
Applications of Automated Reasoning

Ulrich Furbach and Claudia Obermaier

Universität Koblenz-Landau
D56070 Koblenz, Germany

{uli,obermaie}@uni-koblenz.de

Abstract. This paper offers an informal overview and discussion on
first order predicate logic reasoning systems together with a description
of applications which are carried out in the Artificial Intelligence Re-
search Group of the University in Koblenz. Furthermore the technique
of knowledge compilation is shortly introduced.

1 Introduction

Automated theorem proving systems have made increasing progress during the
last decades. There was even a prominent open problem, the Robbins problem,
which has puzzled logicians since 1930, which was solved by the Automated
Reasoner EQP for first order equational logic, developed at Argonne National
Laboratory [McC97]. Propositional reasoning systems are very successful in soft-
and hardware verification, where the length of formulae which can be processed
has grown by orders of magnitude over the last 10 years; today it is very well
possible to solve real world verification tasks from hardware design.

In knowledge representation there was a shift from graphic oriented systems
like KL-One in the beginning of the 90s towards concept languages or description
logic, as it is called nowadays. For the processing of description logics the most
commonly used algorithms are basically tableau calculi, which reached a very
sophisticated level, allowing the use of description logics for numerous interesting
applications (see e.g. [BCM+03]). Because of the close relationship between de-
scription logic and modal logic, the fact emerged, that in many cases description
logic systems are the more powerful modal logic provers ([Mas99]). This is of
importance because modal logic is a decidable fragment of first order predicate
logic and thus it plays an important role in computer science.

In this paper we want to demonstrate, that automated reasoning systems
are very well ready for real world applications. We are dealing with first order
predicate logic systems, accepting its semi-decidability and taking advantage
from its higher descriptive power. We are aware that there are many applications
of propositional and even higher order interactive reasoning systems; in this
paper, however, we want to focus on own experiences and therefore we concert
this presentation mainly about first order automated reasoning.

In the following section we briefly depict the state of the art in the development
of first order high performance theorem proving, while in the main part we then
focus on applications we carried out in the AI Research Group of University of

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 174–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Applications of Automated Reasoning 175

Koblenz and in wizAI GmbH, a spin-off of this research group. In a last section
we will introduce some aspects of knowledge compilation.

2 State of the Art in Automated Deduction

In this section we will use a small toy example to clarify and to discuss some
aspects of automated reasoning systems. Given the knowledge base from Fig-
ure 1(a), most systems start by transforming this set of formulae into a set of
clauses form Figure 1(b). This is astonishing because there are lot of arguments
against this transformation: most important that the structure of the formulae
gets lost despite equivalence transformation. This structure might mirror some
properties of the domain which is modeled, and which can possibly be used to
control the navigation through the search space while proving a theorem based
on this formula. If the reasoning system allows the user to control the proof by
interaction, it might be helpful to retain the structure, in order to facilitate nav-
igation for the user. To our knowledge, there are very few systems which directly
work with the original formula; two of them are used in a program verification
context, where user interaction is often helpful ([BHOS96, ABB+02]). Most high
performance theorem proving systems for predicate logic use clause normal form
(e.g. [Wei97, Sch04, RV02, Wer03])

symptom(s) ←
cause(c1) ∨ cause(c2) ← symptom(s)
treatment(t0) ← cause(c1)
treatment(t1) ← cause(c1)
treatment(t0) ← cause(c2)
treatment(t2) ← cause(c2)

symptom(s)
cause(c1) ∨ cause(c2) ∨ ¬symptom(s)
treatment(t0) ∨ ¬cause(c1)
treatment(t1) ∨ ¬cause(c1)
treatment(t0) ∨ ¬cause(c2)
treatment(t2) ∨ ¬cause(c2)

(a) Knowledge base KB (b) Set of clauses

Fig. 1. Knowledge base KB and corresponding set of clauses

Linear Deduction. Most textbooks on Artificial Intelligence (AI) present a
resolution calculus to reason about knowledge bases (see e.g. [PMG97] or an
overview on different textbooks [Fur03]). In the 70s of the previous century this
was indeed the main approach to process logical formulae in AI and a very com-
mon understanding was at that time that goal oriented linear deduction should
be used to prove logical consequences from a set of formulae. Assume for exam-
ple the knowledge base KB from Figure 1 together with the task to prove that
there is a treatment given that special situation; the existence of a treatment
can be modeled by the additional formula ∃Xtreatment(X), which is called a
goal. Altogether we have to prove KB |= ∃Xtreatment(X). Since resolution is
a refutational calculus, we have to negate the goal and after a slight equivalent
preserving transformation we get the clause set KB ∧ ¬treatment(X), where
all variables are implicitly universal quantified. In order to find a refutation of

176 U. Furbach and C. Obermaier

this, it seems to be very natural to start with the goal and to work ”back-
wards” until one reaches the empty clause �, indicating that the clause set is
unsatisfiable and hence the goal logically follows from the knowledge base. This
would lead to a sequence of resolvents ¬treatment(X), ¬cause(c1), cause(c2) ∨
¬symptom(s), cause(c2), treatment(t2), �. One of the first calculi advocating
this goal oriented linear approach are model elimination ([Lov68]) and linear
resolution ([KK71]) and a model elimination theorem prover SETHEO even won
the CASC competition (which will be discussed later). It was much later in the
90s where we really understood that these calculi are not based on resolution
– they are much closer to tableau calculi, at least if one takes the treatment of
variables as a discriminating parameter1.

One appealing aspect of linear refutation is that it is very close to the concept
of logic programming: one starts from a call of the program and then works
through a sequence of intermediate computations until � is found. The answer
to such a computation can be constructed from the unifiers used during the
inference steps. In [BF97] it is shown how the logic programming paradigm
can be used not only for Horn clause programming, but also for full first order
logic by means of a variant of model elimination. Another argument for this
goal oriented search for a refutation usually was its higher potential in search
space pruning. We intentionally use past tense, because nowadays most high
performance theorem provers are working in a saturation based manner, which
is explained in the next section.

Saturation. Assume again the proof task KB ∧ ¬treatment(X) from the pre-
vious discussion. Instead of assigning some of the clauses, e.g. the goal clause,
a particular importance, we just take the clause set as it is given by this task.
If we further assume that we have resolution as the inference rule at hand,
we simply add new resolvents to this set. Starting with the initial set S =
KB∪{¬treatment(X)} one can derive by this the new set S′ = S∪{cause(c2)∨
¬symptom(s)∨ treatment(t0)}. Such an extension is done until the set contains
the empty clause or (in special cases) until there are no new clauses to derive,
i.e. the set is saturated.

There are some issues to solve if one tries to do saturation based proving. The
amount of clauses which are generated from a given set of clauses, can increase
dramatically. Therefore it is mandatory to avoid generating in some sense useless
clauses and to get rid of redundant clauses. A very powerful technique to this
end is the use of term ordering to control the generation of new clauses. For
an overview of this technique in the context of resolution the reader is pointed
towards [BG01]; theorem provers which are successful with this techniques are,
among others, Otter, Spass and Vampire ([McC90, Wei97, RV02]). The use of
ordering for controlling the generation of new clauses has another advantage: it
also helps in handling equality. If the formulae to be handled by the reasoning
system contain an equality predicate, there are basically two different methods

1 In resolution variables are treated as being implicitly universal quantified, whereas
in tableau calculi they usually are rigid, i.e. placeholders for a yet unknown constant.

Applications of Automated Reasoning 177

to handle this. Either one adds axioms to the set of clauses describing the usual
properties of equational logic or an additional inference rule, like paramodula-
tion, is used to handle the equations. The latter approach also raises the problem
of generating too many new clauses, which, however, can be controlled as well
by term ordering.

It is not only resolution which is available as an inference rule in saturation
based theorem proving. If the entire formula which is given as the proof task,
is transformed into an equivalent formula in equational logic, superposition to-
gether with ordering restriction can be used. This approach is followed in the
theorem prover E ([Sch04]) or in the Waldmeister-system ([HL02]).

It is no doubt that the systems employing saturation techniques nowadays
belong to the most successful high performance first order systems; this aspect
will be discussed in more detail below.

Tableaux. Although introduced more or less at the same time as the resolution
principle (1950 – 1960), there was only evidence in the 1980th that tableau
calculi offer an alternative approach with very interesting properties. These are
in particular, that parts of the history of the current proof attempt are coded into
the proof object and that the variables are treated rigidly. We will explain this
on a special form of tableaux, the so called Hypertableaux, which are introduced
in [BFN96] and which is used in KRHyper, a theorem prover, which is the
basis throughout our applications. The calculus is a clause normal form tableau
calculus and hence we start constructing a tableau from a given set of clauses,
which are regarded as implications (negative literals are the premises, positive
literals the conclusion). In our example from Figure 1 there is one single fact, i.e.
implication with empty premise. Hence we construct the tableau consisting of
one node, namely symptom(s). The only inference rule works as follows: we take
a branch from the tableau and a clause from the clause set; if all literals from
the premise of the clause are contained in the branch (in the case of variables it
is slightly more complicated), then the branch can be extended by the literal in
the conclusion. If there is more than one literal in the conclusion, the branch is
split; if there is no conclusion in the clause, the branch is closed. A clause set is
unsatisfiable, if a tree constructed by this method only contains closed branches.
An interesting property o f this method can be seen if one omits the goal clause
¬treatment(X), which is a clause without positive literal, i.e. without conclusion.
The tableau from Figure 2 is an exhausted (i.e. maximal) tableau which can be
constructed from the clauses in our example. In such a case we not only have a
proof object, containing information from the proof search, we also can read two
models of the clause set, namely the atoms from each of the two branches. Hence
tableaux are also very helpful for constructing models for satisfiable clauses. This
is of particular importance in a non-monotonic setting, where minimal models
have to be computed as a basis of a closed world assumption; an overview of
such approaches can be found in [DFN01].

Tableau methods are also the main mechanism for the design of description
logic systems, which are gaining increasing importance in the design of the Se-
mantic Web project. A drawback of tableau calculi is the handling of equality;

178 U. Furbach and C. Obermaier

¬tr(X)
¬ca(c1)
ca(c2) ∨ ¬sy(s)
ca(c2)
tr(t2)
⊥

ca(c2) ∨ ¬sy(s) ∨ tr(t0)
ca(c2) ∨ ¬sy(s) ∨ tr(t1)
ca(c2) ∨ tr(t1)
. . .

sy(s)
�� ��

ca(c1)

tr(t0)

tr(t1)

ca(c2)

tr(t2)

tr(t0)

(a) Linear resolution (b) Saturation (c) Hypertableau

Fig. 2. Different calculi – predicates are abbreviated by the first two letters

the variables in a tableau have to be substituted simultaneously in the entire
tableau during a unification, which is necessary in an extension step with first
oder clauses. This makes the handling of equality very difficult, and, indeed, there
are no high performance tableau proofers which are also dealing with equality
in a way comparable with saturation based systems.2

Empirical Aspects. Two important achievements in automated reasoning re-
search are the commonly used benchmark suite TPTP ([SS98]) and the CASC-
competition ([PSS02]). The TPTP (Thousands of Problems for Theorem Provers)
problem library is a library of test problems for automated theorem proving (ATP)
systems. Currently the TPTP contains 7000 test problems with a large variety in
complexity and difficulties. These problems are grouped into domains, like lattice
theory, hardware creation and verification and many others. Besides the problem
library, the TPTP contains a utility to convert the problems to existing ATP for-
mats; it offers conversions to nearly all systems and thus facilitates the use of the
library. The principal motivation for the TPTP project is to move the testing and
evaluation of ATP systems from the previous ad hoc situation onto a firm footing.
This goal is certainly reached, and, even more, the TPTP idea led to the CASC
competition, which is held annually during a deduction conference.

CASC evaluates the performance of sound, fully automatic, classical first order
ATP systems. The evaluation is in terms of the number of problems solved and
the average runtime for successful solutions. The problems are chosen from the
TPTP Problem Library and they are presented together with a specified time
limit for each solution attempt. Although there might be the danger that system
designers try to tune their provers towards the event and the possible problem
set (the TPTP), there are certainly a number of advantages:

– It turned out that different calculi and systems are winning in different
problem classes.

– The systems are becoming increasingly robust. They have to run fully auto-
mated, to be invoked from batch, such that their developers have no chance
to interfere during the entire competition.

2 In the Hyper tableau calculus the situation is different, because we have universal
variables; efficiently equality handling is in development right now.

Applications of Automated Reasoning 179

– The progress of the field becomes transparent, by having the winners from
the previous year participate, even if a new version of the system is also an
entry into the current competition.

As said above, one way to present the success of automated theorem proving
is to refer to TPTP and CASC. However, it is time to point out that applica-
tions, of course, are another important measure of success. We experienced that
model generation deduction offers a very flexible way to use automated systems
in applications and embedded systems. This is what we will exemplify in the
following section.

3 Applications

In this section we will focus on application projects we worked through the recent
years in the AI Research Group (AGKI) of Koblenz University and in wizAI
GmbH, which is a spin-off of the research group. When researchers talk about
applications, this can have very different semantics; some mean the application
of a theoretical tool or method within the own field, e.g. using a theorem prover
for knowledge representation purposes in Artificial Intelligence research. Others
mean that a problem for which there was known no solution can be solved by
means of the research carried out; e.g. the solution of an open mathematical
problem by an automated reasoning system, mentioned in the introduction. In
this paper we offer a different understanding of ’application’: we have a reasoning
system, the KRHyper, based on hyper tableau; this system has been developed
during many years, it is tested in various contexts and we assume that it is a very
reliable and flexible tool. And this is exactly what we are benefitting from in other
projects; we use this tool as part of the software developing process. It is used
to quickly and safely solve subproblems during the software engineering process.
Of course the problems could have been solved differently by programming it
from scratch. By the use of our KRHyper the solution can be achieved quicker,
easier to test and more flexible to allow modification in case the requirements of
the project change, which is a very likely the case in commercial projects.

We used KRHyper in the following larger projects:

– Together with Dresdner Bank we developed a prototype of a knowledge
management system, which is used for early discovery of reputational risks
caused by decisions and statements from own bank divisions (for details see
[FGHT+04]). This is presumably the only software system in a major bank,
where an automated theorem prover is running its kernel.

– In a PhD-project, which was aiming at the intelligent processing of XML
database queries, it turned out, that KRHyper could be used to transform
incomplete queries into queries which can be processed efficiently by the
underlying database system (details can be found in [BFGHK04])

– In RoboCup we are working towards the use of logic in the simulation league.
Until now, we have been working on a soccer team which was programmed
in large parts by the use of logic programming techniques. KRHyper was

180 U. Furbach and C. Obermaier

used to check formal properties of the team, i.e. the multi-agent system.
Recently we changed the focus of the project, which is carried out in the
DFG Special Focus Program 1125 ”RoboCup”; because of the mixture of
real valued computation and logical reasoning we are using hybrid automata
for model checking of properties ([Hen96]).

– The Living Book project was carried out over several years; funded by the
German Ministry of Research and Education and by the European Comis-
sion. We developed a system which allows the development and use of intel-
ligent personalised textbooks via the internet. This project will be discussed
in more detail below.

– The Spatial Metro project is an ongoing project carried out together with
the city of Koblenz and with two of her twin cities, Norwich and Rouen.
It is financed by the European Commission and the State Government of
Rheinland-Pfalz. The goal of our part of the project is to use AI techniques
for efficient guidance of tourists in the city. This project will be discussed in
more detail below.

Living Books. Living Book is a project which was carried out during several
years aiming at the development of personalized intelligent books. Intelligent
in the sense, that a user is able to work and interact with her book, which
is maintained on a central server. The book also contains interactive systems,
which can be used for exercises and practice. For access to some books pub-
lished in this project the reader is referred to http://www.in2math.de; in this
paper we want to concentrate on the underlying technique, the Slicing Book
Technique. By this technique a document, say, a mathematics text book, is
separated once as a preparatory step into a number of small units, such as def-
initions, theorems, proofs, etc. The purpose of the sliced book then is to enable
authors, teachers and students to produce personalized teaching or learning ma-
terials based on a selective assembly of units. Once a reader is entering the
portal of the book in the web, she can login with her account and gets the
entry page of the book. There it is possible to select parts of the book from
the table of contents and to specify preferences, e.g. to include all prerequi-
sites necessary for the understanding of the selected units or to include all parts
were the contents of the selected units is used – such a view is depicted in
Figure 3.

Once the user has specified the current view of the book, the system has to
provide the appropriate units and compose them in order to receive a final pdf-
document. This task is depicted in Figure 4 for the general case, where the user
can even select from various books. Assume she is asking for an overview of the
notion of ”Normal Forms” by selecting the appropriate parts. In addition the
user has some preferences, like preferring formal notations or explanations by
examples, which the system already knows about the user.

The slices or units, whose collection constitutes the books basically contain
LaTex-code. This is connected with appropriate meta data, like the relations
according to the prerequisite and refers relation, meta-data stating the type of
the unit (example, proof, theorem and things like this) or ontologies which allow

http://www.in2math.de

Applications of Automated Reasoning 181

the combination of different keyword systems. All this data belonging to the
users query are put together and stated as proof task, i.e. a logical formula for
the KRHyper system. KRHyper computes a model of the given set of clauses;
it is important to note that the formula contains all the slices of the books in
a certain representation. From the model for the given query the system can
extract the identification numbers of the slices, put together the LaTex parts
and generate a pdf document, which can be presented to the user.

There are some lessons we learned from this application: the KRHyper system
must be able to process very many, i.e. ten thousands of slices efficiently and it
needs non-monotonic negation in order to deal with closed-world assumptions.
Another important property is that it must be possible to process description
logic parts of the task. For details of all this the reader is referred to [BFGHS04].

Fig. 3. A personalized view of Living Books

Spatial Metro. One goal of this European Commission project is the use of
AI techniques for efficient guidance of tourists in a city. For these possible tours
within a city the metaphor ’spatial metro’ is used. The points of interest in a city
are depicted in the form of a metro map: according to the type of these points
we can have different ’metro lines’; for example there may be a monument line,
a shopping and a culture line. Figure 5 shows two of these lines together with
the points of interest they contain.

Each of these points of interests is equipped with a bluetooth access point,
which is able to send information about this location. This can be information
about buildings, history, a map or even latest offers from a shop. If a tourist is

182 U. Furbach and C. Obermaier

reaching the area of this access point his mobile phone or his PDA can connect
with this access point and present the information. Two aspect are of importance:
this connection and hence the service is for free, no phone or WLAN fees have
to be paid for and, more interesting (at least for this paper), the information
which is offered by the access point is processed and filtered by the users phone.
For this the user was able to edit a special profile on his phone, which contains
preferences and other private information. This information is kept secure within
her phone and is compared with the information (and its meta data), such that
only those information which are of interest for the user are presented.

The comparison and processing of the information offered by the access point
is done by KRHyper. For this we re-implemented the theorem prover in Java
ME in order to get it running on a smart phone; presumably its the first theorem
prover for first order predicate calculus running on a mobile phone (if the phone
is not in use it can be used to solve TPTP-problems); for more information see
[KS05b]; more about the entire approach can be found in [KS05a].

The lessons we learned until now from this project: Firstly, implementation
language matters! Our KRHyper system is implemented in Ocaml, mainly be-
cause this was the Ph.D. student’s favorite language; when we tried to get KRHy-
per running on a smart phone, it became obvious that we need a JAVA version
and hence a re-implementation became necessary. Maybe such a porting could
have been taken into account from the very beginning. The second lesson is more
on the project design, concerning the willingness of users to download a piece of
software, i.e. the reasoning machinery, on their mobile phones. In a field study
we carried out, it turned out, that users are rather reluctant to do this. In a
second phase of the project we are working to get rid of this bottleneck.

Lo
gi

k
Fu

rb
ac

h
M

at
he

m
at

ik
Lu

de
re

r
An

al
ys

is
W

ol
te

r/D
ah

n

User Preferences

User Knowledge

Selected
Scenario/Topic/Slice

Logic Program

Ontology

R
ef

er
s/

R
eq

ui
re

s/
Ty

pe
s

Deduction System
KR−Hyper

Slicing

ServerBooks Client

Ke
yw

or
ds

’Normal Form’

Overview:

Fig. 4. The reasoning part of Living Books

Applications of Automated Reasoning 183

X

Fig. 5. A tourist guide on your mobile

4 Knowledge Compilation

In practice we are very often confronted with the following task: given a knowl-
edge base, we want to answer a set of queries from that knowledge base. For
example in diagnosis of electrical circuits, the system description of the cor-
rectly functioning circuit is used for various different queries. The naive ap-
proach to solve this problem would be to answer all the queries independently.
But this would cause an exponential complexity for each query. That is why a
new approach called knowledge compilation evolved. The basic idea of knowl-
edge compilation is to precompile the knowledge base into a special form. This
precompilation step is very costly (meaning of exponential complexity) but has
to be performed only once. After that precompilation, some types of queries can
be answered in polynomial or even linear time. Usually the formula in the tar-
get language of that precompilation has lots of other very nice properties such
as the possibility of projecting the formula onto a set of atoms in linear time.
Since the costly precompilation only has to be performed once, its complexity is
relativized. There is a huge number of target languages for the mentioned pre-
compilation. A rather new target language for knowledge compilation is DNNF.
We will now take a closer look at this normal form. In the following, the term
formula always means propositional logic formula.

Decomposable Negation Normalform. DNNF is short for decomposable
negation normal form and is a special normal form developed in [Dar01]. A
formula is in DNNF, if it is in negation normal form (NNF) and additionally
satisfies the decomposability property. This property means that for any con-
junction which occurs in the formula, the conjuncts do not share atoms. As an
example take the set of clauses F = {{a∨ b}, {c∨ ¬b}}. This clause set is not in
DNNF, because the atom b occurs in both clauses and as usual, the clauses of
the set are combined by conjunction.

184 U. Furbach and C. Obermaier

DNNF has the very nice property, that satisfiability can be decided in time,
which is linear to the length of the DNNF. This is a direct consequence of the
decomposability property. Because of this property it is possible to perform the
satisfiability test on each subformula independently. Another very interesting
feature of formulae in DNNF is the possibility to check the minimal cardinality
in linear time. The next very interesting feature of formulae in DNNF ist the
possibility to project a DNNF on a set of atoms in linear time. A list of other
important features can be found in [Dar01].

Compilation of Propositional Logic Formulae into DNNF. A very naive
approach is to use Shannon’s rule to transform a formula into DNNF. As an
example we will transform the clauseset of our previous example F into DNNF.
F is not in DNNF, because the variable b occurs in two different clauses. Now
we transform F into DNNF by using Shannon’s rule:

dnnf(F) = b ∧ F|b=true ∨ ¬b ∧ F|b=false

= (b ∧ c) ∨ (¬b ∧ a)

In this example the transformation is very short. But one can easily imagine
that the compilation of bigger formulae gets a lot more complicated. Because
in huge sets of clauses, as occuring in practice, usually a great deal of atoms
are shared between different clauses. That is why a variety of algorithms for the
compilation into DNNF were developed. Many of these algorithms are based on
DPLL ([Dar04],[Dar01]).

Weaving Projection into the Computation of DNNF. Quite often, we are
only interested in a special part of our knowledge base F . Meaning for example
that we are only interested in the values of a set of atoms S. Hence we want
to project the knowledge base on this set of atoms S. Let Σ be the set of all
propositional atoms occuring in our knowledge base F . Then the projection of
F on the atoms in S is dual to forgetting all the atoms included in Σ \ S. Given
that the projection of a DNNF on a set of atoms is linear, the common procedure
is to transform the knowledge base into DNNF and to project on S afterwards.
In [Wer06] it is suggested to weave in projection into the precompilation step.
It is shown that this leads to an exponential saving of space.

Let’s take a closer look at the technique of weaving in projection into the
DNNF transformation. As mentioned above, a DPLL based algorithm is used
to transform formulae into DNNF. To use this algorithm, the knowledge base
is required to be given in CNF. During the computation of the DNNF, it is
possible to use a number of rules to get rid of the atoms which are supposed to
be forgotten. If one of the atoms we want to forget is pure, we can use pure literal
elimination to get rid of this atom. The Isol* rule is another possibility to remove
atoms which are supposed to be forgotten. This rule is related to resolution. The
application of these rules not only removes atoms which we want to forget, but
can also have a positive effect on the transformation into DNNF. Atoms which
are shared only between clauses which are removed by this rules do not violate
the decomposability property after the application of these rules.

Applications of Automated Reasoning 185

Although we only used a very small example to explain the knowledge com-
pilation approach, it should be clear that such techniques can be very helpful
in realistic applications, as they are described in this paper. Currently we are
working on separating subproblems where knowledge compilation can be applied.

5 Conclusion

In this paper we gave a very rough overview on first order predicate logic systems
and its most recent developments. We then depicted some applications and we
tried to demonstrate that automated reasoning systems are a valuable tool to
be used in important parts in the application systems. Of course, even if the
reasoner is fully developed and tested there is a considerable amount of work to
be done for its integration and the design of the appropriate interfaces.

As a last remark concerning the development of commercial real world appli-
cations, we want to point out that it is a long way from an academic prototype
system towards a real product. There is a lot of manpower to invest, but on the
other hand, academic research and development can also benefit from this.

References

[ABB+02] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese,
Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, and Peter H.
Schmitt. The KeY System: Integrating Object-Oriented Design and
Formal Methods. In Fundamental Approaches to Software Engineering.
5th International Conference, FASE 2002, LNCS 2306, pages 327–330.
Springer, 2002.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press,
2003.

[BF97] Peter Baumgartner and Ulrich Furbach. Calculi for Disjunctive Logic Pro-
gramming. In Jan Maluszynski, editor, Logic Programming - Proceedings of
the 1997 International Symposium, New York, 1997. The MIT Press.

[BFGHK04] Peter Baumgartner, Ulrich Furbach, Margret Groß-Hardt, and Thomas
Kleemann. Model Based Deduction for Database Schema Reasoning. In
KI 2004, volume 3238 of LNCS, pages 168–182. Springer Verlag, Berlin,
Heidelberg, New-York, 2004.

[BFGHS04] Peter Baumgartner, Ulrich Furbach, Margret Groß-Hardt, and Alex Sin-
ner. Living Book - Deduction, Slicing, and Interaction. J. Autom. Rea-
soning, 32(3):259–286, 2004.

[BFN96] Peter Baumgartner, Ulrich Furbach, and Ilkka Niemelä. Hyper Tableaux.
In José Júlio Alferes, Lúıs Moniz Pereira, and Ewa Orlowska, editors,
JELIA, volume 1126 of LNCS, pages 1–17. Springer, 1996.

[BG01] Leo Bachmair and Harald Ganzinger. Resolution Theorem Proving. In
Robinson and Voronkov [RV01], pages 19–99.

[BHOS96] Bernhard Beckert, Reiner Hähnle, Peter Oel, and Martin Sulzmann. The
Tableau-based Theorem Prover 3TAP Version 4.0. In Michael A. McRob-
bie and John K. Slaney, editors, CADE, volume 1104 of LNCS, pages
303–307. Springer, 1996.

186 U. Furbach and C. Obermaier

[Dar01] Adnan Darwiche. Decomposable Negation Normal Form. Journal of the
ACM, 48(4), 2001.

[Dar04] Adnan Darwiche. New Advances in Compiling CNF into Decomposable
Negation Normal Form. In Proceedings of the 16th Eureopean Conference
on Artificial Intelligence, ECAI’2004, pages 328–332, 2004.

[DFN01] Jürgen Dix, Ulrich Furbach, and Ilkka Niemelä. Nonmonotonic Reason-
ing: Towards Efficient Calculi and Implementations. In Robinson and
Voronkov [RV01], pages 1241–1354.

[FGHT+04] Ulrich Furbach, Margret Groß-Hardt, Bernd Thomas, Tobias Weller, and
Alexander Wolf. Issues Management: Erkennen und Beherrschen von
kommunikativen Risiken und Chancen. Fachberichte Informatik 2–2004,
Universität Koblenz-Landau, Institut für Informatik,Universitätsstr. 1,
D-56070 Koblenz, 2004.

[Fur03] Ulrich Furbach. AI – A Multiple Book Review. Artificial Intelligence,
145(1-2):245 – 252, 2003.

[Hen96] Thomas A. Henzinger. The Theory of Hybrid Automata. In Proceedings
of the IEEE Symposium on Logic in Computer Science (LICS 1996),
pages 278–292, 1996.

[HL02] Thomas Hillenbrand and Bernd Löchner. The Next WALDMEISTER
Loop. In Andrei Voronkov, editor, CADE, volume 2392 of LNCS, pages
486–500. Springer, 2002.

[KK71] R. A. Kowalski and D. Kuehner. Linear Resolution with Selection Func-
tion. Artificial Intelligence, 2:227–260, 1971.

[KS05a] Thomas Kleemann and Alex Sinner. Decision Support for Personalization
on Mobile Devices. In Proceedings of the 21st International Conference,
ICLP 2005, pages 404–406, 2005.

[KS05b] Thomas Kleemann and Alex Sinner. Krhyper - in your Pocket, Sys-
tem Description. In Robert Nieuwenhuis, editor, CADE, volume 3632 of
LNCS, pages 452–458. Springer, 2005.

[Lov68] D. Loveland. Mechanical Theorem Proving by Model Elimination.
JACM, 15(2), 1968.

[Mas99] Fabio Massacci. Design and Results of the Tableaux-99 Non-classical
(Modal) Systems Comparison. In Neil V. Murray, editor, TABLEAUX,
volume 1617 of LNCS, pages 14–18. Springer, 1999.

[McC90] William McCune. Otter 2.0. In Mark E. Stickel, editor, CADE, volume
449 of LNCS, pages 663–664. Springer, 1990.

[McC97] William McCune. Solution of the Robbins Problem. J. Autom. Reason-
ing, 19(3):263–276, 1997.

[PMG97] David Poole, Alan Mackworth, and Randy Goebel. Computational In-
telligence: A Logical Approach. Oxford University Press, 1997.

[PSS02] F. Pelletier, G. Sutcliffe, and C. Suttner. The Development of CASC. AI
Communications, 15(2-3):79–90, 2002.

[RV01] John Alan Robinson and Andrei Voronkov, editors. Handbook of Auto-
mated Reasoning (in 2 volumes). Elsevier and MIT Press, 2001.

[RV02] Alexandre Riazanov and Andrei Voronkov. The design and implementa-
tion of VAMPIRE. AI Commun., 15(2-3):91–110, 2002.

[Sch04] Stephan Schulz. System description: E 0.81. In David A. Basin and
Michaël Rusinowitch, editors, IJCAR, volume 3097 of LNCS, pages 223–
228. Springer, 2004.

[SS98] G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning, 21(2):177–203, 1998.

Applications of Automated Reasoning 187

[Wei97] Christoph Weidenbach. Spass - version 0.49. Journal of Automated Rea-
soning, 18(2):247–252, 1997.

[Wer03] Christoph Wernhard. System Description: KRHyper. Fachberichte In-
formatik 14–2003, Universität Koblenz-Landau, Institut für Informatik,
Universitätsstr. 1, D-56070 Koblenz, 2003.

[Wer06] Christoph Wernhard. Tableaux Between Proving, Projection and Com-
pilation. Technical report, Universität Koblenz-Landau, 2006. In
preparation.

	Applications of Automated Reasoning
	Introduction
	State of the Art in Automated Deduction
	Applications
	Knowledge Compilation
	Conclusion

