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Abstract. In this paper, we define new decision procedures for Lukasiewicz log-
ics. They are based on particular integer-labelled hypersequents and of logical
proof rules for such hypersequents. These rules being proved strongly invertible
our procedures naturally allow one to generate countermodels. From these re-
sults we define a “merge”-free calculus for the infinite version of Lukasiewicz
logic and prove that it satisfies the sub-formula property. Finally we also propose
for this logic a new terminating calculus by using a focusing technique.

1 Introduction

Lukasiewicz logics, including finite and infinite versions, are among the most studied
many-valued logics [10] and the infinite version L. is, like Godel-Dummett logic (LC)
and Product logic (IT), one of the fundamental z-norm based fuzzy logics [8]). There exist
various calculi and methods dedicated to proof-search in these logics that are based on se-
quents [[1I12], hypersequents [4/12] or relational hypersequents [3]] and on tableaux [[13]]
or goal-directed approach [11]. In this paper, we consider proof-search in propositional
Lukasiewicz logics through a particular approach that consists firstly in reducing (by a
proof-search process) a hypersequent into a set of so-called irreducible hypersequents
and then secondly in deciding these specific hypersequents by a particular procedure.
Such an approach has been studied for Godel-Dummett logic [2] and also the infinite
version L. of Lukasiewicz logics [3]] but not for the finite versions. In this context we are
interested in deciding irreducible hypersequents through a countermodel search process
and thus in providing new decision procedures that generate countermodels.

Therefore we define labelled hypersequents, called Z-hypersequents, in which com-
ponents are labelled with integers, such labels introducing semantic information in the
search process. Then we define proof rules that deal with labels by using the addition
and subtraction and then prove that they are strongly invertible. It is important to notice
that we define a same set of simple proof rules for both finite and infinite versions of
Lukasiewicz logic. By application of these rules we show how we can reduce the de-
cision problem of every Z-hypersequent to the decision problem of a set of so-called
atomic Z-hypersequents that only contain atomic formulae. To solve the later problem
we associate a set of particular inequalities to these hypersequents and then strongly
relate the existence of a countermodel to the existence of a solution for this set of in-
equalities. Thus, by using results from linear and integer programming [16], we can
decide any atomic Z-hypersequent and also generate a countermodel in case of non-
validity. Thus, from the same set of rules, we provide a new decision procedure for the
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infinite version but also one for the finite versions of Lukasiewicz logic, both including
countermodel generation. After this first contribution we focus, in the rest of the pa-
per, on the infinite version denoted L. The next contribution is the definition of a new
calculus for this logic that is characterized by a single form of axioms and the absence
of the “merge” rule that is not appropriate for proof-search. In addition our labelling of
components by integers can be seen as a kind of merge-elimination technique that could
be applied to hypersequent calculi given in [4/12]]. From a refinement of the notion Z-
hypersequent, by using a focusing technique defined in [12]], the last contribution is a
terminating calculus for L., that is proved sound and complete, in which only one rule is
not (strongly) invertible. We complete these results by showing, in the appendix, how
to obtain a labelled calculus for Bounded Fukasiewicz logics £.B,, with n > 2 [4]].

2 Lukasiewicz Logics

We consider here the family of Lukasiewicz logics denoted £, withn € N' ={2,.. .} U
{eo}, set of natural numbers with its natural order <, augmented with a greatest element
oo, In the case n = oo, L., also denoted by L., is one of the most interesting multi-valued
logics and one of the fundamental #-norms based fuzzy logics (see [8]] for more details).
In the case n # oo, L., denotes the finite versions of Lukasiewicz logics.

The set of propositional formulae, denoted Form, is inductively defined from a set of
propositional variables with a bottom constant | (absurdity) by using the connectives
A,V, © (strong conjunction) and & (strong disjunction). All the connectives can be
expressed by using the D connective: “A =4, AD L, ADB =4 " AD B, AO B =4
—\(A D —\B), AVB =def (A DB) DBand AAB =def —|(—\A V _|B).

In the case of L, the logic has a following Hilbert axiomatic system:

L1 AD(BDA)
12 (ADB)D((BDC)D(ADCQ)) with the rule A2B A mp]
£3 ((ADB)DB)D((BDA)DA) B p

B4 (ADL)D(BDL))D(BDA)

Another Hilbert axiomatic system can be obtained by adding axioms E.1 and £.3 to
any axiomatization of the multiplicative additive fragment of Linear Logic [14].

For the finite versions L., with n # e, a Hilbert axiomatic system is obtained by
adding to the previous axioms of £, the following axioms : (n—1)A DnA®nAD(n—1)A
and (pAP~1)" DmAP ©mAP > (pAP~1)" for every integer p =2,...,n— 2 that does not
dividen— 1, withkA=A@ ... A (ktimes) and Ak =A©® ... ®A (k times).

A valuation for £.,, is a function [[-]| from the set of propositional variables Var to [0, 1]
ifn=candto[0,1/(n—1),...,(n—=2)/(n—1),1]if n # oo. It is inductively extended
to formulae as follows:

[A>B] = min(1,1 — [A] + [B])

L= [A & B] = min(1,[A] + [B])

[AAB] = min([A], [B])
[-A] =1 - [A] -
[A © B] = max(0, [A] + [B] — 1) [4 v B] = max([A], [B])
A formula A is valid in £, written [=¢ A, iff [A] = 1 for all valuations [-] for L.
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In this paper we study proof-search in the finite and infinite versions of Lukasiewicz
logics. Our approach based on labelled calculi is an alternative to existing works based
on sequents [1I12], on multisets of sequents, called hypersequents and relational
hypersequents [3] but also on tableaux or goal-directed approach [11]]. It consists
first in reducing (by a proof-search process) a hypersequent into a set of so-called irre-
ducible hypersequents and then in deciding these hypersequents. It has been studied for
LC [2] and also the infinite version £ [3] but not for the finite versions. Like for recent
works in Godel-Dummett Logics [709] we aim at deciding irreducible hypersequents
through a countermodel search process and then at providing new calculi and decision
procedures that allow us to generate countermodels.

3 Labelled Proof Rules for k.,

In this section, we present for L, the definition of integer-labelled hypersequents, la-
bels introducing semantic information in the search process, and of labelled proof rules
that are strongly invertible in order to generate countermodels. Let us remind that the
hypersequent structure I'y A | ... | Ty - Ag has been introduced as a natural general-
ization of Gentzen’s sequents [2]]. It is a multiset of sequents, called components, with
”|” denoting a disjunction at the meta-level.

Definition 1. A Z-hypersequent is a hypersequent of the form: T'1 by Ap | ... | Tibp, Ax
where fori=1,...,k, n; € Z, and T'; and A; are multisets of formulae.
Definition 2. A Z-hypersequent G =T, Ay | ... | Ti by, Ag is valid in £, iff for

any valution [[-]| for L, there exists i € {1,...,n} such that: |T;| < [A/] —ni where
o] =1 [0 =0, i) =1+ . ([Al - 1) and [A]] = ¥ [B].

A€T; BeA;
A formula A is valid in L.,if and only if the Z-hypersequent oA is valid in .,,. Moreover
the Z-hypersequentAj,..., A} FoBj,...,By, | ... |A},...,A} FoBj,.... By, is valid in
Lyif andonly if (A} ©... ©A] ) D (B{®... ®B,, )V... V(A{©... OA} ) D (B ®... ®
B}, ) is valid in L.

In comparison with hypersequents in where the interpretation of components
is such that one has disjunctions () on the both sides, our aim here is to recover the
standard interpretation with conjunctions (®) on the left-hand side and disjunctions ()
on the right-hand side.

Now we define a set of proof rules, presented in Figure Il dealing with these struc-
tures. They mainly decompose the principal formula and simply modify the labels by
addition or substraction of 1.

Considering a proof rule as composed of premises H; with a conclusion C, it is sound
if, for any instance of the rule, the validity of the premises H; entails the validity of C. It
is strongly sound if, for any instance of the rule and any valuation [-], if [-] is a model of
all the H; then it is a model of C. Moreover a proof rule is invertible if, for any instance
of the rule, the non-validity of at least one H; entails the non-validity of C. It is strongly
invertible if, for any instance of the rule and any valuation [J-]}, if [-] is a countermodel
of at least one H; then it is a countermodel of C. We can observe that strong invertibility
(resp. soundness) implies invertibility (resp. soundness).
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G|TABFsA  G|THuiA G |THuA|Thpp1 A,BA
(O] [©r]
G|T,AGBF, A G|TH,A®B,A
G|TH,A|T,A,BF i A G|THABA  G|TH,iA
[©1] [r]
G|T,AGB, A G|TH,A®B,A
G |THyA|T, Bl AA G|T,AFnB A G|TF,iA
(D1 [Or]
G‘F,ADBI—HA G|1"F,,ADB,A
G|T,AF,A|T,BF,A G|TF,A,A  G|TH,B,A
ALl [AR]
G|T,(AAB)F,A G|TH,ANB,A
G|T,AFyA  G|T,BryA G|THpA,A|TH.B,A
\/L} \/R}
G|T,AVBF,A G|TH,AVB,A
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Fig. 1. Proof rules for Z-hypersequents in L,

Theorem 1 (Soundness). The rules of Figure[ll are strongly sound for £.,.

Proof. We only develop the cases of [Dy] and [@g] rules, the other cases being similar.

Case [Dr]. Let [-] be amodel of G | T'H¢A| ', BF+1 A,Ain £,,. Then we have [-] isa
model of G, || < JA] —kor |[T'| + ([B] — 1) < [[A] + [A] — (k+1). Thus, we obtain
[[Jisamodelof G, |||+ (1—1) < [A] —kor [T]+((1—[A]+[B])—1) < [A] —*.
We deduce that [-| is a model of G or |I"| + (min(1,1—[A] 4+ [B]) — 1) < [[A] — k.
Therefore [-] is a model of G | I',A DBF, A.

Case [@g]. Let [[-]] be amodel of G | TH;A,B,A and of G | T4 Ain L. Thus, []
is amodel of G, or |T'| < [[A] + [A] +[B] —k and |T"] < [JA] — (k—1) hold. Then
[-] is a model of G or the inequality | T'|| < [AT + min(1,[A] + [B]) — & holds. Thus,
[] is amodel of G | T, A @ B, A.

Theorem 2. The rules of Figure[llare strongly invertible for ...

Proof. We only develop the cases of [Dy] and [@g] rules, the other cases being similar.

Case [Dr]. Let [-] be a countermodel of G | TH A | T,BFj;1 A,Ain £y,. Then [[-] is
a countermodel of G and the inequalities |T'|| > [A] —kor | T||+ ([B] — 1) > [A] +
[A] = (k+ 1) hold. Therefore, [-] is a countermodel of G and the inequality |T'|| +
(min(1,1—[A] 4+ [B]) — 1) > [A] — k holds. We deduce that [-] is a countermodel of
G|T,ADBF,A.

Case [@g]. Let [-] be a countermodel of G | ', A, B, A in £,,. Then we have [-] is a
countermodel of G and | I"|| > [AT] + [A] + [B] — k. Thus, the inequality | "] > [A] +
min(1,[A]+ [B]) — k holds. Therefore, [-] is a countermodel of G | T+, A@® B,A. Let ]
be a countermodel of G | T A. Then [-] is a countermodel of G and |T'|| > [A] —
(k—1) holds. Thus, [-] is a countermodel of G and | T'|| > [A] + min(1, [A] + [B]) —k
holds. Then we deduce that [[-] is a countermodel of G | '+, A & B, A.

Having proved these properties we now define what an atomic Z-hypersequent is and
show that we can reduce any Z-hypersequent A into a set S of atomic Z-hypersequents,
such that A is valid iff the elements of S are valid.
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Definition 3. An atomic Z-hypersequent is a Z-hypersequent which only contains
atomic formulae.

Theorem 3. The application of the rules of Figure[llto a given Z-hypersequent termi-
nates with atomic Z-hypersequents.

Proof. To prove the termination, we show that for every rule, its conclusion is more
complex than its premises by using a measures of complexity over the formulae [6].
This measure, called o, is defined by: 0i(A) = 1 where (A € VarU{T, L}); (A®B) =
o(A)+o(B)+ 1 where ® € {A,V,D,®,©};and o(—~A) = a(A) + 1. We can see that the
order relation < on formulae, defined by A < B iff o(A) < a(B), is well-founded. Let
I'1 and I'; two multisets of formulae, we have I'} >,, I, iff I'; is obtained form I'; by
replacing a formula by a finite number of formulae, each in which is of lower measure
than the replaced formula. Since the relation order on pure formulae and sentences is
well-founded, the order relation >, is well-founded, for more details [3]]. Similarly, we
define a well-founded relation >>,, on Z-hypersequents, induced by the order relation
>m, by: Gi >>,, G2 iff G is obtained form G; by replacing a component of G1 by a
smaller finite set of components, where a component I'; -5, Ay is smaller than 't =, A
iff 'y UA| >, T2 UA,. By using this order relation, it is easy to prove for every rule, its
premises are smaller than its conclusion. Finally, there is always a rule for any sequent
which is not atomic. Therefore, we deduce that the application of our rules to a given
Z-hypersequent terminates with atomic Z-hypersequents.

4 New Decision Procedures for k.,

By using Theorem[3] we can generate, from a given Z-hypersequent, to a set of atomic
Z-hypersequents by application of our logical rules. After this step of bottom-up proof-
search we now consider the resulting set of atomic Z-hypersequents in the perspective
of countermodel generation. For respectively t. and £, with n £ oo, we associate to each
atomic Z-hypersequent a set of particular inequalities and then relate the existence of a
countermodel to the existence of solution for this set.

Definition 4 (SI,). Let H =Tty Ay | ... | Txtp A be an atomic Z-hypersequent
and x,, be a real variable associated to every propositional variable p. We define the set
of inequalities Sl associated to H by: Slyr = {(OT1) > (BA) —ni,...,(OTk) >
(BA) —mi} where Q0=1,H0=0,OT) =1+ Y (xa—1) and D(Ai) = Y, xa

A€eT; A€EN;
with x| =0.

Theorem 4. An atomic Z-hypersequent H has a countermodel in £ iff Sl;; has a
solution over [0,1].

Definition 5 (S17). Let H=T1Fm A1 | ... | Tk b, Ak be an atomic Z-hypersequent
and xp, be a real variable associated to every propositional variable p. We define the
set of inequalities ST, associated to 3 by: SI}, = {(©O,T1) — 1 > (@,A1) — ((n—
Dsxmy),....(O,Tk) — 1> (B, Ar) — ((n—1)xmyg)}, where O, 0=n—1, §,0=0,

OuT)=n—1)+ (xa—(n—1)) and @,(A;) = D x4 where x| =0.
AeT; AcA;
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Theorem S. An atomic Z-hypersequent H has a countermodel in £, with n 7 e iff SI7,
has a solution over the set of integers {0,...,n—1}.

The proofs of the above theorems are given in appendix Bl

By using linear and integer programming [16]], we can decide a t., atomic Z-hyper-
sequent in polynomial time. If (x4, = r1,...,xa, = ry) is a solution of the set ST,  (resp.
Sl ), where {x4,,...,x4,} is the set of all its variables, then the valuation [-]] such that
Vie{l,....k}, [Ai] =ri/(n—1) (resp. [Ai] = r;) is a countermodel of H in k., (resp. in
}.). For a given Z-hypersequent, by Theorem[3 we can generate a set of atomic Z-hyper-
sequents by application of rules of Figure[Il Then we can build the set S,/ (resp. SI5,)
associated to each atomic Z-hypersequent H and decide by using linear (resp. integer)
programming if it has a countermodel or not and thus decide its validity in £ (resp. £,
with n # o).

These two main steps, namely proof search followed by countermodel search (based
on the above theorems) provide new decision procedures for Lukasiewicz logics. A
key point here is the generation of countermodels because of the strong invertibility of
rules: any countermodel of an atomic Z-hypersequent on the leaf of the derivation tree
is a countermodel of the initial Z-hypersequent on the root of this tree.

We illustrate our new procedure through examples. If we consider H; = oA D (BD
A) and #p = oAV (A D L), by application of proof rules we obtain the derivations:

A,BFgA AF_,4 FoA |Abog L oA | ]
DR R
AFgBDA F_1 FoA | FoAD L
[Ok] v
FoA D (BDA) FoAV(AD L)

Thus, #; has a countermodel in £ if one of the inequalities 1 > 1 (F_1), x4 > 1
(AF_1) and xg > 1 (A, Bl A) has a solution over [0,1]. Since 1 > 1, x4 > 1 and xp > 1
have no solution over [0, 1], we deduce that # is valid in £.. For #, since x4 = 1 is an
integer solution of the system {2 > x4,x4 > 0}, the valuation [-] defined by [A] = ) is
a countermodel of FoA | Ao L in 3. Then it is a countermodel of % in t.3.

5 The ZL Calculus

In this section we propose a new calculus for L called ZL, that is defined by the rules
in Figure[Tland the following axiom, special rules and structural rules:

G|TH,_1A G|ThH,_1A
[Ax](n < 0) [Lr] [SR]
Fn G|, LF,A G|T,AF,AA
G G|TH,A G|TH,A
[EW} [IWL} [IWR}
G|TH,A G|T, Ak, A G|TH,AA

G|TH,A|TH,A - G| T, Tobp snr1A1,A2

[SP]
G|TH,A G|TiFn A [ Tabm A
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Theorem 6 (Soundness). The rules of the ZL. calculus are sound.

Proof. From Theorem [Tl the logical rules of Zk. are sound. Similar arguments are used
for the other rules.

Theorem 7 (Completeness). If a Z-hypersequent is valid in L. then it is derivable in
the 7L calculus.

Proof. See appendix Bl

We illustrate our calculus by considering our example #; = oA D (B D A). By appli-
cation of proof rules we obtain the following derivation:

F_1
[IWL]

BF_; _

[SR] [TW]
A,BFoA AR,
[Dr]
AFoBDA F_1
[Dr]

FoA D (BDA)

From the ZE calculus we can show that the weakening rules ([EW], [IW.] and [ITWg])
can be “absorbed” in the axiom by using an approach similar to the one of [17]. Thus
we obtain a new simplified calculus ZE¥. without these rules and with the following

axiom: [Ax](n < 0) -
G|TH,A

Proposition 1. The ZL calculus satisfies the subformula property, namely any formula
appearing in a proof of H in ZL. is a subformula of a formula in H.

An important point of these calculi is that they T FA G|TakA,
are “merge”’-free. It means that the following rule,
called merge, is not needed. G|T1,ThEALA,

In hypersequent calculi for L. in a challenge, in the perspective of proof-search,
consists in eliminating this rule that is not appropriate because it is not invertible and
context splittings on the left and right sides could be very expensive. The rule has

been eliminated in [13] by replacing the existing axioms by the following axiom G |
P

1"71, . .7II—A17 ...,An, A, where n > 0. But our approach based on the labelling of
components by integers allows us to eliminate the merge rule without having to com-
plicate the form of axioms.

6 A Terminating Calculus for L.

Now, we consider an approach based on a focusing technique in [12] in order to provide
a terminating calculus for L. Thus we consider now so-called focused hypersequents.

Definition 6. A focused Z-hypersequent is a structure of the form [p|H where H is a
Z-hypersequent, p a propositional variable, and |p|H is valid in £ iff H is valid in £.
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Let H =Tt Ay | Tabp, Ao | ... | Tibp A be a Z-hypersequent. We denote by
left(H) the multiset Ty UT, U... UTy and by right (H) the multiset Ay UAy U ... UA;.
We define a new calculus, called ZE.T, that consists of the logical rules in Figure [Tl with
the same focus for premises and conclusion, and of these following rules:

A 0 [p}G|F|_n71A n [p]G|l—‘}—,,,1A SR
[PIG [T, A =0 [PIG|T, L, A 2] [p|G|T,AF,A A ISK]

[F] where g€ left(H)Nright(H) and p ¢ left(G) Nright(G)

[p]G ‘ ko1, ki Do by koA K Ao | S
PIG | T kiptu At | Tabp, Ao kop

where G,T'1,I2,A; and A; are atomic and k; > 0,k» > 0,p ¢ T1 UT, UA; UA,.
Sis F],klpl—nlAl orl“z}—,,zAz,kzpandn’:kz*n1+k1*n2+k1+k2—(k1*k2+1).

Theorem 8. All the rules of ZET except [R] are strongly invertible.

Proof. From Theorem[] the logical rules of ZE.T are strongly invertible. For the other
rules we use similar arguments.

Definition 7. An irreducible focused Z-hypersequent [p]#H is an atomic focused 7-
hypersequent where left(H) Nright(H) =0, 1 & left(H) and for every component
Tk, A of H, we have n > 0.

Definition 8. An inv-irreducible focused Z-hypersequent [p|H is an atomic Z-hyper-
sequent where p € left(H)Nright(H), and for every component T't, A of H, we have
1T, TNA=0andn > 0.

Proposition 2. Any irreducible focused Z-hypersequent has a countermodel.

Proof. Let [p]# be an irreducible focused Z-hypersequent. Let [-] a valuation defined
by: for every A € left(H) we have [A]] = 1, and for every B € right(#) we have
[B] = 0. Tt is easy to prove that [[-] is a countermodel of [p]H.

Theorem 9. The application of ZLT calculus to every focused Z-hypersequent termi-
nates with axioms or irreducible focused 7Z-hypersequents.

Proof. From Theorem 3l we see that the application of the logical rules of ZLT to
a given focused Z-hypersequent terminates with atomic focused Z-hypersequents. By
using the order >>,, defined in the proof of TheoremBl G | T, L -,A>>,, G |Tk,_1 A
and G | T Ak, A,A >>, G |T'k,_1 A hold. Now considering the rule [R], we can see
that its application with the focus p decreases strictly the number of p’s. Therefore,
in any derivation in ZET, the number of applications of the rules [R] and [F] is finite.
Thus, the application of ZLT calculus to every focused Z-hypersequent terminates.
Since there is always a rule for any Z-hypersequent which is not an axiom or an irre-
ducible Z-hypersequent, we deduce that The application of ZLT calculus to every fo-
cused Z-hypersequent terminates with axioms or irreducible focused Z-hypersequents.
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Theorem 10 (Soundness). The rules of ZET are sound.

Proof. The soundness of the logical rules and the rules [Ax], [ 1] and [SR] comes from
Theorem [@l The soundness of [F] is trivial. For the rule [R] we consider arguments
similar to those of proof of Theorem/[Il

Proposition 3. If the atomic Z-hypersequent G | T'y -y, Ay | T2 by, As is valid in £ then
either G | T'1,T a1 A1, A | T Fu, Ay is valid in £ or G | T, T oy 1 A1 A |
I b, Ag is valid in L.

Proposition 4. Let [p|G | T, kipty, A | Taby, Ao kop be an atomic focused Z-hyper-
sequent. If it is valid in L then either [p|G | koT'1, kil b koAr,kiAy | Ty kip by, Ay
is valid in £ or [p]G | ko1, ki Do b ko AL ki Ag | T Fn, Mo, kop is valid in £, with ky >
0,k >0,p¢ T UTLUAUA, andn’ =kyxny +kyxny+ky +ky — (ki *xky+1).

Proofs of these propositions are given in appendix [Al

Definition 9 (Proof-refutation tree). A proof-refutation tree is a tree where the nodes
are labelled by a focused 7Z-hypersequents and satisfying the following properties:

— Every internal node n labelled by H which is not an inv-irreducible Z-hypersequent
has a maximum of two children: if n has two children (resp. a single child) labelled

Hy I A
H

by Hy and 36 (resp. H') then

7] (resp. 7] ) is an instance

of a strongly invertible rule.

— Every internal node n labelled by H which is an inv-irreducible Z-hypersequent,
namely [p|G | T1,kipty, At | Taby, Ao kop, has two children labelled by [p]G |
ko1, ki To by ko Ay kiAo | Ty ki pln, Ay and by [p]G | kaTy,kiTa by koA kA |
I'> =y, Ao, kop where n=kysn +kixn+k;+ky— (k1 *kp+1).

From Theorem[9] we can see that a proof-refutation tree is finite and its leaf nodes are
indexed by axioms and irreducible Z-hypersequents.

Theorem 11 (Completeness). If [p]H is valid in £ then [p]H is provable in ZET.

Proof. Let [p]H be a focus Z-hypersequent and P its proof-refutation tree. We show
how to decide if an index of a given node in P is valid or not. We start by the leaf
nodes. From Theorem Bl we know that such leaf nodes are labelled by axioms or ir-
reducible focused Z-hypersequents. Thus, by using Proposition 2| we can decide all
the leaf nodes. Now we see how, from the children of a given internal node, we can
propagate validity or invalidity. Let 4 be an index of internal node. If # is not an
inv-irreducible focused Z-hypersequent then, from Definition[9] this node has a max-
imum of two children where if these children are labelled by #; and %5 (resp. H')

H A
H

Thus, if #4 and #; (resp. H') are valid then # is valid because [r] is sound. Else, from
the strong invertibility of [r], H has the same countermodels of its non-valid premises.

then

[r] (resp. [r] ) 1s an instance of a strongly invertible rule.
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We now deal with the nodes labelled by inv-irreducible focused Z-hypersequent. Let
n be an internal node labelled by an inv-irreducible Z-hypersequent #. Thus # is of
the form [p]G | T'1,kipty, Ar | Taty, Ao kop. and the children of n are labelled by
[p]G | kzrl,klrz }_n’ k2A17k1A2 ‘ 1"17k1p l_"l Al and [p]G | kzrl,klrz }—nl k2A17k1A2 ‘
by, Ao kop where n' = ky «ny + ki *np + ki + ka — (ki * ko + 1). By using Proposi-
tion M if one of the indexes of the children of n is valid then # is valid else # is not
valid. Therefore, if a focused Z-hypersequent is valid then it is derivable in ZL.T.

In the completeness proof (Theorem [[I]) we give a decision procedure for £. based on
the concept of proof-refutation tree. Let H = t9A D BV B D A. A proof-refutation tree
of # is given by:

AlF_1[AFoB [AlF_1[AFoB
SR

SR
[A]BHoB| BHoA [A]BHoB| Aty B
R
[AJAFoB| BoA [AlF_1 | BFoA
DR
[A]F0ADB|BroA [A]FoADB|F_|

(O]
[A]lFgADB|FoBDA |
VR
[AlF)ADBVBDA
From this proof refutation tree, we then deduce that # is valid.

Our method based on proof-refutation trees cannot be applied to the terminating cal-
culus in [12]] because the merge and weakening rules are not invertible. Our terminating
calculus that does not contain these rules is then more efficient because all its rules
except one are (strongly) invertible: the conclusion of an invertible rule is valid iff its
premises are valid.

7 Conclusion and Perspectives

In this work, we provide new decision procedures with countermodel generation for
Eukasiewicz logics, using the approach proposed in [2]]. A key point is the use of
strongly invertible rules and consequently the ability to generate countermodels. An im-
portant contribution is the definition of a new terminating calculi for the infinite version
E. In comparison with the calculi based on hypersequents [3l4] our calculus improves
proof-search because it has a single form of axiom and moreover does not contain the
merge rule. In further works we will define such labelled terminating calculi for the
finite versions of Lukasiewicz logics and also for Bounded Lukasiewicz logics (see
preliminary results in appendix [C) for which cut-elimination will be studied. We will
also study the possible design of labelled systems for other fuzzy logics.
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o0

A Proofs of Propositions 3 and 4

Proposition 3. If the atomic Z-hypersequent G |T'1 =, Ay | Ta by, Ao is valid in E then
either G | 1"171“2 |_n1+n2+1 A17A2 ‘ F1 |_n1 Al isvalidin £ or G ‘ 1“1,1"2 |_n1+n2+1 Al,Az ‘
I by, Ag is valid in L.

Proof. Let #H = G |1, Ay | T2, Ay be an atomic Z-hypersequent where G being
I o A ... | Ty o A;.. By using linear programming [[16] # is valid iff there exist
of,..., 0, 0,0 € N where oc’ >0oroa;> O for some 1 <i<kand 1< j<2,such

k 2
that for every valuation [[], Z ol | TH)) + Z o [T ) < (o [AT) + D (o
i=1 i=1 i=1
2

Kk
TAT) = (3 (G #nj) + > 0+ n;). We suppose that o > oi. Then for every valuation
i=1 i=1

[[]]wehaveZoc*[Ll"Jj) (o — o) [T ]| + oo ([T +T2]) < i(x*[[A'
i=1

i=1
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k
(o — o) * [AL] —sz*([[l"l—|—l"2ﬂ)—(2(0c§*n§)+(u1 —0p)*kn;+0px(n+ny+

i=1
1)). Then G | T1, T2 by 4my+1 A1, A2 | Ty by, Ay ds valid in E. The case of o > oy is
symmetrical.

Proposition 4. Let [p|G | T1,kiptn, Ar | Taby, Ao, kop be an atomic focused Z-hyper-
sequent. If it is valid then one of the following focused Z-hypersequents is valid:

- [P|G | kol'y, k1T by koAv ki Ag | Ty kil Ay
= [P|G | kol kDo by kaAv, ki Ay | T by Ag ko p

where ki > 0,ky > 0,p ¢ T1UTL UAJUAy and n' = ky xny + ki xny + ki +ky — (ky %
kp+1).

Proof. We first prove by induction on & that [p]G | Tk, A is valid iff G | k', kA where
n=kxm++ (k—1). Then, by Proposition[3 if [p]G | T'1,kipty, A1 | Taby, Ao,kop is
valid then one of the following focused Z-hypersequents is valid:

= [PIG | ko1, k1T, (ky x ko) plpr ko A1 k1 Ag, (ky s ko)p | T ki plgy A
= PG | kaT'1, k1o, (ky % ko) p =y ko Ay ki A, (ki % ko) p | To b, Az kop

where n’ = ky * ny + ki * ny + ki + ko — 1. Finally we prove the following result by
induction: [p]G | T kpt, A kp is valid in L iff [p]G | TF,_x A is valid in L. Therefore
we deduce the result.

B Proofs of Theorems 4, 5 and 7

Theorem 4. An atomic Z-hypersequent H has a countermodel in L iff SI,; has a solu-
tion over [0,1].

Proof. Let H =T 1, Ay |... | Txby, A be an atomic Z-hypersequent. [-] is a counter-
model of # in L iff forall i € {1,...,k}, the inequality | I';| > [A;] — n; holds. Thus,
[-] is a countermodel of # iff foralli € {1,...,k}, (x, = [[p] | p € T;UA;) is a solution
of OT1 > @A — ny. Therefore, #H has a countermodel in L iff SI,, has a solution.
This solution is over [0, 1] because the valuations in £ are from Var to [0, 1].

Theorem 5. An atomic Z-hypersequent H has a countermodel in L., for n # o iff ST,
has a solution over the set of integers {0,...,n—1}.

Proof. Let H =Tty Ay | ... | Tkt Ac be an atomic Z-hypersequent. By using
arguments used in the proof of Theoremd] we show that  has a countermodel in L.,
iff the inequality 14 )’ (x4 —1) > Y| x4 has a solution over [0,1/(n—1),...,(n—
A€T; AEA;
2)/(n—1),1]. Thus # has a countermodelin £, iff (n—1)+ Y, (xa—(n—1)) > > x4
AcT; A€EA;
has a solution over {0,...,n—1}.

Theorem 7. If a Z-hypersequent is valid in £ then it is derivable in Z1L.
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Proof. From Theorem[3] by applying the logical rules of Zk. to every Z-hypersequent
H we obtain a set S of atomic Z-hypersequents such that # is valid iff all elements of S
are valid. Let H =Ty b, Ay | ... | Ty by, A be an atomic Z-hypersequent. We assume
that A is valid. Hence, the set SI,, of inequalities is not feasible over [0, 1]. Then,
by using linear programming [16], there exists a positive nonnegative combination of
the inequalities in S, inconsistent over [0, 1]. Formally, Jo.;,...,04 € N such that for
somei € 1,...,K we have o; > 0 and the inequality o * (OT) +... + o x (OTy) >
o x (DA) — oy xmy+... + o x (D Ar) — ok *my is inconsistent over [0, 1]. We can
easily show, by using Definition ] that the last inequality is inconsistent over [0, 1]
iff the Z-hypersequent o'y, ..., 04k, 0 A, ..., 04Ak is valid in £, where n = o *
(m+1)+...+ogx(m+1)—1and foralliel,...,K, o,I; (resp. 0 A;) denotes
the multiset obtained by the union of «; copies of the multiset I'; (resp. A;). This Z-
hypersequent can be obtained from # by using the external weakening ([EW]) and the
external contraction rules ([EC]).

Let ', A be an atomic Z-hypersequent. We can easily prove that if there is a mul-
tiset of formulae I'y, subset of I" and A, then ', Ais valid iff T —T"yF,_,, A—T7 is
valid, where n’ =| 'y | such that | S | denotes the number of elements in the multiset
S. Moreover, if /L C T such that /L denotes the multiset containing / copies of L,
then ', A is valid iff ' — [ L+, _; A is valid. From these results we obtain ', A is
valid iff ' =T Ul U/L such that L ¢ Iy A=A TUA; T =A1; ToNAy =0; and
| T2 |<| T | —n— L Then, oyTy,...,04 % Fp 01 Ay, ..., 04Ax such that n = oy * (m) +
1)+... + oy (mg+1)—11is derivable in ZE by using [Ax], [SR], [[W.], [[Wg] and [L].
If a Z-hypersequent is valid in £ then it is derivable in ZL..

C Bounded Lukasiewicz Logic

Bounded Lukasiewicz logic £.B,, for n > 2 is defined as the intersection of k for k =
2,...,n. A Hilbert axiomatic system for this logic consists of the same axioms and rules
than . with nA D (n — 1)A. Calculi for £.B,,, called GE.B,, [4]], are obtained by adding to
the hypersequent calculus GE. given in [12]] the following rule:

1

n—1 n—
- ~ N
G|T,..T.I", LFA,... AN

nC
G|THA|T A InC]

It appears that this rule makes proof-search expensive because it duplicates the con-
texts I and A n-1 times. Here we introduce new calculi for Bounded Lukasiewicz logics

that are simpler than GEB,,. We call ZE.B,, the calculus obtained from Zt. by adding:
G|Tibp, Al G|Tabp A G|T, A1 AA
M [GCUT]

G‘rlaFZ}_ml—&-mz-HAl;AZ G|F|—mA

[Ax,]

n—1

G|THoAA, ..., A| T Ao
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Theorem 12 (Soundness). The rules of Z£B,, are sound.

Proof. By Theorem[I] the logical rules are sound. The rules [M], [GCUT], [SR], [S] and

[Lz] are proved sound by similar arguments. Let us consider [AX,]. We suppose that
n—1

P
H=G|Thky A,ZL o ,E | T, Ato A’ has a countermodel. Thus, for k € {2,...,n} there
is a valuation [[-] countermodel of # in £. Thus, there exists i € {0,...,k— 1} such
that [A] = ,*,.If [A] = 0 then |[I",A] <0< [A']] and we get a contradiction. Now,
if [A] = ', withi# 0 then || <1< (n—1)x ', + [A] because n > k. This is a
contradiction.

Theorem 13 (Completeness). If A is valid in £B,, then oA is derivable in ZLB,,.

Proof. We have only to prove that (1) the axiom nA D (n — 1)A is derivable in ZEB,
and (2) the modus ponens rule is admissible in ZLB,,. Then we have:

}—o(n— l)A |A}—0
Fo(n—1A| (n—1)A,AF (n—1)A
A® ((n—1)A) o (n—1)A

SR]

&L

n—1

and by using [®g] n-1 times, we obtain the axiom }—0;17 ... 72 | Akg. A proof of (2) is
given by the following derivation:

AFoB oA

A1 B,A
[GCUT]
FoB

In next works we will study the cut-elimination problem.
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