
OWL and Qualitative Reasoning Models

Jochem Liem and Bert Bredeweg

Human Computer Studies Laboratory, Informatics Institute,
Faculty of Science, Universiteit van Amsterdam, The Netherlands

{jliem,bredeweg}@science.uva.nl

Abstract. The desire to share and reuse knowledge has led to the es-
tablishment of the Web Ontology Language (OWL) knowledge repre-
sentation language. The Naturnet-Redime project needs to share qual-
itative knowledge models of issues relevant to sustainable development
and OWL seems the obvious choice for representing such models to al-
low search and other activities relevant to sharing knowledge models.
However, although the design choices made in OWL are properly doc-
umented, their implications for Artificial Intelligence (AI) are part of
ongoing research. This paper explores the expressiveness of OWL by for-
malising the vocabulary and models used in Qualitative Reasoning (QR),
and the applicability of OWL reasoners to solve QR problems. A parser
has been developed to export (and import) the QR representations to
(and from) OWL representations. To create the OWL definitions of the
QR vocabulary and models, existing OWL patterns were used as much as
possible. However, some new patterns, and pattern modifications, had to
be developed in order to represent the QR vocabulary and models using
OWL.

1 Introduction

During the development of the Web Ontology Language (OWL), design choices
have been made to ensure the language is decidable and not too intricate to im-
plement. Therefore, OWL does not have the expressiveness to formalise things
such as default values, arithmetic, string operations, or procedural attachments.
Another feature of OWL is that is has an open world assumption. The implica-
tions of these design choices on ontology development are still unclear, partic-
ularly for advanced applications in Artificial Intelligence (AI). The question is:
“What are the consequences of the OWL design choices on the expressiveness of
the language for advanced AI applications?”

To discover the problems and solutions associated with use of OWL, Garp3
Qualitative Reasoning (QR) models and their vocabulary [3] are formalised.
Garp3 unifies three alternative approaches to qualitative reasoning (QPT [5],
Envision [4], and QSIM [9]) into a single qualitative reasoning and modelling
workbench. There are five reasons this typical AI application is chosen. Firstly,
qualitative reasoning predicts the behaviour of systems; a task rather different
from the classification task OWL reasoners can solve. Secondly, the knowledge

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 33–48, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



34 J. Liem and B. Bredeweg

representation used in QR models is elaborate and complex. For instance, qual-
itative models describe both the structure and the behavioural aspects of a
system, parts of models may be reused in others, and the requirements for a
correct model are restrictive in what kinds of ingredients may be connected.
Thirdly, QR models describe their domains in a way which is understandable for
non-experts, closely following the naive physics proposal (except for the focus
on implementation) [7]. This common-sense view on systems which QR models
have, make them interesting for reuse. Fourthly, the OWL community proposes
that using an ontology as an information model for design is a typical use case
[8]. Since both modelling and design are similar synthesis tasks [13], the formal-
isation of the QR domain should be a typical application of OWL. This makes
the problems discovered during the formalisation of the QR application area
of interest to a large group of researchers. Finally, there is a desire within the
QR community to share and reuse models through a central online repository
(see Figure 1). This goal will be realised within the European NaturNet-Redime
project (http://www.naturnet.org/). A requirement to allow users to search for
models in which specific concepts or structures are used, is a formalisation of
these models in an open semantic format which is processable by query lan-
guages. For this purpose, OWL has been chosen since it is the de-facto standard
for exchanging ontological models on the web, and has a large user base. Fur-
thermore, well-developed OWL tools are available to facilitate the modelling
and model search. Hence, this paper focuses on the question: ”Is OWL expres-
sive enough to formalise the QR vocabulary and models, and which of the QR
problems can an OWL reasoner solve?”

In Figure 1 an overview is given of the desired result of this research. Tra-
ditionally, Garp3 can write models to a binary format and can also read them.
Functionality has been added to export models to an OWL format and import
them again. The models in the OWL format reference to model ingredients de-
fined in the Qualitative Reasoning Vocabulary Ontology. For brevity, in this
extra OWL file only the model itself is represented, as the simulations can be

Fig. 1. Garp3’s interaction with the binary and OWL files and the qualitative model
repository



OWL and Qualitative Reasoning Models 35

easily recreated using the software. In the near future an online model reposi-
tory will be developed in which models can be stored, searched for and retrieved.
Models in this repository will reference concepts in an ontology describing the
categories within the repository.

The organisation of this paper is as follows. Section 2 explains the QR field
and the types of reasoning used. Section 3 describes the implications of the for-
malisation of general situations using QR ingredients on the use of the OWL
reasoner. Section 4 focuses on the reusability of reified relations. Section 5 ex-
plains multiple methods of the formalisation of a total order of values. Section
6 describes a pattern to restrict the use of relations for classes with specific
conditions. Finally, the results are discussed and conclusions are drawn.

2 Qualitative Reasoning

The aim of qualitative modelling and reasoning [3] is to build models from which
the behaviour of systems (in the form of state graphs such as the one in Figure 5a)
can be predicted through simulation. Each state describes a specific situation of
the system, while each transition represents the changes from one situation to
another. QR models require no numerical data. Instead, changeable properties
of systems are described as its relevant points and intervals (see Figure 2a and
section 5). The size of a population in an environment can be formalised as
{zero, positive, max}. This kind of formalisation is particularly advantageous
for domains in which it is difficult to obtain numerical data, such as ecology.
For experts in these fields, qualitative modelling provides a means to make their
knowledge explicit and computer processable. An example of the application of
qualitative modelling in ecology is the testing of the succession hypothesis of the
Brazilian Cerrado forest [12]. A detailed description of the application of QR in
ecology is available in the Ecological Informatics book [2].

An advantage of qualitative modelling is that the causal dependencies between
quantities are made explicit (the [I]nfluence and [P]roportionalities in Figure 2b).
Next to the ability to predict the behaviour of a system, these causal dependen-
cies make it possible to provide a causal explanation of why a system behaves in a
particular way. These features of qualitative simulation provide the opportunity
for hypothesis testing and learning.

An important part of a QR model are model fragments, which incorporate
model ingredients as either conditions (red) or consequences (blue). Two ex-
ample model fragments can be seen in Figure 2a and 2b. The first describes a
population with a size (which can be read as: if there is a population, it has
a size), while the second formalises the consumption process between two pop-
ulations. In general, the structure of the system is described using conditions
and the causal dependencies as consequences, although other model ingredi-
ents can also be used as consequences. The model fragment describes causal
relations which apply to a general situation within a system. Model fragments
are organized in a subtype hierarchy. A child model fragment inherits the model
ingredients from their parent and is a specialisation of its parent, because it adds



36 J. Liem and B. Bredeweg

Population
Some population

Size

Zlmh
Max
Positive
Zero

(a) A single population
with size zero (point),
positive (interval) or
maximum (point). The
population entity is con-
ditional, while the size
quantity is a conse-
quence.

Population

Population
Some population

Size

Zlmh
Max
Positive
Zero

Population

Population
Some population

Size

Zlmh
Max
Positive
Zero

Consumes

(b) The consumption of a prey by a predator. The popu-
lation model fragments, the consumes configuration and
the size greater than zero inequality are conditional. The
causal dependencies and the equality between the max
values are consequences.

Fig. 2. The two model fragments in the example model

new model ingredients to the aggregate. It is possible to reuse a model fragment
within another model fragment (in Figure 2b the Population model fragment
is reused twice). Technically speaking, this is similar to the relation between a
parent and a child model fragment: the model ingredients of the reused model
fragment are incorporated as conditions in the model fragment. This type of
reuse allows users to efficiently create qualitative models.

Scenarios are the counterpart of model fragments and describe specific situa-
tions of systems (see Figure 3). These aggregates are used to determine the start
states of the behavioural graph.

Population
Resource

Population
Plants

Population
Herbivores

Population
Carnivores

Consumes Consumes Consumes

Size

Zlmh
Max
Positive
Zero

Size

Zlmh
Max
Positive
Zero

Size

Zlmh
Max
Positive
Zero

Size

Zlmh
Max
Positive
Zero

Fig. 3. A scenario plants consuming a resource, herbivores consuming plants, and
carnivores consuming herbivores. All the model ingredients are consequences (facts).

The reasoning the QR engine performs can be divided into five parts: classifica-
tion, inequality testing, consequence merging, influence resolution and prediction.



OWL and Qualitative Reasoning Models 37

The first four steps take an incomplete state (which, in the first algorithm it-
eration, is the scenario) as input and produce a complete state description, i.e.
a state containing all consequences of the model fragments applying and with
calculated derivatives. The classification task searches for candidate model frag-
ments. Candidate model fragments are the model fragments which structurally
match the incomplete state. The behavioural aspects of model fragments (such as
known values and inequalities) are ignored when searching for model fragments,
as model fragments can contain inequalities as conditions. These conditional in-
equalities might be true, but have to be derived from the other inequalities which
also apply to the state (which is not part of the classification).

The candidate model fragments which result from the previous step might
or might not be consistent with the inequalities which are mentioned in their
respective model fragments. The reasoner tries to derive the conditional inequal-
ities in the inequality testing step. If the inequalities can be deduced, they are
incorporated in the state. If the inequalities are inconsistent with the estab-
lished inequalities, the candidate model fragment is removed. Model fragments
for which both the conditional structure (which can include other model frag-
ments) and the conditional values and inequalities match, become active. In the
consequence merging step, the consequence model ingredients of active model
fragments are added to the state.

The classification, inequality testing and consequence merging steps are re-
peated with the augmented state until no new applying model fragments can be
found. After these steps, candidates are either (1) included in the state because
their conditions are true, (2) ignored because their conditions are inconsistent
with the state. This results in an augmented state, which incorporates all the
consequences of matching model fragments. Simulating the scenario in Figure 3
with the model fragments from Figures 2a and 2b would result in an augmented
state as visualised in Figure 4, although the derivatives would still be unknown
(the arrows next to the active values indicating the trend).

In the influence resolution step the augmented state is completed by determin-
ing the derivatives of the quantities by resolving the influences and proportion-
alities. Influences are the cause of change within a model, and are therefore said
to model processes. Depending on the magnitude value of the source quantity
and the type of influence, the derivative of the target quantity either increases
or decreases. An influence Q1(I+)Q2 causes the quantity Q2 to increase if Q1 is
positive, decrease if it is negative, and remain stable when it is zero (assuming
there are no other causal dependencies on Q2). For an influence I- this is just
the opposite. Influences are also referred to as direct influences. Proportionalities
propagate the effects of a process, (i.e. they set the derivative of the target quan-
tity depending on the derivative of the source quantity). For this reason, they
are also referred to as indirect influences. Like influences, proportionalities are
either positive or negative. A proportionality Q1(P+)Q2 causes Q2 to increase
if Q1 increases, decrease if Q1 decreases, and remain stable if Q1 remains stable.
For a proportionality P- the opposite applies. Applying the influence resolution
step would result in the completed state description shown in Figure 4.



38 J. Liem and B. Bredeweg

>

Max
Positive
Zero

Size

Resource

>

Max
Positive
Zero

Size

Plants

>

Max
Positive
Zero

Size

Herbivores

Max
Positive
Zero

Size

Carnivores

Consumes

Consumes

Consumes

Fig. 4. The completed state description after matching model fragments on the sce-
nario, aggregating the consequences and resolving the causal operators

The prediction algorithm takes the completed state description and identifies
the successive states of behaviour and transitions to them. Termination rules
are part of the qualitative engine, and indicate under what conditions states
change. For example, if the magnitude of a quantity is at a point-value (e.g.
the population size is zero), and the derivative of that quantity is positive (e.g.
the population size is increasing), then in the next state that quantity has the
interval-value directly above its current point-value (e.g. the population size
becomes positive). Using this set of rules all the possible terminations of the
state are gathered. Not every termination in the set of possible terminations of
a state applies. Some terminations have precedence over other terminations. For
example, a transition from a point to an interval happens before the transition
from a interval to a point. Others occur simultaneously due to correspondences.
The final step generates the successive states and transitions using the final set
of pruned and merged terminations. For these successive states all the algorithm
steps are repeated to generate a complete state graph describing the behaviour
of the modelled system.

The state graph resulting from the simulation of the scenario in Figure 3 is
shown in Figure 5a. The values of the quantities in each of the states are shown
in Figure 5b. The transitions from state 1 to 2 and 3 happen because there is a
negative influence (consumption) on the size of the herbivore population which
is greater than the positive influence on the herbivores (feeding), since the mag-
nitude of plant population size is smaller than the magnitude of the carnivore
population size. This transition has priority over all other transitions because
it is a change from a point to an interval, while the other possible transitions
are changes from intervals to points. The reason that two states are generated
is because the influences on plant population can become either equal, resulting
in a stable derivative for the plant population (state 3), or unequal, resulting in



OWL and Qualitative Reasoning Models 39

the decrease of the plant population size. From state 2, three possible changes
may occur. Either only the resource depletes (state 4), both the resource de-
pletes and the plant population becomes zero (state 5), or the resource depletes
and the plant and the herbivore populations die out (state 6). From state 3
it is only possible that the resource depletes (state 4), as the derivative of the
plant population is stable. As a result of the depletion of the resource, the plant
population decreases again, because the positive influence on the plant popula-
tion from feeding disappears. The other transitions are obvious. From state 4,
either both the plant and the herbivore populations die instantly (state 6), or
the plant population dies first (state 5), and the herbivore population becomes
extinct afterwards (state 6).

1 2

3 4 5

6

(a) The state graph re-
sulting from simulation.

(b) The value history corresponding to states in the state
graph.

Fig. 5. The state graph and corresponding value history

3 Representing General Situations

The reasonable aim of formalising QR in OWL would be to try to use an OWL
classifier to solve the classification task instead of the QR reasoner. Taking that
approach, some of the typical inferences made by the QR reasoner such as the in-
equality testing, consequence merging, influence resolution and prediction tasks,
would then still be left to the QR reasoner. To fulfil this ’reasonable’ goal the
correct formalisation of model fragments is essential. However, as will be pointed
out below, this is already rather complex and not adequately solvable with the
current version of OWL [1].

The conditional model ingredients in model fragments describe general situa-
tions of a system, and scenarios describe specific situations. The classes in OWL
describe general concepts, while the instances are specific individuals. OWL rea-
soners are able to classify instances to classes, therefore the model fragments
have to be formalised as classes and the scenarios as instances. As a result the
contents of the model fragments has to be formalised using necessary and suf-
ficient conditions. This allows the scenarios to be classified as a certain model
fragment. The consequences of model fragments have to be modelled separately,
as they cannot be part of the restrictions of the model fragments (they are the
consequences of a model fragment firing).



40 J. Liem and B. Bredeweg

The formalisation of model fragments as classes allows the representation of
the subtype hierarchy of model fragments. The subclasses of the model fragments
would inherit the restrictions which model the contents of the parents, and add
restrictions to describe the new model ingredients of the child model fragment.

There are two problems with the formalisation of the conditions of model
fragments as classes. Firstly, it is impractical to specify that a model fragment
contains multiple objects of the same type (either as conditions or consequences).
It would require two separate relations (one for conditions and one for conse-
quences) for each type of object in combination with a cardinality restriction
(to indicate the number of incorporated objects of that type). The unique rela-
tions for each object type are required as the cardinality restriction has to apply
to precisely one type of object. This problem can be solved by making use of
Qualified Cardinality Restrictions (QCR), which indicate a class should have
a certain amount of fillers for a specific relation. Although QCR’s are not in
the first OWL specification, Protégé [6] and RacerPro (Racer Systems GmbH &
Co. KG: http://www.racer-systems.com) have already added support for them1.
Furthermore, QCR’s are already mentioned in the drafts of the OWL1.1 speci-
fications2.

The second problem concerns the impossibility to distinguish between differ-
ent objects of the same type in restrictions. Consider population x consuming
population y, which in turn consumes z (a situation similar to the one described
in Figure 3 if it was a model fragment with conditional elements). When for-
malised as restriction in OWL, this would result in the following definition:

hasCondition exactly 3 Population

hasCondition some (Population and

(consumes some (Population and

(consumes some Population))))

This formalization has multiple interpretations. It could be that population x
preys on y, and y preys on x, or that x preys on y, and y preys on z. Furthermore,
it becomes hard to formalize the other relations the populations take part in
without naming the Populations. Without variables to distinguish between two
objects of the same type, it is impossible to describe model fragments as classes.

As OWL is not expressive enough to formalize model fragments as classes,
there is no choice but to formalize them as instances. This makes it impossi-
ble to use an OWL reasoner to classify scenarios on model fragments. On the
other hand, using instances does eliminate the requirement of having to separate
the conditions and consequences in the formalization of model fragments. Each
model fragment can be modelled as an instance. That instance has hasCondi-
tion and hasConsequence relations to each of the model ingredients instances it
contains. Those ingredient instances in turn have relations which indicate how
they are related.

1 http://protege.stanford.edu/mail archive/msg17798.html
2 http://owl1 1.cs.manchester.ac.uk/



OWL and Qualitative Reasoning Models 41

A problem with the formalization of model fragments as instances is that
model fragments can have subclasses and can be reused. Since it is impossible to
create instances of instances or subclasses of instances, model fragments cannot
be described as instances.

Summarising, model fragments have to be modelled as classes in order to
represent the subtype hierarchy of model fragments, and to reuse them in other
model fragments. On the other hand, classes are not expressive enough to model
the contents of model fragments. Secondly, in order to correctly formalize the
contents of model fragments they have to be modelled as instances. However,
this would make it impossible to keep track of the reuse of model fragments,
and would require a special subclass relation to formalize the model fragment
hierarchy.

Both previous results are undesirable. An alternative is to treat model frag-
ment classes as individuals. This is valid, but makes the ontology OWL Full
[1]. The model fragment definitions are classes, so a class hierarchy of model
fragments can be created. These classes have hasCondition and hasConsequence
relations with instances of the QR ingredients they incorporate. This is ontolog-
ically not the most desirable solution, as the conditions in model fragments do
not correspond to the restrictions in OWL. However, the solution does correctly
represent model fragments and will allow the OWL format to be used for model
search and reuse.

4 The Formalisation of Relations

The relations in the QR vocabulary, the configurations and dependencies (causal,
mathematical and correspondence), are not simple binary relations between two
objects. For each relation screen information (for visualisation), such as its posi-
tion, has to be stored. Additionally, the Calc relations plus and min potentially
link more than two objects, as they model the result of an addition or subtrac-
tion of two values, and can have an arbitrary amount of inequality relations to
compare the result to other values (e.g. it is possible to specify that the sum
of the two population sizes in Figure 2b is equal to zero). Since OWL supports
only binary relations between objects, the formalisation of n-ary relations and
information about relations is an issue. The Semantic Web Best Practices and
Deployment Working Group (http://www.w3.org/2001/sw/BestPractices/) de-
scribes two variations of a pattern which can be applied to solve this issue [10].
By modelling a relation as a class it is possible to relate multiple objects using
only one relation instance. This process is called reification.

However, the existing reification pattern hinders the reuse of reified relations.
The calc and inequality relations in the QR vocabulary may only connect spe-
cific subsets of elements of quantities (magnitudes, derivatives and points) and
other calc relations. For example, magnitudes can only be connected to other
magnitudes or points fulfilling certain conditions, while derivatives can only be
connected to derivatives or points fulfilling certain other conditions (see Sec-
tion 6). Thus, the second argument of the relation depends on the first one, but



42 J. Liem and B. Bredeweg

the relations have the same meaning independent of the arguments. It is impor-
tant that the relations can be reused. Conceptually, there are 3 Calc relations
(Plus, Min and their superclass), and 6 inequalities (<, ≤, =, ≥, > and their su-
perclass) in the QR vocabulary. The need to create multiple types of Calc and
Inequality relations depending on their arguments creates unwanted complexity
in the file format and the QR vocabulary ontology.

If the first variation of the pattern is applied to represent the use of Calc rela-
tions by magnitudes, magnitudes are restricted to having an arbitrary amount of
Calc relations (hasCalc only Calc). Furthermore, the Calc relations have to be
related to exactly one magnitude and have an arbitrary amount of inequalities
(hasCalcTarget only Magnitude; hasCalcTarget = 1; hasInequality
only Inequality). This fixes the target of the Calc relation, making it impossible
to reuse the relation for Calc relations between derivatives. At least the Calc
relation can be reused by classes with the same target. If the restrictions for the
inequalities from Calc relations are ignored, 6 different relations are needed to
formalise all the restrictions. For the inequalities 24 reified relations are needed.

The second variation of the pattern only worsens the problem, as the restric-
tions are all formalised in the Calc relation. These indicate that both its source
and its target have to be of a specific type (hasCalcSource only Magnitude;
hasCalcSource = 1; hasCalcTarget only Magnitude; hasCalcTarget = 1).
This prevents reuse of the relation for all other classes. To properly formalise the
relation restrictions, 15 reified Calc relations and 36 reified inequality relations
are needed.

We developed a new version of the reification pattern to solve the reusabil-
ity issues of reified relations. Compared to the first version of the reification
pattern, the restrictions about the target of the Calc relation and its Inequal-
ities have been moved to the source of the relation (see Figure 6 which uses
the Protégé [6] syntax). The formalisation represents that Magnitudes can have
an arbitrary amount of hasCalc relations with reified Calc relations, which in
turn have exactly one hasCalcTarget relation with another magnitude, and an
arbitrary amount of inequality relations with magnitudes. This is achievable as
OWL allows the creation of new anonymous class definitions within restrictions
(the conjunction in the hasCalc restriction). Using this pattern, it is possible to
impose specific usage restrictions for relations in each desired source class. For
example, the derivative class can have an arbitrary amount of hasCalc relations
with reified Calc relations, which have exactly one other derivative as a target,
and an arbitrary amount of inequalities with other derivatives. Note that the
real formalisation is more complex, as inequality properties are also reified, and
the possible values of the hasCalcTarget and inequality properties are a union
of multiple classes.

Another advantage of this new pattern is that it is possible for other users
to use the relation defined in the ontology (without having to copy and adapt
it), as the usage of the relation is not restricted to specific classes. This is also a
disadvantage, as it is possible to abuse the relation with classes for which it does
not make sense. A possible work-around is adding a cardinality=0 restrictions



OWL and Qualitative Reasoning Models 43

Fig. 6. A reusable reification pattern

to classes for each relation the class cannot be involved with, although this is
only an acceptable solution if the number of relations and classes is relatively
low.

5 Representing Values

Qualitative values are either points or intervals which are stored in quantity
spaces (see Figure 2a). These behavioural ingredients define the possible values
of a quantity. A quantity space consists of at least one qualitative value and
values adjacent to intervals have to be points and visa versa. The quantity space
describes a total order, which means that a magnitude or derivative can only
change to a value directly above or below its current value. Qualitative values
in a model fragment can participate in (in)equality, correspondence and calc
relations. As a result, it is impossible to formalise them as an enumeration of
individuals (the ’values as sets of individuals’ pattern [11]), as different relations
in different contexts would refer to the same value. Therefore, the formalization
of qualitative values requires a unique individual for each value instance (i.e. for
each quantity space in which the value occurs).

Representing the qualitative values as classes (the ’values as subclasses par-
titioning a ”feature”’ pattern [11]) fulfils our requirement of creating a unique
value individual for each quantity space instance. The qualitative values can be
thought of as a set of subclasses forming a parent class. This class is exactly
the superset of all the possible value classes (modelled using owl:unionOf ). It
is necessary to explicitly state that the subclasses are disjoint, as it should be
inconsistent to create an individual which is an instance of multiple values.

Representing qualitative values as classes allows individuals to be created for
each instance of a specific quantity space. However, the pattern does not model
their strict ordering. A possible solution to this problem is to model the values
using an RDF collection [10]. Such a collection consists of a number of instances
of rdf:List. Each of these items is connected to the next in the collection using
rdf:rest, and points to a qualitative value instance using rdf:first. An advantage of
this pattern is that OWL editors understand the that the structure is a list, as it
is part of the RDF specification. A disadvantage is that using rdf:List causes the
ontology to become OWL Full. This disadvantage can be remedied by recreating



44 J. Liem and B. Bredeweg

a list structure in OWL [10], but a side effect would be that the editors would
not understand that the structure modelled is a list.

The list pattern has two further problems. Firstly, a list has no ontological
meaning, as it is a data structure. A list with the cities Amsterdam, Brussels, and
Paris has little meaning. They could indicate a travel route, cities with around
the same amount of inhabitants, or something else entirely. The relations between
the list items is left implicit. Secondly, it becomes impossible to classify a list
entry depending on the owner instance of the list, as there is no direct relation
between that object and each list item. This would make the ”relation restriction
through classification” pattern impossible to apply (section 6).

Our solution to formalise quantity spaces makes the ordering of its values
explicit using inequalities (see Figure 7). The quantity space is connected to
its point and interval instances using containsQualitativeValue relations. The
ordering is established using reified inequality relation instances originating from
the intervals, as inequalities created by the user are required to originate from
the points. Each consecutive value in the order must have another type than the
previous one. Therefore, the intervals can only have inequalities with points. This
solution is a semantic description of values, but OWL editors do not understand
it is a list.

Fig. 7. Representing a quantity space and its values using inequalities

6 Relation Restriction Through Classification

A quantity consists of a magnitude and a derivative, which in turn each have
a quantity space (the magnitude is not visualised in Figure 2a). As described
above, quantity spaces consist of a set of values in a total order. Roughly speak-
ing, inequalities are ordinal relations which have either magnitude or derivative
items (values, calc relations and magnitudes and derivatives themselves) as argu-
ments. Since manually categorising values into either a class for points belonging
to magnitudes or a class for points belonging to derivatives would add redundant
information to the formalisation, a different solution is desired.

Our inequality formalisation solution introduces two new classes, one for
the point-values belonging to magnitudes (PointBelongingToMagnitude), and
another for point-values belonging to derivatives (PointBelongingToDerivative).



OWL and Qualitative Reasoning Models 45

In these classes necessary (class =⇒ conditions), and necessary and suf-
ficient (class ⇐⇒ conditions), restrictions are combined. The necessary and
sufficient conditions of PointBelongingToMagnitude state that the value belongs
to a quantity space which belongs to a magnitude (or a derivative for PointBe-
longingToDerivative). This allows the OWL reasoner to classify the points as
belonging to one of the classes. The necessary conditions specify that all the in-
equality relations instances which have a PointBelongingToMagnitude as a first
argument must have either a PointBelongingToMagnitude or a Calc relation
between magnitude items as a second argument.

This pattern is used to restrict the use of inequalities, Calc relations and
correspondences. Essentially, a new class is created with necessary and sufficient
conditions for one of the special cases, and necessary conditions for the restriction
of this special case. This pattern takes away the need to replicate information
by using the OWL reasoner.

7 Implementation

We have developed a generic ontology [14] of the QR vocabulary in which all
the model ingredients and their usage restrictions are formalised (see Figure 8).
Based on this formalisation we have successfully implemented OWL export and
import functionality, which has been integrated with the Garp3 qualitative rea-
soning and modelling tool (http://hcs.science.uva.nl/QRM/) using the SWI-
Prolog Semantic Web Library [16]. This functionality is currently used to au-
tomatically formalise QR models as domain ontologies, which can be shared
using an online model repository. The consistency of these model ontologies was
checked using the Triple20 [15] and Protégé [6] ontology editors and the Racer-
Pro reasoner. The QR vocabulary ontology and an example QR model in OWL
can be found via: http://protege.cim3.net/cgi-bin/wiki.pl?NaturNet Redime.

8 Conclusions and Discussion

This paper presented the problems encountered during the formalisation of the
QR vocabulary and models in OWL. We succeeded in formalising qualitative
models in OWL, allowing our formalisation of models to be used as a data for-
mat for a central model repository. Due to the limits of the expressiveness of
OWL, it was not possible to formalise the model fragments as purely classes
with restrictions. Instead, they were formalised as classes with relations to in-
stances (making the ontology OWL Full). This makes it impossible to use the
OWL reasoners to classify scenarios on model fragments, since the instances and
relations are not necessary and sufficient conditions.

To be able to formalise n-ary relations and represent information about them
the reification pattern is used. We have shown that the two existing variations
prevent the relations to be reused. Our new pattern solves this reusability issue
by moving the relation restrictions to the source class.



46 J. Liem and B. Bredeweg

Fig. 8. The taxonomy of qualitative model ingredients

The existing patterns to formalise sequences of values are not enough to rep-
resent quantity spaces. The problems with representing them as a enumeration
of individuals, a set of classes, and an rdf:list of instances were explained. We
presented our more semantic representation which solves these problems.

We developed a new pattern to impose relation usage restrictions on classes
with certain conditions. New classes are defined with the conditions as necessary
and sufficient restrictions. The necessary restrictions are imposed on these classes,
and will apply when instances are classified as belonging to the class. This prevents



OWL and Qualitative Reasoning Models 47

information redundancy, as instances do not have to be explicitly represented as
belonging to certain classes.

Future OWL extensions (such as the Semantic Web Rule Language) might
make it possible to formalise the model fragments in such a way that it is pos-
sible to use an OWL reasoner to solve the QR classification task. For an OWL
reasoner to actually replace a QR classification task such as found in Garp3,
two additional inferences have to be addressed. Firstly, the reasoner tries to in-
fer if certain conditional inequalities are true in the scenario using inequality
reasoning. Secondly, unprovable but possible conditional inequalities and value
assignments are assumed by the reasoner. Each mutually exclusive set of these
assumptions will result in a new state in the state graph describing the behaviour
of the system. Another inference which would be useful to OWL users is adding
individuals to a knowledge base using a rule based mechanism. This would allow
the replacement of the QR consequence merging task.

The research described in this paper has allowed the implementation of func-
tionality to export qualitative models from the Garp3 application to an OWL
file, and import this OWL file again into the workbench. This makes it possible
to store these qualitative models in an online repository. This repository should
make it possible for the community of practice to (1) share models amongst
themselves, (2) search for models in which specific concepts or structures are
used, and (3) reuse parts of models, which are all goals of the NaturNet-Redime
project. Domain experts can use this repository to search for modelling work
related to their own research, for example to compare different formalisations of
the same phenomena. Teachers can ask students to download and analyse cer-
tain models. Finally, the repository allows modellers to store their results and
disseminate them to a larger group.

Acknowledgements

This work is co-funded by the European Commission within the Sixth Framework
Programme (2002-2006), project NaturNet-Redime (http://www.naturnet.org),
number 004074. We would like to thank Rinke Hoekstra and the reviewers for
their valuable comments, and Jan Wielemaker for his extensive programming
support.

References

1. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, and L. A. Stein. OWL web ontology language reference. W3C
recommendation, February 2004. M. Dean, G. Schreiber (eds.).

2. B. Bredeweg, P. Salles, and M. Neumann. Ecological Informatics: Scope, Techniques
and Applications, chapter Ecological Applications of Qualitative Reasoning, pages
15–47. Springer, Berlin, 2nd edition, 2006.

3. B. Bredeweg and P. Struss. Current topics in qualitative reasoning (editorial in-
troduction). AI Magazine, 24(4):13–16, 2003.



48 J. Liem and B. Bredeweg

4. J. de Kleer and J. S. Brown. A qualitative physics based on confluences. Artificial
Intelligence, 24(1-3):7–83, December 1984.

5. K. D. Forbus. Qualitative process theory. Artificial Intelligence, 24(1-3):85–168,
December 1984.

6. N.F. Noy H. Knublauch, R. Fergerson and M.A. Musen. The protege owl plugin:
An open development environment for semantic web applications. In S. A. McIl-
raith, D. Plexousakis, and F. van Harmelen, editors, International Semantic Web
Conference, pages 229–243, Hiroshima, Japan, November 2004. Springer.

7. P. J. Hayes. Formal Theories of the Commonsense World, volume 1 of Ablex series
in Artificial Intelligence, chapter The Second Naive Physics Manifesto, pages 1–36.
Ablex, Norwood, NJ, June 1985.

8. J. Heflin. OWL web ontology language use cases and requirements. W3C recom-
mendation, February 2004.

9. B. Kuipers. Qualitative reasoning: modeling and simulation with incomplete knowl-
edge. Automatica, 25(4):571–585, 1989.

10. N. Noy and A. Rector. Defining n-ary relations on the semantic web. W3C working
group note, April 2006. http://www.w3.org/TR/swbp-n-aryRelations/.

11. A. Rector. Representing specified values in OWL: ”value partitions” and ”value
sets”. W3C working group note, May 2005. http://www.w3.org/TR/swbp-
specified-values/.

12. P. Salles and B. Bredeweg. Qualitative reasoning about population and community
ecology. AI Magazine, 24(4):77–90, 2003.

13. G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. van de
Velde, and B. Wielinga. Knowledge Engineering and Management - The Com-
monKADS Methodology. MIT Press, Cambridge, MA, 2000.

14. G. van Heijst, S. Falasconi, A. Abu-Hanna, G. Schreiber, and M. Stefanelli. A case
study in ontology library contruction. Artificial Intelligence in Medicine, 7(3):227–
255, June 1995.

15. J. Wielemaker, G. Schreiber, and B. Wielinga. Using triples for implementation:
the Triple20 ontology-manipulation tool. In Y. Gil, E. Motta, V. R. Benjamins,
and M. A. Musen, editors, International Semantic Web Conference, pages 773–785,
Berlin, Germany, November 2005. Springer Verlag. LNCS 3729.

16. J. Wielemaker, G. Schreiber, and B. J. Wielinga. Prolog-based infrastructure for
RDF: performance and scalability. In D. Fensel, K. Sycara, and J. Mylopoulos,
editors, The Semantic Web - Proceedings ISWC’03, Sanibel Island, Florida, pages
644–658, Berlin, Germany, october 2003. Springer Verlag. LNCS 2870.


	OWL and Qualitative Reasoning Models
	Introduction
	Qualitative Reasoning
	Representing General Situations
	The Formalisation of Relations
	Representing Values
	Relation Restriction Through Classification
	Implementation
	Conclusions and Discussion


