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Preface

Models have become essential for dealing with the numerous aspects involved
in developing and maintaining complex IT systems. Models allow capturing of
the relevant aspects of a system from a given perspective, and at a precise level
of abstraction. In addition to models, the transformations between them are
other key elements in model-driven engineering. Model transformations allow
the definition and implementation of the operations on models, and also provide
a chain that enables the automated development of a system from its correspond-
ing models. Furthermore, model transformations may be realized using models,
and are, therefore, an integral part of any model-driven approach.

There are already several proposals for model transformation specification,
implementation and execution, which are beginning to be used by modeling
practitioners. However, model transformations need specialized support in sev-
eral aspects in order to realize their full potential. The problem goes beyond
having specific languages to represent model transformations; we also need to
understand their foundations, such as the key concepts and operators supporting
those languages, their semantics, and their structuring mechanisms and prop-
erties (e.g., modularity, composability and parametrization). In addition, model
transformations can be stored in repositories as reusable assets, where they can
be managed, discovered and reused. There is also a need to chain and combine
model transformations in order to produce new and more powerful transforma-
tions, and to be able to implement new operations on models. Finally, model
transformations need methodology support, i.e., they need to be integrated into
software development methodologies supported by appropriate tools and envi-
ronments. These issues and concerns define the focus of these proceedings.

The inaugural International Conference on Model Transformations (ICMT
2008) was held in early July 2008 in Zurich, Switzerland. The conference was
conducted in collaboration with the TOOLS 2008 conference. ICMT followed
the success of two previous tracks on Model Transformation at the ACM Sym-
posium on Applied Computing (SAC): MT 2006 at Dijon, France, and MT 2007
at Seoul, Korea. This first ICMT conference brought together researchers and
practitioners to share experiences in using model transformations. Like its SAC
predecessors, ICMT 2008 combined a strong practical focus with the theoretical
approach required in any discipline that supports engineering practices.

ICMT 2008 received 54 abstract submissions of which 48 were submitted as
full papers. The Program Committee suggested 17 papers for presentation and
inclusion in these proceedings. This corresponds to a 35% acceptance rate, which
indicates the level of competition that occurred during the selection process. All
submissions were peer-reviewed by at least three members of the ICMT 2008
Program Committee, with many papers receiving four reviews. Submissions and
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the reviewing process were administered by EasyChair, which greatly facilitated
these tasks.

The resulting program reflects the fact that the topic of model transforma-
tions encompasses many different aspects. This includes different issues related
with: process and engineering of model transformations; model transformations
supporting concurrency and time; matching and mapping within model transfor-
mation rules; language support for model transformation reuse and modularity;
and correctness and analysis of model transformations. All of these categories of
interest are included as technical sessions of the final program.

The ICMT 2008 program also included the keynote talk “Model Transfor-
mation: Sketching the Landscape” by Krzysztof Czarnecki, from the Electrical
and Computer Engineering Department at the University of Waterloo. We thank
him very much for accepting our invitation.

We especially devote a special thanks to the members of the Program Com-
mittee for doing an excellent job reviewing the submitted papers. Their dedicated
work was instrumental in putting together a high-quality ICMT conference. Our
appreciation extends to Richard Paige for his assistance in coordinating this
first conference with TOOLS 2008, and to Bertrand Meyer and Jean Bézivin for
helping us co-locate both events in a seamless and natural manner. The success
of the conference is in great part due to them. In particular, Jean was one of the
creators of this conference, and his great ideas, global view of the discipline and
vision of the future have been decisive in its conception and realization. Finally,
we would also like to thank the local organizers (Claudia Günthart, Manuel
Oriol and Marco Piccioni) at the Swiss Federal Institute of Technology (ETH)
in Zurich, for their continuous support and great help with all logistic issues.

Additional information concerning the conference (e.g., photos of the event)
is available at http://www.model-transformation.org/ICMT2008/.

July 2008 Jeff Gray
Alfonso Pierantonio

Antonio Vallecillo
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Transformations Have to be Developed

ReST Assured

Mika Siikarla1, Markku Laitkorpi2, Petri Selonen2, and Tarja Systä1

1 Tampere University of Technology,
Department of Software Systems

first.last@tut.fi
2 Nokia Research Center
first.last@nokia.com

Abstract. Model transformations do not simply appear. They have to
be not-so-simply developed. In early phases of development, there may
exist only an intuition or an educated guess on some of the characteristics
of the transformation. Instead of assuming a pre-existing complete trans-
formation specification, we embrace change and develop transformations
incrementally, gradually refining them into more complete ones as the
body of knowledge of the domain grows. We present an iterative process
encompassing requirements capture, design and implementation of model
transformations. We describe partial transformations as so called trans-
formational patterns and iteratively refine them. We apply the approach
to developing a transformation that is used in building APIs that comply
with the ReST architectural style.

1 Introduction

Model transformations are software. Developing transformations has the same
inherent challenges as developing any kind of software. Transformations have to
be designed, implemented and tested. But even more fundamentally, we do not
always have a precise, complete or stable specification to begin with and crafting
such a specification is not trivial. An application developer with proper domain
knowledge can manually create a target model based on a source model. He can
probably even come up with some of the most often used rules of thumb for the
transformations. However, defining a complete mapping from all possible source
models to target models is remarkably harder.

The amount of resources that can be used in developing a transformation is
constrained by the expected gains. A transformation facilitating the application
of a large-scale product line affects savings in each application project, thus the
investment into transformation development can be substantial. In small single-
product and one-time software projects the development resources are much
tighter constrained. Fortunately, a transformation does not need to replace the
application developer to produce gains, it only needs to assist him. An incomplete
or partially manual transformation may be much cheaper than a complete one.

An incremental approach enables building only as much of the transformation
as is understood and needed at each point, instead of trying to nail down the

A. Vallecillo, J. Gray, A. Pierantonio (Eds.): ICMT 2008, LNCS 5063, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 M. Siikarla et al.

requirements and build a complete transformation from the start. Incorporating
human interaction in the transformation enables outlining a rough but useful
transformation early on. Such a transformation stays usable the whole time
while it is being iteratively and incrementally refined. The development can
be stopped when the allocated resources have been used up or when further
refining no longer yields significant gains. This may mean that even the finished
transformation is incomplete or contains human interaction.

We present a systematic, iterative and incremental process for model trans-
formation development including the process phases, artifacts, roles and com-
munication between the roles. In particular, we propose to use what we call
transformational patterns to capture the domain knowledge and to facilitate
communication between the domain and transformation experts. A transfor-
mational pattern is a transformation mechanism independent description of a
solution to a reoccurring sub-transformation. Our process can be used with any
transformation mechanism that provides some way to incorporate human in-
teraction in transformations. With a small industrial case, we show how our
process works in practise. The case also demonstrates some practical reasons
why specifying and building even a rather limited transformation requires effort.

The context for our case is developing ReSTful service APIs that follow the
Representational State Transfer (ReST) [1] architectural style. API specifications
have to be transformed into more detailed models for implementing the services.
When gathering the transformation requirements, the ReST domain expert was
able to give examples on how to transform some incomplete source models into
target models. However, he was not able to define a complete transformation for
generating target models for arbitrary APIs. Therefore, we captured his implicit
expert knowledge into initially incomplete transformational patterns and refined
them as the understanding of the problem grew along the way.

The process and the roles are described in Sec. 2 along with related work.
Sec. 3 explains the ReST context and background. The story of developing one
of the transformations in the ReST development is told in Sec. 4. Finally, Sec.
5 summarizes and discusses the lessons learned and future work.

2 Developing Transformations

Surprisingly little work has been done on how model transformations should be
developed. In [2], Mellor and Watson examine how the roles in software develop-
ment processes change when applying MDA. They focus on the development of
the software product and do not look more closely on the new roles needed for
developing the transformations. They extend the traditional role of a software
architect with the responsibility to select the right models and mappings between
them. They point out that managing future changes in an MDA process mostly
deals with changing the models, rather than maintaining the code. We treat the
construction of a transformation system as a software project of its own right
and separate the roles of the application and transformation developers.
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Fig. 1. Transformation development cycle and participating roles

The importance of traceability and communication among participants in the
model-driven life cycle is put forward by Hailpern and Tarr in [3]. They claim
that different types of models require different types of skills. They further point
out that the relationships between multiple types of models, and different mod-
eling formalisms, suggest that any single stakeholder can not understand all the
impacts of a proposed change. We also suggest that different types of expertise
is needed to build a transformation system. Further, we feel one can not assume
that stakeholders use the same modeling notations or even that the models are
at the same level of preciseness. We believe that construction of a transforma-
tion requires constant feedback from its practical applications. Thus, we adopt
an iterative and incremental approach to developing model transformations.

Based on the different kinds of expertise required, we present the roles De-
sign Phase Expert, Transformation Architect, and Transformation Programmer.
Application development is not done in one monolithic design step, but in sev-
eral consecutive design phases. Design Phase Expert has thorough—although
partially implicit—knowledge related to a specific design phase and is capa-
ble of judging the work quality of other designers. He is responsible for the
transformation functionality. Transformation Architect has deep understanding
of transformation design and the chosen mechanisms. He is responsible for the
transformation design. Transformation Programmer knows the transformation
tool and can write transformation code. He is responsible for the quality of the
transformation implementation. A single person can play multiple roles if they
have the necessary expertise.

The cyclical transformation development process is illustrated in Fig. 1. The
artifacts created and refined in the process are shown as blocks. The artifacts
and the associated roles are connected with a shaded area. Naturally, there is a
separate instance of the process for each design phase in application development.

In the beginning of a transformation development cycle, the Design Phase
Expert provides correspondence examples. A correspondence example captures
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parts of the expert’s intuitive knowledge by describing structures in well-designed
target models that should result from the given source model fragment. At first,
the examples are necessarily vague and do not cover all corresponding source and
target model structures. Some of them might be too general or unnecessarily spe-
cific, and they can contain variation points and redundancy. A correspondence
example consists of a source model fragment and a target model fragment. A
model fragment is given in the notation used for the model, e.g. UML class dia-
grams. The notations for the source and target model fragments can be different.
The correspondence examples are used for communication between people, so
they do not need to be well-defined or unambiguous.

Next, the Design Phase Expert and the Transformation Architect form trans-
formational patterns based on the correspondence examples. A transformational
pattern is a transformation mechanism independent description of how and when
one recurring partial transformation in this design phase is performed. It contains
enough information for an application designer to apply it manually. Note, that
transformational patterns are not related to transformation design in general
(like transformation design patterns [4]), but to a single design phase.

We do not fix a format, but we follow loosely the sections Gamma et al. [5]
suggest for design patterns. Applicability describes situations in which the pat-
tern is usable, e.g. “for important superclasses”. The conditions can be struc-
tural (“superclass”) or non-structural (“important”) and they may be informal
(“important”). Implementation describes how the pattern is applied and it may
contain variation, like “make one of the classes abstract”. Since transformational
patterns are not as general as design patterns, our Implementation covers Imple-
mentation, Structure, Participants and Collaboration in [5]. When the pattern
matures, Name, Intent, Forces and Consequences may be added.

The Transformation Architect and the Transformation Programmer create a
transformation definition from the transformational patterns. Transformation
definition is transformation mechanism specific and defines the high-level struc-
ture and behaviour of the transformation code. Depending on the transformation
mechanism, this precedence and default rules and sub-transformations. Possi-
ble informal parts in the transformational patterns are turned into user deci-
sions. The transformation programmer creates the transformation implementa-
tion based on the transformation definition.

Once the transformation implementation is available, it is executed on se-
lected reference source models and the execution and results are evaluated by
the Design Phase Expert. In the next iteration, the correspondence examples
and transformational patterns are refined and new ones are created based on
the feedback. Our approach facilitates early prototyping, which can lead to fast
discovery of new insight. We encourage starting with a loose transformation and
modeling all unknown and/or undecided aspects as user decisions.

The use of examples for driving the transformation development brings our
approach close to the model transformation by example (MTBE) approaches.
Varró and Balogh [6] and, independently, Wimmer et al. [7] propose to use
pairs of corresponding complete source and target models to semi-automatically
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generate a model transformation implementation. Their motivation, like ours,
is for the domain expert to be able to express the transformation declaratively
in the domain language (source and target models) without having to learn
metamodels or transformation languages. Another similarity is their emphasis
on iterative and interactive development process.

As a difference, their focus is on automatic transformations between models
containing the same information in different forms. We allow interactive and
even incomplete transformations. To facilitate some automation in transforma-
tion generation, MTBE examples are pairs of complete models, whereas we use
pairs of partial models to represent rules of thumb. Since the transformations
are (mostly) generated, there is little focus on the design and structure of the
actual transformations. Although our process does not go into details about
transformation design either, we do think there is need for design. Because the
MTBE approaches use complete models, those models can also be used as pre-
liminary automatic test material. In our approach, the partial models are not
immediately suited for testing. We use the manual feedback and evaluation as
development-time testing.

3 Transformation-Assisted Design of ReSTful Services

ReST is an architectural style for the software-driven Web, primarily consider-
ing the Web as a platform for network-based applications. The main concept
is a resource, which serves as a key abstraction for any relevant information. In
addition, ReST defines principled constraints that describe the possible relation-
ships between resources and other architectural elements. ReST constraints facil-
itate imposing architectural properties like scalability, evolvability, visibility, and
serendipity, making ReST an attractive choice when designing service APIs. For
example, the uniform interface constraint dictates a fixed, context-independent
set of operations uniformly exposed by all the resources in the system. Invoking
the HTTP GET operation to browse from one site to another is a solid example
of serendipity that chimes in the success of the Web as a distributed system.

Although developing ReSTful services is fundamentally simple—ReST con-
straints effectively limit the number of design decisions—we see that coming up
with proper ReST designs is far from trivial. We believe that a major difficulty
lies in the long tradition of object-orientation in software engineering. As a direct

Fig. 2. A model-driven approach to ReSTful service development



6 M. Siikarla et al.

opposite of hiding data with custom operations, in a resource-oriented mindset
relevant information is exposed for direct manipulation. Our model-driven trans-
formation approach aims to steer service developers to focus on the “right thing”
while striving for the best possible outcome from a ReST point of view.

In our earlier work [8], we explored a similar approach on migrating legacy
APIs to ReSTful services. We recognized the main phases and kinds of exper-
tise that appear essential in developing ReSTful services. In Fig. 2, each block
arrow represents a model-driven design phase that can be potentially assisted
by model transformations. We focus on the step between an information model
and a resource model. As a concrete service example, we take the Photo API,
an experimental photo storage service prototyped at Nokia Research Center.

As we have no predefined profiles for the information and resource models,
we start with guesses for these models. Our main goal is to eventually formalize
our intuitive domain knowledge in the form of model transformations.

Functional specification. The requirements—typically in form of use cases—
are collected and formalized into a functional specification. We begin with high-
level requirements for the Photo API. A simplified version of the service is:

The Photo API allows a user to store, retrieve and delete photos on a
server. Each photo has an id. Photos can have attributes that define
some predefined properties, and they can be tagged.

Information Model. The initial input from functional requirements is refined
to an information model. The application domain expertise is captured in trans-
formations that turn the problem domain knowledge into information content.
The resulting operation-free, noun-centric view (see [8]) distills the key concepts
and their relationships, comprising concept-level requirements derived from high
level use cases.

Information model represents all relevant nouns and their relationships in the
domain, so using class diagrams is an obvious choice. One specific issue is how the
properties of each concept are modeled. Properties that are accessed indepen-
dently should be represented as stand-alone classes. Similarly, properties should
be modeled as stand-alone classes if the physical appearance is heterogeneous,
e.g. some properties are binary, some are structural, and some are of simple data
types. Elements that are not in the part role of a composite aggregation repre-
sent the core concepts of the domain. Photo and Property are the core concepts
in the information model fragment on the left-hand side of Fig. 3.

Resource Model. The information model is transformed into a resource model.
ReST expertise is captured in transformations that produce a resource-oriented
view of the information content. This view enforces the structural constraints of
the ReST architectural style on the target service. The resulting model represents
the connected set of the resources to be exposed as a ReSTful service.

The resource model represents the hierarchical resource structure to be di-
rectly exposed as an HTTP-based interface following the Web Architecture [9].



Transformations Have to be Developed ReST Assured 7

Fig. 3. Example a) information and b) resource model fragments

Again, a class diagram is an obvious choice. Our initial guess comprises two
kinds of resources: containers and items. A container represents (the state of)
a collection of individual resources and can be used to list the existing items or
create new ones. An item represents (the state of) an individual resource that
can be retrieved, rewritten, or removed. The initially allowed relationship types
between resources are subordinate containment and navigable reference. The for-
mer is a strong link with a lifetime dependency, whereas the latter is a weak link
for connectedness. The right-hand side of Fig. 3 shows an example fragment of
the resource model with containers and available HTTP operations.

Service specification and implementation. The resource model is mapped
to a concrete service specification and further refined into an implementation.
As explained in [10], the key parts of the ReSTful Web service specification are:
(i) a resource structure as a URI listing, (ii) available HTTP methods on each
resource, (iii) links between resources, (iv) supported data formats for each re-
source, and (v) error conditions on each resource. With the service specification
in place, expertise on the target implementation framework can be used to gen-
erate appropriate configurations and skeletons for the service implementation.

Each resource has its own URI, through which clients may access and ma-
nipulate the resource representation. In fact, we see that constructing the URI
structure is probably the most important task in developing a ReSTful service.
Thus, we focus on URIs in this example. The Design Phase Expert can construct
a first approximation of the URI structure as shown in Tab. 1.

It is relatively easy to compare the resource model example on the right-hand
side of Fig. 3 with the above URI structure. The composition relationships and
association multiplicities in the resource model can be interpreted as a resource
hierarchy and appropriate resource types.

Feedback for transformation evaluation. In order to support incremen-
tal development of the transformation from an information model to a resource
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Table 1. Initial guess on the Photo API URI structure

Core concept URI Resource type

Photo /photos container
/photos/{photo.id} item
/photos/{photo.id}/content item
/photos/{photo.id}/attrs container
/photos/{photo.id}/attrs/{attr.id} item
/photos/{photo.id}/tags container
/photos/{photo.id}/tags/{tag.id} item

Property /properties container
/properties/{property.id} item

Tag /tags container
/tags/{tag.id} item
/tags/{tag.id}/photos container

model, we need a feedback loop that allows us to iterate and validate consecu-
tive cycles. Specifically from the ReST point of view, most of the substance of
validation is in assessing the unambiguity of the resulting resource model. The
resource structure should satisfy all the requirements by following the 80–20
rule for “just enough data with just enough requests”, i.e. find a small subset of
resources with a reasonable operation sequence that implements the use case.

From the implementation point of view, it should be relatively trivial to map
the resource model to implementation artifacts using the selected implementa-
tion framework. Examples of these artifacts might include URI routing tables
of a web server, skeleton implementation including allowed operations for each
resource, a database schema for persistent resource storage, and so on.

Both the functional requirements and the URI structure have implications
on the concept-level constraints that should be reflected by the models. The
information model captures the functional requirements in the noun-centric form
of these constraints. As an important mechanism to ensure the fulfillment of the
requirements, the resource model is also evaluated against them at the end of the
transformation. The constraints of our example can be summarized as follows:

– Each Photo has exactly one Content, i.e. bits of the binary image.
– Each Photo may have n Attributes that need to be accessed separately,

mainly because clients may assign new Attributes to a Photo.
– Each Attribute associates a value with a named Property that defines

semantics for a name–value pair.
– Each Property can be used independently from the context of Photos.
– Each Photo may have n Tags associated with it.
– Each Tag may have n Photos associated with it.
– Photos and Tags do not have lifetime dependencies.
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4 Transformation Development in Practice: The ReST
Side Story

We now have a transformation development process, ReST design principles and
an initial design for Photo API. We also have an idea on how to implement the
Photo API. However, this information is still implicitly in the head of our Design
Phase Expert. It is time to follow the transformation development cycle and see
if we can capture the expert knowledge to be reused by application designers
and what kinds of problems we might encounter.

4.1 Correspondence Examples

First the Design Phase Expert identified key elements (classes, composite/plain
associations, generalizations, attributes) and properties (multiplicities at asso-
ciation ends) in the information model profile. He then created simple struc-
tures and crafted corresponding structures that could be found in well-designed
resource models. These structures became source and target model fragments
forming 12 correspondence examples. There were seven examples for associa-
tions, four for various inheritance configurations and one for association classes.
This sounds mechanical, but there is a lot of skill behind “identified” and
“crafted”.

Since the information model and the resource model are both UML class di-
agrams, the source and target model fragments in the correspondence examples
were presented as UML class diagrams as well. Fig. 4 shows one of the correspon-
dence examples. At first it looks like a well-defined rule, however, the semantics
are rather ambiguous. Is the association end attached to A restricted in some
way? Can it be the container end of a composition association? Can A and B be
the same class? The correspondence examples are only for the informal commu-
nication between the Design Phase Expert and Transformation Architect.

Fig. 4. A correspondence example for navigable associations with multiplicity > 1

The Design Phase Expert was confident the examples were viable, but he
was not that sure whether the examples were mutually consistent, covered all
important situations, contained all the necessary variations and worked indepen-
dent of each other. This uncertainty emphasizes how long the jump from “can
craft target model in some cases” to “can define how to craft target model in all
possible cases” really is.
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4.2 Transformational Patterns

The Design Phase Expert and Transformation Architect created transforma-
tional patterns by giving an interpretation to each correspondence example. We
used natural language and class diagrams with OCL constraints. The correspon-
dence example in Fig. 4 became similar to the following:

Applicability: Information model classes A and B, which are connected
with a non-composition association and the association end attached to
B has upper multiplicity of 2 or more and the association is navigable
toward B. Classes A and B can be the same class.
Related patterns: (The resource model should already have classes A
and B corresponding to classes A and B, respectively.)
Implementation: The resource model should have class AB and as-
sociations A-B, A-AB and AB-B. Class AB has stereotype container.
The name of class AB is the concatenation of the name of class A, the
string “-” and the plural form of the name of class B. [. . . ]

The first round of creating transformational patterns led to a number of dis-
coveries. Some correspondence examples were just combinations of simpler ones.
The examples regarding inheritance were just preliminary sketches. Some ex-
amples were conflicting. For example, the one in Fig. 4 implies that classes A
and B have stereotype item, whereas one inheritance example implies a conflict-
ing stereotype. In general, there are rules that cannot be captured in a single
correspondence example and have to be expressed otherwise.

Due to the amount of discoveries the Design Phase Expert started refining
the correspondence examples right away. We did a total of three rounds of patt-
ernizing before moving on to the transformation definition. In the second round
the inheritance related correspondence examples were split to examples for ab-
stract and concrete superclasses. In the third round the Design Phase Expert
introduced a new concept called “projection”. This emphasizes the incremental
nature; concepts can be introduced gradually at any point in the development.

Between the second and third rounds, the resource model profile was simpli-
fied. After the change, resource models still contained the same information but
in a slightly different form. We refined the correspondence examples and transfor-
mational patterns to reflect the profile changes. Since the change was syntactic
and not semantic in nature, this was quite straightforward. We mention it to
stress the wide range of changes that can occur during development.

4.3 Transformation Definition and Implementation

The Transformation Architect created a transformation definition based on the
transformational patterns. In the transformation mechanism we used [11], a
transformation definition consists of a set of task graphs and a graph rewrite
system [12]. In principle, the implementation part of each transformational pat-
tern translates into one task graph and the applicability condition into one graph
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rewrite system production. In practice, one transformational pattern may span
several productions or several patterns may be combined into one production.

The Transformation Architect decided how the informally described variation
in transformational patterns is expressed as run-time interaction. In the mech-
anism we used, interaction is limited to multiple choice questions and selecting
model elements. The Transformation Architect also designed how to handle the
rules that concern relationships between transformational patterns. There were
also some extra productions for normal uninteresting technical reasons.

The transformation in our case was quite small, so there was no need for a
higher level structure beyond that imposed by the transformational patterns. In
a larger transformation the architecture might play a bigger role.

Transformation Programmer coded the task graph descriptions and graph
rewrite system productions into the actual transformation implementation, given
in a textual form proprietary to the transformation tool. The transformation
implementation was finally executed on the reference information models and
provided for the Design Phase Expert for evaluation.

4.4 Evaluation of the Transformation

At the end of the first transformation development cycle we evaluated the re-
sulting resource model (Fig. 5). The main task of the Design Phase Expert was
to compare the results against his mental model. We only covered a subset of the
Photo API. While the functional requirements for the real-life Photo API are
not considerably more complex than the ones here, the resulting resource model
is larger. Our latest resource model has some 30 classes and 45 associations. Here
are some of the the Design Phase Expert’s observations.

Requirement coverage. We need to validate the results of each design phase
against the original requirements for completeness of the transformation. In our
example case, we started by interpreting the resulting resource model as a URI
structure, similarly to the description in Sec. 3, and assessed how well it corre-
sponded to the requirements. This assessment was mainly about ensuring that
all the requirements were covered in terms of HTTP operation sequences based
on the URIs and operations in the resource model. For example, storing and
tagging a photo can be expressed as follows:

1. Create a logical photo “placeholder”
– Request: POST /photos
– Response: Created /photos/123

2. Upload the binary content
– Request: PUT /photos/123/content [binary content as body data]
– Response: Created /photos/123/content

3. Create the tag association item
– Request: PUT /photos/123/photo-tags/xyz
– Response: Created /photos/123/photo-tags/xyz
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Fig. 5. Resulting resource model for the Photo API

Simplicity and intuitiveness. As we can see, a trivial-looking use case can
generate a relatively long HTTP operation sequence. This is mainly due to the
inherent HTTP restriction of accessing one resource at a time. Granularity and
roundtrip problems are beyond the scope of this paper. We focus on expressing
the requirements as HTTP operations. Nevertheless, some structural measure-
ments of the URI structure, such as granularity and depth of the hierarchy, could
be used as qualitative evaluation. This is subjective, because it measures how
easy it is for a human user to grasp what different URIs really mean as resources.
The first evaluation had no direct impact on patterns, but suggested adding new
interpretation rules for the resource model.

Constraint compliance. Aside the service-specific requirements, the resulting
URI structure should comply with the ReST constraints (unless compromises are
properly justified). For example, each concept should be assigned with exactly
one URI, because otherwise clients would unintentionally use different names
for the same thing—an obstacle when sharing URI links among clients. In our
reference case, there is one example of this: the association item between a
photo and a tag, which actually appears as two resource classes (Photo-Tag and
Tag-Photo in Fig. 5). Such excessive classes should be combined, based on a
user decision asked and recorded during the transformation execution.

Precondition coverage. There might exist business logic rules that imply
“business states” for resources. For example, adding an Attribute to a Photo
may require that the referred Property must exist before the Attribute is
created. These kind of referential preconditions can be hard to express with
resources. Some behavioral aspects might be needed in the models. After the
first iteration we considered refining the models with simple text-based rule
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attachments. In the future we might use statechart diagrams as part of the
input.

Aesthetics for human users. Because the transformational patterns are ex-
pressed in terms of common elements independently from the vocabulary of a
particular model instance, the names of generated elements may look artificial
or even clumsy. For example, the photo-tags segment in the URI for tags of a
photo (/photos/123/photo-tags) could be simplified into tags, making it eas-
ier to remember. This “prettifying” of URIs could be implemented as another
design phase assisted by another transformation. Such an optimizing transfor-
mation would probably rely heavily on user decisions.

4.5 Creating Another ReSTful API

We used the Photo API as a primary tool to sketch out the transformation
development process until we had a first decent transformation in place that
produced some real output. Our next candidate is another experimental API
developed at Nokia Research Center called the Topic API:

Topic API allows the user to create observations—short notes—related
to a particular point of interest (POI) collected under a common topic.
Observations can contain an attachment like a photo or an audio clip.

Topic API implements yet another simple context-based messaging that con-
tains Topics, POIs and Observations. Running the transformation on the Topic
API information model produces the first attempt at a Topic API resource
model. As the basic ReST expertise is already captured in the transformations,
the application designer can now devise a URI structure based on the resource
model and proceed to implementing his service. At the same time, the Design
Phase Expert can use this second example to further evaluate the results and
improve the transformation in subsequent iterations.

The evaluation of this second transformation revealed yet another type of
observation, namely one related to resource granularity. The resource model
turned out to have a relatively deep resource hierarchy, which may lead into
efficiency problems in high-latency network environments because of the subop-
timal resource granularity, especially when using the HTTP GET operation. As
a solution, one might want to implement additional resource representations that
effectively inline the subordinate resources across multiple hierarchy levels. This
concern could be addressed in the resource model by adding derived associations
down across composite hierarchies.

5 Discussion

We presented an iterative and incremental process for transformation develop-
ment and applied it to a case. There was no existing set of explicit and precise
rules on how the design phase should be completed. The ReST side story cov-
ered three rounds of patternization and one full iteration. The work progressed
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in weekly meetings over two months, mainly because of the stakeholders’ other
responsibilities. The Design Phase Expert (NRC) was the author of the ReST de-
velopment process in Sec. 3. The Transformation Architect (TUT) was a model
transformation researcher and the author of the transformation mechanism used.
The Transformation Programmer (TUT) was a MSc. student. A professor (TUT)
and the Topic API application developer (NRC) also participated in reviewing
the correspondence examples. Because the stakeholders shared only little of each
others specific expertise, there was a strong need for a neutral way to capture
knowlegde. This need was emphasized because there were two organizations in-
volved and long intervals between meetings.

Charting the resource modeling expert’s tacit knowledge in an example-driven
fashion proved quite fruitful. However, such examples were too vague in nature to
be used even as studying material for a new developer. We defined the meaning
of each correspondence example more precisely and stored the knowledge into
an unambiguous but partly informal transformational pattern.

Transformational patterns were at an abstraction level where an inexperienced
resource modeler could apply them, but were too informal to be automated. The
patterns were completely transformation mechanism independent. This abstrac-
tion level was suited for communication between the resource modeling and
transformation experts, due to their different skill sets. The resource modeler
was thinking with the terminology of the design task, and did not have to learn
about UML metamodel or details of the transformation mechanism.

Much of the effort went into creating patterns, because that was the biggest
jump from implicit to explicit knowledge. Precisely for that reason most of the
important progress in understanding the transformation happened in that phase.
Humans just do not internally operate with precise and explicit rule sets. The
numerous discoveries about the correspondence examples can not therefore be
attributed to lack of expertise but to the nature of human brain. We think that
these practical issues in mining expert knowledge are general and not specific to
this case. Iterations and allowing human interactions enabled early prototyping
with a full (but semi-automatic) model transformation.

Transformational patterns turned out to be a good unit for iterative refine-
ment. Though, there were some higher level rules, such as precedence, depen-
dencies and side-effects between rules, that could not be easily expressed with
patterns. Such rules have to be recorded and analysed in a different way.

We argue that the difficulties in specifying the transformation in one go are
typical, when there is no existing set of rules. We argue further, that such cases
are common in software development in general, even if they are rarely used as
examples in model transformation research. Although changes in target modeling
notation may sound exotic and rare, we argue that they, too, are common in
practice; some design phases are only restricted by the information that must
be present in the models, and not by their form. Thus, the project can decide
the specific form in which they want that information represented.

Crafting the transformation definition was rather uncomplicated, because the
transformation at this stage was still pretty simple and because the transformation
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mechanism had some support for pattern-like thinking. Depending on how far the
transformation is developed in the future, e.g. in terms of optimization, it could
become significantly more complicated. For a large and complicated transforma-
tion there might be need to divide the transformation definition into several ar-
tifacts, or use a different kind of approach altogether. Some characteristics of a
transformation engine or paradigm could possibly bring up the same problem.
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Abstract. Model driven development (MDD) of software product lines (SPLs)
merges two increasing important paradigms that synthesize programs by trans-
formation. MDD creates programs by transforming models, and SPLs elaborate
programs by applying transformations called features. In this paper, we present
the design and implementation of a transformational model of a product line of
scalar vector graphics and JavaScript applications. We explain how we simpli-
fied our implementation by lifting selected features and their compositions from
our original product line (whose implementations were complex) to features and
their compositions of another product line (whose specifications were simple).
We used operators to map higher-level features and their compositions to their
lower-level counterparts. Doing so exposed commuting relationships among
feature compositions in both product lines that helped validate our model and
implementation.

Keywords: transformation reuse, code generation, model composition, high-
level transformations, features, product-lines.

1 Introduction

Model driven development (MDD) offers the potential to automate manual, error prone,
and time intensive tasks and replace them with high level modeling and code generation.
Modeling software has a number of advantages including strategically approaching
problems top-down, documenting software structure and behavior, and reducing the
time and cost of application development. Feature oriented programming (FOP) solves
a complementary problem of building families of similar programs (a.k.a. software
product lines (SPL)). Features are increments in program development and are transfor-
mations (i.e., functions that map a program to a more elaborate program). Both para-
digms naturally invite simple descriptive models of program construction that are purely
transformation-based (i.e., program designs are expressed as a composition of functions)
and their integration is synergistic [32].
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Our paper makes two contributions. First, we explain how we designed and imple-
mented a product line of scalar vector graphics (SVG) and JavaScript applications. Our
approach combines FOP and MDD in a way that allows us to use the language of elemen-
tary mathematics to express our approach in a straightforward and structured way, and to
illustrate how transformational models of SPLs can be defined and implemented. Second,
we explain how we simplified our effort by lifting selected features and their composi-
tions from our original product line (whose implementations were complex and tedious)
to features and their compositions to another product line (whose specifications were sim-
ple). Mathematical expressions define transformation paths that combine feature compo-
sition and model translation, exposing commuting relationships among transformations
that helped validate our model and implementation. We begin with an overview of the do-
main of our case study.

2 MapStats

MapStats is an application that displays population statistics for different US states using
SVG and JavaScript [26]. Scalar vector graphics (SVG) is a World Wide Web Consorti-
um (W3C) language for describing two dimensional graphics and graphical applications.
JavaScript is a scripting language that can be embedded within SVG to generate dynamic
content.

MapStats displays an interactive map of the US, as shown in Fig. 1. Users can alter
the map to selectively display rivers, lakes, relief, and population diagrams. A map nav-
igator allows users to zoom and pan the primary map. 

Fig. 1. MapStats SVG Case Study Application with all Features
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When a user mouses over a state, various
population statistics for the state are shown
in text and graphical charts. Demographic
attributes can be based on sex, age, and race.
Statistics with charts can also be shown.

We refactored MapStats into a base ap-
plication and optional features to allow a
product line of variants to be created by
composing the base with desired features.
Fig. 2 shows a customized MapStats appli-
cation that excludes statistical charts. 

Feature diagrams are a standard way to
express a product line [12][19]. A feature diagram is an and-or tree, where terminals rep-
resent primitive features and non-terminals are compound features. Fig. 3a shows a por-
tion of the feature diagram for the MapStats product line; Fig. 3b lists the actual names
and descriptions of the features that we created. (Not shown in Fig. 3 are the compatibil-
ity constraints among features, i.e., selecting one feature may require the selection or
deselection other features [5][12]). MapStats features include: each statistic that can be
displayed, each map layer, each map control, and run-time display options. For example,
the Rivers feature adds rivers to the map of US states and the RiversControl feature
adds a control that lets the user turn the river layer on and off at run time. 

Again, Fig. 3a is a portion of the feature diagram for MapStats. We further decom-
posed the terminal Charts feature of Fig. 3a into a product line of charts. Fig. 4a shows
its feature diagram and Fig. 4b lists the actual names and descriptions of the Charts fea-
tures that we created. Charts features used three data sets: age, ethnic, and Hispanic.
(The Hispanic data set was an artifact of the original application which we left intact).

Fig. 2. A Customized Application

(a) (b)

Fig. 3. MapStats Feature Diagram and Feature Descriptions

Feature Description
Base The base application
USStates Displays map of US States
Legend Adds chart displays and sta-

tistics
Charts Adds charts
Households Displays the number of 

households/state
Sex Displays the ratio of males 

to females
MedianAge Displays the median age
Population Displays the total population
Navigator Adds a control to let user 

pan and zoom the map
Coordinate Shows the xy coordinates of 

the mouse
Relief Adds relief to the map
PopCircles Adds population circles to 

indicate the population of 
each state

Rivers Adds rivers to the map
Lakes Adds lakes to the map
ReliefControls Adds a control to turn relief 

on and off
PopCirclesControls Adds a control to turn popu-

lation circles on and off
RiversControls Adds a control to turn rivers 

on and off
LakesControls Adds a control to turn lakes 

on and off
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We used features to specify chart types: bar, stacked-bar, and pie. The combination of
chart types and data sets specified whole charts. So if two data sets and two chart types
were specified, four charts would be created representing each combination. 

Thus, we began our design in the standard way: we created a feature diagram for our
product line. The next step was to implement features as transformations.

3 A Transformation-Based Model of Product Lines

GenVoca is a compositional paradigm and methodology for defining product lines solely
by transformations: it does not promote any particular implementation technology or
tool. Instead, it stresses that adding a feature to a program (however the program is rep-
resented) is a transformation that maps the original program to an extended program.
There is a long history of creating and implementing GenVoca product lines in different
domains (e.g. [7][8]). We review its key ideas and then explain our model of MapStats.

3.1 GenVoca

A GenVoca representation is a set of base programs and features (transformations) that
extend or elaborate programs. The GenVoca representation expresses which features are
used to compose a product line instance and the valid combinations of features in a prod-
uct line. An example model G={f,h,i,j} contains the following parts: Base programs
are values (0-ary functions):

f // base program with feature f
h // base program with feature h

and unary functions (transformations) are features: 

i•x // adds feature i to program x
j•x // adds feature j to program x

Fig. 4. Chart Feature Model and Feature Descriptions

(a) (b) Feature Description
ChartBase An empty collection of charts
Pie Creates a pie chart for each 

data set
Bar Creates a bar chart for each 

data set
StackedBar Creates a stacked-bar chart for 

each data set
Age Creates charts with age data 

for each chart type, grouped by 
age ranges

Under5 Adds under 5 age group
5-17 Adds 5-17 age group
18-21 Adds 18-21 age group
22-29 Adds 22-29 age group
30-39 Adds 30-39 age group
40-49 Adds 40-49 age group
50-64 Adds 50-64 age group
65UP Adds 65 and up age group
Ethnic Creates charts with ethnic data
Hispanic Adds Hispanic data
Asians Adds Asians data
AfricanAmerican Adds African American data
Whites Adds Whites data
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• denotes function composition. The design of a program is expression:

p1 = j•f // program p1 has features j and f
p2 = j•h // program p2 has features j and h
p3 = i•j•h // program p3 has features i, j, and h

The set of programs defined by a GenVoca model is its product line. Expression op-
timization is program design optimization, and expression evaluation is program synthe-
sis [6][29]. Tools that validate feature compositions are discussed in [5][30]. Note that
features (transformations) are reusable: a feature can be used in the creation of many pro-
grams in a product line.

A fundamental characteristic of features is that they “cross-cut” implementations of
base programs and other features. That is, when a feature is added to a program, new
classes can be added, new members can be added to existing classes, and existing meth-
ods can be modified. There is a host of technologies — including aspects, languages for
object-oriented collaborations, and rewrite rules in program transformation systems —
that can modularize and implement features as transformations. In MapStats, features
not only refine JavaScript programs by adding new classes, methods and statements, but
also new graphics elements can be added to SVG programs.

The relationship of a GenVoca model (i.e., 0-ary and unary functions) to a feature di-
agram is straightforward: each terminal of a feature diagram represents either a base pro-
gram or a unary function. Compound features correspond to GenVoca expressions. 

3.2 A Model of MapStats

A GenVoca model of MapStats has a single value (Base of Fig. 3); its unary functions
are the remaining features of Fig. 3 and the features of the Charts feature diagram:

MapStats = { Base, USStates, ... // features from Fig. 3
ChartBase, Pie, ... } // features from Fig. 4

To simplify subsequent discussions, instead of using the actual names of MapStats
features, let us use subscripted letters. M0 is the base program of MapStats, M1..Mn are
the (unary function) features of the MapStats feature diagram and C0...Cm are (unary
function) chart features:

MapStats = { M0 ... Mn, // features from Fig. 3
C0 ... Cm } // features from Fig. 4

An application A in the MapStats product line is an expression:

A = (C2•C1•C0)•M1•M0 (1)

That is, application A is constructed by elaborating base program M0 with a sequence
of M features followed by a sequence of C features, where subexpression (C2•C1•C0) syn-
thesizes the JavaScript that displays one or more charts. The original MapStats applica-
tion Orig, which is part of our product line, is synthesized by composing all features:

Orig = (Cm•...•C0)•Mn•...•M0
Each MapStats feature can encapsulate SVG and JavaScript refinements (crosscuts)

of the base application (M0). 
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3.3 Implementation Overview

Our implementation of MapStats was straightforward. Our base program (M0) was a
pair of SVG and JavaScript programs. Each MapStats feature (Mi) could modify the
SVG program, the JavaScript program, or both. We used the AHEAD Tool Suite (ATS)
to implement MapStats features [1], and in particular, the XAK tool as the composition
operator. 

XAK is a language to refine XML documents and is also a tool to compose XML doc-
uments with their refinements [3]. A XAK base document is an XML file containing la-
beled variation points or join points to identify positions in a document where modifica-
tions can take place. A XAK refinement (unary function) is an XML file that begins with
a refine element. Its children define a set of modifications, where each modification
pairs an XPath expression with an XML fragment. The XPath expression identifies var-
iation points or join points in an XML document, and the XML fragment is appended as
a child node of the selected parent node(s). XAK can also prepend, replace, and delete
nodes as well as perform operations on attributes, sibling nodes, and text nodes, howev-
er, our need was limited to child node appending.

To illustrate, Fig. 5a shows an elementary base document; Fig. 5b is a XAK refine-
ment that appends an XML tree as another child of <mynode>. In Aspect Oriented Pro-
gramming (AOP) terms, 'xr:at' node specifies a pointcut as an XPath expression, which
in this case looks for nodes called 'mynode'. The 'xr:append' node defines the advice
action and body. The action for this example is to append 'mychildnode' with a data
attribute of '2'. Applying the refinement to the base yields the composite document of
Fig. 5c.1 

As SVG documents are XML documents, XAK provided the language and tool for
SVG document modification. However, ATS does not have a language to express Java-
Script refinements, and a tool to compose refinements with a base JavaScript program.
To circumvent this, we used XML to encode both JavaScript and JavaScript refinements,

1 Aspects can be implemented by transformations; aspect compilers transform an input program
to a “woven” program where additional code has been appropriately inserted [23].

<mynode>
<mychildnode data="1">
</mychildnode>

</mynode>

<xr:refine xmlns:xr="http://
www.atarix.org/xmlRef ...
  <xr:at select="//mynode">

    <xr:append>
      <mychildnode  data="2">
      </mychildnode>
    </xr:append>

  </xr:at>
</xr:refine>

(a) base

(b) refinement

(c) composed

<mynode>
  <mychildnode data="1">
  </mychildnode>
  <mychildnode data="2">
  </mychildnode>
</mynode>

Fig. 5. XAK Base, Refinement, and Composition



22 G. Freeman, D. Batory, and G. Lavender

and used XAK to compose them. The resulting JavaScript program was produced by
stripping XML tags.

4 Lifting

It quickly became evident that MapStat chart features C0...Cm were extremely tedious
to write. We applied a key principle of MDD to save us effort: we created a high level
DSL to specify charts and their features. Fig. 6 shows a fragment of a chart spec. A chart
XML element defines a chart and an item defines an element in the chart. XML attributes
can change the type of chart (pie, bar, or stacked-bar) as well as the names, colors, and
field attribute codes for chart items.

Given chart specs, it is easy to write chart features (transformations). For example, a
XAK refinement of Fig. 6 that appends the age data item for 18-21 is shown in Fig. 7.
The underlined node defines a pointcut (XPath expression) that identifies all charts with
the attribute @datatype='age-population'; such a chart would have the item
AGE_18_21 appended to it. (In AOP-speak, this advice is homogenous [11]). 

We wrote XSLT transformations to map a
chart spec (or chart spec refinement) to its
corresponding MapStat chart feature imple-
mentation (i.e., a JavaScript refinement).
XSLT was chosen for the translation step
since our models were XML-based. The im-
age that is represented by the composite
chart (Fig. 6 composed with Fig. 7) is shown
in Fig. 8 where all three age groups are displayed. In general, we found a chart DSL spec-
ifications to be 4-10 times shorter than their generated JavaScript counterparts.

Fig. 6. A Chart Spec Fragment

<chart data-type=“age-population” type=“pieChart” ...
<item attr=“AGE_30_39” color=“lightgreen” name= ...
<item attr=“AGE_22_29” color=“lightcyan” name=...

</chart>

<xr:refine xmlns:xr="http://www.atarix.org/xmlRef ...
<xr:at select="//chart[@data-type='age-population' ...

<xr:append>
<item attr="AGE_18_21" color="cyan" ...

</xr:append>
</xr:at>

</xr:refine>

Fig. 7. Example Chart Feature

Fig. 8. Pie Chart with Three Age Categories
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By lifting (raising) the level of abstraction of chart feature implementations, in effect
what we did was create another product line — a product line of charts. That is, we lifted
the chart features C0...Cm of MapStats into a separate GenVoca model called Charts:

Charts = { S0 ... Sm }

where S0 was the base chart spec, and each Charts feature Si was a chart spec refine-
ment. Charts features are in 1-to-1 correspondence with their MapStats chart features.
XSLT transformations τ and τ’ defined this correspondence:

C0 = τ(S0) (2)

Ci = τ’(Si) // for all i=1..m (3)

τ and τ’ have very similar implementations: their difference is due to the type of their
argument: τ maps a Charts value to a MapStats function (i.e., JavaScript refinement);
τ’ maps a Charts function to a MapStats function. 

Note that an operator maps an input function to an output function. τ’ is an operator
that maps a Charts refinement transformation to a MapStats refinement transforma-
tion. τ maps a Charts 0-ary function S0 to the MapStats unary function C0. Operators
τ and τ’ have a basic commuting relationship which we explain in Sect. 6.

Even though we now used lifted features, the way we specified a target MapStats
application changed minimally. We still used the original feature diagram of MapStats
to specify a MapStats application and to create its GenVoca expression (which starts
with the base program M0 and applies MapStats features to elaborate it). But instead of
implementing chart features C0...Cm directly in terms of JavaScript refinements, we
used chart specs and chart refinements S0...Sm. To synthesize a MapStats application
A (equation (1)), we rewrote its expression using (2) and (3):

A = (C2•C1•C0)•M1•M0 // original MapStats expr
= τ’(S2)•τ’(S1)•τ(S0)•M1•M0 // rewrite (4)

and evaluated (4) to synthesize A. We call the raising of features and their compositions
from one product line to another lifting. Lifting can be applied to any GenVoca product
line. Transformations (like τ and τ’) are used to define maps between unlifted features
and their lifted counterparts. Constraints that govern the composition of original Map-
Stats features remain unchanged. 

5 Implementation Details

In this section, we illustrate some of the features and mappings discussed earlier, in order
to make our discussions concrete.

A chart spec defines one or more charts. Each chart is implemented by a unique Java-
Script class. For example, a pie chart that displays age information that includes the
range of 18-21 is defined as a JavaScript class (below named agePie) that has a method
(buildData) that populates this particular data set:

function agePie() { // JavaScript class definition
...

this.buildData = function() { // buildData method
...
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this.chartAttrArray.push("AGE_18_21");
this.chartNameArray.push("18-21");
this.chartColorArray.push("cyan");
... 

}
}

At run-time, a JavaScript object is created for each chart, populated with data, and
then displayed:

var agepie = new agePie(); // instantiate object
agepie.buildData(); // populate data
agepie.showData(); // display

To see how this JavaScript class was synthesized, let’s look at a Charts feature ex-
pression that could generate it:

AGE_18_21•Age•Pie•ChartBase

That is, the chart spec begins with ChartBase, it is refined to a pie chart that displays
age information (Age•Pie), and then the age category 18-21 is added. Internally, our
tools generate unique names for each chart. The manufactured name given to the chart
of our example is “agePie”.

Let’s now focus on the AGE_18_21 feature. The XAK refinement that defines it was
depicted in Fig. 7, which we reproduce below:

<xr:refine xmlns:xr="http://www.atarix.org/xmlRef ...
<xr:at select="//chart[@data-type='age-population' ...

<xr:append>
<item attr="AGE_18_21" color="cyan" ...

</xr:append>
</xr:at>

</xr:refine>

This transformation adds the age category 18-21 to all charts of a charts spec that dis-
play age information. In our example, there is only one chart, agePie. Note that the un-
derlined code denotes the pointcut (XPath expression) that captures the relevant charts
to modify.

Let’s see the result of transforming the AGE_18_21 Charts feature into its corre-
sponding MapStats feature (denoted AGE_18_21mapstats). The τ’ operator maps
AGE_18_21 to AGE_18_21mapstats, where a fragment of AGE_18_21mapstats is:

<xr:refine ... >
<xr:at select="//function[@data-type='age-population'] 

[@parentId='ChartArea2'][@name='buildData']"...>
<xr:append>

<statement>
this.chartAttrArray.push("AGE_18_21");
this.chartNameArray.push("18-21");
this.chartColorArray.push("cyan");

</statement>
</xr:append>

</xr:at>
</xr:refine> (5)
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That is, the above XAK refinement adds the JavaScript code in italic red to the
buildData method of each JavaScript class of a chart that displays age information.
Note that the underlined code denotes the pointcut (XPath expression) that captures the
relevant buildData methods. So the translation of AGE_18_21 to AGE_18_21mapstats
maps a pointcut (XPath expression) whose joinpoints are in chart specs to a pointcut
whose joinpoints are in JavaScript programs. Also, the addition of a chart element is
mapped to the addition of statements in the JavaScript method buildData.

As mentioned earlier, operators τ and τ’ are implemented in XSLT. They look for
patterns in charts specifications and instantiate JavaScript code templates. For example,
when a 'chart' element is encountered in a chart spec, a corresponding JavaScript class
is added with the methods buildData and showData. When an 'item' element is found
in a chart spec, statements are added to an appropriate JavaScript method. As an exam-
ple, a fragment of the XSLT definition of τ’ is shown below:

<xsl:template match="xr:at/xr:append/c:item">
... map Charts pointcut to MapStats pointcut...

<xr:at select="{$path}">
<xr:append>

<xsl:variable name="attr" select="@attr"/>
<xsl:variable name="color" select="@color"/>
<xsl:variable name="name" select="@name"/>
<statement>
this.chartAttrArray.push("<xsl:value-of select="$attr"/>");
this.chartNameArray.push("<xsl:value-of select="$name"/>");
this.chartColorArray.push("<xsl:value-of select="$color"/>");
</statement>

</xr:append>
</xr:at>

</xsl:template> (6)

Note that the code in italic red is a template whose parameters are provided by the
input to τ’. In our example, the AGE_18_21 input to τ’assigns the value AGE_18_21 to
attr,18-21 to name, and cyan to color. The italic red code of (5) is  generated
by instantiating the τ’ template with these parameters. By writing a general transforma-
tion τ’ once and reusing it (to translate other Charts features that were differentiated
only by their parameters), saved us considerable effort as mentioned earlier. Notice also
that part of τ’ is to map the pointcut of a charts spec to a corresponding pointcut that
captures the corresponding JavaScript methods. This mapping is done via string manip-
ulation, which we elide the details, and indicate by underlined code in (6). 

6 Commuting Relationships

Lifting defines a commuting relationship between Charts features and MapStats fea-
tures that relate τ and τ’ and that offers us yet another way to synthesize MapStats ap-
plications. Instead of separately translating each Charts feature Si to its Ci counterpart
as we did in (4), we could synthesize a composite chart spec S (e.g., S=S2•S1•S0) by
starting with a base spec S0, and add features S1 and S2, and then  transform S into its
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corresponding JavaScript implementation. That is, another way to synthesize application
A is:

A = τ(S2•S1•S0)•M1•M0 (7)

The equivalence of (4) and (7) is due to the commuting relationship:

τ(Si•S) = τ’(Si)•τ(S) (8)

where S is a Charts expression and Si is a Charts feature. (8) says composing Charts
features and translating to a MapStats representation equals translating each Chart fea-
ture separately and composing. The value of commuting relationships is that they define
properties of valid implementations of transformational models of product lines. The
correctness of a model and tools is demonstrated when its commuting relationships are
demonstrated. Commuting relationships provide a simple means to express and compare
different methods of applying transformations and transformation of transformations
(i.e., operators).

Note: a general name for (8) is a homomorphism: given two sets X and Y and a
single binary operation on them, a homomorphism is a map Φ:X→Y such that:

Φ(u⊗v) = Φ(u)⊕Φ(v) (9)

where ⊗ is the operation on X and ⊕ is the operation on Y. In MapStats, X is the
Charts model and Y is the MapStats model; ⊗ and ⊕ both are •. Homomorphisms
define how expressions in one algebra are translated to expressions in another, i.e.,
(8) defines how Charts expressions are mapped to MapStats expressions.

Note: what is the justification for (8)? Experimentally we have observed that com-
positions of features and derivations commute: when they do not, we find bugs in
our transformation or tool chains. The commuting of features and derivations is an
axiom of Feature-Oriented MDD (FOMDD) [31][32], which our work on Map-
Stats is an example case study.

As we do not have formal models of Charts and MapStats, we do not have a proof
of (8) for all Charts and MapStats features. Instead, we tested the correctness of
(8). We synthesized multiple applications in two different ways (i.e., (4) and (7)) and
then visually compared and executed both programs since (4) and (7) did not produce
syntactically equivalent code. Graphical SVG applications with multiple transforma-
tion outputs allowed side-by-side visual comparison of many test cases. Other tests
were performed with randomly selected features to ensure that each properly trans-
formed the appropriately selected features. Although more sophisticated and thorough
testing was possible (e.g., [24]), manual comparisons were sufficient for our goals.

Commuting relationships not only define properties that can be used to prove or test
model and implementation correctness, but sometime they have additional benefits. We
have observed in other domains that program synthesis can be substantially more effi-
cient using one synthesis path (e.g., (4) or (7)) than another. For example, exploiting
commuting relationships led to a 2-fold speed-up in synthesizing portlets [32], and over
a factor of 10 in synthesizing test programs using Alloy [22]. Although we did observe
trade-offs in building MapStats applications, they were not particularly significant. The
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utility of commuting relationships in MapStats was restricted to model and transforma-
tion validation.

7 Related Work

FOP and MDD paradigms have their historic roots in Lisp, which promoted the idea that
programs are values (or “programs as data”) and transformations are functions that map
values to values. 

Combining MDD and product line transformations is not new [2][4][13][17][18]
[28][31][32]. Trujillo et al. used XAK and AHEAD to build web portlets from state chart
models [32]. Our work builds upon theirs and provides further evidence that transforma-
tion-based models of product lines (that represent both features and model translations
as transformations) expresses a general approach to software development. Also, our use
of lifting illustrates how basic concepts in elementary mathematics (e.g., operators and
homomorphisms) lie at the core of program-development-by-transformations. The use
of elementary mathematics as a language to express our design allows us to make this
connection directly.

Trujillo et al. also apply model transformations that aid in the building of FOMDD
(Feature Oriented Model Driven Development) applications, which include multiple
transformation steps and different paths to generate an application [31].

Avila-García and others used transformations to apply features to models [4]. Their
work focused on transformations of transformations that composed features for families
of UML diagrams. Our work instead focuses on transforming high level models into ex-
ecutable applications.

Gonzalez-Baixauli and others have proposed using MDD to help product line engi-
neers determine application variation points, and to assess the feasibility of automating
software product line development with MDD [17]. Work by Deelstra and others have
also used MDD as a means of identifying variations points within a product line [15].
Both papers infer that a feature could use Platform Independent Model (PIM) to Plat-
form Specific Model (PSM) transformations to implement features that specify different
platforms and implementation technologies. 

Czarnecki and Helsen combined features and MDD in a different way by surveying
different types of transformation methods and analyzing the various features of these
methods [14]. Other prior work defined a taxonomy of different types of transformations
and classified them as endogenous and exogenous [25]. Feature composition is an en-
dogenous transformation, which uses the same source and target model representations.
The τ and τ’ transformations are exogenous, which use different source and target model
(XML schema) representations. 

Czarnecki and Antkiewicz connect features and behavioral models using model tem-
plates [13]. Model elements are tagged with predicates that reference features; the ele-
ments appear in a model instance when selected features satisfy the predicate. This is an
alternative approach to artifact development in product lines; our approach stresses the
modularization of features and their connection to transformations.

Kurtev uses XML transformations to develop XML applications [21]. The design of
web applications includes functionality, content, navigation and presentation components. 
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Many results in MDD have laid a foundation for model transformations [9][10][20].
Even though this case study covers a specific domain and does not use UML model rep-
resentations, model representations serve the same purpose of abstracting representa-
tions at different levels of detail. The Charts model representation is a type of PIM and
the SVG and JavaScript model representations are types of PSMs. 

8 Conclusions

We presented a product line of SVG+JavaScript applications that was defined and im-
plemented solely in terms of transformations. Features of a product line were implement-
ed as transformations, and programs were specified as compositions of transformations.
When we discovered that certain features were tedious to implement, we applied a basic
principle of MDD to “lift” low-level implementations to DSL specifications and wrote
transformations (operators) to map DSL specs (and their refinements) back to their
SVG+JavaScript counterparts, ultimately saving effort.

What makes lifting interesting is its product line setting: we lifted selected features
and their compositions from our original product line (MapStats) to features and com-
positions of another product line (Charts). We defined how features (transformations)
in one product line could be transformed into features (transformations) of another via
operators (τ and τ’). Doing so exposed commuting relationships between compositions
of functions (i.e., tool chains and features). Such commuting relationships define prop-
erties of transformational models of program development; proving or validating (via
testing) that these properties hold helps demonstrate model correctness. Our case study
illustrated these ideas.

A primary reason why we were able to recognize commuting relationships and ex-
plain how features of one product line were related to another is that we used the lan-
guage of elementary mathematics to express transformation-based designs of programs.
Doing so enabled us to express our ideas in a straightforward and structured way and at
the same time compactly illustrate how transformational models of software product
lines can be defined, implemented, and explained. 
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Abstract. In a model-centric software development environment, a mul-
titude of different models are used to describe a software system on dif-
ferent abstraction layers and from different perspectives. Following the
MDA vision, model transformation is used to support the gradual refine-
ment from abstract models into more concrete models. However, target
models do not stay untouched but may be changed due to maintenance
work or evolution of the software. Therefore, in order to preserve a coher-
ent description of the whole system, it is necessary to propagate certain
changes to a target model back to the source model. However, as trans-
formations in general are partial and not injective, they cannot be easily
reversed to propagate changes. This paper presents a formal definition of
round-trip engineering and the semantics of target changes in the context
of partial and non-injective transformations.

1 Introduction

In a model-centric software-development environment, such as the one described
by OMG’s MDA vision [9], models become first class citizens in the develop-
ment process. In this environment a multitude of different models and modelling
languages are used to describe a software system on different abstraction layers
and from different perspectives. Ideally, all these different models are connected
by model transformation. Allowing the generation of new models from existing
ones, transformation forms one of the corner stones in this vision.

Due to necessary maintenance work or changing requirements, target models
are altered or extended. Consequently, the modified target may no longer be the
result of the transformation. To avoid inconsistencies changes to target models
have to be reflected back to the source model as depicted in Fig. 1. This process
is known as Round-Trip Engineering (RTE).

A motivating scenario that heavily relies on RTE can be found in the business
process management community, an area where MDA-like modelling is increas-
ingly important. Barros et al [2] propose a layered and view-point based approach
to choreography modelling, which specifies and describes protocols between two
or more parties interacting to achieve a common business goal. To capture poten-
tially very complex systems, different abstraction layers and different view-points
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S' T'

trans

transR

S T

T

Fig. 1. Changes to the target T must be reflected back to the source S. Therefore,
some kind of reverse transformation transR is needed.

were proposed. Making changes to one model may require consequential changes
in other models. As the presented approach also supports bottom-up, RTE is of
vital interest with respect to a future implementation.

The difficulty faced with RTE is the often neglected fact that transformations
in general are neither total nor injective. In other words, there are concepts in
the source model that do not have a correspondence in the target model and
vice versa. Also, there may be several source models being mapped to one and
the same target model.

The contribution of this paper is a formal definition of RTE accounting for
non-injective, partial transformations found in practice. Furthermore, the se-
mantics of a target change with respect to the transformation and the source
model is given. Source changes have to exactly perform a target change, i.e.,
without any side-effects, in order to be a viable translation of a target change.
This definition will serve as a foundation for our ongoing implementation.

The remainder of this paper is structured as follows. Section 2 will provide an
outline of related work. An example, which will be used throughout this paper,
will be introduced in Sec. 3. The subsequent three sections contain the main
contribution consisting of the definition of model synchronisation in Sec. 4, which
is a prerequisite for the RTE definition presented in Sec. 5. This is followed by
Sec. 6 where the semantics of target model changes is specified. The last section
provides a conclusion and an outlook on further research.

2 Related Work

2.1 Definitions of Model Round-Trip Engineering

To the best of our knowledge, there is only one general formal definition of
RTE by Aßman [1]. However, this definition neglects partial and non-injective
transformations and is too high a level in order to be useful in practice. Giesse
and Wagner [7], Foster et al [6] and Stevens [11] provide formal definitions,
which, however, are limited to their approaches and will be discussed in the next
section.

More insights into possible definitions and the semantics of target changes can
be obtained by investigating the view-update problem in relational databases.
Essentially, views can be thought of as stored database queries using relational
algebra expressions, which are in general unidirectional, partial and non-injective
functions; very similar to model transformations. Given the similarities between
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views and model transformations, some parallels can be established between the
view-update problem and that of RTE.

An interesting approach to describing the semantics of view updates was put
forward by Dayal and Bernstein [4], which translates changes to the view into
changes to the underlying database. These changes are required to exactly per-
form the change made to the view. Applying the view definition to the changed
database again must yield the changed view. This approach will be adopted in
the specification of semantics of target model changes in Sec. 6.

2.2 Approaches to Round-Trip Engineering

Current approaches to model synchronisation and RTE1 differ mainly in the re-
strictions placed on the transformation. These restrictions range from total, in-
jective, bi-directional transformations [12] to partial, non-injective, bi-directional
transformations [3], as summarised in Table 1.

The approach presented by van Paesschen and d’Hondt [12] is based on the
idea that an element in the source model and an element in the target model
are just different views of exactly the same thing, which is an instance of a third
“common” model. This makes synchronisation trivial as regardless of whether
the source or the target is manipulated this will instantly be reflected in the
other model as source and target element are one and the same entity in the
common model. However, this assumes that the source and the target model are
isomorphic to each other, i.e., each source element has exactly one corresponding
target element. No two different source elements are allowed to be mapped onto
the same target element.

Using triple graph grammars, which are by nature bi-directional, Giese and
Wagner [7] outline a model synchronisation approach. Changes are confined to
the domain and range of the transformation, effectively limiting the synchronisa-
tion to the semantic overlap of the source and target model. Elements that do not
have a corresponding representation in the other model cannot be added. When
invalidating a target pattern, the corresponding source pattern gets invalidated
by deleting all its constituting elements. Smaller changes, such as changing an at-
tribute in order to annul the source pattern are not considered. Transformations
are not required to be bijective in order to be usable for this synchronisation ap-
proach, as shown by Ehrig et al [5]. However, there must be a bijection between
source and target patterns.

A different approach to reversing functions, not primarily targeting MDA, is
presented by Mu et al [10] where a functional, injective language is defined. This
is done by defining primitive injective functions and their also injective converse.
With that, more complex functions can be constructed, which are guaranteed to
be injective as well. These functions, however, are not very useful as even simple
arithmetic operations are not injective. They cannot be easily reversed as there
is a potentially infinite number of possibilities to arrive at a given value. To

1 In the literature, model synchronisation and round-trip engineering are often used
interchangeably.
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overcome this problem, a log is kept recording the relationship between source
and target elements. Using this log, only elements that have been produced by
the function can be reversed. New elements cannot be reversed as there is no
information about them in the log.

Foster et al [6] present a model synchronisation approach based on so-called
lenses, pairs of functions defining the forward and the reverse transformation.
The forward function solely works on the source structure. Conversely, the re-
verse uses the old source structure and the new target structure to produce a new
source. Assuming that target models are transient, no changes are allowed that
cannot be reflected back, effectively confining synchronisation to the semantic
overlap. Both functions of a lens have to be total and injective, such that every
change to the target structure can be reflected back to the source. With a basic
set of lenses and combinators more complex transformations of tree structures
can be constructed and automatically reversed.

To provide reasonable bi-directional semantics for QVT, Stevens [11] proposes
a set of basic properties. These properties are shown to be equivalent to the
properties for lenses proposed by Foster et al [6].

Xoing et al [13] present an approach for reversing model transformations spec-
ified using the ATL model transformation language. The transformation does
not have to be total on the source or target model, i.e., elements that have
no corresponding entity in the respective other model can be added, removed or
changed without violating the synchronisation. Similar to the triple graph gram-
mar approach, when invalidating a target pattern, the elements constituting the
corresponding source pattern are deleted.

Fewer restrictions on the nature of the transformation are imposed by the ap-
proach presented by Cicchetti et al [3]. It allows for non-injective partial trans-
formations. Elements that do not have a correspondence in the other model
can be added, deleted and changed. Modelling is not restricted to the semantic
overlap of both models. Allowing for non-injective transformations, the reverse
transformation, as specified by the user, may not be a function and hence there
may be several source models for a given target model. To compute all these
source models, a logic programming variant supporting non-monotonic reason-
ing is used. However, there is no way to ensure that the provided reverse is
reasonable in the sense that when brought forward again all sources result in
the changed target model. Moreover, round-trips without any changes produce
all source models rather than just the original one.

In summary, there is no generally applicable definition of automatic RTE that
takes partial and non-injective transformations into account. Most approaches
are total, restricting modelling to the semantic overlap of two languages. All but
one approach require some kind of injective property of either the transformation
as a whole or its rules or lenses. Only Cicchetti et al [3] do not impose this
restriction. However, there is no formal definition and the semantic of changes is a
by-product of whatever the user defines as the reverse transformation. Therefore,
the contribution of this paper is to put forward a formal definition for automatic
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Table 1. Comparison of model synchronisation approaches

Approach Synchronisation Relationship Reverse
van Paesschen et al [12] total bijective trans. given

Giese and Wagner [7] total bijection btwn. patterns computed

Mu et al [10] total injective trans. computed

Foster et al [6] total injective lenses computed

Xiong et al [13] partial bijection btwn. patterns computed

Cicchetti et al [3] partial not injective given

RTE with respect to partial and non-injective transformations together with a
formal specification of the semantics of target model changes.

3 Running Example

To illustrate definitions, the popular UML to relational database transformation
will serve as the running example throughout this paper. It is made up of three
parts: (1) A simplified version of the UML and relational database schema meta-
models (cf. Fig. 2), (2) a model transformation (cf. Fig. 3) defined on both meta-
models and (3) an instance of the UML meta-model and the corresponding
relational database schema with respect to the transformation (cf. Fig. 4).

name:String
persistent:Boolean

Class

name:String
Package

name:String
Attribute

contains
super

type

attributes

name:String
Table

name:String
Column

Index

columns

index

indexes

Fig. 2. A simple UML and relational database schema meta-model

Translating class diagrams into database schemes, the transformation, de-
picted in Fig. 3, creates one Table per Class and one Column for each Attribute
of a Class, including inherited attributes.

This mapping is an example of a practical, partial and non-injective trans-
formation. It is partial, because it does not map Packages and cannot reach
Indexes in the target and it is non-injective as there are two source models
being mapped to the same target model: One is depicted in Fig. 4. The other
one can be derived by deleting the inheritance relation and introducing another
attribute attr1 in Class2.

Moreover, when deleting a table, it is not clear whether to delete the corre-
sponding class or to simply mark it not persistent.
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1 RULE c l a s s 2 t a b l e
2 FORALL C l a s s c
3 WHERE c . p e r s i s t e n t
4 MAKE Table t FROM t ( c )
5 SET t . name = c . name ;

1 RULE a t t r i b u t e 2 co l umn
2 FORALL C l a s s c , A t t r i b u t e a
3 WHERE c . a t t r i b u t e s = a
4 AND c . p e r s i s t e n t
5 MAKE Table t FROM t ( c ) ,
6 Column c o l FROM c o l ( c , a )
7 SET t . c o l s = co l ,
8 c o l . name = a . name ;

Fig. 3. Model transformation rules given in Tefkat [8] for mapping UML class dia-
grams onto relational database schema. For sake of conciseness, it is assumed that
c.attributes also contains inherited attributes.

attr1
Class1

attr2
Class2

attr1

attr1 attr2

Class1:

Class2:

persistent

persistent

Fig. 4. A simple UML class diagram and the corresponding relational database schema
with respect to the transformation depicted in Fig. 3

4 Model Synchronisation Definition

Intuitively, on a high level, two models are synchronised with respect to a trans-
formation if applying the transformation to the source model yields the target
model. Formally speaking, two models S and T conforming to their respective
meta-models MS and MT , are synchronised with respect to a transformation
trans : MS → MT if trans(S) = T .

However, as shown by the running example in Sec. 3, transformations in gen-
eral are only partially defined on the source and/or target model and are not
injective. The definition of model synchronisation proposed in this section takes
those properties into consideration and hence synchronisation is more complex
than sketched above.

4.1 Preliminaries

A simple definition of a meta-model is used in this paper, which consists of a
set of types T and the usual type hierarchy � defined on them. Furthermore,
models contain a set of named relations R, relating two types to each other.
Types can also have attributes, contained in A, which have a name and a type.

Definition 1. A (meta) model M is defined as the tuple (T , �, R, A), where

– T is the finite set of types,
– � is the type hierarchy on T , such that t1 � t2 if t1 is a super-type of t2.
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– R ⊂ (Name × T × T ) is the finite set of named relations,
– A ⊂ (T × Name × T ) is the finite set of attributes

Comparing the UML meta-model in Fig. 2 to the transformation in Fig. 3, it
becomes obvious that the transformation is only concerned with (some) Classes
and (some) Attributes and is ignorant of the fact that UML class diagrams
can also contain Packages. Therefore, obviously, any source model can be di-
vided into two parts: one part that is relevant to the transformation, containing
Classes and Attributes, which may or may not be mapped, depending on some
conditions, and another part, containing Packages, which are completely irrel-
evant with respect to the transformation. The relevant part is called relevant
source model and is illustrated by Fig. 5. Analogous to the source model, the
target model can also be divided in the same way. The transformation cannot
possibly create Indexes, which are used to optimise access to the database by
indexing certain columns. Therefore, all instances of Index are in the irrelevant
part, leaving Tables and Columns in the relevant target model.

Definition 2. Let trans be a model transformation from MS to MT . The rel-
evant source model M̄S and relevant target model M̄T with respect to
trans can be determined as follows:

1. Each explicitly mentioned exact type in the source part (target part) of trans
is in M̄S ( M̄T ).

2. Each explicitly mentioned non-exact type in the source part (target part) of
trans and all its subtypes are in M̄S (M̄T ).

3. Each attribute or relation mentioned in the source part (target part) of trans
and their corresponding types according to (1) or (2) are in M̄S (M̄T ).

trans

Target ModelSource Model

Domain Range

Relevant
Source Model

Relevant
Target Model

Fig. 5. Instance diagram illustrating the relevant source and target model of a transfor-
mation trans, as well as different kinds of changes: (1) valid change, (2) invalid change
and (3) irrelevant change

The function strip is used to map models to their strip-down relevant source
or target model:

Definition 3 (Strip for Models). Let strip : M × (t : MS → MT ) → M̄
be the function that maps models to their stripped down versions in M̄ where
either M = MS or M = MT .
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Note: Instead of strip(M, trans), strip(M) will be used for sake of brevity if it
is clear which transformation is used. Nevertheless, strip is always with respect
to a transformation.

4.2 Synchronisation

Having defined the relevant source/target model it is now possible to define
synchronisation between two models. Informally, two models are synchronised if
the relevant part of the target can be created by applying the transformation to
the source model.

Definition 4. Two models S, T , instances of their respective meta-models MS,
MT , are synchronised with respect to a transformation trans : MS → MT if

trans(S) = strip(T ).

Example: The two models depicted in Fig. 4 are synchronised with respect to
the transformation listed in Fig. 3. Neither adding packages nor adding index
information to any of the tables will impact on the synchronisation between both
models.

5 Round-Trip Transformation

After having defined when two models are in sync with respect to a transforma-
tion, the question arises as to how they can be synchronised again if the target
model changes. Depending on the nature of the transformation, there are several
ways, which are discussed below.

Assuming that model transformations are total and bijective, the mathemati-
cal inverse trans−1 can be used to recover a lost or otherwise unavailable source
model. By applying the inverse to the target model trans(S) = T , the original
source model can be recovered: trans−1(T ) = S.

As model transformations may not necessarily be total – there may be ele-
ments that cannot be mapped – a relaxed version is needed that only requires the
inverse to be defined on the domain and range of the source and target model.

transinv(T ) = strip(S).

Unfortunately, as shown in Sec. 3, transformations used in practice are not nec-
essarily bijective and total. The concept of a reverse transformation transR does
not require the forward transformation to have these properties. All source mod-
els S1, . . . , Sn that produce the same target T are considered equivalent and the
reverse transformation is only required to return any one of them:

trans(transR(T )) = strip(T ).

In contrast to reverse engineering, round-trip engineering does not aim at recov-
ering lost or otherwise unavailable source models, but is rather concerned with
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propagating changes from target to the source model. Therefore, it assumes the
availability of the source and target model, the forward transformation and the
change to the target model, which all are input to the round-trip transformation
transRT . The goal is to produce a new source model that when transformed
produces the changed target model again.

Definition 5. A function transRT : MS × MT × (MT → MT ) → MS is a
round-trip transformation if it maps the source model S, the target model T
and a target model change ΔT to a new source model S′ such that:

transRT (S, T, ΔT ) = S′

where S′ and ΔT T are synchronised.

6 Semantics of Target Changes

6.1 Changes

With models being first class citizens in the development processes, it cannot
be assumed that they stay as they are and are not changed during the course of
the development project. Sooner or later changes will be made to the source or
the target model, which may or may not have to be reflected in the respective
source or target model.

There is a number of atomic changes that can be made to models, i.e., inserting
or deleting instances, inserting or deleting relations between instances and setting
or unsetting attribute values of a certain instance.

Definition 6. An atomic change δ is defined as a function:

δ : M → M

There are six different atomic changes:

1. δ+
t creating an instance of type t,

2. δ−t deleting an instance of type t,
3. δ+

r,o1,o2
creating a relation r between instances o1, o2,

4. δ−r,o1,o2
deleting a relation r between instances o1, o2,

5. δs
o,a,v setting attribute a of instance o to value v.

6. δu
o,a unsetting attribute a of instance o.

Let CS be the set of all possible changes to the source and CT be the set of all
possible changes to the target.

Most often, however, a whole sequence of atomic changes will be necessary to
reach a consistent state of the model, with respect to a set of constraints, which
are not considered here.
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Definition 7. A (complex) change Δ is defined as a function:

Δ : M → M

Each change Δ is composed of a sequence of atomic changes δ1, . . . , δn such that

ΔM = δ1 ◦ · · · ◦ δnM = M ′

As complex changes are composed of a number of atomic changes, a complex
change can perform several smaller changes in different parts of the model. Some
atomic changes may affect the relevant model, others may affect elements in the
irrelevant part. As changes to the irrelevant part are not of interest, the function
strip filters out those changes, leaving the complex change with only those atomic
changes that actually affect the relevant source or target model.

Definition 8 (Strip for Changes).
Let M be a model and an instance of its respective meta-model M and
strip : (Δ : M → M) × M̄ → (Δ′ : M → M) the function that maps a change
Δ to a change Δ′ such that the change only affects elements in the relevant
source or target model M̄. Let Δ = δ1 ◦ · · · ◦ δn and Δ′ = δi1 ◦ · · · ◦ δim , then δj

is in Δ′ if

– δj deletes/inserts instances of type t ∈ M̄
– δj deletes/inserts relations of type r ∈ M̄
– δj sets/unsets values v of attribute a ∈ M̄

For a stripped-down complex change, which only affects the relevant target
model, a corresponding change in the source is sought. However, not all source
changes are equally desirable. Some may have side-effects and hence have a larger
impact on the target, when transformed back, than it was desired by the original
target change.

Example: Consider the deletion of table Class1 in Fig. 4. This could be per-
formed by deleting Class1 in the class diagram. However, this change has an
unwanted side-effect, as Class2 will no longer inherit attribute attr1 and hence
the existence of column attr1 in table Class2 can no longer be supported.
Therefore, as a result of applying the transformation to the changed source, col-
umn attr1 will be removed as well, which is much more than what was originally
requested when only deleting table Class1.

To avoid these kind of side-effects, a source change that performs a target change
has to be exact:

Definition 9. A change ΔS in the source exactly performs a target change
ΔT if ΔS = strip(ΔS), ΔT = strip(ΔT ) and

trans(ΔSS) = strip(ΔT T ).

ΔS is also called an exact change.

Note: This definition corresponds to the PutGet law in Foster et al [6].
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6.2 Change Translation

Finally to translate target changes into exact source changes, a function φS,T,trans

is used, which depends on the source model S and the target model T , as well
as the transformation trans. As transformations in general are not injective, i.e.,
there are several source models that correspond to the same target model, φ re-
turns a set of changes to the source model for a given change to the target model.
These changes must be such that when applied to the source, the transformation
produces the desired range in the target model again, as illustrated in Fig. 6.

However, not all target changes can be translated into an exact source change:

– Relevant changes modify elements in the relevant target model, which could
have been the result of the transformation, and therefore need to be reflected
back to the source model. Relevant changes can be further subdivided into:

• Valid changes (cf. (1) in Fig. 5) that can be translated into a correspond-
ing exact change to the source; and

• Invalid changes (cf. (2) in Fig. 5) that cannot be translated into a cor-
responding exact change to the source.

– Irrelevant changes (cf. (3) in Fig. 5), which are all other changes.

Definition 10. Let S, T be models conforming to their respective meta-models
MS, MT , trans be a model transformation from MS to MT and ΔS, ΔT be
changes.

1. ΔT is a relevant change if strip(ΔT T ) �= strip(T ).
2. ΔT is a purely relevant change if ΔT is a relevant change and ΔT =

strip(ΔT ).
3. ΔT is a valid change if ΔT is a purely relevant change and ∃ΔS such that

trans(ΔsS) = strip(ΔT T ).
4. ΔT is an invalid change if ΔT is a purely relevant but not a valid change.

Irrelevant, i.e., not relevant changes, and valid changes can be translated to
the source model. For irrelevant changes, no change to the source has to be
performed to keep both models synchronised as the target change cannot possibly
impact the transformation. The change translation therefore returns the identical
change denoted by Δid. For valid changes, a set of exact changes to the source
model is returned, whereas for invalid changes the invalid change denoted by
Δ⊥ is returned. In this case, the corresponding target change must be rejected
to guarantee a synchronised state.

Definition 11. A function φS,T,trans : CT → P(CS) ∪ {Δ⊥, Δid} is a change
translation function, mapping changes to the target model to sets of changes
to the source model

φS,T,trans(ΔT ) =

⎧
⎪⎪⎨

⎪⎪⎩

{Δid} if Δ′
T is not a relevant change,

C if Δ′
T is a valid change and

∀ΔS ∈ C ⊆ CS : ΔS exactly performs ΔT ,
{Δ⊥} if Δ′

T is an invalid change.

Where Δ′
T = strip(ΔT ) and CT is the set of all possible target changes and

respectively, CS the set of all possible source changes. �
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TS

T'S'

S T

Transformation

Transformation
(Check)

Change
Translation

Relevant Source Model

Relevant Target Model

Fig. 6. Transformations are “round-tripped” by translating target changes into source
changes, such that applying the transformation to the changed source exactly yields
the changed target model

Note: Definition 11 for irrelevant changes corresponds to the GetPut law in
Foster et al [6].

To prove consistency of the proposed definition, the following theorem shows
that no matter what the change to the target is, source and target model are
always in sync.

Theorem 1. Given source model S, transformation trans : MS → MT and
target model T = trans(S). For any given change ΔT and ΔS ∈ φS,T,trans(ΔT ):

trans(α(ΔS)S) = strip(β(ΔT )T ),

where α is a function that returns Δid if ΔS = Δ⊥ else it returns ΔS and β is
a function that returns Δid if φS,T,trans(ΔT ) = Δ⊥ else it returns ΔT .

Proof.

1. If ΔT is not a relevant change

Def. 11⇒ {ΔS} = φS,T,trans(ΔT ) = {Δid} and therefore ΔSS = S
Def. 10⇒ strip(ΔT T ) = T

pre-cond.⇒ trans(α(ΔS)S) = strip(β(ΔT )T )

2. If ΔT is a purely relevant change:
(a) ΔT is an invalid change:

Def. 11⇒ ΔS =Δ⊥ and therefore ΔT has to be rejected ⇒ β(ΔT )=Δid

as per 1.)⇒ trans(α(ΔS)S) = strip(β(ΔT )T )

(b) ΔT is a valid change:

Def. 10⇒ ∃ΔS such that trans(ΔSS) = strip(ΔT T )
Def. 11⇒ φS,T,trans(ΔT ) = {Δ1

S , . . . , Δn
S} = C

Def. 9⇒ ∀ΔS ∈ C : trans(α(ΔS)S) = strip(β(Δ)T T )
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3. If ΔT is a relevant but not a purely relevant change

⇒ ∃Δ′
T , Δ′′

T : ΔT = Δ′
T ◦Δ′′

T such that Δ′
T is a not relevant change:

strip(T )=strip(Δ′
T T ) and Δ′′

T is a purely relevant change: Δ′
T =

strip(Δ′′
T )

Def. 11⇒ Δ′
S = Δid ∈ φS,T,trans(Δ′

T )
as per 1.)⇒ trans(S′) = T ′ where S′ = Δ′

SS and T ′ = strip(Δ′
T T )

Def. 11⇒ Δ′′
S ∈ φS,T,trans(Δ′′

T )
as per 2.)⇒ trans(Δ′′

SS′) = strip(Δ′′
T T ′)

⇔ trans(Δ′′
SΔ′

SS) = strip(Δ′′
T strip(Δ′

T T ))
⇔ trans(ΔSS) = strip(strip(ΔT T ))
⇔ trans(α(ΔS)S) = strip(β(ΔT )T )

�

6.3 Round-Trip Transformation

Looking at Fig. 6 one suspects that the change translation function φ is equiv-
alent to a round-trip transformation (cf. Def. 5), except that it returns a set of
possible changes of which only one can be applied. Used in conjunction with a
function π that picks one change based on some metric or user interaction it is
indeed equivalent. This is expressed by the following theorem.

Theorem 2. Given source model S, transformation trans : MS → MT and
target model T = trans(S). For any given change ΔT

π(φS,T,trans(ΔT ))(S)

is a round-trip transformation where π : P(CS) → CS picks the most appropri-
ate source change such that π(C) ∈ C.

Proof. Directly results from Theorem 1.

6.4 Example

To illustrate the semantics of exact changes, consider the following example.
Given two models as depicted in Fig. 4: A simple UML class diagram and the
corresponding relational database schema with respect to the model transforma-
tion as shown in Fig. 3. The transformation basically creates one table per class
and one column per attribute and class2.

Now consider the deletion of column attr1 in table Class1. One simple solu-
tion seems to be to delete the corresponding attribute, i.e. attr1 in class Class1.
This would certainly eliminate column attr1 of table Class1, which is what was
requested. However, as attribute attr1 is deleted, it can no longer be inherited
by Class2 and hence the existence of column attr1 in table Class2 can no
2 Note: This includes inherited attributes as well. So an attribute in a super-class

will result in a column in the table corresponding to the super-class and each of its
subclasses.
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longer be supported. Therefore, simply deleting attribute attr1 is not a viable
solution with respect to the exact changes semantics.

To give an example of an exact change, consider the deletion of column attr1
in table Class2. One possible solution is to remove the inheritance between
Class1 and Class2. Therefore, attribute attr1 will no longer be inherited, hence
removing column attr1 in table Class2.

For another example where there is a choicebetween two exact changes, consider
the deletion of tableclass2. Now there is a choice betweendeleting the correspond-
ing class class2, or marking it as transient. Either change will be an exact change.

7 Discussion and Conclusion

The original contribution of this paper is the formal definition of round-trip
engineering in the context of model transformation. The definition put forward
goes beyond any existing approaches as it embraces partial and non-injective
transformations, which were shown to be more realistic than the injective trans-
formations required for existing approaches to RTE or model synchronisation.

In order to implement RTE a round-trip transformation is needed, which
transforms changed target models back to a corresponding source model. To do
so, it relies on the availability of the original source model, the original target
model and the change that lead to the new target model. It is also required that
the new source and the changed target are in sync, i.e., the forward transforma-
tion applied to the new source model has to produce the changed target model.
Furthermore, the semantics of target changes were specified and the properties
of a function translating target changes to source changes were defined. For this
function it was shown that it is equivalent to a round-trip transformation and,
that no matter the target change, source and target are always synchronised.

Ongoing research is being conducted as to how source changes can be com-
puted from a given target change satisfying the presented definitions of a change
translation function and thus implementing a round-trip transformation.

Over 25 years of research on the view-update problem suggests that there may
not be a perfect solution and therefore, any approach to round-trip engineering
must acknowledge this. An approach should rather aim at providing a sensible
list of legal options to a modeller who then has to decide, which of the changes
are most appropriate.

Duetothehighlycomplexnature inherenttotheproblem,thesizeofchangesmay
have to be restricted to “small” changes in order to make the problem tractable.
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Abstract. Support for automated model transformation is essential for realizing
a Model Driven Development (MDD) process. However, model transformation
is only one of the many tools in a model engineering toolkit. To apply MDD
in the large, automated support for a number of additional tasks such as model
comparison, merging, validation and model-to-text transformation, is essential.
While a number of successful model transformation languages have been cur-
rently proposed, the majority of them have been developed in isolation and as a
result, they face consistency and integration difficulties with languages that sup-
port other model management tasks. We present the Epsilon Transformation Lan-
guage (ETL), a hybrid model transformation language that has been developed
atop the infrastructure provided by the Epsilon model management platform. By
building atop Epsilon, ETL is seamlessly integrated with a number of other task-
specific languages to help to realize composite model management workflows.

1 Introduction

The ability to automatically transform between models expressed in different languages
(metamodels), technical spaces [1], or levels of abstraction is of paramount importance
to the wide-spread adoption of Model-Driven Development (MDD). Although various
approaches to automated model transformation have been proposed, the current con-
sensus is that specialized languages, such as QVT [2] and ATL [3], which provide a
mixture of declarative and imperative constructs, are most suitable for specifying model
transformations.

While model transformation has been characterized as the heart and soul of MDD
[4], it constitutes only one of the tools in the model engineering toolkit; automating
other tasks such as model-to-text transformation, model comparison, validation and
merging is of significant, if not of equal, importance. Moreover, it is essential that
task-specific languages used in a model engineering environment are consistent and
interoperable, so that the users can compose complex workflows of model management
operations with enhanced reuse and minimal (unintentional) diversity.

While a number of successful hybrid model transformation languages have been
currently proposed, most of them appear to be isolated in the sense that they have been
developed from the ground up, in most cases only building conceptually on a subset of
OCL for model navigation and querying. This introduces unnecessary diversity to the
model engineering toolkit and requires a potential user to learn and use similar – but
inconsistent – languages to automate different model management tasks.

A. Vallecillo, J. Gray, A. Pierantonio (Eds.): ICMT 2008, LNCS 5063, pp. 46–60, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Motivated by this, we present the Epsilon Transformation Language (ETL), a hybrid
model transformation language that has been built atop the infrastructure provided by
the Epsilon Eclipse GMT component [5]. By building on Epsilon, ETL achieves syntac-
tic and semantic consistency and enhanced interoperability with a number of additional
languages, also been built atop Epsilon, and which target tasks such as model-to-text
transformation, model comparison, validation, merging and unit testing.

The rest of the paper is organized as follows. In Section 2 we provide a detailed dis-
cussion on our motivation for designing and implementing a new model transformation
language. Section 3 briefly discusses Epsilon and the advantages of building new model
management languages atop it. In Section 4 we present the abstract and concrete syntax
of ETL as well as an informal discussion of its execution semantics. In Section 5 we
demonstrate how ETL can be used together with other languages that build atop Epsilon
to realize composite model management operations. Finally, in Section 6 we conclude.

2 Background and Motivation

To date, a large number of languages have been proposed for specifying and executing
transformations between models conforming to (potentially) different metamodels. In
this section we provide an overview of the different styles of transformation adopted by
transformation languages, and discuss issues of integrating transformation languages
with other languages used to perform tasks such as model-to-text transformation, model
validation, comparison and merging. Finally, we examine four of the most widely used
and actively developed transformation languages in terms of the styles that they offer,
and their integrability.

2.1 Styles

Three styles are generally recognized in model transformation languages: declarative,
imperative and hybrid, each one demonstrating particular advantages and shortcomings
[6]. Purely declarative transformation languages are generally considered to more suit-
able for scenarios where the source and target metamodels are similar to each other in
terms of structure and organization. However, such languages are challenging to use
in cases where significant sequential processing and complex mappings are involved.
By contrast, purely imperative transformation languages are capable of addressing a
wider range of transformation scenarios. Nevertheless, they typically operate at a low
level of abstraction which means that users need to manually address issues such as
tracing, resolving target elements with their source counterparts, and orchestrating the
transformation execution. To address those shortcomings, hybrid languages provide a
declarative rule-based execution scheme as well as imperative features for handling
complex transformation scenarios.

2.2 Integration with Other Model Management Languages

While model transformation is a very important component in the model engineer-
ing toolkit, it is not the only one. A model management workflow typically involves
other tasks such as model validation, comparison, merging and code generation, each
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of which may be supported by a different language. As an example, consider the steps
required to generate a data-intensive application from a UML model:

1. Validate the UML model
2. Transform the UML model into a DB model
3. Generate Java code from the UML model
4. Generate SQL code from the DB model

This simple workflow involves three different model-management languages: a val-
idation language for step 1, a model-to-model transformation language for step 2 and a
model-to-text transformation language for steps 3 and 4.

2.2.1 Model Format and Runtime Interoperability
The simplest way in which two model management languages can interoperate is by
being able to access the same type of models. However, in this case, in every step
of the workflow, each language runtime has to load the models from their physical
location and store them (if necessary) afterwards. Thus, if Mv, Mt, Mg are (respectively)
languages for validation, model-to-text and model-to-model transformation, and if they
can only be integrated by accessing the same type of models, the workflow above would
involve the following steps:

1. Load the UML model in Mv
2. Validate the UML model
3. Load the UML model in Mt
4. Transform the UML model
5. Store the DB model
6. Load the UML model in Mg
7. Generate the Java code
8. Load the DB model in Mg
9. Generate the SQL code

On the other hand, if Mv, Mt and Mg shared a common internal model representation
scheme, the workflow could be simplified to the following:

1. Load the UML model
2. Validate the UML model
3. Transform the UML model into an in-memory DB model
4. Generate the Java code
5. Generate the SQL code from the in-memory DB model
6. (optionally) Store the DB model

Loading and storing big models is a resource- and time-consuming activity, and even
this simple example demonstrates that using languages that interoperate only at the
model format level introduces a number of (potentially expensive) model loading and
storing steps which could otherwise be unnecessary.
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2.2.2 Code Consistency and Reuse
Another significant issue when using many languages to implement the steps of a work-
flow is reuse and consistency of code. Consider, once again, a worfklow in which we
want to carry out validation, transformation, and model-to-text generation tasks, as
above. When managing UML2 models, a typical activity in all three tasks is to ex-
amine model elements to check if they have certain stereotypes attached. If the three
languages selected for these tasks were OCL, ATL and MOFScript, respectively, then
the user would need to specify the same helper operation (which checks whether a
specified stereotype is attached) three times, using similar but inconsistent syntaxes, as
illustrated in Listings 1.2, 1.1 and 1.3 respectively.

Listing 1.1. The hasStereotype() helper expressed in ATL

1 helper context UML2!Element def:hasStereotype(s:String):
2

Boolean
self.getAppliedStereotypes()->exists(st | st.name = s);

Listing 1.2. The hasStereotype() helper expressed in OCL

1 package uml
2 context Element
3 def Operations:
4 let hasStereotype(s : String) : Boolean =
5 getAppliedStereotypes()->exists(st | st.name = s)
6 endpackage

Listing 1.3. The hasStereotype() helper expressed in MOFScript

1 uml.Element::hasStereotype(s : String): Boolean {
2 result = self.getAppliedStereotypes()->exists(st | st.name = s);
3 }

Duplication of code in different languages introduces a maintenance problem and is
also a potential source of coding errors as it requires the user to work concurrently with
similar but inconsistent syntaxes.

2.3 Overview of the Most Widely-Used Transformation Languages

Due to the large number of transformation languages, and the imposed space limita-
tions, in this section we only concentrate on those transformation languages which,
to our knowledge, are most widely-used and actively developed. These languages are:
QVT [7] which is the currently adopted OMG standard, ATL [3] that is probably the
most widely-used transformation language today, Kermeta [8], and XTend, which is the
transformation language of the popular openArchitectureWare framework [9].

With respect to integration, only XTend is integrated with additional model manage-
ment languages of the openArchitectureWare framework that target other tasks such as
code generation (XPand) and model validation (Check). Nevertheless, XTend is a purely
imperative language and as discussed in Section 2.1, imperative languages require the
user to implement transformation rules, scheduling and support for traceability almost
from scratch for each transformation.
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Kermeta adopts a different approach to model management by providing a general-
purpose imperative language which can be used to perform all model management
tasks. However, being purely imperative, the language also suffers from the aforemen-
tioned shortcomings.

ATL is the most successful hybrid model transformation language to date. It inte-
grates with the TCS tool [10] which provides support for model-to-text and text-to-
model transformations. Moreover, it has been shown that ATL can be used to perform
other tasks, such as model validation [11] and merging1, for which however the lan-
guage is, to our view, not particularly suitable as it is not tailored to the specific require-
ments of these tasks.

Finally, QVT – the current OMG standard for model transformation – adopts a hy-
brid style by providing both declarative and imperative constructs. With regards to
integration, the OMG has also standardized a model-to-text transformation language
(MOF2Text) [12] which reuses parts of QVT, and both QVT and MOF2Text are aligned
with OCL. Nevertheless, the OMG has not (yet) proposed languages for tasks such as
model comparison and merging nor a solution for specifying and orchestrating multi-
step model management workflows.

Table 1. Feature Matrix of Model Transformation Languages

Language Style Integrations?
XTend Imperative XPand, Check
Kermeta Imperative General-purpose language
ATL Hybrid TCS, Can also perform model validation, merging
QVT Hybrid MOF2Text, OCL

2.4 Motivation

Throughout this section we have argued that existing hybrid model transformation lan-
guages suffer from integration problems with languages that support other tasks. On the
other hand, languages such as Kermeta and XTend, which can be used in the context of
a framework that supports other model management tasks as well, are purely imperative
and thus suffer from the problems discussed in Section 2.3. Driven by this motivation,
in Section 4 we present the Epsilon Transformation Language (ETL), a hybrid model
transformation language that integrates seamlessly with a number of other model man-
agement languages developed atop the Epsilon model management platform.

3 Epsilon

Epsilon is a component of the Eclipse GMT project [13] that provides infrastructure
for implementing uniform and interoperable model management languages. It can be
used to manage models of diverse metamodels and technologies. At the core of Epsilon
is the Epsilon Object Language (EOL) [14], an OCL-based imperative language that

1 http://ssel.vub.ac.be/ssel/research:mdd:casestudies#mergemodel modelmerge
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provides features such as model modification, multiple model access, conventional pro-
gramming constructs (variables, loops, branches etc.), user interaction, profiling, and
support for transactions. Although EOL can be used as a general-purpose model man-
agement language, its primary aim is to be reused in task-specific languages. Thus, a
number of task-specific languages have been implemented atop EOL, including those
for model comparison (ECL) [15], model merging (EML) [16], model validation (EVL)
[17], model refactoring (EWL) [18] and model-to-text transformation (EGL) [19].

With regard to the types of models supported, Epsilon provides the Epsilon Model
Connectivity (EMC) layer that is used to provide a uniform interface for models of
different modelling technologies. Currently, EMC drivers have been implemented to
support EMF [20] (XMI 2.x), MDR [21] (XMI 1.x), Z [22] and XML. Also, to enable
users to compose workflows that involve a number of individual model management
tasks, Epsilon provides ANT [23] tasks and an inter-task communication framework
discussed in detail in [24].

4 The Epsilon Transformation Language

The aim of ETL is to contribute model-to-model transformation capabilities to Epsilon.
More specifically, ETL needs to be able to capture and execute specifications of trans-
formation scenarios that involve an arbitrary number of input and output models of
different modelling languages and technologies at a high level of abstraction.

4.1 Style

As discussed in Section 2.1, hybrid transformation languages are very appropriate for
constructing flexible, expressive, and abstract model transformations. Therefore, ETL
has been designed as a hybrid language that implements a task-specific rule definition
and execution scheme, but which also inherits the imperative features of EOL to handle
complex transformations where necessary.

4.2 Source and Target Models

The majority of model-to-model transformation languages assume that only two models
participate in each transformation: the source model and the target model. Nevertheless,
it is often essential to be able to access/update additional models during a transformation
(such as trace or configuration models). Building on the facilities provided by EMC
and EOL, ETL enables specification of transformations that can transform an arbitrary
number of source models into an arbitrary number of target models.

Another common assumption is that the contents of the target models are insignifi-
cant and thus a transformation can safely overwrite its contents. By contrast, ETL - like
all Epsilon languages - enables users to specify for each involved model separately if
its contents need to be preserved or not.

4.3 Abstract Syntax

As illustrated in Figure 1, ETL transformations are organized in modules (ETLModule).
A module can contain any number of transformation rules (TransformationRule) and
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EOL operations [14]. Each rule has a unique name (in the context of the module) and
also specifies one source2 and one or more target parameters. A transformation rule
can also extend a number of other transformation rules and be declared as abstract,
primary and/or lazy. To limit its applicability to a subset of elements that conform to
the type of the source parameter, a rule can optionally define a guard which is either
an EOL expression or a block of EOL statements. Finally, each rule defines a block of
EOL statements (body) where the logic for populating the property values of the target
model elements is specified.

Besides transformation rules, an ETL module can also optionally contain a number
of pre and post named blocks of EOL statements which, as discussed later, are executed
before and after the transformation rules respectively.

Fig. 1. ETL Abstract Syntax

4.4 Concrete Syntax

The concrete syntax of a transformation rule is displayed in Listing 1.4. The optional
abstract, lazy and primary attributes of the rule are specified using respective annota-
tions. The name of the rule follows the rule keyword and the source and target para-
meters are defined after the transform and to keywords. Also, the rule can define an
optional comma-separated list of rules it extends after the extends keyword. Inside the
curly braces (), the rule can optionally specify its guard either as an EOL expression
following a column (:) (for simple guards) or as a block of statements in curly braces
(for more complex guards). Finally, the body of the rule is specified as a sequence of
EOL statements.

2 While an ETL module can transform multiple input models, each rule can transform only one
type of model elements.
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Listing 1.4. Concrete Syntax of a TransformationRule

1 (@abstract)?
2 (@lazy)?
3 (@primary)?
4 rule <name>
5 transform <sourceParameterName>:<sourceParameterType>
6 to (<rightParameterName>:<rightParameterType>
7 (, <rightParameterName>:<rightParameterType>)*
8 (extends (<ruleName>,)*<ruleName>)? {
9

10 (guard (:expression)|({statement+}))?
11
12 statement+
13 }

Pre and post blocks have a quite simple syntax that, as presented in Listing 1.5,
consists of the identifier (pre or post), an optional name and the set of statements to be
executed enclosed in curly braces.

Listing 1.5. Concrete Syntax of Pre and Post blocks

1 (pre|post) <name> {
2 statement+
3 }

4.5 Execution Semantics

Having discussed the abstract and concrete syntax of the language, in this section we
provide an informal discussion on its execution semantics.

4.5.1 Rule and Block Overriding
An ETL module can import a number of other ETL modules. In this case, the importing
ETL module inherits all the rules and pre/post blocks specified in the modules it imports
(recursively). If the module specifies a rule or a pre/post block with the same name, the
local rule/block overrides the imported one respectively.

4.5.2 Rule Execution Scheduling
When an ETL module is executed, the pre blocks of the module are executed first in the
order in which they have been specified.

Following that, each non-abstract and non-lazy rule is executed for all the elements
on which it is applicable3. To be applicable to a particular element, the element must
have a kind-of relationship with the type defined in the rule’s sourceParameter and must
also satisfy the guard of the rule (and all the rules it extends). When a rule is executed
on an applicable element, the target elements are initially created by instantiating the
targetParameters of the rules, and then their contents are populated using the EOL
statements of the body of the rule.

3 As discussed in the sequel, lazy rules are invoked explicitly using the equivalents() operation.
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Finally, when all rules have been executed, the post blocks of the module are exe-
cuted in the order in which they have been declared.

4.5.3 Resolution of Source Elements in the Target Models
Finding the target elements that have been (or can be) transformed from particular
source elements by other rules is a recurring task in the body of a transformation rule.
To automate this task and reduce coupling between rules, ETL provides the equiva-
lents() and equivalent() built-in operations that automatically resolve source elements
to their transformed counterparts in the target models.

When the equivalents() operation is applied on a single source element (as opposed
to a collection of them), it inspects the established transformation trace and invokes the
applicable rules (if necessary) to calculate the counterparts of the element in the target
model. When applied to a collection it returns a Bag containing Bags that in turn contain
the counterparts of the source elements contained in the collection. The equivalents()
operation can be also invoked with an arbitrary number of rule names as parameters
to invoke and return only the equivalents created by specific rules. Unlike the main
execution scheduling scheme discussed above, the equivalents() operation invokes both
lazy and non-lazy rules.

With regard to the ordering of the results of the equivalents() operations, the returned
elements appear in the respective order of the rules that have created them. An exception
to this occurs when one of the rules is declared as primary, in which case its results
precede the results of all other rules.

ETL also provides the convenience equivalent() operation which, when applied to a
single element, returns only the first element of the respective result that would have
been returned by the equivalents() operation discussed above. Also, when applied to
a collection the equivalent() operation returns a flattened collection (as opposed to the
result of equivalents() which is a Bag of Bags in this case). As with the equivalents()
operation, the equivalent() operation can also be invoked with or without parameters.

The semantics of the equivalent() operation are further illustrated through a simple
example. In this example, we need to transform a model that conforms to the Tree
metamodel displayed in Figure 2 into a model that conforms to the Graph metamodel
of Figure 3. More specifically, we need to transform each Tree element to a Node, and
an Edge that connects it with the Node that is equivalent to the tree’s parent. This is
achieved using the rule of Listing 1.6.

In lines 1-3, the Tree2Node rule specifies that it can transform elements of the Tree
type in the Tree model into elements of the Node type in the Graph model. In line 4
it specifies that the name of the created Node should be the same as the name of the
source Tree. If the parent of the source Tree is defined (line 7), the rule creates a new
Edge (line 8) and sets its source property to the created Node (line 9) and its target
property to the equivalent Node of the source Tree’s parent (line 10).

Listing 1.6. Exemplar ETL rule demonstrating the equivalent() operation

1 rule Tree2Node
2 transform t : Tree!Tree
3 to n : Graph!Node {
4
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Fig. 2. A Simple Tree Metamodel

Fig. 3. A Simple Graph Metamodel

5 n.label := t.label;
6
7 if (t.parent.isDefined()) {
8 var edge := new Graph!Edge;
9 edge.source := n;

10 edge.target := t.parent.equivalent();
11 }
12 }

4.5.4 Overriding the Semantics of the EOL SpecialAssignment Operator
As discussed above, resolving the equivalent(s) or source model elements in the target
model is a recurring task in model transformation. Furthermore, in most cases resolv-
ing the equivalent of a model element is immediately followed by assigning/adding the
obtained target model elements to the value(s) of a property of another target model
element. For example, in line 10 of Listing 1.6 the equivalent obtained is immediately
assigned to the target property of the generated Edge. To make transformation specifi-
cations more readable, ETL overrides the semantics of the SpecialAssignment (::= in
terms of concrete syntax) operator that EOL provides to set its left-hand side, not to
the element its right-hand side evaluates to, but to its equivalent as calculated using the
equivalent() operation discussed above. Using this feature, line 10 of the Tree2Node
rule can be rewritten as shown in Listing 1.7

Listing 1.7. Rewritten Line 10 of the Tree2Node Rule Demonstrated in Listing 1.6

1 edge.target ::= t.parent;
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4.6 Interactive Transformations

Using the user interaction facilities of EOL discussed in [25], an ETL transformation
can be made interactive by prompting the user for input during its execution. For ex-
ample in Listing 1.8, we modify the Tree2Node rule originally presented in Listing 1.6
by adding a guard part that uses the user-input facilities of EOL (more specifically the
UserInput.confirm(String,Boolean) operation) to enable the user select manually at run-
time which of the Tree elements need to be transformed to respective Node elements in
the target model and which not.

Listing 1.8. Exemplar Interactive ETL Transformation

1 rule Tree2Node
2 transform t : Tree!Tree
3 to n : Graph!Node {
4
5 guard : UserInput.confirm
6 (’Transform tree ’ + t.label + ’?’, true)
7
8 n.label := t.label;
9 var target : Graph!Node ::= t.parent;

10 if (target.isDefined()) {
11 var edge := new Graph!Edge;
12 edge.source := n;
13 edge.target := target;
14 }
15 }

4.7 Summary

This section has provided a detailed discussion on the Epsilon Transformation Lan-
guage (ETL). Unlike most contemporary model transformation languages, ETL is ca-
pable of transforming an arbitrary number of source models into an arbitrary number of
target models. ETL adopts a hybrid style and features declarative rule specification us-
ing advanced concepts such as guards, abstract, lazy and primary rules, and automatic
resolution of target elements from their source counterparts. Also, as ETL is based on
EOL reuses its imperative features to enable users to specify particularly complex, and
even interactive, transformations.

5 Integration with Other Model Management Languages

Integration of ETL with other model management languages of the Epsilon platform
is achieved in two ways. First, since all languages of the Epsilon platform build atop
EOL, they can all import and use libraries of operations specified in EOL. Therefore,
with regard to the example of Section 2.2.1, if Mv, Mt and Mg are EVL, ETL and EGL
respectively, the hasStereotype(s : String) operation will only need to be defined once
in an EOL library which can then be imported by the different model management
programs.
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Besides reuse of code, ETL is integrated with other Epsilon languages at runtime
through the workflow mechanism discussed in [24]. More specifically, the worfklow
supports the epsilon.etl task for executing ETL transformations. Listing 1.9demonstrates
using the epsilon.etl task in the context of the worfklow outlined in Section 2.2.1.

In line 7 the loadModels target loads the UML and DB model (without reading the
existing contents of the DB model due to the readOnLoad=false property in line 14).
Once the models have been loaded, they are made accessible to any subsequent Epsilon
tasks in the workflow. In line 18, the validate target uses EVL to validate the UML
model. In line 24, the transform target uses ETL to transform between the two mod-
els. The ETL task also specifies that it exports its internal trace as a variable named
transTrace which the storeTransformationTrace EOL task in Line 33 can then read and
store in the form of a trace model. Finally, the uml2java and db2sql code generation
targets in lines 41 and 47 use EGL to generate the Java and SQL source code from the
UML and DB models respectively.

Listing 1.9. Implementation of the Workflow of Section 2.2.1 using the Epsilon ANT workflow

1 <project default="main">
2
3 <target name="main"
4 depends="uml2java,db2sql,storeTransformationTrace">
5 </target>
6
7 <target name="loadModels">
8 <epsilon.loadModel name="UML" type="MDR">
9 ...

10 <property name="readOnLoad" value="true"/>
11 </epsilon.loadModel>
12 <epsilon.loadModel name="DB" type="EMF">
13 ...
14 <property name="readOnLoad" value="false"/>
15 </epsilon.loadModel>
16 </target>
17
18 <target name="validate" depends="loadModels">
19 <epsilon.evl src="UMLConstraints.evl">
20 <model ref="UML"/>
21 </epsilon.evl>
22 </target>
23
24 <target name="transform" depends="validate">
25 <epsilon.etl src="UML2DB.etl"
26 exporttransformationtrace="transTrace">
27
28 <model ref="UML"/>
29 <model ref="DB"/>
30 </epsilon.etl>
31 </target>
32
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33 <target name="storeTransformationTrace" depends="transform,storeDBmodel">
34 <epsilon.eol src="StoreTransformationTrace.eol">
35 <uses ref="transTrace"/>
36 <model ref="UML"/>
37 <model ref="DB"/>
38 </epsilon.eol>
39 </target>
40
41 <target name="uml2java" depends="validate">
42 <epsilon.egl src="Uml2Java.egl">
43 <model ref="UML"/>
44 </epsilon.egl>
45 </target>
46
47 <target name="db2sql" depends="transform">
48 <epsilon.egl src="DB2Sql.egl">
49 <model ref="DB"/>
50 </epsilon.egl>
51 </target>
52
53 <target name="storeDBmodel">
54 <epsilon.storeModel model="DB"/>
55 </target>
56
57 </project>

A more complex and detailed case study that demonstrates using ETL together with
other languages provided by the Epsilon platform is available in [26].

6 Conclusions

In this paper we have raised the issue of consistency and integration between model
transformation languages and languages that target other model management tasks such
as code generation, model comparison, merging and validation. We have presented the
Epsilon Transformation Language (ETL), a hybrid model transformation language that
has been built atop the infrastructure provided by the Epsilon model management plat-
form. We have also shown that ETL can be seamlessly integrated with existing lan-
guages of the Epsilon platform that target a wide range of model management tasks
using a workflow mechanism built atop ANT.
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Abstract. There exist many formalisms for modeling the behavior of
(software) systems. These formalisms serve different purposes. Process
algebras are used for algebraic and axiomatic reasoning about the be-
havior of distributed systems. UML state machines are suitable for au-
tomatic software generation. We have developed a transformation from
the process algebra ACP into UML state machines to enable automatic
software generation from process algebra models. This transformation
needs to preserve both behavioral and structural properties. The combi-
nation of these preservation requirements gives rise to a semantic gap. It
implies that we cannot transform ACP models into UML state machines
on a syntactic level only.

We address this semantic gap and propose a way of bridging it. To
validate our proposal, we have implemented a tool for automatic trans-
formation of ACP process algebra models into UML state machines.

1 Introduction

In this paper we address the semantic gap that arises when transforming models
specified in one formalism into models in another formalism. A transformation
between models in different formalisms needs to bridge a syntactic gap. This is a
well-known problem. However, in many applications one also needs to preserve
semantic properties. This is not trivial since the semantic domains of the source
and target formalism may differ, or a formal semantics may be lacking. Moreover,
additional requirements on semantical properties can affect a transformation.

The goal within the FALCON project [1] is to model embedded systems in
a warehousing environment and use these models initially for simulation, but
later for, amongst others, automatic software generation. These systems are be-
ing modeled using a process algebra [2]. Process algebra is a formalism used for
algebraic and axiomatic reasoning about the behavior of systems, in particular
those involving concurrency [3]. However, little is known about automatic code
generation from process algebra models. We use UML state machines as an in-
termediate step because multiple techniques are available for automatic code
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generation from them. Therefore we propose a transformation from process al-
gebra models to UML state machines [4]. We start with plain process algebra in
order to understand the basics of software generation from, and model transfor-
mations based on process algebras. In this paper we use the well-known process
algebra ACP (Algebra of Communicating Processes) [5,6] without encapsula-
tion. In the transformation of this small process algebra we already encounter a
semantic gap. The obtained results will be used when translating process algebra
based formalisms like timed χ [7] or mCRL2 [8].

Processes in distributed systems are allocated to different machines that run in
parallel. Therefore we have to ensure that the automatically generated code can
also be deployed on different machines. This requires that the ACP models and
the obtained state machines are structurally equivalent with respect to parallel
behavior. The ACP models and the state machines obtained from this trans-
formation obviously need to exhibit the same behavior. It is this combination
of requirements, i.e., preserving structural and behavioral properties, that con-
fronted us with the problems of bridging a semantic gap. In ACP, constructs are
available for modeling synchronous communication between parallel processes.
UML state machines are inherently asynchronous, hence no primitives exist for
modeling synchronous communication. This means that the transformation from
ACP to UML state machines encompasses more than translating syntax. Special
care is needed to ensure that the semantic gap is bridged in order to preserve
both behavioral and structural properties.

The remainder of this paper is structured as follows. Section 2 describes re-
lated work. In Section 3 our approach to transform ACP models into UML
state machines is explained. In this section also the semantic gap is explained
in depth and we propose and evaluate some solutions for bridging this gap. Sec-
tion 4 describes the implementation of our transformation. An illustration using
our implementation can be found in Section 5. Section 6 contains the conclusions
of our work and gives some directions for further research.

2 Related Work

Many papers have been published on the subject of transforming process algebras
into various formalisms. In one of the first papers in this area a transformation
from the Algebra of Timed Processes (ATP) into a variant of timed graphs is
presented [9]. The authors aim at unifying behavioral description formalisms for
timed systems. In [10], a transformation of a timed process algebra based on
LOTOS operators to Dynamic State Graphs is presented. The main purpose
of that mapping is to visualize and simulate process algebra models. In [11]
three different process algebras are analyzed and compared. The results of that
analysis are used to propose a framework for visualizing process algebras. In a
recent technical report [12], a transformation from timed χ into UPPAAL timed
automata is presented. The main purpose of that mapping is to enable model
checking and verification of process algebra models. Our approach, however,
focuses on automatic software generation.
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Research has also been performed in the field of software generation from
UML state machines. In [13] an overview is given of different approaches for
generating code from UML state machines. The authors identify the weaknesses
in these approaches and also propose their own technique. The approach de-
scribed in [14] generates object-oriented code from UML state machines. In our
work we use the tool Telelogic Rhapsody to generate simulation code from state
machines. The semantics of Rhapsody state machines differs slightly from UML
state machines [15], but this does not affect our approach.

3 Transforming ACP Models into UML State Machines

In this section first a short introduction is given to the relevant parts of ACP.
Next, our transformation from ACP to UML state machines is described. In
Section 3.3 the semantic gap is discussed in more detail. Section 3.4 presents our
solution to bridge this gap.

3.1 Algebra of Communicating Processes

In this paper, we consider basic ACP without the encapsulation operator (∂)
to illustrate one of the main issues in bridging a semantic gap. It suffices to
leave out the encapsulation operator because a semantic gap already emerges
without it. An ACP model consists of a process term (P ) and a communication
function (γ). A process term is built from atoms and operators.

In ACP there are three types of atoms. First, there is the deadlock con-
stant (δ) that denotes inaction. When this constant is encountered in a process
it deadlocks. Second, there is the empty process constant (ε) that denotes doing
nothing. Third, there are the actions that can be performed by a process term.

In ACP there are six operators. First, there is the sequential composition (·).
The sequential composition of n process terms, P1 · P2 · . . . · Pn, denotes that
the execution of P1 precedes the execution of P2 and so on. Second there is the
action prefix operator (.). This operator is similar to the sequential composi-
tion, therefore we consider it as such. Third, there is the alternative composi-
tion (+). The alternative composition of n process terms, P1 + P2 + . . . + Pn,
denotes that only one of these process terms is executed. This choice is made
non-deterministically. Fourth, there is the parallel composition (‖). The parallel
composition of n process terms, P1‖P2‖ . . . ‖Pn, denotes that these process terms
are executed quasi-parallel. This means that the process terms are arbitrarily
interleaved whilst maintaining their internal ordering. Consider for example the
parallel composition (a · b)‖(c · d). The arbitrary interleaving may not result
in a situation where the execution of b precedes the execution of a, or where
the execution of d precedes the execution of c. There is, however, more to the
parallel composition which will be explained in Section 3.3. Fifth, there is the
left merge operator (�) which is closely related to the parallel composition. It
denotes that the first action to the left of the operator is executed first where-
after the remaining process term continues as a parallel composition. Consider
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for example the process term (a ·x)�y. This means that first action a is executed
whereafter the process term behaves as x‖y. This operator occurs for techni-
cal reasons [16] in the reduction of ACP process terms and is seldomly used
in modeling directly. Last, there is the communication merge operator (|). This
operator is used together with the communication function (γ) to express com-
munication (or interaction) between two actions. The communication function
expresses which actions can communicate and what the result of this communi-
cation is. For example γ(a, b) = c expresses that in the process term a|b actions a
and b communicate, resulting in action c. If this communication function does
not exist, actions a and b cannot communicate. This means that the process
term a|b results in a deadlock (δ). The communication merge operator also oc-
curs for technical reasons [16] in the reduction of ACP process terms and is
seldomly used in modeling directly.

3.2 Transformation

Our transformation f from ACP models to UML state machines takes an ACP
model, which consists of a process term and a communication function, as an
argument and returns a UML state machine.

f : ACP model → UML state machine

Every non-atomic process term is built from smaller process terms, resulting in
an implicit tree structure. Our transformation traverses this tree and transforms
every subtree into a partial state machine that is structurally equivalent to the
process term in the node. ACP has axiomatic rewrite rules. This means that an
ACP process term can be rewritten (transformed) into a different-but-equivalent
process term using these rules. An example of this rewriting process is given in
Figure 1. In order to ensure the required structural equivalence with respect to
parallel behavior, the original ACP model should not be rewritten such as to
remove parallel composition operators. In general it is not required to maintain
structure. However, we will maximize structure preservation for the other ACP
constructs as well, since we want to preserve designer’s choices as closely as
possible. Therefore the ACP axioms for rewriting a process term are used as
little as possible by our transformation.

We use the formal semantics of ACP described in [17] and the semantics
description of UML presented in [4] to explain informally the behavioral equiva-
lence of ACP constructs and the resulting UML state machines. With behavioral
equivalence we mean that the the state machines need to define exactly the same
traces as the original ACP models.

The state machine constructs for the sequential, alternative, and parallel com-
position are straightforward, i.e., the semantics is clear from the syntax. The
sequential composition maps to the state machine depicted in Figure 2(a). This
construct enforces that the execution of P1 precedes the execution of P2 and so
on. The dotted state labeled f(Pi) represent the partial state machine acquired
after applying f to process term Pi. The state machine to which the alterna-
tive composition maps is depicted in Figure 2(b). The choice state ensures that
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a.x + (b.y + a.x)

= {Axiom A1 : x + y = y + x}
a.x + (a.x + b.y)

= {Axiom A2 : (x + y) + z = x + (y + z)}
(a.x + a.x) + b.y

= {Axiom A3 : (x + x) = x}
a.x + b.y

Fig. 1. Example of rewriting using the ACP axioms

only one of the paths will (non-deterministically) be selected for execution. Fig-
ure 2(c) depicts the state machine for the parallel composition. The fork and join
states are used to ensure that all parallel branches start and end simultaneously.
The transformation of the atoms is explained in Section 3.4.
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(c) Parallel composition

Fig. 2. Transformation

The left merge operator cannot be expressed in a natural way in a state ma-
chine. It is impossible to express that a specific action in one branch of a parallel
composition should be performed first. Therefore, the left merge operator is
eliminated by rewriting according to the axioms of ACP. Also the communica-
tion merge operator cannot be expressed in a natural way in a state machine.
Therefore, when communication of two actions is encountered the communica-
tion function (γ) is consulted whether this communication should be rewritten
into an action or the deadlock constant. These are the only two cases in which
structure is not preserved, but since these two constructs are seldomly used in
modeling this is acceptable.
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3.3 Semantic Gap

In ACP the parallel composition of two or more process terms represents not
just the interleaving of these terms. It also involves communication of the actions
inside them. Consider for example the ACP process term a‖b. This will rewrite
using the ACP axioms to a · b + b · a + a|b. Suppose now the communication
function γ(a, b) = c exists for some action c. In this case actions a and b can be
executed simultaneously (a|b) and communicate. The result of this communica-
tion is action c. So the traces allowed by this parallel composition are a · b, b · a,
and c. In UML state machines the parallel composition, created by transitions
that fork into orthogonal regions, represents interleaving or concurrent execution
of the traces in the orthogonal regions. There is no communication between the
actions in these traces like in ACP. This gap between the semantics of ACP and
UML state machines needs to be bridged.

One possibility to bridge this gap is to use the ACP axioms to rewrite an ACP
model such that all parallel composition operators are removed. In this way all
communication is made explicit. The state machine acquired after rewriting is
sketched in Figure 3(a). This is not a valid solution since one of the requirements
is that the UML state machines need to preserve the structure of the ACP
models, at least with respect to the parallel composition. In fact, the combination
of the requirements of preserving both behavioral and structural properties gives
rise to the semantic gap.
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(b) Structure preserving

Fig. 3. State machine representations of a‖b

Another possible solution is to exploit the semantic openness of UML state
machines. Therefore we propose an action dispatcher that takes care of execut-
ing all actions. Actions are not executed in the state machine itself. Instead, an
action is announced to the action dispatcher and the branch of the state ma-
chine that contains the action is blocked. After the action dispatcher executes
the action, it enables the appropriate branch again such that the state machine
can continue. If multiple actions that can communicate have been announced,
the action dispatcher ensures that communication can occur in accordance with
the communication function. Suppose for example that actions a and b are an-
nounced and that γ(a, b) = c, i.e., actions a and b can communicate resulting in
action c. The action dispatcher now also allows action c to be executed. Using
the action dispatcher, we succeed in preserving most of the structure of the ACP
model. Figure 3(b) sketches the resulting state machine.
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It can be argued whether having a global action dispatcher that exploits the
semantic openness of UML state machines is a proper solution. The disadvantage
of having this global action dispatcher is that communication behavior is invisible
in the state machine. In the case of ACP this is not a problem. Communication in
ACP models is also invisible because it is expressed by a global communication
function (γ) and not in a process term itself. The effect on the semantics is also
limited since the action dispatcher can be modeled using the UML as well. We
generate a state machine from an ACP model and add an implementation of the
action dispatcher in the form of a UML class and state machine to it.

3.4 Action Dispatcher

Figure 4 depicts the class diagram representing the (single) action dispatcher.
This action dispatcher object has an action pool of zero or more action objects.
The action pool consists of all action objects ready for execution. The γ attribute
of the class is the communication function γ. It is, like in ACP, used to determine
whether a pair of actions can communicate. The methods of the class handle
adding actions to, executing actions in, and removing actions from the action
pool. The functionality of the methods is explained below. The action dispatcher
is generic. This means that the same action dispatcher is generated for all ACP
models. Only the γ attribute is generated from the model.
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Fig. 4. Action dispatcher class diagram

An action object has two attributes: an identifier to uniquely identify the
syntactic occurrence of the action and the name of the action. This name is the
same name as the one occurring in the ACP process term. An action can be
related to other actions, its ancestors. If an action x is the result of communi-
cation, e.g. γ(a, b) = x, actions a and b are considered to be its parents. The
set of ancestors of x can be found by taking the transitive closure of the ‘is
parent of ’ x relation. Note that an action that is the result of communication
can communicate with other actions, e.g. γ(a, b) = c and γ(c, d) = e. Because an
action cannot communicate with its ancestors, the ancestors of an action need
to be known to correctly handle communication. If an action is not the result of
a communication it does not have any ancestors.

The life cycle of an action object is such that it will first be added to the
action pool. After some time, it may be executed whereafter it is removed from
the action pool. In case of communication, action objects can also be removed
from the action pool without having been executed themselves. Action objects
can even stay in the action pool forever in case of a deadlock.
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Fig. 5. Transformation of atoms

Transformation of Atoms. The transformation of all constructs except for the
atoms has already been explained in Section 3.2. The atom a maps to the state
machine depicted in Figure 5. The entry activity on the simple state creates
an action object from atom a and invokes the AddToPool method of the action
dispatcher. This puts the newly created action object in the action pool. In
order to ensure that the state machine does not continue until the action has
been executed, a guard is present on the outgoing transition. This guard is true
when the action object is not in the action pool. This is the case when the action
has been executed or has communicated.

Addition. The method AddToPool(x) is invoked by the entry activity on the
simple state an atom is mapped to (cf. Figure 5). Its purpose is to extend the
action pool with x and to maintain closure of the action pool under γ. If an action
object x is added to the action pool, and it can communicate with another action
object a already in the pool that is not one of its ancestors, then a new action
object for the communication result given by γ is recursively added to the action
pool (lines 3–6 in Figure 6). On line 5 a new action object is created with a new
identifier and as name the result of the communication function γ. Also, the set
of all ancestors of x is assigned to this action object.

Execution. An action object x in the action pool that does not represent a
deadlock constant will non-deterministically be selected at an arbitrary moment
for execution. The purpose of method Execute(x) is to find all actions that
execute along with x, i.e., all actions that, directly or indirectly, gave rise to x
through communication, and to clean up the action pool. If the state machine
cannot proceed and there are only action objects in the action pool that represent
a deadlock constant, it is in a deadlock state.

Removal. The purpose of method RemoveFromPool(x) is to remove action ob-
ject x from the action pool. To maintain closure of the action pool under γ, also
all action objects that are the result, directly or indirectly, of communication
involving x are removed. Note that these resulting action objects do not occur
in the conditions of outgoing transitions (cf. Figure 5), because they are the
result of communication.

Correctness Considerations. Interference between methods of the action dis-
patcher can be avoided by executing them under mutual exclusion. The ac-
tion dispatcher controls the state machine through conditions of the form a /∈
ActionPool only. Note that a is added to the action pool, falsifying the condition,
upon entry into the immediately preceding simple state, and is removed upon its
execution, making the condition true. During execution of each method, the ac-
tion pool changes monotonically to avoid glitches (undesired condition changes).
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1. AddToPool(x: Action):
2. ActionPool := ActionPool ∪ {x};
3. ∀a : γ(a.Name, x.Name) = y
4. → if a ∈ ActionPool ∧ a.Id /∈ x.Ancestor
5. → NewAction := Action(NewId(), y, a.Ancestor ∪ x.Ancestor ∪ {a, x});
6. AddToPool(NewAction)

7. Execute(x: Action):
8. ∀a : a.Id ∈ x.Ancestor
9. → Execute(a)
10. RemoveFromPool(x)

11. RemoveFromPool(x: Action):
12. ActionPool := ActionPool − {x};
13. ∀a : a ∈ ActionPool
14. → if x.Id ∈ a.Ancestor
15. → RemoveFromPool(a)

Fig. 6. Pseudo code for the action dispatcher methods

4 Implementation

The transformation from ACP models into UML state machines expressed in the
XMI format is too complex to implement in a single step. Therefore we split the
transformation into four independent steps. This modular approach makes the
transformation more transparent, which benefits extensibility, maintainability,
and testability. Moreover, every step is (re)usable in isolation.

In the first step of the transformation the ACP model is rewritten using
the ACP axioms to remove all instances of the left merge and communication
merge operator. Consider for example the ACP process term a�(b|c) and suppose
γ(b, c) = d. This rewrites to a.d. This step has as in- and output an ACP model
expressed in the ACP metamodel1 we have defined. After this step the ACP
model will only consist of constructs that have a state machine equivalent. With a
few extensions the transformation used in this step can also be used for rewriting
ACP models to their normal form.

In the second step the implicit tree structure of an ACP model is made explicit.
For the representation of this tree structure we use an intermediate language for
which we defined a metamodel. This language uses a prefix format. Consider
for example the alternative composition P1 + P2 + . . . + Pn. The transformation
function finds all the alternatives and represents them as alt(P1, P2, . . . , Pn).

These first two steps are mere preparation for the actual transformation. In
the third step the tree representation of an ACP model is transformed into a
state machine. This state machine is defined in a state machine language for
which we have also defined a metamodel. This language closely resembles UML

1 Our metamodels are in fact context-free grammars.
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Fig. 7. Transformation of the alternative composition

state machines. The only difference is that it does not support the history mech-
anism. We chose to use this intermediate format to avoid having to transform
into complex XMI constructs directly. Moreover, it enables the transformation
of any UML state machine defined in our state machine language into XMI. This
third transformation step is similar to Thompson’s algorithm for transforming
regular expressions into non-deterministic finite automata [18]. The transforma-
tion function has as arguments an ACP process term represented as a tree and a
start and an end state. For the alternative and parallel composition these start
state and end state are respectively the choice and junction state, and the fork
and join state. In Figure 7 an example is depicted in which the partial state
machines for n alternatives are generated and connected to the choice and junc-
tion states. For the sequential composition it is more difficult because the end
state of the first partial state machine in the sequence is the start state for the
next. These states are not known in advance. To overcome this problem, dummy
states are inserted such that the start and end states are known in advance.
These dummy states are removed afterwards.

In the last step a state machine is transformed into its XMI [19] representation.
This back-end part is isolated, because the XMI standard is actually not so
standard. Most UML tools use a different dialect of XMI requiring different back-
ends. Currently our implementation is able to generate XMI files for the UML
tools ArgoUML [20] and Telelogic Rhapsody [21]. Our state machine language
closely resembles UML state machines and there is a one-to-one mapping from
UML state machine constructs to XMI. Therefore, this final transformation step
is straightforward.

The Telelogic Rhapsody tool allows for execution of state machines. We use
this feature to simulate the execution of ACP models. To ensure a correct han-
dling of communication, an implementation of the action dispatcher presented
in Section 3.4 is added to the XMI file.

We use the term rewriting system ASF+SDF [22,23] for the development of
our metamodels and for the implementation of our transformation. Transforma-
tions between languages is one of the main applications of ASF+SDF. These
transformations are performed between languages specified in the Syntax Defi-
nition Formalism (SDF) using conditional equations specified in the Algebraic
Specification Formalism (ASF). Because the concrete syntax of the source and
target language of a transformation are formally defined in SDF, syntax-safety
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of the input and output of a transformation is guaranteed. This implies that
every syntactically correct ACP model is transformed into a syntactically cor-
rect XMI document representing a state machine that preserves structural and
behavioral properties. Syntax-safety also implies that every ACP model that is
syntactically incorrect is not transformed at all.

5 Illustration

We have used our implementation on multiple ACP models to verify the correct-
ness of our transformation. This section describes the transformation of an ACP
model of a conveyor system into a UML state machine that preserves structural
and behavioral properties.

The conveyor system is schematically depicted in Figure 8. Machines M1
and M2 put products on a conveyor belt. The products from machine M1 can go
to machines M3 or M4 for further processing and the products from machine M2
can go to machines M4 or M5. When products are sent to machine M4 by both
machines M1 and M2 at the same time a collision will occur and an operator
should ensure that both products can still enter the machine for processing.
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� !

� � !

� !

�  
� �

� �

Fig. 8. Conveyor system

The ACP model representing this system is depicted in Figure 9. The process
term expresses that a product is produced by machine M1 which is then sent to
machine M3 or M4 for further processing and that another product is produced
by machine M2 which is then sent to machine M5 or M4 for further processing,
possibly at the same time. The communication function (γ) expresses that an
operator rearranges products that collide if two products go from machines M1
and M2 to machine M4 at the same time. Note that only one iteration is modeled.

γ(C14, C24) = operator

(M1 · (C13 · M3 + C14 · M4)) ‖ (M2 · (C25 · M5 + C24 · M4))

Fig. 9. ACP model of the conveyor system
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Fig. 10. ArgoUML screen shot depicting the acquired state machine diagram

(a) Trace 1 (b) Trace 2 (c) Trace 3

Fig. 11. Three Telelogic Rhapsody execution results

The state machine resulting from the transformation should exhibit the same
behavior. A screen shot of the state machine acquired from the transformation
imported in ArgoUML can be found in Figure 10. Note that ArgoUML uses
circles for choice states and diamonds for junction states.

We also transformed this ACP model into an XMI file for Telelogic Rhapsody,
enabling simulation of the state machine. Three screen shots showing the results
of three different executions of the simulation are depicted in Figure 11. In trace 1
and 3 both products go to different machines. In trace 2 the operator is needed
to rearrange collided products.

6 Conclusion and Further Research

6.1 Conclusions

We have addressed the semantic gap that arises in the transformation from the
process algebra ACP without encapsulation into UML state machines. Trans-
forming a model specified in one formalism into a model in another formalism
involves more than transforming syntax. Differences in the characteristics of se-
mantics need to be handled meticulously to ensure a correct transformation. In
our case a semantic gap emerged as a result of the requirements on the trans-
formation. The transformation should preserve both structural and behavioral
properties. Our transformation preserves structure for all operators except for



Transforming Process Algebra Models into UML State Machines 73

the seldomly used left merge and communication merge operators. It also pre-
serves behavior by exploiting the semantic openness of UML state machines. We
have extended UML state machines with an action dispatcher to ensure that
they can generate the same execution traces as the ACP model.

Note that trace equivalence is in general only one aspect of semantic equiva-
lence. Without providing a formal semantics for the UML we cannot guarantee
that we have bridged the semantic gap completely. Since there are many for-
malisms with different (or without) formal semantics, there are probably many
model transformations that are not proven to be semantics preserving. Proving
that a model transformation preserves semantics requires different expertise.

In general, to bridge a semantic gap when transforming models from one
formalism into another, it first has to be identified. Therefore, two steps should be
taken. First, the semantics of the source and the target formalism should be well
understood. Second, additional requirements on the (static) semantics should be
made explicit. When bridging the semantic gap is not a straightforward affair, it
is advisable to address a simplified version of the source metamodel first. Another
possibility is first to relax the semantic requirements on the transformation. It
can also be that the semantic gap is simply too large to be bridged at all.

We have used the term rewriting system ASF+SDF to implement a transfor-
mation from ACP without encapsulation to UML state machines. This required
us to define metamodels for both ACP and UML state machines. We have created
a metamodel for ACP and for UML state machines without history mechanism.
The modular implementation of our transformation has proven to be useful for
decreasing the complexity. Moreover this benefits reuse, extensibility, maintain-
ability, and testability of the implementation.

Using the CASE tool Telelogic Rhapsody we can generate code to execute the
acquired UML state machine and action dispatcher. In this way the execution
of an ACP model can be simulated. Since our transformation preserves most
structure of ACP models, UML tools can be used for visualizing this structure.

We performed several case studies using our implementation to illustrate our
transformation of ACP models into UML state machines.

6.2 Directions for Further Research

We have considered ACP without the encapsulation operator (∂). The next thing
to consider is the transformation of the encapsulation operator. This makes the
semantic gap even larger. The encapsulation operator prevents certain actions
from being executed, which cannot be expressed in a state machine. This re-
quires an extension of the action dispatcher such that it forbids the execution
of encapsulated actions. Moreover, the alternative composition is no longer non-
deterministic. In ACP the alternative composition of an encapsulated and a non-
encapsulated action, e.g. ∂{a}(a)+ b, rewrites to the non-encapsulated action (b)
only. In a structure preserving state machine, care has to be taken that the se-
lection of a branch with an encapsulated action is prevented to avoid unwanted
deadlocks. This gets even more delicate when an action cannot be executed itself
but can communicate with another action.
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Abstract. We describe a graphical approach to formally specifying tem-
porally ordered activity routines designed for calendar scheduling. We
introduce a workflow model OWorkflow, for constructing specifications
of long running empirical studies such as clinical trials in which obser-
vations for gathering data are performed at strict specific times. These
observations, either manually performed or automated, are often inter-
leaved with scientific procedures, and their descriptions are recorded in
a calendar for scheduling and monitoring to ensure each observation is
carried out correctly at a specific time. We also describe a bidirectional
transformation between OWorkflow and a subset of Business Process
Modelling Notation (BPMN), by which graphical specification, simula-
tion, automation and formalisation are made possible.

1 Introduction

A typical long-running empirical study consists of a series of scientific proce-
dures interleaved with a set of observations performed over a period of time;
these observations may be manually performed or automated, and are usually
recorded in a calendar schedule. An example of a long-running empirical study
is a clinical trial, where observations, specifically case report form submissions,
are performed at specific points in the trial. In such examples, observations are
interleaved with clinical interventions on patients; precise descriptions of these
observations are then recorded in a patient study calendar similar to the one
shown in Figure 1(a). Currently study planners such as trial designers supply
information about observations either textually or by inputting textual infor-
mation and selecting options on XML-based data entry forms [2], similar to the
one shown in Figure 1(b). However, the ordering constraints on observations and
scientific procedures are complex, and a precise specification of this information
is time consuming and prone to error. We believe the method of specification
may be simplified and improved by allowing specifications to be built formally
and graphically, and visualised as workflow instances.

Workflow instances are descriptions of a composition of activities, each of
which describes either a manual task or an application of a program. One of the
prominent applications of workflow technology is business processes modelling,
for which the Business Process Modelling Notation (BPMN) [8] has been used
as a modelling language. Recent research [9] has also allowed business processes
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Fig. 1. (a) A screen shot of the patient study calendar [3], (b) XML-based data entry
forms [2]

modelled as BPMN diagrams to be translated into executable processes in the
Business Process Execution Language (WS-BPEL) [1], the “de facto” standard
for web service compositions. Furthermore, BPMN has been given formal relative
timed semantics [10]; these allow BPMN diagrams to be interpreted without
ambiguity. BPMN, being a graphical language, lends itself to being used by
domain specialists without computing expertise.

For example, we consider part of a cancer clinical trial, where there is a choice
over two case report form submissions. The two reports are on tumour measure-
ment or toxicity level. Both which to choice and when to report depend on the
blood pressure of the patient concerned. Trial descriptions such as this could
be specified as BPMN process and simulated as BPEL process for validation;
in this paper, we present a customised workflow model OWorkflow, which is an
extension to the CancerGrid trial model. Our notation allows empirical studies
to be easily viewed and monitored through study calendars, while it is not intu-
itive to translate BPMN diagrams for calendar scheduling. We will revisit this
example in Section 5.

This paper has two main contributions. Firstly, we introduce a generic obser-
vation workflow model OWorkflow, an extension of the workflow model imple-
mented in the CancerGrid trial model [4], customised for modelling empirical
studies declaratively. Secondly, we describe bidirectional transformation func-
tions between OWorkflow and a subset of BPMN. While the transformation
from BPMN to OWorkflow provides a medium for empirical studies to be speci-
fied graphically as workflows, transforming OWorkflow to BPMN allows graphi-
cal visualisation. Moreover, the BPMN descriptions of empirical studies may be
translated into BPEL processes, whereby manual and automated observations
may be simulated and executed respectively, and both of which can be monitored
during the enactment of studies. Furthermore, BPMN has a formal semantics
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and the transformation induces such behavioural semantics to OWorkflow. This
means empirical study plans can now be formally specified, and interpreted with-
out ambiguity.

The rest of this paper is structured as follows. We begin by giving a brief
overview of BPMN in Section 2; a more detailed description of its abstract
syntax may be found in our longer paper [11], and the complete definition of
its relative timed semantics may be found in our other paper [10]. Section 3 de-
scribes the abstract syntax and the semantics of our workflow model OWorkflow.
Here we only describe the semantics informally, even though a formal semantics
has been defined via transformation to BPMN. Section 4 details the bidirec-
tional transformation function between OWorkflow and the subset of BPMN
by introducing BPMN constructs that are used as building blocks for modelling
OWorkflow. We have implemented both the syntax of our observational workflow
model and BPMN and the transformation functions in the functional program-
ming language Haskell (see: http://www.haskell.org). Section 5 discusses how
this transformation allows simulation and automation of empirical studies, and
how formalisation has assisted the transformation process. Section 6 discusses
related work and concludes this paper.

2 BPMN

In this section we give an overview of BPMN. For the purpose of specifying and
simulating observational workflow OWorkflow, our implementation of BPMN
states captures only a subset of BPMN, shown in Figure 2. This is a strict subset
of the subset of BPMN formalised in our other paper [10]. We have implemented
the corresponding syntax in Haskell. A fuller description of the syntax of this
subset can be found in our longer paper [11].

Fig. 2. States of BPMN diagram

http://www.haskell.org
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Fig. 3. Abstract syntax of (a) BPMN state and (b) BPMN diagram

States in our subset of BPMN [8] can either be events, tasks, subprocesses,
multiple instances or control gateways, each linked by a normal sequence or an
exception sequence flow. A normal sequence flow can be either incoming to or
outgoing from a state and have associated guards; an exception sequence flow,
depicted by the state labelled task*, bpmn*, task** and bpmn**, represents an
occurrence of error within the state. A sequence of flows represents a specific
control flow instance of the business process. Figure 3(a) shows the abstract
syntax of a BPMN state, where each state records its type, its lists of incoming
and outgoing transitions, and its exception sequence flows as a list of pairs of
exceptions types and corresponding transitions. Figure 3(b) shows the abstract
syntax of a BPMN diagram, where each diagram is a collection of StateSets.
Each StateSet defines either a list of non-subprocess states (Atomic), or a sub-
process state (SubProcess), which records the type and sequence flows of the
subprocess states, and a list of StateSets representing the subprocess’s con-
stituent states.

3 Abstract Syntax of Observational Workflow

In this section we describe the observation workflow model OWorkflow. This
model generalises the clinical trial workflow model defined in the CancerGrid
project [4]. Each workflow is a list of parameterised generic activity interde-
pendence sequence rules, where each rule models the dependency between the
prerequisite and the dependent observations. Figure 4(a) shows the abstract
syntax of OWorkflow. Each sequence rule is implemented using the Haskell tu-
ple type EventSequencing, which contains a single constructor Event and each
observational workflow hence is a collection of sequence rules.

type OWorkflow = [EventSequencing]
data EventSequencing = Event ActId PreAct Condition Condition

(Maybe Obv) [RepeatExp] (Maybe Works)
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Fig. 4. Abstract syntax of (a) OWorkflow and (b) observation group

Each sequence rule is identified by a unique name of type ActId from the
first argument of the constructor Event, and contains zero or more dependent
observations. There are four reserved names of type ActId for identifying a start,
a generic termination, a successful termination and an unsuccessful termination
of a workflow execution. Each rule defines a structural composition of dependent
observations of type Maybe Obv, in the fifth argument of the sequence rule. (A
value of type Maybe a either contains a value of type a, or is empty.)

data Obv = ChoiceD [Obv] | ParD [Obv] | SeqD [Obv] | Da Act
type Act = (ActId,Duration,Duration,Condition,ActType)

We define a single dependent observation by the tuple type Act, whose first com-
ponent is a unique name from a set of names ActId distinct from those which
identify sequence rules. When performing dependent observations specified by
each sequence rule, there exists a delay: a range with a minimum and a maximum
duration, specified by the second and third component of Act of type Duration.
Each duration records a string value in accordance with XML schema datatypes.
For example in a clinical trial, the follow-up observation should be made between
two and three months after all observations associated with the end of the treat-
ment have been carried out. Each observation may either be a manual or an
automated observation, denoted by the fifth component ActType of Act.

Each composition of observations defines an observation group, as shown in
Figure 4. Figure 4(b) shows the abstract syntax of an observation group. Each
observation group structurally conforms to Kiepuszewski’s structure workflow
model [5, Section 4.1.3]. The following inductive definition of compositional rules
of an observation group follows from the definition of Obv:

1. If obv :: Act is a single observation, then Da obv :: Obv defines an ob-
servation group that yields to completion when the observation identified by
obv has been made. We write e :: T to denote the expression e has type T.
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2. Let obv1,...,obvN :: Obv be observation groups; their sequential com-
position SeqD [obv1,...,obvN] :: Obv also defines an observation group.
Given an observation group SeqD obvs, observations are made sequentially
starting at the head of obvs.

3. Similarly, let obv1,...,obvN :: Obv be n observations groups. An appli-
cation of the choice operation over them ChoiceD [obv1,...,obvN] ::
Obv defines an observation group, which structurally conforms the struc-
ture workflow model; it yields to completion when observations from one of
the observation groups from the given list have been made. Likewise, ParD
[obv1,...,obvN] yields to completion when observations from all of the
observation groups have been made.

4. Nothing else defines an observation group.

Dependent observations are performed after the observations associated with
the prerequisite sequence rules, identified by the data type PreAct, are com-
pleted. For example in a clinical trial the follow-up observation should be made
after all observations associated with the end of the treatment have been carried
out. A prerequisite is a collection of names that identifies preceding sequence
rules, recorded in the second argument of Event. It is defined using the data
type PreAct; we call each collection a prerequisite rule group.

data PreAct = All [PreAct] | OneOf [PreAct] | Pa ActId

The constructor Pa defines a single prerequisite rule by its argument, which
yields to completion when all observations associated with the rule identified
by the argument are made. The branching constructor All denotes synchroni-
sation over its given list of prerequisite rule groups; this yields to completion
when observations from all of the prerequisite rules groups from the given list
have been made. The branching constructor OneOf denotes an exclusive merge
over its given list of prerequisite rules groups; this yields to completion when
observations from one of the prerequisite rules groups from the given list have
been made.

Each sequence rule also defines a list, possibly empty, of repeat clauses de-
scribed by the sixth argument, typed [RepeatEx], of Event. Each clause specifies
the condition, the minimum and the maximum numbers of iterations and the
delay between iterations for the dependent observations of the sequence rule.
These clauses are evaluated sequentially over the list after one default iteration
of performing the rule’s dependent observations.

type RepeatExp = (Duration,Duration,Int,Int,Condition)

Each clause, of type RepeatExp, contains a condition specified by the fifth com-
ponent of type Condition. Our definition of Condition extends the skip logic
used in the CancerGrid Workflow Model [4]. Specifically, its syntax captures
expressions in conjunctive normal form.
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data Condition = None | Nondeter | And [Alter]
data Alter = Alt [SCondition]
type SCondition = (Range,Property)
data Range = Bound RangeBound RangeBound | Emu [String]
data RangeBound = Abdate Duration | Abdec Float | Abint Int |

Rldate Property Duration | Rldec Property Float |
Rlint Property Int

Each condition c :: Condition yields a boolean value and is either empty (true),
denoted by the nullary constructor None, nondeterministic denoted by the nullary
constructor Nondeter, or defined as the conjunction of clauses, each of which is a
disjunction of boolean conditions, of type SCondition. The type SCondition is
satisfied if the value of specified property (typed Property) falls into the specified
range (typed Range) at the time of evaluation. The specified property is a name
that identifies a particular property in the domain of the empirical study and this
corresponds the local property to the whole BPMN process [8, Section 8.6.1]. Note
while our formal semantics of BPMN [10] allows behavioural process-based specifi-
cations and corresponding verifications forOWorkflow, it is at a level of abstraction
in which we do not directly model the value of each properties.

The range may be an enumeration of values via the constructor Emu, or a closed
interval of two numeric values via the constructor Range over two arguments of
type RangeBound, which may be absolute or relative to a property.

Given a list of repeat clauses res defined in some sequence rule, evaluation be-
gins at the head of the list. Each clause res!!n, where n ranges over [1..(length
res - 1)], it may be evaluated after the evaluation of the clause res!!(n-1)
terminates. res terminates when last res terminates. (The operator !! denotes
list indexing in Haskell.)

For example, the follow up sequence rule of a clinical trial might specify that
follow up observations should be made every three months for three times after
the default observations have been made, after which observations should be
performed every six months for four times.

Each sequence rule might also include work units, recorded by the last argu-
ment of the constructor Event. Each work unit represents an empirical procedure
such as administering a medical treatment on a patient in a clinical trial. In each
sequence rule, the procedure defined by work units are interleaved with the rule’s
observations. Each collection of work units is defined by the data type Works
and is called work group.

data Works = ChoiceW [Works] | ParW [Works] | SeqW [Works] | Wk Work

The type Work records a unique name that identifies a particular empirical proce-
dure. Our definition of work group also structurally conforms to Kiepuszewski’s
structure workflow model, and both its abstract syntax and compositional rules
are similar to those of observation groups.

Finally the third and fourth arguments of a sequence rule are two conditional
statements, each of type Condition. While the third argument defines the con-
dition for enacting the sequence rule, the fourth argument defines the condition
for interrupting the enactment of the sequence rule.
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4 Transformation

In this section we describe the bidirectional transformation between observation
workflows of type OWorkflow and their corresponding subset of BPMN diagrams.
Specifically wehave implemented a total function transforming OWorkflow to BPMN
and its inverse, a partial function transforming a subset of BPMN to OWorkflow.

w2b :: OWorkflow -> BPMN
b2w :: BPMN -> OWorkflow

For reasons of space we only informally describe the transformation of a sin-
gle sequence rule to its corresponding BPMN subprocess state by explaining
the transformation over each of the components that make up the 7-tuple of a
sequence rule. We describe the transformation of individual components by in-
troducing some building blocks in BPMN, which may be mapped to those com-
ponents. A fuller description of the transformation may be found in our longer
paper [11]. We stress that these transformation are completely automated.

4.1 Observation

Figure 5 shows an expanded BPMN subprocess state depicting a single depen-
dent observation, of type Act. An observation may be performed after a delay
ranging from the minimum to the maximum duration, provided that its asso-
ciated condition is satisfied. The delay range is graphically modelled by first
modelling minimum duration as the stime state (timer start event), and then
modelling the duration ranges from the elapse of the minimum duration to the
maximum duration using a task state which halts for an unknown duration,
with an expiration exception flow, of which the expiry duration is the difference
between maximum and minimum durations of the delay. We use a xgate (exclu-
sive choice) decision gateway state for accepting either the task state’s outgoing
transition or its expiration exception flow.

The decision gateway is then followed by a task state, which models the actual
observation itself and is identified by applying the function idToTName to the
identifier of the observation being mapped.

idToTName :: ActId -> TaskName

An end state follows immediately for terminating the execution of the sub-
process. The subprocess itself has one incoming and one outgoing transition,

Fig. 5. A BPMN subprocess state depicting a single observation
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denoted as the outermost incoming and outgoing transitions respectively. We
have implemented the function mkAct to transform the subprocess state mod-
elling an observation of type Obv, encapsulating a tuple Act describing a single
observation via the constructor function Da. We have also implemented the func-
tion mkDpt to transform the tuple Act describing a single observation to a BPMN
subprocess modelling that observation.

mkAct :: StateSet -> Obv
mkDpt :: Act -> Line -> ([StateSet],Line)

4.2 Groups

Each sequence rule contains zero or more observations and work units. Whereas
the transformation of a single observation has been described in Section 4.1, each
work unit is modelled as a task state, of which the name that identifies the task
is obtained by applying the function workToTask on the unique identifier of the
work unit. Conversely, the function taskToWork is defined to map a task state
name to the unique name of the work unit it models. One or more observations
compose into an observation group, which has been defined inductively in Sec-
tion 3. Similarly one or more work units compose into a work group. Due to the
conformity of both types of compositions to the structured workflow model [5]
as mentioned in Section 3, we have generalised the notion of group and here we
describe the transformation between a group and its corresponding BPMN sub-
process state, which may be applied to both observation group and work group.

An example BPMN subprocess modelling a group is shown in Figure 6. It
shows a BPMN subprocess state describing an observation group defined by the
constructor ParD over a list of two observations, each defined by the constructor
Da. A similar BPMN subprocess state may be defined to describe a work group.
We describe informally the transformation rules for a group as follows:

1. Given group go defined by the constructor over a single activity sa, specif-
ically Da applied over a single observation for an observation group and Wk
applied over a single work unit for a work group respectively, we transform
sa according the type of the activity, for an observation, the transformation
rule has been described in Section 4.1, and a work unit is simply represented

Fig. 6. A BPMN subprocess state depicting an observation group
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by a task state, of which the task is identified by the name of the work unit.
We use sa’s outermost incoming and outgoing transitions as go’s outermost
incoming and outgoing transitions.

2. Given a group go defined by either a choice or a parallel constructor over a
list of n groups, specifically ChoiceD and ChoiceW or ParD and ParW applied
over a list of observation groups and work groups respectively, where n ≥ 1,
the corresponding BPMN states are either two xgate decision gateways for
choice construction or two agate decision gateways for parallel construction.
The first of these has one incoming transition, denoted as the go’s outermost
incoming transition, and n outgoing transitions, each matching the outer-
most incoming transition from one of the n groups, and the other one has n
incoming transitions, each matching the outermost outgoing transition from
one of the n groups, and one outgoing transitions, denoted as the go’s out-
ermost outgoing transition. The transformation of the n groups are defined
recursively.

3. Given an observation group go defined by the sequential constructor over a
list of n groups, specifically SeqD and SeqW over a list of observation groups
and work groups respectively, where n ≥ 1, the outermost outgoing transi-
tion of each group is matched by the outermost incoming transition of its
next group. The outermost incoming transition of the first group defines the
outermost incoming transition of go, and the outermost outgoing transition
of the last group defines the outermost outgoing transition of go.

We have implemented the function getObv to transform the subprocess state
describing an observation group to an observation group of type Obv.

getObv :: StateSet -> Obv
getInv :: StateSet -> Works

Similarly, we have implemented the function getInv to transform a work group of
type Works. Conversely, we have implemented the functions extObv and extWks
to transform an observation group of type Obv and a work group of type Works
to a subprocess state describing that group, respectively.

extObv :: Line -> Obv -> ([StateSet],Line)
extWks :: Line -> Works -> ([State],Line)

4.3 Repeat Clauses

Figure 7 shows a BPMN subprocess modelling a single repeat clause. According
to the semantics of a repeat clause, each repeat clause in a sequence rule repeats
all dependent observations defined in that rule; the number of repetitions from
each clause ranges between a minimum and a maximum value, and there is a
delay, ranging between a minimum and a maximum duration, before each repeti-
tion can start. We model the delay range of a repeat clause graphically according
to the transformation rules defined for a single observation in Section 4.1.
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Fig. 7. A BPMN subprocess state depicting a repeat clause

We model each repeated observations as a subprocess state according the
transformation of groups in Section 4.2. The subprocess, which defines the re-
peat clause, is a multiple instance miseqs state, and it has one incoming and
one outgoing transition, denoted as the outermost incoming and outgoing tran-
sitions respectively. The multiple instance subprocess state is implemented by
the Haskell type Miseqs which takes an integer value to specify the maximum
number of repetitions and a condition to specify the conjunction of the minimum
number of repetitions required and the clause’s conditional statement.

A list of repeat clauses is therefore transformed iteratively over each clause
starting from head of the list, similar to the transformation of a group for some
sequential constructor described in the Rule 3 in Section 4.2. Figure 8 shows
a BPMN subprocess state representing a list of two repeat clauses. Individual
repeat clause is shown as collapsed subprocess state.

Fig. 8. A BPMN subprocess state depicting a list of two repeat clauses

4.4 Sequence Rules

Figure 9 shows a BPMN subprocess state representing a single sequence rule.
The subprocess state is defined by three other subprocess states, collapsed in
the figure, which model observations, work units and repeat clauses defined in
the sequence rule. A sequence rule is enacted by first performing all its obser-
vations once, modelled by the subprocess observation block, after which the list
of repeat clauses, modelled by the subprocess state repeat clauses is evaluated.
As explained in Section 3, work units are empirical procedures and their exe-
cutions are interleaved with their corresponding observations, hence we use an
agate decision gateway state to initialise both observations and work units. We
do not constrain how work units are interleaved with observations as our current
workflow model focuses on the specification of observations, therefore it solely de-
pends on the study planners. Note if no work unit is defined in the sequence rule,
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Fig. 9. A BPMN subprocess representing a single sequence rule

the corresponding subprocess will not have agate states and will be represented
by a sequential composition of the observation block and repeat clauses states.

Finally we associate a conditional exception sequence flow with each sub-
process state to model the enacting and the interrupting conditions of the se-
quence rule. A detailed description can be found in our longer paper [11].

5 On Simulation, Automation and Formalisation

In this section we discuss briefly the application of business process management
technique to empirical studies. We describe informally, via a simple example, how
modelling empirical studies in BPMN allows their study plans to be simulated
and partially automated by translating the BPMN diagrams into executable
BPEL processes. We also discuss how modelling empirical studies in BPMN
has consequently induced a formal behavioural semantics upon our observation
workflow model and hence removed ambiguities in both the transformations and
interpretation of OWorkflow.

As useful as it is to visualise and formally specify a complete study plan,
it is also beneficial to validate the plan before its execution phase, especially
if the study has a long running duration, since it is undesirable to run into
an error three months into the study! One method of validating a study is by
simulation. When considering either simulating or automating a portion of a
study, we assume the observations specified in that portion can be appropriately
simulated or automated; an observation might define the action of recording a
measurement from a display interfacing with a software application or submitting
a web form to a web service for analysis. For example, the following specifies a
simplified observation group, modelling a choice over two different case report
form submissions in a clinical trial described briefly in Section 1.

ChoiceD [Da (Id "Tumour Measurement Report", Dur "P1D",Dur "P1D",
Ands [Ors [(Emu ["low"],"blood pressure")]],Manual),

Da (Id "Toxicity Review", Dur "P1D",Dur "P1D",
Ands [Ors [(Emu ["high"],"blood pressure")]],Manual)]

While submitting a report form is a manual task, due to the transformation,
it is possible to simulate this action by translating its corresponding BPMN
subprocess state into the corresponding sequence of BPEL activities:
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<switch>
<case condition="getVariableData(’blood pressure’) == high">
<wait for="PT1M"><operation name="sendToxicityReview">
<input message="toxicityMessage" /></operation></wait></case>

<case condition="getVariableData(’blood pressure’) == low">
<wait for="PT1M"><operation name="sendTumourReport">
<input message="tumourMessage" /></operation></wait></case>

</switch>

where each wait activity is an invocation upon the elapse of a specified duration.
Since the derived BPEL process is for simulation, we scale down the specified
duration of each observation. Note each invocation in a BPEL process is neces-
sarily of a web service; if the specified observation defines an action to invoke
a web service, e.g. uploading a web form, the translated BPEL operation will
also be invoking that web service, and otherwise, for simulation purposes, a
“dummy” web service could be used for merely receiving appropriate messages.
Similarly, partial automation is also possible by translating appropriate obser-
vations into BPEL processes which may be executed during the execution phase
of the study.

In recent work, BPMN has been given a formal relative timed semantics; in
particular one has been defined in the process algebra CSP [10]. By defining a
transformation function between OWorkflow and BPMN, it has automatically
induced a behavioural semantics for OWorkflow. For example, Figure 10 shows

Fig. 10. Two BPMN diagrams modelling semantically equivalent observation workflow

two different BPMN diagrams partially, each modelling the same observation
workflow described below, omitting description of observations and work units.

[Event (Id "SEQ1") (Pa START), Event (Id "SEQ2") (Pa (Id "SEQ1")),
Event (Id "SEQ3") (Pa (Id "SEQ1")),
Event NORMAL_STOP (All [Pa (Id "SEQ2"),Pa (Id "SEQ3")])]

Although applying the function w2b over this OWorkflow definition will yield
the diagram in Figure 10(a), one would like to know if applying the function b2w
over the two diagrams will yield the same OWorkflow definition. The formal
semantics of BPMN in CSP [10] allows us to show that these two diagrams are
in fact semantically equivalent, by model checking the following failures refine-
ment assertions: PLAN1 �F PLAN2 ∧ PLAN2 �F PLAN1 where PLAN1
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and PLAN2 are CSP processes describing the semantics of the partial BPMN
diagrams in Figure 10. This means both PLAN1 and PLAN2 have the same
behaviour and yields the same OWorkflow definition. Our semantic definition
also allows formal verification of observation workflow against behavioural spec-
ifications, an example of which may be found in our longer paper [11].

6 Conclusion

Specifications of long running empirical studies are complex; the production of
a complete specification can be time consuming and prone to error. We have
described a graphical method to assist this type of specification. We have intro-
duced an observation workflow model OWorkflow suitable for specifying empir-
ical studies, which then can be populated onto a calendar for scheduling, and
described bidirectional transformations, which allow empirical studies to be con-
structed graphically using BPMN, and to be simulated and partially automated
as BPEL processes. The transformation also induces a behavioural semantics
upon OWorkflow, and we have described the use of the semantics to remove
ambiguity in the transformation process.

To the best of our knowledge, this paper describes the first attempt to ap-
ply graphical workflow technology to empirical studies and calendar scheduling,
while large amounts of research have focused on the application of workflow
notations and implementations to “in silico” scientific experiments. Notable is
Ludäscher et al.’s Kepler System [6], in which such experiments are specified
as a workflow graphically and fully automated by interpreting the workflow
descriptions on a runtime engine. On the other hand we employ BPMN as a
graphical notation to specify and graphically visualise experiments and studies
that are typically long-running and in which automated tasks are often inter-
leaved with manual ones. Studies such as clinical trial would also include “in
vivo” intervention. Furthermore, our approach targets studies that are usually
recorded in a calendar schedule to assist administrators and managers. Sim-
ilarly, research effort has been directed towards effective planning of specific
types of long running empirical studies, namely clinical trials and guidelines.
Notable is Modgil and Hammond’s Design-a-Trial (DaT) [7]. DaT is a deci-
sion support tool for critiquing the data supplied specifically for randomized
controlled clinical trial specification based on expert knowledge, and subse-
quently outputting a protocol describing the trial. DaT includes a graphical
trial planner, which allows description of complex procedural contents of the
trial. To ease to complexity of protocol constructions, DaT uses macros, com-
mon plan (control flow) constructs, to assist trial designers to construct trial
specification.

Future work will include extending our observation workflow model for more
detail specifications of work units, such as temporal and procedural informa-
tion, thereby allowing study plans to be verified against specifications of the
relationship between work units and observations.
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Abstract. The Discrete EVent system Specification (DEVS) formal-
ism allows for highly modular, hierarchical modelling of timed, reactive
systems. DEVS can be used to describe complex control structures for
programmed graph transformation. A side-effect of this approach is the
introduction of an explicit notion of time. In this paper we show how the
explicit notion of time allows for the simulation-based design of reactive
systems such as modern computer games. We use the well-known game
of PacMan as an example and model its dynamics with programmed
graph transformation based on DEVS. This also allows the modelling
of player behaviour, incorporating data about human players’ behaviour
and reaction times. Thus, a model of both player and game is obtained
which can be used to evaluate, through simulation, the playability of a
game design. We propose a playability performance measure and vary
parameters of the PacMan game. For each variant of the game thus ob-
tained, simulation yields a value for the quality of the game. This allows
us to choose an “optimal” (from a playability point of view) game con-
figuration. The user model is subsequently replaced by a visual interface
to a real player and the game model is executed using a real-time DEVS
simulator.

1 Introduction

Programmed (or structured) graph transformation is one of the keys to making
graph transformation scalable (and hence industrially applicable). Tools such
as FUJABA [1], GReAT [2], VMTS [3], PROGReS [4], and MOFLON [5] sup-
port programmed graph transformation. These tools mostly introduce their own
control flow language. In [6] we have shown the advantages of re-using a discrete-
event modelling/simulation formalism to describe transformation control. In this
paper, we will focus on the time aspect of modelling complex transformations, a
side-effect of using a discrete-event modelling formalism. This is done by means
of the well-known PacMan example, presented in Section 2. Section 3 introduces
the DEVS formalism and how it is used for structured graph transformation.
Section 4 describes how not only the PacMan game, but also the player can be
explicitly modelled. Section 5 describes game simulation experiments in detail.
Finally, Section 6 summarizes, concludes and proposes future work.

A. Vallecillo, J. Gray, A. Pierantonio (Eds.): ICMT 2008, LNCS 5063, pp. 91–106, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 Case Study: The PacMan Game

To demonstrate the power of timed, programmed graph transformation, in par-
ticular in the context of simulation-based design, we use a simplified version

Fig. 1. PacMan Semantics: Ghost kills PacMan rule

Fig. 2. PacMan Semantics: PacMan eats Food rule

Fig. 3. PacMan Semantics: Ghost moves right rule

Fig. 4. PacMan Semantics: PacMan moves left rule
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of the PacMan video game inspired by Heckel’s tutorial introduction of graph
transformation [7].

2.1 The PacMan Language (Abstract and Concrete Syntax)

The PacMan language has five distinct elements: PacMan, Ghost, Food (Pel-
lets), GridNode and ScoreBoard. PacMan, Ghost and Food objects can be linked
to GridNode objects. This means that these objects can be “on” a GridNode.
GridNode objects are geometrically organized in a grid, similar to the PacMan
video game. Adjacency implies that PacMan and Ghost “may move” to a con-
nected GridNode. A ScoreBoard object holds an integer valued attribute score.
Our tool AToM3 [8] allows modelling of both abstract and visual concrete syn-
tax (including geometric/topological constraint relations such as a PacMan being
centered over a GridNode). From these models, an interactive, visual PacMan
modelling environment is synthesized.

2.2 The PacMan Semantics (Graph Transformation)

The operational semantics of the PacMan formalism is defined in a Graph Trans-
formation model which consists of a number of rules. In the rules in the following
figures, concrete syntax is used. This is a useful feature for domain-specific mod-
elling specific to AToM3. Dashed lines were added to explicitly show the “on” links.
Rule 1 in Figure 1 shows killing: when a Ghost object is on a GridNode which has
a PacMan object, the PacMan is removed. Rule 2 in Figure 2 shows eating: when
a PacMan object is on a GridNode which has a Food object, Food is removed and
the score gets updated (using an attribute update expression). Note how in the se-
quel, we will focus on game playability and will ignore the score. Rule 3 in Figure 3
expresses the movement of a Ghost object to the right and rule 8 in Figure 4 the
movement of a PacMan object to the left. Similar rules to move Ghosts and Pac-
Man objects up, down, left and right are not shown. Rules 1 and 2 have priorities
1 and 2 respectively. All remaining rules have the same priority 3.

3 DEVS for Programmed Graph Transformation

We previously [6] demonstrated how the Discrete EVent system Specification
(DEVS) formalismcanbeusedasa semanticdomain forProgrammedGraphTrans-
formation. In this section, our approach is described, elaborating on the the imple-
mentation in AToM3 of the ideas introduced in [6]). This description will form the
basis for following sections which will focus on the use of time in our models.

3.1 The Discrete Event System Specification (DEVS)

The DEVS formalism was introduced in the late seventies by Bernard Zeigler as
a rigorous basis for the compositional modelling and simulation of discrete event
systems [9].
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A DEVS model is either atomic or coupled. An atomic model describes the
behaviour of a reactive system. A coupled model is the composition of several
DEVS sub-models which can be either atomic or coupled. Submodels have ports,
which are connected by channels. Ports are either input or output. Ports and
channels allow a model to send and receive signals (events) between models.
A channel must go from an output port of some model to an input port of a
different model, from an input port of a coupled model to an input port of one
of its sub-models, or from an output port of a sub-model to an output port of
its parent model.

Informally, the operational semantics of an atomic model is as follows: the
model starts in its initial state. It will remain in any given state for as long as
specified by the time-advance of that state or until input is received on some
port. If no input is received, after the time-advance of the state expires, the model
first (before changing state) sends output, specified by the output function and
then instantaneously jumps to a new state specified by the internal transition
function. If input is received before the time for the next internal transition
however, then it is the external transition function which is applied. The external
transition depends on the current state, the time elapsed since the last transition
and the inputs from the input ports.

The semantics for a coupled model is, informally, the parallel composition of
all the sub-models. A priori, each sub-model in a coupled model is assumed to
be an independent process, concurrent to the rest. There is no explicit method
of synchronization between processes. Blocking does not occur except if it is ex-
plicitly modelled by the output function of a sender, and the external transition
function of a receiver. There is however a serialization whenever there are multi-
ple sub-models that have an internal transition scheduled to be performed at the
same time. The modeller controls which of the conflicting sub-models undergoes
its transition first by means of select function.

For this paper, we use our own DEVS simulator called pythonDEVS [10],
grafted onto the object-oriented scripting language Python.

3.2 Controlled Graph Rewriting with DEVS

At the heart of our approach is the embedding of graphs in DEVS events and
of individual transformation rules into atomicDEVS blocks. Figure 5 shows how
our approach comprises a number of transformations. First, we model a col-
lection of transformation rules in domain-specific notation (shown on the top
left of the figure). Each of these transformations is translated to a class with
the same name as the rule (pacDie is shown here on the top right). The core
of the generated code is the method execute which takes a (host) graph as
argument and encodes the transformation rule (matching and re-writing). Sec-
ond, we build a hierarchical model of the Modelled and Modular Timed Graph
Transformation language, in the MoTif (Modular Timed model transformation)
visual modelling language (shown at the bottom left of the figure). All building
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Fig. 5. DEVS-based Programmed Graph Rewriting Architecture

blocks have ports for incoming graphs (top left port), outgoing graphs in case
of successful rule application (bottom left port), outgoing (unmodified) graphs
in case of failed rule application (bottom right port), incoming transformation
interrupt (top right port), incoming pivot (hint about where to start matching)
information (left side port) and outgoing pivot information (right side port).
These ports appear on both atomic (ARule: single rectangle frame) and cou-
pled (CRule: double rectangle frame) transformation models which implies that
they can be used interchangeably to build complex hierarchical transformation
models. ARules contain a reference to the compiled rule class. Other special
atomic models such as a Synchronizer block as well as default atomic and cou-
pled models can be used to control the flow of the transformation. Third, the
MoTif model gets compiled into a DEVS model. CRules get translated into
coupledDEVS models. ARules models get translated into atomicDEVS models.
In the latter, the execute method encoding the transformation is called in the
external transition function of the atomicDEVS model. This transition func-
tion is triggered by the arrival of an external event (in which a to-be-transformed
graph is embedded). Finally, all generated code is linked and presented to a
DEVS simulator which performs the transformation and produces a trace.

3.3 The PacMan Case Study

The overall model of the PacMan game is shown in Figure 6.
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Fig. 6. Overall Transformation Model

The coupledDEVS block
User is responsible for user
(player) interventions. It
can send the initial graph
to be transformed, the
number of rewriting steps
to be performed (possibly
infinite) and some control
information. In the con-
text of our previous work
[6], the control information
was in the form of key code
presses to model the user
interrupts of a game. All
these events are received
by the Controller, another
atomicDEVS block. This
block encapsulates the co-
ordination logic between
the external input and the transformation model. It sends the host graph through
its outport to a rule set (the Autonomous Rules CRule) until the desired num-
ber of steps is reached. If a control event is received however, the Controller
sends the graph to another rule set (the User Controlled Rules CRule). The
Autonomous Rules CRule expects a graph to perform the rewriting, whereas
the User Controlled Rules ARule waits for a control, too. The details are omitted
here to focus on the overall structure.

The model described in [6] does not model a realistic, playable game. When
the user sends a key, the corresponding transformation rule is executed and the
graph is sent to the Autonomous Rules until another key is received or the
PacMan entity has been deleted. What prohibits this from being suitable for a
playable game is:

– A rule consumes a fixed amount of time. From the graph rewriting perspec-
tive, this allows one to compute how long a transformation takes. From the
input model perspective, it gives a way of quantifying the complexity of a
model. This does however not take into consideration any notion of game
levels or any real-time behaviour which such a game should have.

– The user sends information to the rewriting system to (1) configure the trans-
formation engine and (2) to control the transformation execution abstracted
to the specific domain of interest (PacMan movements). This model does
not take into account any playability issues, such as the Ghost moving too
fast versus a user reacting too slowly.

In the sequel we will present an extended model with focus on timing informa-
tion. This will allow us, through simulation, to construct an optimally “playable”
game.
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4 Modelling Game and Player

The previous section showed how we can model both game syntax (using meta-
modelling) and game dynamics (using programmed graph transformation) in
an intuitive fashion suitable for non-software-experts. In our approach, the pro-
grammed graph transformation model gets compiled into a DEVS model which
can subsequently be simulated.

In current graph transformation tools, the interaction between the user –
the player, in the current context– and the transformation engine is hard-coded
rather than explicitly modelled. Examples of typical interaction events are re-
quests to step through a transformation, run to completion, interrupt an ongo-
ing transformation, or change parameters of the transformation. In the context
of the PacMan game, typical examples are game-events such as PacMan move
commands. Also, if animation of a transformation is supported, the time-delay
between the display of subsequent steps is coded in the rewriting engine.

In contrast, in our DEVS-based approach, the interaction between the user
and the game is explicitly modelled and encapsulated in the atomicDEVS block
User (see Figure 6). Note that in this interaction model, time is explicitly present.

4.1 Modelling the Player

With the current setup, it is impossible to evaluate the quality (playability) of a
particular game dynamics model without actually interactively playing the game.
This is time-consuming and reproducibility of experiments is hard to achieve. To
support automatic evaluation of playability, possibly for different types of play-
ers/users, it is desirable to explicitly model player behaviour. With such a model,
a complete game between a modelled player and a modelled PacMan game –an
experiment– can be run autonomously. Varying either player parameters (mod-
elling different types of users) or PacMan game parameters (modelling for ex-
ample different intelligence levels in the behaviour of Ghosts) becomes straight-
forward and alternatives can easily be compared with respect to playability.

Fig. 7. Enhanced User Model

For the purpose of the PacMan game,
player behaviour parameters could
mean different user reaction speed
or different levels of decision analy-
sis (such as pathfinding). We have ex-
plored these two dimensions of be-
haviour. Section 5 will discuss reac-
tion speeds more in-depth. Obviously,
evaluating quality (playability) will re-
quire a precise definition of a perfor-
mance metric. Also, necessary data to
calculate performance metrics needs
to be automatically collected during
experiments.

Explicitly modelling player behaviour can be done without modifying the
overall model described in section 3.2 thanks to the modularity of DEVS. We
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simply need to replace the User block by a coupledDEVS block with the same
ports as shown in Figure 7.

We would like to cleanly separate the way a player interrupts autonomous
game dynamics (i.e., Ghost moving) on the one hand and the player’s decision
making on the other hand. To make this separation clear, we refine the User block
into two sub-models: the User Interaction and the User Behaviour atomicDEVS
blocks. On the one hand, the User Interaction model is responsible for sending
control information such as the number of transformation steps to perform next,
or a direction key to move the PacMan. On the other hand, the User Behaviour
block models the actual behaviour of the player (often referred to as “AI” in the
game community). It is this block which, after every transformation step, receives
the new game state graph, analyzes it, and outputs a decision determining what
the next game action (such as PacMan move up) will be. Also, since it is the
User Interaction block which keeps receiving the game state graph, we chose
to give this block the responsibility of sending the initial host graph to the
transformation subsystem.

The notion of Event-driven Graph Rewriting [11] can be found in the litera-
ture. It was proposed in the context of a meta-modelling editor: a graph rewriting
rule would be triggered in response to a user action. This concept is incorporated
in the User Controlled Rules coupledDEVS block where a rule gets triggered
depending on the user action. In our approach the user and user interaction itself
has been modelled in the User coupledDEVS block.

Different players may use different strategies. Each strategy leads to a different
model in the User Behaviour block. We have modelled three types of players for
our experiments: Random, Dummy, and Smart.

The Random player does not take the current game state graph into con-
sideration but rather chooses the direction in which the PacMan will move in
randomly. Note that this player may send direction keys requesting illegal Pac-
Man moves such as crossing a boundary (wall). This is taken care of by our
PacMan behaviour rules: the particular rule that gets triggered by that key will
not find a match in the graph, hence PacMan will not move. However, time is
progressing and if PacMan does not move, the ghost will get closer to it which
will eventually lead to PacMan death.

The Dummy user does not make such mistakes. After querying the game state
graph for the PacMan position, it moves to the adjacent grid node that has Food
but not a Ghost on it. If no such adjacent grid node can be found, it randomly
chooses a legal direction.

The Smart user is an improved version of the Dummy user. Whereas the
Dummy user is restricted to making decisions based only on adjacent grid nodes,
the Smart user has a “global” view of the board. The strategy is to compute the
closest grid node with Food on it and move the PacMan towards it depending
on the position of the Ghost. One way to implement this strategy is by using a
path finding algorithm. Many solutions exist for such problems, including some
efficient ones such as A* [12]. Modelling A* with graph transformation rules
requires backtracking and is outside the scope of this paper. Our prototype
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implementation sidesteps the pathfinding problem by slightly modifying the
meta-model of the PacMan formalism. Relative coordinates were added to the
gridNode class with the condition that if a gridNode instance g1 is associated
with another instance g2 via the gridLeft association, then g1.x < g2.x and
g1.y = g2.y. Similar conditions are defined for gridRight, gridTop and gridBot-
tom associations. Therefore, the pathfinding only needs to compute the shortest
Manhattan distance from PacMan to Food as well as a simple check for the grid
node coordinates of the Ghost.

We compare the performance of different user behaviour types in Section 5.
Note that to match different user types, we need to model similar strategies

for the Ghost to make the game fair. Indeed, a Smart user (controlling the
PacMan) playing against a randomly moving Ghost will not be interesting nor
will a Dummy user playing against a Smart Ghost. As players may become better
at a game over time, game levels are introduced whereby the game adapts to
the player’s aptitude. This obviously increases game playability.

4.2 Modelling the Game

As long as the (modelled) player does not send a decision key to move the Pac-
Man, thus changing the game state graph, the graph continues to loop between
the Controller block and the Autonomous Rules block. If no instantaneous rule
(Kill or Eat) matches, then it is the lower priority Ghost Move block that mod-
ifies the graph. In our earlier work [6], the graph received by this CRule was
concurrently sent to the Up, Down, Left and Right ARules to make the ghost
move. Non-deterministically, one of the matching rules got applied. This mod-
elled a random movement of the Ghost. In order to generalize this behaviour to
allow different strategies, a modification of the way the graph is sent to these
ARules is necessary.

Fig. 8. Enhanced Ghost Behaviour Model
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Figure 8 illustrates the modified topology of the Ghost movement model. The
game state graph is received by a Decider atomicDEVS block. Similar to the
User Behaviour block, it emits a direction that drives the movement of the
Ghost. The Random, Dummy and Smart strategies are analogous to the player.
The Random Ghost will randomly choose a direction, the Dummy Ghost will
look for a PacMan among the grid nodes adjacent to the one the Ghost is on and
the Smart Ghost has “global” vision and always decides to move towards the
PacMan. The same argument previously made about optimal pathfinding and
backtracking applies. Then, the Decider sends the graph and the decision (in
the form of a key) to a Dispatch block and the rest of the behaviour is identical
to that in the User Controlled Rules CRule.

4.3 Explicit Use of Time

We have now modelled both game and player, and the behaviour of both can
use Random, Dummy, or Smart strategies. However, one crucial aspect has been
omitted up to now: the notion of time. Time is critical for this case study since
game playability depends heavily on the relative speed of player (controlling the
PacMan) and game (Ghost). The speed is determined by both decision (thinking)
and reaction (observation and keypress) times.

Timed Graph Transformation, as proposed by Gyapay, Heckel and Varró [13]
integrates time in the double push-out approach. They extend the definition of
a production by introducing, in the model and rules, a chronos element that
stores the notion of time. Rules can monotonically increase the time. DEVS is
inherently a timed formalism, as explained previously. In contrast with Timed
Graph Transformation, it is the execution of a rule that can increase time and
not the rule itself. Hence, the control flow (of the graph transformation) has full
access to time. As pointed out in [13], time can be used as a metric to express
how many time units are consumed to execute a rule. Having time at the level
of the block containing a rule rather that in the rule itself does not lose this
expressiveness.

We will now show how the notion of time from the DEVS formalism integrated
in a graph transformation system can be used for realistic modelling of both
player and game. We consider a game to be unplayable if the user consistently
either wins or loses. The main parameter we have control over during the design
of a PacMan game is the speed of the Ghost.

Each atomicDEVS block has a state-dependent time advance that determines
how long the block stays in a particular state. Kill and Eat rules should happen
instantaneously, thus their time advance is 0 whenever they receive a graph. In
fact, all rules of the PacMan grammar have time advance 0. What consumes time
is the decision making of both the player (deciding where to move the PacMan)
and the game (deciding where to move the Ghost). For this reason, only the
Decider and the User Behaviour blocks have strictly positive time advance.

To provide a consistent playing experience, the time for the Ghost to make a
decision should remain almost identical across multiple game plays. The player’s
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decision time may vary from one game to another and even within the same
game. We have chosen a time advance for the Decider that is sampled from a
uniform distribution with a small variance (interval radius of 5ms). What re-
mains is to determine a reasonable average of the distribution. To make the game
playable, this average should not differ significantly from the player’s reaction
time. If they are too far apart, a player will consistently lose or win making the
game uninteresting.

5 Simulation Experiments

In the previous section, we determined that the playability of the PacMan game
depends on the right choice of the average time advance of the Decider block,
i.e., the response time of the Ghost. We will now perform multiple simulation
experiments, each with a different average time advance of the Decider block.
For each of the experiments, a playability performance metric (based on the
duration of a game) will be calculated. The value of the Decider block’s average
time advance which maximizes this playability performance metric will be the
one retained for game deployment. Obviously, the optimal results will depend
on the type of player.

5.1 Modelling User Reaction Time

First of all, a model for player reaction time is needed. Different psychophysiology
controlled experiments [14] give human reaction times (subjects between the ages
of 17 and 20):

– the time of simple visuomotor reaction induced by the presentation of various
geometrical figures on a monitor screen with a dark background

– the time of reaction induced by the onset of movement of a white point along
one of eight directions on a monitor screen with a dark background.

The reaction time distribution can be described by an asymmetric normal-like
distribution. The cumulative distribution function of frequencies for sensorimotor
human reaction time is:

F (x) = e−e
b−x

a

where a characterizes data scatter relative to the attention stability of the sub-
ject: the larger a is, the more attentive the subject is; b characterizes the reaction
speed of the subject. For simulation purposes, sampling from such a distribution
is done by using the Inverse Cumulative Method.

For our simulation, four types of users were tested: Slow with a = 33.3 and
b = 284, Normal with a = 19.9 and b = 257, Fast with a = 28.4 and b = 237,
VeryFast with a = 17.7 and b = 222. The parameters used are those of four
example subjects in [14].
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5.2 Simulation Results

For the simulations, we only consider the Smart user strategy. For each type
of user (Slow, Normal, Fast and VeryFast), the length of the simulated game
is measured: the time until PacMan is killed (loss) or no Food is left on the
board (victory). To appreciate these results, the score is also measured for each
run. Simulations were run for a game configuration with 24 gridNodes, 22 Food
Pellets, 1 Ghost and 1 PacMan. The game speed (ghost decision time) was varied
from 100ms to 400ms. Each value is the result of an average over 100 samples
simulated with different seeds.

The following presents the simulation results obtained by means of the DEVS
simulations of our game and player model. All figures show results for the four
types of users (Slow, Normal, Fast and VeryFast). Figure 9 shows the time until the
game ends as a function of the time spent on the Ghost’s decision. The increasing
shape of the curves imply that the slower the ghost, the longer the game lasts.
This is because the user has more time to move the PacMan away from the Ghost.
One should note that after a certain limit (about 310ms for the VeryFast user and
350ms for the Normal user), the curves tend to plateau. An explanation for this
behaviour is simply that after a certain point, the Ghost decision time is too low
and the user always wins. Therefore, the optimal average time advance value we
are looking for is found in the middle of the steep slope of the plots.

Fig. 9. Time till end
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Fig. 10. Victory frequency

Figure 10 depicts the frequency with which a player will win a game (when
playing a large number of games) as a function of the time spent on the Ghost’s
decision. We decided that we want to deploy a game where the user should be
able to win with a probability of 75%. Thus, the optimal average Ghost time
advance (decision time) was found to be 325ms.

To give further insight in the variability of the game experience, Figure 11
shows the game length distribution at the optimal time advance value. It is a
unimodal distribution with a peak at 7.5s. This average is quite low, but not
surprising given the small game board. Experience with the finally deployed
real-time game application is consistent with this value.

5.3 Game Deployment

Having found a prediction for the optimal time the Decider block should spend
on the choosing the next movement of the ghost entity, we can now test the simu-
lated game with real users, in real-time. We simply discard the player model and
deploy the real-time game model (by executing the translated programmed graph
rewriting system in a real-time DEVS simulator). In an attempt to generate the
application completely from models, we (mostly) synthesized (yet another model
transformation) an Ajax/SVG-based application from the PacMan meta-model
built in AToM3.
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Fig. 11. Game length distribution; Normal user, game time advance 325ms

6 Conclusions

In this article, we described the use of the Discrete-EVent system Specifica-
tion (DEVS) formalism for the specification of complex control structures for
programmed graph rewriting, with time. DEVS allows for highly modular, hi-
erarchical modelling of timed, reactive systems. In our approach, graphs are
embedded in events and individual rewrite rules are embedded in atomicDEVS
models. A side-effect of this approach is the introduction of an explicit notion
of time. This allows one to model a time-advance for every rule as well as to
interrupt (pre-empt) rule execution.

We have shown how the explicit notion of time allows for the simulation-
based design of reactive systems such as modern computer games. We used the
well-known game of PacMan as an example and modelled its dynamics with
programmed graph transformation based on DEVS. This allowed the modelling
of player behaviour, incorporating data about human players’ behaviour and re-
action times. We used the models of both player and game to evaluate, through
simulation, the playability of a game design. In particular, we proposed a playa-
bility performance metric and varied parameters of the PacMan game. This led
to an “optimal” (from a playability point of view) game configuration. The user
model was subsequently replaced by a web-based visual interface to a real player
and the game model was executed using a real-time DEVS simulator.

The use of graph transformation at the heart of this approach allows non-
software-experts to specify all aspects of the design in an intuitive fashion. The
resulting simulations give quantitative insight into optimal parameter choices.
This is an example of Modelling and Simulation Based Design, where the graph
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transformation rules and the timed transformation system are modelled, as well
as the user (player) and the context. Having modelled all these aspects in the
same model transformation framework, MoTif, allows for simulation-based de-
sign.

The decision about which next move the computer player (Ghost) should
make was simplified by avoiding pathfinding concerns as mentioned in Section
4.1. We plan to investigate the specification of pathfinding strategies by means
of graph transformation rules. This will require support for backtracking.

At the model structure level, it is noted how topologically similar the User
Controlled Rules and Ghost Move CRules are. Re-use and parametrization of
transformation models deserves further investigation.
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Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

H-1117 Magyar tudósok krt. 2, Budapest, Hungary
bergmann.gabor@gmail.com, okrosa@gmail.com

rath@mit.bme.hu, varro@mit.bme.hu

Abstract. In the current paper, we introduce a live model transformation frame-
work, which continuously maintains a transformation context such that model
changes to source inputs can be readily identified, and their effects can be incre-
mentally propagated. Our framework builds upon an incremental pattern matcher
engine, which keeps track of matches of complex contextual constraints captured
in the form of graph patterns. As a result, complex model changes can be treated
as elementary change events. Reactions to the changes of match sets are speci-
fied by graph transformation rules with a novel transactional execution semantics
incorporating both pseudo-parallel and serializable behaviour.

1 Introduction

Model transformations play a crucial role in modern model-driven system engineering.
Tool integration based on model transformations is one of the most challenging tasks
with high practical relevance. In tool integration, a complex relationship needs to be
established and maintained between models conforming to different domains and tools.
This model synchronization problem can be formulated as to keep a model of a source
language and a model of a target language consistently synchronized while developers
constantly change the underlying source and target models. Model synchronization is
frequently captured by transformation rules. When the transformation is executed, trace
signatures are also generated to establish logical correspondence between source and
target models.

Traditionally, model transformation tools support the batch execution of transforma-
tion rules, which means that input is processed “as a whole”, and output is either regen-
erated completely, or, in more advanced approaches, updated using trace information
from previous runs. However, in software engineering using multiple domain-specific
languages, models are evolving and changing continuously. In case of large and com-
plex models used in agile development, batch transformations may not be feasible.

Incremental model transformations are aimed at updating existing target models
based on changes in the source models (called target incrementality in [1]), and to
minimize the parts of the source model that needs to be reexamined by a transformation
when the source model is changed (source incrementality). To achieve target incremen-
tality, an incremental transformation approach creates “change sets” which are merged

A. Vallecillo, J. Gray, A. Pierantonio (Eds.): ICMT 2008, LNCS 5063, pp. 107–121, 2008.
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(a) Re-transformation (b) Live transformation

Fig. 1. Incremental transformation approaches

with the existing target model instance. In order to efficiently calculate which source
element may trigger changes (source incrementality), the transformation context has to
be maintained, which describes the execution state of the model transformation system
(e.g. variable values, partial matches). Depending on whether this is possible or not,
there are two main approaches to incremental transformations, as discussed in Fig. 1
(adapted from [2]):

– Systems employing re-transformations lack the capability to maintain the transfor-
mation context over multiple execution runs, thus the entire transformation has to
be re-run on the modified source models. This approach generates either new out-
put models which must be merged with existing ones, or change sets which can be
merged in-situ. As noted in [2], since the transformation context is lost, a merging
strategy has to be employed. This involves the computation of which model ele-
ments are involved in the change, and which elements should be left untouched by
the transformation. Thus, the feasibility of this approach depends heavily on the
trace information. For instance, in case of graph transformation [3], negative ap-
plication conditions (NACs) may be used to forbid the execution of a transforma-
tion rule twice on the same source element. An intelligent re-transformation based
model synchronization approach has been proposed recently for ATL in [4], which
targets bidirectionality rather than incrementality.

– In contrast, live transformations maintain the transformation context continuously
so that the changes to source models can be instantly mapped to changes in target
models. Live transformations are persistent and go through phases of execution
whenever a model change occurs. Similarly to re-transformations, the information
contained in trace signatures is used in calculating the source elements that require
re-transformation. However, as the execution state is available in the transformation
context, this re-computation can be far more efficient.

Related work in incremental transformations. In case of live transformations, chan-
ges of the source model are categorized as (i) an atomic model update consisting of an
operation (e.g. create, delete, update) and operands (model elements); or, more gener-
ally, (ii) a complex sequence (set, transaction) of such atomic operations. To execute
an incremental update, an atomic or complex model change has to be captured and
processed. For this purpose, the following approaches have been proposed in case of
declarative transformation languages:
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– The Progres [5] graph transformation tool supports incremental attribute updates
to invalidate partial matchings in case of node deletion immediately. On the other
hand, new partial matchings are only lazily computed.

– The incremental model synchronization approach presented in [6] relies on vari-
ous heuristics of the correspondence structure interconnecting the source and tar-
get models using triple graph grammars[7]. Dependencies between correspondence
nodes are stored explicitly, which drives the incremental engine to undo an applied
transformation rule in case of inconsistencies. Other triple graph grammar based
approaches for model synchronization (e.g. [8]) do not address incrementality.

– In relational databases, materialized views, which explicitly store their content on
the disk, can be updated by incremental techniques like Counting and DRed algo-
rithms [9]. As reported in [10], these incremental techniques are also applicable for
views that have been defined for graph pattern matching by the database queries of
[11]. The use of non-materialized views have been discussed in [12].

– In [13], user-guided manipulation events are directly represented as model elements
in the model store, while triple graph grammars [7] are extended to event driven
grammars to determine the kind of event and the model elements affected. Change
detection is directly linked to user interface events as this approach primarily targets
(domain-specific) modeling environments. Note that this approach, does not rely
on live transformations since the transformation context is not preserved; instead,
the underlying ATOM3 [14] engine is started whenever an event from the UI is
received. The idea, however, could be used in a live transformation environment.

– Triple graph grammar techniques are also used in [15] for tool integration based on
UML models. The aim of the approach is to provide support for change synchroniza-
tion between various languages in several development phases. Based on an integra-
tion algorithm, the system merges changed models on user request. Although it is not
a live transformation approach, it could benefit from being implemented as such.

– [2] proposes a more general solution where fact addition and fact removal con-
stitute an elementary change. Since the underlying TefKat [16] tool uses a trans-
formation engine based on SLD resolution, a fact change may represent atomic
updates (involving a single operation) as well as more complex changes, since a
fact may encode information about multiple model elements (such as a complex
pattern describing a UML class with attributes). This approach is only applicable
to fully declarative transformation languages, since incremental updates involve the
processing and modification of the SLD resolution tree (which, in broad terms, can
be thought of as a special structure storing the whole transformation context).

– [17] describes a special application of incremental updates for the consistency
checking of UML models. The approach provides a rule-based formalism to spec-
ify well-formedness constraints which are evaluated instantly after model modifica-
tions. Our demonstrating example illustrates how specialised transformations can
be applied to a similar problem, but on a higher abstraction level.

Contributions of the paper. In the current paper, we present a novel approach to incre-
mental model transformations based on incremental graph pattern matching and com-
plex transaction handling. The main features of our contribution can be identified as fol-
lows: we support (i) atomic changes as well as model changes for complex constraints;
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(ii) various styles of model transformation languages including fully declarative, par-
tially declarative and procedural languages; and (iii) live transformations by preserving
the transformation context. We discuss also how our incremental engine has been im-
plemented and integrated as part of the VIATRA2 model transformation framework.

2 Preliminaries

In this section, we give a motivating example for live transformations. We also provide
a brief introduction to the transformation language of the VIATRA2 framework.

2.1 Demonstrating Example

In this section, we demonstrate the technicalities of our approach using Petri nets, which
are widely used to formally capture the dynamic semantics of concurrent systems due
to their easy-to-understand visual notation and the wide range of available analysis
tools. From a system modelling point of view, a Petri net model is frequently used for
correctness, dependability and performance analysis in early stages of design.

Fig. 2(a) shows a simplified metamodel for Petri nets (captured in the VPM formal-
ism [18] of VIATRA2). Petri nets are bipartite graphs, with two disjoint sets of nodes:
Places and Transitions. Places may contain an arbitrary number of Tokens. Tokens are
also modeled as objects to support visual representation. The Petri net concept can be
extended by the notions of place capacity constraints which impose a limit on the num-
ber of Tokens a Place can hold.

(a) Petri net metamodel (b) Marker metamodel for con-
straints

(c) Model instances

Fig. 2. VIATRA metamodels and model instances

In the paper, we demonstrate our approach by the incremental validation of a com-
plex dynamic modeling constraint for user editing events. In this use case, the user is
editing models using a domain-specific editor which is capable of enforcing static type
constraints so that only syntactically correct Petri net graphs can be produced. How-
ever, an advanced framework may go beyond this and provide immediate feedback if
more dynamic constraints, such as a capacity constraint is violated (e.g. the user tries
to assign too many tokens to a place).

In order to provide support for the editor, the modeling environment makes use of
a marker metamodel which is a special type of trace model depicted in Fig. 2(b). A
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Constraint denotes a particular run-time constraint being enforced within the editor,
e.g. “PlaceCapacity”. For each constraint, we explicitly mark all the (Petri net) ele-
ments, which are required to evaluate the constraint within a given context by a Con-
straintCheck element. Each evaluation context of a Constraint is explicitly marked by a
ConstraintCheck instance (i.e. separately for each Petri net place and its respective to-
kens in our case). The isValid relation indicates whether the constraint is valid currently
for the context defined by the ConstraintCheck instance; the runtime environment makes
use of this relationship to indicate graphical feedback to the user. In Fig. 2(c), place
p0 contains two tokens but has a capacity of 1, thus, the associated ConstraintCheck
instance indicates that the PlaceCapacity constraint is violated in this context. In our
demonstrating example used throughout the paper, we aim at providing an incremental
evaluation of the capacity constraint in all contexts in response to elementary changes
or complex transactions initiated by the user or another transformation.

2.2 Model Transformations in VIATRA

The transformation language of VIATRA2 consists of several constructs that together
form an expressive language for developing both model to model transformations and
code generators. Graph patterns (GP) define constraints and conditions on models,
graph transformation (GT) [3] rules support the definition of elementary model manip-
ulations, while abstract state machine (ASM) [19] rules can be used for the description
of control structures.

Graph patterns are the atomic units of model transformations. They represent con-
ditions (or constraints) that have to be fulfilled by a part of the model space in order to
execute some manipulation steps on the model. The basic pattern body contains model
element and relationship definitions. In VIATRA2, patterns may call other patterns us-
ing the find keyword. This feature enables the reuse of existing patterns as a part of a
new (more complex) one. The semantics of this reference is similar to that of Prolog
clauses: the caller pattern can be fulfilled only if their local constructs can be matched,
and if the called (or referenced) pattern is also fulfilled. A negative application con-
dition (NAC, defined by a negative subpattern following the neg keyword) prescribes
contextual conditions for the original pattern which are forbidden in order to find a
successful match. Negative conditions can be embedded into each other in an arbitrary
depth (e.g. negations of negations).

Graph transformation (GT) [3] provides a high-level rule and pattern-based manip-
ulation language for graph models. In VIATRA2, graph transformation rules may be
specified by using a precondition (or left-hand side – LHS) pattern determining the ap-
plicability of the rule, and a postcondition pattern (or right-hand side – RHS) which
declaratively specifies the result model after rule application. Elements that are present
only in (the image of) the LHS are deleted, elements that are present only in the RHS
are created, and other model elements remain unchanged. Further actions can be initi-
ated by calling any ASM instructions within the action part of a GT rule, e.g. to report
debug information or to generate code. In addition to graph transformation rules, VIA-
TRA2 provides procedural constructs (such as simple model operations – new, delete,
update) as well as pattern and scalar variables. Using these constructs, complex model
transformations can be written.
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3 Incremental Pattern Matching in VIATRA

Pattern matching plays a key role in the execution of VIATRA2 transformations. The
goal is to find the occurrences of a graph pattern, which contains structural as well as
type constraints on model elements. In the case of incremental pattern matching, the
occurrences of a pattern are readily available at any time, and they are incrementally
updated whenever changes are made. As pattern occurrences are stored, they can be
retrieved in constant time – excluding the linear cost induced by the size of the re-
sult set itself –, making pattern matching a very efficient process. Generally speaking,
besides memory consumption, the drawback is that these stored result sets have to be
continuously maintained, imposing an overhead on update operations.

Our approach is based on the RETE algorithm [20], which is a well-known technique
in the field of rule-based systems. This section is dedicated to giving a brief overview
on how we adapted the concepts of RETE networks to implement the rich language
features of the VIATRA2 graph transformation framework.

Tuples and Nodes. The main ideas behind the incremental pattern matcher are con-
ceptually similar to relational algebra. Information is represented by a tuple consisting
of model elements. Each node in the RETE net is associated with a (partial) pattern and
stores the set of tuples that conform to the pattern. This set of tuples is in analogy with
the relation concept of relational algebra.

The input nodes are a special class of nodes that serve as the underlying knowledge
base representing a model. There is a separate input node for each entity type (class),
containing unary tuples representing the instances that conform to the type. Similarly,
there is an input node for each relation type, containing ternary tuples with source and
target in addition to the identifier of the edge instance. Miscellaneous input nodes rep-
resent containment, generic type information, and other relationship between model
elements.

Intermediate nodes store partial matches of patterns, or in other terms, matches of
partial patterns. Finally, production nodes represent the complete pattern itself. Pro-
duction nodes also perform supplementary tasks such as filtering those elements of the
tuples that do not correspond to symbolic parameters of the pattern (in analogy with the
projection operation of relational algebra) in order to provide a more efficient storage
of models.

Joining. The key intermediate component of a RETE is the join node, created as the
child of two parent nodes, that each have an outgoing RETE edge leading to the join
node.

The role of the join node can be best explained with the relational algebra analogy:
it performs a natural join on the relations represented by its parent nodes.

Figure 3(a) shows a simple pattern matcher built for the sourcePlace pattern, which
describes a Place-Transition pair connected by an out-arc, illustrating the use of join
nodes. By joining three input nodes, this sample RETE net enforces two entity type
constraints and an edge (connectivity) constraint, to find pairs of Place and Transitions
instances which fulfill the constraints described in the pattern.
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(a) Matcher network (b) Propagation phase I. (c) Propagation phase II.

Fig. 3. RETE matcher for the sourcePlace pattern

Updates after model changes. The primary goal of the RETE net is to provide in-
cremental pattern matching. To achieve this, input nodes receive notifications about
changes on the model, regardless whether the model was changed programmatically
(i.e. by executing a transformation) or by user interface events.

Whenever a new entity or relation is created or deleted, the input node of the appro-
priate type will release an update token on each of its outgoing edges. To reflect type
hierarchy, input nodes also notify the input nodes corresponding to the supertype(s).
Positive update tokens reflect newly added tuples, and negative updates refer to tuples
being removed from the set.

Each RETE node is prepared to receive updates on incoming edges, assess the new
situation, determine whether and how the set of stored tuples will change, and release
update tokens of its own to signal these changes to its child nodes. This way, the effects
of an update will propagate through the network, eventually influencing the result sets
stored in production nodes.

Figure 3(b) shows how the network in Fig. 3(a) reacts on a newly inserted out-arc.
The input node for the relation type representing the arc releases an update token. The
join node receives this token, and uses an effective index structure to check whether
matching tuples (in this case: places) from the other parent node exist. If they do then
a new token is propagated on the outgoing edge for each of them, representing a new
instance of the partial pattern “place with outgoing arc”. Fig. 3(c) shows the update
reaching the second update node, which matches the new tuple against those contained
by the other parent (in this case: transitions). If matches are found, they are propagated
further to the production node.

More details of this incremental pattern matching approach can be found in [21],
where initial investigations concerning the run-time performance of our implementa-
tion also have been presented. Our results indicate a significant efficiency increase over
the conventional (local search-based) pattern matcher; in certain applications, the dif-
ference is two orders of magnitude. Additionally, it is worth pointing out that our RETE
implementation significantly extends [22], the only existing RETE based approach in
the field of graph (and model) transformation. In the future, we plan to incorporate an-
other incremental approach [23] based on notification arrays to store a tree for partial
matchings of a pattern.
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4 Live Transformations Driven by Incremental Pattern Matching

Based on our incremental pattern matching technology introduced in Sec. 3, we now
propose a novel approach to live model transformations.

4.1 Overview of the Approach

Model changes. In our approach, a model change is detected by a change in the match
set of a graph pattern. The match set is defined by the subset of model elements satisfy-
ing structural and type constraints described by the pattern. Formally: a subgraph S of
the model G is an element of the match set M(P) of pattern P, if S is isomorphic to P.

Changes in the matching set can be tracked using the RETE network. A model
change occurs if the match set is expanded by a new match or a previously existing
match is lost. Since a graph pattern may contain multiple elements, a change affecting
any one of them may result in a change in the match set. The RETE-based incremen-
tal pattern matcher keeps track of every constraint prescribed by a pattern, thus it is
possible to determine the set of constraints causing a change in the match set.

Our approach can be regarded as an extension of the fact change approach [2]. It
provides support for the detection of changes of arbitrary complexity; not only atomic
and compound model change facts (with simple and complex patterns respectively), but
also operations, or sequences of operations can be tracked using this technique (either
by representing operations directly in the model graph, or by using reference models).

Transformation context and efficient recomputation. Live transformation execution
requires the continuous maintenance of the execution context to avoid the necessity of
model merging in target models. In our approach, this context contains:

– global variables, which are persisted to enable the transformation engine to store
(global) cached values.

– pattern variables, which are maintained by the incremental pattern matching en-
gine after each atomic model manipulation operation. This means that the matches
stored in a given pattern variable are always updated and the match set of any pat-
tern can be retrieved in constant time.

As a result, the computation required to initialize and execute the incremental transfor-
mation sequence after a change is fast, since pattern matching, the most cost-intensive
phase of the transformation, is executed in linear time with respect to the size of the
matching set.

Explicit specification. In addition to targeting the incremental execution of model
synchronization transformations, our approach is intended to support a broader range of
live transformations. For this purpose, incremental transformation rules, called triggers
are explicitly specified by the transformation designer. A trigger is defined in the form
of a graph transformation rule: the precondition of its activation is defined in the form of
a graph pattern, while the reaction is formulated by arbitrary (declarative or imperative)
transformation steps.

In fact, not only tool integration, but many application scenarios can be formulated
as incremental transformations, especially, in the context of domain-specific modeling
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such as (i) model execution (simulation), where triggers may be used to execute the
dynamics semantics of a domain-specific language; (ii) constraint management, where
incremental transformations are used to check and enforce the validity of a complex
constraint; (iii) event-driven code generation, where the textual representation of ab-
stract models may be incrementally maintained as the source model changes.

4.2 Triggers

In our approach, the basic unit of incremental transformations is the trigger. The formal
representation of a trigger is based on a simplified version of the graph transformation
rule: it consists of a precondition pattern and an action part consisting of a sequence
of VIATRA2 transformation steps (including simple model manipulations as well as the
invocation of complex transformations).

@Trigger(priority=’10’, mode=’always’, sensitivity=’rise ’)
gtrule initPlace() = {
precondition pattern pre(P) = {
Place(P);
Place.Place_Capacity(PC);
Place.capacity(Cap,P,PC);
neg pattern placeSet(P) = {

Constraint.ConstraintCheck(CC);
Constraint.ConstraintCheck.nodeElement(NE,CC,P);

}
}
action {
new(Constraint.ConstraintCheck(CC));
new(Constraint.ConstraintCheck.nodeElement(NE, CC, P));

}}

Fig. 4. Place instance initialisation

In Fig. 4, a simple trigger is shown. It is automatically fired after the user creates a
new Place and the modeling environment creates (as a complex model change involving
multiple elements) an additional Capacity and a ConstraintCheck marker element for
the new Place-Place Capacity pair. As a common technique in graph transformation
based approaches, we use a negative application condition to indicate that the action
sequence should only be fired for new pairs without a marker element.

This simple example highlights a number of extensions that constitute our additions
to the VIATRA2 transformation language: the new Trigger annotation is used to indi-
cate that the graph transformation rule should be executed as an event-driven transfor-
mation. The annotation uses the following options (specified in a Java-like syntax):

– Priority (integer): Defines a precedence relation on multiple active triggers (trig-
gers with higher priority value will run first).

– Mode (always | once ): Defines whether a trigger is continuously scheduled for
execution, or it is executed only once and then it becomes disabled.

– Sensitivity (rise | fall | both): Rise triggers are activated whenever a new match
is encountered; fall triggers are executed when a previously existing match is lost;
both triggers execute on rises and falls as well.



116 I. Ráth et al.

4.3 Execution Context

The system tracks changes changes in the match sets of patterns and executes the action
sequences in a persistently maintained execution context. This context consists of pat-
tern variables (continuously maintained by the RETE network) and persistent variables
(called ASM functions in VIATRA2; essentially global associative arrays).

// An array to cache token numbers
asmfunction numberOfTokens / 1;

@Trigger(priority=’10’, mode=’always’, sensitivity=’rise ’)
gtrule placeAdded() = {
precondition pattern pre(CC) = {
Constraint.ConstraintCheck(CC);
Place(P);
Constraint.ConstraintCheck.nodeElement(NE_P ,CC,P);

}
action {
// Initialize the ’numberOfTokens’ array
update numberOfTokens(P) = 0;
// calculate the initial number of tokens
forall T with find placeToken(P,T) do
update numberOfTokens(P) = numberOfTokens(P)+1;

// check the constraint’s validity
call constraintCheck(P,CC);

}}

Listing 1.1. Invoking constraint checking in the transformation context

In Listing 1.1, the numberOfTokens array is used in the persistent context to cache the
amount of tokens assigned to a given place (the array is indexed by the Place reference).
This trigger is fired after the ConstraintCheck marker element has been created by the
trigger described in Fig. 4, and performs the necessary steps to set up the cache with
the appropriate value (Listing 1.2; note that some pattern definitions have been omitted
for space considerations).

rule constraintCheck(in P, in CC) = seq {
// match the PlaceCapacity element storing the value
// of P’s capacity.
choose PC with find placeCapacity(P,PC) do seq {

if (numberOfTokens(P) <= value(PC)) seq {
// delete a possible previous ’False’ marking
choose R find constraintFalse(CC,R) do delete(R);
// create a new ’True’ marking
new ConstraintCheck.isValid(R,CC, Boolean.True);

}
else seq {

choose R with find constraintTrue(CC,R) do delete(R);
new ConstraintCheck.isValid(R,CC, Boolean.False);

}}}

Listing 1.2. Command sequence to check the validity of the capacity constraint

It is important to note that pattern variables (CC, P in the precondition, and T in pat-
terns used in the action part) are also part of the maintained context, which makes the
execution much more efficient. The underlying RETE-based pattern matcher maintains
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the matches for all involved patterns (precondition, placeToken, as well as placeCa-
pacity and constraintFalse / constraintTrue in the constraintCheck rule) incrementally,
thus the pattern matching operations (forall and choose, which pick all matches and one
match, respectively) execute instantly, without any additional graph traversal.

4.4 Complex Change Detection

To detect complex model changes, the transformation developer can make use of the
rise and fall triggers and some advanced VIATRA2 pattern language constructs.

Creation. In practical applications, a chain of triggers may be used to execute multiple
incremental updates. For instance, after a Token instance has been added by the user,
the system may execute a trigger similar to Fig. 4 to connect the new Token to the
CapacityConstraint marker element. In reaction to that, after initPlace has reached the
commit point, the tokenAdded() trigger (Listing 1.3) is activated.

@Trigger(sensitivity=‘rise ’)
gtrule tokenAdded() = {
precondition find connectedToken(P,CC,T) = {
find placeToken(P,T);
Constraint.ConstraintCheck(CC);
Token(T);
Constraint.ConstraintCheck.nodeElement(NE_Tok,CC,T);

}
action {
update numberOfTokens(P) = numberOfTokens(P) + 1;
call checkConstraint(P,CC);

}}

Listing 1.3. Trigger to handle the addition of Tokens

The tokenAdded() trigger updates the numberOfTokens array stored in the execution
context, and initiates a constraint update which provides feedback to the user.

Deletions. To detect deletions, a trigger for the same precondition pattern as used in
Listing 1.3 can be used in fall mode. In this case, the undef constant is assigned to
the corresponding pattern variables to indicate that the model element identified by the
pattern variable is no longer existent (Listing 1.4). However, other pattern variables
(pointing to existing model elements) can be used in the action part in the usual way.

@Trigger(sensitivity=’fall ’)
gtrule tokenRemoved() = {
precondition find tokenAdded.connectedToken(P,CC,T)
action {
// only act if token T has been lost (deleted)
if (T == undef) seq {
update numberOfTokens(P) = numberOfTokens(P) - 1;
call checkConstraint(P,CC);

}}}

Listing 1.4. Handling token deletion
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Attribute updates. The system also provides support for the incremental detection of
attribute changes. VIATRA2 provides a value field for all node types; in this example,
this value field of the PlaceCapacity property node is used to store the actual value of
the capacity of the connected Place.

// associative array to cache place capacity values
asmfunction capacities / 1;

@Trigger(sensitivity=’fall ’)
gtrule capacityChanged() = {
precondition pattern pre(P,PC) = {
find placeCapacity(P,PC);
// check condition to define a value constraint
check(value(PC) == capacities(PC))

}
action {
// check whether the attribute update caused the activation
if (PC!=undef && P!=undef && value(PC) != capacities(PC)) seq {
// update constraint validity
choose CC with find placeConstraint(P,CC) do call checkConstraint(P,CC);
// store new value
update capacities(PC) = value(PC);

}}}

Listing 1.5. Handling attribute updates

In Listing 1.5, a fall trigger is defined for changes in the capacity value (the user
may change that any time during modeling). The trigger is activated for changes in the
match set of a complex pattern involving a check condition, which is a special feature of
the VIATRA2 transformation language to define additional attribute constraints which
cannot be expressed using structural graph patterns. The global array capacities is used
to cache known capacity values; the trigger checks whether the cause of activation was
a change in the attribute value and proceeds to update the constraint validity.

4.5 Transaction Management

In order to be able to perceive changes in the match set of a pattern over a complex
model manipulation operation, such as the execution of a graph transformation rule or a
complex editing operation, the model management system has to support transactions.
A transaction is defined as a sequence of atomic model manipulation operations (e.g.
create node, edge, instance-type-supertype relation, update attribute, etc.), followed by
a commit command. The VIATRA2 framework ensures that all model manipulation
occurs within a transaction.

The operational workflow of the live transformation system is shown in Fig. 5 from
the viewpoint of transactions. After a transaction has reached its commit point, the sys-
tem evaluates the changes in the match sets of precondition patterns of triggers regis-
tered in the trigger queue. The evaluation is linear, i.e. more registered triggers increase
the execution time linearly (as future work, we will improve this). Since the RETE net-
works are updated after each atomic model manipulation operation, a match set may
experience transient changes while a long transaction is running. In our approach, only
the effective changes are considered; thus, even if a new match is generated while a
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Fig. 5. Overview of incremental execution

(a) Serial mode (b) Pseudo-parallel mode

(c) Iterate semantics (d) Forall semantics

Fig. 6. Execution semantics for multiple match set changes and execution modes for multiple
trigger activation

transaction is running, if that match is subsequently lost, the system will not process
it for triggers. This mechanism is provided by the matching set delta monitor, which
computes the net changes that occurred during a transaction. After the changes have
been evaluated, the execution engine processes triggers registered in the trigger queue
and selects those with a precondition activated by the processed matching set changes,
and prepares them for execution based on the current execution mode.

Execution modes. Action sequences of activated triggers can be executed in two modes
(Fig. 6). In the depicted scenario, we assume that there are three active triggers (T1–
3) with their action sequences (AS1–3 respectively). After a transaction, the system
encounters a new match (M(T1)–M(T3)) for each of the three triggers.

In serial mode (Fig. 6(a)), the action sequences are executed in separated transactions
according to the priority order. After each commit point, the system re-evaluates all
trigger conditions. In this mode, conflicts between competing triggers are eliminated
(since the checks may reveal, for instance, that M2 was invalidated while AS1 was
executed). However, a circular activation of triggers may result in infinite loops in case
of serial execution mode.
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In contrast, pseudo-parallel mode (Fig. 6(b)), action sequences are executed in a
single transaction with a common commit point. In this case, conflicts may occur, and
they need to be accounted for by the transformation designer. On the other hand, the
execution is faster than in serial mode, since no intermediate checks are performed. A
similar race condition may arise for multiple matches for a single trigger. In Figures 6(d)
and 6(c), trigger T1 has been activated for matchings M1 - M3. In iterate mode, we
non-deterministically select one match, and execute its action sequence as a separate
transaction. Then, if the rest of the matches are not invalidated, their respective actions
are also executed one by one in separate transactions. In forall mode, all execution
occurs in a single transaction with the possibility of conflicts which may cause a run-
time error.

5 Conclusion

In the current paper, we presented a novel approach to live model transformations based
on incremental graph pattern matching and complex transaction handling. Compared to
existing incremental transformation approaches, the main added value of the current
paper is (i) to preserve full transformation context in the form of pattern matches; (ii)
to incorporate incremental reaction to complex model changes (both deletion and addi-
tion), and (iii) to provide incremental support for both declarative and imperative trans-
formations with the help of complex transaction handling mechanism. Our approach is
fully implemented and integrated to the VIATRA2 model transformation framework.
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Abstract. In this paper we briefly introduce an aspect language that can define
cross-cutting effects on a set of UML 2.0 sequence diagrams. Our main contri-
bution is to weave aspects and sequence diagrams at the model level. By basing
the weaving upon a formal trace model for sequence diagrams, we ensure that
the weaving is semantics-based. To avoid the intractability of working on com-
plete trace sets, we define a lifeline-based weaving upon trace-based equivalence
classes. A major challenge is to handle unbounded loops which produce infinite
trace sets. We establish a systematic way to rewrite the original loop definition so
that the weaving can be performed on a finite structure. A weaving tool has been
implemented to validate the approach.

1 Introduction

Aspect-orientation for programming has emerged as a promising way to separately de-
fine cross-cutting parts of programs, in order to achieve separation of concerns. We
believe that the same potential is there also for modeling. This paper explores aspect-
oriented modeling for UML 2 sequence diagrams [13].

In aspect-oriented programming the base program is the main program upon which
one or more aspects may define some cross-cutting code as additions or changes. An
aspect is defined by a pair (pointcut and advice), where the pointcut defines where to
affect the base program and the corresponding advice defines what to do in the places
identified by the pointcut. Analogously we term our set of sequence diagrams as the
base model, and we define an aspect diagram to consist of a pointcut diagram and an
advice diagram, both based upon the concrete syntax of sequence diagrams.

In this paper we assume that the sequence diagrams are used as input for tools that
automatically produce executable test code, e.g. to test if a sequence diagram is a correct
refinement of another sequence diagram [12], or to test if a system specified by UML
statecharts, class diagrams and object diagrams is consistent with sequence diagram
specifications [14]. The test tools expect complete sequence diagrams. Therefore we
need to weave the aspect and the base model, into a woven model, before generation of
test code.

The woven model is not intended to be viewed (except for debugging) or further up-
dated by the modeler. This means that the structure of the result is not a primary focus. It
suffices that the woven model is semantically correct with respect to our formal model.

Many aspect-oriented approaches suffer because they rely on a pure syntactic point-
cut matching and weaving. This paper gives part of an answer to the following question:
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How can we use the trace-based formal model of STAIRS [15] to achieve a semantics-
based matching and weaving algorithm for sequence diagrams?

The paper is organized as follows; Section 2 introduces the STAIRS formal model
for sequence diagrams; Section 3 presents the matching and weaving approach; Section
4 shows how we may statically weave unbounded loops; Section 5 describes our tool
implementation; Section 6 presents related work; and finally Section 7 provides the
conclusions.

2 STAIRS

STAIRS gives the semantics of a sequence diagram by a set of traces that represents the
set of possible execution runs. The trace set may be infinite while each individual trace
is finite.

The syntax of a UML sequence diagram, called interaction, follows the EBNF of
Figure 1 [15]. We focus on the operators seq, alt and loop. The first two operators
are chosen because they are the basic operators from which we also may define several
other operators. The loop is included since it provides some challenges in the context
of semantics-based weaving (section 4).

Each message is represented by two events, a transmission event (!) and a recep-
tion event (?) (the transmitter and receiver lifelines are omitted for readability in the
paper examples when this information is unambiguously defined by associated dia-
grams). An event takes place on a lifeline L1 if it is a transmission event on L1, e.g.
!(signal,L1,L2), or a reception event on L1, e.g. ?(signal,L2,L1). We assume
that the messages are complete (i.e. contain both events ! and ?) within each alt
operand, loop operand, pointcut, advice and each sequence diagram in the base model.

The weak sequence operator, seq, of sequence diagrams imposes a partial order of
events given by: 1) the transmission event must come before the reception event of the
same message, and 2) all events are ordered for each lifeline in isolation. An intuitive
idea behind this partial order is that messages are sent asynchronously and that they
may happen in any order on different lifelines, but sequentially on the same lifeline.
Figure 2 shows an interaction example and the corresponding arrows of its four partial
order requirements.

Sequence diagrams allow crossing messages, i.e. two messages a and b are cross-
ing only when they have events on the same two lifelines, and a has an event be-
fore b on one lifeline, while b has an event before a on the other lifeline, e.g. seq
[!(a, L1, L2), !(b, L1, L2), ?(b, L1, L2), ?(a, L1, L2)].

The alt operator defines alternative interactions for each operand, and the loop
operator represents alternative interactions for each allowed repetition of the loop body.

Interaction Event | WeakSeq | Alternatives | Loop
Event Kind ”(” Signal ”,” Transmitter ”,” Receiver ”)”
Interactions Interaction | Interactions ”,” Interaction
Kind ”!” | ”?”

WeakSeq ”seq [” Interactions ”]”
Alternatives ”alt [” Interactions ”]”
Loop ”loop” Set? ”[” Interaction ”]”

Signal is the message content, Transmitter and Receiver are lifeline names.

Fig. 1. Syntax of interactions
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seq [ !(m1,L1,L2), ?(m1,L1,L2), !(m2,L1,L2), ?(m2,L1,L2) ]

«sd¬ = {<!(m1,L1,L2), ?(m1,L1,L2), !(m2,L1,L2), ?(m2,L1,L2)>,
<!(m1,L1,L2), !(m2,L1,L2), ?(m1,L1,L2), ?(m2,L1,L2)>}

seq [ !m1, ?m1, !m2, ?m2 ]shorthand:L1
m1

sd

m2

L2 !m1

partial order arrows

!m2

?m1

?m2

Fig. 2. Example: Sequence diagram, partial order, syntax and semantics

Notice that the loop operator has an optional parameter, Set, to define the possible
iterations of the loop. This can be expressed in many different ways such as {1, 3, 5} or
2..∗ (0..∗ is the default).

We briefly explain the semantics operator, � �, while a precise definition is given in
[15]. The semantics of an interaction i is �i� = (p, n), where p is the set of positive traces
and n is the set of negative traces. Positive traces define valid behavior and negative
traces define invalid behavior, while all other traces are defined as inconclusive. In this
paper we concentrate on aspects that only affect positive traces, and we therefore use
a simplified model without negative traces: that is �i� = p. A trace is a sequence of
events which we display as 〈e1, . . . , en〉, where ei are events for all i ∈ 1..n.

The � � operator produces one trace for each valid permutation of events that satisfy
the two partial order requirements as explained for the seq operator above. The � �
operator produces the union of the traces for each operand of the alt operator and the
union of traces for each possible number of iterations of a loop. n iterations of the loop
are replaced by a weak sequence of n occurrences of the loop body before the semantics
operator is applied to it. If the loop has no upper bound, called unbounded loop, then
we will have infinitely many traces. Each message in the trace is dynamically given
a unique identifier, which is shared between the transmission and reception events of
the message. We say that two interactions i1 and i2 are semantically equivalent if they
represent the same trace set (except for the dynamic identifiers), i.e. if �i1� = �i2�.

We define one trace to be partial order equivalent (POE) to another trace if they are
both permutations of the same set of events with the same order on each lifeline. The
� � operator is used to define POE since it is defined to produce all such permutations:

Definition 1. We say that two traces tA = 〈tA
1 , . . . , t

A
n 〉 and tB = 〈tB

1 , . . . , t
B
n 〉 are partial

order equivalent (POE) if and only if:

�seq
[
tA
1 , . . . , t

A
n

]
� = �seq

[
tB
1 , . . . , t

B
n

]
�

We let the function, POE: Trace→ TraceSet, calculate all the POE traces of a given
trace, POE(〈tA

1 , . . . , t
A
n 〉) = �seq

[
tA
1 , . . . , t

A
n

]
�. The diagram in Figure 2 has two traces

which are POE: 〈!m1, ?m1, !m2, ?m2〉 and 〈!m1, !m2, ?m1, ?m2〉. The function POE() of
either of these two traces returns the set of both traces.

3 The Approach

This section explains how we perform the semantics-based weaving for finite traces
where there are no unbounded loops, while section 4 covers unbounded loops. Finite
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loops can be seen as a set of alternatives, so we only have to cover the seq and alt
operators.

The aspect diagrams are inspired by graph transformation [4] where the left part, the
pointcut diagram, defines a pattern for which we are looking for matches or morphisms
in the base model. The right part, the advice diagram, defines a replacement of the
matches within the base model. This implies that messages present only in the pointcut
and not in the advice, will be deleted, while messages present only in the advice and not
in the pointcut, will be added. Both the pointcut and advice diagrams are based upon the
graphical elements of sequence diagrams so that the modeler can work with an already
familiar notation.

3.1 Syntactic-Based Matching Does Not Work

If the pointcut identifies only a single message to be matched, then there is no difference
between syntactic-based and semantics-based matching. However, even for only two
consecutive messages, as in the example in Figure 3, syntactic-based and semantics-
based matching is different.

The pointcut of Figure 3 expresses that the message m1 from the lifeline L1 to the
lifeline L2 is followed by the message m2 from L1 to L2. A weaving must replace
all pointcut matches by an advice which adds the message new and an alt operator.
The base model has two consecutive alt operators. An alt operator defines a choice
of different alternatives, where the alternatives are given as operands separated by a
dashed line. If we try to find matches of the pointcut within the base model with pure
syntactic matching, then we do not find any matches. However, one possible execution
trace chooses the second operands of the two alt operators, which then should result
in a match of the specified pointcut.

L1
m1

pointcut

m2

L2 L1

base

L2

alt a

m1

alt b

m2

advice

m3

expected woven extract
for the branch involving
the m1,m2 and m3 
messages. (viewed as a 
diagram for 
comprehensibility)

L1
m1
new

L2

m2

alt

no

yes

L1
m1
new

L2

m2

alt

no

yes

m3

Fig. 3. Example: Aspect model, base model, and expected woven model(extract)

3.2 Lifeline-Based Matching

In order to make the matching semantics-based, we define matches directly on the base
model traces. We need an injective mapping function, φ: Event→ Event, which maps
from pointcut events to base events. For each event, φ only maps the identifier, while it
preserves all the other event properties (kind, signal, transmitter, receiver).

Definition 2. We have a match if and only if a base trace contains a pointcut trace
(where each event in the pointcut trace is mapped by φ)
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In theory we may calculate all the pointcut and base traces to find matches. In prac-
tice this is an intractable problem since the number of traces may have an exponential
growth relative to the number of events in the diagram. In our first test implementation
we were not able to handle a relatively small base model, consisting of eleven consec-
utive messages in the same direction between the same two lifelines, since there are as
much as 58, 786 traces.

In an optimized weave algorithm we avoid calculating all the traces by instead work-
ing on the POE equivalence classes (abbreviated as POE classes) instead. This has a
large impact on the performance since a POE class may represent thousands of actual
traces, e.g. all the 58, 786 traces in the base model mentioned above belong to the same
POE class. The set of POE classes, representing an interaction, is derived from an in-
teraction by a tree-like traversal of the alt operands. Each valid combination of the
alt operands represents a POE class. For each POE class, we only represent the event
orders per lifeline, so that each event occurs only once. Hence, the optimized algorithm
scales well and performs linearly wrt. to the number of alt operands and the number of
events. The next lemma states that a lifeline-based matching wrt. to each POE class is
sufficient to identify all the possible matches:

Lemma 1. (Lifeline-based matching) For a base trace, bTrace, there exists a match
in one of its POE traces (POE(bTrace)) if and only if

1. ∀l ∈ Lifelines: the event order on l of POE(bTrace) contains the event order on
l of the pointcut (where each event in the pointcut is mapped by φ) AND

2. there are no messages in POE(bTrace) having the reception event before the con-
tained pointcut on one lifeline and the transmission event after the contained point-
cut on another lifeline (match blocking messages).

Proof: If-direction: Assume all the pointcut event orders per lifeline is contained within
base event orders per lifeline, and that there are no match blocking messages in the base
trace. No match blocking messages ensure that we may construct a matching base trace
within POE(bTrace) as follows: select all the events on each lifeline prior to each
lifeline match in one of the valid orders, then select all the events from the pTrace
and persist their order (this will be the contained match), then proceed with any valid
selection of the remaining events. Only-if-direction: Assume there is a pointcut trace
contained in a base trace. No match blocking messages follow directly since such mes-
sages otherwise would split the match events. To get a contradiction, assume there is a
lifeline on which the pointcut event order is not contained within the base event order
of the same lifeline. Then there must be an intermediate event, not part of the match,
between two of the matching base trace events on the lifeline. But then it would also be
part of the match trace due the relationship between lifeline event orders and traces. �

Lemma 1 needs to exclude match blocking messages. Otherwise the if-direction of the
lemma does not hold as we can see from Figure 4. The pointcut has a single trace:
〈!a, ?a, !b, ?b〉. None of the six shown base traces have a contained pointcut trace, and
thus there are no matches (Def. 2). This is because the match blocking c message will
always get its two events between the first and last events of the matched pointcut trace.
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L1
a

b

pointcut

L2 L2 L1
a

b

base

L2 L2

c

pointcut traces:
{ <!a,?a,!b,?b> }

base traces:
{ <!a,?a,!c,?c,!b,?b>,<!a,?a,!b,!c,?c,?b>,

<!a,!c,?a,!b,?c,?b>,<!a,!c,?c,?a,!b,?b>,
<!a,?a,!c,!b,?c,?b>,<!a,!c,?a,?c,!b,?b>}

Fig. 4. c is a match blocking message

3.3 Lifeline-Based Weaving

The previous section showed that a lifeline-based matching of the POE classes is equiv-
alent to a semantics-based matching on the traces. This section continues by defining a
lifeline-based weaving. We calculate the POE classes of the base model, the single POE
class of the pointcut and the POE classes of the advice. Since the pointcut is restricted
to use only seq and events, it has always only one POE class.

The weave algorithm repeats the following three steps as long as there are unhandled
matches in the base POE classes: 1) Identify a match in a base POE class (lifeline-based
matching), 2) Perform lifeline-based weaving, according to Def. 3 below, for each of
the advice POE classes. Add the results, a new POE class for each advice POE class, to
the set of base POE classes, and 3) Remove the matched base POE class and repeat the
three steps if there are more matches.

Definition 3. Lifeline-based weaving for a matched base POE class (baseP) with
match m and an advice POE class (advP). The resulting POE class, res, gets the initial
value: res = baseP. Then the lifelines of res are updated according to three rules:

(1) ∀l ∈ baseP.LLs : m(l) � 〈〉 ⇒ res.replaceEvts(l,m(l), advP.evts(l))
(2) ∀l ∈ advP.LLs \ baseP.LLs : res.addLL(l, advP.evts(l))
(3) ∀l ∈ baseP.LLs : ( m(l) = 〈〉 ∧ advP.evts(l) � 〈〉 ) ⇒ res.ins(l, advP.evts(l))

Prerequisites of Def. 3: A POE class contains the following methods; LLs() retrieves
the set of (non-empty) lifelines; replaceEvts(l,m(l),advP.evts(l)) replaces the
match events by the advice events on lifeline l; advP.evts(l) retrieves the list of
events of the advice on lifeline l; addLL(l,advP.evts(l)) adds l as a new lifeline
with the advice events on l as the content; ins(l,advP.evts(l)) inserts the advice
event list on lifeline l into an appropriate position on lifeline l (the details are given
below). m(l) retrieves the event list of the match on the l lifeline, and 〈〉 denotes an
empty event list.

Explanation of Def. 3: Each lifeline can be woven separately as defined by the three
mutually exclusive rules. When a lifeline has matched events, rule (1), then the matched
events on this lifeline are simply replaced by the corresponding advice events (in some
cases an empty list). When a lifeline has events in the advice and not in the base, rule
(2), then all of this advice lifeline is inserted as a new base lifeline. Figure 5 shows how
the lifeline-based weaving works for rules 1 and 2.

The most difficult rule, rule (3), is when a lifeline has no matched events, but have
events in both the base and advice, e.g. the ?adv event in the advice of Figure 6 occurs
on lifeline L3 with no events in the pointcut (the match part), and there is a !b event on
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L1

Matched base POE class

L2 L1 L2 L3

Advice POE class

replaceEvts – rule 1
replaceEvts – rule 1 addLL – rule 2match

on lifeline

event
on lifeline

e1
e2
e3
e4

e5
e6
e7

e8

e9
e10
e11

e12
e13
e14

L1

Woven POE class

L2

e1

e4

e5
e8

L3

e12
e13
e14

e9
e10
e11

Fig. 5. The three rules for the lifeline-based weaving

the L3 lifeline in the base model. Should the new event, ?adv, be placed before or after
the !b event?. Choosing to place ?adv before !b will produce the undesired woven
diagram (Figure 6) which has no possible traces because there is a deadlock.

In many cases, a proper placement can be found by exploring the partial order rela-
tionships. Let po(e1,e2) denote a partial order where the event e1 must happen before
the event e2. We will produce the union of the partial orders of the advice POE class
and the matched base POE class:

{po(!a, ?a), po(!adv, ?adv), po(!b, ?b), po(?a, !adv), po(?b, ?a)}
Since partial order is a transitive relation, we may calculate the transitive closure,

which will produce the pair po(!b,?adv). This defines a unique and proper position
for ?adv on the base L3 lifeline in Figure 6. There are however cases, where there may
be several position choices fulfilling the partial order requirements, e.g. add another
event !(c,L3,L4) after !b on L3. In such cases we choose an arbitrary position among
the choices except that we will avoid or minimize the number of crossing messages,
and provide a warning message to the modeler.

We know that the transitive closure of the partial orders will not produce conflicting
position instructions. Otherwise we get a contradiction: Assume there exists two events,
e1 and e2, on the lifeline where the new advice event, new, shall be inserted, such that
po(e1,e2). The only way to get a conflict is if both po(new,e1) and po(e2,new) are
part of the transitive closure. But then also the pairs po(e1,new) and po(new,e2)must
belong to the transitive closure. This is a contradiction, and we may conclude that we
will not encounter conflicting partial order requirements for new advice events.

When there are no more unhandled matches, the woven result is a set of POE classes.
Finally, we need to go from POE classes to a woven interaction. Each POE class is
represented by a single seq operator with the lifeline events as operands in one of
the legal orders (the choice is insignificant). Then all these seq operators are used as
operands inside an outermost alt operator to represent the woven interaction.

L1

a

base

L2

undesired woven result

L3
b

L1
a

advice

L2 L3

adv

L1
a

pointcut

L2 L1
a

L2 L3
b

adv

Fig. 6. Placement of a new event on a lifeline with no events in the pointcut
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pointcut POE class

advice POE classes
L1: <!m1,?new,!m2,!yes>
L2: <?m1,!new,?m2,?yes>

L1: <!m1,!m2>
L2: <?m1,?m1>

L1: <!m1,?new,!m2,!no>
L2: <?m1,!new,?m2,?no>

L1: <!a,!b,!m3>
L2: <?a,?b,?m3>

L1: <!a,!m2,!m3>
L2: <?a,?m2,?m3>

L1: <!m1,!b,!m3>
L2: <?m1,?b,?m3>

L1: <!m1, !m2,  !m3>
L2: <?m1,?m2, ?m3>

base POE classes woven POE classes
The three
non-matching POE 
classes are kept

L1: <!m1,?new,!m2,!yes,!m3>
L2: <?m1,!new,?m2,?yes,?m3>

L1: <!m1,?new,!m2,!no,!m3>
L2: <?m1,!new,?m2,?no,?m3>

woven interaction

alt [...,seq[!m1,?m1,
!new,?new,
!m2,?m2,
!yes,?yes,
!m3,?m3],

seq[!m1,?m1,
!new,?new,
!m2,?m2,
!no,?no,
!m3,?m3]]

Fig. 7. Lifeline-based weaving on POE classes

Figure 7 shows our proposed weaving on the example in Figure 3. Each POE class is
represented by its event order on each of the two lifelines L1 and L2. The only base POE
class with a match is woven for each of the two advice POE classes, resulting in five
woven POE classes. The final woven interaction (Figure 7) is semantically equivalent
to the expected woven result (Figure 3).

3.4 Discussion

We have described the matching strategy as a random matching. Find any match, per-
form weaving and repeat the process. If our weaving terminates, then we are guaran-
teed that there will not exist any matches in the woven model. Consider an example of
an aspect a,a → b (shorthand notation for an aspect: pointcut → advice), and a base
model a,a,a,a, where the a’s and b’s are messages in the same direction between the
same two lifelines. A random matching strategy gives one of the following three alter-
native derivations with two different end results: 1) a,a,a,a ⇒ a,b,a, 2) a,a,a,a
⇒ a,a,b ⇒ b,b, and 3) a,a,a,a ⇒ b,a,a ⇒ b,b. Klein et al. [10] suggest a
left-most matching strategy leading to the unique derivation alternative 3. Our weaving
supports the left-most matching by choosing the top-most matches of each lifeline.

We define a plain additive aspect to be an aspect that does not delete events. For such
aspects we will mark all the events in a treated match and exclude them from possible
future matches. This ensures a terminating weaving process for a lot of aspects that
would otherwise never terminate, e.g. a,a → a,a,b.

Our weaving algorithm uses the lifeline-based matching for performance reasons.
The remainder of this paper will, however, refer to matches according to the equivalent
trace-based match definition (Def. 2) to ease the presentation.

4 Weaving Unbounded Loops

This section describes how, and under which conditions, we can do the weaving also for
unbounded loops. Loops without an upper bound are troublesome because they produce
an infinite trace set.

We classify unbounded loops as two types relative to a pointcut. The two loop types
need different kinds of treatment. Figure 8 shows a pointcut to the left and two un-
bounded loops to the right:
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L1
a

pointcut
L2

A) non-matchRepetive

b
a
b

loop

L1
b

L2

a
loop

L1
a

L2

b
c

base
loops:

B) matchRepetitive

Fig. 8. Loop types with respect to pointcut

– non-matchRepetitive. A loop which cannot produce any matches on its own. Such
a loop may however be part of a match in combination with trace events outside
of the loop. The loop in Figure 8A is non-matchRepetitive since the c message
prevents the loop to produce matches only from loop events no matter how many
iterations we use.

– matchRepetitive. A loop which produces matches on its own after some number of
iterations. Such a loop has infinitely many matches since the number of iterations
is infinite. The loop in Figure 8B is matchRepetitive since we get the first match by
three iterations. Thus, there will be n matches after n ∗ 3 iterations for all n > 0.

We will treat the loops by rewriting them into an expanded, but semantically equiv-
alent (except possibly some weaving) interaction structure. After the rewrite we have
isolated or woven a remaining unbounded loop such that we are guaranteed it will not
take part in further matches. The treatment of loops happens before the rest of the weav-
ing process, and each loop is treated individually and in isolation from the rest of the
model. This means that we cannot ensure a left-most matching for unbounded loops,
but restrict ourselves to cases where it is acceptable with a random matching strategy.
When all the unbounded loops are treated, they will be ignored while we perform ordi-
nary weaving for the surrounding finite parts of the interaction.

We now introduce three conditions under which we are able to present (terminating)
algorithms to statically weave unbounded loops: 1) The unbounded loop bodies con-
tain no alt or loop operators, 2) the aspect is plain additive, and 3) the pointcut is
connected.

A diagram is connected if and only if every involved lifeline has a path to any other
involved lifeline in the diagram. There is a path between two lifelines if there is a
message from one of them to the other. Furthermore this path relation is both reflexive,
symmetric and transitive. In Figure 9A both the pointcut and base models are connected,
while both the pointcut and base models are disconnected in Figure 9B since neither of
L1 and L2 has no path to neither of L3 and L4.

L1

x

simplified base extract
after def.3 rewrite

L2 L3

y

y

x L1

x

L2 L3

y

x

loop {1}

L4

loop’ loop’ y
loop {1}

before
loop

L1
x

pointcut

L2 L3
y

L1
x

pointcut

L2

L3
y

L4

A) B) simplified base extract
after def.3 rewrite

before
loop

Fig. 9. Correctness of loop rewrite depends on connected pointcuts
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We need a way to differentiate the two loop types. The following lemma proves it
is sufficient to consider the loop with an upper bound equal to the number of messages
in the pointcut. If that bounded loop has a match, then it is matchRepetitive, otherwise
it is non-matchRepetitive (numP returns the number of messages within the pointcut
diagram):

Lemma 2. An unbounded loop lp = loop
[
body
]

is matchRepetitive for a pointcut pd
if and only if there exist at least one match in the bounded loop
lpb = loop {numP} [body

]
.

Proof: If-direction: Since lp has a match after b iterations, it is by definition matchRepet-
itive. Only-if-direction: Let n be the fewest number of iterations for lp which gives a
match. Such a matching trace must involve at least one event from all iterations, other-
wise we could exclude iterations not contributing to the match and get a match within
fewer iterations than n. The pointcut trace which equals the match involves a number
of messages which all have two events. Since the match need to involve both the trans-
mission and reception events of a message, we know that each iteration contributes with
at least two events in the matching trace. The length of the pointcut trace is twice the
number of messages, which means that n cannot be larger than the number of messages
within the pointcut. �

If we apply this lemma to the example pointcut that contains four messages in
Figure 8, then it is sufficient to consider the bounded loop of four iterations for any
loop to determine if it is matchRepetitive or not. Now that we have a systematic way
to determine the loop type relative to a pointcut, the next two sections show how to
perform a static weaving for non-matchRepetitive and matchRepetitive loops.

4.1 Non-matchrepetitive Loops

From the definition of a non-matchRepetitive loop, we know that possible matches in-
clude preceding or succeeding (of the loop) trace events or both. Matches starting in the
preceding trace events may be ended by loop trace events, and matches starting in the
loop trace events may be ended by succeeding trace events. By looking at the proof of
lemma 2 we deduce that the maximum number of loop iterations involved in the match,
is numP-1.

We translate the syntactic representation of the loop into a semantically equivalent
form (Def. 4):

Definition 4. An unbounded, non-matchRepetitive loop, loop
[
body
]
, has the follow-

ing rewrite expression:

alt[ loop{0..((numP− 1) ∗ 2 − 1)} [body
]
,

seq[loop{numP − 1} [body
]
, loop′

[
body
]
, loop{numP − 1} [body

]
]]

The remaining unbounded loop, loop′, can no longer be part of a match, if all the
surrounding finite parts are woven. loop′ is always preceded by numP-1 loop iterations,
which prevents any matches to end in the unbounded loop. Similarly the unbounded
loop is always followed by numP-1 loop iterations, which prevents that matches start
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in the unbounded loop. This claim that the remaining unbounded loop cannot contain
matches rely on the two conditions of connected pointcut (connected blocking match)
and that the aspect is plain additive (the blocking match is maintained by the weaving).

Figure 9A illustrates why the rewrite expression works. We have a pointcut with
two consecutive messages x,y, an original base model (not shown) x, x, loop

[
y
]
, and a

simplified extract of the base model showing the second alt operand result of the rewrite.
After the rewrite, the remaining unbounded loop is prefixed by loop {1} [y] = y. It is
easy to see that preceding x messages are matched in the preceding bounded loop, and
that this match effectively blocks possible matches ending in the remaining unbounded
loop.

With a slight modification to the example in Figure 9A, we get the disconnected
pointcut (and disconnected base model) in Figure 9B. Now we may (depending on the
advice) get a match starting with one of the x messages and ending with the y message
in the unbounded loop which illustrates that the rewrite expression does not always
ensure a proper result for disconnected pointcuts.

4.2 MatchRepetitive Loops

The base model example and associated aspect in Figure 10 is adopted from Klein et al.
[9]. The base model starts with a login attempt from Customer to Server. At the end
the Server finally answers with an okmessage to indicate successful login. In between
these two events there may be zero or more iterations of a loop. The loops first message,
tryAgain, informs of login failure, while the second message, newAttempt, is a new
customer login attempt.

The aspect in Figure 10 expresses that whenever the message newAttempt is fol-
lowed by tryAgain, then add another message saveAttempt, in between the two
messages matched by the pointcut, to log the failed attempt. Since we only want to
log bad attempts, we need to ensure that the the message newAttempt is followed by
tryAgain. A syntactic-based pointcut matching fails to find matches within our base
model, since the two messages come in a different order syntactically. However we
easily observe that they will occur in an execution involving two or more iterations.

We now use lemma 2 to check if our base model loop example is matchRepetitive
(tA=tryAgain and nA=NewAttempt):

numP = 2 �pointcut� = {〈!nA, ?nA, !tA, ?tA〉}
�loop {2} [seq [!tA, ?tA, !nA, ?nA]

]
� = {〈!tA, ?tA, !nA, ?nA, !tA, ?tA︸����������������︷︷����������������︸

match

, !nA, ?nA〉}

Customer

loop

login

ok

tryAgain

newAttempt

Serverbase

Customer Server

pointcut

tryAgain

newAttempt
Customer Server

advice

tryAgain

newAttempt

saveAttempt

Fig. 10. Base model: login w/ loop, Aspect: logging
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This bounded loop has a single trace with a match, meaning that our base model loop
is matchRepetitive. This means that there are matches for every even iteration. In a first
weaving attempt we make a new loop with a woven body for all even iterations. Such
a loop is produced by expanding the loop body to two iterations and weaving the loop
body (sA = saveAttempt):

loop
[
seq
[
!tA, ?tA, !nA′, ?nA′, !sA, ?sA, !tA′, ?tA′, !nA, ?nA

]]

This weaving attempt is not good enough, since this loop still is matchRepetitive
and has match(es) for all iterations greater than or equal to 2. This happens because the
end part of the loop body together with the beginning part of the loop body makes a
match, which we miss when only weaving the loop body without taking into account
that it may have repetitions. Since the pointcut is connected and there is a marked match
within the loop, we know that additional matches are restricted to be only within the
part after the match combined with the part before the match.

To fix the problem of missed matches, we permute the loop so that a match part
makes up the beginning of the loop body. Then we also need to insert a prefix and
a postfix so that the semantics of the loop is not changed, resulting in the following
rewrite expression (before/after is the sequence of events relative to the match in the
loop body):

seq
[
be f ore, loop

[
seq
[
match, a f ter, be f ore

]]
,match, a f ter

]

For the example in Figure 10 we get the following woven rewritten structure, where
the permutation resulted in one additional match/weaving in the loop body:

seq[ !tA, ?tA,
loop [seq [!nA′, ?nA′, !sA, ?sA, !tA′, ?tA′, !nA′, ?nA′, !sA, ?sA, !tA′, ?tA′]] ,
seq [!nA′, ?nA′, !sA, ?sA, !tA′, ?tA′] , !nA, ?nA]

This structure is now fine for all the original even iterations. However, we have lost
all the original iterations of odd numbers. By appending the loop {0..1} [body

]
to the

end, we also get the odd iterations, and this is a bounded loop for which we can generate
all traces. In general, the appended loop should be loop {0..(numP − 1)} [body

]
.

We have only considered unbounded loops with cardinality 0..∗, where ∗ is un-
bounded. Other unbounded loops may easily be translated into finite loops combined
with 0..∗ loops by rewrites from loop {n..∗} [body

]
to seq [loop {n} [body

]
, loop[

body
]
], and using the alt operator to split loops of the form loop {2, 10, 20..∗}.

5 Implementation

We have a tool implementation of the full approach described in this paper. The tool
uses the Eclipse-based SeDi sequence diagram editor v.1 [11] to define base, pointcut
and advice diagrams. The weaving has been verified to behave correctly on the paper
examples, by manually investigating the woven textual interactions. We are currently
implementing a translation from textual interactions to graphical diagrams for easier
manual validation purposes.
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alt[seq[!m1', ?m1', !m2', ?m2', !advice, ?advice],
seq[!b, !m1', ?m1', !m2', ?m2', !advice, ?advice, !a, ?a, ?b],
seq[!b, !b, !m1', ?m1', !m2', ?m2', !advice, ?advice, 

!a, !a, ?a, ?a, ?b, ?b],
seq[!b, !m1', ?m1', !m2', ?b, ?advice, !a, ?a, 

loop' {0..*} [seq[!a, ?a, !b, ?b]],
!b, ?m2', !advice, !a, ?a, ?b]]

woven interaction

Fig. 11. Weave tool: From aspect and base model to woven interaction

In [5] we have described how to define a single aspect to weave cross-cutting behav-
ior into 40 sequence diagrams of an SMS-based buddy positioning service. The aspect
definition uses some additional constructs, outside the scope of this paper, such as de-
composition, negative application conditions, wildcards and an insertRest operator.

Automata-based weaving attempts (Grosu and Smolka [6], Klein et al. [10,9]) achieve
semantics-based weaving of UML 2 sequence diagrams. In contrast to our approach
they cannot handle loops leading to irregular trace expressions. Example (from [10]):
Figure 11 shows an aspect that matches an m1 message followed by an m2 message.
The base represents an unbounded sequence diagram since it has a loop that leads to
an irregular expression. n loop iterations means that there are also n a messages and n
b messages, and these messages may have an arbitrary order. There is an m1 message
before the base loop and an m2 message after the base loop, and independent of the
number of loop iterations there will always be a match in the base.

The woven interaction of Figure 11 shows that our weaving tool produces the ex-
pected result. The outermost alt operator contains four alternatives representing the
POE classes of 0, 1, 2, and 2+ loop iterations, and all of these POE classes have the
advice message added exactly once in an appropriate position. We need to emphasize
that the ?advice message is defined to be inserted directly after the !m1 message on
the L2 lifeline, which means that ?advice must come before all the !a messages. Al-
though it looks odd that the ?advice event is placed before the corresponding !advice
in the latter POE class, this is allowed for textual interactions, and will be sorted out
by the � � operator when making traces. Notice also that we indicate the messages that
have been matched and the loops that are treated, by the prime (′).

6 Related Work

In this paper we have restricted the base model to use only the seq, alt and loop
operators. However, the results are directly applicable to other operators that can be
defined with seq and alt, e.g. opt (optional) and par (parallel). The strict operator
is not supported. It represents a strict sequence of events also across lifelines, which is
in strong contrast to our approach.

The pointcut model in AspectJ [8] cannot express matching based on a sequence
of events, which is necessary to encounter the problem of syntactic-based matching
described in this paper.

Klein et al. [9], Stein et al. [17] allow the match to contain additional events in
between the explicit pointcut events, called general part matching in [9]. Our matching
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definition in this paper corresponds to the enclosed part matching, while our full aspect
language includes the arbitrary events symbol [5] to support general part matching.

Clarke and Walker [2] model aspects using sequence diagrams. Their intention is to
map the aspects onto an aspect-oriented programming language, such as AspectJ, and
not to produce woven sequence diagrams as in our approach.

Deubler et al. [3], Solberg et al. [16] and Jayaraman et al. [7] all define syntactic-
based approaches for sequence diagrams. Deubler et al. can only match single events.
The approach taken by Jayaraman et al. is similar to ours in that they define aspects
similar to graph transformation rules directly upon sequence diagram syntax.

Avgustinov et al. [1] have a trace-based run-time matching of events to execute some
extra code when a match occurs. Since this happens during run-time and not statically
as in our approach, the aspects are restricted to additive parts that are inserted entirely
after the already executed match part (excluding aspects like in Figure 10). While per-
formance is a major issue in run-time weaving, our weaving is static and termination
within reasonable time is sufficient.

7 Conclusions

We have demonstrated that it is possible to do semantics-based aspect weaving for UML
2.0 sequence diagrams based upon a formal trace model for these. In our semantics-
based weaving the matching is defined at the trace level (’what’ the sequence diagrams
really describe), and not at the syntactic level (’how’ the sequence diagrams are de-
scribed), but still with the convenience for the developer that the advice specifications
can be done by means of syntactic elements of sequence diagrams.

We have proven that the semantics-based matching is equivalent to a lifeline-based
matching upon trace-based equivalence classes, and our lifeline-based weaving algo-
rithm will thus produce the same result as a pure trace-based implementation. While
a pure trace-based implementation performs in exponential time wrt. to the number of
events, the lifeline-based implementation performs in linear time wrt. the number of
events and the number of alt operands.

Klein et al. [10] have an automata-based (and semantics-based) weaving that fails
to handle cases of infinite loops leading to non-regular trace expressions. Such loops
impose no problem in our solution.
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10. Klein, J., Hélouët, L., Jézéquel, J.-M.: Semantic-based weaving of scenarios. In: The 5th
International Conference on Aspect-Oriented Software Development (2006)

11. Limyr, A.: Graphical editor for UML 2.0 sequence diagrams. Master’s thesis, Department of
Informatics, University of Oslo (2005)

12. Lund, M.S.: Operational analysis of sequence diagram specifications. PhD thesis, Depart-
ment of Informatics, University of Oslo, Norway (2008)

13. O.M.G. (OMG). UML 2.0 Superstructure Specification, OMG Adopted Specification ptc/03-
08-02 (August 2003)
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Abstract. Model transformations play a key role in Model-Driven En-
gineering solutions. To efficiently develop, specify, and manage model
transformations, it is often necessary to use a combination of languages
that stand for different transformation approaches. To provide a basis for
such hybrid model transformation specification solutions, we developed
and implemented a translation of the declarative QVT Relations into the
imperative QVT Operational Mappings language.

1 Introduction

Model Driven Engineering (MDE) treats models as primary development arti-
facts as they are used for model and code generation. MDE uses models to raise
the level of abstraction at which developers create and evolve software [8] and
reduces complexity of the software artifacts by separating concerns and aspects
of a system under development [9]. Largely automated model transformations
refine abstract models to more concrete models or simply describe mappings
between models of the same level of abstraction.

Model transformations are considered as a kind of metaprogramming since
they are specified on the basis of metamodels. People developing model transfor-
mations have to respect the rich semantics of the metadata upon which the model
transformations operate [4]. Not surprisingly, various authors suggest to use dif-
ferent model transformation approaches for the diverse transformation problems.
Declarative transformation approaches are best applied to specify simple trans-
formations and relations between source and target model elements, while im-
perative approaches lend themselves for implementing complex transformations
that involve detailed model analysis [7]. As it is done with other programming
languages, it seems beneficial to use several model transformation language to
solve complex problems [11]. In the OMG standard for model transformations
QVT [12], the imperative QVT Operational Mappings (OM) language is defined
as an extension of the declarative QVT Relations (Relations) language.

Having a closer look at model transformation approaches, one can observe
that the various approaches and their implementations support model trans-
formation features like automatic updates, directionality, traceability, etc. to a
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different extent [7,11]. In the case of the QVT standard, update is automatically
supported by the Relations language, while the user of OM has to implement
this transformation feature by hand. The Relations language also allows to spec-
ify bidirectional transformations, which reduces effort in model synchronization
scenarios. In OM it is in general necessary to specify multiple unidirectional
transformations. However, it may not be possible and sensible for people using
model transformation languages to construct complex transformations using a
fully declarative approach [7].

Though the QVT standard allows to extend Relations with OM (hybrid trans-
formation approach), no engine exists that can execute such a hybrid approach.
Some MDE platforms will only provide one optimized execution engine onto
which the transformation programs of different model transformation languages
are mapped. When implementing such an approach, it is a good heuristic to map
declarative and hybrid languages onto imperative languages and provide an ex-
ecution engine for the imperative language. It is expected that e.g. translating
Relations into OM does not expose obstacles [11]. However, the advanced fea-
tures such as multidirectionality, automatic traceability, special transformation
scenarios, etc., that are only supported natively by the Relations language and
not by the OM language, have to be translated into imperative OM code and
separate transformations.

In this paper we develop a translation of Relations into OM and implement
it as a higher-order model transformation. Higher-order transformations take
transformations as input and produce other transformations as output [2]. Our
translation allows model transformation developers to specify the ’easy’ things in
a declarative way and profit from the additional features of Relations like support
for model synchronization and model updates. By using our translation, one can
implement ’hard’ model transformation code in OM, execute the Relations code
on a possibly optimized OM engine, and use tool support that is available for
OM like debuggers, profilers, etc.. We implement our translation approach to
show its feasibility and evaluate it with a UML to RDBMS transformation.

This paper is structured as follows: Section 2 gives an introduction to QVT
and the Relations and the OM language. Section 3 describes the approach we
follow for the translation and Section 4 presents the details of the translation.
Section 5 describes the implementation, evaluates our Relations to OM transla-
tion and compares it with related work. The paper concludes with a summary
in Section 6.

2 Basics

The OMG adopted the Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation specification (QVT) [12] as standard for model transformations. The
QVT specification defines a hybrid transformation language. The three trans-
formation languages Relations, Core, and Operational Mappings (OM) provide
declarative and imperative transformation constructs. The languages Relations
and Core can be used to specify declarative transformations. QVT provides
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two options to extend declarative specifications with imperative transformation
constructs, the OM language and Black Box operations.

2.1 UML to RDBMS Transformation Example

This paper presents a translation of Relations into OM, which we illustrate via
the UML to RDBMS transformation described in the QVT specification [12].

Fig. 1. Simple UML metamodel

Fig. 2. Simple RDBMS metamodel

The UML to RDBMS transformation maps persistent classes of a UML model
to tables of a model of a relational database management system (RDBMS).
Figures 1 and 2 show the respective metamodels. The transformation basically
works as follows: A persistent class maps to a table. Attributes of the persistent
class map to columns of the table. An association between two persistent classes
maps to a foreign key relationship between the corresponding tables.

2.2 QVT Relations

Listing 1.1 depicts an excerpt of the UML to RDBMS model transformation
implemented in Relations. We will explain the concepts of Relations on the
basis of this code.

In the Relations code the transformation UmlToRdbms is specified between
the candidate models uml and rdbms as a set of relations that must hold for the
transformation to be successful. A candidate model is any model that conforms
to a model type. For example, the element types of the uml model are restricted
to those within the SimpleUML metamodel. Relations in a transformation like
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PackageToSchema or ClassToTable declare constraints that must be satisfied
by the elements of the uml and rdbms models. The relation ClassToTable is
presented in more detail now.

First, a source and a target domain are declared that match elements in
the uml and rdbms models respectively. ClassToTable is further constrained
by two sets of predicates, a when clause and a where clause. The when clause
specifies the conditions under which the relationship must hold, i.e. the relation
ClassToTable must hold only when the PackageToSchema relation holds between
the Package containing the Class and the Schema containing the Table. The
where clause specifies the condition that must be satisfied by all model elements
participating in the relation. Whenever the ClassToTable relation holds, the
relation AttributeToColumn must also hold.

Listing 1.1. UML to RDBMS transformation in QVT Relations

1 transformation UmlToRdbms(uml: SimpleUML; rdbms: SimpleRDBMS) {
2 key Table {schema , name};

...
4 top relation PackageToSchema {...}

top relation ClassToTable {
6 cn , prefix: String;

checkonly domain uml c:Class {
8 namespace = p: Package {},

kind = �Persistent �,
10 name = cn

};
12 enforce domain rdbms t:Table {

schema = s:Schema {},
14 name = cn,

column = cl:Column {
16 name = cn+�_tid �,

type = �NUMBER �
18 },

hasKey=k:Key {
20 name = cn+�_pk �,

column = cl
22 }

};
24 when {

PackageToSchema(p, s);
26 }

where {
28 prefix = ��;

AttributeToColumn(c, t, prefix );
30 }

}
32 top relation AssocToFKey {...}

...
34 }

Each of the domains is also associated with several object template expressions
used to match patterns in the candidate models. A template expression match for
the uml domain results in a binding of the matching classes to the root variable
c of the uml domain. Such template expression matches are only performed with
regard to to the free variables of the domain. For the uml domain this applies to
the variables c, p, and cn. The variable p is not free as it already has a binding
resulting from the evaluation of the when clause expression. Pattern matching
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proceeds by filtering any class with its kind property not set to ’Persistent’. As
cn is free, it gets a binding to the value of the name property for all remaining
classes. Matching proceeds to the property pattern namespace = p:Package. As
p is already bound in the when clause, the pattern only matches those classes
whose namespace property has a reference to the same package that is bound
to p. The three variables c, p, and cn make a three tuple and each valid match
results in a unique tuple representing the binding.

The uml domain is marked checkonly and the rdbms domain is marked enforce.
Thus, when executing the transformation in the direction of the uml domain,
no elements are created in the uml model. If for example a table in rdbms exists
with no corresponding class in uml, this is simply reported as an inconsistency.
If the transformation is executed in the direction of the enforced domain rdbms,
elements are created or modified in the target model rdbms so the relations
between the candidate models hold. For example, for each valid class there must
exist at least one valid table that satisfies the where clause. Otherwise, tables are
created and properties are set as specified in the template expression associated
with the rdbms domain. Also, for each valid table there must exist at least one
valid class that satisfies the where clause. Otherwise, tables are deleted from the
rdbms model so there it is no longer a valid match.

To create objects in the target model, object template expressions of the
target domain are used. The template associated with Table specifies that a
table object is created with the properties schema, name, column, and hasKey
set to values as specified in the template expression. When creating objects,
Relations ensures that duplicate objects are not created if the required objects
already exist. The existing objects are updated. For this purpose, the concept of
key is used defining a set of properties that uniquely identify an object instance.
A Table is uniquely identified by its name and the schema it belongs to.

2.3 QVT Operational Mappings

OM is the target language of our translation. In the following, we shortly in-
troduce the basic language concepts of OM. The concepts and the presented
language constructs are used to specify the Relations into OM translation in
Sections 3 and 4. Listing 1.2 illustrates a short example of OM code.

Listing 1.2. QVT Operational Mappings example

1 modeltype UML "strict" SimpleUml;
2 modeltype RDBMS "strict" uses SimpleRDBMS;

transformation UmlToRdbms(in uml:UML ,out rdbms:RDBMS) {
4 main() {

uml.objectsOfType(Package )-> map packageToSchema();
6 }

mapping Package :: packageToSchema() : Schema {
8 init { ... }

population { ... }
10 end { ... }

}
12 }
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An operational transformation represents the definition of a unidirectional
transformation that is expressed imperatively. It defines a signature indicating
the models involved in the transformation. The signature of the UmlToRdbms
transformation declares that an rdbms model of type RDBMS is produced from
an uml model of type UML. The UML and RDBMS symbols represent model
types. The model types are defined by the metamodels SimpleUML and Sim-
pleRDBMS.

A operational transformation defines an entry operation for its execution
named main. The main operation first retrieves the list of objects of type Package
and then applies a mapping operation called packageToSchema on each Pack-
age of the list. A mapping operation like packageToSchema is an operation that
implements a mapping between one or more source model elements into one or
more target model elements. The init section contains some code to be executed
before the instantiation of the declared outputs. The population section contains
code to populate the result parameters and the end section contains additional
code to be executed before exiting the operation. Between the init and the popu-
lation sections, there is an implicit instantiation section which creates all output
parameters that have a null value at the end of the init section.

3 Translation Approach

In this section we describe requirements, restrictions, and challenges for the
translation of Relations into OM and introduce the overall translation algorithm.

3.1 Transformation Execution Direction

A crucial difference between the two languages is the execution direction of the
transformation. OM transformations are unidirectional. Their execution direc-
tion is explicitly defined by their imperative statements, specifying which models
are read and which ones are written. Relations transformations can be executed
in any direction by selecting one of the candidate models as target. One may
change the execution direction of a Relations transformation by selecting an-
other target model, which is not possible in OM. The QVT specification does
not clarify whether multiple target models are supported in the enforce mode.
Examples are only provided for transformations with one target model. Hence,
the described translation algorithm is restricted to one target model, which is
is assumed to be the last parameter of the transformation and to appear as en-
force domain in at least one relation. The translation algorithm generates the
operational transformation in one direction towards the target model.

3.2 Model Transformation Execution Semantics

In the translation of programming languages into other programming languages,
it is not sufficient to only map statements of the source language onto statements
of the target language. The crucial and normally more challenging part is to
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develop an accurate mapping of the execution semantics. This is also the main
challenge when translating Relations into OM.

Relations performs a model transformation in a declarative way based on a
powerful pattern matching mechanism and OCL constraints on the candidate
models. This facilitates developing a consistent transformation for the user, but
at the same time involves complex execution semantics with nested loops of ob-
ject tuples for the execution engine [12]. In contrast, a transformation in OM
is defined as sequence of statements executed by the engine step by step in
the defined order. When performing a translation from Relations into OM, the
transformation semantics must remain the same in spite of the different pro-
gramming paradigms. The following aspects of the execution semantics have to
be considered when translating Relations into OM:

Rule Scheduling. Relations uses implicit rule scheduling which is based on the
dependencies among the relations. OM uses explicit internal scheduling where
the sequence of applying the transformation rules is specified within the trans-
formation rules. Our Relations into OM translation has to make the implicit rule
scheduling of the Relations execution semantics explicit in the OM transforma-
tions. This has to be done in a way that has no (bad) side effects on the pattern
matching and binding of the variables in the transformation occurs.

Pattern Matching. Relations uses pattern matching to find bindings of source
and target model elements to the variables declared by the transformation. Pat-
tern matching is based on the internal rule scheduling of Relations. When trans-
lating this mechanism to OM, the expressions in the relation domains must be
organized into a sequential order and one has to take care that in the final OM
code only variables are accessed that have been bound or at least defined before
(cp. [12, p.17f]). Hence, we deal with pattern matching at various points in our
translation; the most important issues are described in the Sections 3.3 and 4.4.

Check-Before-Enforce Semantics. The Relations semantics first performs a
step where it checks whether a valid match exists in the target model that sat-
isfies the relationship with the source model. Based on the checking results, the
enforcement semantics modifies the target model so it satisfies the relationship
with the source model. Through this check-before-enforce semantics Relations
provides support for both generating new and updating existing target models.
OM does not support updates of existing models automatically by its execution
semantics. In OM this has to be implemented in the model transformation. The
generation scenario can be realized by translating the checking semantics into
rules that generate new model transformation elements. For update scenarios
this has to be enhanced with functionality to modify and delete model elements.

3.3 Overall Translation Algorithm

Algorithm 1 gives an overview about the different steps performed during the
translation. The algorithm first translates the transformation declaration. Before
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the relations are translated one after another, they are sorted topologically to
account for dependencies between them.

The main building blocks of a relation are domains, when clause, and where
clause. In order to address the challenges and to keep the relational execution
semantics in the imperative environment, it is essential to translate the building
blocks in the designated sequence. The main issue is to ensure that assigned
expressions only contain variables that have been bound before. For this purpose,
the algorithm stores all variable values for each relation at all times in order to
determine which variables have already been bound and which ones are still free.

Algorithm 1. Translation algorithm overview
1: procedure RelationsToOperationalMapping(RelTrans) : OperationMapping
2: OmTrans ← ∅
3: OmTrans ← translateTransformationDeclaration(RelTrans)
4: Relations ← sortRelationsTopologically(RelTrans)
5: for all relation ∈ Relations do
6: OmTrans ← OmTrans ∪ translateRelationDeclaration(relation)
7: OmTrans ← OmTrans ∪ translateDomainDeclaration(relation)
8:
9: OmTrans ← OmTrans ∪ translateWhenClause(relation)

10: OmTrans ← OmTrans ∪ translateSourceDomains(relation)
11:
12: OmTrans ← OmTrans ∪ translateWhereClause(relation)
13: OmTrans ← OmTrans ∪ translateTargetDomain(relation)
14: end for
15: return OmTrans
16: end procedure

4 Realizing the Translation

In this section, the rules of the translation algorithm that implement the Rela-
tions into OM translation are presented. The structure of this section is aligned
with the steps of the overall translation algorithm (cp. Algorithm 1).

The translation rules we describe in this paper cover all Relations language
concepts that are relevant for the UML to RDBMS transformation. These are
transformation and modeltypes, relations and domains, when and where clauses,
pattern matching and restriction expressions, as well as keys and object creation.

4.1 Transformation Declaration

First, the transformation declaration is translated from Relations into OM. Lines
1 to 3 of Listing 1.3 depict the OM transformation declaration that is generated
in the UML to RDBMS Relations example (cp. Listing 1.1). As a relational trans-
formation is bidirectional, the direction of the parameters must be determined
for OM. Source models are translated into in parameters. If the target model
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is only used as enforce domain, it is translated into an out parameter; if it is
used as checkonly domain in one or more relations, it is translated into an inout
parameter. Each parameter of the relational declaration is also translated into
a modeltype reference to import the respective metamodel packages. According
to the Relations specification, type checking for the modeltypes is strict. This
implies that all objects passed as parameter of the translation must be instances
of the respective modeltype; subclasses of that type are not allowed.

4.2 Calculate Relations Topology Tree

In Relations it is not necessary to specify an explicit sequence of execution as
rule scheduling automatically considers dependencies between relations. This is
e.g. the case if a relation occurs as precondition in the when clause of another
relation. In OM rule scheduling is explicit. OM requires a main operation as an
entrance point as shown in lines 4 to 8 of Listing 1.3. For each toplevel relation
in Relations, invocations are generated in that main operation that specify in
which sequence the OM mappings are executed. If there are no dependencies
between the toplevel relations, the respective OM mappings can be executed in
arbitrary sequence. Otherwise, the correct sequence of execution is determined
by a topological sorting algorithm in an iterative process.

That sorting algorithm regards the dependencies between the toplevel rela-
tions as a directed acyclic graph (DAG) whereas a node represents a relation and
an edge represents a dependency between two relations. The initial structure of
the DAG is built as follows. For each relation, a node is added. If a relation R1
is referenced in the when clause of another relation R2, an edge from R1 to R2
is added. If the where clause of R2 contains a reference to R3, an edge from
R2 to R3 is added. For each toplevel relation, the algorithm now determines
the number of incoming edges. In the first iteration, all toplevel relations are
determined that have no incoming edges, which means they are not dependent
from any other relation. The respective nodes and outgoing edges are removed
from the DAG. This may result in some more toplevel relations that have no
incoming edges, which are then processed in the same way in the next iteration.
The algorithm terminates as soon as there are no toplevel relations with zero
incoming edges left. Finally, calls to the respective OM mappings are generated
in the main operation according to the determined sequence.

4.3 Relation and Domain Declarations

Relation declarations are translated into OM mapping declarations (cp. lines 9,
10, and 31 of Listing 1.3). For each domain in a relation, the algorithm generates
a parameter with same type and name in the respective OM mapping. In doing
so, the translation differentiates between the three kinds of domains.

– Primitive domains represent simple datatypes and are translated into in-
out parameters in OM.

– The enforce domain is translated into the result variable in OM. If the
relation is not top level, the result variable has already been bound before
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the OM mapping is executed. For this reason, the generated mapping re-
quires a parameter to which the previously bound result is passed and which
initializes the result variable in the init block.

– All other domains are checkonly domains. The first one is translated into
the context variable, which is then accessible using the self keyword in OM.
Any further checkonly domains are translated into in parameters.

Listing 1.3. UML to RDBMS transformation in QVT Operational Mappings

1 modeltype SimpleUML "strict" uses UmlMM;
2 modeltype SimpleRDBMS "strict" uses RdbmsMM ;

transformation UmlToRdbms(in uml: SimpleUML , out rdbms: SimpleRDBMS) {
4 main() {

uml.objects [Package ]->map PackageToSchema();
6 uml.objects [Class]->map ClassToTable();

uml.objects [Association]->map AssocToFKey();
8 }

mapping Package :: PackageToSchema () : Schema {...}
10 mapping Class :: ClassToTable () : Table {

when {
12 self.kind = �Persistent �;

self.namespace <> null;
14 self.namespace. resolveoneIn(PackageToSchema) <> null;

}
16 population {

self.map AttributeToColumn(result );
18 result.schema := self. namespace. resolveoneIn(PackageToSchema);

result.name := self.name;
20 var cl := object Column {

name := self.name + �_tid �;
22 type := �NUMBER �;

};
24 result.column += cl;

result.hasKey := object Key {
26 name := self.name + �_pk �;

column := cl;
28 }

}
30 }

mapping Association :: AssocToFKey () : ForeignKey {...}
32 }

4.4 When Clause and Source Domains

In Relations, statements and OCL constraints in the source domains and in the
when clause are used for filtering candidate models from the source domains.
This is done by assigning objects and values to bound variables of a source
domain. The purpose of unbound variables is to temporarily store values for the
reuse in other domains of the relation, which e.g. allows for adopting a value
from a source to the target domain. OCL constraints over the relation domains
that are compliant with the QVT specification are supported by our algorithm.

Translating the When Clause. The when clause of a relation references
other relations to represent preconditions of that relation. For each reference, the
algorithm generates a call to the respective OM mapping. The sorting algorithm
ensures that the called mapping has been executed before the calling mapping.
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The execution semantics of Relations performs a pattern matching of the
passed variables to the model elements for which the referenced relation holds.
In OM, resolve expressions are used to perform such pattern matching. An ap-
propriate resolveIn expression is generated in the population body of OM if a
set of objects is passed; otherwise, a resolveOneIn expression is generated. This
can be seen with the variable s in the relation call PackageToSchema(p,s) in the
when clause (cp. lines 8 and 25 of Listing 1.1). As s is assigned to the bound
variable namespace in the source domain, the resolveIn expression is performed
on the respective variable self.namespace in OM (cp. line 18 of Listing 1.3).

Translating the Source Domain. An assignment to a bound variable ac-
cording to pattern matching semantics filters model elements from the candidate
models. Therefore, a respective condition is generated in the when block of OM.
If a single value or object is assigned, the statement is adopted straightforward.
In the example, the variable kind is used to filter all classes having that variable
set to the value ’Persistent’. This is translated into the operational statement
self.kind=’Persistent’ (cp. line 12 of Listing 1.3). If a set is assigned to such a
variable, an xselect condition is generated in OM instead. That xselect iterates
over the candidate models and uses a condition that corresponds to the assigned
set. The algorithm also considers cases that are not covered by the example such
as multiple assignments to the same bound variable, which are translated into
one combined expression using the logical and operator.

Assignments to unbound variables according to pattern matching semantics
are not translated directly. Whenever such a variable is used at another place
in the relation, the assigned value is used by the translation algorithm instead
of the variable itself. This eliminates those variables in OM. The variable cn in
lines 10 and 14 of Listing 1.1 gives an example. It is used to store the value of the
attribute name of a Class and assign it to the variable name of the respective
Table. The translation of such an assignment affects the target domain.

Furthermore, each variable bound to an object template must not be null.
Therefore, respective conditions are generated in the when block of OM.

4.5 Where Clause and Target Domain

For candidate models that do match in the Relations source domain, the re-
spective target models are generated according to the statements and OCL
constraints in the where clause and the target domain. The respective model
elements are created, changed, or deleted. If a target model does not exist, it is
created from scratch.

Translating the Where Clause. In contrast to the when clause, a relation
reference in the where clause represents a postcondition of the relation. Such a
reference is directly translated into an invocation of the respective OM mapping
at the beginning of the population block; cp. AttributeToColumn(c,t) in line 29
of Listing 1.1. Here, the passed variable c in the where clause represents the
source domain and is therefore translated to the self attribute in OM. For the
passed variable t, the algorithm generates the result attribute.
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Translating the Target Domain. Variable assignments that modify the tar-
get model still remain to be translated. An example is given by the variable cn
in lines 10 and 14 of Listing 1.1. In the source domain uml, the root variable c
is represented by the variable self in OM. The attribute name is assigned to the
variable cn. In the target domain rdbms, the root variable t is represented by the
variable result in OM and the value of cn is assigned to the target variable name.
The algorithm generates the respective assignment result.name:=self.name in
the population body of OM (cp. line 19 of Listing 1.3).

If the assigned value occurs within an object template in the source and
in the target domain, the translation is more complicated as the assignment
happens within a set of objects. In this case, an appropriate xcollect expression
is generated in OM and the += operator instead of := is used. That xcollect adds
for each object in the source domain a respective object in the target domain.

In either case, an object expression is generated whenever an object template
is used and its bound variable is bound for the first time. Thus, a new object
must be instantiated in the imperative environment, which is e.g. the case with
the variable c1 in line 20 of Listing 1.3.

4.6 Updates of Existing Target Models

Updates of existing target models are automatically supported by the Relations
semantics. In OM updates must be specified in the transformation explicitly.
Model elements in Relations are uniquely identified by a set attributes specified
by key expressions (cp. line 2 of Listing 1.1). For this purpose, the algorithm
generates queries in OM that search for those model elements in the target model
which have the same values for the identifying attributes as the respective model
elements in the source model. These queries are performed before model element
instantiation. The result object of an OM mapping is initialized with the result of
the respective query as illustrated in Listing 1.4. If no respective model element
is found, a new instance is created in the implicit instantiation section.

Listing 1.4. Updating an existing target model in QVT Operational Mappings

1 query findTable(name: String, schema: Schema ): Table {
2 rdbms.objects ()[Table]-> xselectOne(t | t.name = name and t.schema = schema );

}
4 mapping Class::ClassToTable(): Table {

init {
6 result := findTable(self.name , self.namespace. resolveone(Schema ));

}
8 }

Relations also supports the deletion of model elements which are no longer
valid. In OM the deletion of model elements must also be specified explicitly,
which is not a trivial task. One approach is to delete all objects from the target
model that cannot be found in the trace data of the transformation execution
after all mappings have been executed (cp. Listing 1.5). However, there are issues
with regard to object expressions as they do not generate trace data according
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to the QVT specification [12]. Object expressions could be realized as mappings
that do generate trace data. This again involves issues since the transformations
would increase in length, for example.

Listing 1.5. Deleting objects in QVT Operational Mappings

1 main() {
2 uml.objects ()[Package ]->map PackageToSchema();

uml.objects ()[Class]->map ClassToTable();
4 uml.objects ()[ Association]->map AssocToFKey();

rdbms.objects ()->xselect (obj | obj. invresolve(true) = null)->forEach (obj) {
6 dest.removeElement(obj);

};
8 }

A second approach is tagging all model elements that should not be deleted,
which applies to model elements that are bound by the queries and that are newly
created. A effective implementation of that approach depends on the concrete
transformations and is not further regarded in this paper.

5 Implementation and Evaluation

In this section we present the implementation of the compiler and evaluate it
with respect to the experience gained in the UML to RDBMS example.

5.1 Implementation

In order to demonstrate our translation approach, we developed an implementa-
tion of our algorithm as Eclipse plugin under the GNU General Public License
[14]. The compiler is called QVT-Rel2Op and performs a translation from Rela-
tions to OM as described in Sections 3 and 4.

For this purpose, the compiler frontend takes two inputs: the Relations trans-
formation as a textfile and the respective metamodels as emof models. A parser
[13] generates a representation of the Relations transformation as emof model,
which is passed to the compiler backend. In the backend an oAW workflow con-
trols the further steps of the translation. The translation logic is implemented
in Java and subsequently generates the respective OM transformation as emof
model. A code generator and a beautifier generate a textual representation of
that emof model and return an OM textfile as the result of the compilation.

The compiler implements important features of the Relations language. These
are transformations, modeltypes, relations, domains, when clauses, where clauses,
pattern matching, restriction expressions, keys, and object creation. However,
some restrictions are made to the relational transformation. The compiler only
allows two non-primitive domains, one source and one target domain. The check-
only mode of Relations is not supported. For each binding of the root variable
of the source domain, only one binding in the target domain is allowed.
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5.2 Evaluation

Besides some other small examples, the UML to RDBMS transformation was
taken to evaluate our translation approach and implementation. For this purpose,
we executed a series of Relations transformations with ModelMorf [15], which
is an execution engine for Relations. We then used our compiler to generate the
respective OM transformation and executed the resulting transformation with
SmartQVT [6], which is an execution engine for OM.

As SmartQVT does not support resolveIn expressions, a minor modification
of the translation was required. For this purpose, the compiler offers a compat-
ibility mode that generates appropriate resolve expressions instead, which are
supported by SmartQVT. This works fine if all OM mappings return different
object types. Finally, we compared the results of both transformations to each
other and observed that the generated OM transformation returns the same re-
sults as the Relations transformation. This indicates that our algorithm correctly
translates the relational execution semantics into the imperative environment.

We also compared our translation approach and implementation to others.
As described in [10], there exist model transformation compilers for impera-
tive model transformations. Thereby, languages like ATL or OM are mapped
onto the ATL VM language [5,10], which serves as a basis for the execution of
imperative model transformations. Other implementations compile model trans-
formations into Java code. SmartQVT [6] generates Java code to execute OM
transformations. [1] compiles model transformations defined by a combination of
graph transformation and abstract state machine rules into transformer plugins
for the EJB 3.0 platform. [17] provides an overview and comparison of further
graph-based approaches compiling transformation rules into native executable
code (Java, C, C++). Higher-order model transformations are also an elegant
way to specify the semantics of model transformation languages [3]; the QVT
specification [12] e.g. describes a translation of the Relations to the Core lan-
guage. Other objectives of higher-order model transformation are to refactor and
improve model transformations, increase the performance of model transforma-
tions, and maintain or upgrade model transformations [3,16].

6 Conclusions

In this paper we presented a higher-order model transformation that takes Rela-
tions model transformations as input and produces OM model transformations
as output. Our implementation is a first realization of translating QVT declar-
ative specifications into QVT operational specifications. Hence, it provides the
basis for realizing the development of hybrid model transformations with QVT.
Translating Relations into OM and not the other way round seems to be the
natural way of realizing a hybrid approach for two reasons: first, all features of
the declarative language can be translated into the imperative language without
restrictions, which is not the case for the other direction [11]; second, hybrid
approaches normally use declarative relations first, which are manually refined
into operational rules later on [16].
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Our translation allows developers to specify the ’easy’ things in Relations and
extend and execute their transformations as OM. It saves them implementing
update functionality in OM code and gives them means to specify bidirectional
transformations instead of several unidirectional OM transformations. This is
especially beneficial in synchronization and conformance checking scenarios. The
generated code can be executed on an optimized OM engine and developers can
use tool support that is available for OM (editors, debuggers, profilers, etc.).

As future work, we will apply our approach and implementation to further
transformations and case studies in order to gather more experience and address
further scenarios. Moreover, we will realize further concepts of the Relations
language such as in-place updates or support for multiple source domains.
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Abstract. Model transformation languages have matured to a point
where people have started experimenting with model transformation de-
finitions themselves in addition to the language they are written in. In
addition to the transformation language properties, the properties of
model transformation definitions themselves become important, such as
scalability, maintainability and reusability. Composition of model trans-
formations allows for the creation of smaller, maintainable and reusable
model transformation definitions that can scale up to a larger model
transformation. There are two kinds of composition for model trans-
formations. External composition deals with chaining separate model
transformations together by passing models from one transformation to
another. Internal composition composes two model transformation de-
finitions into one new model transformation, which typically requires
knowledge of the transformation language. This paper focuses on in-
ternal composition for two rule-based model transformation languages.
One is the ATLAS Transformation Language, which serves as our imple-
mentation vehicle. The other is the QVT Relations language, which is a
standard transformation language for MOF. We propose a composition
technique called module superimposition. We discuss how module super-
imposition interacts with other composition techniques in ATL, such as
helpers, called rules and rule inheritance. Together, these techniques al-
low for powerful composition of entire transformation modules as well as
individual transformation rules. By applying superimposition to QVT
Relations, we demonstrate that our composition technique is relevant
outside the ATL language as well.

1 Introduction

Model transformations have become increasingly commonplace in model-driven
engineering, with a number of stable model transformation languages and tools
available. The OMG has even released the MOF Query/View/Transformation
standard transformation language [1]. This means that people have started
experimenting with model transformations themselves in addition to transfor-
mation languages. Whereas the focus initially lay on the expressiveness of trans-
formation languages, other properties are starting to become important, such
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as scalability, maintainability and reusability of model transformation defini-
tions. As model-driven engineering becomes more mature, the model transfor-
mation definitions used typically become more elaborate. During the evolution
of a model transformation definition, exceptions to the standard transformation
scenario are discovered. All these exceptions are then integrated back into the
original model transformation definition. In order to keep such model transforma-
tion definitions maintainable, they eventually have to be split up into separate
model transformation definitions of a manageable size. Those separate model
transformation definitions have be composed in order to achieve the intended
transformation result.

Perhaps the most straightforward method of composition is to chain several
model transformations together by providing the output of one transformation
as input for another transformation. Another method is to compose the rules
from a number of transformation definitions into one transformation. The latter
method typically requires the model transformations that will be composed to
be expressed in the same language. There has been at least one workshop on
the topic of model transformation composition [2], where these two methods
were labelled as internal and external transformation composition, respectively.
We believe that both composition methods are necessary and complement each
other, as we will also demonstrate in this paper.

The focus of this paper lies on internal transformation composition, which
means that the composition method is specific to the domain of a particular
transformation language. We propose a composition technique called module
superimposition. Module superimposition allows one to overlay several transfor-
mation definitions on top of each other and then execute them as one trans-
formation. We will discuss our composition technique based on two rule-based
transformation languages. The first language is the ATLAS transformation lan-
guage (ATL) [3], which has been used as an implementation vehicle for our
experiment. The second language is the QVT Relations [1] standard language,
which currently exists as a specification. By translating our composition tech-
nique to QVT Relations, we demonstrate that our composition technique is
relevant outside the ATL language as well.

The rest of this paper is organised as follows: first, we briefly explain the AT-
LAS transformation language. After that, we introduce module superimposition
for ATL. We discuss module superimposition semantics by means of a higher-order
transformation that performs module superimposition. Next, we discuss how mod-
ule superimposition interacts with other composition techniques in ATL. We will
also discuss how module superimposition applies to QVT Relations. We will then
discuss related work, followed by the conclusion and future work.

2 ATLAS Transformation Language

TheATLASTransformationLanguage(ATL)[3]historicallyservedasasubmission
to the QVT Request For Proposals [4]. As a consequence, ATL shows similarities
to QVT Relations, save some limitations: ATL transformations are unidirectional.
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Output models are write-only and always start off as empty models. All navigation
in ATL is done on read-only input models. QVT checking transformations are typi-
cally implemented asATL queries, while enforcing transformations are represented
in ATL as modules. Furthermore, ATL is a hybrid language, providing declarative
as well as imperative language constructs. For the purpose of explaining our com-
position technique, we will only discuss ATL transformation modules.

2.1 Modules

An ATL transformation module has a number of input models and typically
one output model. It contains a number of rules that define the mapping from
source elements to target elements. ATL has two kinds of rules: matched rules
and called rules. These compare to QVT top-level relations and non-top-level
relations in that matched rules are automatically triggered, while called rules
must be invoked from a matched rule. Listing 1.1 shows an example ATL module
that copies a UML Model element to another UML Model element.

module UML2Copy;
create OUT: UML2 from IN: UML2;
rule Model {

from s: UML2 !"uml:: Model"
to t: UML2 !"uml:: Model" (

name <- s.name ,
visibility <- s.visibility ,
viewpoint <- s.viewpoint )

}

Listing 1.1. UML2Copy transformation module

The UML2Copy module has one output model named “OUT” of model type
“UML2” and one input model “IN”, which is also of model type “UML2”. In
ATL, models and model types are bound to concrete models and meta-models at
run-time. ATL does not perform any type-checking at compile-time and allows
the developer to use any meta-class or property name. Only at run-time, ATL
resolves meta-classes and properties by their name in the bound meta-model. In
our example, the model type “UML2” is (intended to be) bound to the Eclipse
UML2 meta-model.

The transformation module has one matched rule named “Model”. Since ATL
transformations are unidirectional, ATL rules don’t have a domain construct
like QVT relations. Instead, ATL rules have a from part and a to part. The
from part specifies which model elements from the input model(s) trigger the
matched rule. The to part creates one or more model elements in the output
model. In the example, any instance of the meta-class “uml::Model” from the
“UML2” meta-model triggers the rule, where the “uml::” prefix specifies that
the “Model” meta-class is inside the “uml” package. ATL uses ‘<-’ to specify
assignment: the Model copy has the same name, visibility and viewpoint values
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as the original Model instance. Listing 1.2 shows how multiple matched rules
interact.

module UML2ExtendedCopy ;
create OUT: UML2 from IN: UML2;
rule Model {

from s: UML2 !"uml:: Model"
to t: UML2 !"uml:: Model" (

name <- s.name ,
visibility <- s.visibility ,
viewpoint <- s.viewpoint ,
packagedElement <- s.packagedElement )

}
rule Package {

from s: UML2 !"uml:: Package" (
s.oclIsTypeOf (UML2 !"uml:: Package "))

to t: UML2 !"uml:: Package" (
name <- s.name ,
visibility <- s.visibility ,
packagedElement <- s.packagedElement ),

}

Listing 1.2. UML2ExtendedCopy transformation module

The “Model” rule now includes an assignment of the “packagedElement” prop-
erty. The “packagedElement” property refers to a collection of packaged model
elements in the source model. Each of those model elements may separately
match against a rule in the transformation module. Normally, the target element
“t” of the “Model” rule is supposed to contain the target “packagedElement” el-
ements, just like the source element “s” contains the source “packagedElement”
elements. ATL automatically translates assignments of source elements to their
target element counterparts whenever those source elements trigger a matched
rule in the transformation module.

This kind of source-to-target element tracing [5] is defined by the from element
and the first to element1. This tracing information is used to translate an assign-
ment of source elements to target elements: the target “packagedElement” collec-
tion in the “Model” rule will not contain the elements of “s.packagedElement”, but
rather the target elements that trace back to the elements of “s.packagedElement”.

The “Package” rule copies all instances of “uml::Package” that satisfy the
additional condition “s.oclIsTypeOf(UML2!uml::Package)”. This additional
condition is necessary to prevent the rule from triggering against subclasses of
“uml::Package”, such as “uml::Model”.

1 Tracing information for the other to elements is also recorded, but must be retrieved
explicitly in ATL via an API call.
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3 Module Superimposition

While ATL transformation modules are normally run by themselves, that is
one transformation module at a time, it is also possible to superimpose several
transformation modules on top of each other. The end result is a transformation
module that contains the union of all transformation rules. It is also possible
for a transformation module to override rules from the transformation modules
it is superimposed upon. Rule overriding is done by name: superimposed rules
with the same name as an existing rule override the existing rule. This allows
for rule-level adaptation of one transformation module by another and improves
reusability of transformation modules.

Fig. 1 shows an example of a typical use case for superimposition: the transfor-
mation rules of the UML2Copy transformation module are reused and overrid-
den where necessary by the UML2Profiles transformation module. While the
UML2Copy transformation module given earlier in this paper contains only
one rule, the real UML2Copy includes a transformation rule for every meta-
class of which it must copy the instances 2. This amounts to approximately 200
rules for the entire UML2 meta-model. Any refinement transformation basically
needs to copy all meta-class instances, except for the few meta-class instances
that are refined. The UML2Profiles transformation module applies a profile to
the “uml::Model” instance, provided it was not yet applied. All other elements
should just be copied. To achieve this, the UML2Profiles module is superim-
posed on the UML2Copy module. It overrides the “Model” rule, which copies
each “uml::Model” instance, by a version that checks that the profile we want
to apply has already been applied. It also introduces a new rule “ModelProfile”,
which checks that the profile we want to apply has not been applied and then
applies the profile. The resulting transformation module contains all rules from
Fig. 1 that are not struck out.

ATL has a number of other constructs besides matched rules, such as lazy
rules, called rules, helper attributes and helper methods. Similar to matched
rules, all of these constructs have a name that is registered in a global ATL
namespace during execution. Module superimposition therefore also applies to
all these constructs. Note that attribute and method helpers also have a context
in addition to their name: multiple helpers with the same name can exist as
long as they have a different context. This is taken into account by module
superimposition, which overrides helpers by name and context. Also note that
each named ATL construct has its own distinct namespace in ATL, such that
name clashes between rules and helpers, for example, are avoided. As such, it is
impossible to override a rule by a helper with module superimposition.

Note that superimposition is a load-time construct: there is no real transfor-
mation module that represents the result of superimposing several modules on
top of each other. Instead, several modules are simply loaded on top of each
other, overriding existing rules and adding new rules. As normally each ATL

2 http://ssel.vub.ac.be/viewvc/UML2CaseStudies/uml2cs-transformations/
UML2Copy.atl?revision=7380&view=markup

http://ssel.vub.ac.be/viewvc/UML2CaseStudies/uml2cs-transformations/UML2Copy.atl?revision=7380&view=markup
http://ssel.vub.ac.be/viewvc/UML2CaseStudies/uml2cs-transformations/UML2Copy.atl?revision=7380&view=markup
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Fig. 1. ATL superimposition example

transformation is compiled to ASM format before it is executed, this load-time
superimposition approach significantly improves scalability. Only the ATL mod-
ules that have changed need to be recompiled, regardless of the other ATL mod-
ules it will be combined with. The performance overhead of the superimposition
itself is minimal. The ATL engine already keeps an internal look-up table of
available rules and helpers when loading a transformation module. Module su-
perimposition simply updates that table as new modules are loaded on top of
the previously loaded modules. In addition, it updates the “main” procedure
of the first loaded transformation to include any new rules/helpers for every
superimposed transformation module.

3.1 Usage Scenarios

Module superimposition is a good way to achieve a specific “base behaviour” of
the transformation engine, such as copying the input model to the output model.
Superimposition can deal with non-standard situations, such as having multiple
input (and/or output) models. Our example UML2Copy transformation is meant
to only copy elements from the model “IN” to the model “OUT”. Listing 1.3 shows
the UML2Profiles transformation module that is superimposed on UML2Copy.

UML2Profiles adds an extra input model, “ACCESSORS”. The “ACCES-
SORS” model refers to the UML profile that is applied to “OUT”. The elements
of the “ACCESSORS” model should not be copied, but should instead be refer-
enced from the “OUT” model. This is achieved by checking that only elements
contained in the “inElements” helper attribute match the from part from each
rule. The “inElements” helper is provided by the UML2Copy module and con-
tains all elements from “IN”.

By separating the general copying functionality (UML2Copy) from the specific
refinement functionality (UML2Profiles), we have achieved better scalability in
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module UML2Profiles ;
create OUT: UML2 from IN: UML2 , ACCESSORS : UML2;
helper def: accessorsProfile : UML2 !"uml:: Profile " =

UML2 !"uml:: Profile ". allInstances ()
->select(p|p.name=’Accessors ’)-> first ();

rule Model {
from s: UML2 !"uml::Model" (

i f thisModule .inElements -> includes (s) then
s.profileApplication ->select(a|

a.appliedProfile = thisModule . accessorsProfile )
->notEmpty ()

e l se false endif )
to t: UML2 !"uml::Model" (

name <- s.name ,
visibility <- s.visibility ,
viewpoint <- s.viewpoint ,
profileApplication <- s. profileApplication )

}
rule ModelProfile {

from s: UML2 !"uml::Model" (
i f thisModule .inElements -> includes (s) then

s.profileApplication ->select(a|
a.appliedProfile = thisModule . accessorsProfile )

->isEmpty ()
e l se false endif )

to t: UML2 !"uml::Model" (
name <- s.name ,
visibility <- s.visibility ,
viewpoint <- s.viewpoint ,
profileApplication <- s. profileApplication ),

pa : UML2 !"uml:: ProfileApplication " (
applyingPackage <- s,
appliedProfile <- thisModule .accessorsProfile )

}

Listing 1.3. UML2Profiles transformation module

our development process where we don’t have to recompile ±200 copying rules
each time we change a refinement rule. We have also achieved better maintain-
ability, since it’s much easier to find a specific transformation rule within a small,
specific transformation module. Maintainability is also improved by reduced code
duplication in all available refinement transformation modules; all copying code
is now centralised. Finally, reusability is improved by the ability to extend and
adapt general transformation modules, such as UML2Copy.

Another usage scenario is the generation of platform ontologies from Java
API models expressed in UML [6]. In this scenario, a general transformation
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module UMLtoAPIOntology.atl is superimposed by either UMLToPackageAPI-
Ontology.atl or UMLToClassAPIOntology.atl to create either a package-level or
a class-level ontology of the input Java API model3.

Yet another scenario is provided by the configuration language of our instant
messenger case study4. The configuration language meta-model is split up in
a general “Transformations” package and a specific “InstantMessenger” pack-
age. The ConfigToBuildFile.atl transformation module has also been split up in
two parts: one for each meta-model, where ConfigToBuildFile.atl for “Instant-
Messenger” can be superimposed on ConfigToBuildFile.atl for “Transforma-
tions”. This allows for reuse of the general “Transformations” infrastructure
in other configuration languages and generators.

3.2 Semantics

An important aspect of the module superimposition semantics is that any com-
bination of superimposed modules can be rewritten as a single transformation
module. We have expressed the rewriting of two combined modules as a single
module in a higher-order ATL transformation module. The start of this module
is shown in Listing 1.4.

module Superimpose ;
create OUT: ATL from IN: ATL , SUPER: ATL;
helper def: inElements : Set(ATL!ATL:: LocatedElement ) =

ATL!"ATL:: LocatedElement ". allInstancesFrom (’IN ’)
->reject(o|o. isOverridden ())->asSet()-> union(

ATL!"ATL:: LocatedElement ". allInstancesFrom (’SUPER ’)
->reject(s| i f s.oclIsKindOf (ATL!"ATL::Rule")

or s.oclIsKindOf (ATL!"ATL::Helper") then
s.isOverriding ()

e l se false endif ));

Listing 1.4. Superimpose transformation module

This higher-order transformation module superimposes the “SUPER” trans-
formation module on the “IN” transformation module and writes the result into
the “OUT” transformation module5. It copies all the elements in “inElements”
directly to “OUT”. “inElements” is a helper attribute that contains all ele-
ments from “IN” that are not overridden, and all elements from “SUPER” ex-
cluding overriding rules and helpers. There are special transformation rules for
overridden rules and helpers. The transformation rule in Listing 1.5 deals with
overridden matched rules.

The “OverriddenMatchedRule” transformation rule transforms the overrid-
den matched rule from “IN” to “OUT” using all the property values from the
3 http://ssel.vub.ac.be/ssel/research:mdd:platformkit:ontologies
4 http://ssel.vub.ac.be/ssel/research:mdd:casestudies
5 The ATL meta-model can be found at http://tinyurl.com/2t5mcp

http://ssel.vub.ac.be/ssel/research:mdd:platformkit:ontologies
http://ssel.vub.ac.be/ssel/research:mdd:casestudies
http://tinyurl.com/2t5mcp
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helper def: realInElements : Set(ATL !" ATL:: LocatedElement ") =
ATL !" ATL:: LocatedElement ". allInstancesFrom (’IN ’);

rule OverriddenMatchedRule {
from s: ATL!" ATL :: MatchedRule " (

i f thisModule .realInElements ->includes (s) then
s.oclIsTypeOf (ATL!" ATL :: MatchedRule ") and
s.isOverridden ()

e l se false endif )
using { o: ATL !"ATL :: MatchedRule " = s.overriddenBy (); }
to t: ATL!" ATL :: MatchedRule " (

name <- o.name ,
...)

}

Listing 1.5. OverriddenMatchedRule transformation rule

overriding matched rule “o”. As a consequence, the output matched rule “t”
will have all the properties of “o”, but it will still occur in the same place in
“OUT” as “s” did in “IN”. This is achieved by ATL’s implicit tracing mecha-
nism, which maps all “s” references to “t” references. This becomes clearer when
looking at Listing 1.6, which shows the transformation rule that deals with the
transformation module element.

The “Module” transformation rule copies only the transformation module ele-
ment from “IN”. The contained elements are retrieved from the “SUPER” trans-
formation module in the using part. They are then appended to the (ordered)
list of existing elements. In the case of overridden matched rules, the overridden
rule is already contained in “s.elements”. After the assignment, “elements”
contains the same ordered list, except that its elements are all mapped to their
“OUT” counterparts by the ATL tracing mechanism.

The full higher-order transformation is split up in two parts: ATLCopy.atl
and Superimpose.atl, where ATLCopy.atl is a simple copying transformation and
Superimpose.atl provides the special transformation rules for superimposition6.
As a proof of concept, Superimpose.atl is superimposed on ATLCopy.atl and
then applied to ATLCopy.atl and itself. The result is a single transformation
module, ATLSuperimpose.atl, that represents the composition of ATLCopy.atl
and Superimpose.atl.

3.3 Interaction with Other Composition Techniques

Module superimposition interacts with other composition techniques in ATL,
such as helpers and called rules. In addition to the normal matched rules in
ATL, module superimposition also allows for reusing and overriding called rules
and helpers.

Called rules allow for functional composition in ATL. Called rules can be
invoked (with side-effects) and return a value. With module superimposition,

6 http://ssel.vub.ac.be/viewvc/atl-superimposition-semantics/

http://ssel.vub.ac.be/viewvc/atl-superimposition-semantics/
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rule Module {
from s: ATL!"ATL::Module" (

thisModule .realInElements ->includes(s))
using {

superElements : Sequence(ATL!"ATL:: ModuleElement ") =
ATL!"ATL::Module". allInstancesFrom (’SUPER ’)
->collect (m|m.elements

->select(e|not e.isOverriding ()))
->flatten ();

superInModels : Sequence(ATL!"OCL:: OclModel ") =
ATL!"ATL::Module". allInstancesFrom (’SUPER ’)
->collect (m|m.inModels )->flatten ();

superOutModels : Sequence(ATL!"OCL:: OclModel ") =
ATL!"ATL::Module". allInstancesFrom (’SUPER ’)
->collect (m|m.outModels )->flatten ();

superLibraryRefs : Sequence (ATL!"ATL:: LibraryRef ") =
ATL!"ATL::Module". allInstancesFrom (’SUPER ’)
->collect (m|m.libraries )->flatten (); }

to t: ATL!"ATL::Module" (
name <- s.name ,
...,
libraries <- s.libraries ->union(superLibraryRefs ),
inModels <- s.inModels ->union(superInModels ),
outModels <- s.outModels ->union(superOutModels ),
elements <- s.elements ->union(superElements ))

}

Listing 1.6. Module transformation rule

it is possible to replace parts of the function invocation chain by overriding
called rules. It is also possible to invoke called rules from other modules in
the superimposition stack. This introduces dependencies on the other modules,
however, and should be used with care. It is advisable to limit invocation of
called rules in other modules to the modules “below” (i.e. modules that are
superimposed upon, not the superimposing modules).

Module superimposition has a similar effect on helpers as on called rules.
Helpers are different from called rules in that they can have a context, however.
The ATL engine keeps track of helper attributes and methods per context. That
way, it is possible to define multiple helpers with the same name and a different
context. Depending on the context, the corresponding version of the helper is
used. As a consequence, superimposition can override helpers per context in
ATL, leaving helpers with another context in place.

ATL supports another decomposition construct called rule inheritance [7].
Rule inheritance allows one to define general transformation rules that can be
extended by specific rules. A sub-rule is required to specify a from part that
matches the same or less elements than its super-rule. It can then inherit the to
part from its super-rule and add its own entries to the to part. It is currently not
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possible to separately superimpose sub- and super-rules. Only the sub-rules can
be manipulated by module superimposition. This is because the ATL compiler in-
lines the super-rules into the sub-rules. No super-rules exist in the ATL bytecode.
In addition, it is not possible to inherit from super-rules in another module. This
is because module superimposition is performed after the compiler does its work.
The compiler only operates on a single module at a time.

3.4 Superimposition of QVT Relations Transformations

Module superimposition can be used for other languages than ATL, as long as
the transformation language has the concepts of rules and modules that contain
those rules. QVT Relations is such a transformation language. In the Relations
language, a transformation between models is specified as a set of relations that
must hold for the transformation to be successful. Each model in the transfor-
mation conforms to a model type, which is a specification of the kind of model
elements that can occur in a conforming model. A model type is typically rep-
resented by a meta-model. The models in a transformation are named and are
bound to a specific model type. Listing 1.7 shows our UML2Copy example as a
Relations specification.

transformation UML2Copy (IN: UML2 , OUT: UML2) {
top relation Model {

domain IN s: uml::Model {
name = n,
visibility = v,
viewpoint = vp,
profileApplication = pa}

domain OUT t: uml::Model {
name = n,
visibility = v,
viewpoint = vp,
profileApplication = pa}} ... }

Listing 1.7. UML2Copy QVTR transformation

Note that a special “inElements” helper is not necessary. A QVT relation is
already defined on the basis of models, not meta-models, so we can explicitly
target elements from the model ‘IN’. In our example, we only gave a relation
for the “uml::Model” meta-class and omitted the other relations. We still need
one relation for each meta-class in the UML2 meta-model, just like in our ATL
version of the transformation. Each of these relations follow the same pattern as
the given “Model” relation. Now let’s consider the same scenario, in which we
superimpose the Relations version of UML2Profiles on UML2Copy. Listing 1.8
shows UML2Profiles as defined in QVT Relations.
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The illustration of superimposition in Fig. 1 is also valid for QVT Relations.
A QVT transformation is the equivalent of an ATL module and a QVT relation
is the equivalent of an ATL rule for the purpose of superimposition. When the
two relations “Model” and “ModelProfile” are superimposed on UML2Copy, the
“Model” relation is overridden and the “ModelProfile” relation is added to the
base transformation.

4 Related Work

In the domain of model transformation languages, (internal) composition tech-
niques are relatively new. In graph transformations [8], negative application con-
ditions (NACs) are used to inhibit a transformation rule from triggering. A
NAC essentially is another (partial) transformation rule that is composed with
the base transformation rule. It overrides the behaviour of the base transfor-
mation rule. As graph transformations are in-place transformations without im-
plicit tracing mechanism [5], there is no difference between applying one rule
after the other or applying them “together” like rules in an ATL module7. In
ATL (and QVT Relations), two or more models are involved and transformation
rules interact through implicit tracing. The Epsilon transformation language8

uses transformation strategies to specify the default behaviour for elements that
don’t match against any transformation rule. Strategies are defined in Java as
engine plug-ins. With module superimposition, such default behaviour can be
defined directly in ATL as a normal transformation module.

In the domain of program transformation, the Conditional Transformations
approach (CTs) has a special composition mechanism for combining multiple
transformations into one transformation [10]. The CT approach is similar to
graph transformations in that each transformation consists of one rule. Instead
of negative application conditions, CTs use logic conditions. The CT composition
mechanism allows for the composition of multiple CT rules. The result is a trans-
formation with multiple rules, not unlike ATL or QVT Relations. The composed
CT is a sequence of rules, where the rule sequence may be an AND-sequence or
an OR-sequence. The AND and OR refer to the trigger condition of the rules:
in an AND-sequence, all rule conditions must hold for the transformation to be
executed. In an OR-sequence, individual rules may trigger while others do not.
CT composition achieves the same goal as module superimposition, since it can
combine pre-existing transformation rules in any way. Because the nature of CT
rules is very different from ATL rules, the composition mechanisms are different
as well. CT rules are independently defined and may be applied in sequence,
while ATL rules are defined in combination and interact via the implicit ATL
tracing mechanism.

In the domain of aspect-oriented programming languages, Hyper/J [11] follows
an approach similar to superimposition. Hyper/J can merge Java implementa-
tions of multiple software dimensions into one Java program. Hyper/J claims

7 The order in which rules are applied can be important, however [9]
8 http://www.eclipse.org/gmt/epsilon/

http://www.eclipse.org/gmt/epsilon/
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to be a symmetric composition approach, in which all dimensions are at the
same “level”. This is in contrast to superimposition, where one module is super-
imposed on top of another. Superimposition therefore also allows for overriding.
The Composition Filters (CF) [12] approach to aspect-oriented programming in-
cludes a “superimposition” language construct. In CF, superimposition refers to
filter modules, which can be distributed and put on top of object classes. Multiple
filter modules can be superimposed on top of each other as well. A filter module
can manipulate messages going into or out of objects.

transformation UML2Profiles (IN:UML2 ,ACCESSORS :UML2 ,OUT:UML2 ){
top relation Model {

domain IN s: uml :: Model {
name = n,
visibility = v,
viewpoint = vp ,
profileApplication = p}

domain OUT t: uml :: Model {
name = n,
visibility = v,
viewpoint = vp ,
profileApplication = p}

domain ACCESSORS accessorsProfile : uml:: Profile {
name = ’Accessors ’}

when {p->select(a|
a.appliedProfile =accessorsProfile )->notEmpty ()}}

top relation ModelProfile {
domain IN s: uml :: Model {

name = n,
visibility = v,
viewpoint = vp ,
profileApplication = p}

domain OUT t: uml :: Model {
name = n,
visibility = v,
viewpoint = vp ,
profileApplication = p->union(Set{

pa: uml:: ProfileApplication {
applyingPackage = t,
appliedProfile = accessorsProfile }})}

domain ACCESSORS accessorsProfile : uml:: Profile {
name = ’Accessors ’}

when {p->select(a|
a.appliedProfile =accessorsProfile )->isEmpty ()}} }

Listing 1.8. UML2Profiles QVTR transformation
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5 Conclusion and Future Work

This paper has presented an approach for internal composition of model transfor-
mations written in a rule-based model transformation language. Our composition
approach, called module superimposition, allows for the composition of two or
more transformations into one single transformation. It therefore allows one to
split up a model transformation into multiple, reusable and maintainable trans-
formations that can later be composed into one single transformation. Module
superimposition is implemented for the ATLAS transformation language, but
is also applicable to the QVT Relations language. Module superimposition has
been applied in our MDE case study9 on UML 2.x refinement transformations,
Java API model to platform ontology transformations [6] as well as the build
script generators for our case study’s configuration language.

As module superimposition is a load-time composition technique, operating on
the compiled ATL bytecode, it improves ATL’s scalability. When changing one
ATL transformation module, one only has to re-compile that particular module.
This means that compiler performance no longer has to degrade with increas-
ing transformation code size, as long as transformation code is separated into
multiple transformation modules. The performance overhead of the superimposi-
tion itself is minimal. Module superimposition simply updates the internal ATL
rule/helper look-up table as new modules are loaded on top of the previously
loaded modules.

One main use case of module superimposition is to achieve a base behaviour
from the transformation engine. By default, ATL does not transform anything
in the input models and will simply give back an empty output model. For re-
finement or refactoring transformations, most elements should simply be copied
and only a few elements are modified. In ATL, this means that every refinemen-
t/refactoring transformation consists mostly of copying rules. ATL refining mode
has been introduced to tackle this issue, but it cannot deal with customised copy-
ing requirements. Module superimposition allows one to modularise all copying
rules into a separate copying transformation. That copying transformation may
include any special conditions that can be expressed in ATL. By separating
the base behaviour from the specific behaviour, we achieve better maintainabil-
ity through reduced code duplication in the transformation modules. Finally,
reusability is improved by the ability to extend and adapt general transforma-
tion modules. We intend to investigate more use cases of module superimposition
in the future. A candidate use case we are currently looking into is the leverage of
ATL’s implicit tracing mechanism to automatically “update” models that refer
to the model being transformed.

Module superimposition works at the granularity of transformation rules in
ATL and relations in QVT Relations. It allows one to add new rules/relations
and to override existing ones. As ATL already supports decomposition of trans-
formation rules into helpers and called rules, our module superimposition ap-
proach can leverage this decomposition. In addition to overriding and adding

9 http://ssel.vub.ac.be/ssel/research:mdd:casestudies

http://ssel.vub.ac.be/ssel/research:mdd:casestudies
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standard matched rules, it is possible to override and add helpers and called
rules as well. Deletion of rules and helpers is not directly supported, but it is
possible to replace the trigger condition with a condition that never triggers.

It is currently not possible to separately superimpose sub- and super-rules in
ATL rule inheritance. Only the sub-rules can be manipulated by module super-
imposition, because the ATL compiler in-lines the super-rules into the sub-rules.
In the future, the implementation of ATL rule inheritance can be changed to dy-
namic look-up of super-rules after a transformation module has been compiled.
This allows superimposition of super-rules as well as rule inheritance across su-
perimposed modules.

There is currently a QVT Relations compiler in development that targets the
ATL virtual machine10. Module superimposition operates on the bytecode that
goes into the ATL virtual machine, which makes it easier to port the imple-
mentation of module superimposition to QVT Relations. As soon as the QVT
Relations compiler is released, an implementation of module superimposition for
QVT Relations may become available shortly after.
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12. Bergmans, L., Akşit, M.: Composing Crosscutting Concerns Using Composition
Filters. Comm. ACM 44, 51–57 (2001)



Approaches for Model Transformation Reuse:

Factorization and Composition
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Abstract. Reusability is one of the principal software quality factors. In
the context of model driven development (MDD), reuse of model trans-
formations is also considered a key activity to achieve productivity and
quality. It is necessary to devote important research efforts to find out
appropriate reusability mechanisms for transformation tools and lan-
guages. In this paper we present two approaches for reusing model trans-
formation definitions. Firstly, we tackle the creation of related model
transformations, showing how the factorization of common parts can be
achieved. Secondly, we describe a proposal on the composition of exist-
ing, separated transformation definitions so that they can be used to
solve a concrete transformation problem. We illustrate both proposals
with examples taken from the development of a software product line for
adventure games, which has been implemented using the modularization
mechanisms of the RubyTL transformation language.

1 Introduction

Reusability is one of the principal software quality factors because the reuse of
software assets reduces development effort and cost, and improves quality as-
pects such as maintainability, reliability and correctness. In the same way, in
model driven development (MDD), the reuse of model transformation defini-
tions is also considered a key activity to achieve productivity and quality [1].
However, it is still necessary to gain more experience on transformation reuse in
real projects, and to devote important research efforts to discover appropriate
reusability mechanisms for transformation tools and languages.

Two points of view can be considered in the practice of software reuse: devel-
oping artifacts for reuse and developing new systems with reuse of existing arti-
facts. Languages and tools must support mechanisms for creating and specifying
reusable artifacts, as well as mechanisms for specializing and integrating them
for building a new system. Transformation reuse follows the same principles as
software reuse. So, good abstractions are essential for creating reusable trans-
formations. Current approaches are focused on reusing single rules or patterns
[2][3][4]. However, practical development of large systems requires reuse to be
tackled at a coarser-grained level. Transformation definitions should be reusable
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c© Springer-Verlag Berlin Heidelberg 2008



Approaches for Model Transformation Reuse: Factorization and Composition 169

as a whole, and mechanisms for their specialization, integration and adaptation
must be provided.

In this paper we address two model transformation reuse techniques: factor-
ization and composition. The first deals with developing reusable transformation
definitions and the second with the adaptation and integration activities. When
related transformation definitions are created, they can have duplicated code.
We will show how factorization of common parts in a new transformation defini-
tion, intended for reuse, removes the duplicated code. With regard to developing
with reuse, we will tackle the problem of composing several, independent trans-
formation definitions for solving a specific transformation problem. Throughout
the paper we will analyze some issues related to constraints for reuse imposed
by the specification of source and target metamodels in the transformation de-
finition.We will propose solutions in the context of the RubyTL transformation
language [5].

The paper is organized as follows. The next section motivates the interest in
factorization and composition of model transformation definitions. Then, Section
3 introduces the example that will be used through the paper. Section 4 gives a
brief explanation of the modularity mechanism provided by RubyTL. Sections
5 and 6 explain our approaches for factorization and composition in model-
to-model transformations respectively. Finally, in Section 7 the related work is
presented, and Section 8 presents some conclusions.

2 Motivation

Tackling large projects using MDD implies managing complex metamodels and
transformations of considerable size. To deal with this complexity, decomposition
in smaller parts, finding commonalities and reusing common parts are needed.
Implementation of software product lines (SPL) using MDD [6] is a clear ex-
ample of this situation. Model transformation languages should provide reuse
mechanisms, allowing us to create transformation definitions that can be used
to create different products, and that can be extended to fulfill the requirements
of a concrete product.

In our experiments, which integrate software product lines and model driven
development, we have had to face three problems related to transformation def-
inition reuse.

1. Factorizing common parts of transformation definitions.
2. Adapting and composing several transformation definitions.
3. Variability in transformation definitions, that is, the need to attach an aspect

to a transformation definition to implement a certain product variant [6]. In
this paper we will not address this issue because of lack of space. In any case,
we have been able to address it successfully using the phasing mechanism
explained in Section 4.

In this paper, we will focus on the last two problems. Next, we set out our
proposal for factorization and composition. We also introduce two key concepts
in our proposal: metamodel compatibility and metamodel extension.
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2.1 Transformation Factorization

Transformation factorization is the process of finding common functionality
shared between two or more transformation definitions, and of extracting the
common parts to a base transformation definition. The non-common function-
ality is implemented by other transformation definitions which reuse the base
transformation definition, and add their specific functionality.

Nevertheless, for a transformation definition to be reused, it is not enough that
it provides the required functionality, but some kind of compatibility between
metamodels of both transformation definitions must be satisfied. A transfor-
mation definition T1 can only be directly reused within another transformation
definition T2 if each source and target metamodel of T2 is “compatible” with the
corresponding metamodel of T1.

In Section 5, where factorization of transformation definitions is addressed
using an example, we will propose an approach to deal with metamodel compat-
ibility which relies on the notion of model type [7].

2.2 Transformation Composition

As is noted in [8], transformation definitions can be composed in several ways,
such as chaining definitions written in different languages (external composi-
ton), or composing rules from two or more transformation definitions written in
the same language (internal composition). Internal composition requires proper
modularity mechanisms and composition operators. The composition unit can
be a rule [2][4][3], or some coarser-grained construct.

Our proposal relies on a phasing mechanism [9], which is a mechanism for
internal transformation composition. It is coarse-grained because it uses the
concept of phase as composition unit, which encapsulates a set of rules aimed to
perform a well-defined transformation task. The mechanism provides operators
to allow transformation definitions to be composed by means of the trace infor-
mation. In this paper, we will tackle the problem of composing transformation
definitions whose source metamodels are the same (or at least compatible) and
whose target metamodels are completely independent. Each one of the target
metamodels represents a concern in the system being generated, but at some
point these concerns must be connected.

This issue arises frequently, for instance in the MDA approach when several
platform specific models (PSM) are derived from the same PIM. To be able
to generate a complete and meaningful architecture, the bridges between the
architectural elements must be established. Our approach to solving this problem
will rely on creating an extension of the PSM metamodels, which will be in charge
of adding the metaclasses needed to establish the bridge.

We define a metamodel MMext as an extension of another metamodel MMbase

when: MMext imports MMbase and at least one of its metaclasses is related to
another metaclass of MMbase (either having a reference or inheriting from it).

In Section 6 we will explain the approach in detail, highlighting the problems
involved at model transformation language level, and proposing a solution using
the RubyTL transformation language.
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3 Running Example

To show the problems involved in the reuse of transformation definitions, and
to illustrate our solution, we have developed a small, but non-trivial, case study.
In this case study, we are interested in developing a software product line for
interactive fiction games (also known as text adventures). In this kind of games,
the player is presented with a text describing a situation or a room. The player
interacts with the game by writing simple commands such as “get key” or “go
north”. A feature model has been used to describe the game requisites and to
express commonalities and variabilities in the domain. Figure 1(a) shows an
excerpt of it, while Figure 1(b) shows an screenshot of the user interface.

(a) (b)

Fig. 1. (a) Simple feature model for text adventure games. (b) Screenshot of the user
interface of a game generated with this SPL.

As can be seen in the feature model, a game must have input and output
components (for the user to interact with the game), there is a navigation mech-
anism so that the user can go from one room to another (e.g. a variation must
allow the user to go back to an already visited room) and a graphical user
interface.

A DSL has been developed to describe a specific game, using a metamodel
to represent its abstract syntax. In this DSL, the concepts involved in the de-
scription of an adventure are present, such as rooms, objects, exits, actions, etc.
The example below shows a concrete syntax for the description of a room that
is present in the game.

room ’table_and_notebook’ do
text %{ There is a table in front of you. There are

several objects on the table: a lamp, a notebook and a pencil.
There are two doors, one to the east and one to the west. }

object ’lamp’ do
allowed_actions :take
description "a normal lamp"

end
exit :west, :goto => ’dark_room’

end
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Fig. 2. Transformation flow for our software product line for adventure games. Dashed
lines represents conformance relationships, while solid lines connect an input or output
model with a transformation.

The game implementation is generated automatically from this DSL using
a model-to-model transformation approach. Figure 2 shows the transformation
flow, where three model-to-model transformations are involved to transform the
initial DSL (Adv) into the game implementation. The game architecture, inde-
pendent from an implementation technology, is represented by three metamodels,
each one representing a game concern. One concern is the command interface
(i.e. which commands are valid in each game situation), which is represented
by the Commands metamodel. Another concern is the game navigation (i.e. the
mechanism in charge of moving the user from one room to another), which is
represented by a state machine-like metamodel (SM). Finally, the user interface is
also represented, by the GUI metamodel. These metamodels are instantiated by
the adv2com, adv2sm and adv2gui model-to-model transformations respectively.

We will use this example product line to drive the discussion of the rest
of the paper. From the example, we will identify general problems regarding
transformation reuse, and we will derive general solutions for them.

4 Phasing Mechanism

In [9] we presented a modularity mechanism for rule-based model transformation
languages, which allows decomposition and composition of model transformation
definitions. This mechanism is based on the idea of phase. In this section we give
a brief introduction, using RubyTL as the implementation language.

With a phasing mechanism, a transformation definition is organized as a set
of phases, which are composed of rules. Executing a transformation definition
consists of executing its phases in a certain order. The execution of a phase means
executing its rules as if they belonged to an isolated transformation definition,
without conflicts with rules defined in other phases. A transformation definition
is therefore seen as a phase, so allowing the same composition operators as for
phases. Also, the mechanism provides a DSL to set the phase execution order
explicitly.

One composition operator we have defined is a new kind of rule, called refine-
ment rule, which matches against the trace information, instead of the source
model. There is a match if a source instance of the metaclass specified in the
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rule’s source pattern (i.e. rule’s from part), has a trace relationship with one
target instance of the metaclass specified in the rule’s target pattern (i.e. rule’s
to part). Thus, for each match, the refinement rule is executed, but instead of
creating a new target element as usual, the element matched by the target pat-
tern is used. This means that no new target elements are created, but the rule
works on existing elements, refining them.

Since a transformation definition is a form of phase, importing a separate
transformation definitions within another transformation integrates seamlessly
with the whole mechanism. RubyTL provides an import statement, which is in
charge of resolving the dependency with an external definition by treating it as
a phase.

The next example shows an example of phase usage. The adv2com transforma-
tion definition is extended to implement the ShowDescriptions feature, which
implies creating a describe command for each available object in a room.

import ’m2m://adv2com’

phase ’show_descriptions’ do
refinement_rule ’refine_room’ do

from Adv::Room
to Command::CommandSet
mapping do |room, command_set|
command_set.validCommands = room.availableObjects

end
end

rule ’obj2command’ do
from Adv::Object
to Command::Command
mapping do |room, input|
command.words << Input::Word.new(:value => ’describe’)
command.words << Input::Word.new(:value => object.name)

end
end

end

scheduling do
execute ’adv2input’
execute ’show_descriptions’

end

First of all, the adv2com definition is imported, so that it can be scheduled as
a normal phase. Secondly, the show descriptions phase contains a refinement
rule that refines the Room to CommandSet mapping, so that the set of valid
commands is extended. Note that no new CommandSet elements are created,
but the match is against those Room objects that are related by the trace to
already created CommandSet objects. Finally, the scheduling block is in charge
of setting the order in which phases are executed.
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5 Transformation Factorization

In this section, we will show how to factorize common parts of two transforma-
tion definitions into a base transformation, which is then reused so that code
duplication is avoided.

In the game, each room has an associated set of valid commands the user can
issue, which are derived by the adv2com transformation. It creates the com.xmi
model, conforming to the Commands metamodel, which represents an implemen-
tation independent view of a command-based interface. From this model, a con-
crete implementation must be generated.

The implementation of the Input feature (see Figure 1(a)) requires dealing
with different technologies to handle whether speech or written text is used to
enter commands to the game. A model-to-model transformation approach has
been used to tackle this issue. Commonalities in speech and text recognition tech-
nologies have been studied in order to reuse as many transformation definitions
and metamodels as possible.

In particular, we have detected commonalities in the way the text or speech
structure is recognized. Some speech recognition technologies use a special kind
of grammar (JSGF, Java Speech Grammar Format), which is very similar to
an EBNF grammar, but adding special constructs, such as the possibility of
attaching a weight to a grammar element. Moreover, EBNF grammars are classic
artifacts for representing text recognizers.

(a) (b)

Fig. 3. (a) Excerpts of the EBNF and JSGF metamodels. (b) Relationships between
reused transformations and their metamodels.

A metamodel to represent an EBNF grammar has therefore been created. In
order to depict JSGF grammars, an extension of the former metamodel has also
been created. As explained in Section 2.2 this means that the JSGF contains
metaclasses which inherit from metaclasses defined in the EBNF metamodel
(Figure 3(a) shows an excerpt of both metamodels and their inheritance rela-
tionships). The text feature is implemented as a model-to-model transformation
from the Commands metamodel to EBNF (com2ebnf), while the speech feature
is implemented as another model-to-model transformation from the Commands
metamodel to JSGF (com2jsgf). Since JSGF has been modelled as an exten-
sion of EBNF, both transformation definitions share most of the functionality.
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Our approach for factorizing the common parts of the transformations relies on
creating a base transformation, which is imported by the concrete transforma-
tions that implement the non-common functionality. This schema is illustrated
in Figure 3(b).

The com2jsgf transformation outputs models conforming to both JSGF and
EBNF metamodels (i.e. JSGF is an extension of EBNF, so JSGF models can
be used where EBNF models are expected), and it reuses com2basic, whose
output model must conform to the EBNF metamodel. The constraint for reuse
regarding metamodel conformance is that the metamodels used by one trans-
formation provide the classifiers expected by the reused transformation, that is,
metamodels must be compatible in some way.

To formalize this constraint we rely on the model type concept. In [7] a for-
malization of model types is presented, where the type of a model is seen as
the set of the types of all objects belonging to the model. This definition allows
models to conform to several metamodels.

At this point, we will address the compatibility problem posed in Section 2.1.
From a transformation language point of view, the type of a model is the set of
classifiers that are used within the transformation. In the same way as the pre-
vious definition, a transformation input or output model can conform to several
metamodels. However, the problem arises when two metamodels contain a clas-
sifier with the same name, because the name clash prevents the transformation
language from knowing which of them is being referred to by the name.

Usually, transformation languages define one namespace for each input or
output model, which is bound at launch time to the concrete metamodel, so that
classifiers are referenced through the corresponding namespace. If a metamodel
imports another metamodel, when it is bound to the namespace the transitive
closure on classifiers can be made to give access to the imported metamodel’s
classifiers. However, this approach has two problems: (1) it does not prevent
name clashes, and (2) models conforming to several non-related metamodels
cannot be handled.

We propose allowing several namespaces to be defined for each model, re-
flecting the fact that the model conforms to several metamodels, so that each
metamodel is handled by its corresponding namespace. Thus, when a transfor-
mation is going to be launched these bindings must be established in some way.
In our tooling [10] we use a DSL to set the models to be used in a transforma-
tion execution, and to bind the namespaces with the metamodels. The piece of
DSL below shows how the concrete metamodels (jsgf.ecore and ebnf.ecore)
are bound to the namespaces EBNF and JSGF expected by the transformation
definition. Moreover, since the com.xmi model conforms to only one metamodel,
a classic approach can be used (i.e. only one namespace per model).

model_to_model :com2jsgf do
sources :namespace => ’Commands’,

:metamodel => ’commands.ecore’,
:model => ’com.xmi’
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targets :model => ’jsgf.xmi’,
:namespaces => {

’JSGF’ => ’jsgf.ecore’
’EBNF’ => ’ebnf.ecore’ }

transformation ’m2m://com2jsgf.rb’
end

In this way, the transformation definition that creates a JSGF model to im-
plement speech recognizers (com2jsgf in Figure 2) expects a metamodel to be
bound to the Commands namespace, while it expects the EBNF and JSGF target
namespaces to be bound too.

Below, an excerpt of the com2jsgf transformation definition is shown. It
reuses the com2basic transformation definition using an import statement as ex-
plained in Section 4. Since the com2basic transformation definition may expect
different namespace names to be bound (e.g. it may name the target namespace
as EGrammar instead of EBNF), the import statement must provide a renaming
facility. In our implementation, the binding between the current namespaces
and the ones expected by the reused transformation is made using the map
statement.

transformation ’com2jsgf’
source ’Adv’
target ’EBNF’, ’JSGF’

import ’m2m://com2basic’ do
map ’Commands’ => Commands
map ’EGrammar’ => EBNF

end

phase ’voice2grammar’ do
... Transformation rules creating JSGF and EBNF elements...

end

scheduling do
execute ’basic-grammar’
execute ’voice-grammar’

end

It is also worth noting that the transformation definition does not know
whether it receives one model conforming to two metamodels, or two models
conforming to one metamodel each. Also, it does not specify a specific version of
the metamodel, but different versions of the metamodel are allowed (for instance,
several versions of UML can be handled). All these versions must have at least
the classifiers used in the transformation rules, and the classifiers’ properties
used within the rules. A formalization on these constraints is made in [7].
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6 Transformation Composition

This section presents an approach for composing independent transformation
definitions, so that their relationships can be established. We illustrate it with
an example intended to bridge the game concerns introduced in Section 3.

As explained in Section 3, we have defined three separate model transforma-
tions to instantiate each of the three concerns of our game architecture. These
concerns, depicted as the Commands, SM and GUI metamodels, are completely in-
dependent of each other (i.e. they do not have references between them). Thus,
they can be reused in contexts different from this transformation flow (e.g. a
command-based input interface can also be used in command-line applications).

However, since each part of the game must interact with other parts, the three
transformation definitions need to be composed to generate the bridges between
the different parts. As a result of this composition, model elements of different
metamodels must be connected. Typically, a connection between a model element
a1 and another model element a2 implies that either the a1’s metaclass or the a2’s
metaclass contains a reference to the other metaclass. This problem will always
arise when we need to relate elements that belong to independent metamodels,
as occurs in this case.

The challenge is to reuse the metamodels and their associated transformations,
while being able to establish connections between them. We propose to extend
the metamodels which must contain the connections, creating a new metamodel
where, for each metaclass that needs to be related with another metaclass, a
new metaclass inheriting from it is created. This new metamodel represents the
connections between concerns in the architecture, and is usually small, because
it only defines the minimum number of metaclasses to establish the connections.
Another approach would be to use model weaving techniques [11] to represent
these relationships, but the problems involved at model transformation level
would be the same.

Figure 4 shows our approach to create a new metamodel (ExtSM) which ex-
tends the original SM metamodel to bridge states with the set of available com-
mands for this particular game state. A subclass of SM::State is created, also
called State, which has a reference to the CommandSet metaclass in the Command
metamodel.

Once metamodels are integrated, transformations need to be integrated as
well, so that bridges can be instantiated. Our strategy relies on importing and
executing the transformation definitions that are going to be bridged in the
context of another definition, which is actually in charge of locating the join

Fig. 4. Schema for creating a new metamodel bridging the SM and Command metamodel
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points and instantiating the connections. It is important to notice that each
transformation is imported as a black-box, which creates a piece of target model
as a result, that must be integrated with the other transformation execution
results. Since the interface of a transformation definition are the mappings it
defines (i.e. its rules are “private”), rule-level composition mechanisms such as
rule inheritance [2][4] or pattern factorization [3] cannot be applied.

According to the scheme shown in 2, the adv2sm transformation instantiates
State objects conforming to the SM metamodel. However, we need to have State
objects from the ExtSM metamodel instantiated by adv2sm, but its transforma-
tion rules have fixed metaclasses in their to part. This problem is similar to that
of object oriented languages, where object creation statements using concrete
classes limit reusablity and extensibility.

We propose to tackle this issue using an approach inspired by the factory pat-
terns [12]. RubyTL allows a hook to be specified in an instantiation statement
(typically the to part of a rule). The hook definition takes a base metaclass,
which is used as the default metaclass in the case of the hook never being filled.
When the transformation is imported into another transformation module, such
a hook can be filled with the concrete metaclass to be instantiated, which must be
a child metaclass of the base metaclass specified in the hook definition. The fol-
lowing piece of transformation shows the definition of a hook on the room2state
rule: the hook is called vstate and its base class is SM::State.

top_rule ’sm’ do
from Adv::Adventure
to SM::StateMachine
mapping do |adv, machine|

machine.name = adv.name
machine.states = adv.rooms

end
end

rule ’room2state’ do
from Adv::Room
to hook(SM::State => :vstate)
mapping do |situation, state|

state.name = situation.name
end

end

Once the problem related to model elements instantiation has been solved,
the next step is to actually integrate the transformation definitions. As explained
above, we propose to define an “integration” transformation definition , which
is in charge of composing and adapting the adv2sm, adv2com and adv2ui trans-
formation definitions. It imports these three transformation definitions, and the
integration is performed in three steps:



Approaches for Model Transformation Reuse: Factorization and Composition 179

1. The target metamodel for state machines is an extension of the original one
(as shown in Figure 4).

2. The adv2sm is parametrized by means of the vstate hook, so that the type
of states can vary.

3. The “integration” transformation locates the join points using a refinement
rule to match against the trace information (e.g. any state created from the
same room as a another command set must be bridged). Then, new elements
are created (either by other rules or imperatively) to adapt the existing model
elements.

The following piece of code corresponds to our implementation in RubyTL of
the ”integration” transformation definition.

transformation ’integration’
source ’Adv’
target ’SM’, ’ExtSM’, ’Commands’, ’GUI’

import ’m2m://adv2com’
import ’m2m://adv2ui’
import ’m2m://adv2sm’ do
map ’SM’ => SM
factory :vstate => ExtSM::State

end

phase ’merge’ do
refinement_rule ’merge_rule’ do

from Adv::Room
to ExtSM::State, Comands::CommandSet, UI::CompositePanel
mapping do |situation, command_set, state, ui|
cconnector = ExtSM::CommandConnector.new
cconnector.commandSet = command_set
state.input = cconnector

gconnector = ExtSM::GUIConnector.new
gconnector.gui = ui
state.ui = bconnector

end
end

end

scheduling do
execute ’adv2input’
execute ’adv2sm’
execute ’adv2ui’
execute ’merge’

end

The third import statement binds SM namespace in the adv2sm transforma-
tion with the current SM namespace. Moreover, it parametrizes adv2sm so that
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instead of creating SM::State objects it creates ExtSM::State objects. Notice
that although adv2sm has been bound to use the SM metamodel, it can cre-
ate model elements conforming to ExtSM::State because such a metaclass is a
subclass of SM::State.

Finally, the refinement rule is in charge of bridging related elements, creating
the proper connector objects imperatively, and linking them to the state. It is
worth noting that this rule matches to existing target elements, which are related
to the same source element by the trace information. In this way, the join point
to weave the elements is defined based on the trace information.

7 Related Work

We have illustrated this paper with an example product line which has been
implemented using the approach proposed by Voelter in [13]. In this proposal,
variability in transformation is a key issue. Although we have not explained in
detail how to implement variability in transformations, the mechanism explained
Section 4 can be used for this purpose.

In [14] an infrastructure for defining model transformation chains is presented.
It studies the problems involved in reusing transformations written in different
languages within a transformation chain. However, it does not propose any con-
crete mechanism to compose transformation definitions, although it mentions as
future work relying on trace information to achieve composition.

Transformation reuse at rule-level has been addressed in several works. In [2],
an study of rule-based mechanisms to modularize transformation definitions is
presented. Transformation languages such as Tefkat [4], ATL [15], Viatra [3] or
QVT[16] provide mechanisms for fine-grained reuse, that is, reuse of rule defini-
tions. On the other hand, reuse at a coarse-grained level has not been extensively
treated. In [17] an approach based on the transformation pattern is presented.
Instead of establishing constraints on the source and target metamodels, trans-
formations are created to adapt models to the expected metamodel. Higher-order
transformations is also a means to tackle transformation reuse [15][18]. Regard-
ing model transformation languages and their mechanisms for coarse-grained
reuse, we have compared RubyTL with oAw’s Xtend [13] and ATL [15].

Xtend is an imperative model transformation language, based on transforma-
tion functions, which includes explicit support for transformation aspects. This
mechanism is suitable for factorizing common transformation code but not for
composition of transformations using the strategies explained in 6.

The ATL language provides a facility called superimposition which allows sev-
eral transformations to be superimposed on top of each other, yielding a final
transformation containing the union of all transformation rules and helpers. It is
a white-box mechanism, like a form of copy-paste, which is well-suited to reusing
rules within related transformations, especially when combined with rule inheri-
tance. On the other hand, it is not a good mechanism for composing independent
transformations, since they would need to expose their implementation.
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In ATL, naming conflicts are solved by adding the metamodel package name
as part of the classifier’s name. The problem of this approach is that it does not
permit metamodel variation [14], since it relies on the package name, making it
impossible to use different versions of the same metamodel.

Finally, regarding QVT, it provides reuse mechanisms at rule level, such as
rule inheritance [16], but it does not provide any coarser-grained composition
mechanism. Also, with respect to the notion of model type explained in Section
2, our approach coincides with that adopted by the QVT specification (in par-
ticular with effective type conformance). However, we propose to allow a model
to conform to several metamodels, while in QVT a model can conform only to
one metamodel.

8 Conclusions and Future Work

Model transformation reuse is an important issue for model driven development
to succeed when applied to large projects. Techniques and constructs at model
transformation level are needed for abstracting, selecting, specializing and inte-
grating reusable transformation definitions.

In this paper, we have presented two approaches intended to factorize and
compose transformation definitions. Through a running example we have shown
the problems involved and how to solve them in RubyTL. Anyway, the ap-
proaches are applicable to other languages. Beyond addressing factorization and
composition of model transformations, other important contributions of this
work are:

– We have shown the constraints regarding metamodels and transformation
reuse, and we have tackled these contraints using the idea of model type.

– We have given a proposal to make model element creation independent of
the concrete types set in transformation rules, so that a black box approach
for transformation composition can be achieved.

– We have illustrated our approach with a small, but not trivial implementa-
tion of a software product line using MDD. It is available for download at
http://gts.inf.um.es/age.

Regarding future work, an interesting issue to be studied is whether it is pos-
sible to achieve external transformation composition using these approaches. We
are studying how to “connect” different languages by means of trace information.
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Abstract. The realization of model-driven software development re-
quires effective techniques for implementing code generators. In this pa-
per, we present a case study of code generation by model transformation
with Stratego, a high-level transformation language based on the par-
adigm of rewrite rules with programmable strategies that integrates
model-to-model, model-to-code, and code-to-code transformations. The
use of concrete object syntax guarantees syntactic correctness of code pat-
terns, and enables the subsequent transformation of generated code. The
composability of strategies supports two dimensions of transformation
modularity. Vertical modularity is achieved by designing a generator as
a pipeline of model-to-model transformations that gradually transforms
a high-level input model to an implementation. Horizontal modularity
is achieved by supporting the definition of plugins which implement all
aspects of a language feature. We discuss the application of these tech-
niques in the implementation of WebDSL, a domain-specific language for
dynamic web applications with a rich data model.

1 Introduction

Model-driven software development aims at improving productivity and main-
tainability of software by raising the level of abstraction from source code in a
general purpose language to high-level, domain-specific models such that devel-
opers can concentrate on application logic rather than the accidental complexity
of low-level implementation details. The essence of the approach is to shift the
knowledge about these implementation details from the minds of programmers
to the templates of code generators that automatically translate models into im-
plementations. Since the code generators themselves need to be developed and
maintained as well, effective languages and tools for implementing generators are
crucial for realizing model-driven software development. Many paradigms and
technologies for transformation and generation are under development. In order
to compare the various proposals, large scale case studies are needed. To this
end we are developing WebDSL, a domain-specific language (DSL) for modeling
dynamic web applications with a rich data model. In earlier work we described
the development of WebDSL as a case study in domain-specific language engi-
neering, i.e. a method to find the design of a new DSL [24].
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In this paper, we discuss a case study in code generation by model transforma-
tion, an approach to the organization of DSL implementations that we use in the
implementation of WebDSL. We have implemented the approach with the Strat-
ego/XT program transformation system [23,5]. Stratego is a high-level transfor-
mation language that integrates model-to-model, model-to-code, and code-to-
code transformations. The language provides rewrite rules for the definition of
basic transformations, and programmable strategies for building complex trans-
formations that control the application of rules. The use of concrete object syn-
tax [22] in the definition of transformation rules improves the readability of rules,
guarantees syntactic correctness of code patterns, and supports the subsequent
transformation of generated code, which is not the case for text-based template
engines such as Velocity [19] or xPand [25].

The composability of strategies supports two dimensions of transformation
modularity used to realize separation of concerns in DSL implementations. First,
vertical modularization is used to reduce the semantic gap between input and
output model. Rather than directly generating code from the input model, the
generator is constructed as a pipeline of model-to-model transformations that
gradually transform a high-level input model to a low-level implementation
model. Since even the generated code has a structured model representation
to which transformations can be applied, any restrictions in modularity of the
target language can be alleviated by extending it with new constructs to sup-
port better modularity. For example, we have created an extension of Java with
partial classes, interface extraction, and name generation in order to simplify
code generation rules.

Secondly, the approach supports horizontal modularization, that is, the sep-
arate definition of all transformations for a single language construct. This is
the basis for meta-model extensibility through generator extensibility. The basic
transformation pipeline provides an implementation for a base language. Exten-
sions to the base language are implemented as plug-ins that extend the basic
pipeline. Combining horizontal and vertical extensibility makes it possible to
implement new domain-specific abstractions as plug-ins to the base language.

In the next section we give a brief introduction to WebDSL and the architec-
ture of its implementation. In the rest of the paper we discuss the core ideas of
the code generation by model transformation approach, i.e., code generation by
rewriting (Section 3), model-to-model transformations to reduce input models
to implementation models (Section 4), the role of semantic analyses and an-
notations (Section 5), and modularity and extensibility of the transformations
(Section 6). We compare the approach to related work in Section 7.

2 WebDSL

WebDSL is a domain-specific language for the implementation of dynamic web
applications with a rich data model. The language provides sub-languages for
the specification of data models and for the definition of custom pages for viewing
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entity Blog {
title :: String (name)
entries <> List<BlogEntry>

}

entity BlogEntry {
blog -> Blog

(inverse=Blog.entries)
title :: String (name)
author -> User
created :: Date
content :: WikiText

}

define view page blog(b : Blog) {
main()
title{ text(b.title) }
define body() {

section{
header{ output(b) }
for(entry : BlogEntry in b.entries

order by entry.created desc) {
section {
header { output(entry) }
par{ "by " output(entry.author)

" at " output(entry.created) }
par{ output(entry.content) } } } } } }

Fig. 1. Example WebDSL data model and page definition

and editing objects in the data model. Fig. 1 illustrates this by means of a data
model and view page for a blogging application.

The data model introduces entity definitions (e.g., Blog, BlogEntry), con-
sisting of properties with a name and a type. Types of properties are either
value types (indicated by ::) or associations to other entities defined in the
data model. Value types are basic data types such as String and Date, but
also domain-specific types such as WikiText that carry additional functionality.
Associations are composite (the referrer owns the object, indicated by <>) or
referential (the object may be shared, indicated by ->). The inverse annota-
tion on a property declares a relation with automatic synchronization of two
properties.

Page definitions consist of the name of the page, the names and types of the
objects used as parameters, and a presentation of the data contained in the pa-
rameter objects. For example, the blog(b : Blog) definition in Fig. 1 creates a
page showing all blog entries for blog b. WebDSL provides basic markup opera-
tors such as section, header, and list for defining the structure of a page. Data
from the object parameters (and the objects they refer to) are injected in the
page by data access operations such as output. Collections of data can be pre-
sented using the iterator construct for, which can filter and sort the elements of
a collection. It is also possible to present content conditionally on some property
of an object, for example, whether the user has the right access control permis-
sions. User-defined templates allow the developer to define reusable chunks of
WebDSL code. For example, the main() template used in Fig. 1 defines a general
set-up for the page (navigation sidebars and menus) that is shared among many
pages of the application. Finally, WebDSL supports separation of concerns by
means of a module mechanism, and a separate sub-language for access control,
which is beyond the scope of this paper.

The architecture of the WebDSL generator follows the four-level model orga-
nization of Bézivin [3] as illustrated in Fig. 2. At the M3 level we find the SDF
metametamodel, which is the grammar of the Syntax Definition Formalism SDF,
which is defined in (and thus conforms to) itself [21]. At the M2 level we find
the WebDSL meta-model, i.e., the grammar of WebDSL defined in SDF. At the
M1 level we find WebDSL models of web applications, consisting of entity and
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page definitions. At the M0 level we find the actual web applications consisting
of Java classes and XHTML pages, which represent the models at the M1 level.

Fig. 2. Organization of models and
artifacts of the WebDSL generator

In the implementation of WebDSL that we
have realized [24], the M0 systems are based
upon the Java/Seam architecture, consist-
ing of high-level application frameworks,
such as the Java Persistence API (JPA),
JavaServer Faces (JSF), and the Seam web
framework. For each entity definition, a cor-
responding entity class is generated with
fields, getters, and setters for the properties
of the entity, annotated for object-relational
mapping according to the JPA. For each
page definition, a JSF XHTML page, a
Seam Java bean class, and an accompany-
ing interface are generated. In the following
sections we discuss the organization of the
generator as a pipeline of model-to-model
transformations, and the techniques used to
realize these transformations. The transfor-
mations are expressed in the Stratego trans-
formation language [23,5], which is based on
the paradigm of rewrite rules with program-
mable rewriting strategies.

3 Code Generation by Rewriting

WebDSL is a textual, domain-specific language and its M2 meta-model is a
grammar describing the valid sentences of that language. From the grammar, we
automatically generate a parser, which transforms the textual representation of
a model to an abstract syntax tree (AST). The AST conforms to a regular tree
grammar, another M2 meta-model that defines a set of valid trees, and which is
obtained automatically from the grammar. All subsequent transformations are
applied to the AST corresponding to the textual representation of the model.
The WebDSL generator transforms high-level models into Java code and XML
files. These target languages are also described by a grammar and a derived
abstract syntax definition. All transformations are expressed in Stratego, which
can apply transformations to any models with an abstract syntax definition.

webdsl-to-seam =
import-modules
; generate-code
; output-generated-files

The WebDSL generator can be decomposed into
three main steps, which can be expressed and com-
bined in Stratego as a strategy. A strategy is essen-
tially a function that controls the order of application
of more basic transformations. The basic strategy webdsl-to-seam is defined as
a sequence of three steps, which are applied to the input model. First, starting
with the main module of an application, all imported modules are parsed. Next,
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the combined model is transformed to a model of the generated Java and XML
files. Finally, these code models are written to files and packaged for deployment
to a web server. In later sections we will discuss refinements of this basic strategy.

3.1 Code Generation Rules

parameter-to-bean-property :
|[ x : srt ]| ->
<emit-java-code> |[

@Partial class x_PageBean {
@RequestParameter("~x") private Long x #Id;
private t _#x ;
public void set#x (t x ) { _#x = x ; }
public t get#x () { return x ; }
@Partial void initializeParameter() { bstm* }

}
]|
where bstm* := <parameter-to-initialization>

; t := <defined-java-type> srt
; x_PageBean := <CurrentPageBean>

Fig. 3. Rewrite rule transforming WebDSL source
to Java target code using concrete syntax

The elementary transforma-
tions that are combined by
strategies are rewrite rules of the
form L : p1->p2 where s. The
name L of a rule can be used to
invoke it in a strategy. When
applied, the left-hand side pat-
tern p1 is matched against the
subject term, binding any vari-
ables in the pattern to corre-
sponding sub-terms of the sub-
ject term. When the match suc-
ceeds, and the condition s suc-
ceeds as well, the subject term
is replaced with the instantia-
tion of the right-hand side pattern p2. Rewrite rules are used for code genera-
tion by translating a fragment of the source language on the left-hand side to
a fragment of the target language on the right-hand side. This is illustrated in
Fig. 3 with a rewrite rule that rewrites a WebDSL page parameter, such as b :
Blog in the page definition of Fig. 1, into a fragment of Java code that includes
fields, accessors, and initialization code implementing the processing of a page
parameter in a Seam page bean.

Rewrite rules in Stratego can make use of the concrete syntax of the trans-
formed language [22] using the |[ and ]| quotation construct. For example, a
Java return statement can be expressed as |[ return true; ]|, rather than
the abstract syntax form Return(Some(Lit(True()))). A language’s concrete
syntax is usually more concise and more familiar than its abstract syntax. The
Stratego compiler parses concrete syntax quotations at compile-time, checking
their syntax and replacing them with equivalent abstract syntax fragments.

Using meta-variables in concrete syntax fragments (written in italics), the
rule in Fig. 3 matches any parameter x of type (or “sort”) srt . In the where
clause of the rule, a number of meta-variables are set for use in the produced
Java fragment. For instance, t is set to the Java equivalent of WebDSL type
srt , and x PageBean is set to the current page bean.

In Stratego, the application of rewrite rules is under the control of program-
mable strategies, such that transformations can be explicitly staged. For example,
the WebDSL generate-code transformation strategy uses a top-down traver-
sal to visit all model elements for which code needs to be generated. This is
expressed using the generic topdown traversal strategy as follows:

generate-code = topdown(try(argument-to-bean-property <+ ...))
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Different rewrite rules are combined using the <+ operator, which tries to apply
each rule in the given order. Using the try strategy, the generate-code strategy
will try to apply these rules, but will not fail if no rules are applicable, so that
the topdown traversal will proceed even if none of the rules match.

3.2 Transforming Generated Code

In Stratego, generated code has a structured representation just like the input
model of the generator — as opposed to the flat textual representation produced
by traditional template engines. Therefore, additional transformations can be ap-
plied to generated code. This enables the use of an enriched version of the target
language in generation, reducing the semantic gap between model and code, and
thus simplifying the generator by capturing common generation patterns, and
ensuring separation of concerns in their implementation.

For instance, in Fig. 3, the generated Java code takes the form of a partial
class. That is, the rule defines only part of the generated class, as indicated by the
@Partial annotation. In a later stage of the code generation process, all partial
class fragments for the same class are merged. This approach eliminates the need
for maintaining an aggregated model at this stage of the generator. In particular,
the generated fragment is not used locally to replace the model fragment. Rather,
in this case using emit-java-code, all code fragments are collected centrally
for later assembly. Similarly, the generated initializeParameter method is a
@Partial method, so that it can be extended for other page parameters. The
order in which the statements of partial methods are merged is unspecified, thus
no dependencies between statements in different definitions of a partial method
should exist, an invariant that should be maintained by the developer of the
generator.

Another extension of Java that is designed to simplify code generation, is the
# identifier concatenation operator. It is used to generate the names of accessors,
field, and classes that are commonly built up from different parts. For example,
for accessors, get#x is used to generate a ‘get’ accessor for meta-variable x . In
a later stage of the generator, such concatenations are evaluated and capitalized
according to the Java conventions (e.g., using camelCase for method names).

Generated page bean classes require a matching interface definition. This in-
terface is automatically generated in a separate generation stage: after merging
all partial classes, such an interface is extracted from each generated class an-
notated with a @RequiresInterface annotation.

4 Semantic Analysis and Annotation

webdsl-to-seam =
import-modules
; typecheck
; generate-code
; output-generated-files

Not all models that conform to the WebDSL syntax
are valid. For instance, identifiers may refer to a non-
existing entity, property, or function. Such models vi-
olate the static semantic constraints of WebDSL. A
separate typechecking stage of the generator checks these constraints, and re-
ports any violations found. The semantic information gathered at this stage is
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also used to provide context information for other transformations, as we will
discuss in the next section.

typecheck-variable :
Var(x ) -> Var(x ){Type(t)}
where if not(t := <TypeOf> x ) then

typecheck-error(|
["Undeclared variable ",x ," referenced"])

end
declare-page-argument :

|[ x : srt ]| -> |[ x : srt ]|
where if not(<TypeExists> srt) then

typecheck-error(|
["Illegal type ",srt," for parameter ",x ])

else
rules( TypeOf : x -> srt )

end

Fig. 4. Typechecking with dynamic rules

Typechecking involves a
context-sensitive global-to-
local transformation in which
type information is propa-
gated from the declaration site
of an identifier to its use sites.
Stratego provides support for
such transformations through
its mechanism of dynamic
rewrite rules [6], which allows
the definition of new rewrite
rules at run-time. For example,
the typecheck-variable rule
in Fig. 4 defines the checking
of the use of a variable with abstract syntax Var(x ). The dynamic rule TypeOf
is used to rewrite the identifier x to its type t . If this fails an error is reported.
Otherwise, the variable is annotated with its type. The TypeOf rule is defined
when a variable declaration, which may be a page parameter or a local variable,
is encountered. For example, the declare-page-argument rule checks that the
type used in the declaration of a page parameter is a valid type (using the
TypeExists dynamic rule). If the type does exist, the rules construct is used
to define a new instance of the TypeOf rule specific to the values of x and srt
encountered in the declaration. Dynamic rule scopes are used to limit the scope
of rules to the traversal of a fragment of the model. For example, the TypeOf rule
for a page parameter is valid only during the traversal of that page. Similarly,
functions and for loops also define a local scope.

5 Model-to-Model Transformations

webdsl-to-seam =
import-modules
; typecheck
; normalize-syntax
; expand-page-templates
; derive
; merge-emitted-decs
; generate-code
; merge-partial-classes
; output-generated-files

Extending the target language helps in simplifying the
translation from models to code. However, directly
translating input models to code may still require
complex transformations, in particular, when adding
higher-level abstractions. Instead of a complex model-
to-code translation, the WebDSL generator pipeline
consists of several stages of model-to-model transfor-
mations that reduce models in the full WebDSL lan-
guage to core WebDSL, which is domain-specific, yet relatively close to the
target platform. As a result, only normalized core language constructs have to
be transformed to the target platform during code generation, which improves
retargetability. All the abstractions built on top of the core language can be
ignored by the back-end. Staging the transformations in a pipeline is a case
of vertical modularity; each stage is a separately defined transformation that is
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only concerned with one aspect of the code generator. In this section we illus-
trate this with a discussion of typical transformations applied in such a pipeline:
syntactic normalization, and the implementation of user-defined and generative
abstractions. We also discuss the problem of preserving or reproducing the an-
notations produced by semantic analyses.

5.1 Syntactic Normalization

NormalizeSyntax :
|[ text(e1 ,e2 ,e* ){} elem* ]| ->
|[ text(e1 ) text(e2 ,e* ){} elem* ]|

NormalizeSyntax :
|[ for(x : srt in e1

order by e2 ){elem*} ]| ->
|[ for(x : srt in e1

where true
order by e2 ){elem*} ]|

normalize-syntax =
topdown(repeat(NormalizeSyntax))

Fig. 5. Local-to-local syntactic nor-
malization rules

Syntactic abstractions, also known as syntac-
tic sugar, provide new language constructs
that support expression of functionality that
is already provided by the base language in a
more compact manner. The implementation
of such abstractions can often be realized by
means of simple local-to-local transformation
rules (Fig. 5), but sometimes, more complex
local-to-global rules (Fig. 7) are needed.

A local-to-local rewrite replaces a model
fragment with another without using or pro-
ducing other parts of the model, as illustrated
by the examples in Fig. 5. The first rule normalizes applications of the text con-
struct with multiple arguments to a list of applications of textwith a single argu-
ment. More precisely, it splits off the first argument of a multi-argument applica-
tion. Repeated application of the rule ensures that only singleton applications re-
main. For example, the application text(blog.title, ": ", blog.author) is
reduced to text(blog.title) text(": ") text(blog.author). Similarly, the
second rule rewrites an occurrence of the for statement without a where clause
to one with the universally valid where true clause. These normalizations ensure
that later stages of the code generator only need to deal with one syntactic vari-
ant, i.e., singleton applications of text, and for statements with a where clause.
The application of normalization rules is controlled by the normalize-syntax
strategy, which performs a top-down traversal, which repeatedly applies rules to
each element.

[e.title
for(e : BlogEntry in b.entries

where e.created > date
order by e.created desc)]

globals { function lcf_33
(b : Blog, date : Date) {
var y : List<String> := [];
for(e : BlogEntry in b.entries

where e.created > date
order by e.created desc)

{ y.add(e.title); } } }

Fig. 6. List comprehension and
implementation

A local-to-global transformation rewrites a lo-
cal element, but also produces elements that
should be placed elsewhere in the model. An ex-
ample of such a transformation is the lifting of list
comprehensions. These provide declarative ma-
nipulations and queries on lists and sets, i.e., a
combined map, filter and sort operation. As an
example, consider the expression in Fig. 6, which
retrieves the list of blog entries created after date,
sorted in reverse chronological order. Such expres-
sions can be computed by means of the for state-
ment of WebDSL, as shown in the second part of
Fig. 6. Statements, however, may not be used as expressions.
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Lift :
|[ [e for(x : srt in e2 where e3 order by e4 )] ]| ->
|[ x_fun(arg*) ]|
where x_fun := <newname> "lcf"

; free-vars := <collect-free-vars> (e ,e2 ,e3 ,e4 )
; param* := <map(build-param)> free-vars
; arg* := <map(build-arg)> free-vars
; <emit-webdsl-dec> |[

globals {
function x_fun(param*) : List<srt> {

var y : List<srt> := [];
for(x : srt in e2 where e3 order by e4 )
{ y.add(e ); }

return y; } } ]|

Fig. 7. Local-to-global syntactic normalization

The transformation in
Fig. 7 lifts a list compre-
hension to a new global
function definition and re-
places the expression with a
call to the generated func-
tion The free variables of
the list comprehension ex-
pression are extracted and
passed as parameters to
the generated function. The
emit-webdsl-dec rule takes
the newly defined function
and stores it in a dynamic rule. Declarations emitted in this manner are merged
into the model during the merge-emitted-decs generator stage. (A pattern also
applied in the form of partial classes during code generation).

In a global-to-local transformation, constructs are locally transformed using
(global) context information. The typechecking rules in the previous section
are an example. Another example is the expansion (inlining) of user-defined
templates by the expand-page-templates strategy. It collects top-level and local
template definitions and replaces calls to these template definitions by their
bodies, substituting actual parameters for formal parameters. This mechanism
allows WebDSL developers to capture reoccurring patterns in page definitions
for reuse.

5.2 Generative Abstractions

DeriveInput :
|[ input(e){} ]| ->
|[ select(s : srt, "Select", e) ]|
where SimpleSort(srt) := <get-type> e

; <defined-entity> SimpleSort(srt)
DeriveOutput :
|[ output(e){} ]| ->
|[ navigate(x_view(e)){text(e.name)} ]|
where SimpleSort(s) := <get-type> e

; <defined-entity> SimpleSort(s)
; x_view := <view-page-for-entity> s

Fig. 8. Type-based derivation

Generative abstractions are abstractions
that explicitly invoke the generator to
derive some functionality. Here we dis-
cuss an example of type-based deriva-
tion. Consider the edit page in Fig. 9,
which provides an interface for edit-
ing the values of the properties of a
BlogEntry. Depending on the type of
the property, a different interface ele-
ment is used; a simple string input box
for title, a select box for author, and
a text area for content. The definition of the edit page in Fig. 9 sim-
ply invokes input(e.prop) to declare an edit interface for property prop .
The specific implementation for each input type is derived from the type
of the expression. For example, the DeriveInput rule in Fig. 8 derives for
an input of a property with a ‘defined entity’ type a select box for that
type. Similarly, the DeriveOutput rule derives a rendering mechanism for
an expression based on its type. For example, the use of output(e.author)
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define page editBlogEntry(e : BlogEntry) {
section {

header{"Edit blog entry "output(e.title)}
form { table {

row { "Title:" input(e.title) }
row { "Author:" input(e.author) }
row { "Content:" input(e.content) } }

action("Save", save())
action save() {

e.save(); return blogEntry(e);} } } }

define page editBlogEntry(e : BlogEntry) {
derive editPage for e from BlogEntry }

Fig. 9. Screenshot of an edit page with low-level and high-level page definition

in a page definition results in a link (navigate) to the view page for the object
that is referred to by e.author. The e.author.name property of that object is
used as anchor for the link.

The next step in generative abstraction is the generation of complete page
definitions. The structure of an edit page can often be fairly straightforward, say
a table with a row for each property with an appropriate input interface. Such a

derive-page :
|[ derive editPage for x from srt ]| ->
|[ section{ header{"Edit " srt " " text(x.name)}

form { table { row* }
action("Save", save()) } }

action save() {
x.save(); return x_view(x ); } ]|

where x_view := <decapitalize-string> x
; prop* := <entity-properties> srt
; row* := <map(derive-edit-row(|x))> prop*

derive-edit-row(|x) :
|[y k srt (anno*)]| -> |[row{x_text input(x.y )}]|
where x_text := <concat-strings> [x , ": "]

Fig. 10. Rules to derive edit page elements

structure can be derived auto-
matically from the declaration
of the entity. The implementa-
tion of editBlogEntry in the
lower right of Fig. 9 uses the
derive construct to automat-
ically generate the implemen-
tation of the body of the edit
page from the BlogEntry en-
tity. The derive-page rule in
Fig. 10 implements this deriva-
tion. The rows of the table
are generated by a map of the
derive-edit-row transforma-
tion over the properties of the entity srt , which are obtained by applying the
dynamic rule entity-properties.

5.3 Restoring Annotations

webdsl-to-seam =
import-modules ; typecheck
; normalize-syntax ; typecheck
; expand-page-templates ; typecheck
; derive ; typecheck
; merge-emitted-decs
; generate-code
; merge-partial-classes
; output-generated-files

As a model undergoes transformation, type
annotations may be lost. Rewrite rules may
introduce new variables or entire fragments
of code that do not include type annota-
tions. For example, the derive-edit-row
rule in Fig. 10 does not attach a type an-
notation to the expression of the input el-
ement it generates. Defining the rules to create correct type annotations would
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be quite tedious and would require duplication of the knowledge encapsulated
in the typechecking rules. Following the principle of separation of concerns, the
typechecking rules are used to introduce type annotations in freshly generated
code. A question then is what the granularity of applying typechecking rules
should be. Since the type checker is currently defined as a complete traversal
over the model, reapplying the type checker after each application of a trans-
formation rule would be prohibitive. Instead, we take a rather course grained
approach, re-applying the type checker after each transformation stage, as illus-
trated in the strategy above. This strategy requires these stages to be designed
such that no transformation opportunities are missed by missing type annota-
tions. Combination of analysis and transformation in an efficient way is a topic
for research; it would be desirable to automatically infer an optimal incremental
analysis strategy.

6 Transformation Modularity and Extensibility

Derive :
|[ input(e ){} ]| -> |[ inputDate(e ){} ]|
where SimpleSort("Date") := <type-of> e

Derive :
|[ output(e ){} ]| -> |[ outputDate(e){} ]|
where SimpleSort("Date") := <type-of> e

GenerateXML :
.. generate xhtml controls for
inputDate and outputDate ...

GenerateJavaExpr :
|[ Date(d ) ]| ->
|[ org.webdsl.tools.Utils.parseDate(e1) ]|
where e1 := <expression-to-java> d

GenerateJavaExpr :
|[ now() ]| -> |[ new java.util.Date() ]|

Fig. 11. Modular definition of the primi-
tive type Date

Since its conception, the WebDSL gen-
erator has grown more and more com-
plex. Initially, the generator was con-
structed in a centralized fashion, with
a single “God rule” associated with
each generated artifact. Much like a
“God class”, an anti-pattern in object-
oriented programming, such a God
rule dispatches a large number of
smaller transformation rules to gener-
ate a monolithic target artifact (e.g.,
a Java class). As new language exten-
sions were added, these rules grew to a
size that they would no longer fit on a
single screen. As such, this pattern was
quickly identified as a code smell that
hindered the extensibility and main-
tainability of the generator.

The employment of God rules was the unfortunate result of the structure
of the target metamodel: Java provides only limited means of modularization
of classes. Other platforms, such as C#, offer partial classes (but not partial
methods), that can help further subdivide classes into smaller units. The lack
of such a construct makes it difficult to decompose rewrite rules that generate
large classes. This platform limitation can be resolved by extension of the target
language, in the form of partial classes and methods. In a separate generator
stage (expand-partial-classes), all partial classes and methods are merged
for processing with a regular Java compiler.

To support both modularity and extensibility of transformation definitions,
Stratego provides the notion of strategy and rule definition extension. Strategies
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and rules can be extended by declaring a new instance with the same name.
All such definitions are merged together, and evaluated in an unspecified order
when invoked, until one of the definitions succeeds or all fail. The different stages
of the generator make use of this facility, by defining rules that are extended in
separate transformation modules. For example, Fig. 11 shows an implementation
of an extension of WebDSL with a Date value type that makes use of this facility.
It extends the definition of the Derive rule used in the derivation stage, and a

Fig. 12. Dimensions of
modularity

number of rules in the code generation stage. (Not
shown here are the mappings to the Java Date type and
the corresponding JPA annotations.) Another, more
elaborate extension that has been implemented is the
addition of access control constraints to the model,
which is outside the context of this paper.

As seen in the preceding section, transformations for
an aspect of the generator can be divided into differ-
ent stages. This vertical modularity helps in separation
of concerns and retargetability. Further modularity can
be achieved in a second dimension, by subdividing rules
that operate on a single level. This is a form of hori-
zontal modularity and is supported by rule definition
extension and generation of partial artifacts. Horizon-
tal modularity is essential for the extensibility of the
generator. Fig. 12 illustrates the two dimensions of the transformation architec-
ture. Highlighted is a horizontal extension of the generator (such as the Date
extension), which consists of a number of vertical transformation stages.

The definition extension feature of Stratego elegantly combines rewrite rules
that operate on different elements of a source model. However, it will only eval-
uate a single rule if multiple rules are applicable to the same element (e.g., a
page parameter that has different rules to generate Java and JSF code for the
same page parameter). While Stratego does not offer a direct facility for this, we
build upon the notion of strategy extension to accomplish this, as shown below.

GenerateCode =
page-to-java; fail

GenerateCode =
parameter-to-bean-property; fail

By use of a fail statement at the end of
each definition of GenerateCode, all alterna-
tives will “fail”, ensuring each will be tried.
The result of the applications can then be collected as a side effect using dynamic
rules (e.g., using emit-java-code in Fig. 3). This pattern efficiently achieves the
desired composition of definitions. Direct language support and accompanying
compile-time checks for this within Stratego could prove useful, and could pre-
vent subtle bugs that may occur if an extension programmer now forgets to
include fail at the end of a definition, or mistypes its name.

7 Discussion

Since the advent of model-driven engineering, several modeling methodologies
and model transformation approaches have been introduced. A classification of
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a number of such systems is given in [7]. Various MDE toolkits provide model
transformation and code generation facilities, many of which are based on OMG’s
MDA (openArchitectureWare [8], AMMA [12], AndroMDA [2]). These generally
consist of a metamodeling language (MOF [16], Ecore, KM3 [9]), model trans-
formation language (ATL [11], xTend [8]), code generation language (TCS [10],
xPand [25], Velocity [19]), and a language to define the sequence of transforma-
tions (oAW’s workflow language, Groovy scripting language).

Model management can be based on any algebraic datastructure such as trees,
graphs, hypergraphs, or categories [4]. Most current MDE toolkits are based on
graphs, while Stratego/XT uses trees. By combining trees with dynamic rules,
graphs can be represented in Stratego, which makes it possible to model context-
sensitive information that cannot easily be expressed using just trees.

Consistency management is an important issue in MDE [14]. It is possible
to keep models consistent as part of transformations, but in practice this also
tends to make transformations much more complex. In our approach we chose
to separate the concern of typechecking from the model transformation at hand.
The drawback of this approach is that models need to be reanalyzed after apply-
ing transformations. Incremental analysis and transformation techniques are an
important research topic. By analyzing models before any transformations are
performed, we detect inconsistencies early and can report them to the developer.
However, problems that occur while the system is running turn out to be difficult
to trace back to errors in the model. In the future, we intend to investigate the
feasibility of origin tracking [20] to achieve code-to-model traceability.

Transformation languages such as ATL and xTend allow transformations to be
separated in modules, similarly to Stratego. However, extensibility of transfor-
mations is more difficult to realize, especially if transformation extensions have to
operate on the same modeling elements, which is forbidden in ATL, for instance.
In existing MDE toolkits, vertical modularity in transformations is often real-
ized using a separate workflow language, such as the oAW workflow language and
Groovy in AndroMDA. Stratego not only integrates model-to-model and model-
to-code transformations, but also the overall generator workflow. Thus, a single
transformation composition language is used for micro and macro compositions.

Some approaches [26] generate partial artifacts through the use of partial
classes, which are then combined by the regular compiler for the target language.
However, these approaches only work if the target language supports these fea-
tures. In our approach, code is treated as a model, while most MDE approaches
generate code through the use of textual template engines, which produce plain
text, not amenable to further transformation. By treating generated code as a
model, it is possible to extend the target language and add convenient language
features such as partial classes and methods, and interface extraction.

Many (visual) languages for modeling web applications have been developed,
including WebML [13], MIDAS [17], OOWS [15], Netsilon [18], and UWE [1].
UWE generates JSP code via a model representation conforming to a JSP meta-
model. Netsilon uses an intermediate language for code generation in order to
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increase retargetability of the generator. The other approaches use textual, usu-
ally template-based code generation.

8 Conclusions

In this paper we presented a case study of the code generation by model trans-
formation approach applied in the development of WebDSL. WebDSL is a sub-
stantial DSL code generator, consisting of a total of 1300 rules and strategies
(see Fig. 13). It has been employed for a number of web applications, most sig-
nificantly the webdsl.org project website (which is currently used in production).
The site features a generic project management interface, including a wiki-based
documentation system, an issue tracker, blogs, and discussion forums. Fig. 13
gives an indication of the scale of the project: it is defined using 146 page and
entity definitions, written in a total of 2366 lines of text. The code generated from
these definitions spans nearly 80.000 lines of code. Even if this is not the volume
of code one would produce manually for such an application, it seems justified
to conclude that an order of magnitude reduction in code can be achieved. As
such, we believe that employment of the WebDSL generator enables a significant
gain in productivity, resulting from the high level of abstraction it provides.

134 Modeling elements
103 core model elements

1298 Rules and Strategies
459 in code generation stage
318 in model-to-model stage
277 in typechecking
126 rules for access control

webdsl.org application
2366 lines in webdsl.org model

38395 lines of generated Java code
39216 lines of generated JSF code

Fig. 13. WebDSL statistics

We have shown how a pipeline of model-
to-model transformations helps achieve high-
level abstractions in models. By apply-
ing two-dimensional modularity—vertically
in stages and horizontally in a core language
and extensions—we ensure maintainability
and extensibility of the generator. We have
also demonstrated the benefits of generating
models, rather than text, and how this tech-
nique aids horizontal modularity. The modu-
lar design of WebDSL provides a solid foun-
dation for further research into higher-level
domain-specific abstractions for web-based
software systems. The approach should also
be usable in the implementation of other
DSLs. The approach can be further improved by research into incrementality
of analysis and transformations, and the application of origin tracking.
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Abstract. Computational reflection is a well known technique applied in many 
existing programming languages ranging from functional to object-oriented 
languages. In this paper we study the possibilities and benefits of introducing 
and using reflection in rule-based model transformation languages. The paper 
identifies some language abstractions to achieve structural and behavioral re-
flection. Every reflective feature is motivated by examples of problems derived 
from the experience with currently used transformation languages. Example so-
lutions are given by using an experimental language with reflective capabilities.  

The paper also outlines possible implementation strategies for adding reflec-
tion to a language and discusses their advantages and disadvantages.  

Keywords: reflection, model transformation languages, MDE, MISTRAL. 

1   Introduction 

Computational reflection is a technique applied in many programming languages to 
solve non-trivial problems. Usually, adding reflective capabilities to a language is 
motivated by the need to improve certain quality attributes in the programs such as 
run-time adaptability, long-term maintainability, modularity and composability, and 
others. 

Reflection may be applied to languages based on different paradigms. It was first 
proposed by Brian Smith in the context of Lisp [21] and later was successfully intro-
duced in object-oriented languages [16] Smalltalk, CLOS, Java [3], etc. 

The problems that may be tackled by using reflection also span a wide spectrum. It 
was shown that debugging and tracing may benefit from reflective techniques [15]. 
Composition Filters approach to object composition [1] is based on a restricted reflec-
tion on message passing between objects. The application of reflection in aspect-
oriented programming is well studied in number of works [20, 22]. A limited form of 
reflection (introspection) was introduced in the Java language. The reflective API 
available in ECore [2] allows building generic model editors. 

The ability of reflection to be applied across diverse types of languages to solve a 
significant number of problems is appealing. The quality characteristics that a re-
flective program may expose are often required in model transformation specifica-
tions. Therefore, it is worth studying how reflection may be applied in current 
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model transformation languages in the context of Model Driven Engineering 
(MDE). More importantly, we look for problems that are difficult to solve with the 
available techniques in the majority of these languages. 

In this paper we study the possibilities for adding reflection to an experimental 
model transformation language called MISTRAL [11]. We are driven by a set of 
problems encountered in our experience with current transformation languages. The 
introduced reflective features aim at solving these problems in a concise manner that 
improves the quality of the solution. The most important problems we address are: 
achieving flexible trace generation in model transformations, improving change im-
pact analysis and change propagation when source or target models change, and 
achieving better composability and adaptability of existing transformation specifica-
tions. We also aim at a conceptual solution that is applicable to both imperative and 
declarative transformation languages. 

We present a set of features in the structure and in the behavior of transformation 
programs that may be exposed to metaprograms written on the base of metainterfaces 
on these features. A set of examples is presented that illustrate the motivation and the 
applicability of the proposed reflective features. 

The paper is organized as follows. Section 2 gives background knowledge about 
reflection and how reflection can be applied on model transformation languages. The 
identified features are included and implemented in an experimental model transfor-
mation language named MISTRAL. The language is presented in Section 3. Section 4 
presents several examples of application of reflection. Section 5 discusses various 
implementation options to introduce reflection. Section 6 concludes the paper and 
outlines future work.   

2   Identifying Reflection Features in Transformation Languages 

This section gives a short theoretical overview on reflection and the relevant concepts. 
We apply the theoretical framework described in section 2.1 to the domain of model 
transformation languages. We make assumptions about the structures and operations 
available in a model transformation execution environment that make our approach 
general enough and applicable to a number of languages (section 2.2). Section 2.3 
gives a two-dimensional space that serves as a guiding framework for designing re-
flective infrastructures. 

2.1   Background 

Reflection is a capability to perform computation about another computation. Usually 
a computation is a result of executing a program written in a programming language. 
A running program may expose some aspects of its execution environment via some 
interface. It is said that the running program resides at the base level of computation 
and is called base program. Another program may be written that accesses and even-
tually changes the exposed elements of the execution environment for the base  
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program. Such a program is called metaprogram and the level of computation is 
called metalevel1.   

The relation between base and metalevel is causal [16]. This means that changes in 
the base level are accessible in the metalevel and changes made in the metalevel affect 
the base level. 

There are two orthogonal classification schemes for reflection. They are based on 
the ability of the metaprogram to access various aspects of the base program and the 
ability to read and alter the base level. If the metaprogram is capable of accessing the 
structure of the base program then it performs structural reflection. If the metapro-
gram accesses a representation of the runtime behavior of the base program then it 
performs behavioral reflection. 

The ability of the metaprogram to read data about the execution environment and 
the program is known as introspection. The ability to alter the execution environment 
is called intercession. Intercession may affect both the structural part and the behav-
ioral part of the base level. Concerning the structural part the metaprogram may 
change the structure of the running program. Concerning the behavioral part the 
metaprogram may change the runtime structures of the running program and change 
its behavior at run time. We study all types of reflection: structural, behavioral, intro-
spection, and intercession. 

2.2   Towards a Common Model of Execution of Model Transformation  
        Programs 

The success of applying reflection in object-oriented languages is due to the possibil-
ity to find a common computational model valid for a large set of OO languages. The 
computation model consists of objects that exchange messages. The typical represen-
tation of an object-based execution environment includes interfaces to objects and 
representation of messages. 

An important research question in this paper is if it is possible to find such a con-
cise and yet expressive enough computational model for executing model transforma-
tions. We claim that it is possible under certain assumptions. 

We make the following assumptions: 

• The transformation language operates on models that conform to metamodels. 
The transformation language by itself is defined by a metamodel; 

• The language is rule-based. Transformation specification consists of transfor-
mation rules executed on tuples of source elements. Every rule may create new 
elements, update existing elements, and delete elements. Creation and update 
involve setting property values; 

The majority of transformation languages satisfy the assumptions. Usually they 
operate in an ECore or MOF based metamodeling environment. The abstract syntax 
of the language is expressed in a metamodel. Furthermore, transformation rule is the 
most commonly found modular unit that has effects on the model elements. A trans-
formation execution consists of events: executions of transformation rules. Execution 

                                                           
1 The term metalevel used in this paper is different from the same term used to denote a layer in 

a metamodeling architecture. 



202 I. Kurtev 

of a rule involves: identifying matches of the rule source and executing the effects of 
the rule per match. Effects are creation, deletion, and update of model elements. The 
events may occur in various orders. For example, in ATL [6], a declarative transfor-
mation is executed in the following order: matching of all the rules, for every match 
the creation of new elements is executed, property values are assigned. In case of an 
imperative language such as QVT Operational Mappings [19] the order of matching, 
creation, and property value assignment may differ. Regardless the order of events, 
however, the set of event types is stable across the languages. This is our starting 
point for identifying the aspects that should be exposed during a model transformation 
execution. 

2.3   Reflection in the Common Execution Model 

McAffer [17] proposes two approaches for designing the metalevel. The first one 
considers the language elements that should be exposed. This corresponds to identify-
ing the elements used in structural reflection. The second approach considers the 
events observed during the program execution. This corresponds to identifying ele-
ments used in behavioral reflection. 

Clearly, both approaches may be combined. They also span the dimension of intro-
spection/intercession options. The two dimensions usually give us a large solution 
space ranging from a limited structural introspection to a difficult to design and con-
trol behavioral intercession. 

Table 1. Example operations on transformation and rule 

 Structural Behavioral 

In
tr

os
pe

ct
io

n 

Transformation 
• Navigate transformation defini-

tion 
Rule 

• Navigate the rule structure 
• Navigate data related to a rule 

match (source element, created 
target elements) 

Transformation 
• Check the status of the transforma-

tion(started, in execution, executed) 
• Check the currently executed rule 

Rule 
• Check the rules status 
• Check the current match being exe-

cuted 

In
te

rc
es

si
on

 

Transformation 
• Change the transformation at run 

time 
Rule 

• Change the rule structure at run 
time 

 

Transformation 
• Start/stop transformation execution 

Rule 
• Execute rule 
• Mark rule as executed 

We will give an example of possible structures and operations by considering two 
constructs found in transformation languages and the relevant events: transformation 
specification and transformation rule. We place them in a two-dimensional space 
where the first dimension denotes the structural/behavioral dichotomy and the second 
dimension denotes introspection/intercession dichotomy. The space consists of four 
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points shown as cells in Table 1. In each cell we consider transformation and rule 
constructs. Constructs are shown in italic. Below them a bulleted list indicates possi-
ble operations on them. 

Table 1 shows that even for two constructs with only part of the possible opera-
tions we have 12 operations (see the bulleted elements). The implementation of the 
metalevel usually involves intercepting the relevant events in the execution (behav-
ioral introspection) and reification of the relevant data as metaobjects. The term 
metaobject should be interpreted in the broad sense as a data structure (not necessary 
implemented in an OO language). Metaobjects may be queried by the metaprogram, 
may be changed (example of structural intercession), and operations may be applied 
on them that eventually affect the program behavior (behavioral intercession).  

3   MISTRAL: An Experimental Language with Reflective 
     Features 

MISTRAL is initially described in [11] without having a complete execution engine. 
Recently we implemented an experimental interpreter for the language. Here we 
briefly describe the language constructs and their meaning. 

Consider the following code fragment that is used in a transformation for flattening 
class hierarchies in UML class models. Only the identification of attributes of a class 
(including the inherited attributes) is shown. 

 
1.  transformation Flattening 
2.  input s : UML 
3.  output t : UML 
4.  
5.  allAttributesOfRoot ModelElementRule { 
6.    source [class : UML!Class condition{class.extends->isEmpty()}] 
7.    target [attr : Sequence(UML!Attribute) = class.attribute] 
8.  } 
9. 
10. allAttributesOfNonRoot ModelElementRule { 
11.   source [class : UML!Class condition{class.extends->size() > 0}] 
12.   target [attr : Sequence(UML!Attribute) = class.attribute->union( 
13.                    transformation.trace(class.extends->first(), 'attr') 
14.                                            )] 
15. } 

 
A transformation declares a number of input and output models that are assigned to 

a variable typed by the corresponding metamodel (lines 1-3). Output models do not 
exist in advance and are created after the execution of the transformation. The ele-
ments of the input models may be changed. 

Every transformation contains named model element rules (allAttributesOfRoot, 
allAttributesOfNonRoot). Model element rules have a source that is identified by a 
single variable of a given type and an optional condition over the values of the vari-
able. The purpose of a model element rule is to execute actions enumerated in its 
target. Actions are executed for every match of the rule source. Two types of actions 
are supported: instantiation and update (not shown in this sample). Instantiation ac-
tion causes creation of new elements. The types of the elements are types from a 
metamodel and the built-in OCL types. 
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The example code determines the total set of attributes per class including the lo-
cally defined and the inherited attributes. Rule allAttributesOfRoot determines the 
attributes of root classes. The total set of attributes is represented in the target of the 
rule as variable attr of type Sequence. It has an initialization expression. Rule allAt-
tributesOfNonRoot determines the attributes of classes that extend other classes. The 
set of the attributes is the union of the locally defined and the inherited attributes. The 
inherited attributes are obtained by navigating to the parent class and invoking the 
resolution function that returns target elements for a given source. The resolution 
function is called ‘trace’. It accepts two arguments: the source element and the identi-
fier of the target element. An example invocation is given in line 13. 

The current implementation of the language supports rules that match single 
source element. A source element may be matched by multiple rules. Target model 
elements are navigable during the transformation execution. If a slot value of a 
target element is requested but not yet assigned the value will be calculated on de-
mand and assigned. 

MISTRAL is a declarative language. The rule execution order and the action exe-
cution order within a rule are decided by the interpreter at runtime. As explained in 
[11] if a transformation does not change the source model by using update actions the 
transformation execution is deterministic. 

During the design of the metalevel of MISTRAL it was difficult to decide on lan-
guage constructs and execution events that should be exposed to the metacomputa-
tions. One extreme approach is to include a very rich set covering most aspects of the 
language definition and execution. Another approach is to select a set of concrete 
problems that need to be solved with reflection and to choose only the necessary fea-
tures. We chose the second approach since it is problem driven and gives a clear mo-
tivation in the metalevel design. We performed 4 case studies all implemented with 
various forms of reflection. Three of them are detailed in Section 4. In this section we 
give the language constructs and execution events accessible in the metalevel. 

Language constructs: 

• transformation definition; 
• rule definition; 
Execution events: 
• rule execution on a particular element; 
• action execution (only instantiation execution is supported); 
• slot assignment; 
• model element slot access; 
• invocation of resolution algorithm by calling trace function; 
 
We placed every construct and event in the two-dimensional space according to 

Table 1. Partial results are shown in Table 2. 
Table 2 shows that we do not support any structural intercession, i.e. the transforma-

tion specification cannot be changed at runtime. On the other hand transformation defi-
nition as a whole and every rule can be navigated and read (structural introspection). 
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Table 2. Reflective features in MISTRAL 

 Structural Behavioral 

In
tr

os
pe

ct
io

n 

Transformation definition 
• Navigate transformation defini-

tion 
Rule definition 

• Navigate the rule structure 
Rule execution 
Action execution 
Invocation of resolution algorithm 

Transformation 
Rule definition 
Rule execution 

• Access the set of rules that match the 
source element 

• Access data related to a rule match 
(source element, created target ele-
ments) 

Action execution 
• Access to the matched element and 

rule 
Invocation of resolution algorithm 

• Access function arguments 
 

In
te

rc
es

si
on

 

Transformation 
Rule definition 
Rule execution 
Action execution 
Invocation of resolution algorithm 

Transformation 
Rule definition 
Rule execution 

• Specify partial rule execution order 
per match 

Action execution 
Invocation of resolution algorithm 

• Change function argument 
• Calculate and return function value 

The most interesting part is the possibility to alter the execution behavior at run-
time (behavioral intercession). By default, the rule execution order is chosen by the 
engine. We provide a possibility to obtain all the rules that match a given source ele-
ment and to specify complete or partial order of executing these rules. Furthermore, 
when the trace function is invoked the invocation event is reified and passed as a 
metaobject. The metaobject may be altered and the metaprogram may provide its own 
resolution algorithm that replaces the default one. 

3.2   Expressing Metaprograms 

The reflective features are implemented by introducing new rule types generally 
called metarules, and new variables with reserved names that refer to objects accessi-
ble during the transformation execution. 

Variables. Two variables are introduced: transformation and this. 
The variable transformation may be used everywhere in the transformation specifi-

cation. During the execution it refers to the transformation definition. It is accessible 
as an ordinary model. OCL can be used for navigating over the definition. The trans-
formation definition cannot be changed. 

The variable this may be used in the context of a rule. During the execution it re-
fers to a representation of the rule. Via the variable a transformation definition may 
access the name of the rule, the source definition, etc. Function value can be invoked 
on this variable. It takes as argument an identifier that refers to the rule source or to 
the target elements and returns the element currently assigned to the identifiers in the 
context of the rule match. 
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For example, in the context of rule allAttributesOfRoot this.name is evaluated to 
“allAttributesOfRoot”. The property name is defined in the metamodel of MISTRAL 
[18]. The expression this.value(‘class’) is evaluated to the value of the variable class 
for the concrete match of the rule. Variables transformation and this allow structural 
introspection. Function value allows introspection of run-time data. 

Metarules. Several types of metarules are introduced to allow behavioral reflection. 
We follow the syntactical conventions used in the base programs. 
 

Execution Rule 
This rule may be invoked in the context of a source element. It allows specifying 

execution order on the rules that match the source element. The syntax is as follows: 
 
ruleName ExecutionRule { 

source 
target[listOfRuleNames] 

} 

 
source has the same syntax as the source of model element rules (see for example 
lines 6 and 11). The target specifies an ordered list of rule names. If a source element 
is matched by the source of an execution metarule then during the execution of the 
transformation the set of rules that will be executed on this element is obtained. Rules 
are executed in the order specified in listOfRuleNames.  In general, this order is par-
tial, that is, not all the applicable rules are listed there. Not listed rules may be exe-
cuted in an order decided by the transformation engine. 

 
Instantiation Rule 
This rule is called every time before executing an instantiation action. The syntax 

is the following: 
 
ruleName InstantiationRule (inputParameters) { 
 source 
 target 
}  

 
The syntax of source and target does not differ from the syntax used in model ele-

ment rules. The rule source matches elements in the source model. It will be executed 
only for those source elements. In that way the developer may narrow the scope of the 
rule. The rule accepts two input parameters: the first one is bound to the rule being 
executed and the second one is bound to the instantiation action being executed. 
These parameters give access to the context of the instantiation. 

 
Slot Assignment Rule 
This rule is called every time before assigning a value to a slot in the context of a 

target action. The syntax is the following: 
 
ruleName SlotAssignmentRule (inputParameters) { 
 source 
 target 
}  
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The execution semantics of this rule is similar to the semantics of instantiation rule. 
The difference is that three parameters are passed: the rule being executed, the identi-
fier of the object that possesses the slot, and the assignment expression. 

4   Example Applications 

During the design of MISTRAL we performed four case studies that use reflection. 
We present three of them. The fourth one is about manipulation of invocations to the 
resolution algorithm. It is skipped due to lack of space.  

4.1   Generation of Trace Links Based on Introspection 

Most transformation languages and their engines support trace links between source 
and target elements. However, there may be cases in which the transformation devel-
oper prefers to create their own trace structure. This problem is already analyzed in 
[7, 12]. It is desirable to create a generic trace capturing functionality that is inde-
pendent from the concrete transformation definition and may be reused in multiple 
transformations. 

 
1.  transformation UML2Java 
2.  input s : UML 
3.  output t : Java 
4. 
5.  copyPackage ModelElementRule { 
6.    source [sp : UML!Package] 
7.    target [tp : Java!Package {name = sp.name}] 
8.  } 
9. 
10. copyClass ModelElementRule { 
11.   source [sc : UML!Class] 
12.   target [tc : Java!Class {name = sc.name, isPublic = true, isStatic = false, 
13.              field = sc.attribute->collect(a | transformation.trace(a, 'f')) ,   
14.              method = sc.attribute->collect(a |   
15.                  Sequence{transformation.trace(a, 'getter'), 
16.                           transformation.trace(a, 'setter')})->flatten()}] 
17. } 
18. 
19. transformAttribute ModelElementRule { 
20.   source [sa : UML!Attribute] 
21.   target [f : Java!Field{name  = sa.name, isPublic = false,      
22.                 type = transformation.trace(sa.type, 'tc'), 
23.                 owner = transformation.trace(sa.owner, 'tc')}, 
24.           getter : Java!Method{name  = 'get_'+sa.name, isPublic = true, 
25.                 returnType = f.type, owner = f.owner}, 
26.       setter : Java!Method{name  = 'set_'+sa.name, isPublic = true, 
27.                 owner = f.owner}] 
28. } 
 

In this section we illustrate how such functionality may be specified by using intro-
spection. Consider a transformation that transforms UML class models to Java pro-
grams. We require that every UML attribute is transformed to a private field and two 
methods for getting and setting the value of the field. For brevity we do not give the 
metamodels of UML and Java. The code above shows a part of the transformation 
specification. 
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We aim at producing a second output model that contains traces between source 
and target elements. The metamodel for traces expressed in KM3 [8] is: 
 
package Traces{ 
  
  class Trace { 
    attribute ruleName : String; 
    attribute sourceName : String; 
    attribute targetName [1-*]: String; 
  } 
} 
 
package PrimitiveTypes { 
  datatype String; 
} 
 

The idea is that for every execution of a rule over a source node we create an in-
stance of class Trace that contains the name of the rule, the name of the source ele-
ment, and a list of the names of the target elements. This may be done by introducing 
a new instantiation in every rule that uses the identifiers of the source and target ele-
ments per a concrete rule. However, such functionality depends on a particular rule 
and needs changes for every new rule. A generic solution may be obtained by using 
the variable this. The following instantiation named trace (line 8) needs to be added in 
every rule (we show only the new signature of the transformation and the first rule): 
 
1.  transformation UML2Java 
2.  input s : UML 
3.  output t : Java, traces : Traces 
4. 
5.  copyPackage ModelElementRule { 
6.    source [sp : UML!Package] 
7.    target [tp : Java!Package {name = sp.name}, 
8.            trace : Traces!Trace in traces {ruleName = this.name, 
9.               sourceName = this.value(this.source.variableName).name,   
10.              targetName = this.target->select(t | 
11.                           t.identifierName <> 'trace')->collect(t |  
12.                           this.value(t.identifierName).name)}] 
13. } 

A new output model is declared in line 3 that will contain traces. The new instan-
tiation specified in lines 8-12 creates a new trace and puts it in the extent denoted with 
the variable traces (please note the keyword in on line 8). It should be noted that the 
new code does not use any details from the hosting rules. The concrete details about 
the elements are obtained by the function value. The navigation expressions 
this.source.variableName and this.target rely on knowledge from the Mistral 
metamodel. 

4.2   Generation of Execution Trace 

A declarative language like MISTRAL usually does not rely on explicit specification 
of the control flow. The execution engine detects dependencies among rules at run-
time and orders the execution of instantiations and slot assignments. Typically the 
execution order and the dependencies are not kept after the execution. Their externali-
zation, however, may help in solving several problems. In this example we show how 
the execution trace can be captured by intercepting execution events. Instantiation 
rules and slot assignment rules are used for this purpose. 
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Consider the previous example of transforming UML to Java. We introduce two 
metarules: one for intercepting instantiations and one for intercepting slot assignments. 
 
catchInstantiation InstantiationRule (rule : Mistral!Rule, 
                                      instantiation : Mistral!Instantiation) { 
  source[s : SimpleUML!UMLModelElement] 
  target [e : ExecutionEvents!InstantiationEvent in events{ruleName = rule.name,  
                     sourceName = s.name, 
                     id = instantiation.identifierName, 
                     targetClassName = instantiation.type.elementName}] 
} 
 
catchAssignment SlotAssignmentRule (rule : Mistral!Rule, 
                                    id : Mistral!String, 
                                    assignment : Mistral!SlotAssignment) { 
  source[s : SimpleUML!UMLModelElement] 
  target [e : ExecutionEvents!PropertyAssignment in events {sourceName = s.name,  
                     ruleName = rule.name, 
                     id = id, 
                     slotName = assignment.name}] 
} 

 
catchInstantiation rule is invoked before executing an instantiation from a given rule 
on a given source node. The source node is bound to the source variable s. The con-
text rule and the instantiation are passed as parameters. The source of the rule may 
have a condition thus limiting the scope of the rule only on some source nodes. When 
the rule is executed a new instance of the class InstantiationEvent will be created. It 
will store info about the name of the rule, the name of the source, the identifier of the 
target element, and the target class name. Clearly, this is just one possibility to store 
information about instantiation events. 

Similarly, catchAssignment rule is invoked every time before an assignment is per-
formed. Again the source node is passed to the rule and the context of the execution is 
passed as three parameters. 

We envisage two applications of these metarule types. The may be used for per-
forming debugging of transformations. They may also be used to capture the execu-
tion order and the dependency among the execution events. This information, com-
bined with information about the access to the source and target model elements and a 
trace record (like in the previous example) allows performing change impact analysis 
and change propagation when the source model is changed. We intend to report about 
this application of reflection in another paper. 

4.3   Controlling Aspect Weaving at Shared Join Points 

The last example we give is inspired by a common problem in Aspect-Oriented Pro-
gramming (AOP) [9]. Aspects are modular constructs that encapsulate behavior usu-
ally scattered across multiple locations in a program. They are integrated in desig-
nated points (called join points) by a process called aspect weaving. In general, 
aspects do not know about each other and more than one aspect may be woven in a 
single join point. Possibly, aspect interference may occur. This problem is known as 
weaving of aspects at shared join points [5]. Usually it requires some policy of order-
ing of the weaving. 
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In this example we implement aspects as transformation rules that change a Java 
program. The process of weaving is actually the process of executing the transforma-
tion rules. Consider the following two rules that implement logging aspect and syn-
chronization aspect. 

 
1.  addLogConcern ModelElementRule { 
2.    source[sourceMethod : Java!Method condition{(sourceMethod.name = 'methodA')  
3.                                       or (sourceMethod.name = 'methodC')}] 
4.    target[logInvocation : Java!MethodCall{variableName='Log', 
5.                                           methodName = 'log'}, 
6.      update sourceMethod{statements =  
7.             Sequence{logInvocation}->union(sourceMethod.statements)} 
8.      ]  
9.  } 
10. 
11. addSynchConcern ModelElementRule { 
12.   source[sourceMethod : Java!Method] 
13.   target[obtainLockInvocation : Java!MethodCall{variableName = 'Lock', 
14.                                                 methodName = 'getLock'}, 
15.          releaseLockInvocation : Java!MethodCall{variableName = 'Lock', 
16.                                                  methodName = 'releaseLock'}, 
17.          update sourceMethod{statements = 
18.         Sequence{obtainLockInvocation}->union(sourceMethod.statements)->union( 
19.                                          Sequence{releaseLockInvocation})} 
20.         ] 
21. } 

  
Rule addLogConcern creates a Java method call that implements the logging func-

tionality (lines 4-5). Then the method call is inserted before the statements of the 
selected Java method. This is done by using update action that modifies the slot value 
of the source node (line 6).  

Rule addSynchConcern inserts two method calls in an existing method. The first 
one is inserted in the beginning and is responsible to obtain a synchronization lock. 
The second one is inserted in the end and releases the lock. 

The logging aspect is applied to methods with name methodA or methodC. The 
synchronization aspect is applied to all the methods in the base program. Apparently 
these two aspects have shared join points. The question is in which order the aspects 
are applied at their shared join points. This problem is studied in [10] and several 
solutions are proposed. Assume that for some methods we want to apply first the 
logging aspect and then the synchronization aspect while for other methods we re-
verse the order. MISTRAL is a declarative language and the order of rule execution 
cannot be controlled. However, even with the possibility to order rules the problem 
cannot be completely solved. Rule ordering ensures a global order valid for all source 
nodes, whereas we require finer control at the level of a single node. 

The execution metarule can be applied in this situation. It allows to select a node 
and to specify a partial order of execution of the rules that match the node. We apply 
the following execution rule: 

 
orderConcerns ExecutionRule { 
  source [sourceMethod : Java!Method condition{sourceMethod.name = 'methodA'}] 
  target [addSynchConcern, addLogConcern] 
} 
 

The rule specifies that for all methods with name methodA first the synchronization 
aspect is applied and then the logging aspect. If there are other rules matching that 
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method then their order is up to the execution engine. Execution metarule implements 
behavioral intercession in MISTRAL. 

5   Discussion 

In our experience with reflection we encountered two main issues: how to design the 
metalevel and which implementation approach to choose.  

5.1   Design of the Metalevel 

Before implementing a reflective framework the first step is the identification of the 
elements to be exposed to the metalevel. The classification used in Table 1 and 2 
partially helps in this. In our approach we started with a set of cases with problems 
and used them as a criterion for selecting among the possible reflective features. This 
approach, however, may be not sufficient if a general-purpose reflective mechanism is 
required. 

Unfortunately, there is no much experience in using reflection in current model 
transformation languages. The most commonly found form of reflection is structural 
introspection over model elements based on the reflective API of ECore. Some lan-
guages [13, 23] allow expressions to be specified at places where a class or a feature 
is expected. This increases the genericity of programs. 

We are not aware of any work that generally treats the problem of introducing re-
flection in transformation languages. It should be noted that we have not experi-
mented with transformation languages that are embedded DSLs in a language with 
reflective features. Such a language is RubyTL [4] implemented in the context of 
Ruby. The authors of RubyTL report on the possibility to introspect the language 
constructs, a capability provided by Ruby. This corresponds to the capability provided 
by the variables transformation and this in our work. 

5.2   Implementing Reflection 

In general, there are three ways to introduce reflection in a language: using preproc-
essing, modifying the language interpreter, and modifying the language compiler.  

• Using preprocessing. This approach is employed in [14]. The language is syntac-
tically extended and the new constructs are translated to the existing constructs 
by including a preprocessing phase. This approach does not require changing the 
interpreter/compiler of the language. In the context of MDE, this approach may 
be applied by using a higher-order transformation (HOT) that translates the re-
flective program to a non-reflective one. Jouault [7] applies HOT to achieve 
flexible traceability. He does not extend the transformation language with new 
features though. The shortcoming of the preprocessing approach lies in the fact 
that it deals with static aspects of reflection and is limited to source code manipu-
lation. In case of reflection upon the runtime behavior of the transformation en-
gine changes in the engine may be required. 

• Changing the interpreter. The current prototype of the MISTRAL engine is im-
plemented as an interpreter and we had to change it to introduce the forms of  
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behavioral reflection we presented. The major disadvantage in this approach is 
that it slows down the execution of the transformation even in cases when no re-
flection is performed. This is due to the fact that the interpreter is checking every 
time if a reflection feature is requested when the interpreter evaluates expressions 
that are exposed to metacomputations.  

• Changing the compiler. This approach overcomes the problems of the interpreter-
based execution. During compilation the compiler may analyze the reflective 
code and introduce the invocations to the metalevel only when necessary. An ap-
plication of this idea is reported in [22] and applied for the Java reflective frame-
work Reflex. 

6   Conclusions 

In this paper we studied the possibilities to employ reflection in the current rule-based 
model transformation languages. The design of the metalevel was motivated by a 
number of cases studies. The reflective features were considered from a more general 
perspective in a two dimensional space that gives us a reasoning framework about the 
possible solutions. The reflective capabilities were implemented in an experimental 
model transformation language by modifying the language interpreter. It was possible 
to solve the problems formulated in the case studies. 

The solution proposed here cannot be considered as a general-purpose reflective 
framework. It was driven by concrete needs. We believe, however, that the introduced 
reflective extensions allow solving other problems as well. This hypothesis will be 
addressed in the future research. 

The major benefit of using refection is achieving transformation solutions with bet-
ter quality. We were able to specify generic and reusable trace generation functional-
ity. This should help us in improving traceability and change management in model 
transformations. Reflection may provide fine control during execution and as we 
suggested in the paper other technologies (e.g. AOP) may benefit from this. 
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Abstract. This paper provides an overview of how to develop model
transformations that are “provably correct” with respect to a given func-
tional specification. The approach is based in a mathematical formalism
called Constructive Type Theory (CTT) and a related synthesis for-
mal method known as proofs-as-programs. We outline how CTT can be
used to provide a uniform formal foundation for representing models,
metamodels and model transformations as understood within the Ob-
ject Management Group’s Meta-Object Facility (MOF 2.0) and Model
Driven Architecture (MDA) suite of standards [6, 8]. CTT was orig-
inally developed to provide a unifying foundation for logic, data and
programs. It is higher-order, in the sense that it permits representation
and reasoning about programs, types of programs and types of types. We
argue that this higher-order aspect affords a natural formal definition of
metamodel/model/model instantiation relationships within the MOF.
We develop formal notions of models, metamodels and model transfor-
mation specifications by utilizing the logic that is built into CTT. In
proofs-as-programs, a functional program specification is represented as
a special kind of type. A program is provably correct with respect to a
given specification if it can be typed by that specification. We develop
an analogous approach, defining model transformation specifications as
types and provably correct transformations as inhabitants of specifica-
tion types.

1 Introduction

This paper outlines how a formal software verification and synthesis approach
can be applied to the problem of developing model transformations in the Model
Driven Architecture (MDA) strategy [6]. Our intent is to develop model transfor-
mations that are correct with respect to a given pre- and post-condition specifi-
cation. A plethora of formal methods are available that might serve our purpose.
We employ a theory previously developed as a unifying foundation of mathemat-
ics and programming, Constructive Type Theory (CTT), and a related synthesis
formal method known as proofs-as-programs [2, 10].

In its simplest form, the MDA process involves a transformation between two
models, of the form

PIL T−→ PSL
T (PIM) = PSM

(1)
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A transformation T takes as input a model PIM, written in a source modelling
language PIL, and outputs a new model PSM, written in a (possibly different)
target modelling language PSL. The transformation might serve any number
of purposes. It might describe how the PIM should be implemented for a par-
ticular middleware and platform, so that the resulting PSM contains specific
implementation decisions that are to be realized by the system programmers.
The transformation T should be applicable to any PIM written using the PIL.
It is therefore defined as a general mapping from elements of the language PIL
to elements of the language PSL.

The intention of MDA is to enable designers to focus most of their work on
providing a robust, architecturally sound PIM. Then, given a particular platform
and PSL choice, a designer applies a (possibly off-the-shelf) transformation to
automatically obtain an appropriate PSM.

The methodology is powerful and useful. It can also be dangerous. There is
already significant uptake of the strategy from within the enterprise software
engineering sector. If a large community of developers agree to use the stan-
dard, then refinement-based development becomes a practical reality. Ideally,
this will result in better software quality. However, because MDA is essentially
an informal approach, it does not guarantee correct model transformations. Cur-
rently, given a specification, a transformation is developed by hand with little
certification that the specification is met. Testing is still limited: an important
research subarea concerns the development of an adequate range of tests [5],
often involving a metamodel instance generation problem.

Using MDA without formal grounding can be dangerous. In fact, if model
transformations are incorrect, the MDA process can result in software of a lower
quality than that produced by traditional software development. This paper
provides an overview of how higher-order constructive type theory (CTT) can
be used to develop correct-by-construction MDA model transformations. CTT
was originally developed to provide a unifying foundation for logic, data and
programs. It is higher-order, in the sense that it permits representation and rea-
soning about ordinary programs, types of programs, types of types and programs
that manipulate other programs and types.

We will consider transformations of the form (1) as higher-order typed func-
tional programs. The input type will represent the PIL and the output type will
represent the PSL. In MDA, the OMG defines these two languages as meta-
models within the Meta-Object Facility (MOF 2.0). Consequently, we need to
understand how the MOF 2.0 metamodelling hierarchy can be given a shallow
embedding within CTT.

We believe that CTT is a “natural” formalism for representing the MDA and
MOF. This is because the MDA and MOF are intrinsically higher-order. Meta-
models are classifiers of classifers and so define types of types. Model transfor-
mations are programs that manipulate classifiers, and so, from a mathematical
perspective, are functions that manipulate types. The nature of CTT also pro-
vides a convenient “built-in” logic, permitting types to include statements and
constraints about instantiating terms, in a way that parallels the MOF and MDA
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use of logical model constraints in the definition of metamodels and model trans-
formations. Our approach will exploit the proofs-as-programs paradigm property
of CTT [10]. At its simplest, the type theory of the lambda-calculus can be re-
garded as both a proof system and an executable pure functional programming
language. A provably correct functional program can be obtained from the in-
habiting term of its behavioural specification, treated as a type.

The paper proceeds as follows. Section 2 describes the MOF and explains how
it is used to write metamodels within the MDA approach. Section 3 sketches
the constructive type theory we use and the proofs-as-programs idea. Section 4
outlines our type theoretic encoding of the MOF and MDA. Conclusions and a
discussion of future work is provided in Section 5.

This paper assumes the reader is familiarwith theUMLrepresentationof classes,
class relationships and class objects and has a partial familiarity with the MOF
specification document [8]. A detailed study of constructive type theory can be
found in [2] or [10] (we follow the formulation of the latter here). More details of
our type theoretic treatment of the third and fourth level of the MOF 1.4 are given
in [9], which might also serve as a detailed account of our type theory.

2 The MOF

The MOF 2.0 specification consists of two metamodelling languages, the EMOF
and CMOF [8]. The former is a subset of, and may be defined reflexively within,
the latter. For the purposes of illustrating our formalism, we will consider the
subset of the CMOF that permits a UML class-style representation of metamodel
grammars. We do not treat a number of other useful features present in the MOF
2.0, such as reflection.

Metamodelling in the MOF is commonly done according to a four level hierar-
chy, as depicted in [7, pp. 30–31] (the MOF 2.0 permits an any number of levels
greater than two). The M0 level consists of model instances. These might be
data values, instantiated class objects, instantiated database tables, algorithms,
XML code or function definitions. The M1 level consists of models, which may
also be considered as metamodel instances. This level includes elements such as
UML diagrams, class, module and type declarations, database table declarations
or XML schema. The M2 level consists of metamodels, which may also be con-
sidered as MOF model instances. This level consists of metamodel descriptions,
defining the syntax and semantics of M1 elements. This level includes languages
such as the UML, the XML, Java, the B specification language or Casl algebraic
specification language. The M3 level is the MOF language itself, used to define
M2 level elements.

UML-style classes, class associations or class object can be defined at any level
in the MOF hierarchy, to serve different purposes. For instance, classes at the M3
are used to type modelling languages, while classes at the M2 level are used within
modelling languages to type models. The levels are then related by an object-
oriented-style class/object instantiation relationship. Class elements of level Mi+1
provide type descriptions of level Mi objects. Mi objects instantiate Mi+1 classes.
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An important aspect of the MOF hierarchy is that M1 and M2 level informa-
tion can be encoded in two separate ways: as model elements or object instances.
This enables the MOF hierarchy to treat types as classifications and as forms of
data. The principle works as follows. The MOF language is defined by a set of
related model elements at the M3 level. A metamodel is defined at the M2 level
by a set of MOF objects that instantiate the MOF model elements. This MOF
object representation of a metamodel can also be rewritten as a M2 metamodel
that provides type descriptions via a set of model elements. A model at the M1
level is understood as a set of elements that instantiate the classifiers of an M2
level metamodel. Finally, these M1 level elements can also be rewritten to form
M1 level model classifiers that specify the required form of an M0 level model
instantiation.

2.1 Object-Based Metamodels

The M3 level MOF model consists in a set of associated M3 level classes, “meta-
metaclasses”, hereafter referred to as MOF classes. The MOF classes classify
the kinds of elements that make up a M2 level metamodel. Metamodels are
collections of associated M2 instances of these MOF classes, in the same sense
that, for example, a collections of M0 UML objects represent an instance of a
M1 UML class diagram.

The MOF specification defines both the structure of MOF metamodels, con-
sisting of roles and relationships, together with a structural semantics, consisting
of constraints that must apply to any instances of the type structure. The MOF
defines a set of associated M3 level classes, the most important of which are as
follows: Classifier (a general supertype of all metamodel classifiers), Class
(typing all metamodel classifiers that are not basic data types), Datatype (a
type of datatypes), Property (a type of attributes that may be associated with
a metamodel classifier) and Association and AssociationEnd (typing associa-
tions that might hold between metamodel classifiers). The classes are related to
each other in the obvious way and have a range of associated attributes treat-
ing, for instance, private and public accessibility and inheritance hierarchies. An
important attribute of Property is the boolean isComposite. If the property is
set to true, then the owning classifier contains the property and no cyclic depen-
dencies via properties are permitted. If the property is false, then the property
is a reference, and cyclic dependencies are permitted [8, pp. 36–37].

The MOF permits constraints to be associated with any of the elements of a
metamodel. These can be written in an informal language, such as English, or
a formal language, such as the Object Constraint Language (OCL). The MOF
model employs constraints in two distinct ways. The MOF model itself has a set
of constraints that are defined for each of its classes. These constraints define
a static structural semantics of the model that specifies how M2 metamodels
should be formed. Also, the model contains a class called Constraint that is
associated with all other classes of the model. Instances of this class are used to
write a semantics for M2 metamodels that, in turn, is used to specify how M1
instantiating models must behave.
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For the purposes of this paper, we may consider the simplified notion of a
MOF metamodel as a collection of associated MOF class object instances. These
instances are M2 level objects.

Definition 1 (Metamodel). A metamodel M is a set of Classifer, Class,
Datatype, Attribute, Association, AssociationEnd and ConstraintM2 level
objects. Objects within M may only refer to each other.

2.2 Class-Based Description of Metamodels

A metamodel specification consists in a set of M2 level objects. This is a data-
centric view of a metamodel. When considering a metamodel as a model of
models, we need to use this data to classify models. The MOF achieves this by
means of an equivalent representation of a metamodel, as M2 level classes, whose
M1 level object instances are models.

Given a metamodel MO represented as a set of M2 level objects, we can build
an equivalent M2 level class-based representation MC as follows. Each Class M2
object o in MO corresponds to a M2 class toClass(o), whose class attributes each
correspond to the M2 level Attribute objects associated with o. Similarly, for
each Association object a in MO that defines a relation between two Class
objects o1 and o2, we add a class association in the metamodel MC between the
classes that correspond to o1 and o2. Each Constraint object associated with
an object o is mapped to a UML-style note that is associated with toClass(o).
The contents of the note are the same as the contents of the constraint.

A class-based representation is important as it prescribes how the metamodel
should be used as a typing structure for M1 level models. It is important to
note that, according to the MOF, not every collection of M2 level classes de-
fines a metamodel. To be valid, a metamodel must also have an object-based
representation that instantiates the MOF model.

3 Constructive Type Theory

This section presents a brief summary of the constructive type theory (CTT)
that shall be used to formalize. We define a version of Martin-Löf’s predicative
type theory with dependent sum and product types [4], and explain how the
CTT provides an uniform framework for treating functions, types, proofs and
programs.

We work with a lambda calculus whose core set of terms, P , are given over a
set of variables, V :

P ::= V |λ V. P |(P P )|〈P, P 〉|fst(P )|snd(P )|inl(P )|inr(P )|
match P with inl(V ) ⇒ P | inr(V ) ⇒ P |

abort(P )|show(V, P )|select (P ) in V.V.P

The evaluation semantics of lambda abstraction and application are standard
and widely used in functional programming languages such as SML: λ x. P de-
fines a function that takes x as input and will output P [a/x] when applied to
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a via an application (λ x. P )a. The calculus also includes pairs 〈a, b〉, where
fst(〈a, b〉) will evaluate to the first projection a (similarly for the second projec-
tion). Case matching provides form of conditional, so that match z with inl(x) ⇒
P | inr(y) ⇒ Q will evaluate to P [x/a] if z is inl(a) and to Q[y/a] if z is inr(a).
show(a, P ) is a form of pairing data a with a term P . Terms leading to incon-
sistent state are represented abort(p). Evaluation is assumed to be lazy – that
is, the operational semantics is applied to the outermost terms, working inwards
until a neutral term is reached. We write a � b if a evaluates to b according to
this semantics.

The lambda calculus is a programming language. We can compile terms and
run them as programs. Like most modern programming languages, our calculus is
typed, allowing us to specify, for example, the input and output types of lambda
terms. The terms of our lambda calculus are associated with the following kinds
of types: basic types from a set BT , functional types (A → B), product types
(A ∗ B), disjoint unions (A|B), dependent product types (

∏
x : t.a) where x is

taken from V , and dependent sum types (Σx : t.b) where x is taken from V .
The intuition behind the first four types should be clear. For example, if a term
t has type (A → B), then t is a function that can accept as input any value
of type A to produce a value of type B. A dependent product type expresses
the dependence of a function’s output types on its input term arguments. For
example, if a function f has dependent product type

∏
x : T.F (x), then f can

input any value of type T , producing an output value of type F (arg). Thus, the
final output type is parameterized by the input value. Typing rules provide a
formal system for determining what the types of lambda terms should be. The
core typing rules are displayed in Fig. 1. Further rules may be included in a
straightforward way to accommodate recursion.

It is not permissible to define a totality of the collection of all types, as this
results in an inconsistent theory. Instead, we employ a common solution, defining
a predicative hierarchy of type universes of the form:

Type0,Type1,Type2, . . .

The typing rules for the universes, omitted for reasons of space, may be found
in [9]. In these rules, the first universe Type0 is the type of all types generated
by the basic types and the typing constructors.

To encode objects and classes, we will require record types. These types have
the usual definition – see, for example, [2] or [9]. A record type is of the form
{a1 : T1; . . . ; an : Tn}, where a1, . . . , an are labelling names. A record is a term
{a1 = d1; . . . ; an = dn} of a record type {a1 : T1; . . . ; an : Tn}, where each term
di is of type Ti. The term {a1 = d1; . . . ; an = dn}.ai evaluates to the value di

associated with the label ai in the left hand side record.
To treat cyclic dependencies within metamodels, we require co-inductive types.

Co-induction over record types essentially allows us to expand as many refer-
ences to other records as we require, simulating navigation through a meta-
model’s cyclic reference structure. For the purposes of this paper, these types
are abbreviated by means of mutually recursive definitions, of the form
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x : A � x : A
(Ass-I)

Δ, x : s � p : A

Δ � λ x : s. p :
�

x : s • A
(
�

-I)

Δ1 � p :
�

x : s • A Δ2 � c : s

Δ1, Δ2 � (p c) : A[c/x]
(
�

-E)

Δ, x : s � p : A x : s is not free in A

Δ � λ x : s. p : s → A
(→-I)

Δ1 � p : s → A Δ2 � c : s

Δ1, Δ2 � (p c) : A
(→-E)

Δ � p : P [a/y]

Δ � show(a, p) : Σy : s • P
(Σ-I)

Δ1 � p : Σy : s • P Δ2, x : P [z/y] � q : C

Δ1, Δ2 � select (p) in z.x.q : C
(Σ-E)

Δ � a : A Δ′ � b : B

Δ, Δ′ � 〈a, b〉 : (A ∗ B)
(prod-I)

Δ � p : (A1 ∗ A2)

Δ � fst(p) : A1
(prod-E1)

Δ � p : (A1 ∗ A2)

Δ � snd(p) : A2
(prod-E2)

Δ � p : A1

Δ � inl(p) : (A1|A2)
(union-I1)

Δ � p : A2

Δ � inr(p) : (A1|A2)
(union-I2)

Δ � p : A|B Δ1, x : A � a : C Δ2, y : B � b : C

Δ1, Δ2, Δ � match p with inl(x) ⇒ a | inr(y) ⇒ b : C
(union-E)

Δ � a : ⊥
Δ � abort(a) : A

(⊥-E)

Fig. 1. Typing rules for our lambda calculus

T ≡ F (U) : Typei

U ≡ G(T) : Typei

This is a notational convenience: the formal treatment of co-induction, and asso-
ciated co-inductive recursion schemes, is given in [9]. This paper does not treat
inheritance in metamodelling: we have equipped our type theory with a notion
of subtyping to treat inheritance [9].

3.1 Proofs-as-Programs

The Curry-Howard isomorphism shows that constructive logic is naturally em-
bedded within our type theory, where proofs correspond to terms, formulae to
types, logical rules to typing rules, and proof normalization to term simplifica-
tion. Consider a constructive logic whose formulae, WFF are built from exactly
the same predicates that occur in our type theory. We can define an injection
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A asType(A)

Q(x),where Q is a predicate Q(x)
∀x : T.P

�
x : T.asType(P )

∃x : T.P Σx : T.asType(P )
P ∧ Q asType(P ) ∗ asType(Q)
P ∨ Q asType(P )|asType(Q)
P ⇒ Q asType(P ) → asType(Q)

⊥ ⊥

Fig. 2. Definition of asType, an injection from WFF to types of the lambda calculus

asType, from well-formed formulae WFF to types of the lambda calculus as in
Fig. 2.

The isomorphism tells us that logical statements and proofs correspond to
types and terms:

Theorem 1 (Curry-Howard isomorphism). Let Γ = {G1, . . . , Gn} be a set
of premises. Let Γ ′ = {x1 : G1, . . . , xn : Gn} be a corresponding set of typed
variables. Let A be a well-formed formula. Then the following is true. Given a
proof of Γ �Int A we can use the typing rules to construct a well-typed proof-
term p : asType(A) whose free proof-term variables are Γ ′. Symmetrically, given
a well-typed proof-term p : asType(A) whose free term variables are Γ ′, we can
construct a proof in constructive logic Γ � A.

Theorem 2 (Program extraction). Let Γ = {G1, . . . , Gn} be a set of premises.
Let Γ ′ = {x1 : G1, . . . , xn : Gn} be a corresponding set of typed variables. Let
∀x : T.∃y : U.P (x, y) be a well-formed ∀∃ formula.

There is a mapping extract from terms to terms such that, if
� p : asType(∀x : T.∃y : U.P (x, y)) is a well typed term, then
� ∀x : T.P (x, extract(p)x) is provable.

The proof of the theorem follows standard previous presentations, but requires
an extension to deal with co-inductive types. The implication of this theorem
is that, given a proof of a formula ∀x : T.∃y : U.P (x, y), we can automatically
extract a function that f that, given input x : T will produce an output fx that
satisfies the constraint P (x, fx).

Our notion of proofs-as-model-transformations essentially follows from this
theorem. A model transformation of the form (1) can be specified as a constraint
in the OCL over instances of an input PIM and an output PSM. Assuming we
can develop types and to represent the PIM and PSM metamodels, and that the
constraint can be written as a logical formula over a term for the metamodels,
we can then specify the transformation as an ∀∃ formula. Then, in order to
synthesize a provably correct model transformation, we prove the formula’s truth
and apply the extraction mapping according to Theorem 2.

The main technical challenges posed by this approach are 1) the extract map is a
non-trivial extensionoftheusualextractionmapused insimilarproofs-as-programs
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approaches, modified to suit our more complicated type theory and 2) the way in
which MOF-based metamodels can be formalized as types is not clear. Space does
not permit us to describe the extraction mapping, but essentially it is developed
using the generic machinery of [10]. The latter challenge is now addressed.

3.2 Metaclass Structures as Record Types

We first describe how the structure of classes and objects can represented within
our type theory. Our encoding is standard (see, e.g., [13]). We define classes as
recursive record types, with objects taken as terms of these types. We restricted
our attention to classes with attributes but without operations, we will not deal
with representing operations within class types. Our representation can be easily
extended to this (again, see [13]).

First, recall that we shall treat the associations of a class in the same way
as attributes. That is, if class M1 is associated with another class M2 with n
the name of the end of the association at M2, then we treat this as an attribute
n : M2 within M1 if the multiplicity of n is 1, and n : [M2] otherwise.

Essentially, the idea is to map a class C with attributes and associations
a1 : T1, . . . , an : Tn to a record type definition

C ≡ {a1 : T1; . . . ; an : Tn}

where each ai is an element of String corresponding to the attribute name ai and
each Ti a type corresponding to the classifier Ti. The class can reference another
class or itself through the attribute types. The mapping therefore permits mutual
recursion between class definitions. That is, each Ti could be C or could refer
to other defined class types.

The encoding of classes is purely structural and does not involve a behavioural
semantics. A semantics is instead associated with a structural class type through
a logical specification in a way now described.

4 The MOF and MDA within CTT

If we can encode the MOF within our CTT, it is possible to apply proofs-as-
programs to develop provably correct model transformations via extraction from
proofs. Following previous work by the author [9], metamodel/model/model in-
stantiation relationships of the MOF can treated using terms and types within the
CTT’s predicative type hierarchy. This framework enables us to define a higher
order type for any metamodel ModelLang, so that � model : ModelLang is
derivable if, and only if, the term model corresponds to a well formed model in-
stance of the metamodel. Model transformations should then be representable as
functions within the CTT that are typed by metamodel types.

The main concepts of the MOF have obvious formal counterparts within the
CTT. Classes and objects are treated using recursive records. The four lev-
els of the MOF are corresponding to the CTT’s predicative hierarchy of type
universes. The CTT’s typing relation allows us to systematically treat MOF
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model/metamodel/model/model instantiation relationships as follows. The M3
level MOF classes are defined through Type2 class types, M2 level metamodel
classifiers are given a dual representation as objects of the MOF class types and
as Type1 class types. M1 level model entities are given a dual representation as
terms of the metamodel types and as as Type0 types, M0 level implementations
of models are instantiating terms of Type0 types. This section outlines how to
formalize the MOF classes and metamodels at levels M3 and M2.

4.1 Encoding of the MOF

The structure of MOF metamodels was defined as a set of M3 level classes. It
is possible to define a set of mutually recursive Type2 level record types that
encode these classes. A metamodel, considered as a set of M2 level objects that
instantiate the MOF classes, is then formally understood as a set of mututally
recursive Type1 level terms of these types.

For the purpose of illustration, the type of the MOF classifier class is as
follows.

Definition 2 (MOF classifier type). A MOF classifier is encoded by the
following record type, Classifer ≡ Σx : ClassStruct.MClassCst(x) where
ClassStruct stands for the record

{name : String; isAbstract : Bool;
supertype : Classifer; attributes : [Attribute]}

and MClassCst(x) is a statement about x : ClassStruct that formalize the
constraints given in the OMG standard.

A similar encoding is made for the other MOF elements: a record type, used to
define the element’s structure, is paired with constraints over the structure using
a dependent sum, used to formally specify the element’s semantics.

The type of all MOF-based metamodels, Metamodel, can be defined as a
fixed point corresponding to mutually recursive set of MOF class instances. The
definition follows from the MOF, where a metamodel is understood to consist of
a set of associated metaclasses.

4.2 Metamodels as Types

Recall that metamodels have a dual representation, as M2 level objects and as
M2 level classes. This dual representation is formalized by means of a transfor-
mation between instantiating Metamodel terms and Type1 level types. The
transformation is twofold: (1) A reflection map φ is applied to obtain a set of
mutally recursive record types from a metamodel term. The map essentially ob-
tains a type structure for the metaclasses and associations of the metamodel.
(2) The constraints specified by the MOF metamodel description as Constraint
objects are formalized as a specification over the type structure obtained from
the reflection map. The transformation then uses this information to build a
dependent sum type that represents the metamodel. The mapping is omitted for
reasons of space – see [9] for details.
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Definition 3 (Metamodel types). Given a Metamodel instance a :
Metamodel, the type φ(a) is called the metamodel structure type for a, and
represents the structure of the metamodel, when considered as a collection of M2
level classifiers. The general form of a metamodel type is Σx : φ(a).P (x) for a
generated predicate P and a : Metamodel.

Given a metamodel type Σx : φ(a).P (x), the predicate P should be a formal
specification of the Constraints objects that form part of the MOF metamodel
for a. In general, when using our approach for formalizing MOF-based metamod-
els, it is not possible to automatically generate P , because the OMG specification
permits Constraints to take any form. However, if we assume the constraints
are always written in a subset of first order logic, such as the OCL, then it is
possible to generate P in a consistent manner.

4.3 Metamodelling and Modelling Process

Given a typical, informal, MOF-based specification of a metamodel, consisting
of metaclasses, meta-associations and constraints, it is quite straightforward to
develop an instance of Metamodel. The process is straightforward because
MOF-based metamodel specifications, such as the OMG’s definition of the UML,
usually make use of OCL constraints. These can be readily translated into logical
constraints in the Metamodel Then, by application of φ, a Type1 level type
can be produced that defines the structure of the metamodel.

For example, given a MOF-compliant definition of the simple database meta-
model of Fig. 3, it is possible to develop a metamodel term rdb that will yield a
Type2 dependent sum of the form Σx : φ(rdb).P (x) where φ(rdb) is a coinduc-
tive record1

Rdb ≡ {nes : [NamedElement]; tables : [Table]; keys : [Key]; columns : [Column]}

built from the following types

NamedElement ≡ {name : String}

Table ≡ {name : String; tablecolumns : [Column]; keys : [Key]]}

Key ≡ {name : String; keyColumns : [Column]}

Column ≡ {name : String}

and P is a formula that is derived from Constraint metaobjects that were
associated with the metamodel.

1 We write this record informally here as a record: formally, it would involve a μ
constructor, following [9]. The idea is that a term instance of this metamodel type
will consist of a record of metaclass term instances that can mutually refer to each
other. This also allows us to represent shared data, as in the case where the same
column is referenced by a key and by a table.
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name:String
NamedElement

Table

Column
* tablecolumns

Key

keys *

* keyColumns

Fig. 3. Fragment of the DB metamodel

Similarly, given the OMG’s definition of the UML, it is possible to develop
a metamodel term uml that will yield a Type2 dependent sum of the form
Σx : φ(uml).P (x) where φ(uml) is a fixed point, written in a recursive style as

NamedElement ≡ {name : String}
Class ≡ {name : String; isAbstract : Boolean; tag : String; super : Class;

attrs : [Attribute]}
PrimitiveType ≡ {name : String}

Type ≡ {name : String}
TypeElement ≡ {name : String; type : Type}

Attribute ≡ {name : String; type : Type; multiplicity : MultiplicityKind}

MultiplicityKind ≡ {lowerBound : int; upperBound : int; ordered : Boolean;

unique : Boolean}

and P is a formula that is derived from Constraint metaobjects that were
associated with the metamodel. As required, this corresponds to the standard
equivalent M2 level class-based metamodel diagram.

4.4 Proofs-as-Model-Transformations

Given a way of representing MOF metamodels and models within our type
theory, we can then apply the proofs-as-programs approach entailed in Theorem
2 to extract correct model transformations. First, we specify transformations as
∀∃ types of the form

∀x : Pil.I(x) → (∃y : Psl.O(x, y))

where Pil and Psl are source and target metamodel types, I(x) specifies a pre-
condition on the input model x for the transformation to be applied, and O(x, y)
specifies required properties of the output model y. We use typing rules to obtain
an inhabiting term for such a transformation type. Then, by virtue of Curry-
Howard isomorphism and proofs-as-programs, this term can be transformed into
a model transformation function f such that, given any PIM x satisfying the
precondition I(x), then the postcondition O(x, fx) will be satisfied.
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4.5 Example

Consider the following toy UML-to-relational-database model transformation
specification: For each non abstract class of the UML model which is taged
“CMP” persistent a table is created in the RDB model. This table has the same
name as the class and holds one column per attributes of the class. Columns
have the name of its corresponding attribute.

The transformation has UML models as its input and RDB models as output.
The precondition of the transformation is class name uniqueness, sketched in
OCL as

UMLModel->instanceof(Class)->forall(c1,c2 | c1.name = c2.name
implies c1 = c2)

The postcondition of the transformation is

UMLModel->instanceoff(Class)->select(c | c.isAbstract == false
c.tag == ’CMP’)->forall(c | RDBMModel->instanceof(Table)->one(t |

t.name == c.name attributes->forall(a |
t.columns->one( | col.name == a.name))))

The specification of the transformation is given as follows

∀x : Uml.∀c : Class.c ∈ x.classes∧
c.isAbstract = false ∧ c.tag =′ CMP ′ →

∃y : Rdb.!∃t : Table.t ∈ y.tables ∧ t.name = c.name∧
∀a : Attribute.a ∈ c.attribs∧

!∃col : Column.col ∈ t.columns ∧ col.name = a.name (2)

where
!∃y : T.P (y) ⇔ ∃y : T.P (y) ∧ ∀z : T.P (z) → z = y

This specification can then be proved using just over 100 applications of the
typing rules of Fig. 1. Semi-automatic use of tactics in a theorem proving envi-
ronment such as PVS should reduce the burden of proof on a human developer.
Then, by application of the extraction mapping, we can obtain a lambda term
whose input type is Uml and whose output is Rdb, λx : Uml.F (x.classes),
where F is an extracted function of the form

F: [Class] -> [Tables]
F hd::tl ->
if hd.tag = ’CMP’
{name = hd.name; columns = v}::F(tl)
where v = [{name = a.name}] a over all hd.attribs
else F(tl)

[a] -> if a.tag = ’CMP’ then {name = a.name; columns = v}
else []

This extracted function is the required model transformation.
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5 Related Work and Conclusions

We have attempted to demonstrate that constructive type theory is a natural
choice to formally encode the higher-order structure of the MOF. To the best
of our knowledge, constructive type theory has not been used previously as a
framework to treat metamodelling.

Favre [3] developed a methodology for writing correct transformations be-
tween UML-based metamodels. Transformations are understood formally in
terms of the Casl algebraic specification language, so a notion of formal cor-
rectness is present and transformations are proved correct. The work has yet to
be generalized to arbitrary MOF metamodels.

Akehurst et al. have used relational algebras to formalize metamodels and
model transformations [1]. Thirioux et al. have a similar approach based on
typed multigraphs [14]. Their framework forms an algebra with operations cor-
responding to the classification relationship between metamodels and models.
From a type theoretic perspective, their formalisation is first order, and based
in set theory. As a result, their model of the higher order nature of the MOF
and model transformations is “flattened” into a single type universe (sets).

Structured algebraic specification languages that have been used for formal-
izing object-oriented specification should have the potential for formal meta-
modelling. We know of two approaches. Ruscio et al. have made some progress
towards formalizing the KM3 metamodelling language using the Abstract State
Machines [12]. Rivera and Vallecillo have exploited the class-based nature of the
Maude specification language to formalize metamodels written in the KM3 meta-
modelling language [11]. Their treatment of the dual, object- and class-based,
representation of metamodels is similar to ours, involving an equivalence map-
ping. The intention was to use Maude as a means of defining dynamic behaviour
of models, something that our approach also lends itself to. Their work has the
advantage of permitting simulation via rewriting rules.

Our experience with the small transformation described above is that, while
the proof steps are often relatively trivial, there are a great many of them and the
process of manual proof is laborious. We expect a tactic-based theorem prover
will improve efficiency of the development process. A tactic is essentially a script
that automates a sequence of proof steps. There are three robust tactic-based
tools based on higher order lambda calculus: Nuprl, Coq and PVS. All three
systems are equipped with advanced semi-automatic theorem provers and have
been shown to be effective in the synthesis and verification of complex industrial
software systems. A full implementation of our approach within Nuprl forms
part of ongoing research by the author’s group.
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Abstract. In this paper we present an approach to the analysis of graph
transformation rules based on an intermediate OCL representation. We
translate different semantics of rules into OCL, together with the prop-
erties of interest (like rule applicability, conflict or independence). The
intermediate representation serves three purposes: (i) allows the seamless
integration of graph transformation rules with the MOF and OCL stan-
dards, and enables taking into account meta-model and OCL constraints
when verifying the correctness of the rules; (ii) permits the interoperabil-
ity of graph transformation concepts with a number of standards-based
model-driven development tools; and (iii) makes available a plethora of
OCL tools to actually perform the rule analysis.

1 Introduction

Model-Driven Development (MDD) is a software engineering paradigm where
models play a fundamental role. They are used to specify, simulate, test, ver-
ify and generate code for the application to be built. Most of these activities
are model manipulations, thus, model transformation becomes a crucial activ-
ity. Many efforts have been spent in designing specialized languages for model
transformation, ranging from textual to visual; declarative to imperative through
hybrid; semi-formal to formal. The OMG vision of MDD is called Model-Driven
Architecture (MDA) and is founded on standards like QVT [17] for the trans-
formations and MOF and OCL for modelling and meta-modelling.

Graph Transformation [8,18] is a declarative, rule-based technique for express-
ing model transformations. It is gaining increasing popularity due to its visual
form (making rules intuitive) and formal nature (making rules and grammars
amenable to analysis). For example, it has been used to describe the operational
semantics of Domain Specific Visual Languages (DSVLs) [14], taking the ad-
vantage that it is possible to use the concrete syntax of the DSVL in the rules,
which then become more intuitive to the designer.

As models and meta-models can be expressed as graphs (with typed, at-
tributed nodes and edges), graph transformation can be used for model manipu-
lation. The main formalization of graph transformation is the so called algebraic
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approach [8], which uses category theory in order to express the rewriting. Promi-
nent examples of this approach are the double [8] and single [9] pushout (DPO
and SPO), which have developed interesting analysis techniques, e.g. to check
independence between pairs of derivations [8,18], or to calculate critical pairs
(minimal context of pairs of conflicting rules) [12]. However, graph grammar
analysis techniques work with simplified meta-models (so called type graphs),
with neither inheritance, cardinalities nor textual OCL-like constraints.

In this paper, our goal is to advance in the integration of graph transformation
and MDD. We propose using OCL as an intermediate representation of both the
semantics of graph transformation rules and the analysis properties of interest.
Representing rules with OCL, concepts like attribute computation and attribute
conditions in rules can be seamlessly integrated with the meta-model and OCL
constraints during the rule analysis. Specifying the rules and the properties in
OCL makes available a plethora of tools, able to analyze this kind of specifi-
cations. A secondary effect is that graph transformation is made available to
the increasing number of MDA tools that the community is building and vice-
versa. For example, using such tools, it could be possible to generate code for
the transformations, or apply metrics and redesigns to the rules.

More in detail, we use OCL to represent (DPO/SPO) rules with negative ap-
plication conditions and attribute conditions. These rules may have objects with
abstract typing, which can be matched to objects of more concrete types [13]. In
addition, we have represented a number of analysis properties with OCL, taking
into account both the rule structure and the rule and meta-model constraints such
as rule applicability (whether there is a model satisfying the rule and the meta-
model constraints), weak executability (whether the rule’s post-condition and the
meta-model constraints are satisfiable by some model) and correctness preserving
(if a rule applied to a legal model always yields a legal model) among others. As a
proof of concept, we have checked these properties using the UMLtoCSP tool [6]
Paper Organization. Section 2 introduces graph transformation using a pro-
duction system example. Section 3 presents our translation of graph transforma-
tion rules into OCL. Section 4 shows the encoding of some analysis properties.
Section 5 presents the use of the UMLtoCSP tool for checking some properties.
Section 6 compares with related work and Section 7 ends with the conclusions.

2 Graph Transformation by Example

In this section we give an intuition on graph transformation by presenting some
rules that belong to a simulator of a DSVL for production systems. Fig. 1 shows
the DSVL meta-model. It defines different kinds of machines (concrete subclasses
of Machine) that can be connected through conveyors. These can be intercon-
nected and contain pieces (the number of pieces they actually hold is stored in
attribute nelems), up to its maximum capacity (attribute capacity). The last
two OCL constraints to the right of the figure guarantee that the number of
elements of a conveyor is equal to the number of pieces connected to it and
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Fig. 1. Meta-model of a DSVL for production systems

never exceeds its capacity. Human operators are needed to operate the machines,
which consume and produce different types of pieces from/to conveyors.

Fig. 2 shows a production model example using a visual concrete syntax. It
contains six machines (one of each type), two operators, six conveyors and five
pieces. Machines are represented as decorated boxes, except generators, which
are depicted as semi-circles with an icon representing the kind of piece they gen-
erate. Operators are shown as circles, conveyors as lattice boxes, and each kind
of piece has its own shape. In the model, the two operators are currently operat-
ing a generator of cylindrical pieces and a packaging machine respectively. Even
though all associations in the meta-model are bidirectional, we have assigned
arrows in the concrete syntax, but of course this does not affect navigability.

Fig. 2. Example production system model

We use graph transformation techniques for the specification of the DSVL
operational semantics. A graph grammar is made of a set of rules and an initial
graph to which the rules are applied. Each rule is made of a left and a right hand
side (LHS and RHS) graphs. The LHS expresses pre-conditions for the rule to be
applied, whereas the RHS contains the rule’s post-conditions. In order to apply
a rule to the host graph, a morphism (an occurrence or match) of the LHS has to
be found in it (if several are found, one is selected randomly). Then, the rule is
applied by substituting the match by the RHS. The grammar execution proceeds
by applying the rules in non-deterministic order, until none is applicable.

Next, we show some of the rules describing the DSVL operational semantics.
Rule “assemble” specifies the behaviour of an assembler machine, which converts
one cylinder and a bar into an assembled piece. The rule is shown in concrete
syntax to the left of Fig. 3, and in abstract syntax to the right. It can be applied
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if an occurrence of the LHS is found in the model (e.g. it could be applied to
the model in Fig. 2). Then, the elements in the LHS that do not appear in the
RHS are deleted, whereas the elements in the RHS that do not appear in the
LHS are newly created. Our rules may include attribute conditions (which must
be satisfied by the match) and attribute computations, both expressed in OCL.
Attributes referenced to the right of an assignment in an attribute computation
refer to the value of the attribute before the rule application.

Fig. 3. Assemble rule in concrete syntax (left) and abstract syntax (right)

There are two main formalizations of algebraic graph transformation, DPO
and SPO. From a practical point of view, their difference is that in DPO, deletion
has no side effects. When a node in the host graph is deleted by a rule, it
can only be connected with those edges explicitly deleted by the rule. When
applying the rule in Fig. 3, if piece “b” in the match is connected to more than
one conveyor (should it be allowed by the meta-model), then the rule cannot
be applied as edges would become dangling in the host graph. This condition
is called dangling edge condition. In SPO, dangling edges are removed by the
rewriting step. Therefore in DPO, in addition to positive pre-conditions, a LHS
also imposes implicit negative pre-conditions in case the rule deletes some node.

A match can be non-injective, which means for example that two nodes with
compatible type in the rule may be matched to a single node in the host graph. If
the rule specifies that one of them should be deleted and the other one preserved,
DPO forbids applying the rule at such match, while SPO allows its application
and deletes both nodes. This is called the identification condition.

Fig. 4 shows further rules for the DSVL. Rule “move” describes the movement
of pieces through conveyors. The rule has a negative application condition (NAC)
that forbids moving the piece if the source conveyor is the input to any kind of ma-
chine having an operator. Note that this rule uses abstract nodes: piece “p” and
machine “m” have abstract types, and are visually represented with asterisks. Ab-
stract nodes in the rule can get instantiated to nodes of any concrete subtype [13].
In this way, rules become much more compact. Rule “change” models an operator
changing to a machine “m1” if the machine has some piece waiting to be processed
and it is unattended. Rule “rest” models the break pause of an operator, which is
deleted, while rule “work” creates a new operator in an unattended machine.
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Fig. 4. Additional rules for the DSVL simulator

3 From Graph Transformation to OCL

This section presents a procedure to translate graph transformation rules into
an OCL-based representation. The procedure takes as input a graph transfor-
mation system, made of a set of rules; together with the MOF-compliant meta-
model used as a context for the rules. As output, the method generates a set
of semantically-equivalent declarative operations (one for each rule) specified in
OCL. Declarative operations are specified by means of a contract consisting of
a set of pre and post-conditions. Roughly speaking, pre-conditions will define a
set of conditions on the source model that will hold iff the rule can be applied,
namely if the model has a match for the LHS pattern and no match for any
NAC, while post-conditions will describe the new state of the model after the
operation execution as stated by the difference between the rule’s RHS and LHS.

More precisely, the input of the procedure is a tuple (MM, ruleStyle, GTS =
{rj}j∈J), where MM is a meta-model (possibly restricted by OCL well-formed-
ness rules), ruleStyle is a flag indicating DPO or SPO semantics, and GTS
is a set of graph transformation rules. We represent DPO and SPO rules as
r = (LHS, RHS, ATTCOND, ATTCOMP , {NACi, ATT i

COND}i∈I), where LHS,
RHS and NACi are models conformant to MM . Instances are identified across
models by their object identifiers, e.g. the preserved elements by the rule have the
same object identifiers in LHS and RHS. ATTCOND, ATT i

COND and ATTCOMP

are sets of OCL expressions. The first two contain attribute conditions for the
LHS and the i-th NAC, the latter contains attribute computations to state the
new values for the attributes in the RHS.

Next subsections use this formalization to translate the GTS in terms of a
set of OCL operations. The name of the operations will be the name of the
corresponding rule. All operations will be attached to an artificial class System,
typically used in the analysis phase to contain the operations describing the
behaviour of the system [15]. Alternatively, each operation could be assigned to
one of the existing classes in the meta-model.
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3.1 Translating the Left-Hand Side

A rule r can be applied on a host graph (i.e a model) if there is a match, that
is, if it is possible to assign objects of the host graph to nodes in the LHS such
that (a) the type in the host graph is compatible with the type in the LHS, (b)
all edges in LHS may be mapped to links in the host graph and (c) the attribute
conditions evaluate to true when symbols are replaced by the concrete attribute
values in the model. It is possible that the same object is assigned to multiple
nodes in LHS (non-injective match) as long as conditions (a-c) are satisfied.

When defining the translation for condition (a) we must explicitly encode the
set of quantifiers implicit in the semantics of graph transformation rules: when
checking if the host graph contains a match for LHS we have to try assigning
each possible combination of objects from compatible types in the model to
the set of nodes in the pattern. Thus, we need one quantifier for each node
in LHS. In terms of OCL, these quantifiers will be expressed as a sequence of
embedded exists operators over the population of each node type (retrieved using
the predefined allInstances operation).

Once we have a possible assignment of objects to the nodes in LHS we must
check if the objects satisfy the (b) and (c) conditions. To do so, we define an
auxiliary query operation matchLHSr. This operation returns true if a given
set of objects complies with the pattern structure defined in LHS and sat-
isfy its ATTCOND conditions. In particular for each edge e linking two ob-
jects o1 (of type t1) and o2 (of type t2) in LHS, matchLHSr must define a
o1.navt2−> includes(o2) condition stating that o2 must be included in the set
of objects retrieved when navigating from o1 to the related objects in t2; the
right association end to use in the navigation navt2 is extracted from the MM
according to the type of e and the type of the two object participants. ATTCOND

conditions, already expressed using an OCL-like syntax in r, are directly mapped
as a conjunction of conditions at the end of matchLHSr.

Let L = {L1, . . . , Ln} denote the set of nodes in LHS and E = {(Li, Lj)} the
set of edges. Then, according to the previous guidelines, the LHS pattern of r
will be translated into the following equivalent pre-condition:

context System::r()
pre: L1.type::allInstances()−>exists(L1 |

. . .
Ln.type::allInstances()−>exists(Ln | matchLHSr(L1, . . . , Ln) ))

context System::matchLHSr(L1 : L1.type, . . . , Ln : Ln.type)
body: L1.navL2.type−>includes(L2) and

. . . and
Li.navLj.type−>includes(Lj) and ATTCOND

where Li.type returns the type of the node and the identifier of the node is used to
name the variable in the quantifier. Note that Li.type::allInstances() returns all
direct and indirect instances of the Li.type (that is, it returns also the instances
of its subtypes) and thus abstract objects can be used in the definition of r.
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As an example, the pre-condition for the rest rule would be:

context System::rest()
pre: Operator::allInstances()−>exists(op |

Machine::allInstances()−>exists(m | matchLHSrest(op,m))

context System::matchLHSrest(op: Operator, m: Machine)
body: op.machine−>includes(m)

where matchLHSrest is called for every possible combination of operators and
machines in the model (because of the two nested exists). If one of such com-
binations satisfies matchLHSrest the pre-condition evaluates to true, meaning
that “rest” can be applied on the model.

3.2 Translating the Negative Application Conditions

In presence of NACs the pre-condition of r must also check that the set of
objects of the host graph satisfying LHS do not match any of the NACs.

The translation of a NAC pattern is almost equal to the translation of a LHS
pattern: an existential quantifier must be introduced for each new node in the
NAC (i.e. each node not appearing also in the LHS pattern) and an auxiliary
query operation (matchNACr) will be created to determine if a given set of
objects satisfy the NAC pattern. MatchNACr is specified following the same
procedure used to define matchLHSr.

Within the pre-condition, the translation of the NACs is added as a negated
condition immediately after the translation of the LHS pattern.

Let N = {N1, . . . , Nm} denote the set of nodes in a NAC that do not appear
also in LHS. The extended pre-condition for r (LHS + NAC) is defined as:

context System::r()
pre: L1.type::allInstances()−>exists(L1 |

. . .
Ln.type::allInstances()−>exists(Ln | matchLHSr(L1, . . . , Ln)
and not (N1.type::allInstances()−>exists(N1 |
. . .
Nm.type::allInstances()−>exists(Nm |
matchNACr(L1, . . . , Ln, N1, . . . , Nm)) . . .)

If r contains several NACs we just need to repeat the process for each NAC,
creating the corresponding matchNACir operation every time.

As an example, the translation for the LHS and NAC patterns of the “work”
rule would be:
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context System::work()
pre: Machine::allInstances()−>exists(m | matchLHSwork(m)

and not Operator::allInstances()−>exists(op1|matchNACwork(m,op1) ))

context System::matchLHSwork(m:Machine):Boolean body: true

context System::matchNACwork(m:Machine, op1:Operator):Boolean
body: m.operator−>includes(op1)

Note that for this rule, matchLHSwork simply returns true since as long as a
machine object exists in the host graph (ensured by the existential quantifier in
the pre-condition), the LHS is satisfied. The additional condition is here imposed
by the NAC, stating that no operator may be working on that machine.

3.3 Translating the Right-Hand Side

The effect of rule r on the host graph is the following: (1) the deletion of the
objects and links appearing in LHS and not in RHS, (2) the creation of the ob-
jects and links appearing in RHS but not in LHS and (3) the update of attribute
values of objects in the match according to the ATTCOMP computations.

Clearly, when defining the OCL post-condition for r we will need to consider
not only the RHS pattern (the new state) but also the LHS (and NAC) patterns
(the old state) in order to compute the differences between them and determine
how the objects evolve from the old to the new state. In OCL, references to the
old state (i.e. references to the values of objects and links in the state before
executing the operation) must include the @pre keyword (for instance, a post-
condition expression like o.atr1 = o.atr1@pre + 1 states that the value of atr1
for object o is increased by one upon completion of the operation)

Therefore, the translation of the RHS pattern requires, as a first step, to select
a set of objects of the host graph that are a match for the rule. Unsurprisingly,
this initial condition is expressed with exactly the same OCL expression used to
define the pre-condition (where the goal was the same: to determine a match for
r). The only difference is that in the post-condition, all references to attributes,
navigations and predefined properties will include the @pre keyword. Next, the
selected set of objects are passed to an auxiliary operation changeRHSr, in charge
of performing the changes defined in the rule.

Table 1. OCL expressions for changeRHSr

Element ∃ in ∃ in Update OCL Expression
LHS? RHS?

Object o of type t No Yes Insert o o.oclIsNew() and o.oclIsTypeOf(t)
Object o of type t Yes No Delete o t::allInstances()−>excludes(o)
Link l between (o1, o2) No Yes Insert l o1.navt2−>includes(o2)
Link l between (o1, o2) Yes No Delete l o1.navt2−>excludes(o2)
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context System::rest()
pre: Operator::allInstances−>exists(op|

Machine::allInstances−>exists(m|matchLHSrest(op,m) ))
post: Operator::allInstances@pre−>exists(op|

Machine::allInstances@pre−>exists(m|
matchLHSrest’(op,m) and changeRHSrest(op,m) ))

context System::matchLHSrest(op: Operator, m: Machine):Boolean
body: op.machine−>includes(m)

context System::matchLHSrest’(op: Operator, m: Machine):Boolean
body: op.machine@pre−>includes(m)

context System::changeRHSrest(op: Operator, m: Machine):Boolean
body: Operator::allInstances()−>excludes(op)

context System::work()
pre: Machine::allInstances()−>exists(m|matchLHSwork(m) and not (

Operator::allInstances()−>exists(op1|matchNACwork(m,op1) ))
post: Machine::allInstances()@pre−>exists(m|matchLHSwork’(m) and not

( Operator::allInstances@pre()−>exists(op1|matchNACwork’(m,op1)) )
and changeRHSwork(m)

context System::matchLHSwork(m:Machine):Boolean body: true

context System::matchLHSwork’(m:Machine):Boolean body: true

context System::matchNACwork(m:Machine, op1:Operator):Boolean
body: m.operator−> includes(op1)

context System::matchNACwork’(m:Machine, op1:Operator):Boolean
body: m.operator@pre−> includes(op1)

context System::changeRHSwork(m:Machine):Boolean
body: op.oclIsNew() and op.oclIsTypeOf(Operator) and

m.operator−>includes(op)

ChangeRHSr will be defined as a conjunction of conditions, one for each dif-
ference between the RHS and LHS patterns. Table 1 shows the OCL expressions
that must be added to changeRHSr depending on the modifications performed
by r on the host graph. Moreover, all ATTCOMP are added as additional compu-
tations at the end. Again, in the computations all references to previous attribute
values are extended with the @pre keyword. As usual, we assume in the defini-
tion of the post-condition for r that all elements not explicitly modified in the
post-condition remain unchanged (frame problem).
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As an example, we show the complete operations generated for the “rest” and
“work” rules. The translation for the other rules in the running example can be
found in the extended version of this paper [23].

3.4 Taking into Account DPO and SPO Semantics

The behaviour of the rules is slightly different depending on whether DPO or
SPO semantics are assumed. The two main differences we must consider in our
translation are the dangling edge condition and the identification condition.

In DPO, the dangling edge condition states that when a node is deleted, it
can only be connected to other nodes by the edges that are explicitly deleted by
the rule. With SPO semantics, all edges are implicitly removed when deleting
the node. This is the common assumption in UML/OCL specifications [19] and
thus with SPO we do not need to modify the translation patterns provided so
far (for instance, in the “rest” operation it is assumed that all links connecting
object op with other objects are implicitly removed when deleting it). Instead,
under DPO semantics we must refine the generated pre-condition to ensure that
the objects deleted by the rule have no other links except for those appearing
in LHS and not in RHS. Therefore, for each deleted object o instance of a type
t and for each type ti related with t in MM we must include in matchLHS the
following conditions:

– o.navti−>isEmpty() (when LHS does not include edges relating o with
nodes of type ti)

– o.navti−>excludingAll(o1, o2, . . . , on)−>isEmpty() (when LHS includes
edges relating o with a set of {o1, o2, . . . , on} nodes of type ti)

The identification condition states that two nodes of the LHS cannot be
matched into the same object in the host graph if one of the nodes does not
appear in the RHS pattern (i.e. it is deleted). With SPO semantics, the object
in the host graph is simply removed. Again, the SPO semantics coincide with
the default UML/OCL behaviour. If two OCL variables point to the same object
and one of the variables is used to define that the pointed object is removed, the
other automatically becomes undefined. Instead, to enforce the DPO semantics
we need an additional condition in the matchLHS operation. Given that L1 and
L2 are two nodes in the LHS pattern, L1.type = L2.type and L1 but not L2
appear in RHS (or the other way around), the condition L1 <> L2 should be
added in matchLHS. This condition forces the problematic existential quantifiers
to map to two different objects when evaluating the pre-condition.

4 Formalization of Rule Properties with OCL

Translating a graph grammar into a set of operations with OCL pre/post-
conditions allows the analysis of relevant properties of the rules. The properties
under analysis will take into account the meta-model invariants that restrict the
possible set of legal instantiations (i.e. models) of the meta-model.
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The following notation will be used to express these concepts: I denotes an
instantiation of the meta-model, while I ′ represents the modified instantiation
after invoking an operation. An instantiation I is called legal, noted as INV[I], if
it satisfies all the invariants of the meta-model, i.e. both the graphical restrictions
such as multiplicity of roles in associations and the explicit OCL well-formedness
rules. By PREr[I] we denote that an instantiation I satisfies the pre-condition
of an operation r. Regarding post-conditions, we write POSTr[I, I ′] to express
that instantiation I ′ satisfies the post-condition of an operation r assuming that
I was the instantiation before executing the operation.

Two families of properties will be studied. First, it is desirable to verify that
for each rule there exists at least one valid model where it can be applied, as
otherwise the rule is useless. Second, it is interesting to check whether differ-
ent rules may interfere among them, making the order of application matter.
Within each family of properties, several notions will be presented, each with a
trade-off between precision and the complexity of its analysis. The list, with its
formalization, is the following:

– Applicability (AP): Rule r is applicable if there is at least one legal in-
stantiation of the meta-model where it can be applied.

∃I : INV[I] ∧ PREr[I]

– Weak executability (WE): r is weakly executable if the post-condition is
satisfiable in some legal instantiation.

∃I, I ′ : INV[I] ∧ INV[I ′] ∧ POSTr[I, I ′]

– Strong executability (SE): r is strongly executable if, for any legal instan-
tiation that satisfies the pre-condition, there is another legal instantiation
that satisfies the post-condition.

∀I : ∃I ′ : (INV[I] ∧ PREr[I]) → (INV[I ′] ∧ POSTr[I, I ′])

– Correctness preserving (CP): r is correctness preserving if, applied to a
legal instantiation of the meta-model, cannot produce an illegal one.

∀I, I ′ : (INV[I] ∧ PREr[I]) → (POSTr[I, I ′] → INV[I ′])

– Overlapping rules (OR): Two rules r and s overlap if there is at least
one legal instantiation where both rules are applicable.

∃I : INV[I] ∧ PREr[I] ∧ PREs[I]

– Conflict (CN): Two rules r and s are in conflict if firing one rule can
disable the other, i.e. iff there is one legal instantiation where both rules are
enabled, and after applying one of the rules, the other becomes disabled.

∃I, I ′ : INV[I] ∧ INV[I ′] ∧ PREr[I] ∧ PREs[I] ∧ POSTr[I, I ′] ∧ ¬PREs[I ′]
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– Independence (IN): Two rules r and s are independent iff in any legal
instantiation where both can be applied, any application order produces the
same result. Four instantiations of the model will be considered to charac-
terize this property: before applying the rules (I), after applying both rules
(I ′′), after applying only rule r (I ′r) and after applying only rule s (I ′s).

I
r−−−−→ I ′r

⏐
⏐
�s

⏐
⏐
�s

I ′s
r−−−−→ I ′′

∀I : ∃I ′r , I
′
s, I

′′ : (INV[I] ∧ PREr[I] ∧ PREs[I]) →
(INV[I ′r] ∧ POSTr[I, I ′r ] ∧ PREs[I ′r] ∧
INV[I ′s] ∧ POSTs[I, I ′s] ∧ PREr[I ′s] ∧

INV[I ′′]∧POSTr[I ′s, I
′′]∧POSTs[I ′r, I

′′])

A model I satisfying PREr[I] may admit non-determinism in the execution of
r, if it contains more than one match of r. The difference between SE and CP is
that the former requires one such application to be valid, while for CP all of them
have to be valid. If a rule does not satisfy CP, it means that it is underspecified
regarding the OCL meta-model invariants. Notice that the attribute condition
in rule “assemble” in Fig. 3 is necessary to ensure that the rule satisfies CP.

The term critical pair is used in graph transformation to denote two direct
derivations in conflict (applying one disables the other), where the starting model
is minimal [8,12]. The set of critical pairs gives all potential conflicts, and if empty,
it means that the transformation is confluent (i.e. a unique result is obtained
from its application). For technical reasons, any attribute computation is usually
modeled as a rewriting of edges [8]. This means that any two rules changing the
same attribute of the same node will be reported as conflicting. This does not
mean that one rule disables the other, but however ensures confluency. On the
contrary, our CN condition is more precise about attribute computations and
considers the OCL invariants, but by itself does not ensure confluency.

IN allows applying each pair of rules in any order, obtaining the same result.
This is a strong version of the local Church-Rosser theorem in DPO [8], where
we require rule independence for every valid model I, and ensures confluency.

5 Tool Support

Existing tools for the validation and verification of UML/OCL models (e.g.
[11,7,4,1,6]) can be used to prove the correctness properties of graph transfor-
mation rules once translated into declarative OCL operations.

Each tool follows a different approach and internal formalism to cope with the
verification process, with its own set of advantages and drawbacks: bounded ver-
ification, need of user guidance, termination and so forth. Moreover, the richness
of constructs in OCL constitutes a challenge for all existing tools. As a result,
the degree of support for some OCL constructs varies from one tool to another.
An example is the support for the operator @pre in the post-condition, which
must be used in the verification of properties that use POSTr. Therefore some
tools may have to be adapted for the verification of those properties. All these
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issues should be taken into account by the designer when choosing a particular
tool to verify the graph transformation rules.

As an example, we show in this section how our UMLtoCSP tool can be used to
check properties of the rules of our running example. UMLtoCSP always proceeds
by searching a possible instantiation of the (meta-)model consistent with all the
invariants. Then, to analyze rules, pre-conditions of the corresponding operations
for each rule must be added as additional invariants on the model. If after adding
these additional invariants a valid instantiation still exists (i.e. the model is
still strongly satisfiable [22]) we may conclude that the property is satisfied by
the rule. To check properties involving post-conditions of operations, two valid
instantiations (one representing the initial state and the other the final one)
must be computed.

First, we use UMLtoCSP to check whether rules “change” and “move” overlap.
To prove so, UMLtoCSP automatically computes the match on the left of Fig.
5. Notice that in this match of the “move” operation, the source and destination
conveyors are mapped to the same conveyor object, as there is no constraint
forbidding this choice. In fact, this instantiation helps us to detect a problem
in our system definition: non-injective matches are inadequate for rule “move”,
which in this case may be solved by adding an additional invariant to the meta-
model stating that a conveyor cannot be next to itself. On the other hand, the
image in the right of Fig. 5 depicts a conflict between rules “work” and “change”:
both rules can be applied on the model but applying rule “work” would disable
rule “change”.

Fig. 5. Examples of an overlapping between rules “change” and “move” (left) and a
conflict between rules “change” and “work” (right) as computed by UMLtoCSP

6 Related Work

There are two main sources of related work: those analysing rules using DPO
and SPO theory, and those that translate rules to other domains for analysis.
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In the former direction, graph transformation has developed a number of analy-
sis techniques [8,12,18], but they usually work with simple type graphs. Our
present work redefines some of these analysis properties, but taking into con-
sideration a full-fledged meta-model, as well as OCL constraints in rules. Some
preliminary efforts to integrate graph transformation with meta-modelling can
be found in [13], where type graphs were extended with inheritance, and [20],
were edge inheritance and edge cardinalities were incorporated into type graphs.

Regarding the transformation of graph rules into other domains, their trans-
lation into OCL pre- and post-conditions was first presented in [5]. Here we give
a more complete OCL-based characterization of rules that considers both DPO
and SPO, NACs, and that encodes the LHS’s matching algorithm as additional
pre-conditions (in [5] the match is passed as parameter to the OCL expressions,
assuming an external mechanism). Besides, we exploit the resulting OCL expres-
sions in order to enable the tool-assisted analysis of different rule properties.

Transformations to other domains can be found in [3], where rules are trans-
lated into Alloy in order to study the applicability of sequences of rules and
the reachability of models; in [2], where rules are translated into Petri graphs to
check safety properties; and in [21], where they are transformed into Promela for
model-checking. However none of these approaches supports the analysis taking
a meta-model into account or allowing OCL constraints in rules. Besides, our use
of OCL as intermediate representation has the benefit that it is tool independent
and we can easily integrate attribute conditions and meta-model constraints.

7 Conclusions and Future Work

We have presented a new method for the analysis of graph transformation rules
that takes into account the (meta-)model structure and well-formedness OCL
constraints during the verification process. This way, properties like applicability,
which are fundamental to detect inconsistencies in graph transformation rules,
can be studied while simultaneously checking for semantic consistency with the
meta-model definition.

Our method translates the graph transformation rules into an OCL-based
representation. Then, the resulting OCL expressions are combined with the OCL
constraints specified for the (meta-)models and passed on to existing OCL tools
for their joint verification. The translation supports rules with NACs, attribute
conditions and distinguishes DPO and SPO semantics.

We believe this translation can useful for other purposes as well. Indeed, once
the graph transformation rules are expressed in OCL, we can benefit from all
tools designed for managing OCL expressions (spawning from code-generation
to documentation, metrics analysis,... ) when dealing with the rules.

As future work we would like to extend our set of correctness properties (e.g.
including validation aspects, where an initial host graph is passed as an addi-
tional parameter to the verification tool) and to apply our approach to other
graph transformation-based techniques, like triple graph grammars. Addition-
ally, we plan to improve the efficiency of our approach by developing some
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heuristics to bound the search space explored during the verification process
depending on the graph rule structure.
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Abstract. One popular approach to object design proposes to identify
responsibilities from software contracts, apply a number of principles
to assign them to objects, and finally construct an object interaction
that realizes the contract. This three-step activity is currently a manual
process that is time-consuming and error-prone, and is among the most
challenging activities in object-oriented development. In this paper, we
present a model transformation that partially automates this activity.
Such a transformation is modularized in three stages. The first stage
automatically transforms a software contract to a trace of state modi-
fication actions. In the second stage the designer manually extends the
trace with design decisions. Finally, the extended trace is automatically
transformed to an object interaction in the third stage. A prototype of
the whole transformation was developed and successfully applied to a
case study from the literature. Our technique allows the extraction of
valuable information from software contracts, provides a bridge between
analysis and design artifacts, and significantly reduces the effort of in-
teraction design.

1 Introduction

Responsibility-Driven Design (RDD) [26] is a popular approach to object design.
Its core activity is the definition of object interactions from a system behavioral
specification, by identifying and assigning responsibilities to objects. A responsi-
bility is a ‘knowing’ or ‘doing’ obligation of an element. Different methods base
their design stage on such an approach. One of those methods is [11], which is
oriented to information-intensive software systems.

An object interaction specifies how messages are exchanged over time between
object roles within a collaboration [16]. In turn, a possible approach to a system
behavioral specification involves treating the system as a black box and identify-
ing its public operations [5], usually called system operations. Conceptually, the
state of a system is specified by a Domain Model, and a system operation can
be understood as a command or partial function that operates on that state.
Larman in [11] further proposes to identify system operations from use case
scenarios, and to specify their semantics using software contracts [14]. In that
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context, a software contract for a system operation expresses a binary relation
between its input and output state.

In [11], the purpose of object design is the realization of every use case. A
use case realization embodies an object interaction for each system operation
identified for the use case, and a proper class model enabling these interac-
tions. Building an object interaction essentially involves three steps: (i) identify
responsibilities, (ii) assign them to objects, and (iii) express them as message
flows. In step (i) responsibilities are identified by inspecting pre- and postcon-
ditions of the software contract associated to the system operation. In step (ii)
participating objects are determined, as responsibilities are distributed among
them. General Responsibility Software Assignment Patterns (GRASP) reduce
the search space, and allow to avoid common pitfalls. In (iii) responsibilities are
expressed as message flows among the participating objects and the interaction
is effectively defined. This involves the creation of a UML interaction diagram
expressing the result. During such a process, a designer can probe the decisions
made during the previous step and apply corrective actions if required. As a
consequence, steps (ii) and (iii) are usually carried out concurrently.

This approach exhibits a number of shortcomings. In step (i), no systematic
technique is provided for responsibility identification, and thus it heavily relies on
the designer’s intuition about the problem. For step (ii) GRASP provides differ-
ent design alternatives. In some cases GRASP can be applied straightforwardly,
but in others, the designer needs to make trade-off decisions. In step (iii), no
systematic technique is proposed for expressing responsibilities as flows of mes-
sages. A designer must repeatedly figure out the set of messages that are required
for fulfilling each responsibility. Additionally, the representational gap between
software contracts and object interactions is significative: software contracts are
declarative analysis artifacts expressed as text, while object interactions are im-
perative design models expressed as diagrams. In most practical cases such a
gap is even more significant since contracts are seldom specified due to a poor
cost/benefit ratio; building a precise and useful contract is usually costly, and ex-
tracting information from it is performed ad hoc. Therefore, designing an object
interaction is one of the most challenging activities in object-oriented develop-
ment. Currently, this activity is a manual process that is time-consuming and
error-prone, and whose success highly depends on the designer’s skills.

In this paper, we present a technique which partially automates the genera-
tion of an object interaction from a software contract. We understand the steps
already discussed as concerns that do not need to be sequentially addressed. Our
technique interleaves these concerns and is organized in three stages, as shown
in Fig. 1. In the first stage, we express contracts for system operations using a
relational model transformation language. An engine capable of executing such
specifications on a model of a source state will then be able to produce a model
of the target state. Particularly, the engine modifies, or more concretely, per-
forms a set of actions on the source state in order to produce the proper target
state. Such a set of actions can be regarded as a trace of the execution leading
from the source to the target state, and hence as a set of ‘doing’ responsibilities.
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Trace Extended
Trace

Designer
Manual

Object
Interaction

Engine
Auto

Software
Contract

MT
Environment

Auto

XTrace2CD

Source 
State Target State

Fig. 1. The three stages of the technique. Black boxes are inputs, dark greyed boxes
are outputs, and light grayed boxes are specific tools.

In the second stage the designer applies GRASP and augments the trace with
responsibility assignments. Although a default assignment might be automati-
cally chosen, manual intervention provides flexibility. In the third stage we apply
another model transformation to the extended trace for producing the object in-
teraction, in the form of a UML communication diagram. Such a transformation
encodes the knowledge about generating message flows, but also identifies and
assigns other responsibilities from the Domain Model if required.

Current work on MDE technologies tends to focus on producing implemen-
tation and deployment artifacts from detailed design models [7]. Our technique
provides a bridge between analysis and design artifacts, allowing a significant re-
duction in the effort for interaction design. It also increases the value of contracts
as it presents a systematic technique for extracting information from them. A
prototype of the whole transformation which is detailed in [24] was successfully
applied to the complete case study introduced in [11].

The rest of the paper is organized as follows. In Sect. 2 we motivate our tech-
nique by discussing manual interaction design on a concrete example. Section 3
describes our technique and noteworthy details are presented in Sect. 4. Related
work is presented in Sect. 5, and Sect. 6 concludes and suggests further work.

2 Motivating Example

In this section we use an example for motivating the addressed problem and in-
formally explaining the manual generation of object interactions. The example
is based on the NextGen Point-of-Sale (POS) system introduced in [11]. A POS
system is a computerized application used to record sales and handle payments
in a retail store, which is deployed on each register. A Domain Model for a POS
is illustrated in Fig. 2. The main use case in such a system is Process Sale, which
deals with customers buying products at the store. Its main success scenario
involves creating a new sale using system operation makeNewSale(), adding
products to that sale using enterItem(), ending the sale using endSale(), and
recording the payment using makeCashPayment(). Handling check payments be-
longs to an alternative scenario. In what follows we only focus on enterItem().
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Fig. 2. Domain Model for the POS system
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sli : Sales
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enterItem(id,qty)

object

Fig. 3. Snapshots exemplifying the effect of enterItem() on the system state

The semantics of enterItem(id,qty) system operation can be specified using
a software contract. Different versions of such a contract with varying degrees
of formality are shown in [24]. Textually, its precondition requires a sale s to be
underway, a product specification ps with itemID equal to parameter id in the
product catalog, and a positive value for qty. In turn, the postcondition ensures
that s has a new line item and its quantity attribute equals qty, and there is a
link relating such line item and the product specification identified by id. By
inspecting this contract, it can be deduced that such specification can be realized
by the following sequence of actions on a system state, also called a trace: (i)
create an instance sli of class SalesLineItem, (ii) set sli.quantity to qty, (iii) link
sli to s, and (iv) link sli to ps. The effect on a sample state of such realization
scheme is shown using a visual contract [13] in Fig. 3; sourceState represents a
canonical state satisfying the preconditions discussed above, and the result of
executing enterItem() on that particular state is represented by targetState.

The design of a system operation raises a number of design problems. Some
of them are independent of the particular system operation, for example, which
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enterItem(id,qty) 2: makeLineItem(spec,qty)

2.1: sl := create(spec,qty)

 : Sales
LineItem

 : Sale : Register

 : Product
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2.2: add(sl)1: spec := findSpecification(id)

1.1: spec := find(id)

comm

 : Product
Specification [*]

: Collection
specs

 : Sales
LineItem [*]

: Collection
lineItems

Fig. 4. Object interaction for enterItem()

class should handle the system operation call. Other problems are specific to the
operation and are introduced by the trace, for example, which class should create
instances of class SalesLineItems. GRASP address these problems by suggesting
a reduced set of different solutions to each of them. Applying GRASP means
choosing one of the solutions. The alternatives are discussed in a later section.
The application of GRASP for enterItem() is as follows. Applying GRASP
Controller class Register is chosen for handling the system operation. Action (i)
in the trace introduces the problem of defining the responsible for creating line
items. By GRASP Creator class Sale is chosen. Action (ii) introduces the prob-
lem of setting an attribute of a line item. By GRASP Expert class Sale is the
responsible. In turn, the problem of linking sales to line items is introduced by
action (iii). Again by Expert, class Sale is chosen. Finally, action (iv) introduces
the problem of linking line items to product specifications, which in turn intro-
duces a number of subproblems. By Expert, a sale is chosen as the responsible
for handing the product specification to a line item. The product specification
must be found and by Expert the catalog is chosen as the responsible for doing
that. Similarly, by Expert again, the register is chosen as the responsible for
retrieving a specification from the catalog and also passing it to the sale. Fig-
ure 4 illustrates an object interaction which fulfills the contract and reflects the
responsibility assignment just discussed.

3 From Software Contracts to Object Interactions

In this section we present an overview of the technique while the next section
discusses some noteworthy details. An operational description of the automated
stages is presented in [24].

The purpose of the first stage is to find a sequence of atomic state changes
needed to achieve the same effect as the system operation would have. A system
operation is a partial function O : State ↪→ State. A software contract defines a
relation R ⊆ State × State such that O(σ1) = σ2 iff (σ1, σ2) ∈ R, provided that
the contract is not underspecified. A contract may be expressed in a relational



250 A. Vignaga, D. Perovich, and M.C. Bastarrica

System
Operation

Source Model Target Model

1 2

models
models

(after MT
execution)

Engine
+

Contract

manipulates

produces

behaves as

Fig. 5. A system operation transforms system state σ1 to σ2. A relational engine trans-
forms models that model such states. Target Model is a copy of Source Model and thus
models σ1 before the engine executes; Target Model models σ2 only after the execution.

model transformation language [4]. Specifications expressed in relational lan-
guages are in its pure form non-executable, however they can be given exe-
cutable semantics [6]. Different languages [1,8,12] propose their own execution
semantics, however they share the same underlying principle. Relation R has an
associated transformation −→

R : State × State ↪→ State where −→
R looks at a pair

of models (φ1, φ2) and figures out how to modify φ2 so as to enforce the relation
R, returning the modified version, so that (φ1,

−→
R (φ1, φ2)) ∈ R [19]. If a system

operation contract is executed by an engine, with both source and target models
modeling the same state, then the target model will be modified so as to make
both of them satisfy every relation in the contract. This means that the engine
exhibits the same behavior as the system operation specified by the contract,
that is −→

R (σ1, σ1) = O(σ1); see Fig. 5. Even more important is that the engine
knows how to manipulate the (copy of the) source state for transforming it into
the target state. Such a manipulation can be expressed in terms of actions on
the system state and is the main result of the first stage. Such actions repre-
sent ‘doing’ responsibilities and we call them the trace of the transformation, as
discussed in Sect. 2. For expressing such actions we defined a Domain Specific
Language (DSL) which is presented in the next section. The present stage is
aligned with the notion of diagram reconciliation, where it is assumed as pos-
sible to discover what changed in a model during a transformation [2]. These
actions can also be regarded as the difference between the two models of states.

The purpose of the second stage is to generate an extended trace consisting
of a trace and design decisions; the trace from the first stage is augmented with
responsibility assignments resulting from the application of GRASP. The respon-
sibilities we address are: (a) to receive and coordinate the system operation, (b)

to create a new instance of a class, and (c) to know a value which is calculated
using attributes of different objects. For (a), GRASP Controller needs to be
applied. Alternatives are an object representing the overall system, or an ob-
ject representing the use case within which the system operation is called. In
the POS example of Sect. 2 the former alternative was chosen. For (b), GRASP
Creator proposes to assign such a responsibility to a particular class. It needs
to be applied to every class involved in a CreateAction within the trace. In the
POS example, a new SalesLineItem needs to be created and class Sale is its cre-
ator. For (c), GRASP Expert proposes to assign such a responsibility to the class
that has the information necessary to fulfil it. In many cases, a class has all the
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information required and the assignment can be done straightforwardly, but in
other cases the information is distributed among several objects. In the POS
example, the responsibility of obtaining the product specification corresponding
to the new line item is distributed among the register, the product catalog and
the current sale. The process of augmenting the trace can be regarded as a model
transformation which is currently performed manually but which is intended to
be fully interactive. Such interactivity provides high flexibility to the designer.
However, the structure of the Domain Model provides valuable information that
helps in choosing among alternatives. For example, it tells who is the owner of
certain attributes (for applying Expert), and who and how is associated to a class
that needs to be instantiated (for applying Creator). Therefore, this transfor-
mation could be partially automated by defining default choices (not necessarily
optimal, though) for each case.

The purpose of the third stage is to produce an object interaction that fulfills
the software contract and thus realizes the behavior of the associated system
operation. This is achieved by applying a model transformation that processes
the extended trace. Based on the models of system states (i.e. snapshots) in-
volved in the first stage, the transformation generates a graph as the basis of the
expected communication diagram, and transforms actions to flows of messages
among participating objects (i.e. nodes in the generated graph) using responsi-
bility assignments explicitly found in the extended trace and implicitly found in
the Domain Model.

4 Technical Details

4.1 Deriving the Trace

We assume a loose semantic interpretation for the contracts of the system oper-
ations, and express them using a relational model transformation language; for
example, Fig. 6 shows the contract for enterItem() using QVT-like syntax. A
software contract is defined as one or more binary relations between the source
state and the target state. Each relation is a pair of predicates, one over the
source state (i.e. precondition) and the other over both states (i.e. postcondi-
tion). Contracts built on multiple relations tend to be simpler, as disjunctions
occurring in the precondition can be split across several relations, and their as-
sociated implication connectives for case analysis are no longer needed in the
postcondition. For example, the single-relation contract on the left can be ex-
pressed as the two relations on the right:

pre: P1 ∨ P2 pre: P1 pre: P2

post: P1 → Q1 ∧ P2 → Q2 post: Q1 post: Q2

These predicates use specification variables [10] for relating both states. Such
variables are initialized when checking the precondition on the source state and
their values are used when enforcing the postcondition. By this means, a post-
condition can also express properties about the source state. This leads to more
compact expressions, and avoids the use of constructs for accessing the source
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1 transformation enterItem(sourceState:POSDomainModel, targetState : POSDomainModel) {
2 key Register(name);
3 key ProductSpecification(itemID);
4 key Sale(date, time);
5 input parameter id : Integer;
6 input parameter qty : Integer;
7

8 top relation SystemOperation {
9 vname : String;
10 vdate : Date;
11 vtime : Time;
12

13 checkonly domain sourceState r : Register {
14 name = vname;
15 curSale = s : Sale {date = vdate, time = vtime},
16 prodCat = pc : ProductCatalog {
17 prodSpec = ps : ProductSpecification {itemID = id}
18 }
19 };
20 enforce domain targetState r’ : Register {
21 name = vname,
22 curSale = s’ : Sale {
23 date = vdate,
24 time = vtime,
25 lineItem = sli’ : SalesLineItem {
26 quantity = qty,
27 prodSpec = ps’ : ProductSpecification {itemID = id}
28 }
29 }
30 };
31 when { qty > 0 }
32 }
33 }

Fig. 6. Transformation for enterItem() in QVT Relations

state such as OCL’s @pre or JML’s \old. For example, assuming sli as a known
instance of SalesLineItem, the contract on the left can be expressed with specifi-
cation variables as the contract on the right:

pre: qty > 0 var: q:Integer
post: sli.quantity = sli.quantity@pre + qty pre: qty > 0 ∧ sli.quantity = q

post: sli.quantity = q + qty

Also, as a system operation may have arguments and a result, predicates can
refer to input parameters and the postcondition must specify the returned values
whenever required.

For processing a contract, a canonical state is chosen to feed the relational
transformation engine. Such a state must satisfy the preconditions and conform
to the Domain Model, and can be regarded as the left part of a visual con-
tract [13]. Provided that both source and target models model the canonical
state, while processing the contract, the engine enforces every relation in it in
sequence by manipulating the target model, according to the structure specified
by the Domain Model. Such a manipulation takes the form of a sequence of
actions on the model of the system state. They correspond to a subset of UML
actions [9] formalized in [22], and allow creating objects, linking and unlinking
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pairs of objects, and setting values of attributes. Explicit object deletion is not
supported; an object is implicitly deleted when unreachable.

An engine must decide which actions are required and this cannot be achieved
for arbitrary boolean expressions within postconditions. Their form is restricted
to expressions that reduce to a conjunction of terms of the form: (i) result =
〈exp〉, (ii) 〈obj〉.〈prop〉 = 〈exp〉, or (iii) 〈obj〉.〈prop〉 �= 〈exp〉. Terms as (i) are used
for specifying the returned value, and terms of the form (ii) and (iii) suffice for
deriving any of the state manipulation actions. In (ii), when prop is an attribute,
and hence exp reduces to a data value, a setAction is induced. In the example
of Fig. 6, this is the case for lines 23, 24 and 26. Otherwise prop must be a role
of an association end opposite to obj, and exp reduces to an object, namely obj’.
A linkAction involving obj and obj’ is induced (lines 25 and 27 in the example).
When at most one object can be linked to either obj or obj’, unlinkActions are
also required for disconnecting them from the already connected object. Addi-
tionally, when obj’ does not exist in the target state, a createAction is induced
(line 25 in the example). In (iii), exp must reduce to an object and prop can only
be an opposite role, and hence an unlinkAction is induced. Clearly, incomplete
traces are obtained from underspecified contracts. Finally, the sequential order
of actions within the trace takes their precedence into account, e.g. an object
must be created before being linked to another object.

4.2 Expressing the Extended Trace

An extended trace is a model which is an instance of the ExtendedTraceMM
metamodel. Such a metamodel defines the notion of an ExtendedTrace as an
aggregation of the different pieces of information required to derive the object
interaction:

Parameters. Input parameters are used for setting attributes and for find-
ing objects. Output parameters are used for returning values.

Search values. A search value relates a class and the input parameter used
for finding specific objects of that class.

Domain Model. A reference to the Domain Model is preserved for typ-
ing instance specifications within the trace. It conforms to the Classes
diagram of the Kernel package of the UML metamodel [9].

Snapshots. A reference to the pair of snapshots representing the source
and target states is preserved for declaring instance specifications within
the trace. They conform to the Instances diagram of the Kernel package
of the UML metamodel.

Actions. The sequence of actions encoding responsibilities. Actions’ meta-
model is based on the IntermediateActions package of UML. Particularly,
createAction is extended in order to contain nested actions for express-
ing object initialization.

GRASP. The application of GRASP encoding responsibility assignments.
This part of the metamodel is discussed next.

Figure 7 details the part of the ExtendedTraceMM metamodel concerning the
application of GRASP. This metamodel reuses a number of metaclasses from
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Fig. 7. The GRASP diagram of the ExtendedTraceMM package

the Kernel package of UML, colored in grey in the figure. Metaclass Controller
represents an application of Controller, and the InstanceSpecification responsible
of controlling the system operation is associated. Creator represents an applica-
tion of Creator, and the involved classes are related by two separate associations.
Finally, Expert represents an application of Expert that assigns the responsibil-
ity of knowing how a property is derived; straightforward applications of Expert
are handled on the fly during the third stage. Expert has associated the De-
rivedProperty and the expert class. A derived property is a specialization of a
standard Property, and is related to the properties that are required for its cal-
culation (targetProperty role). Since there may be more than one association
from the expert class to the owner class of a required property, that relation
(metaclass PropertyDerivationRelationship) also specifies which opposite associa-
tion end (providerRole role) needs to be used. For the POS example, instances
of these classes can be used for expressing that the total of a sale is calculated
using the subtotals of its sale line items, and so forth.

In Fig. 8 the extended trace for enterItem() is shown. Input parameter id is
used as a search value for finding specific instances of ProductSpecification (e.g.
message 1.1 in Fig. 4). Actions nested in the creation of sli specify the responsi-
bilities involved in its initialization. Finally, Sale is the creator of SalesLineItem,
and object r from sourceState is the controller of the system operation.

4.3 Synthesizing the Interaction

The third and last part of our technique consists of a model transformation
called XTrace2CD that produces the object interaction. The source model of this
transformation is the extended trace produced during the second stage, and the
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1 xtrace enterItem(id : Integer, qty : Integer) {
2

3 domain model POSDomainModel;
4 snapshots sourceState, targetState;
5

6 search value id of ProductSpecification;
7

8 createAction sli : SalesLineItem {
9 linkAction s, sli, contained-in;
10 setAction sli, quantity, qty;
11 linkAction sli, ps, described-by;
12 }
13

14 creator Sale of SalesLineItem;
15 controller r;
16 }

Fig. 8. Extended trace for enterItem()

target model is a UML communication diagram whose metamodel [23] restricts
UML’s to our practical needs.

The target model can be understood as a directed multigraph of objects,
where a particular edge, called the entry point of the diagram, represents the
message which starts the interaction. Such a message corresponds to the system
operation, and by convention it has no source object and it is handled by the
controller. The first step of the transformation consists of generating the entry
point. In the second step, the sequence of actions included in the extended trace
is iteratively processed in order. For each action a set of messages is produced
for resolving the corresponding sub-interaction. This set involves one or more
messages for the action itself, and since the controller is ultimately the source of
every action in the interaction, the set also involves a path of messages from the
controller to the object performing the action. Arguments required for perform-
ing the action, such as input parameters or objects, are collected along such a
path. In what follows we briefly discuss the processing of each kind of action; a
detailed example on a concrete extended trace can be found in [24].

Except for objects modeling collections, the structure of the target state is
similar to that of the communication diagram (see objects and links of targetState
in Fig. 3, and in the interaction in Fig. 4). In general, a merge of the source and
target state is therefore used as the basis for the structure of the interaction. A
[createAction c : C] induces a create message from an instance of the creator
of C to object c. Nested actions are used for selecting the specific source of the
message, its arguments, and possible nested sub-interactions. A [linkAction a,
b, r] induces a message from an object which has visibility on a and b. The
target of such a message is a which receives b as an argument, or viceversa,
depending on the existing applications of GRASP Expert. Depending on the
upper bound of multiplicity in the proper end of r, the insertion of the argument
into a collection may be required as a sub-interaction. An [unlinkAction a, b, r]
is treated similarly, but the possible sub-interaction could involve the removal
of the argument from the collection instead. Finally, when not occurring as a
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nested action, a [setAction o, a, v] induces a message to o from an object which
has visibility to it and has access to value v.

4.4 Tool Support

As a proof of concept for our technique we developed a prototype of the two
tools shown as light greyed boxes in Fig. 1. The first tool named Engine is a
reduced relational model transformation engine developed in Prolog. Its execu-
tion semantics is based on QVT Relations [8]. The engine processes relational
model transformations as discussed in Sect. 4.1 and is also capable of producing
the proper trace. The second tool named XTrace2CD is an imperative model
transformation implemented in Kermeta [15] which synthesizes interactions as
explained in Sect. 4.3. The details of both implementations are reported in [24].

We applied our technique to the complete Process Sale use case of the POS
case study described in Sect. 2 using these tools. We defined the required con-
tracts in our variant of QVT Relations for every system operation, and used
the first tool for producing the corresponding traces. All traces are correct with
respect to their associated contract. These traces matched those reported in [21]
where their correctness was formally proved. In turn, we applied the second
tool to the extended version of the traces for deriving the object interactions.
Such a result matched that reported in [11]. The implementation of the proto-
type as well as all artifacts involved in the complete case study are available at
http://mate.dcc.uchile.cl/research/tools/eoisc mt/.

5 Related Work

The generation of design artifacts from analysis specifications has been exten-
sively addressed, with varying levels of automation and involving different source
and target artifacts. For example, [20] fully automates the generation of state-
charts from scenarios and properties, [25] assists the generation of a class model
from a formal requirements specification, and [17] automates the generation of
pseudocode from a set of sequence diagrams. We use software contracts which are
a common technique for specifying behavior, and we produce object interactions
which are an abstraction of the runtime view of object-oriented systems.

The activity of generating object interactions from software contracts, as de-
scribed in Sect. 2, is presented in [11]. This is a manual process where the de-
veloper must deduce responsibilities from software contracts, assign every single
responsibility to objects using GRASP, and finally manually build the commu-
nication diagram. Our technique automates most of this process.

In [18], design is also based on RDD and conceived as a sequence of transfor-
mations performed in two separate phases. First, from an informal text-based
problem description, a generative phase produces an initial design similar to a
Domain Model, and identifies a set of responsibilities. Although they propose
some techniques for automating this task, a great deal of manual intervention
is required. Second, a transformational phase successively reconfigures the de-
sign. Such transformations are aimed at balancing the cohesion of participating

http://mate.dcc.uchile.cl/research/tools/eoisc_mt/


Extracting Object Interactions Out of Software Contracts 257

classes, and based on design patterns applications. This approach uses one sin-
gle design artifact called collaboration graph which can be regarded as a Design
Class Diagram [11] but with no attributes or operations. The output of our tech-
nique is more detailed as it focuses on the dynamic aspects of the design, from
which a Design Class Diagram can be automatically generated [23].

Visual contracts [13] are an alternative approach to software contracts à la
Meyer. The behavior of an operation is specified by providing a pair of snapshots
exemplifying its effect on a particular state, which conforms to a particular class
diagram. Such a class diagram is transformed to structural Java code, while
visual contracts are transformed to JML specifications that annotate operations
within the Java code. The developer then manually implements methods for
such operations. Although our technique uses snapshots that resemble a visual
contract, its main input are traditional software contracts as they are more
expressive. While their approach relies on manual method implementation, we
generate method realizations in the form of a trace and object interactions.

In [3], a mechanism for generating a set of operations for a given class dia-
gram is presented. Such a set embodies basic command operations which describe
how the system state can evolve. State modifications are also expressed in terms
of actions, and similarly to our technique, operations on specific classes need
to be derived for supporting them. Furthermore, operations derived using this
approach are intended to be executable, and the notion of dependency among
actions is thus introduced. In our technique, such dependencies are represented
by the ordering of actions within the trace. Finally, although the proposed mech-
anism could be automated, no tool support is reported.

6 Conclusions and Further Work

In this paper we presented a technique which automates most of the process for
extracting object interactions out of software contracts using model transforma-
tions. For exploring the feasibility of our technique we developed a prototype tool
which was successfully applied to a well-known case study from the literature.

This technique embodies the practical application of several aspects of Model
Driven Engineering (MDE). We consider software contracts as relational model
transformations, a relational engine is used in a non-standard fashion, a DSL was
defined, and different approaches to model transformations (i.e., relational and
imperative) were applied. As a whole, our technique can be regarded as a compo-
sition of model transformations. In scenarios where a complex transformation is
divided into sub-transformations, defining their scope is not straightforward and
the form of intermediate models (e.g. the extended trace) varies significantly.
Applying our technique, software contracts can become cost-effective since im-
portant information can be extracted from them, and also such information can
be used for producing other artifacts. The technique also provides a direct mech-
anism for testing software contracts, as the snapshot generated by the engine
can be examined for checking if the transformation produced the expected re-
sult. Finally, an engine executing contracts on the actual system state, rather
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than on a model of it, can be understood as a functional prototype of the system
at an early stage of development.

The technique we have developed currently lacks two desirable features. First,
given the sequential form of the actions within a trace, it is not possible to
perform case analysis. There are a number of situations where disjunctions could
be required: (a) cases based on the values of input parameters, (b) cases based on
the values returned by messages within the interaction, mainly for (i) alternative
paths of execution imposed by business rules, and (ii) error handling. Case (b.ii)
is generally ignored when specifying interactions since only typical behavior is
usually shown. On the other hand, cases (a) and (b.i) may be addressed in a
similar fashion. In this scenario, a different source state should be used for each
case. Using several relations in the contract for expressing cases as discussed
in Sect. 4.1 simplifies the identification of such canonical states. From them,
different traces are generated as before, and may be merged afterwards; [17]
proposes a technique aiming a similar purpose. Second, a common practice in
object-oriented design is to introduce classes not present in the problem domain.
This usually occurs as a consequence of applying GRASP High Cohesion and
Pure Fabrication [11] or design patterns. Our technique restricts interactions to
instances of classes in the Domain Model. Simons et al. [18] propose a technique
based on model transformations that detects cases of low cohesive classes and
suggest to restructure the design by applying design patterns. This technique can
be applied after generating the interactions, hence improving the object design.

As further work we plan to enhance our technique for including the features
just discussed, and also for achieving some degree of automation within the
second stage. We also plan to evolve the existing prototype towards an integrated
tool that fully realizes our technique.
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