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Abstract. In this article, we propose the design of sensory motor level as part of 
a three-layered agent architecture inspired from the Multilevel Process Theory 
of Emotion (Leventhal 1979, 1980; Leventhal and Scherer, 1987). Our project 
aims at modeling emotions on an autonomous embodied agent, a more robust 
robot than our previous prototype. Our robot has been equipped with sonar and 
vision for obstacle avoidance as well as vision for face recognition, which are 
used when she roams around the hallway to engage in social interactions with 
humans. The sensory motor level receives and processes inputs and produces 
emotion-like states without any further willful planning or learning. We 
describe: (1) the psychological theory of emotion which inspired our design, (2) 
our proposed agent architecture, (3) the needed hardware additions that we 
implemented on the commercialized ActivMedia’s robot, (4) the robot’s multi-
modal interface designed especially to engage humans in natural (and hopefully 
pleasant) social interaction, and finally (5) our future research efforts. 

1   Introduction  

Robotic agents have been of great interest for many Artificial Intelligence researchers 
for several decades. This field has produced many applications in many different 
fields, i.e., entertainment (Sony Aibo) and Urban Search and Rescue (USAR) 
(Casper, 2002; Casper and Murphy, 2002) with many different techniques – behavior-
based (Brooks, 1989; Arkin, 1998), sensor fusion (Murphy, 1996a, 1996b, 1998, 
2000), and vision (Horswill, 1993). As robots begin to enter our everyday life, an 
important  human-robot interaction issue becomes that of social interactions.  Because 
emotions have a crucial evolutionary functional aspect in social intelligence, without 
which complex intelligent systems with limited resources cannot function efficiently 
or maintain a satisfactory relationship with their environment, we focus our current 
contribution to the study of emotional social intelligence for robots.  Indeed, the 
                                                           
* Part of this work was accomplished while the author was at the University of Central Florida, 

USA. 
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recent emergence of affective computing combined with artificial intelligence has 
made it possible to design computer systems that have “social expertise” in order to 
be more autonomous and to naturally bring the human – a principally social animal – 
into the loop of human-computer interaction.   

In this article, social expertise is considered in terms of (1) internal motivational 
goal-based abilities and (2)  external communicative behavior.  Because of the 
important functional role that emotions play in human decision-making and in human-
human communication, we propose a paradigm for modeling some of the functions of 
emotions in intelligent autonomous artificial agents to enhance both (a) robot 
autonomy and (b) human-robot interaction.  To this end, we developed an 
autonomous service robot whose functionality has been designed so that it could 
socially interact with humans on a daily basis in the context of an office suite 
environment and studied and evaluated the design in vivo.  The social robot has been 
furthermore evaluated from a social informatics approach, using workplace 
ethnography to guide its design while it is being developed (Lisetti et al., 2004) 

2   Related Research 

There have been several attempts to model emotions in software agents and robots 
and to use these models to enhance functionality. El-Nasr, (2002)  uses a fuzzy logic 
model for simulating emotional behaviors in an animated environment. Contrary to 
our approach directed toward robots, her research is directed toward HCI and 
computer simulation. 

Breazeal’s work (2000, 2003) also involves robot architectures with a motivational 
system that associates motivations with both drives and emotions.  Emotions are 
implemented in a framework very similar to that of Velasquez’s work but Breazeal’s 
emphasis is on the function of emotions in social exchanges and learning with a 
human caretaker.  Our approach is different from Breazeal’s in that it is currently 
focused on both social exchanges and the use of emotions to control a single agent. 

Murphy and Lisetti’s approach (2002) uses the multilevel hierarchy of emotions 
where emotions both modify active behaviors at the sensory-motor level and change 
the set of active behaviors at the schematic level for a pair of cooperating 
heterogeneous robots with interdependent tasks.  

Our current approach builds on that work, setting the framework for more 
elaborate emotion representations while starting to implement simple ones and 
associating these with expressions (facial and spoken) in order to simultaneously 
evaluate human perceptions of such social robots so as to guide further design 
decisions. 

3   Developing Socially Intelligent Agents 

We focus on the study of social expertise for artificial agents in terms of: 

1. internal motivational goal-based activities, and  
2. external communicative behavior 
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As shown in Figure 1, we are focusing on the Socially Intelligent Agent 
architecture  (within the red circle) of the Multimodal Affective User Interface 
(MAUI) paradigm proposed and developed earlier (Lisetti, 2002; Lisetti and Nasoz, 
2004) for the design of affective socially intelligent agents.  Our current work within 
the MAUI framework continues to focus on building user-specific emotional models 
of the user based on bi-modal bio-sensing of physiological signals associated with 
emotions – namely heart rate and galvanic skin response (Villon and Lisetti, 2006). 

 

Fig. 1. Overall MAUI Paradigm for Multimodal Affective User Interfaces from (Lisetti and 
Nasoz, 2004) 

We currently propose a psychologically-grounded framework for socially 
intelligent agents (corresponding  to the modules of in the doted circle) based on 
Scherer’s affective-cognitive theory of emotions.  This architecture to be used for the 
development of artificial agents with diverse forms of embodiment such as vocal 
robots, graphical animated avatars, avatar-based interface on mobile robotic platform, 
anthropomorphic robotic platforms as shown later. 

4   A Three-Layered Emotional State Generator  

With recent advances in Psychology, many researchers have proposed theories on the 
mechanisms of producing emotions in humans. One of the theories of particular interest 
to us is the Multilevel Process Theory of Emotion (Leventhal 1979, 1980, Leventhal and 
Scherer, 1987), which we chose to inspire the design and the implementation of the 
Emotion State Generator (ESG) on our commercially available autonomous robot  
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Fig. 2. Emotion State Generator (ESG) based on the Multilevel Process Theory of Emotion 
(Scherer, 1986) 

PeopleBot  (ActivMedia, 2002). Figure 1 shows the ESG three-layered architecture we 
use for generating emotion-like states for our autonomous agents.   

Indeed, the Multilevel Process Theory of Emotion postulates that the experience of 
emotion is a product of an underlying constructive process that is also responsible for 
overt emotional behavior. It also describes that emotions are constructed from a 
hierarchical multi-component processing system. In short (Leventhal, 1980): 

a. Sensory motor level – generates the primary emotion in response to the basic 
stimulus features in a non-deliberative manner; 

b. Schematic level – integrates specific situational perceptions with autonomic, 
subjective, expressive and instrumental responses in a concrete and patterned 
image-like memory system; 

c. Conceptual level – corresponds more closely to social labeling processes. 

4.1   Sensory Motor Level 

The sensory motor or expressive motor level is the basic processor of emotional 
behavior and experience that provides the earliest emotional meaning for certain 
situations. This level consists of multiple components: (a) a set of innate expressive-
motor systems and (b) cerebral activating systems. These components are stimulated 
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automatically by a variety of external stimuli and by internal changes of state that do 
not require deliberate planning.  

Because there is no involvement of the willful planning and learning processes, the 
lifetime of the emotional reactions caused at this level may be short and will quickly 
become the focus for the next level, schematic processing. Action in the facial motor 
mechanism, as part of the expressive motor system, is the source of the basic or 
primary emotions of happiness, surprise, fear, sadness, anger, disgust, contempt, and 
interest (Leventhal, 1979). In this project, we are only modeling: happy, surprise, fear, 
sad and angry. 

We briefly describe the schematic and conceptual levels for completeness sake, but 
we are currently focusing our design on the sensory motor level. 

4.2   Schematic Level 

The schematic level integrates sensory-motor processes with prototypes or schemata 
of emotional situations in order to create or to structure emotional experiences. But 
before entering this level, the input needs to be integrated with separate perceptual 
codes of the visual, auditory, somesthetic (related to the perception of sensory stimuli 
from the skin), expressive, and autonomic reactions that are reliably associated with 
emotional experiences.   

Schemata - organized representations of other more elementary codes - are built 
during emotional encounter with the environment and will be conceptualized as 
memories of emotional-experiences. As shown in Figure 2, humans can activate these 
schemata by activating any one of its component attributes that is caused by the 
perception of a stimulus event, by the arousal of expressive behaviors or autonomic 
nervous system activity, or by the activation of central neural mechanisms that 
generate subjective feelings. The structure of the schematic memories can be thought 
of as codes, complex categorical units, a network of memory nodes, or perhaps as 
memory columns that are conceptualized.  

The schematic processing is also automatic and does not require the participation 
of more abstract processes found at the conceptual level. This schematic level is more 
complex than the sensory motor level in that it integrates learning processes while 
building the complexities of schemata. At this level, emotion behavior also has a 
longer lifetime.  

4.3   Conceptual Level 

The conceptual level can be thought of as the system that can make conscious 
decisions or choices to some external inputs as well as to internal stimuli (such as 
stored memories of emotional schemata generated at the schematic level). It is the 
comparison and abstraction of two or more concrete schemata of emotional memories 
with certain concepts that will enable the humans to draw conclusions about their 
feelings to certain events. By comparing and abstracting information from these 
schemata with conceptual components – verbal and performance component - humans 
can reason, regulate ongoing sequences of behavior, direct attention and generate 
specific responses to certain events.  

The verbal components are not only representing the feelings themselves but they 
are also communicating the emotional experiences to the subject (who can also 
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choose to talk about his/her subjective experience). On the other hand, the 
performance components are non-verbal codes that represent sequential perceptual 
and motor responses. The information contained at this level is more abstract than the 
schematic memories and therefore the representations can be protected from 
excessive changes when they are exposed to a new experience and can be led to more 
stable states. Because this level is volitional, components can be more sophisticated 
through active participation of the agent. When performance codes are present, for 
example, the volitional system can swiftly generate a sequence of voluntary responses 
to match spontaneous expressive outputs from the schematic system. This volitional 
system can anticipate emotional behaviors through self-instruction. 

4.4   Stimulus Evaluation Checks (SECs) 

In order to produce emotion for each level, many researchers have hypothesized that 
specific emotions are triggered through a series of stimulus evaluation checks (SECs) 
(Scherer, 1984; Scherer, 1986; Weiner, Russell, and Lerman, 1979; Smith and 
Ellsworth, 1985). Inspired by (Lisetti and Nasoz, 2002), we link the SECs system that 
performs the emotion components’ check in the Affective Knowledge of 
Representation (AKR) that produces a schema of emotion. This schema can be 
associated with a certain event and emotion and be part of the schema memory for 
further use. In AKR, each emotion has many components, e.g., valence, intensity, 
focality, agency, modifiability, action tendency, and causal chains. 

 Valence: positive/ negative: is used to describe the pleasant or unpleasant 
dimension of an affective state.  

Intensity: very high/ high/ medium/ low/ very low: varies in terms of degree. The 
intensity of an affective state is relevant to the importance, relevance and urgency of 
the message that the state carries.  
 Focality: event/ object: is used to indicate whether the emotions are about 
something: an event (the trigger to surprise) or an object (the object of jealousy).  
 Agency: self/ other: is used to indicate who was responsible for the emotion, the 
agent itself self, or someone else other.  
 Modifiability: high/ medium/ low/ none: is used to refer to duration and time 
perspective, or to the judgment that a course of events is capable of changing.  
 Action tendency: identifies the most appropriate (suite of) actions to be taken from 
that emotional state. For example, happy is associated with generalized readiness, 
frustration with change current strategy, and discouraged with give up or release 
expectations.    
 Causal chain: identifies the causation of a stimulus event associated with the 
emotion. For example, happy has these causal chains:  (1) Something good happened to 
me, (2) I wanted this, (3) I do not want other things, and (4) because of this, I feel good. 

5   Affective-Cognitive Architecture and Embodiment Forms 

5.1   Functionalities of Our Robot 

Our robot, Petra, has the same tasks as Cherry (Lisetti, et al. 2004) and is designed so 
that she can socially interact with humans on a daily basis in the office suite 



 Affective Cognitive Modeling for Autonomous Agents 25 

environment especially on the second floor of the computer science building at the 
University of Central Florida. She has a given set of office-tasks to accomplish, from 
giving tours of our computer science faculty and staff suites to visitors and to 
engaging them in social interactions. With the sensors that she has (explained below), 
she is able to roam around the building using her navigational system,  recognize 
someone through her face recognition algorithm, and greet them differently according 
to their social status (professor, students, staff). 

In terms of architectures for autonomous agents and robots, the multi-level theory 
of emotions currently gets translated into the figure 3 below, of which we have 
implemented various levels and different types of embodiement forms, as shown in 
Figures 4 (b-c).  We are currently in the process of building a platform independent 
architecture and an expression control mechanism to adapt to a multitude of robotic 
and graphical artificial agents such as for example the non-mobile Phillips iCat 
interactive toy-looking which we are currently working on shown in Figure 4a 
(Grizard and Lisetti, 2006; Paleari and Lisetti, 2006). 

 

Fig. 3. Affective-Cognitive Three-Layered Architecture 

We next describe how our ESG discussed in Section 2 is integrated in the overall 
affective-cognitive architecture shown in Figure 3 and implemented a mobile 
ActivMedia PeopleBot (ActivMedia, 2002).  We called this robot or project Petra.  
Currently, Petra has three different sensors - twenty-four sonar, a camera for 
navigation, and a camera for face recognition to be used during navigation and social 
interaction. After sensing various stimuli from the real world (e.g., walls, floors, 
doors, faces), these are sent to the perceptual system. We designed the perceptual 
system as an inexpensive and simple system so that the information abstracted from 
the outside world has some interpreted meaning for the robot.  For every cycle (in our 
case, it is 1000 mm travel distance), the sensors send the inputs read to the perceptual 
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Fig. 4. (a) iCat Platform; (b) Amigobot mobile Platform; (c) Peoplebot mobile Platform 

system and these are then processed by the perceptual system as described below. 
Afterward, the perceptual system sends its outputs (valid sonar readings, vision-
navigation interpretation, and person’s name) to the sensory motor level, which 
triggers certain emotion-like states.  

5.2   Navigation with Sonar and Vision 

Sonar: In our design, the robot performs sonar readings every 200 mm, so for 1000 
mm, we get five different readings. Out of these five readings, the system extracts the 
invalid information out and stores only the good ones for further use in the ESG 
model. The reading is invalid if the sum of the left-most and the right-most sonar 
readings are extremely more or extremely less than the distance between the aisle 
(1,500 mm for our case). And vice versa, the reading is valid if the sum of both 
readings is around 1,500 mm.  

Camera: For every cycle, the camera captures an image and sends it to the vision 
algorithm. In this algorithm, the image is smoothened and edged by canny edge 
detector before calculating the vanishing point. In order to calculate the point, in 
addition to the canny method, we also eliminate the vertical edges and leave the 
image with the non-vertical ones (edges with some degrees of diagonality). With the 
edges left, the system can detect the vanishing point by picking up the farthest point 
in the hall. With this point, represented by the x- and y- coordinate, the system asks 
the robot to perform course correction, if needed, and uses it as an input for the ESG 
model. Besides having the capability to center between the aisles of the hallway, the 
robot is also able to detect some obstacles, i.e, garbage can, boxes, people, etc. When 
the robot finds the object(s), this detection information is also sent to the ESG model. 

5.3   Integration of Face Recognition with Social Status Knowledge 

The perceptual system receives input from the eye-level camera only when the robot 
performs the face recognition algorithm.  In our current implementation, this 
algorithm starts when the robot asks someone to stand next to her and captures an 
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image. Along with the FaceIt technology by Identix (Identix, 2002), our algorithm 
compares the input with the collection of images in her database of 25 images and 
when any matching is found, she greets that person. The result, recognized or 
unrecognized along with the person’s name (to be used to greet him/her), is also sent 
as an input to the ESG model. At this level, the other information of the person whose 
image was captured and recognized (gender, social status, and social interaction value 
– the degree of her like/dislike toward that person) is not sent to the sensory motor 
level, but in the future, this information may be needed for the implementation of the 
schematic and/or the conceptual level where further learning and information 
processing will be performed. 

6   Sensory Motor Level Design and Implementation 

Since the information abstracted from the perceptual system does not go through 
willful thinking and learning at this level, it may contain some fuzziness to certain 
degree. Inspired by FLAME (El Nasr, 2002), this level is implemented with the 
Takagi, Sugeno, and Kang (TSK) fuzzy logic model (Takagi & Sugeno, 1985). 
Because of its simplicity, it can reduce the number of rules required for this level. Our 
proposed sensory motor level architecture is shown in Figure 5.   

 
Fig. 5. Sensory Motor Level’s sub-Architecture 

The information received from the perceptual system is then processed further to 
determine the drifting rates and angle changes which are represented by five fuzzy 
values (small, medium-small, medium, medium-large, and large) and the door 
detection, the object detection, and the face recognition which are represented by 
boolean values (found and not-found or recognized and not-recognized).  Below are 
the examples of fuzzy representations of the angle changes calculated from the 
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sonar’s valid readings (Fangle_sonar). Δ is determined by subtracting the current reading 
from the previous one. 

The information (drifting rate, angle changes, door detection, object detection, and 
face recognition) is then further processed with the TSK model which gives the 
emotion-like-parameters-change represented by a numerical value which will 
add/subtract the numerical values of the emotion-like-parameters (happy, surprise, 
fear, sad and angry) based on the OR-mapping shown on Table 1. 

Table 1. Mapping of the emotions’ parameter changes 

Parameter Increased if Decreased if 

Happy 

- Small to Medium-
small value of the 
processed 
information from 
sonar or vision 

- Open door 
- Recognize someone 

- Medium to Large 
value of the 
processed 
information from 
sonar or vision  

- Closed door 
- Not recognize 

someone 

Surprise1 

- Large value of the 
processed 
information from 
sonar or vision (on 
the first detection 
only) 

- The robot is in the 
happy state 

 

Fear 

- Large value of the 
processed 
information from 
sonar or vision 
(medium repetition) 

- The robot is in the 
happy state 
 

 
Sad 

- Medium to Medium-
large value of the 
processed 
information from 
sonar or vision 

- Closed door 
- Not recognize 

someone 

- Small to Medium-
small value of the 
processed 
information from 
sonar or vision 

- Open door 
- Recognize someone 

Angry 

- Large value of the 
processed 
information from 
sonar or vision (high 
repetition) 

- Closed door 
(repetitively) 

- Not recognize 
someone 
(repetitively) 

- Small to Medium-
small value of the 
processed 
information from 
sonar or vision 

- Open door 
- Recognize someone 

                                                           
1 To show surprise, when the processed information from sonar or vision is large on the first 

detection, the weight of this emotion is highest among all. 
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After calculating the emotion-like state, the sensory-motor level performs the 
Stimulus Evaluation Check (SEC) process to check the emotion appropriate 
components and create a schema of emotion to be stored in the memory. The checkings 
are performed by assigning appropriate values to the emotion components (as described 
in the SEC section above), based on the checks (e.g. pleasantness, importance, 
relevance, urgency). Table 2 shows a schema when an unexpected moving object 
suddenly appears in the captured navigation-image, i.e, walking students. In this case, 
surprise will be activated as the final emotion, only for the current cycle.  

A sudden appearance of a person in the navigation image is detected as an obstacle 
that can slow down the navigation process due to the course correction that needs to 
be performed should the person remain in the navigation image on the next cycle. 
Thus intensity is very high and the action tendency is to avoid potential obstacles. 
Since the face cannot be detected at farther distance, the valence is negative. And at 
current cycle, the modifiability is set to its default–medium because the robot has not 
performed the obstacle avoidance to change the course event. 

Table 2. Schematic Representation for Surprise 

Components Values 
Emotion Surprise 
Valence Negative 
Intensity Very High 
Focality Object – walking student 
Agency Other 
Modifiability Medium 
Action Tendency Avoid 
Causal Chain - Something happened now 

- I did not think before now that this 
will happen 

- If I thought about it, I would have 
said that this will not happen 

- Because of this, I feel something 
bad 

           

    (a)              (b)            (c) 

Fig. 6. Facial expressions for some of the modeled emotions a: Happy; b: Angry, c: Sad 

After performing the SECs, the robot’s facial expression is also adjusted to display 
her current internal emotion-like state. For every emotion-like that we are modeling, 
e.g., happy, surprise, fear, sad, and angry, we have designed their facial expressions 
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based on the Facial Action Coding System (FACS) (Ekman and Friesen, 1978) as 
shown in Figure 6 (a-e).  

6.1   Behavior State Generator (BSG) 

A behavior is “a mapping of sensory inputs to a pattern of motor actions, which then 
are used to achieve a task” (Murphy, 2000). After determining the facial expressions, 
the processed information is sent to BSG. Through these, she can execute different 
behaviors depending on the input sources (sonar, camera for navigation, and camera 
for face recognition). Each behavior state is described below: 

1. INIT: reset the emotion-like, the progress bars, and the starting position. 
2. STAY_CENTER: center herself between the aisles to avoid the walls. 
3. AVOID_LEFT_WALL: move right to avoid the left wall. This behavior is 

triggered when a course correction, calculated by sonar or vision, is needed. 
4. AVOID_RIGHT_WALL: move left to avoid the right wall. This behavior is also 

triggered when course correction is needed. 
5. WAIT: wait for a period of time when the face recognition algorithm cannot 

recognize anyone or the door is closed (in order to try again to avoid any false 
positive). 

7   Integration on a Robotic Platform with Anthropomorphic 
Interface 

The interface shown in Figure 7 is displayed through the touch screen wirelessly is a 
modified version of Cherry’s (Lisetti et al., 2004).  It integrates several components 
such as the avatar, a point-and-click map, the emotion changing progress bars, several 
algorithms (navigation system, vision and obstacle avoidance system, and face 
recognition system), several help menus, i.e., speech text box, search properties, and 
start-at-room option, and two live-capture frames.  

The main improvements on Petra’s interface from Cherry’s are the progress bars, 
the two video frames, and navigational and vision algorithms. Through these bars, we  

 

 

Fig. 7. Petra’s Complete Interface and Hardware 
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are able to show the real-time changes of emotion-like state and which emotion-like 
state(s) is/ are affected by the stimuli accepted. One of the video streams has the same 
purpose as Cherry’s vision for face recognition, and the other one is used for the 
vision for navigation system. The other two algorithms (navigation and vision) are 
designed to have a better and smoother navigational system. 

8   Conclusion 

The work presented represented a very small milestone toward achieving cognitive-
affective architectures for socially intelligent agents.  Our intention is to continue to 
base our work on psychological theories, in particular that of Scherer’s because it 
psychologically links emotion recognition, with emotion generation at the affective-
cognitive level and with emotion expression which allows to develop a completely 
psychologically grounded system for Human-Robot Interaction as depicted in the 
MAUI (Multimodal Affective User Interface) framework we presented as the basis 
for our work.  Much more remains to be accomplished. 
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