
Nominal Matching and Alpha-Equivalence�

(Extended Abstract)

Christophe Calvès and Maribel Fernández

King’s College London, Department of Computer Science,
Strand, London WC2R 2LS, UK

Christophe.Calves@kcl.ac.uk, Maribel.Fernandez@kcl.ac.uk

Abstract. Nominal techniques were introduced to represent in a simple
and natural way systems that involve binders. The syntax includes an
abstraction operator and a primitive notion of name swapping. Nominal
matching is matching modulo α-equality, and has applications in pro-
gramming languages and theorem proving, amongst others. In this paper
we describe efficient algorithms to check the validity of equations involv-
ing binders, and also to solve matching problems modulo α-equivalence,
using the nominal approach.

Keywords: Binders, α-equivalence, matching, nominal terms.

1 Introduction

The notion of a binder is ubiquitous in computer science. Programs, logic for-
mulas, and process calculi, are some examples of systems that involve binding.
Program transformations and optimisations, for instance, are defined as oper-
ations on programs, and therefore work uniformly on α-equivalence classes. To
formally define a transformation rule acting on programs, we need to be able
to distinguish between free and bound variables, and between meta-variables of
the transformation rule and variables of the object language. We also need to be
able to test for α-equivalence, and we need a notion of matching that takes into
account α-equivalence.

Nominal techniques were introduced to represent in a simple and natural way
systems that include binders [7,10,11]. The nominal approach to the representa-
tion of systems with binders is characterised by the distinction, at the syntactical
level, between atoms (or object-level variables), which can be abstracted (we use
the notation [a]t, where a is an atom and t is a term), and meta-variables (or
just variables), which behave like first-order variables but may be decorated with
atom permutations. Permutations are generated using swappings (e.g. (a b) · t
means swap a and b everywhere in t). For instance, (a b)·λ[a]a = λ[b]b, and
(a b)·λ[a]X = λ[b](a b)·X (we will introduce the notation formally in the next
section). As shown in this example, permutations suspend on variables. The idea
is that when a substitution is applied to X in (a b)·X , the permutation will be
� This work has been partially funded by an EPSRC grant (EP/D501016/1 “CANS”).

W. Hodges and R. de Queiroz (Eds.): WoLLIC 2008, LNAI 5110, pp. 111–122, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

112 C. Calvès and M. Fernández

applied to the term that instantiates X . Permutations of atoms are one of the
main ingredients in the definition of α-equivalence for nominal terms.

Nominal terms [12] can be seen as trees, built from function symbols, tuples
and abstraction term-constructors; atoms and variables are leaves. We can define
by induction a freshness relation a#t (read “the atom a is fresh for the term
t”) which roughly corresponds to the notion of a not occurring unabstracted
in t. Using freshness and swappings we can inductively define a notion of α-
equivalence of terms. Nominal unification is the problem of deciding whether
two nominal terms can be made α-equivalent by instantiating their variables. It
is a generalisation of the unification problem for first-order terms [1], and has the
same applications in rewriting [5], logic programming [3], etc. Urban, Pitts and
Gabbay [12] showed that nominal unification is decidable, and gave an algorithm
to find the most general solution to a nominal unification problem, if one exists.

In this paper we study a simpler version of the problem —nominal matching—
that has applications in functional programming, rewriting and meta program-
ming amongst others. In a matching problem s ≈α t, t is ground (i.e., it has
no variables), or, more generally, it has variables that cannot be instantiated.1

When the term t is ground we say that the matching problem is ground. The
left-hand side of a matching problem s ≈α t is called a pattern, and may have
variables occurring multiple times. When each variable occurs at most once in
patterns we say that the matching problem is linear. We present an efficient al-
gorithm that can be used to solve both linear and non-linear matching problems
modulo α, as well as ground and non-ground problems. An algorithm to test
α-equivalence of nominal terms (ground or non-ground) can be easily derived.

The complexity of the algorithms depends on the kind of problem to be solved;
it is given in the table below:

Case Alpha-equivalence Matching
Ground linear linear

Non-ground and linear log-linear log-linear
Non-ground and non-linear log-linear quadratic

We have implemented the algorithms using OCAML [9], the implementation
is available from: www.dcs.kcl.ac.uk/staff/maribel/CANS. We give sample
benchmarks in the Appendix (Section 6), for more details see the website above.

In functional programming applications, matching problems are ground and in
this case our algorithm is linear in time, as indicated in the first line of the table
above. To our knowledge, this is the only available nominal matching algorithm
with this complexity.

We are currently deploying the algorithms in a rewriting tool that can be used
to specify equational theories including binders in the nominal style (see [6, 4]),
and to evaluate functions working on data structures that include binding. In
future, we hope to be able to extend the implementation techniques discussed

1 These variables may have suspended permutations.

Nominal Matching and Alpha-Equivalence 113

in this paper to solve nominal unification problems. The complexity of nominal
unification is still an open problem.

2 Background

Let Σ be a denumerable set of function symbols f , g, . . . ; X be a denumerable
set ofvariables X, Y, . . . (representing meta-level variables); andA be a denumer-
able set of atoms a, b, . . . (representing object-level variables). We assume that Σ,
X and A are pairwise disjoint. A swapping is a pair of (not necessarily distinct)
atoms, written (a b). Permutations π are lists of swappings, generated by the
grammar: π ::= Id | (a b) ◦ π. We call Id the identity permutation and write
π−1 for the permutation obtained by reversing the list of swappings in π. We de-
note by π ◦π′ the permutation containing all the swappings in π followed by those
in π′. A pair π·X of a permutation π and a variable X is called a suspension.

Nominal terms, or just terms for short, over Σ,X ,A are generated by the
grammar: s, t ::= a | π·X | (s1, . . . , sn) | [a]s | f t.

A term is ground if it has no variables; V (t) denotes the set of elements of
X that occur in t. We refer the reader to [12, 5] for more details and examples
of nominal terms.

We can apply permutations and substitutions on terms, denoted π·t and
t[X �→ s] respectively. Permutations act top-down and accumulate on variables
whereas substitutions act on variables. More precisely, π·t is defined by induc-
tion: Id·t = t and ((a b) ◦ π)·t = (a b)·(π·t), where

(a b)·a = b (a b)·b = a (a b)·c = c if c �∈ {a, b}
(a b)·(π·X) = ((a b) ◦ π)·X (a b)·(f t) = f(a b)·t

(a b)·[n]t = [(a b)·n](a b)·t (a b)·(t1, . . . , tn) = ((a b)·t1, . . . , (a b)·tn)

In the sequel we abbreviate Id·X as X when there is no ambiguity.
A substitution is generated by the grammar: σ ::= Id | [X �→ s]σ. We write

substitutions postfix and write ◦ for composition of substitutions: t(σ ◦ σ′) =
(tσ)σ′. We define the instantiation of a term t by a substitution σ by induction:
t Id = t and t[X �→ s]σ = (t[X �→ s])σ where

a[X �→ s] = a (t1, . . . , tn)[X �→ s] = (t1[X �→ s], . . . , tn[X �→ s])
([a]t)[X �→ s] = [a]t[X �→ s] (ft)[X �→ s] = f(t[X �→ s])

(π·X)[X �→ s] = π·s (π·Y)[X �→ s] = π·Y
Constraints have the form: a#t or s ≈α t, where # is the freshness rela-

tion between atoms and terms, and ≈α denotes alpha-equality. A set Pr of
constraints is called a problem. Intuitively, a#t means that if a occurs in t then
it must do so under an abstractor [a]-. For example, a#b, and a#[a]a but not
a#a. We sometimes write a, b#s instead of a#s, b#s, or write A#s, where A is
a set of atoms, to mean that all atoms in A are fresh for s.

The following set of simplification rules from [12], acting on problems, can
be used to check the validity of α-equality constraints (below ds(π, π′) is an
abbreviation for {n | π·n �= π′·n}).

114 C. Calvès and M. Fernández

a#b, Pr =⇒ Pr
a#fs, Pr =⇒ a#s, Pr

a#(s1, . . . , sn), P r =⇒ a#s1, . . . , a#sn, P r
a#[b]s, Pr =⇒ a#s, Pr
a#[a]s, Pr =⇒ Pr
a#π·X, Pr =⇒ π-1·a#X, Pr π �= Id

a ≈α a, Pr =⇒ Pr
(l1, . . . , ln) ≈α (s1, . . . , sn), P r =⇒ l1 ≈α s1, . . . , ln ≈α sn, P r

fl ≈α fs, Pr =⇒ l ≈α s, Pr
[a]l ≈α [a]s, Pr =⇒ l ≈α s, Pr
[a]l ≈α [b]s, Pr =⇒ l ≈α (a b)·s, a#s, Pr

π·X ≈α π′·X, Pr =⇒ ds(π, π′)#X, Pr

Given a problem Pr, we apply the rules until we get an irreducible problem, i.e.
a normal form. If only a set Δ of constraints of the form a#X are left, then
the original problem is valid in the context Δ (i.e., Δ 	 Pr), otherwise it is not
valid. Thus, a problem such as X ≈α a is not valid, since it is irreducible. How-
ever, X can be made equal to a by instantiation (i.e., applying a substitution);
we say that this constraint can be solved. If we impose the restriction that in a
constraint s ≈α t the variables in t cannot be instantiated and the variables in
left-hand sides are disjoint from the variables in right-hand sides, then we obtain
a nominal matching problem. If we require s to be linear (i.e., each variable
occurs at most once in s), we obtain a linear nominal matching problem.

A most general solution to a nominal matching problem Pr is a pair (Δ, σ)
of a freshness context and a substitution, obtained from the simplification rules
above, enriched with an instantiating rule labelled with substitutions:

π·X ≈α u, Pr
X �→π-1·u=⇒ Pr[X �→ π-1·u]

Note that there is no need to do an occur-check because left-hand side vari-
ables are distinct from right-hand side variables in a matching problem.

3 The Algorithm

The transformation rules given in Section 2 create permutations. Polynomial
implementations of the nominal unification algorithm [2] rely on the use of lazy
permutations: permutations are only pushed down a term when this is needed
to apply a transformation rule. We will use this idea, but, since lazy permutations
may grow (they accumulate), in order to obtain an efficient algorithm we will
devise a mechanism to compose the swappings eagerly. The key idea is to work
with a single current permutation, represented by an environment.

Definition 1. Let s and t be terms, π be a permutation and A be a finite set of
atoms. An environment ξ is a pair (π, A). We denote by ξπ the permutation
(resp. ξA the set of atoms) of an environment. We write s ≈α ξ♦t to represent
s ≈α ξπ·t, ξA # t, and call s ≈α ξ♦t an environment constraint.

Nominal Matching and Alpha-Equivalence 115

Definition 2. An environment problem Pr is either ⊥ or has the form
s1 ≈α ξ1♦t1, . . . , sn ≈α ξn♦tn, where si ≈α ξi♦ti (1 ≤ i ≤ n) are environ-
ment constraints. We will sometimes abbreviate it as (si ≈α ξi♦ti)n

1 .
The problems defined in Section 2 will be called standard to distinguish them

from environment problems (standard problems have no environments). The
standard form of an environment problem is obtained by applying as many
times as possible the rule: s ≈α ξ♦t =⇒ s ≈α ξπ·t, ξA # t. We denote by [[Pr]]
the standard form of an environment problem Pr.

This rule is terminating because it consumes a ♦ each time, without creating
any. There is no critical pair so the system is locally confluent and because it
terminates it is confluent [8]. Therefore the standard form of an environment
problem exists and is unique, justifying the notation [[Pr]].

The solutions of an environment problem are the solutions of its standard
form (see Section 2). A problem ⊥ has no solutions. Two environment prob-
lems are equivalent if their standard forms are equivalent, i.e., have the same
solutions.

Standard problems are translated into environment problems in linear time:
s ≈α t is encoded as s ≈α ξ♦t where ξ = (Id, ∅) and A # t is encoded as
t ≈α ξ♦t where ξ = (Id, A). In the sequel we restrict our attention to checking
α-equivalence constraints and solving matching problems. In the latter case,
in environment constraints s ≈α ξ♦t, the term t will not be instantiated and
variables in s and t are disjoint. If right-hand sides t are ground terms, we will
say that the problem is ground, and non-ground otherwise.

3.1 Core Algorithm

The algorithms to check α-equivalence constraints and to solve matching prob-
lems will be built in a modular way. The core module is common to both algo-
rithms; only the final phase will be specific to matching or α-equivalence. There
are four phases in the core algorithm. We denote by Pr

c
the result of applying

the core algorithm on Pr.

Phase 1. The input is an environment problem Pr = (si ≈α ξi♦ti)n
i , that we

reduce using the following transformation rules, where a, b could be the same
atom and in the last rule ξ′ = ((a ξπ ·b) ◦ ξπ, (ξA ∪ {ξ−1

π ·a}) \ {b}).

Pr, a ≈α ξ♦t =⇒
{

Pr if a = ξπ·t and t �∈ ξA

⊥ otherwise

Pr, (s1, . . . , sn)≈α ξ♦t =⇒
{

Pr, (si ≈α ξ♦ui)n
1 if t = (u1, . . . , un)

⊥ otherwise

Pr, f s ≈α ξ♦t =⇒
{

Pr, s ≈α ξ♦u if t = f u

⊥ otherwise

Pr, [a]s ≈α ξ♦t =⇒
{

Pr, s ≈α ξ′♦u if t = [b]u
⊥ otherwise

116 C. Calvès and M. Fernández

The environment problems that are irreducible for the rules above will be
called phase 1 normal forms or ph1nf for short.

Proposition 1 (Phase 1 Normal Forms). The normal forms for phase 1
rules are either ⊥ or (πi·Xi ≈α ξi♦si)n

1 where si are nominal terms.

Phase 2. This phase takes as input an environment problem in ph1nf, and moves
the permutations to the right-hand side. More precisely, given a problem in
ph1nf, we apply the rule:

π·X ≈α ξ♦t =⇒ X ≈α (π−1·ξ)♦t (π �= Id)

where π−1·ξ = (π−1 ◦ ξπ, ξA). Note that π−1 applies only to ξπ here, because
π·X ≈α ξ♦t represents π·X ≈α ξπ ·t, ξA#t.

If the problem is irreducible (i.e., it is a normal form for the rule above), we
say it is a phase 2 normal form, or ph2nf for short.

Proposition 2 (Phase 2 Normal Forms). Given a ph1nf problem, it has a
unique normal form for the rule above, and it is either ⊥ or a problem of the
form (Xi ≈α ξi♦ti)n

1 , where the terms ti are standard nominal terms.

Phase 3. In the phases 1 and 2 we deal with ≈α constraints. Phase 3 takes a ph2nf
and simplifies freshness constraints, by propagating environments over terms.
Since the input is a problem in ph2nf, each constraint has the form X ≈α ξ♦t.
We reduce it with the following rewrite rules, which propagate ξ over t and deal
with problems containing ⊥ (denoted Pr[⊥]):

ξ♦a =⇒
{

ξπ ·a a �∈ ξA

⊥ a ∈ ξA

ξ♦f t =⇒ f (ξ♦t)
ξ♦(t1, . . . , tj) =⇒ (ξ♦ti)

j
1

ξ♦ [a]s =⇒ [ξπ ·a]((ξ \ {a})♦s)
ξ♦(π·X) =⇒ (ξ ◦ π)♦X

Pr[⊥] =⇒ ⊥
where ξ \ {a} = (ξπ , ξA \ {a}) and ξ ◦ π = ((ξπ ◦ π), π−1(ξA)).

These rules move environments inside terms, so formally we need to extend the
definition of nominal term, to allow us to attach an environment at any position
inside the term. We omit the definition of terms with suspended environments,
and give just the grammar for the normal forms, which may have environments
suspended only on variable leaves:

Definition 3. The language of normal environment terms is defined by:

Tξ = a | f Tξ | (Tξ, . . . , Tξ) | [a]Tξ | ξ♦X

Proposition 3 (Phase 3 Normal Forms - ph3nf). The normal forms for
this phase are either ⊥ or (Xi ≈α ti)n

1 where ti ∈ Tξ.

Nominal Matching and Alpha-Equivalence 117

Phase 4. This phase computes the standard form of a ph3nf:

X ≈α C[ξ♦X ′] =⇒ X ≈α C[ξπ ·X ′] , ξA # X ′

Proposition 4 (Phase 4 Normal Forms - ph4nf). If we normalise a ph3nf
using the rule above, we obtain either ⊥ or (Xi ≈α ui)i∈I , (Aj # Xj)j∈J where
ui are nominal terms and I, J may be empty.

The core algorithm terminates, and preserves the set of solutions. Since all the
reduction rules, except the rule dealing with ⊥, are local (i.e. only modify one
constraint), the result of applying the core algorithm to a set of constraints
is the union of the results obtained for each individual constraint (assuming
⊥, P r ≡ ⊥) .

3.2 Checking the Validity of α-Equivalence Constraints

To check that a set Pr of α-equivalence constraints is valid, we first run the core
algorithm on Pr and then reduce the result Pr

c
by the following rule:

(α) Pr , X ≈α t =⇒
{

Pr , supp(π) # X if t = π·X
⊥ otherwise

where supp(π) is the support of π: supp(π) = {a | π·a �= a}.
Since this rule is terminating (each application consumes one ≈α-constraint)

and there are no critical pairs, it is confluent [8], therefore normal forms exist
and are unique. Pr

≈α denotes the normal form of Pr
c

by the rule above.

Proposition 5 (Normal Forms Pr
≈α). Pr

≈α is either ⊥ or (Ai # Xi)n
1 .

Proposition 6 (Correctness). If Pr
≈α is ⊥ then Pr is not valid. If Pr

≈α

is (Ai # Xi)n
1 then Pr

≈α 	 Pr.

If the left-hand sides of ≈α-constraints in Pr are ground, then Pr
c

= Pr
≈α ;

rule (α) is not necessary in this case.

3.3 Solving Matching Problems

To solve a matching problem Pr, we first run the core algorithm on Pr and then
if the problem is non-linear we normalise the result Pr

c
by the following rule:

(?≈) Pr, X ≈α s , X ≈α t =⇒
{

Pr , X ≈α s , s ≈α t
≈α if s ≈α t

≈α �= ⊥
⊥ otherwise

This rule is terminating: each reduction consumes at least one ≈α-constraint,
and the algorithm computing Pr

≈α is also terminating. Pr ?≈ denotes a normal
form of Pr

c
by the rule (?≈).

118 C. Calvès and M. Fernández

Proposition 7 (Normal Forms Pr ?≈). If we normalise Pr
c

using the rule
above, we obtain either ⊥ or (Xi ≈α si)n

1 , (Ai # Xi)m
1 where si are standard

terms, all Xi in the equations (Xi ≈α si)n
1 are different variables and ∀i, j : Xi �∈

V(sj).

A problem of the form (Xi ≈α si)n
1 where all Xi are distinct variables and

Xi �∈ V(sj) is the coding of an idempotent substitution σ. (Ai # Xi)n
1 is a

freshness context Δ. Thus, the result of the algorithm is either ⊥ or a pair
(σ, Δ) of a substitution and a freshness context.

Proposition 8 (Correctness). Pr ?≈ is a most general solution of the match-
ing problem Pr.

4 Implementation

Coding the problem. Terms are represented as trees. We code ξ♦t by attaching
ξ to the root of t. Environment constraints are represented as pairs of trees,
and freshness constraints as a pair of a set of atoms and a variable. Problems
are represented as lists of constraints.

Avoiding environment creation in the core algorithm. Instead of running each
phase in turn, we combine them to have a local reduction strategy: we fully
reduce one constraint into ph4nf before reducing other constraints.

Each rule in the algorithm involves at most one environment, obtained either
by copying or modifying another one. Instead of copying environments (in the
case of tuples), we will share them. Updates in the current environment will,
because of sharing, affect all the constraints where this environment is used.
However, thanks to our local reduction strategy, none of these constraints will
be reduced until the current constraint is in ph4nf (and then it will not use
any environment). At this point, by reversing the environment to its original
state, we can safely reduce the other constraints. Therefore, we keep track of
the operations we made in the environment, fully reduce the current constraint,
and then reverse the operations before reducing another constraint.

Permutations and sets. We code atoms as integers, and permutations (resp. sets)
as mutable arrays or as functional maps of atoms (resp. booleans) indexed by
atoms such that the value at the index a is the image of a by the permutation
(resp. the boolean indicating whether a is in the set or not).

On one hand, mutable arrays have the advantage that they can be accessed
and updated in constant time, but are destructive so we may need to copy them
sometimes (an operation that is linear in time and space in their size). On the
other hand, an access/update on functional maps is logarithmic in time, but
since updates are not destructive we do not need to copy them.

We will use either mutable arrays or functional maps depending on the kind
of problem to be solved:

Nominal Matching and Alpha-Equivalence 119

Case Alpha-equivalence Matching

Ground mutable arrays mutable arrays
Non-ground and linear functional maps functional maps

Non-ground and non-linear functional maps mutable arrays

Note that when the problem is ground, phase 4 is not needed in the core
algorithm, and therefore we never need to display permutations or freshness
constraints. Since in this case we only need to access and update the environment,
arrays are more efficient. With linear, non-ground problems, we need phase 4,
and the cost is quadratic using arrays, but log-linear using functional maps. We
will discuss the non-linear case in Section 5.

Since we often need the inverse and the support of a permutation, when we
create a permutation we compute at the same time its inverse and its support
and keep them in the same tuple. This can be done in linear time with arrays
and in log-linear time with maps.

Implementing the algorithms. The implementation of the core algorithm is es-
sentially a traversal of the data structure representing the input problem Pr0,
propagating the environment using the techniques above. The result is a list
Pr0

c
of constraints in ph4nf. The α-equivalence algorithm then takes each ≈α-

constraint in the list Pr0
c

and reduces it with (α). The matching algorithm
applies the rule (?≈): it traverses the list to take for each variable X the con-
straint X ≈α s with minimal s (we define the size of s below), and store S[X] = s
in an array S indexed by variables. Then the algorithm traverses the list again
applying the rule Rl-Check-Subst:

Pr , X ≈α t =⇒
{

Pr , S[X] ≈α t
≈α if S[X] ≈α t

≈α �= ⊥
⊥ otherwise

and S[X] ≈α t
≈α

is computed using arrays.

5 Complexity

Atoms are coded as integers, as explained above. Let MA0 be the maximum
atom in A0 (the set of atoms occurring in the input problem Pr0). Let |t|n be
the number of nodes in the tree representing t. Finally, let MV(t) be the multiset
of the occurrences of variables in t.

Core algorithm. Below we analyse the cost of the algorithm.

Definition 4. The size of the problem s ≈α ξ♦t, written |s ≈α ξ♦t|, is defined
as |s ≈α ξ♦t| = |s| + |ξ| + |t| where |ξ| = 2 × |ξπ| + |ξA|, |ξπ| (resp. |ξA|) is
the size of the array/map representing it, and |t| is defined by: |a| = |X | = 1,
|f t| = 1+|t|, |(t1, . . . , tj)| = 1+|t1|+. . . |tj |, | [a]s| = 1+|s| and |π·X | = 1+|π|.

120 C. Calvès and M. Fernández

Proposition 9. The core algorithm is linear in the size of the initial problem
Pr0 in the ground case, using mutable arrays. In the non-ground case, it is log-
linear using functional maps and ϑ(|s ≈α t|+ |MA0 |× |t|n) using mutable arrays.

The idea of the proof is that the core algorithm is essentially a traversal of the
data structure representing the problem. Phases 1 to 3 are trivially linear with
arrays and log-linear with functional maps. Phase 4 is done in ϑ(|MA0 |) with
functional maps, and ϑ(|MA0 | × |t|n) with arrays.

Alpha-equivalence. To check the validity of an ≈α-constraint, after running the
core algorithm we have to normalise the problem using the rule (α), as described
in Section 3.2. If the right-hand sides of ≈α-constraints are ground, the core
algorithm is sufficient and it is linear. Otherwise, each application of the rule
(α) requires to know the support of a permutation, which we do because supports
are always created with permutations and maintained when they are updated.
Thanks to the use of functional maps, the support is copied in constant time
when the permutation is copied, therefore the algorithm is also log-linear in the
size of the problem in the non-ground case.

Matching. The algorithm to solve matching constraints consists of the core al-
gorithm, followed by a normalisation phase (using rule ?≈, see Section 3.3) that
deals with variables occurring multiple times in the pattern. In the case of linear
matching this is not needed – the core algorithm is sufficient.

In Section 4 we discussed the implementation of the rule ?≈ using an array S
indexed by variables and the rule Rl-Check-Subst. The construction of S requires
the traversal of subterms of the term s and every term in the output of the core
algorithm. This is done in time proportional to the size of the output of the core
algorithm. At worst, the size is |MA0 |×MV(t)+ |s ≈α t| because phase 4 can add
a suspended permutation and freshness constraints on every variable occurring
in t. Therefore the output can be quadratic in the size of the input.

Then Rl-Check-Subst will compute S[Xi] ≈α ti
≈α for each constraint Xi ≈α

ti in the result of the core algorithm. Phase 1 to 3 are linear in its size and phase 4
has a complexity ϑ(|MA0 |×MV(ti)), hence at worst quadratic in time in the size
of the input problem. The worst case complexity arises when phase 4 suspends
permutations on all variables. On the other hand, if the input problem already
has in each variable a permutation of size |MA0 | (i.e. variables are ’saturated’
with permutations), then, since permutations cannot grow, the α-equivalence
and matching algorithms are linear even using arrays. Note that the represen-
tation of a matching problem or an α-equivalence problem using higher-order
abstract syntax does saturate the variables (they have to be applied to the set
of atoms they can capture). The table below summarises the results:

Case Alpha-equivalence Matching
Ground linear linear

Non-ground and linear log-linear log-linear
Non-ground and non-linear log-linear quadratic

Nominal Matching and Alpha-Equivalence 121

6 Benchmarks

The algorithms described above to check α-equivalence and to solve ground
matching problems have been implemented in OCAML [9], using arrays. In
Figure 1, we show benchmarks generated by building random solvable ground
problems (i.e., problems that do not lead to ⊥) and measuring the time taken
by the α-equivalence and matching algorithms to give the result (marked as �

and + in the graph)2.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Time (s)

Size

alpha

�����
����

���
����

����
����
������

����
���
��
�
����

�
�
���
��
�
��
���
�����

���
�����

����
���
�
�
�
�
�

�
�
�

�

�

��

�
�
�
��

�
�
�

�

�

�
��

��

�

�

�

�

�

�

�

�

�
�

���
�

���
�
�

�

���

�
�

�

�

��

�

�

�

�

��

�

�

�

�

���

�

�

�

��

���

�

�

�

�

�

��

��

��

�

�

�

�

�

��

�

�

��

�

�

��

��

�

�

��

�
�

�

�

����
�

�

�

��

�

�
�

match

++
+++++++++ ++++++ ++++++++++++++++++++++ +++++++++++ ++++++ +++++++++

++++++++
+ +++ +++++++ ++

+++
+

+ +++++
++++ ++++++++++

++++
++ +++

+
+

+
+

+

+
+ +

+
++

+
+++ +++ +

++
+

+

+ ++ ++
+

++
+ +
++

+
+

+
+
+ +
+

+
++++

+

+

+
+++

+
+

+

+ +
+

+
+ +

+

Fig. 1. Benchmarks

7 Conclusions

We described an algorithm to solve matching problems modulo α-equivalence
which is linear time and space when the right-hand side terms are ground. Match-
ing modulo α-equivalence has numerous applications, in particular, in the design
of functional programming languages that provide constructs for declaring and
manipulating abstract syntax trees involving names and binders, and as a basis
for the implementation of nominal rewriting tools.

Acknowledgements. We thank James Cheney, Jamie Gabbay, Andrew Pitts,
François Pottier and Christian Urban for useful discussions on the topics of
this paper.

2 The program is available from: www.dcs.kcl.ac.uk/staff/maribel/CANS

122 C. Calvès and M. Fernández

References

1. Baader, F., Snyder, W.: Unification Theory. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, ch. 8, vol. I, pp. 445–532. Elsevier Science,
Amsterdam (2001)

2. Calvès, C., Fernández, M.: Implementing nominal unification. In: Proceedings
of TERMGRAPH 2006, 3rd International Workshop on Term Graph Rewriting,
ETAPS 2006, Vienna. Electronic Notes in Computer Science, Elsevier, Amsterdam
(2006)

3. Cheney, J.: α-Prolog: an interpreter for a logic programming language based on
nominal logic, http://homepages.inf.ed.ac.uk/jcheney/programs/aprolog/

4. Clouston, R.A., Pitts, A.M.: Nominal Equational Logic. In: Cardelli, L., Fiore, M.,
Winskel, G. (eds.) Computation, Meaning and Logic. Articles dedicated to Gordon
Plotkin. Electronic Notes in Theoretical Computer Science, vol. 1496, Elsevier,
Amsterdam (2007)

5. Fernández, M., Gabbay, M.J.: Nominal Rewriting. Information and Computa-
tion 205, 917–965 (2007)

6. Gabbay, M.J., Mathijssen, A.: Nominal Algebra. In: Proceedings of the 18th Nordic
Workshop on Programming Theory (NWPT 2006) (2006)

7. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable bind-
ing. Formal Aspects of Computing 13, 341–363 (2001)

8. Newman, M.H.A.: On theories with a combinatorial definition of equivalence. An-
nals of Mathematics 43(2), 223–243 (1942)

9. OCAML, http://caml.inria.fr/
10. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Information

and Computation 186, 165–193 (2003)
11. Shinwell, M.R., Pitts, A.M., Gabbay, M.J.: FreshML: Programming with binders

made simple. In: Eighth ACM SIGPLAN International Conference on Functional
Programming (ICFP 2003), Sweden, pp. 263–274. ACM Press, New York (2003)

12. Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theoretical Computer
Science 323, 473–497 (2004)

http://homepages.inf.ed.ac.uk/jcheney/programs/aprolog/
http://caml.inria.fr/

	Nominal Matching and Alpha-Equivalence
	Introduction
	Background
	The Algorithm
	Core Algorithm
	Checking the Validity of ${\alpha}$-Equivalence Constraints
	Solving Matching Problems

	Implementation
	Complexity
	Benchmarks
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

