only the last two are original.
First, we must treat propositions as primitives, not as sets of worlds. In connec-

tion with natural-language semantics, this was already advocated by Thomason
(1980), though the philosophical roots of the idea can be traced back to Wittgen-
stein or perhaps even Bolzano.

Second, we must treat worlds not as primitives, but rather as ultrafilters over
the boolean structure on propositions. In some form or other, this battle-tested
idea is present in Adams (1974), Kripke (1959), Jónsson and Tarski (1951),
Carnap (1947), and Stone (1936,1937).

Third, the entailment relation on propositions must not be antisymmetric!
I am indebted to Howard Gregory3 for making me explicitly conscious of the
central and nonnegotiable character of this requirement.

Fourth, the boolean structure on propositions, in terms of which worlds are
defined as ultrafilters, has to be induced by the entailment relation on proposi-
tions. That is, rather than define entailment as subset inclusion of sets of worlds,
we axiomatize entailment to be a boolean preorder on the set of propositions.
Then, since the type theory we will work in has Choice4, it will follow from the
(internal) Stone Representation Theorem that this preorder really deserves to be
called entailment, in the sense that, for any two propositions p and q, p entails
q iff every ulrafilter with p as a member also has q as a member.

And fifth, the type theory must countenance a Separation-like notion of sub-
typing, along the lines of Lambek and Scott 1986. This will ensure that the
worlds, in spite of having been defined as ulrtafilters of propositions, constitute
a type of the underlying type theory. That is because the property of of being
an ultrafilter is an internally definable property of propositions. More specifi-
cally, we can write a formula (boolean term) u[S] (where S is a variable of the

2 Another approach that is similar in spirit, though not in technical detail, is that of
Muskens (2005). Unfortunately Muskens and I separately adopted the term “hyper-
intensional” for our approaches.

3 Personal communication to Shalom Lappin and me, 1999.
4 Actually, the Boolean Prime Ideal Theorem would be enough.
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type of sets of propositions) which says of S that it is an ultrafilter, and then
use that formula to form a subtype—call it World—of the type Prop ⊃ Bool.
This type will play a role in the semantic theory analogous in crucial respects to
that played by the world-type s in MS. However, unlike MS, meanings (includ-
ing propositions) will not be modelled as intensions (functions from worlds to
extensions), but rather as the considerably more fine-grained hyperintensions.

The purpose of this paper is to show how a semantic theory along these lines
sheds light on the understanding of questions, the meanings expressed by in-
terrogative sentences. Our questions will turn out to be closely related to the
two standard modellings of questions in the linguistic semantics literature, due
respectively to Karttunen (1977) (hereafter, K) and Groenendijk and Stokhof
(1984) (hereafter, G). The gist of the relationship is as follows. First, the hyper-
intensional theory of meanings has the property that it contains an ‘isomorphic
copy of MS’, together with a type-parametrized family of functions extA that
maps each each hyperintension to the corresponding Montagovian intension. In
general this function is many-to-one, but it becomes a bijection if we (perversely!)
add to our meaning theory an axiom that makes entailment antisymmetric. In
the special case of the type Prop of propositions, this function is just the Stone
function that maps each member of the preboolean algebra of propositions to
a clopen subset of the corresponding Stone space (the one whose members are
the ultrafilters of which that proposition is a member.) Under this mapping,
each hyperintensional question is mapped to a K-question intension. And the
corresponding G-question is in turn obtained from that, by taking the induced
equivalence relation on worlds.

Thus, our theory of meanings is a natural generalization of MS (dropping
the antisymmetry of entailment), and our theory of questions within it is a
natural generalization of the standard MS modellings of questions. The greater
generality will enable us to make finer-grained distinctions among questions than
the standard theories can make. For example, on K’s account (and therefore, on
G’s as well) these two complementized denote the same questions:

(1) a. whether Paris Hilton is Paris Hilton

b. whether Britney Spears is Britney Spears

But on our account (hereafter, H), they do not. And on G’s account, these
two questions are the same:

(2) a. Which students are vegetarians?

b. Which vegetarians are students?

but on our account they are distinct. The remainder of the paper is organized as
follows. In section 2, we describe the version of higher order logic (our counterpart
of Montague’s IL or Gallin’s Ty2) in which the theory of meanings is written.
Section 3 sketches the meaning theory itself, while section 4 deals with worlds and
extensions at them. Section 5 extends the meaning thory to include questions.
And in section 6, we conclude by showing how our theory of questions relates to
those of Karttunen and Groenendijk-Stokhof.
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2 Higher Order Logic (HOL) with Subtypes

We work in a classical HOL broadly similar to that of Henkin 1950 or Gallin
1975, but augmented with machinery for handling subtyping along the lines of
Lambek and Scott 1986. This logic is built on top of positive typed lambda cal-
culus (TLC) (positive in the sense that the underlying type theory is positive
intuitionstic propositional logic, so that we have the nullary type constructor T
(unit type) and product ∧ as well as the usual exponential ⊃). For the term
constructors, we write ∗ for the constant of type T, ( , ) for pairing, π and π′

for the projections, and f(a) for eval(f, a). As usual, we have the basic types Ent
(entities, corresponding to Montague’s e) and Bool (truth values, correspond-
ing to Montague’s t5). In addition we will have two basic meaning types Prop
(propositions, which will serve as the meanings of declarative sentences) and
Ind (individual concepts, which will serve as the meanings of names and other
expressions that refer to entities). We also have plenty of constants (see (20)
below).

To get from positive TLC to HOL, we follow Lambek and Scott and add an
equality symbol = A : (A ∧ A) ⊃ Bool for each type A, and then define the
usual logical connectives and quantifiers in terms of λ and equality, as shown in
the Appendix (13). There we also list some of the logical axioms (or theorems,
depending on the choice of axiomatization) of the HOL (14-18).

The crucial feature of our HOL, which will make it possible to internally define
a type for worlds (and later, as we will see, also for questions), is the machinery
for handling subtypes, adapted from Lambek and Scott 1986. The motivation
for this machinery is that the familiar HOLs employed in linguistic semantics
provide no way to say that A is a subtype of B. In a set-theoretic intepretation
I of the logic, this should mean I(A) ⊆ I(B).

(3) Subtypes (after Lambek and Scott 1986)
If A is a type and a an A-predicate (i.e. a closed term of type A ⊃ Bool),
then

a. Aa is a type

b. embeda is a term of type Aa ⊃ A; and

c. Axioms:

i. � ∀y,z∈Aa [(embeda (y) = embeda (z)) ⊃ y = z)]

ii. � ∀x∈A[a(x) ↔ ∃y∈Aax = embeda(y)]

In a set-theoretic interpretation I of the logic, I(embeda) is the function that
embeds into I(A) the subset whose characteristic function is I(a).6

5 Or to Lambek and Scott’s Ω (subobject classifier). The name Bool will be justified
because the HOL of truth-value-typed terms will be classical, and correspondingly
the categorical models will be boolean toposes.

6 More generally, in a topos model, I(embeda) is the char of I(a).
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3 The Theory of Meanings

We now use our HOL to express a theory about the things that will serve as
meanings of (utterances of) natural language expressions. We call this a theory
of meanings, not a semantic theory, because we reserve the latter term for a
theory that connects linguistic expressions with their meanings. (Some aspects
of such a theory are developed in Pollard (2007, submitted, in preparation 1, in
preparation 2).

We start by recalling that our basic types are the two extensional types Ent
(entities) and Bool (truth values), and the two meaning types Ind (individual
concepts) and Prop (propositions). As we’ll see, entities are the kinds of things
that can be the extensions (at worlds) of individual concepts, and truth values are
the kinds of things that can be the extensions of propositions. Note that World
is not a basic type! Instead, World will be defined as the subtype of Prop ⊃ Bool
consisting precisely of the ultrafilters. This works because ultrafilterhood is an
internally definable property (see Appendix, (19).

We now define a certain set of types, the hyperintensional types, that will
serve as meaning types. This is the set obtained from the basic meaning types
Ind and Prop by closing under the TLC type constructors (T,∧,⊃) and subtype
formation. Intuitively, the things of these types are the things that have the po-
tential to be meanings. They play a role in our semantic theory analogous to the
role played by intensions in MS: they are mathematical models of Fregean senses.
(Unavoidably, we will have intensions as well; but we won’t use them to model
meanings.) Some illustrative examples of constants of various hyperintensional
types (corresponding to word meanings) are given in the Appendix (20).

Next, roughly following Montague, we definine a function Ext that assigns to
each meaning type the type for the corresponding extensions, i.e. any meaning
of type A will have, at each world, an extension of type Ext(A).

(4) Extensional Types

a. Ext(Prop) = defBool
b. Ext(Ind) = defEnt
c. Ext(T) = defT
d. Ext(A ∧ B) = defExt(A) ∧ Ext(B)
e. Ext(A ⊃ B) = defA ⊃ Ext(B)
f. Ext(Aa ) = defExt(A)

(5) Linguistic Consequences
At any world:

a. Declarative sentences denote truth values.
b. Names denote entities.
c. Dummy pronouns have vacuous reference.
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d. The list of complements of a verb denotes the ordered tuple of the
denotations the complements.

e. A verb that expresses a function from A’s to propositions denotes (the
characteristic function of) a set of A’s.

We now turn to the axiomatization of entailment, the binary relation between
propositions that semantics is centrally concerned with. We represent this rela-
tion by the constant |= of type (Prop ∧ Prop) ⊃ Bool. Loosely speaking, we
also say that one (utterance of a) declarative sentence entails another if the the
proposition it expresses entails the one expressed by the other. Of course ev-
ery sentence entails itself, and entailment is transitive, so we start with these
(nonlogical!) axioms:

(6) Preorder Axioms for Entailment

a. � ∀p(p |= p)
b. � ∀p,q,r (((p |= q) ∧ (q |= r)) ⊃ (p |= r))

We use the constant ≡ for mutual entailment:

(7) Mutual Entailment

a. � ∀p,q [(p ≡ q) = (p |= q ∧ q |= p)]
b. Nothing in our theory will let us prove

� ∀p,q [(p ≡ q) ⊃ (p = q)

That is, entailment is not antisymmetric.
We now introduce the constants Truth : Prop, Falsity : Prop, not’ : Prop ⊃

Prop, and’ : (Prop ∧ Prop) ⊃ Prop, or’ : (Prop ∧ Prop) ⊃ Prop, and implies’ :
(Prop ∧ Prop) ⊃ Prop. These will be interpreted as the operations in the pre-
boolean algebraic structure induced by entailment on the set of propositions. As
the spelling suggests, some of these operations will also serve as the meanings of
the English “logic words” (see Appendix (21) for details). These are axiomatized
(Appendix (22)) so that, in an interpretation, the propositions preordered by en-
tailment form a preboolean algebra (roughly, a boolean algebra without antisym-
metry, i.e. the usual boolean facts obtain, but with equality replaced by mutual
entailment). These axioms essentially say that the usual natural deduction rules
of classical propositional logic are valid for natural language argumentation.

4 Worlds and Extensions at Them

So far we have not brought worlds into our theory of meanings. In fact, our
view is that worlds are not relevant to meaning: meanings are “out there” (in
Frege’s Heaven, if you will) and are independent of contingent fact. On the
other hand, we must get involved with worlds to deal with reference; since the
reference of a linguistic expression is the extension of its meaning, and what that
extension is does depend on how things are. The most obvious example of this is
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that the reference of a declarative sentence is the extension—a truth value—of
the proposition it expresses. Fortunately, for us, a world will just be a set of
propositions (more specifically, an ultrafilter of the preboolean algebra induced
by entailment), and so for that proposition to be true at a given world is simply
to be a set-theoretic member of it. This turns MS on its head, since there a
proposition is true at a world if the world is a member of it.

Now pretheoretically, for p to entail q is supposed to mean that, no matter
how things are, if p is true when things are that way, then so is q. So for this to be
the case in our framework, it must be the case that p entails q iff every ultrafilter
with p as a member also has q as a member. Fortunately for us, this is a theorem
of ZFC, not about entailment specifically of course, but about any preboolean
algebra (in our setting, the preorder is entailment). In fact this is just a slight
generalization (dropping the antisymmetry requirement) of the Boolean Prime
Ideal (BPI) Theorem, the key ingredient of Stone’s Representation Theorem for
boolean algebras. Of course, we are not working in ZFC; but there are topos-
theoretic versions of Choice appropriate to the kind of HOL we are working in,
and once we add one, we are home free. To summarize, once we add a suitable
form of Choice to our axioms, we can prove an internal version of BPI, and this
will guarantee that entailment, by virtue of being a boolean preorder, really does
behave the way that, pretheoretically, we expect entailment to behave.

We express the connection between hyperintensions, worlds, and extensions
using a family of constants extA of type A ⊃ (World ⊃ Ext(A)), where A ranges
over the hyperintensional types. A full account is given in Pollard 2008, but the
three key cases are these:

(8) Extensions at Worlds

� ∀p,w [extProp(p)(w) = p@w]

� ∀w,z [extA∧B(z)(w) = (extA(π(z))(w), extB (π′(z))(w))]

� ∀w,f [extA⊃B (f)(w) = λx∈AextB(f(x))(w)]

Here p@w abbreviates emb(w)(p), where emb is the term constructor (from the
subtyping schema) that denotes the subtype embedding of World into Prop ⊃
Bool.7 Note that extProp denotes the Stone embedding (the function that maps
each element of a preboolean algebra to the set of ultrafilters of which it is a
member); that is, ext extends Stone duality from just propositions to all meaning
types.

5 Questions in a Hyperintensional Setting

Our modelling of questions is inspired by Kartunnen’s (1977) idea that the ex-
tension of a question at a world is the set of its true answers there. That is,
whatever the type of questions is—for now let’s just call it Que—the corre-
sponding extensional type should be sets of propositions, i.e. Ext(Que) should

7 This is how to say in this kind of HOL that p is a member of w.
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be Prop ⊃ Bool. Correspondingly, Que should be Prop ⊃ Prop or some subtype
thereof. In short, questions are (certain) propositional operators.

To start with the easy case, how should we analyze yes/no questions, or em-
bedded whether-questions? (We will analyze root and embedded interrogatives
the same way, for both polar and consituent questions.) On Kartunnen’s account,
the extension at w of whether’(p) is the singleton set whose only member is either
p or its denial, whichever is true at w. Thus, e.g. Is Bush crazy, or equivalently
whether Bush is crazy, denotes the singleton of the proposition that Bush is crazy
in worlds where he is, and the singleton of the proposition that he isn’t in worlds
where he isn’t. We accept this analysis, except that for us the question itself
has to be a hyperintension rather than an intension. The key ingredient in our
analysis is the meaning whether’ of the interrogative complementizer whether,
for which we give the following meaning postulate:

(9) Meaning Postulate for Whether
� whether’ = λp′λp [p and’ ((p equals’ p′) or’ (p equals’ not’(p′)))]

Here equals’ is the constant whose interpretation is the meaning of the verb
equals, which refers to true equality (Appendix (23).

(10) Example (Polar Question)

a. Is Bush crazy?/whether Bush is crazy

b. Meaning:
λp [p and’ ((p equals’ crazy’(Bush’)) or’ (p equals’ not’(crazy’(Bush’))))]

c. Extension at w:
λp [p@w ∧ ((p = crazy’(Bush’)) ∨ (p = not’(crazy’(Bush’))))]

What about constituent questions, such as which dog barked? For Karttunen,
the extension at w is the set of all propositions true at w of the form barked’(x) for
x an individual such that dog’(x) is true at w. That is, Kartunnen-extensions
for constituent questions contain only positive true answers. As discussed in
Pollard ms. 2, we propose to include also the negative true answers; that is, in a
world where Fido barks and Spot doesn’t, the extension of the ‘plus-or-minus’
K- (hereafter, K±) question will have as members, possibly inter alia, both
the proposition that Fido barks and the proposition that Spot doesn’t bark.
The essence of this analysis is captured in our semantics for the interrogative
determiner which:

(11) The Meaning of which

� which’ = λPλQλpexists’(P )(λx ((whether′(Q(x))(p))))
Here x : A for A a hyperintensional type; P,Q : A ⊃ Prop;, and p : Prop.

Then our analysis of a simple consituent question looks like this;
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(12) Example (Constituent Question)

a. Which dogs bark?
b. Meaning: which′(dog’)(bark’)
c. Expanding the abbreviation: λp [exists’(dog’)(λx (p and’ ((p equals’

bark’(x))or’ (p equals’ not’(bark’(x))))))]
d. Extension at w:
λp [∃x [dog’(x)@w ∧ (p@w ∧ ((p = bark’(x)) ∨ (p = not’(bark’(x)))))]

Here the constant exists’ denotes the hyperintensional counterpart of the usual
existential generalized determiner. (Meaning postulates for some representative
hyperintensional generalized determiners are given in the Appendix (24).) The
upshot is that, at each world w, the reference of the interrogative sentence which
dogs bark is the range of the function that maps each w-dog to the proposition
which correctly answers, for w, the question of whether or not s/he barks.

6 What Have We Gained? What Have We Lost?

We have developed a new modelling of questions within a fine-grained theory of
linguistic meanings, a theory which was independently motivated by a number
of long-standing problems not specifically connected with questions. And this
modelling in turn permits us to distinguish questions from each other in an
appropriately more fine grained way.

For example, suppose S1 and S2 are English sentences that express mutually
entailing but nonidentical propositions. It seems clear that one might wonder
whether S1 without wondering whether S2 . This is problematic for MS, but
not for us, because it is easy to show that the function denoted by whether’ is
injective.

Next, consider a constituent interrogative embedded under a “question-resol-
ving” verb, e.g. Mary knows (in precise detail) which students in Linguistics 680
are vegetarians. For this to be true, Mary needs to know, at minimum, for each
Linguistics 680 student, whether or not s/he is a vegetarian. But she does not
need to know, for each vegetarian, whether or not s/he is taking Linguistics 680.
And it would seem that a minimum requirement for predicting this fact must be
that the two sentences in (2) express different questions. The G-semantics does
not meet this requirement, but the K±-semantics (both in its original form and
in the hyperintensional generalization) does.

To summarize, the hyperintensional semantics of questions generalizes the
K±-semantics, in the sense that for any hyperintentensional question, the corre-
sponding K±-question (should it be needed) is its Stone dual, directly obtainable
by application of ext. Moreover, recalling that for any function f , the induced
equivalence relation on the domain is the relation of being mapped to the same
value by f , it is not hard to see (Pollard ms. 2) that the corresponding G-question
is exactly the equivalence relation on worlds induced by the K±-question. So it
too is easily recovered if needed. Thus, nothing is lost in comparison with the
traditional accounts.
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Appendix

(13) Classical Connectives and Quantifiers are Definable
Here φ and ψ are metavariables over formulas, x is a variable of type A,
and t is a variable of type Bool:

a. true = def∗ = ∗;
b. ∀xφ = defλxφ = λx true;

c. false = def∀t t

d. φ ∧ ψ = def(φ, ψ) = (true, true);

e. φ ⊃ ψ = defφ = (φ ∧ ψ);

f. φ↔ ψ = def [(φ ⊃ ψ) ∧ (ψ ⊃ φ)];

g. ∼ φ = defφ ⊃ false;

h. φ ∨ ψ = def ∼ [(∼ φ) ∧ (∼ ψ)]; and

i. ∃xφ = def ∼ ∀x ∼ φ.

(14) Equality is an Equivalence Relation
In the following,α, β, γ, δ aremetavariables over terms, andφ, ψ aremetavari-
ables over formulas,

a. � α = α (reflexivity)

b. � (α = β) ↔ (β = α) (symmetry)

c. � [(α = β) ∧ (β = γ)] ⊃ (α = γ) (transitivity)

(15) Substitution of Equals

a. � [(α = γ) ∧ (β = δ)] ⊃ ((α, β) = (γ, δ))

b. � [(α = γ) ∧ (β = δ)] ⊃ (α(β) = γ(δ))

c. � (α = β) ⊃ (π(α) = π(β)

d. � (α = β) ⊃ (π′(α) = π′(β)

e. � (α = β) ⊃ (λxα = λxβ)
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(16) Axioms for Cartesian Products

a. � α = ∗ (α a term of type T)
b. � π(α, β) = α

c. � π′(α, β) = β

d. � (π(γ), π′(γ)) = γ

(17) Axioms for Lambda Conversion

a. � λx∈Aγ[x] = λy∈Aγ[y] if y is substitutable for x in γ (Rule α)
b. � [λx∈Aγ[x]](a) = γ[a] if a is substitutable for x in γ (Rule β)
c. � λx (α(x)) = α if x is not free in α (Rule η)

(18) Axioms for Boolean Equality

a. � φ = (φ = true)
b. If � φ and � φ = ψ, then � ψ
c. � φ iff � φ = true

d. � ∀s,t [(s↔ t) ⊃ (s = t)] (Boolean Extensionality)

(19) Ultrafilterhood is Definable

a. u is λS [a(S) ∧ b(S) ∧ c(S) where
i. a(S) says S is closed under entailment;
ii. b(S) says s is closed under and’; and
iii. c(S) says that for each proposition p, exactly one of p and (not’p) is

in S.
b. To be explicit:

i. a(S) is ∀(p,q)[(S(p) ∧ p |= q) ⊃ S(q)];
ii. b(S) is ∀(p,q)[(S(p) ∧ S(q)) ⊃ S(p and’ q)]; and
iii. c(S) is ¬S(falsity’) ∧ ∀p(S(p) ∨ S(not’ p)).

(20) Some Constants for Word Meaning

a. Ind: names, e.g. Fido’

b. T: dummy pronouns. Up to provable equality, the only closed term of
this type is ∗.

c. T ⊃ Prop: intransitive verbs with dummy subjects, e.g. rain’

d. Ind ⊃ Prop: ordinary intransitive verbs and common nouns, e.g. dog’,
bark’

e. (Ind ∧ Ind) ⊃ Prop: transitive verbs, e.g. bite’

f. (Ind ∧ Ind ∧ Ind) ⊃ Prop: ditransitive verbs, e.g. give’

g. (Ind ∧ Prop) ⊃ Prop: verbs with declarative sentential complements,
e.g. believe’

h. ((Ind ⊃ Prop) ∧ (Ind ⊃ Prop)) ⊃ Prop : (individual) determiners,
e.g. every’.
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(21) Boolean Operations on Propositions

a. Truth : Prop will be interpreted as , the designated top.
b. Falsity : Prop will be interpreted as ⊥, the designated bottom.
c. not’ : Prop ⊃ Prop will be interpreted as ¬, the designated complement

operation.
d. and’ : (Prop ∧ Prop) ⊃ Prop will be interpreted as �, the designated

glb operation.
e. or’ : (Prop ∧ Prop) ⊃ Prop will be interpreted as �, the designated lub

operation.
f. implies’ : (Prop ∧ Prop) ⊃ Prop will be interpreted as ⇒, the designated

relative complement operation.

(22) Preboolean Axioms for Entailment

a. � ∀p(p |=Truth)
b. � ∀p(Falsity |= p)
c. � ∀p,q((p and’ q) |= p)
d. � ∀p,q((p and’ q) |= q)
e. � ∀p,q,r [((p |= q) ∧ (p |= r)) ⊃ (p |= (q and’ r))]
f. � ∀p,q(p |= (p or’ q))
g. � ∀p,q(q |= (p or’ q))
h. � ∀p,q,r [((p |= r) ∧ (q |= r)) ⊃ ((p or’ q) |= r)]
i. � ∀p,q [(p implies’ q) and’ p) |= q]
j. � ∀p,q,r [((r and’ p) |= q) ⊃ (r |= (p implies’ q))]
k. � ∀p((not’ p) ≡ (p implies’ Falsity))
l. � ∀p [(not’ (not’ p)) |= p]

(23) Three Grades of Equality
Three families of constants of type (A ∧ A) ⊃ Prop (for A ∈ HYPER):

a. equalsA is interpreted as the meaning of the verb equals. This has ‘true
equality’ as its extension, as expressed in this meaning postulate:

� ∀w,x ,y [(x equals y)@w = (x = y)]
b. equivA is interpreted as the meaning of the term-of-art is hyperinten-

sionally equivalent to, subject to the meaning postulate.

� ∀w,x ,y [(x equiv y)@w = ∀w ′(ext(x)(w′) = ext(y)(w′))]
c. coextA is interpreted as the meaning of the term-of-art is coextensive

with, subject to the meaning postulate:

� ∀w,x ,y [(x coext y)@w = (ext(x)(w) = ext(y)(w))]
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(24) Hyperintensional Generalized Determiners

a. Constants:
� every’A, exists’A, no’A : ((A ⊃ Prop) ∧ (A ⊃ Prop)) ⊃ Prop

b. Meaning postulates:

� ∀w,P ,Q [every’(P,Q)@w = ∀x (P (x)@w ⊃ Q(x)@w)]

� ∀w,P ,Q [exists’(P,Q)@w = ∃x (P (x)@w ∧ Q(x)@w)]

� ∀w,P ,Q [no’(P,Q)@w = ∼∃x (P (x)@w ∧ Q(x)@w)]
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