
Techniques for Fast Query Relaxation in
Content-Based Recommender Systems

Dietmar Jannach

Institute for Business Informatics & Application Systems
University Klagenfurt

dietmar.jannach@uni-klu.ac.at

Abstract. ‘Query relaxation’ is one of the basic approaches to deal with
unfulfillable or conflicting customer requirements in content-based rec-
ommender systems: When no product in the catalog exactly matches the
customer requirements, the idea is to retrieve those products that fulfill
as many of the requirements as possible by removing (relaxing) parts of
the original query to the catalog. In general, searching for such an ‘maxi-
mum succeeding subquery’ is a non-trivial task because a) the theoretical
search space exponentially grows with the number of the subqueries and
b) the allowed response times are strictly limited in interactive recom-
mender applications.

In this paper, we describe new techniques for the fast computation
of ‘user-optimal’ query relaxations: First, we show how the number of
required database queries for determining an optimal relaxation can be
limited to the number of given subqueries by evaluating the subqueries
individually. Next, it is described how the problem of finding relaxations
returning ‘at-least-n’ products can be efficiently solved by analyzing these
partial query results in memory. Finally, we show how a general-purpose
conflict detection algorithm can be applied for determining ‘preferred’
conflicts in interactive relaxation scenarios.

The described algorithms have been implemented and evaluated in a
knowledge-based recommender framework; the paper comprises a discus-
sion of implementation details, experiences, and experimental results.

1 Introduction

Content-based recommendation approaches employ detailed knowledge about
the items in the product catalog. In addition, in particular in interactive and
knowledge-based recommender systems, the customer’s requirements are in many
cases directly or indirectly mapped to product characteristics, which also means
that the set of suitable products is determined by dynamically constructing a
query to the catalog or database [9]. One of the main problems of such filter-
based retrieval methods, however, is that situations can easily arise in which
none of the products fulfills all of the customer requirements [2]. ‘Query relax-
ation’, i.e., the removal of parts of the query, is beside similarity-based retrieval
one of the commonly used approaches to deal with this problem: The main goal
of such approaches is to retrieve products that fulfill as many of the customer’s

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 49–63, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



50 D. Jannach

requirements as possible - a task that can be mapped to the problem of finding
a maximum succeeding subquery (XSS) [3] of the original query.

Recently, new algorithms for determining such XSS and Minimally Failing
Subqueries (MFS) [3] have been proposed in the context of recommender sys-
tems, see e.g., [9,10,12] and it has been shown that query relaxation can be a
helpful technique for implementing more intelligent behavior in recommender
systems, e.g., for building an interactive relaxation facility or for the generation
of explanations for the proposals.

The main problem in finding suitable relaxations, however, lies in the fact that
the theoretical search space exponentially increases with the number of atoms
(subqueries) of the original query, i.e., if the query can be split into n subqueries
there exists 2n possible combinations.1 At the same time, the allowed time frame
for the system’s response is very short in interactive applications, i.e., response
times should be below one second: McSherry [9] addresses this problem by pre-
computing and filtering the set of MFSs by cardinality, which, however, still
requires a significant number of database queries. Ricci [12] introduces Feature
Abstraction Hierarchies for coping with the complexity problem, which results
in short response times at the cost of incompleteness. In addition, both ap-
proaches primarily rely on the assumption that smaller relaxations (in terms of
cardinality) are always preferable, an assumption that might not be true in all
application domains.

In this paper, we propose new techniques for determining optimal or preferred
relaxations in an efficient way and which help us to overcome the limitations
of previous approaches: For the non-interactive case (Section 2), in which the
system immediately computes a relaxation when the query fails, we propose
to evaluate the atoms of the query individually in a preprocessing step and
base the subsequent computation of relaxations on these intermediate results.
Furthermore, we also show how we can efficiently determine relaxations that
lead to at least n items, because in some application domains it is desirable that
the recommendation comprises more than one single product, such that the end
user has a choice of multiple products that he can compare. This computation
is again based on the partial query results and is a form of relaxation which is
not covered by previous approaches.

For supporting interactive relaxation (Section 3), i.e., scenarios in which the
end user incrementally states on which requirements s/he is willing to compro-
mise, we show how a recent conflict-detection algorithm can be utilized for fast
computation of preferred conflicts. In contrast to previous approaches, in our
approach the conflicts are computed on demand, which means that the costly
process of finding all conflicts in the requirements in advance (like in [9]) is not
required.

In Section 4 finally, we discuss implementation aspects and summarize the
experiences gained from several real-world advisory applications in different do-
mains. The paper ends with a short discussion of further and other related
work.

1 A detailed complexity analysis for the MFS/XSS problem is given in [3].



Techniques for Fast Query Relaxation 51

2 Non-interactive Relaxation

The basic problem of query relaxation lies both in the size of the search space
and in the limited response times: The theoretical search space for the case n=4
is illustrated in Figure 1. In fact, in previous approaches [9,10,12] the search for
relaxations is based on scanning this lattice; the lattice also served as a basis for
the complexity analysis in [3].

Fig. 1. Lattice of possible subqueries, minmal relaxations are printed in shaded boxes

In contrast to these approaches, we base our first two algorithms on the con-
cept of product-specific relaxations (PSX) and the individual evaluation of the
atoms of the query: A PSX for a product p in the catalog corresponds to the
set of atoms of the original query that filters out p from the result set. These
sets can be efficiently computed in-memory based on the partial query results,
which shall be demonstrated in the following example. Figure 2 depicts a typical
product catalog from the domain of digital cameras.

Fig. 2. Product database of digital cameras

Let the user’s query consist of the following requirements (atoms) which re-
sults in a theoretical search space of 24 = 16 combinations of atoms.

Q = { usb = true (Q1), firewire = true (Q2), price < 300 (Q3),
resolution >= 5 MP (Q4)}



52 D. Jannach

Given the catalog and the user query, we can compute a matrix of zeros
and ones (see Figure 3) that shows which atoms of the query filter out which
products. Note that for constructing this matrix, we need exactly four database
queries; when using bit-set data structures, we only need nbProducts*nbAtoms
bits for storing this data in memory. In addition, determining the matching set
of products for the overall query can be efficiently done by using fast bitwise-and
operations on the rows of the matrix.

Fig. 3. Evaluating the subqueries individually

For determining a PSX for a given product pi we can look up in the matrix
the fields that have a zero in the corresponding column which directly leads to
the set of atoms we would have to relax in order to have pi in the result set. In
the example, the list of PSXs = 〈{Q2, Q3}, {Q1, Q3}, {Q2, Q4}, {Q1,Q3}〉 and
the set of minimal relaxations is {{Q1, Q3}, {Q2, Q3}, {Q2, Q4}}: Considering,
for example, {{Q1, Q3} as a relaxation leading to p1, we see that when relaxing
only Q1 or Q3 alone, no product will be in the result set (see Figure 1). In
general, however, not all PSX’s are already minimal relaxations: If, for instance,
there is a camera p5 with neither USB nor Firewire support at a price of 400,
the PSX for p5 would be {Q1, Q2, Q3}, which would be a non-minimal relax-
ation of the problem because it is a superset of another PSX. However, we will
subsequently show that the set of minimal relaxations always is among the list
of product-specific relaxations of the problem and we can determine the minimal
relaxations by scanning this list. In addition, we can also easily rank the different
relaxations, when we are given a cost function that associates relaxation costs
with each part of the query. We base our definitions on the work of [3] and [9],
respectively.

Definition 1. (Query): A query Q is a conjunctive query formula, i.e., Q ≡
A1 ∧ ... ∧ Ak. Each Ai is an atom (condition).

In the following we denote the number of atoms of the query as |Q| (query
length).

Definition 2. (Subquery): Given a query Q consisting of the atoms A1∧...∧Ak,
a query Q′ is called a subquery of Q iff Q′ ≡ As1 ∧ ... ∧ Asj , and {s1, ...sj} ⊂
{1, ..., k}

Lemma 1. If Q′ is a subquery of Q and Q′ fails, also the query Q itself must
fail.



Techniques for Fast Query Relaxation 53

We now define the term relaxation which is more common in the application
domain than Maximal Succeeding Subqueries in the sense of [3]. Of course, these
things are directly related to each other.2

Definition 3. (Valid relaxation): If Q is a failing query and Q′ is a succeeding
subquery of Q, the set of atoms of Q which are not part of Q′ is called a valid
relaxation of Q.

Definition 4. (Minimal relaxation): A valid relaxation R of a failing query Q
is called minimal, if there exists no other valid relaxation R′ of Q which is a
subset of R.

In Figure 1, the minimal relaxations for the example problem are depicted in
shaded boxes.

Definition 5. (Maximal succeeding subquery - XSS): Given a failing query Q,
a Maximal Succeeding Subquery XSS for Q is a non-failing subquery of Q and
there exists no other query Q′ which is also a non-failing subquery of Q for which
holds that XSS is a subquery of Q′.

Lemma 2. Given a maximal succeeding subquery XSS for Q, the set of atoms
of Q which are not in XSS represent a minimal relaxation R for Q.

Lemma 3. If the product catalog P is not empty, a relaxation R for Q will
always exist.

A product-specific relaxation can be defined as follows:

Definition 6. (Product-specific relaxation - PSX): Let Q be a query consist-
ing of the atoms A1, ..., Ak, P the product catalog, and pi an element of P .
PSX(Q, pi) is defined to be a function that returns the set of atoms Ai from
A1, ..., Ak that are not satisfied by product pi.

Lemma 4. The set of atoms returned by PSX(Q, pi) is also a valid relaxation
for Q.

We have to show that all minimal relaxations are contained in the PSXs of the
products.

Proposition 1. Given a failing query Q and a product database P containing
n products, at most n minimal relaxations can exist and all minimal relaxations
are among the PSXs for Q and P .

2 The term ’query relaxation’ is also used in the context of XML databases, where
the goal is to find approximate answers to user queries. These approaches, however,
have little relation with our work and mainly aim at relaxing structural constraints
in general XML-specific query languages [1,7].



54 D. Jannach

Algorithm: MinRelax
In: A query Q, a product catalog P
Out: Set of minimal relaxations minRS for Q
MinRS = ∅
forall pi ∈ P do

PSX = Compute the product-specific relaxation PSX(Q, pi)
% Check relaxations that were already found
SUB = {r ∈ MinRS | r ⊂ PSX}
if SUB �= ∅

% Current relaxation is superset of existing
continue with next pi

endif
SUPER = {r ∈ MinRS | PSX ⊂ r}
if SUPER �= ∅

% Remove supersets
MinRS = MinRS \ SUPER

endif
% Store the new relaxation
MinRS = MinRS ∪ {PSX}

endfor
return MinRS

Fig. 4. Algorithm for determining all minimal relaxations

Proof. For each product pi ∈ P there exists exactly one subset PSX of atoms of
Q which pi does not fulfill and which have to be definitely relaxed altogether in
order to have pi in the result set. Given n products in P , there exist exactly n
such PSXs. Thus, any valid relaxation of Q has to contain all the elements of at
least one of these PSXs for obtaining one of the products of P in the result set.
Consequently, any relaxation which is not in the set of all PSXs of Q has to be a
superset of one of the PSXs and is consequently no longer a minimal relaxation.
This finally means that any minimal relaxation must be contained in the PSXs
of all products and not more then |PSX | = n such minimal relaxations can
exist.

Computing the optimal relaxation. The computation of the optimal relax-
ation (in terms of relaxation costs) can be done by a simple scan of the PSXs of
the relaxation problem: Given an arbitrary cost function that takes for instance
the cardinality of the relaxation and/or individual costs for the individual atoms
into account, we only have to determine the PSX that minimizes that function.
The only assumption for that is that the costs for a superset of a given PSX
must not be lower than the costs of that PSX itself.3

3 Within the Advisor Suite system (see later), the ‘costs’ for relaxing a certain
subquery are defined a-priori by a domain expert. Other forms of acquiring the cost
function, e.g., by analyzing the user behavior, are also possible.



Techniques for Fast Query Relaxation 55

Computing all minimal relaxations. The set of all minimal relaxations (com-
parable to the Recovery Set from [10]) can be computed with the help of Algo-
rithm MinRelax by removing supersets from the set of all PSXs.

Proposition 2. Algorithm MinRelax is sound and complete, i.e., it returns
exactly all minimal relaxations for a failing query Q.

Proof. The algorithm iteratively processes the product-specific relaxations PSXs
for all products pi ∈ P . From Lemma 4 we know that all these PSXs are already
valid relaxations. Minimality of the relaxations returned by MinRelax is guar-
anteed by the algorithm, because a) supersets of already discovered PSXs are
ignored during result construction and b) already discovered PSXs that are su-
persets of the current PSX are removed from the result set. As such, there cannot
exist two relaxations R1 and R2 in the result set for which R1 is a subset of
R2 or vice versa. In addition, we know from Proposition 1 that all minimal
relaxations are contained in the PSXs of the products of P . Since MinRelax
always processes all of these elements, it is guaranteed that none of the minimal
relaxations is missed by the algorithm.

Finding relaxations with at least n products. In practical applications, it is
sometimes not desirable just to present one single product to the user but rather
have at least a few products in the proposal that could for instance be used for
comparison purposes. Note that the relaxations computed with the algorithms
described above only guarantee that at least one product will be in the result set.
In the following paragraphs we thus show how we can compute such relaxations
that have at least n products based on our in-memory data structures without
the need for further database queries.

We use the example shown in Figure 5 (with seven products and four sub-
queries) for illustrating a corresponding algorithm for determining such relax-
ations. In this example, the list of product-specific relaxations is as follows:
PSXs = 〈 {f4}, {f1, f4}, {f3}, {f2, f3}, {f1}, {f4}, {f1, f3} 〉

Fig. 5. Problem setting for n products

Algorithm NRelax (Figures 5 and 6) computes relaxations that lead to at
least n products based on the list of PSXs, meaning that no further database
queries are required. Note that NRelax starts with the full list of the original
PSXs, because using only the minimal relaxations would be not sufficient for
our purposes and the optimal relaxation for ‘at least n’ products could be lost.



56 D. Jannach

The algorithm works by incrementally exploring combinations of the individual
PSXs : The algorithm starts with the initial list of PSXs and systematically
constructs the possible combinations in order of their cardinality. When two
PSXs are to be combined, the union of the involved atoms is generated, the
number of products for the relaxation is determined, and the corresponding
cost function is calculated. When a combination is found that leads to enough
products, we remember the cost value and subsequently prune the search space
by removing combinations that cannot lead to a better result anymore.

The following example shall illustrate the details of the algorithm. We use a
simple cost function, i.e., relaxing the filter condition fn shall lead to costs of n.

In the first step, we remove the duplicates from the list of PSXs and annotate
each element with the corresponding costs and the number of products that will
result in that relaxation and sort the elements according to the costs. Determin-
ing the number of products for a certain relaxation can be done by checking for
subset relations in PSXs, e.g., {f1, f3}, will have costs of ”4” and will result
to 3 products, since {f1} and {f3} are also elements of the list of PSXs. The
collapsed list of PSXs named CPSX for our example therefore is the following,
where {f3}(3/1) denotes that the relaxation f3 has costs of ‘three’ and results
in one product.

CPSX = 〈 {f1} (1/1), {f3} (3/1), {f4} (4/2), {f1,f3} (4/3), {f1, f4}
(5/4), {f2, f3} (5/2) 〉

Starting with this initial list, we now compute the combinations of the ele-
ments of CPSX and use the data structure RNode for storing costs and number
of products associated with an element in CPSX , i.e.,

struct RNode:
atoms: List of atoms of PSX
cost: costs of node
nbProducts: number of products
closed: flag, if node was closed

endstruct

and use an ‘agenda’ (list) of such nodes to remember the combinations that still
have to be explored.

Figure 6 illustrates how the combinations are generated and how the search
space can be pruned. The different aspects of the algorithm are marked with
numbers in the Figure: At (1), a new node {f1,f3} is constructed from {f1} and
{f3} respectively. At (2), the node {f1,f3} from the current agenda (at the first
level in Figure 6) can be closed as it will be further explored in the next round
of expansion. In Figure 5 this fact is indicated with an ‘x’; At (3), the successor
of {f1} and {f1,f3} would be {f1,f3}. However, we already found that node in
(1) and can ignore it for further exploration; in Figure 5, nodes that are pruned
from the search space in that way are marked with a rhombus. At (4) we have
found a relaxation that comprises all possible atoms, which means that we do
not explore that node any further.

Note that the number of nodes on the top level (and more importantly, over-
all) is limited to the number of possible relaxations for the given query, i.e. if



Techniques for Fast Query Relaxation 57

Fig. 6. Searching for at least n products

|query| = n, there can only be 2n − 1 nodes in the worst case, independent of
the number of products in the catalog. Still, if there are already 2n − 1 different
nodes on the first level, no further expansion will be required since all possible
combinations are already contained in this first level.

All the computations can be done on the basis of the pre-evaluated partial
results and do not require any further database queries. Also, compared with an
approach that works by constructing all 2n combinations of all possible atoms
of the original query, we can also restrict the search space based on the already
existing partial results and can leave out those that will definitely lead to more
products: In our example, {f2} is not a product-specific relaxation and we there-
fore will never consider useless combinations like {f1,f2}, {f2,f4} and so forth,
since we already now that no additional product will be in the result set when
adding {f2} alone. Still, the completeness of the algorithm is still guaranteed by
the systematic construction of all possible combinations of the PSXs.

Finally, in practical and more complex examples, the described cost-based tree
pruning techniques will significantly reduce the number of nodes to be explored,
which is not shown in the example i.e., only small fractions of the theoretical
search space will be explored. If we, for instance, search for a relaxation with
at least 3 products for the given example, we will find {f1,f3} to be the best
relaxation in the original agenda and will not have to add a second-level element
to the agenda due to cost-optimality of the node.

3 Interactive Relaxation

The alternative approach to immediately computing a relaxation is to let the
user decide interactively on which requirements (s)he is willing to compromise. [9]
proposes a corresponding algorithm, which is based on the concept of Minimally
Failing Subqueries:



58 D. Jannach

Algorithm: NRelax
In: A set of product-specific relaxations PSXs, threshold n
Out: An optimal relaxation for n products
CPSX = Collapse and sort PSXs as sequence of RNodes
bestNode = new RNode with infinite costs.
return NRelaxInt(CPSX,n, bestNode)

function NRelaxInt(agenda,n, bestNode)
In: agenda: Sequence of RNodes to explore, n: threshold,

bestNode: currently best node
Out: An optimal relaxation for n products
if |agenda| = 0 return bestNode
% Check for new optimum
newBest = node from agenda with lowest costs for which node.costs

are lower than bestNode.costs and nbProducts > n
if newBest �= null then bestNode = newBest endif
% Set up new agenda
newAgenda = <>
% Combine elements of given agenda
for i=0 to |agenda| − 1

for j=i+1 to |agenda|
n1 = agenda[i]
n2 = agenda[j]
% ignore closed nodes
if n1.closed or n2.closed continue with next j endif
newNode = combine atoms, costs, products of n1 and n2
if not exists n ∈ newAgenda where n.atoms = newNode.atoms
Close nodes n in agenda, for which n.atoms=newNode.atoms
if newNode.costs < bestNode.costs and
newNode does not contain all possible atoms

add newNode to newAgenda endif
endif

endfor
endfor
NRelaxInt(newAgenda,n, bestNode)
return bestNode.atoms

Fig. 7. Algorithm for finding relaxation with n products

Definition 7. (Minimal Failing Subquery - MFS): A failing subquery Q∗ of a
given query Q is a minimally failing subquery of Q if no proper subquery of Q∗

is a failing query.

As an alternative to McSherry’s approach which relies on the possibly costly
computation of all MFSs before starting the interactive relaxation process, we
propose to apply Junker’s recent QuickXPlain [6] algorithm for computing
MFSs on demand : The overall scenario is that when we have the situation of
unfulfillable user requirements, we aim at finding a preferable and minimal con-



Techniques for Fast Query Relaxation 59

flict in these requirements and let the user decide how to proceed. Preferred
means that we shall try to identify those conflicts (among possibly many con-
flicts) that contain requirements for which we assume that a typical user might
be willing to compromise. In the digital camera domain we could for instance
assume or learn that experts in digital photography searching for cameras sup-
porting ‘firewire’ connectivity are rather willing to compromise on the price than
on the technical requirement.

In general, the required priority values for each requirement can either be
annotated in advance or they can be learned from the interaction history of dif-
ferent users over time. The implementation and evaluation of such a module that
dynamically adapts priorities over time is part of our ongoing work. Originally,
QuickXPlain was developed for finding conflicts (corresponding to MFSs) in
Constraint Satisfaction problems, but its general, non-intrusive nature allows us
to adapt it for our purposes (Figure 8). QuickXPlain is based on a divide-
and-conquer strategy: In the decomposition phase it partitions the problem into
subproblems of smaller size (thus pruning irrelevant parts of the problem) and
subsequently tries to re-add individual elements and checks for consistency while
at the same time taking preferences into account. Depending on the number of
atoms in the query n, the size of the preferred conflict k, and the splitting point
(e.g., n/2 ), QuickXPlain in the best case only needs log(n/k)+2k consistency
checks (database queries in our case) and 2k ∗ log(n/k) + 2k in the worst case
[6]. When we consider our initial example from Section 2, we see that there are
three minimal conflicts in the requirements, i.e., {usb = true, firewire = true},
{firewire = true, price ≤ 300}, {price ≤ 300, resolution ≥ 5MP}. Let us assume
that the partial order ≺ (in the sense of [6]) among the attributes in the re-
quirements is ”price ≺ firewire ≺ usb ≺ resolution”. Given these priorities, our
adapted QuickXPlain (Figure 8) will immediately split the atoms (denoted as
p,f,u and r for short) of the query into {p,f} and {u,r}. In the first recursive
call, the algorithm will detect that {p,f} contains conflicting requirements and
thus proceeds by further analyzing this subset alone, which means that half of
the atoms in that example do not have be taken into consideration in subsequent
steps. Next, QuickXPlain proceeds with the next sets of atoms {p} and {f}
in our example can immediately determine that both {p} and {f} have to be in
the minimal conflict, since the number of the remaining atoms |A| = 1 in both
cases. Thus, the algorithm returns the preferred conflict {p,f}, because given the
priorities in the example, it is preferable for the user to give up the price or the
firewire requirement than to give up the requirement on the desired resolution.

A general algorithm that shows how QuickXPlain can be integrated into an
interactive relaxation procedure is sketched in Figure 9. Please note that with
the help of conflicts computed with QuickXPlain we can also compute the set
of minimal or optimal relaxations (or XSSs) based on Reiter’s [11] Hitting-Set
Algorithm (see also [5]): This can be seen as an alternative to our approach
based on product-specific relaxations from the previous section. The run-time
performance of such an adapted Hitting-Set algorithm has been evaluated in [5]
for different problem instances: The results showed that even if we do not rely



60 D. Jannach

Algorithm: mfsQX
In: A failing query Q
Out: A preferred conflict of Q

A = sorted list of atoms of Q
return mfsQI (∅,A)

function mfsQI (BG, A)
In: BG: List of atoms in background

A: List of atoms of failing query
Out: A preferred conflict of Q

% Construct and check the current set of atoms
query =

∧
b∈BG(b)

if query is not successful
return ∅

endif
if |A| = 1

return A
endif
% Split remaining atoms into two parts
C1 = {ai ∈ A|i < (|A|/2)}
C2 = A \ C1
% Evaluate branches
Δ1 = mfsQI(BG ∪ C1, C2)
Δ2 = mfsQI(BG ∪ Δ1, C1)
return Δ1 ∪ Δ2

Fig. 8. Using QuickXPlain for computing preferred MFS

on the pre-computation of the PSXs no more than one second is required for
finding the optimal relaxation also for the hard instances.

4 Implementation and Evaluation

All of the described algorithms and techniques have been implemented within
the Java-based Advisor Suite system [4], a knowledge-based framework for the
rapid development of interactive advisory systems. Within that system, prod-
uct retrieval is initially4 based on if-then-style filtering rules, like ‘If the user is
interested in high-connectivity, propose products that support firewire’ or ‘Only
propose products that are cheaper than the customer-specified limit’. Note that
the consequent of the rules can contain arbitrary boolean formulae, i.e., also dis-
junctions. The rules are maintained by the domain expert or knowledge engineer
with the help of graphical tools and can also be annotated with corresponding
relaxation costs and explanatory texts, both for the case that the rule could be
applied and for the case of relaxation (see Figure 10).
4 After the initial determination of suitable products, these products are sorted based

on a utility-based approach.



Techniques for Fast Query Relaxation 61

Algorithm: InteractiveRelax
In: Sorted list of atoms A of failing query Q

query =
∧

a∈A(a)
if query is not successful

% Compute a minimal preferred conflict
conflict = mfsQX(∅, A)
remaining = conflict
% Set up the choice points
do |conflict| times

choice = Ask user to select an option from
remaining or ’backtrack’

if choice = ’backtrack’ return
remaining = remaining \ {choice}}
% Remove the choice and try again
interactiveRelax(A \ {choice})

end do
else

Minimize the relaxation and compute results
Report success and show proposal to user.
response = Ask user if happy with result
if response = ’yes’

exit function
% backtrack to last choice point
else return

Fig. 9. Basic algorithm for interactive relaxation

We tested our algorithms with several real-world knowledge-bases from differ-
ent domains and with different complexities; an average case would be a setting
where we have 10-15 atoms (filter rules) in the query to be relaxed and a few
hundred products in the catalog. All of the relaxation problems (see [5] for more
details on running times) could be easily solved within the targeted time frame
of one second, most of them much faster: Remember that for computing the
user-optimal relaxation we only need |query| database queries and such a query
typically requires 5-10 msecs. The in-memory search process for the optimum
can be done in a few milliseconds. Even more, we can also exploit ‘cross-session’
re-use and caching of partial query results, e.g., the set of products that fulfil usb
= true remains static as long as no new products appear in the catalog. If no
variables are used in the filter rules (like a customer-specified value), relaxations
can be computed even without further database accesses.5

In our system, the relaxations are also used to ‘explain’ the proposal, i.e., we
use the explanatory text (fragments) for assembling a human-readable explana-
tion and, furthermore, let the user interactively state his actual preferences on the
compromises by giving him the possibility to enforce the application/relaxation

5 To the author’s knowledge, no ’benchmark’ problems are yet available for comparing
these running times.



62 D. Jannach

Fig. 10. Graphical editing tool for filter rules

of a rule. An evaluation of a real-world application [4] also indicates that the
explanations provided by the system are a well-appreciated feature of advisory
applications. Finally, the choice whether an incremental procedure is appropri-
ate has to be decided based on the individual application, e.g., asking additional
questions after a longer preference elicitation dialog may for instance be prob-
lematic.

5 Conclusion and Future Work

We have presented new techniques and algorithms for fast query relaxation for
content-based recommender systems that particularly aim at minimizing the
number of required database queries and take a-priory or learned preferences
into account. Based on the initial work and formalisms from [9,12] and [3] we
have shown how we can a) compute preferred conflicts for an interactive re-
laxation procedure with the help of a recent, general-purpose conflict detection
algorithm and b) how the individual evaluation and caching of partial queries
allows us to compute optimal relaxations in-memory at the cost of only slightly
increased memory requirements. Overall, our approach also continues recent re-
search from the field of Case Based Reasoning (CBR) recommender systems
aiming at overcoming the typical shortcomings of such systems [8,13] like for
instance the lack of adequate explantation mechanisms.

In our future work, we aim at going one step further than viewing relaxation
only as a problem of ‘removing’ parts of the query: We consider the current
approach of fully giving up individual requirements only as a first step in in-
telligent, content-based recommender systems. In future systems, however, we
will therefore aim at building systems that are also capable of coming up with a
personalized proposal of how to ‘soften’ the requirements, e.g., by proposing to
increase the price limit by a certain amount.



Techniques for Fast Query Relaxation 63

References

1. S. Amer-Yahia, L. V. S. Lakshmanan and S. Pandit. FleXPath: flexible structure
and full-text querying for XML, Proceedings ACM SIGMOD International Con-
ference on Management of Data, Paris, 2004, pp. 83-94.

2. D. Bridge. Product recommendation systems: A new direction. In R. Weber and C.
Wangenheim, eds., Workshop Programme at 4th Intl. Conference on Case-Based
Reasoning, 2001, pp. 79-86.

3. P. Godfrey. Minimization in Cooperative Response to Failing Database Queries,
International Journal of Cooperative Information Systems Vol. 6(2), 1997, pp. 95-
149.

4. D. Jannach. ADVISOR SUITE - A knowledge-based sales advisory system. In:
Proceedings of ECAI/PAIS 2004, Valencia, pp. 720-724.

5. D. Jannach, J. Liegl. Conflict-directed relaxation of constraints in content-based
recommender systems, Proc. 19th International Conference on Industrial, Engi-
neering & Other Applications of Applied Intelligent Systems (IEA/AIE’06), An-
necy, France, 2006 (forthcoming).

6. U. Junker. QUICKXPLAIN: Preferred Explanations and Relaxations for Over-
Constrained Problems. Proceedings AAAI’2004, San Jose, 2004, pp. 167-172.

7. D. Lee. Query Relaxation for XML Model, Ph.D Dissertation, University of Cali-
fornia, Los Angeles, June 2002.

8. D. McSherry. Explanation of Retrieval Mismatches in Recommender System Dia-
logues, ICCBR Workshop on Mixed-Initiative Case-Based Reasoning, Trondheim,
2003, pp. 191-199.

9. D. McSherry. Incremental Relaxation of Unsuccessful Queries, Proc. of the Euro-
pean Conference on Case-based Reasoning, In: P. Funk and P.A. Gonzalez Calero
(Eds.) LNAI 3155, Springer, 2004, pp. 331-345.

10. D. McSherry. Maximally Successful Relaxations of Unsuccessful Queries. Proceed-
ings of the 15th Conference on Artificial Intelligence and Cognitive Science, Castle-
bar, Ireland, 2004, pp. 127-136.

11. R. Reiter. A theory of diagnosis from first principles, Artificial Intelligence, 32(1),
1987, pp. 57-95.

12. F. Ricci, N. Mirzadeh and M. Bansal. Supporting User Query Relaxation in a Rec-
ommender System, Proceedings of the 5th International Conference in E-Commerce
and Web-Technologies EC-Web, Zaragoza, Spain, 2004.

13. B. Smyth, L. McGinty, J. Reilly, K. McCarthy, Compound Critiques for Conversa-
tional Recommender Systems, IEEE/WIC/ACM International Conference on Web
Intelligence(WI’04), Maebashi, China, pp. 145-151.


	Techniques for Fast Query Relaxation in Content-Based Recommender Systems
	Introduction
	Non-interactive Relaxation
	Interactive Relaxation
	Implementation and Evaluation
	Conclusion and Future Work


