
Solving Proportional Analogies by
E–Generalization

Stephan Weller and Ute Schmid

Department of Information Systems and Applied Computer Science,
Otto-Friedrich-University, Bamberg

{Stephan.Weller,Ute.Schmid}@wiai.uni-bamberg.de

Abstract. We present an approach for solving proportional analogies
of the form A : B :: C : D where a plausible outcome for D is computed.
The core of the approach is E–Generalization. The generalization method
is based on the extraction of the greatest common structure of the terms
A, B and C and yields a mapping to compute every possible value for
D with respect to some equational theory. This approach to analogical
reasoning is formally sound and powerful and at the same time models
crucial aspects of human reasoning, that is the guidance of mapping by
shared roles and the use of re-representations based on a background
theory. The focus of the paper is on the presentation of the approach. It
is illustrated by an application for the letter string domain.

1 Introduction

An often quoted observation by the psychologist William James more than a 100
years ago is that “a native talent for perceiving analogy is ... the leading fact
in genius of every order” (see [1]). Accordingly, the process of analogy making
is studied extensively in cognitive psychology as well as in artificial intelligence
[2]. The most fundamental kind of analogies are so called proportional analogies
of the form A : B :: C : D. They are studied in verbal settings (Lungs are to
humans as gills are to [fish]), with geometric figures [3,4], and in the letter string
domain [5] (abc : abd :: kji : [kjj]).

The core processes of all computational approaches to proportional analogy
are (1) construction of a structured representation of the given patterns, usually
in the form of terms, (2) identification/calculation of the relation between terms
A and B, (3) mapping of terms A and C, and (4) application of the relation
found between A and B to term C using substitutions based on the mapping
of A and C. Some approaches, namely Pan [4] and Copycat [5], additionally
present a mechanism for re-representation of terms, addressing the fact, that
the outcome of mapping is dependent on the perceived structure of the given
terms. For example, the string abc can be perceived as an arbitrary sequence of
letters, or as an ascending sequence of three letters.

Our approach differs from the approaches named above in two respects: First,
mapping is determined by the common gestalt, that is the structural commu-
nalities of the base (A) and target (C) terms. Second, arbitrary background

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 64–75, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Solving Proportional Analogies by E–Generalization 65

knowledge can be considered when comparing the structures of terms. The first
characteristic is covered by the method of syntactic anti-unification. The sec-
ond characteristic is covered by an anti-unification modulo equational theory or
E–Generalization.

In the following section we will introduce syntactic anti-unification and E–
Generalization and discuss their computational advantages as well as relations
to human analogy making. Afterwards we will introduce the letter string domain
as example domain. We present our algorithmic approach and illustrate it for
letter string analogies. We will conclude with an evaluation and further work to
be done.

2 Syntactic Anti-unification and E–Generalization

In this section we will introduce the notion of E–Generalization, as used in [6] and
[7]. To facilitate the understanding of E–Generalization, we will first introduce
syntactic anti-unification, which is a proper subset of E–Generalization.

2.1 Syntactic Anti-unification

Unification is a well known and widely used technique, the probably most promi-
nent application being the programming language Prolog. It computes the most
general unifier (MGU) of two or more terms, i.e. the most general term, such
that both terms can be reduced to the MGU by applying a substitution. Anti-
unification is the dual concept to unification. Instead of computing the most
general unifier, it computes the most specific generalization. It can be defined as
follows:1

Definition 1 (Anti-instance). Let u and ti, i = 1, . . . , n be terms and σi sub-
stitutions for each term, such that ti = uσi∀i = 1, . . . , n. Then u is called an
anti-instance of the terms t1, . . . , tn.

u is called the most specific anti-instance of t1, . . . , tn, if for each term u′

which is an anti-instance of t1, . . . , tn there exists a substitution θ, such that
u = u′θ.

In contrast to unification, anti-unification is always possible and there is always
a single most specific solution (up to variable renaming).

Algorithms for computing the anti-unification of n terms effectively were in-
troduced in [8] and [9] independently.

Anti-unification can be used to establish a relation between two terms in the
following way: If we anti-unify two terms, and those terms share some common
structure, the result will be a non-trivial term containing some variables. Let us
for example consider figure 1 2, an example of anti-unifying two terms, 5 · 3 + 7
and 8 ·3+9. The two terms are anti-unified resulting in x ·3+y. The result of the

1 As commonly used tσ denoted the application of the substitution σ to the term t.
2 Standard arithmetic rules are assumed, i.e. 5 · 3 + 7 is to be read as +(·(5, 3), 7).

66 S. Weller and U. Schmid

anti-unification conserves as much of the structure of the terms as possible. The
generalized structure reflects the roles the objects are playing in the respective
expressions. For example, the variable x describes the role that 5 plays in the
first term and 8 in the second, namely, that of the first factor in the term. The
second term can be obtained from the first one by applying the substitution τ1
inversely and then applying τ2.

This is a contrast to a direct mapping approach used in many models for
analogies. A direct mapping approach aims at computing the one term directly
out of the other, without using intermediate results. This sometimes requires
stochastic elements, as used in Copycat ([5]) or the use of heuristics, such as
the systematicity principle in SME ([10]). Those may be powerful in solving the
analogy, however a stochastical approach is psychologically hardly plausible.

Anti-unification allows for a mapping by using the abstract description of the
“roles” some subterms fulfil. In one word, it allows for analogy via abstraction,
which has some psychological motivation ([11]) and also yields a formally sound
approach.

5 · 3 + 7 8 · 3 + 9

x · 3 + y

τ1
τ2

Fig. 1. Simple example for syntactic anti-unification

2.2 E–Generalization

Sometimes, for constructing a suitable abstraction, it might be necessary to
include knowledge about the domain. E. g., for t′2 = 9 + (3 · 8) and t1 as above,
only the overly general anti-instance u + v can be obtained. But we know, that
addition is commutative and therefore, we can rewrite t′2 into its original form
t2. Knowledge about the equality of terms can be represented by an equational
theory. The laws for addition constitute such a theory:

x + y =E y + x

x + (y + z) =E (x + y) + z.

If we use knowledge in form of equational background theories for rewriting
terms before syntactical AU is performed, we speak of E–generalization. Models
for solving proportional analogies, such as Copycat [5] or Pan [4], allow for an
arbitrary sequence of rewritings of the initial representation (re-representation)
to find a suitable solution. In contrast, E–generalization allows us to perform
abstraction while modeling equivalent representations by appropriate equations
between terms. All equivalent representations are considered simultaneously in
the abstraction process. Therefore, abstraction becomes insensitive to represen-
tation changes.

Solving Proportional Analogies by E–Generalization 67

The basic idea is to anti-unify regular tree grammars instead of terms. Regular
tree grammars are a language class developed in 1968 (cf. [12] and [13]). This
language class is located in the Chomsky-Hierarchy between regular and context-
free languages (for a very comprehensive introduction to regular tree grammars
see [14]).

Regular tree grammars allow for the representation of equivalence classes of
terms, it would for example be possible to represent the terms 3·8+9, 8·3+9, 9+
3 · 8, and 9 + 8 · 3 by one regular tree grammar, assuming the given background
knowledge.

The construction of regular tree grammars from a background theory (for
example a canonical equational theory) can in some cases be done automatically
(cf. [15] and [16] for criteria when this is possible).

5 · 3 + 7 ∈ G1 G2 � 9 + 3 · 8
↘ ↙

G = au(G1, G2)

∈

x · 3 + y

Fig. 2. Simple example for E–Generalization

Assuming regular tree grammars for our terms, we can now anti-unify these
regular tree grammars by an algorithm originally developed in [6] and refined
in [7]. This process is depicted in figure 2. Unfortunately, this algorithm needs
exponential time 3 in general, but [7] shows that in some cases an efficient com-
putation is nevertheless possible.

It should be noted that the result of this E–Generalization process is not a
term, but a regular tree grammar of terms. But this is only a natural consequence
of representing equivalence classes of terms as regular tree grammars. The result
has to be an equivalence class of terms itself. In the next section we will see, that
this will make it possible to compute all solutions of a proportional analogy in
one step.

For an in-depth description of the algorithm mentioned (and also its imple-
mentation and application so proportional analogies) see [17].

E–Generalization may be used as a model for analogies even more than syn-
tactic anti-unification. The features described in the last subsection are fulfilled
by E–Generalization as well and additionally, we are not limited to one repre-
sentation. E–Generalization may account for a change rerepresentation of the
terms, which is necessary in many cases (see for example [18] for a justification
of this claim). We can therefore hope to find a method of solving proportional
analogies by E–Generalization.

3 Exponential in the size of the grammars used.

68 S. Weller and U. Schmid

3 Letter String Analogies

We will illustrate our approach for the letter string domain which has been widely
investigated in cognitive science as well as in artificial intelligence [19,20,21,5,1].
This domain has several characteristics which makes it interesting: First, it is
very simple and any number of analogies can be constructed. Second, for many
examples, there are different plausible solutions. Which solution is generated (by
a program or a human subject) is dependent on how the perceived structure of
the other strings. Third, in principle any type of proportional analogy problem
which can be represented in form of terms can be mapped to the letter string
domain.

For example, geometrical patterns can be described by a system of terms, thus
matching it to the letter-string-domain. This possibility was described already
in 1971 in [22] and is known as Structural Information Theory (SIT).

It was first introduced as a coding system for linear one-dimensional pat-
terns. Leeuwenberg represents perceptual structures by three operators named
iteration, alteration, and symmetry. Iteration is supposed to reflect some kind of
repetitive process (e.g. Iter(xy, 3) := xyxyxy). Symmetry should represent the
reversed repetition of a term t after a second term s (Sym(xyz, ()) := xyzzyx).
Finally, alteration describes the interleaving of a term into a list of terms, such
as Alt(a, (x, y, z)) := axayaz.

On those operators, Leeuwenberg introduces the notion of information load,
which is supposed to describe the complexity of an operator. Leeuwenberg claims
that the descriptions using the minimal information load correspond to percep-
tual gestalts (for an introduction to gestalt theory, see [23]). His claim is there-
fore, that the gestalt principle can be explained by even simpler principles, such
as his information load.

A more algebraic version of Structural Information Theory can be found in
[21]. Here, even some computational modelling of proportional analogies is done.

4 Solving Proportional Analogies by E–Generalization

4.1 Illustration of the Approach

In the following we will show how to apply the method of E–Generalization to
solve a proportional analogy of the form A : B :: C : D (read: A is to B as C to
D), where D is to be computed.

As an example, let us assume we want to solve the proportional string analogy
abc : abd :: ihg : D. where D is unknown. Using a representation language similar
to SIT ([21]) we could represent the term abc as Iter(a, succ, 3), meaning that
abc is established by iterating the successor operation three times on the constant
a. Another possible representation would be of the form a·succ(a)·succ(succ(a)),
where · means concatenation and succ is the successor relation.

Our first aim is now to compute the common structure of the terms A and
C, or, in our example the terms abc and ghi. At this point it should be noted,

Solving Proportional Analogies by E–Generalization 69

that this common structure could be extracted straightforward by syntactic anti-
unification, if we had knowledge about the structure of the terms abc and ghi.
Let us for a moment assume, that we know that the structure of our both terms
is Iter(a, succ, 3) and Iter(i, pred, 3) respectively 4. In this case, an application
of syntactic anti-unification would yield the common structure Iter(x, y, 3) and
the two substitutions τ1 = {x ← a, y ← succ}, τ2 = {x ← i, y ← pred}. Let us
further assume the structure Iter(a, succ, 2) · succ(succ(succ(a)) for the B-term
abd. Given this, we could apply τ1 inversely to the B-term, yielding a new term
Q of the form Iter(x, y, 2) · y(y(y(x))). Applying τ2 to this term would yield the
result Iter(i, pred, 2) · pred(pred(pred(i))) which describes the term ihf , which
is one possible solution of the analogy.

Seeing this, one possibility to solve a proportional string analogy would be
to compute some representation of the participating terms and using syntactic
anti-unification (and inverse and normal substitution application) to compute a
result. The decision on some representation will thus determine, which result we
will obtain.

But instead of choosing one particular representation at the start, we can
take the process one step further and use E–Generalization instead of syntactic
anti-unification. The complete process is shown in figure 3.

A : B :: C : D

[A]E [C]E

GAC

[B]E

Q

[D]E

τ1 τ2

τ−1
1

τ2

Fig. 3. Solving a proportional string analogy

To every ground term A, B, and C a regular tree grammar representing the
equivalence class of all representations of the term is built up. Those regular tree
grammars are denoted by [A]E , [B]E , and [C]E . The process of building the reg-
ular tree grammars is denoted by the dotted arrows. Next, the E–Generalization
algorithm from [7] is used on the two regular tree grammars [A]E and [C]E , thus
extracing their common structure as a regular tree grammar GAC . This grammar
is not needed in the further process, it is a byproduct of the algorithm represent-
ing a form of abstraction from the ground terms. What is needed in the next
step, are the substitutions τ1 and τ2 also produced by the E–Generalization step.
4 Actually, the example is not completely formally correct, as it intermixes first and

second order terms for succ and pred, which is of course not valid, but simplifies the
example a lot.

70 S. Weller and U. Schmid

The substitution τ1 is inversely applied to [B]E 5 , resulting in a regular tree
grammar describing the common structure between B and D. It is denoted by
Q in the figure. Again, this grammar forms an abstraction from the actual terms
that can be seen as a byproduct of the analogical process.

Finally, the substitution τ2 is applied to Q, leading to a final grammar [D]E
with the following properties:

– It shares the structure of B, as it is derived by application of (inverse)
substitutions to [B]E .

– The constants occuring in the term A are replaced by those in C, as the two
(inverse) substitutions τ−1

1 and τ2 are applied.
– It can thus be described as the result of “doing the same thing” to B as it

was done to A to get C.
– And therefore, it can be seen as a valid solution of the proportional analogy

A : B :: C : D.

As mentioned before, the result of this process is not a single term, but a
regular tree grammar and as such a whole set of terms. However, it describes
every result that can be obtained by replacing constants in any representation
of B by their counterparts with respect to every possible representation of A
and C.

Naturally the question arises, how to extract a term from this tree gram-
mar (when a single term is desired rather than a set of terms). This process is
an enumeration of the regular tree grammar, which is in general not possible
completely, as infinitely many terms are described by the grammar (imagine for
example a grammar for arithmetical operations allowing for the addition of 0 -
this alone leads to result grammars describing infinitely many terms in nearly
every case). Nevertheless, it may be desirable to enumerate the first n terms
according to some ordering relation. The enumeration is not a problem, if the
ordering relation is defined. But finding a suitable ordering relation is not a sim-
ple task. However, using simple relations, like ordering by number of occuring
constants, “depth” of the term etc. are possible. Those might even represent
some kind of simplicity used by humans to decide which answer to choose in
solving a proportional analogy.

Which ordering relation would correspond to the preference humans use is an
empirical question and probably requires deep insight in the cognitive processes
used in analogical thinking.

4.2 Algorithmic Realization of E-Generalization

The algorithm used to implement E–Generalization was originally developed in
[7]. Computing the E–Generalization of two terms is split up in three parts:
Computing universal substitutions, lifting a grammar and finally intersection of
regular tree grammars.
5 Note that (inverse) application of substitutions is well-defined on regular tree gram-

mars. It is a special case of an inverse tree homomorphism. See [14] for details.

Solving Proportional Analogies by E–Generalization 71

Regular tree grammars are defined as a quadruple G = (Σ, N , S, R). Σ is a
signature, i.e. a set of function symbols f , where each f has a fixed arity. If
the arity of one f is 0, it is called a constant. N is a finite set of nonterminals,
S ∈ N is a starting symbol. Finally, R is a finite set of rules of the following
form:

N :: = f1(N11, . . . , N1n1)| . . . |fm(Nm1, . . . , Nmnm)

Let us first assume, that the substitutions are already known. This subproblem
is also known as constrained E–Generalization. In this case, only two steps are
needed: Lifting the grammars and intersecting them. Lifting the grammar is a
process to incorporate the knowledge about variables that could be used by the
substitution. In other words, from a grammar G we want to derive a grammar
Gσ, such that Gσσ = G, where Gσ containts all “suitable” variables from the
substitution σ. To this end, we define the following algorithm:

Algorithm 1 (Lifting). For a regular tree grammar G = (Σ, N , S, R and a
substitution σ define a new grammar Gσ = (Σ∪ dom σ, {Nσ|N ∈ N}, Sσ, Rσ),6

where Nσ is a new nonterminal, one distinct nonterminal is introduced for each
old nonterminal. The same is done to S and the rules Rσ are derived from R
as follows:

For every rule

N :: =
∣
∣
∣

m

i=1
fi(Ni1, . . . , Nini)

from R we introduce a new rule

Nσ :: =
∣
∣
∣

m

i=1
fi(Ni1, . . . , Nini)|

∣
∣
∣
x∈ dom σ,xσ∈LG(N)

x

Where LG(N) describes all terms in the grammar G, that can be reached when
using N as a starting symbol.

To compute the intersection of the regular tree grammars, a standard algo-
rithm from [14] is used. It is similar to intersection algorithms for regular
languages.

Lifting two grammars as defined above and intersecting them afterwards will
now result in the E–Generalization of those two grammars. However, to allow
for unconstrained E–Generalization, we still need some means to extract the
substitions required to apply constrained E–Generalization.

It is possible, to find two universal substitutions τ1 and τ2, which are universal
in the following sense: For any two substitutions σ1, σ2 we can find a substitution
σ, such that tσi ∈ L(N) =⇒ tστi ∈ L(N) for i = 1, 2, N ∈ N and any t from
the union of both domains.

The existence of such substitutions is proven in [7]. They are constructed in
the following two steps:

6 dom σ denotes the domain of σ, i.e. the set of all terms occuring on the left-hand
side of a substitution.

72 S. Weller and U. Schmid

Algorithm 2 (Universal substitutions)

1. Construct Nmax:

(a) Set N = ∅ and Nmax = ∅
(b) For each Nonterminal n ∈ N , compute (

⋂

x∈N L(x)) ∩ L(n) and if the
result is not empty, add n to N .

(c) Add N to Nmax, remove all elements in N from N , and if N 	= ∅, set
N = ∅ and continue with step (b).

2. For a nonterminal N , define t(N) as an arbitrary term from L(n). For each
pair (N1, N2) ∈ Nmax × Nmax introduce a new variable v(N1, N2) and define
τi = {v(N1, N2) ← t(Ni)} for i = 1, 2.

Using those substitutions and applying the constrained E–Generalization will
yield the unconstrained E–Generalization. This completes the algorithm:

Algorithm 3 (Unconstrained E-Generalization). Let N1, N2 be two reg-
ular tree grammar. Their unconstrained E-Generalization is computed with the
following steps:

1. Compute two universal substitutions τ1, τ2 for the regular tree grammars N1
and N2 respectively by algorithm 2.

2. Compute the “lifted” grammars N τ1
1 and N τ2

2 by algorithm 1.
3. Compute the intersection N := N τ

1 ∩ N τ
2 by a standard algorithm, for ex-

ample from [14].

4.3 Using E-Generalization to Solve Proportional Analogies

We have now all ingredients to describe our overall approach algorithmically:

Algorithm 4 (Solving proportional analogies). Let a proportional analogy
of the form A : B :: C :? be given by regular tree grammars [A]E for A, [B]E for
B and [C]E for C. Compute a solution D by the following steps:

1. Compute universal substitutions τ1, τ2 for [A]E and [C]E respectively, using
algorithm 2.

2. Lift the grammar [B]E with respect to the substitution τ1, using algorithm 1
to get Q := [B]τ1

E .
3. Apply the substitution τ2 to Q to get the final result [D]E := Qτ1.

4.4 Implementation

As mentioned above, the E–Generalization algorithm is exponential in the size
of the grammars used in the general case. A proof-of-concept implementation
of the algorithm was done, which can be used for small examples. Grammars
describing terms like abd have typically a size of 30 to 40 rules, one for each
letter of the alphabet and several more for the operators (see [17] for example
grammars).

Solving Proportional Analogies by E–Generalization 73

The implementation was done in Moscow-ML, an implementation of Standard
ML, which is a stricly functional language. This language was selected due to
it’s support for pattern matching, which enables it to interact with trees and
terms very straightforwardly.

Sample grammars were generated for very small mathematical problems and
proportional string analogies.

The program was run with prototypical examples, such as abc : abd :: ghi :?.
Performance time is quite reasonable, typically about 30 sec. The size of the
returned grammar was in between 40 and 50 rules. Nearly all of the computing
time was spent in the process of generating the universal substitutions. This
coincides with the theoretical results ([7]), as this is the step that requires expo-
nential computation effort. More statistics on the program were not done, due
to its prototypical nature.

An algorithm to enumerate the resulting grammar is not yet available. As the
grammar represents all solutions with respect to a given background knowledge,
such an enumeration would reflect the preference human subjects would have
when choosing a solution. The question of enumerating the grammar is therefore
more a psychological than an algorithmical one. It is possible to sort the terms in
the grammar by complexity (i.e. the depth of the terms). However, wether such
an enumeration would correspond to human preference is still an open question.

A more extensive description of the implementation can be found in [17].
For an application to a task which requires more than very small grammars,

some restriction to the algorithm is inevitable. Such restrictions would of course
depend on the application.

5 Conclusion and Further Work

We have introduced the idea of anti-unification and its extension with back-
ground knowledge to E–Generalization. Then we have shown how this method
can be applied to solve proportional string analogies in a generic way, that is,
without incorportating domain knowledge into the algorithm. We demonstrated
the approach for the letter string domain, which can be seen as a representa-
tive domain for all other domains accessible to term representation. That is,
our approach is applicable to all kinds of proportional analogy problems. The
only restriction is given by the fact that the background knowledge has to be
represented as a canonical equational theory, which is not always possible (for
criteria cf. [6]).

Our approach can be applied to more complex analogical reasoning tasks as
well. For example, it can be applied to solve predictive analogies in the domain
of naive physics which are addressed in the cognitive model SME [10] as we
demonstrated in [11]. Furthermore, an extension to second-order generalization
can be applied to the domain of program construction by analogy [24,25].

Solving proportional analogies is only one domain where E–Generalization
can be applied. There are for example applications in the field of lemma gener-
ation (cf. [6]) or in the completion of number series, as they are used often in

74 S. Weller and U. Schmid

intelligence tests. The latter were also worked on by [5] (cf. chapter 2.2), also
making use of analogies. The application of E–Generalization to this problem
has been done in [15].

An important property of this method is the calculation of the common struc-
ture of the terms as a byproduct of the analogy solving. In contrast to most other
models of analogies, this method does account for the emergence of abstract
knowledge without any extra computation. The creation of the abstract knowl-
edge about the common structure is not gained by an extra step, but rather as
an intrinsic property of the process.

At least in this aspect this is similar to the way humans solve analogies. One
cannot “suppress” the abstraction from the concrete terms. To learn something
about the common structure of the terms is inherent in the process of solving
the analogy.

To investigate further in human solving of proportional analogies, empirical
research is necessary. Our next step will therefore be to conduct an empirical
study. The aim of this study will be to check wether the results chosen by humans
correspond to a certain ordering relation of the terms in the computed grammar
or wether terms occur not covered by the grammar at all (this can of course
not be ruled out, as human decisions might not be explicable by background
knowledge but rather based on intuition or other non-rational processes).

Acknowledgements

We would like to thank Jochen Burghardt for his support of our work.

References

1. Mitchell, M.: Analogy-Making as Perception: A Computer Model. MIT Press,
Cambridge, MA (1993)

2. French, R.: The computational modeling of analogy-making. Trends in Cognitive
Sciences 6 (2002) 200–205

3. Evans, T.G.: A Program for the Solution of a Class of Gemetric-Analogy
Intelligence-Test Questions. In Minsky, M., ed.: Semantic Information Process-
ing. MIT Press (1968) 271–353

4. O’Hara, S.: A model of the redescription process in the context of geometric
proportional analogy problems. In: Int. Workshop on Analogical and Inductive
Inference (AII ’92). Volume 642., Springer (1992) 268–293

5. Hofstadter, D., the Fluid Analogies Research Gr.: Fluid Concepts and Creative
Analogies. BasicBooks (1995)

6. Heinz, B.: Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur
Lemmagenerierung. Technical report, GMD - Forschungszentrum Information-
stechnick GmbH (1996)

7. Burghardt, J.: E-generalization using grammars. Artificial Intelligence Journal
165 (2005) 1–35

8. Plotkin, G.: A note on inductive generalization. In: Machine Intelligence. Volume 5.
Edinburgh University Press (1970) 153–163

Solving Proportional Analogies by E–Generalization 75

9. Reynolds, J.: Transformational Systems and the Algebraic Structure of Atomic
Formulas. In: Machine Intelligence. Volume 5. Edinburgh University Press (1970)

10. Falkenheimer, B., Forbus, K.D., Gentner, D.: The structure-mapping engine: Al-
gorithm and examples. Artificial Intelligence 41 (1989) 1–63

11. Schmid, U., Gust, H., Kühnberger, K.U., Burghardt, J.: An algebraic framework
for solving proportional and predictive analogies. In Schmalhofer, F., Young, R.,
Katz, G., eds.: Proceedings of the First European Conference on Cognitive Science
(EuroCogSci03), Mahwah, NJ, Lawrence Erlbaum (2003) 295–300

12. Brainerd, W.: The minimalization of tree automata. Information and Control 13
(1968) 484–491

13. Thatcher, J., Wright, J.: Generalized finite automata theory with an application to
a decision problem of second–order logic. Mathematical Systems Theory 2 (1968)

14. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata (1997) release October, 1rst 2002.

15. v. Thaden, M., Weller, S.: Lösen von Intelligenztestaufgaben mit E-Generalisierung
(Solving intelligence tasks by E-Generalization). In: Tagungsband der Informatik-
tage 2003, Gesellschaft für Informatik e.V. (2003) 84–87

16. Emmelmann, H.: Code Selection by Regularly Controlled Term Rewriting. In:
Proc. of Int. Workshop on Code Generation. (1991)

17. Weller, S.: SolvingProportionalAnalogies byApplication ofAnti-Unificationmodulo
Equational Theory. Available on http://www-lehre.inf.uos.de/∼stweller/ba/
(2005) Bachelor’s Thesis, unpublished.

18. Yan, J., Gentner, D.: A theory of rerepresentation in analogical matching. In:
Proc. of the 25th Annual Conference of the Cognitive Science Society, Mahwah,
NJ, Erlbaum (2003)

19. Burns, B.: Meta-analogical transfer: Transfer between episodes of analogical rea-
soning. Journal of Experimental Psychology: Learning, Memory, and Cognition 22
(1996) 1032–1048

20. Cornuejlos, A.: Analogy as minimization of description length. In Nakhaeizadeh,
N., Taylor, C., eds.: Machine Learning and Statistics. The Interface. Wiley, New
York (1997) 321–335

21. Dastani, M., Indurkhya, B., Scha, R.: An Algebraic Approach to Modeling Ana-
logical Projection in Pattern Perception. In: Proceedings of Mind II. (1997)

22. Leeuwenberg, E.: A perceptual coding language for visual and auditory patterns.
American Journal of Psychology 84 (1971) 307–349

23. Goldstein, E.B.: Sensation and Perception. Wadsworth Publishing Co., Belmont,
California (1980)

24. Hasker, R.W.: The Replay of Program Derivations. PhD thesis, Univ. of Illinois
at Urbana-Champaign (1995)

25. Schmid, U., Sinha, U., Wysotzki, F.: Program reuse and abstraction by anti-
unification. In: Professionelles Wissensmanagement – Erfahrungen und Visio-
nen, Shaker (2001) 183–185 Long Version: http://ki.cs.tu-berlin.de/~schmid/
pub-ps/pba-wm01-3a.ps

http://www.grappa.univ-lille3.fr/tata
http://www-lehre.inf.uos.de/~stweller/ba/
http://ki.cs.tu-berlin.de/~schmid/pub-ps/pba-wm01-3a.ps
http://ki.cs.tu-berlin.de/~schmid/pub-ps/pba-wm01-3a.ps

	Solving Proportional Analogies by E–Generalization
	Introduction
	Syntactic Anti-unification and E--Generalization
	Syntactic Anti-unification
	E--Generalization

	Letter String Analogies
	Solving Proportional Analogies by E--Generalization
	Illustration of the Approach
	Algorithmic Realization of E-Generalization
	Using E-Generalization to Solve Proportional Analogies
	Implementation

	Conclusion and Further Work

