
Inter-deriving Semantic Artifacts

for Object-Oriented Programming

(Extended Abstract)

Olivier Danvy and Jacob Johannsen

Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

{danvy,cnn}@daimi.au.dk
http://www.daimi.au.dk/~{danvy,cnn}

Abstract. We present a new abstract machine for Abadi and Cardelli’s
untyped calculus of objects. What is special about this semantic artifact
(i.e., man-made construct) is that is mechanically corresponds to both
the reduction semantics (i.e., small-step operational semantics) and the
natural semantics (i.e., big-step operational semantics) specified in Abadi
and Cardelli’s monograph. This abstract machine therefore embodies
the soundness of Abadi and Cardelli’s reduction semantics and natural
semantics relative to each other.

To move closer to actual implementations, which use environ-
ments rather than actual substitutions, we then represent object methods
as closures and in the same inter-derivational spirit, we present three
new semantic artifacts: a reduction semantics for a version of Abadi
and Cardelli’s untyped calculus of objects with explicit substitutions, an
environment-based abstract machine, and a natural semantics (i.e., an
interpreter) with environments. These three new semantic artifacts me-
chanically correspond to each other, and furthermore, they are coherent
with the previous ones since as we show, the two abstract machines are
bisimilar. Overall, though, the significance of these artifacts lies in them
not having been designed from scratch and then proved correct: instead,
they were mechanically inter-derived.

1 Introduction

Our goal here is to apply Danvy et al.’s ‘syntactic correspondence’ and ‘func-
tional correspondence’ [3, 8, 12, 21, 37, 38, 39], which were developed for the λ-
calculus with effects, to Abadi and Cardelli’s untyped calculus of objects [1,
Chapter 6].

1.1 Background and First Contribution

The syntactic correspondence between reduction semantics and abstract machines:
This correspondence mechanically links a reduction semantics (i.e., a small-
step operational semantics with an explicit representation of reduction con-
texts [27,28]) to an abstract machine. In such a reduction semantics, evaluation

W. Hodges and R. de Queiroz (Eds.): WoLLIC 2008, LNAI 5110, pp. 1–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 O. Danvy and J. Johannsen

is implemented by iterated reduction, and the corresponding reduction sequence
can be depicted as follows:

◦
decompose

���
��

��
��

��
reduction step �� ◦

decompose

���
��

��
��

��
reduction step �� ◦

decompose

���
��

��
��

��

◦
contract

�� ◦

plug
����������� ◦

contract
�� ◦

plug
����������� ◦

contract
��

At each step, a non-value term is decomposed into a reduction context and a
potential redex. If the potential redex is an actual one (i.e., if it is not stuck),
it is contracted. The contractum is then plugged into the context, yielding the
next term in the reduction sequence.

At each step, the function plug therefore constructs an intermediate term.
In the course of evaluation, this term is then immediately decomposed by the
subsequent call to decompose. The composition of plug and decompose can thus
be replaced by a more efficient function, refocus, that directly goes from redex
site to redex site in the reduction sequence:

◦
decompose

���
��

��
��

��
◦

decompose

���
��

��
��

��
◦

decompose

���
��

��
��

��

������ ◦
contract

�� ◦

plug
�����������

refocus
���������� ◦

contract
�� ◦

plug
�����������

refocus
���������� ◦

contract
��

As shown by Danvy and Nielsen [25], refocus can take the form of a state-
transition function. Therefore, together with contract, the result is an abstract
machine. And what is remarkable here is that the abstract machines obtained
by refocusing are not unnatural ones.

In fact, this syntactic correspondence between reduction semantics and ab-
stract machines has made it possible to obtain a variety of abstract machines
for the λ-calculus, be it pure or with effects. Some of these machines were in-
dependently known and some others are new [10,11]. Symmetrically, it also has
made it possible to exhibit the calculi and the reduction strategies (in the form
of reduction semantics) corresponding to pre-existing abstract machines.

The functional correspondence between natural semantics and abstract machines:
This correspondence mechanically links a natural semantics (i.e., a big-step op-
erational semantics, as implemented by an interpreter [32, 40]) to an abstract
machine. It is based on the framework initiated by Reynolds in his seminal ar-
ticle “Definitional Interpreters for Higher-Order Programming Languages” [41].
In a nutshell, successively transforming an interpreter using closure conversion,
transformation into continuation-passing style (CPS), and defunctionalization
yields an abstract machine [4]. And what is remarkable here is that the ab-
stract machines obtained by CPS transformation and defunctionalization are
not unnnatural ones.

Inter-deriving Semantic Artifacts for Object-Oriented Programming 3

In fact, this functional correspondence between natural semantics and ab-
stract machines has made it possible to obtain a variety of abstract machines
for the λ-calculus, be it pure or with effects. Some of these machines were in-
dependently known and some others are new [5, 6, 9]. Symmetrically, it also has
made it possible to exhibit the interpreter (in the form of a natural semantics)
corresponding to pre-existing abstract machines.

Our starting point here: Together, the syntactic and the functional correspon-
dences make it possible to connect three semantic artifacts (i.e., man-made con-
structs) soundly: reduction semantics, abstract machines, and natural semantics.
Better: the correspondence make it possible to inter-derive these semantics (or
more precisely, their representation as functional programs), mechanically. This
inter-derivation contrasts with defining several semantics, which requires work,
and proving their soundness relative to each other, which requires more work. As
Rod Burstall soberly put it once, “theory should be call by need.” Our goal here
is to apply these two correspondences to Abadi and Cardelli’s untyped calculus
of objects.

Abadi and Cardelli’s untyped calculus of objects: Abadi and Cardelli’s mono-
graph “A Theory of Objects” is a landmark. Nowadays it provides standard
course material about object-oriented languages and programming. Of interest
to us here is its Chapter 6 where an untyped calculus of objects, the ς-calculus,
is developed in the same spirit as its predecessor, the λ-calculus [7, 14], which
was initially developed as an untyped calculus of functions. The ς-calculus is
specified with a reduction semantics, for a given reduction order, and with a
natural semantics, for a given evaluation order. A soundness theorem (Proposi-
tion 6.2-3, page 64) links the two semantics. Operational reduction is also shown
to be complete with respect to many-step reduction with a completeness theorem
(Theorem 6.2-4, page 65). Soundness matters because it shows that the inter-
preter implementing the natural semantics is faithful to the reduction semantics
and vice versa. Completeness matters because it shows that the reductions may
be meaningfully re-ordered, thus enabling practical optimizations such as con-
stant propagation and more generally partial evaluation [15, 31].

First contribution: Using the syntactic correspondence, we exhibit an abstract
machine that embodies the reduction semantics of the ς-calculus and its re-
duction strategy. Using the functional correspondence, we exhibit an abstract
machine that embodies the natural semantics of the ς-calculus and its evalua-
tion strategy. The two abstract machines are identical. This abstract machine,
which is new, therefore mediates between the reduction semantics and the nat-
ural semantics, and practically confirms the soundness theorem:

reduction
semantics
for the

ς-calculus

syntactic
correspondence

��

abstract
machine
for the

ς-calculus

natural
semantics
for the

ς-calculus

functional
correspondence

��

4 O. Danvy and J. Johannsen

1.2 Further Background and Contributions

Substitutions vs. environments: Practical implementations of the λ-calculus do
not use actual substitutions. Instead, they use ‘environments,’ which are map-
pings representing delayed substitutions, and represent functions with ‘closures,’
which are pairs of terms and environments [34]. In such practical implementa-
tions, an identifier is not a thing to be substituted by a term, but a thing to
be looked up in the current environment. At the turn of the 1990’s [17], Curien
proposed a ‘calculus of closures,’ the λρ-calculus, to account for this implemen-
tation strategy of the λ-calculus, and explicit substitutions were born [2,18,43].
Both the syntactic and the functional correspondences have been applied to cal-
culi of explicit substitutions, environment-based abstract machines, and natural
semantics using environments [4, 10].

Abadi and Cardelli’s untyped calculus of objects with methods as closures: We
present a version of the ς-calculus with explicit substitutions, the ςρ-calculus.
Instead of performing substitution when invoking a method, we represent meth-
ods as closures. We state three semantic artifacts for the ςρ-calculus: a natural
semantics, an abstract machine, and a reduction semantics.

Contributions: Using the syntactic correspondence, we exhibit an environment-
based abstract machine that embodies the reduction semantics of the ςρ-calculus
and its reduction strategy. Using the functional correspondence, we exhibit an
environment-based abstract machine that embodies the natural semantics of the
ςρ-calculus and its evaluation strategy. Again, the two abstract machines are
identical, which establishes the soundness of the reduction semantics and of the
natural semantics for the ςρ-calculus relative to each other. We then show that
this environment-based abstract machine and the abstract machine with actual
substitutions from Section 1.1 are bisimilar, which establishes the coherence of
the ςρ-calculus with respect to the ς-calculus:

reduction
semantics
for the

ς-calculus

syntactic
correspondence

��
abstract
machine
for the

ς-calculus

bisimilarity

���
�
�
�
�
�
�

natural
semantics
for the

ς-calculus

functional
correspondence

��

reduction
semantics
for the

ςρ-calculus

syntactic
correspondence

��

abstract
machine
for the

ςρ-calculus

���
�
�
�
�
�
�

natural
semantics
for the

ςρ-calculus

functional
correspondence

��

As for having a completeness theorem for the ςρ-calculus, Melliès’s proof applies
mutatis mutandis [1, Theorem 6.2-4, page 65].

Inter-deriving Semantic Artifacts for Object-Oriented Programming 5

1.3 Overview

In Section 2, we remind the reader of the ς-calculus (Section 2.1) and we present
its reduction semantics; through the syntactic correspondence, we obtain the cor-
responding abstract machine (Section 2.2). Through the functional correspon-
dence, we then present the natural semantics corresponding to this abstract ma-
chine (Section 2.3). This natural semantics coincides with Abadi and Cardelli’s.
In Section 3, we introduce the ςρ-calculus, which is a version of the ς-calculus
with explicit substitutions where methods are represented with closures, and
we specify it with a natural semantics that uses environments (Section 3.1);
through the functional correspondence, we obtain the corresponding abstract
machine (Section 3.2). Through the syntactic correspondence, we then present
the reduction semantics corresponding to this abstract machine (Section 3.3). In
Section 4.1, we present a mapping from ςρ-closures to ς-terms that performs the
actual substitutions that were delayed by the given environments in the given
terms. In Section 4.2, using this mapping, we show that the two abstract ma-
chines are bisimilar, which establishes a coherence between the three semantic
artifacts for the ς-calculus and the three semantic artifacts for the ςρ-calculus.
We then review related work in Section 5 and conclude in Section 6.

Prerequisites: We assume the reader to be mildly familiar with Sections 6.1
and 6.2 of Abadi and Cardelli’s monograph [1] and with the concepts of re-
duction semantics (BNF of terms and of reduction contexts, notion of redex,
one-step reduction, evaluation as iterated reduction), of abstract machines (ini-
tial, intermediate, and final states, and state-transition functions), of natural
semantics (interpreters as evaluation functions), and of bisimulation. As for the
syntactic and functional correspondences, the unfamiliar reader can just flip
through Danvy’s invited paper at WRS’04 [20] or through Danvy and Millikin’s
recent note about small-step and big-step abstract machines [23] for what is not
self-explanatory.

2 Abadi and Cardelli’s Untyped Calculus of Objects: The
ς-Calculus

We consider in turn a reduction semantics for the ς-calculus (Section 2.1), the
corresponding abstract machine (Section 2.2), and the corresponding natural
semantics (Section 2.3).

2.1 A Reduction Semantics

BNF of terms and of values: An object is a collection of named attributes.
Names are labels and all labels are distinct within each object. All attributes are
methods with a bound variable representing self (and to be bound to the host
object at invocation time) and a body whose execution yields a result.

6 O. Danvy and J. Johannsen

(Term) t ::= x | [l = ς(x)t, . . . , l = ς(x)t] | t.l | t.l ⇐ ς(x)t
(Value) v ::= [l = ς(x)t, . . . , l = ς(x)t]

This grammar for terms defines the same language as in Abadi and Cardelli’s
book but it uses a more uniform naming convention.

NB: Occasionally, we index a value by its number of methods, as in vn =
[li = ς(xi)ti

i∈{1..n}].

Notion of redex: Methods can be invoked or updated [1, Definition 6.2-1 (1)].
Here is the grammar of potential redexes:

pr ::= v.l | v.l ⇐ ς(x)t

The contraction rules read as follows:

vn.lj � tj{vn/xj}
if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti

i∈{1..n}]

vn.lj ⇐ ς(x)t � [lj = ς(x)t, li = ς(xi)ti
i∈{1..n}\{j}]

if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti
i∈{1..n}]

A potential redex is an actual one when its side conditions are satisfied, and
contraction can take place. Otherwise, the potential redex is stuck.

BNF of reduction contexts: The following grammar for reduction contexts does
not occur in Abadi and Cardelli’s book but it plausibly reflects the ‘evaluation
strategy of the sort commonly used in programming languages’ [1, Section 6.2.4,
page 63]:

(Context) C ::= [] | C[[].l] | C[[].l ⇐ ς(x)t]

Lemma 1 (Unique decomposition). Any term which is not a value can be
uniquely decomposed into a reduction context and a potential redex.

One is then in position to define a decomposition function mapping a term
to either a value or to a reduction context and a potential redex, a contraction
function mapping an actual redex to its contractum, and a plug function mapping
a reduction context and a term to a term. Thus equipped, one can define a one-
step reduction function (noted → below) and then an evaluation function as
the iteration of the one-step reduction function (noted →∗ below). We have
implemented and copiously tested this reduction semantics (as well as all the
other semantic artifacts of this article) in Standard ML.

2.2 The Corresponding Abstract Machine

Applying the syntactic correspondence (i.e., calculating the refocus function)
yields the following eval/apply abstract machine [36]:

Inter-deriving Semantic Artifacts for Object-Oriented Programming 7

〈v, C〉 ⇒S 〈C, v〉
〈t.l, C〉 ⇒S 〈t, C[[].l]〉

〈t.l ⇐ ς(x)t′, C〉 ⇒S 〈t, C[[].l ⇐ ς(x)t′]〉

〈[], v 〉 ⇒S v

〈C[[].lj], vn〉 ⇒S 〈tj{vn/xj}, C〉
if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti

i∈{1..n}]

〈C[[].lj ⇐ ς(x)t], vn〉 ⇒S 〈C, [lj = ς(x)t, li = ς(xi)ti
i∈{1..n}\{j}]〉

if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti
i∈{1..n}]

This machine evaluates a closed term t by starting in the configuration 〈t, []〉
and by iterating ⇒S (noted ⇒∗

S below). It halts with a value v if it reaches a
configuration 〈[], v〉 It becomes stuck if it reaches either of the configurations
〈C[[].l], v〉 or 〈C[[].l ⇐ ς(x)t], v〉 and v does not contain a method with the
label l.

The following proposition is a corollary of the soundness of refocusing:

Proposition 1 (Full correctness). For any closed term t, t →∗ v if and only
if 〈t, []〉 ⇒∗

S v.

2.3 The Corresponding Natural Semantics

In Section 2.2, the function implementing the abstract machine is in defunc-
tionalized form [24]. Refunctionalizing it [22] yields an evaluation function in
continuation-passing style (CPS). Writing this evaluation function in direct style
[19] yields an evaluation function that implements the following natural
semantics:

(INVς)
	 t � vn 	 tj{vn/xj} � v

	 t.lj � v
if 1 ≤ j ≤ n, where
vn = [li = ς(xi)ti

i∈{1..n}]

(UPDς)
	 t � vn

	 t.lj ⇐ ς(x)t′ � [lj = ς(x)t′,
li = ς(xi)ti

i∈{1..n}\{j}]

if 1 ≤ j ≤ n, where
vn = [li = ς(xi)ti

i∈{1..n}]

This natural semantics coincides with Abadi and Cardelli’s [1, Section 6.2.4,
page 64].

The following proposition is a corollary of the soundness of the CPS transfor-
mation and of defunctionalization:

Proposition 2 (Full correctness). For any closed term t, 〈t, []〉 ⇒∗
S v if and

only if 	 t � v.

8 O. Danvy and J. Johannsen

2.4 Summary and Conclusion

Using the syntactic correspondence and the functional correspondence, we have
mechanically derived an abstract machine that mediates between Abadi and
Cardelli’s reduction semantics and natural semantics for the ς-calculus and the
‘evaluation strategy of the sort commonly used in programming languages.’ The
two derivations confirm (1) the soundness of the two semantics relative to each
other and (2) the BNF of the reduction contexts we put forward in Section 2.1.
They also pave the way to using closures, which we do next.

3 Object Methods as Closures: the ςρ-Calculus

We consider in turn a natural semantics for the ς-calculus with environments (Sec-
tion 3.1), the corresponding environment-based abstract machine (Section 3.2),
and the corresponding reduction semantics (Section 3.3). The resulting calculus
is one of explicit substitutions, the ςρ-calculus.

3.1 A Natural Semantics

Let us adapt the natural semantics of Section 2.3 to operate with environments.
Three changes take place:

1. The category of values changes to objects where each method holds its own
environment (noted ‘e’):

(Value) v ::= [l = (ς(x)t)[e], . . . , l = (ς(x)t)[e]]

2. The environment is defined as an association list:

(Environment) e ::= • | (x, v) · e
and an auxiliary function lookup is used to look up an identifier in the current
environment.

3. The evaluation judgment now reads as follows:

e 	 t � v

Again, we occasionally index a value with the number of its methods.
The two rules from Section 2.3 are then straightforwardly adapted:

(INVςρ)
e 	 t � vn (xj , vn) · ej 	 tj � v

e 	 t.lj � v
if 1 ≤ j ≤ n, where
vn = [li = (ς(xi)ti)[ei]

i∈{1..n}]

(UPDςρ)
e 	 t � vn

e 	 t.lj ⇐ ς(x)t′ � v
if 1 ≤ j ≤ n, where
vn = [li = (ς(xi)ti)[ei]

i∈{1..n}]
and
v = [lj = (ς(x)t′)[e],

li = (ς(xi)ti)[ei]
i∈{1..n}\{j}]

Inter-deriving Semantic Artifacts for Object-Oriented Programming 9

We also need the following rule to convert the methods of an object literal to
method closures:

(CLOςρ)
e 	 [li = ς(xi)ti

i∈{1..n}] � [li = (ς(xi)ti)[e]
i∈{1..n}]

In addition, we need the following new rule to look up variables in the current
environment:

(VAR-Lςρ)
e 	 x � v

if lookup (x, e) = v

Alternatively, and as done, e.g., in the Categorical Abstract Machine [16], one
could use two rules to incrementally peel off the environment. For closed terms,
x always occurs in e. For open terms, evaluation would become stuck here.

3.2 The Corresponding Abstract Machine

To apply the functional correspondence, we successively CPS-transform and de-
functionalize the evaluation function implementing the natural semantics of Sec-
tion 3.1. The grammar of evaluation contexts now reads as follows:

(Context) C ::= [] | C[[].l] | C[[].l ⇐ (ς(x)t)[e]]

All in all, the functional correspondence yields the following eval/apply ab-
stract machine:

〈x, e, C〉 ⇒E 〈C, v〉
if lookup (x, e) = v

〈[li = ς(xi)ti
i∈{1..n}], e, C〉 ⇒E 〈C, [li = (ς(xi)ti)[e]

i∈{1..n}]〉
〈t.l, e, C〉 ⇒E 〈t, e, C[[].l]〉

〈t.l ⇐ ς(x)t′, e, C〉 ⇒E 〈t, e, C[[].l ⇐ (ς(x)t′)[e]]〉

〈[], v 〉 ⇒E v

〈C[[].lj], vn〉 ⇒E 〈tj , (xj , vn) · ej , C〉
if 1 ≤ j ≤ n, where
vn = [li = (ς(xi)ti)[ei]

i∈{1..n}]

〈C[[].lj ⇐ (ς(x)t)[e]], vn〉 ⇒E 〈C, [lj = (ς(x)t)[e], li = (ς(xi)ti)[ei]
i∈{1..n}\{j}]〉

if 1 ≤ j ≤ n, where
vn = [li = (ς(xi)ti)[ei]

i∈{1..n}]

This machine evaluates a closed term t by starting in the configuration 〈t, •, []〉
and by iterating ⇒E (noted ⇒∗

E below). It halts with a value v if it reaches a
configuration 〈[], v〉. It becomes stuck if it reaches either of the configurations
〈C[[].l], v〉 or 〈C[[].l ⇐ (ς(x)t)[e]], v〉 and v does not contain a method with the
label l.

The following proposition is a corollary of the soundness of the CPS transfor-
mation and of defunctionalization:

10 O. Danvy and J. Johannsen

Proposition 3 (Full correctness). For any closed term t, • 	 t � v if and
only if 〈t, •, []〉 ⇒∗

E v.

3.3 The Corresponding Reduction Semantics

BNF of terms, of values, and of closures: The BNF of terms does not change.
The BNF of values is as in Section 3.1. In addition, as in Curien’s λρ-calculus
compared to the λ-calculus, a new syntactic category appears, that of closures:

(Closure) c ::= t[e] | [l = (ς(x)t)[e], . . . , l = (ς(x)t)[e]] | c.l | c.l ⇐ (ς(x)t)[e]

Notion of redex: The two original contraction rules are adapted to closures as
follows:

vn.lj � tj [(xj , vn) · ej]
if 1 ≤ j ≤ n, where vn = [li = (ς(xi)ti)[ei]

i∈{1..n}]

vn.lj ⇐ (ς(x)t)[e] � [lj = (ς(x)t)[e], li = (ς(xi)ti)[ei]
i∈{1..n}\{j}]

if 1 ≤ j ≤ n, where vn = [li = (ς(xi)ti)[ei]
i∈{1..n}]

As could be expected, there is also a contraction rule for looking variables up in
the environment:

x[e] � v
if lookup (x, e) = v

In addition, we need three contraction rules to propagate the environment inside
the terms:

[li = ς(xi)ti
i∈{1..n}][e] � [li = (ς(xi)ti)[e]

i∈{1..n}]

(t.l)[e] � t[e].l

(t.l ⇐ ς(x)t′)[e] � t[e].l ⇐ (ς(x)t′)[e]

The grammar of potential redexes therefore reads as follows:

pr ::= v.l | v.l ⇐ (ς(x)t)[e] |
x[e] | [l = ς(x)t, . . . , l = ς(x)t][e] | (t.l)[e] | (t.l ⇐ ς(x)t′)[e]

BNF of reduction contexts: The grammar for reduction contexts is the same as
in Section 3.2.

Lemma 2 (Unique decomposition). Any closure which is not a value can
be uniquely decomposed into a reduction context and a potential redex.

One is then in position to define a decomposition function mapping a closure
to either a value or to a reduction context and a potential redex, a contraction

Inter-deriving Semantic Artifacts for Object-Oriented Programming 11

function mapping an actual redex to its contractum, and a plug function mapping
a reduction context and a closure to a closure. Thus equipped, one can define
a one-step reduction function (noted → below) and then an evaluation function
as the iteration of the one-step reduction function (noted →∗ below).

Applying the syntactic correspondence yields the abstract machine from
Section 3.2.

The following proposition is a corollary of the soundness of refocusing:

Proposition 4 (Full correctness). For any closed term t, 〈t, •, []〉 ⇒∗
E v if

and only if t[•] →∗ v.

3.4 Summary and Conclusion

On the ground that practical implementations do not use actual substitutions, we
have presented an analogue of the ς-calculus, the ςρ-calculus, that uses explicit
substitutions. We have inter-derived three semantics artifacts for the ςρ-calculus:
a natural semantics, an abstract machine, and a reduction semantics. These
specifications are more suitable to support the formalization of a compiler since
programs do not change (through substitution) in the course of execution. One
is then free to change their representation, e.g., by compiling them.

On the other hand, environments open the issue of space leaks since some
of their bindings may become obsolete but can only be recycled when the en-
vironment itself it recycled. In functional programming, “flat” closures [13] (or
again “display” closures [26]) are used instead: closures whose environment is
restricted to the free variables of the term in the closure, which can be com-
puted at compile time. The ς-calculus, however, is too dynamic in general for
free variables to be computable at compile time: they need to be computed at
run time. One could thus consider another possibility: to represent environments
as a lightweight dictionary where each variable only occurs once.

4 Coherence between the ς-Calculus and the ςρ-Calculus

We establish the coherence between the ς-calculus and the ςρ-calculus by showing
that their abstract machines are bisimilar (Section 4.2). To this end, we first
introduce substitution functions mapping constructs from the ςρ-calculus to the
ς-calculus (Section 4.1).

4.1 From Closures to Terms

We define by simultaneous induction three substitution functions that respec-
tively map ςρ-values to ς-values, ςρ-terms to ς-terms, and environments of ςρ-
values to temporary environments of ς-values and variables:

12 O. Danvy and J. Johannsen

subV([li = (ς(xi)ti)[ei]
i∈{1..n}]) = [li = ς(xi)subT(ti, (xi, xi) · subE(ei))

i∈{1..n}]

subT(x, e) = lookup (x, e)
subT(t.l, e) = (subT(t, e)).l

subT(t.l ⇐ ς(x)t′, e) = (subT(t, e)).l ⇐ ς(x)subT(t′, (x, x) · e)

subE(•) = •
subE((x, v) · e) = (x, subV(v)) · subE(e)

Lemma 3. For any closed term t and any environment e, subT(t, e) = t.

Proof. By simultaneous induction on the definition of subV, subT, and subE [30].

Let us also define a substitution function subC that maps ςρ-contexts to ς-
contexts:

subC([]) = []
subC(C[[].l]) = (subC(C))[[].l]

subC(C[[].l ⇐ (ς(x)t)[e]]) = (subC(C))[[].l ⇐ ς(x)subT(t, (x, x) · subE(e))]

4.2 A Bisimulation between the Two Abstract Machines

Definition 1. Let STςρ denote the set of states of the abstract machine for the
ςρ-calculus, and STς denote the set of states of the abstract machine for the
ς-calculus. The substitution relation
S : STςρ × STς is defined as follows:

〈t, e, C〉
S 〈subT(t, e), subC(C)〉
〈C, v〉
S 〈subC(C), subV(v)〉

v
S subV(v)

Theorem 1. The abstract machines from Sections 2.2 and 3.2 are weakly bisim-
ilar with respect to
S.

Proof. By co-induction on the execution of the abstract machine for the ςρ-
calculus [30].

5 Related Work

The ς-calculus has already proved a fruitful playground. For example, Kesner
and López [33] have defined a set of contraction rules for the ς-calculus based
on explicit substitutions and flat closures. Due to the dynamic nature of the
ς-calculus, and as already pointed out in Section 3.4, managing flat closures
requires the evaluator to recompute sets of free variables dynamically during
evaluation. In contrast, we opted for deep closures here. For another example,
Gordon, Hankin and Lassen [29] have considered an imperative version of the

Inter-deriving Semantic Artifacts for Object-Oriented Programming 13

ς-calculus extended with λ-terms. They have defined a natural semantics based
on explicit substitutions for their extended calculus, and proved it equivalent
to substitution-based big-step and small-step semantics. In addition, they also
provided a compiler to and a decompiler from a ZINC-like virtual machine [35].
Our approach is more inter-derivational and mechanical.

6 Conclusion and Issues

We have presented an abstract machine that mediates between Abadi and Car-
delli’s reduction semantics and natural semantics for the ς-calculus. We have then
presented a version of the ς-calculus with explicit substitutions, the ςρ-calculus,
and inter-derived a natural semantics, an abstract machine, and a reduction
semantics for it. By construction, each of these three semantic artifacts is sound
with respect to the two others. We have also shown that the abstract machines
for the ς-calculus and for the ςρ-calculus are bisimilar, thereby establishing a
coherence between the ς-calculus and the ςρ-calculus.

In the conclusion of “A Syntactic Correspondence between Context-Sensitive
Calculi and Abstract Machines” [11], Biernacka and Danvy listed 16 distinct,
independently published specifications of the control operator call/cc, and can-
didly asked whether all these artifacts define the same call/cc. It is the authors’
belief that inter-deriving these artifacts using correct transformations puts one
in position to answer this question.

As a side benefit, the nature of each inter-derivation makes it possible to
pinpoint the specific goodness of each of the semantic artifacts. For example, a
calculus in the form of a reduction semantics makes it possible to state equations
to reason about programs; an abstract machine gives one some idea about the
implementation requirements of a run-time system; and an interpreter in the
form of a natural semantics is well suited for prototyping. We have illustrated
these issues here with Abadi and Cardelli’s untyped calculus of objects.

Acknowledgments: This article was written while the first author was visiting
the PPS lab at the Université Paris 7 – Denis Diderot on a ‘poste rouge’ from the
CNRS, in the winter of 2007–2008. The first author is grateful to his office mate
at PPS, Paul-André Melliès, for insightful discussions and for the description of
his completeness proof of the ς-calculus.

This work is partly supported by the Danish Natural Science Research Coun-
cil, Grant no. 21-03-0545.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. In: Monographs in Computer Science.
Springer, Heidelberg (1996)

2. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. Journal
of Functional Programming 1(4), 375–416 (1991); A preliminary version was pre-
sented at the Seventeenth Annual ACM Symposium on Principles of Programming
Languages (POPL 1990) (1990)

14 O. Danvy and J. Johannsen

3. Ager, M.S.: Partial Evaluation of String Matchers & Constructions of Abstract
Machines. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark
(January 2006)

4. Ager, M.S., Biernacki, D., Danvy, O., Midtgaard, J.: A functional correspondence
between evaluators and abstract machines. In: Miller, D. (ed.) Proceedings of
the Fifth ACM-SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP 2003), Uppsala, Sweden, August 2003, pp. 8–19.
ACM Press, New York (2003)

5. Ager, M.S., Danvy, O., Midtgaard, J.: A functional correspondence between call-by-
need evaluators and lazy abstract machines. Information Processing Letters 90(5),
223–232 (2004); Extended version available as the research report BRICS RS-04-3

6. Ager, M.S., Danvy, O., Midtgaard, J.: A functional correspondence between
monadic evaluators and abstract machines for languages with computational ef-
fects. Theoretical Computer Science 342(1), 149–172 (2005); Extended version
available as the research report BRICS RS-04-28

7. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. Studies in Logic
and the Foundation of Mathematics, vol. 103, revised edn. North-Holland, Ams-
terdam (1984)

8. Biernacka, M.: A Derivational Approach to the Operational Semantics of Func-
tional Languages. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus,
Denmark (January 2006)

9. Biernacka, M., Biernacki, D., Danvy, O.: An operational foundation for delimited
continuations in the CPS hierarchy. Logical Methods in Computer Science 1(2:5),
1–39 (2005); A preliminary version was presented at the Fourth ACM SIGPLAN
Workshop on Continuations (CW 2004) (2004)

10. Biernacka, M., Danvy, O.: A concrete framework for environment machines. ACM
Transactions on Computational Logic 9(1), 1–30, Article #6 (2007); Extended
version available as the research report BRICS RS-06-3

11. Biernacka, M., Danvy, O.: A syntactic correspondence between context-sensitive
calculi and abstract machines. Theoretical Computer Science 375(1-3), 76–108
(2007); Extended version available as the research report BRICS RS-06-18

12. Biernacki, D.: The Theory and Practice of Programming Languages with Delimited
Continuations. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus,
Denmark (December 2005)

13. Cardelli, L.: Compiling a functional language. In: Steele Jr., G.L. (ed.) Conference
Record of the 1984 ACM Symposium on Lisp and Functional Programming, Austin,
Texas, August 1984, pp. 208–217. ACM Press, New York (1984)

14. Church, A.: The Calculi of Lambda-Conversion. Princeton University Press,
Princeton (1941)

15. Consel, C., Danvy, O.: Tutorial notes on partial evaluation. In: Graham, S.L. (ed.)
Proceedings of the Twentieth Annual ACM Symposium on Principles of Program-
ming Languages, Charleston, South Carolina, January 1993, pp. 493–501. ACM
Press, New York (1993)

16. Cousineau, G., Curien, P.-L., Mauny, M.: The Categorical Abstract Machine. Sci-
ence of Computer Programming 8(2), 173–202 (1987)

17. Curien, P.-L.: An abstract framework for environment machines. Theoretical Com-
puter Science 82, 389–402 (1991)

18. Curien, P.-L., Hardin, T., Lévy, J.-J.: Confluence properties of weak and strong
calculi of explicit substitutions. Journal of the ACM 43(2), 362–397 (1996)

Inter-deriving Semantic Artifacts for Object-Oriented Programming 15

19. Danvy, O.: Back to direct style. Science of Computer Programming 22(3), 183–195
(1994); A preliminary version was presented at the Fourth European Symposium
on Programming (ESOP 1992) (1992)

20. Danvy, O.: From reduction-based to reduction-free normalization. In: Antoy, S.,
Toyama, Y. (eds.) Proceedings of the Fourth International Workshop on Reduc-
tion Strategies in Rewriting and Programming (WRS 2004), Invited talk, Aachen,
Germany, May 2004. Electronic Notes in Theoretical Computer Science, vol. 124(2),
pp. 79–100. Elsevier Science, Amsterdam (2004)

21. Danvy, O.: An Analytical Approach to Program as Data Objects. DSc thesis, De-
partment of Computer Science, University of Aarhus, Aarhus, Denmark (October
2006)

22. Danvy, O., Millikin, K.: Refunctionalization at work. Science of Computer Pro-
gramming (in press); A preliminary version is available as the research report
BRICS RS-07-7

23. Danvy, O., Millikin, K.: On the equivalence between small-step and big-step ab-
stract machines: a simple application of lightweight fusion. Information Processing
Letters 106(3), 100–109 (2008)

24. Danvy, O., Nielsen, L.R.: Defunctionalization at work. In: Søndergaard, H. (ed.)
Proceedings of the Third International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming (PPDP 2001), Firenze, Italy, September
2001, pp. 162–174. ACM Press, New York (2001); Extended version available as
the research report BRICS RS-01-23

25. Danvy, O., Nielsen, L.R.: Refocusing in reduction semantics. Research Report
BRICS RS-04-26, DAIMI, Department of Computer Science, University of Aarhus,
Aarhus, Denmark (November 2004); A preliminary version appeared in the infor-
mal proceedings of the Second International Workshop on Rule-Based Program-
ming (RULE 2001), Electronic Notes in Theoretical Computer Science 59(4)

26. Dybvig, R.K.: The development of Chez Scheme. In: Lawall, J.L. (ed.) Proceedings
of the 2006 ACM SIGPLAN International Conference on Functional Programming
(ICFP 2006), Keynote talk, Portland, Oregon, September 2006. SIGPLAN Notices,
vol. 41(9), pp. 1–12. ACM Press, New York (2006)

27. Felleisen, M.: The Calculi of λ-v-CS Conversion: A Syntactic Theory of Control and
State in Imperative Higher-Order Programming Languages. PhD thesis, Computer
Science Department, Indiana University, Bloomington, Indiana (August 1987)

28. Felleisen, M., Flatt, M.: Programming languages and lambda calculi (1989-2001)
(last accessed, April 2008), unpublished lecture notes available at
http://www.ccs.neu.edu/home/matthias/3810-w02/readings.html

29. Gordon, A.D., Hankin, P.D., Lassen, S.B.: Compilation and equivalence of imper-
ative objects. Journal of Functional Programming 9(4), 373–426 (1999); Extended
version available as the technical report BRICS RS-97-19

30. Johannsen, J.: Master’s thesis, DAIMI, Department of Computer Science, Univer-
sity of Aarhus, Aarhus, Denmark (forthcoming, 2008)

31. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall International, London (1993),
http://www.dina.kvl.dk/∼sestoft/pebook/

32. Kahn, G.: Natural semantics. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet,
G. (eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987)

33. Kesner, D., López, P.E.M.: Explicit substitutions for objects and functions. Journal
of Functional and Logic Programming Special issue 2 (1999); A preliminary version
was presented at PLILP 1998/ALP 1998 (1998)

http://www.ccs.neu.edu/home/matthias/3810-w02/readings.html
http://www.dina.kvl.dk/~sestoft/pebook/

16 O. Danvy and J. Johannsen

34. Landin, P.J.: The mechanical evaluation of expressions. The Computer Jour-
nal 6(4), 308–320 (1964)

35. Leroy, X.: The Zinc experiment: an economical implementation of the ML language.
Rapport Technique 117, INRIA Rocquencourt, Le Chesnay, France (February 1990)

36. Marlow, S., Peyton Jones, S.L.: Making a fast curry: push/enter vs. eval/apply
for higher-order languages. In: Fisher, K. (ed.) Proceedings of the 2004 ACM SIG-
PLAN International Conference on Functional Programming (ICFP 2004), Snow-
bird, Utah, September 2004. SIGPLAN Notices, vol. 39(9), pp. 4–15. ACM Press,
New York (2004)

37. Midtgaard, J.: Transformation, Analysis, and Interpretation of Higher-Order Pro-
cedural Programs. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus,
Denmark (June 2007)

38. Millikin, K.: A Structured Approach to the Transformation, Normalization and
Execution of Computer Programs. PhD thesis, BRICS PhD School, University of
Aarhus, Aarhus, Denmark (May 2007)

39. Nielsen, L.R.: A study of defunctionalization and continuation-passing style. PhD
thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark, BRICS DS-
01-7 (July 2001)

40. Nielson, H.R., Nielson, F.: Semantics with Applications, a formal introduction.
Wiley Professional Computing. John Wiley and Sons, Chichester (1992)

41. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: Proceedings of 25th ACM National Conference, Boston, Massachusetts, pp.
717–740 (1972); reprinted in Higher-Order and Symbolic Computation 11(4), 363–
397 (1998) with a foreword [42]

42. Reynolds, J.C.: Definitional interpreters revisited. Higher-Order and Symbolic
Computation 11(4), 355–361 (1998)

43. Rose, K.H.: Explicit substitution – tutorial & survey. BRICS Lecture Series LS-
96-3, DAIMI, Department of Computer Science, University of Aarhus, Aarhus,
Denmark (September 1996)

	Inter-deriving Semantic Artifacts for Object-Oriented Programming (Extended Abstract)
	Introduction
	Background and First Contribution
	Further Background and Contributions
	Overview

	Abadi and Cardelli's Untyped Calculus of Objects: The ς-Calculus
	A Reduction Semantics
	The Corresponding Abstract Machine
	The Corresponding Natural Semantics
	Summary and Conclusion

	Object Methods as Closures: the $\varsigma$$\rho$-Calculus
	A Natural Semantics
	The Corresponding Abstract Machine
	The Corresponding Reduction Semantics
	Summary and Conclusion

	Coherence between the -Calculus and the $\varsigma$$\rho$-Calculus
	From Closures to Terms
	A Bisimulation between the Two Abstract Machines

	Related Work
	Conclusion and Issues

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

