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Abstract. Today, personalization in digital libraries and other infor-
mation systems occurs separately within each system that one interacts
with. However, there are several potential improvements w.r.t. such iso-
lated approaches. Investments of users in personalizing a system, either
through explicit provision of information, or through long and regular
use are not transferable to other systems. Moreover, users have little
or no control over the information that defines their profile, since user
profiles are deeply buried in personalization engines. Cross-system per-
sonalization, i.e. personalization that shares personalization information
across different systems in a usercentric way, overcomes the aforemen-
tioned problems. Information about users, which is originally scattered
across multiple systems, is combined to obtain maximum leverage. The
key idea is that when a large number of users cross over from one system
to another, carrying their user profiles with them, a mapping between
the user profiles of the two systems can be discovered. In this paper, we
discuss the use of manifold learning for the purpose of computing rec-
ommendations for a new user crossing over from one system to another.

1 Introduction

The World Wide Web provides access to a wealth of information and services to
a huge and heterogeneous user population on a global scale. One important and
successful design mechanism in dealing with this diversity of users is to person-
alize Web sites and services, i.e. to customize system contents, characteristics,
or appearance with respect to a specific user. The ultimate goal is to optimize
access to relevant information or products by tailoring search results, displays,
etc. to a user’s presumed interests and preferences. More specifically, this opti-
mization may aim at, for example, increasing the efficiency of system usage or
improving the quality and relevance of results. Given the huge and rapidly grow-
ing amount of data available online as well as an ever growing user population
that uses the World Wide Web, the relevance of personalized access is likely to
further increase in the future.

While most users will interact with different systems and sites on the Web,
personalization most often occurs separately within each system. Each system
independently builds up user profiles, for instance, by locally storing information
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about a user’s likes and dislikes, interests, and further characteristics, and may
then use this information to personalize the system’s content and service offering.
Such isolated approaches have two major drawbacks: Firstly, investments of users
in personalizing a system either through explicit provision of information or
through long and regular use are not transferable to other systems. Secondly,
users have little or no control over the information that defines their profile, since
user data are deeply buried in personalization engines running on the server side.

Cross system personalization [14] allows for sharing information across differ-
ent information systems in a user-centric way and can overcome the aforemen-
tioned problems. Information about users, which is originally scattered across
multiple systems, is combined to obtain maximum leverage and reuse of infor-
mation. Previous approaches to cross system personalization [15] rely on each
user having a unified profile which different systems can understand. The unified
profile will contain facets modeling aspects of a multidimensional user. The basis
of understanding in this approach is of a semantic nature, i.e. the semantics of
the facets and dimensions of the unified profile are known, so that the latter can
be aligned with the profiles maintained internally at a specific site. The main
challenge in this approach is to establish some common and globally accepted
vocabulary and to create a standard every system will comply with. Without
such a convention, the exact mapping between the unified user profile and the
system’s internal user profile would not be known.

Machine learning techniques provide a promising alternative to enable cross
system personalization without the need to rely on accepted semantic standards
or ontologies. The key idea is that one can try to learn dependencies between
profiles maintained within one system and profiles maintained within a second
system based on data provided by users who use both systems and who are
willing to share their profiles across systems – which we assume is in the interest
of the user. Here, instead of requiring a common semantic framework, it is only
required that a sufficient number of users cross between systems and that there
is enough regularity among users that one can learn within a user population, a
fact that is commonly exploited in social or collaborative filtering [20].

2 Automatic Cross System Personalization

For simplicity, we consider a two system scenario in which there are only two sites
or systems denoted by A and B that perform some sort of personalization and
maintain separate profiles of their users; generalization to an arbitrary number
of systems is relatively straightforward and is discussed later. We assume that
there is a certain number of c common users that are known to both systems.
For simplification, we assume that the user profiles for a user ui are stored as
vectors xi ∈ X ⊆ R

n and yi ∈ Y ⊆ R
m for systems A and B, respectively. Given

the profile xi of a user in system A, the objective is to find the profile yi of the
same user in system B, so formally we are looking to find a mapping

FAB : R
n → R

m, s.t. FAB(xi) ≈ yi (1)
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for users ui. Notice that if users exist for which profiles in both system are
known, i.e. a training set {(xi,yi) : i = 1, . . . , l}, then this amounts to a stan-
dard supervised learning problem. However, regression problems typically only
involve a single (real-valued) response variable, whereas here the function FAB

that needs to be learned is vector-valued. In fact, if profiles store say rating
information about products or items at a site, then the dimensionality of the
output can be significant (e.g. in the tens of thousands). Moreover, notice that
we expect the outputs to be highly correlated in such a case, a crucial fact that
is exploited by recommender systems. For computational reasons it is inefficient
and often impractical to learn independent regression functions for each profile
component. Moreover, ignoring inter-dependencies can seriously deteriorate the
prediction accucracy that is possible when taking such correlations into account.
Lastly, one also has to expect that a large fraction of users are only known to
one system (either A or B). This brings up the question of how to exploit data
without known correspondence in a principled manner, a problem generally re-
ferred to as semi-supervised learning. Notice that the situation is symmetric and
that unlabeled data may be available for both systems, i.e. sets of vectors xi

without corresponding yi and vice versa. In summary, we have three conceptual
requirements from a machine learning method:

– Perform vector-valued regression en bloc and not independently
– Exploit correlations between different output dimensions (or response vari-

ables)
– Utilize data without known correspondences

In addition, the nature of the envisioned application requires:

– Scalability of the method to large user populations and many systems/sites
– Capability to deal with missing and incomplete data

There are some recent learning methods that can be utilized for vector-valued
regression problem, but some of them do not fulfill the above requirements. Ker-
nel dependency estimation [21] (KDE) is a technique that performs kernel PCA
[19] on the output side and then learns independent regression functions from
inputs to the PCA-space. However, KDE can only deal with unlabeled data
on the output side and requires to solve computationally demanding pre-image
problems for prediction [1]. Another option is Gaussian process regression with
coupled outputs [12]. Here it is again difficult to take unlabeled data into account
while preserving the computational efficiency of the procedure. The same is true
for more traditional approaches like Multi-Layer-Perceptrons with multiple out-
puts. Instead of using regression methods, we thus propose the use of manifold
learning in this context. Manifold learning methods generalize linear dimension
reduction techniques that have already been used successfully in various ways
for collaborative filtering. Moreover, they are usually motivated in an unsuper-
vised setting that can typically be extended to semi-supervised learning in a
rather straightforward manner. More specifically, we propose to use the Lapla-
cian Eigenmaps [3] and Locally Linear Embedding (LLE)[18] approaches as our



Cross System Personalization and Collaborative Filtering 247

core method. LLE constructs a low-dimensional data representation for a given
set of data points by embedding the points in a way that preserves the local
(affine) geometry. Compared to other manifold learning and non-linear dimen-
sion reduction algorithms, such as Sammon’s MDS [16] or Isomap [6], the LLE
approach is computationally attractive and highly scalable, since it only relies on
distances within local neighborhoods. Moreover, as presented in [9], constrained
LLE (CLLE) can be utilized to learn mappings between two vector spaces by
semi-supervised alignment of manifolds. The former work also provides empir-
ical evidence that CLLE can outperfom standard regression methods. The key
idea is to embed user profiles from different systems in low-dimensional mani-
folds such that profiles known to be in correspondence (i.e. profiles of the same
user) are mapped to the same point. This means the manifolds will be aligned
at correspondence points. A more general version of CLLE has been derived in
[10], which takes the Laplacian Eigenmap approach [3] as the starting point. In
the next section, we will provide more detail on these methods.

3 Non Linear Dimensionality Reduction and Manifold
Alignment

3.1 Laplacian Eigenmaps

Suppose we are given l data points in S = {xi ∈ R
n: i = 1, . . . , l}. When the data

lie approximately on a low-dimensional manifold embedded in the n-dimesional
Euclidean space, manifold learning methods such as Laplacian Eigenmaps [3],
Hessian Eigenmaps [7], Isomap [6] or locally linear embeddings [18] can be used
to recover the manifold from a sample S. We pursue the Laplacian Eigenmap
approach, which has been used sucessfully in semi-supervised learning [10] and
for which rigorous convergence results exists in the large sample limit [11].

The starting point in Laplacian Eigenmaps is the construction of a weighted
graph whose nodes are the sample points and whose edges connect the nearest
neighbors of each node. Neighborhoods may consist of the k-nearest neighbors
of a sample point or the set of all points that are within an ε-ball. We write
i ∼ j as a shorthand for sample points xi and xj that are neighbors. The
weights Wij between neighbors are usually assumed to be non-negative and
symmetric, Wij = Wji ≥ 0 and are summarized in an affinity matrix W. There
are several alternatives on how to define these weights when starting from a
vector-valued representation over R

n, one popular choice being the Gaussian
kernel,

Wij ≡ exp
[
−β‖xi − xj‖2] , (2)

where β > 0 is a suitably chosen bandwidth parameter. Another choice is to com-
pute weights based on a local affine approximation over neighbors, as discussed
in the following subsection on LLE.
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The heart of the Laplacian Eigenmap approach is the generalized graph Lapla-
cian L defined as,

L = (Lij)n
i,j=1, Lij =

⎧
⎪⎨

⎪⎩

∑
j∼i Wij , if i = j

−Wij , if i ∼ j

0, otherwise .

(3)

An Laplacian Eigenmap is a function f : S → R for which Lf = λf and
‖f‖2 = 1, where we think of f as a vector of function values for convenience.
Moreover, in order to remove the trivial solution with λ = 0 one can add the
constraints (1, . . . , 1)f =

∑l
i=1 fi = 0. It can be shown that the eigenmap cor-

responding to the smallest eigenvalue λ > 0 minimizes the criterion

fT Lf =
∑

i,j

Wij(fi − fj)2 . (4)

The eigenmaps corresponding to the d smallest eigenvalues span a d-dimensional
coordinate system on the low-dimensional data manifold.

In the case of semi-supervised learning one may utilize fT Lf as a regularizer
and combine it with supervised information about target values ti that may
be available at some subset S′ ⊆ S of the nodes of the graph to define the
regularized solution (cf. [2])

f∗ = arg min
f

∑

xi∈S′

(fi − ti)2 + λfT Lf . (5)

3.2 Aligned Manifold Learning

Consider now the case where two sets of points are given Sx ≡ {xi ∈ R
n : i =

1, . . . , lx} and Sy ≡ {yj ∈ R
m : i = 1, . . . , ly} where we assume without loss of

generality that the first l ≤ min{lx, ly} points are in correspondence. In the case
of cross system personalization, xi will denote a user profile in system A, yj will
denote a user profile in system B and xi ↔ yi for users ui, i = 1, . . . , l, who
are known in both systems. We will separately construct graphs Gx on Sx and
Gy on Sy in order to find low-dimensional embeddings of the points in Sx and
Sy, respectively. In addition, we will follow the approach in [10] and utilize the
correspondence information to enforce that embeddings of user profiles for the
same user are close to one another. To that extend we compute a simultaneous
embedding f of Sx and g of Sy by minimizing the objective

C(f, g) =
l∑

i=1

(fi − gi)2 + λ
(
fT Lxf + gT Lyg .

)
(6)

More specifically, in order to deal with simultaneous re-scaling of f and g, one
minimizes the Rayleigh quotient

C̃(f, g) =
C(f, g)

fT f + gT g
. (7)
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Fig. 1. Aligned 2D manifolds for two subsets of MovieLens dataset. The vertical lines
show the points which are in correspondance.

By defining the combined graph G ≡ Gx ∪ Gy with Laplacian L and combined
functions h = (fT , gT )T the above objective can be rewritten as

C̃(h) =
hT Hh

hT h
, where H ≡ λL +

(
Unn Unm

Umn Umm

)
(8)

and Unm ∈ R
n×m is diagonal with Unm

ii = 1 for 1 ≤ i ≤ l and 0 otherwise.
Again, a solution is obtained as before by finding the eigenvectors of the matrix
L.

One can also enforce the embeddings of points in correspondence to be the
same on both manifolds [10]. In this case, one identifies the first l points in Sx and
Sy, resulting in a combined graph G with lx+ly−l nodes with a combined weight
matrix. Notice that weights between pairs of nodes with indices 1 ≤ i, j ≤ l are
simply given by the sum of the weights from Gx and Gy. Introducing functions
h one then minimizes

C̃(h) =
hT Lh

hT h
, s.t.

∑

i

hi = 0 . (9)

3.3 Locally Linear Embedding

One way to define the weights Wij for neighboring nodes in the graph is to
compute them based on a local affine approximation. This idea has originally
presented in the context of the Locally Linear Embedding (LLE) method [18].
Its use as a preprocessing step in conjunction with Laplacian Eigenmaps has
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been proposed in [10]. For a sample of l data points S = {xi ∈ R
n: i = 1, . . . , l},

LLE proceeds as follows:

– For each data point xi, compute the k nearest neighbors in S which are
closest to xi in Euclidean distance.

– Compute for each xi the optimal approximation weights for an affine lo-
cal regression over the neighbors. This is equivalent to approximating the
nonlinear manifold at xi by the linear hyperplane that passes through the
neighboring points. This step of the algorithm amounts to solving a quadratic
optimization problem:

W ∗
ij = arg min

W
|xi −

∑

j∼i

Wijxj |2 , s.t.
∑

j

Wij = 1 , (10)

where j ∼ i indicates that xj is a neighbor of xi (notice that the relation is
in general not symmetric).

– Finally, a low-dimensional representation x̂i is computed by solving the min-
imization problem

X̂∗ = argmin
X̂

∑

i

‖x̂i −
∑

j∼i

Wij x̂j‖2 (11)

This can be shown to be equivalent to an eigenvector decomposition problem
involving the matrix

M = (I − W ∗)T (I − W ∗) (12)

where I is the l × l identity matrix. The bottom d + 1 eigenvectors of M
(excluding the smallest, which is 1) form a co-ordinate system for the low
dimensional data manifold.

While the LLE algorithm can be used in its own right for manifold learning, we
have employed it here to compute the affinity matrix for the Laplacian Eigenmap
method. Note that the matrix L∗ = I − W ∗ corresponds to the graph Laplacian
L (defined in eq. 3) for a graph with

∑
j Wij = 1 for all graph nodes. Also note

that the graph Laplacian thus formed is not symmetric and the weights can be
negative. Multiplying L∗ with its transpose gives a symmetric matrix M . [3]
explains that under some conditions, the matrix M is approximately the same
as L2, which has the same eigenvectors as L. It has been shown in [10] that the
matrix M can be substituted for the graph Laplacian L in the aligned manifold
method.

3.4 Reconstructing Points from Alignments

The remaining problem we would like to discuss is how to map a point on the
low-dimensional manifold back into the original data space. This is particularly
relevant in the context of manifold alignment, where one ultimately may want
to realize a mapping from R

n → R
m. After mapping a point x ∈ R

n to a k-
dimensional representation x̂, we would thus like to compute an approximation
y ∈ R

m by finding a pre-image to ŷ and identifying ŷ = F (x̂). The next section
explains the method used to compute the pre-images.
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4 The Manifold Alignment Collaborative Filtering
Algorithm

Manifold alignment using non-linear dimensionality reduction has the promise of
a fast and effective supervised learning technique for the correspondence prob-
lem. It has been reported that dimensionality reduction techniques are effective
for k-NN algorithms used typically for collaborative filtering[17]. Non Linear
dimensionality Reduction (NLDR) techniques in turn have performed better
than linear dimensionality reduction techniques like Factor Analysis and PCA[9].
Therefore we expect manifold alignment for the purposes of cross system per-
sonalization to be an effective approach. The algorithm essentially works as a
k-NN algorithm as well. After projecting the user profile vectors from two (or
more) systems on a low dimension manifold, we are able to find nearest neighbors
based on distance measures like Euclidean distance. The additional constraint
of aligning profiles belonging to the same user aligns the two submanifolds and
helps in finding more effective neighborhoods. Our algorithm has 4 steps, the
first 3 of which form the manifold projection phase ( see Algorithm 1 ), and the
last step does the pre image computation and is outlined in Algorithm 2. Our
algorithm assumes two datasets X and Y of sizes nX and nY with c common
users and is as follows:

1. Neighborhood identification: For each point xi ∈ X , we find the k-
nearest neighbors. NLDR techniques usually use Euclidean distance to iden-
tify the nearest points. In our setting, data is sparse, therefore Euclidean
distance on pure data is not neccesarily effective unless missing data is im-
puted. Options here include mean imputation (with item mean), measuring
distance only on commonly-voted items, or using a distance based on a sim-
ilarity measure like Pearson’s correlation coefficient. This procedure also has
to be repeated for yi ∈ Y. Note that choosing exactly k-nearest neighbors
for every node may result in a graph Laplacian thats not symmetric. Using
LLE, one selects exactly k neighbors, while for the Laplacian one does not
impose this constraint. As a result, the neighborhood of some points in the
Laplacian Eigenmaps method can be much larger than k. This usually shows
the importance of a node and is similar to the notion of authority nodes in
the HITS algorithm[13].

2. Calculate Affinity Matrix: After the k nearest neighbors have been identi-
fied for every point, an affinity weight with every neighbor has to be
computed.Optionshere includeanaffinedecomposition (like inLLE), an expo-
nential weight (aka the heat kernel used in Laplacian Eigenmaps) based either
on euclidean distance or on a similarity measure like Pearson’s correlation.

Wij = exp
[
−β‖xi − xj‖2] or (13)

Wij = exp [−β‖1 − correlation(xi,xj)‖] or (14)
Wij = 1 or (15)

Wij = argmin
W

|xi −
∑

j∼i

W ∗
ijxj |2 , s.t.

∑

j

W ∗
ij = 1 (16)
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Algorithm 1. ComputeManifold-NLDR (X , Y, c, k, d)
Input: Matrices X , Y with the first c columns aligned. k is the number of neighbors,

d is the dimensionality of the manifold.

1: Impute missing values with mean item votes respectively for X and Y to get
Xnorm, Ynorm.

2: Calculate adjacency matrices AX , AY for graphs representing Xnorm, Ynorm by
choosing k-nearest neighbors for every xi ∈ X , yi ∈ Y.

AX (i, j) =

{
1, if i ∼ j

0, otherwise .

3: Compute reconstruction weights WX , WY .
4: Compute the graph Laplacians LX ,LY from the Weight Matrices as defined in

equation 3. For constrained LLE, use L∗
X = (I − WX )T (I − WX ), etc.

5: Compute LXY =

⎡

⎣
Lcc

X + Lcc
Y Lcs

X Lcs
Y

Lsc
X Lss

X 0
Lsc

Y 0 Lss
Y

⎤

⎦

c represents the points in alignment, while s represents the single points.
6: Find the low dimensional manifold H for the matrix LXY . H has a dimensionality

of (nX + nY − c) × d.

Output: Low dimensional manifold H

In our experiments, we use the similarity measures defined in eq. 14. Finally,
the Laplacians LX ,LY of the graphs characterized by affinity matrices for
X and Y are computed.

3. Compute points onmanifold:This is usually done by solving an eigenvalue
problem, and finding the eigenvectors of the LaplacianL (orL∗ in case of LLE).
For points in alignment, a modified eigenvalue problem has to be solved: A joint
graph of the two datasets is formed and the eigenvectors of this Laplacian ma-
trix LXY are computed (see eq. 8). The only parameter here is the dimension-
ality of the manifold (the number of eigenvectors that are chosen).

4. Compute preimages for points not in correspondence: In this step,
neighborhoods for points not in correspondence are formed in a manner
similar to the first step. The normal method to follow here is to do find
the nearest neighbors ( based on Euclidean distance) and compute a weight
distribution over this neighborhood. We do this in the following manner:
For a point xi ∈ X with i > c and manifold coordinates x̂i we first iden-
tify a set of k nearest neighbors ŷr on the manifold among the points that
are images of points in Y, resulting in some set of image/pre-image pairs
{(yr, ŷr)}. We then compute the optimal affine combination weights wr that
optimally reconstruct x̂i ≈

∑
r wrŷr. Then the pre-image prediction is given

by F (xi) =
∑

r wryr. Similarly, we can compute an inverse map by exchang-
ing the role of the xi and yj . Notice that one can also generalize this for
arbitrary new samples x ∈ R

n by generalizing the manifold mapping x → x̂
to new points, which can be done along the lines presented in [4].
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Algorithm 2. ComputePreimage (H, c, nX , nY , k, Xnorm, Ynorm, nX , nY)
Input: Matrix H of length (nX + nY − c) representing the aligned manifold with c

points overlapping between manifolds of X and Y. k is the number of neighbors.
HM has the first c points representing the overlapping users. The next nX − c
points represents single points of X and the last nY − c points represent the single
points of Y. H(i) denotes the ith d-dimensional point on the manifold.

1: Extract submanifold HY by combining the first c and the last nY − c points of H.
2: for i = (c + 1) to (nX ) do
3: x̂i ← H(i)
4: Compute the k nearest neighbors ŷr of x̂i on the sub-manifold HY . Let yr

represent the preimage of ŷr in Ynorm.
5: Compute affine weights W∗ = (wr)k

r=1 for the neighborhood.
6: Compute Preimage prediction F (x̂i) =

∑
r wryr.

7: X̂s(i − c) = F (x̂i)
8: end for
9: Repeat above procedure by exchanging X and Y to compute preimages for single

points of Y.

Output: Preimages X̂s, Ŷs

5 Evaluation

The manifold algorithm seeks to predict the ratings of a user who has not rated
even a single item on the current system so far. In this scenario, truly nothing
is known about the active user. The best rating prediction that a system can
provide is the popularity vote based on the mean votes of every item. The items
with the highest mean votes are then recommended to the user. Our algorithm
seeks to do better than this non-personalized recommendation. On the other
extreme, given all the data for both systems, the best possible rate prediction
could be calculated if all the data was known to one system. In this scenario,
a SVD or Pearson’s correlation based algorithm could compute the predictions
(which serve as the gold standard for us). In order to be useful, our algorithm
should perform better than predictions from the popularity vote and perform as
close as possible to the gold standard.

5.1 Dataset and Evaluation Scheme

We chose the Movielens1 data with 100,000 votes for the purposes of our evalu-
ation. This data set consists of rates in 1682 items by 944 different users. This
data is quite sparse (∼ 6%) as is typically for user ratings. We split the data
into two subsets X and Y by spiliting the movie ratings for all users ( e.g. two
matrices 840 × 944 and 842 × 944). In principle the overlap between datasets
can be varied anging from no overlap to all items overlapping. While in the
earlier case, the movie ratings are effectivly spilt into half, the complete data is
1 http://www.grouplens.org/
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available to both systems in the second case. However, in real world scenarios,
item overlaps are very small. Therefore we chose a random 5% from the item-
set as an overlap. The other free parameter is the number of users set to be in
correspondence, which we vary from 0 to 800. The last 144 users form the test
set for our evaluations. We randomly choose the test set and the item set for
every run of the algorithm. Individual NLDR methods(LLE and Laplacian) have
other parameters which need to be varied in order to judge their effect. There
parameters are (a) the dimensionality of the manifold, (b) the size of the neigh-
borhood for the adjacency matrix, and (c) the size of the neighborhood for the
user profile reconstruction. Additionally, the Laplacian Eigenmap method has
a free parameter β which can take any real value. In our experiments, we have
varied the parameter and present the results for the optimized values. Further
increases in neighborhood sizes offers some advantage, but at a much increased
computational cost. We have chosen these values: k = 36, d = 6, and size of
neighborhood on the manifold k1 = 55. In addition, we choose different values
of β, namely 0, 0.4 and 4.

Evaluation Metrics

1. Mean Average Error = 1
m |pv − av|, where pv is the predicted vote and av

is the actual vote. The average is taken only over known values (assume the
active user has provided m votes).

2. Ranking score of top-20 items. Rscore = 100 ∗ (
∑

R/
∑

Rmax). This metric
gives a value between 0 and 100 and was proposed in [5]. Higher values
indicate a better ranking with top items as the most highly rated ones. We
measure this metric only over known ratings. One big advantage of this
metric is that it gives the same score for permutations of items with the
same score. Thus if a user has rated 6 items with the maximum score 5, then
the Rscore is the same for any permutation of the ranking. This removes the
problem of breaking ties.

6 Discussion

The results of the evaluation are encouraging. A simple NLDR to a manifold
even with any explicit alignment of user profiles performs better than popular
voting. Expectedly, the predicted votes become more accurate as more users
cross over and their profiles are aligned. While the predictions are not as good
as the gold standard even in the case of complete overlap according to the MAE,
the algorithm provides a 4-5% improvement over the baseline after ∼ 35% user
profiles have been aligned. For collaborative filtering, this is not an insignifi-
cant improvement: the gold standard is only 12.6% better than the baseline.
Experimental results also show that the top-N recommendation using manifold
alignment is a significantly higher quality than the baseline. In case of complete
overlap, Laplacian Eigenmap based manifold aligment can provide a top − 20
ranked list which is more relavant than the gold standard. The results presented
here are obtained after a 10−fold validation; in some cases, the algorithm was
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Fig. 2. Precision for the different NLDR methods within the manifold alignment frame-
work. Numbers plotted are after 10-fold validation and averaging.

able to outperform the gold standard for MAE as well. One possible reason for
the lower performance is the small size of data which is very sparse. With more
training data, we expect to find more neighbors for every user which have votes
for many items. Due to the sparsity of data, the majority of the normalized
user database consists of mean. Therefore, the reconstructed values are heavily
weighted towards the mean votes, especially for items that are note frequently
rated. Previous research [8] has shown that learning from incomplete data of-
fers significant advantage over strategies like mean imputation. Given that our
approach works better than popularity votes even with a heavy bias towards
mean values, algorithmic enhancements which offer a probablistic interpretation
to manifold alignment are likely to be more accurate and form our future work.

6.1 Implementation and Performance

The manifold algorithm outlined in this paper has been implemented using Mat-
lab R14 on a Pentium 4 based Desktop PC. Standard Matlab routines have been
used and sparse matrices are used wherever possible. For the smaller MovieLens
data with 100,000 rates, the algorithm uses around 100 MB of RAM. It performs
reasonably w.r.t. to time as well. Each run of the Algorithm 1 followed by Algo-
rithm 2 runs in approximately 5 seconds using Laplacian Eigenmaps. The LLE
algorithm runs slower (70 seconds) since a quadratic program has to be solved
for every point. The memory requirements of the LLE algorithm are also higher.
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Fig. 3. Precision for the different NLDR methods within the manifold alignment frame-
work. Numbers plotted are after 10-fold validation and averaging.

6.2 Computation Complexity

The Laplacian Eigenmap method clearly offers computational advantages over
the LLE method. The LLE method has 3 basic steps: a) find nearest neighbors,
b) compute reconstruction weights, and c) find eigenvalues and eigenvectors. For
two datasets of sizes mX ×nX and mX ×nX with c common points, the size of the
common graph is nX +nY −c nodes. The complexity of the LLE method for a ma-
trix with n points each of dimensionality m is thus O(mn)+O(dnk3)+O(dn2) ≡
O(dn(n+k3)). The Laplacian Eigenmap method essentially skips the second step,
and hence has a complexity of O(dn2). Therefore the overall complexity of Algo-
rithm 1 (without the reconstruction of user profiles) is O(dn(n + k3)) where n =
nX + nY − c. For our experiments, k typically had a value between 24 − 48, while
n was around 1000. In this range, k3 was 1-2 orders of magnitude higher than n,
thus explaining the difference between the running times of LLE and LapE based
NLDR. Note however that this entire alignment computation can be performed off
line. For a new user, out of sample extensions for LLE and Laplacian Eigenmaps[4]
can be used. These typically have a computational complexity of O(m)+O(dk3).
Importantly, the neighborhood formation step can be reused in the second part of
the algorithm where user profiles have to be reconstructed.

The reconstruction of a user profile(Algorithm 2 ) involves (a) neighborhood for-
mation (b) finding reconstruction weights, and (c) combining neighbor votes. The
complexity reconstructing the profile for one user therefore is O(dn) + O(dk3) +
O(mk). The significant term here depends on the values of the parameters: for a
large neighborhood, the second term dominates. However if the number of items
is very large (say a million), then the last term is the most significant one.



Cross System Personalization and Collaborative Filtering 257

6.3 Usefulness in Practical Scenarios

With a variety of systems using personalization engines, there is a lot of data
being collected about users as they go about their day to day pursuits. Combining
this data from various sources in a secure and transparent way can significantly
improve the level of personalization that electronic systems currently provide.
In this scenario, creating an approach which makes very few assumptions about
systems and users is of paramount importance. While our algorithm has been
demonstrated in a collaborative filtering setting, there is no binding to use only
rating data. The profiles of a content based system can be just as easily plugged
in, as can be a profile from a hybrid system. Importantly, we also hypothesize
that user profiles should be stored on the user’s side in Context Passport which
can leverage data about the user available with multiple systems. We envision
that even data from operating systems and email clients can be plugged into the
Context Passport. Our approach makes all of this possible in principle. However,
the absence of relevant data, where user profiles of the same users at multiple
sites are available, makes it difficult to evaluate the effectiveness of our algorithm
in a real life setting. Our attempts are on to collect such a dataset in a scientific
conference setting.

While our currently implementation performs all calculations in an online
fashion, it is possible to implement the learning phase and the actual user pro-
file reconstruction as separate phases. In a practical environment, the alignment
learning would be performed off line and a new user will approach a new system
with dimensionally reduced profile. This profile will then be projected on to the
manifold using out-of-sample extensions, and reconstruction of the user profile
can be done performed in real time. In case the item space is huge, the recon-
struction phase can be performed online only on a sample set of item extracted
from the entire item space. The entire profile can then be reconstructed offline.

6.4 Privacy

One important aspect of cross system personalization is privacy. People and
companies alike are likely to have reservations against sharing their data with
our systems. Users fear the loss of their anonymity, while companies fear a loss of
their competitive edge. With our method, the important thing is to discover the
underlying social similarity between people and not their exact buying/rating
patterns. A less accurate, but more secure (w.r.t privacy) approach could start
with a dimensionally reduced user database from say 1 million items to 1000
dimensions. Also the complete user database does not need to be known: a
random selection of a sufficient number of users might be sufficient to learn the
mapping from one system to another.

6.5 Scaling to a n−System Scenario

The manifold alignment algorithm needs only a minor modification in case some
users are common to all n systems. This modification in in the step where a joint
graph G is formed. The low dimensional embedding of this graph will have all the
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submanifolds aligned. More fined tuned modifications are required in case the
set of overlapping users is different between different users. Manifold alignment
in n−system scenario is successful only if a small fraction of users need to cross
from one system to another. In order to test this scenario, larger datasets are
needed.

7 Conclusions and Future Work

This paper outlines a novel approach to leverage user data distributed across var-
ious electronic systems to provide a better personalization experience. One major
benefit of this approach is dealing with the new user problem: A new user of a
collaborative filtering system can usually be provided only the non-personalized
recommendation based on popular items. Our approach allows system to make
a better prediction using the user’s profile in other systems. The contribution
of this paper is in describing an algorithm which offers a satisfactory improve-
ment over status quo for a potentially important application scenario. Future
work includes developing a practical framework around the manifold alignment
algorithm. Also, there is a potential for improvement in performance both from
an algorithmic and methodological point of view.
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