
Proofs-as-Model-Transformations

Iman Poernomo

Department of Computer Science,
King’s College London

Strand, London, WC2R2LS
iman.poernomo@kcl.ac.uk

Abstract. This paper provides an overview of how to develop model
transformations that are “provably correct” with respect to a given func-
tional specification. The approach is based in a mathematical formalism
called Constructive Type Theory (CTT) and a related synthesis for-
mal method known as proofs-as-programs. We outline how CTT can be
used to provide a uniform formal foundation for representing models,
metamodels and model transformations as understood within the Ob-
ject Management Group’s Meta-Object Facility (MOF 2.0) and Model
Driven Architecture (MDA) suite of standards [6, 8]. CTT was orig-
inally developed to provide a unifying foundation for logic, data and
programs. It is higher-order, in the sense that it permits representation
and reasoning about programs, types of programs and types of types. We
argue that this higher-order aspect affords a natural formal definition of
metamodel/model/model instantiation relationships within the MOF.
We develop formal notions of models, metamodels and model transfor-
mation specifications by utilizing the logic that is built into CTT. In
proofs-as-programs, a functional program specification is represented as
a special kind of type. A program is provably correct with respect to a
given specification if it can be typed by that specification. We develop
an analogous approach, defining model transformation specifications as
types and provably correct transformations as inhabitants of specifica-
tion types.

1 Introduction

This paper outlines how a formal software verification and synthesis approach
can be applied to the problem of developing model transformations in the Model
Driven Architecture (MDA) strategy [6]. Our intent is to develop model transfor-
mations that are correct with respect to a given pre- and post-condition specifi-
cation. A plethora of formal methods are available that might serve our purpose.
We employ a theory previously developed as a unifying foundation of mathemat-
ics and programming, Constructive Type Theory (CTT), and a related synthesis
formal method known as proofs-as-programs [2, 10].

In its simplest form, the MDA process involves a transformation between two
models, of the form

PIL T−→ PSL
T (PIM) = PSM

(1)

A. Vallecillo, J. Gray, A. Pierantonio (Eds.): ICMT 2008, LNCS 5063, pp. 214–228, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Proofs-as-Model-Transformations 215

A transformation T takes as input a model PIM, written in a source modelling
language PIL, and outputs a new model PSM, written in a (possibly different)
target modelling language PSL. The transformation might serve any number
of purposes. It might describe how the PIM should be implemented for a par-
ticular middleware and platform, so that the resulting PSM contains specific
implementation decisions that are to be realized by the system programmers.
The transformation T should be applicable to any PIM written using the PIL.
It is therefore defined as a general mapping from elements of the language PIL
to elements of the language PSL.

The intention of MDA is to enable designers to focus most of their work on
providing a robust, architecturally sound PIM. Then, given a particular platform
and PSL choice, a designer applies a (possibly off-the-shelf) transformation to
automatically obtain an appropriate PSM.

The methodology is powerful and useful. It can also be dangerous. There is
already significant uptake of the strategy from within the enterprise software
engineering sector. If a large community of developers agree to use the stan-
dard, then refinement-based development becomes a practical reality. Ideally,
this will result in better software quality. However, because MDA is essentially
an informal approach, it does not guarantee correct model transformations. Cur-
rently, given a specification, a transformation is developed by hand with little
certification that the specification is met. Testing is still limited: an important
research subarea concerns the development of an adequate range of tests [5],
often involving a metamodel instance generation problem.

Using MDA without formal grounding can be dangerous. In fact, if model
transformations are incorrect, the MDA process can result in software of a lower
quality than that produced by traditional software development. This paper
provides an overview of how higher-order constructive type theory (CTT) can
be used to develop correct-by-construction MDA model transformations. CTT
was originally developed to provide a unifying foundation for logic, data and
programs. It is higher-order, in the sense that it permits representation and rea-
soning about ordinary programs, types of programs, types of types and programs
that manipulate other programs and types.

We will consider transformations of the form (1) as higher-order typed func-
tional programs. The input type will represent the PIL and the output type will
represent the PSL. In MDA, the OMG defines these two languages as meta-
models within the Meta-Object Facility (MOF 2.0). Consequently, we need to
understand how the MOF 2.0 metamodelling hierarchy can be given a shallow
embedding within CTT.

We believe that CTT is a “natural” formalism for representing the MDA and
MOF. This is because the MDA and MOF are intrinsically higher-order. Meta-
models are classifiers of classifers and so define types of types. Model transfor-
mations are programs that manipulate classifiers, and so, from a mathematical
perspective, are functions that manipulate types. The nature of CTT also pro-
vides a convenient “built-in” logic, permitting types to include statements and
constraints about instantiating terms, in a way that parallels the MOF and MDA

216 I. Poernomo

use of logical model constraints in the definition of metamodels and model trans-
formations. Our approach will exploit the proofs-as-programs paradigm property
of CTT [10]. At its simplest, the type theory of the lambda-calculus can be re-
garded as both a proof system and an executable pure functional programming
language. A provably correct functional program can be obtained from the in-
habiting term of its behavioural specification, treated as a type.

The paper proceeds as follows. Section 2 describes the MOF and explains how
it is used to write metamodels within the MDA approach. Section 3 sketches
the constructive type theory we use and the proofs-as-programs idea. Section 4
outlines our type theoretic encoding of the MOF and MDA. Conclusions and a
discussion of future work is provided in Section 5.

This paper assumes the reader is familiarwith theUMLrepresentationof classes,
class relationships and class objects and has a partial familiarity with the MOF
specification document [8]. A detailed study of constructive type theory can be
found in [2] or [10] (we follow the formulation of the latter here). More details of
our type theoretic treatment of the third and fourth level of the MOF 1.4 are given
in [9], which might also serve as a detailed account of our type theory.

2 The MOF

The MOF 2.0 specification consists of two metamodelling languages, the EMOF
and CMOF [8]. The former is a subset of, and may be defined reflexively within,
the latter. For the purposes of illustrating our formalism, we will consider the
subset of the CMOF that permits a UML class-style representation of metamodel
grammars. We do not treat a number of other useful features present in the MOF
2.0, such as reflection.

Metamodelling in the MOF is commonly done according to a four level hierar-
chy, as depicted in [7, pp. 30–31] (the MOF 2.0 permits an any number of levels
greater than two). The M0 level consists of model instances. These might be
data values, instantiated class objects, instantiated database tables, algorithms,
XML code or function definitions. The M1 level consists of models, which may
also be considered as metamodel instances. This level includes elements such as
UML diagrams, class, module and type declarations, database table declarations
or XML schema. The M2 level consists of metamodels, which may also be con-
sidered as MOF model instances. This level consists of metamodel descriptions,
defining the syntax and semantics of M1 elements. This level includes languages
such as the UML, the XML, Java, the B specification language or Casl algebraic
specification language. The M3 level is the MOF language itself, used to define
M2 level elements.

UML-style classes, class associations or class object can be defined at any level
in the MOF hierarchy, to serve different purposes. For instance, classes at the M3
are used to type modelling languages, while classes at the M2 level are used within
modelling languages to type models. The levels are then related by an object-
oriented-style class/object instantiation relationship. Class elements of level Mi+1
provide type descriptions of level Mi objects. Mi objects instantiate Mi+1 classes.

Proofs-as-Model-Transformations 217

An important aspect of the MOF hierarchy is that M1 and M2 level informa-
tion can be encoded in two separate ways: as model elements or object instances.
This enables the MOF hierarchy to treat types as classifications and as forms of
data. The principle works as follows. The MOF language is defined by a set of
related model elements at the M3 level. A metamodel is defined at the M2 level
by a set of MOF objects that instantiate the MOF model elements. This MOF
object representation of a metamodel can also be rewritten as a M2 metamodel
that provides type descriptions via a set of model elements. A model at the M1
level is understood as a set of elements that instantiate the classifiers of an M2
level metamodel. Finally, these M1 level elements can also be rewritten to form
M1 level model classifiers that specify the required form of an M0 level model
instantiation.

2.1 Object-Based Metamodels

The M3 level MOF model consists in a set of associated M3 level classes, “meta-
metaclasses”, hereafter referred to as MOF classes. The MOF classes classify
the kinds of elements that make up a M2 level metamodel. Metamodels are
collections of associated M2 instances of these MOF classes, in the same sense
that, for example, a collections of M0 UML objects represent an instance of a
M1 UML class diagram.

The MOF specification defines both the structure of MOF metamodels, con-
sisting of roles and relationships, together with a structural semantics, consisting
of constraints that must apply to any instances of the type structure. The MOF
defines a set of associated M3 level classes, the most important of which are as
follows: Classifier (a general supertype of all metamodel classifiers), Class
(typing all metamodel classifiers that are not basic data types), Datatype (a
type of datatypes), Property (a type of attributes that may be associated with
a metamodel classifier) and Association and AssociationEnd (typing associa-
tions that might hold between metamodel classifiers). The classes are related to
each other in the obvious way and have a range of associated attributes treat-
ing, for instance, private and public accessibility and inheritance hierarchies. An
important attribute of Property is the boolean isComposite. If the property is
set to true, then the owning classifier contains the property and no cyclic depen-
dencies via properties are permitted. If the property is false, then the property
is a reference, and cyclic dependencies are permitted [8, pp. 36–37].

The MOF permits constraints to be associated with any of the elements of a
metamodel. These can be written in an informal language, such as English, or
a formal language, such as the Object Constraint Language (OCL). The MOF
model employs constraints in two distinct ways. The MOF model itself has a set
of constraints that are defined for each of its classes. These constraints define
a static structural semantics of the model that specifies how M2 metamodels
should be formed. Also, the model contains a class called Constraint that is
associated with all other classes of the model. Instances of this class are used to
write a semantics for M2 metamodels that, in turn, is used to specify how M1
instantiating models must behave.

218 I. Poernomo

For the purposes of this paper, we may consider the simplified notion of a
MOF metamodel as a collection of associated MOF class object instances. These
instances are M2 level objects.

Definition 1 (Metamodel). A metamodel M is a set of Classifer, Class,
Datatype, Attribute, Association, AssociationEnd and ConstraintM2 level
objects. Objects within M may only refer to each other.

2.2 Class-Based Description of Metamodels

A metamodel specification consists in a set of M2 level objects. This is a data-
centric view of a metamodel. When considering a metamodel as a model of
models, we need to use this data to classify models. The MOF achieves this by
means of an equivalent representation of a metamodel, as M2 level classes, whose
M1 level object instances are models.

Given a metamodel MO represented as a set of M2 level objects, we can build
an equivalent M2 level class-based representation MC as follows. Each Class M2
object o in MO corresponds to a M2 class toClass(o), whose class attributes each
correspond to the M2 level Attribute objects associated with o. Similarly, for
each Association object a in MO that defines a relation between two Class
objects o1 and o2, we add a class association in the metamodel MC between the
classes that correspond to o1 and o2. Each Constraint object associated with
an object o is mapped to a UML-style note that is associated with toClass(o).
The contents of the note are the same as the contents of the constraint.

A class-based representation is important as it prescribes how the metamodel
should be used as a typing structure for M1 level models. It is important to
note that, according to the MOF, not every collection of M2 level classes de-
fines a metamodel. To be valid, a metamodel must also have an object-based
representation that instantiates the MOF model.

3 Constructive Type Theory

This section presents a brief summary of the constructive type theory (CTT)
that shall be used to formalize. We define a version of Martin-Löf’s predicative
type theory with dependent sum and product types [4], and explain how the
CTT provides an uniform framework for treating functions, types, proofs and
programs.

We work with a lambda calculus whose core set of terms, P , are given over a
set of variables, V :

P ::= V |λ V. P |(P P)|〈P, P 〉|fst(P)|snd(P)|inl(P)|inr(P)|
match P with inl(V) ⇒ P | inr(V) ⇒ P |

abort(P)|show(V, P)|select (P) in V.V.P

The evaluation semantics of lambda abstraction and application are standard
and widely used in functional programming languages such as SML: λ x. P de-
fines a function that takes x as input and will output P [a/x] when applied to

Proofs-as-Model-Transformations 219

a via an application (λ x. P)a. The calculus also includes pairs 〈a, b〉, where
fst(〈a, b〉) will evaluate to the first projection a (similarly for the second projec-
tion). Case matching provides form of conditional, so that match z with inl(x) ⇒
P | inr(y) ⇒ Q will evaluate to P [x/a] if z is inl(a) and to Q[y/a] if z is inr(a).
show(a, P) is a form of pairing data a with a term P . Terms leading to incon-
sistent state are represented abort(p). Evaluation is assumed to be lazy – that
is, the operational semantics is applied to the outermost terms, working inwards
until a neutral term is reached. We write a � b if a evaluates to b according to
this semantics.

The lambda calculus is a programming language. We can compile terms and
run them as programs. Like most modern programming languages, our calculus is
typed, allowing us to specify, for example, the input and output types of lambda
terms. The terms of our lambda calculus are associated with the following kinds
of types: basic types from a set BT , functional types (A → B), product types
(A ∗ B), disjoint unions (A|B), dependent product types (

∏
x : t.a) where x is

taken from V , and dependent sum types (Σx : t.b) where x is taken from V .
The intuition behind the first four types should be clear. For example, if a term
t has type (A → B), then t is a function that can accept as input any value
of type A to produce a value of type B. A dependent product type expresses
the dependence of a function’s output types on its input term arguments. For
example, if a function f has dependent product type

∏
x : T.F (x), then f can

input any value of type T , producing an output value of type F (arg). Thus, the
final output type is parameterized by the input value. Typing rules provide a
formal system for determining what the types of lambda terms should be. The
core typing rules are displayed in Fig. 1. Further rules may be included in a
straightforward way to accommodate recursion.

It is not permissible to define a totality of the collection of all types, as this
results in an inconsistent theory. Instead, we employ a common solution, defining
a predicative hierarchy of type universes of the form:

Type0,Type1,Type2, . . .

The typing rules for the universes, omitted for reasons of space, may be found
in [9]. In these rules, the first universe Type0 is the type of all types generated
by the basic types and the typing constructors.

To encode objects and classes, we will require record types. These types have
the usual definition – see, for example, [2] or [9]. A record type is of the form
{a1 : T1; . . . ; an : Tn}, where a1, . . . , an are labelling names. A record is a term
{a1 = d1; . . . ; an = dn} of a record type {a1 : T1; . . . ; an : Tn}, where each term
di is of type Ti. The term {a1 = d1; . . . ; an = dn}.ai evaluates to the value di

associated with the label ai in the left hand side record.
To treat cyclic dependencies within metamodels, we require co-inductive types.

Co-induction over record types essentially allows us to expand as many refer-
ences to other records as we require, simulating navigation through a meta-
model’s cyclic reference structure. For the purposes of this paper, these types
are abbreviated by means of mutually recursive definitions, of the form

220 I. Poernomo

x : A � x : A
(Ass-I)

Δ, x : s � p : A

Δ � λ x : s. p :
�

x : s • A
(
�

-I)

Δ1 � p :
�

x : s • A Δ2 � c : s

Δ1, Δ2 � (p c) : A[c/x]
(
�

-E)

Δ, x : s � p : A x : s is not free in A

Δ � λ x : s. p : s → A
(→-I)

Δ1 � p : s → A Δ2 � c : s

Δ1, Δ2 � (p c) : A
(→-E)

Δ � p : P [a/y]
Δ � show(a, p) : Σy : s • P

(Σ-I)

Δ1 � p : Σy : s • P Δ2, x : P [z/y] � q : C

Δ1, Δ2 � select (p) in z.x.q : C
(Σ-E)

Δ � a : A Δ′ � b : B

Δ, Δ′ � 〈a, b〉 : (A ∗ B)
(prod-I)

Δ � p : (A1 ∗ A2)
Δ � fst(p) : A1

(prod-E1)
Δ � p : (A1 ∗ A2)
Δ � snd(p) : A2

(prod-E2)

Δ � p : A1

Δ � inl(p) : (A1|A2)
(union-I1)

Δ � p : A2

Δ � inr(p) : (A1|A2)
(union-I2)

Δ � p : A|B Δ1, x : A � a : C Δ2, y : B � b : C

Δ1, Δ2, Δ � match p with inl(x) ⇒ a | inr(y) ⇒ b : C
(union-E)

Δ � a : ⊥
Δ � abort(a) : A

(⊥-E)

Fig. 1. Typing rules for our lambda calculus

T ≡ F (U) : Typei

U ≡ G(T) : Typei

This is a notational convenience: the formal treatment of co-induction, and asso-
ciated co-inductive recursion schemes, is given in [9]. This paper does not treat
inheritance in metamodelling: we have equipped our type theory with a notion
of subtyping to treat inheritance [9].

3.1 Proofs-as-Programs

The Curry-Howard isomorphism shows that constructive logic is naturally em-
bedded within our type theory, where proofs correspond to terms, formulae to
types, logical rules to typing rules, and proof normalization to term simplifica-
tion. Consider a constructive logic whose formulae, WFF are built from exactly
the same predicates that occur in our type theory. We can define an injection

Proofs-as-Model-Transformations 221

A asType(A)
Q(x),where Q is a predicate Q(x)

∀x : T.P
�

x : T.asType(P)
∃x : T.P Σx : T.asType(P)
P ∧ Q asType(P) ∗ asType(Q)
P ∨ Q asType(P)|asType(Q)
P ⇒ Q asType(P) → asType(Q)

⊥ ⊥

Fig. 2. Definition of asType, an injection from WFF to types of the lambda calculus

asType, from well-formed formulae WFF to types of the lambda calculus as in
Fig. 2.

The isomorphism tells us that logical statements and proofs correspond to
types and terms:

Theorem 1 (Curry-Howard isomorphism). Let Γ = {G1, . . . , Gn} be a set
of premises. Let Γ ′ = {x1 : G1, . . . , xn : Gn} be a corresponding set of typed
variables. Let A be a well-formed formula. Then the following is true. Given a
proof of Γ �Int A we can use the typing rules to construct a well-typed proof-
term p : asType(A) whose free proof-term variables are Γ ′. Symmetrically, given
a well-typed proof-term p : asType(A) whose free term variables are Γ ′, we can
construct a proof in constructive logic Γ � A.

Theorem 2 (Program extraction). Let Γ = {G1, . . . , Gn} be a set of premises.
Let Γ ′ = {x1 : G1, . . . , xn : Gn} be a corresponding set of typed variables. Let
∀x : T.∃y : U.P (x, y) be a well-formed ∀∃ formula.

There is a mapping extract from terms to terms such that, if
� p : asType(∀x : T.∃y : U.P (x, y)) is a well typed term, then
� ∀x : T.P (x, extract(p)x) is provable.

The proof of the theorem follows standard previous presentations, but requires
an extension to deal with co-inductive types. The implication of this theorem
is that, given a proof of a formula ∀x : T.∃y : U.P (x, y), we can automatically
extract a function that f that, given input x : T will produce an output fx that
satisfies the constraint P (x, fx).

Our notion of proofs-as-model-transformations essentially follows from this
theorem. A model transformation of the form (1) can be specified as a constraint
in the OCL over instances of an input PIM and an output PSM. Assuming we
can develop types and to represent the PIM and PSM metamodels, and that the
constraint can be written as a logical formula over a term for the metamodels,
we can then specify the transformation as an ∀∃ formula. Then, in order to
synthesize a provably correct model transformation, we prove the formula’s truth
and apply the extraction mapping according to Theorem 2.

The main technical challenges posed by this approach are 1) the extract map is a
non-trivial extensionoftheusualextractionmapused insimilarproofs-as-programs

222 I. Poernomo

approaches, modified to suit our more complicated type theory and 2) the way in
which MOF-based metamodels can be formalized as types is not clear. Space does
not permit us to describe the extraction mapping, but essentially it is developed
using the generic machinery of [10]. The latter challenge is now addressed.

3.2 Metaclass Structures as Record Types

We first describe how the structure of classes and objects can represented within
our type theory. Our encoding is standard (see, e.g., [13]). We define classes as
recursive record types, with objects taken as terms of these types. We restricted
our attention to classes with attributes but without operations, we will not deal
with representing operations within class types. Our representation can be easily
extended to this (again, see [13]).

First, recall that we shall treat the associations of a class in the same way
as attributes. That is, if class M1 is associated with another class M2 with n
the name of the end of the association at M2, then we treat this as an attribute
n : M2 within M1 if the multiplicity of n is 1, and n : [M2] otherwise.

Essentially, the idea is to map a class C with attributes and associations
a1 : T1, . . . , an : Tn to a record type definition

C ≡ {a1 : T1; . . . ; an : Tn}

where each ai is an element of String corresponding to the attribute name ai and
each Ti a type corresponding to the classifier Ti. The class can reference another
class or itself through the attribute types. The mapping therefore permits mutual
recursion between class definitions. That is, each Ti could be C or could refer
to other defined class types.

The encoding of classes is purely structural and does not involve a behavioural
semantics. A semantics is instead associated with a structural class type through
a logical specification in a way now described.

4 The MOF and MDA within CTT

If we can encode the MOF within our CTT, it is possible to apply proofs-as-
programs to develop provably correct model transformations via extraction from
proofs. Following previous work by the author [9], metamodel/model/model in-
stantiation relationships of the MOF can treated using terms and types within the
CTT’s predicative type hierarchy. This framework enables us to define a higher
order type for any metamodel ModelLang, so that � model : ModelLang is
derivable if, and only if, the term model corresponds to a well formed model in-
stance of the metamodel. Model transformations should then be representable as
functions within the CTT that are typed by metamodel types.

The main concepts of the MOF have obvious formal counterparts within the
CTT. Classes and objects are treated using recursive records. The four lev-
els of the MOF are corresponding to the CTT’s predicative hierarchy of type
universes. The CTT’s typing relation allows us to systematically treat MOF

Proofs-as-Model-Transformations 223

model/metamodel/model/model instantiation relationships as follows. The M3
level MOF classes are defined through Type2 class types, M2 level metamodel
classifiers are given a dual representation as objects of the MOF class types and
as Type1 class types. M1 level model entities are given a dual representation as
terms of the metamodel types and as as Type0 types, M0 level implementations
of models are instantiating terms of Type0 types. This section outlines how to
formalize the MOF classes and metamodels at levels M3 and M2.

4.1 Encoding of the MOF

The structure of MOF metamodels was defined as a set of M3 level classes. It
is possible to define a set of mutually recursive Type2 level record types that
encode these classes. A metamodel, considered as a set of M2 level objects that
instantiate the MOF classes, is then formally understood as a set of mututally
recursive Type1 level terms of these types.

For the purpose of illustration, the type of the MOF classifier class is as
follows.

Definition 2 (MOF classifier type). A MOF classifier is encoded by the
following record type, Classifer ≡ Σx : ClassStruct.MClassCst(x) where
ClassStruct stands for the record

{name : String; isAbstract : Bool;
supertype : Classifer; attributes : [Attribute]}

and MClassCst(x) is a statement about x : ClassStruct that formalize the
constraints given in the OMG standard.

A similar encoding is made for the other MOF elements: a record type, used to
define the element’s structure, is paired with constraints over the structure using
a dependent sum, used to formally specify the element’s semantics.

The type of all MOF-based metamodels, Metamodel, can be defined as a
fixed point corresponding to mutually recursive set of MOF class instances. The
definition follows from the MOF, where a metamodel is understood to consist of
a set of associated metaclasses.

4.2 Metamodels as Types

Recall that metamodels have a dual representation, as M2 level objects and as
M2 level classes. This dual representation is formalized by means of a transfor-
mation between instantiating Metamodel terms and Type1 level types. The
transformation is twofold: (1) A reflection map φ is applied to obtain a set of
mutally recursive record types from a metamodel term. The map essentially ob-
tains a type structure for the metaclasses and associations of the metamodel.
(2) The constraints specified by the MOF metamodel description as Constraint
objects are formalized as a specification over the type structure obtained from
the reflection map. The transformation then uses this information to build a
dependent sum type that represents the metamodel. The mapping is omitted for
reasons of space – see [9] for details.

224 I. Poernomo

Definition 3 (Metamodel types). Given a Metamodel instance a :
Metamodel, the type φ(a) is called the metamodel structure type for a, and
represents the structure of the metamodel, when considered as a collection of M2
level classifiers. The general form of a metamodel type is Σx : φ(a).P (x) for a
generated predicate P and a : Metamodel.

Given a metamodel type Σx : φ(a).P (x), the predicate P should be a formal
specification of the Constraints objects that form part of the MOF metamodel
for a. In general, when using our approach for formalizing MOF-based metamod-
els, it is not possible to automatically generate P , because the OMG specification
permits Constraints to take any form. However, if we assume the constraints
are always written in a subset of first order logic, such as the OCL, then it is
possible to generate P in a consistent manner.

4.3 Metamodelling and Modelling Process

Given a typical, informal, MOF-based specification of a metamodel, consisting
of metaclasses, meta-associations and constraints, it is quite straightforward to
develop an instance of Metamodel. The process is straightforward because
MOF-based metamodel specifications, such as the OMG’s definition of the UML,
usually make use of OCL constraints. These can be readily translated into logical
constraints in the Metamodel Then, by application of φ, a Type1 level type
can be produced that defines the structure of the metamodel.

For example, given a MOF-compliant definition of the simple database meta-
model of Fig. 3, it is possible to develop a metamodel term rdb that will yield a
Type2 dependent sum of the form Σx : φ(rdb).P (x) where φ(rdb) is a coinduc-
tive record1

Rdb ≡ {nes : [NamedElement]; tables : [Table]; keys : [Key]; columns : [Column]}

built from the following types

NamedElement ≡ {name : String}

Table ≡ {name : String; tablecolumns : [Column]; keys : [Key]]}

Key ≡ {name : String; keyColumns : [Column]}

Column ≡ {name : String}

and P is a formula that is derived from Constraint metaobjects that were
associated with the metamodel.

1 We write this record informally here as a record: formally, it would involve a μ
constructor, following [9]. The idea is that a term instance of this metamodel type
will consist of a record of metaclass term instances that can mutually refer to each
other. This also allows us to represent shared data, as in the case where the same
column is referenced by a key and by a table.

Proofs-as-Model-Transformations 225

name:String
NamedElement

Table

Column
* tablecolumns

Key

keys *

* keyColumns

Fig. 3. Fragment of the DB metamodel

Similarly, given the OMG’s definition of the UML, it is possible to develop
a metamodel term uml that will yield a Type2 dependent sum of the form
Σx : φ(uml).P (x) where φ(uml) is a fixed point, written in a recursive style as

NamedElement ≡ {name : String}
Class ≡ {name : String; isAbstract : Boolean; tag : String; super : Class;

attrs : [Attribute]}
PrimitiveType ≡ {name : String}

Type ≡ {name : String}
TypeElement ≡ {name : String; type : Type}

Attribute ≡ {name : String; type : Type; multiplicity : MultiplicityKind}

MultiplicityKind ≡ {lowerBound : int; upperBound : int; ordered : Boolean;

unique : Boolean}

and P is a formula that is derived from Constraint metaobjects that were
associated with the metamodel. As required, this corresponds to the standard
equivalent M2 level class-based metamodel diagram.

4.4 Proofs-as-Model-Transformations

Given a way of representing MOF metamodels and models within our type
theory, we can then apply the proofs-as-programs approach entailed in Theorem
2 to extract correct model transformations. First, we specify transformations as
∀∃ types of the form

∀x : Pil.I(x) → (∃y : Psl.O(x, y))

where Pil and Psl are source and target metamodel types, I(x) specifies a pre-
condition on the input model x for the transformation to be applied, and O(x, y)
specifies required properties of the output model y. We use typing rules to obtain
an inhabiting term for such a transformation type. Then, by virtue of Curry-
Howard isomorphism and proofs-as-programs, this term can be transformed into
a model transformation function f such that, given any PIM x satisfying the
precondition I(x), then the postcondition O(x, fx) will be satisfied.

226 I. Poernomo

4.5 Example

Consider the following toy UML-to-relational-database model transformation
specification: For each non abstract class of the UML model which is taged
“CMP” persistent a table is created in the RDB model. This table has the same
name as the class and holds one column per attributes of the class. Columns
have the name of its corresponding attribute.

The transformation has UML models as its input and RDB models as output.
The precondition of the transformation is class name uniqueness, sketched in
OCL as

UMLModel->instanceof(Class)->forall(c1,c2 | c1.name = c2.name
implies c1 = c2)

The postcondition of the transformation is

UMLModel->instanceoff(Class)->select(c | c.isAbstract == false
c.tag == ’CMP’)->forall(c | RDBMModel->instanceof(Table)->one(t |

t.name == c.name attributes->forall(a |
t.columns->one(| col.name == a.name))))

The specification of the transformation is given as follows

∀x : Uml.∀c : Class.c ∈ x.classes∧
c.isAbstract = false ∧ c.tag =′ CMP ′ →

∃y : Rdb.!∃t : Table.t ∈ y.tables ∧ t.name = c.name∧
∀a : Attribute.a ∈ c.attribs∧

!∃col : Column.col ∈ t.columns ∧ col.name = a.name (2)

where
!∃y : T.P (y) ⇔ ∃y : T.P (y) ∧ ∀z : T.P (z) → z = y

This specification can then be proved using just over 100 applications of the
typing rules of Fig. 1. Semi-automatic use of tactics in a theorem proving envi-
ronment such as PVS should reduce the burden of proof on a human developer.
Then, by application of the extraction mapping, we can obtain a lambda term
whose input type is Uml and whose output is Rdb, λx : Uml.F (x.classes),
where F is an extracted function of the form

F: [Class] -> [Tables]
F hd::tl ->
if hd.tag = ’CMP’
{name = hd.name; columns = v}::F(tl)
where v = [{name = a.name}] a over all hd.attribs
else F(tl)

[a] -> if a.tag = ’CMP’ then {name = a.name; columns = v}
else []

This extracted function is the required model transformation.

Proofs-as-Model-Transformations 227

5 Related Work and Conclusions

We have attempted to demonstrate that constructive type theory is a natural
choice to formally encode the higher-order structure of the MOF. To the best
of our knowledge, constructive type theory has not been used previously as a
framework to treat metamodelling.

Favre [3] developed a methodology for writing correct transformations be-
tween UML-based metamodels. Transformations are understood formally in
terms of the Casl algebraic specification language, so a notion of formal cor-
rectness is present and transformations are proved correct. The work has yet to
be generalized to arbitrary MOF metamodels.

Akehurst et al. have used relational algebras to formalize metamodels and
model transformations [1]. Thirioux et al. have a similar approach based on
typed multigraphs [14]. Their framework forms an algebra with operations cor-
responding to the classification relationship between metamodels and models.
From a type theoretic perspective, their formalisation is first order, and based
in set theory. As a result, their model of the higher order nature of the MOF
and model transformations is “flattened” into a single type universe (sets).

Structured algebraic specification languages that have been used for formal-
izing object-oriented specification should have the potential for formal meta-
modelling. We know of two approaches. Ruscio et al. have made some progress
towards formalizing the KM3 metamodelling language using the Abstract State
Machines [12]. Rivera and Vallecillo have exploited the class-based nature of the
Maude specification language to formalize metamodels written in the KM3 meta-
modelling language [11]. Their treatment of the dual, object- and class-based,
representation of metamodels is similar to ours, involving an equivalence map-
ping. The intention was to use Maude as a means of defining dynamic behaviour
of models, something that our approach also lends itself to. Their work has the
advantage of permitting simulation via rewriting rules.

Our experience with the small transformation described above is that, while
the proof steps are often relatively trivial, there are a great many of them and the
process of manual proof is laborious. We expect a tactic-based theorem prover
will improve efficiency of the development process. A tactic is essentially a script
that automates a sequence of proof steps. There are three robust tactic-based
tools based on higher order lambda calculus: Nuprl, Coq and PVS. All three
systems are equipped with advanced semi-automatic theorem provers and have
been shown to be effective in the synthesis and verification of complex industrial
software systems. A full implementation of our approach within Nuprl forms
part of ongoing research by the author’s group.

References

[1] Akehurst, D.H., Kent, S., Patrascoiu, O.: A relational approach to defining and
implementing transformations between metamodels. Software and System Mod-
eling 2(4), 215–239 (2003)

228 I. Poernomo

[2] Constable, R., Mendler, N., Howe, D.: Implementing Mathematics with the Nuprl
Proof Development System. Prentice-Hall, Englewood Cliffs (1986) (Accessed May
2003), http://www.cs.cornell.edu/Info/Projects/NuPrl/book/doc.html

[3] Favre, L.: Foundations for mda-based forward engineering. Journal of Object
Technology 4(1), 129–153 (2005)

[4] Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)
[5] Mottu, J.-M., Baudry, B., Le Traon, Y.: Mutation Analysis Testing for Model

Transformations. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS,
vol. 4066, pp. 376–390. Springer, Heidelberg (2006)

[6] Mukerji, J., Miller, J.: MDA Guide Version 1.0.1. Object Management Group
(2003)

[7] OMG. Meta Object Facility (MOF) Specification. Object Management Group
(2000)

[8] OMG. Meta Object Facility (MOF) Core Specification, Version 2.0. Object Man-
agement Group (January 2006)

[9] Poernomo, I.: A Type Theoretic Framework for Formal Metamodelling. In: Reuss-
ner, R., Stafford, J.A., Szyperski, C.A. (eds.) Architecting Systems with Trust-
worthy Components. LNCS, vol. 3938, pp. 262–298. Springer, Heidelberg (2006)

[10] Poernomo, I., Crossley, J., Wirsing, M.: Adapting Proofs-as-Programs: The Curry-
Howard Protocol. Monographs in computer science. Springer, Heidelberg (2005)

[11] Rivera, J., Vallecillo, A.: Adding behavioural semantics to models. In: The 11th
IEEE International EDOC Conference (EDOC 2007), Annapolis, Maryland, USA,
pp. 169–180. IEEE Computer Society, Los Alamitos (2007)

[12] Ruscio, D.D., Jouault, F., Kurtev, I., Bézivin, J., Pierantonio, A.: Extending
AMMA for supporting dynamic semantics specifications of DSLs. Technical Re-
port 06.02, Laboratoire d’Informatique de Nantes-Atlantique (LINA), Nantes,
France (April 2006)

[13] Simons, A.J.H.: The theory of classification. part 3: Object encodings and recur-
sion. Journal of Object Technology 1(4), 49–57 (2002)

[14] Thirioux, X., Combemale, B., Crégut, X., Garoche, P.-L.: A framework to for-
malise the mde foundations. In: Proceedings of TOWERS 2007, Zurich, June 25
2007, pp. 14–30 (2007)

http://www.cs.cornell.edu/Info/Projects/NuPrl/book/doc.html

	Proofs-as-Model-Transformations
	Introduction
	The MOF
	Object-Based Metamodels
	Class-Based Description of Metamodels

	Constructive Type Theory
	Proofs-as-Programs
	Metaclass Structures as Record Types

	The MOF and MDA within CTT
	Encoding of the MOF
	Metamodels as Types
	Metamodelling and Modelling Process
	Proofs-as-Model-Transformations
	Example

	Related Work and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

