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Abstract. We study logics defined in terms of so-called second-order
monadic groupoidal quantifiers. These are generalized quantifiers defined
by groupoid word-problems or equivalently by context-free languages. We
show that, over strings with built-in arithmetic, the extension of monadic
second-order logic by all second-order monadic groupoidal quantifiers
collapses to its fragment mon-Q1

GrpFO. We also show a variant of this
collapse which holds without built-in arithmetic. Finally, we relate these
results to an open question regarding the expressive power of finite leaf
automata with context-free leaf languages.

1 Introduction

We study logics defined in terms of so-called second-order monadic groupoidal
quantifiers. These are generalized quantifiers defined by groupoid word-problems
or equivalently by context-free languages. A groupoid is a finite multiplication
table with an identity element. For a fixed groupoid G, each S ⊆ G defines a
G-word-problem, i.e., a language W(S,G) composed of all words w, over the
alphabet G, that can be bracketed in such a way that w multiplies out to an
element of S. Groupoid word-problems relate to context-free languages in the
same way as monoid word-problems relate to regular languages: Every such
word-problem is context-free, and every context-free language is a homomorphic
pre-image of a groupoid word-problem (this result is credited to Valiant in [2]).

Monoidal quantifiers are generalized quantifiers defined by monoid word-
problems or equivalently by regular languages. It was known [1] that first-order
logic with unnested unary monoidal quantifiers characterizes the class of regular
languages. In [6] this was extended to show the following

∃SOM = mon-Q1
MonFO = FO(mon-Q1

Mon) = SOM(mon-Q1
Mon) = REG . (1)

In (1), ∃SOM stands for existential second-order monadic logic and REG denotes
the class of regular languages. The class mon-Q1

MonFO is the class of all languages
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describable by applying a specific monadic second-order monoidal quantifier QL

to an appropriate tuple of formulas without further occurrences of second-order
quantifiers. On the other hand, in FO(mon-Q1

Mon) arbitrary nestings of monoidal
quantifiers is allowed, analogously to SOM(mon-Q1

Mon) in which the base logic
is second-order monadic logic.

We see that with monoidal quantifiers the situation is clear-cut, i.e., formu-
las with monadic second-order monoidal quantifiers cannot define non-regular
languages. Note that over strings with built-in arithmetic the classes in (1)
are presumably not equal, e.g., ∃SOM ⊆ NP and already in FO(mon-Q1

Mon)
PSPACE-complete languages can be defined by a similar argument as in Propo-
sition 1. Similarly, the equivalences in (1) do not hold if non-monadic quantifiers
are also allowed (under some reasonable complexity-theoretic assumptions).

In [6] it was asked what is the relationship of the corresponding logics if
monoidal quantifiers are replaced by groupoidal quantifiers. In this paper we
address this question and show the following:

mon-Q1
GrpFO(+,×) = FO(mon-Q1

Grp) = SOM(mon-Q1
Grp,+,×) . (2)

It is interesting to note that in the case of groupoidal quantifiers the collapse of
the logics happens in the presence of built-in arithmetic.

In Sect. 4 we consider groupoidal quantifiers with a slight change in their
semantics (notation Q�

L). We show that the analogue of (2) also holds in this
case. It turns out that (2) remains valid even if we drop the built-in predicates
+ and × from mon-Q�

GrpFO(+,×). Finally, we relate these results to an open
question regarding the expressive power of finite leaf automata with context-free
leaf languages.

2 Generalized Quantifiers

We follow standard notation for monadic second-order logic with linear order,
see, e.g., [14]. We mainly restrict our attention to string signatures, i.e., signa-
tures of the form 〈Pa1 , . . . , Pas〉, where all the predicates Pai are unary, and in
every structure A, A |= Pai(j) iff the jth symbol in the input is the letter ai.
Such structures are thus words over the alphabet {a1, . . . , as}. We assume that
the universe of each structure A is of the form {0, . . . , n−1} and that the logic’s
linear order symbol refers to numerical order on {0, . . . , n − 1}. For technical
reasons to be motivated shortly, we also assume that every alphabet has a built-
in linear order, and we write alphabets as sequences of symbols to indicate that
order, e.g., in the above case we write (a1, . . . , as).

Our basic formulas are built from first- and second-order variables in the
usual way, using the Boolean connectives {∧,∨,¬}, the relevant predicates Pai

together with {=, <}, the constants min and max, the first- and second-order
quantifiers {∃, ∀}, and parentheses.

SOM is the class of all languages definable using formulas as just described.
(The letters SOM stand for second order monadic logic; in the literature, this
logic is sometimes denoted by MSO.) FO is the subclass of SOM restricted to
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languages definable by first-order formulas. It is known [12] that FO is equal to
the class of star-free regular languages and that SOM equals the class REG of
regular languages (see [4,3,15]). Sometimes we assume that our structures are
also equipped with the built-in predicates + and ×. This assumption is signalled,
e.g., by the notation FO(+,×).

Next, we extend logics in terms of generalized quantifiers. The Lindström
quantifiers of Def. 1 are precisely what has been referred to as “Lindström quan-
tifiers on strings” [5]. The original more general definition [11] uses transforma-
tions to arbitrary structures, not necessarily of string signature.

Definition 1. Consider a language L over an alphabet Σ = (a1, a2, . . . , as).
Such a language gives rise to a Lindström quantifier QL, that may be applied to
any sequence of s− 1 formulas as follows:

Let x be a k-tuple of variables. We assume the lexical ordering on {0, 1, . . . , n−
1}k, and we write x(1) < x(2) < · · · < x(nk) for the sequence of potential values
taken on by x. The k-ary Lindström quantifier QL binding x takes a meaning
if s − 1 formulas, each having as free variables the variables in x (and possibly
others), are available. Let ϕ1(x), ϕ2(x), . . . , ϕs−1(x) be these s − 1 formulas.
Then QLx

[
ϕ1(x), ϕ2(x), . . . , ϕs−1(x)

]
holds on a string w = w1 · · ·wn, iff the

word of length nk whose ith letter, 1 ≤ i ≤ nk, is
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1 if w |= ϕ1(x(i)),
a2 if w |= ¬ϕ1(x(i)) ∧ ϕ2(x(i)),

...
as if w |= ¬ϕ1(x(i)) ∧ ¬ϕ2(x(i)) ∧ · · · ∧ ¬ϕs−1(x(i)),

belongs to L.

As an example, take s = 2 and consider L∃ =def 0∗1(0 + 1)∗; then QL∃ is the
usual first-order existential quantifier. Similarly, the universal quantifier can be
expressed using the language L∀ =def 1∗. The quantifiers QLmod p

for p > 1 are
known as modular counting quantifiers [14].

In this paper we are especially interested in quantifiers defined by groupoid
word problems. The following definition is due to Bédard, Lemieux, and
McKenzie [2]:

Definition 2. A groupoidal quantifier is a Lindström quantifier QL where L is
a word-problem of some finite groupoid.

Usage of groupoidal quantifiers in our logical language is signalled by QGrp.
The class QGrpFO is the class of all languages definable by applying a sin-
gle groupoidal quantifier to an appropriate tuple of FO formulas. The class
FO(QGrp) is defined analogously, but allowing groupoidal quantifiers to be used
as any other quantifier would (i.e., allowing arbitrary nesting).

Second-order Lindström quantifiers on strings were introduced in [5]. Here,
we are mainly interested in those binding only set variables, so called monadic
quantifiers. For each language L we define two monadic quantifiers QL and Q�

L
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with slightly different interpretations. It turns out that the interpretation QL,
which was used in [6], is natural in the context of finite automata. On the other
hand, the quantifier Q�

L is the exact second-order analogue of the corresponding
first-order quantifier QL.

Definition 3. Consider a language L over an alphabet Σ = (a1, a2, . . . , as). Let
X = (X1, . . . , Xk) be a k-tuple of unary second-order variables, i.e., set variables.
There are 2nk different instances (assignments) of X. We assume the following
ordering on those instances: Let each instance of a single Xi be encoded by a bit
string si

0 · · · si
n−1 with the meaning si

j = 1 ⇐⇒ j ∈ Xi. Then

i) we encode an instance of X by the bit string

s10s
2
0 · · · sk

0s
1
1s

2
1 · · · sk

1 · · · s1n−1s
2
n−1 · · · sk

n−1

and order the instances lexicographically by their codes.
ii) we encode an instance of X by the bit string

s10s
1
1 · · · s1n−1s

2
0s

2
1 · · · s2n−1 · · · sk

0s
k
1 · · · sk

n−1

and order the instances lexicographically by their codes.

The monadic second-order Lindström quantifier QL (respectively Q�
L) binding

X takes a meaning if s − 1 formulas, each having free variables X, are avail-
able. Let ϕ1(X), ϕ2(X), . . . , ϕs−1(X) be these s − 1 formulas. Then ϕ =
QLX

[
ϕ1(X), ϕ2(X), . . . , ϕs−1(X)

]
holds on a string w = w1 · · ·wn, iff the word

of length 2nk whose ith letter, 1 ≤ i ≤ 2nk, is
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1 if w |= ϕ1(X
(i)

),
a2 if w |= ¬ϕ1(X

(i)
) ∧ ϕ2(X

(i)
),

...

as if w |= ¬ϕ1(X
(i)

) ∧ ¬ϕ2(X
(i)

) ∧ · · · ∧ ¬ϕs−1(X
(i)

),

belongs to L. Above, X
(1)

< X
(2)

< · · · < X
(2nk)

denotes the sequence of all
instances ordered as in i). The notation Q�

L is used when the ordering of the
instances is as in ii).

Again, taking as examples the languages L∃ and L∀, we obtain the usual second-
order existential and universal quantifiers. Note that for L ∈ {L∃, L∀} the quanti-
fiersQL andQ�

L are “equivalent”. This is due to the fact that, for the membership
in L, the order of letters in a word does not matter.

The class mon-Q1
LFO is the class of all languages describable by applying a

specific monadic second-order groupoidal quantifier QL to an appropriate tu-
ple of formulas without further occurrences of second-order quantifiers. The
class mon-Q1

GrpFO is defined analogously using arbitrary monadic second-order
groupoidal quantifiers. The class SOM(mon-Q1

Grp) is defined analogously, but
allowing groupoidal quantifiers to be used as any other quantifier would (i. e.,
allowing arbitrary nesting). Analogous notations are used for the quantifiers Q�

L.
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3 Groupoidal Quantifiers QL

In this section we consider second-order monadic groupoidal quantifiers under
the semantics QL. We show that the extension of SOM in terms of all second-
order monadic groupoidal quantifiers collapses to its fragment mon-Q1

GrpFO over
strings with built-in arithmetic.

The following result on first-order groupoidal quantifiers will be central for
our argumentation. Below, QFree denotes the set of quantifier-free formulas in
which the predicates + and × do not appear.

Theorem 1 ([10]). QGrpQFree = FO(QGrp) = FO(QGrp+,×) = LOGCFL
over string signatures.

We shall use the following version of Theorem 1.

Lemma 1. Let τ = {<, c1, . . . , cs}, where c1, . . . , cs are constant symbols. Then
on τ-structures

QGrpQFree = FO(QGrp) = FO(QGrp+,×) .

Proof. The idea is to encode τ -structures into strings and then apply Theorem 1.
In order to encode the information about the identities among c1, . . . , cs, we in-
troduce a predicate symbol PA for each non-empty A ⊆ {c1, . . . , cs}. To simplify
notation, let us assume that τ = {<, c1, c2}. The general case is analogous.

Suppose that K is a class of τ -structures definable by ϕ ∈ FO(QGrp+,×).
We shall encode K as a class of strings over signature 〈P{c1}, P{c2}, P{c1,c2}, P

∗〉.
The predicate P{c1,c2} is used when the interpretations of c1 and c2 coincide
and P ∗ is interpreted by all the elements different from c1 and c2. Denote by
A′ the string encoding a τ -structure A. Let ϕ∗ be acquired from ϕ by replacing
atomic subformulas of the form ci = d by P{ci}(d) ∨ P{c1,c2}(d) and c1 = c2 by
the formula ∃xP{c1,c2}(x). It is now obvious how to translate atomic formulas
using the predicates +,×, and <, e.g., ci < x is replaced by ∃y((P{ci}(y) ∨
P{c1,c2}(y)) ∧ y < x). It is easy to verify that for all A, A |= ϕ ⇔ A′ |= ϕ∗.
By Theorem 1 there is a sentence θ ∈ QGrpQFree which is equivalent to ϕ∗

over strings. Let θ∗ be acquired from θ by the following substitutions: P{ci}(d)
is replaced by ci = d∧ c1 �= c2, P{c1,c2}(d) by c1 = d∧ c1 = c2, and finally P ∗(d)
by c1 �= d ∧ c2 �= d. Now θ∗ ∈ QGrpQFree and θ∗ defines K.

We are now ready for the main result of this section.

Theorem 2. mon-Q1
GrpFO(+,×) = FO(mon-Q1

Grp) = SOM(mon-Q1
Grp,+,×)

over strings.

Proof. Fix a signature τ = 〈Pa1 , . . . , Pas〉. Suppose that B is a language de-
fined by some sentence ϕ ∈ SOM(mon-Q1

Grp,+,×)[τ ]. We may assume that
ϕ ∈ FO(mon-Q1

Grp)[τ ] since the second-order existential quantifier is included
in mon-Q1

Grp and already the extension of FO by the quantifier corresponding
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to the (context-free) language majority can define the predicates + and × on
ordered structures [9].

Denote by σ = {<,+,×, c1, . . . , cs} the signature where each ci is a constant
symbol. For a τ -structure A = 〈{0, . . . , n − 1}, <, PA

a1
, . . . , PA

as
〉, let A∗ be the

following σ-structure

A∗ = 〈{0, . . . , 2n − 1}, <,+,×, cA∗
1 , . . . , cA

∗
s 〉,

where cA
∗

i is the unique integer (< 2n) whose length n binary representation
corresponds to PA

i .
We shall first show that there is a sentence ϕ∗ ∈ FO(QGrp,+,×)[σ] such that

for all τ -structures A,
A |= ϕ⇔ A∗ |= ϕ∗ .

We define ϕ∗ via the following transformation:

x1 = x2 � x1 = x2

x1 < x2 � x1 < x2

Pai(z) � BIT(ci, z)
Y (x) � BIT(y, x)
ψ ∧ φ � ψ∗ ∧ φ∗

¬ψ � ¬ψ∗

∃xψ � ∃x(x < n ∧ ψ∗(x))
QLX1, . . . , Xk[ψ1, . . . , ψs−1] � QL′x1, . . . , xk[ψ∗

1 , . . . , ψ
∗
s−1]

Each assignment f over A is associated with the assignment f∗ over A∗ such
that if f(X) = A ⊆ {0, . . . , n− 1} then f∗(x) is the unique a < 2n whose binary
representation is given by s0 · · · sn−1 where sj = 1 ⇐⇒ j ∈ A. The predicate
BIT, which is FO(+,×)-definable, allows us to recover the set A from the number
a. In other words, BIT(a, j) holds if bit n − j − 1 in the binary representation
of a is 1 iff j ∈ A. The language L′ is defined by

L′ = {w | s(w) ∈ L},

where s is defined as follows: s maps a word w to w if |w| �= 2km for all m ∈ N
∗.

Assuming |w| = 2km, the position i of each letter in w is determined by a binary
string of length km:

Pbin(i) = r11 · · · r1m · · · rk
1 · · · rk

m .

Now, s takes w to the unique string whose ith letter is identical with the letter
in position r11r

2
1 · · · rk

1r
1
2r

2
2 · · · rk

2 · · · r1mr2m · · · rk
m in w. In other words, s corrects

the asymmetry in the semantics of first-order and second-order quantifiers. It
is easy to verify that the language L′ is FO(+,×) reducible to L and thus also
definable in FO(QGrp,+,×). Therefore, the logic FO(QGrp,+,×) is also closed
under the quantifier QL′ .
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By Lemma 1, there is a sentence

θ = QLx1, . . . , xl(χ1, . . . , χw),

where each χi is quantifier-free and does not contain the predicates + and ×,
equivalent to ϕ∗. The idea is now to translate θ to the logic mon-Q1

LFO(+,×)
by changing first-order variables to second-order variables. We shall construct
formulas δi(X) such that for all τ -structures A

A |= QLX1, . . . , Xl(δ1(X), . . . , δw(X)) ⇔ A∗ |= θ .

The formula δi(X) should be satisfied by A1, . . . , Al ⊆ {0, . . . , n− 1} iff χi is
satisfied by the tuple (a1, . . . , al) ∈ {0, . . . , 2n − 1}l corresponding to A1, . . . , Al.
Again we need to correct the asymmetry caused by the difference in the semantics
of first-order and second-order quantifiers. As in Definition 3, each Ai determines
the string si

0 · · · si
n−1 with the meaning si

j = 1 ⇐⇒ j ∈ Ai. The tuple A is now
encoded by the string

s10s
2
0 · · · sl

0s
1
1s

2
1 · · · sl

1 · · · s1n−1s
2
n−1 · · · sl

n−1 . (3)

Therefore, A should satisfy δi(X) iff the tuple a∗1, . . . , a
∗
l satisfies χi, where the

concatenation of the length n binary representations of a∗1, . . . , a
∗
l correspond

to the string in (3). In other words, the binary representation of a∗i is given by
BIT(a∗i , j) = 1 iff the (n(i− 1) + j)th bit from the right is 1 in (3) iff c ∈ Ar for
the unique r and c for which n(i−1)+j = cl+r−1. Since χi is quantifier-free and
contains only atomic formulas such as x1 < c2 or xl = xk, we can construct the
formulas δi(X) using the fact that the binary representations of a∗1, . . . , a

∗
l can be

recovered from A in a first-order way with the help of arithmetic. By the above,
it is clear that the sentence QLX1, . . . , Xl(δ1(X), . . . , δw(X)) now defines B.

4 Groupoidal Quantifiers Q�
L

In [5] the expressive power of generalized second-order quantifiers was character-
ized in terms complexity classes given by so-called leaf languages. In particular,
for every language B that has a neutral letter, i.e., a letter c ∈ Γ such that, for
all u, v ∈ Γ ∗, we have uv ∈ B ⇐⇒ ucv ∈ B, the following was shown to hold.
Let N be the class of languages that have a neutral letter.

Theorem 3 ([5]). For any B ∈ N, LeafP(B) = Q�
BFO.

Above, LeafP(B) denotes the class of languages defined in polynomial-time in
terms of non-deterministic Turing machines using the leaf languageB and Q�

BFO
denotes the class of all languages describable by applying the quantifier Q�

B to
an appropriate tuple of first-order formulas (the quantifier Q�

B is allowed to
bind relation variables of arbitrary arity). Note that in this context we could
equivalently use the semantics QL instead of Q�

L. This is due to the fact that
the difference between QL and Q�

L only appears if more than one second-order
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variable is quantified and this can be avoided by joining relations into a single
relation of higher arity.

Since it is known that there are regular languagesB, e.g., the word problem for
the group S5, for which LeafP(B) = PSPACE [8], we conclude that for such B,

Q�
BFO = PSPACE . (4)

By a simple padding argument, we see that already first-order logic with a
monadic second-order quantifier Q�

B is sufficient to define a PSPACE-complete
language.
Proposition 1. Let L be a language and suppose that a language A is definable
by a sentence ϕ ∈ Q�

LFO. Let k be the maximum of the arities of the relations
quantified in ϕ. Then the language

A∗ = {w�0|w|k−|w| | w ∈ A}
is definable in FO(mon-Q�

L,+,×).

Proof. The proof using standard techniques will appear in the journal version of
the paper.

Proposition 1 shows that logics FO(mon-Q�
L,+,×) can be quite powerful. In this

section we show that a result analogous to Theorem 2 also holds with respect
to the semantics Q�

L. We also show that in the most general case, i.e., when the
logic in question is the extension of SOM by all second-order monadic groupoidal
quantifiers, both semantics turn out to be equal in expressive power.
Theorem 4. mon-Q�

GrpFO = SOM(mon-Q�
Grp,+,×) = SOM(mon-Q1

Grp,+,×)
over strings.

Proof. Let us first note that by an analogous argument as in the proof of The-
orem 2 any sentence ϕ ∈ SOM(mon-Q�

Grp,+,×) can be first translated into
FO(QGrp,+,×) and then to the logic mon-Q1

GrpFO(+,×). In fact, the first trans-
lation can be even simplified since the quantifier QL′ is not needed. Therefore,
it suffices to show the converse inclusion.

Let A be defined by a sentence ϕ ∈ SOM(mon-Q1
Grp,+,×). We use the same

argument as in the proof of Theorem 2. We only need to modify the last part of
the proof and define the translation from a sentence θ of the form

QLx1, . . . , xk(χ1, . . . , χv),

where each χi is quantifier-free and does not contain the predicates + and ×. We
do this in the following way. Denote by X = Y the formula ∀z(X(z) ↔ Y (z)),
and by X < Y the first-order formula defining the ordering of subsets when
treated as length n binary strings. The transformation is now defined by

x = y � X = Y

x < y � X < Y

ψ ∧ φ � ψ′ ∧ φ′
¬ψ � ¬ψ′

QLx1, . . . , xv[ψ1, . . . , ψv] � Q�
LX1, . . . , Xv[ψ′

1, . . . , ψ
′
v]
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The use of Q�
L allows us to define the translation simply by changing first-order

variables to second-order variables. It is easy to verify that θ′ now defines the
language A.

By combining Theorems 2 and 4, we get

Corollary 1. SOM(mon-Q1
Grp,+,×) = mon-Q1

GrpFO(+,×) = mon-Q�
GrpFO =

SOM(mon-Q�
Grp,+,×).

5 Connection to Leaf Automata

A finite leaf automaton is a tuple M = (Q,Σ, δ, s, Γ, β) where Q is the finite
set of states, Σ is an alphabet, the input alphabet, δ : Q × Σ → Q+ is the
transition function, s ∈ Q is the initial state, Γ is an alphabet, the leaf alphabet,
and β : Q → Γ is a function that associates a state q with its value β(q). The
sequence δ(q, a), for q ∈ Q and a ∈ Σ, contains all possible successor states of M
when reading letter a while in state q, and the order of letters in that sequence
defines a total order on these successor states. This definition allows the same
state to appear more than once as a successor in δ(q, a).

Let M be as above. The computation tree TM (w) of M on input w is a labeled
directed rooted tree defined as follows:

– The root of TM (w) is labeled (s, w).
– Let v be a node in TM (w) labeled by (q, x), where x �= ε (the empty word),
x = ay for a ∈ Σ, y ∈ Σ∗. Let δ(q, a) = q1q2 · · · qk. Then v has k children in
TM (w), and these are labeled by (q1, y), (q2, y), . . . , (qk, y) in this order.

If we look at the tree TM (w) and attach the symbol β(q) to a leaf in this
tree with label (q, ε), then leafstringM (w) is defined to be the string of symbols
attached to the leaves, read from left to right in the order induced by δ.

Definition 4. For A ⊆ Γ ∗, the class LeafFA(A) consists of all languages B ⊆
Σ∗, for which there is a leaf automaton M as just defined, with input alphabet
Σ and leaf alphabet Γ such that for all w ∈ Σ∗, w ∈ B iff leafstringM (w) ∈ A.
If C is a class of languages then LeafFA(C) = ∪A∈CLeafFA(A).

In [13] the acceptance power of leaf automata with different kinds of leaf lan-
guages was examined. It was shown that, with respect to resource-bounded leaf
language classes, there is not much difference, e.g., between automata and Tur-
ing machines. On the other hand, if the leaf language class is a formal language
class then the differences can be huge. In particular it was shown in [13] that
LeafFA(REG) = REG while it is known that LeafP(REG) = PSPACE. In [13]
the power of LeafFA(CFL) was left as an open question. The only upper and lower
bounds known are CFL � LeafFA(CFL) ⊆ DSPACE(n2) ∩ DTIME

(
2O(n)

)
.

In [6] the class LeafFA(L) was logically characterized assuming that the
language L has a neutral letter.

Theorem 5 ([6]). For any L ∈ N, LeafFA(L) = mon-Q1
LFO.
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We would like to use either Theorem 2 or Theorem 4 to show that the class
LeafFA(CFL) contains PSPACE-complete languages. Unfortunately, Theorem 2
does not apply because it assumes built-in arithmetic which is not allowed in The-
orem 5. On the other hand, due to the change in the interpretation of quantifiers
in Theorem 4, it is not clear that Theorem 5 holds in this case.

Recall that Greibach’s hardest context-free language H is a so-called non-
deterministic version of the Dyck language D2, the language of all syntacti-
cally correct sequences consisting of letters for two types of parentheses. It is
known that every L ∈ CFL reduces to H under some homomorphism [7]. It
was shown in [10] that in Theorem 1 the logic QGrpQFree can be even re-
placed by Qpad(H)QFree, where pad(H) is H extended by a neutral symbol.
Therefore, we can similarly replace the logics mon-Q1

GrpFO and mon-Q�
GrpFO, in

Theorems 2 and 4, by mon-Q1
pad(H)FO(+,×) and mon-Q�

pad(H)FO, respectively.
We call a language symmetric if it is closed under permuting the letters of

words. Note that if pad(H) happened to be symmetric, then we could use the
proof of Theorem 4 to show that mon-Q1

pad(H)FO = mon-Q1
pad(H)FO(+,×).

However, this assumption turns out not to be true, since a symmetric context-
free language cannot be complete for all of CFL under homomorphims. It can
be even shown that symmetric context-free languages are contained in TC0.

6 Conclusion

In this paper we have studied several monadic second-order logics with groupoidal
quantifiers. Our collapse results partially address an open question in [6]. However,
the main open question of that paper remains: What is the power of finite leaf-
automata with context-free leaf languages? If one could prove equality between
the two variants of semantics for second-order quantifiers, i.e.,

mon-Q1
GrpFO = mon-Q�

GrpFO,

then it follows immediately from our results that such simple automata can even
accept PSPACE-complete problems.
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