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Abstract. We report a polynomial time SAT problem instance, the
Blocked SAT problem. A blocked clause set, an instance of the Blocked
SAT problem, contains only blocked clauses. A close is blocked (for res-
olution) if it has a literal on which no resolution is possible in the clause
set. We know from work of O. Kullmann that a blocked clause can be
added or deleted from a clause set without changing its satisfiability.
Hence, any blocked clause set is satisfiable, but it is not clear how to
find a satisfying assignment for it. We introduce the Blocked SAT Solver
algorithm, which provides a model for Blocked SAT problems in linear
time, if we know at least one blocked literal per clause. To collect these
information polynomial time is needed in general. We show that in case
of 3-SAT we can collect these information in linear time. This means that
the Blocked 3-SAT problem is a linear time problem. We also discuss how
to use blocked clauses if the whole clause set is not blocked.

1 Introduction

Propositional Satisfiability is the problem of determining, for a formula of the
propositional calculus, if there is an assignment of truth values to its variables
for which that formula evaluates the true. By SAT we mean the problem of
propositional satisfiability for formulae in conjunctive normal form (CNF).

SAT is the first, and one of the simplest, of the many problems which have been
shown to be NP-complete [Coo71]. It is dual of propositional theorem proving,
and many practical NP-hard problems may be transformed efficiently to SAT.
Thus, a good SAT algorithm would likely have considerable utility. It seems
improbable that a polynomial time algorithm will be found for the general SAT
problem but we know that there are restricted SAT problems that can be solved
in polynomial time. So a ”good” SAT algorithm should check the input SAT
instance first whether it is an instance of such a restricted SAT problem. In this
work we introduce the Blocked SAT problem, which is solvable in polynomial
time. We list some polynomial time solvable restricted SAT problems:
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1. The restriction of SAT to instances where all clauses have length k is
denoted by k-SAT. Of special interest are 2-SAT and 3-SAT : 3 is the smallest
value of k for which k-SAT is NP-complete, while 2-SAT is solvable in linear
time [EIS76, APT79].

2. Horn SAT is the restriction to instances where each clause has at most
one un-negated variable. Horn SAT is solvable in linear time [DG84, Scu90], as
are a number of generalizations such as renamable Horn SAT [Lew78, Asp80],
extended Horn SAT [CH91] and q-Horn SAT [BHS94, BCH+94].

3. The hierarchy of tractable satisfiability problems [DE92], which is based on
Horn SAT and 2-SAT, is solvable in polynomial time. An instance on the k level
of the hierarchy is solvable in O(nk + 1) time.

4. Nested SAT, in which there is a linear ordering on the variables and no two
clauses overlap with respect to the interval defined by the variables they contain
[Knu90].

5. SAT in which no variable appears more than twice. All such problems are
satisfiable if they contain no unit clauses [Tov84].

6. r,r-SAT, where r,s-SAT is the class of problems in which every clause
has exactly r literals and every variable has at most s occurrences. All r,r-SAT
problems are satisfiable in polynomial time [Tov84].

7. A formula is SLUR (Single Lookahead Unit Resolution) solvable if, for
all possible sequences of selected variables, algorithm SLUR does not give up.
Algorithm SLUR is a nondeterministic algorithm based on unit propagation. It
eventually gives up the search if it starts with, or creates, an unsatisfiable formula
with no unit clauses. The class of SLUR solvable formulae was developed as a
generalization including Horn SAT, renamable Horn SAT, extended Horn SAT,
and the class of CC-balanced formulae [SAF+95].

8. Resolution-Free SAT Problem, where every resolution results in a tautolo-
gous clause, is solvable in linear time [Kus05].

The Blocked SAT problem is also a restriction of SAT to instances where each
clause of the clause set is blocked, i.e., we have at least one blocked literal in
each clause. It is a generalization of the Resolution-Free SAT problem, where all
literals are blocked.

A clause is blocked in a clause set if it has a literal on which no resolution
is possible in that clause set, i.e., it is blocked for resolution. The notion of
blocked clause was introduced by O. Kullmann in [Kul99a, Kul99b]. He studied
blocked clauses because we wanted to add new short clauses to the input clause
set to improve the worst case time complexity of his algorithm. He proved that
a blocked clause can be added or deleted from a clause set without changing its
satisfiability.

Based on that idea it is easy to show that any blocked clause set is satisfiable,
as if we remove all blocked clauses then we obtain the trivially satisfiable clause
set. But this process do not show how to find a model for blocked clause sets.

The Blocked SAT Solver algorithm provides a model for Blocked SAT prob-
lems in linear time, if we know at least one blocked literal per clauses. It uses
heavily the notion of sub-model [Kus02, Kus05].
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A sub-model is a partial assignment created, by definition, by the negation
of a resolution-mate. A resolution-mate is obtained from a clause, the generator
clause, by negating one of its literals, the generator literal.

The algorithm exploits the fact that if a sub-model is generated form a blocked
clause (generator clause) using one of its blocked literal as the generator one
(generator literal), then it is a model for those clauses in the set which contain
either positively or negatively the generator literal. Moreover, it satisfies from
the rest the ones which differ from it. (The clause A differs from the clause B if
it has a literal a, i.e., a ∈ A, which occurs in B negatively, i.e., a ∈ B.) Which
means it satisfies almost the whole clause set! Only those clauses are not satisfied
which do not contain the generator literal neither positively nor negatively and
do not differ from the generator clause. Here comes the trick. If we have such
a clause (no-occurrence clause), then the union of it and the generator clause
is a clause. This union will be our new generator clause. It contains an unused
blocked liter. This literal will our next generator literal (keeping also the older
ones). We generate a new sub-model from the generator clause and generator
literals which will satisfy all the clauses which was satisfied by the old one and
which satisfies also many more clauses. This process is called as the refinement
of the sub-model. After finitely many refinement steps the sub-model will satisfy
the whole clause set.

It is not necessary that from the beginning all clauses are blocked, but only
that the (confluent) reduction process of eliminating blocked clauses finally elim-
inates all clauses.

We also discuss how to collect the information whether a literal is blocked or
not. We show that in case of 3-SAT we can collect these information in linear
time by using cubic memory space.

We introduce the data structure called NLC, Number of Literal Combinations.
We create NLC by reading each clause only once. For every subset of every clause
we increase the corresponding counter in NLC by one. Afterwards we read again
the clause set and for every literal in every clause we calculate the number of
possible resolution partners minus the number of blocking clauses. For example
if the clause is {a, b, c} and the literal is a than this number is

NLC[a] − NLC[a, b] − NLC[a, c] + NLC[a, b, c].

If this number is zero then this literal is blocked in the input clause set.
In case of 3-SAT we need cubic memory space to store NLC. We read and

write it 7 times (3 times for one length subsets of the clause, 3 times for two
length subsets of the clause and 1 time for the clause itself) per clauses in the
first loop. In the second loop we read it 4 times per literal (see the example
above). Both steps are linear in the number of literals. This means, since the
Blocked SAT Solver is a linear time method if we know at least one blocked
literal per clauses, that the Blocked 3-SAT problem is a linear time problem.

An input clause set is rarely blocked but during the work of a general SAT
solver algorithm we may encounter a blocked clause set. Any general SAT solver
uses some simplification steps: resolution, unit-propagation, removing subsumed
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clauses, etc. The fewer clauses (or literals) are in a clause set the more likely that
it is blocked. This means that soon or later a general SAT solver encounters a
blocked clause set. In this case it is worth switching to the Blocked SAT Solver
algorithm since it is polynomial. The simplification steps may update the NLC
data structure which makes it easier to decide whether an immediate clause set
is blocked or not.

We also discuss how to use blocked clauses if the whole clause set is not
blocked. We introduce two lemmas, the Blocked Clear Clause Rule and the
Independent Blocked Clause Rule, to describe cases where the answer is true.

2 Definitions

We use the well known set based representation of SAT. The abbreviation ”iff”
means ”if and only if”.

Let V be a finite set of Boolean variables. The negation of a variable v is
denoted by v. Given a set U , we denote U := {u | u ∈ U} and call the negation
of the set U .

Literals are members of the set W := V ∪V . Positive literals are the members
of the set V . Negative literals are their negations. If w denotes a negative literal
v, then w denotes the positive literal v.

Clauses and assignments are finite sets of literals that do not contain any
literal together with its negation simultaneously. A clause is interpreted as a
disjunction of its literals. An assignment is interpreted as a conjunction of its
literals. A clause set is a finite set of clauses. A clause set is interpreted as a
conjunction of its clauses.

We use the following constants: n is the number of variable, and m is the
number of clauses in the input clause set.

If C is a clause and |C| = k, then we say that C is a k-clause. Special cases
are unit clauses or units which are 1-clauses, and clear or total clauses which are
n-clauses. Note that any unit clause is a clause and an assignment at the same
time. The clause set CC is the set of all clear clauses.

CC := {C | Clause(C) ∧ |C| = n}.

A clause C is subsumed by the clause set S, denoted by C ⊇∈ S, iff

C ⊇∈ S : ⇐⇒ Clause(C) ∧ ClauseSet(S) ∧ ∃
B∈S

B ⊆ C.

A clause C is entailed by the clause set S, denoted by C ⊇∈CC S, iff

C ⊇∈CC S : ⇐⇒ Clause(C) ∧ ClauseSet(S) ∧ ∀
D∈CC
C⊆D

∃
B∈S

B ⊆ D.

A clause C is independent in clause set S iff it is not entailed by S.
If A and B are clauses then we define the clause difference of them, denoted

by diff (A, B), as
diff (A, B) := A ∩ B.
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If diff (A, B) �= ∅ then we say that A differs from B.
Resolution can be performed on two clauses iff they differ only in one variable.

If resolution can be performed then the resolvent, denoted by Res (A, B), is

Res (A, B) := (A ∪ B) \ (diff (A, B) ∪ diff (B, A)).

If S is a clause set and A is an assignment, then we can do hyper-unit propa-
gation, for short HUP, by A on S, denoted by HUP(S, A), as follows:

HUP(S, A) := {C \ {A} | C ∈ S ∧ C ∩ A = ∅}.

A literal c ∈ C is blocked in the clause C and in the clause set S, denoted by
Blck(c, C, S), iff

Blck(c, C, S) : ⇐⇒ ∀
B∈S
c∈B

∃
b∈B
b�=c

b ∈ C,

A clause C is blocked in the clause set S, denoted by Blck(C, S), iff a blocked
literal exists in it. A clause set S is blocked, denoted by Blck(S), iff all clauses
in it are blocked.

If C is a clause and A is an assignment then we say that the sub-model
generated by C and A, denoted by sm(C, A), is

sm(C, A) =
{

(C \ A) ∪ A , ifC �= ∅;
∅ , otherwise.

A partial assignment I is a model for a clause set S, denoted by M(S, I), iff
HUP(S, I) is the empty clause set.

3 The Blocked SAT Problem

In this section we introduce the Blocked SAT problem which is a restriction of
SAT to instances where each clause of the clause set is blocked.

A clause is blocked in a clause set if it has a literal on which no resolution
is possible in that clause set. The notion of blocked clause was introduced in
[Kul99a, Kul99b]. A blocked clause can be added or deleted from a clause set
without changing its satisfiability. From this it is easy to show that any blocked
clause set is satisfiable, as if we remove all blocked clauses then we obtain the
trivially satisfiable clause set. But this process do not show how to find a model
for blocked clause sets.

Now we recall the formal definition of the blocked clause set:

Blck(S) : ⇐⇒ ∀
A∈S

∃
a∈A

∀
B∈S
a∈B

∃
b∈B
b�=a

b ∈ A.

Since the definition has 2 quantifiers on clauses and 2 quantifiers on literals, in
these clauses we need O(n2m2) time to decide whether the clause set is blocked.

We give three examples for blocked clause sets. Notation is explained below.
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1st 2nd 3rd
(+)+ x (-)+ x x + +(-)
x +(+) x(+)+ x +(-)+
(-)- x x -(-)x (+)- -
x -(-) x x -(+) (-)+ +

-(+)-
- -(+)

+ - + - - + + + + +
- + - x + - x - - -

In the example we used the literal matrix representation of clause sets where
rows corresponds to clauses and columns to variable. The symbol + means posi-
tive literal occurrence, - means negative literal occurrence and x means no literal
occurrence. Under each example we list all models for it. Blocked literals are in
brackets.

The Blocked SAT problem is a very restrictive subset of the general SAT
problem, but it can be solved in polynomial time. During the work of a general
SAT solver immediate blocked clause sets are frequent.

4 The Blocked SAT Solver Algorithm

In this section we introduce the blocked SAT Solver algorithm which solves the
Blocked SAT problem in polynomial time. To be more precise we present a linear
time version which uses O(4m) basic set operations. But this version assumes
that we already know about at least one blocked literal per clause. However, in
general, polynomial (O(n2m2)) time is needed to collect that information.

Algorithm 1 (Blocked SAT Solver)
BlockedSATSolver(S, Z)
input: clause set S that is non-empty and blocked,
output: assignment Z, a model for S.
1 START

2 (A, B) = (∅, ∅);
3 // A is the generator clause, B is the set of generator literals.
4 for each C ∈ S do

5 // If C and A differ then sm(A, B) satisfies C, see Lemma 1.
6 if (diff (A, C) = ∅) then

7 // Otherwise, C is a no-occurrence clause.
8 // We have to consider it.
9 A := A ∪ C;

10 // This is the new generator clause.
11 if (B ∩ C = ∅) then
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12 // In this case we have to refine B

13 // to gain C ∩ sm(A, B) �= ∅.
14 Let c ∈ C be a blocked literal inC, S;
15 B := B ∪ {c};
16 // This is the new set of generator literals.
17 fi
18 fi
19 od
20 Z := sm(A, B);
21 HALT

The main idea of the algorithm is the following. If the input clause set is
blocked then if we generate a sub-model from a blocked clause (generator clause,
in the algorithm variable A) and from a blocked literal (generator literal(s), in
the algorithm variable B) then we obtain a model for those clauses from the
clause set which contain the generator literal or the negation of it. But there
might be a clause (no-occurrence clause, in the algorithm variable C) which does
not contain the generator literal either positively or negatively. This means that
the union of the no-occurrence clause and the generator clause is a clause. This
clause will be our new generator clause. Since the no-occurrence clause is blocked
too, we can select a blocked literal from it and add to the generator literals.
We do this only if it is necessary, i.e., if the sub-model does not satisfies the
no-occurrence clause. The new sub-model is generated from the new generator
clause and from the new generator literals. This step is the refinement step.
One can show that this new sub-model is still a model for the clauses which are
satisfied by the old one (see the 2nd auxiliary lemma). Hence, we obtain a model
for the input clause set by performing refinement steps while we read its clauses
one after the other.

It is not necessary that from the beginning all clauses are blocked, but only
that the (confluent) reduction process of eliminating blocked clauses finally elim-
inates all clauses.

We see that this algorithm uses each clause only once and in an iteration it
does 4 basic set operations in the worst case.

First we give an example on how the Blocked SAT Solver algorithm works.
The variables S, C, A, c, B are the variables from the algorithm. Blocked literals
are in brackets in columns S and C. The abbreviation ”unch.” means unchanged.

S C A {c} B sm(A, B)
+(-)x x
(+)x + x
- x(-)x
x x -(+)

+(-)x x +-xx x-xx x-xx --xx

unch. (+)x + x +-+x +xxx +-xx +--x
unch. - x(-)x unch. unch. +--x
unch. x x -(+) unch. unch. +--x
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The input clause set, S, is non-empty and blocked. So the precondition is
fulfilled. We take the first clause and one of its blocked literal. We generate a
sub-model from them. This will be the base of the refinement. We read the next
clause, which is a no-occurrence clause. We refine the sub-model. We read the
next clause, but it is satisfied, so we do not refine the sub-model. The same is
true for the lest clause. The last sub-model as we expected is indeed a model for
the input clause set.

The following lemmas are needed to show that the Blocked SAT Solver al-
gorithm always finds a model for a blocked clause set. The first one states that
if we have a blocked clause set S and its subset G which contains only clauses
that do not differ form each other then there is an algorithm which constructs
B that has sm(

⋃
G, B) is a model for the clauses which differ from

⋃
G.

Lemma 1 (Auxiliary Lemma 1 for Blocked SAT Solver)
Assume S is a non-empty, blocked clause set. Assume G ⊆ S, G is non-empty
and for all E, F ∈ G we have diff (E, F ) = ∅. Assume A =

⋃
G. Assume B is a

clause constructed by the following piece of pseudo-code:
1 (B, i) := (∅, 1);

2 for each E ∈ G do
3 if (B ∩ E = ∅) then
4 Let ai ∈ E be a blocked literal inE, S;
5 (B, i) := (B ∪ {ai}, i + 1);
6 fi
7 od

Assume C ∈ S and diff (A, C) �= ∅. Then C ∩ sm(A, B) �= ∅.

Proof by Contradiction: Assume C ∩ sm(A, B) = ∅. We show that this
assumption leads to a contradiction. From this assumption we know, by
definition of sub-model, that diff (A, C) ⊆ B. Let k = |B|. Note that we
know, from the construction of B, that B = {a1..ak}. Let i ∈ {1..k} be
the largest index such that ai ∈ diff (A, C) and ai ∈ B. (Such i ∈ {1..k}
exists, because diff (A, C) �= ∅ and diff (A, C) ⊆ B.) Then we know,
from the construction of B, that there is a clause E ∈ G which has
(B \ {ai..ak}) ∩ E = ∅ and ai ∈ E and ai ∈ E is blocked in E, S. Since
ai ∈ diff (A, C) we know, by definition of clause difference, that ai ∈ C.
From this and from that ai ∈ E is blocked in E, S and from C ∈ S we
know, by definition of blocked literal, that for some c ∈ C we have c �= ai

and c ∈ E. From this and from A =
⋃

G we know that c ∈ A. Hence,
c ∈ diff (A, C).

From c ∈ E and from (B \ {ai..ak}) ∩ E = ∅ we know that c /∈
{a1..ai−1}. From c �= ai, i.e., from c �= ai and from c ∈ diff (A, C) and
from the fact that i ∈ {1..k} is the largest index such that ai ∈ diff (A, C)
and ai ∈ B we know that c /∈ {ai..ak}. Hence, c /∈ B.

But this is a contradiction, because c ∈ diff (A, C) and diff (A, C) is
a subset of B. Hence, C ∩ sm(A, B) �= ∅.
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The main idea of this proof is that in the worst-case A and C differ only in
blocked literals from B, i.e., the sub-model does not satisfy C. But the construc-
tion of B makes sure that this cannot happen.

This lemma makes sure that sm(A, B) satisfies C provided that it is not a
no-occurrence clause.

If we look at the Blocked SAT Solver algorithm we see that it does the same
as the piece of the pseudo-code in this auxiliary lemma. The only difference
is that in the lemma we already have the set of clauses which does not differ
from each other (this is the clause set G), while in the algorithm we collect
these clauses during the computation. In both cases A is the union of these
clauses.

Remember, we enlarge A and B only if we encounter a no-occurrence clause
C in order to refine the sub-model, which means that the new sub-model will
satisfies C.

The second auxiliary lemma states that this new sub-model still satisfies those
clauses which were satisfied by the old one.

Lemma 2 (Auxiliary Lemma 2 for Blocked SAT Solver). Let S be a non-
empty, blocked clause set. Let A be a clause. Let B ⊆ A. Let C ∈ S such that
C ⊆ A and B ∩ C = ∅. Let c ∈ C be a blocked literal in C, S. Let D ∈ S such
that D ∩ sm(A, B) �= ∅. Then D ∩ sm(A, B ∪ {c}) �= ∅.

Proof: If c /∈ D then D∩sm(A, B∪{c}) �= ∅ follows from D∩sm(A, B) �=∅.
Assume c ∈ D. Then since c ∈ C is blocked in C, S, by definition of
blocked literal, we know that for some d ∈ D we have d �= c and d ∈ C.
Since C ⊆ A we know that d ∈ A and from B ∩ C = ∅ we know that
d /∈ B. Therefore, by definition of sub-model, d ∈ sm(A, B). From d �= c
we know, by definition of sub-model, that d ∈ sm(A, B ∪ {c}). Hence,
D ∩ sm(A, B ∪ {c}) �= ∅.

Now we show that the Blocked SAT Solver algorithm solves the Blocked SAT
problem. We use ”{}” to mark formulae that are True at the respective points of
algorithm, in order to prove the correctness of the algorithm in the Hoare calcu-
lus. The Hoare calculus makes sure that if we have a so-called ”while program”
and we can arrive from the precondition to the postcondition using the rules of
the calculus, then for each input which fulfills the precondition the computed
output fulfills the postcondition if the computation terminates. For more details
about Hoare calculus please consult [LS87].

For better readability we use the infix version of hyper-unit propagation, which
is denoted by an asterisk (*). This means that instead of HUP(S, A) we use S∗A.
This variant of Blocked SAT Solver uses a new variable T in order to be able to
give the invariant of the algorithm. We know that Block SAT Solver considers
each clause in the input claus set. In T we collect the visited clauses. The essence
of the invariant is that sm(A, B) is a model of the visited clauses.

In Hoare calculus we will use the following invariant and auxiliary formulae:

Inv :⇔ Blck(S) ∧ S �= ∅ ∧ T ∗ sm(A, B) = ∅.
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If1 :⇔ Inv ∧ C ∈ (S \ T ).

If2 :⇔ If1 ∧ C ⊆ A.

IT 2 :⇔ If2 ∧ B ∩ C = ∅.

Algorithm 2 (Blocked SAT Solver)
BlockedSATSolver(S, Z)
input: clause set S that is non-empty and blocked,
output: assignment Z, a model for S.
1 START

2 // {Blck(S) ∧ S �= ∅}, precondition
3 // {Blck(S) ∧ S �= ∅ ∧ ∅ ∗ sm(∅, ∅) = ∅}
4 (A, B, T ) := (∅, ∅, ∅);
5 // {Blck(S) ∧ S �= ∅ ∧ T ∗ sm(A, B) = ∅}, by assignment axiom
6 // {{Inv}, loop invariant
7 while (T �= S) do
8 // {{Inv ∧ T �= S}, by while rule
9 // {{Inv ∧ T �= S}

10 Let C ∈ S \ T ;
11 // {{Inv ∧ C ∈ S \ T }
12 // {{If1}
13 if (diff (A, C) = ∅) then
14 // {{If1 ∧ diff (A, C) = ∅}, by if-then rule
15 // {{If1 ∧ T ∗ sm(A ∪ C, B) = ∅}
16 A := A ∪ C;
17 // {{If1 ∧ C ⊆ A ∧ T ∗ sm(A, B) = ∅}, by assignment axiom
18 // {{If2}, it is the same
19 if (B ∩ C = ∅) then
20 // {{If2 ∧ B ∩ C = ∅}, by if-then rule
21 // {{IT 2}, it is the same
22 Let c ∈ C be a blocked literal inC, S;
23 // {{IT 2 ∧ Blck(c, C, S)}
24 // {{IT 2 ∧ T ∗ sm(A, B ∪ {c}) = ∅}, by Lemma 2
25 B := B ∪ {c};
26 // {{If2 ∧ B ∩ C �= ∅ ∧ T ∗ sm(A, B) = ∅}, by assign. axiom
27 // {{If2 ∧ B ∩ C �= ∅}
28 fi
29 // {{If2 ∧ B ∩ C �= ∅}, by if-else rule
30 // {{If2 ∧ C ∩ sm(A, B) �= ∅}
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31 else
32 // {{If1 ∧ diff (A, C) �= ∅}, by if-else rule
33 // {{If1 ∧ C ∩ sm(A, B) �= ∅}, by Lemma 1
34 fi
35 // {{If1 ∧ C ∩ sm(A, B) �= ∅}
36 // {{Inv ∧ C ∈ S \ T ∧ T ∪ {C} ∗ sm(A, B) = ∅}, logical consequence
37 T := T ∪ {C};
38 // {{Inv ∧ T ∗ sm(A, B) = ∅}, by assignment axiom
39 // {{Inv}, it is the same
40 od
41 // {{Inv ∧ T ∗ sm(A, B) = ∅ ∧ T = S}, by while rule
42 // {{S ∗ sm(A, B) = ∅}, logical consequence
43 Z := sm(A, B);
44 // {{S ∗ Z = ∅}, by assignment axiom
45 // {{M(S, Z)}, postcondition
46 HALT

Now we see that from the precondition (the clause set is non-empty and
blocked) the postcondition (the computed assignment is a model for the clause
set) follows if we follow the steps of the algorithm.

The only question is whether the algorithm always terminates or sometimes
runs in an infinite loop. But it terminates always, because it does nothing else
but uses each clause from the clause set one after the other and clause sets are
finite sets.

Theorem 3 (Correctness of the Blocked SAT Solver)
Let S be a non-empty and blocked clause set. Then after execution of Blocked
SAT Solver(S, I), I is a model for S.

Proof: From Algorithm 2, and from the fact that it terminates we obtain
that Blocked SAT Solver terminates for every non-empty and blocked
clause set and gives back a model for it.

Before we discuss the worst case time complexity of the algorithm we show
how to decide in linear time whether a 3-SAT problem is blocked or not.

We use a special data structure called NLC, Number of Literal Combinations.
For every subset of every clause we increase the corresponding counter in NLC
by one. This means that NLC contains 3 arrays, a one dimensional (1D) with 2n
entries for counting 1 length subsets, a 2D one with 2n ∗ 2n entries for counting
2 length subsets and a 3D one with 2n ∗ 2n ∗ 2n entries for counting the clauses.

We use literals as indices in square brackets. If we give one literal in the square
brackets then we access the 1D array, by 2 literals the 2D one and by 3 literals
the 3D one.
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Since NLC[x, y] is the same as NLC[y, x], we assume that the indices are
written in alphabetical order. Note that this means that the 2D and 3D arrays
contain only zeros below the diagonal.

We initialize NLC by filling in it by zeros. Afterwards, we use it in two loops.
1. In the first loop we read the clauses of the input clause set one after the

other. For all subsets of all clauses we increase the corresponding entry in NLC
by one. For example if the input clause is {a, b, c} then we increase these entries:

NLC[a], NLC[b], NLC[c], NLC[a, b], NLC[a, c], NLC[b, c], NLC[a, b, c].

This means that we do 7 read and write steps (to increase one entry, we have to
read its value first, add one, and write it back) for all clauses, i.e., the first loop
is an O(2 ∗ 7m) time method.

Before we go to the second loop we have to investigate the 2D and 3D arrays
further. We see that they contain a lots of zeros. In the 3D one we have at most
only m non zero entries. In the 2D one we have at most only 3m non zero entries.
Hence, it is worth using hash tables instead of arrays. We assume that we can
initialize these hash tables in O(nm) time. Therefore, the initialization of NLC
takes O(nm + 2n) write steps.

2. In the second loop we read again the clauses of the input clause set one
after the other. For each literal in each clause we compute the number of possible
resolution partners minus the number of blocking clauses. Let us assume that
the actual clause is A = {a, b, c} and the actual literal is a. Then the possible
resolution partners are those clauses that contain a. We know the number of
those closes, it is stored in NLC[a]. We recall the definition of blocked literal:

Blck(a, A, S) : ⇐⇒ ∀
B∈S
a∈B

∃
x∈B
x�=a

x ∈ A,

This means that in those clauses which are possible resolution partners, there is
an other literal x such that x occurs in A. In this case x is either b or c. So we
obtain the number of blocking clauses as NLC[a, b] + NLC[a, c]. But if we do
so, then we count the clauses, which contains a and b at the same time, twice.
This means that we have to subtract NLC[a, b, c] from the number of blocking
clauses. Hence, the number of possible resolution partners minus the number of
blocking clauses is:

NLC[a] − NLC[a, b] − NLC[a, c] + NLC[a, b, c].

If this number is zero then it means that all possible resolution partners are at
the same time blocking clauses, i.e., the literal a in the clause {a, b, c} is blocked
in the input clause set.

In the second loop we read NLC 4 times for each literal, i.e., it is a O(4nm)
time method in the worst case.

The overall worst case time complexity of the usage of NLC is O(nm + 2n +
2 ∗ 7m + 4nm) = O(5nm + 14m + 2n) = O(5nm).

We can also use NLC for the general SAT problem. Then we need O(2k)
memory space and O(2∗ (2k −1)m) time for the first loop, and O(2k−1nm) time



140 G. Kusper

for the second loop in the worst case, where k is the length of largest clause in
the input clause set.

Now we can prove that Blocked SAT Solver is a linear time algorithm if at
least one blocked literal per clause is known or the input clause set is a 3-SAT
problem, otherwise it is a quadratic time algorithm.

Theorem 4 (Complexity of the Blocked SAT Solver)
Let S be a non-empty and blocked clause set. The worst-case time complexity of
Blocked SAT Solver(S, I) is O(4nm), if at least one blocked liter per clause is
known; O(9nm) if S is a 3-SAT problem; O(n2m2), otherwise.

Proof: If at least one blocked literal per clause is known then in the
worst-case we need O(4m) basic set operations, because there is only
one for loop on clauses of the set and in one iteration in the worst-case
we perform 4 basic set operation. Since any basic set operation can be
performed in O(n) time, the worst-case time complexity of Blocked SAT
Solver is O(4nm), i.e., linear in the number of literals.

Otherwise, if the S is a 3-SAT problem then by using NLC data
structure we need O(5nm) time in the worst case to provide the necessary
information for the Blocked SAT Solver algorithm. This means that we
need O(9nm) time altogether which is linear in the number of literals.
Otherwise, in the worst-case we need O(n2m2) time, see the previous sec-
tion, to provide the necessary information for the Blocked SAT Solver
algorithm. Since O(n2m2) dominates O(4nm) the worst-case time com-
plexity of Blocked SAT Solver is O(n2m2).

5 Blocked Clause Rules

If the clause set is not blocked but it contains blocked clauses then it is a question
whether we can use the blocked clauses to simplify the clause set or not? We
also discuss this question briefly.

The Blocked Clear Clause Rule states that if a clause set contains only clear
clauses (i.e., full clauses) and one of them is blocked, then the sub-model gener-
ated from this blocked one is a model. This is a very rare case but it serves as a
basis for the next rule.

Lemma 3 (Blocked Clear Clause Rule). Let S be a clause set. Let C ∈ S be
a blocked and clear clause. Let a ∈ C be a blocked literal C, S. Then sm(C, { a})
is a model for S, provided that

(a) either S is a subset of CC,
(b) or C is not subsumed by S \ {C}.

Proof:
(a) To show this, by definition of model, it suffices to show that for an
arbitrary but fixed B ∈ S we have that B ∩ sm(C, { a}) is not empty.
Since S is a subset of CC we know that B is a clear clause. Hence, there
are two cases, either a ∈ B or a ∈ B.
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In case a ∈ B we have, by definition of sub-model, that a∈sm(C, {a}).
Hence, B ∩ sm(C, { a}) is not empty.

In case a ∈ B, since a ∈ C is blocked in C, S we know, by definition
of blocked literal, that for some b ∈ B we have b �= a and b ∈ C. From
this, by definition of sub-model, we know that b ∈ sm(C, { a}). Hence,
B ∩ sm(C, { a}) is not empty.

Hence, if S is a subset of CC, then sm(C, { a}) is a model for S.
(b) To show this, by definition of model, it suffices to show that for an
arbitrary but fixed B ∈ S we have that B ∩ sm(C, { a}) is not empty.
Since C is not subsumed by S \ {C} we know, by definition of subsump-
tion, that B � C. From this, since C is a clear clause we know that for
some b ∈ B we have b ∈ C. There are two cases, either b = a or b �= a.

In the first case we have b = a, i.e., a ∈ B. From this since a ∈ C is
blocked in C, S we know, by definition of blocked literal, that for some
d ∈ B we have that d �= a and d ∈ C. From this, by definition of sub-
model, we know that d ∈ sm(C, { a}). Hence, B ∩ sm(C, { a}) is not
empty.

In the second case we have b �= a. From this and from b ∈ C we know,
by definition of sub-model, that b ∈ sm(C, { a}). Hence, B ∩ sm(C, { a})
is not empty.

Hence, If C is not subsumed by S \ {C}, then sm(C, { a}) is a model
for S.

The Independent Blocked Clause Rule states that if a clause set contains an
independent blocked clause, then it is satisfiable and a sub-model generated from
this clause is a part of a model. This situation occurs quite often, but checking
independent-ness is expensive.

Lemma 4 (Independent Blocked Clause Rule). Let S be a clause set. Let
A ∈ S be blocked in S and independent in S \ {A}. Let a ∈ A be a blocked
literal in A, S. Then there is a model M for S such that sm(A, { a}) ⊆ M , i.e.,
HUP(S, sm(A, { a})) is satisfiable.

Proof: We know that A is independent in S \{A}. Hence, by definition of
independent, we know that there is a clear clause C that is subsumed by
A and not subsumed by any other clause in S. Since A ⊆ C we know that
sm(A, { a}) ⊆ sm(C, { a}). Hence, it suffices to show that sm(C, { a}) is
a model for S. To show this, by definition of model, it suffices to show
that for an arbitrary but fixed B ∈ S we have that B ∩ sm(C, { a}) is
not empty. The remaining part of the proof is the same as the proof of
the (b) variant of the Blocked Clear Clause Rule.
Hence, B ∩ sm(C, { a}) is not empty. Hence, there is a model M for S
such that sm(A, { a}) ⊆ M .

This proof is traced back to the proof of Blocked Clear Clause Rule. We can
do this because we know that there is a clear clause which is blocked and not
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entailed by S \ {A}. Note that for clear clauses the notion of subsumed and
entailed are the same.

The proof shows that if we perform an independent clause check and we find
a clear clause which is subsumed by only one clause, then we know the whole
model (sm(C, { a})) and not only a part of the model (sm(A, { a})).
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