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Abstract. We present general methods for proving lower bounds on
the query complexity of nonadaptive quantum algorithms. Our results
are based on the adversary method of Ambainis.

1 Introduction

In this paper we present general methods for proving lower bounds on the query
complexity of nonadaptive quantum algorithms. A nonadaptive algorithm makes
all its queries simultaneously. By contrast, an unrestricted (adaptive) algorithm
may choose its next query based on the results of previous queries. In classical
computing, classes of problems for which adaptivity does not help have been
identified [4,[I0] and it is known that this question is connected to a longstand-
ing open problem [I5] (see [I0] for a more extensive discussion). In quantum
computing, the study of nonadaptive algorithms seems especially relevant since
some of the best known quantum algorithms (namely, Simon’s algorithms and
some other hidden subgroup algorithms) are nonadaptive. This is nevertheless a
rather understudied subject in quantum computing.

The paper that is most closely related to the present work is [14] (and [g] is
another related paper). In [14] the authors use an “algorithmic argument” (this is
a kind of Kolmogorov argument) to give lower bounds on the nonadaptive quan-
tum query complexity of ordered search, and of generalizations of this problem.
The model of computation that they consider is less general than ours (more on
this in section [2)).

The two methods that have proved most successful in the quest for quan-
tum lower bounds are the polynomial method (see for instance [5L2LITL12]) and
the adversary method of Ambainis. It is not clear how the polynomial method
might take the nonadaptivity of algorithms into account. Our results are there-
fore based on the adversary method, in its weighted version [3]. We provide
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two general lower bounds which yield optimal results for a number of problems:
search in an ordered or unordered list, element distinctness, graph connectiv-
ity or bipartiteness. To obtain our first lower bound we treat the list of queries
performed by a nonadaptive algorithm as one single “super query”. We can then
apply the adversary method to this 1-query algorithm. Interestingly, the lower
bound that we obtain is very closely related to the lower bounds on adaptive
probabilistic query complexity due to Aaronson [I], and to Laplante and Mag-
niez [I3]. Our second lower bound requires a detour through the so-called min-
imax (dual) method and is based on the fact that in a nonadaptive algorithm,
the probability of performing any given query is independent of the input.

2 Definition of the Model

In the black box model, an algorithm accesses its input by querying a function
x (the black bozx) from a finite set I" to a (usually finite) set Y. At the end of
the computation, the algorithm decides to accept or reject x, or more generally
produces an output in a (usually finite) set S’. The goal of the algorithm is
therefore to compute a (partial) function F : § — S’ where S = X! is the
set of black boxes. For example, in the Unordered Search problem I' = [N] =
{1,...,N}, ¥ ={0,1} and F is the OR function: F(x) = \/ x(7).
1<i<N

Our second example is Ordered Search. The sets I' and X are as in the first
example, but F' is now a partial function: we assume that the black box satisfies
the promise that there exists an index 4 such that z(j) = 1 for all j > ¢, and
x(j) = 0 for all j < i. Given such an x, the algorithm tries to compute F'(x) = i.

A quantum algorithm A that makes T' queries can be formally described as a
tuple (Uy, ..., Ur), where each U; is a unitary operator. For x € S we define the
unitary operator O, (the “call to the black box”) by O|i)|¢)|¥) = |i)|eDz(i)) ).
The algorithm A computes the final state UrO,Ur_1 ... U;0,Up|0) and makes a
measurement of some of its qubits. The result of this measure is by definition the
outcome of the computation of A on input x. For a given ¢, the query complexity
of a function F, denoted ()2, is the smallest query complexity of a quantum
algorithm computing F' with probability of error at most e.

In the sequel, the quantum algorithms as described above will also be called
adadaptive to distinguish them from nonadaptive quantum algorithms. Such an
algorithm performs all its queries at the same time. A nonadaptive black-box
quantum algorithm A that makes T queries can therefore be defined by a pair
(U, V) of unitary operators. For x € S we define the unitary operator O by

OF i1, ..., i)| @1, o or)|¥) = i, ..., ir) |1 ® 2(i1), - .., o1 ® 2(i7)) |[1).

The algorithm A computes the final state VOXU|0) and makes a measure-
ment of some of its qubits. As in the adaptive case, the result of this mea-
sure is by definition the outcome of the computation of A on input x. For a
given ¢, the nonadaptive query complexity of a function F', denoted Q3%, is
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the smallest query complexity of a nonadaptive quantum algorithm comput-
ing F' with probability of error at most €. Our model is more general than
the model of [I4]. In that model, the |p) register must remain set to 0 after
application of U. After application of O the content of this register is there-
fore equal to |z(i1), ..., xz(ir)) rather than |1 ® z(i1), ..., ® z(ir)).

It is easy to verify that for every nonadaptive quantum algorithm A of query
complexity T there is an adaptive quantum algorithm A’ that makes the same
number of queries and computes the same function, so that Q2. < Q3%. In-
deed, consider for every k € [T the unitary operator Aj; which maps the state

|’L'1,...77;T>|901,...,QDT> to
‘Zk)‘(pk>|21, .. 'aik—hik-‘rl?' . ~7:T>‘<)017~ ce sy Pk—15 P41, - - '7<)OT>'

If the nonadaptive algorithm A is defined by the pair of unitary operators (U, V),
then the adaptive algorithm A’ defined by the tuple of unitary operators

(Uos ..., Ur) = (AU, AgATY, . Ap AL VALY

computes the same function.

3 A Direct Method

3.1 Lower Bound Theorem and Applications

The main result of this section is Theorem [3 It yields an optimal £2(N) lower
bound on the nonadaptive quantum query complexity of Unordered Search and
Element Distinctness. First we recall the weighted adversary method of Ambainis
and some related definitions. The constant C. = (1—2/2(1 — €))/2 will be used
throughout the paper.

Definition 1. The function w : S? — R, is a valid weight function if every
pair (x,y) € S? is assigned a non-negative weight w(x,y) = w(y, ) that satisfies
w(x,y) = 0 whenever F(x) = F(y). We then define for all x € S and i € I':
wi(z) = Zy w(z,y) and v(z,i) = Zy: (i) Ay (i) w(z,y).

Definition 2. The pair (w, w') is a valid weight scheme if:

— Every pair (x,y) € S? is assigned a non-negative weight w(x,y) = w(y,z)
that satisfies w(z,y) = 0 whenever F(z) = F(y).

— Bvery triple (x,y,i) € S? x I' is assigned a non-negative weight w'(z,y,1)
that satisfies w'(x,y,i) = 0 whenever z(i) = y(i) or F(x) = F(y), and
w'(z,y,))w (y, z,1) > w?(x,y) for all x,y,i with x(i) # y(i).

We then define for all x € S and i € I' wt(z) = >, w(z,y) and v(z,i) =
>, w2y, ).

Of course these definitions are relative to the partial function F.
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Remark 1. Let w be a valid weight function and define w’ such that if (i) # y(¢)
then w'(x,y,1) = w(z,y) and w'(z,y,7) = 0 otherwise. Then (w,w’) is a valid
weight scheme and the functions wt and v defined for w in Definition [ are
exactly those defined for (w,w’) in Definition

Theorem 1 (weighted adversary method of Ambainis [3]).Given a prob-
ability of error e and a partial function F, the quantum query complezity Q2 - (F)
of F' as defined in section [Q satisfies:

wt(z)wt(y)
w,w’) valid — ®,y,i v(zx,1)v(y, e '
(o) vatid e\ (@, Dv(y, 1)
@ (1) #y (i)

Q2:(F) > C; max min \/

A probabilistic version of this lower bound theorem was obtained by Aaronson [1]
and by Laplante and Magniez [13].

Theorem 2. Fiz the probability of error to e = 1/3. The probabilistic query
complezity Po(F) of F satisfies the lower bound Py(F') = Q(Lp(F)), where

(wt(l‘) wt(y)> _

Lp(F) = i
p(F) =max min max o( ) v(y, 1)

w ,Y,i
w(z,y)>0

z(i)#y(4)
Here w ranges over the set of valid weight functions.
We now state the main result of this section.

Theorem 3 (nonadaptive quantum lower bound, direct method). The
nonadaptive query complezity Q3%(F') of F satisfies the lower bound Q5% (F') >
CEQLTé“(F), where
t
L' (F) = maxmax min wi(w)

ses’ xi o wv(x,i)
Yo F(i)lzs ( ’ )

Here w ranges over the set of valid weight functions.

The following theorem, which is an unweighted adversary method for nonadap-
tive algorithm, is a consequence of Theorem [3l

Theorem 4. Let F : XI' — {0;1}, X € F710), Y € F~1(1) and let R C
X XY be a relation such that:

— for every x € X there are at least m elements y € Y such that (v,y) € R,

— for every y €Y there are at least m' elements x € X such that (x,y) € R,

— for every x € X and every i € I' there are at most | elements y € Y such
that (z,y) € R and (i) # y(i),

— for every y € X and every i € I there are at most ' elements x € X such
that (z,y) € R and x(i) # y(i).

m m'

Then Q;"é(F) > 052 max( 1 ).
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Proof. As in [3] and [13] we set w(z,y) = w(y,z) = 1 for all (z,y) € R. Then
wt(x) > m for all x € A, wt(y) >m' for all y € B, v(x,i) <l and v(y,i) <I'. O

For the Unordered Search problem defined in Section [2] we have m = N and
I =1"=m' = 1. Theorem [ therefore yields an optimal §2(N) lower bound. The
same bound can be obtained for the Element Distinctness problem. Here the set
X of negative instances is made up of all one-to-one functions = : [N] — [N]
and Y contains the functions y : [N] — [N] that are not one-to-one. We consider
the relation R such that (z,y) € R if and only if there is a unique i such that
x(i) #y(t). Thenm=2,1=1,m'= N(N—1) and ' = N — 1.

As pointed out in [I3], the 2(max(m/l,m’/l")) lower bound from Theorem F
is also a lower bound on Py(F’). There is a further connection:

Proposition 1. For any function F we have Lp(F) > L*(F). That is, ignor-
ing constant factors, the lower bound on Ps(F) given by Theorem [ is at least
as high as the lower bound on Q3% (F) given by Theorem [3

Proof. Pick a weight function wg which is optimal for the “direct method” of
Theorem[3l That is, wg achieves the lower bound L¢y*(F) defined in this theorem.
Let sqg be the corresponding optimal choice for s € S”. We need to design a weight
function wp which will show that Lp(F) > L$*(F). One can simply define wp
by: wp(z,y) = wg(z,y) if F(x) = sq or F(y) = sq; wp(x,y) = 0 otherwise.
Indeed, for any i and any pair (z,y) such that wp(z,y) > 0 we have F(z) = sq
or F(y) = sq, so that max(wt(x)/v(x, 1), wt(y)/v(y,1)) > L' (F). O

The nonadaptive quantum lower bound from Theorem[3lis therefore rather closely
connected to adaptive probabilistic lower bounds: it is sandwiched between the
weighted lower bound of Theorem Pland its unweighted max(m/l, m’/l") version.
Proposition [I] also implies that Theorem [ can at best prove an 2(log N) lower
bound on the nonadaptive quantum complexity of Ordered Search. Indeed, by
binary search the adaptive probabilistic complexity of this problem is O(log N). In
section [l we shall see that there is in fact a 2(N) lower bound on the nonadaptive
quantum complexity of this problem.

Remark 2. The connection between nonadaptive quantum complexity and adap-
tive probabilistic complexity that we have pointed out in the paragraph above
is only a connection between the lower bounds on these quantities. Indeed, there
are problems with a high probabilistic query complexity and a low nonadaptive
quantum query complexity (for instance, Simon’s problem [I6L[10]). Conversely,
there are problems with a low probabilistic query complexity and a high non-
adaptive quantum query complexity (for instance, Ordered Search).

3.2 Proof of Theorem

As mentioned in the introduction, we will treat the tuple (i1, ...,) of queries
made by a nonadaptive algorithm as a single “super query” made by an ordinary
quantum algorithm (incidentally, this method could be used to obtain lower
bounds on quantum algorithm that make several rounds of parallel queries as
in [8]). This motivates the following definition.
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Definition 3. Let X, I and S be as in section[2. Given an integer k > 2, we
define:

k
— kY= 5k K = [k and kS = (58)"
— To the black box x € S we associate the “super box” Fx € ¥S such that if

I =(iy,...,ix) € T* then Fx(I) = (x(i1), ..., z(ir)).

— kP(*z) = F(x).
If w is a weight function for F we define a weight function W for *F by
Wtz y) = w(z,y).
Assume for instance that X = {0;1}, I" = [3], k = 2, and that z is defined by:
z(1) = 0, z(2) = 1 and z(3) = 0. Then we have ?z(1,1) = (0,0), 22(1,2) = (0, 1),
22(1,3) = (0,0) ...

Lemma 1. If w is a valid weight function for F' then W is a valid weight func-
tion for *F and the minimal number of queries of a quantum algorithm comput-
ing ®F with error probability ¢ satisfies:

. WT (k)W T (ky)
k
F)y>C:.- '
@2CF)2Ce it -l o Ny 1)
W (£, y)>0
“a(D#*y(D)

Proof. Every pair (z,y) € S? is assigned a non-negative weight W (*z,Fy) =
W(*y,kx) = w(x,y) = w(y,r) that satisfies W (¥z,* y) = 0 whenever F(z) =
F(y). Thus we can apply Theorem [[land we obtain the announced lower bound.

O

Lemma 2. Let x be a black-box and w a weight function. For any integer k and
any tuple I = (i1,..., i) we have

WT (k) - 1 in wt(x)

V(kz,I) = k jek] v(z,i;)
Proof. Let m = min ¢ wHE)  We have WT(Fz) = wt(x) and:

v(x,ij)

V(ka:,I) =

k

W(kz,Fy)

k

< w(z,y) + -+ Z w(z,y)

yix (i i1) yix (i) 7Y (ix)

=v(x, i)+ +o(z, i) < kmaxov(z,ij). 0
JE[K]

yka (i) #Ry (i)
@ (i1)#y(i1
Lemma 3. If w is a valid weight function:

4 4
DU(F)>C? min  max (min v (a:) , min v (y)) .
’ F('E;ti!F(y) v U(.T,‘, Z) v U(ya Z)
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Proof. Let w be an arbitrary valid weight function and k£ be an integer such that

t t
k< Cg rgﬁliyn max (min v (m) , in v (y)) .
F(x);:éF(y) g U(xJ) g U(yvz)

We show that an algorithm computing *F' with probability of error < ¢ must
make strictly more one than query to the “super box” *z. This will prove that
for every such k we have Q3% (F') > k and thus our result.

For every x and I we have

WT (k)
V(kx,I) 21

and thus by lemma[2 for every x, y and I = (iy, ..., ix):

WT(Fx) WT(Fy) ~ uin <WT(kx) WT(ky)> ax (WT(k.I‘) WT(ky)>
V(kz, I) V(kx,I) V(kz, 1) V(kz, 1) (bx, 1)’ V(kx,I)
WT(kr) WT(ky)

= e (v«wr v<kx,1>>

1 ( owt(z) . wi(y) )
> max | min o, min . .
k jelk] v(z, ;) e[k v(z, i)

In order to apply Lemma [Tl we observe that:

. WT k) WT(*y) _ 1 . owt(x) . wi(y)
min > min max | min ., min g
kpky 1 V(Fx, DV (*Fy, 1) —k  zyit,...ix jelk] v(x,i;) 1ek] v(z, i)

W (F e, y)>0 w(n‘s,y)>0‘
Im z(zm)géy(zm)
Fa(D)#Fy(I)
> ! min max | min wt(m) ,min wt(y.)
Ewy i v(w,1) i v(x,i)

F(z)#F (y)

By hypothesis on k, this expression is greater than 1/C?. Thus according to
Lemma [ we have Qo..(*F) > 1, and Q3%(F) > k. O

We can now complete the proof of Theorem[Bl Suppose without loss of generality
that F(S) = [m] and define for every [ € [m]:

t
w=c2 min 10
F(x)=l

Suppose also without loss of generality that a; < --- < ay,. It follows imme-
diately from the definition that

t t
as = C’f rgiyn max (min v (m) ,min v (y) > ,
. i v(w,i) i vz, i)
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and

t
am = C? max min v (a:)
IEF(S) (m,i v(x, 1)
F

z)=l

By Lemma [§] we have Q3% (F) > a2, but we would like to show that Q5% (F) >
@, We proceed by reduction from the case when there are only two classes (i.e.,

m = 2). Let G be defined by
G(l)=-=Gm—1)=1

and G(m) = m. Applying Lemma 3] to GoF', we obtain that Q3% (GoF) > ap,.
But because the function GoF' is obviously easier to compute than F', we have
54(F) > Q5% (GoF) and thus Q3% (F') > am as desired.

4 From the Dual to the Primal

Our starting point in this section is the minimax method of Laplante and Mag-
niez [I3[17] as stated in [9]:

Theorem 5. Letp: S x X — R be the set of |S| probability distributions such
that p, (i) is the average probability of querying i on input x, where the average is
taken over the whole computation of an algorithm A. Then the query complexity
of A is greater or equal to:

C a !
e max . NE
x(i)7y(i)

Theorem [l is the basis for the following lower bound theorem. It can be shown
that up to constant factors, the lower bound given by Theorem [0l is always as
good as the lower bound given by Theorem

Theorem 6 (nonadaptive quantum lower bound, primal-dual method ).
Let F : S — S’ be a partial function, where as usual S = X' is the set of black-
box functions. Let

1
DL(F)=min max .
T,y
rayir > PO
(i) 2y (i)
and
w(z,y)
PL(F) = o
F) =8 o 3 w(e,)
K3 €,y
T £Yi
where the min in the first formula is taken over all probability distributions p over
I, and the max in the second formula is taken over all valid weight functions w.
Then DL(F) = PL(F) and we have the following nonadaptive query complexity
lower bound:
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Q2,:(F) > C.DL(F) = C.PL(F).

Proof. We first show that Q2 .(F) > C.DL(F). Let A be a nonadaptive quan-
tum algorithm for F. Since A is nonadaptive, the probability p,.(i) of querying
i on input z is independent of x. We denote it by p(¢). Theorem Bl shows that
the query complexity of A is greater or equal to

1
C. max
Feyire 2 PO)
2(5) ()

The lower bound Q2 (F) > C.DL(F) follows by minimizing over p.
It remains to show that DL(F) = PL(F). Let

L(F)=min max Z p(i).

F@HFW | T
We observe that L(F) is the optimal solution of the following linear program:
minimize p subject to the constraints

Va,y such that f(z) # f(y): p— > p(i) >0,

(i) £y (i)
N

and to the constraints Zp(z) =1land Vie [N]: p(i) >0.
i=1

Clearly, its solution set is nonempty. Thus L(f) is the optimal solution of the
dual linear program: maximize v subject to the constraints

Vie[N]: v— Z w(z,y) <0

T,y
Ti=Yi

Va,y: w(z,y) >0, and w(z,y) =0if F(z) = F(y)
and to the constraint Zw(m, y) = 1.

T,y
> w(z,y)
Hence L(F) = maxmin "' and DL(F) = 1 = PL(F). O
( ) w i Zw($7y) ( ) 1_L(F) ( )
T,y

4.1 Application to Ordered Search and Connectivity

1

. 5) we have

Proposition 1. For any error bound e € [0

5% (Ordered Search) > Co(N —1).
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1 if|F(y)— F(z)|=1
0 otherwise.

Proof. Consider the weight function w(zx,y) = " Thus

w(z,y) = 1 when the leftmost 1’s in  and y are adjacent. Hence Z w(z,y) =

2(N —2)+2. Moreover, if w(z,y) # 0 and x; # y; then {F(x), F(y )} = {i, z+1}
Therefore, max (.T y) = 2 and the result follows from Theorem [Gl
K2 €,y

Ti£Yi

Our second application of Theorem [l is to the graph connectivity problem. We
consider the adjacency matrix model: z(i,j) = 1 if ij is an edge of the graph.
We consider undirected, loopless graph so that we can assume j < i. For a graph
on n vertices, the black box x therefore has N = n(n — 1)/2 entries. We denote
by G, the graph represented by z.

Theorem 7. For any error bound ¢ € [0, }), we have
5% (Connectivity) > Cen(n —1)/8.

Proof. We shall use essentially the same weight function as in ( [6], Theorem 8.3).
Let X be the set of all adjacency matrices of a unique cycle, and Y the set of
all adjacency matrices with exactly two (disjoint) cycles. For 2 € X and y € Y/,
we set w(z,y) = 1 if there exist 4 vertices a,b,c,d € [n] such that the only
differences between G, and G, are that:

1. ab,cd are edges in G, but not in G,,.
2. ac,bd are edges in G, but not in G,.

We claim that

max S wwy) = > wy). (1)

Y seXyey n(n—1) rEX,yey
x(4,5) 7y (4,5) x(4,5) 7y (4,5)

The conclusion of Theorem [ will then follow directly from Theorem [Bl By
symmetry, the function that we are maximizing on the left-hand side of () is in
fact independent of the edge ij. We can therefore replace the max over ij by an
average over ¢j: the left-hand side is equal to

D SRR [ P cNE

zeX,yeY

Now, the condition x(i,j) # y(i,j) holds true if and only if ij is one of the 4
edges ab, cd, ac, bd defined at the beginning of the proof. This finishes the proof
of (@), and of Theorem [7 O

A similar argument can be used to show that testing whether a graph is bipartite
also requires £2(n?) queries.
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5 Some Open Problems

For the “l1-to-1 versus 2-to-1” problem, one would expect a higher quantum
query complexity in the nonadaptive setting than in the adaptive setting. This
may be difficult to establish since the adaptive lower bound [2] is based on the
polynomial method. Hidden Translation [7] (a problem closely connected to the
dihedral hidden subgroup problem) is another problem of interest. No lower
bound is known in the adaptive setting, so it would be natural to look first for
a nonadaptive lower bound. Finally, one would like to identify some classes of
problems for which adaptivity does not help quantum algorithms.

Acknowledgements. This work has benefited from discussions with Sophie
Laplante, Troy Lee, Frédéric Magniez and Vincent Nesme.
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