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Abstract. Chaitin discovered that for each formal system T, there ex-
ists a constant c such that no sentence of the form K(x) > c is provable
in T, where K(x) is the Kolmogorov complexity of x. We call the mini-
mum such c the Chaitin characteristic constant of T, or cT. There have
been discussions about whether it represents the information content or
strength of T. Raatikainen tried to reveal the true source of cT, stat-
ing that it is determined by the smallest index of Turing machine which
does not halt but we cannot prove this fact in T. We call the index
the Raatikainen characteristic constant of T, denoted by rT. We show
that rT does not necessarily coincide with cT; for two arithmetical the-
ories T, T′ with a Π1-sentence provable in T′ but not in T, there is an
enumeration of the Turing machines such that rT < rT′ and cT = cT′ .

1 Introduction

Algorithmic information theory, originated by Andrey N. Kolmogorov,
R. Solomonoff and Gregory J. Chaitin, brought a formalization of the informa-
tion content of an individual object as Kolmogorov complexity. The Kolmogorov
complexity of a number x is defined as the smallest code of Turing machine which
outputs x. Chaitin[1] proved the incompleteness theorem in the following form:
for a sound, finitely-specified, formal system T and an enumeration of the Tur-
ing machines, there exists a bound c such that K(x) > c is not provable for any
number x in T. We call the minimum such c the Chaitin characteristic constant
of T, denoted by cT.

The received interpretation of this Chaitin’s result is that the Chaitin charac-
teristic constant cT measures the information content or strength of the formal
system T. Michiel van Lambalgen[2] criticized the received interpretation and
pointed out that cT is not determined only by the theory T, but also influenced
by the choice of enumeration of the Turing machines. Panu Raatikainen[3] re-
fined Lambalgen’s argument and showed that for any formal system T, there
exists an enumeration of the Turing machines which makes cT zero, or arbitrar-
ily large. In the same paper he tried to give a characterization of cT. Let rT
denote the smallest code of Turing machine which does not halt but we cannot
prove its non-halting property in T. He stated that cT is determined by rT. We
call rT the Raatikainen characteristic constant of T.
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The purpose of this paper is especially to show that cT does not coincide with
rT contrary to Raatikainen’s claim and to derive some mathematical properties
of cT and rT. First, we show that rT ≤ cT holds generally, but the converse
not. By rearranging the enumeration of the Turing machines, we can make the
difference between rT and cT arbitrarily large. Moreover, we prove that for two
arithmetical theories T, T′ with a Π1-sentence provable in T′ but not in T, there
is an enumeration of the Turing machines such that rT < rT′ and cT = cT′ .

Since these two characteristic constants are essentially what evaluate some
information on Turing machines given by T, the language of T is assumed to have
some fixed way to express outputs of Turing machines. However, it is possible
that a formal system with abundant axioms for outputs of Turing machines does
not prove any facts on Kolmogorov complexity, because those two ideas may be
expressed by different symbols which are not related by the axioms at all. For our
purpose we consider formal systems defining Kolmogorov complexity naturally
by Turing machines in this paper, while Raatikainen makes use of the recursion
theorem and the soundness to dispense with this assumption. We confine our
systems to first-order arithmetical theories, or formal systems in which first-
order arithmetics can be interpreted, and assume that they are arithmetically
sound, finitely-specified, and extending PA.

2 Arithmetizing Computability

Let PA denote the first-order Dedekind-Peano axioms, and LA its language. Note
that theories extending PA prove any Σ1-sentence which is true in N.

We consider Turing machinesM of the following type. M has one semi-infinite
tape, with the left end as the start cell. In one movement, it changes the state,
writes a symbol on the tape, and makes the head move left or right, or stable.
We assume the tape symbols are 0, 1 and B, where B represents blank.

Definition 2.1. Any ordered pair (x, y) of natural numbers can be coded by
〈x, y〉 = 1

2 (x+ y)(x + y + 1) + x.
Tuples of natural numbers (x0, . . . , xn) can also be coded by a natural number

〈x0, x1, . . . , xn〉 defined inductively as follows for n ≥ 2:

〈x0, x1, . . . , xn〉 = 〈x0, 〈x1, . . . , xn〉〉.
For a = 〈x, y, n〉, we define Gödel β-function as the function defined by

β(a, i) = x mod (y(i+ 1) + 1) for each i < n.

n is called the length of a, denoted by |a|. We also write a[i] for β(a, i).

Lemma 2.2. Let f : N → N be any definable function in PA. Then

PA � ∀n∃a (∀i < nβ(a, i) = f(i) ∧ |a| = n).

For any a0, . . . , an−1 ∈ N, a natural number a ∈ N is called a sequence number
for a0, . . . , an−1 if β(a, i) = ai for each natural number i < n.

Now we formulate the notion of Turing machine in PA.



220 S. Ibuka, M. Kikuchi, and H. Kikyo

Definition 2.3. Suppose each cell in the tape is numbered 0, 1, 2, . . . from the
start cell to the right.

(1) We code a transition rule of a Turing machines M by a tuple of the form

〈q, s, q′, s′,m〉,
where m ∈ {L,R, S}. δ instructs that if the control is in state q over the cell
with number s, it transitions into the state q′ and writes s′ on the cell, and
moves or stay.

(2) A Turing machine M is coded by the sequence number

〈NQ, δ, q0, lF 〉,
where NQ is the number of states of M , q0 < NQ is the initial state of M ,
lF is a sequence number coding the set of final states, and δ is a sequence
number coding the set of transition rules.

(3) An instantaneous descriptions, or an ID, is coded by the sequence number

〈q, t, h〉
such that q < NQ is a code of a state, t is a sequence number coding the con-
tents of a contiguous finite sequence of cells covering every symbols appearing
on the tape other than B, and h is the position of the head.

(4) A process of M is coded by the sequence number of

〈ID0, ID1, . . . , IDl〉
of instantaneous descriptions such that the state of ID0 is the initial state,
and for each i < l, IDi+1 is obtained from IDi by δ.

Next, we define some formulae describing movements of Turing machines.
There is a Δ0-formula Ψ0(x, y) such that N |= Ψ0(p,m) if and only if p is a

number representing a process of the Turing machine coded by number m.
In order to describe the function represented by a Turing machine, we have

to describe by a logical formula the relation between a natural number and the
corresponding binary string representing it. The following are equivalent:

– x = a02n + a12n−1 + . . .+ an−12 + an;
– There is a sequence x0, x1, . . ., xn such that x0 = a0, xi = 2xi−1 + ai for
i = 1, . . . , n, and x = xn.

Therefore, there is a Σ1-formula bin(x, t) which says that “t is a sequence number
coding the binary representation of x.”

So we have a Σ1-formula Ψ1(m, y, z) which states that “z is an ID of the Turing
machine coded by m and the contents of the tape is the binary representation
of number y.

Using these formulae, we define a Σ1-formula Ψ2(p,m, x) which states that “p
is a number representing a valid sequence of ID of the Turing machine coded by
m with the binary representation of x in the tape at the beginning.



On Characteristic Constants of Theories 221

Let ϕm the Turing machine coded by m and identify it with the computable
(partial) function defined by ϕm. Then the statement “ϕm(x) = y” or “ϕm(x) ↓
y” can be written by the formula

∃p (Ψ0(p,m) ∧ ∃n, t0, t2, i < p(n = |p| ∧ p[0] = 〈q0, t1, 0〉
∧p[n] = 〈q, t2, 0〉 for some q ∈ Fm

∧bin(x, t1) ∧ bin(y, t2))

Definition 2.4. For two partial functions f and g on N, f  g if and only if
for any x ∈ N,

f(x) is defined ⇐⇒ g(x) is defined and
f(x) = g(x) if both sides are defined.

We employ a fundamental result of recursion theory by Stephen C. Kleene.

Fact 2.5 (Kleene’s recursion theorem). If f is a total computable function,
then there effectively exists a constant c such that ϕf(c)  ϕc.

The statement “Calculation of ϕm(0) does not halt canonically”, or “ϕm(0)↑”,
can be represented by the formula

∀p (Ψ0(p,m) ∧ p[0] = 〈q0, 0, 0〉 → p is not terminating canonically.)

Any effective enumeration of the computable functions (or recursive func-
tions) can be represented by a universal Turing machine. Therefore, there is a
computable total bijective function f (f is a “compiler” function) such that if m
is a code (“program”) of a function for given universal Turing machine then the
partial function g coded by m with the given universal Turing machine satisfies
g  ϕf(m).

Conversely, any computable bijective function f , ϕf(m) (m = 0, 1, . . .) is an
effective enumeration of any computable function.

We write ϕf
m for ϕf(m). We also write ϕf

m(x) ↓ y if ϕf(m)(x) ↓ y, and ϕf
m(x) ↑

if ϕf(m)(x) ↑. We will not specify the input if it is 0. Write ϕf
m ↑ for ϕf

m(0) ↑,
ϕf

m ↓ y for ϕf
m(0) ↓ y.

Note that any computable function is Σ1-definable in PA.

Definition 2.6. Let f be a Σ1-definable bijective function in PA.
Let CT (d,m) be a formula saying that d is a code of ID representing a canonical
termination of m, tval(d, x) a formula saying that d is a code of ID with a tape
value representing x.

We write ϕf
m(x) ↓ y for the formula

∃p(Ψ2(p, f(m), x) ∧ ∃l (|p| = l ∧ CT (p[l],m) ∧ tval(p[l], y))).
We write ϕf

m ↑ if the calculation of ϕf
m does not terminate canonically. This

notion is equivalent to

∀p(Ψ2(p, f(m), x) → ¬∃l (|p| = l ∧ CT (p[l],m) ∧ tval(p[l], y))).
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For a natural number n, the Kolmogorov complexity of n with respect to f ,
denoted by Kf (n), is the smallest natural number k such that ϕf

k = n. We can
define Kf(x) = y by “y is the smallest m such that ∃pΨ2(p, f(m), 0, x).”

3 Characteristic Constants

Definition 3.1. Let T be a formal system extending PA. We define two con-
stants cf,T and rf,T as follows:

cf,T is the smallest number k such that for any natural number n, T �

Kf(n) > k.
rf,T is the smallest number e such that ϕf

e ↑ and T � ϕf
e ↑.

Theorem 3.2. cf,T and rf,T exist for any sound, finitely-specified formal sys-
tem T and a definable permutation f in PA.

Proof. cf,T exists, for there is a natural number c such that T � Kf (x) > c.
Define a total computable function i as follows. For each k, we have a Turing
machine which searches the proof of Kf (x) > k from T for some x and, if found,
halts with output x. We can effectively obtain the index of this machine, i(k).
By recursion theorem, we can effectively find an index c such that ϕc  ϕi(c). If
T � Kf (x) > c for some natural number x, ϕi(c)  ϕc ↓ x, and hence Kf(x) ≤ c.
This contradicts the assumption of soundness of T.

Next, we show that rf,T exists. Consider a Turing machine ϕi(k) which halts
if T � ϕk ↑. By recursion theorem we have c such that ϕi(c)  ϕc. ϕc does not
halt, since if ϕc halts, ϕc does not halt by the soundness of T. Hence, ϕc ↑. If
T � ϕc ↑, then ϕi(c), thus, ϕc halts. Contradiction. We have T � ϕc ↑.
Next we argue the relation between cf,T and rf,T. We first see rf,T ≤ cf,T.

Lemma 3.3. Let T be any formal system extending PA, and f any Σ1-definable
permutation, either T � ϕf

i ↑ or T � ϕf
i ↓ holds for any i < rf,T.

Proof. Since T proves all Σ1-sentences true in N, if ϕf
i ↓ n,T � ϕf

i ↓ n. If ϕf
i ↑,

by the minimality rf,T, T � ϕf
i ↑.

Theorem 3.4. For any formal system T extending PA and any definable per-
mutation f , rf,T ≤ cf,T.

Proof. Suppose rf,T > cf,T. Let n �∈ {ϕf
0 (0), . . . , ϕf

cT(0)} and i ≤ cf,T. If T �
ϕf

i ↓ k, T � ¬ϕf
i ↓ n. Otherwise, by lemma 3.3, T � ϕf

i ↑, T � ¬ϕf
i ↓ n. Then

T � Kf (n) > cf,T, a contradiction to the definition of cT.

Remark 3.5. For any definable permutation σ : N → N in PA, PA � ϕf◦σ
m 

ϕf
σ(m).

However, rT ≥ cT does not necessarily hold. In fact, for a given formal system
T we can enumerate the Turing machines so that rT < cT.
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Lemma 3.6. Let f : N → N be a bijective function Σ1-definable in PA. There
is a g : N → N Σ1-definable in PA such that for any formal system T extending
PA,

(1) T � ϕf
m ↑ if and only if T � ϕf

g(m) ↑, and

(2) T � ¬(ϕf
g(m) ↓ 0).

Proof. We add transition rules to make the machine write 1 on the tape before
termination. Let m be a number and M = (Q,Γ, δ, q0, F ) be the Turing machine
coded by f(m). Let M ′ = (Q ∪ {qf}, Γ, δ′, q0, {qf}) be a Turing machine such
that qf is a new state, and

δ′ = δ ∪ {(q, b, qf , 1, S) : b ∈ {0, 1, B}, q ∈ F}.
Let m′ be the code of M ′ and let g(m) = f−1(m′).
We claim that g is the desired function.
First, we show (2), i.e., PA � ¬(ϕf

g(m) ↓ 0). In case ϕf
g(m) ↑, then ¬(ϕf

g(m) ↓ 0).

Otherwise, ϕf
g(m) ↓ y for some y. But y �= 0 by the construction of M ′.

Now, we show (1). Suppose T � ϕf
m ↑. Then T � ∀p(Ψ2(p, f(m), 0) →

¬∃l (|p| = l ∧ CT (p[l],m) ∧ tval(p[l], y))).
The following argument can be done in T. Let p′ be any natural number

and assume that Ψ2(p′, f(g(m)), x). Suppose that the last ID in p′ has final
state of M ′. Truncate the last ID in p′ and name it p. By the definition of
M ′, p represents a valid calculation of “f(m)” which is canonically terminating.
Therefore, we have ϕf(m) ↓, a contradiction. Hence, the last ID in p′ does not
have a final state of M ′.

Conversely, suppose that

T � ∀p′(Ψ2(p′,m′, 0) → ¬∃l (|p′| = l ∧ CT (p′[l],m′) ∧ tval(p′[l], y))).
where m′ = f(g(m)) is a code of the Turing machine M ′ described above.

Let p be any natural number and assume that Ψ2(p, f(m), x). If p represents a
valid calculation ofM terminating canonically, we can add an ID ofM ′ to p to get
a code p′ of a valid calculation of M ′ terminating canonically. This contradicts
with the assumption. Therefore, p does not represent a valid calculation of M
terminating canonically.

Theorem 3.7. Let T be any formal system extending PA. Let f : N → N be
a bijective function Σ1-definable in PA. Then there is a permutation σ on N

definable in PA such that

rf,T = rf◦σ,T < cf◦σ,T.

Moreover, the difference between rf◦σ,T and cf◦σ,T can be arbitrarily large.

Proof. Let n be any natural number. We show that there is a permutation σ on
N such that

rf,T = rf◦σ,T < cf◦σ,T

and the difference of rf◦σ,T and cf◦σ,T is greater than n.
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Let g : N → N be the function obtained in Lemma 3.6 with respect to f . Let
σ be a permutation on N such that σ(i) = g(i) for i ≤ rf,T + n. By Lemma 3.3,
we have T � ϕf◦σ

i ↓ or T � ϕf◦σ
i ↑ for each i < rf,T. But T � ¬ϕf◦σ

i ↓ 0 for
i ≤ rf,T + n. Therefore, T � Kf◦σ(0) > rf,T + n. Hence, rf,T + n < cf◦σ,T.

It is well-known that the truth definition of a Σn-formulas can be expressed by
a Σn+1-formula. With a similar proof to this fact, we can show the following
lemma:

Lemma 3.8. Let ψ(x) be a Δ0-formula in LA. Then there is a code m0 of a
Turing machine such that

PA � ψ(x) ↔ ϕm0(x) ↓ 1,
PA � ¬ψ(x) ↔ ϕm0(x) ↓ 0.

Lemma 3.9. Let ψ(x) be any Δ0-formula in LA. Then there is a code m of a
Turing machine such that

PA � ∀xψ(x) ↔ ϕm ↑ .

Proof. Let ϕm0 be a Turing machine we can get for ψ(x) by Lemma 3.8.
Let ϕm be a Turing machine corresponding to the following C program:

while (ψ(x)) x++;

We explain ϕm more accurately. The initial state of ϕm is q0. ϕm “saves” the
value of x so that we can retrieve it later. Then ϕm evaluates ψ(x) with the rules
of ϕm0 . If the value is 0, then it enters the unique final state qf and halts. If the
value is 1, then it retrieves the value of x to an initial segment of the tape. Then
it increments the value of x by 1 and enters the initial state q0.

Now, we show the lemma. We are working in PA.
Suppose ∀xψ(x). We can show a formula in LA expressing the following:

Claim 3.10 For all n, there is a process of ϕm with input 0 such that the final
ID has the initial state and the tape content is n.

It is clear that the process with single ID 〈q0, bin(0), 0〉 is the process for n = 0.
Assume n ≥ 1. By induction hypothesis, there is a process of ϕm with input

0 such that the final ID is 〈q0, bin(n − 1), 0〉. Since ∀xψ(x), we have a process
pn for ϕm0(n− 1) ↓ 1. We can concatenate process pn and a process to perform
x + + to the process already obtained. We have a process with the final ID
〈q0, bin(n), 0〉. Therefore, we have the claim, and thus, ϕm ↑.

For the converse, suppose that ϕm ↑. We can prove a formula in LA expressing
the following claim:

Claim 3.11 For all n, there is a process of ϕm with input 0 such that the final
ID is 〈q0, bin(n), 0〉, and if n > 0 then ψ(n− 1).

We prove this by induction on n. It is obvious for n = 0.
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Suppose n ≥ 1. By the induction hypothesis, there is a process of ϕm with
input 0 such that the final ID is 〈q0, bin(n− 1), 0〉.

By Lemma 3.8, there is a process for ϕm0(n − 1) ↓ 0 or ϕm0(n − 1) ↓ 1. In
case ϕm0(n − 1) ↓ 0, the control enters qf and we have ϕm ↓. This contradicts
our hypothesis. Therefore, there is a process for ϕm0(n− 1) ↓ 1. Hence, we have
ψ(n− 1) by Lemma 3.8. Now, we can increment the tape value x from n− 1 to
n. Therefore, we have the claim.

By the claim, we have ∀xψ(x).

By Lemma 3.9, we have the following theorem.

Theorem 3.12. Let T and T′ be sound, finitely-specified, formal systems ex-
tending PA such that T < T′. Then the following are equivalent:

(1) There is a Π1-sentence θ such that T′ � θ but T � θ.
(2) There is an enumeration of the Turing machines such that rT < rT′ .

Furthermore, we show that for two theories with a Π1-gap, there is an enumer-
ation of the Turing machines which makes them different in the Raatikainen
constant but the same in the Chaitin characteristic constant.

Theorem 3.13. Let T,T′ be sound, finitely-specified, formal systems extend-
ing PA with a Π1-sentence provable in T′ but not in T. Then there exists an
enumeration of the Turing machines such that cT = cT′ and rT < rT′ .

Proof. By Lemma 3.6 and Theorem 3.12, we can assume that T � ϕm ↑, T′ �
ϕm ↑, and T � ¬ϕm ↓ 0. By the same argument in Theorem 3.2, we take a c
such that ϕc ↑ and T′

� ¬ϕc ↓ n. Let f be a function such that f(m) = 0,
f(c) = 1 and f(x) = x otherwise. Since T � ϕf

0 ↑, rf
T = 0. By T′ � ϕf

0 ↑ and
T′

� ϕf
1 ↑, we have rf,T′ = 1. Because T � Kf(0) > 0 and T ′

� Kf(n) > 1 for
all n, cf,T = cf,T′ = 1.

Remark 3.14. In the theorem above, we can make cT arbitrarily large as in
Theorem 3.7.
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