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Abstract. In [22], a stable model semantics extension of the language
of hybrid probabilistic logic programs [21] with non-monotonic negation,
normal hybrid probabilistic programs (NHPP), has been developed by in-
troducing the notion of stable probabilistic model semantics. It has been
shown in [22] that the stable probabilistic model semantics is a natural
extension of the stable model semantics for normal logic programs and
the language of normal logic programs is a subset of the language NHPP.
This suggests that efficient algorithms and implementations for comput-
ing the stable probabilistic model semantics for NHPP can be developed
by extending the efficient algorithms and implementation for computing
the stable model semantics for normal logic programs, e.g., SMODELS
[17]. In this paper, we explore an algorithm for computing the stable prob-
abilistic model semantics for NHPP along with its auxiliary functions.
The algorithm we develop is based on the SMODELS [17] algorithms. We
show the soundness and completeness of the proposed algorithm. We pro-
vide the necessary conditions that these auxiliary functions have to satisfy
to guarantee the soundness and completeness of the proposed algorithm.
This algorithm is the first to develop for studying computational methods
for computing the stable probabilistic models semantics for hybrid prob-
abilistic logic programs with non-monotonic negation.

1 Introduction

Hybrid Probabilistic Programs (HPP) [5] is a probabilistic logic programming
framework that enables the user to explicitly encode his/her knowledge about the
type of dependencies existing between the probabilistic events being described
by the programs. HPP generalizes the probabilistic annotated logic programming
framework, originally proposed in [15] and further extended in [16]. In this pa-
per we study the problem of automating the probabilistic reasoning under the
stable probabilistic model (p-model) semantics proposed in [22]. Stable p-model
semantics is the first formalism to study non-monotonic negation in hybrid prob-
abilistic programs originally proposed in [5] and further modified and extended in
[21]. Stable p-model semantics [22] generalizes both the stable model semantics
for normal logic programs [10] and the semantics of hybrid probabilistic logic pro-
grams introduced in [21]. The idea in [21] comes upon observing that commonsense
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reasoning about probabilities relies on how likely (probable) are the various events
to occur, rather than how precise our knowledge about these probabilities is [5].
Hybrid probabilistic programs (HPP) [21] is a probabilistic logic programming
framework that enables the user to explicitly encode his/her knowledge about the
type of dependencies existing between the probabilistic events being described by
the programs. Moreover, it has the ability to encode the user’s knowledge about
how to combine the probabilities of the same event derived from different rules.
HPP semantics [21] intuitively, captures the commonsense probabilistic reasoning
according to how likely are the various events to occur. In addition, HPP subsumes
Lakshmanan and Sadri’s [11] probabilistic implication-based framework as well as
it is a natural extension of classical logic programming.

In [22], we extended the language of HPP [21] to support non-monotonic
negation. In addition, we defined two alternative semantics for the extended
language; the stable probabilistic model semantics and the probabilistic well-
founded semantics and studied their relationships. We showed that the stable
probabilistic model semantics and the probabilistic well-founded semantics gen-
eralize the stable model semantics [10] and the well-founded semantics [9] for nor-
mal logic programs, and they reduce to the semantics of HPP [21] in the absence
of non-monotonic negation. An important result is that the relationship between
the stable probabilistic model semantics and the probabilistic well-founded se-
mantics preserves the relationship between the stable model semantics and the
well-founded semantics for normal logic programs [9].

Since the stable p-model semantics naturally generalize its classical counter-
part, hence, this suggests that efficient algorithms and implementations can be
developed by extending the existing efficient algorithms and implementations
developed for computing the stable models for normal logic programs, such as
SMODELS [17]. (In [21], we have presented an algorithm for computing the least
fixpoint for HPP without non-monotonic negation, that extends the Dowling-
Gallier algorithm for computing the satisfiability of a set of Horn formulae [7],
which is the ground base for developing the various auxiliary functions in SMOD-
ELS.) In this paper, we provide an algorithm for computing the stable p-model
semantics for normal hybrid probabilistic programs [22] based on the decision
procedure of SMODELS [17] along with its auxiliary functions. We provide the
necessary conditions that these auxiliary functions have to satisfy to guarantee
the soundness and completeness of the proposed algorithm. We present formal
definitions for these auxiliary functions and show that they satisfy the necessary
conditions for the soundness and completeness of the proposed algorithm. In
this paper, we focus on the the computation of the stable probabilistic model
semantics. Motivating examples and extensive comparisons between stable prob-
abilistic model semantics and other related work can be found in [22].

2 Normal Hybrid Probabilistic Programs

In the following subsections, we present the syntax and semantics of the Nor-
mal Hybrid Probabilistic Programs (NHPP) as presented in [22]. The notions
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of probabilistic strategies, annotations, and hybrid basic formulae, which are
defined below, were first introduced in [5].

2.1 Probabilistic Strategies

Let C[0, 1] denote the set of all closed intervals in [0, 1]. In the context of HPP,
probabilities are assigned to primitive events (atoms) and compound events (con-
junctions or disjunctions of atoms) as intervals in C[0, 1]. Let [a1, b1], [a2, b2] ∈
C[0, 1]. Then the truth order asserts that [a1, b1] ≤t [a2, b2] iff a1 ≤ a2 and b1 ≤
b2. The set C[0, 1] and the relation ≤t form a complete lattice. In particular, the
join (⊕t) operation is defined as [a1, b1] ⊕t [a2, b2] = [max{a1, a2}, max{b1, b2}]
and the meet (⊗t) is defined as [a1, b1] ⊗t [a2, b2] = [min{a1, a2}, min{b1, b2}]
w.r.t. ≤t. The type of dependency among the primitive events within a com-
pound event is described by probabilistic strategies, which are explicitly se-
lected by the user. We call ρ, a pair of functions 〈c, md〉, a probabilistic strat-
egy (p-strategy), where c : C[0, 1] × C[0, 1] → C[0, 1], the probabilistic com-
position function, which is commutative, associative, monotonic w.r.t. ≤t, and
meets the following separation criteria: there are two functions c1, c2 such that
c([a1, b1], [a2, b2]) = [c1(a1, a2), c2(b1, b2)]. Whereas, md : C[0, 1] → C[0, 1] is
the maximal interval function. The maximal interval function md of a certain
p-strategy returns an estimate of the probability range of a primitive event, A,
from the probability range of a compound event that contains A. The compo-
sition function c returns the probability range of a conjunction (disjunction)
of two events given the ranges of its constituents. For convenience, given a
multiset of probability intervals M = {{[a1, b1], . . . , [an, bn]}}, we use cM to de-
note c([a1, b1], c([a2, b2], . . . , c([an−1, bn−1], [an, bn])) . . .). According to the type
of combination among events, p-strategies are classified into conjunctive
p-strategies and disjunctive p-strategies. Conjunctive (disjunctive) p-strategies
are employed to compose events belonging to a conjunctive (disjunctive) formula
(please see [5,21] for the formal definitions).

2.2 Language Syntax

In this subsection, we describe the syntax of NHPP. Let L be an arbitrary
first-order language with finitely many predicate symbols, constants, and in-
finitely many variables. Function symbols are disallowed. In addition, let S =
Sconj∪Sdisj be an arbitrary set of p-strategies, where Sconj (Sdisj) is the set of
all conjunctive (disjunctive) p-strategies in S. The Herbrand base of L is de-
noted by BL. An annotation denotes a probability interval and it is represented
by [α1, α2], where α1, α2 are called annotation items. An annotation item is
either a constant in [0, 1], a variable (annotation variable) ranging over [0, 1],
or f(α1, . . . , αn) (called annotation function) where f is a representation of a
computable total function f : ([0, 1])n → [0, 1] and α1, . . . , αn are annotation
items. The building blocks of the language of NHPP are hybrid basic formulae.
Let us consider a collection of atoms A1, . . . , An, a conjunctive p-strategy ρ,
and a disjunctive p-strategy ρ′. Then A1 ∧ρ . . . ∧ρ An and A1 ∨ρ′ . . . ∨ρ′ An are
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called hybrid basic formulae, and bfS(BL) is the set of all ground hybrid basic
formulae formed using distinct atoms from BL and p-strategies from S. An an-
notated hybrid basic formula is an expression of the form F : μ where F is a
hybrid basic formula and μ is an annotation. A hybrid literal is an annotated
hybrid basic formula F : μ (positive annotated hybrid basic formula or positive
hybrid literal) or the negation of an annotated hybrid basic formula not (F : μ)
(negative annotated hybrid basic formula or negative hybrid literal).

Definition 1 (Rules). A normal hybrid probabilistic rule (nh-rule) is an ex-
pression of the form

A : μ ← F1 : μ1, . . . , Fn : μn, not (G1 : μn+1), . . . , not (Gm : μn+m)
where A is an atom, F1, . . . , Fn, G1, . . . , Gm are hybrid basic formulae, and μ, μi

(1 ≤ i ≤ m + n) are annotations.
A hybrid probabilistic rule (h-rule) is an nh-rule where m = 0—i.e., there are

no negative hybrid literals.

The intuitive meaning of an nh-rule, in Definition 1, is that, if for each Fi : μi,
the probability interval of Fi is at least μi and for each not (Gj : μj), it is not
provable that the probability interval of Gj is at least μj , then the probability
interval of A is μ.

Definition 2 (Programs). A normal hybrid probabilistic program over S (nh-
program) is a pair P = 〈R, τ〉, where R is a finite set of nh-rules with p-strategies
from S, and τ is a mapping τ : BL → Sdisj . A hybrid probabilistic program (h-
program) is an nh-program where all the rules are h-rules.

The mapping τ in the above definition associates to each atomic hybrid basic for-
mula A a disjunctive p-strategy that will be employed to combine the probability
intervals obtained from different rules having A in their heads. An nh-program
is ground if no variables appear in any of its rules.

Example 1 ([22]). Consider an insurance company which determines the pre-
mium categories, by calculating the risk factor according to a genetic test for
cancer and the family history for this disease. Assume that customers who have
a family history of the disease have a probability of developing cancer with at
least 92%. The insurance company will assign high premiums to the customers
who have family history of the disease and tested positive as long as their risk
conditions are unchanged. Risk conditions can be changed by taking specific
medications. This situation can be represented by the following nh-rules:

risk(X) : [0.9, 1] ← (test(X) ∧pc history(X)) : [0.60, 0.75],
not changeRisk(X)[0.8, 1]

risk(X) : [0, 0.1] ← (test(X) ∧pc history(X)) : [0.60, 0.75],
changeRisk(X) : [0.8, 1]

changeRisk(X) : [0.9, 1] ← medicine(X, Med) : [0.65, 1]
highPremium(X) : [1, 1] ← risk(X) : [0.9, 1]
lowPremium(X) : [1, 1] ← risk(X) : [0, 0.1]
test(sam) : [0.92, 1] ←
history(sam) : [0.95, 1] ←
medicine(sam, medication) : [0.98, 1] ←
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and the mapping τ assigns ncd to risk(sam) and an arbitrary disjunctive p-
strategy [5,21] to the other hybrid basic formulae. The ncd denotes the disjunc-
tive negative correlation p-strategy, which is defined as: cncd([a1, b1], [a2, b2]) =
[min(1, a1 + a2), min(1, b1 + b2)]. The first nh-rule asserts that the risk factor
is at least 90% whenever the cancer genetic test for a customer is positive
and that customer has a family history of cancer with probability between
60% and 75%, and it is not provable that his risk conditions have changed
with probability at least 80%. Observe that test and history events are con-
joined according to the positive correlation p-strategy (denoted by ∧pc) where
cpcc([a1, b1], [a2, b2]) = [min(a1, a2), min(b1, b2)]. The second rule says that the
risk factor is at most 10% whenever the customer risk conditions are changed,
even though the person tested positive and have a family history of the disease
with probability between 60% and 75%. The third nh-rule describes the change
of the risk conditions of a customer with probability at least 90% if a medication
for the disease becomes available with probability at least 65%. The fourth and
fifth nh-rules assert that definite high premium and low premium are considered
whenever the probability of risk factors are at least 90% and at most 10% re-
spectively. The last three nh-rules represent the facts available about a specific
customer named sam.

2.3 Satisfaction and Models

In this subsection, we review the declarative semantics of nh-programs [22]. The
notion of a probabilistic model (p-model) is based on hybrid formula functions
defined below.

Definition 3. A hybrid formula function is a mapping h : bfS(BL) → C[0, 1]
that satisfies the following conditions:

• Commutativity: h(G1 ∗ρ G2) = h(G2 ∗ρ G1), ∗ ∈ {∧, ∨}, ρ ∈ S

• Composition: cρ(h(G1), h(G2)) ≤t h(G1 ∗ρ G2), ∗ ∈ {∧, ∨}, ρ ∈ S

• Decomposition. For any hybrid basic formula F , ρ ∈ S, and G ∈ bfS(BL):
mdρ(h(F ∗ρ G)) ≤t h(F ).

The notion of truth order can be extended to hybrid formula functions. Given
hybrid formula functions h1 and h2, we say (h1 ≤t h2) ⇔ (∀F ∈ bfS(BL) :
h1(F ) ≤t h2(F )). The set of all hybrid formula functions, HFF , and the truth
order ≤t form a complete lattice. The meet ⊗t and the join ⊕t operations are
defined respectively as: for all F ∈ bfS(BL), (h1 ⊗t h2)(F ) = h1(F ) ⊗t h2(F )
and (h1 ⊕t h2)(F ) = h1(F ) ⊕t h2(F ). We say that a probabilistic interpretation
(p-interpretation) of an nh-program P is a hybrid formula function.

Definition 4 (Probabilistic Satisfaction). Let P = 〈R, τ〉 be a ground nh-
program, h be a p-interpretation, and
r ≡ A : μ ← F1 : μ1, . . . , Fn : μn, not (G1 : β1), . . . , not (Gm : βm) ∈ R. Then

• h satisfies Fi : μi (denoted by h |= Fi : μi) iff μi ≤t h(Fi).
• h satisfies not (Gj : βj) (denoted by h |= not (Gj : βj)) iff βj �t h(Gj).
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• h satisfies Body ≡ F1 : μ1, . . . , Fn : μn, not (G1 : β1), . . . , not (Gm : βm)
(denoted by h |= Body) iff ∀(1 ≤ i ≤ n), h |= Fi : μi and ∀(1 ≤ j ≤ m), h |=
not (Gj : βj).

• h satisfies A : μ ← Body iff h |= A : μ or h does not satisfy Body.
• h satisfies P iff h satisfies every nh-rule in R and for every atomic formula
A ∈ bfS(BL), cτ(A){{μ|A : μ ← Body ∈ R and h |= Body}} ≤t h(A).

Definition 5 (Models). Let P be an nh-program. A probabilistic model (p-
model) of P is a probabilistic interpretation of P that satisfies P .

Proposition 1. Let P be an h-program. hP = ⊗t{h|h is a p-model of P } is
the least p-model of P .

Associated with each h-program P , is an operator, TP , called the fixpoint op-
erator, which maps probabilistic interpretations to probabilistic interpretations.

Definition 6. Let P = 〈R, τ〉 be a ground h-program and h be a total probabilis-
tic interpretation. The fixpoint operator TP is a mapping TP : HFF → HFF
which is defined as follows:

1. if A is an atom, TP (h)(A) = cτ(A) MA where MA = {{μ|A : μ ← Body ∈ R
such that h |= Body}} and MA �= ∅ . If MA = ∅, then TP (h)(A) = [0, 0]

2. TP (h)(G1 ∧ρ G2) = cρ(TP (h)(G1), TP (h)(G2)) where (G1 ∧ρ G2) ∈ bfS(BL)
3. TP (h)(G1∨ρ′G2) = cρ′(TP (h)(G1), TP (h)(G2)) where (G1∨ρ′G2) ∈ bfS(BL).

Proposition 2. Let P be an h-program. Then, hP = lfp(TP ).

3 Stable Probabilistic Model Semantics

In this section we introduce the notion of stable probabilistic models (sp-models),
which extends the notion of stable models for classical logic programming [10].
The semantics is defined in two steps. First, we guess a p-model h for a certain
nh-program P , then we define the notion of the probabilistic reduct of P with
respect to h—which is an h-program. Second, we determine whether h is a stable
p-model for P or not by employing the fixpoint operator of the probabilistic
reduct to verify whether h is its least p-model. It must be noted that every
h-program has a unique least p-model [21].

Definition 7 (Probabilistic Reduct). Let P = 〈R, τ〉 be a ground nh-program
and h be a probabilistic interpretation. The probabilistic reduct P h of P w.r.t. h
is P h = 〈Rh, τ〉 where:

Rh =

⎧
⎨

⎩
A : μ ← F1 : μ1, . . . , Fn : μn

A : μ ← F1 : μ1, . . . , Fn : μn,
not (G1 : β1), . . . , not (Gm : βm) ∈ R and

∀(1 ≤ j ≤ m), βj �t h(Gj)

⎫
⎬

⎭
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The probabilistic reduct P h is an h-program. For any not (Gj : βj) in the body
of r ∈ R with βj �t h(Gj) is simply satisfied by h, and not (Gj : βj) is removed
from the body of r. If βj ≤t h(Gj) then the body of r is not satisfied and r is
trivially ignored.

Definition 8 (Stable Probabilistic Model). A probabilistic interpretation h
is a stable p-model of an nh-program P if h is the least p-model of P h.

Example 2. It is easy to verify that the only stable p-model of the program in
Example 1 is given by:

h(risk(sam)) = [0, 0.1] h(changeRisk(sam)) = [0.9, 1]
h(highPremium(sam)) = [0, 0] h(lowPremium(sam)) = [1, 1]
h(test(sam)) = [0.92, 1] h(history(sam)) = [0.95, 1]
h(medicine(sam, medication)) = [0.98, 1] h(test(sam) ∧pc history(sam)) = [0.92, 1]

Example 3. Consider the following nh-program P = 〈R, τ〉 where R is

a : [0.89, 0.91] ← not (b : [0.3, 0.4])
b : [0.55, 0.60] ← not (a : [0.7, 0.75])
c : [0.2, 0.3] ← d : [0.1, 0.15]
d : [0.1, 0.2] ← not (e : [0.1, 0.3])

and τ(a) = τ(b) = τ(c) = τ(d) = π where π is any arbitrary disjunctive p-
strategy. This nh-program has two stable p-models h1 and h2 where h1(a) =
[0.89, 0.91], h1(b) = [0, 0], h1(c) = [0.2, 0.3], h1(d) = [0.1, 0.2], h1(e) = [0, 0] and
h2(a) = [0, 0], h2(b) = [0.55, 0.60], h2(c) = [0.2, 0.3], h2(d) = [0.1, 0.2], h2(e) =
[0, 0]. Since, for example, h1 can be verified as a stable p-model because the
probabilistic reduct of P w.r.t. h1 contains the h-rules:

a : [0.89, 0.91] ←
c : [0.2, 0.3] ← d : [0.1, 0.15]
d : [0.1, 0.2] ←

and lfp(TP h1 ) = h1.

Theorem 1. Every h-program P has a unique stable p-model h iff h is the least
p-model of P .

Let us show that the stable probabilistic model semantics generalizes the stable
model semantics of normal logic programs [10]. A normal logic program P can
be represented as an nh-program P ′ = 〈R, τ〉 where each normal rule

a ← b1, . . . , bn, not c1, . . . , not cm ∈ P

can be encoded, in R, as an nh-rule of the form

a : [1, 1] ← b1 : [1, 1], . . . , bn : [1, 1], not (c1 : [1, 1]), . . . , not (cm : [1, 1])

where a, b1, . . . , bn, c1, . . . , cm are atomic hybrid basic formulae and [1, 1] rep-
resents the truth value true. τ is any arbitrary assignment of disjunctive p-
strategies. We call the class of nh-programs that consists only of nh-rules of the
above form as NHPP1.



150 E. Saad

Proposition 3. Let P be a normal logic program. Then S′ is a stable model
of P iff h is a stable p-model of P ′ ∈ NHPP1 that corresponds to P where
h(a) = [1, 1] iff a ∈ S′ and h(b) = [0, 0] iff b ∈ BL \ S′.

4 An Algorithm for Computing Stable P-Models

In this section, we develop an algorithm for computing the stable p-models for
an nh-program, which is based on SMODELS algorithm [17] for computing the
stable model semantics for normal logic programs. The algorithm we develop
constructs a stable p-model incrementally. It takes a ground nh-program P and a
partial hybrid formula function (partial p-interpretation) h as inputs and returns
true if h can be extended to a stable p-model (which is a total hybrid formula
function) for P . Otherwise, it returns false. In the following we provide definitions
and notions that we use throughout the rest of the paper. Let h be a probabilistic
interpretation, then dom(h) ⊆ bfS(BL) denotes the domain of h (dom(h) �
bfS(BL) if h is a partial probabilistic interpretation). We use negdom(h) to
denote the set {F | F ∈ dom(h), h(F ) = [0, 0]}. We also define posdom(h) =
dom(h)\negdom(h). Given a hybrid formula function h, Pos(h) and Neg(h)
denote the following mappings:

– Pos(h)(F ) = h(F ) ∀F ∈ dom(h) such that h(F ) �= [0, 0].
– Neg(h)(F ) = h(F ) ∀F ∈ dom(h) such that h(F ) = [0, 0].

We will describe each hybrid formula function using its graph. In other words, if
h is a hybrid formula function, then h can be represented as the set {(A, μ)|A ∈
dom(h) and μ = h(A)}. More conveniently, we use A : μ to denote (A, μ).
Thus, we will frequently refer to h as a set of annotated hybrid basic formu-
lae. Furthermore, if P is a ground nh-program, we consider bfS(BL) as the
set of all distinct ground hybrid basic formulae that appear in P , denoted by
Formulae(P ). If h is a partial or total hybrid formula function, then dom(h) =
posdom(h)∪negdom(h) and h = Pos(h)∪Neg(h) viewing h as a set of annotated
hybrid basic formulae.

Definition 9. A set of annotated hybrid basic formulae h (a hybrid formula
function) is said to cover a set of annotated hybrid basic formulae g (a hybrid
formula function) if dom(g) ⊆ dom(h) and ∀ F ∈ dom(g), g(F ) ≤t h(F ).

Definition 10. A set of annotated hybrid basic formulae g (a hybrid formula
function) is said to agree with a set of annotated hybrid basic formulae h (a
hybrid formula function) if the following conditions hold:

– posdom(h) ⊆ posdom(g),
– negdom(h) ⊆ negdom(g), and
– ∀ F ∈ dom(h), h(F ) ≤t g(F ).

Definition 10 is closely related to the definition of the well-founded order defined
in [22].
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Definition 11 ([22]). Let P be an nh-program, HP be the set of all partial
hybrid formula functions of P , and h1, h2 ∈ HP . We define the following partial
order (≤w) on HP : h1 ≤w h2 iff posdom(h1) ⊆ posdom(h2), negdom(h1) ⊆
negdom(h2), and ∀ F ∈ dom(h1), h1(F ) ≤t h2(F ).

The notion of cover can also be applied to sets of hybrid basic formulae. If h
and g are two hybrid formula functions, then dom(h) covers dom(g) if dom(g) ⊆
dom(h). Moreover, a hybrid basic formula F is said to be covered by dom(h) if
F ∈ dom(h).

Definition 12. Let P = 〈R, τ〉 be a ground nh-program and h be a total hybrid
formula function, then we define the operator FP as a mapping
FP : HFF → HFF where FP (h) = lfp(TP h).

Lemma 1. Let P = 〈R, τ〉 be a ground nh-program and h be a total hybrid
formula function, then h is a stable p-model of P iff FP (h) = h.

Lemma 2. The function FP is anti-monotone with respect to ≤t.

Now, we describe an algorithm for computing the stable p-model semantics for
an nh-program along with the auxiliary functions. In addition, we present the
necessary conditions that these auxiliary functions have to satisfy to guaran-
tee the soundness and completeness of stable p-model semantics computation
algorithm. Figure 1 describes a decision procedure for determining whether an
nh-program P has a stable p-model or not. The function spmodels(P, h) com-
putes one stable p-model for P , however, it can be modified to compute all the
stable p-models of P . It returns true if there is a stable p-model for P agreeing
with the set of annotated hybrid basic formulae h (a hybrid formula function),
otherwise it returns false. It takes a ground nh-program P and a partial hybrid
formula function (a set of annotated hybrid basic formulae) h as an input. The
set h represents the partially computed stable p-model.

The function spmodels(P, h) calls two functions: pexpand(P, h) and
pconflict(P, h). The function pexpand(P, h) expands the set of annotated hybrid
basic formulae h by the functions PAtleast(P, h) and PAtmost(P, h), whereas
the function pconflict(P, h) discovers the conflicts. The function pconflict(P, h)
determines whether h is a hybrid formula function (partial or total) that could
be extended to a stable p-model of P , by checking that each hybrid basic formula
defined in h is assigned exactly one probability interval and h satisfies P . To guar-
antee the soundness and completeness of spmodels(P, h) we present the condi-
tions E1-E2 and C1-C2 required for designing pexpand(P, h) and pconflict(P, h).
Let h′ = pexpand(P, h) we assume that:

E1: posdom(h) ⊆ posdom(h′), negdom(h) ⊆ negdom(h′), and for allF ∈ dom(h),
h(F ) ≤t h′(F ), and

E2: every stable p-model of P that agrees with h agrees also with h′.

In addition, we assume that pconflict(P, h) satisfies the following conditions
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C1: if dom(h) covers Formulae(P ) and there is no stable p-model that agrees
with h, then pconflict(P, h) returns true, and

C2: if pconflict(P, h) returns true, then there is no stable p-model of P that agrees
with h.

The function spmodels(P, h) starts by expanding the partially computed sta-
ble p-model h (line 2). Condition E1 ensures that h is really extended and E2
guarantees that no stable p-model is lost. Then a test for checking a conflict is
performed. Condition C1 ensures that if Formulae(P ) is covered and there is a
conflict, the conflict is detected (lines 3 and 4). Condition C2 guarantee that if
there is a conflict, then there is no stable p-model agreeing with h′. If there is no
conflict (lines 5 and 6) and dom(h′) covers Formulae(P ), then spmodels(P, h)
returns true with h′ is a stable p-model of P . If there is x ∈ Formulae(P )

1: function spmodels(P,h)
2: h′ := pexpand(P,h)
3: if pconflict(P, h′) then
4: return false
5: else if dom(h′) covers Formulae(P ) then
6: return true
7: else
8: take some x ∈ Formulae(P ) not covered by dom(h′)
9: if spmodels(P,h′ ∪ {x : [0, 0]}) then

10: return true
11: else
12: take x : [a, b] ∈ lfp(F 2

P ) or gfp(F 2
P )

13: return spmodels(P,h′ ∪ {x : [a, b]})
14: end if
15: end if

1: function pexpand(P,h)
2: repeat
3: h′ := h
4: h := PAtleast(P,h)
5: h := h ∪ {F : [0, 0]|F ∈ Formulae(P ) and F : [0, 0] ∈ PAtmost(P,h)}
6: until h′ = h
7: return h

1: function pconflict(P, h)
2: { Precondition: h = expand(P,h)}
3: if posdom(h) ∩ negdom(h) �= ∅ then
4: return true
5: else if dom(h) covers Formulae(P ) and h does not satisfy P then
6: return true
7: else
8: return false
9: end if

Fig. 1. A decision procedure for the stable p-model semantics
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not covered by dom(h′) (line 8), then either x : [0, 0] belongs to the partially
computed stable p-model (line 9) or there is some constant annotation [a, b]
such that x : [a, b], with [a, b] �= [0, 0], belongs to the partially computed sta-
ble p-model (line 12 and 13). The two cases are handled by backtracking. In
the first case we extend h′ by {x : [0, 0]}, but if spmodels(P, h′ ∪ {x : [0, 0]})
returns false, then x : [0, 0] does not belong to the computed stable p-model.
Hence, spmodels(P, h) returns what spmodels(P, h′ ∪{x : [a, b]}) returns, where
x : [a, b] ∈ lfp(F 2

P ) or gfp(F 2
P ). Since FP is antimonotone, F 2

P is monotone
and its least fixpoint and greatest fixpoint limit the fixpoints of FP [12]. There-
fore, because of the possibility of having multiple nh-rules in P with x in their
heads with different annotations, we select [a, b] that is guaranteed to be in
the computed stable p-model. This is achieved by selecting x : [a, b] such that
x : [a, b] ∈ lfp(F 2

P ) or x : [a, b] ∈ gfp(F 2
P ). This is because any stable p-model is

a fixpoint of the operator FP . The following theorem proves the correctness of
decision procedure described in Figure 1.

Theorem 2. Let P be an nh-program and h be a hybrid formula function. Then,
there is a stable p-model of P agreeing with h if and only if spmodels(P, h)
returns true.

Proof. The proof of this theorem is similar to the proof of a correspond-
ing result presented in [17]. The proof proceeds as follows. Let NC(P, h) =
Formulae(P )\dom(h) be the set of hybrid basic formulae that is in Formulae(P )
but not covered by dom(h). We prove the theorem by induction on NC(P, h).
Assume that NC(P, h) = ∅ which implies that dom(h) covers Formulae(P ).
Then, h′ = pexpand(P, h) and by E1 dom(h′) covers Formulae(P ) as well and
spmodels(P, h) returns true if and only if pconflict(P, h′) returns false. By E2,
C1, and C2 pconflict(P, h′) returns false exactly when there is a stable p-model
agreeing with h.

Assume that NC(P, h) �= ∅. If pconflict(P, h′) returns true, then
spmodels(P, h) returns false. Hence, there is no stable p-model agreeing with
h by the conditions E2 and C2. However, if pconflict(P, h′) returns false and
dom(h′) covers Formulae(P ), then spmodels(P, h) returns true. Therefore, there
is a stable p-model that agrees with h due to the conditions E2 and C1. Other-
wise, since spmodels(P, h) returns true and dom(h′) still not covers Formulae(P )
and since the size of NC(P, h′ ∪ {x.[0, 0]}) = NC(P, h′ ∪{x.[a, b]}) ⊂ NC(P, h′)
then by inductive hypothesis together with E1 and E2 we have that that either
spmodels(P, h′∪{x.[0, 0]}) or spmodels(P, h′∪{x.[a, b]}) returns true if and only
if there is a stable p-model agreeing with h. �

5 PAtleast(P,h) and PAtmost(P,h)

In this subsection we provide foundations for computing the functions
PAtleast(P, h) and PAtmost(P, h). The function PAtleast(P, h) enlarges the
partially computed stable p-model h by adding annotated hybrid basic formulae
and/or monotonically increasing the annotations associated to the hybrid basic
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formulae that already exist in the partially computed stable p-model h. The
function PAtleast(P, h) computes the least fixpoint of the operator DP , which
is a variation of probabilistic well-founded operator WP defined in [22]. We say
that an nh-program globally satisfies F : ν (not (G : β)) if the nh-program as a
whole provides evidence for satisfying F : ν (not (G : β)).

Definition 13 (Global Satisfaction). Let P be an nh-program and F : ν (not
(G : β)) be a positive (negative) hybrid literal. We say that F : ν (not (G : β)) is
globally satisfied by P if every minimal probabilistic interpretation that satisfies
P also satisfies F : ν (not (G : β)).

Let P = 〈R, τ〉 be an nh-program and g be a stable p-model of P agreeing with
the set of annotated hybrid basic formulae h and HP is the set of all partial
p-interpretations of P . Then we define PAtleast(P, h) to be the least fixpoint of
the operator DP : HP → HP defined as follows:

1. For each atom A we have that DP (h)(A) = cτ(A) MA, where MA �= ∅
contains the probability intervals μ obtained from the nh-rules A : μ ←
Body ∈ R, such that h satisfies Body, and for each negative hybrid literal
not (Gj : βj) in Body we have that P globally satisfies not (Gj : βj).

2. For each atom A we have that DP (h)(A) = [0, 0] if for each nh-rule r ∈ R
such that A appears in its head, h does not satisfy some hybrid literal F : ν
or not (G : β) in the body of r and P does not globally satisfy F : ν.

3. DP (h)(G1∧ρG2) = cρ(DP (h)(G1), DP (h)(G2)) where (G1∧ρG2) ∈ bfS(BL)
and for each atom A in (G1 ∧ρ G2), A is defined in DP (h).

4. DP (h)(G1∨ρ′ G2)=cρ′(DP (h)(G1),DP (h)(G2))where(G1∨ρ′ G2) ∈ bfS(BL)
and for each atom A in (G1 ∨ρ′ G2),A is defined in DP (h).

Example 4. Consider the following nh-program P

a : [0.9, 1] ← b : [0.7, 0.8], not (c : [0.5, 0.55])
d : [0.9, 1] ← not (a : [0.9, 1])
e : [0.2, 0.35] ← not (b : [0.7, 0.8])

We will compute h = PAtleast(P, ∅). Since b and c do not appear in heads of
any nh-rules in P , b : [0, 0] ∈ h and c : [0, 0] ∈ h by 2 in the above definition. In
addition, a : [0, 0] ∈ h by 2 as well since the first nh-rule is not satisfied due to
b : [0.7, 0.8] in the nh-rule because [0.7, 0.8] �t [0, 0]. Obviously, d : [0.9, 1] and
e : [0.2, 0.35] are in h by 1 in the above definition. Hence, PAtleast(P, ∅) = {a :
[0, 0], b : [0, 0]c : [0, 0], d : [0.9, 1], e : [0.2, 0.35]} which is the least fixpoint of DP .

Lemma 3. The function PAtleast(P, h) is monotonic with respect to ≤w in its
second argument.

Note that DP (h) is a variation of the probabilistic well-founded operator WP de-
fined in [22]. This implies that PAtleast(P, h) = lfp(DP (h)) = lfp(WP ). There-
fore, according to Theorem 4 of [22], g is a stable p-model of P if g is a fixpoint of
WP , and hence a fixpoint of DP which in turn a fixpoint of PAtleast(P, h). This
implies that g is a stable p-model of P iff g = WP (g) = DP (g) = PAtleast(P, g).



Towards the Computation of Stable Probabilistic Model Semantics 155

Proposition 4. If g is a stable p-model of an nh-program P that agrees with
the partial hybrid formula function h, then g agrees with PAtleast(P, h).

Furthermore, we can bound a stable p-model from above by defining the function
PAtmost(P, h). The function PAtmost(P, h) computes the least fixpoint of P h,
the probabilistic reduct of P with respect to h (defined below). The idea is to
extend the set of annotated hybrid basic formulae h which corresponds to the
partially computed stable p-model by adding annotated hybrid basic formulae
of the form x : [0, 0] without violating condition E2. We can add x : [0, 0] to the
set h if x : [0, 0] ∈ PAtmost(P, h) = lfp(TP h). However, a different notion of
probabilistic reduct from the one defined in Definition 7 is needed in this context
as defined below.

Definition 14. Let P = 〈R, τ〉 be a ground nh-program, h be a partial hybrid
formula function, and

r ≡ A : μ ← F1 : μ1, . . . , Fn : μn, not (G1 : β1), . . . , not (Gm : βm) ∈ R.

Then the probabilistic reduct P h of P with respect to h is P h = 〈Rh, τ〉 where
Rh is the set of h-rules obtained from R by:

– deleting every nh-rule r in R where there is a not (Gj : βj) in the body of r
such that βj ≤t h(Gj),

– deleting every not (Gk : βk) from the body of the remaining nh-rules.

The notion of reduct in the above definition is a generalization of the notion
of reduct in Definition 7, to cope with partial hybrid formula functions. For
total hybrid formula functions both notions of reduct coincides. In addition,
PAtmost(P, h) is a total hybrid formula function. Consequently, if g is a stable
p-model of an nh-program P , then g = PAtmost(P, g). It is worth noting that,
from the definition of the probabilistic reduct with respect to partial hybrid
formula function h, h can be extended to a total hybrid formula function and
we still get the same probabilistic reduct. This is achieved by adding to h the
annotated hybrid basic formulae F : [0, 0] such that F ∈ bfS(BL)\dom(h). This
means, if h1 ≤w h2, then h1 ≤t h2 as well, after extending both h1 and h2 to total
hybrid formula functions by adding F : [0, 0] such that F ∈ bfS(BL) \ dom(h1)
to h1 and F : [0, 0] such that F ∈ bfS(BL) \ dom(h2) to h2 respectively.

Lemma 4. The function PAtmost(P, h) is anti-monotone in its second argu-
ment.

The above lemma shows that the function PAtmost(P, h) is anti-monotone with
respect to ≤t. This is because given h1 ≤w h2, then we also get h1 ≤t h2, which
implies that PAtmost(P, h2) ≤t PAtmost(P, h1).

Proposition 5. Let g be a stable p-model of P that agrees with h. Then g ≤t

PAtmost(P, h).

Corollary 1. The function pexpand(P, h) satisfies conditions E1 and E2
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Corollary 2. The function conflict(P, h) satisfies conditions C2

It follows that pexpand(P, h) satisfies conditions E1 and E2. The function
conflict(P, h) obviously fulfills C2, and the next proposition shows that C1 also
holds.

Proposition 6. If h = pexpand(P, h), dom(h) covers Formulae(P ), and
posdom(h) ∩ negdom(h) = ∅ and h satisfies P , then h is a stable p-model of P .

Example 5. Consider the following nh-program P

a : [0.45, 0.55] ← c : [1, 1], not (b : [0.7, 0.95])
b : [0.7, 0.95] ← c : [1, 1], not (a : [0.45, 0.55])
c : [1, 1] ← not (a : [0.45, 0.55])

We use the decision procedure spmodels to determine whether P has a stable
p-model or not and return it if exist. The lfp(F 2

P ) is the empty set and gfp(F 2
P ) is

{a : [0.45, 0.55], b : [0.7.0.95], c : [1, 1]}.

Firstpexpand(P, ∅) returns∅ andpconflict(P, ∅) returns false. SinceFormulae(P )
={a, b, c} is not covered by ∅, we choose either a, b, or c in order to proceed. Let us
take b, then spmodels(P, {b : [0, 0]}) is executed. pexpand(P, {b : [0, 0]}) returns
{b : [0, 0]}. Then pconflict(P, {b : [0, 0]}) returns false. Since Formulae(P ) is
not covered by {b}, we choose either a or c in order to proceed. Let us take a,
then

spmodels(P, {a : [0, 0], b : [0, 0]})

is executed. pexpand(P, {a : [0, 0], b : [0, 0]}) returns

{a : [0, 0], b : [0, 0], c : [1, 1], b : [0.7, 0.95], a : [0.45, 0.55]}.

Then pconflict(P, {a : [0, 0], b : [0, 0], c : [1, 1], b : [0.7, 0.95], a : [0.45, 0.55]})
returns true. Then we backtrack and execute spmodels(P, {a : [0.45, 0.55], b :
[0, 0]}).

pexpand(P, {a : [0.45, 0.55], b : [0, 0]}) returns {a : [0.45, 0.55], b : [0, 0], a : [0, 0],
c.[0, 0]}.

Then pconflict(P, {a : [0.45, 0.55], b : [0, 0], a : [0, 0], c.[0, 0]}) returns true. Fi-
nally, we backtrack and execute spmodels(P, {b : [0.7, 0.95]}). pexpand(P, {b :
[0.7, 0.95]}) returns {b : [0.7, 0.95]}. Then pconflict(P, {b : [0.7, 0.95]}) returns
false. Since Formulae(P ) is not covered by {b}, we choose either a or c in order
to proceed. Let us take a, then spmodels(P, {a : [0, 0], b : [0.7, 0.95]}) is executed.
pexpand(P, {a : [0, 0], b : [0.7, 0.95]}) returns {a : [0, 0], b : [0.7, 0.95], c : [1, 1]}.
Then

pconflict(P, {a : [0, 0], b : [0.7, 0.95], c : [1, 1]})

returns false and spmodels(P, {a : [0, 0], b : [0.7, 0.95]}) returns true as well as
spmodels(P, {b : [0.7, 0.95]}) and spmodels(P, ∅) having {a : [0, 0], b : [0.7, 0.95],
c : [1, 1]} as a stable p-model of P .
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6 Conclusions

In this work, we have proposed an algorithm for computing the stable proba-
bilistic model semantics [22]. The proposed algorithm is a modification of the
decision procedure of SMODELS [17], a state-of-the-art system for computing
the stable model semantics of normal logic programs. We have described the
modified algorithm, along with its auxiliary functions, and we have provided the
necessary conditions that these auxiliary functions have to satisfy to guarantee
the soundness and completeness of the proposed algorithm. We have presented
formal definitions and algorithms for these auxiliary functions and shown that
they satisfy the necessary conditions for the soundness and completeness of the
proposed algorithm.

As future work, we plan to provide an implementation of these algorithms,
and investigate applications of the resulting framework in the context of knowl-
edge representation and reasoning in presence of uncertainty (e.g., probabilistic
planning).
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