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Abstract. This paper contains a brief overview of the ‘Geo-Temporal’
specification language GeTS. The objects which can be described and
manipulated with this language are time points, crisp and fuzzy time
intervals and labeled partitionings of the time axis. The partitionings are
used to represent periodic temporal notions like months, semesters etc.
and also whole calendar systems. GeTS is essentially a typed functional
language with a few imperative constructs and many built-ins. GeTS can
be used to specify and compute with many different kinds of temporal
notions, from simple arithmetic operations on time points up to complex
fuzzy relations between fuzzy time intervals. A parser, a compiler and
an abstract machine for GeTS is implemented.

1 Motivation and Introduction

The phenomenon of time has many different facets which are investigated by
different communities. Physicists investigate the flow of time and its relation
to physical objects and events. Temporal logicians develop abstract models of
time where only the aspects of time are formalized which are sufficient to model
the behaviour of computer programs and similar processes. Linguists develop
models of time which can be used as semantics of temporal expressions in nat-
ural language. More and more information about facts and events in the real
world is stored in computers, and many of them are annotated with temporal
information. Therefore it became necessary to develop computer models of the
use of time on our planet, which are sophisticated enough to allow the kind of
computation and reasoning that humans can do. Examples are ‘calendrical calcu-
lations’ [7], i.e. formal encodings of calendar systems for mapping dates between
different calendar systems. Other models of time have been developed in the
temporal database community [5], mainly for dealing with temporal information
in databases. This work is becoming more important now with the emergence of
the Semantic Web [2]. Informal, semi-formal and formal temporal notions occur
frequently in semistructured documents, and need to be ‘understood’ by query
and transformation mechanisms.

The formalisms developed so far approximate the real use of time on our planet
to a certain extent, but still ignore important aspects. In the CTTN–project
(‘Computational Treatment of Temporal Notions’) [16] we aim at a very detailed
modeling of the temporal notions which can occur in semi-structured data. The
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CTTN–system consists of a kernel and several modules around the kernel. The
kernel itself consists of several layers. At the bottom layer there are a number
of basic data types for elementary temporal notions. These are time points,
crisp and fuzzy time intervals [20] and partitionings for representing periodical
temporal notions like years, months, semesters etc. [22]. The partitionings can
be specified algorithmically or algebraically. The algorithmic specifications allow
one to encode phenomena like leap seconds, daylight savings time regulations,
the Easter date, which depends on the moon cycle etc.

Partitionings can be arranged to form ‘durations’, e.g. ‘2 year + 1 month’,
but also ‘2 semester + 1 month’, where semester is a user defined partitioning.

Sets of partitionings, together with certain procedures, form a calendar. The
Gregorian calendar in particular can be formalized with the partitionings for
years, months, weeks, days, hours, minutes and seconds.

A part of the second layer is presented in this paper. It uses the functions
and relations of the first layer as building blocks in the specification language
GeTS (‘GeoTemporal Specifications’1) for specifying complex temporal notions.
A very first version of this language has been presented in [17,18], but the new
version has more than 20 times as many constructs and features than the old
one. It is essentially a functional programming language with certain additional
constructs for this application area. A flex/bison type parser and an abstract
machine for GeTS has been implemented as part of the CTTN–system. GeTS
is the first specification and programming language with such a rich variety of
built-in data structures and functions for geo-temporal notions. The details of
the language can be found in the technical report [21]. The third layer contains
interfaces to GeTS and the other modules of the system. The standard interface
is socket based. There are experimental RMI, SOAP and CORBA interfaces [1].

2 Basic Data Structures in CTTN and GeTS

2.1 Time Points and Time Intervals

The flow of time underlying most calendar systems corresponds to a time axis
which is isomorphic to the real numbers R. Therefore we take as time points
just real numbers. Since the most precise clocks developed so far, atomic clocks,
measure the time in discrete units, it is sufficient to restrict the representation
of concrete time points to integers. In the standard setting these integers count
the seconds from the Unix epoch, which is January 1st 1970. Nothing significant
changes in GeTS, however, if the meaning of these integers is changed to count,
for example, femtoseconds from the year 1.

The next important datatype is that of time intervals. Time intervals can be
crisp or fuzzy [27,8]. With fuzzy intervals one can encode notions like ‘around

1 The prefix ‘geo’ in the word geo-temporal was chosen to distinguish it from tempo-
ral logics in the usual understanding. ‘geo, i.e. ‘earth’, emphasizes that it is about
temporal notions as used on our planet. There is a close analogy to the area of
‘geo-spatial’ in contrast to ‘spatial’ representation and reasoning.
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noon’ or ‘late night’ etc. This is more general and more flexible than crisp inter-
vals. Therefore the CTTN–system uses fuzzy intervals as basic interval datatype.

�

�

R
0

1

Party Time
6pm 7pm 10pm 12pm 2am 3am

This set may represent a particular party time, where the first guests arrive at
6 pm. At 7 pm all guests are there. Half of them disappear between 10 and 12
pm (because they go to the pub next door to watch an important soccer game).
Between 12 pm and 2 am all of them are back. At 2 am the first ones go home,
and finally at 3 am all are gone. The fuzzy value indicates in this case the number
of people at the party.

The CTTN–system has an extensive implementation of fuzzy time intervals
with a rich application programming interface [20].

2.2 Partitionings

The CTTN–system uses the concept of partitionings of the real numbers to
model periodical temporal notions. In particular, the basic time units years,
months etc. are realized as partitionings. Other periodical temporal notions, for
example semesters, school holidays, sunsets and sunrises etc. can also be modeled
as partitionings.

Partitionings of the time axis are infinite mathematical structures. Therefore
they must be represented on a computer in a more indirect way. We distinguish
three aspects of partitionings of the time axis:

1. the mathematical structure. It serves as the semantics for the more concrete
descriptions of these objects;

2. the specification of concrete partitionings. There are different ways to specify
them. Each type of specification comes with a mathematical structure that
has also a serialized text form which can be stored in files;

3. the implementation. There is a common interface for all types of partition-
ings, such that the algorithms working with these partitionings are indepen-
dent of the specification type. The methods of the partitioning application
interface (API) are automatically compilable from the specification.

Different types of specifications for partitionings and a common API for all of
them is implemented in the PartLib library [22]. The first type of partitionings
are called ‘algorithmic partitionings’. They are characterized by implementing
an isomorphism to integers directly. All the standard periodic temporal notions,
years, months, weeks etc., but also Easter time, sun rises, tides etc. are of this
type. The implementation can in particular take into account all the nasty and
irregular features of real calendar systems, leap years, leap seconds, daylight
savings time, time zones etc.
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Another type of specification are called ‘duration partitionings’. They are
specified by giving an anchor date and a list of durations. For example, one can
specify semesters in this way. The anchor date could be first of October 2000.
The durations could be ‘6 months’ (for the winter semester) and ‘6 months’
(for the summer semester). A further type are ‘date partitionings’, which are
specified by concrete dates. An example could be the seasons. 2000/3/21 spring
2000/6/21 summer 2000/9/23 autumn 2000/12/21 winter 2001/3/21 specifies
the seasons for one year. An extrapolation mechanism extrapolates them to the
infinity. In principle, all partitionings are infinite, but there is a mechanism for
constraining a ‘validity region’. This way one can express, for example, ‘I have
this meeting every Monday 9:00-10:00 for the next 15 weeks’.

The next version of the PartLib library will contain ‘tree partitionings’ [23].
A bus timetable, for example, can be specified as a tree partitioning: ’(in very
winter, in every week, (in day 0-4, hour 5, minute 20, bus B1, hour 6, minute 20
bus B2 ...), (in day 5-6, hour 8, minute 20 bus B1, ...)), (in every spring ...)...

Partitions can be labeled. The labels are names for the partitions. They can
be used for two purposes. The first purpose is to get access to the partitions via
their names (labels). For example, the labels for the ‘day’ partitioning can be
‘Monday’, ‘Tuesday’ etc., and one can use these names in various GeTS functions.
The second purpose is to use the labels to group partitions together to so called
granules. The concept of ‘working day’, for example, can be modeled by taking
an ‘hour’ partitioning, and attached labels ‘working hour’ and ‘gap’ to the hour
partitions. Groups of hour partitions labeled ‘working hour’ yield a working day.
The working days can be interrupted by ‘gap’ partitions, for example to take
‘lunch time’ out of a ‘working day’. A group of partitions with the same label,
possibly interrupted by ‘gap’–partitions, is a granule.

Remark 1 (Calendar Systems). A calendar in the CTTN–system is a set of
partitionings, for example the partitionings for seconds, minutes, hours, weeks,
months and years, together with some extra data and methods. Calendars are
not visible in the GeTS language because they are only special cases of sets of
partitionings. Some GeTS constructs use partitionings which can not only be
the partitionings of calendar systems, but any kind of partitioning. This is more
general than sticking to particular calendar systems.

2.3 Durations

The partitionings are the mathematical model of periodic time units, such as
years, months etc. This offers the possibility to define durations. A duration
may, for example, be ‘3 months + 2 weeks’. Months and weeks are represented as
partitionings, and 3 and 2 denote the number of partitions in these partitionings.
The numbers need not be integers, but they can be arbitrary real numbers.

A duration can be interpreted as the length of an interval. In this case the
numbers should not be negative. A duration, however, can also be interpreted
as a time shift. In this interpretation negative numbers make perfect sense.
d = −2 week + 3 month, for example, denotes a backward shift of 2 weeks
followed by a forward shift of 3 months.
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3 The GeTS Language

The design of the GeTS language was influenced by the following considerations:

– Although the GeTS language has many features of a functional programming
language, it is not intended as a general purpose programming language. It
is a specification language for temporal notions, however, with a concrete
operational semantics.

– The parser, compiler, and in particular the underlying GeTS abstract ma-
chine are not standalone systems. They must be embedded into a host system
which provides the data structures and algorithms for time intervals, par-
titionings etc., and which serves as the interface to the application. This
excludes using an existing functional language like SML or Haskell.

– The language should be simple, intuitive, and easy to use. It should not
be cluttered with too many features which are mainly necessary for general
purpose programming languages.

– Developing GeTS from scratch has also the advantage that one can design
the syntax of the language in a way which better reflects the semantics
of the language constructs. As an example, the syntax for a time interval
constructor is just [expression1, expression2].

The GeTS language is a strongly typed functional language with a few imperative
constructs. Let us get a flavor of the language, before the technical details are
introduced.

Example 1 (tomorrow). The definition

‘tomorrow = partition(now(),day,1,1)’

specifies ‘tomorrow’ as follows: now() yields the time point of the current point
in time. day is the name of the day partitioning. Let i be the coordinate of
the day-partition containing now(). partition(now(),day,1,1) computes the
interval [t1, t2[ where t1 is the start of the day-partition with coordinate i + 1
(i.e next midnight) and t2 is the end of the day-partition with coordinate i + 1
(i.e. midnight tomorrow).

Example 2 (Christmas). The definition

christmas(Time t) =
dLet year = date(t,Gregorian_month) in

[time(year|12|25,Gregorian_month),
time(year|12|27,Gregorian_month)]

specifies Christmas for the year containing the time point t.

date(t,Gregorian month) computes a date representation for the time point t
in the date format Gregorian month (year/month/day/hour/minute/second).
Only the year is needed. dLet year = ... therefore binds only the year to the
integer variable year. If, for example, in addition the month is needed one can
write dLet year|month = date(....
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time(year|12|25,Gregorian month) computes t1 = begin of the 25th of
December of this year. time(year|12|27,Gregorian month) computes t2 =
begin of the 27th of December of this year. The expression [...,...] denotes
the interval between t1 and t2. The result is therefore the interval from the
beginning of the 25th of December of this year until the end of the 26th of
December of this year.

Example 3 (Point–Interval Before Relation). The function

PIRBefore(Time t, Interval I) =
if (isEmpty(I) or isInfinite(I,left)) then false
else (t < point(I,left,support))

specifies the standard crisp point–interval ‘before’ relation in a way which works
also for fuzzy intervals.

If the interval I is empty or infinite at the left side then PIRBefore(t,I) is
false, otherwise t must be smaller than the left boundary of the support of I.

Now we define a parameterized fuzzy version of the interval–interval before
relation.

Example 4 (Fuzzy Interval–Interval Before Relation). A fuzzy version of an
interval–interval before relation could be

IIRFuzzyBefore(Interval I, Interval J, Interval->Interval B) =
case
isEmpty(I) or isEmpty(J) or isInfinite(I,right) or isInfinite(J,left):0,
(point(I,right,support) <= point(J,left,support)) :1,
isInfinite(I,left) : integrateAsymmetric(intersection(I,J),B(J))
else integrateAsymmetric(I,B(J))

The input are the two intervals I and J and a function B which maps intervals
to intervals. B is used to compute for the interval J an interval B(J), which
represents the degree of ‘beforeness’ for the points before J.

The function first checks some trivial cases where I cannot be before J (first
clause in the case statement), or where I definitely is before J (second clause in the
case statement). If I is infinite at the left side then

∫
(I∩J)(x)·B(J)(x)dx/|I∩J |

is computed to get a degree of ‘beforeness’, at least for the part where I and J
intersect. If I is finite then

∫
I(x) · B(J)(x)dx/|I| is computed. This averages the

degree of a point-interval ‘beforeness’, which is given by the product I(x)·B(J)(x),
over the interval I.

The next example illustrates some procedural features of GeTS. The effect
function takes two intervals and a function F, which maps the two intervals to a
fuzzy value. F could for example be the relation IIRFuzzyBefore. The first inter-
val I is now shifted step times by the given distance, and each time F(I,J)
is computed. These values are inserted into a new interval, which is the result
of the function. The ‘effect’ function turned out a useful test and debug tool for
developing the fuzzy interval–interval relations [19,24].
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Example 5 (effect).

effect(Interval I, Interval J, (Interval*Interval)->Float F,
Time distance, Integer steps) =
Let K = [] in

while (steps >= 0) {
pushBack(K,point(I,right,kernel),F(I,J)),
I := shift(I,distance),
steps := steps - 1}

K

‘Let K = []’ creates a new empty interval and binds it to the variable K. The
while loop shifts the interval I steps times by the given distance (I :=
shift(I,distance)). Each time pushBack(K,point(I,right,kernel),
F(I,J)) adds the pair (x, y) consisting of x = right boundary of the kernel
of the shifted I and y = F(I,J) to the interval K.

The dashed line in the figure below shows the result of the effect function
when applied to the two intervals I and J, and a suitable interval–interval ‘before’
relation as parameter F. The dotted figure shows the position of the shifted
interval I when the F(I,J) drops down to 0.

�

�

R
0

1

Effect of the effect function

I J

3.1 Types in the GeTS Language

The GeTS language has a fixed number of basic types. They represent certain
data structures and certain keywords. So far there is no mechanism for extending
the basic types. The basic types can be combined to functional types T1 ∗ . . . ∗
Tn �→ T .

Definition 1 (Data Structure Types)
Integer standard integers Partitioning partitionings
Time very long integers Label labels for partitions
Float standard floating point numbers Duration durations
String strings DateFormat date formats
Interval fuzzy intervals

The data structure types abstract away from the concrete implementation. The
Integer type, for example, is currently realized as 32 bit signed integer data,
while the Time type is currently realized as 64 bit signed integer data.

Intervals are realized as polygons with integer coordinates. An interval is
therefore a sequence of pairs I = (x0, y0), . . . , (xn, yn). The xi are Time points
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and the yi are fuzzy values. Internally the yi are realized as short integers between
0 and 1000. From the GeTS point of view, however, the yi are Float numbers
between 0 and 1. The interval I is negative infinite if y0 �= 0. I is positive infinite
if yn �= 0. The internal representation of Interval data, however, is completely
invisible to the GeTS user. Details about the internal representation and the
algorithms can be found in [20].

Partitionings are complex data structures. Fortunately, this is also not visi-
ble to the GeTS user. Partitionings are just parameters to some of the functions.
They can be used without knowing anything about the internal details.

Durations are sequences of pairs d0 P0, . . . , dn Pn where the di are Float
data and the Pi are Partitionings.

DateFormats are sequences P0/ . . . /Pn of Partitionings.
A number of enumeration types is predefined in GeTS. They are used to control
some of the algorithms. Their meaning therefore depends on the meaning of the
built-in function where they occur as parameters.

3.2 Language Constructs for GeTS

The GeTS language has a number of general purpose functional and imperative
language components. Additionally a number of language constructs are geared
to manipulating time points, temporal intervals, partitionings, dates etc. As
already mentioned, the language is strongly typed. This means, the type of each
expression is determined by the top level function name together with the types
of its arguments.

The language has an operational semantics. It is described in detail in [21]
where all language constructs are introduced. Some aspects of the language de-
pend on the context where it is used. For example, GeTS itself has no exception
mechanisms. Nevertheless, exceptions are thrown and must be catched by the
host programming system.

Definition 2 (Function Definitions). A GeTS function definition has one of
the forms

(1) name = expression
(2) name() = expression
(3) name(type1 var1, . . . , typen varn) = expression
(4) type : name(type1 var1, . . . , typen varn) = expression
(5) type : name(type1 var1, . . . , typen varn)

Version (1) and (2) are for constant expressions, i.e. the name at the left hand side
is essentially an abbreviation for the expression at the right hand side. Version (3)
is the standard function definition. The type of the function is type1∗. . .∗typen �→
T where T is the type of the expression. Version (4) declares the range type of
the function explicitly. It can be used for recursive function definitions, where
the name of the newly defined function occurs already in the body. In this case
it is necessary to know the range type of the function, before the expression can
be fully parsed. Finally, version (5) is a forward declaration. It must be used for
mutually recursive functions.
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Function definitions can be overloaded. They are distinguished by their argu-
ment types, not by the result type.

Standard Language Constructs. GeTS supports the same kind of arith-
metic and Boolean expressions as many other programming languages. A small
difference is the Time type, which is integrated in the arithmetics of GeTS. The
obligatory ‘if-then-else’ construct is of course also available. In addition there
is a case construct to avoid the need for nested if-then-elses. A ‘while’ loop is
also available. Since GeTS is a functional language, the while construct needs
a return value. Therefore in addition to the while loop body, it has a separate
return expression. In the body, however, only imperative constructs (with return
type Void) are allowed. The values of local variables can be changed with an
assignment construct. The assignment operation returns no value. It can only
occur in the body of the while statement.

A function call in GeTS is an expression name(argument1, . . . , argumentn)
where ‘name’ is either the name of a built-in function, or the name of a previously
defined function (or a function with forward declaration), or a variable with
suitable functional type.

Since variables can have functional types, and GeTS allows overloading of
function definitions, it needs a notation for functional arguments. A functional
argument can either be just a variable with appropriate functional type, or a
function name with argument type specifications, or a lambda expression. A
function name with argument type specifications is necessary to choose among
different overloaded functions.

A functional argument in GeTS is either

1. a variable with the appropriate functional type,
2. an expression name[type1 ∗ . . . ∗ typen] of a previously defined function with

that name and with argument types type1 ∗ . . . ∗ typen, (for distinguishing
between overloaded functions), or

3. a lambda expression:
lambda(type1 variable1, . . . , typen variablen) expression. ‘expression’ can
contain variables which are lexically bound outside the parameter list of
lambda.

3.3 Built-ins for Time Intervals

Fuzzy time intervals (type Interval) are one of the built-in data structures in
GeTS. It is possible to create new empty intervals and fill them up with coordinate
points. The expression [t1, t2] of type Time∗ Time �→ Interval, for example, con-
structs a new crisp interval with boundaries t1 and t2. pushBack(I, time, value)
of type Interval∗Time∗Float �→ Void extends a fuzzy interval with a new point
for the envelope polygon.

For crisp intervals there are the standard set operators: complement, intersec-
tion, union etc. These are uniquely defined. There is no choice. Unfortunately,
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or fortunately, because it gives you more flexibility, there are no such uni-
quely defined set operators for fuzzy intervals. Set operators are essentially
transformations of the membership functions, and there are lots of different
ones.

GeTS offers standard versions of the set operators, parameterized set opera-
tors of the Hamacher family, and finally set operators with transformation func-
tions for the membership function as parameter. These allow one to customize
the set operators in an arbitrary way.

Predicates like ‘isCrisp’, ‘isEmpty’, ‘isConvex’, ‘isMonotone’, ‘isInfinite’ can be
used to check the corresponding properties of intervals. Basic relations between
time points and intervals, or between key parts of two intervals can be checked
with predicates like ‘during’ or ‘subset’ etc. The function member(time, I) returns
the fuzzy membership value for an interval. If an interval is non-convex, there a
number of functions to count components, measure their size, extract them or map
over them. n, m-center points are used to express temporal notions like ‘the first
half of the year’, or ‘the second quarter of the weekend’. This can be computed
with the function centerPoint(I, n, m).

Intervals can be transformed in various ways: shifted, scaled, extended or
shrinked, integrated or fuzzified with linear or Gaussian shapes. Parts can be cut
out, it can be split into different parts. Different types of hulls can be calculated.
Membership functions can be multiplied or exponentiated.

Example 6 (Birthday Party Time). Consider a database about, say, the insti-
tute’s birthday parties. It may contain the entry that the birthday party for
the director took place ‘from around noon until early evening’ of 20/7/2003.
‘Around noon’ is a fuzzy notion and ‘early evening’ is a fuzzy notion. Suppose,
we have a formalization of ‘around noon’ and ‘early evening’ as the following
fuzzy sets:

�

�
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1

Around Noon and Early Evening
11 12 13 20 21 2422

What is now the duration of the birthday party? It must obviously also be
a fuzzy set. The fuzzy value of the birthday party duration at a time point t
is 1 if the party definitely started before t and definitely ended after t. There-
fore the fuzzy value at point t is computed by integrating over the membership
functions of the start intervals and the end intervals. A natural definition would
therefore be:

partyTime(Interval I, Interval J)
= intersection(integrate(I,positive),integrate(J,negative))

(1)
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The resulting fuzzy set is:

�

�
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Birthday Party Time
11 12 13 20 21 2422

I J

The dashed curve may, for example, represent the percentage of people at the
party at a give time.

The next example illustrate a potential use of the fuzzify function. We want
to realize a function beforeChristmas. It should accept a time point t and
compute a fuzzy interval, whose membership function increases for a certain
time period and then stays 1.0 until Christmas. The increase is determined by
two parameters, offset and increase. offset = 50 means that the increase
should start in the middle between t and Christmas. increase = 10 means that
the duration of the actual linear increase should be 10% of the interval length.

If t = 2004/7/1 then beforeChristmas(t,50,10) yields an interval whose
membership function rises from 2004/9/28 until 2004/10/6/19/12 (which is at
10% of the distance between 2004/9/28 and Christmas) and then stays at 1.0
until 2004/12/25.

Example 7 (Before Christmas).

1 beforeChristmas(Time t, Float offset, Float increase) =
2 dLet year = date(t,Gregorian_month) in
3 Let christmas = time(year|12|25,Gregorian_month) in
4 case (t < christmas) :
5 Let days = round(length(t,christmas,day,false),down) in
6 fuzzify([time(year|12|25-days+round((days*offset/100)),
7 Gregorian_month),christmas],
8 linear,left,increase,0),
9 (t < time(year|12|27,Gregorian_month)): []
10 else
11 Let christmas1 = time(year+1|12|25,Gregorian_month) in ...

The beforeChristmas function considers the three cases, namely (1) that the
time point t in the year y is before Christmas in this year, (2) that t is just
on Christmas in this year, and (3) that t is after Christmas in this year. In
case (1) the rounded number of days between t and Christmas is computed
first (line 5). This number minus the offset is subtracted from christmas to get
the left boundary of the interval to be fuzzified (line 6). The right boundary
is christmas. The left part of the interval is fuzzified linearly with the given
increase (line 6–8). If the time point t is just on Christmas (line 9) then the
empty interval is returned. If t is after Christmas (case 3), then next year’s
Christmas is considered (line 11 and later).
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Notions like ‘in two weeks time’ or ‘three years from now’ etc. denote time
shifts. Time shifts are basic operations for many other temporal notions. There-
fore GeTS provides a shift function which can shift single time points as well
as whole intervals by a given duration. A time point or an interval can be shifted
by a fraction of a partitioning (1.5 years, for example). Two different shift func-
tions are available, a length oriented shift and a date oriented shift, which give
slightly different results for fractional shifts.

Date and Time. In examples 2 and 7 we have already seen applications of func-
tions which convert time points to dates and dates to time points. The dates are
sequences of integers which correspond to date formats, and these are sequences
of partitionings. An example for a date format is year/month/day/hour/minute/
second in the Gregorian calendar. The sequence 2004|12|3|21|43|0 in this date
format is therefore the 3rd of December 2004, 9:43 pm.

The time function converts a date in a given date format to the corresponding
time point. Examples are:

time(2004,Gregorian month) = 1072915231 (1st of January 2004)
time(2004|1+1,Gregorian month) = 1075593631 (1st of February 2004)
time(2004|2|2,Gregorian week) = 1073347231 (6th of January 2004)
Gregorian week is the date format year/week/day/hour/minute/second. There-
fore 2004|2|2 is the second day in the second week in the year 2004 (The first
week in 2004 started at Monday, 29th of December 2003).

The dLet construct is a kind of inverse to the time function. The expression
dLet year|month|... = date(time, dateFormat) in expression binds the vari-
ables year, month, . . . to the integers which correspond to the date denoted by
‘time’, in the given date format. ‘expression’ is then evaluated under this bind-
ing. Example: ‘dLet y|m|d|h = date(0, Gregorian month) in y + m + d’ yields
1973 because the time point 0 corresponds to the first of January 1970. Therefore
y = 1970, m = 1, d = 1 and h = 0.

Partitionings and Labels. GeTS has a number of functions for reckoning with
time points, partitions and labels. The function partition(time, partitioning)
maps time points to intervals, which represent partitions.

The version partition(time, partitioning, n, m) computes an interval [t1, t2[
as follows: If i is the coordinate of the partition containing time then t1 is the
start of partition i + n and t2 is the end of the partition i + m.

If instead of the partition as interval, only the boundaries are needed, one can
use the partitionBoundary function.

The next function is which(time, P, Q, inclusion, asGranule). It can, for ex-
ample, be used to compute which week in the year is now, or which day in the
semester is now.

The further set of functions deals with labels of partitions. Labels are not just
strings, but also special data structures. label(time, partitioning) returns the
label of the partition containing time. If there is no labeling defined, it returns
a NULL label.
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The function isLabel(label) checks whether the label is not the NULL label.
isGap(label) checks whether the label is the gap label. LabelName(name) turns
a string (without quotes) into a Label.

The function extractLabelled(I, label, partitioning, inclusion, intersect)
can be used to extract from an interval all partitions with a given label, for ex-
ample all Tuesdays of a labeled day partitioning. The extractLabelled function
maps through all partitions of the given partitioning which are labeled with the
given label, and which overlap with the interval [a, b[ where a is the left boundary
of the interval and b is the right boundary of the interval. An error is thrown if
a or b are the infinity. For each such partition p a condition is tested which de-
pends on the parameter inclusion: inclusion = subset: p must be a subset of I’s
support. inclusion = overlaps: p must overlap with I’s support. inclusion =
bigger part inside: the bigger part of p must be a subset of I’s support.

If the parameter intersect = false then all partitions p which meet the con-
dition are joined into the resulting (crisp) interval. If the parameter intersect =
true then the intersection of I with all partitions p which meet the condition
are joined into the resulting interval. The result may now be a fuzzy interval.

The function nextGranule(time, partitioning, label, n, withGaps) is for con-
structing intervals which represent granules. The interval is constructed as fol-
lows: If time is inside a granule with the given label and if n = 0 then this
granule is computed. Otherwise the nth next/previous (if n < 0) granule with
this label is computed. If time lies outside a granule with the given label and
n = 0 then the empty interval is returned. Otherwise the nth next/previous (if
n < 0) granule with this label is computed.

4 Summary and Related Work

Most of the approaches for modeling every-day temporal notions are ‘mono-
lithic’, i.e. there is one single formalism for specifying calendar systems. In
particular there is all the work about the mathematical representation of pe-
riodic temporal notions as time granularities, or similar kind of mathematical
objects. A good overview is given in the book of Bettini, Jajoda and Wang
[5]. This work is particularly motivated by the need to represent time in tem-
poral databases. A selection of papers about the abundant work in this area
is [3,15,12,25,13,14,9,4,10,6,11,26]. In contrast to these approaches, the CTTN–
system has various representation formalisms for the different aspects of tem-
poral notions. One of the components is the GeTS language as a special pur-
pose functional specification and programming language for temporal notions.
It has a basic set of general purpose functional and imperative programming
language features. In addition there are a number of built-in data structures
and functions which are specific for this application. The most important ones
are time points, fuzzy temporal intervals and labeled partitionings of the time
line.

GeTS is not a stand alone programming language. It must be part of a host
system which provides these data structures and which invokes the GeTS appli-
cation programming interface.
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The GeTS constructs were carefully chosen as a compromise between simplic-
ity and easy usage. In a first application, various versions of fuzzy binary relations
between fuzzy intervals have been defined [24]. Example 4 (fuzzy before) is one
of them.
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