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Abstract. Many real-world application domains that demand planning
and scheduling support do not allow for a clear separation of these ca-
pabilities. Typically, an adequate mixture of both methodologies is re-
quired, since some aspects of the underlying planning problem imply
consequences on the scheduling part and vice versa. Several integration
efforts have been undertaken to couple planning and scheduling meth-
ods, most of them using separate planning and scheduling components
which iteratively exchange partial solutions until both agree on a result.

This paper presents a framework that provides a uniform integra-
tion of hybrid planning –the combination of operator based partial order
planning and abstraction based hierarchical task network planning– and
a hierarchical scheduling approach. It is based on a proper formal ac-
count of refinement planning, which allows for the formal definition of
hybrid planning, scheduling, and search strategies. In a first step, the
scheduling functionality is used to produce plans that comply with time
restrictions and resource bounds. We show how the resulting framework
is thereby able to perform novel kinds of search strategies that oppor-
tunistically interleave what used to be separate planning and scheduling
processes.

1 Introduction

Hybrid planning – the combination of hierarchical task network (HTN) plan-
ning with partial order causal link (POCL) techniques – turned out to be most
appropriate for complex real-world planning applications [1] like crisis manage-
ment support [2,3], etc. Here, the solution of planning problems often requires
the integration of planning from first principles with the utilization of prede-
fined plans to perform certain complex tasks. Beyond the challenge to produce
complex courses of action, planning support in these domains has to consider all
kinds of resources, ranging from limited time and material to power and supplies,
which all define success and efficiency of the mission.

These two aspects of the planning task used to be regarded as two differ-
ent kinds of problems, called planning and scheduling, one performed after the
other. Newer approaches take into account, that the two problem solving phases
interact to a huge extent, and neither can be reasonably carried out without
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knowledge and feedback about the progress of the other. This motivates to get
more information out of resource analysis into the planning process, e.g. via
resource profiles [4] or constraint-based techniques on shared memory [5]. It
allows for some corrective steps on the “planner’s side”, respectively offers al-
ternative plans to pursue. Another frequently used technique is to keep the plan
and schedule generating processes completely separate, using the result of one
as the input for the other. In this fashion, [6] proposes to perform classic plan
generation on a relaxed problem without resource information and to give the
result to a scheduler. [7] places scheduling in a pre-planning phase in order to
determine necessary overlapping actions and minimal resource capacities. In all
these approaches, the plan generation process is not guided by resource demands
and vice versa. The IxTeT temporal planning system [8] integrates scheduling in
an POCL planner by using temporally qualified expressions throughout the rep-
resentation formalism, which represent state transitions and state persistences of
the planning domain. The authors share our view of opportunistic scheduling as
additional plan modification steps which can be interleaved with other planning
steps: closing open or unachieved preconditions, resolving (resource) conflicts,
and adding constraints to evade bottlenecks. An important feature is the dy-
namic construction of a resource hierarchy (not to be confused with hierarchical
resources as introduced by [9]) based on condition analysis in the current partial
plan [10]. The hierarchy represents a partial order on the “importance” of the re-
sources for plan causality, and with that the order in which the different resources
should be addressed by the reasoning process. This technique can be considered
to be included as an additional strategic advice to our proposed approach.

Our aim is to provide a framework in which planning and scheduling func-
tionality is uniformly integrated. Integration should not be limited to a planner
delivering plans to be judged by a scheduler but it should be possible to generate
and abandon plans schedule-driven and vice versa. We will show in a first step,
what a system configuration under these requirements looks like for generating
plans that are resource and time compliant.

To this end, we make use of the hybrid planning approach presented in [11]. It
provides a formal framework, in which the plan generation process is functionally
decomposed into well-defined flaw detecting and plan modification generating
functions. We are going to show, how scheduling capabilities can be integrated
and exploited in the plan generation process. Flexible planning and scheduling
strategies operate opportunistically instead of following a fixed plan generation
schema, thereby completely interleaving what used to be separate planning and
scheduling processes.

The rest of the paper is organized as follows. In Section 2 we present the
refinement-based planning framework on which our integrated hybrid approach
relies; we define the necessary refinement operators and flaws for our purposes.
Section 3 introduces the resulting system components and Section 4 describes
strategies that are capable of guiding search in the integrated planner and sched-
uler. We conclude in Section 5 with a glimpse on future developments and some
final remarks.
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2 A Refinement-Based Framework

We employ a hybrid planning formalism that relies on a sorted logical language
L = {Z, P , C, V , O, T }. Z describes a hierarchy of sort symbols, P is a Z∗-
indexed set of predicate symbols, and C and V are non-empty finite Z-indexed
sets of constant symbols and variables. O denotes a non-empty finite set of op-
erator symbols, T a finite set of task symbols; both symbol sets are Z∗-indexed.
All sets are assumed to be disjoint. Z contains two designated sort symbols:
Resource and its sub-sort Symbolic for modeling symbolic resources. By spec-
ifying sub-sorts of Symbolic, we employ the notion of hierarchical resources
in our approach. For presentation purposes we will focus in the following on
(shareable) symbolic resources, e.g. Vehicle with sub-sorts Truck and Jeep.
The difference between symbolic resources and other objects is subtle: the iden-
tity of a resource entity is explicitly not of interest. This allows for efficient
reasoning mechanisms that analyze allocation profiles and identify bottlenecks,
potential and necessary over-allocations, etc., rather than dealing with equations
and un-equations in constraint sets. For a detailed discussion on hierarchical re-
source representations, also beyond subsumption (including numeric resources),
see [9].

An operator schema o(τ̄ ) = (prec(o(τ̄ )), add(o(τ̄ )), del(o(τ̄ )), dmin
o(τ̄), d

max
o(τ̄) )

specifies the preconditions and the positive and negative effects of that oper-
ator (o ∈ O, τ̄ = τ1, . . . , τn with τi ∈ {C ∪V} for 1 ≤ i ≤ n and n being the arity
of o). Preconditions and effects are sets of literals and atoms over P ∪ C ∪ V ,
respectively. Symbolic resources do not have to be allocated explicitly by spe-
cific predicates but are implicitly by their use in the condition atoms. dmin

o(τ̄) is
the minimal duration of the operator, dmax

o(τ̄) the maximal.
A ground instance of an operator schema is called an operation. A state is

a finite set of ground atoms and an operation o(c̄) is applicable in a state s iff
for the positive literals in the precondition of o: prec⊕(o(c̄)) ⊆ s and for the
negative literals: prec�(o(c̄)) ∩ s = ∅. The result of applying o(c̄) in state s is a
state s′ = (s ∪ add(o(c̄))) \ del(o(c̄)). Operators are also called primitive tasks.
Executability of sequences of operations is defined inductively.

Abstract actions are represented by complex tasks, which in hybrid planning
show preconditions and effects like primitive ones. They are defined by task
schemata t(τ̄ ) = (prec(t(τ̄ )), add(t(τ̄ )), del(t(τ̄ )), dmin

t(τ̄) , d
max
t(τ̄) ) for t ∈ T . A de-

composition method m = (t(τ̄ ), d) relates a complex task t(τ̄ ) to a task network
d. This task network can be seen as a pre-defined implementation of a complex
task and therefore the duration intervals of abstract actions have to be valid
lower, respectively upper bounds for all their implementing networks. While
HTN planning approaches like [12] deduce bounds for resources in abstract tasks
from information about resource allocation by more primitive tasks, our notion
of hybrid planning has to take into account, that implementing networks might
not be complete and that the user’s specification might therefore add some es-
timated extra time overhead, for example. Consequently, as it will be shown in
the definition of the task expansion plan modification, the temporal artifacts of
abstract task time bounds persist in the respective constraint sets of a plan.
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For this presentation we omit axiomatic state refinements for modeling dif-
ferent abstraction levels on preconditions and effects for abstract task [2]. This
restricts task networks occuring in methods to those in which all preconditions
and effects of the abstract task have to occur explicitly.

A task network –or partial plan– over a language L, a set of primitive and
complex task schemata T, and a set of decomposition methods M, is a tuple
(TE, ≺, V C, CL, TC) with TE being a set of plan steps task expressions te =
l : t(τ1, . . . , τm), where l represents a unique label in TE and t(τ1, . . . , τm) an
instance of a task schema in T, using variables unique in TE. ≺ is a set of
ordering constraints imposing a partial order on the steps in TE. V C denotes
a set of variable constraints, which codesignate and non-codesignate variables
that occur in TE with each other or constants. It also contains sort restrictions:
Constraints of the form v∈̇Z and v ˙	∈Z, Z ∈ Z, include or exclude variables
from being assigned to terms of the specified sort. CL is a set of causal links
tei

φ−→ tej with tei, tej ∈ TE and φ being a literal with σ(φ) ∈ σ(prec(tej)) and
σ(φ) ∈ σ(add(tei)), if φ is positive, and σ(|φ|) ∈ σ(del(tei)), if φ is negative. σ is
a V C-compatible variable substitution, i.e. a substitution that is consistent with
the variable constraints. A causal link indicates that a task (l : ti(τ̄ )) establishes
a precondition of a task (l′ : tj(τ̄ ′)) and is used in the usual sense as a book
keeping entity.

Finally, TC represents the temporal information as a simple temporal problem
[13]. TC is a constraint system (Z, D, C) with Z being a set of variables that
represent time points and D : Z → R+ a function for assigning sets of real
numbers (including the symbol ∞ for representing an infinite amount of time)
to each variable in Z. The set of real numbers Dxi that is assigned by D to a
variable xi ∈ Z is called the domain of that variable. C is a set of unary and
binary constraints. A binary constraint represents the temporal distance between
two time point variables xi and xj by an interval [dmin, dmax], which stands for
the equation dmin ≤ xj − xi ≤ dmax. A unary temporal constraint specifies a
time point x by an interval [early, late], which means that early ≤ x ≤ late. The
temporal network specifies for each task expression te ∈ TE two time points that
denote that beginning and the end of the action: startte in [0, ∞) and end te in
[startte + dmin

te , startte + dmax
te ]. For any two task expressions tei, tej ∈ TE with

tei ≺∗ tej (the transitive closure of ≺), the temporal relation endmax
tei

≤ starttej

holds, i.e. their temporal distance is given by the interval [0, ∞). Conversely, for
every two tasks with endmax

tei
≤ starttej , the transitive closure of the ordering

relation ≺∗ contains tei ≺ tej . A causal link tei
φ−→ tej ∈ CL is reflected by a

temporal relation starttei ≤ endmax
tej

.
An integrated planning and scheduling problem (d, T, M, sinit, sgoal) consists of

an initial task network d, a set of task and operator schemata T, and a set M
of decomposition methods for implementing the complex tasks in T. The state
sinit represents the initial world state, including resource capacities, and sgoal is
a specification of the desired goal state and the overall makespan limit. Like it is
common in partial order planning, we encode the initial and (optional) goal state
as artificial task expressions teinit and tegoal in TE(d) with respective effects and
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preconditions, artifacts in the temporal constraint system, and the obligation to
order any other task between them.

Given a problem specification (d, T, M, sinit, sgoal), a hybrid planning and
scheduling system transforms the initial task network d into a task network that
is considered a solution to the problem. A partial plan P = (TE, ≺, V C, CL, TC)
is a solution to the problem, if and only if P is obtained from d by the applica-
tion of plan modification steps, if TE includes only primitive task expressions,
and if P is executable in sinit and generates send. P is called executable in a
state s and generates a state s′, if all ground linearizations of P , that means
all linearizations of all ground instances of the task expressions in TE that are
compatible with ≺ and V C, are executable in s and generate a state s′′ ⊇ s′.
No linearization may exceed the capacities specified in sinit in any intermediate
state by its accumulated allocations, nor it may exceed the time limit specified
in sgoal by its makespan in TC.

The presented framework makes violations of the solution criteria explicit by
introducing flaws, data structures that literally “point” to deficiencies in the
plan and allow for the problems’ classification. This will allow us to guide the
search process in particular to address specific problems at a specific time.

Definition 1 (Flaws). For a given planning and scheduling problem specifica-
tion and a plan P that is no solution to the problem, a flaw f is a pair (flaw, E)
with “flaw” denoting the flaw class and E being the set of components in P to
which the flaw refers.

The set of flaws is denoted by F with subsets Fflaw for given labels flaw. The set
F of flaw classes in a partial plan P = (TE, ≺, V C, CL, TC) for a given problem
(d, T, M, sinit, sgoal) addresses the solution criteria by the following sub-sets (some
of which being classical plan generation flaws, some related to a scheduling view):

1. (AbstractTask, {te}) with te = l : t(τ̄ ) ∈ TE, t ∈ T being an abstract task
expression. P is not yet primitive and this flaw class is typically associated
with hybrid planning.

2. (OrdInconsistency, {te1, . . . , tek}) with tei ∈ TE, tei ≺∗ tei, 1 ≤ i ≤ k, i.e.
if ≺∗ defines a cyclic partial order. There exists no defined linearization of
P , which makes this flaw related to planning and scheduling likewise.

3. (VarInconsistency, {v}) with v ∈ V being a variable for which V C |= v 	= v
holds. Since V C is inconsistent, no V C-compatible ground substitutions can
be deduced to gain grounded operations from TE. This criterion is needed
in both paradigms.

4. (OpenVarBinding, {v}) with v ∈ V being a variable occurring in TE and
there exists a constant c ∈ C with V C 	|= v = c and V C 	|= v 	= c. The solution
criterion requests all ground linearizations to be executable, therefore it has
to be decided whether an operation is compatible with V C or not, for plan
as well as for schedule generation.

5. (OpenPrecondition, {te, φ}) with φ ∈ prec(te), te ∈ TE, denotes a not fully

supported task, i.e., for the subset of te-supporting causal links {tei
φi−→

te|1 ≤ i ≤ k} ⊆ CL we find
⋃

1≤i≤k φi ⊂ prec(te). If not all necessary
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precondition establishers have yet been identified in P , some, if not all ground
linearizations might not be executable. This is a typical planning-only flaw.

6. (OrdInconsistency, {te1, te2}) with te1, te2 ∈ TE being causally linked task

expressions, say te1
φ−→ te2 ∈ CL, for which te2 ≺∗ te1 does hold. If an

identified establisher for a given precondition is ordered after the respective
consumer, no linearization will be executable. Like the previous flaw, this
one belongs to the area of classical planning.

7. (Threat, {tei
φ−→ tej , tek}) with tek 	≺∗ tei or tej 	≺∗ tek and there exists a

V C-compatible substitution σ such that σ(φ) ∈ σ(del(tek)) for positive liter-
als φ and σ(|φ|) ∈ σ(add(tek)) for negative literals. A classical planning flaw,
because tek will corrupt executability of at least some ground linearizations.

8. Temporal constraint inconsistencies belong to scheduling and occur if inter-
vals for time variables collapse or temporal distances become negative. The
flaw structure is either (TempInconsistency, {te}) with te ∈ TE being the
task expression for which startte or end te time point intervals have collapsed,
or it is (TempInconsistency, {te1, te2}) with te1, te2 ∈ TE being two task
expressions for which the temporal distance between associated variables be-
came negative. An overrun of the specified maximum makespan is covered
by the interval for start tegoal

.
9. (SymbolicOverAllocation, {v1, . . . , vn}) with v1, . . . , vn ∈ V being vari-

ables for which V C 	|= vi = vj , 1 ≤ i < j ≤ n and n exceeding the capacity
of any common (sub-) sort of the v1, . . . , vn (cf. potential allocations and
resource profiles discussed in [9]). It is a classical scheduling aspect of the
problem, that too many objects of one kind might be required at one point
in time.

It can be shown that the above flaw definitions are complete in the sense,
that for any given planning problem (d, T, M, sinit, sgoal) and plan P that is not
flawed, P is a solution to the problem.

We now define the refinement operators for the integrated system, some of
them origin in hybrid planning, some in scheduling.

Definition 2 (Plan Modifications). For a given partial plan P over a lan-
guage L, a set of primitive and complex task schemata T, and a set of decomposi-
tion methods M, a plan modification m is a pair (mod, E⊕ ∪ E�). “mod” denotes
the modification class, E⊕ and E� are sets of elementary additions and dele-
tions of plan components over L, P , T, and M. These two sets are assumed to be
disjoint and E⊕ ∪ E� 	= ∅.

The set of all plan modifications is denoted by M and grouped into subsets
Mmod for given classes mod. The application of a plan modification is charac-
terized by the generic plan transformation function app : M × P → P, which
takes a plan modification m = (mod, E⊕ ∪E�) and a plan P , and returns a plan
P ′ in which all elements of E⊕ have been added to and that of E� have been
removed from P .

In the integrated hybrid planning and scheduling approach, the following
classes of correct plan modifications are defined for manipulating a given
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partial plan P = (TE, ≺, V C, CL, TC) over a given language L and sets of
task schemata T and expansion methods M:

1. (InsertTask, {⊕te, ⊕(te
φ−→ te′), ⊕(v1 = τ1), . . . , ⊕(vk = τk)}) with te = l :

t(τ̄ ) 	∈ TE, t ∈ T, being a new task expression to be added, te′ ∈ TE, and
σ′(φ) ∈ σ′(add(te)) for positive literals φ, σ′(|φ|) ∈ σ′(del(te)) for negative
literals, and σ′(φ) ∈ σ′(prec(te′)) with σ′ being a V C′-compatible substitu-
tion for V C′ = V C ∪ {vi = τi|1 ≤ i ≤ k}.

We focus on symbolic resources, which cannot be “produced”. Adding a
new task is therefore only done for planning purposes.

2. (AddOrdConstraint, {⊕(tei ≺ tej)}) for tei, tej ∈ TE. This lies in the do-
main of planning as well as scheduling.

3. (AddVarConstraint, {⊕(v = τ)}) for codesignating variables v ∈ V with
terms τ ∈ V ∪ C and (AddVarConstraint, {⊕(v 	= τ)}) for a correspond-
ing non-codesignation. Cotyping and non-cotyping constraints are added
by (AddVarConstraint, {⊕(v∈̇Z)}) and (AddVarConstraint, {⊕(v ˙	∈Z)}) for
Z ∈ Z. Variable constraints are in the focus of plan generation as well as
scheduling methods.

4. (AddCausalLink, {⊕(tei
φ−→ tej), ⊕(v1 = τ1), . . . , ⊕(vk =τk)}), with tei, tej ∈

TE. The codesignations represent necessary variable substitutions, such that
after the modification execution, they induce a V C′-compatible substitution
σ′ for V C′ = V C ∪{(v1 = τ1), . . . , (vk = τk)} for which σ′(φ) ∈ σ′(add(tei))
for positive literals φ, σ′(|φ|) ∈ σ′(del(tei)) for negative literals, and σ′(φ) ∈
σ′(prec(tej)). This treatment of causal links is originated in classical partial
order planning.

5. Given an abstract task expression te = l : t(τ̄ ) in TE, t ∈ T and an expansion
method m = (t, (TEm, ≺m, V Em, CLm, TCm)) in M, the expansion of te is
defined as:

(Expansion, {�te} ∪ {⊕tem|tem ∈ TEm}∪
{⊕(tem1 ≺ tem2)|(tem1 ≺m tem2)}∪
{⊕(tem1

φ−→ tem2)|(tem1
φ−→ tem2) ∈ CLm}

{⊕(v = τ)|(v = τ) ∈ V Cm} ∪ {⊕(v 	= τ)|(v 	= τ) ∈ V Cm}∪
{�(te′ ≺ te), ⊕(te′ ≺ tem)|(te′ ≺ te), tem ∈ TEm}∪
{�(te ≺ te′), ⊕(tem ≺ te′)|(te ≺ te′), tem ∈ TEm}∪
{�(te

φ−→ te′), ⊕(tem
φ−→ te′)|(te φ−→ te′) ∈ CL,

tem ∈ TEm, |φ| ∈ add(tem) ∪ del(tem)}∪
{�(te′

φ−→ te), ⊕(te′
φ−→ tem)|(te′ φ−→ te) ∈ CL,

tem ∈ TEm, φ ∈ prec(tem)}∪
{⊕(dmin ≤ xj − xi ≤ dmax)|(dmin ≤ xj − xi ≤ dmax) ∈ TCm}

During an expansion the abstract task is replaced by the decomposition
network with all its sub-tasks being ordered between the predecessors and
successors of the abstract task and with all the causalities re-distributed
among the appropriate sub-tasks. If the causal links cannot be re-distributed
unambiguously, that means if there is more than one task in the expansion
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network that carries the respective precondition, one expansion modification
has to be generated for each such permutation. This modification is clearly
associated with (hierarchical) planning.

6. (AddTempConstraint, {⊕(dmin ≤ xj − xi ≤ dmax)} adds the specified bi-
nary distance constraint [dmin, dmax] between two temporal variables xi

and xj in TC. The handling of temporal constraints is in the focus of
scheduling. It is a refinement that is used to narrow the temporal dis-
tance interval between two time point variables xi and xj in TC. The
variant (AddTempConstraint, {⊕(d′min ≤ x ≤ d′max)} defines, respectively
contracts, the interval for a time point x.

These plan modifications are the canonical plan transformation generators in
a refinement-based planner: starting from an initial task network, the current
plan can be checked against the solution criterion, and while that is not met, all
refinements are applied. If no applicable modification exists, backtracking is per-
formed. In order to make the search more systematic and efficient, the algorithm
should focus on those modification steps which are appropriate to overcome the
deficiencies in the current plan. Based on the formal notions of plan modifica-
tions and flaws, a generic algorithm and planning strategies can be defined. A
strategy specifies how and which flaws in a partial plan are eliminated through
appropriate plan modification steps. We therefore need to define the conditions
under which a plan modification can in principle eliminate a given flaw.

Definition 3 (Appropriate Modifications). A class of plan modifications
Mm ⊆ M is appropriate for a class of flaws Ff ⊆ F iff there exist partial plans
P , which contain flaws f ∈ Ff , and modifications m ∈ Mm such that the refined
plans P ′ = app(m, P ) do not contain f.

The defined plan modifications perform a strict refinement, i.e., a subsequent
application of them does never result in the same plan twice; the plan develop-
ment is inherently a-cyclic. Given that, the same flaw cannot be re-introduced
once it has been eliminated. This qualifies the appropriateness relation as a valid
strategic advice for plan and schedule generation and motivates its use as the
following trigger function for plan modifications:

Definition 4 (Modification Triggering Function). Flaws in a partial plan
can be removed by triggering the application of suitable plan modification steps
according to the following function: α(Fx) =

MExpansion if Fx = FAbstractTask

MAddVarConstraint if Fx = FOpenVarBinding

MAddCausalLink ∪ MInsertTask ∪ MExpansion if Fx = FOpenPrecondition

MExpansion ∪ MAddOrdConstraint ∪ MAddVarConstraint if Fx = FThreat

MExpansion ∪ MAddVarConstraint if Fx = FSymbolicOverAllocation

∅ else

Modification class 7 is missing intentionally in this line-up: the manipulation of
temporal constraints, MAddTempConstraint, is not used “actively” or as a “point
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of choice” for this presentation, since temporal reasoning is only performed in
order to check for schedule executability. Their utilization for additional plan
inferences will be shown later.

We have to omit the appropriateness proofs for the above function due to
a lack of space, we would however like to sketch the arguments for two par-
ticular relationship expressed in α which displays the outstanding flexibility of
the unified hybrid planning and scheduling: a) Threats of causal links can not
only be addressed as usual by relocating the threatening task outside the scope
of the causal link or by decoupling variable constraints. If an abstract task is
involved in the threat situation, hybrid planning can alternatively make use of
task expansion for producing “overlapping” task networks that may offer less
strict promotion or demotion opportunities, since the causalities in the expan-
sion network are typically linked from and to several of the introduced sub-tasks.
As a side effect, the variable constraints of such a network may also rule out the
threat. b) The flaws and associated modifications reflect the interplay between
planning and scheduling aspects. E.g., in a plan with an abstract task, there are
n different symbolic resources allocated of a given sort Z ∈ Z. This implies a po-
tential need of n such objects for every sub-sort of Z – which are not available. An
expansion now concretizes a specific resource demand by co-typing constraints
in its implementing task network, thereby assigning some of the allocations to
one of the sub-sorts of Z, which lowers the need in other sub-sorts.

Ordering cycles FOrdInconsistency and variable FVarInconsistency and temporal in-
consistencies FTempInconsistency obviously cannot be resolved by our modifications
and do therefore not trigger any modification.

3 Integrated Hybrid Planning and Scheduling

It is an important property of this approach, that the trigger function allows to
completely separate the computation of flaws from that of modifications, and
in turn both computations to be independent from search issues. The system
architecture relies on this separation and exploits it in two ways: module invo-
cation and interplay are specified through α while reasoning about search can
be performed on the basis of flaws and modifications without taking their ac-
tual computation (or even their origin in the planning or scheduling field) into
account. The issued flaws can only be addressed by the assigned modification
generators; if none can solve the flaw, the system has to backtrack. Hence, we
can map flaw and modification classes directly onto groups of modules which are
responsible for their computation.

Definition 5 (Detection Modules). A detection module x is a function that,
given a partial plan P , returns all flaws of type x in P :

fdet
x : P → 2Fx

It may rank the flaws according to local priorities. E.g., fdet
OpenPrecondition prioritizes

its detections according to the number of literals in the tasks’ preconditions.
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Definition 6 (Modification Modules). A modification module y is a func-
tion which computes all plan modifications of type y that are appropriate for
given flaws:

fmod
y : P × 2Fx → 2My for My ⊆ α(Fx)

These modules also prioritize their answers by local preferences. Priorities for
modifications in MInsertTask correlate with the number of available task schemata
and implied variable constraints, for example. Scheduling related modules can
quantify their expected gain in plan quality or simply use their local cost esti-
mates, e.g. preferring variable co-typing modifications in the least allocated sort.

Definition 7 (Strategy Modules). A strategy module z is a function that
selects plan modifications for their application to the current plan, possibly taking
into account the detected flaws. It is defined by the projection

fstrat
z : P × 2F × 2M → M ∪ ε

Strategies discard a current plan P if any flaw remains un-addressed by the
associated modification modules, i.e., if for any fdet

x and fmod
y1

, . . . , fmod
yn

with
My1 ∪ . . . ∪ Myn = α(Fx):

⋃

1≤i≤n

fmod
yi

(P, fdet
x (P )) = ∅

A very important consequence of the last definition is, that planning and schedul-
ing flaws can force a backtracking at any time, in contrast to approaches where
a plan has to be fully developed before it can be checked by the scheduler, etc.

In order to keep the design as flexible as possible, it is necessary to provide
additional inference capabilities to the system, which may be shared by the
participating modules. For all inference tasks on the plan which are not subject
to choice, we define inference rules in the following way:

Definition 8 (Inference Modules). An inference module ρ is a function that
computes plan modifications of type ρ which represent necessary changes on the
plan to uncover implicit information:

f inf
ρ : P → 2Mρ

These inferences are used in hybrid planning to add ordering constraints be-
tween causally linked primitive tasks (cf. modification classes InsertTask and
AddCausalLink, which both do not add ordering constraints in order to main-
tain flexibility in the case of a later overlapping of abstract task expansions).
In the presented integrated hybrid planning and scheduling system, an AC-3
based constraint engine keeps the TCSP arc-B-consistent (cf. [14]), includes the
implicit constraints respectively narrows down intervals, and synchronizes tem-
poral and ordering constraints. This is done by the two specific inference modules
f inf
AddTempConstraint and f inf

AddOrdConstraint.
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The following generic algorithm implements a stepwise refinement of par-
tial plans by applying plan modifications according to detected deficiencies, i.e.,
flaws. It is used as the core component of any integrated planning and scheduling
system that is to be implemented within our architecture:

plan(P, T, M):
F ← ∅
for all fdet

x do
F ← F ∪ fdet

x (P )
if F = ∅ then

return P
M ← ∅
for all Fx = F ∩ Fx with Fx 	= ∅ do

answered ← false
for all fmod

y with My ⊆ α(Fx) do
M ′ ← fmod

y (P, Fx)
if M ′ 	= ∅ then

M ← M ∪ M ′

answered ← true
if answered = false then

return fail
return plan(infer(apply(P, fstrat

z (P, F, M))), T, M)

The procedure infer recursively calls all provided inference modules and
applies their modifications on the plan, until no further inferences are issued.

Please note, that the algorithm is formulated independently from the deployed
modules, since the options to address existing flaws by appropriate plan mod-
ifications is defined via α. The call of the strategy function z is of course the
backtracking point of the system.

4 Search Strategies

The translation of existing search strategies for hybrid planning revealed that
practically all of them are fixed in the sense, that they represent a preference
schema on the flaw type they want to get eliminated primarily and then select
appropriate modification methods. For example, it is very common to care for
the plan to become primitive first and then to deal with causal interactions. A
similar situation can be observed in integrated planning and scheduling systems,
where the typical process is first to generate a plan and then to verify whether
it can be scheduled or not. We propose the use of flexible strategies [11], which
are capable of operating on a more general level by exploiting flaw/modification
information: they are neither flaw-dependent as they do not primarily rely on
a flaw type preference schema, nor modification-dependent as their do not have
to be biased in favor of specific modification types. An example is the following
strategy in the least commitment fashion that has proven to be very effective in
the context of hybrid planning alone.
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Definition 9 (Least Committing First). Let f∈F be a flaw and m1, . . . , mn ∈
M a set of modifications that has been issued for the current plan. The commit-
ting level lc of such a flaw is defined as follows:

lc(f, {m1, . . . , mn}) =

⎧
⎨

⎩

0 for n = 0
1 + lc(f, {m1, . . . , mn−1}) for mn answering f
lc(f, {m1, . . . , mn−1}) otherwise

The Least Committing First strategy selects from the set of modifications those,
which deal with flaws that have a minimal lc value.

fstrat
LCF (P, F, M) = m ∈ {mf |f ∈ min(lc(f, M))

It can easily be seen, that this is a flexible strategy, since it does not depend on
the actual types of issued flaws and modifications: it just compares answer set
sizes in order to keep the branching in the search space low.

Moreimportantly,itisalsoopportunisticwithrespecttoplanningandscheduling,
since it selects whatever modification has the lowest commitment level; planning
and scheduling flaws and modifications will be addressed, respectively solved, in
an interleaving manner. In this way, a planning process guides the scheduling and
vice versa. And if one of the two formerly separate processes finds a reason to
discard the current plan, the system performs backtracking immediately.

5 Conclusions and Future Developments

We have presented a novel unifying framework and architecture for integrated
planning and scheduling systems. It relies on a formal account of hybrid planning
and scheduling, which allows to decouple flaw detection, modification computa-
tion, and search control. Problem solving capabilities – in this case HTN, POCL,
and scheduling – can easily be combined by orchestrating respective elementary
modules via an appropriate strategy module. In particular it can be configured
as a classical partial order planner, an HTN planner, a resource scheduler, or
any hybrid of these methods. The implemented system can be employed as a
platform to implement and evaluate various planning methods and strategies.
It can be easily extended to additional functionality, e.g. probabilistic reasoning
[15,16], without implying changes to the deployed modules – in particular flex-
ible strategy modules – and without jeopardizing system consistency through
interfering activity.

Future work includes experimental evaluation of search strategies, e.g., the
flexible HotSpot technology [11] as well as providing modification modules with
local optimization techniques.
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