


Lecture Notes in Artificial Intelligence 4314
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science



Christian Freksa Michael Kohlhase
Kerstin Schill (Eds.)

KI 2006:
Advances in
Artificial Intelligence

29th Annual German Conference on AI, KI 2006
Bremen, Germany, June 14-17, 2006
Proceedings

13



Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Christian Freksa
Kerstin Schill
Universität Bremen
FB 3 - Mathematik und Informatik
Cartesium, Enrique-Schmidt-Str. 5, 28359 Bremen, Germany
E-mail: freksa@sfbtr8.uni-bremen.de; kschill@informatik.uni-bremen.de

Michael Kohlhase
International University Bremen
School of Engineering and Science
Campus Ring 1, 28759 Bremen, Germany
E-mail: m.kohlhase@iu-bremen.de

Library of Congress Control Number: 2006940355

CR Subject Classification (1998): I.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-69911-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69911-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11979364 06/3142 5 4 3 2 1 0



Preface

This volume contains the conference proceedings of the 29th Annual German
Conference on Artificial Intelligence (KI 2006) held June 14–19, 2006 at the
Convention Center in Bremen, Germany. KI 2006 was organized under the aus-
pices of the AI section of the German Informatics Society (GI), a member society
of the European Coordinating Committee of Artificial Intelligence (ECCAI).

This year, we stepped out of our regular pattern of holding the conference at
the end of the summer as we decided to accompany the RoboCup 2006 compe-
titions at the Bremen Fair and Convention Center with our scientific AI confer-
ence. To avoid an unusually early submission deadline that would have competed
with other major AI conferences, we decided to publish post-conference proceed-
ings. We received a large number of excellent contributions: 112 papers from 25
countries were submitted. In a thorough peer-review process, the international
Program Committee selected 29 full papers that are published in this volume.
The contributions cover a range of topics from ontologies to cognition and emo-
tion, from spatial and spatio-temporal reasoning to machine and robot learning,
and from analogies to natural language.

Two speakers were invited for keynote lectures: Ramon López de Mántaras
presented his work on applying AI methods to the transformation of musical per-
formances and Ulrich Furbach spoke about applications of automated reasoning.
Their written contributions to these topics are also published in this volume.

In addition to the regular conference sessions, six workshop proposals and
nine poster contributions were accepted for the conference. The workshop ses-
sions were held on June 14 and on June 19, 2006. The contributions to these
sessions were published in separate proceedings volumes.

The month and year of our conference mark the 50th anniversary of the 1956
Dartmouth conference, which is considered the birth of artificial intelligence
research. On the occasion of this anniversary, eight special guests — Marvin
Minsky, Aaron Sloman, Wolfgang Bibel, Jörg Siekmann, Wolfgang Wahlster,
Sebastian Thrun, Hiroshi Ishiguro, and Simon Schmitt — were invited for the
public symposium “50 Years AI” on June 17, 2006 after the regular conference
sessions. The public symposium was moderated by Wilfried Brauer and pre-
sented highlights of AI research from the past 50 years as well as visions for
the next 50 years to a scientifically interested public audience. The event was
streamed live on the Internet and enabled interested people all over the world
to follow the presentations and discussions.

Many individuals and teams contributed to the visions and the realization of
this conference. We would like to thank the members of the Program Commit-
tee for their careful reviews and their excellent comments to the authors; referee
comments are extremely valuable to the authors and constitute an important
element to progress in science. We would like to thank the discussants of the



VI Preface

golden anniversary celebration for their visions and ideas, in particular Herbert
Stoyan for first suggesting the idea. We would also like to thank the members
of the various Organizing Committees for their productive and successful con-
tributions, the valuable advice they provided, and the smooth interactions. In
particular, we thank our local Chair, Eva Räthe, for her tireless dedication to this
project, Marion Stubbemann for her support and assistance, and Sven Bertel for
his energy and help with public relations.

The work of the Program Committee and the preparation of the conference
proceedings were greatly simplified by Andrei Voronkov’s excellent EasyChair
system.

September 2006 Christian Freksa
Michael Kohlhase

Kerstin Schill



Organization

Conference Organization

Conference Chairs Christian Freksa, Kerstin Schill
Program Chairs Michael Kohlhase, Christian Freksa
Honorary Chair Wilfried Brauer
Workshop Chair Bernd Krieg-Brückner
Tutorial Chair John Bateman
Exhibition Chair Frank Kirchner
Industrial Liasion Otthein Herzog
Robocup Liaison Ubbo Visser
Local Chair Eva Räthe
Press Liaison Sven Bertel

Program Committee

John Bateman Barbara Becker
Susanne Biundo Wolfram Burgard
Stephan Busemann Ulises Cortés
Rüdiger Dillmann Klaus Fischer
Ulrich Furbach Hans Werner Güsgen
Volker Haarslev Nicola Henze
Joachim Hertzberg David Israel
Herbert Jäger Manfred Kerber
Frank Kirchner Boicho Kokinov
Alexander Koller Rudolf Kruse
Lars Kulik Franz Kurfess
Jana Köhler Longin Jan Latecki
Gérard Ligozat Ramon López de Mántaras
Rainer Malaka Katharina Morik
Bernd Neumann Ian Pratt-Hartmann
Raul Rojas Thomas Röfer
Alessandro Saffiotti Ulrike Sattler
Jürgen Sauer Kerstin Schill
Christoph Schlieder Tanja Schultz
Laure Vieu Ipke Wachsmuth
Wolfgang Wahlster Stefan Wrobel
Jianwei Zhang Michel de Rougemont
Kai von Luck



VIII Organization

Additional Reviewers
Sven Behnke Stefano Borgo
Michael Brenner Stephan Busemann
Jens Claßen Christian Döring
Andreas Eisele Timm Euler
Santiago Franco Christian Hahn
Claudia Hess Tamas Horvath
Kai Hübner Peter Kiefer
Christoph Kreitz Geert-Jan Kruijff
Franz Kurfess Richard Lassaigne
Tim Laue Esteban Leon
Nadine Lessmann Thorsten Liebig
Kai Lingemann Cristian Madrigal-Mora
Christian Mandel Sebastian Matyas
Philippe Muller Jan Murray
Andreas Nüchter Oliver Obst
Gerhard Paass Ian Pratt-Hartmann
Matthew Purver Frank Rügheimer
Bernd Schattenberg Martin Scholz
Marc Schröder Carl P.L. Schultz
Nematollaah Shiri Josenildo Costa da Silva
Spyratos Klaus Stein
Stefan Stiene Frieder Stolzenburg
Rudolph Triebel Nicolas Troquard
Muhammad Umer Anne Vilnat
Xiaomeng Wang Michael Wurst
Michael Wünstel Ingo Zinnikus



Table of Contents

Session 1. Invited Talk

Expressivity-Preserving Tempo Transformation for Music –
A Case-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Ramon López de Mántaras, Maarten Grachten, and
Josep-Llúıs Arcos

Session 2. Cognition and Emotion

MicroPsi: Contributions to a Broad Architecture of Cognition . . . . . . . . . 7
Joscha Bach, Colin Bauer, and Ronnie Vuine

Affective Cognitive Modeling for Autonomous Agents Based on
Scherer’s Emotion Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Christine L. Lisetti and Andreas Marpaung

Session 3A. Semantic Web

OWL and Qualitative Reasoning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Jochem Liem and Bert Bredeweg

Techniques for Fast Query Relaxation in Content-Based Recommender
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Dietmar Jannach

Session 3B. Analogy

Solving Proportional Analogies by E–Generalization . . . . . . . . . . . . . . . . . . 64
Stephan Weller and Ute Schmid

Building Robots with Analogy-Based Anticipation . . . . . . . . . . . . . . . . . . . 76
Georgi Petkov, Tchavdar Naydenov, Maurice Grinberg, and
Boicho Kokinov

Session 4A. Natural Language

Classification of Skewed and Homogenous Document Corpora with
Class-Based and Corpus-Based Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Arzucan Özgür and Tunga Güngör



X Table of Contents

Learning an Ensemble of Semantic Parsers for Building Dialog-Based
Natural Language Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Lappoon R. Tang

Session 4B. Reasoning

Game-Theoretic Agent Programming in Golog Under Partial
Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Alberto Finzi and Thomas Lukasiewicz

Finding Models for Blocked 3-SAT Problems in Linear Time by
Systematical Refinement of a Sub-model . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Gábor Kusper

Towards the Computation of Stable Probabilistic Model Semantics . . . . . 143
Emad Saad

DiaWOz-II – A Tool for Wizard-of-Oz Experiments in Mathematics . . . . 159
Christoph Benzmüller, Helmut Horacek, Ivana Kruijff-Korbayová,
Henri Lesourd, Marvin Schiller, and Magdalena Wolska

Session 5. Invited Talk

Applications of Automated Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Ulrich Furbach and Claudia Obermaier

Session 6A. Ontologies

On the Scalability of Description Logic Instance Retrieval . . . . . . . . . . . . . 188
Ralf Möller, Volker Haarslev, and Michael Wessel

Relation Instantiation for Ontology Population Using the Web . . . . . . . . . 202
Viktor de Boer, Maarten van Someren, and Bob J. Wielinga

Session 6B. Spatio-temporal Reasoning

GeTS – A Specification Language for Geo-Temporal Notions . . . . . . . . . . 214
Hans Jürgen Ohlbach

Active Monte Carlo Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Felix von Hundelshausen and Manuela Veloso

Session 7A. Machine Learning

Cross System Personalization and Collaborative Filtering by Learning
Manifold Alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Bhaskar Mehta and Thomas Hofmann



Table of Contents XI

A Partitioning Method for Mixed Feature-Type Symbolic Data Using
a Squared Euclidean Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Renata Maria Cardoso Rodrigues de Souza,
Francisco de Assis Tenorio de Carvalho, and Daniel F. Pizzato

Session 7B. Spatial Reasoning

On Generalizing Orientation Information in OPRAm . . . . . . . . . . . . . . . . . 274
Frank Dylla and Jan Oliver Wallgrün

Towards the Visualisation of Shape Features: The Scope Histogram . . . . 289
Arne Schuldt, Björn Gottfried, and Otthein Herzog

Session 8A. Robot Learning

A Robot Learns to Know People—First Contacts of a Robot . . . . . . . . . . 302
Hartwig Holzapfel, Thomas Schaaf, Hazım Kemal Ekenel,
Christoph Schaa, and Alex Waibel

Recombinant Rule Selection in Evolutionary Algorithm for Fuzzy Path
Planner of Robot Soccer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Jong-Hwan Park, Daniel Stonier, Jong-Hwan Kim,
Byung-Ha Ahn, and Moon-Gu Jeon

Session 8B. Classical AI Problems

A Framework for Quasi-exact Optimization Using Relaxed Best-First
Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Rüdiger Ebendt and Rolf Drechsler

Gray Box Robustness Testing of Rule Systems . . . . . . . . . . . . . . . . . . . . . . . 346
Joachim Baumeister, Jürgen Bregenzer, and Frank Puppe

A Unifying Framework for Hybrid Planning and Scheduling . . . . . . . . . . . 361
Bernd Schattenberg and Susanne Biundo

Session 9. Agents

A Hybrid Time Management Approach to Agent-Based Simulation . . . . . 374
Dirk Pawlaszczyk and Ingo J. Timm

Adaptive Multi-agent Programming in GTGolog . . . . . . . . . . . . . . . . . . . . . 389
Alberto Finzi and Thomas Lukasiewicz

Agent Logics as Program Logics: Grounding KARO . . . . . . . . . . . . . . . . . . 404
Koen V. Hindriks and John-Jules Ch. Meyer



XII Table of Contents

On the Relationship Between Playing Rationally and Knowing How
to Play: A Logical Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Wojciech Jamroga

Special Event. 50 Years Artificial Intelligence

1956-1966 How Did It All Begin? – Issues Then and Now . . . . . . . . . . . . . 437
Marvin Minsky

Fundamental Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Aaron Sloman

Towards the AI Summer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Wolfgang Bibel

History of AI in Germany and The Third Industrial Revolution . . . . . . . . 445
Jörg Siekmann

Three Decades of Human Language Technology in Germany . . . . . . . . . . . 447
Wolfgang Wahlster

1996-2006 Autonomous Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
Sebastian Thrun

Projects and Vision in Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
Hiroshi Ishiguro

What Will Happen in Algorithm Country? . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Simon Schmitt

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457



Expressivity-Preserving Tempo Transformation
for Music – A Case-Based Approach

Ramon López de Mántaras, Maarten Grachten, and Josep-Llúıs Arcos

IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia, Spain
Vox: +34-93-5809570; Fax: +34-93-5809661
{mantaras,arcos,maarten}@iiia.csic.es

Abstract. The research described in this paper focuses on global tempo
transformations of monophonic audio recordings of saxophone jazz per-
formances. More concretely, we have investigated the problem of how
a performance played at a particular tempo can be automatically ren-
dered at another tempo while preserving its expressivity. To do so we
have develppoped a case-based reasoning system called TempoExpress.
The results we have obtained have been extensively compared against a
standard technique called uniform time stretching (UTS), and show that
our approach is superior to UTS.

1 The Problem of Generating Expressive Music

It has been long established that when humans perform music from score, the re-
sult is never a literal, mechanical rendering of the score (the so-called nominal
performance). As far as performance deviations are intentional (that is, they orig-
inate from cognitive and affective sources as opposed to e.g. motor sources), they
are commonly thought of as conveyingmusical expressivity, which forms an impor-
tant aspect of music. Two main functions of musical expressivity are generally rec-
ognized. Firstly, expressivity is used to clarify the musical structure (in the broad
sense of the word: this includes for example metrical structure [Sloboda, 1983],
but also the phrasing of a musical piece [Gabrielsson, 1987], and harmonic struc-
ture [Palmer, 1996]). Secondly, expressivity is used as a way of communicating, or
accentuating affective content [Juslin, 2001; Gabrielsson, 1995].

An important issue when performing music is the effect of tempo on expres-
sivity. It has been argued that temporal aspects of performance scale uniformly
when tempo changes [Repp, 1994]. That is, the durations of all performed notes
maintain their relative proportions. This hypothesis is called relational invari-
ance (of timing under tempo changes). However, counter-evidence for this hy-
pothesis has been provided [Desain and Honing, 1994; Timmers et al., 2002],
and a recent study shows that listeners are able to determine above chance-level
whether audio-recordings of jazz and classical performances are uniformly time
stretched or original recordings, based solely on expressive aspects of the perfor-
mances [Honing, 2006]. Our approach also experimentally refutes the relational

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 1–6, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 R.L. de Mántaras, M. Grachten, and J.-L. Arcos

invariance hypothesis by comparing the automatic transformations generated by
TempoExpress against uniform time stretching.

2 TempoExpress

Given a MIDI score of a phrase from a jazz standard, and given a monophonic
audio recording of a saxophone performance of that phrase at a particular tempo
(the source tempo), and given a number specifying the target tempo, the task of
the system is to render the audio recording at the target tempo, adjusting the
expressive parameters of the performance to be in accordance with that tempo.

TempoExpress solves tempo transformation problems by case-based reasoning.
Problem solving in case-based reasoning is achieved by identifying and retrieving
a problem (or a set of problems) most similar to the problem that is to be solved
from a case base of previously solved problems (also called cases), and adapting
the corresponding solution to construct the solution for the current problem.

To realize a tempo transformation of an audio recording of an input perfor-
mance, TempoExpress needs an XML file containing the melodic description of
the recorded audio performance, a MIDI file specifying the score, and the target
tempo to which the performance should be transformed (the tempo is specified
in the number of beats per minute, or BPM). The result of the tempo trans-
formation is an an XML file containing the modified melodic description, that
is used as the basis for synthesis of the transformed performance. For the au-
dio analysis (that generates the XML file containing the melodic description of
the input audio performance) and for the audio synthesis, TempoExpress relies
on an external system for melodic content extraction from audio, developed by
Gómez et al. [2003b]. This system performs pitch and onset detection to gen-
erate a melodic description of the recorded audio performance, the format of
which complies with an extension of the MPEG7 standard for multimedia con-
tent description [Gómez et al., 2003a].

We apply the edit-distance [Levenshtein, 1966] in the retrieval step in order to
assess the similarity between the cases in the case base (human performed jazz
phrases at different tempos) and the input performance whose tempo has to be
transformed. To do so, firstly the cases whose performances are all at tempos
very different from the source tempo are filtered out. Secondly, the cases with
phrases that are melodically similar to the input performance (according to the
edit-distance) are retrieved from the case base. The melodic similarity measure
we have developed for this is based on abstract representations of the melody
[Grachten et al., 2005] and has recently won a contest for symbolic melodic sim-
ilarity computation (MIREX 2005).

In the reuse step, a solution is generated based on the retrieved cases. In
order to increase the utility of the retrieved material, the retrieved phrases are
split into smaller segments using a melodic segmentation algorithm [Temperley,
2001]. As a result, it is not necessary for the input phrase and the retrieved
phrase to match as a whole. Instead, matching segments can be reused from
various retrieved phrases. This leads to the generation of partial solutions for the



Expressivity-Preserving Tempo Transformation 3

input problem. To obtain the complete solution, we apply constructive adaptation
[Plaza and Arcos, 2002], a reuse technique that constructs complete solutions by
searching the space of partial solutions.

The solution of a tempo-transformation consists in a performance annotation.
This performance annotation is a sequence of changes that must be applied
to the score in order to render the score expressively. The result of applying
these transformations is a sequence of performed notes, the output performance,
which can be directly translated to a melodic description at the target tempo,
suitable to be used as a directive to synthesize audio for the transformed perfor-
mance.

To our knowledge, all current performance rendering systems deal with pre-
dicting expressive values like timing and dynamics for the notes in the score.
Contrastingly, TempoExpress not only predicts values for timing and dynam-
ics, but also deals with more extensive forms of musical expressivity, like note
insertions, deletions, consolidations, fragmentations, and ornamentations.

3 Results

In this section we describe results of an extensive comparison of TempoExpress
against uniform time stretching (UTS), the standard technique for changing the
tempo of audio recordings, in which the temporal aspects (such as note durations
and timings) of the recording are scaled by a constant factor proportional to the
tempo change.

For a given tempo transformation task, the correct solution is available as a
target performance: a performance at the target tempo by a profesional musician,
that is known to have appropriate expressive values for that tempo. The results
of both tempo transformation approaches are evaluated by comparing them to
the target performance. More specifically, let M s

H be a melodic description of a
performance of phrase p by a musician H at the source tempo s, and let M t

H be
a melodic description of a performance of p at the target tempo t by H . Using
TempoExpress (TE), and UTS, we derive two melodic descriptions for the target
tempo from M s

H , respectively M t
TE , and M t

UTS .
We evaluate both derived descriptions by their similarity to the target de-

scription M t
H . To compute the similarity we use a distance measure that has

been modeled after human perceived similarity between musical performances.
Ground truth for this was gathered through a web-survey in which human sub-
jects rated the perceived dissimilarity between different performances of the same
melodic fragment. The results of the survey were used to optimize the parameters
of an edit-distance function for comparing melodic descriptions. The optimized
distance function correctly predicts 85% of the survey responses.

In this way, the results of TempoExpress and UTS were compared for 6364
tempo-transformation problems, using 64 different melodic segments from 14
different phrases. The results are shown in figure 1. The figure shows the dis-
tance of both TempoExpress and UTS results to the target performances, as
a function of tempo change (measured as the ratio of the target tempo to the
source tempo). The lower plots show the significance value for the null hypothesis



4 R.L. de Mántaras, M. Grachten, and J.-L. Arcos

 0
 0.2
 0.4
 0.6
 0.8

 1

 4 3.6 3 2.4 2 1.8 1.6 1.4 1.2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2Le
ve

l o
f S

ig
ni

fic
an

ce

Tempo Change (proportion)

p value

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

M
ea

n 
di

st
an

ce
 to

 ta
rg

et
 p

er
fo

rm
an

ce

TempoExpress
Uniform Time Stretch

Fig. 1. Performance of TempoExpress vs. UTS as a function of the ratio of target
tempo to source tempo. The lower plot shows the probability of incorrectly rejecting
H0 for the Wilcoxon signed-rank tests.

that the melodic descriptions generated by TempoExpress are not more similar
or less similar to the target description than the melodic description generated
using UTS (in other words, the hypothesis that TempoExpress does not give an
improvement over UTS).

Firstly, observe that the plot in Figure 1 shows an increasing distance to the
target performance with increasing tempo change (both for slowing down and
for speeding up), for both tempo transformation techniques. This is evidence
against the hypothesis of relational invariance discussed earlier in this paper.
This hypothesis implies that the UTS curve should be horizontal, since under
relational variance, tempo transformations are supposed to be achieved through
mere uniform time stretching.

Secondly, a remarkable effect can be observed in the behavior of TempoExpress
with respect to UTS, which is that TempoExpress improves the result of tempo
transformation specially when slowing performances down. When speeding up,
the distance to the target performance stays around the same level as with
UTS. In the case of slowing down, the improvement with respect to UTS is
mostly significant, as can be observed from the lower part of the plot. Note
that the p-values are rather high for tempo change ratios close to 1, meaning
that for those tempo changes, the difference between TempoExpress and UTS is
not statistically significant. This is in accordance with the common sense that



Expressivity-Preserving Tempo Transformation 5

Table 1. Overall comparison between TempoExpress and uniform time stretching, for
upwards and downwards tempo transformations, respectively

mean distance to target Wilcoxon signed-rank test
TempoExpress UTS p <> z df

tempo ↑ 0.0791 0.0785 0.046 1.992 3181
tempo ↓ 0.0760 0.0786 0.000 9.628 3181

slight tempo changes do not require many changes, in other words, relational
invariance approximately holds when the amount of tempo change is very small.

Table 1 summarizes the results for both tempo increase and decrease. Columns
2 and 3 show the average distance to the target performance for TempoExpress
and UTS, averaged over all tempo increase problems, and tempo decrease prob-
lems respectively. The other columns show data from the Wilcoxon signed-rank
test. The p-values are the probability of incorrectly rejecting H0 (that there is no
difference between the TempoExpress and UTS results). This table also shows
that for downward tempo transformations, the improvement of TempoExpress
over UTS is small, but extremely significant (p < .001), whereas for upward
tempo transformations UTS seems to be better, but the results are slightly less
decisive (p < .05).

4 Conclusions

In this paper we have summarized our research results on a case-based reasoning
approach to global tempo transformations of music performances, focusing on
saxophone recordings of jazz themes. We have addressed the problem of how
a performance played at a particular tempo can be automatically rendered at
another tempo preserving expressivity. Moreover, we have described the results
of an extensive experimentation over a case-base of more than six thousand
transformation problems. TempoExpress clearly performs better than UTS when
the target problem is slower than the source tempo. When the target tempo is
higher than the source tempo the improvement is less significant. Nevertheless,
TempoExpress behaves as UTS except in transformations to very fast tempos.
This result may be explained by a lack of example cases with fast tempos.

Bibliography

Desain, P. and Honing, H. (1994). Does expressive timing in music performance scale
proportionally with tempo? Psychological Research, 56:285–292.

Gabrielsson, A. (1987). Once again: The theme from Mozart’s piano sonata in A major
(K. 331). A comparison of five performances. In Gabrielsson, A., editor, Action and
perception in rhythm and music, pages 81–103. Royal Swedish Academy of Music,
Stockholm.

Gabrielsson, A. (1995). Expressive intention and performance. In Steinberg, R., editor,
Music and the Mind Machine, pages 35–47. Springer-Verlag, Berlin.



6 R.L. de Mántaras, M. Grachten, and J.-L. Arcos

Gómez, E., Gouyon, F., Herrera, P., and Amatriain, X. (2003a). Using and enhancing
the current MPEG-7 standard for a music content processing tool. In Proceedings
of Audio Engineering Society, 114th Convention, Amsterdam, The Netherlands.

Gómez, E., Grachten, M., Amatriain, X., and Arcos, J. L. (2003b). Melodic char-
acterization of monophonic recordings for expressive tempo transformations. In
Proceedings of Stockholm Music Acoustics Conference 2003.

Grachten, M., Arcos, J. L., and López de Mántaras, R. (2005). Melody re-
trieval using the Implication/Realization model. MIREX http://www.music-
ir.org/evaluation/mirex-results/articles/similarity/grachten.pdf.

Honing, H. (2006). Is expressive timing relational invariant under tempo transforma-
tion? Psychology of Music. (in press).

Juslin, P. (2001). Communicating emotion in music performance: a review and a
theoretical framework. In Juslin, P. and Sloboda, J., editors, Music and emotion:
theory and research, pages 309–337. Oxford University Press, New York.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10:707–710.

Palmer, C. (1996). Anatomy of a performance: Sources of musical expression. Music
Perception, 13(3):433–453.

Plaza, E. and Arcos, J. L. (2002). Constructive adaptation. In Craw, S. and Preece,
A., editors, Advances in Case-Based Reasoning, number 2416 in Lecture Notes in
Artificial Intelligence, pages 306–320. Springer-Verlag.

Repp, B. H. (1994). Relational invariance of expressive microstructure across global
tempo changes in music performance: An exploratory study. Psychological Research,
56:285–292.

Sloboda, J. A. (1983). The communication of musical metre in piano performance.
Quarterly Journal of Experimental Psychology, 35A:377–396.

Temperley, D. (2001). The Cognition of Basic Musical Structures. MIT Press, Cam-
bridge, Mass.

Timmers, R.and Ashley, R., Desain, P., Honing, H., and Windsor, L. (2002). Timing
of ornaments in the theme of Beethoven’s Paisiello Variations: Empirical data and
a model. Music Perception, 20(1):3–33.

http://www.music-ir.org/evaluation/mirex-results/articles/similarity/grachten.pdf
http://www.music-ir.org/evaluation/mirex-results/articles/similarity/grachten.pdf


C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 7 – 18, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

MicroPsi:  
Contributions to a Broad Architecture of Cognition 

Joscha Bach1, Colin Bauer2, and Ronnie Vuine3 

1 University of Osnabrück, Institute for Cognitive Science, Osnabrück, Germany  
jbach@uos.de 

2 Technical University of Berlin, Department for Computer Science, Berlin, Germany  
kolynos@gmail.com 

3 Humboldt-University of Berlin, Institute for Computer Science, Berlin, Germany  
vuine@informatik.hu-berlin.de 

Abstract. The Psi theory of human action regulation is a candidate for a cogni-
tive architecture that tackles the problem of the interrelation of motivation and 
emotion with cognitive processes. We have transferred this theory into a cogni-
tive modeling framework, implemented as an AI architecture, called MicroPsi. 
Here, we describe the main assumptions of the Psi theory and summarize a neu-
ral prototyping algorithm that matches perceptual input to hierarchical declara-
tive representations.  

1   Introduction 

Computational models of cognitive functioning usually emphasize problem solving, 
not emotion and motivation [1]. Thus they tend to fall short in modeling the interrela-
tions between problem solving and memory functions and the context provided by 
emotional modulation and motivational priming, and they do not describe the cogni-
tive system as an autonomous agent acting on its environment, but as a module within 
such an agent – and it is not clear if such a separation is warranted [2]. This has given 
rise to the suggestion of broader architectures of cognition which tightly integrate 
motivation and emotion with perceptual and reasoning processes. A very promising 
approach at such a broad architecture comprises the Psi theory of Dietrich Dörner [3, 
4, 5]. Since this theory has not been extensively published in English, we will give a 
short summary on the following pages. 

Psi is routed in a theory of problem solving [6] that makes use of neuro-symbolic 
models. Representations in the context of Psi are perceptual symbol systems [7], i.e. 
declarative and procedural descriptions are completely grounded in interaction con-
texts, which is achieved by using hierarchical spreading activation networks, with the 
lowest level of the hierarchy addressing sensor and motor systems. Depending on 
weights and link types, nodes within these hierarchies might carry their semantics 
individually (localist, symbolic) or as part of a configuration of jointly activated nodes 
(distributed, sub-symbolic). Cognitive processes are facilitated by control structures 
that are implemented as procedural representations within the same formalism.  

Basic emotions in the Psi theory are understood as modulations of cognition, i.e. 
they emerge from configurations of various parameters (such as arousal, pleas-
ure/distress signals and resolution level) that determine how cognition is carried out, 



8 J. Bach, C. Bauer, and R. Vuine 

and motivation is based on a finite set of competing drives, both physiological and 
cognitive. 

Its focus on emotion, motivation and interaction make Psi very different from con-
temporary cognitive architectures like ACT-R [8] and Soar [9]. However, the design 
and integration of the motivational system bears a striking resemblance to the more 
recent, but independent CLARION architecture [10]. Like CLARION, the Psi theory 
proposes procedural reinforcement-learning based on pleasure/distress signals origi-
nating in the satisfaction and frustration of drives. The suggested cognitive drives 
however differ somewhat (they are less parsimonious in Psi). On the other hand, rep-
resentations in Psi differ, because they are not separated into distinct symbolic and 
sub-symbolic formalisms – they use a single mode of representation for both. 

Implementations of the Psi theory by Dörner’s group have facilitated the successful 
evaluation of the emotional model against human emotions in a complex problem 
solving tasks [11, 12]; Psi is somewhat unique within cognitive architectures in offer-
ing such a validated model [13]. However, these implementations are unsuitable for 
independent experimentation, which we see as a primary requisite to turn the theory 
into a cognitive architecture, and they do not scale towards the integration of the rep-
resentational mechanisms proposed by the theory. This demand is addressed by the 
MicroPsi model, by specifying an agent architecture and a scalable implementation 
framework, albeit not within the context of psychology, but computer science. 

2   Assumptions of the Psi Theory 

The Psi theory describes cognition in the terms of a homeostatic system: as a structure 
consisting of relationships and dependencies that is designed to maintain a homeo-
static balance in the face of a dynamic environment. It consists of a set of assumptions 
that could be summarized as follows: 

1. Explicit symbolic representations: The Psi theory suggests hierarchical networks 
of nodes as a universal mode of representation for declarative, procedural and tacit 
knowledge: representations in models of the Psi theory (Psi agents) are neuro-
symbolic. These nodes may encode localist and distributed representations. The ac-
tivity of the system is modeled using modulated and directional spreading of activa-
tion within these networks. Plans, episodes, situations and objects are described with a 
semantic network formalism that relies on a fixed number of pre-defined link types, 
which especially encode causal/sequential ordering, and partonomic hierarchies (the 
theory specifies four basic link-types to denote predecessor und successor, has-part 
and is-part relations). 

There are special nodes (representing neural circuits) that control the spread of ac-
tivation and the forming of temporary or permanent associations and disassociations. 
2. Memory: The Psi theory posits a world model (situation image). The current situa-
tion image is extrapolated into a branching expectation horizon (consisting of antici-
pated developments and active plans). Working memory also contains an inner 
screen, a hypothetical world model that is used for comparisons during recognition, 
and for planning. 



 MicroPsi: Contributions to a Broad Architecture of Cognition 9 

The situation image is gradually transferred into an episodic memory (protocol). 
By selective decay and re-inforcement, portions of this long-term memory provide 
automated behavioral routines, and elements for plans (procedural memory). The 
fundamental atomic element of plans and behavior sequences is a triplet of a (partial, 
hierarchical) situation description, forming a condition, an operator (a hierarchical 
action description) and an expected outcome of the operation as another situation de-
scription. 

Object descriptions (mainly declarative) are also part of long-term memory and the 
product of perceptual processes and affordances. Situations and operators in long-
term memory may be associated with motivational relevance, which is instrumental in 
retrieval and reinforcement.  Operations on memory content are subject to emotional 
modulation.  
3. Perception: Perception is based on conceptual hypotheses, which guide the recog-
nition of objects, situations and episodes. Hypothesis based perception (‘HyPercept’) 
is understood as a bottom-up (data-driven and context-dependent) cueing of hypothe-
ses that is interleaved with a bottom-down verification. 

The acquisition of schematic hierarchical descriptions and their gradual adaptation 
and revision can be described as assimilation and accommodation [14]. Hypothesis 
based perception is a universal principle that applies on visual perception, auditory 
perception, discourse interpretation and even memory interpretation. Perception is 
subject to emotional modulation.  
4. Urges/drives: The activity of the system is directed on the satisfaction of a finite 
set of primary, pre-defined urges (drives). All goals of the system are situations that 
are associated with the satisfaction of an urge, or situations that are instrumental in 
achieving such a situation (this also includes abstract problem solving, aesthetics, the 
maintenance of social relationships and altruistic behavior). These urges reflect de-
mands of the system: a mismatch between a target value of a demand and the current 
value results in an urge signal, proportional to the deviation, which might give rise to 
a motive. There are three categories of urges: 

- physiological urges (such as food, water, maintenance of physical integrity), 
which are relieved by the consumption of matching resources and increased by the 
metabolic processes (food, water) of the system, or inflicted damage (integrity). 

- social urges (affiliation). The demand for affiliation is an individual variable and 
adjusted through early experiences. The urge for affiliation needs to be satisfied in 
regular intervals by external legitimity signals (provided by other agents as a sig-
nal of acceptance and/or gratification) or internal legitimity signals (created by the 
fulfillment of social norms). It is increased by social frustration (anti-legitimity 
signals) or supplicative signals (demands of other agents for help, which create 
both a suffering by frustration of the affiliation urge, and a promise of gratifica-
tion). 

- cognitive urges (reduction of uncertainty, and competence). Uncertainty reduction 
is maintained through exploration and frustrated by mismatches with expectations 
and/or failures to create anticipations. Competence consists of task specific com-
petence (and can be acquired through exploration of a task domain) and general 
competence (which measures the ability to fulfill the demands in general).  
The urge for competence is frustrated by actual and anticipated failures to reach a 
goal. The cognitive urges are subject to individual variability and need regular  
satisfaction.  



10 J. Bach, C. Bauer, and R. Vuine 

The model strives for minimal parsimony in the specification of urges. For in-
stances, there is no need to specify a specific urge for social power, because this may 
be reflected by the competence in reaching affiliative goals, while an urge for belong-
ingness partially corresponds to uncertainty reduction in the social domain. The 
model should only expand the set of basic urges if it can be shown that the existing set 
is unable to produce the desired variability in behavioral goals. Note that none of the 
aforementioned urges may be omitted without affecting the behavior.  
5. Pleasure and distress: A change of a demand of the system is reflected in a pleas-
ure or distress signal. The strength of this signal is proportional to the amount of 
change in the demand measured over a short interval of time. Pleasure and distress 
signals are reinforcement values for the learning of behavioral procedures and epi-
sodic sequences and define appetitive and aversive goals.  
6. Modulation: Cognitive processing in subject to global modulatory parameters, 
which adjust the cognitive resources of the system to the environmental and internal 
situation. Modulators control behavioral tendencies (action readiness via general acti-
vation or arousal), stability of active behaviors/chosen goals (selection threshold), the 
rate of orientation behavior (sampling rate or securing threshold) and the width and 
depth of activation spreading in perceptual processing, memory retrieval and planning 
(activation and resolution level). The effect and the range of modulator values are 
subject to individual variance. 
7. Emotion: Emotion is not an independent sub-system, a module or a parameter set, 
but an intrinsic aspect of cognition. Emotion is an emergent property of the modula-
tion of perception, behavior and cognitive processing, and it can therefore not be un-
derstood outside the context of cognition, that is, to model emotion, we need a cogni-
tive system that can be modulated to adapt its use of processing resources and behav-
ior tendencies. (According to Dörner, this is necessary and sufficient.) In the Psi the-
ory, emotions are understood as a configurational setting of the cognitive modulators 
along with the pleasure/distress dimension and the assessment of the cognitive urges. 
This perspective addresses primary emotions, such as joy, anger, fear, surprise, relief, 
but not attitudes like envy or jealousy, or emotional responses that are the result of 
modulations which correspond to specific demands of the environment, such as dis-
gust. 

The phenomenological qualities of emotion are due to the effect of modulatory set-
tings on perception on cognitive functioning (i.e. the perception yields different repre-
sentations of memory, self and environment depending on the modulation), and to the 
experience of accompanying physical sensations that result from the effects of the 
particular modulator settings on the physiology of the system (for instance, by chang-
ing the muscular tension, the digestive functions, blood pressure and so on). The ex-
perience of emotion as such (i.e. as having an emotion) requires reflective capabilities. 
Undergoing a modulation is a necessary, but not a sufficient condition of experiencing 
it as an emotion.  
8. Motivation: Motives are combinations of urges and a goal that is represented by a 
situation that affords the satisfaction of this urge. (Motives are terminologically and 
conceptually different from urges and emotions. Hunger, for instance, is an urge sig-
nal, an association of hunger with an opportunity to eat is a motive, and apprehension 
of an expected feast may be an emergent emotion.) 



 MicroPsi: Contributions to a Broad Architecture of Cognition 11 

There may be several motivations active at a time, but only one is chosen to deter-
mine the choice of behaviors of the agent. The choice of the dominant motive depends 
on the anticipated probability to satisfy the associated urge and the strength of the 
urge signal. (This means also that the agent may opportunistically satisfy another 
urge, if it presented with that option.) The stability of the dominant motive against 
other active motivations is regulated using the selection threshold parameter, which 
depends on the urgency of the demand and individual variance.  
9. Learning: Perceptual learning comprises the assimilation/ accommodation of 
new/existing schemas by hypothesis based perception. Procedural learning depends on 
reinforcing the associations of actions and preconditions (situations that afford these 
actions) with appetitive or aversive goals, which is triggered by pleasure and distress 
signals. Abstractions may be learned by evaluating and reorganizing episodic and de-
clarative descriptions to generalize and fill in missing interpretations (this facilitates the 
organization of knowledge according to conceptual frames and scripts). Behavior se-
quences and object/situation representations are strengthened by use. Tacit knowledge 
(especially sensory-motor capabilities) may be acquired by neural learning. Unused 
associations decay, if their strength is below a certain threshold: highly relevant knowl-
edge may not be forgotten, while spurious associations tend to disappear.  
10. Problem solving: Problem solving is directed on finding a path between a given 
situation and a goal situation, on completing or reorganizing mental representations 
(for instance, the identification of relationships between situations or of missing fea-
tures in a situational frame) or it serves an exploratory goal. It is organized in stages: 
If no immediate response to a problem is found, the system first attempts to resort to a 
behavioral routine (automatism), and if this is not successful, it attempts to construct a 
plan. If planning fails, the system resorts to exploration (or switches to another  
motive). 

Problem solving is context dependent (contextual priming is served by associative 
pre-activation of mental content) and subject to modulation. The strategies that en-
compass problem solving are parsimonious. They can be reflected upon and reorgan-
ized according to learning and experience. According to the Psi theory, many ad-
vanced problem solving strategies can not be adequately modeled without assuming 
linguistic capabilities. 
11. Language: Language has to be explained as syntactically organized symbols that 
designate conceptual representations and a model of language thus starts with a model 
of mental representation. Language extends cognition by affording the categorical 
organization of concepts and by aiding in meta-cognition. (Cognition is not an exten-
sion of language.) The understanding of discourse may be modeled along the princi-
ples of hypothesis based perception and assimilation/ accommodation of schematic 
representations. 

 

The Psi theory is largely qualitative, not quantitative, which makes it slightly un-
usual in contemporary research in cognitive science, but very useful as a frame of 
thought when addressing cognitive phenomena. After all, most pressing with respect 
to understanding human intelligent behavior start with “how” and “what” instead of 
“how much”. Yet, to evaluate its proposals, it needs to be implemented as a model, 
which itself has to include commitments to concrete algorithms, representational for-
malisms and parameter settings. Dörner’s own implementations as partial computer 



12 J. Bach, C. Bauer, and R. Vuine 

models do not favor such an evaluation, because they do not specify most of these 
commitments, nor do they separate between theory, architecture and model. 

3   MicroPsi 

MicroPsi translates the Psi theory into a cognitive architecture that eventually allows the 
comparison with other approaches. It comprises a development and simulation frame-
work, written in Java, that allows implementing multi-agent systems according to the 
principles of the Psi theory, and it specifies an agent architecture that is implemented 
within the framework. MicroPsi is also used as a robot control architecture. 

 

Fig. 1. MicroPsi toolkit 

The framework offers an editor for hierarchical spreading activation networks, 
which is the principal tool for the design of Psi agents, a graphical simulation world 
that facilitates multi-agent interaction and several customizable environmental de-
signs offering different tasks and tools for the visualization and evaluation of experi-
ments. 

 

Fig. 2. MicroPsi agent architecture 



 MicroPsi: Contributions to a Broad Architecture of Cognition 13 

MicroPsi agents are partial implementations of the Psi theory. They provide a mo-
tivational system in which the cognitive processes are embedded. The agent imple-
mentations so far address simple hypothesis based perception, means-end analysis, 
behavior execution, emotional modulation, reinforcement-learning based on satisfac-
tion and frustration of drives, simple neural learning of low-level stimuli and envi-
ronmental mapping. 

3.1   Current Experiments: Neural Prototyping 

Our current work deals with the extension of individual components of MicroPsi 
agents, such as the integration of neural learning of perceptual patterns from camera 
images with high-level concepts and the acquisition of hierarchical object  
descriptions. Here, we describe an approach to structure classification using neural 
prototyping. 

When recognizing objects, planning and retrieving object hypotheses from long-
term memory, MicroPsi agents need to classify hierarchical representations, which is 
a computationally expensive task, when structure matching is involved. Thus we need 
a strategy to minimize the structure comparison operations, and we address this need 
with an algorithm using class prototypes. These prototypes are represented as neural 
networks, where topology and weights are changed through learning. A first classifi-
cation is performed by sending activation through these networks and to select only 
the most active prototypes. These few remaining structures can then be matched using 
a subgraph matching technique to identify the most similar prototype and with it the 
most suitable class. The advantages of this approach are that the pruning takes only as 
many steps as the depth of the largest prototype, and that the expensive structure 
matching is only used for a very small subset of items in memory. 

The first step of the algorithm is to convert the class prototypes (that can be prede-
termined or acquired through learning) into neural networks. We used the approach 
developed by Towell and Shavlik [15], who describe the conversion of hierarchical 
structures into labelled neural networks (KBANN: knowledge-based artificial neural 
networks) and the properties of those networks. The main idea is to convert the nodes 
and links into neurons and connections in a network, setting the weights and biases in 
such a way as to preserve the logic of the structure.  

After all prototypes have been converted, the neural classification can be per-
formed on a sample structure. This means that all sensors (the leaf nodes in the hier-
archical neural networks) that have the same label as one of the sensors in the exam-
ple provided get activated and spread their activation through the network. A smooth 
activation function has to be chosen, otherwise only the examples that are isomorphic 
to a prototype will be able to activate its root node and thus be classified.  

Next, structure matching is performed between the example and the prototypes 
with the highest activation of their root nodes. This step is necessary, because the neu-
ral activation phase is only able to give a rough estimate of similarity. It only takes a 
very small part of the structures’ topologies into account. Since the topology is an 
important factor for classification, the example is then assigned to the class with the 
most similar structure. There are many different algorithms for structure matching 
([16, 17], an overview in [18]). We decided to use the method described by Schädler 
and Wysotzki [18, 19], based on a Hopfield-network, where each node corresponds to 



14 J. Bach, C. Bauer, and R. Vuine 

two nodes whose similarity exceeds a certain threshold, because it can be integrated 
nicely into the general MicroPsi framework of representation. In our context, the 
similarity is measured by comparing the sensors of the subtrees rooted at the respec-
tive nodes, and the structures of these subtrees. Connections exist between nodes in 
the Hopfield network if they exist between the nodes in the original structures. In ad-
dition, connections with negative weights are added to the network between nodes 
that correspond to mapping a node in one graph to two nodes in the other. After the 
construction has been completed, the network is run until it reaches a stable state. The 
active nodes in this stable state represent a maximum common subgraph of the two 
original structures.  

After the example has been compared to each of the prototypes, there are three 
possibilities to be considered:  

- The example’s similarity to one of the prototypes exceeds a predefined threshold. 
In that case, the example is assigned the class of the prototype and the classifica-
tion procedure is finished.  

- Maximum similarity is high, but not high enough. Here the intuition is that the 
class of the closest prototype should be correct, but that the prototype is not good 
enough to capture the individual properties of the example. In this case, the maxi-
mum common subgraph computed during structure matching can be used to add 
the example-specific parts to the prototype. This is achieved by converting the ex-
ample into a KBANN network, attaching the parts not included in the maximum 
common subgraph and changing the weights of the network (by backpropagation 
learning).  

- No prototype is sufficiently similar. In that case, no statement can be made about 
the class of the example, or, in the case of training, a new prototype is added to the 
example’s class. 

The algorithm has very interesting features: it does not need a complete set of pro-
totypes in order to work efficiently, because it adds new prototypes or changes exist-
ing ones during training. This is required for its application in the MicroPsi architec-
ture, because MicroPsi agents start with very limited or no knowledge about the world 
and have to build their knowledge base over time with only limited help from the out-
side. The system works under the supervised as well as unsupervised paradigms. In 
supervised learning, a training set of labeled examples can be used to generate a good 
set of prototypes. When dealing with unsupervised learning, the prototypes corre-
spond to a set of clusters that can be built continuously, without having to make as-
sumptions about size or locations of clusters beforehand, as is necessary with other 
algorithms. The system is very efficient, because the computationally expensive proc-
ess of pruning the search space is done by neural networks of limited depth that can 
be run in parallel. Neural learning techniques and the topological modification of 
these classifying networks enable the system to generalize faster and better than other 
generalization algorithms that are based on finding the maximum common subgraphs 
between elements of one class that serve as generalized structures. The fact that the 
nodes of the prototype networks have semantic meaning can be exploited during 
training, to achieve faster convergence and less training time. 



 MicroPsi: Contributions to a Broad Architecture of Cognition 15 

We ran two different experiments to test the performance of our approach and to 
compare its performance to other structure classification algorithms. The task of both 
experiments was to classify visually given objects. To represent them, they were rep-
resented as shock graphs [20], which are derived by transforming the skeleton of a 
two-dimensional shape into a hierarchical graph (Fig. 3), where nodes correspond to 
the vertices and end points of the skeleton and edges to their interrelations. (Using 
shock-graph was a somewhat arbitrary decision, which aimed at providing a basic 
abstraction over visual input.) The algorithm first computes the skeleton of the given 
shape and identifies its shock points. Given the shock points, the so called shock 
graph grammar can be used to create a hierarchical structure using the shocks as 
nodes and connecting them according to the grammar rules.  

 

Fig. 3. Skeleton and shock points, sample shock graph taken from [21] 

3.1.1   Supervised Learning 
We trained the algorithms to classify 8 different shapes from a data-base of visual 
objects [21]. From each category we chose 5 shapes that were used for training, and 
the accuracy of each method was measured using 50 objects per class.  

The five prototypes of each class, presented one at a time, were used to build the 
prototype networks. A prototype only became part of the prototype networks, if none 
of the already present prototypes of the same class got activated during spreading ac-
tivation. At the end of the training phase, 30 of the 40 prototypes remained. In 10 
cases there were other prototypes that already classified the given prototype correctly.  
Then the 400 examples were presented to the algorithm. For each example, the five 
prototypes with the highest activation were selected for structural comparison, and the 
example assigned to the one with the highest similarity. 

We have compared our algorithm to several other approaches: to eigenvalue-based 
indexing [22], which represents the structure of the graph as a vector capturing the 
branching structure and node distribution; similarity is determined by computing the 
euclidean distance between the eigen-vectors of two graphs; to attributed graph index-
ing, where the eigenvectors are not derived from the standard adjacency matrix, but 
from the attributed graph – here, the entries in the diagonal are the labels of the 
nodes, and the other entries the labels of the links connecting the respective nodes; 
subgraph prototyping [19], where – using our own subgraph matching procedure – we 
chose the prototype with the largest common subgraph. For neural prototyping and 
the eigenvector-based methods, we use the respective algorithms to retrieve the five 
most similar graphs for each of the 400 examples and then perform a complete struc-
tural comparison. As a base-line, we include linear search, which performs a complete 
graph-matching with every example (and is prohibitively slow).  



16 J. Bach, C. Bauer, and R. Vuine 

Exact runtimes could not be compared because some algorithms used different im-
plementation techniques. Nevertheless, from the experiments we conducted it could 
be observed that the runtimes of the neural prototyping and eigenvalue-based ap-
proaches were comparable, whereas the other algorithms were significantly slower.  

The histograms in Figure 4 depict the results for the five algorithms, where the x-
axis represents the eight categories and the y-axis shows the percentage of correctly 
classified examples. The bar graphs represent the percentage of the examples in each 
class that were correctly classified by the respective algorithm. For example, the neu-
ral prototyping algorithm was able to classify 44 of the 50 examples of category 1 
correctly, leading to an accuracy of 0.88, as shown in the figure. Since all algorithms 
were presented with the same test set, their performance can be compared directly by 
comparing their accuracies across classes. 

As expected, linear search gives the best results, but is followed by our algorithm, 
and then the eigenvector-based approaches. (The results from linear search also show 
that the examples of the different classes had distinct enough shock graph representa-
tions for the structure comparison algorithm to find the correct prototype in most of 
the cases.)  With respect to runtime, neural prototyping is on a par with the eigenvec-
tor-based algorithms, because all of them use a pruning strategy to minimize the 
amount of structural comparisons to be performed. Our algorithm and the subgraph 
prototyping approach were the only ones that showed generalization effects. In our 
case, generalization happened during the training phase, where from the total number 
of 40 prototypes, only 30 generalized prototypes remained and were used for classifi-
cation. 

 

Fig. 4. Results for the different approaches 

3.1.2   Unsupervised Learning 
25 of the objects of each class that had already been used in the previous experiment 
were presented to our algorithm one by one without providing class information. The 
objects in this training pool were used to build a set of prototypes (or cluster points) 



 MicroPsi: Contributions to a Broad Architecture of Cognition 17 

for each class. Contrary to the resulting set of prototypes in the previous experiment, 
the resulting generalized graphs in this case could contain subparts from different, but 
similar, classes. From a total of 200 prototypes that could be generated, the algorithm 
constructed 60 partially overlapping prototypes. The other 25 examples from the test 
pool in the supervised learning setup were used to measure the accuracy of these pro-
totypes. To assess the difficulty of the task, the eigenvalue-based indexing algorithm 
(algorithm two in the previous experiment) was run on the data. Each graph from the 
test set was compared to those in the training pool, and the top five matches identi-
fied. As in the previous experiment, structure matching was used to select the closest 
structure out of these candidates. (Linear search in this setting was computationally 
infeasible.)  

Under general circumstances, where no a-priory prototypes are known, the  
prototype-generating feature of our algorithm should prove advantageous over the 
eigenvalue-based indexing, where each new object must be compared to all available 
structures in memory. In our experiment, there were 60 prototypes left at the end of 
training, as opposed to the originally 200 shapes that were used in the eigenvalue-
based approach. In addition, the speed of our algorithm increased over time during 
training, because as the size of the prototype networks increased, fewer examples 
needed to modify the topology. 

 

Fig. 5. Results from the unsupervised learning environment 

Both algorithms perform well, with some advantage for our algorithm. The inclu-
sion of neural prototyping is a useful extension of MicroPsi, because it enables the 
agents to explore their world and generate categories without external help. The algo-
rithm generalizes, since only about one fourth of the potential number of prototypes 
were used to generate prototypes, while maintaining its performance on the test set. 

References 

1. Detje, F.:  Handeln erklären. DUV, Wiesbaden(1999) 
2. Clark, A., Grush, R.: Towards a Cognitive Robotics. Adaptive Behavior 7(1) (1999) 5-16 
3. Dörner, D.: Eine Systemtheorie der Motivation. Memorandum Lst Psychologie II 

Universität Bamberg, 2,9  (1994) 
4. Dörner, D.: Bauplan für eine Seele. Rowohlt, Reinbeck (1999) 
5. Dörner, D., Bartl, C., Detje, F., Gerdes, J., Halcour D., Schaub H., Starker, U.: Die 

Mechanik des Seelenwagens. Eine neuronale Theorie der Handlungsregulation. Verlag 
Hans Huber, Bern Göttingen Toronto Seattle (2002) 



18 J. Bach, C. Bauer, and R. Vuine 

6. Dörner, D.: Die kognitive Organisation beim Problemlösen. Versuche zu einer 
kybernetischen Theorie der elementaren Informations-verarbeitungsprozesse beim 
Denken. Kohlhammer, Bern (1974) 

7. Barsalou, L. W.: Perceptual Symbol Systems. In: Behavioral and Brain Sciences, 22,4. 
(1999) 577-660 

8. Anderson, J. R., Lebiere, C.: The atomic components of thought. Erlbaum, Mahwah, NJ 
(1998) 

9. Laird, J. E., Newell, A., Rosenbloom, P. J.:  Soar: An architecture for general intelligence. 
Artificial Intelligence, 33(1) (1987) 1-64 

10. Sun, R.: Cognition and Multi-Agent Interaction. Cambridge University Press (2005)  
79-103 

11. Detje, F.: Comparison of the PSI-theory with human behaviour in a complex task. In: 
Taatgen, N., Aasman, J. (eds.): Proceedings of the Third International Conference on Cog-
nitive Modelling. Universal Press, Veenendaal, The Netherlands (2000) 86-93 

12. Dörner, D.: The Mathematics of Emotion. Proceedings of ICCM-5, International Confer-
ence on Cognitive Modeling. Bamberg, Germany (2003) 

13. Ritter, F. E., Shadbolt, N, R., Elliman, D., Young, R. M., Gobet, F., Baxter, G. D.:  Tech-
niques for Modeling Human Performance in Synthetic Environments: A Supplementary 
Review. Human Systems Information Analysis Center, State of the Art Report (2003) 

14. Piaget, J.: The construction of reality in the child. Basic Books, New York (1954) 
15. Towell, G. G., Shavlik, J. W.: Knowledge-based artificial neural networks. In: Artificial 

Intelligence, 70(1-2). (1994) 119–165 
16. Sebastian, T. B., Klein, P. N., Kimia, B. B.: Recognition of shapes by editing shockgraphs. 

IEEE International Conference on Computer Vision. (2001) 755–762 
17. Pelillo, M., Siddiqi, K., Zucker, S. W.: Matching hierarchical structures using association 

graphs. In: IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol 21. 
(1999) 1105–1120 

18. Schädler, K., Wysotzki, F.: Comparing structures using a hopfield-style neural network. 
Applied Intelligence, Vol. 11. (1999) 15–30 

19. Schädler, K., Wysotzki, F.: A connectionist approach to structural similarity determination 
as a basis of clustering, classification and feature detection. PKDD. (1997) 254–264 

20. Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape match-
ing. IEEE International Journal on Computer Vision. (1998) 222–229 

21. Macrini, D.: Indexing and matching for view-based 3-d object recognition using shock 
graphs. Master’s thesis, University of Toronto (2003)  

22. Shokoufandeh, A., Dickinson, S.: A unified framework for indexing and matching hierar-
chical shape structures. 4th International Workshop on Visual Form. (2001)  28–46 



C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 19 – 32, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Affective Cognitive Modeling for Autonomous Agents 
Based on Scherer’s Emotion Theory 

Christine L. Lisetti1,* and Andreas Marpaung2 

1 Multimedia Communications 
Institut Eurecom  

Sophia Antipolis, France 
lisetti@eurecom.fr 

2 Electrical Engineering & Computer Science 
University of Central Florida 

Orlando, Florida, USA 
marpaung@cs.ucf.edu 

Abstract. In this article, we propose the design of sensory motor level as part of 
a three-layered agent architecture inspired from the Multilevel Process Theory 
of Emotion (Leventhal 1979, 1980; Leventhal and Scherer, 1987). Our project 
aims at modeling emotions on an autonomous embodied agent, a more robust 
robot than our previous prototype. Our robot has been equipped with sonar and 
vision for obstacle avoidance as well as vision for face recognition, which are 
used when she roams around the hallway to engage in social interactions with 
humans. The sensory motor level receives and processes inputs and produces 
emotion-like states without any further willful planning or learning. We 
describe: (1) the psychological theory of emotion which inspired our design, (2) 
our proposed agent architecture, (3) the needed hardware additions that we 
implemented on the commercialized ActivMedia’s robot, (4) the robot’s multi-
modal interface designed especially to engage humans in natural (and hopefully 
pleasant) social interaction, and finally (5) our future research efforts. 

1   Introduction  

Robotic agents have been of great interest for many Artificial Intelligence researchers 
for several decades. This field has produced many applications in many different 
fields, i.e., entertainment (Sony Aibo) and Urban Search and Rescue (USAR) 
(Casper, 2002; Casper and Murphy, 2002) with many different techniques – behavior-
based (Brooks, 1989; Arkin, 1998), sensor fusion (Murphy, 1996a, 1996b, 1998, 
2000), and vision (Horswill, 1993). As robots begin to enter our everyday life, an 
important  human-robot interaction issue becomes that of social interactions.  Because 
emotions have a crucial evolutionary functional aspect in social intelligence, without 
which complex intelligent systems with limited resources cannot function efficiently 
or maintain a satisfactory relationship with their environment, we focus our current 
contribution to the study of emotional social intelligence for robots.  Indeed, the 
                                                           
* Part of this work was accomplished while the author was at the University of Central Florida, 

USA. 



20 C.L. Lisetti and A. Marpaung 

recent emergence of affective computing combined with artificial intelligence has 
made it possible to design computer systems that have “social expertise” in order to 
be more autonomous and to naturally bring the human – a principally social animal – 
into the loop of human-computer interaction.   

In this article, social expertise is considered in terms of (1) internal motivational 
goal-based abilities and (2)  external communicative behavior.  Because of the 
important functional role that emotions play in human decision-making and in human-
human communication, we propose a paradigm for modeling some of the functions of 
emotions in intelligent autonomous artificial agents to enhance both (a) robot 
autonomy and (b) human-robot interaction.  To this end, we developed an 
autonomous service robot whose functionality has been designed so that it could 
socially interact with humans on a daily basis in the context of an office suite 
environment and studied and evaluated the design in vivo.  The social robot has been 
furthermore evaluated from a social informatics approach, using workplace 
ethnography to guide its design while it is being developed (Lisetti et al., 2004) 

2   Related Research 

There have been several attempts to model emotions in software agents and robots 
and to use these models to enhance functionality. El-Nasr, (2002)  uses a fuzzy logic 
model for simulating emotional behaviors in an animated environment. Contrary to 
our approach directed toward robots, her research is directed toward HCI and 
computer simulation. 

Breazeal’s work (2000, 2003) also involves robot architectures with a motivational 
system that associates motivations with both drives and emotions.  Emotions are 
implemented in a framework very similar to that of Velasquez’s work but Breazeal’s 
emphasis is on the function of emotions in social exchanges and learning with a 
human caretaker.  Our approach is different from Breazeal’s in that it is currently 
focused on both social exchanges and the use of emotions to control a single agent. 

Murphy and Lisetti’s approach (2002) uses the multilevel hierarchy of emotions 
where emotions both modify active behaviors at the sensory-motor level and change 
the set of active behaviors at the schematic level for a pair of cooperating 
heterogeneous robots with interdependent tasks.  

Our current approach builds on that work, setting the framework for more 
elaborate emotion representations while starting to implement simple ones and 
associating these with expressions (facial and spoken) in order to simultaneously 
evaluate human perceptions of such social robots so as to guide further design 
decisions. 

3   Developing Socially Intelligent Agents 

We focus on the study of social expertise for artificial agents in terms of: 

1. internal motivational goal-based activities, and  
2. external communicative behavior 
 



 Affective Cognitive Modeling for Autonomous Agents 21 

As shown in Figure 1, we are focusing on the Socially Intelligent Agent 
architecture  (within the red circle) of the Multimodal Affective User Interface 
(MAUI) paradigm proposed and developed earlier (Lisetti, 2002; Lisetti and Nasoz, 
2004) for the design of affective socially intelligent agents.  Our current work within 
the MAUI framework continues to focus on building user-specific emotional models 
of the user based on bi-modal bio-sensing of physiological signals associated with 
emotions – namely heart rate and galvanic skin response (Villon and Lisetti, 2006). 

 

Fig. 1. Overall MAUI Paradigm for Multimodal Affective User Interfaces from (Lisetti and 
Nasoz, 2004) 

We currently propose a psychologically-grounded framework for socially 
intelligent agents (corresponding  to the modules of in the doted circle) based on 
Scherer’s affective-cognitive theory of emotions.  This architecture to be used for the 
development of artificial agents with diverse forms of embodiment such as vocal 
robots, graphical animated avatars, avatar-based interface on mobile robotic platform, 
anthropomorphic robotic platforms as shown later. 

4   A Three-Layered Emotional State Generator  

With recent advances in Psychology, many researchers have proposed theories on the 
mechanisms of producing emotions in humans. One of the theories of particular interest 
to us is the Multilevel Process Theory of Emotion (Leventhal 1979, 1980, Leventhal and 
Scherer, 1987), which we chose to inspire the design and the implementation of the 
Emotion State Generator (ESG) on our commercially available autonomous robot  
 



22 C.L. Lisetti and A. Marpaung 

 

Fig. 2. Emotion State Generator (ESG) based on the Multilevel Process Theory of Emotion 
(Scherer, 1986) 

PeopleBot  (ActivMedia, 2002). Figure 1 shows the ESG three-layered architecture we 
use for generating emotion-like states for our autonomous agents.   

Indeed, the Multilevel Process Theory of Emotion postulates that the experience of 
emotion is a product of an underlying constructive process that is also responsible for 
overt emotional behavior. It also describes that emotions are constructed from a 
hierarchical multi-component processing system. In short (Leventhal, 1980): 

a. Sensory motor level – generates the primary emotion in response to the basic 
stimulus features in a non-deliberative manner; 

b. Schematic level – integrates specific situational perceptions with autonomic, 
subjective, expressive and instrumental responses in a concrete and patterned 
image-like memory system; 

c. Conceptual level – corresponds more closely to social labeling processes. 

4.1   Sensory Motor Level 

The sensory motor or expressive motor level is the basic processor of emotional 
behavior and experience that provides the earliest emotional meaning for certain 
situations. This level consists of multiple components: (a) a set of innate expressive-
motor systems and (b) cerebral activating systems. These components are stimulated 



 Affective Cognitive Modeling for Autonomous Agents 23 

automatically by a variety of external stimuli and by internal changes of state that do 
not require deliberate planning.  

Because there is no involvement of the willful planning and learning processes, the 
lifetime of the emotional reactions caused at this level may be short and will quickly 
become the focus for the next level, schematic processing. Action in the facial motor 
mechanism, as part of the expressive motor system, is the source of the basic or 
primary emotions of happiness, surprise, fear, sadness, anger, disgust, contempt, and 
interest (Leventhal, 1979). In this project, we are only modeling: happy, surprise, fear, 
sad and angry. 

We briefly describe the schematic and conceptual levels for completeness sake, but 
we are currently focusing our design on the sensory motor level. 

4.2   Schematic Level 

The schematic level integrates sensory-motor processes with prototypes or schemata 
of emotional situations in order to create or to structure emotional experiences. But 
before entering this level, the input needs to be integrated with separate perceptual 
codes of the visual, auditory, somesthetic (related to the perception of sensory stimuli 
from the skin), expressive, and autonomic reactions that are reliably associated with 
emotional experiences.   

Schemata - organized representations of other more elementary codes - are built 
during emotional encounter with the environment and will be conceptualized as 
memories of emotional-experiences. As shown in Figure 2, humans can activate these 
schemata by activating any one of its component attributes that is caused by the 
perception of a stimulus event, by the arousal of expressive behaviors or autonomic 
nervous system activity, or by the activation of central neural mechanisms that 
generate subjective feelings. The structure of the schematic memories can be thought 
of as codes, complex categorical units, a network of memory nodes, or perhaps as 
memory columns that are conceptualized.  

The schematic processing is also automatic and does not require the participation 
of more abstract processes found at the conceptual level. This schematic level is more 
complex than the sensory motor level in that it integrates learning processes while 
building the complexities of schemata. At this level, emotion behavior also has a 
longer lifetime.  

4.3   Conceptual Level 

The conceptual level can be thought of as the system that can make conscious 
decisions or choices to some external inputs as well as to internal stimuli (such as 
stored memories of emotional schemata generated at the schematic level). It is the 
comparison and abstraction of two or more concrete schemata of emotional memories 
with certain concepts that will enable the humans to draw conclusions about their 
feelings to certain events. By comparing and abstracting information from these 
schemata with conceptual components – verbal and performance component - humans 
can reason, regulate ongoing sequences of behavior, direct attention and generate 
specific responses to certain events.  

The verbal components are not only representing the feelings themselves but they 
are also communicating the emotional experiences to the subject (who can also 



24 C.L. Lisetti and A. Marpaung 

choose to talk about his/her subjective experience). On the other hand, the 
performance components are non-verbal codes that represent sequential perceptual 
and motor responses. The information contained at this level is more abstract than the 
schematic memories and therefore the representations can be protected from 
excessive changes when they are exposed to a new experience and can be led to more 
stable states. Because this level is volitional, components can be more sophisticated 
through active participation of the agent. When performance codes are present, for 
example, the volitional system can swiftly generate a sequence of voluntary responses 
to match spontaneous expressive outputs from the schematic system. This volitional 
system can anticipate emotional behaviors through self-instruction. 

4.4   Stimulus Evaluation Checks (SECs) 

In order to produce emotion for each level, many researchers have hypothesized that 
specific emotions are triggered through a series of stimulus evaluation checks (SECs) 
(Scherer, 1984; Scherer, 1986; Weiner, Russell, and Lerman, 1979; Smith and 
Ellsworth, 1985). Inspired by (Lisetti and Nasoz, 2002), we link the SECs system that 
performs the emotion components’ check in the Affective Knowledge of 
Representation (AKR) that produces a schema of emotion. This schema can be 
associated with a certain event and emotion and be part of the schema memory for 
further use. In AKR, each emotion has many components, e.g., valence, intensity, 
focality, agency, modifiability, action tendency, and causal chains. 

 Valence: positive/ negative: is used to describe the pleasant or unpleasant 
dimension of an affective state.  

Intensity: very high/ high/ medium/ low/ very low: varies in terms of degree. The 
intensity of an affective state is relevant to the importance, relevance and urgency of 
the message that the state carries.  
 Focality: event/ object: is used to indicate whether the emotions are about 
something: an event (the trigger to surprise) or an object (the object of jealousy).  
 Agency: self/ other: is used to indicate who was responsible for the emotion, the 
agent itself self, or someone else other.  
 Modifiability: high/ medium/ low/ none: is used to refer to duration and time 
perspective, or to the judgment that a course of events is capable of changing.  
 Action tendency: identifies the most appropriate (suite of) actions to be taken from 
that emotional state. For example, happy is associated with generalized readiness, 
frustration with change current strategy, and discouraged with give up or release 
expectations.    
 Causal chain: identifies the causation of a stimulus event associated with the 
emotion. For example, happy has these causal chains:  (1) Something good happened to 
me, (2) I wanted this, (3) I do not want other things, and (4) because of this, I feel good. 

5   Affective-Cognitive Architecture and Embodiment Forms 

5.1   Functionalities of Our Robot 

Our robot, Petra, has the same tasks as Cherry (Lisetti, et al. 2004) and is designed so 
that she can socially interact with humans on a daily basis in the office suite 



 Affective Cognitive Modeling for Autonomous Agents 25 

environment especially on the second floor of the computer science building at the 
University of Central Florida. She has a given set of office-tasks to accomplish, from 
giving tours of our computer science faculty and staff suites to visitors and to 
engaging them in social interactions. With the sensors that she has (explained below), 
she is able to roam around the building using her navigational system,  recognize 
someone through her face recognition algorithm, and greet them differently according 
to their social status (professor, students, staff). 

In terms of architectures for autonomous agents and robots, the multi-level theory 
of emotions currently gets translated into the figure 3 below, of which we have 
implemented various levels and different types of embodiement forms, as shown in 
Figures 4 (b-c).  We are currently in the process of building a platform independent 
architecture and an expression control mechanism to adapt to a multitude of robotic 
and graphical artificial agents such as for example the non-mobile Phillips iCat 
interactive toy-looking which we are currently working on shown in Figure 4a 
(Grizard and Lisetti, 2006; Paleari and Lisetti, 2006). 

 

Fig. 3. Affective-Cognitive Three-Layered Architecture 

We next describe how our ESG discussed in Section 2 is integrated in the overall 
affective-cognitive architecture shown in Figure 3 and implemented a mobile 
ActivMedia PeopleBot (ActivMedia, 2002).  We called this robot or project Petra.  
Currently, Petra has three different sensors - twenty-four sonar, a camera for 
navigation, and a camera for face recognition to be used during navigation and social 
interaction. After sensing various stimuli from the real world (e.g., walls, floors, 
doors, faces), these are sent to the perceptual system. We designed the perceptual 
system as an inexpensive and simple system so that the information abstracted from 
the outside world has some interpreted meaning for the robot.  For every cycle (in our 
case, it is 1000 mm travel distance), the sensors send the inputs read to the perceptual 



26 C.L. Lisetti and A. Marpaung 

 
 

 
 
 
 
      
 

 
                      
 
 
 
      

                                  (a)                                                  (b)                                       (c)    

Fig. 4. (a) iCat Platform; (b) Amigobot mobile Platform; (c) Peoplebot mobile Platform 

system and these are then processed by the perceptual system as described below. 
Afterward, the perceptual system sends its outputs (valid sonar readings, vision-
navigation interpretation, and person’s name) to the sensory motor level, which 
triggers certain emotion-like states.  

5.2   Navigation with Sonar and Vision 

Sonar: In our design, the robot performs sonar readings every 200 mm, so for 1000 
mm, we get five different readings. Out of these five readings, the system extracts the 
invalid information out and stores only the good ones for further use in the ESG 
model. The reading is invalid if the sum of the left-most and the right-most sonar 
readings are extremely more or extremely less than the distance between the aisle 
(1,500 mm for our case). And vice versa, the reading is valid if the sum of both 
readings is around 1,500 mm.  

Camera: For every cycle, the camera captures an image and sends it to the vision 
algorithm. In this algorithm, the image is smoothened and edged by canny edge 
detector before calculating the vanishing point. In order to calculate the point, in 
addition to the canny method, we also eliminate the vertical edges and leave the 
image with the non-vertical ones (edges with some degrees of diagonality). With the 
edges left, the system can detect the vanishing point by picking up the farthest point 
in the hall. With this point, represented by the x- and y- coordinate, the system asks 
the robot to perform course correction, if needed, and uses it as an input for the ESG 
model. Besides having the capability to center between the aisles of the hallway, the 
robot is also able to detect some obstacles, i.e, garbage can, boxes, people, etc. When 
the robot finds the object(s), this detection information is also sent to the ESG model. 

5.3   Integration of Face Recognition with Social Status Knowledge 

The perceptual system receives input from the eye-level camera only when the robot 
performs the face recognition algorithm.  In our current implementation, this 
algorithm starts when the robot asks someone to stand next to her and captures an 



 Affective Cognitive Modeling for Autonomous Agents 27 

image. Along with the FaceIt technology by Identix (Identix, 2002), our algorithm 
compares the input with the collection of images in her database of 25 images and 
when any matching is found, she greets that person. The result, recognized or 
unrecognized along with the person’s name (to be used to greet him/her), is also sent 
as an input to the ESG model. At this level, the other information of the person whose 
image was captured and recognized (gender, social status, and social interaction value 
– the degree of her like/dislike toward that person) is not sent to the sensory motor 
level, but in the future, this information may be needed for the implementation of the 
schematic and/or the conceptual level where further learning and information 
processing will be performed. 

6   Sensory Motor Level Design and Implementation 

Since the information abstracted from the perceptual system does not go through 
willful thinking and learning at this level, it may contain some fuzziness to certain 
degree. Inspired by FLAME (El Nasr, 2002), this level is implemented with the 
Takagi, Sugeno, and Kang (TSK) fuzzy logic model (Takagi & Sugeno, 1985). 
Because of its simplicity, it can reduce the number of rules required for this level. Our 
proposed sensory motor level architecture is shown in Figure 5.   

 
Fig. 5. Sensory Motor Level’s sub-Architecture 

The information received from the perceptual system is then processed further to 
determine the drifting rates and angle changes which are represented by five fuzzy 
values (small, medium-small, medium, medium-large, and large) and the door 
detection, the object detection, and the face recognition which are represented by 
boolean values (found and not-found or recognized and not-recognized).  Below are 
the examples of fuzzy representations of the angle changes calculated from the 



28 C.L. Lisetti and A. Marpaung 

sonar’s valid readings (Fangle_sonar). Δ is determined by subtracting the current reading 
from the previous one. 

The information (drifting rate, angle changes, door detection, object detection, and 
face recognition) is then further processed with the TSK model which gives the 
emotion-like-parameters-change represented by a numerical value which will 
add/subtract the numerical values of the emotion-like-parameters (happy, surprise, 
fear, sad and angry) based on the OR-mapping shown on Table 1. 

Table 1. Mapping of the emotions’ parameter changes 

Parameter Increased if Decreased if 

Happy 

- Small to Medium-
small value of the 
processed 
information from 
sonar or vision 

- Open door 
- Recognize someone 

- Medium to Large 
value of the 
processed 
information from 
sonar or vision  

- Closed door 
- Not recognize 

someone 

Surprise1 

- Large value of the 
processed 
information from 
sonar or vision (on 
the first detection 
only) 

- The robot is in the 
happy state 

 

Fear 

- Large value of the 
processed 
information from 
sonar or vision 
(medium repetition) 

- The robot is in the 
happy state 
 

 
Sad 

- Medium to Medium-
large value of the 
processed 
information from 
sonar or vision 

- Closed door 
- Not recognize 

someone 

- Small to Medium-
small value of the 
processed 
information from 
sonar or vision 

- Open door 
- Recognize someone 

Angry 

- Large value of the 
processed 
information from 
sonar or vision (high 
repetition) 

- Closed door 
(repetitively) 

- Not recognize 
someone 
(repetitively) 

- Small to Medium-
small value of the 
processed 
information from 
sonar or vision 

- Open door 
- Recognize someone 

                                                           
1 To show surprise, when the processed information from sonar or vision is large on the first 

detection, the weight of this emotion is highest among all. 



 Affective Cognitive Modeling for Autonomous Agents 29 

After calculating the emotion-like state, the sensory-motor level performs the 
Stimulus Evaluation Check (SEC) process to check the emotion appropriate 
components and create a schema of emotion to be stored in the memory. The checkings 
are performed by assigning appropriate values to the emotion components (as described 
in the SEC section above), based on the checks (e.g. pleasantness, importance, 
relevance, urgency). Table 2 shows a schema when an unexpected moving object 
suddenly appears in the captured navigation-image, i.e, walking students. In this case, 
surprise will be activated as the final emotion, only for the current cycle.  

A sudden appearance of a person in the navigation image is detected as an obstacle 
that can slow down the navigation process due to the course correction that needs to 
be performed should the person remain in the navigation image on the next cycle. 
Thus intensity is very high and the action tendency is to avoid potential obstacles. 
Since the face cannot be detected at farther distance, the valence is negative. And at 
current cycle, the modifiability is set to its default–medium because the robot has not 
performed the obstacle avoidance to change the course event. 

Table 2. Schematic Representation for Surprise 

Components Values 
Emotion Surprise 
Valence Negative 
Intensity Very High 
Focality Object – walking student 
Agency Other 
Modifiability Medium 
Action Tendency Avoid 
Causal Chain - Something happened now 

- I did not think before now that this 
will happen 

- If I thought about it, I would have 
said that this will not happen 

- Because of this, I feel something 
bad 

           

    (a)              (b)            (c) 

Fig. 6. Facial expressions for some of the modeled emotions a: Happy; b: Angry, c: Sad 

After performing the SECs, the robot’s facial expression is also adjusted to display 
her current internal emotion-like state. For every emotion-like that we are modeling, 
e.g., happy, surprise, fear, sad, and angry, we have designed their facial expressions 



30 C.L. Lisetti and A. Marpaung 

based on the Facial Action Coding System (FACS) (Ekman and Friesen, 1978) as 
shown in Figure 6 (a-e).  

6.1   Behavior State Generator (BSG) 

A behavior is “a mapping of sensory inputs to a pattern of motor actions, which then 
are used to achieve a task” (Murphy, 2000). After determining the facial expressions, 
the processed information is sent to BSG. Through these, she can execute different 
behaviors depending on the input sources (sonar, camera for navigation, and camera 
for face recognition). Each behavior state is described below: 

1. INIT: reset the emotion-like, the progress bars, and the starting position. 
2. STAY_CENTER: center herself between the aisles to avoid the walls. 
3. AVOID_LEFT_WALL: move right to avoid the left wall. This behavior is 

triggered when a course correction, calculated by sonar or vision, is needed. 
4. AVOID_RIGHT_WALL: move left to avoid the right wall. This behavior is also 

triggered when course correction is needed. 
5. WAIT: wait for a period of time when the face recognition algorithm cannot 

recognize anyone or the door is closed (in order to try again to avoid any false 
positive). 

7   Integration on a Robotic Platform with Anthropomorphic 
Interface 

The interface shown in Figure 7 is displayed through the touch screen wirelessly is a 
modified version of Cherry’s (Lisetti et al., 2004).  It integrates several components 
such as the avatar, a point-and-click map, the emotion changing progress bars, several 
algorithms (navigation system, vision and obstacle avoidance system, and face 
recognition system), several help menus, i.e., speech text box, search properties, and 
start-at-room option, and two live-capture frames.  

The main improvements on Petra’s interface from Cherry’s are the progress bars, 
the two video frames, and navigational and vision algorithms. Through these bars, we  

 

 

Fig. 7. Petra’s Complete Interface and Hardware 



 Affective Cognitive Modeling for Autonomous Agents 31 

are able to show the real-time changes of emotion-like state and which emotion-like 
state(s) is/ are affected by the stimuli accepted. One of the video streams has the same 
purpose as Cherry’s vision for face recognition, and the other one is used for the 
vision for navigation system. The other two algorithms (navigation and vision) are 
designed to have a better and smoother navigational system. 

8   Conclusion 

The work presented represented a very small milestone toward achieving cognitive-
affective architectures for socially intelligent agents.  Our intention is to continue to 
base our work on psychological theories, in particular that of Scherer’s because it 
psychologically links emotion recognition, with emotion generation at the affective-
cognitive level and with emotion expression which allows to develop a completely 
psychologically grounded system for Human-Robot Interaction as depicted in the 
MAUI (Multimodal Affective User Interface) framework we presented as the basis 
for our work.  Much more remains to be accomplished. 

Acknowledgements. The authors would also like to thank the Office of Naval 
Research for partial funding for this research project. We would also like to thank 
Eric P. Leger for his help in implementing the navigation and obstacle avoidance 
algorithms. 

References 

1. ActivMedia.  www.activmedia.com, 2002. 
2. Arkin, R. C.  Behavior-Based Robotics, Cambridge, MA: MIT Press, 1998. 
3. Breazeal, C. and Scassellati, B., "Infant-like Social Interactions Between a Robot and a 

Human Caretaker".     Special issue of Adaptive Behavior on Simulation Models of Social 
Agents, guest editor Kerstin Dautenhahn. 2000 

4. Breazeal, C. “Emotion and sociable humanoid robots”. International Journal of Human 
Computer Studies. Vol. 59. pg. 119 – 155. 2003 

5. Brooks, R and Flynn, A. “Fast, Cheap, and Out of Control”, AI Memo 1182, MIT AI 
Laboratory, 1989.  

6. Brown, S. Lisetti, C. and Marpaung, A. Cherry, the Little Red Robot with a Mission and a 
Personality. In Working Notes of the AAAI Fall Symposium Series on Human-Robot 
Interaction, Menlo Park, CA: AAAI Press. Cape Cod, MA, November 2002.  

7. Casper, J. “Human-robot interactions during the robot-assisted urban search and rescue 
response at the World Trade Center.” MS Thesis, Computer Science and Engineering, 
University of South Florida, April 2002. 

8. Casper, J. and Murphy, R. “Workflow study on human-robot interaction in USAR.” In 
Proceedings of ICRA 2002, pp. 1997 – 2003. 2002. 

9. Ekman, P and Friesen, W. "The Facial Action Coding System". Consulting Psychologist 
Press, San Francisco, CA, 1978. 

10. El-Nasr, Magy Seif. Yen, John. Ioerger, Thomas. FLAME - A Fuzzy Logic Adaptive 
Model of Emotions, Automous Agents and Multi-agent  Systems, 3, 219-257, 2000. 

11. Grizard, A. and Lisetti, C. Generation of Facial Emotional Expressions Based on 
Psychological Theory. In Notes of the 1st Workshop Emotion and Computing, 29th Annual 
German Conference on Artificial Intelligence.  Universität Bremen, Germany, June 2006. 



32 C.L. Lisetti and A. Marpaung 

12. Identix Inc.  www.identix.com, 2002. 
13. Leventhal, H. “A perceptual-motor processing model of emotion.” In P. Pilner, K. 

Blankenstein, & I.M. Spigel (Eds.), Perception of emotion in self and others. Vol. 5 (pp. 1 
– 46). New York: Plenum. 1979 

14. Leventhal, H., “Toward a comprehensive theory of emotion.” In L. Berkowitz (Ed.), 
Advances in experimental social Psychology. Vol. 13 (pp. 139 – 207). New York: 
Academic Press, 1980 

15. Leventhal, H. and Scherer, K. “The relationship of emotion to cognition: A functional 
approach to a semantic controversy.”  Cognition and Emotion. Vol. 1. No. 1. pp. 3 – 28. 
1987. 

16. Lisetti, C. Brown, S. Alvarez, K. and  Marpaung, A. A Social Informatics Approach to 
Human-Robot Interaction with an Office Service Robot. IEEE Transactions on Systems, 
Man, and Cybernetics - Special Issue on Human Robot Interaction, Vol. 34(2), May 2004. 

17. C. L. Lisetti and F. Nasoz (2002). MAUI: A Multimodal Affective User Interface. In 
Proceedings of the ACM Multimedia International Conference 2002, (Juan les Pins, 
France, December 2002).  

18. Marpaung, A. “Social Robots with Emotion State Generator Enhancing Human-Robot 
Interaction (HRI)”. Master’s thesis. University of Central Florida. in progress 2004. 

19. Murphy, R. R.  Use of Scripts for Coordinating Perception and Action, In Proceedings of 
IROS-96 , 1996a. 

20. Murphy, R. R.  Biological and Cognitive Foundations of Intelligent Sensor Fusion, IEEE 
Transactions on Systems, Man and Cybernetics, 26 (1), 42-51, 1996b. 

21. Murphy, R. R. Dempster-Shafer Theory for Sensor Fusion in Autonomous Mobile Robots, 
IEEE Transactions on Robotics and Automation, 14 (2), 1998. 

22. Murphy, R. R. Introduction to AI Robotics. Cambridge, MA: MIT Press, 2000. 
23. Murphy, R. R., Lisetti, C. L., Irish, L., Tardif, R. and Gage, A., Emotion-Based Control of 

Cooperating Heterogeneous Mobile Robots, IEEE Transactions on Robotics and 
Automation, Vol. 18, 2002. 

24. Paleari, M. and Lisetti, C. Psychologically Grounded Avatar Expression. In Notes of the 1st 
Workshop Emotion and Computing, 29th Annual German Conference on Artificial 
Intelligence.  Universität Bremen, Germany, June 2006 

25. Picard, Rosalind W. Affective Computing, Cambridge, Mass.: MIT Press, 1997. 
26. Scherer, K. “Emotion as a multicomponent process: A model and some cross-cultural 

data.”   In P. Shaver (Ed.), Review of personality and social psychology. Vol. 5. Emotions, 
relationships and health (pp. 37 – 63). Beverly Hills, CA: Sage. 1984 

27. Scherer, K. “Vocal affect expression: A review and a model for future research.”      
Psychological Bulletin. 99. pp. 143 – 165. 1986 

28. Smith, C. A., Ellsworth, P.C. “Patterns of cognitive appraisal in emotion.” Journal of 
Personality and Social Psychology. 48. pp. 813 – 838. 1985 

29. Villon, O. and Lisetti, C. Toward Building Adaptive User’s Psycho-physiological Maps  of 
Emotions using Bio-Sensors. In Notes of the 1st Workshop Emotion and Computing, 29th 
Annual German Conference on Artificial Intelligence.  Universität Bremen, Germany, June 
2006 



OWL and Qualitative Reasoning Models

Jochem Liem and Bert Bredeweg

Human Computer Studies Laboratory, Informatics Institute,
Faculty of Science, Universiteit van Amsterdam, The Netherlands

{jliem,bredeweg}@science.uva.nl

Abstract. The desire to share and reuse knowledge has led to the es-
tablishment of the Web Ontology Language (OWL) knowledge repre-
sentation language. The Naturnet-Redime project needs to share qual-
itative knowledge models of issues relevant to sustainable development
and OWL seems the obvious choice for representing such models to al-
low search and other activities relevant to sharing knowledge models.
However, although the design choices made in OWL are properly doc-
umented, their implications for Artificial Intelligence (AI) are part of
ongoing research. This paper explores the expressiveness of OWL by for-
malising the vocabulary and models used in Qualitative Reasoning (QR),
and the applicability of OWL reasoners to solve QR problems. A parser
has been developed to export (and import) the QR representations to
(and from) OWL representations. To create the OWL definitions of the
QR vocabulary and models, existing OWL patterns were used as much as
possible. However, some new patterns, and pattern modifications, had to
be developed in order to represent the QR vocabulary and models using
OWL.

1 Introduction

During the development of the Web Ontology Language (OWL), design choices
have been made to ensure the language is decidable and not too intricate to im-
plement. Therefore, OWL does not have the expressiveness to formalise things
such as default values, arithmetic, string operations, or procedural attachments.
Another feature of OWL is that is has an open world assumption. The implica-
tions of these design choices on ontology development are still unclear, partic-
ularly for advanced applications in Artificial Intelligence (AI). The question is:
“What are the consequences of the OWL design choices on the expressiveness of
the language for advanced AI applications?”

To discover the problems and solutions associated with use of OWL, Garp3
Qualitative Reasoning (QR) models and their vocabulary [3] are formalised.
Garp3 unifies three alternative approaches to qualitative reasoning (QPT [5],
Envision [4], and QSIM [9]) into a single qualitative reasoning and modelling
workbench. There are five reasons this typical AI application is chosen. Firstly,
qualitative reasoning predicts the behaviour of systems; a task rather different
from the classification task OWL reasoners can solve. Secondly, the knowledge

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 33–48, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



34 J. Liem and B. Bredeweg

representation used in QR models is elaborate and complex. For instance, qual-
itative models describe both the structure and the behavioural aspects of a
system, parts of models may be reused in others, and the requirements for a
correct model are restrictive in what kinds of ingredients may be connected.
Thirdly, QR models describe their domains in a way which is understandable for
non-experts, closely following the naive physics proposal (except for the focus
on implementation) [7]. This common-sense view on systems which QR models
have, make them interesting for reuse. Fourthly, the OWL community proposes
that using an ontology as an information model for design is a typical use case
[8]. Since both modelling and design are similar synthesis tasks [13], the formal-
isation of the QR domain should be a typical application of OWL. This makes
the problems discovered during the formalisation of the QR application area
of interest to a large group of researchers. Finally, there is a desire within the
QR community to share and reuse models through a central online repository
(see Figure 1). This goal will be realised within the European NaturNet-Redime
project (http://www.naturnet.org/). A requirement to allow users to search for
models in which specific concepts or structures are used, is a formalisation of
these models in an open semantic format which is processable by query lan-
guages. For this purpose, OWL has been chosen since it is the de-facto standard
for exchanging ontological models on the web, and has a large user base. Fur-
thermore, well-developed OWL tools are available to facilitate the modelling
and model search. Hence, this paper focuses on the question: ”Is OWL expres-
sive enough to formalise the QR vocabulary and models, and which of the QR
problems can an OWL reasoner solve?”

In Figure 1 an overview is given of the desired result of this research. Tra-
ditionally, Garp3 can write models to a binary format and can also read them.
Functionality has been added to export models to an OWL format and import
them again. The models in the OWL format reference to model ingredients de-
fined in the Qualitative Reasoning Vocabulary Ontology. For brevity, in this
extra OWL file only the model itself is represented, as the simulations can be

Fig. 1. Garp3’s interaction with the binary and OWL files and the qualitative model
repository



OWL and Qualitative Reasoning Models 35

easily recreated using the software. In the near future an online model reposi-
tory will be developed in which models can be stored, searched for and retrieved.
Models in this repository will reference concepts in an ontology describing the
categories within the repository.

The organisation of this paper is as follows. Section 2 explains the QR field
and the types of reasoning used. Section 3 describes the implications of the for-
malisation of general situations using QR ingredients on the use of the OWL
reasoner. Section 4 focuses on the reusability of reified relations. Section 5 ex-
plains multiple methods of the formalisation of a total order of values. Section
6 describes a pattern to restrict the use of relations for classes with specific
conditions. Finally, the results are discussed and conclusions are drawn.

2 Qualitative Reasoning

The aim of qualitative modelling and reasoning [3] is to build models from which
the behaviour of systems (in the form of state graphs such as the one in Figure 5a)
can be predicted through simulation. Each state describes a specific situation of
the system, while each transition represents the changes from one situation to
another. QR models require no numerical data. Instead, changeable properties
of systems are described as its relevant points and intervals (see Figure 2a and
section 5). The size of a population in an environment can be formalised as
{zero, positive, max}. This kind of formalisation is particularly advantageous
for domains in which it is difficult to obtain numerical data, such as ecology.
For experts in these fields, qualitative modelling provides a means to make their
knowledge explicit and computer processable. An example of the application of
qualitative modelling in ecology is the testing of the succession hypothesis of the
Brazilian Cerrado forest [12]. A detailed description of the application of QR in
ecology is available in the Ecological Informatics book [2].

An advantage of qualitative modelling is that the causal dependencies between
quantities are made explicit (the [I]nfluence and [P]roportionalities in Figure 2b).
Next to the ability to predict the behaviour of a system, these causal dependen-
cies make it possible to provide a causal explanation of why a system behaves in a
particular way. These features of qualitative simulation provide the opportunity
for hypothesis testing and learning.

An important part of a QR model are model fragments, which incorporate
model ingredients as either conditions (red) or consequences (blue). Two ex-
ample model fragments can be seen in Figure 2a and 2b. The first describes a
population with a size (which can be read as: if there is a population, it has
a size), while the second formalises the consumption process between two pop-
ulations. In general, the structure of the system is described using conditions
and the causal dependencies as consequences, although other model ingredi-
ents can also be used as consequences. The model fragment describes causal
relations which apply to a general situation within a system. Model fragments
are organized in a subtype hierarchy. A child model fragment inherits the model
ingredients from their parent and is a specialisation of its parent, because it adds



36 J. Liem and B. Bredeweg

Population
Some population

Size

Zlmh
Max
Positive
Zero

(a) A single population
with size zero (point),
positive (interval) or
maximum (point). The
population entity is con-
ditional, while the size
quantity is a conse-
quence.

Population

Population
Some population

Size

Zlmh
Max
Positive
Zero

Population

Population
Some population

Size

Zlmh
Max
Positive
Zero

Consumes

(b) The consumption of a prey by a predator. The popu-
lation model fragments, the consumes configuration and
the size greater than zero inequality are conditional. The
causal dependencies and the equality between the max
values are consequences.

Fig. 2. The two model fragments in the example model

new model ingredients to the aggregate. It is possible to reuse a model fragment
within another model fragment (in Figure 2b the Population model fragment
is reused twice). Technically speaking, this is similar to the relation between a
parent and a child model fragment: the model ingredients of the reused model
fragment are incorporated as conditions in the model fragment. This type of
reuse allows users to efficiently create qualitative models.

Scenarios are the counterpart of model fragments and describe specific situa-
tions of systems (see Figure 3). These aggregates are used to determine the start
states of the behavioural graph.

Population
Resource

Population
Plants

Population
Herbivores

Population
Carnivores

Consumes Consumes Consumes

Size

Zlmh
Max
Positive
Zero

Size

Zlmh
Max
Positive
Zero

Size

Zlmh
Max
Positive
Zero

Size

Zlmh
Max
Positive
Zero

Fig. 3. A scenario plants consuming a resource, herbivores consuming plants, and
carnivores consuming herbivores. All the model ingredients are consequences (facts).

The reasoning the QR engine performs can be divided into five parts: classifica-
tion, inequality testing, consequence merging, influence resolution and prediction.



OWL and Qualitative Reasoning Models 37

The first four steps take an incomplete state (which, in the first algorithm it-
eration, is the scenario) as input and produce a complete state description, i.e.
a state containing all consequences of the model fragments applying and with
calculated derivatives. The classification task searches for candidate model frag-
ments. Candidate model fragments are the model fragments which structurally
match the incomplete state. The behavioural aspects of model fragments (such as
known values and inequalities) are ignored when searching for model fragments,
as model fragments can contain inequalities as conditions. These conditional in-
equalities might be true, but have to be derived from the other inequalities which
also apply to the state (which is not part of the classification).

The candidate model fragments which result from the previous step might
or might not be consistent with the inequalities which are mentioned in their
respective model fragments. The reasoner tries to derive the conditional inequal-
ities in the inequality testing step. If the inequalities can be deduced, they are
incorporated in the state. If the inequalities are inconsistent with the estab-
lished inequalities, the candidate model fragment is removed. Model fragments
for which both the conditional structure (which can include other model frag-
ments) and the conditional values and inequalities match, become active. In the
consequence merging step, the consequence model ingredients of active model
fragments are added to the state.

The classification, inequality testing and consequence merging steps are re-
peated with the augmented state until no new applying model fragments can be
found. After these steps, candidates are either (1) included in the state because
their conditions are true, (2) ignored because their conditions are inconsistent
with the state. This results in an augmented state, which incorporates all the
consequences of matching model fragments. Simulating the scenario in Figure 3
with the model fragments from Figures 2a and 2b would result in an augmented
state as visualised in Figure 4, although the derivatives would still be unknown
(the arrows next to the active values indicating the trend).

In the influence resolution step the augmented state is completed by determin-
ing the derivatives of the quantities by resolving the influences and proportion-
alities. Influences are the cause of change within a model, and are therefore said
to model processes. Depending on the magnitude value of the source quantity
and the type of influence, the derivative of the target quantity either increases
or decreases. An influence Q1(I+)Q2 causes the quantity Q2 to increase if Q1 is
positive, decrease if it is negative, and remain stable when it is zero (assuming
there are no other causal dependencies on Q2). For an influence I- this is just
the opposite. Influences are also referred to as direct influences. Proportionalities
propagate the effects of a process, (i.e. they set the derivative of the target quan-
tity depending on the derivative of the source quantity). For this reason, they
are also referred to as indirect influences. Like influences, proportionalities are
either positive or negative. A proportionality Q1(P+)Q2 causes Q2 to increase
if Q1 increases, decrease if Q1 decreases, and remain stable if Q1 remains stable.
For a proportionality P- the opposite applies. Applying the influence resolution
step would result in the completed state description shown in Figure 4.



38 J. Liem and B. Bredeweg

>

Max
Positive
Zero

Size

Resource

>

Max
Positive
Zero

Size

Plants

>

Max
Positive
Zero

Size

Herbivores

Max
Positive
Zero

Size

Carnivores

Consumes

Consumes

Consumes

Fig. 4. The completed state description after matching model fragments on the sce-
nario, aggregating the consequences and resolving the causal operators

The prediction algorithm takes the completed state description and identifies
the successive states of behaviour and transitions to them. Termination rules
are part of the qualitative engine, and indicate under what conditions states
change. For example, if the magnitude of a quantity is at a point-value (e.g.
the population size is zero), and the derivative of that quantity is positive (e.g.
the population size is increasing), then in the next state that quantity has the
interval-value directly above its current point-value (e.g. the population size
becomes positive). Using this set of rules all the possible terminations of the
state are gathered. Not every termination in the set of possible terminations of
a state applies. Some terminations have precedence over other terminations. For
example, a transition from a point to an interval happens before the transition
from a interval to a point. Others occur simultaneously due to correspondences.
The final step generates the successive states and transitions using the final set
of pruned and merged terminations. For these successive states all the algorithm
steps are repeated to generate a complete state graph describing the behaviour
of the modelled system.

The state graph resulting from the simulation of the scenario in Figure 3 is
shown in Figure 5a. The values of the quantities in each of the states are shown
in Figure 5b. The transitions from state 1 to 2 and 3 happen because there is a
negative influence (consumption) on the size of the herbivore population which
is greater than the positive influence on the herbivores (feeding), since the mag-
nitude of plant population size is smaller than the magnitude of the carnivore
population size. This transition has priority over all other transitions because
it is a change from a point to an interval, while the other possible transitions
are changes from intervals to points. The reason that two states are generated
is because the influences on plant population can become either equal, resulting
in a stable derivative for the plant population (state 3), or unequal, resulting in



OWL and Qualitative Reasoning Models 39

the decrease of the plant population size. From state 2, three possible changes
may occur. Either only the resource depletes (state 4), both the resource de-
pletes and the plant population becomes zero (state 5), or the resource depletes
and the plant and the herbivore populations die out (state 6). From state 3
it is only possible that the resource depletes (state 4), as the derivative of the
plant population is stable. As a result of the depletion of the resource, the plant
population decreases again, because the positive influence on the plant popula-
tion from feeding disappears. The other transitions are obvious. From state 4,
either both the plant and the herbivore populations die instantly (state 6), or
the plant population dies first (state 5), and the herbivore population becomes
extinct afterwards (state 6).

1 2

3 4 5

6

(a) The state graph re-
sulting from simulation.

(b) The value history corresponding to states in the state
graph.

Fig. 5. The state graph and corresponding value history

3 Representing General Situations

The reasonable aim of formalising QR in OWL would be to try to use an OWL
classifier to solve the classification task instead of the QR reasoner. Taking that
approach, some of the typical inferences made by the QR reasoner such as the in-
equality testing, consequence merging, influence resolution and prediction tasks,
would then still be left to the QR reasoner. To fulfil this ’reasonable’ goal the
correct formalisation of model fragments is essential. However, as will be pointed
out below, this is already rather complex and not adequately solvable with the
current version of OWL [1].

The conditional model ingredients in model fragments describe general situa-
tions of a system, and scenarios describe specific situations. The classes in OWL
describe general concepts, while the instances are specific individuals. OWL rea-
soners are able to classify instances to classes, therefore the model fragments
have to be formalised as classes and the scenarios as instances. As a result the
contents of the model fragments has to be formalised using necessary and suf-
ficient conditions. This allows the scenarios to be classified as a certain model
fragment. The consequences of model fragments have to be modelled separately,
as they cannot be part of the restrictions of the model fragments (they are the
consequences of a model fragment firing).



40 J. Liem and B. Bredeweg

The formalisation of model fragments as classes allows the representation of
the subtype hierarchy of model fragments. The subclasses of the model fragments
would inherit the restrictions which model the contents of the parents, and add
restrictions to describe the new model ingredients of the child model fragment.

There are two problems with the formalisation of the conditions of model
fragments as classes. Firstly, it is impractical to specify that a model fragment
contains multiple objects of the same type (either as conditions or consequences).
It would require two separate relations (one for conditions and one for conse-
quences) for each type of object in combination with a cardinality restriction
(to indicate the number of incorporated objects of that type). The unique rela-
tions for each object type are required as the cardinality restriction has to apply
to precisely one type of object. This problem can be solved by making use of
Qualified Cardinality Restrictions (QCR), which indicate a class should have
a certain amount of fillers for a specific relation. Although QCR’s are not in
the first OWL specification, Protégé [6] and RacerPro (Racer Systems GmbH &
Co. KG: http://www.racer-systems.com) have already added support for them1.
Furthermore, QCR’s are already mentioned in the drafts of the OWL1.1 speci-
fications2.

The second problem concerns the impossibility to distinguish between differ-
ent objects of the same type in restrictions. Consider population x consuming
population y, which in turn consumes z (a situation similar to the one described
in Figure 3 if it was a model fragment with conditional elements). When for-
malised as restriction in OWL, this would result in the following definition:

hasCondition exactly 3 Population

hasCondition some (Population and

(consumes some (Population and

(consumes some Population))))

This formalization has multiple interpretations. It could be that population x
preys on y, and y preys on x, or that x preys on y, and y preys on z. Furthermore,
it becomes hard to formalize the other relations the populations take part in
without naming the Populations. Without variables to distinguish between two
objects of the same type, it is impossible to describe model fragments as classes.

As OWL is not expressive enough to formalize model fragments as classes,
there is no choice but to formalize them as instances. This makes it impossi-
ble to use an OWL reasoner to classify scenarios on model fragments. On the
other hand, using instances does eliminate the requirement of having to separate
the conditions and consequences in the formalization of model fragments. Each
model fragment can be modelled as an instance. That instance has hasCondi-
tion and hasConsequence relations to each of the model ingredients instances it
contains. Those ingredient instances in turn have relations which indicate how
they are related.

1 http://protege.stanford.edu/mail archive/msg17798.html
2 http://owl1 1.cs.manchester.ac.uk/



OWL and Qualitative Reasoning Models 41

A problem with the formalization of model fragments as instances is that
model fragments can have subclasses and can be reused. Since it is impossible to
create instances of instances or subclasses of instances, model fragments cannot
be described as instances.

Summarising, model fragments have to be modelled as classes in order to
represent the subtype hierarchy of model fragments, and to reuse them in other
model fragments. On the other hand, classes are not expressive enough to model
the contents of model fragments. Secondly, in order to correctly formalize the
contents of model fragments they have to be modelled as instances. However,
this would make it impossible to keep track of the reuse of model fragments,
and would require a special subclass relation to formalize the model fragment
hierarchy.

Both previous results are undesirable. An alternative is to treat model frag-
ment classes as individuals. This is valid, but makes the ontology OWL Full
[1]. The model fragment definitions are classes, so a class hierarchy of model
fragments can be created. These classes have hasCondition and hasConsequence
relations with instances of the QR ingredients they incorporate. This is ontolog-
ically not the most desirable solution, as the conditions in model fragments do
not correspond to the restrictions in OWL. However, the solution does correctly
represent model fragments and will allow the OWL format to be used for model
search and reuse.

4 The Formalisation of Relations

The relations in the QR vocabulary, the configurations and dependencies (causal,
mathematical and correspondence), are not simple binary relations between two
objects. For each relation screen information (for visualisation), such as its posi-
tion, has to be stored. Additionally, the Calc relations plus and min potentially
link more than two objects, as they model the result of an addition or subtrac-
tion of two values, and can have an arbitrary amount of inequality relations to
compare the result to other values (e.g. it is possible to specify that the sum
of the two population sizes in Figure 2b is equal to zero). Since OWL supports
only binary relations between objects, the formalisation of n-ary relations and
information about relations is an issue. The Semantic Web Best Practices and
Deployment Working Group (http://www.w3.org/2001/sw/BestPractices/) de-
scribes two variations of a pattern which can be applied to solve this issue [10].
By modelling a relation as a class it is possible to relate multiple objects using
only one relation instance. This process is called reification.

However, the existing reification pattern hinders the reuse of reified relations.
The calc and inequality relations in the QR vocabulary may only connect spe-
cific subsets of elements of quantities (magnitudes, derivatives and points) and
other calc relations. For example, magnitudes can only be connected to other
magnitudes or points fulfilling certain conditions, while derivatives can only be
connected to derivatives or points fulfilling certain other conditions (see Sec-
tion 6). Thus, the second argument of the relation depends on the first one, but



42 J. Liem and B. Bredeweg

the relations have the same meaning independent of the arguments. It is impor-
tant that the relations can be reused. Conceptually, there are 3 Calc relations
(Plus, Min and their superclass), and 6 inequalities (<, ≤, =, ≥, > and their su-
perclass) in the QR vocabulary. The need to create multiple types of Calc and
Inequality relations depending on their arguments creates unwanted complexity
in the file format and the QR vocabulary ontology.

If the first variation of the pattern is applied to represent the use of Calc rela-
tions by magnitudes, magnitudes are restricted to having an arbitrary amount of
Calc relations (hasCalc only Calc). Furthermore, the Calc relations have to be
related to exactly one magnitude and have an arbitrary amount of inequalities
(hasCalcTarget only Magnitude; hasCalcTarget = 1; hasInequality
only Inequality). This fixes the target of the Calc relation, making it impossible
to reuse the relation for Calc relations between derivatives. At least the Calc
relation can be reused by classes with the same target. If the restrictions for the
inequalities from Calc relations are ignored, 6 different relations are needed to
formalise all the restrictions. For the inequalities 24 reified relations are needed.

The second variation of the pattern only worsens the problem, as the restric-
tions are all formalised in the Calc relation. These indicate that both its source
and its target have to be of a specific type (hasCalcSource only Magnitude;
hasCalcSource = 1; hasCalcTarget only Magnitude; hasCalcTarget = 1).
This prevents reuse of the relation for all other classes. To properly formalise the
relation restrictions, 15 reified Calc relations and 36 reified inequality relations
are needed.

We developed a new version of the reification pattern to solve the reusabil-
ity issues of reified relations. Compared to the first version of the reification
pattern, the restrictions about the target of the Calc relation and its Inequal-
ities have been moved to the source of the relation (see Figure 6 which uses
the Protégé [6] syntax). The formalisation represents that Magnitudes can have
an arbitrary amount of hasCalc relations with reified Calc relations, which in
turn have exactly one hasCalcTarget relation with another magnitude, and an
arbitrary amount of inequality relations with magnitudes. This is achievable as
OWL allows the creation of new anonymous class definitions within restrictions
(the conjunction in the hasCalc restriction). Using this pattern, it is possible to
impose specific usage restrictions for relations in each desired source class. For
example, the derivative class can have an arbitrary amount of hasCalc relations
with reified Calc relations, which have exactly one other derivative as a target,
and an arbitrary amount of inequalities with other derivatives. Note that the
real formalisation is more complex, as inequality properties are also reified, and
the possible values of the hasCalcTarget and inequality properties are a union
of multiple classes.

Another advantage of this new pattern is that it is possible for other users
to use the relation defined in the ontology (without having to copy and adapt
it), as the usage of the relation is not restricted to specific classes. This is also a
disadvantage, as it is possible to abuse the relation with classes for which it does
not make sense. A possible work-around is adding a cardinality=0 restrictions



OWL and Qualitative Reasoning Models 43

Fig. 6. A reusable reification pattern

to classes for each relation the class cannot be involved with, although this is
only an acceptable solution if the number of relations and classes is relatively
low.

5 Representing Values

Qualitative values are either points or intervals which are stored in quantity
spaces (see Figure 2a). These behavioural ingredients define the possible values
of a quantity. A quantity space consists of at least one qualitative value and
values adjacent to intervals have to be points and visa versa. The quantity space
describes a total order, which means that a magnitude or derivative can only
change to a value directly above or below its current value. Qualitative values
in a model fragment can participate in (in)equality, correspondence and calc
relations. As a result, it is impossible to formalise them as an enumeration of
individuals (the ’values as sets of individuals’ pattern [11]), as different relations
in different contexts would refer to the same value. Therefore, the formalization
of qualitative values requires a unique individual for each value instance (i.e. for
each quantity space in which the value occurs).

Representing the qualitative values as classes (the ’values as subclasses par-
titioning a ”feature”’ pattern [11]) fulfils our requirement of creating a unique
value individual for each quantity space instance. The qualitative values can be
thought of as a set of subclasses forming a parent class. This class is exactly
the superset of all the possible value classes (modelled using owl:unionOf ). It
is necessary to explicitly state that the subclasses are disjoint, as it should be
inconsistent to create an individual which is an instance of multiple values.

Representing qualitative values as classes allows individuals to be created for
each instance of a specific quantity space. However, the pattern does not model
their strict ordering. A possible solution to this problem is to model the values
using an RDF collection [10]. Such a collection consists of a number of instances
of rdf:List. Each of these items is connected to the next in the collection using
rdf:rest, and points to a qualitative value instance using rdf:first. An advantage of
this pattern is that OWL editors understand the that the structure is a list, as it
is part of the RDF specification. A disadvantage is that using rdf:List causes the
ontology to become OWL Full. This disadvantage can be remedied by recreating



44 J. Liem and B. Bredeweg

a list structure in OWL [10], but a side effect would be that the editors would
not understand that the structure modelled is a list.

The list pattern has two further problems. Firstly, a list has no ontological
meaning, as it is a data structure. A list with the cities Amsterdam, Brussels, and
Paris has little meaning. They could indicate a travel route, cities with around
the same amount of inhabitants, or something else entirely. The relations between
the list items is left implicit. Secondly, it becomes impossible to classify a list
entry depending on the owner instance of the list, as there is no direct relation
between that object and each list item. This would make the ”relation restriction
through classification” pattern impossible to apply (section 6).

Our solution to formalise quantity spaces makes the ordering of its values
explicit using inequalities (see Figure 7). The quantity space is connected to
its point and interval instances using containsQualitativeValue relations. The
ordering is established using reified inequality relation instances originating from
the intervals, as inequalities created by the user are required to originate from
the points. Each consecutive value in the order must have another type than the
previous one. Therefore, the intervals can only have inequalities with points. This
solution is a semantic description of values, but OWL editors do not understand
it is a list.

Fig. 7. Representing a quantity space and its values using inequalities

6 Relation Restriction Through Classification

A quantity consists of a magnitude and a derivative, which in turn each have
a quantity space (the magnitude is not visualised in Figure 2a). As described
above, quantity spaces consist of a set of values in a total order. Roughly speak-
ing, inequalities are ordinal relations which have either magnitude or derivative
items (values, calc relations and magnitudes and derivatives themselves) as argu-
ments. Since manually categorising values into either a class for points belonging
to magnitudes or a class for points belonging to derivatives would add redundant
information to the formalisation, a different solution is desired.

Our inequality formalisation solution introduces two new classes, one for
the point-values belonging to magnitudes (PointBelongingToMagnitude), and
another for point-values belonging to derivatives (PointBelongingToDerivative).



OWL and Qualitative Reasoning Models 45

In these classes necessary (class =⇒ conditions), and necessary and suf-
ficient (class ⇐⇒ conditions), restrictions are combined. The necessary and
sufficient conditions of PointBelongingToMagnitude state that the value belongs
to a quantity space which belongs to a magnitude (or a derivative for PointBe-
longingToDerivative). This allows the OWL reasoner to classify the points as
belonging to one of the classes. The necessary conditions specify that all the in-
equality relations instances which have a PointBelongingToMagnitude as a first
argument must have either a PointBelongingToMagnitude or a Calc relation
between magnitude items as a second argument.

This pattern is used to restrict the use of inequalities, Calc relations and
correspondences. Essentially, a new class is created with necessary and sufficient
conditions for one of the special cases, and necessary conditions for the restriction
of this special case. This pattern takes away the need to replicate information
by using the OWL reasoner.

7 Implementation

We have developed a generic ontology [14] of the QR vocabulary in which all
the model ingredients and their usage restrictions are formalised (see Figure 8).
Based on this formalisation we have successfully implemented OWL export and
import functionality, which has been integrated with the Garp3 qualitative rea-
soning and modelling tool (http://hcs.science.uva.nl/QRM/) using the SWI-
Prolog Semantic Web Library [16]. This functionality is currently used to au-
tomatically formalise QR models as domain ontologies, which can be shared
using an online model repository. The consistency of these model ontologies was
checked using the Triple20 [15] and Protégé [6] ontology editors and the Racer-
Pro reasoner. The QR vocabulary ontology and an example QR model in OWL
can be found via: http://protege.cim3.net/cgi-bin/wiki.pl?NaturNet Redime.

8 Conclusions and Discussion

This paper presented the problems encountered during the formalisation of the
QR vocabulary and models in OWL. We succeeded in formalising qualitative
models in OWL, allowing our formalisation of models to be used as a data for-
mat for a central model repository. Due to the limits of the expressiveness of
OWL, it was not possible to formalise the model fragments as purely classes
with restrictions. Instead, they were formalised as classes with relations to in-
stances (making the ontology OWL Full). This makes it impossible to use the
OWL reasoners to classify scenarios on model fragments, since the instances and
relations are not necessary and sufficient conditions.

To be able to formalise n-ary relations and represent information about them
the reification pattern is used. We have shown that the two existing variations
prevent the relations to be reused. Our new pattern solves this reusability issue
by moving the relation restrictions to the source class.



46 J. Liem and B. Bredeweg

Fig. 8. The taxonomy of qualitative model ingredients

The existing patterns to formalise sequences of values are not enough to rep-
resent quantity spaces. The problems with representing them as a enumeration
of individuals, a set of classes, and an rdf:list of instances were explained. We
presented our more semantic representation which solves these problems.

We developed a new pattern to impose relation usage restrictions on classes
with certain conditions. New classes are defined with the conditions as necessary
and sufficient restrictions. The necessary restrictions are imposed on these classes,
and will apply when instances are classified as belonging to the class. This prevents



OWL and Qualitative Reasoning Models 47

information redundancy, as instances do not have to be explicitly represented as
belonging to certain classes.

Future OWL extensions (such as the Semantic Web Rule Language) might
make it possible to formalise the model fragments in such a way that it is pos-
sible to use an OWL reasoner to solve the QR classification task. For an OWL
reasoner to actually replace a QR classification task such as found in Garp3,
two additional inferences have to be addressed. Firstly, the reasoner tries to in-
fer if certain conditional inequalities are true in the scenario using inequality
reasoning. Secondly, unprovable but possible conditional inequalities and value
assignments are assumed by the reasoner. Each mutually exclusive set of these
assumptions will result in a new state in the state graph describing the behaviour
of the system. Another inference which would be useful to OWL users is adding
individuals to a knowledge base using a rule based mechanism. This would allow
the replacement of the QR consequence merging task.

The research described in this paper has allowed the implementation of func-
tionality to export qualitative models from the Garp3 application to an OWL
file, and import this OWL file again into the workbench. This makes it possible
to store these qualitative models in an online repository. This repository should
make it possible for the community of practice to (1) share models amongst
themselves, (2) search for models in which specific concepts or structures are
used, and (3) reuse parts of models, which are all goals of the NaturNet-Redime
project. Domain experts can use this repository to search for modelling work
related to their own research, for example to compare different formalisations of
the same phenomena. Teachers can ask students to download and analyse cer-
tain models. Finally, the repository allows modellers to store their results and
disseminate them to a larger group.

Acknowledgements

This work is co-funded by the European Commission within the Sixth Framework
Programme (2002-2006), project NaturNet-Redime (http://www.naturnet.org),
number 004074. We would like to thank Rinke Hoekstra and the reviewers for
their valuable comments, and Jan Wielemaker for his extensive programming
support.

References

1. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, and L. A. Stein. OWL web ontology language reference. W3C
recommendation, February 2004. M. Dean, G. Schreiber (eds.).

2. B. Bredeweg, P. Salles, and M. Neumann. Ecological Informatics: Scope, Techniques
and Applications, chapter Ecological Applications of Qualitative Reasoning, pages
15–47. Springer, Berlin, 2nd edition, 2006.

3. B. Bredeweg and P. Struss. Current topics in qualitative reasoning (editorial in-
troduction). AI Magazine, 24(4):13–16, 2003.



48 J. Liem and B. Bredeweg

4. J. de Kleer and J. S. Brown. A qualitative physics based on confluences. Artificial
Intelligence, 24(1-3):7–83, December 1984.

5. K. D. Forbus. Qualitative process theory. Artificial Intelligence, 24(1-3):85–168,
December 1984.

6. N.F. Noy H. Knublauch, R. Fergerson and M.A. Musen. The protege owl plugin:
An open development environment for semantic web applications. In S. A. McIl-
raith, D. Plexousakis, and F. van Harmelen, editors, International Semantic Web
Conference, pages 229–243, Hiroshima, Japan, November 2004. Springer.

7. P. J. Hayes. Formal Theories of the Commonsense World, volume 1 of Ablex series
in Artificial Intelligence, chapter The Second Naive Physics Manifesto, pages 1–36.
Ablex, Norwood, NJ, June 1985.

8. J. Heflin. OWL web ontology language use cases and requirements. W3C recom-
mendation, February 2004.

9. B. Kuipers. Qualitative reasoning: modeling and simulation with incomplete knowl-
edge. Automatica, 25(4):571–585, 1989.

10. N. Noy and A. Rector. Defining n-ary relations on the semantic web. W3C working
group note, April 2006. http://www.w3.org/TR/swbp-n-aryRelations/.

11. A. Rector. Representing specified values in OWL: ”value partitions” and ”value
sets”. W3C working group note, May 2005. http://www.w3.org/TR/swbp-
specified-values/.

12. P. Salles and B. Bredeweg. Qualitative reasoning about population and community
ecology. AI Magazine, 24(4):77–90, 2003.

13. G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. van de
Velde, and B. Wielinga. Knowledge Engineering and Management - The Com-
monKADS Methodology. MIT Press, Cambridge, MA, 2000.

14. G. van Heijst, S. Falasconi, A. Abu-Hanna, G. Schreiber, and M. Stefanelli. A case
study in ontology library contruction. Artificial Intelligence in Medicine, 7(3):227–
255, June 1995.

15. J. Wielemaker, G. Schreiber, and B. Wielinga. Using triples for implementation:
the Triple20 ontology-manipulation tool. In Y. Gil, E. Motta, V. R. Benjamins,
and M. A. Musen, editors, International Semantic Web Conference, pages 773–785,
Berlin, Germany, November 2005. Springer Verlag. LNCS 3729.

16. J. Wielemaker, G. Schreiber, and B. J. Wielinga. Prolog-based infrastructure for
RDF: performance and scalability. In D. Fensel, K. Sycara, and J. Mylopoulos,
editors, The Semantic Web - Proceedings ISWC’03, Sanibel Island, Florida, pages
644–658, Berlin, Germany, october 2003. Springer Verlag. LNCS 2870.



Techniques for Fast Query Relaxation in
Content-Based Recommender Systems

Dietmar Jannach

Institute for Business Informatics & Application Systems
University Klagenfurt

dietmar.jannach@uni-klu.ac.at

Abstract. ‘Query relaxation’ is one of the basic approaches to deal with
unfulfillable or conflicting customer requirements in content-based rec-
ommender systems: When no product in the catalog exactly matches the
customer requirements, the idea is to retrieve those products that fulfill
as many of the requirements as possible by removing (relaxing) parts of
the original query to the catalog. In general, searching for such an ‘maxi-
mum succeeding subquery’ is a non-trivial task because a) the theoretical
search space exponentially grows with the number of the subqueries and
b) the allowed response times are strictly limited in interactive recom-
mender applications.

In this paper, we describe new techniques for the fast computation
of ‘user-optimal’ query relaxations: First, we show how the number of
required database queries for determining an optimal relaxation can be
limited to the number of given subqueries by evaluating the subqueries
individually. Next, it is described how the problem of finding relaxations
returning ‘at-least-n’ products can be efficiently solved by analyzing these
partial query results in memory. Finally, we show how a general-purpose
conflict detection algorithm can be applied for determining ‘preferred’
conflicts in interactive relaxation scenarios.

The described algorithms have been implemented and evaluated in a
knowledge-based recommender framework; the paper comprises a discus-
sion of implementation details, experiences, and experimental results.

1 Introduction

Content-based recommendation approaches employ detailed knowledge about
the items in the product catalog. In addition, in particular in interactive and
knowledge-based recommender systems, the customer’s requirements are in many
cases directly or indirectly mapped to product characteristics, which also means
that the set of suitable products is determined by dynamically constructing a
query to the catalog or database [9]. One of the main problems of such filter-
based retrieval methods, however, is that situations can easily arise in which
none of the products fulfills all of the customer requirements [2]. ‘Query relax-
ation’, i.e., the removal of parts of the query, is beside similarity-based retrieval
one of the commonly used approaches to deal with this problem: The main goal
of such approaches is to retrieve products that fulfill as many of the customer’s

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 49–63, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



50 D. Jannach

requirements as possible - a task that can be mapped to the problem of finding
a maximum succeeding subquery (XSS) [3] of the original query.

Recently, new algorithms for determining such XSS and Minimally Failing
Subqueries (MFS) [3] have been proposed in the context of recommender sys-
tems, see e.g., [9,10,12] and it has been shown that query relaxation can be a
helpful technique for implementing more intelligent behavior in recommender
systems, e.g., for building an interactive relaxation facility or for the generation
of explanations for the proposals.

The main problem in finding suitable relaxations, however, lies in the fact that
the theoretical search space exponentially increases with the number of atoms
(subqueries) of the original query, i.e., if the query can be split into n subqueries
there exists 2n possible combinations.1 At the same time, the allowed time frame
for the system’s response is very short in interactive applications, i.e., response
times should be below one second: McSherry [9] addresses this problem by pre-
computing and filtering the set of MFSs by cardinality, which, however, still
requires a significant number of database queries. Ricci [12] introduces Feature
Abstraction Hierarchies for coping with the complexity problem, which results
in short response times at the cost of incompleteness. In addition, both ap-
proaches primarily rely on the assumption that smaller relaxations (in terms of
cardinality) are always preferable, an assumption that might not be true in all
application domains.

In this paper, we propose new techniques for determining optimal or preferred
relaxations in an efficient way and which help us to overcome the limitations
of previous approaches: For the non-interactive case (Section 2), in which the
system immediately computes a relaxation when the query fails, we propose
to evaluate the atoms of the query individually in a preprocessing step and
base the subsequent computation of relaxations on these intermediate results.
Furthermore, we also show how we can efficiently determine relaxations that
lead to at least n items, because in some application domains it is desirable that
the recommendation comprises more than one single product, such that the end
user has a choice of multiple products that he can compare. This computation
is again based on the partial query results and is a form of relaxation which is
not covered by previous approaches.

For supporting interactive relaxation (Section 3), i.e., scenarios in which the
end user incrementally states on which requirements s/he is willing to compro-
mise, we show how a recent conflict-detection algorithm can be utilized for fast
computation of preferred conflicts. In contrast to previous approaches, in our
approach the conflicts are computed on demand, which means that the costly
process of finding all conflicts in the requirements in advance (like in [9]) is not
required.

In Section 4 finally, we discuss implementation aspects and summarize the
experiences gained from several real-world advisory applications in different do-
mains. The paper ends with a short discussion of further and other related
work.

1 A detailed complexity analysis for the MFS/XSS problem is given in [3].



Techniques for Fast Query Relaxation 51

2 Non-interactive Relaxation

The basic problem of query relaxation lies both in the size of the search space
and in the limited response times: The theoretical search space for the case n=4
is illustrated in Figure 1. In fact, in previous approaches [9,10,12] the search for
relaxations is based on scanning this lattice; the lattice also served as a basis for
the complexity analysis in [3].

Fig. 1. Lattice of possible subqueries, minmal relaxations are printed in shaded boxes

In contrast to these approaches, we base our first two algorithms on the con-
cept of product-specific relaxations (PSX) and the individual evaluation of the
atoms of the query: A PSX for a product p in the catalog corresponds to the
set of atoms of the original query that filters out p from the result set. These
sets can be efficiently computed in-memory based on the partial query results,
which shall be demonstrated in the following example. Figure 2 depicts a typical
product catalog from the domain of digital cameras.

Fig. 2. Product database of digital cameras

Let the user’s query consist of the following requirements (atoms) which re-
sults in a theoretical search space of 24 = 16 combinations of atoms.

Q = { usb = true (Q1), firewire = true (Q2), price < 300 (Q3),
resolution >= 5 MP (Q4)}



52 D. Jannach

Given the catalog and the user query, we can compute a matrix of zeros
and ones (see Figure 3) that shows which atoms of the query filter out which
products. Note that for constructing this matrix, we need exactly four database
queries; when using bit-set data structures, we only need nbProducts*nbAtoms
bits for storing this data in memory. In addition, determining the matching set
of products for the overall query can be efficiently done by using fast bitwise-and
operations on the rows of the matrix.

Fig. 3. Evaluating the subqueries individually

For determining a PSX for a given product pi we can look up in the matrix
the fields that have a zero in the corresponding column which directly leads to
the set of atoms we would have to relax in order to have pi in the result set. In
the example, the list of PSXs = 〈{Q2, Q3}, {Q1, Q3}, {Q2, Q4}, {Q1,Q3}〉 and
the set of minimal relaxations is {{Q1, Q3}, {Q2, Q3}, {Q2, Q4}}: Considering,
for example, {{Q1, Q3} as a relaxation leading to p1, we see that when relaxing
only Q1 or Q3 alone, no product will be in the result set (see Figure 1). In
general, however, not all PSX’s are already minimal relaxations: If, for instance,
there is a camera p5 with neither USB nor Firewire support at a price of 400,
the PSX for p5 would be {Q1, Q2, Q3}, which would be a non-minimal relax-
ation of the problem because it is a superset of another PSX. However, we will
subsequently show that the set of minimal relaxations always is among the list
of product-specific relaxations of the problem and we can determine the minimal
relaxations by scanning this list. In addition, we can also easily rank the different
relaxations, when we are given a cost function that associates relaxation costs
with each part of the query. We base our definitions on the work of [3] and [9],
respectively.

Definition 1. (Query): A query Q is a conjunctive query formula, i.e., Q ≡
A1 ∧ ... ∧ Ak. Each Ai is an atom (condition).

In the following we denote the number of atoms of the query as |Q| (query
length).

Definition 2. (Subquery): Given a query Q consisting of the atoms A1∧...∧Ak,
a query Q′ is called a subquery of Q iff Q′ ≡ As1 ∧ ... ∧ Asj , and {s1, ...sj} ⊂
{1, ..., k}
Lemma 1. If Q′ is a subquery of Q and Q′ fails, also the query Q itself must
fail.



Techniques for Fast Query Relaxation 53

We now define the term relaxation which is more common in the application
domain than Maximal Succeeding Subqueries in the sense of [3]. Of course, these
things are directly related to each other.2

Definition 3. (Valid relaxation): If Q is a failing query and Q′ is a succeeding
subquery of Q, the set of atoms of Q which are not part of Q′ is called a valid
relaxation of Q.

Definition 4. (Minimal relaxation): A valid relaxation R of a failing query Q
is called minimal, if there exists no other valid relaxation R′ of Q which is a
subset of R.

In Figure 1, the minimal relaxations for the example problem are depicted in
shaded boxes.

Definition 5. (Maximal succeeding subquery - XSS): Given a failing query Q,
a Maximal Succeeding Subquery XSS for Q is a non-failing subquery of Q and
there exists no other query Q′ which is also a non-failing subquery of Q for which
holds that XSS is a subquery of Q′.

Lemma 2. Given a maximal succeeding subquery XSS for Q, the set of atoms
of Q which are not in XSS represent a minimal relaxation R for Q.

Lemma 3. If the product catalog P is not empty, a relaxation R for Q will
always exist.

A product-specific relaxation can be defined as follows:

Definition 6. (Product-specific relaxation - PSX): Let Q be a query consist-
ing of the atoms A1, ..., Ak, P the product catalog, and pi an element of P .
PSX(Q, pi) is defined to be a function that returns the set of atoms Ai from
A1, ..., Ak that are not satisfied by product pi.

Lemma 4. The set of atoms returned by PSX(Q, pi) is also a valid relaxation
for Q.

We have to show that all minimal relaxations are contained in the PSXs of the
products.

Proposition 1. Given a failing query Q and a product database P containing
n products, at most n minimal relaxations can exist and all minimal relaxations
are among the PSXs for Q and P .

2 The term ’query relaxation’ is also used in the context of XML databases, where
the goal is to find approximate answers to user queries. These approaches, however,
have little relation with our work and mainly aim at relaxing structural constraints
in general XML-specific query languages [1,7].



54 D. Jannach

Algorithm: MinRelax
In: A query Q, a product catalog P
Out: Set of minimal relaxations minRS for Q
MinRS = ∅
forall pi ∈ P do

PSX = Compute the product-specific relaxation PSX(Q, pi)
% Check relaxations that were already found
SUB = {r ∈ MinRS | r ⊂ PSX}
if SUB �= ∅

% Current relaxation is superset of existing
continue with next pi

endif
SUPER = {r ∈ MinRS | PSX ⊂ r}
if SUPER �= ∅

% Remove supersets
MinRS = MinRS \ SUPER

endif
% Store the new relaxation
MinRS = MinRS ∪ {PSX}

endfor
return MinRS

Fig. 4. Algorithm for determining all minimal relaxations

Proof. For each product pi ∈ P there exists exactly one subset PSX of atoms of
Q which pi does not fulfill and which have to be definitely relaxed altogether in
order to have pi in the result set. Given n products in P , there exist exactly n
such PSXs. Thus, any valid relaxation of Q has to contain all the elements of at
least one of these PSXs for obtaining one of the products of P in the result set.
Consequently, any relaxation which is not in the set of all PSXs of Q has to be a
superset of one of the PSXs and is consequently no longer a minimal relaxation.
This finally means that any minimal relaxation must be contained in the PSXs
of all products and not more then |PSX | = n such minimal relaxations can
exist.

Computing the optimal relaxation. The computation of the optimal relax-
ation (in terms of relaxation costs) can be done by a simple scan of the PSXs of
the relaxation problem: Given an arbitrary cost function that takes for instance
the cardinality of the relaxation and/or individual costs for the individual atoms
into account, we only have to determine the PSX that minimizes that function.
The only assumption for that is that the costs for a superset of a given PSX
must not be lower than the costs of that PSX itself.3

3 Within the Advisor Suite system (see later), the ‘costs’ for relaxing a certain
subquery are defined a-priori by a domain expert. Other forms of acquiring the cost
function, e.g., by analyzing the user behavior, are also possible.



Techniques for Fast Query Relaxation 55

Computing all minimal relaxations. The set of all minimal relaxations (com-
parable to the Recovery Set from [10]) can be computed with the help of Algo-
rithm MinRelax by removing supersets from the set of all PSXs.

Proposition 2. Algorithm MinRelax is sound and complete, i.e., it returns
exactly all minimal relaxations for a failing query Q.

Proof. The algorithm iteratively processes the product-specific relaxations PSXs
for all products pi ∈ P . From Lemma 4 we know that all these PSXs are already
valid relaxations. Minimality of the relaxations returned by MinRelax is guar-
anteed by the algorithm, because a) supersets of already discovered PSXs are
ignored during result construction and b) already discovered PSXs that are su-
persets of the current PSX are removed from the result set. As such, there cannot
exist two relaxations R1 and R2 in the result set for which R1 is a subset of
R2 or vice versa. In addition, we know from Proposition 1 that all minimal
relaxations are contained in the PSXs of the products of P . Since MinRelax
always processes all of these elements, it is guaranteed that none of the minimal
relaxations is missed by the algorithm.

Finding relaxations with at least n products. In practical applications, it is
sometimes not desirable just to present one single product to the user but rather
have at least a few products in the proposal that could for instance be used for
comparison purposes. Note that the relaxations computed with the algorithms
described above only guarantee that at least one product will be in the result set.
In the following paragraphs we thus show how we can compute such relaxations
that have at least n products based on our in-memory data structures without
the need for further database queries.

We use the example shown in Figure 5 (with seven products and four sub-
queries) for illustrating a corresponding algorithm for determining such relax-
ations. In this example, the list of product-specific relaxations is as follows:
PSXs = 〈 {f4}, {f1, f4}, {f3}, {f2, f3}, {f1}, {f4}, {f1, f3} 〉

Fig. 5. Problem setting for n products

Algorithm NRelax (Figures 5 and 6) computes relaxations that lead to at
least n products based on the list of PSXs, meaning that no further database
queries are required. Note that NRelax starts with the full list of the original
PSXs, because using only the minimal relaxations would be not sufficient for
our purposes and the optimal relaxation for ‘at least n’ products could be lost.



56 D. Jannach

The algorithm works by incrementally exploring combinations of the individual
PSXs : The algorithm starts with the initial list of PSXs and systematically
constructs the possible combinations in order of their cardinality. When two
PSXs are to be combined, the union of the involved atoms is generated, the
number of products for the relaxation is determined, and the corresponding
cost function is calculated. When a combination is found that leads to enough
products, we remember the cost value and subsequently prune the search space
by removing combinations that cannot lead to a better result anymore.

The following example shall illustrate the details of the algorithm. We use a
simple cost function, i.e., relaxing the filter condition fn shall lead to costs of n.

In the first step, we remove the duplicates from the list of PSXs and annotate
each element with the corresponding costs and the number of products that will
result in that relaxation and sort the elements according to the costs. Determin-
ing the number of products for a certain relaxation can be done by checking for
subset relations in PSXs, e.g., {f1, f3}, will have costs of ”4” and will result
to 3 products, since {f1} and {f3} are also elements of the list of PSXs. The
collapsed list of PSXs named CPSX for our example therefore is the following,
where {f3}(3/1) denotes that the relaxation f3 has costs of ‘three’ and results
in one product.

CPSX = 〈 {f1} (1/1), {f3} (3/1), {f4} (4/2), {f1,f3} (4/3), {f1, f4}
(5/4), {f2, f3} (5/2) 〉

Starting with this initial list, we now compute the combinations of the ele-
ments of CPSX and use the data structure RNode for storing costs and number
of products associated with an element in CPSX , i.e.,

struct RNode:
atoms: List of atoms of PSX
cost: costs of node
nbProducts: number of products
closed: flag, if node was closed

endstruct

and use an ‘agenda’ (list) of such nodes to remember the combinations that still
have to be explored.

Figure 6 illustrates how the combinations are generated and how the search
space can be pruned. The different aspects of the algorithm are marked with
numbers in the Figure: At (1), a new node {f1,f3} is constructed from {f1} and
{f3} respectively. At (2), the node {f1,f3} from the current agenda (at the first
level in Figure 6) can be closed as it will be further explored in the next round
of expansion. In Figure 5 this fact is indicated with an ‘x’; At (3), the successor
of {f1} and {f1,f3} would be {f1,f3}. However, we already found that node in
(1) and can ignore it for further exploration; in Figure 5, nodes that are pruned
from the search space in that way are marked with a rhombus. At (4) we have
found a relaxation that comprises all possible atoms, which means that we do
not explore that node any further.

Note that the number of nodes on the top level (and more importantly, over-
all) is limited to the number of possible relaxations for the given query, i.e. if



Techniques for Fast Query Relaxation 57

Fig. 6. Searching for at least n products

|query| = n, there can only be 2n − 1 nodes in the worst case, independent of
the number of products in the catalog. Still, if there are already 2n − 1 different
nodes on the first level, no further expansion will be required since all possible
combinations are already contained in this first level.

All the computations can be done on the basis of the pre-evaluated partial
results and do not require any further database queries. Also, compared with an
approach that works by constructing all 2n combinations of all possible atoms
of the original query, we can also restrict the search space based on the already
existing partial results and can leave out those that will definitely lead to more
products: In our example, {f2} is not a product-specific relaxation and we there-
fore will never consider useless combinations like {f1,f2}, {f2,f4} and so forth,
since we already now that no additional product will be in the result set when
adding {f2} alone. Still, the completeness of the algorithm is still guaranteed by
the systematic construction of all possible combinations of the PSXs.

Finally, in practical and more complex examples, the described cost-based tree
pruning techniques will significantly reduce the number of nodes to be explored,
which is not shown in the example i.e., only small fractions of the theoretical
search space will be explored. If we, for instance, search for a relaxation with
at least 3 products for the given example, we will find {f1,f3} to be the best
relaxation in the original agenda and will not have to add a second-level element
to the agenda due to cost-optimality of the node.

3 Interactive Relaxation

The alternative approach to immediately computing a relaxation is to let the
user decide interactively on which requirements (s)he is willing to compromise. [9]
proposes a corresponding algorithm, which is based on the concept of Minimally
Failing Subqueries:



58 D. Jannach

Algorithm: NRelax
In: A set of product-specific relaxations PSXs, threshold n
Out: An optimal relaxation for n products
CPSX = Collapse and sort PSXs as sequence of RNodes
bestNode = new RNode with infinite costs.
return NRelaxInt(CPSX,n, bestNode)

function NRelaxInt(agenda,n, bestNode)
In: agenda: Sequence of RNodes to explore, n: threshold,

bestNode: currently best node
Out: An optimal relaxation for n products
if |agenda| = 0 return bestNode
% Check for new optimum
newBest = node from agenda with lowest costs for which node.costs

are lower than bestNode.costs and nbProducts > n
if newBest �= null then bestNode = newBest endif
% Set up new agenda
newAgenda = <>
% Combine elements of given agenda
for i=0 to |agenda| − 1

for j=i+1 to |agenda|
n1 = agenda[i]
n2 = agenda[j]
% ignore closed nodes
if n1.closed or n2.closed continue with next j endif
newNode = combine atoms, costs, products of n1 and n2
if not exists n ∈ newAgenda where n.atoms = newNode.atoms
Close nodes n in agenda, for which n.atoms=newNode.atoms
if newNode.costs < bestNode.costs and
newNode does not contain all possible atoms

add newNode to newAgenda endif
endif

endfor
endfor
NRelaxInt(newAgenda,n, bestNode)
return bestNode.atoms

Fig. 7. Algorithm for finding relaxation with n products

Definition 7. (Minimal Failing Subquery - MFS): A failing subquery Q∗ of a
given query Q is a minimally failing subquery of Q if no proper subquery of Q∗

is a failing query.

As an alternative to McSherry’s approach which relies on the possibly costly
computation of all MFSs before starting the interactive relaxation process, we
propose to apply Junker’s recent QuickXPlain [6] algorithm for computing
MFSs on demand : The overall scenario is that when we have the situation of
unfulfillable user requirements, we aim at finding a preferable and minimal con-



Techniques for Fast Query Relaxation 59

flict in these requirements and let the user decide how to proceed. Preferred
means that we shall try to identify those conflicts (among possibly many con-
flicts) that contain requirements for which we assume that a typical user might
be willing to compromise. In the digital camera domain we could for instance
assume or learn that experts in digital photography searching for cameras sup-
porting ‘firewire’ connectivity are rather willing to compromise on the price than
on the technical requirement.

In general, the required priority values for each requirement can either be
annotated in advance or they can be learned from the interaction history of dif-
ferent users over time. The implementation and evaluation of such a module that
dynamically adapts priorities over time is part of our ongoing work. Originally,
QuickXPlain was developed for finding conflicts (corresponding to MFSs) in
Constraint Satisfaction problems, but its general, non-intrusive nature allows us
to adapt it for our purposes (Figure 8). QuickXPlain is based on a divide-
and-conquer strategy: In the decomposition phase it partitions the problem into
subproblems of smaller size (thus pruning irrelevant parts of the problem) and
subsequently tries to re-add individual elements and checks for consistency while
at the same time taking preferences into account. Depending on the number of
atoms in the query n, the size of the preferred conflict k, and the splitting point
(e.g., n/2 ), QuickXPlain in the best case only needs log(n/k)+2k consistency
checks (database queries in our case) and 2k ∗ log(n/k) + 2k in the worst case
[6]. When we consider our initial example from Section 2, we see that there are
three minimal conflicts in the requirements, i.e., {usb = true, firewire = true},
{firewire = true, price ≤ 300}, {price ≤ 300, resolution ≥ 5MP}. Let us assume
that the partial order ≺ (in the sense of [6]) among the attributes in the re-
quirements is ”price ≺ firewire ≺ usb ≺ resolution”. Given these priorities, our
adapted QuickXPlain (Figure 8) will immediately split the atoms (denoted as
p,f,u and r for short) of the query into {p,f} and {u,r}. In the first recursive
call, the algorithm will detect that {p,f} contains conflicting requirements and
thus proceeds by further analyzing this subset alone, which means that half of
the atoms in that example do not have be taken into consideration in subsequent
steps. Next, QuickXPlain proceeds with the next sets of atoms {p} and {f}
in our example can immediately determine that both {p} and {f} have to be in
the minimal conflict, since the number of the remaining atoms |A| = 1 in both
cases. Thus, the algorithm returns the preferred conflict {p,f}, because given the
priorities in the example, it is preferable for the user to give up the price or the
firewire requirement than to give up the requirement on the desired resolution.

A general algorithm that shows how QuickXPlain can be integrated into an
interactive relaxation procedure is sketched in Figure 9. Please note that with
the help of conflicts computed with QuickXPlain we can also compute the set
of minimal or optimal relaxations (or XSSs) based on Reiter’s [11] Hitting-Set
Algorithm (see also [5]): This can be seen as an alternative to our approach
based on product-specific relaxations from the previous section. The run-time
performance of such an adapted Hitting-Set algorithm has been evaluated in [5]
for different problem instances: The results showed that even if we do not rely



60 D. Jannach

Algorithm: mfsQX
In: A failing query Q
Out: A preferred conflict of Q

A = sorted list of atoms of Q
return mfsQI (∅,A)

function mfsQI (BG, A)
In: BG: List of atoms in background

A: List of atoms of failing query
Out: A preferred conflict of Q

% Construct and check the current set of atoms
query =

∧
b∈BG(b)

if query is not successful
return ∅

endif
if |A| = 1

return A
endif
% Split remaining atoms into two parts
C1 = {ai ∈ A|i < (|A|/2)}
C2 = A \ C1
% Evaluate branches
Δ1 = mfsQI(BG ∪ C1, C2)
Δ2 = mfsQI(BG ∪ Δ1, C1)
return Δ1 ∪ Δ2

Fig. 8. Using QuickXPlain for computing preferred MFS

on the pre-computation of the PSXs no more than one second is required for
finding the optimal relaxation also for the hard instances.

4 Implementation and Evaluation

All of the described algorithms and techniques have been implemented within
the Java-based Advisor Suite system [4], a knowledge-based framework for the
rapid development of interactive advisory systems. Within that system, prod-
uct retrieval is initially4 based on if-then-style filtering rules, like ‘If the user is
interested in high-connectivity, propose products that support firewire’ or ‘Only
propose products that are cheaper than the customer-specified limit’. Note that
the consequent of the rules can contain arbitrary boolean formulae, i.e., also dis-
junctions. The rules are maintained by the domain expert or knowledge engineer
with the help of graphical tools and can also be annotated with corresponding
relaxation costs and explanatory texts, both for the case that the rule could be
applied and for the case of relaxation (see Figure 10).
4 After the initial determination of suitable products, these products are sorted based

on a utility-based approach.



Techniques for Fast Query Relaxation 61

Algorithm: InteractiveRelax
In: Sorted list of atoms A of failing query Q

query =
∧

a∈A(a)
if query is not successful

% Compute a minimal preferred conflict
conflict = mfsQX(∅, A)
remaining = conflict
% Set up the choice points
do |conflict| times

choice = Ask user to select an option from
remaining or ’backtrack’

if choice = ’backtrack’ return
remaining = remaining \ {choice}}
% Remove the choice and try again
interactiveRelax(A \ {choice})

end do
else

Minimize the relaxation and compute results
Report success and show proposal to user.
response = Ask user if happy with result
if response = ’yes’

exit function
% backtrack to last choice point
else return

Fig. 9. Basic algorithm for interactive relaxation

We tested our algorithms with several real-world knowledge-bases from differ-
ent domains and with different complexities; an average case would be a setting
where we have 10-15 atoms (filter rules) in the query to be relaxed and a few
hundred products in the catalog. All of the relaxation problems (see [5] for more
details on running times) could be easily solved within the targeted time frame
of one second, most of them much faster: Remember that for computing the
user-optimal relaxation we only need |query| database queries and such a query
typically requires 5-10 msecs. The in-memory search process for the optimum
can be done in a few milliseconds. Even more, we can also exploit ‘cross-session’
re-use and caching of partial query results, e.g., the set of products that fulfil usb
= true remains static as long as no new products appear in the catalog. If no
variables are used in the filter rules (like a customer-specified value), relaxations
can be computed even without further database accesses.5

In our system, the relaxations are also used to ‘explain’ the proposal, i.e., we
use the explanatory text (fragments) for assembling a human-readable explana-
tion and, furthermore, let the user interactively state his actual preferences on the
compromises by giving him the possibility to enforce the application/relaxation

5 To the author’s knowledge, no ’benchmark’ problems are yet available for comparing
these running times.



62 D. Jannach

Fig. 10. Graphical editing tool for filter rules

of a rule. An evaluation of a real-world application [4] also indicates that the
explanations provided by the system are a well-appreciated feature of advisory
applications. Finally, the choice whether an incremental procedure is appropri-
ate has to be decided based on the individual application, e.g., asking additional
questions after a longer preference elicitation dialog may for instance be prob-
lematic.

5 Conclusion and Future Work

We have presented new techniques and algorithms for fast query relaxation for
content-based recommender systems that particularly aim at minimizing the
number of required database queries and take a-priory or learned preferences
into account. Based on the initial work and formalisms from [9,12] and [3] we
have shown how we can a) compute preferred conflicts for an interactive re-
laxation procedure with the help of a recent, general-purpose conflict detection
algorithm and b) how the individual evaluation and caching of partial queries
allows us to compute optimal relaxations in-memory at the cost of only slightly
increased memory requirements. Overall, our approach also continues recent re-
search from the field of Case Based Reasoning (CBR) recommender systems
aiming at overcoming the typical shortcomings of such systems [8,13] like for
instance the lack of adequate explantation mechanisms.

In our future work, we aim at going one step further than viewing relaxation
only as a problem of ‘removing’ parts of the query: We consider the current
approach of fully giving up individual requirements only as a first step in in-
telligent, content-based recommender systems. In future systems, however, we
will therefore aim at building systems that are also capable of coming up with a
personalized proposal of how to ‘soften’ the requirements, e.g., by proposing to
increase the price limit by a certain amount.



Techniques for Fast Query Relaxation 63

References

1. S. Amer-Yahia, L. V. S. Lakshmanan and S. Pandit. FleXPath: flexible structure
and full-text querying for XML, Proceedings ACM SIGMOD International Con-
ference on Management of Data, Paris, 2004, pp. 83-94.

2. D. Bridge. Product recommendation systems: A new direction. In R. Weber and C.
Wangenheim, eds., Workshop Programme at 4th Intl. Conference on Case-Based
Reasoning, 2001, pp. 79-86.

3. P. Godfrey. Minimization in Cooperative Response to Failing Database Queries,
International Journal of Cooperative Information Systems Vol. 6(2), 1997, pp. 95-
149.

4. D. Jannach. ADVISOR SUITE - A knowledge-based sales advisory system. In:
Proceedings of ECAI/PAIS 2004, Valencia, pp. 720-724.

5. D. Jannach, J. Liegl. Conflict-directed relaxation of constraints in content-based
recommender systems, Proc. 19th International Conference on Industrial, Engi-
neering & Other Applications of Applied Intelligent Systems (IEA/AIE’06), An-
necy, France, 2006 (forthcoming).

6. U. Junker. QUICKXPLAIN: Preferred Explanations and Relaxations for Over-
Constrained Problems. Proceedings AAAI’2004, San Jose, 2004, pp. 167-172.

7. D. Lee. Query Relaxation for XML Model, Ph.D Dissertation, University of Cali-
fornia, Los Angeles, June 2002.

8. D. McSherry. Explanation of Retrieval Mismatches in Recommender System Dia-
logues, ICCBR Workshop on Mixed-Initiative Case-Based Reasoning, Trondheim,
2003, pp. 191-199.

9. D. McSherry. Incremental Relaxation of Unsuccessful Queries, Proc. of the Euro-
pean Conference on Case-based Reasoning, In: P. Funk and P.A. Gonzalez Calero
(Eds.) LNAI 3155, Springer, 2004, pp. 331-345.

10. D. McSherry. Maximally Successful Relaxations of Unsuccessful Queries. Proceed-
ings of the 15th Conference on Artificial Intelligence and Cognitive Science, Castle-
bar, Ireland, 2004, pp. 127-136.

11. R. Reiter. A theory of diagnosis from first principles, Artificial Intelligence, 32(1),
1987, pp. 57-95.

12. F. Ricci, N. Mirzadeh and M. Bansal. Supporting User Query Relaxation in a Rec-
ommender System, Proceedings of the 5th International Conference in E-Commerce
and Web-Technologies EC-Web, Zaragoza, Spain, 2004.

13. B. Smyth, L. McGinty, J. Reilly, K. McCarthy, Compound Critiques for Conversa-
tional Recommender Systems, IEEE/WIC/ACM International Conference on Web
Intelligence(WI’04), Maebashi, China, pp. 145-151.



Solving Proportional Analogies by
E–Generalization

Stephan Weller and Ute Schmid

Department of Information Systems and Applied Computer Science,
Otto-Friedrich-University, Bamberg

{Stephan.Weller,Ute.Schmid}@wiai.uni-bamberg.de

Abstract. We present an approach for solving proportional analogies
of the form A : B :: C : D where a plausible outcome for D is computed.
The core of the approach is E–Generalization. The generalization method
is based on the extraction of the greatest common structure of the terms
A, B and C and yields a mapping to compute every possible value for
D with respect to some equational theory. This approach to analogical
reasoning is formally sound and powerful and at the same time models
crucial aspects of human reasoning, that is the guidance of mapping by
shared roles and the use of re-representations based on a background
theory. The focus of the paper is on the presentation of the approach. It
is illustrated by an application for the letter string domain.

1 Introduction

An often quoted observation by the psychologist William James more than a 100
years ago is that “a native talent for perceiving analogy is ... the leading fact
in genius of every order” (see [1]). Accordingly, the process of analogy making
is studied extensively in cognitive psychology as well as in artificial intelligence
[2]. The most fundamental kind of analogies are so called proportional analogies
of the form A : B :: C : D. They are studied in verbal settings (Lungs are to
humans as gills are to [fish]), with geometric figures [3,4], and in the letter string
domain [5] (abc : abd :: kji : [kjj]).

The core processes of all computational approaches to proportional analogy
are (1) construction of a structured representation of the given patterns, usually
in the form of terms, (2) identification/calculation of the relation between terms
A and B, (3) mapping of terms A and C, and (4) application of the relation
found between A and B to term C using substitutions based on the mapping
of A and C. Some approaches, namely Pan [4] and Copycat [5], additionally
present a mechanism for re-representation of terms, addressing the fact, that
the outcome of mapping is dependent on the perceived structure of the given
terms. For example, the string abc can be perceived as an arbitrary sequence of
letters, or as an ascending sequence of three letters.

Our approach differs from the approaches named above in two respects: First,
mapping is determined by the common gestalt, that is the structural commu-
nalities of the base (A) and target (C) terms. Second, arbitrary background

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 64–75, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Solving Proportional Analogies by E–Generalization 65

knowledge can be considered when comparing the structures of terms. The first
characteristic is covered by the method of syntactic anti-unification. The sec-
ond characteristic is covered by an anti-unification modulo equational theory or
E–Generalization.

In the following section we will introduce syntactic anti-unification and E–
Generalization and discuss their computational advantages as well as relations
to human analogy making. Afterwards we will introduce the letter string domain
as example domain. We present our algorithmic approach and illustrate it for
letter string analogies. We will conclude with an evaluation and further work to
be done.

2 Syntactic Anti-unification and E–Generalization

In this section we will introduce the notion of E–Generalization, as used in [6] and
[7]. To facilitate the understanding of E–Generalization, we will first introduce
syntactic anti-unification, which is a proper subset of E–Generalization.

2.1 Syntactic Anti-unification

Unification is a well known and widely used technique, the probably most promi-
nent application being the programming language Prolog. It computes the most
general unifier (MGU) of two or more terms, i.e. the most general term, such
that both terms can be reduced to the MGU by applying a substitution. Anti-
unification is the dual concept to unification. Instead of computing the most
general unifier, it computes the most specific generalization. It can be defined as
follows:1

Definition 1 (Anti-instance). Let u and ti, i = 1, . . . , n be terms and σi sub-
stitutions for each term, such that ti = uσi∀i = 1, . . . , n. Then u is called an
anti-instance of the terms t1, . . . , tn.

u is called the most specific anti-instance of t1, . . . , tn, if for each term u′

which is an anti-instance of t1, . . . , tn there exists a substitution θ, such that
u = u′θ.

In contrast to unification, anti-unification is always possible and there is always
a single most specific solution (up to variable renaming).

Algorithms for computing the anti-unification of n terms effectively were in-
troduced in [8] and [9] independently.

Anti-unification can be used to establish a relation between two terms in the
following way: If we anti-unify two terms, and those terms share some common
structure, the result will be a non-trivial term containing some variables. Let us
for example consider figure 1 2, an example of anti-unifying two terms, 5 · 3 + 7
and 8 ·3+9. The two terms are anti-unified resulting in x ·3+y. The result of the

1 As commonly used tσ denoted the application of the substitution σ to the term t.
2 Standard arithmetic rules are assumed, i.e. 5 · 3 + 7 is to be read as +(·(5, 3), 7).



66 S. Weller and U. Schmid

anti-unification conserves as much of the structure of the terms as possible. The
generalized structure reflects the roles the objects are playing in the respective
expressions. For example, the variable x describes the role that 5 plays in the
first term and 8 in the second, namely, that of the first factor in the term. The
second term can be obtained from the first one by applying the substitution τ1
inversely and then applying τ2.

This is a contrast to a direct mapping approach used in many models for
analogies. A direct mapping approach aims at computing the one term directly
out of the other, without using intermediate results. This sometimes requires
stochastic elements, as used in Copycat ([5]) or the use of heuristics, such as
the systematicity principle in SME ([10]). Those may be powerful in solving the
analogy, however a stochastical approach is psychologically hardly plausible.

Anti-unification allows for a mapping by using the abstract description of the
“roles” some subterms fulfil. In one word, it allows for analogy via abstraction,
which has some psychological motivation ([11]) and also yields a formally sound
approach.

5 · 3 + 7 8 · 3 + 9

x · 3 + y

τ1
τ2

Fig. 1. Simple example for syntactic anti-unification

2.2 E–Generalization

Sometimes, for constructing a suitable abstraction, it might be necessary to
include knowledge about the domain. E. g., for t′2 = 9 + (3 · 8) and t1 as above,
only the overly general anti-instance u + v can be obtained. But we know, that
addition is commutative and therefore, we can rewrite t′2 into its original form
t2. Knowledge about the equality of terms can be represented by an equational
theory. The laws for addition constitute such a theory:

x + y =E y + x

x + (y + z) =E (x + y) + z.

If we use knowledge in form of equational background theories for rewriting
terms before syntactical AU is performed, we speak of E–generalization. Models
for solving proportional analogies, such as Copycat [5] or Pan [4], allow for an
arbitrary sequence of rewritings of the initial representation (re-representation)
to find a suitable solution. In contrast, E–generalization allows us to perform
abstraction while modeling equivalent representations by appropriate equations
between terms. All equivalent representations are considered simultaneously in
the abstraction process. Therefore, abstraction becomes insensitive to represen-
tation changes.



Solving Proportional Analogies by E–Generalization 67

The basic idea is to anti-unify regular tree grammars instead of terms. Regular
tree grammars are a language class developed in 1968 (cf. [12] and [13]). This
language class is located in the Chomsky-Hierarchy between regular and context-
free languages (for a very comprehensive introduction to regular tree grammars
see [14]).

Regular tree grammars allow for the representation of equivalence classes of
terms, it would for example be possible to represent the terms 3·8+9, 8·3+9, 9+
3 · 8, and 9 + 8 · 3 by one regular tree grammar, assuming the given background
knowledge.

The construction of regular tree grammars from a background theory (for
example a canonical equational theory) can in some cases be done automatically
(cf. [15] and [16] for criteria when this is possible).

5 · 3 + 7 ∈ G1 G2 � 9 + 3 · 8
↘ ↙

G = au(G1, G2)

∈

x · 3 + y

Fig. 2. Simple example for E–Generalization

Assuming regular tree grammars for our terms, we can now anti-unify these
regular tree grammars by an algorithm originally developed in [6] and refined
in [7]. This process is depicted in figure 2. Unfortunately, this algorithm needs
exponential time 3 in general, but [7] shows that in some cases an efficient com-
putation is nevertheless possible.

It should be noted that the result of this E–Generalization process is not a
term, but a regular tree grammar of terms. But this is only a natural consequence
of representing equivalence classes of terms as regular tree grammars. The result
has to be an equivalence class of terms itself. In the next section we will see, that
this will make it possible to compute all solutions of a proportional analogy in
one step.

For an in-depth description of the algorithm mentioned (and also its imple-
mentation and application so proportional analogies) see [17].

E–Generalization may be used as a model for analogies even more than syn-
tactic anti-unification. The features described in the last subsection are fulfilled
by E–Generalization as well and additionally, we are not limited to one repre-
sentation. E–Generalization may account for a change rerepresentation of the
terms, which is necessary in many cases (see for example [18] for a justification
of this claim). We can therefore hope to find a method of solving proportional
analogies by E–Generalization.

3 Exponential in the size of the grammars used.



68 S. Weller and U. Schmid

3 Letter String Analogies

We will illustrate our approach for the letter string domain which has been widely
investigated in cognitive science as well as in artificial intelligence [19,20,21,5,1].
This domain has several characteristics which makes it interesting: First, it is
very simple and any number of analogies can be constructed. Second, for many
examples, there are different plausible solutions. Which solution is generated (by
a program or a human subject) is dependent on how the perceived structure of
the other strings. Third, in principle any type of proportional analogy problem
which can be represented in form of terms can be mapped to the letter string
domain.

For example, geometrical patterns can be described by a system of terms, thus
matching it to the letter-string-domain. This possibility was described already
in 1971 in [22] and is known as Structural Information Theory (SIT).

It was first introduced as a coding system for linear one-dimensional pat-
terns. Leeuwenberg represents perceptual structures by three operators named
iteration, alteration, and symmetry. Iteration is supposed to reflect some kind of
repetitive process (e.g. Iter(xy, 3) := xyxyxy). Symmetry should represent the
reversed repetition of a term t after a second term s (Sym(xyz, ()) := xyzzyx).
Finally, alteration describes the interleaving of a term into a list of terms, such
as Alt(a, (x, y, z)) := axayaz.

On those operators, Leeuwenberg introduces the notion of information load,
which is supposed to describe the complexity of an operator. Leeuwenberg claims
that the descriptions using the minimal information load correspond to percep-
tual gestalts (for an introduction to gestalt theory, see [23]). His claim is there-
fore, that the gestalt principle can be explained by even simpler principles, such
as his information load.

A more algebraic version of Structural Information Theory can be found in
[21]. Here, even some computational modelling of proportional analogies is done.

4 Solving Proportional Analogies by E–Generalization

4.1 Illustration of the Approach

In the following we will show how to apply the method of E–Generalization to
solve a proportional analogy of the form A : B :: C : D (read: A is to B as C to
D), where D is to be computed.

As an example, let us assume we want to solve the proportional string analogy
abc : abd :: ihg : D. where D is unknown. Using a representation language similar
to SIT ([21]) we could represent the term abc as Iter(a, succ, 3), meaning that
abc is established by iterating the successor operation three times on the constant
a. Another possible representation would be of the form a·succ(a)·succ(succ(a)),
where · means concatenation and succ is the successor relation.

Our first aim is now to compute the common structure of the terms A and
C, or, in our example the terms abc and ghi. At this point it should be noted,



Solving Proportional Analogies by E–Generalization 69

that this common structure could be extracted straightforward by syntactic anti-
unification, if we had knowledge about the structure of the terms abc and ghi.
Let us for a moment assume, that we know that the structure of our both terms
is Iter(a, succ, 3) and Iter(i, pred, 3) respectively 4. In this case, an application
of syntactic anti-unification would yield the common structure Iter(x, y, 3) and
the two substitutions τ1 = {x ← a, y ← succ}, τ2 = {x ← i, y ← pred}. Let us
further assume the structure Iter(a, succ, 2) · succ(succ(succ(a)) for the B-term
abd. Given this, we could apply τ1 inversely to the B-term, yielding a new term
Q of the form Iter(x, y, 2) · y(y(y(x))). Applying τ2 to this term would yield the
result Iter(i, pred, 2) · pred(pred(pred(i))) which describes the term ihf , which
is one possible solution of the analogy.

Seeing this, one possibility to solve a proportional string analogy would be
to compute some representation of the participating terms and using syntactic
anti-unification (and inverse and normal substitution application) to compute a
result. The decision on some representation will thus determine, which result we
will obtain.

But instead of choosing one particular representation at the start, we can
take the process one step further and use E–Generalization instead of syntactic
anti-unification. The complete process is shown in figure 3.

A : B :: C : D

[A]E [C]E

GAC

[B]E

Q

[D]E

τ1 τ2

τ−1
1

τ2

Fig. 3. Solving a proportional string analogy

To every ground term A, B, and C a regular tree grammar representing the
equivalence class of all representations of the term is built up. Those regular tree
grammars are denoted by [A]E , [B]E , and [C]E . The process of building the reg-
ular tree grammars is denoted by the dotted arrows. Next, the E–Generalization
algorithm from [7] is used on the two regular tree grammars [A]E and [C]E , thus
extracing their common structure as a regular tree grammar GAC . This grammar
is not needed in the further process, it is a byproduct of the algorithm represent-
ing a form of abstraction from the ground terms. What is needed in the next
step, are the substitutions τ1 and τ2 also produced by the E–Generalization step.
4 Actually, the example is not completely formally correct, as it intermixes first and

second order terms for succ and pred, which is of course not valid, but simplifies the
example a lot.



70 S. Weller and U. Schmid

The substitution τ1 is inversely applied to [B]E 5 , resulting in a regular tree
grammar describing the common structure between B and D. It is denoted by
Q in the figure. Again, this grammar forms an abstraction from the actual terms
that can be seen as a byproduct of the analogical process.

Finally, the substitution τ2 is applied to Q, leading to a final grammar [D]E
with the following properties:

– It shares the structure of B, as it is derived by application of (inverse)
substitutions to [B]E .

– The constants occuring in the term A are replaced by those in C, as the two
(inverse) substitutions τ−1

1 and τ2 are applied.
– It can thus be described as the result of “doing the same thing” to B as it

was done to A to get C.
– And therefore, it can be seen as a valid solution of the proportional analogy

A : B :: C : D.

As mentioned before, the result of this process is not a single term, but a
regular tree grammar and as such a whole set of terms. However, it describes
every result that can be obtained by replacing constants in any representation
of B by their counterparts with respect to every possible representation of A
and C.

Naturally the question arises, how to extract a term from this tree gram-
mar (when a single term is desired rather than a set of terms). This process is
an enumeration of the regular tree grammar, which is in general not possible
completely, as infinitely many terms are described by the grammar (imagine for
example a grammar for arithmetical operations allowing for the addition of 0 -
this alone leads to result grammars describing infinitely many terms in nearly
every case). Nevertheless, it may be desirable to enumerate the first n terms
according to some ordering relation. The enumeration is not a problem, if the
ordering relation is defined. But finding a suitable ordering relation is not a sim-
ple task. However, using simple relations, like ordering by number of occuring
constants, “depth” of the term etc. are possible. Those might even represent
some kind of simplicity used by humans to decide which answer to choose in
solving a proportional analogy.

Which ordering relation would correspond to the preference humans use is an
empirical question and probably requires deep insight in the cognitive processes
used in analogical thinking.

4.2 Algorithmic Realization of E-Generalization

The algorithm used to implement E–Generalization was originally developed in
[7]. Computing the E–Generalization of two terms is split up in three parts:
Computing universal substitutions, lifting a grammar and finally intersection of
regular tree grammars.
5 Note that (inverse) application of substitutions is well-defined on regular tree gram-

mars. It is a special case of an inverse tree homomorphism. See [14] for details.



Solving Proportional Analogies by E–Generalization 71

Regular tree grammars are defined as a quadruple G = (Σ, N , S, R). Σ is a
signature, i.e. a set of function symbols f , where each f has a fixed arity. If
the arity of one f is 0, it is called a constant. N is a finite set of nonterminals,
S ∈ N is a starting symbol. Finally, R is a finite set of rules of the following
form:

N :: = f1(N11, . . . , N1n1)| . . . |fm(Nm1, . . . , Nmnm)

Let us first assume, that the substitutions are already known. This subproblem
is also known as constrained E–Generalization. In this case, only two steps are
needed: Lifting the grammars and intersecting them. Lifting the grammar is a
process to incorporate the knowledge about variables that could be used by the
substitution. In other words, from a grammar G we want to derive a grammar
Gσ, such that Gσσ = G, where Gσ containts all “suitable” variables from the
substitution σ. To this end, we define the following algorithm:

Algorithm 1 (Lifting). For a regular tree grammar G = (Σ, N , S, R and a
substitution σ define a new grammar Gσ = (Σ∪ dom σ, {Nσ|N ∈ N}, Sσ, Rσ),6

where Nσ is a new nonterminal, one distinct nonterminal is introduced for each
old nonterminal. The same is done to S and the rules Rσ are derived from R
as follows:

For every rule

N :: =
∣
∣
∣
m

i=1
fi(Ni1, . . . , Nini)

from R we introduce a new rule

Nσ :: =
∣
∣
∣
m

i=1
fi(Ni1, . . . , Nini)|

∣
∣
∣
x∈ dom σ,xσ∈LG(N)

x

Where LG(N) describes all terms in the grammar G, that can be reached when
using N as a starting symbol.

To compute the intersection of the regular tree grammars, a standard algo-
rithm from [14] is used. It is similar to intersection algorithms for regular
languages.

Lifting two grammars as defined above and intersecting them afterwards will
now result in the E–Generalization of those two grammars. However, to allow
for unconstrained E–Generalization, we still need some means to extract the
substitions required to apply constrained E–Generalization.

It is possible, to find two universal substitutions τ1 and τ2, which are universal
in the following sense: For any two substitutions σ1, σ2 we can find a substitution
σ, such that tσi ∈ L(N) =⇒ tστi ∈ L(N) for i = 1, 2, N ∈ N and any t from
the union of both domains.

The existence of such substitutions is proven in [7]. They are constructed in
the following two steps:

6 dom σ denotes the domain of σ, i.e. the set of all terms occuring on the left-hand
side of a substitution.



72 S. Weller and U. Schmid

Algorithm 2 (Universal substitutions)

1. Construct Nmax:

(a) Set N = ∅ and Nmax = ∅
(b) For each Nonterminal n ∈ N , compute (

⋂
x∈N L(x)) ∩ L(n) and if the

result is not empty, add n to N .
(c) Add N to Nmax, remove all elements in N from N , and if N 	= ∅, set

N = ∅ and continue with step (b).
2. For a nonterminal N , define t(N) as an arbitrary term from L(n). For each

pair (N1, N2) ∈ Nmax × Nmax introduce a new variable v(N1, N2) and define
τi = {v(N1, N2) ← t(Ni)} for i = 1, 2.

Using those substitutions and applying the constrained E–Generalization will
yield the unconstrained E–Generalization. This completes the algorithm:

Algorithm 3 (Unconstrained E-Generalization). Let N1, N2 be two reg-
ular tree grammar. Their unconstrained E-Generalization is computed with the
following steps:

1. Compute two universal substitutions τ1, τ2 for the regular tree grammars N1
and N2 respectively by algorithm 2.

2. Compute the “lifted” grammars N τ1
1 and N τ2

2 by algorithm 1.
3. Compute the intersection N := N τ

1 ∩ N τ
2 by a standard algorithm, for ex-

ample from [14].

4.3 Using E-Generalization to Solve Proportional Analogies

We have now all ingredients to describe our overall approach algorithmically:

Algorithm 4 (Solving proportional analogies). Let a proportional analogy
of the form A : B :: C :? be given by regular tree grammars [A]E for A, [B]E for
B and [C]E for C. Compute a solution D by the following steps:

1. Compute universal substitutions τ1, τ2 for [A]E and [C]E respectively, using
algorithm 2.

2. Lift the grammar [B]E with respect to the substitution τ1, using algorithm 1
to get Q := [B]τ1

E .
3. Apply the substitution τ2 to Q to get the final result [D]E := Qτ1.

4.4 Implementation

As mentioned above, the E–Generalization algorithm is exponential in the size
of the grammars used in the general case. A proof-of-concept implementation
of the algorithm was done, which can be used for small examples. Grammars
describing terms like abd have typically a size of 30 to 40 rules, one for each
letter of the alphabet and several more for the operators (see [17] for example
grammars).



Solving Proportional Analogies by E–Generalization 73

The implementation was done in Moscow-ML, an implementation of Standard
ML, which is a stricly functional language. This language was selected due to
it’s support for pattern matching, which enables it to interact with trees and
terms very straightforwardly.

Sample grammars were generated for very small mathematical problems and
proportional string analogies.

The program was run with prototypical examples, such as abc : abd :: ghi :?.
Performance time is quite reasonable, typically about 30 sec. The size of the
returned grammar was in between 40 and 50 rules. Nearly all of the computing
time was spent in the process of generating the universal substitutions. This
coincides with the theoretical results ([7]), as this is the step that requires expo-
nential computation effort. More statistics on the program were not done, due
to its prototypical nature.

An algorithm to enumerate the resulting grammar is not yet available. As the
grammar represents all solutions with respect to a given background knowledge,
such an enumeration would reflect the preference human subjects would have
when choosing a solution. The question of enumerating the grammar is therefore
more a psychological than an algorithmical one. It is possible to sort the terms in
the grammar by complexity (i.e. the depth of the terms). However, wether such
an enumeration would correspond to human preference is still an open question.

A more extensive description of the implementation can be found in [17].
For an application to a task which requires more than very small grammars,

some restriction to the algorithm is inevitable. Such restrictions would of course
depend on the application.

5 Conclusion and Further Work

We have introduced the idea of anti-unification and its extension with back-
ground knowledge to E–Generalization. Then we have shown how this method
can be applied to solve proportional string analogies in a generic way, that is,
without incorportating domain knowledge into the algorithm. We demonstrated
the approach for the letter string domain, which can be seen as a representa-
tive domain for all other domains accessible to term representation. That is,
our approach is applicable to all kinds of proportional analogy problems. The
only restriction is given by the fact that the background knowledge has to be
represented as a canonical equational theory, which is not always possible (for
criteria cf. [6]).

Our approach can be applied to more complex analogical reasoning tasks as
well. For example, it can be applied to solve predictive analogies in the domain
of naive physics which are addressed in the cognitive model SME [10] as we
demonstrated in [11]. Furthermore, an extension to second-order generalization
can be applied to the domain of program construction by analogy [24,25].

Solving proportional analogies is only one domain where E–Generalization
can be applied. There are for example applications in the field of lemma gener-
ation (cf. [6]) or in the completion of number series, as they are used often in



74 S. Weller and U. Schmid

intelligence tests. The latter were also worked on by [5] (cf. chapter 2.2), also
making use of analogies. The application of E–Generalization to this problem
has been done in [15].

An important property of this method is the calculation of the common struc-
ture of the terms as a byproduct of the analogy solving. In contrast to most other
models of analogies, this method does account for the emergence of abstract
knowledge without any extra computation. The creation of the abstract knowl-
edge about the common structure is not gained by an extra step, but rather as
an intrinsic property of the process.

At least in this aspect this is similar to the way humans solve analogies. One
cannot “suppress” the abstraction from the concrete terms. To learn something
about the common structure of the terms is inherent in the process of solving
the analogy.

To investigate further in human solving of proportional analogies, empirical
research is necessary. Our next step will therefore be to conduct an empirical
study. The aim of this study will be to check wether the results chosen by humans
correspond to a certain ordering relation of the terms in the computed grammar
or wether terms occur not covered by the grammar at all (this can of course
not be ruled out, as human decisions might not be explicable by background
knowledge but rather based on intuition or other non-rational processes).

Acknowledgements

We would like to thank Jochen Burghardt for his support of our work.

References

1. Mitchell, M.: Analogy-Making as Perception: A Computer Model. MIT Press,
Cambridge, MA (1993)

2. French, R.: The computational modeling of analogy-making. Trends in Cognitive
Sciences 6 (2002) 200–205

3. Evans, T.G.: A Program for the Solution of a Class of Gemetric-Analogy
Intelligence-Test Questions. In Minsky, M., ed.: Semantic Information Process-
ing. MIT Press (1968) 271–353

4. O’Hara, S.: A model of the redescription process in the context of geometric
proportional analogy problems. In: Int. Workshop on Analogical and Inductive
Inference (AII ’92). Volume 642., Springer (1992) 268–293

5. Hofstadter, D., the Fluid Analogies Research Gr.: Fluid Concepts and Creative
Analogies. BasicBooks (1995)

6. Heinz, B.: Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur
Lemmagenerierung. Technical report, GMD - Forschungszentrum Information-
stechnick GmbH (1996)

7. Burghardt, J.: E-generalization using grammars. Artificial Intelligence Journal
165 (2005) 1–35

8. Plotkin, G.: A note on inductive generalization. In: Machine Intelligence. Volume 5.
Edinburgh University Press (1970) 153–163



Solving Proportional Analogies by E–Generalization 75

9. Reynolds, J.: Transformational Systems and the Algebraic Structure of Atomic
Formulas. In: Machine Intelligence. Volume 5. Edinburgh University Press (1970)

10. Falkenheimer, B., Forbus, K.D., Gentner, D.: The structure-mapping engine: Al-
gorithm and examples. Artificial Intelligence 41 (1989) 1–63

11. Schmid, U., Gust, H., Kühnberger, K.U., Burghardt, J.: An algebraic framework
for solving proportional and predictive analogies. In Schmalhofer, F., Young, R.,
Katz, G., eds.: Proceedings of the First European Conference on Cognitive Science
(EuroCogSci03), Mahwah, NJ, Lawrence Erlbaum (2003) 295–300

12. Brainerd, W.: The minimalization of tree automata. Information and Control 13
(1968) 484–491

13. Thatcher, J., Wright, J.: Generalized finite automata theory with an application to
a decision problem of second–order logic. Mathematical Systems Theory 2 (1968)

14. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata (1997) release October, 1rst 2002.

15. v. Thaden, M., Weller, S.: Lösen von Intelligenztestaufgaben mit E-Generalisierung
(Solving intelligence tasks by E-Generalization). In: Tagungsband der Informatik-
tage 2003, Gesellschaft für Informatik e.V. (2003) 84–87

16. Emmelmann, H.: Code Selection by Regularly Controlled Term Rewriting. In:
Proc. of Int. Workshop on Code Generation. (1991)

17. Weller, S.: SolvingProportionalAnalogies byApplication ofAnti-Unificationmodulo
Equational Theory. Available on http://www-lehre.inf.uos.de/∼stweller/ba/
(2005) Bachelor’s Thesis, unpublished.

18. Yan, J., Gentner, D.: A theory of rerepresentation in analogical matching. In:
Proc. of the 25th Annual Conference of the Cognitive Science Society, Mahwah,
NJ, Erlbaum (2003)

19. Burns, B.: Meta-analogical transfer: Transfer between episodes of analogical rea-
soning. Journal of Experimental Psychology: Learning, Memory, and Cognition 22
(1996) 1032–1048

20. Cornuejlos, A.: Analogy as minimization of description length. In Nakhaeizadeh,
N., Taylor, C., eds.: Machine Learning and Statistics. The Interface. Wiley, New
York (1997) 321–335

21. Dastani, M., Indurkhya, B., Scha, R.: An Algebraic Approach to Modeling Ana-
logical Projection in Pattern Perception. In: Proceedings of Mind II. (1997)

22. Leeuwenberg, E.: A perceptual coding language for visual and auditory patterns.
American Journal of Psychology 84 (1971) 307–349

23. Goldstein, E.B.: Sensation and Perception. Wadsworth Publishing Co., Belmont,
California (1980)

24. Hasker, R.W.: The Replay of Program Derivations. PhD thesis, Univ. of Illinois
at Urbana-Champaign (1995)

25. Schmid, U., Sinha, U., Wysotzki, F.: Program reuse and abstraction by anti-
unification. In: Professionelles Wissensmanagement – Erfahrungen und Visio-
nen, Shaker (2001) 183–185 Long Version: http://ki.cs.tu-berlin.de/~schmid/
pub-ps/pba-wm01-3a.ps

http://www.grappa.univ-lille3.fr/tata
http://www-lehre.inf.uos.de/~stweller/ba/
http://ki.cs.tu-berlin.de/~schmid/pub-ps/pba-wm01-3a.ps
http://ki.cs.tu-berlin.de/~schmid/pub-ps/pba-wm01-3a.ps


C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 76 – 90, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Building Robots with Analogy-Based Anticipation* 

Georgi Petkov, Tchavdar Naydenov, Maurice Grinberg, and Boicho Kokinov 

Central and East European Center for Cognitive Science 
New Bulgarian University 

21 Montevideo Str., Sofia 1618, Bulgaria 
gpetkov@cogs.nbu.bg, 
tnaydenov@gmail.com, 

{mgrinberg,bkokinov}@nbu.bg 

Abstract. A new approach to building robots with anticipatory behavior is 
presented. This approach is based on analogy with a single episode from the 
past experience of the robot. The AMBR model of analogy-making is used as a 
basis, but it is extended with new agent-types and new mechanisms that allow 
anticipation related to analogical transfer. The role of selective attention on 
retrieval of memory episodes is tested in a series of simulations and 
demonstrates the context sensitivity of the AMBR model. The results of the 
simulations clearly demonstrated that endowing robots with analogy-based 
anticipatory behavior is promising and deserves further investigation. 

1   Introduction 

Our everyday behavior is based on explicit or implicit employment of predictive 
models. If we are looking for an object it may simply happen that we see it by chance 
and go to take it (reactive behavior) or we can imagine where it could possibly be and 
go to that place to check whether it is there (anticipatory behavior). 

IT systems will be closely related to everyday environments in the near future and 
they will have to perform complicated tasks related to these environments, including 
searching for lost objects. In order for them to be successful and autonomous, to deal 
with novel and dynamic environments, to be pro-active and trustworthy in supporting 
people in their activities, such robots and devices need to have sophisticated cognitive 
capabilities based on anticipation. 

Some models, related to this goal, use connectionist networks that generalize from 
past experience and predict the future on the basis of these generalizations. For 
example, ALVINN [16] not only reactively responds to the environment but also 
predicts what will be seen in the next step. The Anticipatory Learning Classifier 
Systems (ALCs) ([17], [4], [5]) form a class of models that combine reinforcement 
learning with online generalization and thus propose diverse anticipatory 
mechanisms. The DYNA-PI systems [18] use reinforcement learning mechanisms to 
plan on the basis of a model of the world. Planning iteratively generates “chains of 
predictions” starting from the current state and using the model of the environment. 

                                                           
* This work has been supported by the MIND RACES project funded by the 6th FP of the EC 

(IST Contract 511931). 



 Building Robots with Analogy-Based Anticipation 77 

Recently these models implement this planner with connectionist networks ([1], [2]). 
Finally, the architecture of Rodney Brooks [3] proposes a set of layered modules that 
interact dynamically with each other and with the environment. Thus, “behavior-
based robots” based on the concept of the “action circuit” are proposed. However, the 
architecture is mainly reactive and is not able to anticipate future events. 

This paper proposes an alternative approach towards anticipation based on 
reasoning by analogy. Thus, anticipations are formed not only by capturing the 
regularities in the world, but by using a single past episode. Sometimes the analogy 
between the current situation and an episode in memory can be very superficial. For 
example, the new and the old episodes can share the same set of objects but they can 
be placed differently, an analogy of this type would be: last time the bone was behind 
the red block, so the robot may expect the bone to be behind the red object again. 
However, sometimes the analogy could be much deeper and thus generating non 
trivial predictions. For example, suppose that in the past episode the bone was behind 
an object with unique color (the only green object among many red ones). If in the 
target situation all the objects are having the same color, but there is an object with 
unique form (the only cube among many cylinders), then the robot can predict by 
analogy that the bone is now behind this unique object. 

Many share our assumption that analogy-making is not only a specific and rare 
human capability but is fundamental for human cognition [7]. A number of cognitive 
models exist modeling various parts of the analogy-making process. SMT [6] assumes 
that only the relations are important and thus the attributes are completely ignored. 
The analogy is based on mapping identical relations from the target to the base 
situation. On the contrary, ACME [8], LISA [9], and AMBR [10] allow for mapping 
of relations with different names. LISA differs from AMBR in the sense that the 
former is not capable of mapping too complex structures. ACME constructs all 
possible correspondences and thus the model can not be scaled up. None of the 
models presented so far has been used for prediction and anticipation. We decided to 
extend the AMBR model in order to build anticipatory capabilities in robots based on 
the DUAL cognitive architecture ([11] [15]). 

In this paper we present a first exploratory step in this direction based on a 
simulation of a robot in the Webots environment. We use AMBR as a reasoning core 
of the system and connect it to the simulated robot and physical environment. 

As it became clear from the above discussion, our long-term project is to design 
robots that are able to demonstrate anticipatory behavior based on analogy. However, 
in order to explore in detail how analogy can be used in anticipation we started with a 
relatively simple example based on a simulated house-like environment (see Fig. 1a) 
and a simulated AIBO robot. The simplicity of the task makes it possible to 
investigate the role of the various mechanisms involved in analogy as assumed by the 
AMBR model.  

The house-like environment consists of several rooms and doors between some of 
them. In the rooms there are various objects like cubes, balls, cylinders, etc. The goal 
of the AIBO robot is to find a bone (or bones) hidden behind an object (Figure 1a). In 
a more complicated task there could be many robots: some of the robots should find 
and collect some ‘treasures’, whereas other robots play the role of ‘guards’ that try to 
keep the treasures and hide them dynamically or block the way of the treasure-
hunters. (Fig. 1b). 



78 G. Petkov et al. 

 

Fig. 1. The micro-domain of a house-like environment. a) The goal of the robot is to find the 
bone. b) There are ‘treasure-hunters’ and ‘guards’ with different goals and strategies. 

The strategy of exhaustive search would be very inefficient in real time and 
sometimes simply impossible especially when the environment is dynamic and 
changes over time as in the case of Figure 1b. Moreover, we believe that in structured 
environments like the one shown in Figure 1, anticipation based on analogy will be 
the most efficient approach, because it will take full advantage of the structure of the 
environment memorized in previous episodes. A simulated robot and its simulated 
environment – a room in which there are three cubes and possibly a bone hidden 
behind one of them – is shown in Figure 2. 

 

Fig. 2. Robot-environment interaction (real or simulated) 



 Building Robots with Analogy-Based Anticipation 79 

2   The DUAL Architecture 

2.1   Basic Properties 

DUAL is a cognitive architecture, launched by Kokinov in 1994 ([11], [15]). It 
consists of memory structures and processing mechanisms, organized around the 
following principles: 

- Hybridity – DUAL combines the symbolic with connectionist approaches, by 
integrating them at the micro-level. 

- Emergent computations – the global behavior of the architecture emerges from 
local interactions among a huge number of small entities, called DUAL-agents. There 
is no central executor that monitors the whole system. 

- Dynamics and context–sensitivity – The behavior of DUAL changes continuously 
in response to the influence of the dynamic changes in context. There is no clear-cut 
boundary between the task and its context. Instead, the context is assumed to be the 
state of the system in any certain moment, i.e. the pattern of activation over the set of 
DUAL-agents. This pattern is assumed to reflect the relevance of the various pieces of 
knowledge in the current context. Some DUAL-agents might be relevant because the 
corresponding elements are currently perceived from the surrounding environment, 
others – because they reflect the current goals of the system, and finally, some agents 
might be relevant because they were recently used and thus they have some residual 
activation.  

2.2   DUAL–Agents 

The basic structural and functional element in DUAL is the DUAL–agent. It is hybrid 
in two ways – it has both connectionists and symbolic aspects, and it serves both as a 
representational and a functional unit. 

Connectionist’s Aspect. From the connectionist’s perspective, each agent is a node in 
a localist neural network. It continuously receives activation, updates its current 
activation level, and spreads it through associative links to other agents. An important 
feature of DUAL is that it distinguishes the semantic meaning of the agents from their 
relevance, considering them as independent. The activation level is a numeric value 
that codes the relevance of each agent. The pattern of activation does not represent 
any concept or scheme, but just the current context. 

Symbolic Aspect. From the symbolic point of view, DUAL–agents are organized in a 
semantic network. Each agent ‘stands’ for something – an object, property, relation, 
etc. It has its own micro-frame. The micro-frames have slots, which in turn may have 
facets. There are two kinds of slots – general ones (G-slots), and frame-specific ones 
(S-slots).  

G-slots have labels, the meaning of which is invariant across the agents, for 
example  :type,  :subc, etc. S-slots also have labels, but their labels are arbitrary, i.e., 
:slot1 in one agent may mean something very different from :slot1 in another agent. 
S-slots (and only S-slots) have facets, i.e., slots within slots. The same set of labels 
applies to both G-slots and facets. 



80 G. Petkov et al. 

Symbolic Processing. DUAL – agents interact with each other. These interactions are 
relatively simple – they always involve two agents – one of them sends some 
information, and the other one reads it. 

Each DUAL – agent has a symbolic processor. It can receive or construct symbolic 
structures, transform them, store them in its own local memory, and send them to 
neighboring agents. A typical symbolical transaction involves receiving a symbolic 
structure, comparing it with the other symbolic structures in the local memory, storing 
it, transforming it via specific to the agent’s type routines, and sending its 
modification. Each one of these steps is discrete. DUAL – agents manipulate symbols 
sequentially, one after another, with a frequency that reflects the relevance of the 
respective agents. 

Relationships between Connectionist and Symbolic Processing. All aspects of the 
agents are merged in a single whole and each one influences the others. 

Only a small number of agents whose activation exceeds a certain threshold form 
the Working Memory (WM). The agents that are outside of the WM cannot perform 
any symbolic operations – they are assumed invisible. For the agents that are involved 
in the WM, the activation level determines the speed of the symbolic processing. Each 
elementary symbolic operation (namely read, send, modify, etc.) has a ‘price’ that is 
paid with activation. Whenever an agent wants to perform such an operation, it begins 
to accumulate activation in order to pay the required price. Only after it is ready, it 
can perform the operation. Therefore, the most active agents work rapidly, the less 
active ones – slowly, and the inactive ones do not work at all. In this manner, the 
relevance influences the symbolic part of the architecture. 

There is also an opposite dependence. The symbolic operations cause new agents 
to be born, and new connections to be established. These operations change the 
overall pattern of activation and thus, the symbolic operations influence the pattern of 
relevance too. 

Types of agents. Each DUAL-based model consists of nothing but of DUAL-agents 
with various types and with various properties. For the purpose of the AMBR-based 
robots with anticipatory capabilities are used the following types of agents: 

Concept–Agents (for short concepts) represent classes of homogeneous entities and 
are organized in a semantic network. They are interconnected via vertical links, for 
pointing respectively to their super-classes and some of their sub-classes. They are 
interconnected also horizontally, pointing to some associations and prototypical 
relations. Note that concepts can stand for objects as well as for relations and abstract 
terms. 

Instance-Agents (instances) represent individual entities. Each instance has a G-
slot that points to its respective category concept. There are also links in the opposite 
direction that connect the concepts to some of their instances. Some instances are 
permanent – they are part of LTM and represent concrete memory traces. Other 
instances are temporary – they are constructed on the spot because of certain 
inferences. 

Hypothesis-Agents represent possible correspondences between entities. They are 
temporary agents; they do not participate in LTM; and if they lose their relevance, 
they disappear. Hypotheses are organized in a constraint satisfaction network. Each 
hypothesis has its ‘life cycle’ – it can transform itself from embryo to  



 Building Robots with Analogy-Based Anticipation 81 

mature hypothesis, and then to winner. These sub-types reflect the degree to which 
the hypotheses are novel and attractive. 

Anticipation-Agents represent possible entities and relations, predicted by the 
system. They are also temporary agents. The predictions can be confirmed or rejected 
by the perceptual systems. In the first case the anticipation agents would mutate into 
permanent ones, whereas in the second case they would disappear. 

Cause-agents represent a special kind of relations. They are equipped with a 
special procedure that allows them to make decisions whether particular movements 
to be performed. For example, if the system anticipates that the bone is behind the 
blue cylinder, then the knowledge transferred from the past situation that movement 
to the blue cylinder would cause finding the bone would be represented by a cause 
relation. In turn, the concrete action (in the example – movement to the blue cylinder) 
would be actually performed. 

Action-Agents code procedural knowledge about particular movements. Note that if 
an action-agent becomes relevant this does not imply that the particular movement 
would be necessarily performed. The decision should be taken by a cause-agent. 

2.3   The Coalitions of Agents 

DUAL – agents are very simple and some of the more important properties of the 
architecture could be observed if looked at from a distant perspective.  

DUAL – agents form coalitions, i.e., sets of agents, together with the pattern of 
interactions among them. Coalitions represent more complex entities like propositions 
or situations. However, the coalitions are not part of the strict computational 
description of the architecture. Instead, they enhance the conceptual understanding 
only. 

Three important properties of the architecture become visible only at the level of 
coalitions. The coalitions are decentralized, emergent, and dynamic. None of these 
properties is presented in the individual agents. The coalitions vary in the intensity of 
the interactions among their members in comparison to the intensity of interactions 
with the outside agents. ‘Tight’ and ‘loose’ coalitions could be distinguished in 
respect to this ratio and there is a whole continuum between these two extremes. 

Coalitions do not have clear-cut boundaries. Instead, the same agent can participate 
in two or more coalitions and to a different extent. In the course of time, the coalitions 
can become ‘tighter’ or ‘looser’, can break up, and new coalitions can emerge. 

3   The AMBR Model 

3.1   Main Ideas 

AMBR is a model for analogy making based on DUAL. It treats analogy making as 
an emergent result of the common work of several overlapping sub-processes – 
perception, retrieval, mapping, transfer, evaluation, and learning. However, AMBR is 
a long-term project and unfortunately, at the current stage only the processes of 
retrieval, mapping, and transfer are modeled and integrated. 

AMBR is capable of capturing some similarities between local structures of agents 
and mapping them, creating hypotheses for correspondences. It is a pressure for these 



82 G. Petkov et al. 

mappings to grow, involving other agents. In this way, a Constraint Satisfaction 
Network is formed. Just as in the process of crystallization, the system strives to a 
stable equilibrium, changing quantitatively itself. Because the structure–based 
mappings emerge locally and grow, often some inconsistent hypotheses meet and 
compete with each other and sometimes blending between episodes occurs. 

3.2   Mechanisms Used in AMBR 

Spreading Activation. The sources of activation are two special nodes – INPUT and 
GOAL. Their activation level is always equal to the maximal value. The node INPUT 
represents the perception of the system, whereas the node GOAL – the current tasks 
of the system. More sophisticated perceptual and goal-analyzing modules are under 
construction now. They should replace the INPUT and GOAL nodes. AMBR’s work 
begins when some agents that represent the environment, are attached to INPUT, and 
some other agents, which represent the task – to GOAL. Various context or priming 
objects can be attached or removed from INPUT at any moment in time. The 
activation then spreads through the Long-Term Memory (LTM) network. 

The spreading activation mechanism defines the working memory as the set of all 
agents, which activation level exceeds a certain threshold; determines the speed of the 
symbolic processes performed by each individual agent; and underlies the relaxation 
of the constraint satisfaction network. 

Marker Passing. Generally speaking, the marker-passing mechanism serves to find 
out whether a path between two agents is present or not. All symbolic interactions 
between agents, i.e. exchanging messages, are local and involve only two neighbors. 
The marker passing mechanism is not an exception, but it allows information about 
agents to be carried through longer distance as an emergent result. 

AMBR marks the instance-agents, which enter in the WM; they in turn mark their 
respective concepts; then the markers spread to their neighbors that are up in the class 
hierarchy, and so on. 

The main purpose of the mechanism is to justify some semantic similarities 
between two agents. Whenever two markers cross somewhere, AMBR creates a 
hypothesis about a correspondence between the two marker origins. The justification 
for this hypothesis is the fact that these two origins have a common super-class, i.e., 
they are similar in something. Note, that AMBR makes such inferences only if the 
whole paths of the markers involve only relevant agents. 

Structural Correspondences. Like marker passing, this mechanism creates 
hypotheses between agents. The difference is that the former is sensitive to semantic 
justifications, whereas the latter – to propositional ones. There are different kinds of 
structural correspondences – if two relations are mapped, their arguments should also 
be mapped; if two instances are mapped, their respective concepts and situations 
should be mapped. 

Because several mechanisms create hypotheses independently, it is possible for 
some of them to be duplicated, or some of them to be contradictory. A special 
procedure, attached to each agent monitories the hypotheses in which the respective 
agent is involved and establishes inhibitory or excitatory links between them. 



 Building Robots with Analogy-Based Anticipation 83 

The Constraint Satisfaction Network. The Constraint Satisfaction Network (CSN) 
consists of hypotheses for correspondences and is interconnected with the main one. 
Each hypothesis receives activation from its arguments and from its justifications. It is 
also inhibited from its competitors (responding to the pressure for one-to-one 
mapping). Thus, CSN simultaneously reflects the semantic, pragmatic, and structural 
pressures of the analogy–making task. Due to the CSN, the global behavior of the 
system emerges from the local interactions between agents. However, it is important 
to note that no time is spent waiting for the CSN to settle in order to read out the 
‘solution’ from the activation pattern. This allows cognition to be viewed as a 
continuous process, without breaks between the given tasks. 

Rating and Promotion. Because at some moment the system should finish its work, 
each agent rates its competing hypotheses at regular time intervals. If one of them 
holds for a long time as a leader, it is promoted to a winner. 

Some of the instance-agents (the elements of the target situation) are authorized to 
use the rating mechanism. The purpose of this mechanism is to monitor all hypotheses 
that involve the agent and to send promotion incentives to those that emerge as stable 
and unambiguous leaders. 

Each authorized instance keeps a data structure, called rating table. The individual 
ratings for each registered mature hypothesis are stored in this table. Individual 
ratings are just a numbers that characterize the relative success of the respective 
hypothesis – how long, how recently, and how strongly has it been a leader, according 
to its rivals. The instance-agents periodically (in a fixed time interval and whenever a 
hypothesis registration request come) adjust the individual ratings. The rating of the 
current leader increases, whereas those of the other hypotheses decrease. The amount 
of the change is proportional to the difference between the activation levels of the 
leader and its closest competitors. 

When the individual rating of some hypothesis exceeds a certain threshold, the 
respective instance-agent sends to it a symbolic structure, called promotion incentive. 
In addition, it eliminates all looser hypotheses. When a hypothesis agent receives such 
message, it transforms itself to winner hypothesis. 

Note, that there is not any central executor that monitors the CSN and decides 
whether the network is relaxed enough. Instead, some hypotheses become winners 
locally and in asynchrony. This allows blending between episodes to occur, or unique 
solutions to be found (of course, sometimes useless solutions are also proposed by the 
system). 

Instantiation. There are two mechanisms for instantiation - skolemization and 
transfer. The former augments the descriptions of the retrieved episodes based on 
semantic and structural information. The latter adds new information to the target 
situation. These mechanisms ensure tolerance towards the lack of information and 
make the reformulation of the task possible. However, in the current paper we 
describe a novel instantiation mechanism for creating anticipation-agents. 

Imagine the following situation: Let the green cube in the target situation be 
mapped onto the red cylinder from an old situation in memory. Let the system recalls 
that the bone was behind the red cylinder. This is a reason to anticipate that now the 
bone should be behind the green cube. A new instance of the relation ‘behind’ should 



84 G. Petkov et al. 

be created and should be connected to its arguments – ‘bone’ and ‘green cube’. This 
will be an example of anticipation-agent. 

The exact algorithm for creating anticipation agents is the following: each agent 
that wins in the mapping competition, checks whether it is an argument of a relation. 
If yes, the agent informs the relation it is part of. Thus, each relation monitors whether 
all of its arguments are mapped with winners. If this is the case, the relation decides 
whether to instantiate a self-copy procedure. If it lacks any promising hypotheses, it 
starts the process of self-copy. If there are promising hypotheses then the mapping is 
correct and these hypotheses may be promoted at a later moment, thus there is no 
need to create a new instance. 

The just born agent starts its life cycle as anticipation agent. Some of the 
anticipation agents serve to direct the attention. For example, the relation ‘same 
color’, connecting two red cylinders from a base situation can instantiate itself. Thus, 
a new anticipation-agent would connect the respective correspondences of the two 
cylinders. It is now the responsibility of the perceptual system to check whether the 
anticipation is correct or not. 

An interesting result emerges, however, when the perceptual system cannot check 
directly the new prediction, for example, when the relation ‘behind’ is transferred. In 
such a case, multiple new anticipations emerge. In particular, the causal relation from 
the base that represents the knowledge “The bone was behind the red cylinder and 
that caused AIBO to move to it and it successfully found the bone” would instantiate 
itself using the same mechanism. Analogously, an action-agent “move to the green 
cube” would also be created. 

Finally, the new casual relation would recognize that this certain movement would 
cause reaching the goal and would activate the corresponding procedural knowledge 
for actual movement. 

3.3   Anticipation by Analogy 

We have designed new mechanisms for creation of anticipations. AIBO transfers 
some relations and objects from the past episodes to the current situation. This 
transferred knowledge is assumed to be an expectation. Again, following the main 
principles of the DUAL architectures, all instantiation operations are performed 
locally and only looking at the system “from above”, the whole pattern of new 
anticipation-agents could be viewed as a certain anticipated state of the world. 

Note, however, that all mechanisms in AMBR work in parallel and thus, the 
instantiation mechanisms influence other cognitive processes. In particular, we 
assume that the anticipation-agents play an important role for controlling the attention 
and in turn the processes of retrieval and mapping. 

4   Simulation Results 

Suppose the AIBO robot faces several objects in a room. It must predict where 
(behind which object) the bone is hidden and then to go to the chosen object. Here, 
we present the simulated version of the real world scenario. 



 Building Robots with Analogy-Based Anticipation 85 

4.1   Mapping Between Close Situations 

In the first simulation the mechanisms for transfer and skolemization were switched 
off in order to check the mapping process. The AIBO robot had four past episodes 
encoded in its memory (Fig. 3).  

 

Fig. 3. Old episodes in the memory of the robot, used in the first simulation 

Same color

Left-of 1 Left-of 2

Unique 
color

Left-of 3

Neighbor 1 Neighbor 2

 

Fig. 4. The target situation, used in the first simulation 

The specific number, color and shape of the objects varied across the episodes. The 
relations between the objects also varied. In all six runs of the simulation one and the 
same target situation (see Fig. 4) was given to the model but different aspects of it 
were attached to the INPUT node, thus simulating different attention biases. The 
representation of the target included DUAL-agents representing the objects 
(OBJECT1, OBJECT2, OBJECT3), as well as some of their properties (BLACK1, 
BLACK2, GREEN1, BALL1, BALL2, BALL3). Other DUAL-agents represented 
object properties (e.g. COLOR-OF1, SHAPE-OF1, etc.). Finally, there were relations 
that involved one or more objects, e.g. LEFT_OF, SAME-COLOR1, NEIGHBOR1, 
etc. (see Fig. 4). 

The task of the robot, in this simulation, was to establish a mapping between the 
target and certain base situation. The target situation (more precisely, some aspects 
of the target situation) was used for recalling old episodes from memory. These old 
episodes were gradually and partially retrieved; gradual mappings between various  
 



86 G. Petkov et al. 

target and base elements emerged; the mapping in turn was influencing the retrieval 
process. Thus, implicitly the memorized bases competed with each other for the 
best mapping with the target. It is important to note, however, that all these 
mappings emerged from local interactions only, without any central mechanism that 
would calculate the best match among all episodes available in the long term 
memory. 

The results of the simulation are systematized in Table 1. 

Table 1. The results from the first situation 

Run Relations at the INPUT 
Winner base 

situation 
1 The three balls B2 
2 The three colors B4 
3 The three left-of relations B3 
4 The two neighbor relations and the three colors B4 
5 Only the concept ‘green’ B2 
6 The relations ‘same-color’ and ‘unique-color’ B2 

As shown in Table 1, by varying only the attention bias, the model retrieved 
different past situations for further analogy making. Note, that this result was 
achieved by AMBR, testing it in extreme conditions: all old episodes are very similar. 
They all involve simple geometrical objects and relations that are relatively close 
semanticaly. Typically, analogy-making models (SME, ACME, LISA, as well as 
AMBR in previous simulations) are used and tested with dissimilar episodes in 
memory. 

4.2   Single Run of the Model 

After all additional mechanisms for instantiation and moving were added, four new 
bases were designed, including a bone hidden behind a specific object in each of them 
(see Fig. 5). The target consisted only of three red cubes and a specific task to find the 
bone was also represented and attached to the GOAL list. Again certain properties of 
the cubes, namely their colors, were highlighted by attaching them to the INPUT 
node. The simulated AIBO robot was supposed to use the target to retrieve an old 
episode and to establish mappings between the elements of the two situations. In 
addition, the position of the bone in the base situation had to be transferred in order to 
predict the place of the hidden bone in the target situation. Finally, a motor command 
had to be sent in order to execute the movement. Again, all these operations emerged 
only from the local interactions of a large number of microagents. Each DUAL-agent 
just made its specific job with a speed, proportional to its relevance to the task, and 
the observed behavior was a result of all these small micro-mechanisms 
simultaneously at play. 

 



 Building Robots with Analogy-Based Anticipation 87 

 

Fig. 5. Old episodes in the memory of the robot used in the second and third simulations 

In Figure 6, part of the log from the run of the model is presented: 

T=52.10, #<PR SAME-COLOR-SIT-003> received in SAME-COLOR-SIT-
003<-->SAME-COLOR-THREEGREEN. 
T=56.20, #<PR SIT-SIT-003> received in SIT-SIT-003<-->SIT-
THREEGREEN. 
T=56.90, #<PR FIND-SIT-003> received in FIND-SIT-003<-->FIND-
THREEGREEN. 
T=61.00, #<PR AIBO-I-SIT-003> received in AIBO-I-SIT-003<--
>AIBO-I-THREEGREEN. 
T=69.20, #<PR INITST-SIT-003> received in INITST-SIT-003<--
>INITST-THREEGREEN. 
T=69.30, #<PR BONE-SIT-003> received in BONE-SIT-003<-->BONE-
THREEGREEN. 
T=119.00, #<PR IN-FRONT-OF-SIT-003> received in IN-FRONT-OF-
SIT-003<-->IN-FRONT-OF-THREEGREEN. 
T=290.20, #<PR MIDLE-CUBE-SIT-003> received in MIDLE-CUBE-
SIT-003<-->MIDLE-CYLINDER-THREEGREEN. 
Time: 294.600: Just created agent: ANTICIP-MOVE-THREEGREEN- 
Time: 295.400: Just created agent: ANTICIP-BEHIND-THREEGREEN- 
Time: 303.400: Just created agent: ANTICIP-CAUSE-THREEGREEN- 
THE ACTION ANTICIP-MOVE-THREEGREEN- IS EXECUTING!! 
T=314.60, #<PR RED-2-SIT-003> received in RED-2-SIT-003<--
>GREEN-2-THREEGREEN. 

Fig. 6. Part of the script of a single run of the system 

The first several lines are reports for establishing winner hypotheses between 
certain target elements and elements from the four bases. The first winner connected 
two ‘same-color’ relations – one from the target and one from episode B, named 
‘ThreeGreen’ (see Fig. 5). The second hypothesis was established between the two 
situation-agents and thus resulted in additional massive retrieval of all of the elements 
of situation ‘ThreeGreen’. Soon after, many relations and objects found their 
corresponding elements (FIND, AIBO, INITIAL-STATE, BONE, IN-FRONT-OF, 
MIDLE-CUBE). Note that the bone in the past episode was hidden behind the middle 
cylinder, which has just found its corresponding element. The system did not wait a 
full mapping to be established. Instead, the instantiation mechanisms immediately 
begun their work and soon some anticipation agents were created. Thus, gradually, in 
parallel with the processes of retrieval and mapping, the anticipated state emerged in 



88 G. Petkov et al. 

AIBO’s memory system. Namely, it anticipated that the bone was hidden behind the 
middle cube (because the current situation was analogical to the retrieved episode of 
three balls with same color and a bone behind the middle one). Moreover, AIBO 
inferred that if it would move to the middle cube, it would achieve its goal. As a 
consequence, the respective action was executed. Note, that the execution of the 
action did not stop the process. The establishment of additional mappings could 
continue even after achieving the goal. 

4.3   Statistical Results from Many Runs of the System 

At the end, a set of eight target situation was designed, varying the shape and the 
color of the objects involved (Figure 7).  

 

Fig. 7. The eighth target situations used in the third simulation 

In order to achieve statistical results, a special tool for creating variants of the 
knowledge base was used. More precisely, 50 combinations of top-down links from 
the concepts to the particular instances were randomly created, thus simulating 50 
different variants of the core memory. Each of the eight targets was run against each 
of the knowledge-base variants in two different conditions – focussing the attention of 
the system on the colors or on the shapes of the objects, respectively. Thus, two 
distributions of the preferred past episode were achieved (see Fig. 8). 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

 

Fig. 8. Comparing the statistical data when the attention was focused on color (left panel) or 
shape (right panel) 



 Building Robots with Analogy-Based Anticipation 89 

It is shown that when the attention is focused on the shapes only, the base was 
chosen almost randomly. This is because in all base situations the shapes were equal 
and thus, the shape was actually irrelevant to the task. AMBR successfully responded 
to this irrelevance, assuming all bases as almost equally good candidates for analogy. 

However, this was not the case, if the color was in the focus of attention. 
Clear tendencies to prefer certain bases depending on the target can be observed. 

At the same time the model was flexible enough, allowing multiple solutions of the 
problem to be found depending on context (top-down links). These results reconfirm 
the context-sensitive behavior of AMBR observed previously in other domains [12]. 

Consider for example the retrieved bases for the second target problem (two green 
cubes and a green ball in between). The preferred base was B (three green balls) 
mainly because of the identical colors of all three objects and the fact that attention is 
concentrated on color. However, quite often an interesting analogy between the 
second target and the episode D (one white ball and two black balls) was produced. In 
this case the system detected that the relation same-form in the target could be 
mapped onto the relation same-color in the base. The system mapped these two 
relations and this in turn helped for the retrieval of episode D. 

5   Conclusion 

A new approach towards building anticipatory agents has been presented, namely 
building predictions using analogy with a single past episode.  

The AMBR model was extended with new agent-types and new mechanisms for 
building anticipatory-agents based on the existing mechanisms of skolemisation and 
transfer. These new mechanism were successfully tested in simulation experiments. 
Additionally, the role of the attention bias for the choice of a base for analogy was 
explored. Thus, new pressures, which a future fully fledged perceptual system should 
account for, were defined. 

These simulations showed that the newly proposed mechanism can be seriously 
considered as an important part of any advanced cognitive system with anticipatory 
capabilities.  

The presented work is just a small step in a long-term project. Designing 
perceptual capabilities would allow for automatic encoding of new situations and 
thus, the behavior of real robots instead of simulated ones could be tested. Bottom-up 
and top-down mechanisms for locating the attention should be carefully modeled and 
their influence on the robot’s behavior further investigated.  

References 

1. Baldassarre G. (2002). Planning with Neural Networks and Reinforcement Learning. PhD 
Thesis. Colchester - UK: Computer Science Department, University of Essex. 

2. Baldassarre G. (2003). Forward and Bidirectional Planning Based on Reinforcement 
Learning and Neural Networks in a Simulated Robot. In Butz M., Sigaud O., Gérard P. 
(Eds.), Adaptive Behaviour in Anticipatory Learning Systems, Springer Verlag, Berlin, 
Heidelberg, pp. 179-200. 



90 G. Petkov et al. 

3. Brooks, R.A., (1991). How to build complete creatures rather than isolated cognitive 
simulators, in K. VanLehn (ed.), Architectures for Intelligence, pp. 225-239, Lawrence 
Erlbaum Assosiates, Hillsdale, NJ. 

4. Butz, M. V., Goldberg, D. E., & Stolzmann, W. (2002). The anticipatory classifier system 
and genetic generalization. Natural Computing, 1, pp. 427-467. 

5. Butz, M.V., & Goldberg, D.E. (2003). Generalized state values in an anticipatory learning 
classifier system. In Butz M., Sigaud O., Gérard P. (Eds.), Anticipatory behavior in 
adaptive learning systems, Springer Verlag, Berlin, Heidelberg, Germany, pp. 282-301. 

6. Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive 
Science, 7, 155-170. 

7. Hofstadter, D. R. (1995). Fluid Concepts and Creative Analogies: Computer Models of the 
Fundamental Mechanisms of Thought, NY: Basic Books. 

8. Holyoak K. & Thagard P. (1989). Analogical mapping by constraint satisfaction. 
CognitiveScience, 13, 295-355. 

9. Hummel, J. & Holyoak, K. (1997). Distributed representation of structure: A theory of 
analogical access and mapping. Psychological Review, 104, 427-466. 

10. Kokinov, B. (1994a). A hybrid model of reasoning by analogy. In K. Holyoak & J. 
Barnden (Eds.), Advances in connectionist and neural computation theory: Vol. 2. 
Analogical connections (pp. 247-318). Norwood, NJ: Ablex 

11. Kokinov, B. (1994b). The DUAL cognitive architecture: A hybrid multi-agent approach. 
Proceedings of the Eleventh European Conference of Artificial Intelligence (ECAI-94). 
London: John Wiley & Sons, Ltd.   

12. Kokinov, B., Grinberg, M. (2001). Simulating Context Effects in Problem Solving with 
AMBR. In: Akman, V., Thomason, R., Bouquet, P. (eds.) Modeling and Using Context. 
Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence), vol. 1775, 
Springer Verlag. 

13. Kokinov, B. Petrov, A. (2000). Dynamic Extension of Episode Representation in 
Analogy-Making in AMBR. In: Proceedings of the 22nd Annual Conference of the 
Cognitive Science Society. Erlbaum, Hillsdale, NJ. 

14. Kokinov, B., Petrov, A. (2001). Integration of Memory and Reasoning in Analogy-
Making: The AMBR Model. In: Gentner, D., Holyoak, K., Kokinov, B. (eds.). The 
Analogical Mind: Perspectives from Cognitive Science, Cambridge, MA: MIT Press 

15. Petrov, A. & Kokinov, B. (1999). Processing symbols at variable speed in DUAL: 
Connectionist activation as power supply. In Proceedings of the Sixteenth International 
Joint Conference on Artificial Intelligence (IJCAI-99). San Francisco, CA: Morgan 
Kaufman, p. 846-851. 

16. Pomerleau, D. (1989). "ALVINN: An Autonomous Land Vehicle. In a Neural Network," 
Advances in Neural Information Processing Systems 1, Morgan Kaufmann 

17. Stolzmann, W. (1998). Anticipatory classifier systems. Genetic Programming 1998: 
Proceedings of the Third Annual Conference, 658-664. 

18. Sutton, R.S. (1990). Integrated architectures for learning, planning, and reacting based on 
approximating dynamic programming. In Proceeding of the Seventh International 
Conference on Machine Learning, pp. 216-224. San Mateo, Ca.: Morgan Kaufmann. 



C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 91 – 101, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Classification of Skewed and Homogenous Document 
Corpora with Class-Based and Corpus-Based Keywords 

Arzucan Özgür and Tunga Güngör 

Boğaziçi University, Computer Engineering Department, Bebek, 
34342 İstanbul, Turkey 

{ozgurarz,gungort}@boun.edu.tr 

Abstract. In this paper, we examine the performance of the two policies for 
keyword selection over standard document corpora of varying properties. While 
in corpus-based policy a single set of keywords is selected for all classes 
globally, in class-based policy a distinct set of keywords is selected for each 
class locally. We use SVM as the learning method and perform experiments 
with boolean and tf-idf weighting. In contrast to the common belief, we show 
that using keywords instead of all words generally yields better performance 
and tf-idf weighting does not always outperform boolean weighting. Our results 
reveal that corpus-based approach performs better for large number of 
keywords while class-based approach performs better for small number of 
keywords. In skewed datasets, class-based keyword selection performs 
consistently better than corpus-based approach in terms of macro-averaged F-
measure. In homogenous datasets, performances of class-based and corpus-
based approaches are similar except for small number of keywords. 

1   Introduction 

The amount of electronic text information available such as Web pages, digital 
libraries, and email messages is increasing rapidly. As a result, the challenge of 
extracting relevant knowledge increases as well. The need for tools that enable people 
find, filter, and manage these resources has grown. Thus, automatic categorization of 
text document collections has become an important research issue. 

SVM is one of the most successful text categorization methods [1, 2, 3]. It was 
designed for solving two-class pattern recognition problems [4]. The problem is to 
find the decision surface that separates the positive and negative training examples of 
a category with maximum margin. SVM can be used to learn linear or non-linear 
decision functions. Pilot experiments to compare the performance of various 
classification algorithms including linear SVM, SVM with polynomial kernel of 
various degrees, SVM with RBF kernel with different variances, k-nearest neighbor 
algorithm and Naive Bayes technique have been performed [5]. In these experiments, 
SVM with linear kernel was consistently the best performer. These results confirm the 
results of previous studies [1, 2, 3]. Thus, in this study we use SVM with linear kernel 
as the classification technique. For our experiments, we use the SVMlight system [6], 
which has been commonly used in previous studies [1, 2, 3]. 



92 A. Özgür and T. Güngör 

Keyword selection can be implemented in two alternative ways. In the first one, 
which we name as corpus-based keyword selection, a common keyword set for all 
classes that reflects the most important words in all documents is selected. In the 
alternative approach, named as class-based keyword selection, the keyword selection 
process is performed separately for each class. In this way, the most important words 
specific to each class are determined and a different set of keywords is used for each 
class. 

Most previous studies focus on keyword selection metrics such as chi-square, 
information gain, odds ratio, probability ratio, document frequency, and binormal 
separation [3, 7, 8]. They use either the class-based or the corpus-based approach. In 
SVM-based text categorization, generally all available words in the document set are 
used instead of limiting to a set of keywords [1, 2, 5, 9]. In some studies, it was stated 
that using all the words leads to the best performance and using keywords is 
unsuccessful with SVM [3, 9, 10]. An interesting study by Forman covers the 
keyword selection metrics for text classification using SVM [3]. While this study 
makes extensive use of class-based keywords, it naturally does not cover some of the 
important points. The main focus of the study is on the keyword selection metrics; 
and there does not exist a comparison of the class-based and corpus-based keyword 
selection approaches. In [9], Debole and Sebastiani focus on supervised term 
weighting approaches and report their results both for class-based keyword selection, 
which they name as local policy and corpus-based keyword selection, which they call 
global policy. They use Reuters-21578 in their study, which is a highly skewed 
corpus. Different from our findings, they report that global keyword selection 
performs better than local keyword selection and SVM performs best when all the 
words are used. In [11], Özgür et al., compare class-based and corpus-based keyword 
selection. However, they use a single dataset, Reuters-21578, and do not study the 
effect of these keyword selection approaches for document corpora of varying class 
distributions. 

The aim of this paper is to evaluate the use of keywords for SVM-based text 
categorization and examine how class-based and corpus-based keyword selection 
approaches perform for datasets with varying class distribution properties. We use six 
standard document corpora in our study. Classic3 is a homogenous corpus, where all 
the classes are nearly equally well represented in the training set. Reuters-21578 and 
Wap corpora are highly skewed. A few of the classes are prevalent in the training set, 
while some classes are represented with very few documents. Hitech, LA1, and 
Reviews are neither homogenous nor highly skewed. Our results reveal that using 
keywords in SVM-based text categorization instead of using all the available words 
generally leads to better performance. We show that when corpus-based keyword 
selection is used for highly skewed datasets, less prevalent classes are represented 
poorly and macro-averaged F-measure performance drops down. In this case, class-
based keyword selection is preferable. In homogenous datasets, although class-based 
approach performs better for small number of keywords, corpus-based approach 
performs slightly better or similar for large number of keywords. We perform our 
experiments with the two most commonly used term weighting approaches, boolean 
and tf-idf weighting. Surprisingly, we find that tf-idf weighting does not always 
outperform boolean weighting. As the keyword selection metric, we use total tf-idf 
scores of each term. In this way, keyword selection and term weighting phases are 



 Classification of Skewed and Homogenous Document Corpora 93 

reduced to a single phase since tf-idf is also used for term weighting. This reduces the 
overall time of term weighting and keyword selection. 

The paper is organized as follows: Section 2 discusses the document representation 
and Section 3 gives an overview of the keyword selection approaches. In Section 4, 
we describe the six standard datasets we used in the experiments, our experimental 
methodology, and the results we have obtained. We conclude in Section 5. 

2   Document Representation 

In our study, documents are represented by the vector-space model. In this model, 
each document is represented as a vector d, where each dimension stands for a 
distinct term in the term space of the document collection. We use the bag-of-words 
representation. To obtain the document vectors, each document is parsed, non-
alphabetic characters and mark-up tags are discarded, case-folding is performed, and 
stop words are eliminated. We use the list of 571 stop words used in the Smart system 
[12]. We stem the words by using Porter’s Stemming Algorithm [13], which is 
commonly used for word stemming in English. Each document is represented as 
d=(w1,w2,…,wn), where, wi is the weight of ith  term of document d. 

We use boolean and tf-idf weighting schemes which are most commonly used in 
the literature. In boolean weighting, the weight of a term is considered to be 1 if the 
term appears in the document and it is considered to be 0 if the term does not appear 
in the document. tf-idf weighting scheme is defined as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

i
ii n

n
tfw log  . (1) 

where tfi is the raw frequency of term i in document d, n is the total number of 
documents in the corpus and ni is the number of documents in the corpus where term i 
appears. Tf-idf weighting approach weights the frequency of a term in a document 
with a factor that discounts its importance if it appears in most of the documents, as in 
this case the term is assumed to have little discriminating power. Also, in order to 
account for documents of different lengths we normalize each document vector so 
that it is of unit length. Previous studies report that tf-idf weighting performs better 
than boolean weighting [14]. On the other hand, boolean weighting has the 
advantages of being very simple and requiring less memory. This is especially 
important in the high dimensional text domain. In the case of scarce memory 
resources, less memory requirement also leads to less classification time. 
Interestingly, we found that boolean approach does not always perform worse than tf-
idf approach. 

3   Keyword Selection 

Most previous studies that apply SVM to text categorization use all the words in the 
document collection without any attempt to identify the important keywords [1, 2, 9]. 
On the other hand, there are various remarkable studies on keyword selection for text 



94 A. Özgür and T. Güngör 

categorization in the literature [3, 7, 8]. As stated above, these studies mainly focus on 
keyword selection metrics and employ either the corpus-based or the class-based 
keyword selection approach, and do not use standard datasets. In addition, most 
studies do not use SVM as the classification algorithm. For instance, in [7] kNN and 
LLSF are used, and in [8] Naive Bayes is used. Later studies reveal that SVM 
performs consistently better than these classification algorithms [1, 2, 3]. 

In this study, rather than focusing on keyword selection metrics, we focus on the 
two keyword selection approaches, corpus-based keyword selection and class-based 
keyword selection. These two approaches have not been studied extensively together 
in the literature. In [9], Debole and Sebastiani perform experiments for both of the 
approaches. However their study is not extensive in this aspect since their main focus 
is on supervised term weighting methods and they use only the Reuters-21578 dataset. 
In contrast to our findings, they report that corpus-based keyword selection performs 
better than class-based keyword selection and SVM performs best when all the words 
are used. In [11], Özgür et al., compare class-based and corpus-based keyword 
selection. However, they use a single dataset, Reuters-21578, and do not study the 
effect of these keyword selection approaches for document corpora of varying class 
distributions. In this study, we compare these keyword selection approaches with the 
alternative method of using all words without any keyword selection. We evaluate the 
performance of these approaches over datasets with varying class size distributions, 
i.e. homogenous, skewed, and highly skewed. 

We use total tf-idf scores of terms as the keyword selection metric. Although it has 
not been used as a keyword selection metric in the literature, it has the advantage of 
leading to the reduction of keyword selection and term weighting phases into a single 
phase, when tf-idf is also used for term weighting. Our results show that it performs 
well, since in contrast to the previous studies we could obtain performances better 
than the approach where all the available words are used with SVM-based text 
categorization. In corpus-based keyword selection approach, terms that achieve the 
highest total tf-idf score in the overall corpus are selected as the keywords. To obtain 
the total tf-idf score of a term, the tf-idf weights of that term in each document are 
summed. This approach favors the prevailing classes and gives penalty to classes with 
small number of training documents in document corpora where there is high skew. In 
the class-based keyword selection approach, on the other hand, distinct keywords are 
selected for each class. The total tf-idf score of a term is calculated separately for each 
class. To obtain the total tf-idf score of a term for a specific class, the tf-idf weights of 
that term in only the documents that belong to that class are summed. This approach 
gives equal weight to each class in the keyword selection phase. So, less prevailing 
classes are not penalized. 

4   Experiment Results 

4.1   Document Data Sets 

In our experiments we used six standard document corpora, widely used in automatic 
text organization research. The contents of these document sets, after preprocessing as 
described in Section 2, is summarized in Table 1. Classic3 data set contains 1,398 



 Classification of Skewed and Homogenous Document Corpora 95 

CRANFIELD documents from aeronautical system papers, 1,033 MEDLINE 
documents from medical journals, and 1,460 CISI documents from information 
retrieval papers. This dataset is homogenous since all the classes are represented 
equally well in the training set. This data set is relatively easy, because the classes are 
disjoint from each other. 

Table 1. Summary description of document sets 

 

The Hitech, LA1, and Reviews [15] datasets are neither highly skewed nor 
homogenous. They are very high dimensional compared to the number of documents 
in the training sets. The Hitech data set was derived from the San Jose Mercury 
newspaper articles, which are delivered as part of the TREC collection [16]. The 
classes of this document corpora are computers, electronics, health, medical, research, 
and technology. LA1 data set consists of documents from Los Angeles Times 
newspaper, used in TREC-5 [16]. The categories correspond to the desk of the paper 
that each article appeared. The data set consists of documents from entertainment, 
financial, foreign, metro, national, and sports desks. Reviews data set contains articles 
from San Jose Mercury Newspaper, that are distributed as part of the TREC collection 
TIPSTER vol. 3 [16]. The classes of this document corpora are food, movie, music, 
radio, and restaurant. 

The documents in Reuters-21578 v1.0 document collection [17], which is 
considered as the standard benchmark for automatic document organization systems, 
have been collected from Reuters newswire in 1987. This corpus consists of 21,578 
documents. 135 different categories have been assigned to the documents. The 
maximum number of categories assigned to a document is 14 and the mean is 1.24. 
This dataset is highly skewed. For instance, the “earnings” category is assigned to 
2,709 training documents, but 75 categories are assigned to less than 10 training 
documents. 21 categories are not assigned to any training documents. 7 categories 
contain only one training document and many categories overlap with each other such 
as grain, wheat, and corn. 

Wap data set consists of 1,560 web pages from Yahoo! subject hierarchy collected 
and classified into 20 different classes for the WebACE project [18]. This dataset is 
also highly skewed. Minimum class size is 5, maximum class size is 341, and average 
class size is 78. Many categories of Wap are close to each other. 

In order to divide the Reuters-21578 corpus into training and test sets, mostly the 
modified Apte (ModApte) split has been used [17]. With this split the training set 



96 A. Özgür and T. Güngör 

consists of 9,603 documents and the test set consists of 3,299 documents. For our 
results to be comparable with the results of other studies, we also used this splitting 
method. We also removed the classes that do not exist both in the training set and in 
the test set, remaining with 90 classes out of 135. For the other data sets, we used the 
initial 2/3 of the documents as the training set and the remaining 1/3 as the test set. 
Below we report the results for the test sets of the corpora. 

4.2   Results and Discussion 

Tables 2 and 3 display, respectively, the micro-averaged and macro-averaged F-
measure results, for boolean and tf-idf document representations using all words and 
using keywords ranging in number from 10 to 2000. Bool (cl), tf-idf (cl), and tf-idf 
(co) stand for class-based approach with boolean weighting, class-based approach 
with tf-idf weighting, and corpus-based approach with tf-idf weighting, respectively. 
Micro-averaged F-measure gives equal weight to each document and therefore it 
tends to be dominated by the classifier’s performance on common categories. Macro-
averaged F-measure gives equal weight to each category regardless of its frequency 
and thus it is influenced more by the classifier’s performance on rare categories. 

In the following discussion, it is assumed that tf-idf weighting is used unless it is 
stated otherwise. When we examine Classic3 dataset, whose class distribution is 
homogenous, we observe that micro-averaged and macro-averaged F-measure results 
are similar. Also, there is not much performance difference among class-based 
keyword selection and corpus-based keyword selection. For instance, in the case of 30 
keywords, both achieve 90% success in terms of micro-averaged F-measure and  

 
Table 2. Micro-averaged F-measure Results 

 



 Classification of Skewed and Homogenous Document Corpora 97 

Table 3. Macro-averaged F-measure Results 

 

88.6% success in terms of macro-averaged F-measure. However, class-based 
approach converges faster than corpus-based approach and thus performs better for 
small number of keywords (200 keywords and less). As number of keywords 
increases performance tends to increase. Although all words approach (10930 words) 
achieves the highest performance of 99.4%, tf-idf corpus-based approach achieves a 
very close performance of 99.2% with 1500 keywords. Boolean class-based approach 
does not perform much worse than the tf-idf class-based approach and it performs 
generally better than tf-idf corpus-based approach for 100 and less keywords. 

Hitech, LA1, and Reviews datasets have neither homogenous nor highly skewed 
class distributions. Micro-averaged and macro-averaged F-measure results of Reviews 
dataset are similar to each other. However, macro-averaged F-measure results are 
considerably less than micro-averaged F-measure results for Hitech and LA1 datasets. 
When we examine the results on the Hitech dataset, we observe that for  300  and  less 
keywords class-based approach achieves better micro-averaged F-measure 
performance than corpus-based approach and for 1000 and less keywords it achieves 
better macro-averaged F-measure performance. On the other hand, corpus-based 
approach achieves the highest performance for 2000 keywords, i.e. 65.9% micro-
averaged and 59.8% macro-averaged F-measure performance. These results are 
higher than the all words approach (18867 words), which achieves 64.9% and 55.8% 
micro-averaged and macro-averaged F-measure results, respectively. In terms of 
macro-averaged F-measure performance, class-based approach with 50 and more 
keywords and corpus-based approach with 1500 and 2000 keywords achieve better 
results than the all words approach. Boolean class-based approach with 200 keywords 
achieves higher F-measure performance than boolean all words approach. Although 



98 A. Özgür and T. Güngör 

boolean class-based approach performs worse than tf-idf class-based approach, it 
performs better than tf-idf corpus-based approach for 10 and 30 keywords. 

Over LA1 dataset, class-based approach performs better than corpus-based 
approach for 100 and less keywords in terms of micro-averaged F-measure. Macro-
averaged F-measure results of class-based approach are generally higher than that of 
the corpus-based approach. Only for 2000 keywords, corpus-based approach achieves 
slightly better macro-averaged F-measure performance than class-based approach 
(76.5% versus 76.4%). All words approach achieves the best performance of 84.1% 
micro-averaged and 77.7% macro-averaged F-measure. The closest performance to 
these results is achieved by the corpus-based approach with 2000 keywords, 83.3% 
micro-averaged and 76.5% macro-averaged F-measure. Boolean class-based approach 
performs worse than tf-idf class-based approach, but it performs better than tf-idf 
corpus-based approach for 10 and 30 keywords. 

Over Reviews dataset, tf-idf corpus-based approach achieves the highest micro-
averaged (94.4%) and macro-averaged (93.9%) F-measure performance with 500 
keywords. These results are even higher than the all words approach (31325 words), 
which achieves 94.1% micro-averaged and 92.8% macro-averaged F-measure 
performance. For 100 and less keywords class-based approach achieves higher 
performance than corpus-based approach both in terms of micro-averaged and macro-
averaged F-measure. There is a gap between macro-averaged F-measure results. For 
instance, while class-based approach achieves 90.3% macro-averaged performance 
for 70 keywords, corpus-based approach achieves only 71.0% performance. Even 
boolean class-based approach performs better than tf-idf corpus-based approach in 
terms of macro-averaged F-measure for 100 and less keywords. 

Reuters-21578 and Wap datasets have highly skewed class distributions. Thus, 
there is a large gap between micro-averaged and macro-averaged F-measure results. 
For both datasets, we can conclude that class-based keyword selection achieves 
consistently higher macro-averaged F-measure performance than corpus-based 
approach. The high skew in the distribution of the classes in the datasets affects the 
macro-averaged F-measure values in a negative way because macro-average gives 
equal weight to each class instead of each document and documents of rare classes 
tend to be more misclassified. By this way, the average of correct classifications of 
classes drops dramatically for datasets having many rare classes. Class-based 
keyword selection is observed to be very useful for this skewness. For instance, in 
Reuters-21578 dataset, with even a small portion of words (50-100-200), class-based 
tf-idf method reaches 50% success which is far better than the 43.9% success of tf-idf 
with all words. In Wap dataset, class-based approach with 30 keywords achieves the 
highest performance in terms of macro-averaged F-measure (59.3%), which is 
considerably higher than the macro-averaged F-measure performance of all words 
approach (45.0%). Also, tf-idf class based approach for small number of keywords 
(100 keywords and less) achieves better or similar performance compared to the case 
where all words are used. Rare classes are characterized in a successful way with 
class-based keyword selection, because every class has its own keywords for the 
categorization problem. Corpus-based approach shows worse results because most of 
the keywords are selected from prevailing classes, which prevents rare classes to be 
represented fairly by their keywords. In text categorization, most of the learning takes 
place with a small but crucial portion of keywords for a class [19]. Class-based 



 Classification of Skewed and Homogenous Document Corpora 99 

keyword selection, by definition, focuses on this small portion; on the other hand, 
corpus-based approach finds general keywords concerning all classes. So, with few 
keywords, class-based approach achieves much more success by finding more crucial 
class keywords. Corpus-based approach is not successful with that small portion, but 
has a steeper learning curve. For instance, for the Reuters-21578 dataset, it leads to 
the peak micro-averaged F-measure value of our study (86.1%) with 2000 corpus-
based keywords, which exceeds the success scores of recent studies with standard 
usage of Reuters-21578 [1, 20]. 

Boolean class-based approach generally performs worse than tf-idf class-based 
approach for all number of keywords. This is an expected result, since it does not take 
into account term frequencies and inverse document frequencies. However, 
surprisingly, for Wap dataset, for 300 and more keywords, boolean approach achieves 
higher micro-averaged F-measure performance than tf-idf class-based and corpus-
based approaches. Also, boolean all words approach performs better than tf-idf all 
words approach in terms of micro-averaged F-measure and performs similar in terms 
of macro-averaged F-measure. In addition, boolean approach achieves the highest 
micro-averaged F-measure performance in the overall for 2000 keywords (76.2%). 
Thus, in this case boolean approach may be preferred to tf-idf approach since it is 
simpler and needs less memory and time. 

5   Conclusion 

In this paper, we investigated the use of keywords in text categorization with SVM. 
Unlike previous studies that focus on keyword selection metrics, we studied the 
performance of the two approaches for keyword selection, corpus-based approach and 
class-based approach, over datasets of varying class distribution properties. We used 
six standard document corpora and both boolean and tf-idf weighting schemes. 

In text categorization literature, generally all of the words in the documents were 
used for categorization with SVM. Keyword selection was not performed in most of 
the studies; even in some studies, keyword selection was stated to be unsuccessful 
with SVM [3, 9, 10]. In contrast to these studies, we observed that keyword selection 
generally improves the performance of SVM. This is quite important since there is 
considerable gain in terms of classification time and memory when small number of 
keywords is used. 

For all datasets (homogenous, skewed, and highly skewed) class-based approach 
performs better than corpus-based approach for small number of keywords (generally 
100 and less keywords) in terms of micro-averaged F-measure. Corpus-based 
approach generally achieves higher micro-averaged F-measure performance for larger 
number of keywords. There is not much difference between micro-averaged and 
macro-averaged F-measure values and between class-based and corpus-based 
approaches in homogenous datasets. On the other hand, for skewed and highly 
skewed datasets, there is a gap between micro-averaged and macro-averaged F-
measure results. In highly skewed datasets, class-based keyword selection approach 
performs consistently better than corpus-based approach and the approach where all 
words are used, in terms of macro-averaged F-measure. In the corpus-based approach, 
the keywords tend to be selected from the prevailing classes. Rare classes are not 



100 A. Özgür and T. Güngör 

represented well by these keywords. However, in the class-based approach, rare 
classes are represented equally well as the prevailing classes because each class is 
represented with its own keywords for the categorization problem. Therefore, class-
based keyword selection approach should be preferred to corpus-based approach for 
highly skewed datasets. It should also be preferred when small number of keywords 
will be used due to space and time limitations. 

When we compare the tf-idf and boolean weighting approaches, surprisingly we 
see that boolean approach is not always worse than tf-idf approach although it is 
simpler. It can be preferred to tf-idf approach especially in cases where there are 
limited space resources. 

Acknowledgement 

This work was supported by the Bo aziçi University Research Fund under the grant 
number 05A103. The authors would like to thank Levent Özgür for helpful 
discussions. 

References 

1. Yang, Y., Liu, X.: A Re-examination of Text Categorization Methods. In Proceedings of 
SIGIR-99, 22nd ACM International Conference on Research and Development in 
Information Retrieval. Berkeley (1996) 

2. Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many 
Relevant Features. In: European Conference on Machine Learning (ECML) (1998) 

3. Forman, G.: An Extensive Empirical Study of Feature Selection Metrics for Text 
Classification. Journal of Machine Learning Research 3 (2003) 1289–1305 

4. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data 
Mining and Knowledge Discovery 2(2) (1998) 121–0167 

5. Özgür, A.: Supervised and Unsupervised Machine Learning Techniques for Text 
Document Categorization. MS Thesis, Bo aziçi University, Istanbul (2004) 

6. Joachims, T.: Advances in Kernel Methods-Support Vector Learning. Chapter Making 
Large-Scale SVM Learning Practical. MIT (1999) 

7. Yang, Y., Pedersen, J.O.: A Comparative Study on Feature Selection in Text 
Categorization. In: Proceedings of the 14th International Conference on Machine Learning 
(1997) 412–420 

8. Mladenic, D., Grobelnic, M.: Feature Selection for Unbalanced Class Distribution and 
Naive Bayes. In: Proceedings of the 16th International Conference on Machine Learning 
(1999) 258–267 

9. Debole, F., Sebastiani, F.: Supervised Term Weighting for Automated Text Categorization. 
In: Proceedings of SAC-03, 18th ACM Symposium on Applied Computing. ACM Press 
(2003) 784–788 

10. Aizawa, A.: Linguistic Techniques to Improve the Performance of Automatic Text 
Categorization. In: Proceedings of 6th Natural Language Processing Pacific Rim 
Symposium. Tokyo (2001) 307–314 

11. Özgür, A., Özgür, L., Güngör T.:Text Categorization with Class-Based and Corpus-Based 
Keyword Selection. In: Proceedings of ISCIS’05. Lecture Notes in Computer Science 
3733. Springer Verlag (2005) 607–616 



 Classification of Skewed and Homogenous Document Corpora 101 

12. ftp://ftp.cs.cornell.edu/pub/smart/ (2004) 
13. Porter, M. F.: An Algorithm for Suffix Stripping. Program 14 (1980) 130–137 
14. Salton, G., Buckley, C.: Term Weighting Approaches in Automatic Text Retrieval. 

Information Processing and Management 24(5) (1988) 513–523 
15. Karypis G.: Cluto 2.0 Clustering Toolkit. http://www.users.cs.umn.edu/~karypis/cluto 

(2004) 
16. TREC. Text Retrieval Conference. http://trec.nist.gov (1999) 
17. Lewis, D.D.: Reuters-21578 Document Corpus V1.0. http://kdd.ics.uci.edu/databases/ 

reuters21578/reuters21578.html 
18. Han, E-H.S., Boley, D., Gini, M., Gross, R., Hastings, K., Karypis, G., Kumar, V., 

Mobasher, B., Moore, J.: WebAce: A Web Agent for Document Categorization and 
Exploration. In: Proceedings of the 2nd International Conference on Autonomous Agents 
(1998) 

19. Özgür, L., Güngör, T., Gürgen, F.: Adaptive Anti-Spam Filtering for Agglutinative 
Languages. A Special Case for Turkish. Pattern Recognition Letters 25(16) (2004)  
1819–1831 

20. Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing 
Surveys 34(5) (2002) 1–47 



Learning an Ensemble of Semantic Parsers for
Building Dialog-Based Natural Language

Interfaces

Lappoon R. Tang

Department of Computer Sciences
University of Texas at Brownsville

Brownsville, TX 78520, U.S.A.
lappoon.tang@utb.edu

Abstract. Building or learning semantic parsers has been an interesting
approach for creating natural language interfaces (NLI’s) for databases.
Recently, the problem of imperfect precision in an NLI has been brought
up as an NLI that might answer a question incorrectly can render it
unstable, if not useless. In this paper, an approach based on ensemble
learning is proposed to trivially address the problem of unreliability in an
NLI due to imperfect precision in the semantic parser in a way that also
allows the recall of the NLI to be improved. Experimental results in two
real world domains suggested that such an approach can be promising.

1 Introduction

Semantic parsing refers to the process of mapping a sentence to its meaning
representation [1]. Using a machine learning approach to the task was shown
to be effective in making natural language interfaces (NLI’s) portable across
domains [2,3]. Unfortunately, the NLI’s learned might be unreliable; it might
deliver incorrect information to a user since the precision of the learned semantic
parser might not be perfect [4]. However, as it was mentioned in [4], a user prefers
reliable user interfaces over intelligent but unreliable ones.

The core of the problem is that a clarification dialog was never initiated to
verify that the system indeed correctly interpreted the user question – a feature
implied necessary for constructing reliable (learning based) NLI’s [4]. A “dialog”
here refers to a brief interaction between the user and the NLI for the purpose
of confirming the correctness of the NLI’s interpretation of the user question.
Hence, our work here is somewhat unrelated to existing approaches in building
dialog interfaces [5,6]. Incorporating such dialoguing capabilities into an NLI
can trivially guarantee that incorrect information is never delivered to a user.
Instead of returning one interpretation, one can do better by allowing multiple
interpretations to be returned from which a user can choose a correct one or else
he ignores the NLI altogether. This can be achieved by learning an ensemble of
semantic parsers for the NLI.

While learning an ensemble of parsers has been shown to be effective in proba-
bilistic (syntactic) parsing [7], to the author’s knowledge, it has not been attempted

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 102–112, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Learning an Ensemble of Semantic Parsers for Building Dialog-Based NLI’s 103

on learning semantic parsers. This has motivated an investigation on the effec-
tiveness of using a bagging approach to learning semantic parsers for creating a
reliable NLI and improving the NLI’s recall at the same time. In particular, a vari-
ant of bagging is being explored here in which multiple learners with different lan-
guage biases are used on different resamplings of the training data to learn the
parser ensemble for enhancing ensemble diversity. Also, while traditionally in bag-
ging one creates random samples of data with replacement, random samples here
are created without replacement (i.e. the different samples are mutually disjoint).
Random samples are so created because the training data may already have du-
plicated examples (e.g. the same question was asked by two different users of the
NLI). This paper presents an ensemble approach on learning semantic parsers the
author calls ChillE (Chill using an Ensemble) which is a generalization of an
earlier approach Chill [2] that was demonstrated to be effective for learning se-
mantic parsers.ChillE is demonstrated to be effective in two real world domains.

The rest of the paper is organized as follows. Section 2 will provide a brief
background on bagging classifiers and on inductive logic programming [8]. The
approach ChillE on learning an ensemble of semantic parsers for building dialog
based NLI’s is presented in Section 3. Experimental results are presented in Sec-
tion 4 followed by a discussion on related work in Section 5. Finally, conclusions
and future work are presented in Section 6.

2 Background

2.1 Bagging Classifiers

Bagging [9] (i.e. “bootstrap aggregating”) is a machine learning technique that
creates an ensemble of classifiers {Ck} (instead of traditionally a single classifier)
from replicate data sets {Dk} randomly drawn with replacement from a boot-
strap distribution of training data D; each classifier Ci ∈ {Ck} is learned from
the data sample Di ∈ {Dk}. A new instance x (drawn from the same distribution
underlying D) is classified using the ensemble {Ck} by averaging the numerical
values produced by the classifiers in {Ck} if the label for x is numerical. Other-
wise, voting is performed among the classifiers given x where the label with the
highest vote is returned.

It has been demonstrated to be an effective approach in learning when the un-
derlying learning procedure is unstable (i.e. a small perturbation in the training
data would produce a large deviation in classification accuracy). While bagging
is helpful for reducing biases among classifiers [7], the technique is being ex-
ploited here to learn a diverse ensemble of semantic parsers for returning a set of
interpretations (of the user question) that has a high probability of containing
a correct interpretation.

2.2 Inductive Logic Programming

Inductive Logic Programming (ILP) is a subfield in AI which concerns learning
a first order Horn theory that explains a given set of training data (i.e. obser-
vations) and also generalizes to novel cases; it is at the intersection of machine



104 L.R. Tang

learning and logic programming. The problem is defined as follows. Given a set
of examples ξ = ξ+ ∪ ξ− consisting of positive and negative examples of a
target concept, and background knowledge B, find an hypothesis H ∈ L (the
language of hypotheses) such that it is consistent with the training data. In
practice, one finds a hypothesis that is sufficiently accurate as there might be
noise in training data. Due to the use of a more expressive first-order formalism,
ILP techniques are proven to be more effective in tackling problems that require
learning relational knowledge than traditional propositional approaches [10]. ILP
techniques are employed for the task of semantic parser acquisition as subtle re-
lations among objects in a parse state might be useful for disambiguation and
they can be effectively learned via ILP methods.

There are two traditional approaches in the design of ILP learning algorithms:
top-down and bottom-up. In the former, one builds a clause in a general-to-
specific order where the search usually starts with the most general clause and
successively specializes it with background predicates according to some search
heuristic. A representative example of this approach would be the Foil algo-
rithm [10,11]. In the latter, the search begins at the other end of the space
where it starts with the most specific hypothesis, the set of examples, and
constructs clauses in a specific-to-general order by generalizing the more spe-
cific clauses. A representative example of this approach would be the Golem

algorithm [12].
Two ILP learners will be used in ChillE. The first one is Chillin [13] that

was originally employed in Chill. The second is Cocktail which combines
clauses constructed by mFoil [14] and those by Chillin through a theory eval-
uation metric based on the minimum description length principle [15]. Cocktail

was proven to be more effective than Chillin and mFoil on the task of seman-
tic parser acquisition [3]. Readers are recommended to refer to the literature for
more details.

3 Ensemble Learning for Semantic Parsing

3.1 The Chill Architecture for Semantic Parser Induction

The system Chill can learn to map a question in a natural language (e.g.
English) to its target meaning representation (e.g. a Prolog logic query). Given
a corpus of training data D (each is a pair of user question and its meaning
representation), a lexicon Lex(D), and an ILP learner L, Chill learns control
rules that specialize an overly general parser (generated directly from the corpus)
to produce a specialized parser P . The algorithm is outlined below:

Chill(D, Lex(D), L, P ):

1. Parser Operator Generation: Given D and Lex(D), generate a set of parsing
operators Ox for each sentence x ∈ D such that Ox is complete with respect
to x (i.e. it can produce a correct parse for x). The set SD =

⋃
x∈D Ox forms

the overly general parser for the corpus D; it produces many spurious parses
for the sentences in D.



Learning an Ensemble of Semantic Parsers for Building Dialog-Based NLI’s 105

2. Example Analysis: Using the target meaning representation q(x) for the
sentence x ∈ D, identify derivations in Ox that produce spurious parses for
x to generate positive and negative examples for each operator o ∈ Ox.

3. Control Rule Induction: Use the learner L to induce a set of control rules
Ro for each o ∈ SD given the positive and negative examples for o.

4. Parser Specialization: For each o ∈ SD, incorporate the control rules Ro into
o (as its preconditions) to produce the specialized parser P .

3.2 The ChillE Algorithm

ChillE generalizes Chill by allowing the use of a set of ILP learners Ls = {Lk}
to learn an ensemble of N (N ≥ |Ls|) parsers E = {Pj} from different sets of
training data {Dm} sampled from the given corpus D. However, as we mentioned
before, a variant of bagging is used here that samples training data without
replacement since the corpus may already contain duplicated sentences. Besides,
this allows one to potentially maximize the variety of sentences given to learn a
parser. For the sake of simplicity, ChillE is outlined as a randomized algorithm
as follows:

ChillE(N , D, Lex(D), Ls, E):

1. E = ∅
2. Generate N samples of training data {Dm} by randomly drawing training

data from the corpus D.
3. Randomly draw a learner L ∈ Ls and a sample of data Di ∈ {Dm}.
4. Learn a parser P by running Chill(Di, Lex(D), L, P ).
5. Add P to E.
6. Repeat 3 to 5 until N parsers have been learned.

There are two possible ways to use the parser ensemble to create the NLI: 1)
perform voting among the ensemble on a novel user question and select the most
common interpretation, or 2) return all the queries produced by the ensemble
(paraphrased in natural language) and let the user choose a correct one (if any).
These schemes will be discussed below:

Voting: Given a novel sentence s, a set of queries Q is produced by applying each
parser in the ensemble to s. Suppose Q′ ⊆ Q is the set of queries that are actually
executable (since some parsers in the ensemble might fail to produce a successful
parse due to problems in learning). One can return the query q ∈ Q′ whose answer
set has the highest vote in Q′. If there is a tie, one can select the qL ∈ Q′ produced
by the semantic parser that was learned by the best learner L ∈ Ls (a learner is
better if the parsers produced by it have a higher recall on average).

Returning a Query Set: Instead of returning only the “best” query from the
ensemble by voting, one can consider returning a practically small but probable
set of queries and let the user select a correct one. Not only will this increase
the probability that a correct interpretation can be found, and, hence, improve



106 L.R. Tang

the recall of the NLI, but it will also ensure that the NLI does not deliver
incorrect information to the user.

Suppose the ensemble has N reasonably independent parsers such that the
expected error rate of parser i is ei. The expected accuracy R (i.e recall) of the
entire ensemble is, approximately, as follows:

R ≈ 1 −
∏

i

ei (1)

If all the learners in Ls have similar generalization performance and are relatively
stable, then Equation 1 can be reduced to:

R ≈ 1 − êN (2)

where ê is the average error rate of a parser in the ensemble. Obviously, if ê
remains relatively constant for increasing N , the error rate of the entire ensemble
will converge to arbitrarily small value, thus, R will converge to nearly perfect.
While this is only an analysis of the ideal situation in which the parsers in
the ensemble are relatively independent of each other, it does shed light on the
theoretical optimal performance of such an approach, and, hence, provides a
basis of the (ideal) goals for which one should strive when employing such an
ensemble approach to the task.

In practice, this ideal is limited by at least two factors: 1) the response time of
the NLI would increase proportionally to N (thus one has to practically bound
N), and 2) the level of mutual independence of the parsers in the ensemble (i.e.
ensemble diversity). One purpose of this paper is to explore the trade-off between
efficiency and accuracy in using an ensemble approach on building reliable dialog-
based NLI’s and see if the approach can scale up to large data sets.

4 Experimental Evaluation

4.1 Domains and Corpora

Two different domains are used for experimentation. The first one is the United
States Geography domain. The database contains about 800 facts implemented
in Prolog as relational tables containing basic information about the U.S. states
like population, area, capital city, neighboring states, and so on. The second
domain consists of a set of 1000 computer-related job postings, such as job
announcements, from the USENET newsgroup austin.jobs. Information from
these job postings is extracted to create a database which contains the following
types of information: 1) the job title, 2) the company, 3) the recruiter, 4) the
location, 5) the salary, 6) the languages and platforms used, and 7) required or
desired years of experience and degrees [16].

The U.S. Geography domain has a corpus of 1000 sentences (Geo1000) in
which 250 are collected from undergraduate students in the CS department at
the University of Texas at Austin and the rest from real users of the Web inter-
face “powered” by Chill

1. The job database information system has a corpus
1 www.cs.utexas.edu/users/ml/geo.html



Learning an Ensemble of Semantic Parsers for Building Dialog-Based NLI’s 107

of 640 sentences (Jobs640); 400 of which are artificially made using a simple
grammar that generates certain obvious types of questions people may ask and
the other 240 are obtained from undergraduate students or the Web interface.
Both corpora are available at www.cs.utexas.edu/users/ml/nldata.html.

4.2 Experimental Design

Comparison on performance will be conducted among five types of NLI’s using
the two corpora: 1) non-dialog based NLI’s built by Chill [3], 2) dialog based
NLI’s built by ChillE using voting, 3) dialog based NLI’s built by ChillE that
return a query set, and 4) PRECISE (a non-learning NLI) [4], and 5) Microsoft
English Query (EQ) (also a non-learning NLI) [4,17]. In Chill, the learner used
was Cocktail (as it performed the best among the choices) while in ChillE

both Cocktail and Chillin were used. The average test time per trial (i.e.
the time taken to evaluate the performance of a parser on test questions) for
the systems except that of PRECISE and EQ (as results are not available) are
also reported here for a comparison on trade-off between efficiency and accuracy
among the systems. Notice that comparison of performance is done on NLI’s
instead of on semantic parsers for two reasons: 1) while a semantic parser may
be imperfect in precision, a carefully designed NLI using the same semantic
parser can nonetheless be made to delivery only correct information, and 2) not
all NLI’s are learning based and/or employing semantic parsers for processing
semantics of sentences. The test time of an NLI’s semantic parser is used to give
us an idea of the NLI’s approximate response time; such an estimate should be
reasonable since the time required in parsing (i.e. the parser’s efficiency) plus the
time required in executing the query produced by the parser (i.e. efficiency in
information retrieval) is usually the bottleneck of the response time of the NLI.

The experiments were conducted using 10-fold cross validation. In each test,
the recall (a.k.a. accuracy) and the precision of the NLI’s will be computed along
with their test time. Recall and precision are defined as

Recall =
# of correctly answered questions

# of test questions
(3)

Precision =
# of correctly answered questions

# of questions answered by the NLI
. (4)

Precision is defined as the number of questions answered correctly by an NLI
divided by the number of questions for which the NLI produced an answer
because sometimes a semantic parser might not produce an executable query
for a sentence and hence not all questions are answered by the NLI.

In other words, for all the NLI’s created by Chill or ChillE, recall is the
same as the number of correct logic queries produced divided by the total number
of sentences in the test set. If a parser ensemble is used and an entire query set is
returned, the parser ensemble is considered correct if one of the parsers produced
a correct logic query. Precision is the number of correct logic queries produced
divided by the number of sentences in the test set from which the parser (or
parser ensemble) produced a query (i.e. a successful parse). Please note that a



108 L.R. Tang

Table 1. Results in the U.S. Geography domain. Combinations of ensemble size N
and % of training data M are listed as (N x M). QS means a query set is returned. V
means voting is performed in the ensemble. CorInfo means a user is guaranteed that
the information delivered is correct.

NLI \ Corpora Geo1000
Recall Precision CorInfo Test Time (seconds)

Chill 81.70±1.28 83.64±1.43 × 55.82±24.50
ChillE (2x100%) (QS) 86.00±1.52 87.50± 1.67

√
229.25±40.91

ChillE (2x100%) (V) 82.40±1.63 84.01± 1.74 × 233.11±39.20
ChillE (2x50%) (QS) 86.8±1.89 87.69± 2.07

√
209.43±51.00

ChillE (2x50%) (V) 80.40±2.48 81.46±2.31 × 199.81±44.62
ChillE (4x25%) (QS) 88.44±2.60 89.23±2.47

√
343.19±93.39

ChillE (4x25%) (V) 76.78±3.60 77.64±3.55 × 294.68±69.47
ChillE (6x16.67%) (QS) 88.80±1.98 89.42±1.76

√
444.44±132.08

ChillE (6x16.67%) (V) 75.10±3.07 75.80±3.20 × 344.38±89.17
PRECISE 77.50 100.00

√
n/a

EQ ≈ 57.50 ≈ 82.00 × n/a

logic query is considered correct here if it produces the same answer set as that
of the target logic query for the test question.

In information extraction, recall is usually defined as |I|/|C| where I = R∩C,
R is the set of retrieved documents (from executing the user query), and C is
the set of correct documents. Precision is usually defined as |I|/|R|. Here, in
semantic parsing, recall is defined as |I|/|C| where I is the intersection of the
set S of logic queries produced by the parser (or parser ensemble) in parsing the
set of test sentences and C which is the set of correct logic queries, one for each
sentence, in the given set of test sentences. Precision is defined as |I|/|S|. In other
words, recall is simply the fraction of test sentences that were correctly parsed
by the learned parser (or parser ensemble), and precision is the probability that
the logic query produced by the learned parser (or parser ensemble) from parsing
a test sentence is correct.

4.3 Discussion of Results

For all the experiments performed, a beam size of four, a significant threshold of
6.64 (99% level of significance), and a parameter m = 10 (the m-estimate [18])
were used for mFoil. The best four clauses (by coverage) found by Chillin were
used. In order to study trade off between efficiency and accuracy in an NLI con-
structed using an ensemble, various combinations of the ensemble size and the
percentage of training data in a random sample given to learn each parser in the
ensemble were explored. The results of the various NLI’s in the U.S. Geography
domain and the job posting domain are shown in Table 1 and Table 2 respectively.

The recall for PRECISE in the U.S. Geography domain was taken from [19]
while in the job posting domain it was obtained by very carefully inspecting
the bar chart results reported in [4], and likewise for the results on EQ. All
confidence intervals in the results were computed at the 95% confidence level.



Learning an Ensemble of Semantic Parsers for Building Dialog-Based NLI’s 109

Table 2. Results in the job posting domain. Combinations of ensemble size N and
% of training data M are listed as (N x M). QS means a query set is returned. V
means voting is performed in the ensemble. CorInfo means a user is guaranteed that
the information delivered is correct.

NLI \ Corpora Jobs640
Recall Precision CorInfo Test Time (seconds)

Chill 84.53±2.35 86.89±2.71 × 33.23±4.27
ChillE (2x100%) (QS) 87.66±1.67 88.93±1.99

√
100.81±6.10

ChillE (2x100%) (V) 85.47±2.50 86.73±2.93 × 101.21±6.23
ChillE (2x50%) (QS) 87.03±2.09 87.59±2.19

√
86.08±4.28

ChillE (2x50%) (V) 84.22±1.96 84.76±2.11 × 86.45±4.38
ChillE (4x25%) (QS) 88.91±2.06 89.48±2.26

√
129.48±3.99

ChillE (4x25%) (V) 82.50±2.99 83.04±3.16 × 129.57±4.37
ChillE (6x16.67%) (QS) 90.00±2.29 90.57±2.29

√
170.85±8.04

ChillE (6x16.67%) (V) 81.56±2.36 82.08±2.33 × 169.81±8.39
PRECISE ≈ 87.50 100.00

√
n/a

EQ ≈ 47.5 ≈ 75.00 × n/a

As it was mentioned before, when bagging the parsers in ChillE, the different
training samples were not allowed to overlap with each other. For example, in
the 2x50% setup, the two random samples form a partition of the training data.
It was found consistently that maximizing diversity among random samples by
using less but different data per sample led to getting better trade off in perfor-
mance than using more data per sample (but with overlapping among the sam-
ples) given the same ensemble size. For example, in all combinations attempted,
it is evident that the 2x100% combination (two parsers learned with the entire
set of data by differen learners) did not provide a dramatic gain in performance
in the two domains to warrant the significantly increase in response time.

In the U.S. Geography domain, ChillE outperformed Chill, PRECISE, and
EQ in two different combinations: 1) 2x50%, and 2) 4x25%. The response time
(test time per trial divided by number of test questions) for the former was
roughly 2.09 seconds per question (s/q), and the latter was 3.43 s/q. Although
the combination 6x16.67% (i.e. 1/6 of training data) performed best in recall,
it was not significantly different from that of 4x25% but the increase in NLI
response time is not worth the trivial gain in accuracy. Overall, the 4x25% com-
bination represents the best trade off in efficiency and accuracy as it significantly
outperformed Chill in both recall and precision, dramatically outperformed
both PRECISE and EQ, and required a tolerable amount of response time. It is
arguable that the increase in response time is worth the wide margin of perfor-
mance gain produced as CPU speed is still being improved, and, hence, increase
in response time with ensemble size could only be a lesser issue over time.2

In the job posting domain, ChillE using the combination 6x16.67% per-
formed the best in recall – significantly outperformed Chill and EQ, and slightly

2 Besides, there are other ways to further improve response time like using a more
efficient language like C++ for implementation instead of the current choice Prolog.



110 L.R. Tang

outperformed PRECISE. The response time of this combination was 2.67 s/q
which is slightly more than that of 4x25% (2.02 s/q); a faster machine will fur-
ther minimize the gap. So, ChillE with 6x16.67% represents the best trade off
between efficiency and accuracy.

In both domains, using a query set significantly outperformed voting without
significant loss in response time and hence made a better approach in both
domains. In other words, returning a query set is a feasible approach if voting
were considered the “accepted” approach. Although increasing the (training)
sample size for each parser might improve recall for voting, it would be done at
the expense of ensemble diversity (a critical factor in ensemble accuracy) and
response time.3

In all domains, only the dialog based NLI’s created using ChillE with return-
ing a query set and those created using PRECISE were reliable. Of course, one
could create dialog based NLI’s using ChillE with voting, and, hence, trivially
ensure reliability as the reliability of an NLI depends only on if it is dialog-based
or not here. Since traditionally bagging relies on voting to give a single output,
it is, therefore, interesting to compare the performance of an NLI created using
purely such a traditional approach and that of an NLI created by combining bag-
ging and a dialog-based approach. Alternatively, one can think of the results of
non dialog-based NLI’s created by bagging with voting as “intermediate points”
between the two extremes of using a purely non dialog-based and non ensemble-
based approach and a purely dialog-based and ensemble-based approach in a
“continuum” of NLI building approaches.

Our results demonstrated that ensuring reliability in an NLI doesn’t have to
come at the cost of abandoning a learning approach to the problem – a change
of NLI framework can solve the problem. Also, using advanced machine learning
techniques (e.g. ensemble learning) may open a door for breakthrough in building
highly accurate NLI’s. In fact, the best recall of the NLI’s created using ChillE

with returning a query set are the best reported results in the literature in the
attempted domains.

Using a higher amount of data per random sample will lead to learning a bigger
semantic parser – one with more parsing operators. Since using a bigger parser
will increase NLI response time, it is interesting to see if one can manage response
time by keeping the amount of data per sample fairly constant without losing
accuracy. The experimental results are suggesting that this could be a possibility,
and, hence, the ChillE approach could possibly scale up to larger corpora.

5 Related Work

PRECISE is (non-learning) based NLI that maps English questions to SQL [4].
Its approach has the advantage that it can recognize in advance whether it
will be able to correctly answer a question or not (i.e. whether the question is

3 Therefore, the author suspects that using a combination like 4x80% in voting would
not dramatically increase performance due to the mediocre results obtained in
2x100% in voting but this has yet to be experimentally confirmed.



Learning an Ensemble of Semantic Parsers for Building Dialog-Based NLI’s 111

“semantically tractable” or not); hence, it never delivers incorrect information
back to a user. However, it cannot utilize available training data to improve its
own performance – a hallmark of learning systems. ChillE addresses the prob-
lem of imperfect precision in a different way that allows it to potentially handle
a wider variety of questions and incorporate latest advances in machine learning.

Another related system on the task is called Scissor [19]. Scissor is an
improvement over Chill in that it integrates syntactic and semantic processing
in a mutually beneficial way. Also, since Scissor employs a statistical parsing
framework, it is more robust than a purely rule-based deterministic approach
like Chill. ChillE addresses the issue of robustness in parsing in a different
way – by learning multiple semantic parsers, it reduces the generalization bias
of a learned semantic parser in way similar to how bagging helps to reduce
generalization bias of a single classifier.

6 Conclusion and Future Work

ChillE is a novel approach that generalizes a previous approach called Chill

on learning semantic parsers. By learning an ensemble of semantic parsers, it al-
lows returning a set of interpretations of a user question to 1) facilitate building
dialog-based NLI’s that guarantee their reliability as a user can choose a correct
interpretation from the set if one exists, and 2) at the same time improve the re-
call of NLI’s in a way that allows setting optimal trade off between efficiency and
accuracy for a given domain based on the NLI builder’s preference. Experimental
results in two different real world domains suggested that such an approach can
tackle the problem of imperfect precision in the semantic parser (or parsers) of
an NLI and utilize available training data for continual improvement in system
performance.

Since one source of “semantic intractability” [4] is “incompleteness” of a
learned parser with respect to a novel sentence (e.g. the parser might be lacking
a parsing operator required for successfully parsing the question), the author
will also investigate the issue of making a learned parser complete with respect
to a novel sentence provided that the lexicon has all the necessary information
for constructing a correct meaning representation for the sentence.

Acknowledgments

Part of this research was supported by the National Science Foundation under
grant IRI-9704943.

References

1. Allen, J.F.: Natural Language Understanding (2nd Ed.). Benjamin/Cummings,
Menlo Park, CA (1995)

2. Zelle, J.M., Mooney, R.J.: Learning to parse database queries using inductive logic
programming. In: Proceedings of the Thirteenth National Conference on Artificial
Intelligence (AAAI-96), Portland, OR (1996) 1050–1055



112 L.R. Tang

3. Tang, L.R., Mooney, R.J.: Using multiple clause constructors in inductive logic pro-
gramming for semantic parsing. Lecture Notes in Computer Science 2167 (2001)
466+

4. Popescu, A.M., Etzioni, O., Kautz, H.: Towards a theory of natural language
interfaces to databases. In: Proceedings of the 2003 International Conference on
Intelligent User Interfaces (IUI-2003), Miami, FL, ACM (2003) 149–157

5. Boye, J., Wirén, M.: Negotiative spoken-dialogue interfaces to databases. In:
Proceedings Diabruck (7th workshop on the semantics and pragmatics of dialogue),
Wallerfangen, Germany (2003)

6. Thompson, C., Goker, M.: Learning to suggest: The adaptive place advisor. In:
Proceedings of the 2000 AAAI Spring Symposium on Adaptive User Interfaces,
Menlo Park, CA (2000)

7. Henderson, J., Brill, E.: Bagging and boosting a treebank parser. In: Proceedings
of NAACL 2000, Seattle, WA (2000) 34–41

8. Muggleton, S.H., Raedt, L.D.: Inductive logic programming: Theory and methods.
Journal of Logic Programming 19 (1994) 629–679

9. Breiman, L.: Bagging predictors. Machine Learning 24(2) (1996) 123–140
10. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5(3)

(1990) 239–266
11. Cameron-Jones, R.M., Quinlan, J.R.: Efficient top-down induction of logic pro-

grams. SIGART Bulletin 5(1) (1994) 33–42
12. Muggleton, S., Feng, C.: Efficient induction of logic programs. In Muggleton, S.,

ed.: Inductive Logic Programming. Academic Press, New York (1992) 281–297
13. Zelle, J.M., Mooney, R.J.: Combining top-down and bottom-up methods in induc-

tive logic programming. In: Proceedings of the Eleventh International Conference
on Machine Learning (ICML-94), New Brunswick, NJ (1994) 343–351

14. Džeroski, S.: Handling noise in inductive logic programming. Master’s thesis,
Faculty of Electrical Engineering and Computer Science, University of Ljubljana
(1991)

15. Rissanen, J.: Modeling by shortest data description. Automatica 14 (1978) 465–
471

16. Califf, M.E., Mooney, R.J.: Relational learning of pattern-match rules for informa-
tion extraction. In: Proceedings of the Sixteenth National Conference on Artificial
Intelligence (AAAI-99), Orlando, FL (1999) 328–334

17. Blum, A.: Microsoft english query 7.5: Automatic extraction of semantics from
relational databases and OLAP cubes. In: Proceedings of 25th International Con-
ference on Very Large Data Bases (VLDB’99). (1999) 247–248

18. Cestnik, B.: Estimating probabilities: A crucial task in machine learning. In: Pro-
ceedings of the Ninth European Conference on Artificial Intelligence, Stockholm,
Sweden (1990) 147–149

19. Ge, R., Mooney, R.J.: A statistical semantic parser that integrates syntax and
semantics. In: Proceedings of the Ninth Conference on Computational Natural
Language Learning. (2005) 9–16



Game-Theoretic Agent Programming in Golog
Under Partial Observability

Alberto Finzi1,2 and Thomas Lukasiewicz2,1

1 Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

2 Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”
Via Salaria 113, I-00198 Rome, Italy

{finzi,lukasiewicz}@dis.uniroma1.it

Abstract. We present the agent programming language POGTGolog, which in-
tegrates explicit agent programming in Golog with game-theoretic multi-agent
planning in partially observable stochastic games. It deals with the case of one
team of cooperative agents under partial observability, where the agents may have
different initial belief states and not necessarily the same rewards. POGTGolog
allows for specifying a partial control program in a high-level logical language,
which is then completed by an interpreter in an optimal way. To this end, we de-
fine a formal semantics of POGTGolog programs in terms of Nash equilibria, and
we specify a POGTGolog interpreter that computes one of these Nash equilibria.
We illustrate the usefulness of POGTGolog along a rugby scenario.

1 Introduction

During the recent years, the development of controllers for autonomous agents has be-
come increasingly important in AI. One way of designing such controllers is the pro-
gramming approach, where a control program is specified through a language based
on high-level actions as primitives. Another way is the planning approach, where goals
or reward functions are specified and the agent is given a planning ability to achieve a
goal or to maximize a reward function. An integration of both approaches has recently
been proposed through the seminal language DTGolog [3], which integrates explicit
agent programming in Golog [16] with decision-theoretic planning in (fully observ-
able) Markov decision processes (MDPs) [15]. It allows for partially specifying a con-
trol program in a high-level language as well as for optimally filling in missing details
through decision-theoretic planning, and it can thus be seen as a decision-theoretic ex-
tension to Golog, where choices left to the agent are made by maximizing expected
utility. From a different perspective, it can also be seen as a formalism that gives advice
to a decision-theoretic planner, since it naturally constrains the search space.

DTGolog has several other nice features, since it is closely related to first-order ex-
tensions of decision-theoretic planning (see especially [2,19,8]), which allow for (i)
compactly representing decision-theoretic planning problems without explicitly refer-
ring to atomic states and state transitions, (ii) exploiting such compact representations
for efficiently solving large-scale problems, and (iii) nice properties such as modularity

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 113–127, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



114 A. Finzi and T. Lukasiewicz

(parts of the specification can be easily added, removed, or modified) and elaboration
tolerance (solutions can be easily reused for similar problems with few or no extra cost).

As a serious drawback, however, DTGolog is designed only for the single-agent
framework. That is, the model of the world essentially consists of a single agent that we
control by a DTGolog program and the environment summarized in “nature”. But there
are many applications where we encounter multiple agents, which may compete against
each other, or which may also cooperate with each other. For example, in robotic soc-
cer, we have two competing teams of agents, where each team consists of cooperating
agents. Here, the optimal actions of one agent generally depend on the actions of all
the other (“enemy” and “friend”) agents. In particular, there is a bidirected dependence
between the actions of two different agents, which generally makes it inappropriate to
model enemies and friends of the agent that we control simply as a part of “nature”. As
an example for an important cooperative domain, in robotic rescue, mobile agents may
be used in the emergency area to acquire new detailed information (such as the loca-
tions of injured people in the emergency area) or to perform certain rescue operations. In
general, acquiring information as well as performing rescue operations involves several
and different rescue elements (agents and/or teams of agents), which cannot effectively
handle the rescue situation on their own. Only the cooperative work among all the res-
cue elements may solve it. Since most of the rescue tasks involve a certain level of risk
for humans (depending on the type of rescue situation), mobile agents can play a major
role in rescue situations, especially teams of cooperative heterogeneous mobile agents.

This is the motivation behind GTGolog [5], which is a generalization of DTGolog
that integrates agent programming in Golog with game-theoretic multi-agent planning
in (fully observable) stochastic games [14], also called Markov games [17,11].

Example 1.1. Consider a rugby player a1, who is deciding his next n > 0 moves and
wants to cooperate with a team mate a2. He has to deliberate about if and when it is
worth to pass the ball. His options can be encoded by the following GTGolog program:

proc step(n)
if (haveBall(a1) ∧ n > 0) then

πx (πy (choice(a1 :moveTo(x) | passTo(a2)) ‖
choice(a2 :moveTo(y) | receive(a1))));

step(n−1)
end.

This program encodes that while a1 is the ball owner and n > 0, the two agents a1
and a2 perform a parallel action choice in which a1 (resp., a2) can either go somewhere
or pass (resp., receive) the ball. Here, the preconditions and effects of the actions are to
be formally specified in a suitable action theory. Given this high-level program and the
action theory for a1 and a2, the program interpreter then fills in the best moves for a1
and a2, reasoning about all the possible interactions between the two agents.

Another crucial aspect of real-world environments, however, is that they are typically
only partially observable, due to noisy and inaccurate sensors, or because some relevant
parts of the environment simply cannot be sensed. For example, especially in the robotic
rescue domain described above, every agent has generally only a very partial view on
the environment. However, both DT- and GTGolog assume full observability, and have
not been generalized to the partially observable case so far.



Game-Theoretic Agent Programming in Golog Under Partial Observability 115

In this paper, we try to fill this gap. We present the agent programming language
POGTGolog, which extends GTGolog and thus also DTGolog by partial observability.
The main contributions of this paper can be summarized as follows:

• We present the agent programming language POGTGolog, which integrates explicit
agent programming in Golog with game-theoretic multi-agent planning in partially
observable stochastic games [9]. POGTGolog allows for modeling one team of
cooperative agents under partial observability, where the agents may have different
initial belief states and not necessarily the same rewards (and thus in some sense
the team does not necessarily have to be homogeneous).

• POGTGolog allows for specifying a partial control program in a high-level lan-
guage, which is then completed in an optimal way. To this end, we associate with
every POGTGolog program a set of (finite-horizon) policies, which are possible
(finite-horizon) instantiations of the program where missing details are filled in.
We then define a semantics of a POGTGolog program in terms of Nash equilibria,
which are optimal policies (that is, optimal instantiations) of the program.

• We define a POGTGolog interpreter and show that it computes a Nash equilibrium
of POGTGolog programs. We also prove that POGTGolog programs can represent
partially observable stochastic games, and that the POGTGolog interpreter can be
used to compute one of their (finite-horizon) Nash equilibria. Furthermore, we il-
lustrate the usefulness of the POGTGolog approach along a rugby scenario.

2 Preliminaries

In this section, we first recall the main concepts of the situation calculus and of the agent
programming language Golog; for further details see especially [16]. We then recall the
basics of normal form games and of partially observable stochastic games (POSGs).

2.1 The Situation Calculus

The situation calculus [12,16] is a first-order language for representing dynamically
changing worlds. Its main ingredients are actions, situations, and fluents. An action
is a first-order term of the form a(u1, . . . , un), where the function symbol a is its
name and the ui’s are its arguments. All changes to the world are the result of ac-
tions. For example, the action moveTo(r, x, y) may stand for moving the agent r to
the position (x, y). A situation is a first-order term encoding a sequence of actions. It
is either a constant symbol or of the form do(a, s), where do is a distinguished bi-
nary function symbol, a is an action, and s is a situation. The constant symbol S0 is
the initial situation and represents the empty sequence, while do(a, s) encodes the se-
quence obtained from executing a after the sequence of s. For example, the situation
do(moveTo(r, 1, 2), do(moveTo(r, 3, 4), S0 )) stands for executing moveTo(r, 1, 2)
after executing moveTo(r, 3, 4) in the initial situation S0 . We write Poss(a, s), where
Poss is a distinguished binary predicate symbol, to denote that the action a is possible
to execute in the situation s. A (relational) fluent represents a world or agent property
that may change when executing an action. It is a predicate symbol whose most right



116 A. Finzi and T. Lukasiewicz

argument is a situation. For example, at(r, x, y, s) may express that the agent r is at
the position (x, y) in the situation s. In the situation calculus, a dynamic domain is
represented by a basic action theory AT = (Σ, Duna , DS0 , Dssa , Dap), where:

• Σ is the set of (domain-independent) foundational axioms for situations [16].
• Duna is the set of unique names axioms for actions, which express that different

actions are interpreted in a different way.
• DS0 is a set of first-order formulas describing the initial state of the domain (repre-

sented by S0 ). For example, at(r, 1, 2,S0 ) ∧ at(r′, 3, 4,S0 ) may express that the
agents r and r′ are initially at the positions (1, 2) and (3, 4), respectively.

• Dssa is the set of successor state axioms [16]. For each fluent F (x, s), it con-
tains an axiom of the form F (x, do(a, s))≡ ΦF (x, a, s), where ΦF (x, a, s) is a
formula with free variables among x, a, s. These axioms specify the truth of the
fluent F in the next situation do(a, s) in terms of the current situation s, and are a
solution to the frame problem (for deterministic actions). For example, the axiom
at(r, x, y, do(a, s))≡ a =moveTo(r, x, y) ∨ (at(r, x, y, s) ∧ ¬∃x′, y′ (a =move-
To(r, x′, y′))) may express that the agent r is at the position (x, y) in the situa-
tion do(a, s) iff either r moves to (x, y) in the situation s, or r is already at the
position (x, y) and does not move away in s.

• Dap is the set of action precondition axioms. For each action a, it contains an
axiom of the form Poss(a(x), s) ≡ Π(x, s), which characterizes the preconditions
of the action a. For example, Poss(moveTo(r, x, y), s) ≡ ¬∃r′ at(r′, x, y, s) may
express that it is possible to move the agent r to the position (x, y) in the situation s
iff no other agent r′ is at (x, y) in s.

We use the concurrent version of the situation calculus [16], which is an extension
of the standard situation calculus by concurrent actions. A concurrent action c is a set
of standard actions, which are concurrently executed when c is executed.

2.2 Golog

Golog is an agent programming language that is based on the situation calculus. It al-
lows for constructing programs from primitive actions that are defined in a basic action
theory AT , where standard (and not so standard) Algol-like control constructs can be
used. More precisely, programs p in Golog have one of the following forms (where c is
a primitive action, φ is a condition, which is obtained from a situation calculus for-
mula over fluents by suppressing all situation arguments, p, p1, p2, . . . , pn are programs,
P1, . . . , Pn are procedure names, and x, x1, . . . , xn are arguments):

1. Primitive action: c. Do c.

2. Test action: φ?. Test the truth of φ in the current situation.

3. Sequence: [p1; p2]. Do p1 followed by p2.

4. Nondeterministic choice of two programs: (p1 | p2). Do either p1 or p2.

5. Nondeterministic choice of program argument: πx (p(x)). Do any p(x).
6. Nondeterministic iteration: p�. Do p zero or more times.

7. Conditional: if φ then p1 else p2. If φ is true, then do p1 else do p2.



Game-Theoretic Agent Programming in Golog Under Partial Observability 117

8. While-loop: while φ do p. While φ is true in the current situation, do p.

9. Procedures: proc P1(x1) p1 end ; . . . ; proc Pn(xn) pn end ; p.

For example, the Golog program while ¬at(r, 1, 2) do πx, y (moveTo(r, x, y)) stands
for “while the agent r is not at the position (1, 2), move r to a nondeterministically
chosen position (x, y)”. Golog has a declarative formal semantics, which is defined
in the situation calculus. Given a Golog program p, its execution is represented by
a situation calculus formula Do(p, s, s′), which encodes that the situation s′ can be
reached by executing the program p in the situation s.

2.3 Normal Form Games

Normal form games from classical game theory [18] describe the possible actions of
n ≥ 2 agents and the rewards that the agents receive when they simultaneously ex-
ecute one action each. For example, in two-finger Morra, two players E and O si-
multaneously show one or two fingers. Let f be the total numbers of fingers shown.
If f is odd, then O gets f dollars from E, and if f is even, then E gets f dollars
from O. More formally, a normal form game G= (I, (Ai)i∈I , (Ri)i∈I) consists of a
set of agents I = {1, . . . , n} with n ≥ 2, a nonempty finite set of actions Ai for each
agent i ∈ I , and a reward function Ri : A→ R for each agent i ∈ I , which associates
with every joint action a ∈A=×i∈IAi a reward Ri(a) to agent i. If n =2, then G
is called a two-player normal form game (or simply matrix game). If additionally
R1 =−R2, then G is a zero-sum matrix game; we then often omit R2 and abbreviate
R1 by R.

The behavior of the agents in a normal form game is expressed through the notions
of pure and mixed strategies, which specify which of its actions an agent should execute
and which of its actions an agent should execute with which probability, respectively.
For example, in two-finger Morra, a pure strategy for player E (or O) is to show two
fingers, and a mixed strategy for player E (or O) is to show one finger with the prob-
ability 7/12 and two fingers with the probability 5/12. Formally, a pure strategy for
agent i ∈ I is any action ai ∈Ai. A pure strategy profile is any joint action a ∈A. If
the agents play a, then the reward to agent i ∈ I is given by Ri(a). A mixed strategy
for agent i ∈ I is any probability distribution πi over its set of actions Ai. A mixed
strategy profile π = (πi)i∈I consists of a mixed strategy πi for each agent i ∈ I . If the
agents play π, then the expected reward to agent i ∈ I , denoted E[Ri(a) | π] (or Ri(π)),
is defined as

∑
a=(aj)j∈I∈A Ri(a) · Πj∈Iπj(aj).

Towards optimal behavior of the agents in a normal form game, we are especially
interested in mixed strategy profiles π, called Nash equilibria, where no agent has the
incentive to deviate from its part, once the other agents play their parts. Formally, given
a normal form game G = (I, (Ai)i∈I , (Ri)i∈I), a mixed strategy profile π = (πi)i∈I

is a Nash equilibrium of G iff for every agent i ∈ I , it holds that Ri(π′
i ◦ π−i)≤Ri(π)

for every mixed strategy π′
i, where π′

i ◦ π−i is obtained from π by replacing πi by π′
i.

For example, in two-finger Morra, the mixed strategy profile where each player shows
one finger resp. two fingers with the probability 7/12 resp. 5/12 is a Nash equilibrium.
Every normal form game G has at least one Nash equilibrium among its mixed (but
not necessarily pure) strategy profiles, and many have multiple Nash equilibria. In the



118 A. Finzi and T. Lukasiewicz

two-player case, they can be computed by linear complementary programming and lin-
ear programming in the general and the zero-sum case, respectively. A Nash selection
function f associates with every normal form game G a unique Nash equilibrium f(G).
The expected reward to agent i ∈ I under f(G) is denoted by vi

f (G).

2.4 Partially Observable Stochastic Games

Partially observable stochastic games [9] generalize normal form games, partially obser-
vable Markov decision processes (POMDPs) [10], and decentralized POMDPs [7,13].
A partially observable stochastic game consists of a set of states S, a normal form
game for each state s ∈S, a set of joint observations of the agents O, and a tran-
sition function that associates with every state s ∈S and joint action of the agents
a ∈A a probability distribution on all combinations of next states s′ ∈S and joint ob-
servations o∈O. Formally, a partially observable stochastic game (POSG) G=(I, S,
(Ai)i∈I , (Oi)i∈I , P, (Ri)i∈I) consists of a set of agents I = {1, . . . , n}, n ≥ 2, a non-
empty finite set of states S, two nonempty finite sets of actions Ai and observations Oi

for each i ∈ I , a transition function P : S × A→PD(S × O), which associates with ev-
ery state s ∈S and joint action a ∈A=×i∈IAi a probability distribution over S ×O,
where O =×i∈IOi, and a reward function Ri : S ×A→ R for each i ∈ I , which asso-
ciates with every state s ∈S and joint action a ∈A a reward Ri(s, a) to i.

Since the actual state s ∈S of the POSG G is not fully observable, every agent
i ∈ I has a belief state bi that associates with every state s ∈S the belief of agent i
about s being the actual state. A belief state b =(bi)i∈I of G consists of a probabil-
ity function bi over S for each agent i ∈ I . The POSG G then defines probabilistic
transitions between belief states as follows. The new belief state ba,o =(ba,o

i )i∈I af-
ter executing the joint action a ∈A in b =(bi)i∈I and jointly observing o∈ O is given
by ba,o

i (s′) =
∑

s∈S P (s′, o | s, a) · bi(s) / Pb(b
a,o
i | bi, a), where Pb(b

a,o
i | bi, a) =∑

s′∈S

∑
s∈SP (s′, o|s, a) · bi(s) is the probability of observing o after executing a in bi.

The notions of finite-horizon pure (resp., mixed) policies and their rewards (resp.,
expected rewards) can now be defined as usual using the above probabilistic transitions
between belief states. Informally, given a finite horizon H ≥ 0, a pure (resp., mixed)
time-dependent policy associates with every belief state b of G and number of steps to
go h ∈{0, . . . , H} a pure (resp., mixed) normal form game strategy.

Finally, the notion of a finite-horizon Nash equilibrium for a POSG G is then de-
fined as follows. A policy π is a Nash equilibrium of G under a belief state b iff
for every agent i ∈ I , it holds that Gi(H, b, π′

i ◦π−i)≤ Gi(H, b, πi ◦ π−i) for all poli-
cies π′

i, where Gi(H, b, α) denotes the H-step reward to agent i ∈ I under an initial
belief state b =(bi)i∈I and the policy α. A policy π is a Nash equilibrium of G iff it is
a Nash equilibrium of G under every belief state b.

3 Partially Observable GTGolog (POGTGolog)

In this section, we present the agent programming language POGTGolog, which is a
generalization of GTGolog [5] that allows for partial observability. We first describe
the domain theory and the syntax and semantics of POGTGolog programs.



Game-Theoretic Agent Programming in Golog Under Partial Observability 119

We focus on the case of one team of cooperative agents under partial observability,
where the agents may have different initial belief states and not necessarily the same
rewards (and so may also be heterogeneous). We assume that (i) each agent knows the
initial local belief state of every other agent, and (ii) after each action execution, each
agent can observe the actions of every other agent and receives their local observations.

3.1 Domain Theory

POGTGolog programs are interpreted relative to a domain theory, which extends a basic
action theory by stochastic actions, reward functions, and utility functions. Formally, in
addition to a basic action theory AT , a domain theory DT =(AT ,ST ,OT ) consists of
a stochastic theory ST and an optimization theory OT , which are both defined below.

We assume a team I = {1, . . . , n} consisting of n ≥ 2 cooperative agents 1, . . . , n.
The finite nonempty set of primitive actions A is partitioned into nonempty sets of
primitive actions A1, . . . , An of agents 1, . . . , n, respectively. A single-agent action of
agent i ∈ I (resp., multi-agent action) is any concurrent action over Ai (resp., A). We
assume a finite nonempty set of observations O, which is partitioned into nonempty sets
of observations O1, . . . , On of agents 1, . . . , n, respectively. A single-agent observation
of agent i ∈ I is any oi ∈Oi. A multi-agent observation is any o∈×i∈IOi.

A stochastic theory ST is a set of axioms that define stochastic actions. We repre-
sent stochastic actions through a finite set of deterministic actions, as usual [6,3]. When
a stochastic action is executed, then with a certain probability, “nature” executes ex-
actly one of its deterministic actions and produces exactly one possible observation. We
use the predicate stochastic(c, s, n, o, μ) to encode that when executing the stochastic
action c in the situation s, “nature” chooses the deterministic action n producing the
observation o with the probability μ. Here, for every stochastic action c and situation s,
the set of all (n, o, μ) such that stochastic(c, s, n, o, μ) is a probability function on the
set of all deterministic components n and observations o of c in s. We also use the no-
tation prob(c, s, n, o) to denote the probability μ such that stochastic(c, s, n, o, μ). We
assume that c and all its nature choices n have the same preconditions. A stochastic ac-
tion c is indirectly represented by providing a successor state axiom for every associated
nature choice n. The stochastic action c is executable in a situation s with observation o,
denoted Poss(co, s), iff prob(c, s, n, o)> 0 for some n.

The optimization theory OT specifies a reward and a utility function. The former
associates with every situation s and multi-agent action c, a reward to every agent i ∈ I ,
denoted reward(i, c, s). The utility function maps every reward and success probability
to a real-valued utility utility(v, pr ). We assume utility(v, 1)= v and utility(v, 0)=0
for all v. An example is utility(v, pr )= v · pr . The utility function suitably mediates
between the agent reward and the failure of actions due to unsatisfied preconditions.

Example 3.1 (Rugby Domain). Consider the following rugby domain, which is inspired
by the soccer domain in [11]. The rugby field consists of 22 rectangles, which are di-
vided into a 4 ×5 grid of 20 squares and two goal rectangles (see Fig. 1). We assume
a team of two agents a = {a1,a2} against a (static) team of two agents o = {o1,o2},
where a1 and o1 are the captains of a and o , respectively. Each agent occupies a
square and is able to do one of the following actions on each turn: N , S, E, W , stand ,



120 A. Finzi and T. Lukasiewicz

a2

a1a1

a2

a1

o’s

o’s a’s

G
O
A
L

G
O
A
L

G
O
A
L

G
O
A
L

a’s

o1

o2

o2

o2

o1

Fig. 1. Rugby Domain: Initial belief states of a1 and a2, respectively

passTo(α), and receive (move up, move down, move right, move left, no move, pass,
and receive the ball, respectively). The ball is represented by an oval and also occupies
a square. An agent is a ball owner iff it occupies the same square as the ball. The ball
follows the moves of the ball owner, and we have a goal when the ball owner steps
into the adversary goal. An agent can also pass the ball to another agent of the same
team, but this is possible only if the receiving agent is not closer to the opposing end of
the field than the ball, otherwise, an offside fault is called by the referee, and the ball
possession goes to the captain of the opposing team. When the ball owner goes into the
square occupied by the other agent, if the other agent stands, possession of ball changes.
Thus, a good defensive maneuver is to stand where the other agent wants to go.

We define the domain theory DT =(AT ,ST ,OT ) as follows. Concerning the basic
action theory AT , we assume the deterministic action move(α, m) (encoding that agent
α executes m), where α ∈a ∪o, m ∈{N, S, E, W, stand , passTo(α′), receive}, and
α′ is a team mate of α, and the fluents at(α, x, y, s) (encoding that agent α is at position
(x, y) in situation s) and haveBall (α, s) (encoding that agent α has the ball in situation
s). They are defined by the following successor state axioms:

at(α, x, y, do(c, s)) ≡ ∃x′, y′ (at(α, x′, y′, s) ∧ ∃m (move(α, m)∈ c ∧
((m= stand ∨ m= receive ∨ ∃β (m= passTo(β))) ∧ x= x′ ∧ y = y′) ∨
(m= N ∧ x =x′ ∧ y = y′+1) ∨ (m =S ∧ x= x′ ∧ y = y′−1) ∨
(m= E ∧ x= x′+1 ∧ y = y′) ∨ (m= W ∧ x= x′−1 ∧ y = y′))) ;

haveBall(α, do(c, s)) ≡ ∃β (haveBall(β, s) ∧ (α = β ∧ ¬∃β′(cngBall(β′, c, s) ∨
rcvBall(β′, c, s))) ∨ (α �= β ∧ (cngBall(α, c, s) ∨ rcvBall(α, c, s)))) .

Here, cngBall (α, c, s) is true iff the ball possession changes to α after an action c
in s (in the case of either an adversary block or an offside ball passage). The predicate
rcvBall (α, c, s) is true iff agent α receives the ball from the ball owner or is in offside.

As for the stochastic theory ST , we assume the stochastic action moveS (α, m),
which represents agent α’s attempt in doing m among N , S, E, W , stand , passTo(β),
and receive . It can either succeed, and then the deterministic action move(α, m) is
executed, or it can fail, and then the deterministic action move(α, stand) (that is, no
change) is executed. Furthermore, after each execution of moveS (α, m), agent α can
observe the presence of a team mate α′ in the direction of the movement, given that
agent α′ is visible, that is, not covered by another agent:



Game-Theoretic Agent Programming in Golog Under Partial Observability 121

stochastic({moveS (α, m)}, s, {a}, {obs(β, out)}, μ) ≡
∃μ1, μ2 ((a= move(α, m) ∧ (out = succ ∧ μ1 = 0.8 ∨ out = fail ∧ μ1 = 0.1) ∨

a= move(α, stand) ∧ (out = succ ∧ μ1 =0.01 ∨ out = fail ∧ μ1 = 0.09)) ∧
(visible(α, α′, a, s) ∧ (β = α′ ∧ μ2 = 0.7∨ β = none ∧ μ2 =0.1) ∨
¬visible(α, α′, a, s) ∧ (β =α′ ∧ μ2 = 0 ∨ β = none ∧ μ2 = 0.2)) ∧ μ =μ1·μ2) ;

stochastic({moveS (α, m),moveS(α′, m′)}, s, {aα, aα′}, {oα, oα′}, μ) ≡
∃μ1, μ2 (stochastic({moveS(α, m)}, s, {aα}, {oα}, μ1) ∧

stochastic({moveS (α′, m′)}, s, {aα′}, {oα′ }, μ2) ∧ μ = μ1 · μ2) .

Here, visible(α, α′, a, s) is true if α can observe α′ after the execution of a in s.
The stochastic action moveS (α, m) is associated with the observations obs(β, out),
where β ∈{α′,none} and r ∈ {succ, fail}. That is, after the execution of the action
move(α, m), agent α can observe both whether its team mate α′ is present or not (first
argument) and the success or failure of the action (second argument). Note that we as-
sume that obs(α′, out) has the probability zero, if α′ is not visible. Notice also that in
the last axiom, we assume the independence of the observations.

As for the optimization theory OT , the reward function for the agents is defined by:

reward(α, c, s) = r ≡ ∃α′(goal(α′, do(c, s))∧ (α′ ∈a ∧ r =M ∨
α′ ∈o ∧ r = −M)) ∨ ¬∃α′ (goal(α′, do(c, s)) ∧ evalTeamPos(c, r, s)) .

Here, the reward of agent α is very high (that is, M stands for a “big” integer), if a team
mate scores a goal. Otherwise, the reward depends on evalTeamPos(c, r, s), that is, the
position of its team relative to the adversary team as well as the ball possession.

3.2 Belief States

We next introduce belief states over situations, and define the semantics of actions in
terms of transitions between belief states. A belief state (over situations) has the form
b =(bi)i∈I , where every bi is a set of pairs (s, μ) consisting of a standard situation s
and a real μ ∈ (0, 1] such that all μ sum up to 1. Informally, every bi represents the
belief of agent i ∈ I expressed as a probability distribution over ordinary situations.
The probability of a fluent formula φ(s) in b =(bi)i∈I , denoted φ(b), is the probability
vector pr =(pr i)i∈I , where every pr i with i ∈ I is the sum of all μ such that φ(s) is true
and (s, μ)∈ bi. Similarly, reward(c, b) denotes the vector r = (ri)i∈I , where every ri

with i ∈ I is the sum of all reward(i, c, s) · μ such that (s, μ)∈ bi.
Given a deterministic action c and a belief state b = (bi)i∈I , the successor belief

state after executing c in b, denoted do(c, b), is the belief state b′ = (b′i)i∈I , where
b′i = {(do(c, s), μ/Poss(c, b)) | (s, μ)∈ bi,Poss(c, s)} for every i ∈ I . Given a stochas-
tic action c, an observation o of c, and a belief state b = (bi)i∈I , the successor belief state
after executing c in b and observing o, denoted do(co, b), is the belief state b′ =(b′i)i∈I ,
where b′i is obtained from all pairs (do(n, s), μ · μ′) such that (s, μ)∈ bi, Poss(c, s),
and μ′ = prob(c, s, n, o)> 0 by normalizing the probabilities to sum up to 1.

The probability of observing o after executing the stochastic action c in the belief
state b = (bi)i∈I , denoted prob(c, b, o), is the vector pr =(pr i)i∈I , where every pr i

with i ∈ I is the sum of all μ · μ′ such that (s, μ)∈ bi and μ′ = prob(c, s, n, o)> 0.

Example 3.2 (Rugby Domain cont’d). Consider the following scenario relative to the
domain theory of Example 3.1 (see Fig. 1). We focus only on controlling the members



122 A. Finzi and T. Lukasiewicz

of the team a , which cooperate to score a goal against the (static) team o . The captain
a1 of a has a complete view of the situation, and its belief state ba1 is shown in Fig. 1,
upper part: There is only the situation s1 with probability 1 such that at(a1, 2, 1, s1),
at(a2, 2, 4, s1), at(o2, 1, 1, s1), at(o1, 5, 2, s1), and haveBall (a1, s1) are true. That
is, the captain o1 of o is very close to the goal of a . From the perspective of a1, the
goal seems quite done: a1 can pass to a2, which has a paved way towards the goal.
But a1 has to cooperate with a2, whose vision of the situation is more confused and
expressed by the belief state ba2 in Fig. 1, lower part: a2 could be either at (a) (1, 1) or
at (b) (1, 2), and a1 could be either at (c) (2, 1) or at (d) (3, 1). Hence, a2’s belief state
may e.g. be given by ba2 = {(sa,c, 0.5), (sa,d, 0.3), (sb,c, 0.1), (sb,d, 0.1)}.

3.3 Syntax

Given the actions specified by a domain theory DT , a program p in POGTGolog has
one of the following forms (where α is a multi-agent action, φ is a condition, p, p1, p2
are programs, ai,1, . . . , ai,ni are actions of agents i ∈ I , and J ⊆ I with |J | ≥ 2):

1. Deterministic or stochastic action: α. Do α.

2. Nondeterministic action choice of agent i ∈ I: choice(i : ai,1| · · · |ai,ni).
Do an optimal action (for agent i ∈ I) among ai,1, . . . , ai,ni .

3. Nondeterministic joint action choice: ‖j∈Jchoice(j : aj,1| · · · |j : aj,nj ).
Do any action ‖j∈Jaj,ij with an optimal probability π = Πj∈Jπj,ij .

4. Test action: φ?. Test the truth of φ in the current situation.

5. Action sequence: [p1; p2]. Do p1 followed by p2.

6. Nondeterministic choice of two programs: (p1 | p2). Do p1 or p2.

7. Nondeterministic choice of an argument: πx (p(x)). Do any p(x).
8. Nondeterministic iteration: p�. Do p zero or more times.

9. Conditionals: if φ then p1 else p2.

10. While-loops: while φ do p.

11. Procedures, including recursion.

Hence, compared to Golog, we now also have multi-agent actions and stochastic actions
(instead of only primitive resp. deterministic actions). Furthermore, we now addition-
ally have different kinds of nondeterministic action choices for the agents in 2 and 3,
where one or any subset of the agents in I can choose among a finite set of single-agent
actions. The formal semantics of 2 and 3 is defined in such a way that an optimal action
is chosen for the agents (see Section 3.4). As usual, the sequence operator “;” is asso-
ciative (for example, [[p1; p2]; p3] and [p1; [p2; p3]] have the same semantics), and we
often use “p1; p2” to abbreviate “[p1; p2]” when there is no danger of confusion.

Example 3.3 (Rugby Domain cont’d). Consider again the scenario (and its belief states
ba1 and ba2) of Example 3.2 relative to the domain theory of Example 3.1 (see Fig. 1).
Both agents a1 and a2 have to decide when (and if) it is worth to pass the ball, consid-
ering that if a1 tries to pass while a2 is in offside (for example, in sa,d or sb,d), then the
ball goes to the captain o1 of the adversary team o, which is in a very good position to



Game-Theoretic Agent Programming in Golog Under Partial Observability 123

score a goal. The subsequent POGTGolog program, denoted schema , represents a way
of acting of a1 and a2 in this scenario, where the agents a1 and a2 have two possible
chances to coordinate themselves in order to pass the ball, and thereafter both of them
have to run towards the goal (with or without the ball).

choice(a1 : moveS(a1, E) |moveS(a1, stand) |moveS(a1, passTo(a2))) ‖
choice(a2 : moveS (a2, S) |moveS (a2, E) |moveS (a2, receive));

choice(a1 : moveS(a1, E) |moveS(a1, stand) |moveS(a1, passTo(a2))) ‖
choice(a2 : moveS (a2, E) |moveS(a2, receive));

{moveS(a1, E),moveS (a2, E)};
{moveS(a1, E),moveS (a2, E)} .

3.4 Semantics

We now define the formal semantics of POGTGolog programs p relative to a domain
theory DT =(AT , ST ,OT ) in terms of Nash equilibria. We first associate with every
POGTGolog program p, a belief state b, and horizon H ≥ 0, a set of executable H-step
policies π along with their expected utility Ui to every agent i ∈ I . We then define the
notion of a Nash equilibrium to characterize a subset of optimal such policies, which is
the natural semantics of a POGTGolog program relative to a domain theory.

Intuitively, given a horizon H ≥ 0, an H-step policy π of a POGTGolog program p
relative to a domain theory is obtained from the H-horizon part of p by replacing every
single-agent choice by a single action, and every multi-agent choice by a collection of
probability distributions, one over the actions of each agent. Formally, for every POGT-
Golog program p, we define the nil -terminated variant of p, denoted p̂, by p̂ = [p1; p̂2],
if p = [p1; p2], and p̂ = [p;nil ], otherwise. Given a POGTGolog program p relative to a
domain theory DT , a horizon H ≥ 0, and a start belief state b, we say that π is an H-step
policy of p in b iff DT |=G(p̂, b, H, π, 〈v, pr 〉), where v =(vi)i∈I and pr =(pr i)i∈I .
The expected H-step utility of π in b to i ∈ I , denoted Ui(H, b, π), is utility(vi, pri).
Here, we define the macro G(p̂, b, h, π, 〈v, pr〉) by induction as follows:

• Null program (p̂ =nil ) or zero horizon (h =0):

G(p̂, b, h, π, 〈v, pr〉) =def π = stop ∧ v =0∧ pr =1 .

Intuitively, p ends when it is null or at the horizon end.
• First program action c is deterministic (resp., stochastic with observation):

G([c ; p′], b, h, π, 〈v, pr〉) =def

(Poss(c, b)= 0 ∧ π = stop ∧ v =0∧ pr =1) ∨
(Poss(c, b)> 0 ∧ ∃π′, v′, pr ′ (G(p′, do(c, b), h−1, π′, 〈v′, pr ′〉) ∧

π = c ; π′ ∧ v = v′ + reward(c, b) ∧ pr = pr ′ · Poss(c, b)) .

Here, (si)i∈I op (ti)i∈I = (si op ti)i∈I for op ∈ {+, · }. Informally, suppose
that p̂= [c ; p′], where c is a deterministic action (resp., stochastic action with ob-
servation). If c is not executable in the belief state b, then p has only the policy
π = stop along with the expected reward v =0 and the success probability pr =0.
Otherwise, the optimal execution of [c ; p′] in the belief state b depends on that one
of p in do(c, b). Observe that c is executable in b with the probability Poss(c, b),
which affects the overall success probability pr.



124 A. Finzi and T. Lukasiewicz

• Stochastic first program action c (choice of nature):

G([c ; p′], b, h, π, 〈v, pr〉) =def

∃πq, vq, prq (
∧l

q=1 G([coq ; p′], b, h, coq ; πq, 〈vq , prq〉) ∧
π = coq ; for q =1 to l do if oq then πq ∧
v =

∑l
q=1 vq · prob(c, b, oq) ∧ pr =

∑l
q=1 prq · prob(c, b, oq)) .

Here, o1, . . . , ol are the possible observations. The generated policy is a conditional
plan in which every such observation oq is considered.

• Nondeterministic first program action (choice of agent i ∈ I):

G([choice(i : a1| · · · |an) ; p′], b, h, π, 〈v, pr〉) =def

∃πq, vq, prq , k (
∧n

q=1 G([aq ; p′], b, h, aq ; πq, 〈vq , prq〉) ∧
k ∈ {1, . . . , n} ∧ π = ak ; for q =1 to n do if ψq then πq ∧
v = vk ∧ pr = prk) .

Here, the ψq’s denote conditions that the other agents in I test to observe j’s choice.
• Nondeterministic first program action (joint choice of the agents in J):

G([ ‖j∈J choice(j : aj,1| · · · |aj,nj ); p′], b, h, π, 〈v, pr〉) =def

∃πa, va, pra, πa (
∧

a∈A G([
⋃

j∈J aj ; p′], b, h,
⋃

j∈J aj ; πa, 〈va, pra〉) ∧
∧

j∈J(πj ∈PD({aj,1, . . . , aj,nj })) ∧
π = ‖j∈Jπj ; for each a ∈ A do if φa then πa ∧
v =

∑
a∈A va · Πj∈Jπj(aj) ∧ pr =

∑
a∈A pra · Πj∈Jπj(aj) .

Here, A= ×j∈J{aj,1, . . . , aj,nj }, and each πj with j ∈J is a probability distribu-
tion over {aj,1, . . . , aj,nj }. Informally, we compute the joint policy for each pos-
sible combination of actions a ∈A. The conditions φa with a ∈A are to observe
what the agents have actually executed.

• Nondeterministic choice of two programs:

G([(p1 | p2); p′], b, h, π, 〈v, pr〉) =def

∃πq, vq, prq , k (
∧

q∈{1,2} G([pq; p′], b, h, πq, 〈vq , prq〉) ∧
k ∈ {1, 2} ∧ π =πk ∧ v = vk ∧ pr = prk) .

• Test action:

G([φ? ; p′], b, h, π, 〈v, pr〉) =def (φ[b] = 0 ∧ π = stop ∧ v =0∧ pr =0) ∨
∃pr ′(φ[b] > 0 ∧ G(p′, b, h, π, 〈v,pr ′〉) ∧ pr = pr ′ · φ[b]) .

Informally, let p = [φ? ; p′]. If φ is false in b, then p has only the policy π = stop
along with the expected reward v =0 and the success probability pr =0. Other-
wise, π is a policy of p with the expected reward v and success probability pr ′ ·φ[b]
iff π is a policy of p′ with the expected reward v and success probability pr ′.

• The macro G is naturally extended to nondeterministic choices of action arguments,
nondeterministic iterations, conditionals, while-loops, and procedures.

We are now ready to define the notion of a Nash equilibrium as follows. An H-step
policy of a POGTGolog program p in a belief state b is an H-step Nash equilibrium
of p in b iff, for every agent i ∈ I , it holds that Ui(H, b, π)≤ Ui(H, b, π′) for all H-step
policies π′ of p in b obtained from π by modifying only actions of agent i.



Game-Theoretic Agent Programming in Golog Under Partial Observability 125

Example 3.4 (Rugby Domain cont’d). Consider again the scenario (and its belief states
ba1 and ba2) of Example 3.2 relative to the domain theory of Example 3.1 (see Fig. 1).
Assuming the horizon H =4, a 4-step policy π of the POGTGolog program schema
of Example 3.3 is given by DT |= G([schema ;nil ], (ba1 , ba2), 4, π, 〈(v1, v2), (pr 1,
pr2)〉). For agent a1, an optimal way of acting is to pass the ball as soon as possi-
ble, which can be encoded by the following (pure) 4-step policy πa1 = c ; π1

a1
, where

c = {moveS (a1, passTo(a2)),moveS (a2, receive)}, and π1
a1

is an optimal 3-step pol-
icy of schema ′ in the belief state (do(c, ba1), do(c, ba2)). Here, schema ′ is obtained
from schema by removing the first nondeterministic joint action choice. The policy
πa1 gives to agent a2 three moveS (a2, E) attempts to achieve the touch-line. From the
standpoint of a2, instead, it is worth to do a moveS (a2, S) to observe if agent a1 is
aligned, trying to minimize the likelihood of a wrong passage. In this case, a1 has to
delay the passage waiting for the move of a2. The resulting (pure) 4-step policy πa2 is
more favorable to a2’s belief state:

πa2 = c ; if obs(a1, succ) then π1,o1
a2

else if obs(a1, fail) then π1,o2
a2

else if obs(none, succ) then π2,o3
a2

else if obs(none, fail) then π2,o4
a2 ,

where c = {moveS (a1, S),moveS (a2, stand)} and πk,oi
a2

is an optimal 3-step policy
of schema ′, when observing oi after the execution of c from (ba1 , ba2). Given this
conflict of opinions, an optimal compromise for both a1 and a2 is a Nash equilibrium.

4 A POGTGolog Interpreter

In this section, we define an interpreter for POGTGolog programs relative to domain
theories and provide optimality and representation results.

We define an interpreter for POGTGolog programs p relative to a domain theory
DT by specifying the macro DoG(p̂, b, H, π, 〈v, pr 〉), which takes as input the nil -
terminated variant p̂ of a POGTGolog program p, a belief state b =(bi)i∈I , and a finite
horizon H ≥ 0, and which computes as output an optimal H-step policy π and the
vectors v =(vi)i∈I and pr =(pr i)i∈I , respectively, where vi is the expected H-step
reward of π to i, and pr i ∈ [0, 1] is the H-step success probability of π for i.

We define the macro DoG(p̂, b, h, π, 〈v, pr 〉) in nearly the same way as the macro
G(p̂, b, h, π, 〈v, pr 〉) in Section 3.4, except for the following modifications:

• Nondeterministic first program action (choice of agent i ∈ I): The characterization
of DoG is obtained from the one of G by replacing the condition “k ∈{1, . . . , n}”
by the condition “k = argmaxq∈{1,...,n} utility(vq,i, prq,i)”, where vq = (vq,i)i∈I

and pr q = (prq,i)i∈I . Informally, given the possible actions a1, . . . , an for agent
i ∈ I , we select an optimal one for i, that is, one with greatest utility(vq,i, pr q,i).

• Nondeterministic first program action (joint choice of the agents in J): The char-
acterization of DoG is obtained from the one of G by replacing “

∧
j∈J (πj ∈

PD({aj,1, . . . , aj,nj }))” by “(πj)j∈J = selectNash({utility(va, pra)|J | a∈A})”,
where utility((si)i∈I , (ti)i∈I)= (utility(si, ti))i∈I , and s|J is the restriction of s
to J , for s =(si)i∈I and J ⊆ I . Informally, we compute a local Nash equilibrium



126 A. Finzi and T. Lukasiewicz

(πj)j∈J from a normal form game using the Nash selection function selectNash .
Note that we assume that all agents have the same Nash selection functions, and
thus they automatically select a common unique Nash equilibrium.

• Nondeterministic choice of two programs: The characterization of DoG is obtained
from the one of G by replacing “k ∈{1, 2}”. by “k = argmaxq∈{1,2} utility(vq,j ,
prq,j)”. Informally, given two possible programs p1 and p2, we select an optimal
one for agent j, that is, one with greatest utility(vq,j , prq,j).

The following theorem shows the important result that the macro DoG is optimal
in the sense that, for every horizon H ≥ 0, among the set of all H-step policies π of a
POGTGolog program p relative to a domain theory DT in a belief state b, it computes
an H-step Nash equilibrium and its expected H-step utility.

Theorem 4.1. Let DT = (AT ,ST ,OT ) be a domain theory, and let p be a POGT-
Golog program relative to DT . Let b be a belief state (over situations), let H ≥ 0 be
a horizon, and let DT |=DoG(p̂, b, H, π, 〈v, pr〉). Then, π is an H-step Nash equilib-
rium of p in b, and utility(vi, pr i) is its expected H-step utility to agent i ∈ I .

The next theorem shows that, given any horizon H ≥ 0, every POSG can be encoded as
a program p in POGTGolog, such that DoG computes one of its H-step Nash equilibria
and its expected H-step reward.

Theorem 4.2. Let G= (I, Z, (Ai)i∈I , (Oi)i∈I , P, (Ri)i∈I) be a POSG, let H ≥ 0 be a
horizon, and let b0 be a belief state of G. Then, there exists a domain theory DT =
(AT ,ST ,OT ), and a set of POGTGolog programs {p̂h | h ∈{0, . . . , H}} relative to
DT such that δ = (δi)i∈I is an H-step Nash equilibrium for G, where every (δi(b,
h))i∈I = (πi)i∈I is given by DT |=DoG(p̂h, Bb, h+1, ‖i∈Iπi ; π′, 〈v, pr 〉), for every
belief state b reachable from b0 and every h ∈{0, . . . , H}, where Bb is the belief state
over situations associated with the belief state b of G. Furthermore, the expected H-step
reward Gi(H, b, δ) to agent i ∈ I is given by utility(vi, pri), where DT |= DoG(p̂H ,
Bb, H+1, π, 〈v, pr 〉), for every belief state b reachable from b0.

5 Summary and Outlook

We have presented the agent programming language POGTGolog, which combines ex-
plicit agent programming in Golog with game-theoretic multi-agent planning in POSGs,
and which allows for modeling one team of cooperative agents under partial observabil-
ity, where the agents may have different initial belief states and not necessarily the same
rewards. It allows for specifying a partial control program in a high-level logical lan-
guage, which is then completed by an interpreter in an optimal way. To this end, we
have defined a formal semantics of POGTGolog programs in terms of Nash equilibria,
and specified a POGTGolog interpreter that computes one of these Nash equilibria. We
have illustrated the usefulness of this approach along a rugby scenario.

An interesting topic of future research is to generalize POGTGolog to the case in
which we can give up the assumption that every agent knows the initial local belief
states of all the other agents, their locally executed actions, and their local observations.



Game-Theoretic Agent Programming in Golog Under Partial Observability 127

This may, for example, be achieved by explicit communication between the agents or
by independence assumptions between the local actions and observations of different
agents. A further direction of future research is to generalize POGTGolog to the case
of two competing teams of cooperative agents under partially observability.

Acknowledgments. This work was supported by the Austrian Science Fund Project
P18146-N04 and by a Heisenberg Professorship of the German Research Foundation
(DFG). We thank the reviewers for their comments, which helped to improve this work.

References

1. F. Bacchus, J. Y. Halpern, and H. J. Levesque. Reasoning about noisy sensors and effectors
in the situation calculus. Artif. Intell., 111:171–208, 1999.

2. C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming for first-order MDPs.
In Proceedings IJCAI-2001, pp. 690–700.

3. C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-level agent
programming in the situation calculus. In Proceedings AAAI-2000, pp. 355–362.

4. A. Ferrein, C. Fritz, and G. Lakemeyer. Using Golog for deliberation and team coordination
in robotic soccer. Künstliche Intelligenz, 1:24–43, 2005.

5. A. Finzi and T. Lukasiewicz. Game-theoretic agent programming in Golog. In Proceedings
ECAI-2004, pp. 23–27.

6. A. Finzi and F. Pirri. Combining probabilities, failures and safety in robot control. In Pro-
ceedings IJCAI-2001, pp. 1331–1336.

7. C. V. Goldman and S. Zilberstein. Decentralized control of cooperative systems: Categoriza-
tion and complexity analysis. J. Artif. Intell. Res., 22:143–174, 2004.

8. C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Generalizing plans to new environments
in relational MDPs. In Proceedings IJCAI-2003, pp. 1003–1010.

9. E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic programming for partially ob-
servable stochastic games. In Proceedings AAAI-2004, pp. 709–715.

10. L. Pack Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially
observable stochastic domains. Artif. Intell., 101(1–2):99–134, 1998.

11. M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Proceedings ICML-1994, pp. 157–163.

12. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of Artificial
Intelligence. In Machine Intelligence 4, pp. 463–502. Edinburgh University Press, 1969.

13. R. Nair, M. Tambe, M. Yokoo, D. V. Pynadath, and S. Marsella. Taming decentralized
POMDPs: Towards efficient policy computation for multiagent settings. In Proceedings
IJCAI-2003, pp. 705–711. 2003.

14. G. Owen. Game Theory: Second Edition. Academic Press, 1982.
15. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley, 1994.
16. R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dy-

namical Systems. MIT Press, 2001.
17. J. van der Wal. Stochastic Dynamic Programming, volume 139 of Mathematical Centre

Tracts. Morgan Kaufmann, 1981.
18. J. von Neumann and O. Morgenstern. The Theory of Games and Economic Behavior. Prince-

ton University Press, 1947.
19. S. W. Yoon, A. Fern, and B. Givan. Inductive policy selection for first-order MDPs. In

Proceedings UAI-2002, pp. 569–576.



Finding Models for Blocked 3-SAT Problems
in Linear Time

by Systematical Refinement of a Sub-model

Gábor Kusper

Eszterházy Károly College
Department of Information Technology
1. sqr. Eszterházy , Eger 3300 Hungary

gkusper@sztech.ektf.hu
http://sztech.ektf.hu/~gkusper

Abstract. We report a polynomial time SAT problem instance, the
Blocked SAT problem. A blocked clause set, an instance of the Blocked
SAT problem, contains only blocked clauses. A close is blocked (for res-
olution) if it has a literal on which no resolution is possible in the clause
set. We know from work of O. Kullmann that a blocked clause can be
added or deleted from a clause set without changing its satisfiability.
Hence, any blocked clause set is satisfiable, but it is not clear how to
find a satisfying assignment for it. We introduce the Blocked SAT Solver
algorithm, which provides a model for Blocked SAT problems in linear
time, if we know at least one blocked literal per clause. To collect these
information polynomial time is needed in general. We show that in case
of 3-SAT we can collect these information in linear time. This means that
the Blocked 3-SAT problem is a linear time problem. We also discuss how
to use blocked clauses if the whole clause set is not blocked.

1 Introduction

Propositional Satisfiability is the problem of determining, for a formula of the
propositional calculus, if there is an assignment of truth values to its variables
for which that formula evaluates the true. By SAT we mean the problem of
propositional satisfiability for formulae in conjunctive normal form (CNF).

SAT is the first, and one of the simplest, of the many problems which have been
shown to be NP-complete [Coo71]. It is dual of propositional theorem proving,
and many practical NP-hard problems may be transformed efficiently to SAT.
Thus, a good SAT algorithm would likely have considerable utility. It seems
improbable that a polynomial time algorithm will be found for the general SAT
problem but we know that there are restricted SAT problems that can be solved
in polynomial time. So a ”good” SAT algorithm should check the input SAT
instance first whether it is an instance of such a restricted SAT problem. In this
work we introduce the Blocked SAT problem, which is solvable in polynomial
time. We list some polynomial time solvable restricted SAT problems:

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 128–142, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Finding Models for Blocked 3-SAT Problems in Linear Time 129

1. The restriction of SAT to instances where all clauses have length k is
denoted by k-SAT. Of special interest are 2-SAT and 3-SAT : 3 is the smallest
value of k for which k-SAT is NP-complete, while 2-SAT is solvable in linear
time [EIS76, APT79].

2. Horn SAT is the restriction to instances where each clause has at most
one un-negated variable. Horn SAT is solvable in linear time [DG84, Scu90], as
are a number of generalizations such as renamable Horn SAT [Lew78, Asp80],
extended Horn SAT [CH91] and q-Horn SAT [BHS94, BCH+94].

3. The hierarchy of tractable satisfiability problems [DE92], which is based on
Horn SAT and 2-SAT, is solvable in polynomial time. An instance on the k level
of the hierarchy is solvable in O(nk + 1) time.

4. Nested SAT, in which there is a linear ordering on the variables and no two
clauses overlap with respect to the interval defined by the variables they contain
[Knu90].

5. SAT in which no variable appears more than twice. All such problems are
satisfiable if they contain no unit clauses [Tov84].

6. r,r-SAT, where r,s-SAT is the class of problems in which every clause
has exactly r literals and every variable has at most s occurrences. All r,r-SAT
problems are satisfiable in polynomial time [Tov84].

7. A formula is SLUR (Single Lookahead Unit Resolution) solvable if, for
all possible sequences of selected variables, algorithm SLUR does not give up.
Algorithm SLUR is a nondeterministic algorithm based on unit propagation. It
eventually gives up the search if it starts with, or creates, an unsatisfiable formula
with no unit clauses. The class of SLUR solvable formulae was developed as a
generalization including Horn SAT, renamable Horn SAT, extended Horn SAT,
and the class of CC-balanced formulae [SAF+95].

8. Resolution-Free SAT Problem, where every resolution results in a tautolo-
gous clause, is solvable in linear time [Kus05].

The Blocked SAT problem is also a restriction of SAT to instances where each
clause of the clause set is blocked, i.e., we have at least one blocked literal in
each clause. It is a generalization of the Resolution-Free SAT problem, where all
literals are blocked.

A clause is blocked in a clause set if it has a literal on which no resolution
is possible in that clause set, i.e., it is blocked for resolution. The notion of
blocked clause was introduced by O. Kullmann in [Kul99a, Kul99b]. He studied
blocked clauses because we wanted to add new short clauses to the input clause
set to improve the worst case time complexity of his algorithm. He proved that
a blocked clause can be added or deleted from a clause set without changing its
satisfiability.

Based on that idea it is easy to show that any blocked clause set is satisfiable,
as if we remove all blocked clauses then we obtain the trivially satisfiable clause
set. But this process do not show how to find a model for blocked clause sets.

The Blocked SAT Solver algorithm provides a model for Blocked SAT prob-
lems in linear time, if we know at least one blocked literal per clauses. It uses
heavily the notion of sub-model [Kus02, Kus05].



130 G. Kusper

A sub-model is a partial assignment created, by definition, by the negation
of a resolution-mate. A resolution-mate is obtained from a clause, the generator
clause, by negating one of its literals, the generator literal.

The algorithm exploits the fact that if a sub-model is generated form a blocked
clause (generator clause) using one of its blocked literal as the generator one
(generator literal), then it is a model for those clauses in the set which contain
either positively or negatively the generator literal. Moreover, it satisfies from
the rest the ones which differ from it. (The clause A differs from the clause B if
it has a literal a, i.e., a ∈ A, which occurs in B negatively, i.e., a ∈ B.) Which
means it satisfies almost the whole clause set! Only those clauses are not satisfied
which do not contain the generator literal neither positively nor negatively and
do not differ from the generator clause. Here comes the trick. If we have such
a clause (no-occurrence clause), then the union of it and the generator clause
is a clause. This union will be our new generator clause. It contains an unused
blocked liter. This literal will our next generator literal (keeping also the older
ones). We generate a new sub-model from the generator clause and generator
literals which will satisfy all the clauses which was satisfied by the old one and
which satisfies also many more clauses. This process is called as the refinement
of the sub-model. After finitely many refinement steps the sub-model will satisfy
the whole clause set.

It is not necessary that from the beginning all clauses are blocked, but only
that the (confluent) reduction process of eliminating blocked clauses finally elim-
inates all clauses.

We also discuss how to collect the information whether a literal is blocked or
not. We show that in case of 3-SAT we can collect these information in linear
time by using cubic memory space.

We introduce the data structure called NLC, Number of Literal Combinations.
We create NLC by reading each clause only once. For every subset of every clause
we increase the corresponding counter in NLC by one. Afterwards we read again
the clause set and for every literal in every clause we calculate the number of
possible resolution partners minus the number of blocking clauses. For example
if the clause is {a, b, c} and the literal is a than this number is

NLC[a] − NLC[a, b] − NLC[a, c] + NLC[a, b, c].

If this number is zero then this literal is blocked in the input clause set.
In case of 3-SAT we need cubic memory space to store NLC. We read and

write it 7 times (3 times for one length subsets of the clause, 3 times for two
length subsets of the clause and 1 time for the clause itself) per clauses in the
first loop. In the second loop we read it 4 times per literal (see the example
above). Both steps are linear in the number of literals. This means, since the
Blocked SAT Solver is a linear time method if we know at least one blocked
literal per clauses, that the Blocked 3-SAT problem is a linear time problem.

An input clause set is rarely blocked but during the work of a general SAT
solver algorithm we may encounter a blocked clause set. Any general SAT solver
uses some simplification steps: resolution, unit-propagation, removing subsumed



Finding Models for Blocked 3-SAT Problems in Linear Time 131

clauses, etc. The fewer clauses (or literals) are in a clause set the more likely that
it is blocked. This means that soon or later a general SAT solver encounters a
blocked clause set. In this case it is worth switching to the Blocked SAT Solver
algorithm since it is polynomial. The simplification steps may update the NLC
data structure which makes it easier to decide whether an immediate clause set
is blocked or not.

We also discuss how to use blocked clauses if the whole clause set is not
blocked. We introduce two lemmas, the Blocked Clear Clause Rule and the
Independent Blocked Clause Rule, to describe cases where the answer is true.

2 Definitions

We use the well known set based representation of SAT. The abbreviation ”iff”
means ”if and only if”.

Let V be a finite set of Boolean variables. The negation of a variable v is
denoted by v. Given a set U , we denote U := {u | u ∈ U} and call the negation
of the set U .

Literals are members of the set W := V ∪V . Positive literals are the members
of the set V . Negative literals are their negations. If w denotes a negative literal
v, then w denotes the positive literal v.

Clauses and assignments are finite sets of literals that do not contain any
literal together with its negation simultaneously. A clause is interpreted as a
disjunction of its literals. An assignment is interpreted as a conjunction of its
literals. A clause set is a finite set of clauses. A clause set is interpreted as a
conjunction of its clauses.

We use the following constants: n is the number of variable, and m is the
number of clauses in the input clause set.

If C is a clause and |C| = k, then we say that C is a k-clause. Special cases
are unit clauses or units which are 1-clauses, and clear or total clauses which are
n-clauses. Note that any unit clause is a clause and an assignment at the same
time. The clause set CC is the set of all clear clauses.

CC := {C | Clause(C) ∧ |C| = n}.

A clause C is subsumed by the clause set S, denoted by C ⊇∈ S, iff

C ⊇∈ S : ⇐⇒ Clause(C) ∧ ClauseSet(S) ∧ ∃
B∈S

B ⊆ C.

A clause C is entailed by the clause set S, denoted by C ⊇∈CC S, iff

C ⊇∈CC S : ⇐⇒ Clause(C) ∧ ClauseSet(S) ∧ ∀
D∈CC
C⊆D

∃
B∈S

B ⊆ D.

A clause C is independent in clause set S iff it is not entailed by S.
If A and B are clauses then we define the clause difference of them, denoted

by diff (A, B), as
diff (A, B) := A ∩ B.



132 G. Kusper

If diff (A, B) �= ∅ then we say that A differs from B.
Resolution can be performed on two clauses iff they differ only in one variable.

If resolution can be performed then the resolvent, denoted by Res (A, B), is

Res (A, B) := (A ∪ B) \ (diff (A, B) ∪ diff (B, A)).

If S is a clause set and A is an assignment, then we can do hyper-unit propa-
gation, for short HUP, by A on S, denoted by HUP(S, A), as follows:

HUP(S, A) := {C \ {A} | C ∈ S ∧ C ∩ A = ∅}.

A literal c ∈ C is blocked in the clause C and in the clause set S, denoted by
Blck(c, C, S), iff

Blck(c, C, S) : ⇐⇒ ∀
B∈S
c∈B

∃
b∈B
b�=c

b ∈ C,

A clause C is blocked in the clause set S, denoted by Blck(C, S), iff a blocked
literal exists in it. A clause set S is blocked, denoted by Blck(S), iff all clauses
in it are blocked.

If C is a clause and A is an assignment then we say that the sub-model
generated by C and A, denoted by sm(C, A), is

sm(C, A) =
{

(C \ A) ∪ A , ifC �= ∅;
∅ , otherwise.

A partial assignment I is a model for a clause set S, denoted by M(S, I), iff
HUP(S, I) is the empty clause set.

3 The Blocked SAT Problem

In this section we introduce the Blocked SAT problem which is a restriction of
SAT to instances where each clause of the clause set is blocked.

A clause is blocked in a clause set if it has a literal on which no resolution
is possible in that clause set. The notion of blocked clause was introduced in
[Kul99a, Kul99b]. A blocked clause can be added or deleted from a clause set
without changing its satisfiability. From this it is easy to show that any blocked
clause set is satisfiable, as if we remove all blocked clauses then we obtain the
trivially satisfiable clause set. But this process do not show how to find a model
for blocked clause sets.

Now we recall the formal definition of the blocked clause set:

Blck(S) : ⇐⇒ ∀
A∈S

∃
a∈A

∀
B∈S
a∈B

∃
b∈B
b�=a

b ∈ A.

Since the definition has 2 quantifiers on clauses and 2 quantifiers on literals, in
these clauses we need O(n2m2) time to decide whether the clause set is blocked.

We give three examples for blocked clause sets. Notation is explained below.



Finding Models for Blocked 3-SAT Problems in Linear Time 133

1st 2nd 3rd
(+)+ x (-)+ x x + +(-)
x +(+) x(+)+ x +(-)+
(-)- x x -(-)x (+)- -
x -(-) x x -(+) (-)+ +

-(+)-
- -(+)

+ - + - - + + + + +
- + - x + - x - - -

In the example we used the literal matrix representation of clause sets where
rows corresponds to clauses and columns to variable. The symbol + means posi-
tive literal occurrence, - means negative literal occurrence and x means no literal
occurrence. Under each example we list all models for it. Blocked literals are in
brackets.

The Blocked SAT problem is a very restrictive subset of the general SAT
problem, but it can be solved in polynomial time. During the work of a general
SAT solver immediate blocked clause sets are frequent.

4 The Blocked SAT Solver Algorithm

In this section we introduce the blocked SAT Solver algorithm which solves the
Blocked SAT problem in polynomial time. To be more precise we present a linear
time version which uses O(4m) basic set operations. But this version assumes
that we already know about at least one blocked literal per clause. However, in
general, polynomial (O(n2m2)) time is needed to collect that information.

Algorithm 1 (Blocked SAT Solver)
BlockedSATSolver(S, Z)
input: clause set S that is non-empty and blocked,
output: assignment Z, a model for S.
1 START

2 (A, B) = (∅, ∅);
3 // A is the generator clause, B is the set of generator literals.
4 for each C ∈ S do

5 // If C and A differ then sm(A, B) satisfies C, see Lemma 1.
6 if (diff (A, C) = ∅) then

7 // Otherwise, C is a no-occurrence clause.
8 // We have to consider it.
9 A := A ∪ C;

10 // This is the new generator clause.
11 if (B ∩ C = ∅) then



134 G. Kusper

12 // In this case we have to refine B

13 // to gain C ∩ sm(A, B) �= ∅.
14 Let c ∈ C be a blocked literal inC, S;
15 B := B ∪ {c};
16 // This is the new set of generator literals.
17 fi
18 fi
19 od
20 Z := sm(A, B);
21 HALT

The main idea of the algorithm is the following. If the input clause set is
blocked then if we generate a sub-model from a blocked clause (generator clause,
in the algorithm variable A) and from a blocked literal (generator literal(s), in
the algorithm variable B) then we obtain a model for those clauses from the
clause set which contain the generator literal or the negation of it. But there
might be a clause (no-occurrence clause, in the algorithm variable C) which does
not contain the generator literal either positively or negatively. This means that
the union of the no-occurrence clause and the generator clause is a clause. This
clause will be our new generator clause. Since the no-occurrence clause is blocked
too, we can select a blocked literal from it and add to the generator literals.
We do this only if it is necessary, i.e., if the sub-model does not satisfies the
no-occurrence clause. The new sub-model is generated from the new generator
clause and from the new generator literals. This step is the refinement step.
One can show that this new sub-model is still a model for the clauses which are
satisfied by the old one (see the 2nd auxiliary lemma). Hence, we obtain a model
for the input clause set by performing refinement steps while we read its clauses
one after the other.

It is not necessary that from the beginning all clauses are blocked, but only
that the (confluent) reduction process of eliminating blocked clauses finally elim-
inates all clauses.

We see that this algorithm uses each clause only once and in an iteration it
does 4 basic set operations in the worst case.

First we give an example on how the Blocked SAT Solver algorithm works.
The variables S, C, A, c, B are the variables from the algorithm. Blocked literals
are in brackets in columns S and C. The abbreviation ”unch.” means unchanged.

S C A {c} B sm(A, B)
+(-)x x
(+)x + x
- x(-)x
x x -(+)

+(-)x x +-xx x-xx x-xx --xx

unch. (+)x + x +-+x +xxx +-xx +--x
unch. - x(-)x unch. unch. +--x
unch. x x -(+) unch. unch. +--x



Finding Models for Blocked 3-SAT Problems in Linear Time 135

The input clause set, S, is non-empty and blocked. So the precondition is
fulfilled. We take the first clause and one of its blocked literal. We generate a
sub-model from them. This will be the base of the refinement. We read the next
clause, which is a no-occurrence clause. We refine the sub-model. We read the
next clause, but it is satisfied, so we do not refine the sub-model. The same is
true for the lest clause. The last sub-model as we expected is indeed a model for
the input clause set.

The following lemmas are needed to show that the Blocked SAT Solver al-
gorithm always finds a model for a blocked clause set. The first one states that
if we have a blocked clause set S and its subset G which contains only clauses
that do not differ form each other then there is an algorithm which constructs
B that has sm(

⋃
G, B) is a model for the clauses which differ from

⋃
G.

Lemma 1 (Auxiliary Lemma 1 for Blocked SAT Solver)
Assume S is a non-empty, blocked clause set. Assume G ⊆ S, G is non-empty
and for all E, F ∈ G we have diff (E, F ) = ∅. Assume A =

⋃
G. Assume B is a

clause constructed by the following piece of pseudo-code:
1 (B, i) := (∅, 1);

2 for each E ∈ G do
3 if (B ∩ E = ∅) then
4 Let ai ∈ E be a blocked literal inE, S;
5 (B, i) := (B ∪ {ai}, i + 1);
6 fi
7 od

Assume C ∈ S and diff (A, C) �= ∅. Then C ∩ sm(A, B) �= ∅.
Proof by Contradiction: Assume C ∩ sm(A, B) = ∅. We show that this
assumption leads to a contradiction. From this assumption we know, by
definition of sub-model, that diff (A, C) ⊆ B. Let k = |B|. Note that we
know, from the construction of B, that B = {a1..ak}. Let i ∈ {1..k} be
the largest index such that ai ∈ diff (A, C) and ai ∈ B. (Such i ∈ {1..k}
exists, because diff (A, C) �= ∅ and diff (A, C) ⊆ B.) Then we know,
from the construction of B, that there is a clause E ∈ G which has
(B \ {ai..ak}) ∩ E = ∅ and ai ∈ E and ai ∈ E is blocked in E, S. Since
ai ∈ diff (A, C) we know, by definition of clause difference, that ai ∈ C.
From this and from that ai ∈ E is blocked in E, S and from C ∈ S we
know, by definition of blocked literal, that for some c ∈ C we have c �= ai

and c ∈ E. From this and from A =
⋃

G we know that c ∈ A. Hence,
c ∈ diff (A, C).

From c ∈ E and from (B \ {ai..ak}) ∩ E = ∅ we know that c /∈
{a1..ai−1}. From c �= ai, i.e., from c �= ai and from c ∈ diff (A, C) and
from the fact that i ∈ {1..k} is the largest index such that ai ∈ diff (A, C)
and ai ∈ B we know that c /∈ {ai..ak}. Hence, c /∈ B.

But this is a contradiction, because c ∈ diff (A, C) and diff (A, C) is
a subset of B. Hence, C ∩ sm(A, B) �= ∅.



136 G. Kusper

The main idea of this proof is that in the worst-case A and C differ only in
blocked literals from B, i.e., the sub-model does not satisfy C. But the construc-
tion of B makes sure that this cannot happen.

This lemma makes sure that sm(A, B) satisfies C provided that it is not a
no-occurrence clause.

If we look at the Blocked SAT Solver algorithm we see that it does the same
as the piece of the pseudo-code in this auxiliary lemma. The only difference
is that in the lemma we already have the set of clauses which does not differ
from each other (this is the clause set G), while in the algorithm we collect
these clauses during the computation. In both cases A is the union of these
clauses.

Remember, we enlarge A and B only if we encounter a no-occurrence clause
C in order to refine the sub-model, which means that the new sub-model will
satisfies C.

The second auxiliary lemma states that this new sub-model still satisfies those
clauses which were satisfied by the old one.

Lemma 2 (Auxiliary Lemma 2 for Blocked SAT Solver). Let S be a non-
empty, blocked clause set. Let A be a clause. Let B ⊆ A. Let C ∈ S such that
C ⊆ A and B ∩ C = ∅. Let c ∈ C be a blocked literal in C, S. Let D ∈ S such
that D ∩ sm(A, B) �= ∅. Then D ∩ sm(A, B ∪ {c}) �= ∅.

Proof: If c /∈ D then D∩sm(A, B∪{c}) �= ∅ follows from D∩sm(A, B) �=∅.
Assume c ∈ D. Then since c ∈ C is blocked in C, S, by definition of
blocked literal, we know that for some d ∈ D we have d �= c and d ∈ C.
Since C ⊆ A we know that d ∈ A and from B ∩ C = ∅ we know that
d /∈ B. Therefore, by definition of sub-model, d ∈ sm(A, B). From d �= c
we know, by definition of sub-model, that d ∈ sm(A, B ∪ {c}). Hence,
D ∩ sm(A, B ∪ {c}) �= ∅.

Now we show that the Blocked SAT Solver algorithm solves the Blocked SAT
problem. We use ”{}” to mark formulae that are True at the respective points of
algorithm, in order to prove the correctness of the algorithm in the Hoare calcu-
lus. The Hoare calculus makes sure that if we have a so-called ”while program”
and we can arrive from the precondition to the postcondition using the rules of
the calculus, then for each input which fulfills the precondition the computed
output fulfills the postcondition if the computation terminates. For more details
about Hoare calculus please consult [LS87].

For better readability we use the infix version of hyper-unit propagation, which
is denoted by an asterisk (*). This means that instead of HUP(S, A) we use S∗A.
This variant of Blocked SAT Solver uses a new variable T in order to be able to
give the invariant of the algorithm. We know that Block SAT Solver considers
each clause in the input claus set. In T we collect the visited clauses. The essence
of the invariant is that sm(A, B) is a model of the visited clauses.

In Hoare calculus we will use the following invariant and auxiliary formulae:

Inv :⇔ Blck(S) ∧ S �= ∅ ∧ T ∗ sm(A, B) = ∅.



Finding Models for Blocked 3-SAT Problems in Linear Time 137

If1 :⇔ Inv ∧ C ∈ (S \ T ).

If2 :⇔ If1 ∧ C ⊆ A.

IT 2 :⇔ If2 ∧ B ∩ C = ∅.

Algorithm 2 (Blocked SAT Solver)
BlockedSATSolver(S, Z)
input: clause set S that is non-empty and blocked,
output: assignment Z, a model for S.
1 START

2 // {Blck(S) ∧ S �= ∅}, precondition
3 // {Blck(S) ∧ S �= ∅ ∧ ∅ ∗ sm(∅, ∅) = ∅}
4 (A, B, T ) := (∅, ∅, ∅);
5 // {Blck(S) ∧ S �= ∅ ∧ T ∗ sm(A, B) = ∅}, by assignment axiom
6 // {{Inv}, loop invariant
7 while (T �= S) do
8 // {{Inv ∧ T �= S}, by while rule
9 // {{Inv ∧ T �= S}

10 Let C ∈ S \ T ;
11 // {{Inv ∧ C ∈ S \ T }
12 // {{If1}
13 if (diff (A, C) = ∅) then
14 // {{If1 ∧ diff (A, C) = ∅}, by if-then rule
15 // {{If1 ∧ T ∗ sm(A ∪ C, B) = ∅}
16 A := A ∪ C;
17 // {{If1 ∧ C ⊆ A ∧ T ∗ sm(A, B) = ∅}, by assignment axiom
18 // {{If2}, it is the same
19 if (B ∩ C = ∅) then
20 // {{If2 ∧ B ∩ C = ∅}, by if-then rule
21 // {{IT 2}, it is the same
22 Let c ∈ C be a blocked literal inC, S;
23 // {{IT 2 ∧ Blck(c, C, S)}
24 // {{IT 2 ∧ T ∗ sm(A, B ∪ {c}) = ∅}, by Lemma 2
25 B := B ∪ {c};
26 // {{If2 ∧ B ∩ C �= ∅ ∧ T ∗ sm(A, B) = ∅}, by assign. axiom
27 // {{If2 ∧ B ∩ C �= ∅}
28 fi
29 // {{If2 ∧ B ∩ C �= ∅}, by if-else rule
30 // {{If2 ∧ C ∩ sm(A, B) �= ∅}



138 G. Kusper

31 else
32 // {{If1 ∧ diff (A, C) �= ∅}, by if-else rule
33 // {{If1 ∧ C ∩ sm(A, B) �= ∅}, by Lemma 1
34 fi
35 // {{If1 ∧ C ∩ sm(A, B) �= ∅}
36 // {{Inv ∧ C ∈ S \ T ∧ T ∪ {C} ∗ sm(A, B) = ∅}, logical consequence
37 T := T ∪ {C};
38 // {{Inv ∧ T ∗ sm(A, B) = ∅}, by assignment axiom
39 // {{Inv}, it is the same
40 od
41 // {{Inv ∧ T ∗ sm(A, B) = ∅ ∧ T = S}, by while rule
42 // {{S ∗ sm(A, B) = ∅}, logical consequence
43 Z := sm(A, B);
44 // {{S ∗ Z = ∅}, by assignment axiom
45 // {{M(S, Z)}, postcondition
46 HALT

Now we see that from the precondition (the clause set is non-empty and
blocked) the postcondition (the computed assignment is a model for the clause
set) follows if we follow the steps of the algorithm.

The only question is whether the algorithm always terminates or sometimes
runs in an infinite loop. But it terminates always, because it does nothing else
but uses each clause from the clause set one after the other and clause sets are
finite sets.

Theorem 3 (Correctness of the Blocked SAT Solver)
Let S be a non-empty and blocked clause set. Then after execution of Blocked
SAT Solver(S, I), I is a model for S.

Proof: From Algorithm 2, and from the fact that it terminates we obtain
that Blocked SAT Solver terminates for every non-empty and blocked
clause set and gives back a model for it.

Before we discuss the worst case time complexity of the algorithm we show
how to decide in linear time whether a 3-SAT problem is blocked or not.

We use a special data structure called NLC, Number of Literal Combinations.
For every subset of every clause we increase the corresponding counter in NLC
by one. This means that NLC contains 3 arrays, a one dimensional (1D) with 2n
entries for counting 1 length subsets, a 2D one with 2n ∗ 2n entries for counting
2 length subsets and a 3D one with 2n ∗ 2n ∗ 2n entries for counting the clauses.

We use literals as indices in square brackets. If we give one literal in the square
brackets then we access the 1D array, by 2 literals the 2D one and by 3 literals
the 3D one.



Finding Models for Blocked 3-SAT Problems in Linear Time 139

Since NLC[x, y] is the same as NLC[y, x], we assume that the indices are
written in alphabetical order. Note that this means that the 2D and 3D arrays
contain only zeros below the diagonal.

We initialize NLC by filling in it by zeros. Afterwards, we use it in two loops.
1. In the first loop we read the clauses of the input clause set one after the

other. For all subsets of all clauses we increase the corresponding entry in NLC
by one. For example if the input clause is {a, b, c} then we increase these entries:

NLC[a], NLC[b], NLC[c], NLC[a, b], NLC[a, c], NLC[b, c], NLC[a, b, c].

This means that we do 7 read and write steps (to increase one entry, we have to
read its value first, add one, and write it back) for all clauses, i.e., the first loop
is an O(2 ∗ 7m) time method.

Before we go to the second loop we have to investigate the 2D and 3D arrays
further. We see that they contain a lots of zeros. In the 3D one we have at most
only m non zero entries. In the 2D one we have at most only 3m non zero entries.
Hence, it is worth using hash tables instead of arrays. We assume that we can
initialize these hash tables in O(nm) time. Therefore, the initialization of NLC
takes O(nm + 2n) write steps.

2. In the second loop we read again the clauses of the input clause set one
after the other. For each literal in each clause we compute the number of possible
resolution partners minus the number of blocking clauses. Let us assume that
the actual clause is A = {a, b, c} and the actual literal is a. Then the possible
resolution partners are those clauses that contain a. We know the number of
those closes, it is stored in NLC[a]. We recall the definition of blocked literal:

Blck(a, A, S) : ⇐⇒ ∀
B∈S
a∈B

∃
x∈B
x�=a

x ∈ A,

This means that in those clauses which are possible resolution partners, there is
an other literal x such that x occurs in A. In this case x is either b or c. So we
obtain the number of blocking clauses as NLC[a, b] + NLC[a, c]. But if we do
so, then we count the clauses, which contains a and b at the same time, twice.
This means that we have to subtract NLC[a, b, c] from the number of blocking
clauses. Hence, the number of possible resolution partners minus the number of
blocking clauses is:

NLC[a] − NLC[a, b] − NLC[a, c] + NLC[a, b, c].

If this number is zero then it means that all possible resolution partners are at
the same time blocking clauses, i.e., the literal a in the clause {a, b, c} is blocked
in the input clause set.

In the second loop we read NLC 4 times for each literal, i.e., it is a O(4nm)
time method in the worst case.

The overall worst case time complexity of the usage of NLC is O(nm + 2n +
2 ∗ 7m + 4nm) = O(5nm + 14m + 2n) = O(5nm).

We can also use NLC for the general SAT problem. Then we need O(2k)
memory space and O(2∗ (2k −1)m) time for the first loop, and O(2k−1nm) time



140 G. Kusper

for the second loop in the worst case, where k is the length of largest clause in
the input clause set.

Now we can prove that Blocked SAT Solver is a linear time algorithm if at
least one blocked literal per clause is known or the input clause set is a 3-SAT
problem, otherwise it is a quadratic time algorithm.

Theorem 4 (Complexity of the Blocked SAT Solver)
Let S be a non-empty and blocked clause set. The worst-case time complexity of
Blocked SAT Solver(S, I) is O(4nm), if at least one blocked liter per clause is
known; O(9nm) if S is a 3-SAT problem; O(n2m2), otherwise.

Proof: If at least one blocked literal per clause is known then in the
worst-case we need O(4m) basic set operations, because there is only
one for loop on clauses of the set and in one iteration in the worst-case
we perform 4 basic set operation. Since any basic set operation can be
performed in O(n) time, the worst-case time complexity of Blocked SAT
Solver is O(4nm), i.e., linear in the number of literals.

Otherwise, if the S is a 3-SAT problem then by using NLC data
structure we need O(5nm) time in the worst case to provide the necessary
information for the Blocked SAT Solver algorithm. This means that we
need O(9nm) time altogether which is linear in the number of literals.
Otherwise, in the worst-case we need O(n2m2) time, see the previous sec-
tion, to provide the necessary information for the Blocked SAT Solver
algorithm. Since O(n2m2) dominates O(4nm) the worst-case time com-
plexity of Blocked SAT Solver is O(n2m2).

5 Blocked Clause Rules

If the clause set is not blocked but it contains blocked clauses then it is a question
whether we can use the blocked clauses to simplify the clause set or not? We
also discuss this question briefly.

The Blocked Clear Clause Rule states that if a clause set contains only clear
clauses (i.e., full clauses) and one of them is blocked, then the sub-model gener-
ated from this blocked one is a model. This is a very rare case but it serves as a
basis for the next rule.

Lemma 3 (Blocked Clear Clause Rule). Let S be a clause set. Let C ∈ S be
a blocked and clear clause. Let a ∈ C be a blocked literal C, S. Then sm(C, { a})
is a model for S, provided that

(a) either S is a subset of CC,
(b) or C is not subsumed by S \ {C}.
Proof:
(a) To show this, by definition of model, it suffices to show that for an
arbitrary but fixed B ∈ S we have that B ∩ sm(C, { a}) is not empty.
Since S is a subset of CC we know that B is a clear clause. Hence, there
are two cases, either a ∈ B or a ∈ B.



Finding Models for Blocked 3-SAT Problems in Linear Time 141

In case a ∈ B we have, by definition of sub-model, that a∈sm(C, {a}).
Hence, B ∩ sm(C, { a}) is not empty.

In case a ∈ B, since a ∈ C is blocked in C, S we know, by definition
of blocked literal, that for some b ∈ B we have b �= a and b ∈ C. From
this, by definition of sub-model, we know that b ∈ sm(C, { a}). Hence,
B ∩ sm(C, { a}) is not empty.

Hence, if S is a subset of CC, then sm(C, { a}) is a model for S.
(b) To show this, by definition of model, it suffices to show that for an
arbitrary but fixed B ∈ S we have that B ∩ sm(C, { a}) is not empty.
Since C is not subsumed by S \ {C} we know, by definition of subsump-
tion, that B � C. From this, since C is a clear clause we know that for
some b ∈ B we have b ∈ C. There are two cases, either b = a or b �= a.

In the first case we have b = a, i.e., a ∈ B. From this since a ∈ C is
blocked in C, S we know, by definition of blocked literal, that for some
d ∈ B we have that d �= a and d ∈ C. From this, by definition of sub-
model, we know that d ∈ sm(C, { a}). Hence, B ∩ sm(C, { a}) is not
empty.

In the second case we have b �= a. From this and from b ∈ C we know,
by definition of sub-model, that b ∈ sm(C, { a}). Hence, B ∩ sm(C, { a})
is not empty.

Hence, If C is not subsumed by S \ {C}, then sm(C, { a}) is a model
for S.

The Independent Blocked Clause Rule states that if a clause set contains an
independent blocked clause, then it is satisfiable and a sub-model generated from
this clause is a part of a model. This situation occurs quite often, but checking
independent-ness is expensive.

Lemma 4 (Independent Blocked Clause Rule). Let S be a clause set. Let
A ∈ S be blocked in S and independent in S \ {A}. Let a ∈ A be a blocked
literal in A, S. Then there is a model M for S such that sm(A, { a}) ⊆ M , i.e.,
HUP(S, sm(A, { a})) is satisfiable.

Proof: We know that A is independent in S \{A}. Hence, by definition of
independent, we know that there is a clear clause C that is subsumed by
A and not subsumed by any other clause in S. Since A ⊆ C we know that
sm(A, { a}) ⊆ sm(C, { a}). Hence, it suffices to show that sm(C, { a}) is
a model for S. To show this, by definition of model, it suffices to show
that for an arbitrary but fixed B ∈ S we have that B ∩ sm(C, { a}) is
not empty. The remaining part of the proof is the same as the proof of
the (b) variant of the Blocked Clear Clause Rule.
Hence, B ∩ sm(C, { a}) is not empty. Hence, there is a model M for S
such that sm(A, { a}) ⊆ M .

This proof is traced back to the proof of Blocked Clear Clause Rule. We can
do this because we know that there is a clear clause which is blocked and not



142 G. Kusper

entailed by S \ {A}. Note that for clear clauses the notion of subsumed and
entailed are the same.

The proof shows that if we perform an independent clause check and we find
a clear clause which is subsumed by only one clause, then we know the whole
model (sm(C, { a})) and not only a part of the model (sm(A, { a})).

References

[APT79] B. Aspvall, M. F. Plass, and R. E. Tarjan. A Linear-Time Algorithm for
Testing the Truth of Certain Quantified Boolean Formulas. Information Processing
Letters, 8(3):121–132, 1979.

[Asp80] B. Aspvall. Recognizing Disguised NR(1) Instances of the Satisfiability Prob-
lem. J. of Algorithms, 1:97–103, 1980.

[BHS94] E. Boros, P. L. Hammer, and X. Sun. Recognition of q-Horn Formulae in
Linear Time. Discrete Applied Mathematics, 55:1–13, 1994.

[BCH+94] E. Boros, Y. Crama, P. L. Hammer, and M. Saks. A Complexity Index for
Satisfiability Problems. SIAM J. on Computing, 23:45–49, 1994.

[CH91] V. Chandru and J. Hooker. Extended Horn Sets in Propositional Logic. J. of
the ACM, 38(1):205–221, 1991.

[Coo71] S. A. Cook. The Complexity of Theorem-Proving Procedures. Proceedings of
the 3rd ACM Symposium on Theory of Computing, 151–158, 1971.

[DE92] M. Dalal and D. W. Etherington. A Hierarchy of Tractable Satisfiability Prob-
lems. Information Processing Letters, 44:173–180, 1992.

[DG84] W. F. Dowling and J. H. Gallier. Linear-Time Algorithms for Testing the
Satisfiability of Propositional Horn Formulae. J. of Logic Programming, 1(3):267–
284, 1984.

[EIS76] S. Even, A. Itai, and A. Shamir. On the Complexity of Timetable and Multi-
Commodity Flow Problems. SIAM J. on Computing, 5(4):691–703, 1976.

[Knu90] D. E. Knuth. Nested Satisfiability. Acta Informatica, 28:1–6, 1990.
[Kul99a] O. Kullmann. New methods for 3-SAT decision and worst-case analysis.

Theoretical Computer Science, 223(1-2):1–72, 1999.
[Kul99b] O. Kullmann. On a Generalization of Extended Resolution. Discrete Applied

Mathematics, 96-97(1-3):149–176, 1999.
[Kus02] G. Kusper. Solving the SAT Problem by Hyper-Unit Propagation. RISC

Technical Report 02-02, 1–18, University Linz, Austria, 2002.
[Kus05] G. Kusper. Solving the Resolution-Free SAT Problem by Hyper-Unit Prop-

agation in Linear Time. Annals of Mathematics and Artificial Intelligence, 43(1-
4):129–136, 2005.

[Lew78] H. R. Lewis. Renaming a set of clauses as a Horn set. J. of the Association
for Computing Machinery, 25:134–135, 1978.

[LS87] J. Loeckx and K. Sieber. The Foundations of Program Verification. Wiley-
Teubner, second edition, 1987.

[SAF+95] J. S. Schlipf, F. Annexstein, J. Franco, and R. P. Swaminathan. On finding
solutions for extended Horn formulas. Information Processing Letters, 54:133–137,
1995.

[Scu90] M. G. Scutella. A Note on Dowling and Gallier’s Top-Down Algorithm for
Propositional Horn Satisfiability. J. of Logic Programming, 8(3):265–273, 1990.

[Tov84] C. A. Tovey. A Simplified NP-complete Satisfiability Problem. Discrete Ap-
plied Mathematics, 8:85–89, 1984.



Towards the Computation of Stable Probabilistic
Model Semantics

Emad Saad

College of Computer Science and Information Technology
Abu Dhabi University
Abu Dhabi, U.A.E.

emad.saad@adu.ac.ae

Abstract. In [22], a stable model semantics extension of the language
of hybrid probabilistic logic programs [21] with non-monotonic negation,
normal hybrid probabilistic programs (NHPP), has been developed by in-
troducing the notion of stable probabilistic model semantics. It has been
shown in [22] that the stable probabilistic model semantics is a natural
extension of the stable model semantics for normal logic programs and
the language of normal logic programs is a subset of the language NHPP.
This suggests that efficient algorithms and implementations for comput-
ing the stable probabilistic model semantics for NHPP can be developed
by extending the efficient algorithms and implementation for computing
the stable model semantics for normal logic programs, e.g., SMODELS
[17]. In this paper, we explore an algorithm for computing the stable prob-
abilistic model semantics for NHPP along with its auxiliary functions.
The algorithm we develop is based on the SMODELS [17] algorithms. We
show the soundness and completeness of the proposed algorithm. We pro-
vide the necessary conditions that these auxiliary functions have to satisfy
to guarantee the soundness and completeness of the proposed algorithm.
This algorithm is the first to develop for studying computational methods
for computing the stable probabilistic models semantics for hybrid prob-
abilistic logic programs with non-monotonic negation.

1 Introduction

Hybrid Probabilistic Programs (HPP) [5] is a probabilistic logic programming
framework that enables the user to explicitly encode his/her knowledge about the
type of dependencies existing between the probabilistic events being described
by the programs. HPP generalizes the probabilistic annotated logic programming
framework, originally proposed in [15] and further extended in [16]. In this pa-
per we study the problem of automating the probabilistic reasoning under the
stable probabilistic model (p-model) semantics proposed in [22]. Stable p-model
semantics is the first formalism to study non-monotonic negation in hybrid prob-
abilistic programs originally proposed in [5] and further modified and extended in
[21]. Stable p-model semantics [22] generalizes both the stable model semantics
for normal logic programs [10] and the semantics of hybrid probabilistic logic pro-
grams introduced in [21]. The idea in [21] comes upon observing that commonsense

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 143–158, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



144 E. Saad

reasoning about probabilities relies on how likely (probable) are the various events
to occur, rather than how precise our knowledge about these probabilities is [5].
Hybrid probabilistic programs (HPP) [21] is a probabilistic logic programming
framework that enables the user to explicitly encode his/her knowledge about the
type of dependencies existing between the probabilistic events being described by
the programs. Moreover, it has the ability to encode the user’s knowledge about
how to combine the probabilities of the same event derived from different rules.
HPP semantics [21] intuitively, captures the commonsense probabilistic reasoning
according to how likely are the various events to occur. In addition, HPP subsumes
Lakshmanan and Sadri’s [11] probabilistic implication-based framework as well as
it is a natural extension of classical logic programming.

In [22], we extended the language of HPP [21] to support non-monotonic
negation. In addition, we defined two alternative semantics for the extended
language; the stable probabilistic model semantics and the probabilistic well-
founded semantics and studied their relationships. We showed that the stable
probabilistic model semantics and the probabilistic well-founded semantics gen-
eralize the stable model semantics [10] and the well-founded semantics [9] for nor-
mal logic programs, and they reduce to the semantics of HPP [21] in the absence
of non-monotonic negation. An important result is that the relationship between
the stable probabilistic model semantics and the probabilistic well-founded se-
mantics preserves the relationship between the stable model semantics and the
well-founded semantics for normal logic programs [9].

Since the stable p-model semantics naturally generalize its classical counter-
part, hence, this suggests that efficient algorithms and implementations can be
developed by extending the existing efficient algorithms and implementations
developed for computing the stable models for normal logic programs, such as
SMODELS [17]. (In [21], we have presented an algorithm for computing the least
fixpoint for HPP without non-monotonic negation, that extends the Dowling-
Gallier algorithm for computing the satisfiability of a set of Horn formulae [7],
which is the ground base for developing the various auxiliary functions in SMOD-
ELS.) In this paper, we provide an algorithm for computing the stable p-model
semantics for normal hybrid probabilistic programs [22] based on the decision
procedure of SMODELS [17] along with its auxiliary functions. We provide the
necessary conditions that these auxiliary functions have to satisfy to guarantee
the soundness and completeness of the proposed algorithm. We present formal
definitions for these auxiliary functions and show that they satisfy the necessary
conditions for the soundness and completeness of the proposed algorithm. In
this paper, we focus on the the computation of the stable probabilistic model
semantics. Motivating examples and extensive comparisons between stable prob-
abilistic model semantics and other related work can be found in [22].

2 Normal Hybrid Probabilistic Programs

In the following subsections, we present the syntax and semantics of the Nor-
mal Hybrid Probabilistic Programs (NHPP) as presented in [22]. The notions



Towards the Computation of Stable Probabilistic Model Semantics 145

of probabilistic strategies, annotations, and hybrid basic formulae, which are
defined below, were first introduced in [5].

2.1 Probabilistic Strategies

Let C[0, 1] denote the set of all closed intervals in [0, 1]. In the context of HPP,
probabilities are assigned to primitive events (atoms) and compound events (con-
junctions or disjunctions of atoms) as intervals in C[0, 1]. Let [a1, b1], [a2, b2] ∈
C[0, 1]. Then the truth order asserts that [a1, b1] ≤t [a2, b2] iff a1 ≤ a2 and b1 ≤
b2. The set C[0, 1] and the relation ≤t form a complete lattice. In particular, the
join (⊕t) operation is defined as [a1, b1] ⊕t [a2, b2] = [max{a1, a2}, max{b1, b2}]
and the meet (⊗t) is defined as [a1, b1] ⊗t [a2, b2] = [min{a1, a2}, min{b1, b2}]
w.r.t. ≤t. The type of dependency among the primitive events within a com-
pound event is described by probabilistic strategies, which are explicitly se-
lected by the user. We call ρ, a pair of functions 〈c, md〉, a probabilistic strat-
egy (p-strategy), where c : C[0, 1] × C[0, 1] → C[0, 1], the probabilistic com-
position function, which is commutative, associative, monotonic w.r.t. ≤t, and
meets the following separation criteria: there are two functions c1, c2 such that
c([a1, b1], [a2, b2]) = [c1(a1, a2), c2(b1, b2)]. Whereas, md : C[0, 1] → C[0, 1] is
the maximal interval function. The maximal interval function md of a certain
p-strategy returns an estimate of the probability range of a primitive event, A,
from the probability range of a compound event that contains A. The compo-
sition function c returns the probability range of a conjunction (disjunction)
of two events given the ranges of its constituents. For convenience, given a
multiset of probability intervals M = {{[a1, b1], . . . , [an, bn]}}, we use cM to de-
note c([a1, b1], c([a2, b2], . . . , c([an−1, bn−1], [an, bn])) . . .). According to the type
of combination among events, p-strategies are classified into conjunctive
p-strategies and disjunctive p-strategies. Conjunctive (disjunctive) p-strategies
are employed to compose events belonging to a conjunctive (disjunctive) formula
(please see [5,21] for the formal definitions).

2.2 Language Syntax

In this subsection, we describe the syntax of NHPP. Let L be an arbitrary
first-order language with finitely many predicate symbols, constants, and in-
finitely many variables. Function symbols are disallowed. In addition, let S =
Sconj∪Sdisj be an arbitrary set of p-strategies, where Sconj (Sdisj) is the set of
all conjunctive (disjunctive) p-strategies in S. The Herbrand base of L is de-
noted by BL. An annotation denotes a probability interval and it is represented
by [α1, α2], where α1, α2 are called annotation items. An annotation item is
either a constant in [0, 1], a variable (annotation variable) ranging over [0, 1],
or f(α1, . . . , αn) (called annotation function) where f is a representation of a
computable total function f : ([0, 1])n → [0, 1] and α1, . . . , αn are annotation
items. The building blocks of the language of NHPP are hybrid basic formulae.
Let us consider a collection of atoms A1, . . . , An, a conjunctive p-strategy ρ,
and a disjunctive p-strategy ρ′. Then A1 ∧ρ . . . ∧ρ An and A1 ∨ρ′ . . . ∨ρ′ An are



146 E. Saad

called hybrid basic formulae, and bfS(BL) is the set of all ground hybrid basic
formulae formed using distinct atoms from BL and p-strategies from S. An an-
notated hybrid basic formula is an expression of the form F : μ where F is a
hybrid basic formula and μ is an annotation. A hybrid literal is an annotated
hybrid basic formula F : μ (positive annotated hybrid basic formula or positive
hybrid literal) or the negation of an annotated hybrid basic formula not (F : μ)
(negative annotated hybrid basic formula or negative hybrid literal).

Definition 1 (Rules). A normal hybrid probabilistic rule (nh-rule) is an ex-
pression of the form

A : μ ← F1 : μ1, . . . , Fn : μn, not (G1 : μn+1), . . . , not (Gm : μn+m)
where A is an atom, F1, . . . , Fn, G1, . . . , Gm are hybrid basic formulae, and μ, μi

(1 ≤ i ≤ m + n) are annotations.
A hybrid probabilistic rule (h-rule) is an nh-rule where m = 0—i.e., there are

no negative hybrid literals.

The intuitive meaning of an nh-rule, in Definition 1, is that, if for each Fi : μi,
the probability interval of Fi is at least μi and for each not (Gj : μj), it is not
provable that the probability interval of Gj is at least μj , then the probability
interval of A is μ.

Definition 2 (Programs). A normal hybrid probabilistic program over S (nh-
program) is a pair P = 〈R, τ〉, where R is a finite set of nh-rules with p-strategies
from S, and τ is a mapping τ : BL → Sdisj . A hybrid probabilistic program (h-
program) is an nh-program where all the rules are h-rules.

The mapping τ in the above definition associates to each atomic hybrid basic for-
mula A a disjunctive p-strategy that will be employed to combine the probability
intervals obtained from different rules having A in their heads. An nh-program
is ground if no variables appear in any of its rules.

Example 1 ([22]). Consider an insurance company which determines the pre-
mium categories, by calculating the risk factor according to a genetic test for
cancer and the family history for this disease. Assume that customers who have
a family history of the disease have a probability of developing cancer with at
least 92%. The insurance company will assign high premiums to the customers
who have family history of the disease and tested positive as long as their risk
conditions are unchanged. Risk conditions can be changed by taking specific
medications. This situation can be represented by the following nh-rules:

risk(X) : [0.9, 1] ← (test(X) ∧pc history(X)) : [0.60, 0.75],
not changeRisk(X)[0.8, 1]

risk(X) : [0, 0.1] ← (test(X) ∧pc history(X)) : [0.60, 0.75],
changeRisk(X) : [0.8, 1]

changeRisk(X) : [0.9, 1] ← medicine(X, Med) : [0.65, 1]
highPremium(X) : [1, 1] ← risk(X) : [0.9, 1]
lowPremium(X) : [1, 1] ← risk(X) : [0, 0.1]
test(sam) : [0.92, 1] ←
history(sam) : [0.95, 1] ←
medicine(sam, medication) : [0.98, 1] ←



Towards the Computation of Stable Probabilistic Model Semantics 147

and the mapping τ assigns ncd to risk(sam) and an arbitrary disjunctive p-
strategy [5,21] to the other hybrid basic formulae. The ncd denotes the disjunc-
tive negative correlation p-strategy, which is defined as: cncd([a1, b1], [a2, b2]) =
[min(1, a1 + a2), min(1, b1 + b2)]. The first nh-rule asserts that the risk factor
is at least 90% whenever the cancer genetic test for a customer is positive
and that customer has a family history of cancer with probability between
60% and 75%, and it is not provable that his risk conditions have changed
with probability at least 80%. Observe that test and history events are con-
joined according to the positive correlation p-strategy (denoted by ∧pc) where
cpcc([a1, b1], [a2, b2]) = [min(a1, a2), min(b1, b2)]. The second rule says that the
risk factor is at most 10% whenever the customer risk conditions are changed,
even though the person tested positive and have a family history of the disease
with probability between 60% and 75%. The third nh-rule describes the change
of the risk conditions of a customer with probability at least 90% if a medication
for the disease becomes available with probability at least 65%. The fourth and
fifth nh-rules assert that definite high premium and low premium are considered
whenever the probability of risk factors are at least 90% and at most 10% re-
spectively. The last three nh-rules represent the facts available about a specific
customer named sam.

2.3 Satisfaction and Models

In this subsection, we review the declarative semantics of nh-programs [22]. The
notion of a probabilistic model (p-model) is based on hybrid formula functions
defined below.

Definition 3. A hybrid formula function is a mapping h : bfS(BL) → C[0, 1]
that satisfies the following conditions:

• Commutativity: h(G1 ∗ρ G2) = h(G2 ∗ρ G1), ∗ ∈ {∧, ∨}, ρ ∈ S

• Composition: cρ(h(G1), h(G2)) ≤t h(G1 ∗ρ G2), ∗ ∈ {∧, ∨}, ρ ∈ S

• Decomposition. For any hybrid basic formula F , ρ ∈ S, and G ∈ bfS(BL):
mdρ(h(F ∗ρ G)) ≤t h(F ).

The notion of truth order can be extended to hybrid formula functions. Given
hybrid formula functions h1 and h2, we say (h1 ≤t h2) ⇔ (∀F ∈ bfS(BL) :
h1(F ) ≤t h2(F )). The set of all hybrid formula functions, HFF , and the truth
order ≤t form a complete lattice. The meet ⊗t and the join ⊕t operations are
defined respectively as: for all F ∈ bfS(BL), (h1 ⊗t h2)(F ) = h1(F ) ⊗t h2(F )
and (h1 ⊕t h2)(F ) = h1(F ) ⊕t h2(F ). We say that a probabilistic interpretation
(p-interpretation) of an nh-program P is a hybrid formula function.

Definition 4 (Probabilistic Satisfaction). Let P = 〈R, τ〉 be a ground nh-
program, h be a p-interpretation, and
r ≡ A : μ ← F1 : μ1, . . . , Fn : μn, not (G1 : β1), . . . , not (Gm : βm) ∈ R. Then

• h satisfies Fi : μi (denoted by h |= Fi : μi) iff μi ≤t h(Fi).
• h satisfies not (Gj : βj) (denoted by h |= not (Gj : βj)) iff βj �t h(Gj).



148 E. Saad

• h satisfies Body ≡ F1 : μ1, . . . , Fn : μn, not (G1 : β1), . . . , not (Gm : βm)
(denoted by h |= Body) iff ∀(1 ≤ i ≤ n), h |= Fi : μi and ∀(1 ≤ j ≤ m), h |=
not (Gj : βj).

• h satisfies A : μ ← Body iff h |= A : μ or h does not satisfy Body.
• h satisfies P iff h satisfies every nh-rule in R and for every atomic formula
A ∈ bfS(BL), cτ(A){{μ|A : μ ← Body ∈ R and h |= Body}} ≤t h(A).

Definition 5 (Models). Let P be an nh-program. A probabilistic model (p-
model) of P is a probabilistic interpretation of P that satisfies P .

Proposition 1. Let P be an h-program. hP = ⊗t{h|h is a p-model of P } is
the least p-model of P .

Associated with each h-program P , is an operator, TP , called the fixpoint op-
erator, which maps probabilistic interpretations to probabilistic interpretations.

Definition 6. Let P = 〈R, τ〉 be a ground h-program and h be a total probabilis-
tic interpretation. The fixpoint operator TP is a mapping TP : HFF → HFF
which is defined as follows:

1. if A is an atom, TP (h)(A) = cτ(A) MA where MA = {{μ|A : μ ← Body ∈ R
such that h |= Body}} and MA �= ∅ . If MA = ∅, then TP (h)(A) = [0, 0]

2. TP (h)(G1 ∧ρ G2) = cρ(TP (h)(G1), TP (h)(G2)) where (G1 ∧ρ G2) ∈ bfS(BL)
3. TP (h)(G1∨ρ′G2) = cρ′(TP (h)(G1), TP (h)(G2)) where (G1∨ρ′G2) ∈ bfS(BL).

Proposition 2. Let P be an h-program. Then, hP = lfp(TP ).

3 Stable Probabilistic Model Semantics

In this section we introduce the notion of stable probabilistic models (sp-models),
which extends the notion of stable models for classical logic programming [10].
The semantics is defined in two steps. First, we guess a p-model h for a certain
nh-program P , then we define the notion of the probabilistic reduct of P with
respect to h—which is an h-program. Second, we determine whether h is a stable
p-model for P or not by employing the fixpoint operator of the probabilistic
reduct to verify whether h is its least p-model. It must be noted that every
h-program has a unique least p-model [21].

Definition 7 (Probabilistic Reduct). Let P = 〈R, τ〉 be a ground nh-program
and h be a probabilistic interpretation. The probabilistic reduct P h of P w.r.t. h
is P h = 〈Rh, τ〉 where:

Rh =

⎧
⎨

⎩
A : μ ← F1 : μ1, . . . , Fn : μn

A : μ ← F1 : μ1, . . . , Fn : μn,
not (G1 : β1), . . . , not (Gm : βm) ∈ R and

∀(1 ≤ j ≤ m), βj �t h(Gj)

⎫
⎬

⎭



Towards the Computation of Stable Probabilistic Model Semantics 149

The probabilistic reduct P h is an h-program. For any not (Gj : βj) in the body
of r ∈ R with βj �t h(Gj) is simply satisfied by h, and not (Gj : βj) is removed
from the body of r. If βj ≤t h(Gj) then the body of r is not satisfied and r is
trivially ignored.

Definition 8 (Stable Probabilistic Model). A probabilistic interpretation h
is a stable p-model of an nh-program P if h is the least p-model of P h.

Example 2. It is easy to verify that the only stable p-model of the program in
Example 1 is given by:

h(risk(sam)) = [0, 0.1] h(changeRisk(sam)) = [0.9, 1]
h(highPremium(sam)) = [0, 0] h(lowPremium(sam)) = [1, 1]
h(test(sam)) = [0.92, 1] h(history(sam)) = [0.95, 1]
h(medicine(sam, medication)) = [0.98, 1] h(test(sam) ∧pc history(sam)) = [0.92, 1]

Example 3. Consider the following nh-program P = 〈R, τ〉 where R is

a : [0.89, 0.91] ← not (b : [0.3, 0.4])
b : [0.55, 0.60] ← not (a : [0.7, 0.75])
c : [0.2, 0.3] ← d : [0.1, 0.15]
d : [0.1, 0.2] ← not (e : [0.1, 0.3])

and τ(a) = τ(b) = τ(c) = τ(d) = π where π is any arbitrary disjunctive p-
strategy. This nh-program has two stable p-models h1 and h2 where h1(a) =
[0.89, 0.91], h1(b) = [0, 0], h1(c) = [0.2, 0.3], h1(d) = [0.1, 0.2], h1(e) = [0, 0] and
h2(a) = [0, 0], h2(b) = [0.55, 0.60], h2(c) = [0.2, 0.3], h2(d) = [0.1, 0.2], h2(e) =
[0, 0]. Since, for example, h1 can be verified as a stable p-model because the
probabilistic reduct of P w.r.t. h1 contains the h-rules:

a : [0.89, 0.91] ←
c : [0.2, 0.3] ← d : [0.1, 0.15]
d : [0.1, 0.2] ←

and lfp(TP h1 ) = h1.

Theorem 1. Every h-program P has a unique stable p-model h iff h is the least
p-model of P .

Let us show that the stable probabilistic model semantics generalizes the stable
model semantics of normal logic programs [10]. A normal logic program P can
be represented as an nh-program P ′ = 〈R, τ〉 where each normal rule

a ← b1, . . . , bn, not c1, . . . , not cm ∈ P

can be encoded, in R, as an nh-rule of the form

a : [1, 1] ← b1 : [1, 1], . . . , bn : [1, 1], not (c1 : [1, 1]), . . . , not (cm : [1, 1])

where a, b1, . . . , bn, c1, . . . , cm are atomic hybrid basic formulae and [1, 1] rep-
resents the truth value true. τ is any arbitrary assignment of disjunctive p-
strategies. We call the class of nh-programs that consists only of nh-rules of the
above form as NHPP1.



150 E. Saad

Proposition 3. Let P be a normal logic program. Then S′ is a stable model
of P iff h is a stable p-model of P ′ ∈ NHPP1 that corresponds to P where
h(a) = [1, 1] iff a ∈ S′ and h(b) = [0, 0] iff b ∈ BL \ S′.

4 An Algorithm for Computing Stable P-Models

In this section, we develop an algorithm for computing the stable p-models for
an nh-program, which is based on SMODELS algorithm [17] for computing the
stable model semantics for normal logic programs. The algorithm we develop
constructs a stable p-model incrementally. It takes a ground nh-program P and a
partial hybrid formula function (partial p-interpretation) h as inputs and returns
true if h can be extended to a stable p-model (which is a total hybrid formula
function) for P . Otherwise, it returns false. In the following we provide definitions
and notions that we use throughout the rest of the paper. Let h be a probabilistic
interpretation, then dom(h) ⊆ bfS(BL) denotes the domain of h (dom(h) �
bfS(BL) if h is a partial probabilistic interpretation). We use negdom(h) to
denote the set {F | F ∈ dom(h), h(F ) = [0, 0]}. We also define posdom(h) =
dom(h)\negdom(h). Given a hybrid formula function h, Pos(h) and Neg(h)
denote the following mappings:

– Pos(h)(F ) = h(F ) ∀F ∈ dom(h) such that h(F ) �= [0, 0].
– Neg(h)(F ) = h(F ) ∀F ∈ dom(h) such that h(F ) = [0, 0].

We will describe each hybrid formula function using its graph. In other words, if
h is a hybrid formula function, then h can be represented as the set {(A, μ)|A ∈
dom(h) and μ = h(A)}. More conveniently, we use A : μ to denote (A, μ).
Thus, we will frequently refer to h as a set of annotated hybrid basic formu-
lae. Furthermore, if P is a ground nh-program, we consider bfS(BL) as the
set of all distinct ground hybrid basic formulae that appear in P , denoted by
Formulae(P ). If h is a partial or total hybrid formula function, then dom(h) =
posdom(h)∪negdom(h) and h = Pos(h)∪Neg(h) viewing h as a set of annotated
hybrid basic formulae.

Definition 9. A set of annotated hybrid basic formulae h (a hybrid formula
function) is said to cover a set of annotated hybrid basic formulae g (a hybrid
formula function) if dom(g) ⊆ dom(h) and ∀ F ∈ dom(g), g(F ) ≤t h(F ).

Definition 10. A set of annotated hybrid basic formulae g (a hybrid formula
function) is said to agree with a set of annotated hybrid basic formulae h (a
hybrid formula function) if the following conditions hold:

– posdom(h) ⊆ posdom(g),
– negdom(h) ⊆ negdom(g), and
– ∀ F ∈ dom(h), h(F ) ≤t g(F ).

Definition 10 is closely related to the definition of the well-founded order defined
in [22].



Towards the Computation of Stable Probabilistic Model Semantics 151

Definition 11 ([22]). Let P be an nh-program, HP be the set of all partial
hybrid formula functions of P , and h1, h2 ∈ HP . We define the following partial
order (≤w) on HP : h1 ≤w h2 iff posdom(h1) ⊆ posdom(h2), negdom(h1) ⊆
negdom(h2), and ∀ F ∈ dom(h1), h1(F ) ≤t h2(F ).

The notion of cover can also be applied to sets of hybrid basic formulae. If h
and g are two hybrid formula functions, then dom(h) covers dom(g) if dom(g) ⊆
dom(h). Moreover, a hybrid basic formula F is said to be covered by dom(h) if
F ∈ dom(h).

Definition 12. Let P = 〈R, τ〉 be a ground nh-program and h be a total hybrid
formula function, then we define the operator FP as a mapping
FP : HFF → HFF where FP (h) = lfp(TP h).

Lemma 1. Let P = 〈R, τ〉 be a ground nh-program and h be a total hybrid
formula function, then h is a stable p-model of P iff FP (h) = h.

Lemma 2. The function FP is anti-monotone with respect to ≤t.

Now, we describe an algorithm for computing the stable p-model semantics for
an nh-program along with the auxiliary functions. In addition, we present the
necessary conditions that these auxiliary functions have to satisfy to guaran-
tee the soundness and completeness of stable p-model semantics computation
algorithm. Figure 1 describes a decision procedure for determining whether an
nh-program P has a stable p-model or not. The function spmodels(P, h) com-
putes one stable p-model for P , however, it can be modified to compute all the
stable p-models of P . It returns true if there is a stable p-model for P agreeing
with the set of annotated hybrid basic formulae h (a hybrid formula function),
otherwise it returns false. It takes a ground nh-program P and a partial hybrid
formula function (a set of annotated hybrid basic formulae) h as an input. The
set h represents the partially computed stable p-model.

The function spmodels(P, h) calls two functions: pexpand(P, h) and
pconflict(P, h). The function pexpand(P, h) expands the set of annotated hybrid
basic formulae h by the functions PAtleast(P, h) and PAtmost(P, h), whereas
the function pconflict(P, h) discovers the conflicts. The function pconflict(P, h)
determines whether h is a hybrid formula function (partial or total) that could
be extended to a stable p-model of P , by checking that each hybrid basic formula
defined in h is assigned exactly one probability interval and h satisfies P . To guar-
antee the soundness and completeness of spmodels(P, h) we present the condi-
tions E1-E2 and C1-C2 required for designing pexpand(P, h) and pconflict(P, h).
Let h′ = pexpand(P, h) we assume that:

E1: posdom(h) ⊆ posdom(h′), negdom(h) ⊆ negdom(h′), and for allF ∈ dom(h),
h(F ) ≤t h′(F ), and

E2: every stable p-model of P that agrees with h agrees also with h′.

In addition, we assume that pconflict(P, h) satisfies the following conditions



152 E. Saad

C1: if dom(h) covers Formulae(P ) and there is no stable p-model that agrees
with h, then pconflict(P, h) returns true, and

C2: if pconflict(P, h) returns true, then there is no stable p-model of P that agrees
with h.

The function spmodels(P, h) starts by expanding the partially computed sta-
ble p-model h (line 2). Condition E1 ensures that h is really extended and E2
guarantees that no stable p-model is lost. Then a test for checking a conflict is
performed. Condition C1 ensures that if Formulae(P ) is covered and there is a
conflict, the conflict is detected (lines 3 and 4). Condition C2 guarantee that if
there is a conflict, then there is no stable p-model agreeing with h′. If there is no
conflict (lines 5 and 6) and dom(h′) covers Formulae(P ), then spmodels(P, h)
returns true with h′ is a stable p-model of P . If there is x ∈ Formulae(P )

1: function spmodels(P,h)
2: h′ := pexpand(P,h)
3: if pconflict(P, h′) then
4: return false
5: else if dom(h′) covers Formulae(P ) then
6: return true
7: else
8: take some x ∈ Formulae(P ) not covered by dom(h′)
9: if spmodels(P,h′ ∪ {x : [0, 0]}) then

10: return true
11: else
12: take x : [a, b] ∈ lfp(F 2

P ) or gfp(F 2
P )

13: return spmodels(P,h′ ∪ {x : [a, b]})
14: end if
15: end if

1: function pexpand(P,h)
2: repeat
3: h′ := h
4: h := PAtleast(P,h)
5: h := h ∪ {F : [0, 0]|F ∈ Formulae(P ) and F : [0, 0] ∈ PAtmost(P,h)}
6: until h′ = h
7: return h

1: function pconflict(P, h)
2: { Precondition: h = expand(P,h)}
3: if posdom(h) ∩ negdom(h) �= ∅ then
4: return true
5: else if dom(h) covers Formulae(P ) and h does not satisfy P then
6: return true
7: else
8: return false
9: end if

Fig. 1. A decision procedure for the stable p-model semantics



Towards the Computation of Stable Probabilistic Model Semantics 153

not covered by dom(h′) (line 8), then either x : [0, 0] belongs to the partially
computed stable p-model (line 9) or there is some constant annotation [a, b]
such that x : [a, b], with [a, b] �= [0, 0], belongs to the partially computed sta-
ble p-model (line 12 and 13). The two cases are handled by backtracking. In
the first case we extend h′ by {x : [0, 0]}, but if spmodels(P, h′ ∪ {x : [0, 0]})
returns false, then x : [0, 0] does not belong to the computed stable p-model.
Hence, spmodels(P, h) returns what spmodels(P, h′ ∪{x : [a, b]}) returns, where
x : [a, b] ∈ lfp(F 2

P ) or gfp(F 2
P ). Since FP is antimonotone, F 2

P is monotone
and its least fixpoint and greatest fixpoint limit the fixpoints of FP [12]. There-
fore, because of the possibility of having multiple nh-rules in P with x in their
heads with different annotations, we select [a, b] that is guaranteed to be in
the computed stable p-model. This is achieved by selecting x : [a, b] such that
x : [a, b] ∈ lfp(F 2

P ) or x : [a, b] ∈ gfp(F 2
P ). This is because any stable p-model is

a fixpoint of the operator FP . The following theorem proves the correctness of
decision procedure described in Figure 1.

Theorem 2. Let P be an nh-program and h be a hybrid formula function. Then,
there is a stable p-model of P agreeing with h if and only if spmodels(P, h)
returns true.

Proof. The proof of this theorem is similar to the proof of a correspond-
ing result presented in [17]. The proof proceeds as follows. Let NC(P, h) =
Formulae(P )\dom(h) be the set of hybrid basic formulae that is in Formulae(P )
but not covered by dom(h). We prove the theorem by induction on NC(P, h).
Assume that NC(P, h) = ∅ which implies that dom(h) covers Formulae(P ).
Then, h′ = pexpand(P, h) and by E1 dom(h′) covers Formulae(P ) as well and
spmodels(P, h) returns true if and only if pconflict(P, h′) returns false. By E2,
C1, and C2 pconflict(P, h′) returns false exactly when there is a stable p-model
agreeing with h.

Assume that NC(P, h) �= ∅. If pconflict(P, h′) returns true, then
spmodels(P, h) returns false. Hence, there is no stable p-model agreeing with
h by the conditions E2 and C2. However, if pconflict(P, h′) returns false and
dom(h′) covers Formulae(P ), then spmodels(P, h) returns true. Therefore, there
is a stable p-model that agrees with h due to the conditions E2 and C1. Other-
wise, since spmodels(P, h) returns true and dom(h′) still not covers Formulae(P )
and since the size of NC(P, h′ ∪ {x.[0, 0]}) = NC(P, h′ ∪{x.[a, b]}) ⊂ NC(P, h′)
then by inductive hypothesis together with E1 and E2 we have that that either
spmodels(P, h′∪{x.[0, 0]}) or spmodels(P, h′∪{x.[a, b]}) returns true if and only
if there is a stable p-model agreeing with h. �

5 PAtleast(P,h) and PAtmost(P,h)

In this subsection we provide foundations for computing the functions
PAtleast(P, h) and PAtmost(P, h). The function PAtleast(P, h) enlarges the
partially computed stable p-model h by adding annotated hybrid basic formulae
and/or monotonically increasing the annotations associated to the hybrid basic



154 E. Saad

formulae that already exist in the partially computed stable p-model h. The
function PAtleast(P, h) computes the least fixpoint of the operator DP , which
is a variation of probabilistic well-founded operator WP defined in [22]. We say
that an nh-program globally satisfies F : ν (not (G : β)) if the nh-program as a
whole provides evidence for satisfying F : ν (not (G : β)).

Definition 13 (Global Satisfaction). Let P be an nh-program and F : ν (not
(G : β)) be a positive (negative) hybrid literal. We say that F : ν (not (G : β)) is
globally satisfied by P if every minimal probabilistic interpretation that satisfies
P also satisfies F : ν (not (G : β)).

Let P = 〈R, τ〉 be an nh-program and g be a stable p-model of P agreeing with
the set of annotated hybrid basic formulae h and HP is the set of all partial
p-interpretations of P . Then we define PAtleast(P, h) to be the least fixpoint of
the operator DP : HP → HP defined as follows:

1. For each atom A we have that DP (h)(A) = cτ(A) MA, where MA �= ∅
contains the probability intervals μ obtained from the nh-rules A : μ ←
Body ∈ R, such that h satisfies Body, and for each negative hybrid literal
not (Gj : βj) in Body we have that P globally satisfies not (Gj : βj).

2. For each atom A we have that DP (h)(A) = [0, 0] if for each nh-rule r ∈ R
such that A appears in its head, h does not satisfy some hybrid literal F : ν
or not (G : β) in the body of r and P does not globally satisfy F : ν.

3. DP (h)(G1∧ρG2) = cρ(DP (h)(G1), DP (h)(G2)) where (G1∧ρG2) ∈ bfS(BL)
and for each atom A in (G1 ∧ρ G2), A is defined in DP (h).

4. DP (h)(G1∨ρ′ G2)=cρ′(DP (h)(G1),DP (h)(G2))where(G1∨ρ′ G2) ∈ bfS(BL)
and for each atom A in (G1 ∨ρ′ G2),A is defined in DP (h).

Example 4. Consider the following nh-program P

a : [0.9, 1] ← b : [0.7, 0.8], not (c : [0.5, 0.55])
d : [0.9, 1] ← not (a : [0.9, 1])
e : [0.2, 0.35] ← not (b : [0.7, 0.8])

We will compute h = PAtleast(P, ∅). Since b and c do not appear in heads of
any nh-rules in P , b : [0, 0] ∈ h and c : [0, 0] ∈ h by 2 in the above definition. In
addition, a : [0, 0] ∈ h by 2 as well since the first nh-rule is not satisfied due to
b : [0.7, 0.8] in the nh-rule because [0.7, 0.8] �t [0, 0]. Obviously, d : [0.9, 1] and
e : [0.2, 0.35] are in h by 1 in the above definition. Hence, PAtleast(P, ∅) = {a :
[0, 0], b : [0, 0]c : [0, 0], d : [0.9, 1], e : [0.2, 0.35]} which is the least fixpoint of DP .

Lemma 3. The function PAtleast(P, h) is monotonic with respect to ≤w in its
second argument.

Note that DP (h) is a variation of the probabilistic well-founded operator WP de-
fined in [22]. This implies that PAtleast(P, h) = lfp(DP (h)) = lfp(WP ). There-
fore, according to Theorem 4 of [22], g is a stable p-model of P if g is a fixpoint of
WP , and hence a fixpoint of DP which in turn a fixpoint of PAtleast(P, h). This
implies that g is a stable p-model of P iff g = WP (g) = DP (g) = PAtleast(P, g).



Towards the Computation of Stable Probabilistic Model Semantics 155

Proposition 4. If g is a stable p-model of an nh-program P that agrees with
the partial hybrid formula function h, then g agrees with PAtleast(P, h).

Furthermore, we can bound a stable p-model from above by defining the function
PAtmost(P, h). The function PAtmost(P, h) computes the least fixpoint of P h,
the probabilistic reduct of P with respect to h (defined below). The idea is to
extend the set of annotated hybrid basic formulae h which corresponds to the
partially computed stable p-model by adding annotated hybrid basic formulae
of the form x : [0, 0] without violating condition E2. We can add x : [0, 0] to the
set h if x : [0, 0] ∈ PAtmost(P, h) = lfp(TP h). However, a different notion of
probabilistic reduct from the one defined in Definition 7 is needed in this context
as defined below.

Definition 14. Let P = 〈R, τ〉 be a ground nh-program, h be a partial hybrid
formula function, and

r ≡ A : μ ← F1 : μ1, . . . , Fn : μn, not (G1 : β1), . . . , not (Gm : βm) ∈ R.

Then the probabilistic reduct P h of P with respect to h is P h = 〈Rh, τ〉 where
Rh is the set of h-rules obtained from R by:

– deleting every nh-rule r in R where there is a not (Gj : βj) in the body of r
such that βj ≤t h(Gj),

– deleting every not (Gk : βk) from the body of the remaining nh-rules.

The notion of reduct in the above definition is a generalization of the notion
of reduct in Definition 7, to cope with partial hybrid formula functions. For
total hybrid formula functions both notions of reduct coincides. In addition,
PAtmost(P, h) is a total hybrid formula function. Consequently, if g is a stable
p-model of an nh-program P , then g = PAtmost(P, g). It is worth noting that,
from the definition of the probabilistic reduct with respect to partial hybrid
formula function h, h can be extended to a total hybrid formula function and
we still get the same probabilistic reduct. This is achieved by adding to h the
annotated hybrid basic formulae F : [0, 0] such that F ∈ bfS(BL)\dom(h). This
means, if h1 ≤w h2, then h1 ≤t h2 as well, after extending both h1 and h2 to total
hybrid formula functions by adding F : [0, 0] such that F ∈ bfS(BL) \ dom(h1)
to h1 and F : [0, 0] such that F ∈ bfS(BL) \ dom(h2) to h2 respectively.

Lemma 4. The function PAtmost(P, h) is anti-monotone in its second argu-
ment.

The above lemma shows that the function PAtmost(P, h) is anti-monotone with
respect to ≤t. This is because given h1 ≤w h2, then we also get h1 ≤t h2, which
implies that PAtmost(P, h2) ≤t PAtmost(P, h1).

Proposition 5. Let g be a stable p-model of P that agrees with h. Then g ≤t

PAtmost(P, h).

Corollary 1. The function pexpand(P, h) satisfies conditions E1 and E2



156 E. Saad

Corollary 2. The function conflict(P, h) satisfies conditions C2

It follows that pexpand(P, h) satisfies conditions E1 and E2. The function
conflict(P, h) obviously fulfills C2, and the next proposition shows that C1 also
holds.

Proposition 6. If h = pexpand(P, h), dom(h) covers Formulae(P ), and
posdom(h) ∩ negdom(h) = ∅ and h satisfies P , then h is a stable p-model of P .

Example 5. Consider the following nh-program P

a : [0.45, 0.55] ← c : [1, 1], not (b : [0.7, 0.95])
b : [0.7, 0.95] ← c : [1, 1], not (a : [0.45, 0.55])
c : [1, 1] ← not (a : [0.45, 0.55])

We use the decision procedure spmodels to determine whether P has a stable
p-model or not and return it if exist. The lfp(F 2

P ) is the empty set and gfp(F 2
P ) is

{a : [0.45, 0.55], b : [0.7.0.95], c : [1, 1]}.

Firstpexpand(P, ∅) returns∅ andpconflict(P, ∅) returns false. SinceFormulae(P )
={a, b, c} is not covered by ∅, we choose either a, b, or c in order to proceed. Let us
take b, then spmodels(P, {b : [0, 0]}) is executed. pexpand(P, {b : [0, 0]}) returns
{b : [0, 0]}. Then pconflict(P, {b : [0, 0]}) returns false. Since Formulae(P ) is
not covered by {b}, we choose either a or c in order to proceed. Let us take a,
then

spmodels(P, {a : [0, 0], b : [0, 0]})

is executed. pexpand(P, {a : [0, 0], b : [0, 0]}) returns

{a : [0, 0], b : [0, 0], c : [1, 1], b : [0.7, 0.95], a : [0.45, 0.55]}.

Then pconflict(P, {a : [0, 0], b : [0, 0], c : [1, 1], b : [0.7, 0.95], a : [0.45, 0.55]})
returns true. Then we backtrack and execute spmodels(P, {a : [0.45, 0.55], b :
[0, 0]}).

pexpand(P, {a : [0.45, 0.55], b : [0, 0]}) returns {a : [0.45, 0.55], b : [0, 0], a : [0, 0],
c.[0, 0]}.

Then pconflict(P, {a : [0.45, 0.55], b : [0, 0], a : [0, 0], c.[0, 0]}) returns true. Fi-
nally, we backtrack and execute spmodels(P, {b : [0.7, 0.95]}). pexpand(P, {b :
[0.7, 0.95]}) returns {b : [0.7, 0.95]}. Then pconflict(P, {b : [0.7, 0.95]}) returns
false. Since Formulae(P ) is not covered by {b}, we choose either a or c in order
to proceed. Let us take a, then spmodels(P, {a : [0, 0], b : [0.7, 0.95]}) is executed.
pexpand(P, {a : [0, 0], b : [0.7, 0.95]}) returns {a : [0, 0], b : [0.7, 0.95], c : [1, 1]}.
Then

pconflict(P, {a : [0, 0], b : [0.7, 0.95], c : [1, 1]})

returns false and spmodels(P, {a : [0, 0], b : [0.7, 0.95]}) returns true as well as
spmodels(P, {b : [0.7, 0.95]}) and spmodels(P, ∅) having {a : [0, 0], b : [0.7, 0.95],
c : [1, 1]} as a stable p-model of P .



Towards the Computation of Stable Probabilistic Model Semantics 157

6 Conclusions

In this work, we have proposed an algorithm for computing the stable proba-
bilistic model semantics [22]. The proposed algorithm is a modification of the
decision procedure of SMODELS [17], a state-of-the-art system for computing
the stable model semantics of normal logic programs. We have described the
modified algorithm, along with its auxiliary functions, and we have provided the
necessary conditions that these auxiliary functions have to satisfy to guarantee
the soundness and completeness of the proposed algorithm. We have presented
formal definitions and algorithms for these auxiliary functions and shown that
they satisfy the necessary conditions for the soundness and completeness of the
proposed algorithm.

As future work, we plan to provide an implementation of these algorithms,
and investigate applications of the resulting framework in the context of knowl-
edge representation and reasoning in presence of uncertainty (e.g., probabilistic
planning).

References
1. C. Baral et al. Probabilistic reasoning with answer sets. In 7th International

Conference on Logic Programming and Nonmonotonic Reasoning, Springer Verlag,
2004.

2. C. Bell, A. Nerode, R. Ng, V. S. Subrahmanian. Mixed integer programming meth-
ods for computing Nonmonotonic Deductive Databases. Journal of ACM, 41(6):
1178-1215, 1994.

3. W. D. Chen, D. S. Warren. Computation of stable models and its integration with
logical query processing. IEEE Transaction on Knowledge and Data Engineering,
8(5): 742-757, 1996.

4. P. Cholewinski, V. Marek, M. Truszczynski, A. Mikitiuk. Computing with default
logic. Artificial Intelligence, 112(1-2): 105-146, 1999.

5. A. Dekhtyar and V. S. Subrahmanian. Hybrid probabilistic program. Journal of
Logic Programming, 43(3): 187-250, 2000.

6. M. Dekhtyar, A. Dekhtyar, and V. S. Subrahmanian. Hybrid probabilistic pro-
grams: algorithms and complexity. In Uncertainty in Artificial Intelligence Con-
ference, pages 160-169, 1999.

7. W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. Journal of Logic Programming, 1(3): 267-284, 1984.

8. A. Van. Gelder. The alternating fixpoint of logic programs with negation. Journal
of Computer and System Sciences, 47(1):185-221, 1993.

9. A. Van. Gelder, K. A. Ross, and J. S. Schlipf. The Well-founded semantics for
general logic programs. Journal of ACM, 38(3):620-650, 1991.

10. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, In Fifth International Conference and Sym-
posium on Logic Programming, 1070-1080, 1988.

11. L. V.S. Lakshmanan and F. Sadri. On a theory of probabilistic deductive databases.
Journal of Theory and Practice of Logic Programming, 1(1):5-42, January 2001.

12. V. Lifschitz. Foundations of logic programming. In Principles of Knowledge Rep-
resentation, 69-127, CSLI Publications, 1996.



158 E. Saad

13. J. J. Lu and S. M. Leach. Computing annotated logic programs. In International
Conference on Logic Programming, Pascal van Hentenryck, editor, MIT press, Cam-
bridge, MA, 1994.

14. W. Marek and M. Truszczynski. Autoepistemic logic. Journal of ACM, 38(3):588–
619, 1991.

15. R. T. Ng and V. S. Subrahmanian. Probabilistic logic programming. Information
and Computation, 101(2):150-201, December 1992.

16. R. T. Ng and V. S. Subrahmanian. Stable semantics for probabilistic deductive
databases. Information and Computation, 110(1):42-83, 1994.

17. I. Niemela and P. Simons. Efficient implementation of the well-founded and sta-
ble model semantics. In Joint International Conference and Symposium on Logic
Programming, 289-303, 1996.

18. I. Niemela, P. Simons, T. Soininen. Stable model semantics of weight constraint
rules. In Fifth International Conference on Logic Programming and Nonmonotonic
Reasoning, 317-331, 1999.

19. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81-132, 1980.
20. E. Saad. Hybrid probabilistic programs with non-monotonic negation: semantics

and algorithms. Ph.D. thesis, New Mexico State University, May 2005.
21. E. Saad and E. Pontelli. Towards a more practical hybrid probabilistic logic pro-

gramming framework. In Practical Aspects of Declarative Languages. Springer
Verlag, 2005.

22. E. Saad and E. Pontelli. Hybrid probabilistic logic programming with non-monotoic
negation. In Twenty First International Conference on Logic Programming. Springer
Verlag, 2005.

23. V. S. Subrahmanian, D. S. Nau, C. Vago. wfs + branch and bound = stable models.
IEEE Transaction on Knowledge and Data Engineering, 7(3): 362-377, 1995.

24. J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with annotated
disjunctions. In International Workshop on Nonmonotonic Reasoning, 2004.



DiaWOz-II – A Tool for Wizard-of-Oz
Experiments in Mathematics�

Christoph Benzmüller1, Helmut Horacek1, Ivana Kruijff-Korbayová2,
Henri Lesourd1, Marvin Schiller1, and Magdalena Wolska2

1 Dept. of Computer Science
2 Dept. of Computational Linguistics

Saarland University, Germany
{chris,horacek,henri,schiller}@ags.uni-sb.de,

{korbay,magda}@coli.uni-sb.de

Abstract. We present DiaWOz-II, a configurable software environment
for Wizard-of-Oz studies in mathematics and engineering. Its interface
is based on a structural wysiwyg editor which allows the input of com-
plex mathematical formulae. This allows the collection of dialog corpora
consisting of natural language interleaved with non-trivial mathemati-
cal expressions, which is not offered by other Wizard-of-Oz tools in the
field. We illustrate the application of DiaWOz-II in an empirical study
on tutorial dialogs about mathematical proofs, summarize our experi-
ence with DiaWOz-II and briefly present some preliminary observations
on the collected dialogs.

Keywords: Dialog systems, natural language dialog in mathematics,
tutoring systems, Wizard-of-Oz experiments.

1 Introduction

For the development of natural language dialog systems, experiments in the
Wizard-of-Oz (WOZ) paradigm are a valued source of dialog corpora.1

Existing environments for WOZ experiments, even those for the domain of
mathematics tutoring, generally operate in domains that either require only
simple mathematical formulae (with operators like + and ×), or they separate
the mathematical objects (geometric figures or equations) from the tutorial di-
alog (such as in the Wooz tutor [2], for example). In this paper we present our
WOZ environment DiaWOz-II which, in contrast to that, enables the collection
of dialogs where natural language text is interleaved with mathematical nota-
tion, as is typical for (informal) mathematical proofs. The interface components
� This work has been funded by the DFG Collaborative Research Center on Resource-

Adaptive Cognitive Processes, SFB 378 (http://www.coli.uni-saarland.de/
projects/sfb378/).

1 A Wizard-of-Oz experiment [1] serves to test the usability of a hypothetical software
system. The system is (partially) simulated by a human expert, the wizard. Typically,
a mediator software partially implements the functionality of the simulated system.

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 159–173, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.coli.uni-saarland.de/projects/sfb378/
http://www.coli.uni-saarland.de/projects/sfb378/


160 C. Benzmüller et al.

of DiaWOz-II are based on the what-you-see-is-what-you-get scientific text edi-
tor TEXmacs

2 [3]. DiaWOz-II provides one interaction window for the user and
one for the wizard, together with additional windows displaying instructions and
domain material for the user, and additional notes and pre-formulated text frag-
ments for the wizard. All of these windows allow for copying freely from one to
the other. Furthermore, our DiaWOz-II allows the wizard to annotate user dialog
turns with their categorization. DiaWOz-II is also connected to a spell-checker
for checking both the user’s and the wizard’s utterances.

This paper is organized as follows: In Sect. 2 we motivate the design of our
system. In Sect. 3.1 we describe the TEXmacs wysiwyg editor, on which the
interface of DiaWOz-II is based. The DiaWOz-II system is discussed in detail
in Sect. 3. In Sect. 4 we discuss the application of DiaWOz-II in a recently
completed series of experiments. Section 5 concludes the paper.

2 Design Aspects

General Requirements for WOZ Tools. We list some general requirements
we considered in the development of DiaWOz-II:

Plausibility and Comfort. For WOZ experiments, it is crucial to maintain the
user’s belief that he is interacting with a fully artificial system. Therefore,
the software that mediates between wizard and student should enable the
wizard to conceal his human identity. This is not a trivial pursuit, since it is
common sense that “people are flexible, computers are rigid (or consistent),
people are slow at typewriting, computer output is fast” [4]. Thus, the WOZ
tool is required to enable the wizard to respond to the participant quickly
and comfortably and in a plausible way.

Suitability for Book-keeping. The main goal of WOZ experiments is the analysis
of the interactions between the subjects and the simulated system. Therefore,
the WOZ tool is required to record the dialogs using a representation format
suitable for further processing and analysis.

Flexibility and Simplicity. The WOZ tool should be easily adjustable, so that it
can be used under different experimental conditions and in different domains.
Adjustments to the software should not significantly add to the complexity
of carrying out a series of experiments, a process which by itself poses enough
challenges.

Tool Integration. The WOZ tool should support the integration of other soft-
ware components, for example, modules that already realize single parts of
the simulated overall system.

Specific Requirements for DiaWOz-II. DiaWOz-II has been developed for
application in the Dialog project [5], which investigates the use of natural lan-
guage dialog for teaching mathematical proofs. The particular research foci of
the Dialog project are natural language analysis, domain reasoning for math-
ematics, and tutorial aspects of mathematics tutoring.
2 www.texmacs.org

www.texmacs.org


DiaWOz-II – A Tool for Wizard-of-Oz Experiments in Mathematics 161

In 2003, we carried out a first empirical study [6] in the WOZ paradigm
in which we collected a corpus of tutorial dialogs on mathematical proofs in
German. The study concentrated on the comparison between three tutoring
strategies, namely the Socratic, didactic and the minimal feedback strategies.
For this purpose, we developed the DiaWoZ [7] environment, the predeces-
sor of DiaWOz-II. DiaWoZ supports complex dialog specifications, which were
needed in order to specify a particular hinting algorithm used in the Socratic
tutoring condition. DiaWoZ allows keyboard-to-keyboard interaction between
the wizard and the student. The interfaces consist mainly of a text window
with the dialog history and a menu bar providing mathematical symbols. Fur-
thermore, the wizard can assign dialog state transitions and speech act cate-
gories to student turns w.r.t. the underlying dialog model. The DiaWoZ inter-
face allowed free mixing of natural language text with mathematical symbols.
Still, there was room for improvement with respect to the plausibility and com-
fort criterion postulated above. For example, the experiment participants sug-
gested the use of the keyboard instead of the mouse for inserting mathematical
symbols.

The first study motivated a second series of experiments [8], which we briefly
describe in Sect. 4. In contrast to the first study, the more recent study imposes
less constraints on the wizards’ tutoring and assumes a rather simple dialog
model. However, in comparison to the first study, the second study is more
focused on linguistic phenomena and mathematical domain reasoning in tutorial
dialogs and the interplay between these two.

Related Work. A variety of WOZ tools and dialog system toolkits already
exist. Examples are the simulation environment ARNE [4], the SUEDE proto-
typing tool for speech user interfaces [9] and MD-WOZ [10].

In the domain of mathematics, a WOZ simulation of the ALPS environment
[11] and the Wooz tutor [2] should be mentioned. In the case of ALPS, the
Synthetic Interview (SI) method is used, i.e. the student formulates free-form
questions in a chat window, and receives a video clip with an answer. In the ALPS
system, these video clips are pre-recorded, stored in a database, and retrieved
as answers for the questions from the user, whereas in the WOZ simulation of
ALPS, the wizard’s responses are spontaneous. The ALPS tutor is designed to
be an algebra tutor. Typical problems in the domain of ALPS are for example
the computation of area and perimeter of geometric figures.

The Wooz tutor is also a tool for keyboard-to-keyboard interaction in the
domain of algebra. It offers a chat window displaying the tutorial dialog, a
dedicated window displaying the problem statement and a dedicated editor for
editing equations. A typical problem given to the participants is “please factor
11x2 − 11x + 6”.

The interfaces of these two systems are not intended for mixing natural lan-
guage input with the mathematical notation employed for proving theorems,
which we investigate in the Dialog project. For our dialog system we aim for an
interface that allows flexible and easy input for mathematical formulae and natu-
ral language text. This requirement is addressed by the interface in DiaWOz-II.



162 C. Benzmüller et al.

3 The DiaWOz-II System

We decided to build a new WOZ tool rather than trying to improve the existing
DiaWoZ system. An important motivation was to use TEXmacs [3] as a platform
for the new system in order to benefit from its typesetting abilities, its config-
urable GUI and its event-handling as a building block for the creation of a more
lightweight software.

DiaWOz-II is realized as a classical client-server architecture, and consists
of a server and two client interfaces for the student and the tutor respectively.
The architecture allows keyboard-to-keyboard interaction between the student
and the tutor. Furthermore, the server fulfills other central functions, namely
the recording of the interaction in a log-file, controlling turn-taking between
the dialog participants, and providing an interface to a spell-checker. We first
describe TEXmacs and its role in DiaWOz-II before we further elaborate on each
of these aspects in turn.

3.1 TEXmacs

TEXmacs is a scientific text editor with strong support for mathematical typeset-
ting which is inspired by TEX and GNU emacs. The internal representation of a
TEXmacs-document is well organized in a tree-like structure. TEXmacs provides
two alternative editing modes: (i) a wysiwyg interface that allows to directly
manipulate the typeset document and (ii) a source mode that provides a view
of the internal document representation in the underlying, structured TEXmacs

markup language. This language supports the definition of macros, which are
generally easy to read and understand. It is also worth noting that the standard
TEXmacs markup language inherits many usual LATEX constructs, in such a way
that for LATEX-literate persons, starting to use TEXmacs is usually straightfor-
ward. Thus, extending the markup (namely, defining new kinds of tags together
with how these newly defined tags must be typeset) can be done in a very con-
venient way using macros. For more sophisticated behavior, for example, the
implementation of an interactive application, one can use Scheme, the standard
TEXmacs scripting language.

TEXmacs fulfills the plausibility and comfort requirement introduced in Sect.
2 by offering various advanced modes of input for mathematical symbols, and in
particular it enables LATEX commands. Using TEXmacs also fulfills the flexibility
and simplicity requirement, since it can be reconfigured with little effort.

The TEXmacs editor has already been adapted as an interface to a diversity
of external tools, most of which are computer algebra systems. However, using
TEXmacs as an interface for a (simulated) tutoring system is novel.

3.2 TEXmacs as Base Component of DiaWOz-II

A TEXmacs application as employed in DiaWOz-II has the overall structure
shown in Fig. 1. Such an application consists of (i) a set of TEXmacs macros which
implement the visualization of the different parts of the user interface (i.e. what
are their shapes, their locations, the text attributes (e.g. color, font, ...), etc.), and



DiaWOz-II – A Tool for Wizard-of-Oz Experiments in Mathematics 163

Event
Processing
�Scheme scripts�

Macro Processing
�TEXMACS macros�

Expanded
Markup Tree

Display

Mouse�
Keyboard

Events

A TEXMACS
document is a
Markup Tree

Screen

Fig. 1. Structure of a TEXmacs application

(2) a set of Scheme scripts,
which implement the mech-
anism which interprets the
events (e.g., a mouse click, a
key press, etc.) and modifies
the interface accordingly.

Macros. A very basic ex-
ample of a TEXmacs macro
that can be used to turn a
part of the document into
italics underlined text is (cf.
[12] for more details on the
macro language):

<underlined-italics|x> => <with|font-shape|italic|<underline|<arg|x>>>

The left-hand side of this expression defines the use of the macro (i.e., the non-
expanded markup, as it can be found in a TEXmacs document file) and the
right-hand side its expansion. Given this macro definition, the TEXmacs markup
fragment <underlined-italics|This is italics underlined text.>
is first rewritten by the macro processor as <with|font-shape|italic|
<underline|This is italics underlined text.>> and then displayed in
TEXmacs as This is italics underlined text.

Processing the Markup Using Scheme. The event processor can be ex-
tended by plugins written as Scheme scripts. These scripts can manipulate the
internal markup tree that represents the user interface, typically as a reaction
to an event (e.g., mouse, keyboard, network, etc.). As a reaction to the changes
in the markup, the macros are reevaluated, and the display is then updated.

3.3 Student and Wizard Interfaces

The dialog system simulated by DiaWOz-II is presented to the student as a
window, referred to as the interaction window. It consists of menu bars and a text
field, as shown in Fig. 2. The dialog history and the prompt for the current input
are displayed in the same text field, separated by a horizontal bar at the bottom
in Fig. 2. The utterances from the tutor and the student are displayed in different
colors for better readability. The student can send messages by pressing the
“absenden” (submit) button. Upon submitting, the message becomes part of the
dialog history. The answers by the tutor are accompanied by an acoustic signal.

In a second window, which is independent of the interaction window, supple-
mentary study material with mathematical concepts and definitions is displayed.

The wizard’s interface, as shown in Fig. 3, is conceptually similar to the
student’s interface. In addition, the wizard is asked to categorize each student
turn w.r.t. three dimensions: correctness, granularity and relevance; the wizard
fills out the fields of a small table referring to the three dimensions by making



164 C. Benzmüller et al.

Fig. 2. Interaction window of the student interface

choices in pull-down menus, or directly by typing. The wizard’s button for send-
ing messages is only enabled once all the fields have been filled. If the student’s
utterance does not represent a mathematical statement the wizard fills in default
values (N/A).

We now turn in more detail to the methods for inserting mathematical symbols
in DiaWOz-II, which are made available by TEXmacs. Mathematical symbols
(e.g., ∅) can be created by using LATEX commands (e.g., \emptyset) or by using
additional commands defined when designing the interface (e.g., the command
\emptyset in German language, i.e. \leeremenge). These commands are also
made available in the menu bar. DiaWOz-II also allows for structured commands,
e.g. commands that create pairs of brackets for pair (�, �) and for set notation
{ � | � }. An example is the macro paar (German for pair):

<paar|left|right> => ( <arg|left> , <arg|right> )

Invoking \paar with the arguments x and y yields the formula (x, y). The
two arguments need not necessarily be provided when invoking the macro, their
respective placeholders can also be filled in interactively and modified later.
Macros can be nested, and most importantly, they avoid missing parentheses
when the user writes expressions using the pair notation. The set of macros
provided with DiaWOz-II can be easily extended with further TEXmacs macros.

TEXmacs furthermore makes it possible to distinguish between mathematical
symbols created via the menu bar and via LATEX commands, even if they appear
to be the same at the typesetting level.



DiaWOz-II – A Tool for Wizard-of-Oz Experiments in Mathematics 165

Fig. 3. The interaction window of the wizard interface

Using structured building blocks for constructing mathematical formulae via
macros is similar to the Maths Tiles approach [13]. Maths Tiles are graphical
tiles that can contain text, diagrammatic shapes and sockets, which are place-
holders where other Maths Tiles can be inserted to form composite objects.
TEXmacs has the advantage over Maths Tiles that it already includes by de-
fault a large set of macros for constructing formulae, such as a large number of
macros that represent LATEX commands.

3.4 The Server

The central capabilities of DiaWOz-II reside in the server. Its main task is to
pass the dialog contributions back and forth between the student and the wizard
interface. Furthermore, it provides the following other central services:

Log-file Mechanism. All dialogs are recorded in a log-file in DiaWOz-II. The
log-file format is based on the representation format of TEXmacs, which is a
structured, extensible and open document format. Naturally, the annotations
performed by the wizard for each student turn are also stored in the log-file.

Spell-Checking. Spelling mistakes by the wizard can be a giveaway of human
simulation. Therefore, our server (optionally) integrates a spell-checker. If
spell-checking is activated, a message from the wizard is only passed on
by the server if it passes the spell-checker, otherwise the wizard is asked
to correct the message. The student’s input is also spell-checked. Messages
exceeding a threshold of spelling errors are refused (i.e. not passed on to
the wizard). The underlying rationale is that it would be implausible that
an automated system could deal with such misspelled input.



166 C. Benzmüller et al.

We currently employ the spell-checker GNU Aspell3 with the standard
German dictionary provided with Aspell together with an extra dictionary of
mathematical jargon. The latter was compiled from the introductory math-
ematics materials and gradually extended during the experiments.

Turn-Taking Control. DiaWOz-II imposes strict turn-taking on the student:
once the student makes a turn, the sending of new messages is disabled
(i.e., the dedicated button for “sending” is deactivated and displayed in a
darker shade) until the tutor provides a response. Without this constraint,
it might become unclear to which turn of the student an answer from the
wizard belongs. However, the tutor is allowed to barge in at any time, which
enables him to offer support or prompt if the student appears to be inactive.

3.5 Implementation

Spellchecker

Turntaking FSA

Logging

Server

TEXMACS �Student�TEXMACS �Tutor�

Dispatching changes � Re�
con�guring the interface

Sending a command

ClientClient

Fig. 4. System architecture

Figure 4 illustrates the ar-
chitecture of DiaWOz-II. In
order to customize the client
interfaces, we have

– adapted the menu bars
and buttons to the needs
of our application and

– restricted the editing facil-
ities so that the student
can only type in a desig-
nated text area with all
other TEXmacs function-
alities disabled (for exam-
ple, inserting an image, or
editing the dialog history).

On the server side, turn-taking is controlled by a finite-state automaton. A
message received by the server is written to the log-file and sent to a spell-
checker. If it passes, it is broadcast to the clients. If it does not pass, it is
sent back to the sender for correction. Disallowing the student from sending new
messages until the wizard makes a turn is technically realized by server messages
to the student’s client to reconfigure the client’s interface (i.e. enable/disable the
interface’s elements according to the current state).

The combination of macros and Scheme provided in TeXmacs has turned out
to be very useful for our development of DiaWOz-II. In particular, the amount
of code we wrote (a dozen of Scheme files of approximately 100 Kb in total) is
relatively small considering the implemented functionality, and it remained man-
ageable over time (as opposed to the previous version of DiaWoZ that consisted
of about 200Kb Java code spread among 70 files). The environment enabled also

3 http://aspell.sourceforge.net/

http://aspell.sourceforge.net/


DiaWOz-II – A Tool for Wizard-of-Oz Experiments in Mathematics 167

people who are not professional software developers to participate in develop-
ing the system. Thus, TeXmacs has proven to be a good choice for our WOZ
software, both from the point of view of the level of functionality it offers (word
processing with LATEX-like mathematical typesetting in a customizable editor)
as well as from the point of view of prototyping and extending the software.
The combination of the Scheme programming language with the large set of fea-
tures already provided by TeXmacs allows for a lightweight, inclusive software
development process.

4 An Empirical Study Using DiaWOz-II

Exploiting the DiaWOz-II system, we carried out a series of experiments in July
2005. In this study (see [8]), we collected a corpus of tutorial dialogs in German
on mathematical proofs in the domain of binary relations. The collected data
serves to investigate linguistic phenomena related to the mixing of mathemat-
ical formulae and natural language, underspecification phenomena, qualitative
aspects of proof steps and mutual dependencies between natural language anal-
ysis and non-trivial mathematical domain reasoning.

4.1 Method

Thirty-seven students from Saarland University participated in the experiments.
They were instructed to solve proof exercises collaboratively with a computer
system that was described to them as a natural language dialog system on math-
ematics. This system was simulated with the DiaWOz-II software and four ex-
perts4, who took the role of the wizard in turn (the set-up is shown in Fig. 5).

Fig. 5. An experiment in progress: The participant (left) and the wizard, experimenter
and research assistant in the control room (right)

The wizards were given general instructions on the Socratic style of tutoring
(cf. [14]), which is characterized by the use of questions to elicit information from
4 The experts consisted of the lecturer of a course Foundations of Mathematics, a

maths teacher, and two maths graduates with teaching experience.



168 C. Benzmüller et al.

the student. The tutors were instructed to reject utterances outside the math-
ematical domain and to respond in a uniform manner. Apart from that, the
wizards were not restricted in the verbalization of their answers to the students.
This allowed us to investigate the use of mathematical language without possi-
bly influencing it by a-priori restrictions, even if more restrictions might have
contributed to making the simulated system appear even more machine-like. In
addition to the interaction window of DiaWOz-II, the tutors were provided with
a second TeXmacs window in which they could save text and formulae for re-use.

The exercises were taken from the domain of relations, and were centered
around the concepts of relation composition and relation inverse. Because of the
advanced character of the exercises, the participants were required to have taken
part in at least one mathematics course at university level. First, the subjects
were required to fill out a questionnaire, asking about previous experiences with
dialog systems and mathematics background. Subjects were also given study ma-
terial with the mathematical definitions that were required to solve the exercises
which was studied for approximately 25 minutes. The materials were handed
out on paper and were also available as a TeXmacs document on the screen.
This helped to achieve a uniform (and thus plausible) appearance of the system.
Prior to the tutoring session, the students received a short introduction to the
interface, during which the different modes of input for mathematical symbols
– as menu items, as LATEX commands or via commands in German language –
and the copy & paste facility were demonstrated.

The largest part of the two-hour experimental session was allotted to the
interaction between the student and the simulated system. In addition to the
log-files recorded by DiaWOz-II, screen recordings were made. Furthermore, the
participants were encouraged to “think aloud” and they were audio-recorded
and filmed. This comprehensive collection of data not only documents the text
of the tutorial dialogs, but also allows us to analyze how the participants used
the interface and the study material.

At the end of the experimental session, the participants were required to
fill out a second questionnaire asking about their verdict on the usability of the
system, how difficult they found the exercises, and suggestions for improvements
of the system.

4.2 Discussion

The experiments resulted in a large and diverse corpus of dialogs. During a
session, a participant made on average 24 dialog turns, excluding those that
were rejected for bad spelling. We briefly discuss how DiaWOz-II fulfilled its
role, how the participants coped with the interface. Furthermore, the collected
data hints at a potential influence of the interface features in combination with
the reading material on the resulting tutorial dialogs.

Observations from the Corpus. An example of two dialog fragments from
the experiment is given in Fig. 6. These dialogs were obtained under two different
modes of presentation of the study material: formal (FM) vs. verbose (VM). Note



DiaWOz-II – A Tool for Wizard-of-Oz Experiments in Mathematics 169

S33: Nach Aufgabe W ist
(S ◦ (S∪R)−1)−1 = ((S∪R)−1)−1 ◦ S−1

By Exercise W
(S ◦(S ∪R)−1)−1=((S ∪R)−1)−1◦S−1

holds
T34: Das ist richtig! That is correct!
S34: Dies ist nach Theorem 1 gleich
(S∪R) ◦ S −1

This is by Theorem 1 equal to
(S∪R) ◦ S −1

T35: Das ist auch richtig!
That is also correct!
S35: Ein Element (a,b) ist genau dann
in dieser Menge, wenn es ein z∈M gibt
mit (a,z)∈S∪R und (z,b)∈S −1

An element (a,b) is in this set exactly
when there is a z∈M with (a,z)∈S ∪R
und (z,b)∈S −1

T36: Das ist korrekt! That is correct!
S36: Also (b,z)∈S. Therefore (b,z)∈S.
T37: Auch das ist korrekt!
That is also correct!
S37: DAmit [sic] kann aber nicht die
geforderte Gleichheit bewiesen werden.
But with this the given equality cannot be
proven.
T38: Das haben Sie gut erkannt! Was
fehlt Ihnen dazu?
You have made a good observation! What
is missing?

S25: (R∪S)◦S = {(x,y) | ∃ z(z ∈ M ∧
((x,z) ∈ R ∨ (x,z) ∈ S) ∧ (z,y) ∈ S}
T28: Diese Beziehung hat Relevanz fuer
die Aufgabe. Sie muessen sich also etwas
dabei gedacht haben, als Sie diese ver-
muteten. Koennen Sie begruenden, wie
sie mit der Aufgabe zusammenhaengt?
This relation is relevant for the exercise.
You must have considered something as
you proposed it. Can you justify how it is
related to the exercise?
T29: Ihre Formel ist richtig.
Your formula is correct.
T30: Koennen Sie die Behauptung unter
zusaetzlichen Voraussetzungen beweisen?
Can you prove the expression under
additional assumptions?
S26: {(x,y) | ∃ z(z ∈ M ∧ ((x,z) ∈ R ∨
(x,z) ∈ S) ∧ (z,y) ∈ S} = {(x,y) | ∃ z(z
∈ M ∧ (y,z) ∈ S ∧ ((x,z) ∈ R ∨ (x,z) ∈
S))} ⇔ ((y,z) ∈ S ∧ (z,y) ∈ S)}
T31: Auf der rechten Seite ist z nicht
spezifiziert. Meinten Sie vielleicht ⇔ oder
etwas Aehnliches [sic] statt ∧?
On the right side z is not specified.
Do you perhaps mean ⇔ or something
similar instead of ∧?

Fig. 6. Excerpts of dialogs in the two conditions: VM-group (left) and FM-group
(right). English translations are given in italics. S and T indicate student and wizard
turns, respectively.

that the dialogs clearly differ in the employed mathematical style and that in
Fig. 6 (right), the mathematical operations performed by the student can be
characterized as term rewriting steps, i.e. a subformula of a term is replaced by
an equivalent subformula. Also note that in Fig. 6 (right), the student uses no
natural language. Even though all subjects were informed before the interaction
that the system can handle a combination of natural language and formula input,
we observed great variations in the amount of natural language used by the
subjects.

Corpus analysis reveals differences in the use of natural language and math-
ematical expressions that was at least partially influenced by the mode of pre-
sentation of the study material. The group presented with the verbose material
tended to use more natural language than the formal material group and the



170 C. Benzmüller et al.

dialog turns of the VM-subjects contained more, but shorter, mathematical ex-
pressions. The formal material group tended to use more and longer formulas
overall, and less natural language. More details on the differences in language
production between the two conditions can be found in [15].

The copy & paste facilities provided by DiaWOz-II allowed copying defini-
tions from the study material into the dialog contributions, and allowed copying
previously uttered formulae for constructing new formulae. We observed that
many subjects constructed larger and larger formulae with several levels of nest-
ing. No such phenomenon was observed in the first study [6]. Even though the
predecessor DiaWoZ software used in this study allowed copy & paste, this fea-
ture was not explained to the users and discovered only by some. Furthermore,
in the first study the introduction material was only presented on paper, so that
students could not copy from there as was possible in the second study. Another
difference is the mathematical domain itself - the proofs concerning relations
in the second experiment series require considerably longer formulae than those
concerning naive set theory in the first experiment.

Usability of DiaWOz-II. The students were required to fill out post-
experiment questionnaires, which among other things asked questions about the
interface.

Students were asked if they had problems while using the interface, and to
qualify their answer by a rating on a five-point scale between one (no problems)
and five (great problems). Their ratings5 (median 2, average 2.14, standard
deviation 0.85) indicate that the participants generally had little trouble using
the DiaWOz-II interface.

Even though a direct comparison between DiaWoZ and DiaWOz-II would re-
quire an experiment on its own (the two reported experiments involved different
mathematical domains and different requirements imposed on the participants),
these ratings are not far from those obtained in the first series of experiments
with DiaWoZ. There, students had also been asked the same question, where
they indicated a rating of 1.59 on average and a median of 1.

A small number of participants commented to the experimenter that they
suspect a human teacher. However, comments by other subjects indicated that
these were convinced of having interacted with an automated system.

Participants were asked to give comments about the system in general and
the interface in particular, which are summarized in Table 1. The fact that the
input facilities of DiaWOz-II were positively mentioned by numerous partici-
pants can be contrasted with the first series of experiments, where eight of the
seventeen participants complained that the sole input method for mathematical
symbols via the menu bar required constant switching between the mouse and
the keyboard for inputting mathematical formulae.

A serious criticism concerned the speed of the system. This refers to two
aspects: (1) the fact that the students had to wait for the answers from the
5 The ratings from thirty-six participants are distributed as follows: A rating of 1

was assigned by 7 participants, a rating of 2 by 21 participants, a rating of 3 by 4
participants and a rating of 4 by 4 participants. No participant gave a rating of 5.



DiaWOz-II – A Tool for Wizard-of-Oz Experiments in Mathematics 171

Table 1. Most frequent comments on the DiaWOz-II interface (number of participants
indicated in brackets)

Positive Comments
– Variety of formula input methods1

(7)
– LATEX commands available1 (6)
– Math symbols in menu1 (5)

– Interface is simple to use/clear (5)
– Questions can be formulated in

NL (4)

1 In total, 20 subjects mentioned at least one positive aspect w.r.t. to formula input.
Negative Comments

– TEXmacs-specific problems (14)
– Bad screen size/font size (8)
– No direct keyboard shortcuts for

math symbols available (3)

– Interface delay (10)
– Sending messages not via return key

(6)

system, and (2) the behavior of the interface itself. The waiting times consisted
in the time spent by the tutor to read the dialog contributions from the students
and to write an answer (even with the help of pre-formulated answers), but also
the message-passing between the client, the server and the spell-checker. An
important fact was that the wizards were sometimes challenged by the size of
formulae created by the students, which made checking them particularly time-
consuming. The insufficient speed attributed to the system’s interface refers to
a small but noticeable delay when typing symbols in DiaWOz-II. This delay is
not experienced when using a standard TeXmacs, but results from the extra
mechanism that protects the dialog history from being edited mentioned above.
Another criticism concerns the window layout. For the experiment we used a
screen capturing software and a low screen resolution to save disk space, which
was commented on negatively by the subjects.

In summary, the questionnaires show that the input methods for mathematical
text available in DiaWOz-II were well received by many participants, but that
other mainly technical difficulties remain. A possible improvement proposed by
some of the participants is an option for the user to withdraw a message after
it is sent, in case the user himself becomes aware of a minor error and wants to
correct it himself.

5 Conclusion

We have presented DiaWOz-II, our mediator software for WOZ experiments
based on the wysiwyg editor TEXmacs. DiaWOz-II allows various modes of in-
put for mathematical symbols, such as LATEX commands, customized commands
and menu items, and editing facilities that allow for the creation of complex for-
mulae. Furthermore, DiaWOz-II inherits high quality typesetting from TEXmacs.
One purpose of this paper is to advocate DiaWOz-II to the AI community for
similar WOZ studies in domains such as engineering, physics, economics, etc.
where mathematical input in combination with natural language plays a crucial
role.



172 C. Benzmüller et al.

We also briefly addressed the set-up and some results of a series of exper-
iments conducted with DiaWOz-II. The corpus we obtained is important to
guide our research in the Dialog project. It is currently being evaluated and
can be obtained from http://www.ags.uni-sb.de/~dialog (see [8] for a pre-
liminary analysis). We have observed that the capabilities of DiaWOz-II for
editing and copying mathematical formulae introduced artifacts into some of
the tutorial dialogs that we collected, which we did not observe in the previ-
ous, similar experiment. These manifest themselves in a term-rewriting style
of proving mathematical theorems leading to unnecessarily large and nested
formulae. This hints at the importance of incorporating didactic knowledge
into tutoring systems in our field (as simulated by DiaWOz-II) which pre-
vent students from abusing such a system’s features in a technology-driven
manner, and to help the students to use these features purposefully and with
moderation.

As a part of our ongoing work, we are combining the dialog specification
mechanism from DiaWoZ with the DiaWOz-II system to obtain an environment
that reflects our expertise gained with both systems. The DiaWOz-II system can
be downloaded from http://www.ags.uni-sb.de/~dialog/diawoz2.

Acknowledgments. We would like to thank all of the members of the Dialog
team for their input and comments on initial drafts of this paper, and of course
for their contributions to DiaWOz-II and the experiments.

References

1. Fraser, N.M., Gilbert, G.N.: Simulating speech systems. Computer Speech and
Language (5) (1991) 81–99

2. Kim, J.H., Glass, M.: Evaluating dialogue schemata with the Wizard of Oz
computer-assisted algebra tutor. In: Intelligent Tutoring Systems. (2004) 358–367

3. Hoeven, J.v.d.: GNU TeXmacs: A free, structured, wysiwyg and technical text
editor. In Flipo, D., ed.: Le document au XXI-ième siècle. Volume 39-40., Metz
(2001) 39–50 Actes du congrès GUTenberg.

4. Dahlbäck, N., Jönsson, A., Ahrenberg, L.: Wizard of Oz studies – Why and how.
Knowledge-Based Systems 6(4) (1993) 258–266

5. Benzmüller, C., Fiedler, A., Gabsdil, M., Horacek, H., Kruijff-Korbayová, I., Pinkal,
M., Siekmann, J., Tsovaltzi, D., Vo, B.Q., Wolska, M.: Tutorial dialogs on mathe-
matical proofs. In: Proceedings of the IJCAI Workshop on Knowledge Represen-
tation and Automated Reasoning for E-Learning Systems, Acapulco (2003) 12–22

6. Benzmüller, C., Fiedler, A., Gabsdil, M., Horacek, H., Kruijff-Korbayová, I., Pinkal,
M., Siekmann, J., Tsovaltzi, D., Vo, B.Q., Wolska, M.: A Wizard of Oz experiment
for tutorial dialogues in mathematics. In: Proceedings of AI in Education (AIED
2003) Workshop on Advanced Technologies for Mathematics Education, Sydney,
Australia (2003) 471–481

7. Fiedler, A., Gabsdil, M., Horacek, H.: A tool for supporting progressive refinement
of wizard-of-oz experiments in natural language. In Lester, J.C., Vicari, R.M.,
Paraguaçu, F., eds.: Intelligent Tutoring Systems — 7th International Conference
(ITS 2004). Number 3220 in LNCS, Springer (2004) 325–335

http://www.ags.uni-sb.de/~dialog
http://www.ags.uni-sb.de/~dialog/diawoz2


DiaWOz-II – A Tool for Wizard-of-Oz Experiments in Mathematics 173

8. Benzmüller, C., Horacek, H., Lesourd, H., Kruijff-Korbayová, I., Schiller, M., Wol-
ska, M.: A corpus of tutorial dialogs on theorem proving; the influence of the
presentation of the study-material. In: Proceedings of International Conference on
Language Resources and Evaluation (LREC 2006), Genoa, Italy, ELDA (2006) To
Appear.

9. Klemmer, S.R., Sinha, A.K., Chen, J., Landay, J.A., Aboobaker, N., Wang, A.:
Suede: a wizard of oz prototyping tool for speech user interfaces. In: UIST. (2000)
1–10

10. Munteanu, C., Boldea, M.: MDWOZ: A Wizard of Oz environment for dialog
systems development. In: Proceedings 2nd International Conference on Language
Resources and Evaluation, Athens, Greece (2000) 1579–82

11. Anthony, L., Corbett, A.T., Wagner, A.Z., Stevens, S.M., Koedinger, K.R.: Student
question-asking patterns in an intelligent algebra tutor. In Lester, J.C., Vicari,
R.M., Paraguaçu, F., eds.: Intelligent Tutoring Systems. Volume 3220 of Lecture
Notes in Computer Science., Springer (2004) 455–467

12. Hoeven, J.v.d., et al.: The TeXmacs manual. http://www.texmacs.org/tmweb/
manual/web-manual.en.html (1999-2006)

13. Billingsley, W., Robinson, P.: Towards an intelligent online textbook for discrete
mathematics. In: Proceedings of the 2005 International Conference on Active Media
Technology, Takamatsu, Japan (2005) 291 – 296

14. Rosé, C.P., Moore, J.D., VanLehn, K., Albritton, D.: A comparative evaluation
of socratic versus didactic tutoring. In: 23rd Annual Conference of the Cognitive
Science Society, Edinburgh, Scotland (2001)

15. Wolska, M., Kruijff-Korbayová, I.: Factors influencing input styles in tutoring
systems: the case of the study-material presentation format. In: Proceedings of
the ECAI-06 Workshop on Language-enabled Educational Technology. (2006) To
Appear.

http://www.texmacs.org/tmweb/manual/web-manual.en.html
http://www.texmacs.org/tmweb/manual/web-manual.en.html


Applications of Automated Reasoning

Ulrich Furbach and Claudia Obermaier

Universität Koblenz-Landau
D56070 Koblenz, Germany

{uli,obermaie}@uni-koblenz.de

Abstract. This paper offers an informal overview and discussion on
first order predicate logic reasoning systems together with a description
of applications which are carried out in the Artificial Intelligence Re-
search Group of the University in Koblenz. Furthermore the technique
of knowledge compilation is shortly introduced.

1 Introduction

Automated theorem proving systems have made increasing progress during the
last decades. There was even a prominent open problem, the Robbins problem,
which has puzzled logicians since 1930, which was solved by the Automated
Reasoner EQP for first order equational logic, developed at Argonne National
Laboratory [McC97]. Propositional reasoning systems are very successful in soft-
and hardware verification, where the length of formulae which can be processed
has grown by orders of magnitude over the last 10 years; today it is very well
possible to solve real world verification tasks from hardware design.

In knowledge representation there was a shift from graphic oriented systems
like KL-One in the beginning of the 90s towards concept languages or description
logic, as it is called nowadays. For the processing of description logics the most
commonly used algorithms are basically tableau calculi, which reached a very
sophisticated level, allowing the use of description logics for numerous interesting
applications (see e.g. [BCM+03]). Because of the close relationship between de-
scription logic and modal logic, the fact emerged, that in many cases description
logic systems are the more powerful modal logic provers ([Mas99]). This is of
importance because modal logic is a decidable fragment of first order predicate
logic and thus it plays an important role in computer science.

In this paper we want to demonstrate, that automated reasoning systems
are very well ready for real world applications. We are dealing with first order
predicate logic systems, accepting its semi-decidability and taking advantage
from its higher descriptive power. We are aware that there are many applications
of propositional and even higher order interactive reasoning systems; in this
paper, however, we want to focus on own experiences and therefore we concert
this presentation mainly about first order automated reasoning.

In the following section we briefly depict the state of the art in the development
of first order high performance theorem proving, while in the main part we then
focus on applications we carried out in the AI Research Group of University of

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 174–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Applications of Automated Reasoning 175

Koblenz and in wizAI GmbH, a spin-off of this research group. In a last section
we will introduce some aspects of knowledge compilation.

2 State of the Art in Automated Deduction

In this section we will use a small toy example to clarify and to discuss some
aspects of automated reasoning systems. Given the knowledge base from Fig-
ure 1(a), most systems start by transforming this set of formulae into a set of
clauses form Figure 1(b). This is astonishing because there are lot of arguments
against this transformation: most important that the structure of the formulae
gets lost despite equivalence transformation. This structure might mirror some
properties of the domain which is modeled, and which can possibly be used to
control the navigation through the search space while proving a theorem based
on this formula. If the reasoning system allows the user to control the proof by
interaction, it might be helpful to retain the structure, in order to facilitate nav-
igation for the user. To our knowledge, there are very few systems which directly
work with the original formula; two of them are used in a program verification
context, where user interaction is often helpful ([BHOS96, ABB+02]). Most high
performance theorem proving systems for predicate logic use clause normal form
(e.g. [Wei97, Sch04, RV02, Wer03])

symptom(s) ←
cause(c1) ∨ cause(c2) ← symptom(s)
treatment(t0) ← cause(c1)
treatment(t1) ← cause(c1)
treatment(t0) ← cause(c2)
treatment(t2) ← cause(c2)

symptom(s)
cause(c1) ∨ cause(c2) ∨ ¬symptom(s)
treatment(t0) ∨ ¬cause(c1)
treatment(t1) ∨ ¬cause(c1)
treatment(t0) ∨ ¬cause(c2)
treatment(t2) ∨ ¬cause(c2)

(a) Knowledge base KB (b) Set of clauses

Fig. 1. Knowledge base KB and corresponding set of clauses

Linear Deduction. Most textbooks on Artificial Intelligence (AI) present a
resolution calculus to reason about knowledge bases (see e.g. [PMG97] or an
overview on different textbooks [Fur03]). In the 70s of the previous century this
was indeed the main approach to process logical formulae in AI and a very com-
mon understanding was at that time that goal oriented linear deduction should
be used to prove logical consequences from a set of formulae. Assume for exam-
ple the knowledge base KB from Figure 1 together with the task to prove that
there is a treatment given that special situation; the existence of a treatment
can be modeled by the additional formula ∃Xtreatment(X), which is called a
goal. Altogether we have to prove KB |= ∃Xtreatment(X). Since resolution is
a refutational calculus, we have to negate the goal and after a slight equivalent
preserving transformation we get the clause set KB ∧ ¬treatment(X), where
all variables are implicitly universal quantified. In order to find a refutation of



176 U. Furbach and C. Obermaier

this, it seems to be very natural to start with the goal and to work ”back-
wards” until one reaches the empty clause �, indicating that the clause set is
unsatisfiable and hence the goal logically follows from the knowledge base. This
would lead to a sequence of resolvents ¬treatment(X), ¬cause(c1), cause(c2) ∨
¬symptom(s), cause(c2), treatment(t2), �. One of the first calculi advocating
this goal oriented linear approach are model elimination ([Lov68]) and linear
resolution ([KK71]) and a model elimination theorem prover SETHEO even won
the CASC competition (which will be discussed later). It was much later in the
90s where we really understood that these calculi are not based on resolution
– they are much closer to tableau calculi, at least if one takes the treatment of
variables as a discriminating parameter1.

One appealing aspect of linear refutation is that it is very close to the concept
of logic programming: one starts from a call of the program and then works
through a sequence of intermediate computations until � is found. The answer
to such a computation can be constructed from the unifiers used during the
inference steps. In [BF97] it is shown how the logic programming paradigm
can be used not only for Horn clause programming, but also for full first order
logic by means of a variant of model elimination. Another argument for this
goal oriented search for a refutation usually was its higher potential in search
space pruning. We intentionally use past tense, because nowadays most high
performance theorem provers are working in a saturation based manner, which
is explained in the next section.

Saturation. Assume again the proof task KB ∧ ¬treatment(X) from the pre-
vious discussion. Instead of assigning some of the clauses, e.g. the goal clause,
a particular importance, we just take the clause set as it is given by this task.
If we further assume that we have resolution as the inference rule at hand,
we simply add new resolvents to this set. Starting with the initial set S =
KB∪{¬treatment(X)} one can derive by this the new set S′ = S∪{cause(c2)∨
¬symptom(s)∨ treatment(t0)}. Such an extension is done until the set contains
the empty clause or (in special cases) until there are no new clauses to derive,
i.e. the set is saturated.

There are some issues to solve if one tries to do saturation based proving. The
amount of clauses which are generated from a given set of clauses, can increase
dramatically. Therefore it is mandatory to avoid generating in some sense useless
clauses and to get rid of redundant clauses. A very powerful technique to this
end is the use of term ordering to control the generation of new clauses. For
an overview of this technique in the context of resolution the reader is pointed
towards [BG01]; theorem provers which are successful with this techniques are,
among others, Otter, Spass and Vampire ([McC90, Wei97, RV02]). The use of
ordering for controlling the generation of new clauses has another advantage: it
also helps in handling equality. If the formulae to be handled by the reasoning
system contain an equality predicate, there are basically two different methods

1 In resolution variables are treated as being implicitly universal quantified, whereas
in tableau calculi they usually are rigid, i.e. placeholders for a yet unknown constant.



Applications of Automated Reasoning 177

to handle this. Either one adds axioms to the set of clauses describing the usual
properties of equational logic or an additional inference rule, like paramodula-
tion, is used to handle the equations. The latter approach also raises the problem
of generating too many new clauses, which, however, can be controlled as well
by term ordering.

It is not only resolution which is available as an inference rule in saturation
based theorem proving. If the entire formula which is given as the proof task,
is transformed into an equivalent formula in equational logic, superposition to-
gether with ordering restriction can be used. This approach is followed in the
theorem prover E ([Sch04]) or in the Waldmeister-system ([HL02]).

It is no doubt that the systems employing saturation techniques nowadays
belong to the most successful high performance first order systems; this aspect
will be discussed in more detail below.

Tableaux. Although introduced more or less at the same time as the resolution
principle (1950 – 1960), there was only evidence in the 1980th that tableau
calculi offer an alternative approach with very interesting properties. These are
in particular, that parts of the history of the current proof attempt are coded into
the proof object and that the variables are treated rigidly. We will explain this
on a special form of tableaux, the so called Hypertableaux, which are introduced
in [BFN96] and which is used in KRHyper, a theorem prover, which is the
basis throughout our applications. The calculus is a clause normal form tableau
calculus and hence we start constructing a tableau from a given set of clauses,
which are regarded as implications (negative literals are the premises, positive
literals the conclusion). In our example from Figure 1 there is one single fact, i.e.
implication with empty premise. Hence we construct the tableau consisting of
one node, namely symptom(s). The only inference rule works as follows: we take
a branch from the tableau and a clause from the clause set; if all literals from
the premise of the clause are contained in the branch (in the case of variables it
is slightly more complicated), then the branch can be extended by the literal in
the conclusion. If there is more than one literal in the conclusion, the branch is
split; if there is no conclusion in the clause, the branch is closed. A clause set is
unsatisfiable, if a tree constructed by this method only contains closed branches.
An interesting property o f this method can be seen if one omits the goal clause
¬treatment(X), which is a clause without positive literal, i.e. without conclusion.
The tableau from Figure 2 is an exhausted (i.e. maximal) tableau which can be
constructed from the clauses in our example. In such a case we not only have a
proof object, containing information from the proof search, we also can read two
models of the clause set, namely the atoms from each of the two branches. Hence
tableaux are also very helpful for constructing models for satisfiable clauses. This
is of particular importance in a non-monotonic setting, where minimal models
have to be computed as a basis of a closed world assumption; an overview of
such approaches can be found in [DFN01].

Tableau methods are also the main mechanism for the design of description
logic systems, which are gaining increasing importance in the design of the Se-
mantic Web project. A drawback of tableau calculi is the handling of equality;



178 U. Furbach and C. Obermaier

¬tr(X)
¬ca(c1)
ca(c2) ∨ ¬sy(s)
ca(c2)
tr(t2)
⊥

ca(c2) ∨ ¬sy(s) ∨ tr(t0)
ca(c2) ∨ ¬sy(s) ∨ tr(t1)
ca(c2) ∨ tr(t1)
. . .

sy(s)
�� ��

ca(c1)

tr(t0)

tr(t1)

ca(c2)

tr(t2)

tr(t0)

(a) Linear resolution (b) Saturation (c) Hypertableau

Fig. 2. Different calculi – predicates are abbreviated by the first two letters

the variables in a tableau have to be substituted simultaneously in the entire
tableau during a unification, which is necessary in an extension step with first
oder clauses. This makes the handling of equality very difficult, and, indeed, there
are no high performance tableau proofers which are also dealing with equality
in a way comparable with saturation based systems.2

Empirical Aspects. Two important achievements in automated reasoning re-
search are the commonly used benchmark suite TPTP ([SS98]) and the CASC-
competition ([PSS02]). The TPTP (Thousands of Problems for Theorem Provers)
problem library is a library of test problems for automated theorem proving (ATP)
systems. Currently the TPTP contains 7000 test problems with a large variety in
complexity and difficulties. These problems are grouped into domains, like lattice
theory, hardware creation and verification and many others. Besides the problem
library, the TPTP contains a utility to convert the problems to existing ATP for-
mats; it offers conversions to nearly all systems and thus facilitates the use of the
library. The principal motivation for the TPTP project is to move the testing and
evaluation of ATP systems from the previous ad hoc situation onto a firm footing.
This goal is certainly reached, and, even more, the TPTP idea led to the CASC
competition, which is held annually during a deduction conference.

CASC evaluates the performance of sound, fully automatic, classical first order
ATP systems. The evaluation is in terms of the number of problems solved and
the average runtime for successful solutions. The problems are chosen from the
TPTP Problem Library and they are presented together with a specified time
limit for each solution attempt. Although there might be the danger that system
designers try to tune their provers towards the event and the possible problem
set (the TPTP), there are certainly a number of advantages:

– It turned out that different calculi and systems are winning in different
problem classes.

– The systems are becoming increasingly robust. They have to run fully auto-
mated, to be invoked from batch, such that their developers have no chance
to interfere during the entire competition.

2 In the Hyper tableau calculus the situation is different, because we have universal
variables; efficiently equality handling is in development right now.



Applications of Automated Reasoning 179

– The progress of the field becomes transparent, by having the winners from
the previous year participate, even if a new version of the system is also an
entry into the current competition.

As said above, one way to present the success of automated theorem proving
is to refer to TPTP and CASC. However, it is time to point out that applica-
tions, of course, are another important measure of success. We experienced that
model generation deduction offers a very flexible way to use automated systems
in applications and embedded systems. This is what we will exemplify in the
following section.

3 Applications

In this section we will focus on application projects we worked through the recent
years in the AI Research Group (AGKI) of Koblenz University and in wizAI
GmbH, which is a spin-off of the research group. When researchers talk about
applications, this can have very different semantics; some mean the application
of a theoretical tool or method within the own field, e.g. using a theorem prover
for knowledge representation purposes in Artificial Intelligence research. Others
mean that a problem for which there was known no solution can be solved by
means of the research carried out; e.g. the solution of an open mathematical
problem by an automated reasoning system, mentioned in the introduction. In
this paper we offer a different understanding of ’application’: we have a reasoning
system, the KRHyper, based on hyper tableau; this system has been developed
during many years, it is tested in various contexts and we assume that it is a very
reliable and flexible tool. And this is exactly what we are benefitting from in other
projects; we use this tool as part of the software developing process. It is used
to quickly and safely solve subproblems during the software engineering process.
Of course the problems could have been solved differently by programming it
from scratch. By the use of our KRHyper the solution can be achieved quicker,
easier to test and more flexible to allow modification in case the requirements of
the project change, which is a very likely the case in commercial projects.

We used KRHyper in the following larger projects:

– Together with Dresdner Bank we developed a prototype of a knowledge
management system, which is used for early discovery of reputational risks
caused by decisions and statements from own bank divisions (for details see
[FGHT+04]). This is presumably the only software system in a major bank,
where an automated theorem prover is running its kernel.

– In a PhD-project, which was aiming at the intelligent processing of XML
database queries, it turned out, that KRHyper could be used to transform
incomplete queries into queries which can be processed efficiently by the
underlying database system (details can be found in [BFGHK04])

– In RoboCup we are working towards the use of logic in the simulation league.
Until now, we have been working on a soccer team which was programmed
in large parts by the use of logic programming techniques. KRHyper was



180 U. Furbach and C. Obermaier

used to check formal properties of the team, i.e. the multi-agent system.
Recently we changed the focus of the project, which is carried out in the
DFG Special Focus Program 1125 ”RoboCup”; because of the mixture of
real valued computation and logical reasoning we are using hybrid automata
for model checking of properties ([Hen96]).

– The Living Book project was carried out over several years; funded by the
German Ministry of Research and Education and by the European Comis-
sion. We developed a system which allows the development and use of intel-
ligent personalised textbooks via the internet. This project will be discussed
in more detail below.

– The Spatial Metro project is an ongoing project carried out together with
the city of Koblenz and with two of her twin cities, Norwich and Rouen.
It is financed by the European Commission and the State Government of
Rheinland-Pfalz. The goal of our part of the project is to use AI techniques
for efficient guidance of tourists in the city. This project will be discussed in
more detail below.

Living Books. Living Book is a project which was carried out during several
years aiming at the development of personalized intelligent books. Intelligent
in the sense, that a user is able to work and interact with her book, which
is maintained on a central server. The book also contains interactive systems,
which can be used for exercises and practice. For access to some books pub-
lished in this project the reader is referred to http://www.in2math.de; in this
paper we want to concentrate on the underlying technique, the Slicing Book
Technique. By this technique a document, say, a mathematics text book, is
separated once as a preparatory step into a number of small units, such as def-
initions, theorems, proofs, etc. The purpose of the sliced book then is to enable
authors, teachers and students to produce personalized teaching or learning ma-
terials based on a selective assembly of units. Once a reader is entering the
portal of the book in the web, she can login with her account and gets the
entry page of the book. There it is possible to select parts of the book from
the table of contents and to specify preferences, e.g. to include all prerequi-
sites necessary for the understanding of the selected units or to include all parts
were the contents of the selected units is used – such a view is depicted in
Figure 3.

Once the user has specified the current view of the book, the system has to
provide the appropriate units and compose them in order to receive a final pdf-
document. This task is depicted in Figure 4 for the general case, where the user
can even select from various books. Assume she is asking for an overview of the
notion of ”Normal Forms” by selecting the appropriate parts. In addition the
user has some preferences, like preferring formal notations or explanations by
examples, which the system already knows about the user.

The slices or units, whose collection constitutes the books basically contain
LaTex-code. This is connected with appropriate meta data, like the relations
according to the prerequisite and refers relation, meta-data stating the type of
the unit (example, proof, theorem and things like this) or ontologies which allow

http://www.in2math.de


Applications of Automated Reasoning 181

the combination of different keyword systems. All this data belonging to the
users query are put together and stated as proof task, i.e. a logical formula for
the KRHyper system. KRHyper computes a model of the given set of clauses;
it is important to note that the formula contains all the slices of the books in
a certain representation. From the model for the given query the system can
extract the identification numbers of the slices, put together the LaTex parts
and generate a pdf document, which can be presented to the user.

There are some lessons we learned from this application: the KRHyper system
must be able to process very many, i.e. ten thousands of slices efficiently and it
needs non-monotonic negation in order to deal with closed-world assumptions.
Another important property is that it must be possible to process description
logic parts of the task. For details of all this the reader is referred to [BFGHS04].

Fig. 3. A personalized view of Living Books

Spatial Metro. One goal of this European Commission project is the use of
AI techniques for efficient guidance of tourists in a city. For these possible tours
within a city the metaphor ’spatial metro’ is used. The points of interest in a city
are depicted in the form of a metro map: according to the type of these points
we can have different ’metro lines’; for example there may be a monument line,
a shopping and a culture line. Figure 5 shows two of these lines together with
the points of interest they contain.

Each of these points of interests is equipped with a bluetooth access point,
which is able to send information about this location. This can be information
about buildings, history, a map or even latest offers from a shop. If a tourist is



182 U. Furbach and C. Obermaier

reaching the area of this access point his mobile phone or his PDA can connect
with this access point and present the information. Two aspect are of importance:
this connection and hence the service is for free, no phone or WLAN fees have
to be paid for and, more interesting (at least for this paper), the information
which is offered by the access point is processed and filtered by the users phone.
For this the user was able to edit a special profile on his phone, which contains
preferences and other private information. This information is kept secure within
her phone and is compared with the information (and its meta data), such that
only those information which are of interest for the user are presented.

The comparison and processing of the information offered by the access point
is done by KRHyper. For this we re-implemented the theorem prover in Java
ME in order to get it running on a smart phone; presumably its the first theorem
prover for first order predicate calculus running on a mobile phone (if the phone
is not in use it can be used to solve TPTP-problems); for more information see
[KS05b]; more about the entire approach can be found in [KS05a].

The lessons we learned until now from this project: Firstly, implementation
language matters! Our KRHyper system is implemented in Ocaml, mainly be-
cause this was the Ph.D. student’s favorite language; when we tried to get KRHy-
per running on a smart phone, it became obvious that we need a JAVA version
and hence a re-implementation became necessary. Maybe such a porting could
have been taken into account from the very beginning. The second lesson is more
on the project design, concerning the willingness of users to download a piece of
software, i.e. the reasoning machinery, on their mobile phones. In a field study
we carried out, it turned out, that users are rather reluctant to do this. In a
second phase of the project we are working to get rid of this bottleneck.

Lo
gi

k
Fu

rb
ac

h
M

at
he

m
at

ik
Lu

de
re

r
An

al
ys

is
W

ol
te

r/D
ah

n

User Preferences

User Knowledge

Selected
Scenario/Topic/Slice

Logic Program

Ontology

R
ef

er
s/

R
eq

ui
re

s/
Ty

pe
s

Deduction System
KR−Hyper

Slicing

ServerBooks Client

Ke
yw

or
ds

’Normal Form’

Overview:

Fig. 4. The reasoning part of Living Books



Applications of Automated Reasoning 183

X

Fig. 5. A tourist guide on your mobile

4 Knowledge Compilation

In practice we are very often confronted with the following task: given a knowl-
edge base, we want to answer a set of queries from that knowledge base. For
example in diagnosis of electrical circuits, the system description of the cor-
rectly functioning circuit is used for various different queries. The naive ap-
proach to solve this problem would be to answer all the queries independently.
But this would cause an exponential complexity for each query. That is why a
new approach called knowledge compilation evolved. The basic idea of knowl-
edge compilation is to precompile the knowledge base into a special form. This
precompilation step is very costly (meaning of exponential complexity) but has
to be performed only once. After that precompilation, some types of queries can
be answered in polynomial or even linear time. Usually the formula in the tar-
get language of that precompilation has lots of other very nice properties such
as the possibility of projecting the formula onto a set of atoms in linear time.
Since the costly precompilation only has to be performed once, its complexity is
relativized. There is a huge number of target languages for the mentioned pre-
compilation. A rather new target language for knowledge compilation is DNNF.
We will now take a closer look at this normal form. In the following, the term
formula always means propositional logic formula.

Decomposable Negation Normalform. DNNF is short for decomposable
negation normal form and is a special normal form developed in [Dar01]. A
formula is in DNNF, if it is in negation normal form (NNF) and additionally
satisfies the decomposability property. This property means that for any con-
junction which occurs in the formula, the conjuncts do not share atoms. As an
example take the set of clauses F = {{a∨ b}, {c∨ ¬b}}. This clause set is not in
DNNF, because the atom b occurs in both clauses and as usual, the clauses of
the set are combined by conjunction.



184 U. Furbach and C. Obermaier

DNNF has the very nice property, that satisfiability can be decided in time,
which is linear to the length of the DNNF. This is a direct consequence of the
decomposability property. Because of this property it is possible to perform the
satisfiability test on each subformula independently. Another very interesting
feature of formulae in DNNF is the possibility to check the minimal cardinality
in linear time. The next very interesting feature of formulae in DNNF ist the
possibility to project a DNNF on a set of atoms in linear time. A list of other
important features can be found in [Dar01].

Compilation of Propositional Logic Formulae into DNNF. A very naive
approach is to use Shannon’s rule to transform a formula into DNNF. As an
example we will transform the clauseset of our previous example F into DNNF.
F is not in DNNF, because the variable b occurs in two different clauses. Now
we transform F into DNNF by using Shannon’s rule:

dnnf(F ) = b ∧ F|b=true ∨ ¬b ∧ F|b=false

= (b ∧ c) ∨ (¬b ∧ a)

In this example the transformation is very short. But one can easily imagine
that the compilation of bigger formulae gets a lot more complicated. Because
in huge sets of clauses, as occuring in practice, usually a great deal of atoms
are shared between different clauses. That is why a variety of algorithms for the
compilation into DNNF were developed. Many of these algorithms are based on
DPLL ([Dar04],[Dar01]).

Weaving Projection into the Computation of DNNF. Quite often, we are
only interested in a special part of our knowledge base F . Meaning for example
that we are only interested in the values of a set of atoms S. Hence we want
to project the knowledge base on this set of atoms S. Let Σ be the set of all
propositional atoms occuring in our knowledge base F . Then the projection of
F on the atoms in S is dual to forgetting all the atoms included in Σ \ S. Given
that the projection of a DNNF on a set of atoms is linear, the common procedure
is to transform the knowledge base into DNNF and to project on S afterwards.
In [Wer06] it is suggested to weave in projection into the precompilation step.
It is shown that this leads to an exponential saving of space.

Let’s take a closer look at the technique of weaving in projection into the
DNNF transformation. As mentioned above, a DPLL based algorithm is used
to transform formulae into DNNF. To use this algorithm, the knowledge base
is required to be given in CNF. During the computation of the DNNF, it is
possible to use a number of rules to get rid of the atoms which are supposed to
be forgotten. If one of the atoms we want to forget is pure, we can use pure literal
elimination to get rid of this atom. The Isol* rule is another possibility to remove
atoms which are supposed to be forgotten. This rule is related to resolution. The
application of these rules not only removes atoms which we want to forget, but
can also have a positive effect on the transformation into DNNF. Atoms which
are shared only between clauses which are removed by this rules do not violate
the decomposability property after the application of these rules.



Applications of Automated Reasoning 185

Although we only used a very small example to explain the knowledge com-
pilation approach, it should be clear that such techniques can be very helpful
in realistic applications, as they are described in this paper. Currently we are
working on separating subproblems where knowledge compilation can be applied.

5 Conclusion

In this paper we gave a very rough overview on first order predicate logic systems
and its most recent developments. We then depicted some applications and we
tried to demonstrate that automated reasoning systems are a valuable tool to
be used in important parts in the application systems. Of course, even if the
reasoner is fully developed and tested there is a considerable amount of work to
be done for its integration and the design of the appropriate interfaces.

As a last remark concerning the development of commercial real world appli-
cations, we want to point out that it is a long way from an academic prototype
system towards a real product. There is a lot of manpower to invest, but on the
other hand, academic research and development can also benefit from this.

References

[ABB+02] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese,
Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, and Peter H.
Schmitt. The KeY System: Integrating Object-Oriented Design and
Formal Methods. In Fundamental Approaches to Software Engineering.
5th International Conference, FASE 2002, LNCS 2306, pages 327–330.
Springer, 2002.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press,
2003.

[BF97] Peter Baumgartner and Ulrich Furbach. Calculi for Disjunctive Logic Pro-
gramming. In Jan Maluszynski, editor, Logic Programming - Proceedings of
the 1997 International Symposium, New York, 1997. The MIT Press.

[BFGHK04] Peter Baumgartner, Ulrich Furbach, Margret Groß-Hardt, and Thomas
Kleemann. Model Based Deduction for Database Schema Reasoning. In
KI 2004, volume 3238 of LNCS, pages 168–182. Springer Verlag, Berlin,
Heidelberg, New-York, 2004.

[BFGHS04] Peter Baumgartner, Ulrich Furbach, Margret Groß-Hardt, and Alex Sin-
ner. Living Book - Deduction, Slicing, and Interaction. J. Autom. Rea-
soning, 32(3):259–286, 2004.

[BFN96] Peter Baumgartner, Ulrich Furbach, and Ilkka Niemelä. Hyper Tableaux.
In José Júlio Alferes, Lúıs Moniz Pereira, and Ewa Orlowska, editors,
JELIA, volume 1126 of LNCS, pages 1–17. Springer, 1996.

[BG01] Leo Bachmair and Harald Ganzinger. Resolution Theorem Proving. In
Robinson and Voronkov [RV01], pages 19–99.

[BHOS96] Bernhard Beckert, Reiner Hähnle, Peter Oel, and Martin Sulzmann. The
Tableau-based Theorem Prover 3TAP Version 4.0. In Michael A. McRob-
bie and John K. Slaney, editors, CADE, volume 1104 of LNCS, pages
303–307. Springer, 1996.



186 U. Furbach and C. Obermaier

[Dar01] Adnan Darwiche. Decomposable Negation Normal Form. Journal of the
ACM, 48(4), 2001.

[Dar04] Adnan Darwiche. New Advances in Compiling CNF into Decomposable
Negation Normal Form. In Proceedings of the 16th Eureopean Conference
on Artificial Intelligence, ECAI’2004, pages 328–332, 2004.

[DFN01] Jürgen Dix, Ulrich Furbach, and Ilkka Niemelä. Nonmonotonic Reason-
ing: Towards Efficient Calculi and Implementations. In Robinson and
Voronkov [RV01], pages 1241–1354.

[FGHT+04] Ulrich Furbach, Margret Groß-Hardt, Bernd Thomas, Tobias Weller, and
Alexander Wolf. Issues Management: Erkennen und Beherrschen von
kommunikativen Risiken und Chancen. Fachberichte Informatik 2–2004,
Universität Koblenz-Landau, Institut für Informatik,Universitätsstr. 1,
D-56070 Koblenz, 2004.

[Fur03] Ulrich Furbach. AI – A Multiple Book Review. Artificial Intelligence,
145(1-2):245 – 252, 2003.

[Hen96] Thomas A. Henzinger. The Theory of Hybrid Automata. In Proceedings
of the IEEE Symposium on Logic in Computer Science (LICS 1996),
pages 278–292, 1996.

[HL02] Thomas Hillenbrand and Bernd Löchner. The Next WALDMEISTER
Loop. In Andrei Voronkov, editor, CADE, volume 2392 of LNCS, pages
486–500. Springer, 2002.

[KK71] R. A. Kowalski and D. Kuehner. Linear Resolution with Selection Func-
tion. Artificial Intelligence, 2:227–260, 1971.

[KS05a] Thomas Kleemann and Alex Sinner. Decision Support for Personalization
on Mobile Devices. In Proceedings of the 21st International Conference,
ICLP 2005, pages 404–406, 2005.

[KS05b] Thomas Kleemann and Alex Sinner. Krhyper - in your Pocket, Sys-
tem Description. In Robert Nieuwenhuis, editor, CADE, volume 3632 of
LNCS, pages 452–458. Springer, 2005.

[Lov68] D. Loveland. Mechanical Theorem Proving by Model Elimination.
JACM, 15(2), 1968.

[Mas99] Fabio Massacci. Design and Results of the Tableaux-99 Non-classical
(Modal) Systems Comparison. In Neil V. Murray, editor, TABLEAUX,
volume 1617 of LNCS, pages 14–18. Springer, 1999.

[McC90] William McCune. Otter 2.0. In Mark E. Stickel, editor, CADE, volume
449 of LNCS, pages 663–664. Springer, 1990.

[McC97] William McCune. Solution of the Robbins Problem. J. Autom. Reason-
ing, 19(3):263–276, 1997.

[PMG97] David Poole, Alan Mackworth, and Randy Goebel. Computational In-
telligence: A Logical Approach. Oxford University Press, 1997.

[PSS02] F. Pelletier, G. Sutcliffe, and C. Suttner. The Development of CASC. AI
Communications, 15(2-3):79–90, 2002.

[RV01] John Alan Robinson and Andrei Voronkov, editors. Handbook of Auto-
mated Reasoning (in 2 volumes). Elsevier and MIT Press, 2001.

[RV02] Alexandre Riazanov and Andrei Voronkov. The design and implementa-
tion of VAMPIRE. AI Commun., 15(2-3):91–110, 2002.

[Sch04] Stephan Schulz. System description: E 0.81. In David A. Basin and
Michaël Rusinowitch, editors, IJCAR, volume 3097 of LNCS, pages 223–
228. Springer, 2004.

[SS98] G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning, 21(2):177–203, 1998.



Applications of Automated Reasoning 187

[Wei97] Christoph Weidenbach. Spass - version 0.49. Journal of Automated Rea-
soning, 18(2):247–252, 1997.

[Wer03] Christoph Wernhard. System Description: KRHyper. Fachberichte In-
formatik 14–2003, Universität Koblenz-Landau, Institut für Informatik,
Universitätsstr. 1, D-56070 Koblenz, 2003.

[Wer06] Christoph Wernhard. Tableaux Between Proving, Projection and Com-
pilation. Technical report, Universität Koblenz-Landau, 2006. In
preparation.



On the Scalability of
Description Logic Instance Retrieval

Ralf Möller1, Volker Haarslev2, and Michael Wessel1

1 Hamburg University of Technology
2 Concordia University, Montreal

Abstract. Although description logic systems can adequately be used
for representing and reasoning about incomplete information (e.g., for
John we know he is French or Italian), in practical applications it can
be assumed that (only) for some tasks the expressivity of description
logics really comes into play whereas for building complete applications,
it is often necessary to effectively solve instance retrieval problems with
respect to largely deterministic knowledge. In this paper we present and
analyze the main results we have found about how to contribute to this
kind of scalability problem. We assume familiarity with description logics
in general and tableau provers in particular.

1 Introduction

Although description logics (DLs) are becoming more and more expressive (e.g.,
[14]), our experience has been that it is only for some tasks that the expressivity
of description logics really comes into play; for many applications, it is necessary
to be able to deal with largely deterministic knowledge very effectively. Thus, in
practice, description logic systems offering high expressivity must also be able
to handle large bulks of data descriptions (Aboxes with concepts and role asser-
tions) which are largely deterministic. Users expect that DL systems scale w.r.t.
these practical needs. In our view there are two kinds of scalability problems:
scalability w.r.t. large sets of data descriptions (data description scalability) and
scalability w.r.t. high expressivity, which might only be important for small parts
of the data descriptions (expressivity scalability).

In the literature, the data description scalability problem has been tackled
from different perspectives. We see two main approaches, the layered approach
and the integrated approach. In the layered approach the goal is to use databases
for storing and accessing data, and exploit description logic ontologies for conve-
nient query formulation. The main idea is to support ontology-based query trans-
lation to relational query languages (SQL, datalog). See, e.g., [21,9] (DLDB), [3]
(Instance Store), or [4] (DL-Lite). We notice that these approaches are only
applicable if reduced expressivity does not matter. Despite the most appealing
argument of reusing database technology (in particular services for persistent
data), at the current state of the art it is not clear how expressivity can be
increased to, e.g., SHIQ without losing the applicability of database transfor-
mation approaches. Hence, while data description scalability is achieved, it is

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 188–201, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



On the Scalability of Description Logic Instance Retrieval 189

not clear how to extend these approaches to achieve expressivity scalability (at
least for some parts of the data descriptions).

Tableau-based DL systems are now widely used in practical applications be-
cause these systems are quite successful w.r.t. the expressivity scalability prob-
lem. Therefore, for investigating solutions to both problems, the expressivity
and the data description scalability problem, we pursue the integrated approach
that considers query answering with a tableau-based description logic system
augmented with new techniques inspired from database systems. For the time
being we ignore the problems associated with persistency and investigate specific
knowledge bases (see below).

The contribution presents and analyzes the main results we have found about
how to start solving the scalability problem with tableau-based prover systems
given large sets of data descriptions for a large number of individuals. Note that
we do not discuss query answering speed of a particular system but investigate
the effect of optimization techniques that could be exploited by any (tableau-
based) DL inference system that already exists or might be built. Since DLs
are very popular now, and tableau-based systems have been extensively stud-
ied in the literature (see [2] for references), we assume the reader is familiar
with DLs in general and tableau-based decision procedures in particular (see,
e.g., [1]).

2 Lehigh University Benchmark

In order to investigate the data description scalability problem, we use the Lehigh
University BenchMark (LUBM, [8,9]). LUBM queries are conjunctive queries ref-
erencing concept, role, and individual names from the Tbox. A query language
tailored to description logic applications that can express these queries is de-
scribed in [20].1 The language is called nRQL and supports a restricted form of
conjunctive queries (variables are only bound to individuals mentioned in the
Abox and not to “anonymous” individuals that denote objects from the domain
that provably must exist). Although some work on standard conjunctive queries
is published [5,17,7], to the best of the authors’ knowledge, (efficient) algorithms
for answering full conjunctive queries for expressive description logics such as
SHIQ [16] are not known.

Below, LUBM queries 9 and 12 are shown in order to illustrate LUBM queries
– note that ′www.University0.edu′ is an individual and subOrganizationOf is
a transitive role. Please refer to [8,9] for more information about the LUBM
queries.

Q9 : ans(x, y, z) ← Student(x), Faculty(y), Course(z),
advisor(x, y), takesCourse(x, z), teacherOf(y, z)

Q12 : ans(x, y) ← Chair(x), Department(y), memberOf(x, y),
subOrganizationOf (y,′ www.University0.edu′)

1 In the notation for queries used in this paper we assume that different variables may
have the same bindings.



190 R. Möller, V. Haarslev, and M. Wessel

In order to investigate the data description scalability problem, we used a
TBox for LUBM with inverse and transitive roles as well as domain and range
restrictions but no number restrictions, value restrictions, or disjunctions (after
GCI absorption). Among other axioms, the LUBM TBox contains axioms that
express necessary and sufficient conditions for some concept names. For instance,
there is an axiom Chair

.= Person�∃headOf .Department. For evaluating opti-
mization techniques for query answering we consider runtimes for a whole query
set (queries 1 to 14 in the LUBM case).

3 Optimization Techniques

If the queries mentioned in the previous section are answered in a naive way by
evaluating subqueries in the sequence of syntactic notation, acceptable answering
times can hardly be achieved. Determining all bindings for a variable (with a
so-called generator) is much more costly than verifying a particular binding
(with a tester). Treating the one-place predicates Student, Faculty, and Course
as generators for bindings for corresponding variables results in combinatorial
explosion (cross product computation). Optimization techniques are required
that provide for efficient query answering in the average case.

3.1 Query Optimization

The optimization techniques that we investigated are inspired by database join
optimizations, and exploit the fact that there are few Faculties but many
Students in the data descriptions. For instance, in case of query Q9 from LUBM,
the idea is to use Faculty as a generator for bindings for y and then generate
the bindings for z following the role teacherOf . The heuristics applied here is
that the average cardinality of a set of role fillers is rather small. For the given z
bindings we apply the predicate Course as a tester (rather than as a generator
as in the naive approach). Given the remaining bindings for z, bindings for x
can be established via the inverse of takesCourse. These x bindings are then
filtered with the tester Student.

If z was not mentioned in the head, i.e., in set of variables for which bindings
are to be computed, and the tester Course was not used, there would be no
need to generate bindings for z at all. One could just check for the existence of
a takesCourse role filler for bindings w.r.t. x.

In the second example, query Q12, the constant ′www.University0.edu′ is
mentioned. Starting from this individual the inverse of subOrganizationOf is
applied as a generator for bindings for y which are filtered with the tester
Department. With the inverse of memberOf , bindings for x are computed which
are then filtered with Chair. Since for the concept Chair sufficient conditions
are declared in the TBox, instance retrieval reasoning is required if Chair is a
generator. Thus, it is advantageous that Chair is applied as a tester (and only
instance tests are performed).

For efficiently answering queries, a query execution plan is determined by a
cost-based optimization component (c.f., [6, p. 787ff.]) which orders query atoms



On the Scalability of Description Logic Instance Retrieval 191

such that queries can be answered effectively. For computing a total order rela-
tion on query atoms with respect to a given set of data descriptions (assertions
in an ABox), we need information about the number of instances of concept and
role names. An estimate for this information can be computed in a preprocessing
step by considering given data descriptions, or could be obtained by examining
the result set of previously answered queries. We assume that ABox realization
is too costly (takes about 6 minutes for LUBM with one university, excluding
the initial Abox consistency test), so this alternative is ruled out.

3.2 Indexing by Exploiting Told and Taxonomical Information

In many practical applications that we encountered, data descriptions often di-
rectly indicate (some of the) concept names of which an individual is an instance.
Therefore, in a preprocessing step, it is useful to compute an index that maps
concept names to sets of individuals which are their instances. In a practical
implementation this index might be realized with some form of hashtable.

Classifying the TBox yields the set of ancestors for each concept name, and
if an individual i is an instance of a concept name A due to explicit data de-
scriptions, it is also an instance of the ancestors of A. This information can be
made accessible by an index that maps concept names to instances. The index
is organized in such a way that retrieving the instances of a concept name A, or
one of its ancestors, requires (almost) constant time. The index is particularly
useful to provide bindings for variables if, despite all optimization attempts for
deriving query execution plans, concept names must be used as generators. In
addition, the index is used to estimate the cardinality of concept extensions. The
estimates are used to compute an order relation for query atoms. The smaller the
cardinality of a concept or a set of role fillers is assumed to be, the more priority
is given to the query atom. Optimizing LUBM query Q9 with the techniques
discussed above yields the following query execution plan (denoted as a query,
substeps to be read from left to right).

Q9′ : ans(x, y, z) ← Faculty(y), teacherOf(y, z), Course(z),
advisor−1(y, x), Student(x), takesCourse(x, z)

Using this kind of rewriting, queries can be answered much more efficiently.
If the TBox contains only GCIs of the form A � A1� . . .�An, i.e., if the TBox

forms a hierarchy, the index-based retrieval discussed in this section is complete
(see [3]). However, this is not the case for LUBM. In LUBM, besides domain
and range restrictions, axioms are also of the form A

.= A1 � A2 � . . . � Ak �
∃R1.B1 � . . . � ∃Rm.Bm (actually, m = 1). If sufficient conditions with exists
restrictions are specified as in the case of Chair, optimization is much more
complex. In LUBM data descriptions, no individual is explicitly declared as a
Chair and, therefore, reasoning is required, which is known to be rather costly.
If Chair is used as a generator and not as a tester such as in the simple query
ans(x) ← Chair(x), optimization is even more important. The idea to optimize
instance retrieval is to detect an additional number of obvious instances using



192 R. Möller, V. Haarslev, and M. Wessel

further incomplete tests, and, in addition, to determine obvious non-instances.
We first present the latter technique and continue with the former afterwards.

3.3 Obvious Non-instances: Exploiting Information from One
Completion

The detection of “obvious” non-instances of a given concept C can be imple-
mented using a model merging operator defined for so-called individual pseudo
models (aka pmodels) as defined in [10]. Since these techniques have already
been published, we just sketch the main idea here for the sake of completeness.
The central idea is to compute a pmodel from a completion that is derived by
the tableau prover.

For instance, in the DL ALC a pseudo model for an individual i mentioned in
a consistent initial A-box A w.r.t. a Tbox T is defined as follows. Since A is con-
sistent, there exists a set of completions C of A. Let A′ ∈ C. An individual pseudo
model M for an individual i in A is defined as the tuple 〈MD, M¬D, M∃, M∀〉
w.r.t. A′ and A using the following definition.

MD = {D | i : D ∈ A′, D is a concept name}
M¬D = {D | i : ¬D ∈ A′, D is a concept name}

M∃ = {R | i : ∃R.C ∈ A′} ∪ {R | (i, j) : R ∈ A}
M∀ = {R | i : ∀R.C ∈ A′}

Note the distinction between the initial A-box A and its completion A′. It
is important that all restrictions for a certain individual are “reflected” in the
pmodel. The idea of model merging is that there is a simple sound but incomplete
test for showing that adding the assertion i : ¬C to the ABox will not lead to a
clash (see [10] for details) and, hence, i is not an instance of the query concept C.
Let MS be a set of pmodels. The pmodel merging test is: atoms mergable(MS)∧
roles mergable(MS) where atoms mergable tests for a possible primitive clash
between pairs of pseudo models. It is applied to a set of pseudo models MS and
returns false if there exists a pair {M1, M2} ⊆ MS with (MD

1 ∩ M¬D
2 ) �= ∅ or

(M¬D
1 ∩ MD

2 ) �= ∅. Otherwise it returns true.
The algorithm roles mergable tests for a possible role interaction between

pairs of pseudo models. It is applied to a set of pseudo models MS and returns
false if there exists a pair {M1, M2} ⊆ MS with (M∃

1 ∩M∀
2 ) �= ∅ or (M∀

1 ∩M∃
2 ) �=

∅. Otherwise it returns true. The reader is referred to [11] for the proof of the
soundness of this technique and for further details.

It should be emphasized that the complete set of data structures for a partic-
ular completion is not maintained by a DL reasoner. The pmodels provide for
an appropriate excerpt of a completion needed to determine non-instances.

3.4 Obvious Instances: Exploiting Information from the
Precompletion

Another central optimization technique to ensure data description scalability as
it is required for LUBM is to also find “obvious” instances with minimum effort.



On the Scalability of Description Logic Instance Retrieval 193

Given an initial ABox consistency test and a completion one can consider all
deterministic restrictions, i.e., one considers only those completion data struc-
tures (from now on called constraints) for which there are no choice points in the
tableau proof (in other words, consider only those constraints that do not have
dependency information attached). These constraints constitute a so-called pre-
completion.2 Note that in a precompletion, no constraints are violated because
we assume that the precompletion is computed from an existing completion.

Given the precompletion constraints, for each individual i, an approximation
of the most-specific concept (MSC) is computed as follows (the approximation is
called MSC′). For all constraints representing role assertions of the form (i, j) :
R (or (j, i) : R) add constraints of the form i : ∃R.� (or i : ∃R−1.�). Afterwards,
constraints for a certain individual i are collected into a set {i : C1, . . . , i : Cn}.
Then, MSC′(i) := C1 � . . . � Cn. Now, if MSC′(i) is subsumed by the query
concept C, then i must be an instance of C. In the case of LUBM many of the
assertions lead to deterministic constraints in the tableau proof which, in turn,
results in the fact that for many instances of a query concept C (e.g., Faculty
as in query Q9) the instance problem is decided with a subsumption test based
on the MSC′ of each individual. Subsumption tests are known to be fast due
to caching and model merging [13]. The more precisely MSC′(i) approximates
MSC(i), the more often an individual can be determined to be an obvious
instance of a query concept. Obviously, it might be possible to determine obvious
instances by directly considering the precompletion data structures. However, at
this implementation level a presentation would be too detailed. The main point
is that, due to our findings, the crude approximation with MSC′ suffices to solve
many instance tests in LUBM.

If query atoms are used as testers, in LUBM it is the case that in a large num-
ber of cases the test for obvious non-instances or the test for obvious instances
determines the result. However, for some individuals i and query concepts C
both tests do not determine whether i is an instance of C (e.g., this is the case
for Chair). Since both of these “cheap” tests are incomplete, for some individu-
als i a refutational ABox consistency test resulting from adding the claim i : ¬C
(refutational instance test) must be decided with a sound and complete tableau
prover. For some concepts C, the set of candidates is quite large. Considering the
volume of assertions in LUBM (see below for details), it is easy to see that the
refutational instance test should not start from the initial, unprocessed ABox in
order to ensure scalability.

For large ABoxes and many repetitive instance tests it is a waste of resources
to “expand” the very same initial constraints over and over again. Therefore,
the precompletion resulting from the initial ABox consistency test is used as
a starting point for refutational instance tests. The tableau prover keeps the
precompletion in memory. All deterministic constraints are expanded, so if some

2 Cardinality measures for concept names, required for determining optimized query
execution plans, could be made more precise if cardinality information was computed
by considering a precompletion. However, in the case of LUBM this did not result
in better query execution plans.



194 R. Möller, V. Haarslev, and M. Wessel

constraint is added, only a limited amount of work is to be done. To understand
the impact of refutation-based instance tests on the data description scalability
problem, a more low-level analysis on tableau provers architectures is required.

3.5 Index Structures for Optimizing Tableau Provers

Tableau provers are fast w.r.t. backtracking, blocking, caching and the like. But
not fast enough if applied in a naive way. If a constraint i : ¬C is added to
a precompletion, the tableau prover must be able to very effectively determine
related constraints for i that already have been processed. Rather than using
linear search through lists of constraints, index structures are required for bulk
data descriptions.

First of all, it is relatively easy to classify various types of constraints (for
exists restrictions, value restrictions, atomic restrictions, negated atomic restric-
tions, etc.) and access them effectively according to their type. We call the
corresponding data structure an active record of constraint sets (one set for
each kind of constraint). For implementing a tableau prover, the question for
an appropriate data structure for these sets arises. Since ABoxes are not mod-
els, (dependency-directed) backtracking cannot be avoided in general. In this
case, indexing the set of “relevant” constraints in order to provide algorithms
for checking if an item is an element of a set or list (element problem) is all
but easy. Indexing requires hashtables (or trees), but backtracking requires ei-
ther frequent copying of index structures (i.e., hashtables) or frequent insertion
and deletion operations concerning hashtables. Both operations are known to be
costly.

Practical experiments with LUBM and the DL system RacerPro (see below
for a detailed evaluation) indicate that the following approach is advantageous
in the average case. For frequent updates of the search space structures during
a tableau proof, we found that simple lists for different kinds of constraints
are most efficient, thus we have an active record of lists of constraints. New
constraints are added to the head of the corresponding list, a very fast operation.
During backtracking, the head is chopped off with minimum effort. The list
representation is used if there are few constraints, and the element problem can
be decided efficiently. However, if these lists of constraints get large, performance
decreases due to linear search. Therefore, if some list from the active record of
constraints gets longer than a certain threshold, the record is restructured and
the list elements are entered into an appropriate index structure (hashtables
with individuals as keys). Afterwards the tableau prover continues with a new
record of empty lists as the active record. The pair of previous record of lists
and associated hashtable is called a generation. From now on, new constraints
are added to the new active record of constraints and the list(s) of the first
generation are no longer used. For the element problem the lists from the active
record are examined first (linear search over small lists) and then, in addition,
the hashtable from the first generation is searched (almost linear search). If a list
from the active record gets too large again, a new generation is created. Thus,
in general we have a sequence of such generations, which are then considered



On the Scalability of Description Logic Instance Retrieval 195

for the element test in the obvious way. If backtracking occurs, the lists of the
appropriate generation are installed again as the active record of lists. This way
of dealing with the current search state allows for a functional implementation
style of the tableau prover which we prefer for debugging purposes. However,
one might also use a destructive way to manage constraints during backtracking.
Obviously, all (deterministic) constraints from the initial Abox can be stored in
a hashtable. In any case, the main point here is that tableau provers need an
individual-based index to efficiently find all constraints in which an individual
is involved. In the evaluation of other optimization techniques (see below) we
presuppose that a tableau prover is equipped with this technology, and thus we
can assume that each refutational instance test is rather fast.

3.6 Transforming Sufficient Conditions into Conjunctive Queries

Up to now we can detect obvious instances based on told and taxonomical infor-
mation (almost constant time, see Section 3.2) as well as information extracted
from the precompletion (linear time w.r.t. the number of remaining candidate
individuals and a very fast test, see Section 3.4). Known non-instances can
be determined with model merging techniques applied to individual pmodels
(also a linear process w.r.t. the number of remaining candidate individuals but
with a very fast test, see Section 3.3). However, there might still be some can-
didates left. Using the results in [10] it is possible to use dependency-directed
instance retrieval and binary partitioning. Our findings suggest that in the case
of LUBM, for example for the concept Chair, the remaining refutational tableau
proofs are very fast. However, for Chair a considerable number of candidates
remain since there are many Persons in LUBM. In application scenarios such
as those we investigate with LUBM we have 200,000 individuals and more (see
the evaluation below) with many Persons. Even if each single instance test lasts
only a few dozen microseconds, query answering will be too slow, and hence
additional techniques should be applied to solve the data description scalability
problem.

The central insight for another optimization technique is that in the pres-
ence of sufficient conditions for concept names given in the Tbox, query atoms
that refer to names might be transformed. Let us consider the query ans(x) ←
Chair(x). For Chair, sufficient conditions are given as part of the TBox (see
above). Thus, in principle, we are looking for instances of the concept Person �
∃headOf .Department. The key to optimizing query answering becomes appar-
ent if we transform the definition of Chair into a conjunctive query and derive
the optimized version Q15′

Q15 : ans(x) ← Person(x), headOf (x, y), Department(y)
Q15′ : ans(x) ← Department(y), headOf −1(y, x), P erson(x)

Because there exist fewer Departments than Persons in LUBM, search for
bindings for x is substantially more focused in Q15′ (which is the result of
automatic query optimization, see above). In addition, in LUBM, the extension
of Department can be determined with simple index-based tests only (only



196 R. Möller, V. Haarslev, and M. Wessel

hierarchies are involved) and thus the heuristics of the query optimizer produce
optimal results. With the Chair example one can easily see that the standard
approach for instance retrieval can be optimized dramatically with rewriting
concept query atoms if certain conditions are met.

Algorithm 1. rewrite(tbox, concept, var):
if meta constraints(tbox) �= ∅ ∨ definition(concept) = � then

return (concept(var))
else

{atom1, . . . , atomn} :=
rewrite 0(tbox, concept , definition(tbox, concept), var, {})

return (atom1, . . . , atomn)

Algorithm 2. rewrite 0(tbox, concept, var, exp):
if definition(concept) = � ∨ concept ∈ exp then

return {concept(var)}
else

;; catch installs a marker to which the control flow can be thrown
catch not rewritable

rewrite 1(tbox, concept , definition(tbox, concept), var, {concept} ∪ exp)

Algorithm 3. rewrite 1(tbox, concept name,definition , var, exp):
if (definition = A) where A is an atomic concept then

return rewrite 0(tbox, definition, var, {definition} ∪ exp)
else

if (definition = ∃R.C) then
filler var := fresh variable()
return {R(var, filler var)} ∪ rewrite 0(tbox, C, filler var, exp)

else
if (definition = C1 	 . . . 	 Cn) then

return rewrite 1(tbox, concept name, C1, var, exp)
∪ . . . ∪
rewrite 1(tbox, concept name, Cn, var, exp)

else
;; throw the control flow out of rewrite 1 recursion
;; back to the call to rewrite 1 in rewrite 0 and return {concept name(var)}
throw not rewritable{concept name(var)}

The rewriting algorithm is defined in Algorithms 1, 2, and 3. Every concept
query atom C(x) in a conjunctive query used is replaced with rewrite(query tbox,
C, x) (and afterwards, the query is optimized).

Some auxiliary functions are used. The function definition(C) returns suffi-
cient conditions for a concept name C (the result is a concept), and the function
meta constraints(tbox) indicates whether there are some meta constraints left
after GCI transformation (see [15], the result is a set of concepts). In addition,
we use a function fresh variable that generates a new variable that was not
used before.



On the Scalability of Description Logic Instance Retrieval 197

If there is no specific definition or there are meta constraints, rewriting is
not applied (see Algorithm 1). It is easy to see that the rewriting approach
is sound. However, it is complete only under specific conditions, which can be
automatically detected. If we consider the Tbox T = {D

.= ∃R.C}, the Abox
A = {i : ∃R.C} and the query ans(x) ← D(x), then due to the algorithm
presented above the query will be rewritten as ans(x) ← R(x, y), C(y). For
variable bindings, the query language nRQL (see above) considers only those
individuals that are explicitly mentioned in the Abox. Thus i will not be part of
the result set because there is no binding for y in the Abox A. Examining the
LUBM Tbox and Abox it becomes clear that in this case for every ∃R.C that
is applicable to an individual i in a tableau proof there already exist constraints
(i, j) : R and j : C in the original Abox (LUBM was derived from a database
scenario). However, even if this is not the case, the technique can be employed
under some circumstances.

Usually, in order to construct a model (or a completion to be more precise),
tableau provers create a new individual for each constraint of the form i : ∃R.C
and add corresponding concept and role assertions. These newly created individ-
uals are called anonymous individuals. Let us assume, during the initial Abox
consistency test a completion is found. As we have discussed above, a precom-
pletion is computed by removing all constraints that depend on a choice point. If
there is no such constraint, the precompletion is identical to the completion that
the tableau prover computed. Then, assuming that blocking is postponed to fit
the query with the largest nesting depth, the set of bindings for variables is ex-
tended to the anonymous individuals found in the precompletion. The rewriting

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1  2  3  4  5  6  7  8  9  10

S
ec

on
ds

No. of Universities

RacerPro Performance

Consistency
Index
Load

Prepare

Fig. 1. Runtimes for loading, preparation, abox consistency checking and indexing



198 R. Möller, V. Haarslev, and M. Wessel

technique for concept query atoms is applicable (i.e., is complete) under these
conditions. Even if the rewriting technique is not complete (i.e., s.th. is removed
from the completion in order to derive the precompletion), it can be employed to
reduce the set of candidates for binary partitioning techniques that can speed-up
this process considerably in the average case (c.f., [10]).

The transformation approach discussed in this section is reminiscent of an
early transformation approach discussed in [19]. In fact, ideas from translational
approaches from DLs to disjunctive datalog [18] can also be integrated in tableau-
based approaches. In the following section, we will evaluate how the optimization
techniques introduced up to now provide a contribution to the data description
scalability problem.

4 Evaluation

The significance of the optimization techniques introduced in this contribution is
analyzed with the system RacerPro 1.9. RacerPro is freely available for research
and educational purposes (http://www.racer-systems.com). The runtimes we
present in this section are used to demonstrate the order of magnitude of time
resources that are required for solving inference problems. They allow us to
analyze the impact of proposed optimization techniques. We start with an eval-
uation of optimizations for (restricted) conjunctive queries with LUBM and turn
to instance retrieval w.r.t. applications-specific knowledge bases afterwards.

An overview about the size of the LUBM benchmarks is given in Table 1. The
runtimes for loading the data descriptions, transforming them into abstract syn-
tax trees (preparation), and indexing are shown in Figure 1 (AMD 64bit proces-
sor, 4GB, Linux OS). It is important to note that these curves are roughly linear,
thus, no reasoning is included in these phases. In Figure 1, also the runtimes for
checking ABox consistency together with the computation of the precompletion
are indicated (Consistency, black triangle). The “quadratic” shape reveals that
this phase should be subject to further optimizations.

In Figure 2, average query-answering times for running all 14 LUBM queries
on data descriptions for an increasing number of universities are presented (see
Table 1 for an overview on the number of individuals, concept assertions, and
role assertions). We use different modes (A, B, and C) to indicate the effects of
optimization techniques. All modes are complete with respect to the Tbox and
data descriptions (Abox) we used for the LUBM experiments in this paper.

Table 1. Linearly increasing number of individuals, concept assertions and role asser-
tions for different numbers of universities

Univs Inds Concept Assertions Role Assertions
1 17174 53738 49336
3 55664 181324 166682
5 102368 336256 309393
10 207426 685569 630753



On the Scalability of Description Logic Instance Retrieval 199

 0

 2

 4

 6

 8

 10

 12

 1  2  3  4  5  6  7  8  9  10

S
ec

on
ds

No. of Universities

RacerPro Performance

Mode A
Mode B
Mode C

Fig. 2. Runtimes of 14 LUBM queries with different optimization settings (see text)

In mode A and B, concept definitions are not rewritten into conjunctive
queries (see Section 3.6). In mode A, full constraint reasoning on OWL datatypes
is provided. Thus, datatype properties are encoded in the obvious way as roles
referring to individuals which, in turn, refer to values via concrete domain at-
tributes. With concrete domains, arbitrary constraint systems can be specified
in an Abox [12]. This means, (multiple) attribute values of multiple Abox indi-
viduals can constrained. In OWL one can only restrict (multiple) attributes of a
single individual (nominal). For LUBM, however, only OWL datatypes are used,
and no constraint reasoning is required because datatypes are used only to asso-
ciate individuals with strings in the Abox. In order to answer queries, only “told
values” must be retrieved. Therefore, in mode B, told value retrieval is performed
only. As Figure 2 shows, this is much more efficient (but less powerful in the gen-
eral case, of course). Mode C in Figure 2 presents the runtimes achieved when
definitions of concept names are rewritten to conjunctive queries (and told value
reasoning on datatypes only is employed, as in mode B). The results for mode
C indicate that for deterministic knowledge bases such as LUBM, scalability for
instance retrieval can be achieved with tableau-based retrieval engines.

5 Conclusion and Future Work

We take LUBM as a representative for largely deterministic data descriptions
that can be found in practical applications. The investigations reveal that de-
scription logic systems can be optimized to also be able to deal with large bulks of
deterministic descriptions quite effectively. Mode C indicates that performance



200 R. Möller, V. Haarslev, and M. Wessel

scales well with an increasing number of data descriptions given the expressivity
of the language used in the ontology meets certain requirements. Our work is
based on a tableau calculus which has shown to be reliable if expressivity is
increased (see the results in mode B). The linear shape of the curve in mode C
suggests that the proposed technology ensures that performance scales if high
expressivity is not required. LUBM is in a sense too simple but the benchmark
allows us to study the data description scalability problem.

Note that we argue that the concept rewriting technique is advantageous
not only for RacerPro but also for other tableau-based systems. Future work
will investigate optimizations of large Aboxes and more expressive Tboxes. Our
work is based on the thesis that for investigating optimization techniques for
Abox retrieval w.r.t. more expressive Tboxes, we first have to ensure scalability
for Aboxes and Tboxes such as those we discussed in this paper. We have shown
that the results are encouraging.

References

1. F. Baader and U. Sattler. An overview of tableau algorithms for description logics.
Studia Logica, 69:5–40, 2001.

2. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, 2003.

3. S. Bechhofer, I. Horrocks, and D. Turi. The OWL instance store: System descrip-
tion. In Proceedings CADE-20, LNCS. Springer Verlag, 2005.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data com-
plexity of query answering in description logics. In Proc. of the 2005 Description
Logic Workshop (DL 2005). CEUR Electronic Workshop Proceedings, http://ceur-
ws.org/, 2005.

5. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decidabil-
ity of query containment under constraints. In Proc. of the 17th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS’98), pages
149–158, 1998.

6. H. Garcia-Molina, J.D. Ullman, and J. Widom. Database Systems: The Complete
Boook. Prentice Hall, 2092.

7. Birte Glimm and Ian Horrocks. Handling cyclic conjunctive queries. In
Proc. of the 2005 Description Logic Workshop (DL 2005), volume 147. CEUR
(http://ceur-ws.org/), 2005.

8. Y. Guo, J. Heflin, and Z. Pan. Benchmarking DAML+OIL repositories. In Proc. of
the Second Int. Semantic Web Conf. (ISWC 2003), number 2870 in LNCS, pages
613–627. Springer Verlag, 2003.

9. Y. Guo, Z. Pan, and J. Heflin. An evaluation of knowledge base systems for large
OWL datasets. In Proc. of the Third Int. Semantic Web Conf. (ISWC 2004),
LNCS. Springer Verlag, 2004.

10. V. Haarslev and R. Möller. Optimization techniques for retrieving resources de-
scribed in OWL/RDF documents: First results. In Ninth International Conference
on the Principles of Knowledge Representation and Reasoning, KR 2004, Whistler,
BC, Canada, June 2-5, pages 163–173, 2004.

http://ceur-ws.org/


On the Scalability of Description Logic Instance Retrieval 201

11. Volker Haarslev, Ralf Möller, and Anni-Yasmin Turhan. Exploiting pseudo models
for tbox and abox reasoning in expressive description logics. In Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, 2001.

12. Volker Haarslev, Ralf Möller, and Michael Wessel. The description logic
ALCNHR+ extended with concrete domains: A practically motivated approach.
In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2001), pages
29–44, 2001.

13. I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

14. I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. Technical
report, University of Manchester, 2006.

15. I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In Proc.
of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2000), pages 285–296, 2000.

16. Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with individuals for
the description logic SHIQ. In David McAllester, editor, Proc. of the 17th Int.
Conf. on Automated Deduction (CADE 2000), volume 1831 of Lecture Notes in
Computer Science, pages 482–496. Springer-Verlag, 2000.

17. Ian Horrocks and Sergio Tessaris. A conjunctive query language for descrip-
tion logic ABoxes. In Proc. of the 17th Nat. Conf. on Artificial Intelligence
(AAAI 2000), pages 399–404, 2000.

18. B. Motik. Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Univ. Karlsruhe, 2006.

19. B. Motik, R. Volz, and A. Maedche. Optimizing query answering in description
logics using disjunctive deductive databases. In Proceedings of the 10th Inter-
national Workshop on Knowledge Representation Meets Databases (KRDB-2003),
pages 39–50, 2003.

20. M. Wessel and R. Möller. A high performance semantic web query answering
engine. In Proc. of the 2005 Description Logic Workshop (DL 2005). CEUR Elec-
tronic Workshop Proceedings, http://ceur-ws.org/, 2005.

21. Z. Zhang. Ontology query languages for the semantic web: A performance evalua-
tion. Master’s thesis, University of Georgia, 2005.



Relation Instantiation for Ontology Population
Using the Web

Viktor de Boer, Maarten van Someren, and Bob J. Wielinga

Human-Computer Studies Laboratory, Informatics Institute,
Universiteit van Amsterdam

{vdeboer,maarten,wielinga}@science.uva.nl

Abstract. The Semantic Web requires automatic ontology population
methods. We developed an approach, that given existing ontologies,
extracts instances of ontology relations, a specific subtask of ontology
population. We use generic, domain independent techniques to extract
candidate relation instances from the Web and exploit the redundancy
of information on the Web to compensate for loss of precision caused by
the use of these generic methods. The candidate relation instances are
then ranked based on co-occurrence with a seed set. In an experiment,
we extracted instances of the relation between artists and art styles. The
results were manually evaluated against selected art resources.

1 Introduction

The ongoing project of the Semantic Web [1] intends to add semantics to the
World Wide Web through the use of ontologies. Following [2], we make a dis-
tinction between an ontology and a knowledge base. An ontology consists of the
concepts (classes) and relations that make up a conceptualization of a domain,
while a knowledge base contains the instances of the classes and of the relations
in the ontology. The Semantic Web calls for a large number of both ontologies
and knowledge base content. Since manual construction of these ontologies and
knowledge bases proves to be costly, (semi-)automatic methods for the construc-
tion of ontologies (ontology learning and enrichment) and the construction of
knowledge bases are needed. The latter task is called ontology population.

We decompose ontology population into the extraction of concept instances
and the extraction of instances of relations. In this paper, we focus on this last
sub-task of ontology population: the extraction of instances of a relation that is
predefined in an ontology. We call this task relation instantiation.

In this paper, we describe a method that extracts these relation instances for
existing ontologies. Our method extracts the information from heterogeneous
sources on the Web and is not dependent on the type of structure of documents.
We designed this general method to be also domain- and language-independent.

2 Relation Instantiation Task

We define an ontology as a set of labeled classes (the domain concepts) C1, ..., Cn,
hierarchically ordered by a subclass relation. Non-hierarchical relations between

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 202–213, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Relation Instantiation for Ontology Population Using the Web 203

concepts are also defined (R : Ci×Cj). We speak of a (partly) populated ontology
when, besides the ontology, a knowledge base with instances of both concepts
and relations from the ontology is also present.

We define the task of relation instantiation from a corpus as follows:

Given two classes Ci and Cj in a partly populated ontology, with sets
of instances Ii and Ij and given a relation R : Ci × Cj , identify for an
instance i ∈ Ii an instance j ∈ Ij such that the relation R(i, j) holds
given the information in the corpus.

Furthermore, we make a number of additional assumptions:

– R is not a one-to-one relation. The instance i is related to multiple elements
of Ij .

– We know all elements of Ij . With this method, we do not attempt to extract
new instances of a class.

– We have a method available that recognizes these elements in the documents
in our corpus. For a textual corpus such as the Web, this implies that the
instances must have a textual label.

– In individual documents of the corpus, multiple instances of the relation are
represented.

– We have a (small) example set of instances of Ci and Cj for which the
relation R holds.

An example of such a relation instantiation task is the extraction of instances
of the relation ’appears in’ between films (instances of class ’Film’) and actors
(instances of class ’Actor’) in an ontology about movies. Another example is
finding the relation ’has artist’ between instances of the class ’Art Style’ and
instances of the class ’Artist’ in an ontology describing the Cultural Heritage
domain. As a case study for our approach, we chose this latter example and we
shall discuss this in Section 4.

3 Redundancy-Based Relation Instantiation

In Section 3.1, we present our general approach to this task, which we further
specify in Section 3.2

3.1 Approach

Current approaches for Information Extraction or Question Answering tasks
could also be used for ontology population. However, the methods in these do-
mains assume a specific structure of the corpus documents. Wrapper-induction
techniques such as [3] assume structured text. Other methods learn natural lan-
guage patterns. These methods generally perform well on free text, but do not
work as well for more structured data. We designed our method to be structure-
independent.



204 V. de Boer, M. van Someren, and B.J. Wielinga

Methods that use some form of supervised Machine Learning assume a large
number of tagged example instances to be able to learn patterns for extracting
new instances and this is a serious limitation for large scale use[4]. We designed
our method to require only a small amount of examples that are used as a seed
set.

A number of Information Extraction methods perform very well on the do-
main they were constructed for. Their performance drops however when they
are applied in a new, unknown domain. Our method as presented in this section
is domain-independent.

Our approach incorporates generic methods that do not rely on assumptions
about the domain or the type of documents in the corpus. By using these general
methods for the extraction, we will lose in precision since the general methods are
not optimized for a specific corpus or domain. However, since we use more generic
methods, we are able to extract information from a greater number of sources.
The main assumption behind our method is that because of the redundancy of
information on the Web and because we are able to combine information from
heterogeneous sources, we can compensate for this loss of precision.

To extract instances of the relation R : Ci × Cj , the method takes as input
a single instance i of Ci and the set of instances of Cj . Further input is in the
form of a (small) seed set of instances for which we already know that the given
relation holds.

The method uses generic methods to identify instances of Cj in the individual
documents from the Web Corpus and marks them as candidates for the right-
hand side of a relation instance. The documents are then given a score that
reflects how well the relation R is represented in those documents. For this we
use the seed set. All candidates are then scored based on the Document Scores of
the pages they appear on, resulting in a ranked list of right-hand side instances.
From this ranked list, the top n candidates are added to the seed set and all
scores are recalculated, thus ending up with an iterative method.

We further specify the method in the next section. We show the extraction
methods used, as well as the formulas for scoring the documents and the candi-
dates.

3.2 Method Specification

The method consists of three steps, shown in Figure 1. We first construct a
’working corpus’ by feeding the label(s) of the instance i to a search engine (in
our case, Google 1). The size of this working corpus is a parameter of the method.

In step 2, we identify the instances of the concept Cj in the documents of the
working corpus. Since we assume we already know all instances of Cj , this step
consists of matching the instances to their representations in the documents.
These representations are extracted from the document using a domain depen-
dent extraction method as listed in our assumptions. Named Entity Recognizers
can extract different types of entities such as dates, persons, locations, com-
panies, etc. These extracted representations (strings) are then matched to the
1 http://www.google.com



Relation Instantiation for Ontology Population Using the Web 205

Step 1:

Retrieve/Select 
Working Corpus

Step 2:

Identify Instances

Step 3:
Rank candidate 
relation instance 

consequents

WWW

Set of documents 
about concept i

Identified instances 
of Cj in each 

document

Ranked list of 
relation instance 

candidates

<inst, doc>
<inst, doc>
<inst, doc>
…

<1, inst, score>

…

<2, inst, score>
<3, inst, score>

Add n
candidates to 

seed set

Instance i 
of Ci

Instances of Cj
Seed set of relation 

instances

Fig. 1. Outline of the method

instances from the knowledge base. This matching process itself aims for a high
precision and because of the large number of documents to extract from, the
redundancy helps to raise the recall. The identified instances in the documents
are the right-hand side instances of the candidate relation instances.

In step 3, the method combines the evidence from the different documents to
produce a ranking for these candidates. We base this ranking on the assumption
that on average in individual web pages, a target relation is either well repre-
sented (the web page contains a number of correct right-hand side instances)
or not represented (it contains few or none of these instances ). We therefore
calculate a Document Score DS for each document. This is the probability that
for all candidates in that document the relation R holds, according to the seed
set. This is equal to the number of identified instances that are in the seed set
divided by the total number of candidate instances in that document:

DSdoc =
μdoc

νdoc
(1)

where μdoc is the number of instances of Cj identified in document doc
for which the relation is already in our seed set and νdoc is the total
number of instances of Cj identified in document doc

We then combine all evidence for each of the candidate instances by taking the
average of DS over all used documents N in the corpus resulting in an Instance
Score IS:

ISi =
∑doc

DSdoc

N
(2)

where i ∈ Ij , i ∈ doc.



206 V. de Boer, M. van Someren, and B.J. Wielinga

At the end of this step, we are left with an ordered list of candidates for
new relation instances. We add the top n candidates to the seed set. In our
experiments, we set n = 1. This procedure iterates by recalculating all DS and
IS, based on the expanded seed set. The method iterates up to a threshold
on the number of iterations or a drop in the Instance Scores. In Section 4, we
explore the effects of these thresholds.

4 Extracting Artist-Art Style Relation

In this section, we describe the application of our method for an experiment in
the Cultural Heritage domain.

4.1 Cultural Heritage Domain

We tested our method in the cultural heritage domain. We used two well-known
art thesauri as our partly populated ontologies. One is the Art and Architec-
ture Thesaurus[5] (AAT), a thesaurus defining more then 133.000 terms used
to describe and classify art. The other is the Unified List of Artist names[6]
(ULAN), a list of more then 255.000 names of artists. We also added a relation
aua:has artist 2 between the AAT concept aat:Styles and Periods and the
top-level ULAN concept ulan:Artist. The aua:has artist relation describes
which artists represent a specific art style. This relation satisfies the requirement
that it is not a one-to-one relation since a single art style is represented by a
number of artists.

4.2 Experiment Setup

From the instances of aat:Styles and Periods, we chose nine modern Euro-
pean art styles to extract. We list their preferred labels from the AAT in Table
1. For each of these art styles, we applied the method.

Table 1. Art styles used

Art Deco Dada Neo-Impressionist
Art Nouveau Expressionist Neue Sachlichkeit
Cubist Impressionist Surrealist

We first populated the seed set with three well-known artists associated with
that art style. Then in Step 1, 1000 pages were extracted as a working corpus by
querying Google with a combination of the preferred and non-preferred labels
from the AAT (for ’Dada’ this resulted in the query ’Dada OR Dadaist OR
Dadaism’).

2 aua denotes our namespace specifically created for these experiments.



Relation Instantiation for Ontology Population Using the Web 207

Because the right-hand side instances in this task are persons, we first iden-
tified in Step 2 all person names in the documents. For this we used the Person
Name Extractor from the TOKO toolkit [7]. The extracted names were then
matched to the ULAN list of artists. This matching step is problematic as the
number of artists in the ULAN is very large and so is the number of possible
occurrences of person names in the texts. For example, ’Vincent van Gogh’ can
also appear as ’V. van Gogh’, ’van Gogh, V.’ or ’van Gogh’.

To tackle this matching problem, we performed tokenization on both the
labels of all ULAN instances and the extracted Person Name strings. An ULAN
instance is a possible match if all tokens in the extracted string are also tokens of
that instance. If a string has exactly one possible match, we accept that match.
If there still is ambiguity (the string ’van Gogh’ matches three different artists),
we reject the string and proceed to the next candidate string.

We expect that because of the redundancy of names from the corpus, a non-
ambiguous name will eventually be extracted and correctly matched. However,
as we found in earlier experiments, some names will still not be found as a result
of this matching process. In addition, some names will not be extracted due to
imperfections of the Person Name Extractor.

After the candidate instances have been extracted, we calculated the Docu-
ment Scores and Instance Scores, resulting in an ordered list of candidates. We
then added the top candidate to the seed set and re-iterated. For each of the art
styles, we evaluated the results of 40 iterations.

4.3 Evaluation

As is often the case in ontology learning and population, evaluating the results is
not trivial, in particular in a Web context. Since this task resembles Information
Retrieval, we would like to evaluate the method using precision and recall. How-
ever, since we use an open domain and manually annotating the large number
of relevant web pages is too time-consuming, we are unable to know the artists
linked to an art style and therefore are unable to calculate the recall.

In our previous experiments, we solved this problem by constructing a small
and very strict gold standard and calculated a form of recall with respect to
that gold standard. However, even though this can be done for one art style,
it is expensive to evaluate the method on multiple art styles. In the current
experiment, we therefore opted to only calculate precision. We did this by having
two annotators manually evaluate each of the 40 retrieved relation instances
for each art style. For this, the annotators were allowed to consult a fixed set
of sources: the articles on both the art style and the artist on the wikipedia
web encyclopedia3, the art style page on the artcyclopedia web site4 and any
encyclopedic web page that Google retrieved in the first ten results when queried
with both the art style’s label and the artist’s name. If in any of these sources
the artist was explicitly stated as a participant in the art style, the annotator
was to mark the relation instance ’correct’ and else mark it ’incorrect’.
3 http://www.wikipedia.org
4 http://www.artcyclopedia.com



208 V. de Boer, M. van Someren, and B.J. Wielinga

After separately evaluating the relation instances in this way, inter-annotator
agreement was calculated using Cohen’s Kappa measure. Calculated over all
nine ten art styles, this resulted in a value of 0.83. The annotators then reached
agreement over the instances that initially differed. The consensus annotations
are used to calculate precision.

4.4 Results for ’Neue Sachlichkeit’

We first illustrate the results for a single art style: ’Neue Sachlichkeit’ (’New
Objectivity’). The three artists we added to the seed set were ’George Grosz’,
’Otto Dix’ and ’Christian Schad’. Table 2 shows the top 16 results of the 40
artists iteratively extracted from the documents. For each of the artists, we also
list the Instance Score with which they were extracted. The last column shows
the evaluation (1=’correct’, 0=’incorrect’).

Table 2. Top ranked candidate artists for the has artist relation for the art style ’Neue
Sachlichkeit’ for the first 16 iterations

iteration AAT preferred label Instance Score correct
1 Beckmann, Max 0.0651 1
2 Schlichter, Rudolf 0.0291 1
3 Kanoldt, Alexander 0.0318 1
4 Schrimpf, Georg 0.0351 1
5 Gropius, Walter Adolf 0.0252 1
6 Griebel, Otto 0.0239 1
7 Chirico, Giorgio de 0.0260 1
8 Querner, Curt 0.0287 1
9 Grossberg, Carl 0.0299 1

10 Taut, Bruno 0.0300 1
11 Oelze, Richard 0.0312 1
12 Uzarski, Adolf 0.0291 1
13 Muthesius, Hermann 0.0303 1
14 Hubbuch, Karl 0.0191 1
15 Heckel, Erich 0.0131 0
16 Kollwitz, Kathe 0.0134 1
... ... ... ...

Figure 2 shows the Instance Scores for the top artists for all 40 iterations as
well as the value for the precision (number of extracted candidates evaluated
as correct divided by the total number of extracted candidates). The Instance
Score represents the confidence at each iteration that for the top ranked artist a
relation should be added to the knowledge base. As can be seen, this confidence
for the first candidate instance is relatively high (0.0651), then drops to about
0.025 and stays relatively constant for a number of iterations. After 13 iterations,
the Instance Score again drops to a new constant level of about 0.01.

After 13 iterations the method starts adding more and more false relation
instances. For this art style, we achieve the best precision/number of extractions



Relation Instantiation for Ontology Population Using the Web 209

0

0.2

0.4

0.6

0.8

1

1.2

Iteration

P
re

ci
si

on

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

In
st

an
ce

 S
co

re

5 10 2015 25 30 35 40

Precision

Instance Score

Fig. 2. Instance score versus rank number for ’Neue Sachlichkeit’

ratio if we set the maximum number of iterations somewhere between 13 and 21
iterations (after 21 iterations, only incorrect instances are added).

This maximum number of iterations depends on the specific art style: For
popular art styles, with many associated artists, this drop in precision will occur
after more iterations than for relatively small art styles such as ’Neue Sach-
lichkeit’. We also cannot cut off the iterations by setting an absolute threshold
value for the Instance Score since it is highly variable for the different art styles.

As can be seen in the figure, the drop in precision co-occurs with a drop in
the Instance Score. We choose the iteration threshold to be dependant on the
relative drop in the Instance Score. We introduce a Drop Factor, (DF ). The
algorithm stops adding relation instances to the knowledge base if the Instance
Score of the next candidate artist is less than DF multiplied by the maximum
of the Instance Scores up till that iteration. We also stop adding instances after
an absolute maximum number of iterations has been reached (Max).

For example, in the case of ’Neue Sachlichkeit’, if we set DF to 0.2 and Max
to 40, the algorithm stops adding new relation instances after iteration 16. This
leads to a precision of 0.933, with 15 correct relations and one incorrect relation
added to the knowledge base.

4.5 Results for the Nine Art Styles

In this section, we present the results for all nine art styles for which the relation
instances were extracted.

In Table 3, we show the precision and the number of correct relation instances
extracted for each of the nine art styles for an arbitrarily chosen value for the two



210 V. de Boer, M. van Someren, and B.J. Wielinga

threshold parameters (DF=0.3 and Max=20). For these values, the precision
for each of the art styles is acceptable, with a minimum of 0.667. The number
of correct extractions differs considerably between the art styles, for a ’small’
art style such as ’Surrealist’ only 5 correct new relation instances are extracted
with a threshold at 7 iterations, resulting in a precision of 0.714. The average
precision in this example is 0.84 with a standard deviation of 0.14.

Table 3. Precision and number of correct extractions (extr.) for the nine Art Styles
for DF=0.3 and Max=20

precision extr.
Art Deco 0.900 18
Art Nouveau 1.000 16
Cubist 0.850 17
Dada 1.000 15
Expressionist 0.750 15
Impressionist 0.700 14
Neo-Impressionist 0.667 4
Neue Sachlichkeit 1.000 13
Surrealist 0.714 5

In Table 4, we list both the average precision and the total sum of the number
of correct relation instances extracted for the nine art styles for 24 combinations
of the two threshold parameters DF and Max. The lowest value for precision
is 0.65. This occurs at DF=0 (the drop in the Instance Score is not used to set
the threshold) and Max=40. In that case, for the nine art styles, all 360 (9×40)
extractions are added to the knowledge base, of which 234 are evaluated correct.

Table 4. Average precision and total number of correct extractions (extr.) for the nine
Art Styles

Max
10 20 30 40

DF precision extr. precision extr. precision extr. precision extr.
0 0.856 77 0.806 145 0.722 195 0.650 234
0.1 0.856 77 0.806 145 0.721 193 0.648 228
0.2 0.856 77 0.799 137 0.776 179 0.746 197
0.3 0.865 73 0.842 117 0.830 138 0.810 144
0.4 0.857 62 0.834 96 0.826 114 0.824 120
0.5 0.902 55 0.878 86 0.868 103 0.866 109
0.6 0.924 46 0.896 67 0.882 81 0.880 87

The highest average precision, 0.924 with a standard deviation of 0.11, is
reached at DF=0.6 and Max=10, with only 46 correct relation instances added
to the knowledge base. In this case, DF has a big effect. For some art styles (e.g.
Expressionist, Impressionist) ten instances are extracted, while for other styles



Relation Instantiation for Ontology Population Using the Web 211

such as ’Neue Sachlichkeit’, only one relation instance is extracted. Depending
on further processing of these results, users might choose high precision, low
number of correct extractions or vice versa by choosing the appropriate values
for the two threshold parameters. The values for the standard deviation for each
of these values of average precision ranged from 0.11 to 0.20.

We observe a tradeoff between precision and number of correct extractions
comparable to that of the traditional precision/recall tradeoff.

4.6 Discussion

The results from the experiments show relatively good values for precision.
In some cases, the method yields false positives (relations that have been evalu-

ated as ’incorrect’). One reason these occur is that in step 2, the Person Name Ex-
traction module incorrectly extracts names and matches them to a single ULAN
entity. For example, in extracting artists associated with ’Neo-Impressionist’, the
string ”d’Orsay” (the name of a museum) is first misclassified by the Person Name
Extraction module as a person name, then it is unambiguously matched to the
ULAN entity ”Comte d’Orsay”. Other false positives are domain specific (Gus-
tav Klimt is strictly speaking not an Art Deco artists, although he is frequently
associated with that movement, especially in poster shops).

Also, not all artists that we would expect were found in the set of 40 candidate
relation instances. As with precision, errors made by the Person Name Extraction
module account for a part of these errors as some artist’s person names were
not recognized as such. Another cause for recall errors is the difficulty of the
disambiguations of the artist names. From some extracted names, our strict
matching procedure is not able to identify the correct ULAN entity. An example
is the string ’Lyonel Feininger’. The ULAN has two different artists: one with
the name ’Lyonel Feininger’ and one with the name ’Andreas Bernard Lyonel
Feininger’. The match is ambiguous and the string is discarded.

5 Related Work

The Armadillo system [8] is also designed to extract information from the World
Wide Web. The Armadillo method starts out with a reliable seed set, extracted
from highly structured and easily minable sources such as lists or databases and
uses bootstrapping to train more complex modules to extract and combine in-
formation from different sources. Also, Armadillo does not require a complete
list of instances as our method does. Armadillo’s method, however requires the
input of domain-dependant sources that are mined using wrappers. Our method
requires no modification defined by the extraction task other than relevant in-
stance extraction modules such as the Person Name Extraction module.

The KnowItAll system [9] aims to automatically extract the ’facts’ (instances)
from the web autonomously and domain-independently. The method, unlike our
method, uses patterns to extract instances. It starts with universal extraction
patterns and uses Machine Learning to learn more specific extraction patterns.



212 V. de Boer, M. van Someren, and B.J. Wielinga

In combination with techniques that exploit list structures the method is able
to extract information from heterogeneous sources.

The paper of Geleynse and Korst[10] also presents an automatic and domain-
independent method for ontology population by querying Google. They also
combine evidence from multiple sources (i.e. Google excerpts) and use a form
of bootstrapping that enables the method to start with a small seed set. The
method differs from our method in that it currently uses handcrafted rules to
extract these instances.

6 Conclusions and Further Research

We presented a generic, domain-independent method for Relation Instantiation,
a subtask of Ontology Population. Our method exploits the redundancy of in-
formation on the Web. As an example, we used the method in an experiment
to extract instances of the Artist-Art Style relation. This was done using actual
ontologies from the Cultural Heritage domain.

Results show a tradeoff of precision and the number of correct extractions
analogous to the precision/recall tradeoff. Considering the method uses very
generic methods and intuitive ranking scores, the results are encouraging but
also suggest that further processing of the results could improve the relation
instantiation.

Analysis of the documents from which information was extracted showed that
the documents were highly heterogeneous in structure. Some documents were
essays and consisted of free text while other documents such as art prints shops
featured a list structure. Also, content was extracted from pages in a language
different from English. How much this redundancy helped is a topic for further
research.

Improvement in the Person Name Extraction module or combining different
Person Name Extractors could improve the extraction. Using a different, less
strict name-entity matching procedure is also a possible improvement. Also,
other measures for the Document Score and Instance Score could be considered.

An obvious direction for further research is to test this method in other do-
mains where relations that satisfy our assumptions are to be instantiated. Ex-
amples of these domains are geography (eg. which cities are located in a country)
or sports (which players play for which teams).

Currently, we do not use any knowledge stored in the ontology in the extrac-
tion process other than the different labels of an instance. In the future we would
like to develop general guidelines on how ontological knowledge derived from the
class hierarchy or meta-properties can be used to aid the relation instantiation
process.

Acknowledgements

This research was supported by the MultimediaN project (www.multimedian.nl)
funded through the BSIK programme of the Dutch Government. We would like



Relation Instantiation for Ontology Population Using the Web 213

to thank Anjo Anjewierden and Jan Wielemaker for their extensive programming
support.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
(2001)

2. Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent
Systems 13 (2001) 993

3. Kushmerick, N., Weld, D., Doorenbos, R.: Wrapper induction for information
extraction. In: in Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence. (1997) 729737

4. Cimiano, P.: Ontology learning and population. Proceedings Dagstuhl Seminar
Machine Learning for the Semantic Web (2005)

5. The Getty Foundation: Aat: Art and architecture thesaurus.
http://www.getty.edu/research/tools/vocabulary/aat/ (2000)

6. The Getty Foundation: Ulan: Union list of artist names.
http://www.getty.edu/research/tools/vocabulary/ulan/ (2000)

7. Anjewierden, A., Wielinga, B.J., de Hoog, R.: Task and domain ontologies for
knowledge mapping in operational processes. Metis Deliverable 4.2/2003, Univer-
sity of Amsterdam. (2004)

8. Ciravegna, F., Chapman, S., Dingli, A., Wilks, Y.: Learning to harvest informa-
tion for the semantic web. In: Proceedings of the 1st European Semantic Web
Symposium. (2004)

9. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A., Shaked, T., Soderland,
S., Weld, D.S., Yates, A.: Webscale information extraction in knowitall preliminary
results. In: in Proceedings of WWW2004. (2004)

10. Geleijnse, G., Korst, J.: Automatic ontology population by googling. In: Proceed-
ings of the Seventeenth Belgium-Netherlands Conference on Artificial Intelligence
(BNAIC 2005), Brussels, Belgium (2005) 120 – 126



GeTS – A Specification Language for
Geo-Temporal Notions

Hans Jürgen Ohlbach

Institut für Informatik, Universität München
ohlbach@lmu.de

Abstract. This paper contains a brief overview of the ‘Geo-Temporal’
specification language GeTS. The objects which can be described and
manipulated with this language are time points, crisp and fuzzy time
intervals and labeled partitionings of the time axis. The partitionings are
used to represent periodic temporal notions like months, semesters etc.
and also whole calendar systems. GeTS is essentially a typed functional
language with a few imperative constructs and many built-ins. GeTS can
be used to specify and compute with many different kinds of temporal
notions, from simple arithmetic operations on time points up to complex
fuzzy relations between fuzzy time intervals. A parser, a compiler and
an abstract machine for GeTS is implemented.

1 Motivation and Introduction

The phenomenon of time has many different facets which are investigated by
different communities. Physicists investigate the flow of time and its relation
to physical objects and events. Temporal logicians develop abstract models of
time where only the aspects of time are formalized which are sufficient to model
the behaviour of computer programs and similar processes. Linguists develop
models of time which can be used as semantics of temporal expressions in nat-
ural language. More and more information about facts and events in the real
world is stored in computers, and many of them are annotated with temporal
information. Therefore it became necessary to develop computer models of the
use of time on our planet, which are sophisticated enough to allow the kind of
computation and reasoning that humans can do. Examples are ‘calendrical calcu-
lations’ [7], i.e. formal encodings of calendar systems for mapping dates between
different calendar systems. Other models of time have been developed in the
temporal database community [5], mainly for dealing with temporal information
in databases. This work is becoming more important now with the emergence of
the Semantic Web [2]. Informal, semi-formal and formal temporal notions occur
frequently in semistructured documents, and need to be ‘understood’ by query
and transformation mechanisms.

The formalisms developed so far approximate the real use of time on our planet
to a certain extent, but still ignore important aspects. In the CTTN–project
(‘Computational Treatment of Temporal Notions’) [16] we aim at a very detailed
modeling of the temporal notions which can occur in semi-structured data. The

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 214–228, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



GeTS – A Specification Language for Geo-Temporal Notions 215

CTTN–system consists of a kernel and several modules around the kernel. The
kernel itself consists of several layers. At the bottom layer there are a number
of basic data types for elementary temporal notions. These are time points,
crisp and fuzzy time intervals [20] and partitionings for representing periodical
temporal notions like years, months, semesters etc. [22]. The partitionings can
be specified algorithmically or algebraically. The algorithmic specifications allow
one to encode phenomena like leap seconds, daylight savings time regulations,
the Easter date, which depends on the moon cycle etc.

Partitionings can be arranged to form ‘durations’, e.g. ‘2 year + 1 month’,
but also ‘2 semester + 1 month’, where semester is a user defined partitioning.

Sets of partitionings, together with certain procedures, form a calendar. The
Gregorian calendar in particular can be formalized with the partitionings for
years, months, weeks, days, hours, minutes and seconds.

A part of the second layer is presented in this paper. It uses the functions
and relations of the first layer as building blocks in the specification language
GeTS (‘GeoTemporal Specifications’1) for specifying complex temporal notions.
A very first version of this language has been presented in [17,18], but the new
version has more than 20 times as many constructs and features than the old
one. It is essentially a functional programming language with certain additional
constructs for this application area. A flex/bison type parser and an abstract
machine for GeTS has been implemented as part of the CTTN–system. GeTS
is the first specification and programming language with such a rich variety of
built-in data structures and functions for geo-temporal notions. The details of
the language can be found in the technical report [21]. The third layer contains
interfaces to GeTS and the other modules of the system. The standard interface
is socket based. There are experimental RMI, SOAP and CORBA interfaces [1].

2 Basic Data Structures in CTTN and GeTS

2.1 Time Points and Time Intervals

The flow of time underlying most calendar systems corresponds to a time axis
which is isomorphic to the real numbers R. Therefore we take as time points
just real numbers. Since the most precise clocks developed so far, atomic clocks,
measure the time in discrete units, it is sufficient to restrict the representation
of concrete time points to integers. In the standard setting these integers count
the seconds from the Unix epoch, which is January 1st 1970. Nothing significant
changes in GeTS, however, if the meaning of these integers is changed to count,
for example, femtoseconds from the year 1.

The next important datatype is that of time intervals. Time intervals can be
crisp or fuzzy [27,8]. With fuzzy intervals one can encode notions like ‘around

1 The prefix ‘geo’ in the word geo-temporal was chosen to distinguish it from tempo-
ral logics in the usual understanding. ‘geo, i.e. ‘earth’, emphasizes that it is about
temporal notions as used on our planet. There is a close analogy to the area of
‘geo-spatial’ in contrast to ‘spatial’ representation and reasoning.



216 H.J. Ohlbach

noon’ or ‘late night’ etc. This is more general and more flexible than crisp inter-
vals. Therefore the CTTN–system uses fuzzy intervals as basic interval datatype.

�

�

R0

1

Party Time
6pm 7pm 10pm 12pm 2am 3am

This set may represent a particular party time, where the first guests arrive at
6 pm. At 7 pm all guests are there. Half of them disappear between 10 and 12
pm (because they go to the pub next door to watch an important soccer game).
Between 12 pm and 2 am all of them are back. At 2 am the first ones go home,
and finally at 3 am all are gone. The fuzzy value indicates in this case the number
of people at the party.

The CTTN–system has an extensive implementation of fuzzy time intervals
with a rich application programming interface [20].

2.2 Partitionings

The CTTN–system uses the concept of partitionings of the real numbers to
model periodical temporal notions. In particular, the basic time units years,
months etc. are realized as partitionings. Other periodical temporal notions, for
example semesters, school holidays, sunsets and sunrises etc. can also be modeled
as partitionings.

Partitionings of the time axis are infinite mathematical structures. Therefore
they must be represented on a computer in a more indirect way. We distinguish
three aspects of partitionings of the time axis:

1. the mathematical structure. It serves as the semantics for the more concrete
descriptions of these objects;

2. the specification of concrete partitionings. There are different ways to specify
them. Each type of specification comes with a mathematical structure that
has also a serialized text form which can be stored in files;

3. the implementation. There is a common interface for all types of partition-
ings, such that the algorithms working with these partitionings are indepen-
dent of the specification type. The methods of the partitioning application
interface (API) are automatically compilable from the specification.

Different types of specifications for partitionings and a common API for all of
them is implemented in the PartLib library [22]. The first type of partitionings
are called ‘algorithmic partitionings’. They are characterized by implementing
an isomorphism to integers directly. All the standard periodic temporal notions,
years, months, weeks etc., but also Easter time, sun rises, tides etc. are of this
type. The implementation can in particular take into account all the nasty and
irregular features of real calendar systems, leap years, leap seconds, daylight
savings time, time zones etc.



GeTS – A Specification Language for Geo-Temporal Notions 217

Another type of specification are called ‘duration partitionings’. They are
specified by giving an anchor date and a list of durations. For example, one can
specify semesters in this way. The anchor date could be first of October 2000.
The durations could be ‘6 months’ (for the winter semester) and ‘6 months’
(for the summer semester). A further type are ‘date partitionings’, which are
specified by concrete dates. An example could be the seasons. 2000/3/21 spring
2000/6/21 summer 2000/9/23 autumn 2000/12/21 winter 2001/3/21 specifies
the seasons for one year. An extrapolation mechanism extrapolates them to the
infinity. In principle, all partitionings are infinite, but there is a mechanism for
constraining a ‘validity region’. This way one can express, for example, ‘I have
this meeting every Monday 9:00-10:00 for the next 15 weeks’.

The next version of the PartLib library will contain ‘tree partitionings’ [23].
A bus timetable, for example, can be specified as a tree partitioning: ’(in very
winter, in every week, (in day 0-4, hour 5, minute 20, bus B1, hour 6, minute 20
bus B2 ...), (in day 5-6, hour 8, minute 20 bus B1, ...)), (in every spring ...)...

Partitions can be labeled. The labels are names for the partitions. They can
be used for two purposes. The first purpose is to get access to the partitions via
their names (labels). For example, the labels for the ‘day’ partitioning can be
‘Monday’, ‘Tuesday’ etc., and one can use these names in various GeTS functions.
The second purpose is to use the labels to group partitions together to so called
granules. The concept of ‘working day’, for example, can be modeled by taking
an ‘hour’ partitioning, and attached labels ‘working hour’ and ‘gap’ to the hour
partitions. Groups of hour partitions labeled ‘working hour’ yield a working day.
The working days can be interrupted by ‘gap’ partitions, for example to take
‘lunch time’ out of a ‘working day’. A group of partitions with the same label,
possibly interrupted by ‘gap’–partitions, is a granule.

Remark 1 (Calendar Systems). A calendar in the CTTN–system is a set of
partitionings, for example the partitionings for seconds, minutes, hours, weeks,
months and years, together with some extra data and methods. Calendars are
not visible in the GeTS language because they are only special cases of sets of
partitionings. Some GeTS constructs use partitionings which can not only be
the partitionings of calendar systems, but any kind of partitioning. This is more
general than sticking to particular calendar systems.

2.3 Durations

The partitionings are the mathematical model of periodic time units, such as
years, months etc. This offers the possibility to define durations. A duration
may, for example, be ‘3 months + 2 weeks’. Months and weeks are represented as
partitionings, and 3 and 2 denote the number of partitions in these partitionings.
The numbers need not be integers, but they can be arbitrary real numbers.

A duration can be interpreted as the length of an interval. In this case the
numbers should not be negative. A duration, however, can also be interpreted
as a time shift. In this interpretation negative numbers make perfect sense.
d = −2 week + 3 month, for example, denotes a backward shift of 2 weeks
followed by a forward shift of 3 months.



218 H.J. Ohlbach

3 The GeTS Language

The design of the GeTS language was influenced by the following considerations:

– Although the GeTS language has many features of a functional programming
language, it is not intended as a general purpose programming language. It
is a specification language for temporal notions, however, with a concrete
operational semantics.

– The parser, compiler, and in particular the underlying GeTS abstract ma-
chine are not standalone systems. They must be embedded into a host system
which provides the data structures and algorithms for time intervals, par-
titionings etc., and which serves as the interface to the application. This
excludes using an existing functional language like SML or Haskell.

– The language should be simple, intuitive, and easy to use. It should not
be cluttered with too many features which are mainly necessary for general
purpose programming languages.

– Developing GeTS from scratch has also the advantage that one can design
the syntax of the language in a way which better reflects the semantics
of the language constructs. As an example, the syntax for a time interval
constructor is just [expression1, expression2].

The GeTS language is a strongly typed functional language with a few imperative
constructs. Let us get a flavor of the language, before the technical details are
introduced.

Example 1 (tomorrow). The definition

‘tomorrow = partition(now(),day,1,1)’

specifies ‘tomorrow’ as follows: now() yields the time point of the current point
in time. day is the name of the day partitioning. Let i be the coordinate of
the day-partition containing now(). partition(now(),day,1,1) computes the
interval [t1, t2[ where t1 is the start of the day-partition with coordinate i + 1
(i.e next midnight) and t2 is the end of the day-partition with coordinate i + 1
(i.e. midnight tomorrow).

Example 2 (Christmas). The definition

christmas(Time t) =
dLet year = date(t,Gregorian_month) in

[time(year|12|25,Gregorian_month),
time(year|12|27,Gregorian_month)]

specifies Christmas for the year containing the time point t.

date(t,Gregorian month) computes a date representation for the time point t
in the date format Gregorian month (year/month/day/hour/minute/second).
Only the year is needed. dLet year = ... therefore binds only the year to the
integer variable year. If, for example, in addition the month is needed one can
write dLet year|month = date(....



GeTS – A Specification Language for Geo-Temporal Notions 219

time(year|12|25,Gregorian month) computes t1 = begin of the 25th of
December of this year. time(year|12|27,Gregorian month) computes t2 =
begin of the 27th of December of this year. The expression [...,...] denotes
the interval between t1 and t2. The result is therefore the interval from the
beginning of the 25th of December of this year until the end of the 26th of
December of this year.

Example 3 (Point–Interval Before Relation). The function

PIRBefore(Time t, Interval I) =
if (isEmpty(I) or isInfinite(I,left)) then false
else (t < point(I,left,support))

specifies the standard crisp point–interval ‘before’ relation in a way which works
also for fuzzy intervals.

If the interval I is empty or infinite at the left side then PIRBefore(t,I) is
false, otherwise t must be smaller than the left boundary of the support of I.

Now we define a parameterized fuzzy version of the interval–interval before
relation.

Example 4 (Fuzzy Interval–Interval Before Relation). A fuzzy version of an
interval–interval before relation could be

IIRFuzzyBefore(Interval I, Interval J, Interval->Interval B) =
case
isEmpty(I) or isEmpty(J) or isInfinite(I,right) or isInfinite(J,left):0,
(point(I,right,support) <= point(J,left,support)) :1,
isInfinite(I,left) : integrateAsymmetric(intersection(I,J),B(J))
else integrateAsymmetric(I,B(J))

The input are the two intervals I and J and a function B which maps intervals
to intervals. B is used to compute for the interval J an interval B(J), which
represents the degree of ‘beforeness’ for the points before J.

The function first checks some trivial cases where I cannot be before J (first
clause in the case statement), or where I definitely is before J (second clause in the
case statement). If I is infinite at the left side then

∫
(I∩J)(x)·B(J)(x)dx/|I∩J |

is computed to get a degree of ‘beforeness’, at least for the part where I and J
intersect. If I is finite then

∫
I(x) · B(J)(x)dx/|I| is computed. This averages the

degree of a point-interval ‘beforeness’, which is given by the product I(x)·B(J)(x),
over the interval I.

The next example illustrates some procedural features of GeTS. The effect
function takes two intervals and a function F, which maps the two intervals to a
fuzzy value. F could for example be the relation IIRFuzzyBefore. The first inter-
val I is now shifted step times by the given distance, and each time F(I,J)
is computed. These values are inserted into a new interval, which is the result
of the function. The ‘effect’ function turned out a useful test and debug tool for
developing the fuzzy interval–interval relations [19,24].



220 H.J. Ohlbach

Example 5 (effect).

effect(Interval I, Interval J, (Interval*Interval)->Float F,
Time distance, Integer steps) =
Let K = [] in

while (steps >= 0) {
pushBack(K,point(I,right,kernel),F(I,J)),
I := shift(I,distance),
steps := steps - 1}

K

‘Let K = []’ creates a new empty interval and binds it to the variable K. The
while loop shifts the interval I steps times by the given distance (I :=
shift(I,distance)). Each time pushBack(K,point(I,right,kernel),
F(I,J)) adds the pair (x, y) consisting of x = right boundary of the kernel
of the shifted I and y = F(I,J) to the interval K.

The dashed line in the figure below shows the result of the effect function
when applied to the two intervals I and J, and a suitable interval–interval ‘before’
relation as parameter F. The dotted figure shows the position of the shifted
interval I when the F(I,J) drops down to 0.

�

�

R0

1

Effect of the effect function

I J

3.1 Types in the GeTS Language

The GeTS language has a fixed number of basic types. They represent certain
data structures and certain keywords. So far there is no mechanism for extending
the basic types. The basic types can be combined to functional types T1 ∗ . . . ∗
Tn �→ T .

Definition 1 (Data Structure Types)
Integer standard integers Partitioning partitionings
Time very long integers Label labels for partitions
Float standard floating point numbers Duration durations
String strings DateFormat date formats
Interval fuzzy intervals

The data structure types abstract away from the concrete implementation. The
Integer type, for example, is currently realized as 32 bit signed integer data,
while the Time type is currently realized as 64 bit signed integer data.

Intervals are realized as polygons with integer coordinates. An interval is
therefore a sequence of pairs I = (x0, y0), . . . , (xn, yn). The xi are Time points



GeTS – A Specification Language for Geo-Temporal Notions 221

and the yi are fuzzy values. Internally the yi are realized as short integers between
0 and 1000. From the GeTS point of view, however, the yi are Float numbers
between 0 and 1. The interval I is negative infinite if y0 �= 0. I is positive infinite
if yn �= 0. The internal representation of Interval data, however, is completely
invisible to the GeTS user. Details about the internal representation and the
algorithms can be found in [20].

Partitionings are complex data structures. Fortunately, this is also not visi-
ble to the GeTS user. Partitionings are just parameters to some of the functions.
They can be used without knowing anything about the internal details.

Durations are sequences of pairs d0 P0, . . . , dn Pn where the di are Float
data and the Pi are Partitionings.

DateFormats are sequences P0/ . . . /Pn of Partitionings.
A number of enumeration types is predefined in GeTS. They are used to control
some of the algorithms. Their meaning therefore depends on the meaning of the
built-in function where they occur as parameters.

3.2 Language Constructs for GeTS

The GeTS language has a number of general purpose functional and imperative
language components. Additionally a number of language constructs are geared
to manipulating time points, temporal intervals, partitionings, dates etc. As
already mentioned, the language is strongly typed. This means, the type of each
expression is determined by the top level function name together with the types
of its arguments.

The language has an operational semantics. It is described in detail in [21]
where all language constructs are introduced. Some aspects of the language de-
pend on the context where it is used. For example, GeTS itself has no exception
mechanisms. Nevertheless, exceptions are thrown and must be catched by the
host programming system.

Definition 2 (Function Definitions). A GeTS function definition has one of
the forms

(1) name = expression
(2) name() = expression
(3) name(type1 var1, . . . , typen varn) = expression
(4) type : name(type1 var1, . . . , typen varn) = expression
(5) type : name(type1 var1, . . . , typen varn)

Version (1) and (2) are for constant expressions, i.e. the name at the left hand side
is essentially an abbreviation for the expression at the right hand side. Version (3)
is the standard function definition. The type of the function is type1∗. . .∗typen �→
T where T is the type of the expression. Version (4) declares the range type of
the function explicitly. It can be used for recursive function definitions, where
the name of the newly defined function occurs already in the body. In this case
it is necessary to know the range type of the function, before the expression can
be fully parsed. Finally, version (5) is a forward declaration. It must be used for
mutually recursive functions.



222 H.J. Ohlbach

Function definitions can be overloaded. They are distinguished by their argu-
ment types, not by the result type.

Standard Language Constructs. GeTS supports the same kind of arith-
metic and Boolean expressions as many other programming languages. A small
difference is the Time type, which is integrated in the arithmetics of GeTS. The
obligatory ‘if-then-else’ construct is of course also available. In addition there
is a case construct to avoid the need for nested if-then-elses. A ‘while’ loop is
also available. Since GeTS is a functional language, the while construct needs
a return value. Therefore in addition to the while loop body, it has a separate
return expression. In the body, however, only imperative constructs (with return
type Void) are allowed. The values of local variables can be changed with an
assignment construct. The assignment operation returns no value. It can only
occur in the body of the while statement.

A function call in GeTS is an expression name(argument1, . . . , argumentn)
where ‘name’ is either the name of a built-in function, or the name of a previously
defined function (or a function with forward declaration), or a variable with
suitable functional type.

Since variables can have functional types, and GeTS allows overloading of
function definitions, it needs a notation for functional arguments. A functional
argument can either be just a variable with appropriate functional type, or a
function name with argument type specifications, or a lambda expression. A
function name with argument type specifications is necessary to choose among
different overloaded functions.

A functional argument in GeTS is either

1. a variable with the appropriate functional type,
2. an expression name[type1 ∗ . . . ∗ typen] of a previously defined function with

that name and with argument types type1 ∗ . . . ∗ typen, (for distinguishing
between overloaded functions), or

3. a lambda expression:
lambda(type1 variable1, . . . , typen variablen) expression. ‘expression’ can
contain variables which are lexically bound outside the parameter list of
lambda.

3.3 Built-ins for Time Intervals

Fuzzy time intervals (type Interval) are one of the built-in data structures in
GeTS. It is possible to create new empty intervals and fill them up with coordinate
points. The expression [t1, t2] of type Time∗ Time �→ Interval, for example, con-
structs a new crisp interval with boundaries t1 and t2. pushBack(I, time, value)
of type Interval∗Time∗Float �→ Void extends a fuzzy interval with a new point
for the envelope polygon.

For crisp intervals there are the standard set operators: complement, intersec-
tion, union etc. These are uniquely defined. There is no choice. Unfortunately,



GeTS – A Specification Language for Geo-Temporal Notions 223

or fortunately, because it gives you more flexibility, there are no such uni-
quely defined set operators for fuzzy intervals. Set operators are essentially
transformations of the membership functions, and there are lots of different
ones.

GeTS offers standard versions of the set operators, parameterized set opera-
tors of the Hamacher family, and finally set operators with transformation func-
tions for the membership function as parameter. These allow one to customize
the set operators in an arbitrary way.

Predicates like ‘isCrisp’, ‘isEmpty’, ‘isConvex’, ‘isMonotone’, ‘isInfinite’ can be
used to check the corresponding properties of intervals. Basic relations between
time points and intervals, or between key parts of two intervals can be checked
with predicates like ‘during’ or ‘subset’ etc. The function member(time, I) returns
the fuzzy membership value for an interval. If an interval is non-convex, there a
number of functions to count components, measure their size, extract them or map
over them. n, m-center points are used to express temporal notions like ‘the first
half of the year’, or ‘the second quarter of the weekend’. This can be computed
with the function centerPoint(I, n, m).

Intervals can be transformed in various ways: shifted, scaled, extended or
shrinked, integrated or fuzzified with linear or Gaussian shapes. Parts can be cut
out, it can be split into different parts. Different types of hulls can be calculated.
Membership functions can be multiplied or exponentiated.

Example 6 (Birthday Party Time). Consider a database about, say, the insti-
tute’s birthday parties. It may contain the entry that the birthday party for
the director took place ‘from around noon until early evening’ of 20/7/2003.
‘Around noon’ is a fuzzy notion and ‘early evening’ is a fuzzy notion. Suppose,
we have a formalization of ‘around noon’ and ‘early evening’ as the following
fuzzy sets:

�

�

R0

1

Around Noon and Early Evening
11 12 13 20 21 2422

What is now the duration of the birthday party? It must obviously also be
a fuzzy set. The fuzzy value of the birthday party duration at a time point t
is 1 if the party definitely started before t and definitely ended after t. There-
fore the fuzzy value at point t is computed by integrating over the membership
functions of the start intervals and the end intervals. A natural definition would
therefore be:

partyTime(Interval I, Interval J)
= intersection(integrate(I,positive),integrate(J,negative))

(1)



224 H.J. Ohlbach

The resulting fuzzy set is:

�

�

R0

1

Birthday Party Time
11 12 13 20 21 2422

I J

The dashed curve may, for example, represent the percentage of people at the
party at a give time.

The next example illustrate a potential use of the fuzzify function. We want
to realize a function beforeChristmas. It should accept a time point t and
compute a fuzzy interval, whose membership function increases for a certain
time period and then stays 1.0 until Christmas. The increase is determined by
two parameters, offset and increase. offset = 50 means that the increase
should start in the middle between t and Christmas. increase = 10 means that
the duration of the actual linear increase should be 10% of the interval length.

If t = 2004/7/1 then beforeChristmas(t,50,10) yields an interval whose
membership function rises from 2004/9/28 until 2004/10/6/19/12 (which is at
10% of the distance between 2004/9/28 and Christmas) and then stays at 1.0
until 2004/12/25.

Example 7 (Before Christmas).

1 beforeChristmas(Time t, Float offset, Float increase) =
2 dLet year = date(t,Gregorian_month) in
3 Let christmas = time(year|12|25,Gregorian_month) in
4 case (t < christmas) :
5 Let days = round(length(t,christmas,day,false),down) in
6 fuzzify([time(year|12|25-days+round((days*offset/100)),
7 Gregorian_month),christmas],
8 linear,left,increase,0),
9 (t < time(year|12|27,Gregorian_month)): []
10 else
11 Let christmas1 = time(year+1|12|25,Gregorian_month) in ...

The beforeChristmas function considers the three cases, namely (1) that the
time point t in the year y is before Christmas in this year, (2) that t is just
on Christmas in this year, and (3) that t is after Christmas in this year. In
case (1) the rounded number of days between t and Christmas is computed
first (line 5). This number minus the offset is subtracted from christmas to get
the left boundary of the interval to be fuzzified (line 6). The right boundary
is christmas. The left part of the interval is fuzzified linearly with the given
increase (line 6–8). If the time point t is just on Christmas (line 9) then the
empty interval is returned. If t is after Christmas (case 3), then next year’s
Christmas is considered (line 11 and later).



GeTS – A Specification Language for Geo-Temporal Notions 225

Notions like ‘in two weeks time’ or ‘three years from now’ etc. denote time
shifts. Time shifts are basic operations for many other temporal notions. There-
fore GeTS provides a shift function which can shift single time points as well
as whole intervals by a given duration. A time point or an interval can be shifted
by a fraction of a partitioning (1.5 years, for example). Two different shift func-
tions are available, a length oriented shift and a date oriented shift, which give
slightly different results for fractional shifts.

Date and Time. In examples 2 and 7 we have already seen applications of func-
tions which convert time points to dates and dates to time points. The dates are
sequences of integers which correspond to date formats, and these are sequences
of partitionings. An example for a date format is year/month/day/hour/minute/
second in the Gregorian calendar. The sequence 2004|12|3|21|43|0 in this date
format is therefore the 3rd of December 2004, 9:43 pm.

The time function converts a date in a given date format to the corresponding
time point. Examples are:

time(2004,Gregorian month) = 1072915231 (1st of January 2004)
time(2004|1+1,Gregorian month) = 1075593631 (1st of February 2004)
time(2004|2|2,Gregorian week) = 1073347231 (6th of January 2004)
Gregorian week is the date format year/week/day/hour/minute/second. There-
fore 2004|2|2 is the second day in the second week in the year 2004 (The first
week in 2004 started at Monday, 29th of December 2003).

The dLet construct is a kind of inverse to the time function. The expression
dLet year|month|... = date(time, dateFormat) in expression binds the vari-
ables year, month, . . . to the integers which correspond to the date denoted by
‘time’, in the given date format. ‘expression’ is then evaluated under this bind-
ing. Example: ‘dLet y|m|d|h = date(0, Gregorian month) in y + m + d’ yields
1973 because the time point 0 corresponds to the first of January 1970. Therefore
y = 1970, m = 1, d = 1 and h = 0.

Partitionings and Labels. GeTS has a number of functions for reckoning with
time points, partitions and labels. The function partition(time, partitioning)
maps time points to intervals, which represent partitions.

The version partition(time, partitioning, n, m) computes an interval [t1, t2[
as follows: If i is the coordinate of the partition containing time then t1 is the
start of partition i + n and t2 is the end of the partition i + m.

If instead of the partition as interval, only the boundaries are needed, one can
use the partitionBoundary function.

The next function is which(time, P, Q, inclusion, asGranule). It can, for ex-
ample, be used to compute which week in the year is now, or which day in the
semester is now.

The further set of functions deals with labels of partitions. Labels are not just
strings, but also special data structures. label(time, partitioning) returns the
label of the partition containing time. If there is no labeling defined, it returns
a NULL label.



226 H.J. Ohlbach

The function isLabel(label) checks whether the label is not the NULL label.
isGap(label) checks whether the label is the gap label. LabelName(name) turns
a string (without quotes) into a Label.

The function extractLabelled(I, label, partitioning, inclusion, intersect)
can be used to extract from an interval all partitions with a given label, for ex-
ample all Tuesdays of a labeled day partitioning. The extractLabelled function
maps through all partitions of the given partitioning which are labeled with the
given label, and which overlap with the interval [a, b[ where a is the left boundary
of the interval and b is the right boundary of the interval. An error is thrown if
a or b are the infinity. For each such partition p a condition is tested which de-
pends on the parameter inclusion: inclusion = subset: p must be a subset of I’s
support. inclusion = overlaps: p must overlap with I’s support. inclusion =
bigger part inside: the bigger part of p must be a subset of I’s support.

If the parameter intersect = false then all partitions p which meet the con-
dition are joined into the resulting (crisp) interval. If the parameter intersect =
true then the intersection of I with all partitions p which meet the condition
are joined into the resulting interval. The result may now be a fuzzy interval.

The function nextGranule(time, partitioning, label, n, withGaps) is for con-
structing intervals which represent granules. The interval is constructed as fol-
lows: If time is inside a granule with the given label and if n = 0 then this
granule is computed. Otherwise the nth next/previous (if n < 0) granule with
this label is computed. If time lies outside a granule with the given label and
n = 0 then the empty interval is returned. Otherwise the nth next/previous (if
n < 0) granule with this label is computed.

4 Summary and Related Work

Most of the approaches for modeling every-day temporal notions are ‘mono-
lithic’, i.e. there is one single formalism for specifying calendar systems. In
particular there is all the work about the mathematical representation of pe-
riodic temporal notions as time granularities, or similar kind of mathematical
objects. A good overview is given in the book of Bettini, Jajoda and Wang
[5]. This work is particularly motivated by the need to represent time in tem-
poral databases. A selection of papers about the abundant work in this area
is [3,15,12,25,13,14,9,4,10,6,11,26]. In contrast to these approaches, the CTTN–
system has various representation formalisms for the different aspects of tem-
poral notions. One of the components is the GeTS language as a special pur-
pose functional specification and programming language for temporal notions.
It has a basic set of general purpose functional and imperative programming
language features. In addition there are a number of built-in data structures
and functions which are specific for this application. The most important ones
are time points, fuzzy temporal intervals and labeled partitionings of the time
line.

GeTS is not a stand alone programming language. It must be part of a host
system which provides these data structures and which invokes the GeTS appli-
cation programming interface.



GeTS – A Specification Language for Geo-Temporal Notions 227

The GeTS constructs were carefully chosen as a compromise between simplic-
ity and easy usage. In a first application, various versions of fuzzy binary relations
between fuzzy intervals have been defined [24]. Example 4 (fuzzy before) is one
of them.

Acknowledgments. This research has been funded by the European Commis-
sion and by the Swiss Federal Office for Education and Science within
the 6th Framework Programme project REWERSE number 506779
(cf. http://rewerse.net).

References

1. Julius Benkert. Integration of the CTTN system in Java. Master’s thesis, Inst. for
Computer Science, LMU Munich, 2006.

2. T. Berners-Lee, M. Fischetti, and M. Dertouzos. Weaving the Web: The Original
Design and Ultimate Destiny of the World Wide Web. Harper, San Francisco,
September 1999. ISBN: 0062515861.

3. C. Bettini and R.D.Sibi. Symbolic representation of user-defined time granular-
ities. Annals of Mathematics and Artificial Intelligence, 30:53–92, 2000. Kluwer
Academic Publishers.

4. Claudio Bettini, Curtis E. Dyreson, William S. Evans, Richard T. Snodgrass, and
X. Sean Wang. Temporal Databases, Rreseach and Practice, volume 1399 of LNCS,
chapter A Glossary of Time Granularity Concepts, pages 406–413. Springer Verlag,
1998.

5. Claudio Bettini, Sushil Jajodia, and Sean X. Wang. Time Granularities in
Databases, Data Mining and Temporal Reasoning. Springer Verlag, 2000.

6. Claudio Bettini, Sergio Mascetti, and X. Sean Wang. Mapping calendar expressions
into periodical granularities. In C. Combi and G. Ligozat, editors, Proc. of the 11th
International Symposium on Temporal Representation and Reasoning, pages 87–95,
Los Alamitos, California, 2004. IEEE.

7. Nachum Dershowitz and Edward M. Reingold. Calendrical Calculations. Cam-
bridge University Press, 1997.

8. Didier Dubois and Henri Prade, editors. Fundamentals of Fuzzy Sets. Kluwer
Academic Publisher, 2000.

9. Curtis E. Dyreson, Wikkima S. Evans, Hing Lin, and Richard T. Snodgrass. Effi-
ciently supporting temporal granularities. IEEE Transactions on Knowledge and
Data Engineering, 12(4):568–587, 2000.

10. Lavinia Egidi and Paolo Terenziani. A lattice of classes of user-defined symbolic
periodicities. In C. Combi and G. Ligozat, editors, Proc. of the 11th International
Symposium on Temporal Representation and Reasoning, pages 13–20, Los Alami-
tos, California, 2004. IEEE.

11. I.A. Goralwalla, Y. Leontiev, M.T. Ozsu, D. Szafron, and C. Combi. Temporal
granularity: Completing the picture. Journal of Intelligent Information Systems,
16(1):41–63, 2001.

12. Nick Kline, Jie Li, and Richard Snodgrass. Specifying multiple calendars, calendric
systems and field tables and functions in timeadt. Technical Report TR-41, Time
Center Report, May 1999.



228 H.J. Ohlbach

13. B. Leban, D. Mcdonald, and D.Foster. A representation for collections of temporal
intervals. In Proc. of the American National Conference on Artificial Intelligence
(AAAI), pages 367–371. Morgan Kaufmann, Los Altos, CA, 1986.

14. M. Niezette and J. Stevenne. An efficient symbolic representation of periodic
time. In Proc. of the first International Conference on Information and Knowledge
Management, volume 752 of Lecture Notes in Computer Science, pages 161–169.
Springer Verlag, 1993.

15. Peng Ning, X. Sean Wang, and Sushil Jajodia. An algebraic representation of cal-
endars. Annals of Mathematics and Artificial Intelligenc, 36(1-2):5–38, September
2002. Kluwer Academic Publishers.

16. Hans Jüergen Ohlbach. Computational treatement of temporal notions –
the CTTN system. In François Fages, editor, Proceedings of PPSWR 2005,
Lecture Notes in Computer Science, pages 137–150, 2005. see also URL:
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-30.

17. Hans Jürgen Ohlbach. About real time, calendar systems and temporal notions. In
H. Barringer and D. Gabbay, editors, Advances in Temporal Logic, pages 319–338.
Kluwer Academic Publishers, 2000.

18. Hans Jürgen Ohlbach. Calendar logic. In I. Hodkinson D.M. Gabbay and
M. Reynolds, editors, Temporal Logic: Mathematical Foundations and Computa-
tional Aspec ts, pages 489–586. Oxford University Press, 2000.

19. Hans Jürgen Ohlbach. Relations between fuzzy time intervals. In Proceedings of
11th International Symposium on Temporal Representation and Reasoning, Tati-
houi, Normandie, France (1st–3rd July 2004), pages 44–51. IEEE Computer Soci-
ety, 2004. See also http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2004-33.

20. Hans Jürgen Ohlbach. Fuzzy time intervals – the FuTI-library. Research Report
PMS-FB-2005-26, Inst. für Informatik, LFE PMS, University of Munich, June 2005.
URL: http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-26.

21. Hans Jürgen Ohlbach. GeTS – a specification language for geo-temporal notions.
Research Report PMS-FB-2005-29, Inst. für Informatik, LFE PMS, University of
Munich, June 2005. URL: http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-
2005-29.

22. Hans Jürgen Ohlbach. Modelling periodic temporal notions by labelled partition-
ings – the PartLib library. In S. Artemov, H. Barringer, A. d’Avila Garces, L. C.
Lamb, and J. Woods, editors, Essays in Honour of Dov Gabbay, volume 2, pages
453–498. College Publications, King’s College, London, 2005. ISBN 1-904987-12-5.
See also http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-28.

23. Hans Jürgen Ohlbach. Periodic temporal notions as ‘tree partitionings’, March
2006. Submitted to PPSWR06.

24. Hans Jürgen Ohlbach. Relations between fuzzy time intervals. Research Report
PMS-FB-2006-26, Inst. für Informatik, LFE PMS, University of Munich, June 2006.
URL: http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2006-26.

25. Michael D. Soo and Richard T. Snodgrass. Mixed calendar query language support
for temporal constants. Technical Report TR 92-07, Dept. of Computer Science,
Univ. of Arizona, February 1992.

26. Stephanie Spranger. Calendars as Types – Data Modeling, Constraint Reasoning,
and Type Checking with Calendars. Dissertation/Ph.D. thesis, Institute of Com-
puter Science, LMU, Munich, Munich, 2005. PhD Thesis, Institute for Informatics,
University of Munich, 2005.

27. L. A. Zadeh. Fuzzy sets. Information & Control, 8:338–353, 1965.



Active Monte Carlo Recognition

Felix v. Hundelshausen1 and Manuela Veloso2

1 Computer Science Department, Freie Universität Berlin, 14195 Berlin, Germany
hundelsh@googlemail.com

2 Computer Science Department, Carnegie Mellon University
Pittsburgh, PA 15213, USA

veloso@cs.cmu.edu

Abstract. In this paper we introduce Active Monte Carlo Recognition
(AMCR), a new approach for object recognition. The method is based on
seeding and propagating ”relational” particles that represent hypothet-
ical relations between low-level perception and high-level object knowl-
edge. AMCR acts as a filter with each individual step verifying fragments
of different objects, and with the sequence of resulting steps producing
the overall recognition. In addition to the object label, AMCR also yields
the point correspondences between the input object and the stored ob-
ject. AMCR does not assume a given segmentation of the input object. It
effectively handles object transformations in scale, translation, rotation,
affine and non-affine distortion. We describe the general AMCR in detail,
introduce a particular implementation, and present illustrative empirical
results.

1 Introduction

As Computer Vision researchers, we are interested in processing and extracting
information from a sequence of images. Since image sequences are subject to
continuity constraints, iterative methods should be applied, rather than treating
the images as being independent of one another.

In the field of state estimation by vision, e.g. recursively estimating the po-
sition and motion of a vehicle on a highway [4][3], the concept of iterative pro-
cessing has been fully adopted. Until now, it has not been adopted for the task
of object recognition. Almost all existing approaches for object recognition treat
the images as being independent from one another, processing each in a pipeline
of steps, not considering the results of earlier processing.

In this paper, we propose a new, iterative approach for object recognition. The
framework deals with a sequence of input images of an object, and iteratively
finds the best match in a given set of prototype objects. Besides recognizing the
object, this approach finds the mapping that transforms the input object to the
object stored in memory. It can handle differences in scale, translation, rotation,
affine and even non-affine distortions.

The most important aspect of our approach is that recognition does not take
place in a one-way pipeline: It is recursive and exploits feedback information.

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 229–243, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



230 F.v. Hundelshausen and M. Veloso

While the recognition runs, it can guide low-level operations according to the
current recognition state. For instance, when the system cannot decide whether
the input object is a camel or a dromedary, our method allows to focus attention
on the back of the animal, thus finding out whether there are one or two humps.

2 Related Work

Our method is different and contrasts with two common approaches for object
recognition: Independent Feature Extraction and Directed Processing. The first
means running low-level image operations in each image of a video stream from
scratch. In [6], for instance, building the scale space has to be done for each image
anew. On a Pentium 4 3GHz processor just building the scale space for a 640×480
image takes approximately one second1. In object recognition from video rather
than from photographs, this processing time is too long. Other examples for
Independent Feature Extraction include Shape Contexts [2], Maximally Stable
Extremal Regions [8], and affine interest point detectors [9].

Directed Processing means that current approaches treat object recognition as
being solvable in a one-way sequence of processing steps, hopefully ending with
the recognition of the object (for example, [6] builds the scale space, extracts
keypoints, builds feature descriptors, matches these descriptors with descriptors
in a database).

In contrast to Independent Feature Extraction, our approach allows to speedup
processing by making use of earlier results. When a feature was detected in frame
Ik the same feature is likely to occur at a close position in Ik+1.

In contrast to Directed Processing, our approach is iterative and does allow
feedback loops. The current state of recognition can guide attention to parts and
features that help to discriminate between objects.

3 Active Monte Carlo Recognition (AMCR)

In this section we introduce our new approach. We call it Active Monte Carlo
Recognition (AMCR), because it is based on sequential Monte Carlo filtering
[11]. The word active stresses the fact that the approach allows the integration
of information feedback. It can guide low-level feature extraction based on the
current recognition state, as well as focus attention on important image locations.
In this sense, the approach integrates a visual behavior, that is, a policy for
guiding attention and feature extraction to parts of the object which allow its
recognition.

Sequential Monte Carlo methods, or particle filters, have extensively been ap-
plied for robust object tracking. The best-known approach is the Condensation
algorithm. For example, in [5] it is shown that a leaf can robustly be tracked in
the presence of background clutter. Also, particle filtering has become the stan-
dard approach for mobile-robot localization [10]. Here, a probability distribution

1 Using the C++ implementation of [6].



Active Monte Carlo Recognition 231

for the robot’s position is approximated and propagated by a set of particles,
each representing a hypothesis for the robot’s position. Starting with a uniform
distribution for example, the particles start to build clusters at highly likely
points in a map, while the robot moves and observes its environment [10].

3.1 Analogy Between Object Recognition and Mobile Robot
Localization

One inspiration for our approach came from realizing that object recognition
and mobile robot-localization are essentially the same problem: When a robot
finds its position in one of a set of maps (e.g. of different buildings), one could
say that it recognized that its current environment matches one of the maps.
When considering the environment as an object, finding the correct map actu-
ally means object recognition. Besides identifying the correct map, the correct
position within this map is found, too. Hence, the correspondences between en-
vironment and map are also found. In the following section we will adapt and
modify the Monte Carlo Localization approach to perform object recognition.
Here, the main additional complication is, that we want to be not only invariant
with respect to translation and rotation, but also to scale and affine distortion.

3.2 An Example

The initial task is a follows. Given are:

– I = I1, ..., Il: a sequence of l input images
– P = {M1, M2, ..., Mr}: a set of r prototype images

The goal is to find the image Mk that corresponds to the image sequence. We
assume that I shows an object of one of the prototype images Mi but that it can
be arbitrarily scaled, translated, rotated or even sheared, in short, we want to
allow any affine transformation. Furthermore, we do not assume that the object
in Ik is already segmented from the background, i.e. we allow background clut-
ter. However, we do assume that the prototype images are perfectly segmented.
Besides identifying Mk we also want to find the affine transformation for a good
match. Figure 1 shows an example of this setup.

3.3 Overview

We deal with two types of particles, V-particles and M-particles. The V-particles
refer to positions in the input image, while the M-particles refer to positions in
the prototype images. One V-particle is linked to several M-particles as shown
in figure 2. One important property of the algorithm is that the particles move.
While the V-particles move in the input image, the M-particles form moving
clusters in the prototype images, at positions that correspond to the shape sur-
rounding the V-particles.

To get an initial idea of how the algorithm works, Figure 3 illustrates the
algorithm using only one V-particle. Initially, the M-particles are randomly dis-
tributed in the prototype images. While the V-particle moves, the M-particles



232 F.v. Hundelshausen and M. Veloso

M
1

M
2

M
3

I
k

Fig. 1. The goal is to identify the bird shown in a sequence of input images Ik in the
set of prototype images M1, M2, M3 and to determine the affine transformation that
maps the input object to its corresponding prototype object. Background clutter in
the input image can be present. The shape shown in the image sequence can move. We
assume that the movement is restricted to affine transformations.

move accordingly, subject to their estimate of the affine transformation. Step by
step the M-Particles start to build clusters at probable locations and finally only
one cluster remains in the prototype that corresponds to the input image. The
resulting particles hold the correct affine transformation.

3.4 Definitions

To give a mathematically sound description of our algorithm we have to define
several terms:

Definition 1. A V-particle v is defined as v := (p, Ea, Ef , O, Q, F) where
p = (x, y, φ)T describes a position and orientation in the input image I, Ea is
an affine estimator, Ef is a feature extractor, O is an observation model, Q
is a motion model and F is a feedback strategy. (The latter five terms will be
described with an example in section 4.)

Definition 2. A prototype pose x̃ = (x, y, φ, i), x, y ∈ IR, φ ∈ [0, ..., 2π],
i ∈ {1, ..., r}, specifies a position (x, y) with orientation φ in the ith of all r
prototype images.

Definition 3. An M-particle m is defined as m := (x̃,A, π) where x̃ specifies
a pose in one of the prototype images. The 3 × 3 matrix A defines a 2D affine
mapping in homogeneous coordinates. The value π ∈ [0, ..1] is a probability.

Definition 4. A particle configuration C is a triple C = (V , M, R), where
V := {vi}, i = 1, ..., m is a set of m V-particles, M := {mi}, i = 1, ..., n is a
set of n M-particles and R : M −→ V is a mapping relating each M-particle
to a V-particle. The mapping is surjective but not injective, that is, different
M-particles can be mapped to the same V-particle.

The mapping R induces an equivalence relation in the set M, dividing it in
subsets whose elements are mapped to the same V-particle. The subset belonging
to v ∈ V is

R−1(v) = {m ∈ M : R(m) = v} (1)



Active Monte Carlo Recognition 233

I

M
1

M
1

M
2

M
2 M

3

v
1

v
4

v
3

v
2

v
5

v
6

v
7

v
8

v
2

v
9

v
10

Fig. 2. Each of the m = 10 V-particles in the input image I is linked to 50 M-particles
in each prototype image M1, M2, M3. All particles are drawn in gray, except the v1

and the M-particles that are linked to it. The links are drawn by straight thin lines.
Note, that only the connections of v1 are drawn, but that each V-particle has the same
number of connections (to different M-particles).

Thus, each V-particle is linked to a whole set of M-particles and the sets of M-
particles are disjoint. Relating our approach to mobile robot localization, each V-
particle can be thought of a “simulated robot” discovering the input environment
(the image I) and the related M-particles represent a probability distribution
for the robot’s position within a set of maps (the prototype images Mi). An
example is shown in figure 2 where each of m = 10 V-particles is linked to 50 M-
particles in each prototype image resulting in a number of n = 10×3×50 = 1500
M-particles. The set R−1(v) contains M-particles that are distributed over all
prototype images. Often, we are interested in only the M-particles of a V-particle
v that are in the same prototype image Mk. We will denote this set by

R−1
k (v) := {m = (i,p,A) ∈ M : R(v) = m ∧ i = k} (2)

This set R−1
k (v) approximates the probability distribution for the corresponding

position v in the prototype image Mk.
Often, we will consider an M-particle m in conjunction with its linked V-

particle vm := R(m). Such a pair (vm,m) represents a hypothetical relation
between the input image and a prototype image. Thus we call the entity (vm,m)
a relational particle. The affine mapping A, stored in m, defines how the local
neighborhood around vm has to be transformed in order to match the local
neighborhood around m.

Definition 5. A relational particle r is a tuple (vm,m), with m ∈ M and
vm := R(m).



234 F.v. Hundelshausen and M. Veloso

(a) iteration 0

(b) iteration 5

(c) iteration 32

Input Memory (Prototypes)

Fig. 3. This figure illustrates the algorithm using only one V-particle connected to
500 M-particles in each prototype image. (a) Initially, the M-particles are distributed
randomly. (b)While the V-particle moves, the M-particles start to build clusters at
probable locations. (c)Finally, only one cluster remains in the prototype image that
corresponds to the input image. The trajectory of the V-particle corresponds to the
thin curve in the input images. While the V-particles move, the M-particles move
accordingly, subject to their current estimate of how the input and prototype images
are related in terms of an affine transformation.

3.5 Probabilistic Formulation

For each V-particle v we reformulate the problem of object recognition as the
problem of localizing v. Here, localizing v means finding its corresponding pro-
totype pose x̃ = (x, y, φ, i) (see definition 2), that is identifying the correct pro-
totype image Mi and finding the corresponding pose (x, y, φ) within Mi. Since
we do not assume that the object shown in the input images is segmented, the



Active Monte Carlo Recognition 235

algorithm will try to recognize whatever is at the position of v. Since several
V-particles exist, different objects can be recognized simultaneously.

With each new image Ik, each V-particle v = (p, Ea, Ef , O, Q, F) will perform
a movement and a measurement zk. The movement is controlled by the feedback
policy F that returns a control command uk in each iteration. It consists of a
rotation and a translation. The measurement zk is a feature descriptor returned
as a result of applying feature extractor Ef . We want to estimate the prototype
pose x̃ based on all measurements Zk = {zk}, i = 1, ..., k, up to the current
time, and knowledge about the movements and the initial state of x̃. The initial
knowledge about the state x̃0 is given by the apriori probability distribution
p(x̃0) over the space of x̃. For instance, it could be that certain prototype images
are known to be more likely, in a given context. However, we will often assume
an initial uniform distribution. Thus, for each V-Particle, we are interested in
constructing the posterior density p(x̃k|Zk) of the current prototype pose x̃k
conditioned on all measurements.

In analogy to mobile robot localization [10], to localize x̃k the corresponding
position of the V-particle in time step k, we need to recursively compute the
density p(x̃k|Zk) at each time step, which is done in two phases, the prediction
phase and the update phase:

– Prediction Phase. We use the motion model Q of the V-particle to predict
x̃ in the form of a predicted probability density function (PDF) p(x̃k|Zk−1)
taking only motion into account. In contrast to real mobile robot localization
we know the effect of the control input precisely, without noise. However it
still makes sense to include a noise model, since the overall approach will
then be able to handle even non-affine distortions (to some limited degree).
We assume that the current state x̃k is only dependent on the previous
state x̃k−1 (the Markov assumption) and the known control input uk−1.
The motion model is specified as a conditional density p(x̃k|xk−1,uk−1) and
the predictive density over x̃k is then calculated by integration:

p(x̃k|Zk−1) =
∫

p(x̃k|xk−1,uk−1)p(x̃k−1|Zk−1)dx̃k−1 (3)

– Update Phase. In this phase we take a measurement zk by applying fea-
ture extractor Fe around the V-Particle and use its measurement model O to
obtain the posterior p(x̃k|Zk). We assume that the measurement zk is con-
ditionally independent from earlier measurements Zk−1 given x̃k and the
measurement model is given in terms of a likelihood p(zk|x̃k). This term
expresses the likelihood that the V-particle is at a location corresponding to
x̃k, given that zk was observed. The posterior density over x̃k is obtained
using Bayes theorem:

p(x̃k|Zk) =
p(zk|x̃k)p(x̃k|Zk−1)

p(zk|Zk−1)
(4)



236 F.v. Hundelshausen and M. Veloso

3.6 The AMCR-Algorithm

For each V-particle v = (p, Ea, Ef , O, Q, F) the density p(x̃k|Zk) is approxi-
mated by its set R−1(v) of connected M-Particles. The overall algorithm is then
summarized by the following procedure:

Algorithm 3.1. AMCR()

for each Ik

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for each V-particle v = (p, Ea, Ef , O, Q, F)

do

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Get control command uk = F(v)
Move v according to uk

for each m ∈ R−1(v)

do
{
predict(m, Q)
update(v,m, Ea, Ef , O)

resample(R−1(v))

every wth frame:
{
update(V )
resample(V )

Run other algorithms like tracking in parallel

Here, updating and resampling V is done only every wth frame (w = 10 in our
implementation). To update V , each v ∈ V is assigned a weight proportional to
the number of M-particles connected to v. When resampling V , particles that are
created in several instances receive an exact copy of the M-Particles connected
to the original V-particle. By resampling V the focus of attention is directed to
parts of the input image that are interpretable in terms of the prototype images.
The entire procedure of propagating the particles by sampling, reweighting, and
resampling (Sampling/Importance Resampling, or SIR) is discussed in full detail
in [12].

One important property of AMCR is that the input images are only accessed
at the position of the V-particles. In each iteration algorithms such as deter-
mining the optical-flow can be processed in parallel and the V-particles can be
moved according to the optical flow. In this way recognition can be distributed
over several frames, even though the input object moves.

4 Radial-AMCR: AMCR for Shape Recognition

In this section, we describe a particular application of the AMCR-algorithm,
allowing it to perform shape recognition. Here, we assume that all V-particles
use the same affine estimator, feature extractor, motion and measurement model.
We call this particular instantiation Radial-AMCR because it is based on radial
edge scans.

4.1 The Affine Estimator and the Measurement Model

For Radial-AMCR the affine estimator Ea estimates an affine mapping for each
M-particle by considering two triangles, one in the input image Ik and one in



Active Monte Carlo Recognition 237

I
k

a

b c

p0p0

p1p1

p2p2

p3p3

p4p4

p5p5

p6p6

p7p7

a'

b'

c'

p0p0

p1p1

p2p2 p3p3

p4p4

p5p5

p6p6

p7p7

V-particle

M-particle

(a) (b)

M2

Fig. 4. Each pair (v,m) of particles creates a hypothesis for an affine transformation
by constructing two triangles. The corner points of the triangles are found by three
edge scans per particle. To compare the local shape around the particles 8 further
points are determined by edge scans.

the prototype image of the M-particle. The three points of each triangle are
found by applying an edge-detector along three scan lines, radially emerging
from the V- and M-particle’s position. The orientation of the V- and M-particle
specifies the direction of the first scan line. The remaining angles are at 120
and 240 degrees relative to the first direction. In doing so, three points a,b
and c are determined for the V-particle v in Ik and three points a′,b′ and c′

are determined for the M-particle m in its prototype image. The pair (v,m), a
relational particle, will now represent the hypothesis that the shape in the input
image has to be transformed in such a way, that both triangles match. That is,
we compute the affine transformation A that maps a to a′,b to b′ and c to c′.
Depending on the position of the V- and M-particles different hypotheses arise.
Although, the affine mapping A is stored in the M-particle, it is an attribute of
the whole relational particle (v,m). It is possible to store it in m, because each
M-particle can only be linked to one V-particle.

Based on the estimate of the affine transformation, we are now able to specify
a measurement model. Similar to how the triangles are found, the feature ex-
tractor Ef performs radial edge scans along 8 rays. For each relational particle
(v,m), two sets of 8 points are found, zk = (p0, ...p7) in input image Ik (which
constitutes the measurement of the V-particle) and p′

0, ...p
′
7 in the prototype

image of m. Based on these points and the affine transformation we specify the
measurement model O, that is the likelihood p(zk|x̃). The underlying considera-
tion is that if the current M-particle was in the correct prototype image (the one
that corresponds to the input images) and if its position and orientation exactly
corresponded to the position of the V-particle in the current input image, then,
when transforming the points p0, ...,p7 using A, they would exactly match the
points p′

0, ...,p
′
7. We then calculate the deviations wj = p′

j − Apj , j = 0, ..., 7



238 F.v. Hundelshausen and M. Veloso

and assume that each deviation is either an outlier or subject to a Gaussian
distribution,

p(||wj ||) = poutlier + (1 − poutlier)
1

σw

√
2π

e−
||wj ||2
2σ2

w

. (5)

Here, poutlier is the probability of an outlier, in case of which we assume a
uniform distribution over all ranges of ||wj || and σw is a constant (poutlier = 0.1
and σw = 10 pixel in our implementation). Assuming that the individual scan
line measurements are independent the measurement model then is

π = p(zk|x̃i
k) := Πj∈Ivalid p(||wj ||)Πj∈Iinvalid pinvalid. (6)

Here, Ivalid is the subset of indices {i = 1..m} for which both vi and v′i indicate
the validity of the ith edge measurement, and Iinvalid is its complementary set.
The constant pinvalid is the modeled probability of an invalid range measurement
(pinvalid = 0.1 in our implementation).

4.2 The Motion Model

The motion model Q defines how the M-particles move, when a V-particle moves
as a response to its control command u. It is specified in terms of the conditional
density function p(x̃k|x̃k−1,uk−1). Rather than explicitly specifying this func-
tion we specify how to sample from it. Given u specifying the translation and
rotation of the V-particle we transform the movement by the M-particle’s cur-
rent estimate of the affine transformation and add zero-mean Gaussian noise to
both translation and rotation. The M-particle will then perform this transformed
movement. When the prototype image is not an exact affine transformation of
the input image, non-affine distortions can be compensated by the noise in the
M-particle’s movement.

4.3 Feedback Loops

There are two different feedback loops: Feature Feedback and Attention Feedback.
Feature feedback means that different V-particles can have different feature ex-
tractors and that the extractors are selected depending on the recognition state.
For instance, when recognition is ambiguous at a given iteration, feature extrac-
tors could change from edges to texture, if texture would better discriminate
among the hypotheses. This aspect is not dealt with in more detail in this pa-
per. Attention feedback has two mechanisms: One automatically occurs during
V-resampling. V-particles with many connected M-particles will be reproduced
more likely, which lets the V-particles concentrate on interpretable parts of the
input shapes. V-particles which cover non-interpretable background clutter, will
vanish automatically. The second mechanism involves the motion guidance of
the V-particles.

Consider the case where a V-particle determines its movement solely based on
the input image. For instance, a V-particle could always move forward and be



Active Monte Carlo Recognition 239

I4

I22

I71

M1 M2 M3

M1 M2 M3

M1 M2 M3

V-particle

(a)

(b)

(c)

Fig. 5. Even if the prototype images are very similar the method converges. The figures
shown here, are snapshots of a real experiment. However, convergence is slow in the
case of high similarity. To speed it up, a feedback policy is needed that guides the
V-particles to parts of the figures that let discriminate them (e.g. the feed, tail and
head).

reflected at an edge in the image. This simple behavior would let the V-particle
explore its input shape. Although the approach works, it is not optimal. To see
why, consider the case where the prototype images are very similar, i.e. as in the
scenario shown in figure 5. Since the birds are very similar, it takes 71 iterations
till the method converges to only one remaining cluster in the correct prototype
image. The reason is that the M-particles often scan the shapes at parts that are
very similar. A strategy of guiding the V- and M-particles to parts that help to
discriminate the shapes is required to increase the performance. In the situation
shown in figure 5b) the recognition process is not sure, whether the input image
is M2 or M3 and a feedback control that would move the V-particle to a part
that best discriminates M2 and M3 (i.e the head of the birds) is desirable in this
situation. One difficulty in implementing such an approach is to automatically
compare all pairs of prototype images and to find the discriminative locations.
This issue will be subject of a separate paper.

4.4 Lookup Tables

In each iteration, each M-particle has to apply its feature extractor in its pro-
totype image. But since, the prototype images (the memory) is fixed, we can



240 F.v. Hundelshausen and M. Veloso

pre-compute lookup tables to speed up the extraction process. For instance, for
Radial-AMCR each pixel in each prototype images holds a pre-computed radial
scan, and the edge points can simply be looked up. Thus, while the V-particles
actually have to access the input image, the M-particles will just operate on
lookup tables. In this sense, the prototype images Mi are rather feature lookup
tables, instead of the actual prototype images.

4.5 The Focus of Attention

In our approach, the positions of the V-particles constitute the focus of atten-
tion. Since we do not assume that the input image is segmented, the V-particles
will try to recognize whatever is at their position. Consider i.e an image showing
different shapes the same time. Starting with 100 V-particles, initially randomly
distributed in the image, some of the particles will lay within the figures, some
between the figures, and some at image parts that contain background clutter.
V-particles that are in figures, that are represented in the prototype images,
will produce clusters after several iterations, the other V-particles will remain
unsuccessful, that is they will not yield a focussed cluster of M-particles in a
prototype image. This implies, that different shapes can be recognized simulta-
neously. Context based recognition can be achieved through the initial distribu-
tion of M-particles in the prototype images. If a prototype has no M-particles
no processing power is consumed in trying to recognize it. That is, depending on
the situation in which recognition takes place, certain prototypes can be biased.

5 Experimental Results

It is difficult to compare our algorithm against other methods for shape or object
recognition, because they typically are not iterative. But the iterativeness is one
of the most important properties of AMCR, because it allows to distribute the
computational load over several frames. Even though recognition might take a
second, the video input can be processed at full frame rate during this second.
Thus other algorithms like tracking can run in parallel. This is the important
philosophy behind our approach.

Despite this difficulty, we performed a comparison against shape contexts [1]
by repeating the iterations over static images. Some of the input images that
were correctly classifed are shown in figure 6. These had to be identified within

Fig. 6. Some examples of input images that were correctly classified



Active Monte Carlo Recognition 241

a database of 17 prototype shapes. Because of the severe background clutter
our method performed clearly better than shape contexts. However, this is not
the point, because shape contexts themselves could be integrated in AMCR
by defining an appropriate observation model. Thus, our approach is more a
framework that allows to incorporate existing approaches, rather than being
opposed to them.

With the following example we try to show all properties of AMCR. We work
with a prototype memory of only three shapes. We printed two of them on a
sheet of paper, together with outlier shapes, such that the figures of interest
cannot easily be segmented from the background clutter (see figure 7a). Then
we took a video, while moving the sheet around. Running Radial-AMCR with
30 V-particles and 60 M-particle per prototype and V-particle, our method iter-
atively recognizes the given shapes. Using the lookup tables, one iteration takes
approximately 61 milliseconds on a Pentium IV, 3 GHz processor. Splitting the
update phases over two frames, the processing time per frame can be reduced to
30 milliseconds, which allows to process the input video at a rate of 30 frames
per second. While recognition runs, we simultaneously determine the optical
flow (using Lukas Kanade [7]) in the input sequence, and move the V-particles
according to the flow, such that the relative position between the input shapes

(a)

(b)

I1

I34

M1 M2 M3

M1 M2 M3

Fig. 7. At the beginning (a) the V and M-particles have random positions in the
input image and the prototype images. After 34 iterations only V-particles remain,
that are interpretable in terms of the prototype images. The M-particles form clus-
ters at corresponding positions. The thin straight lines show these correspondences.
While recognition runs, the input image is rotated and translated randomly and the
V-particles are moved according to the optical flow. Thus, while tracking, the process
of recognition is distributed over the sequence of images.



242 F.v. Hundelshausen and M. Veloso

and the V-particles remains the same. This example is illustrated in figure 7. It
shows how recognition and tracking can be performed simultaneously, how the
process of recognition can be distributed over several frames and how several
objects can be recognized simultaneously.

6 Conclusions

In this paper we have introduced Active Monte Carlo Recognition (AMCR) as a
new framework for object recognition and a result of our realization of the sim-
ilarity between mobile robot localization and object recognition. In relation to
existing approaches, AMCR is based on an image sequence rather than on single
images, and it includes a feedback loop integrated in the recognition process
to guide attention to discriminative parts. At the core of AMCR are relational
particles that represent hypotheses for relations between an input image and a
set of prototype images. Low-level image access is hence performed with a rela-
tionship to high-level memory. We have shown the potential of our approach by
implementing a particular instantiation of the algorithm for shape recognition.
In summary, our approach has several contributions, including:

– Iterativeness. The process of recognition is distributed over a sequence of
images showing the same object. Tracking can be performed simultaneously
with recognition.

– Local image access. The input images are only accessed at the position
of the V-particles. By moving the V-particles recognition can be combined
with tracking. For instance, the V-particles can be moved according to the
optical flow such that the relative position between V-particles and the object
remains the same.

– Multi-Modality. AMCR maintains several hypothetical interpretations
during its iterations. Also, several objects can be recognized simultaneously.

– Simultaneous Segmentation and Recognition. Our method does not
require the object to be segmented from the background. Rather, segmenta-
tion and recognition are performed simultaneously.

– Integration of Feedback Loops. During iterations, an object might not
be uniquely classified. Our approach allows to guide attention to parts and
features that help discriminate the different hypotheses.

Future work will concentrate on the simultaneous application of different
feature-extractors, a hierarchical organization of the prototype objects and the
learning of feedback strategies.

References

1. S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using
shape contexts, 2001.

2. S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using
shape contexts. IEEE Trans. Pattern Anal. Mach. Intell., 24(4):509–522, 2002.



Active Monte Carlo Recognition 243

3. E. D. Dickmanns. The 4d-approach to dynamic machine vision. In Proceedings of
the 33rd IEEE Conference on Decision and Control, volume 4, pages 3770–3775,
1994.

4. E. D. Dickmanns and B. D. Mysliwetz. Recursive 3-d road and relative ego-state
recognition. IEEE Transaction on Pattern Analysis and Machine Intelligence,
14:199–213, February 1992.

5. M. Isard and A. Blake. Condensation: conditional density propagation for visual
tracking. International Journal of Computer Vision, 1998.

6. D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004.

7. B. Lucas and T. Kanade. An iterative image registration technique with an appli-
cation to stereo vision. In IJCAI81, pages 674–679, 1981.

8. J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from
maximally stable extremal regions. In BMVC, pages 384–393, 2002.

9. K. Mikolajczyk and C. Schmid. Scale and affine invariant interest point detectors.
International Journal of Computer Vision, 60(1):63–86, 2004.

10. W. B. S. Thrun, D. Fox and F. Dellaert. Robust Monte Carlo Localization for
Mobile Robots. Artificial Intelligence, 2001.

11. A. Smith, A. Doucet, and N. de Freitas. Sequential Monte Carlo Methods in Prac-
tice. Springer, New-York, 2001. ISBN 0-387-95146-6.

12. A. F. M. Smith and A. E. Gelfand. Bayesian statistics without tears: A sampling-
resampling perspective. American Statistician, 46(2):84–88, 1992.



Cross System Personalization and Collaborative
Filtering by Learning Manifold Alignments

Bhaskar Mehta1 and Thomas Hofmann2

1Fraunhofer IPSI, Damstadt 64293, Germany
2Darmstadt University of Technology, Darmstadt 64289, Germany

mehta@ipsi.fhg.de, hofmann@int.tu-darmstadt.de

Abstract. Today, personalization in digital libraries and other infor-
mation systems occurs separately within each system that one interacts
with. However, there are several potential improvements w.r.t. such iso-
lated approaches. Investments of users in personalizing a system, either
through explicit provision of information, or through long and regular
use are not transferable to other systems. Moreover, users have little
or no control over the information that defines their profile, since user
profiles are deeply buried in personalization engines. Cross-system per-
sonalization, i.e. personalization that shares personalization information
across different systems in a usercentric way, overcomes the aforemen-
tioned problems. Information about users, which is originally scattered
across multiple systems, is combined to obtain maximum leverage. The
key idea is that when a large number of users cross over from one system
to another, carrying their user profiles with them, a mapping between
the user profiles of the two systems can be discovered. In this paper, we
discuss the use of manifold learning for the purpose of computing rec-
ommendations for a new user crossing over from one system to another.

1 Introduction

The World Wide Web provides access to a wealth of information and services to
a huge and heterogeneous user population on a global scale. One important and
successful design mechanism in dealing with this diversity of users is to person-
alize Web sites and services, i.e. to customize system contents, characteristics,
or appearance with respect to a specific user. The ultimate goal is to optimize
access to relevant information or products by tailoring search results, displays,
etc. to a user’s presumed interests and preferences. More specifically, this opti-
mization may aim at, for example, increasing the efficiency of system usage or
improving the quality and relevance of results. Given the huge and rapidly grow-
ing amount of data available online as well as an ever growing user population
that uses the World Wide Web, the relevance of personalized access is likely to
further increase in the future.

While most users will interact with different systems and sites on the Web,
personalization most often occurs separately within each system. Each system
independently builds up user profiles, for instance, by locally storing information

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 244–259, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Cross System Personalization and Collaborative Filtering 245

about a user’s likes and dislikes, interests, and further characteristics, and may
then use this information to personalize the system’s content and service offering.
Such isolated approaches have two major drawbacks: Firstly, investments of users
in personalizing a system either through explicit provision of information or
through long and regular use are not transferable to other systems. Secondly,
users have little or no control over the information that defines their profile, since
user data are deeply buried in personalization engines running on the server side.

Cross system personalization [14] allows for sharing information across differ-
ent information systems in a user-centric way and can overcome the aforemen-
tioned problems. Information about users, which is originally scattered across
multiple systems, is combined to obtain maximum leverage and reuse of infor-
mation. Previous approaches to cross system personalization [15] rely on each
user having a unified profile which different systems can understand. The unified
profile will contain facets modeling aspects of a multidimensional user. The basis
of understanding in this approach is of a semantic nature, i.e. the semantics of
the facets and dimensions of the unified profile are known, so that the latter can
be aligned with the profiles maintained internally at a specific site. The main
challenge in this approach is to establish some common and globally accepted
vocabulary and to create a standard every system will comply with. Without
such a convention, the exact mapping between the unified user profile and the
system’s internal user profile would not be known.

Machine learning techniques provide a promising alternative to enable cross
system personalization without the need to rely on accepted semantic standards
or ontologies. The key idea is that one can try to learn dependencies between
profiles maintained within one system and profiles maintained within a second
system based on data provided by users who use both systems and who are
willing to share their profiles across systems – which we assume is in the interest
of the user. Here, instead of requiring a common semantic framework, it is only
required that a sufficient number of users cross between systems and that there
is enough regularity among users that one can learn within a user population, a
fact that is commonly exploited in social or collaborative filtering [20].

2 Automatic Cross System Personalization

For simplicity, we consider a two system scenario in which there are only two sites
or systems denoted by A and B that perform some sort of personalization and
maintain separate profiles of their users; generalization to an arbitrary number
of systems is relatively straightforward and is discussed later. We assume that
there is a certain number of c common users that are known to both systems.
For simplification, we assume that the user profiles for a user ui are stored as
vectors xi ∈ X ⊆ Rn and yi ∈ Y ⊆ Rm for systems A and B, respectively. Given
the profile xi of a user in system A, the objective is to find the profile yi of the
same user in system B, so formally we are looking to find a mapping

FAB : Rn → Rm, s.t. FAB(xi) ≈ yi (1)



246 B. Mehta and T. Hofmann

for users ui. Notice that if users exist for which profiles in both system are
known, i.e. a training set {(xi,yi) : i = 1, . . . , l}, then this amounts to a stan-
dard supervised learning problem. However, regression problems typically only
involve a single (real-valued) response variable, whereas here the function FAB

that needs to be learned is vector-valued. In fact, if profiles store say rating
information about products or items at a site, then the dimensionality of the
output can be significant (e.g. in the tens of thousands). Moreover, notice that
we expect the outputs to be highly correlated in such a case, a crucial fact that
is exploited by recommender systems. For computational reasons it is inefficient
and often impractical to learn independent regression functions for each profile
component. Moreover, ignoring inter-dependencies can seriously deteriorate the
prediction accucracy that is possible when taking such correlations into account.
Lastly, one also has to expect that a large fraction of users are only known to
one system (either A or B). This brings up the question of how to exploit data
without known correspondence in a principled manner, a problem generally re-
ferred to as semi-supervised learning. Notice that the situation is symmetric and
that unlabeled data may be available for both systems, i.e. sets of vectors xi

without corresponding yi and vice versa. In summary, we have three conceptual
requirements from a machine learning method:

– Perform vector-valued regression en bloc and not independently
– Exploit correlations between different output dimensions (or response vari-

ables)
– Utilize data without known correspondences

In addition, the nature of the envisioned application requires:

– Scalability of the method to large user populations and many systems/sites
– Capability to deal with missing and incomplete data

There are some recent learning methods that can be utilized for vector-valued
regression problem, but some of them do not fulfill the above requirements. Ker-
nel dependency estimation [21] (KDE) is a technique that performs kernel PCA
[19] on the output side and then learns independent regression functions from
inputs to the PCA-space. However, KDE can only deal with unlabeled data
on the output side and requires to solve computationally demanding pre-image
problems for prediction [1]. Another option is Gaussian process regression with
coupled outputs [12]. Here it is again difficult to take unlabeled data into account
while preserving the computational efficiency of the procedure. The same is true
for more traditional approaches like Multi-Layer-Perceptrons with multiple out-
puts. Instead of using regression methods, we thus propose the use of manifold
learning in this context. Manifold learning methods generalize linear dimension
reduction techniques that have already been used successfully in various ways
for collaborative filtering. Moreover, they are usually motivated in an unsuper-
vised setting that can typically be extended to semi-supervised learning in a
rather straightforward manner. More specifically, we propose to use the Lapla-
cian Eigenmaps [3] and Locally Linear Embedding (LLE)[18] approaches as our



Cross System Personalization and Collaborative Filtering 247

core method. LLE constructs a low-dimensional data representation for a given
set of data points by embedding the points in a way that preserves the local
(affine) geometry. Compared to other manifold learning and non-linear dimen-
sion reduction algorithms, such as Sammon’s MDS [16] or Isomap [6], the LLE
approach is computationally attractive and highly scalable, since it only relies on
distances within local neighborhoods. Moreover, as presented in [9], constrained
LLE (CLLE) can be utilized to learn mappings between two vector spaces by
semi-supervised alignment of manifolds. The former work also provides empir-
ical evidence that CLLE can outperfom standard regression methods. The key
idea is to embed user profiles from different systems in low-dimensional mani-
folds such that profiles known to be in correspondence (i.e. profiles of the same
user) are mapped to the same point. This means the manifolds will be aligned
at correspondence points. A more general version of CLLE has been derived in
[10], which takes the Laplacian Eigenmap approach [3] as the starting point. In
the next section, we will provide more detail on these methods.

3 Non Linear Dimensionality Reduction and Manifold
Alignment

3.1 Laplacian Eigenmaps

Suppose we are given l data points in S = {xi ∈ Rn: i = 1, . . . , l}. When the data
lie approximately on a low-dimensional manifold embedded in the n-dimesional
Euclidean space, manifold learning methods such as Laplacian Eigenmaps [3],
Hessian Eigenmaps [7], Isomap [6] or locally linear embeddings [18] can be used
to recover the manifold from a sample S. We pursue the Laplacian Eigenmap
approach, which has been used sucessfully in semi-supervised learning [10] and
for which rigorous convergence results exists in the large sample limit [11].

The starting point in Laplacian Eigenmaps is the construction of a weighted
graph whose nodes are the sample points and whose edges connect the nearest
neighbors of each node. Neighborhoods may consist of the k-nearest neighbors
of a sample point or the set of all points that are within an ε-ball. We write
i ∼ j as a shorthand for sample points xi and xj that are neighbors. The
weights Wij between neighbors are usually assumed to be non-negative and
symmetric, Wij = Wji ≥ 0 and are summarized in an affinity matrix W. There
are several alternatives on how to define these weights when starting from a
vector-valued representation over Rn, one popular choice being the Gaussian
kernel,

Wij ≡ exp
[−β‖xi − xj‖2] , (2)

where β > 0 is a suitably chosen bandwidth parameter. Another choice is to com-
pute weights based on a local affine approximation over neighbors, as discussed
in the following subsection on LLE.



248 B. Mehta and T. Hofmann

The heart of the Laplacian Eigenmap approach is the generalized graph Lapla-
cian L defined as,

L = (Lij)n
i,j=1, Lij =

⎧
⎪⎨

⎪⎩

∑
j∼i Wij , if i = j

−Wij , if i ∼ j

0, otherwise .

(3)

An Laplacian Eigenmap is a function f : S → R for which Lf = λf and
‖f‖2 = 1, where we think of f as a vector of function values for convenience.
Moreover, in order to remove the trivial solution with λ = 0 one can add the
constraints (1, . . . , 1)f =

∑l
i=1 fi = 0. It can be shown that the eigenmap cor-

responding to the smallest eigenvalue λ > 0 minimizes the criterion

fT Lf =
∑

i,j

Wij(fi − fj)2 . (4)

The eigenmaps corresponding to the d smallest eigenvalues span a d-dimensional
coordinate system on the low-dimensional data manifold.

In the case of semi-supervised learning one may utilize fT Lf as a regularizer
and combine it with supervised information about target values ti that may
be available at some subset S′ ⊆ S of the nodes of the graph to define the
regularized solution (cf. [2])

f∗ = arg min
f

∑

xi∈S′

(fi − ti)2 + λfT Lf . (5)

3.2 Aligned Manifold Learning

Consider now the case where two sets of points are given Sx ≡ {xi ∈ Rn : i =
1, . . . , lx} and Sy ≡ {yj ∈ Rm : i = 1, . . . , ly} where we assume without loss of
generality that the first l ≤ min{lx, ly} points are in correspondence. In the case
of cross system personalization, xi will denote a user profile in system A, yj will
denote a user profile in system B and xi ↔ yi for users ui, i = 1, . . . , l, who
are known in both systems. We will separately construct graphs Gx on Sx and
Gy on Sy in order to find low-dimensional embeddings of the points in Sx and
Sy, respectively. In addition, we will follow the approach in [10] and utilize the
correspondence information to enforce that embeddings of user profiles for the
same user are close to one another. To that extend we compute a simultaneous
embedding f of Sx and g of Sy by minimizing the objective

C(f, g) =
l∑

i=1

(fi − gi)2 + λ
(
fT Lxf + gT Lyg .

)
(6)

More specifically, in order to deal with simultaneous re-scaling of f and g, one
minimizes the Rayleigh quotient

C̃(f, g) =
C(f, g)

fT f + gT g
. (7)



Cross System Personalization and Collaborative Filtering 249

−4
−2

0
2

4

−4

−2

0

2

4
0

0.5

1

1.5

2

XY

Z

Fig. 1. Aligned 2D manifolds for two subsets of MovieLens dataset. The vertical lines
show the points which are in correspondance.

By defining the combined graph G ≡ Gx ∪ Gy with Laplacian L and combined
functions h = (fT , gT )T the above objective can be rewritten as

C̃(h) =
hT Hh

hT h
, where H ≡ λL +

(
Unn Unm

Umn Umm

)

(8)

and Unm ∈ Rn×m is diagonal with Unm
ii = 1 for 1 ≤ i ≤ l and 0 otherwise.

Again, a solution is obtained as before by finding the eigenvectors of the matrix
L.

One can also enforce the embeddings of points in correspondence to be the
same on both manifolds [10]. In this case, one identifies the first l points in Sx and
Sy, resulting in a combined graph G with lx+ly−l nodes with a combined weight
matrix. Notice that weights between pairs of nodes with indices 1 ≤ i, j ≤ l are
simply given by the sum of the weights from Gx and Gy. Introducing functions
h one then minimizes

C̃(h) =
hT Lh

hT h
, s.t.

∑

i

hi = 0 . (9)

3.3 Locally Linear Embedding

One way to define the weights Wij for neighboring nodes in the graph is to
compute them based on a local affine approximation. This idea has originally
presented in the context of the Locally Linear Embedding (LLE) method [18].
Its use as a preprocessing step in conjunction with Laplacian Eigenmaps has



250 B. Mehta and T. Hofmann

been proposed in [10]. For a sample of l data points S = {xi ∈ Rn: i = 1, . . . , l},
LLE proceeds as follows:

– For each data point xi, compute the k nearest neighbors in S which are
closest to xi in Euclidean distance.

– Compute for each xi the optimal approximation weights for an affine lo-
cal regression over the neighbors. This is equivalent to approximating the
nonlinear manifold at xi by the linear hyperplane that passes through the
neighboring points. This step of the algorithm amounts to solving a quadratic
optimization problem:

W ∗
ij = arg min

W
|xi −

∑

j∼i

Wijxj |2 , s.t.
∑

j

Wij = 1 , (10)

where j ∼ i indicates that xj is a neighbor of xi (notice that the relation is
in general not symmetric).

– Finally, a low-dimensional representation x̂i is computed by solving the min-
imization problem

X̂∗ = argmin
X̂

∑

i

‖x̂i −
∑

j∼i

Wij x̂j‖2 (11)

This can be shown to be equivalent to an eigenvector decomposition problem
involving the matrix

M = (I − W ∗)T (I − W ∗) (12)

where I is the l × l identity matrix. The bottom d + 1 eigenvectors of M
(excluding the smallest, which is 1) form a co-ordinate system for the low
dimensional data manifold.

While the LLE algorithm can be used in its own right for manifold learning, we
have employed it here to compute the affinity matrix for the Laplacian Eigenmap
method. Note that the matrix L∗ = I − W ∗ corresponds to the graph Laplacian
L (defined in eq. 3) for a graph with

∑
j Wij = 1 for all graph nodes. Also note

that the graph Laplacian thus formed is not symmetric and the weights can be
negative. Multiplying L∗ with its transpose gives a symmetric matrix M . [3]
explains that under some conditions, the matrix M is approximately the same
as L2, which has the same eigenvectors as L. It has been shown in [10] that the
matrix M can be substituted for the graph Laplacian L in the aligned manifold
method.

3.4 Reconstructing Points from Alignments

The remaining problem we would like to discuss is how to map a point on the
low-dimensional manifold back into the original data space. This is particularly
relevant in the context of manifold alignment, where one ultimately may want
to realize a mapping from Rn → Rm. After mapping a point x ∈ Rn to a k-
dimensional representation x̂, we would thus like to compute an approximation
y ∈ Rm by finding a pre-image to ŷ and identifying ŷ = F (x̂). The next section
explains the method used to compute the pre-images.



Cross System Personalization and Collaborative Filtering 251

4 The Manifold Alignment Collaborative Filtering
Algorithm

Manifold alignment using non-linear dimensionality reduction has the promise of
a fast and effective supervised learning technique for the correspondence prob-
lem. It has been reported that dimensionality reduction techniques are effective
for k-NN algorithms used typically for collaborative filtering[17]. Non Linear
dimensionality Reduction (NLDR) techniques in turn have performed better
than linear dimensionality reduction techniques like Factor Analysis and PCA[9].
Therefore we expect manifold alignment for the purposes of cross system per-
sonalization to be an effective approach. The algorithm essentially works as a
k-NN algorithm as well. After projecting the user profile vectors from two (or
more) systems on a low dimension manifold, we are able to find nearest neighbors
based on distance measures like Euclidean distance. The additional constraint
of aligning profiles belonging to the same user aligns the two submanifolds and
helps in finding more effective neighborhoods. Our algorithm has 4 steps, the
first 3 of which form the manifold projection phase ( see Algorithm 1 ), and the
last step does the pre image computation and is outlined in Algorithm 2. Our
algorithm assumes two datasets X and Y of sizes nX and nY with c common
users and is as follows:

1. Neighborhood identification: For each point xi ∈ X , we find the k-
nearest neighbors. NLDR techniques usually use Euclidean distance to iden-
tify the nearest points. In our setting, data is sparse, therefore Euclidean
distance on pure data is not neccesarily effective unless missing data is im-
puted. Options here include mean imputation (with item mean), measuring
distance only on commonly-voted items, or using a distance based on a sim-
ilarity measure like Pearson’s correlation coefficient. This procedure also has
to be repeated for yi ∈ Y. Note that choosing exactly k-nearest neighbors
for every node may result in a graph Laplacian thats not symmetric. Using
LLE, one selects exactly k neighbors, while for the Laplacian one does not
impose this constraint. As a result, the neighborhood of some points in the
Laplacian Eigenmaps method can be much larger than k. This usually shows
the importance of a node and is similar to the notion of authority nodes in
the HITS algorithm[13].

2. Calculate Affinity Matrix: After the k nearest neighbors have been identi-
fied for every point, an affinity weight with every neighbor has to be
computed.Optionshere includeanaffinedecomposition (like inLLE), an expo-
nential weight (aka the heat kernel used in Laplacian Eigenmaps) based either
on euclidean distance or on a similarity measure like Pearson’s correlation.

Wij = exp
[−β‖xi − xj‖2] or (13)

Wij = exp [−β‖1 − correlation(xi,xj)‖] or (14)
Wij = 1 or (15)

Wij = argmin
W

|xi −
∑

j∼i

W ∗
ijxj |2 , s.t.

∑

j

W ∗
ij = 1 (16)



252 B. Mehta and T. Hofmann

Algorithm 1. ComputeManifold-NLDR (X , Y, c, k, d)
Input: Matrices X , Y with the first c columns aligned. k is the number of neighbors,

d is the dimensionality of the manifold.

1: Impute missing values with mean item votes respectively for X and Y to get
Xnorm, Ynorm.

2: Calculate adjacency matrices AX , AY for graphs representing Xnorm, Ynorm by
choosing k-nearest neighbors for every xi ∈ X , yi ∈ Y.

AX (i, j) =

{
1, if i ∼ j

0, otherwise .

3: Compute reconstruction weights WX , WY .
4: Compute the graph Laplacians LX ,LY from the Weight Matrices as defined in

equation 3. For constrained LLE, use L∗
X = (I − WX )T (I − WX ), etc.

5: Compute LXY =

⎡

⎣
Lcc

X + Lcc
Y Lcs

X Lcs
Y

Lsc
X Lss

X 0
Lsc

Y 0 Lss
Y

⎤

⎦

c represents the points in alignment, while s represents the single points.
6: Find the low dimensional manifold H for the matrix LXY . H has a dimensionality

of (nX + nY − c) × d.

Output: Low dimensional manifold H

In our experiments, we use the similarity measures defined in eq. 14. Finally,
the Laplacians LX ,LY of the graphs characterized by affinity matrices for
X and Y are computed.

3. Compute points onmanifold:This is usually done by solving an eigenvalue
problem, and finding the eigenvectors of the LaplacianL (orL∗ in case of LLE).
For points in alignment, a modified eigenvalue problem has to be solved: A joint
graph of the two datasets is formed and the eigenvectors of this Laplacian ma-
trix LXY are computed (see eq. 8). The only parameter here is the dimension-
ality of the manifold (the number of eigenvectors that are chosen).

4. Compute preimages for points not in correspondence: In this step,
neighborhoods for points not in correspondence are formed in a manner
similar to the first step. The normal method to follow here is to do find
the nearest neighbors ( based on Euclidean distance) and compute a weight
distribution over this neighborhood. We do this in the following manner:
For a point xi ∈ X with i > c and manifold coordinates x̂i we first iden-
tify a set of k nearest neighbors ŷr on the manifold among the points that
are images of points in Y, resulting in some set of image/pre-image pairs
{(yr, ŷr)}. We then compute the optimal affine combination weights wr that
optimally reconstruct x̂i ≈ ∑

r wrŷr. Then the pre-image prediction is given
by F (xi) =

∑
r wryr. Similarly, we can compute an inverse map by exchang-

ing the role of the xi and yj . Notice that one can also generalize this for
arbitrary new samples x ∈ Rn by generalizing the manifold mapping x → x̂
to new points, which can be done along the lines presented in [4].



Cross System Personalization and Collaborative Filtering 253

Algorithm 2. ComputePreimage (H, c, nX , nY , k, Xnorm, Ynorm, nX , nY)
Input: Matrix H of length (nX + nY − c) representing the aligned manifold with c

points overlapping between manifolds of X and Y. k is the number of neighbors.
HM has the first c points representing the overlapping users. The next nX − c
points represents single points of X and the last nY − c points represent the single
points of Y. H(i) denotes the ith d-dimensional point on the manifold.

1: Extract submanifold HY by combining the first c and the last nY − c points of H.
2: for i = (c + 1) to (nX ) do
3: x̂i ← H(i)
4: Compute the k nearest neighbors ŷr of x̂i on the sub-manifold HY . Let yr

represent the preimage of ŷr in Ynorm.
5: Compute affine weights W∗ = (wr)k

r=1 for the neighborhood.
6: Compute Preimage prediction F (x̂i) =

∑
r wryr.

7: X̂s(i − c) = F (x̂i)
8: end for
9: Repeat above procedure by exchanging X and Y to compute preimages for single

points of Y.

Output: Preimages X̂s, Ŷs

5 Evaluation

The manifold algorithm seeks to predict the ratings of a user who has not rated
even a single item on the current system so far. In this scenario, truly nothing
is known about the active user. The best rating prediction that a system can
provide is the popularity vote based on the mean votes of every item. The items
with the highest mean votes are then recommended to the user. Our algorithm
seeks to do better than this non-personalized recommendation. On the other
extreme, given all the data for both systems, the best possible rate prediction
could be calculated if all the data was known to one system. In this scenario,
a SVD or Pearson’s correlation based algorithm could compute the predictions
(which serve as the gold standard for us). In order to be useful, our algorithm
should perform better than predictions from the popularity vote and perform as
close as possible to the gold standard.

5.1 Dataset and Evaluation Scheme

We chose the Movielens1 data with 100,000 votes for the purposes of our evalu-
ation. This data set consists of rates in 1682 items by 944 different users. This
data is quite sparse (∼ 6%) as is typically for user ratings. We split the data
into two subsets X and Y by spiliting the movie ratings for all users ( e.g. two
matrices 840 × 944 and 842 × 944). In principle the overlap between datasets
can be varied anging from no overlap to all items overlapping. While in the
earlier case, the movie ratings are effectivly spilt into half, the complete data is
1 http://www.grouplens.org/



254 B. Mehta and T. Hofmann

available to both systems in the second case. However, in real world scenarios,
item overlaps are very small. Therefore we chose a random 5% from the item-
set as an overlap. The other free parameter is the number of users set to be in
correspondence, which we vary from 0 to 800. The last 144 users form the test
set for our evaluations. We randomly choose the test set and the item set for
every run of the algorithm. Individual NLDR methods(LLE and Laplacian) have
other parameters which need to be varied in order to judge their effect. There
parameters are (a) the dimensionality of the manifold, (b) the size of the neigh-
borhood for the adjacency matrix, and (c) the size of the neighborhood for the
user profile reconstruction. Additionally, the Laplacian Eigenmap method has
a free parameter β which can take any real value. In our experiments, we have
varied the parameter and present the results for the optimized values. Further
increases in neighborhood sizes offers some advantage, but at a much increased
computational cost. We have chosen these values: k = 36, d = 6, and size of
neighborhood on the manifold k1 = 55. In addition, we choose different values
of β, namely 0, 0.4 and 4.

Evaluation Metrics

1. Mean Average Error = 1
m |pv − av|, where pv is the predicted vote and av

is the actual vote. The average is taken only over known values (assume the
active user has provided m votes).

2. Ranking score of top-20 items. Rscore = 100 ∗ (
∑

R/
∑

Rmax). This metric
gives a value between 0 and 100 and was proposed in [5]. Higher values
indicate a better ranking with top items as the most highly rated ones. We
measure this metric only over known ratings. One big advantage of this
metric is that it gives the same score for permutations of items with the
same score. Thus if a user has rated 6 items with the maximum score 5, then
the Rscore is the same for any permutation of the ranking. This removes the
problem of breaking ties.

6 Discussion

The results of the evaluation are encouraging. A simple NLDR to a manifold
even with any explicit alignment of user profiles performs better than popular
voting. Expectedly, the predicted votes become more accurate as more users
cross over and their profiles are aligned. While the predictions are not as good
as the gold standard even in the case of complete overlap according to the MAE,
the algorithm provides a 4-5% improvement over the baseline after ∼ 35% user
profiles have been aligned. For collaborative filtering, this is not an insignifi-
cant improvement: the gold standard is only 12.6% better than the baseline.
Experimental results also show that the top-N recommendation using manifold
alignment is a significantly higher quality than the baseline. In case of complete
overlap, Laplacian Eigenmap based manifold aligment can provide a top − 20
ranked list which is more relavant than the gold standard. The results presented
here are obtained after a 10−fold validation; in some cases, the algorithm was



Cross System Personalization and Collaborative Filtering 255

0 100 200 300 400 500 600 700 800
50

52

54

56

58

60

62

64

66

68

70

Number of users crossing over

R
an

ki
ng

 S
co

re
 o

ve
r 

T
es

t S
et

Laplacian B=4
Laplacian weights=1
Laplacian B=0.4
CLLE
Popular
Pearson Gold

Fig. 2. Precision for the different NLDR methods within the manifold alignment frame-
work. Numbers plotted are after 10-fold validation and averaging.

able to outperform the gold standard for MAE as well. One possible reason for
the lower performance is the small size of data which is very sparse. With more
training data, we expect to find more neighbors for every user which have votes
for many items. Due to the sparsity of data, the majority of the normalized
user database consists of mean. Therefore, the reconstructed values are heavily
weighted towards the mean votes, especially for items that are note frequently
rated. Previous research [8] has shown that learning from incomplete data of-
fers significant advantage over strategies like mean imputation. Given that our
approach works better than popularity votes even with a heavy bias towards
mean values, algorithmic enhancements which offer a probablistic interpretation
to manifold alignment are likely to be more accurate and form our future work.

6.1 Implementation and Performance

The manifold algorithm outlined in this paper has been implemented using Mat-
lab R14 on a Pentium 4 based Desktop PC. Standard Matlab routines have been
used and sparse matrices are used wherever possible. For the smaller MovieLens
data with 100,000 rates, the algorithm uses around 100 MB of RAM. It performs
reasonably w.r.t. to time as well. Each run of the Algorithm 1 followed by Algo-
rithm 2 runs in approximately 5 seconds using Laplacian Eigenmaps. The LLE
algorithm runs slower (70 seconds) since a quadratic program has to be solved
for every point. The memory requirements of the LLE algorithm are also higher.



256 B. Mehta and T. Hofmann

0 100 200 300 400 500 600 700 800
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of users crossing over

M
ea

n 
A

ve
ra

ge
 E

rr
or

 o
ve

r 
T

es
t S

et

Laplacian B=4
Laplacian weights=1
Laplacian B=0.4
CLLE
Popular
Pearson Gold

Fig. 3. Precision for the different NLDR methods within the manifold alignment frame-
work. Numbers plotted are after 10-fold validation and averaging.

6.2 Computation Complexity

The Laplacian Eigenmap method clearly offers computational advantages over
the LLE method. The LLE method has 3 basic steps: a) find nearest neighbors,
b) compute reconstruction weights, and c) find eigenvalues and eigenvectors. For
two datasets of sizes mX ×nX and mX ×nX with c common points, the size of the
common graph is nX +nY −c nodes. The complexity of the LLE method for a ma-
trix with n points each of dimensionality m is thus O(mn)+O(dnk3)+O(dn2) ≡
O(dn(n+k3)). The Laplacian Eigenmap method essentially skips the second step,
and hence has a complexity of O(dn2). Therefore the overall complexity of Algo-
rithm 1 (without the reconstruction of user profiles) is O(dn(n + k3)) where n =
nX + nY − c. For our experiments, k typically had a value between 24 − 48, while
n was around 1000. In this range, k3 was 1-2 orders of magnitude higher than n,
thus explaining the difference between the running times of LLE and LapE based
NLDR. Note however that this entire alignment computation can be performed off
line. For a new user, out of sample extensions for LLE and Laplacian Eigenmaps[4]
can be used. These typically have a computational complexity of O(m)+O(dk3).
Importantly, the neighborhood formation step can be reused in the second part of
the algorithm where user profiles have to be reconstructed.

The reconstruction of a user profile(Algorithm 2 ) involves (a) neighborhood for-
mation (b) finding reconstruction weights, and (c) combining neighbor votes. The
complexity reconstructing the profile for one user therefore is O(dn) + O(dk3) +
O(mk). The significant term here depends on the values of the parameters: for a
large neighborhood, the second term dominates. However if the number of items
is very large (say a million), then the last term is the most significant one.



Cross System Personalization and Collaborative Filtering 257

6.3 Usefulness in Practical Scenarios

With a variety of systems using personalization engines, there is a lot of data
being collected about users as they go about their day to day pursuits. Combining
this data from various sources in a secure and transparent way can significantly
improve the level of personalization that electronic systems currently provide.
In this scenario, creating an approach which makes very few assumptions about
systems and users is of paramount importance. While our algorithm has been
demonstrated in a collaborative filtering setting, there is no binding to use only
rating data. The profiles of a content based system can be just as easily plugged
in, as can be a profile from a hybrid system. Importantly, we also hypothesize
that user profiles should be stored on the user’s side in Context Passport which
can leverage data about the user available with multiple systems. We envision
that even data from operating systems and email clients can be plugged into the
Context Passport. Our approach makes all of this possible in principle. However,
the absence of relevant data, where user profiles of the same users at multiple
sites are available, makes it difficult to evaluate the effectiveness of our algorithm
in a real life setting. Our attempts are on to collect such a dataset in a scientific
conference setting.

While our currently implementation performs all calculations in an online
fashion, it is possible to implement the learning phase and the actual user pro-
file reconstruction as separate phases. In a practical environment, the alignment
learning would be performed off line and a new user will approach a new system
with dimensionally reduced profile. This profile will then be projected on to the
manifold using out-of-sample extensions, and reconstruction of the user profile
can be done performed in real time. In case the item space is huge, the recon-
struction phase can be performed online only on a sample set of item extracted
from the entire item space. The entire profile can then be reconstructed offline.

6.4 Privacy

One important aspect of cross system personalization is privacy. People and
companies alike are likely to have reservations against sharing their data with
our systems. Users fear the loss of their anonymity, while companies fear a loss of
their competitive edge. With our method, the important thing is to discover the
underlying social similarity between people and not their exact buying/rating
patterns. A less accurate, but more secure (w.r.t privacy) approach could start
with a dimensionally reduced user database from say 1 million items to 1000
dimensions. Also the complete user database does not need to be known: a
random selection of a sufficient number of users might be sufficient to learn the
mapping from one system to another.

6.5 Scaling to a n−System Scenario

The manifold alignment algorithm needs only a minor modification in case some
users are common to all n systems. This modification in in the step where a joint
graph G is formed. The low dimensional embedding of this graph will have all the



258 B. Mehta and T. Hofmann

submanifolds aligned. More fined tuned modifications are required in case the
set of overlapping users is different between different users. Manifold alignment
in n−system scenario is successful only if a small fraction of users need to cross
from one system to another. In order to test this scenario, larger datasets are
needed.

7 Conclusions and Future Work

This paper outlines a novel approach to leverage user data distributed across var-
ious electronic systems to provide a better personalization experience. One major
benefit of this approach is dealing with the new user problem: A new user of a
collaborative filtering system can usually be provided only the non-personalized
recommendation based on popular items. Our approach allows system to make
a better prediction using the user’s profile in other systems. The contribution
of this paper is in describing an algorithm which offers a satisfactory improve-
ment over status quo for a potentially important application scenario. Future
work includes developing a practical framework around the manifold alignment
algorithm. Also, there is a potential for improvement in performance both from
an algorithmic and methodological point of view.

References

1. G. Bakir, J. Weston, and B. Schlkopf. Learning to find pre-images. Advances in
Neural Information Processing Systems, 16:449–456, 2004.

2. M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning
on large graphs. In J. Shawe-Taylor and Y. Singer, editors, COLT, volume 3120 of
Lecture Notes in Computer Science, pages 624–638. Springer, 2004.

3. M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15(6):1373–1396, 2003.

4. Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. L. Roux, and M. Ouimet.
Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering.
In NIPS, 2003.

5. J. S. Breese, D. Heckerman, and C. M. Kadie. Empirical analysis of predictive
algorithms for collaborative filtering. In UAI, pages 43–52, 1998.

6. V. de Silva and J. B. Tenenbaum. Global versus local methods in nonlinear di-
mensionality reduction. In NIPS, pages 705–712, 2002.

7. D. L. Donoho and C. E. Grimes. Hessian eigenmaps: locally linear embedding
techniques for highdimensional data. Proceedings of the National Academy of Arts
and Sciences, 100(10):5591–5596, 2003.

8. Z. Ghahramani and M. I. Jordan. Learning from incomplete data. Technical Report
AIM-1509, MIT, 1994.

9. J. Ham, D. Lee, and L. Saul. Learning high dimensional correspondence from low
dimensional manifolds. In ICML Workshop on The Continuum from Labeled to
Unlabeled Data in Machine Learning and Data Mining, pages 34–41, 2003.

10. J. Ham, D. Lee, and L. Saul. Semisupervised alignment of manifolds. In R. G.
Cowell and Z. Ghahramani, editors, AISTATS 2005, pages 120–127. Society for
Artificial Intelligence and Statistics, 2005.



Cross System Personalization and Collaborative Filtering 259

11. M. Hein, J.-Y. Audibert, and U. von Luxburg. From graphs to manifolds - weak
and strong pointwise consistency of graph laplacians. In COLT, pages 470–485,
2005.

12. S. Keerthi and W. Chu. A matching pursuit approach to sparse gaussian process
regression. In Y. Weiss, B. Schlkopf, and J. Platt, editors, Advances in Neural
Information Processing Systems 18. MIT Press, Cambridge, MA, 2006.

13. J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,
46(5):604–632, 1999.

14. B. Mehta, C. Niederee, and A. Stewart. Towards cross-system personalization. In
UAHCI, 2005.

15. B. Mehta, C. Niederée, A. Stewart, M. Degemmis, P. Lops, and G. Semeraro.
Ontologically-enriched unified user modeling for cross-system personalization. In
User Modeling, pages 119–123, 2005.

16. J. W. Sammon. A non-linear mapping for data structure analysis. In IEEE Trans-
actions on Computing, volume C18 (5), pages 401–409, May 1969.

17. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality
reduction in recommender systems–a case study. In ACM WebKDD 2000 Web
Mining for E-Commerce Workshop, 2000.

18. L. K. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised learning
of low dimensional manifold. Journal of Machine Learning Research, 4:119–155,
2003.

19. B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

20. U. Shardanand and P. Maes. Social information filtering: algorithms for automating
word of mouth. In CHI ’95: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 210–217, New York, NY, USA, 1995. ACM
Press/Addison-Wesley Publishing Co.

21. J. Weston, O. Chapelle, A. Elisseeff, B. Schölkopf, and V. Vapnik. Kernel depen-
dency estimation. In NIPS, pages 873–880, 2002.



A Partitioning Method for Mixed Feature-Type
Symbolic Data Using a Squared Euclidean

Distance

Renata M.C.R. de Souza, Francisco de A.T. de Carvalho, and Daniel F. Pizzato

Centro de Informatica - CIn / UFPE, Av. Prof. Luiz Freire, s/n - Cidade
Universitaria, CEP: 50740-540 - Recife - PE - Brasil

{rmcrs,fatc,dfp}@cin.ufpe.br

Abstract. A partitioning cluster method for mixed feature-type sym-
bolic data is presented. This method needs a previous pre-processing
step to transform Boolean symbolic data into modal symbolic data. The
presented dynamic clustering algorithm has then as input a set of vectors
of modal symbolic data (weight distributions) and furnishes a partition
and a prototype to each class by optimizing an adequacy criterion based
on a suitable squared Euclidean distance. To show the usefulness of this
method, examples with synthetic symbolic data sets and applications
with real symbolic data sets are considered.

1 Introduction

Cluster analysis has been widely used in numerous fields including pattern recog-
nition, data mining and image processing. Their aim is to summarize data sets
in homogeneous clusters that may be organized according to different structures
([12], [13], [16]): hierarchical methods yield complete hierarchy, i.e., a nested
sequence of partitions of the input data, whereas partitioning methods seek to
obtain a single partition of the input data into a fixed number of clusters by,
usually, optimizing a criterion function.

The partitioning dynamic cluster algorithms [10] are iterative two steps relo-
cation algorithms involving at each iteration the construction of the clusters and
the identification of a suitable representative or prototype (means, factorial axes,
probability laws, groups of elements, etc.) of each cluster by locally optimizing
an adequacy criterion between the clusters and their corresponding prototypes.
This optimization process begins from a set of prototypes or an initial partition
and interactively applies an allocation step (the prototypes are fixed) in order
to assign the patterns to the clusters according to their proximity to the proto-
types. This is followed by a representation step (the partition is fixed) where the
prototypes are updated according to the assignment of the patterns in the allo-
cation step, until achieving the convergence of the algorithm, when the adequacy
criterion reaches a stationary value.

In classical data analysis, the items to be grouped are usually represented as a
vector of quantitative or qualitative measurements where each column represents

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 260–273, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Partitioning Method for Mixed Feature-Type Symbolic Data 261

a variable. In particular, each individual takes just one single value for each
variable. In practice, however, this model is too restrictive to represent complex
data since to take into account variability and/or uncertainty inherent to the
data, variables must assume sets of categories or intervals, possibly even with
frequencies or weights.

The aim of Symbolic Data Analysis (SDA) is to extend classical data analysis
techniques (clustering, factorial techniques, decision trees, etc.) to these kinds
of data (sets of categories, intervals, or weight (probability) distributions) called
symbolic data [2]. SDA is a domain in the area of knowledge discovery and data
management related to multivariate analysis, pattern recognition and artificial
intelligence.

SDA has provided partitioning methods in which different types of symbolic
data are considered. Ralambondrany [17] extended the classical k-means cluster-
ing method in order to deal with data characterized by numerical and categorical
variables. El-Sonbaty and Ismail [11] have presented a fuzzy k-means algorithm
to cluster data on the basis of different types of symbolic variables. Bock [1]
has proposed several clustering algorithms for symbolic data described by in-
terval variables, based on a clustering criterion and thereby generalized similar
approaches in classical data analysis. Chavent and Lechevallier [4] proposed a
dynamic clustering algorithm for interval data where the class representatives
are defined based on a modified Hausdorff distance. Souza and De Carvalho
[18] have proposed partitioning clustering methods for interval data based on
city-block distances. More recently, De Carvalho et al [8] proposed an algorithm
using an adequacy criterion based on adaptive Hausdorff distances.

In this paper, we introduce a partitioning method for mixed feature-type
symbolic data using the dynamic clustering methodology. To be able to man-
age ordered and non-ordered mixed feature-type symbolic data, this method
assumes a previous pre-processing step the aim of which is to obtain a suitable
homogenization of mixed symbolic data into modal symbolic data. In order to
show the usefulness of this method, synthetic interval data sets ranging from
different degree of difficulty to be clustered and applications with real data sets
were considered. The evaluation of the clustering results is based on an external
validity index.

This paper is organized as follow. Section 2 presents the data homogenization
pre-processing step. Section 3 presents the dynamic clustering algorithm for
mixed feature-type symbolic data. In Section 4 it is presented the evaluation of
this method. The accuracy of the results furnished by this clustering method
is assessed by the corrected Rand index [15] considering synthetic interval data
sets in the framework of a Monte Carlo experience and applications with real
data sets. Finally, Section 5 gives the conclusions and final remarks.

2 Data Homogenization Pre-processing Step

Usual data allow exactly one value for each variable. However, this data is not
able to describe complex information, which must take into account variability



262 R.M.C.R. de Souza, F. de A.T. de Carvalho, and D.F. Pizzato

and/or uncertainty. It is why symbolic variables have been introduced: multi-
valued variables, interval variables and modal variables [2].

Let Ω = {1, . . . , n} be a set of n items indexed by i described by p symbolic
variables X1, . . . , Xp. A symbolic variable Xj is categorical multi-valued if, given
an item i, Xj(i) = xj

i ⊆ Aj where Aj = {tj1, . . . , t
j
Hj

} is a set of categories. A

symbolic variable Xj is an interval variable when, given un item i, Xj(i) = xj
i =

[aj
i , b

j
i ] ⊆ Aj where Aj = [a, b] is an interval. Finally, a symbolic variable Xj is

a modal variable if, given un item i, Xj(i) = (S(i),q(i)) where q(i) is a vector
of weights defined in S(i) such that a weight w(m) corresponds to each category
m ∈ S(i). S(i) is the support of the measure q(i).

Each object i (i = 1, . . . , n) is represented as a vector of mixed feature-type
symbolic data xi = (x1

i , . . . , x
p
i ). This means that xj

i = Xj(i) can be a (ordered
or non ordered) set of categories, an interval or a weight distribution according
to the type of the corresponding symbolic variable.

Concerning the methods described in Chavent et al. [5], there is one of them
which is a dynamic clustering algorithm based on a suitable squared Euclidean
distance to cluster interval data. This method assumes a pre-processing step
which transform interval data into modal data. However, the approach consid-
ered to accomplish this data transformation is not able to take into consideration
the ordered nature inherent to interval data.

In this paper we consider a new data transformation pre-processing approach,
the aim of which is to obtain a suitable homogenization of mixed symbolic data
into modal symbolic data, which is able to manage ordered and non-ordered
mixed feature-type symbolic data in the framework of a dynamic clustering
algorithm. In this way, the presented dynamic cluster algorithm has as input
data only vectors of weight distributions.

The data homogenization is accomplished according to type of symbolic
variable: categorical non-ordered or ordered multi-valued variables, interval
variables.

2.1 Categorical Multi-valued Variables

If Xj is a categorical non-ordered multi-valued variable, its transformation into a
modal symbolic variable X̃j is accomplished in the following way: X̃j(i) = x̃j

i =
(Aj ,qj(i)), where qj(i) = (qj

1(i), . . . , q
j
Hj

(i)) is a vector of weights qj
h(i) (h =

1, . . . , Hj), a weight being defined as [6]:

qj
h(i) =

c({tjh} ∩ xj
i )

c(xj
i )

(1)

c(A) being the cardinality of a finite set A.
If Xj is a categorical ordered multi-valued variable, its transformation into a

modal symbolic variable X̃j is accomplished in the following way: X̃j(i) = x̃j
i =

(Aj ,Qj(i)), where Qj(i) = (Qj
1(i), . . . , Q

j
Hj

(i)) is a vector of cumulative weights

Qj
h(i) (h = 1, . . . , Hj), a cumulative weight being defined as:



A Partitioning Method for Mixed Feature-Type Symbolic Data 263

Qj
h(i) =

h∑

r=1

qj
r(i), where qj

r(i) =
c({tjr} ∩ xj

i )
c(xj

i )
(2)

It can be shown [6] that 0 ≤ qj
h(i) ≤ 1 (h = 1, . . . , Hj) and

∑Hj

h=1 qj
h(i) = 1.

Moreover, qj
1(i) = Qj

1(i) and qj
h(i) = Qj

h(i) − Qj
h−1(i) (h = 2, . . . , Hj).

2.2 Interval Variables

In this case, the variable Xj is transformed into a modal symbolic variable
X̃j in the following way ([5], [6], [7]): X̃j(i) = x̃j

i = (Ãj ,Qj(i)), where Ãj =
{Ij

1 , . . . , Ij
Hj

} is a set of elementary intervals, Qj(i) = (Qj
1(i), . . . , Q

j
Hj

(i)) and

Qj
h(i) (h = 1, . . . , Hj) is defined as:

Qj
h(i) =

h∑

r=1

qj
r(i), where qj

r(i) =
l(Ij

r ∩ xj
i )

l(xj
i )

(3)

l(I) being the length of a closed interval I.
The bounds of these elementary intervals Ij

h (h = 1, . . . , Hj) are obtained
from the ordered bounds of the n+1 intervals {xj

1, . . . , x
j
n, [a, b]}. They have the

following properties:

1.
⋃Hj

h=1 Ij
h = [a, b]

2. Ij
h

⋂
Ij
h′ = ∅ if h �= h′

3. ∀h ∃i ∈ Ω such that Ij
h

⋂
xj

i �= ∅
4. ∀i ∃Sj

i ⊂ {1, . . . , Hj} :
⋃

h∈Sj
i
Ij
h = xj

i

It can be shown [6] that also in this case 0 ≤ qj
h(i) ≤ 1 (h = 1, . . . , Hj) and

∑Hj

h=1 qj
h(i) = 1. Moreover, again qj

1(i) = Qj
1(i) and qj

h(i) = Qj
h(i)−Qj

h−1(i) (h =
2, . . . , Hj).

2.3 Example

In order to illustrate this data homogenization pre-processing step, we considere
here a symbolic data table which shows four countries (items), each country be-
ing described by a symbolic interval variable X1 and a symbolic categorical non-
ordered multi-valued variable X2. In Table 1, symbolic variable X1 is the mini-
mum and maximum of the gross national product (in millions) whereas symbolic
variable X2 indicates the main industries from the list A2 = {A =agriculture,
C =chemistry, Co=commerce, E=engineering, En =energy, I=informatic}.

Concerning the symbolic variable X1, the set of elementary intervals Ã1 =
{I1

1 , . . . , I1
H1

} are obtained as follows: at first, we consider the set of values
formed by every bound (lower and upper) of all the intervals associated to
the items. Then, such set of bounds is sorted in a growing way. Therefore,



264 R.M.C.R. de Souza, F. de A.T. de Carvalho, and D.F. Pizzato

Table 1. Countries described by symbolic variables

Country X1 X2

1 [10,30] {A, Co}
2 [25,35] {C, Co, E}
3 [90,130] {A, C, E}
4 [125,140] {A, C, Co, E}

the set of elementary intervals is Ã1 = {I1
1 , I1

2 , I1
3 , I1

4 , I1
5 , I1

6 , I1
7}, where I1

1 =
[10, 25[, I1

2 = [25, 30[, I1
3 = [30, 35[, I1

4 = [35, 90[, I1
5 = [90, 125[, I1

6 = [125, 130[
and I1

7 = [130, 140].
Concerning symbolic variable X2, Ã2 = A2 = {A =agriculture, C =chemistry,

Co=commerce, E=engineering, En =energy, I=informatic}.
In this way, each item (country) i (i = 1, . . . , 4) is represented as a vector of

modal symbolic data x̃i = (x̃1
i , x̃

2
i ), where x̃1

i = (A1,Q1(i)) and x̃2
i = (A2,q2(i)),

q2(i) and Q1(i) being obtained, respectively, as described in sections 2.1 and 2.2.
Finally, Table 2 shows the new symbolic data table obtained after the appli-

cation of the data homogenization pre-processing step to the original symbolic
data table:

Table 2. Countries described by two modal symbolic variables

Country X̃1 X̃2

1 (A1,Q1(1) = (0.75, 1, 1, 1, 1, 1, 1)) (A2,Q2(1) = (0.5, 0.5, 1, 1, 1, 1))
2 (A1,Q1(2) = (0, 0.5, 1, 1, 1, 1, 1)) (A2,Q2(2) = (0, 0.33, 0.67, 1, 1, 1))
3 (A1,Q1(3) = (0, 0, 0, 0, 0.88, 1, 1)) (A2,Q2(3) = (0.33, 0.67, 0.67, 1, 1, 1))
4 (A1,Q1(4) = (0, 0, 0, 0, 0, 0.33, 1)) (A2,Q2(4) = (0.25, 0.50, 0.75, 1, 1, 1))

3 A Dynamic Clustering Algorithm for Mixed
Feature-Type Symbolic Data

This section presents a dynamic clustering method which allows to cluster mixed
feature-type symbolic data. The aim of this method is to determine a partition
P = {C1, . . . , CK} of Ω into K classes such that the resulting partition P is
(locally) optimum with respect to a given clustering criteria.

Let Ω = {1, . . . , n} be a set of n items. After the pre-processing step, each
object i (i = 1, . . . , n) is represented by a vector of modal symbolic data x̃i =
(x̃1

i , . . . , x̃
p
i ), x̃j

i = (Dj ,uj(i)), where Dj is a (ordered or non-ordered) set of
categories if X̃j is a modal variable, Dj is a non-ordered set of categories if X̃j is
a categorical non-ordered multi-valued variable, Dj is an ordered set of categories
if X̃j is a categorical ordered multi-valued variable and Dj is a set of elementary
intervals if X̃j is an interval variable. Moreover, uj(i) = (uj

1(i), . . . , u
j
Hj

(i)) is a
vector of weights if Dj is a non-ordered set of categories and uj(i) is a vector of



A Partitioning Method for Mixed Feature-Type Symbolic Data 265

cumulative weights if Dj is an ordered set of categories or a set of elementary
intervals.

As in the standard dynamical clustering algorithm [10], this clustering method
for symbolic data aims to provide a partition of Ω in a fixed number K of clusters
P = {C1, . . . , CK} and a corresponding set of prototypes L = {L1, . . . , LK} by
locally minimizing a criterion W that evaluates the fit between the clusters and
their representatives.

Here, each prototype Lk of Ck (k = 1, . . . , K) is also represented as a vector
of modal symbolic data gk = (g1

k, . . . , gp
k), gj

k = (Dj ,vj(k)) (j = 1, . . . , p),
where vj(k) = (vj

1(k), . . . , vj
Hj

(k)) is a vector of weights if Dj is a non-ordered
set of categories and vj(k) is a vector of cumulative weights if Dj is an ordered
set of categories or a set of elementary intervals. Notice that for each variable
the modal symbolic data presents the same support Dj for all individuals and
prototypes. The criterion W is then defined as:

W (P, L) =
K∑

k=1

∑

i∈Ck

φ(x̃i,gk) (4)

where

φ(x̃i,gk) =
p∑

j=1

d2(uj(i),vj(k)) (5)

The comparison between the two vectors of (non-cumulative or cumulative)
weights uj(i) and vj(k) for the variable j is accomplished by a suitable squared
Euclidean distance:

d2(uj(i),vj(k)) =
Hj∑

h=1

(uj
h(i) − vj

h(k))2 (6)

The cumulative weights obtained in the pre-processing step will allow the
dynamic clustering algorithm to take into account the order inherent to the
categorical multi-valued or interval symbolic data.

As in the standard dynamical clustering algorithm [10], this algorithm starts
from an initial partition and alternates a representation step and an allocation
step until convergence when the criterion W reaches a stationary value repre-
senting a local minimum.

3.1 Representation Step: Definition of the Best Prototypes

In the representation step, each cluster Ck is fixed and the algorithm looks for
the prototype gk = (g1

k, . . . , gp
k) of class Ck (k = 1, . . . , K) which minimizes the

clustering criterion W in equation (4).
As the criterion W is additive, the optimization problem becomes to find for

k = 1, . . . , K, j = 1, . . . , p and h = 1, . . . , Hj , the weight vj
h(k) minimizing



266 R.M.C.R. de Souza, F. de A.T. de Carvalho, and D.F. Pizzato

W (Ck, Lk) =
∑

i∈Ck

(uj
h(i) − vj

h(k))2 (7)

The solution for vj
h(k) is :

v̂j
h(k) =

1
nk

∑

i∈Ck

uj
h(i) (8)

where nk is the cardinality of the class Ck. The prototype of class Ck is then
ĝk = (ĝ1

k, . . . , ĝp
k), where ĝj

k = (Dj , v̂
j
h(k)).

3.2 Allocation Step: Definition of the Best Partition

In this step, the vector of prototypes L = (L1, . . . , LK) is fixed. The clusters
Ck (k = 1, . . . , K), which minimize the criterion W , are updated according to
the following allocation rule:

Ck = {i ∈ Ω : φ(x̃i,gk) ≤ φ(x̃i,gm), ∀m �= k (m = 1, . . . , K)} (9)

3.3 The Algorithm

The algorithm has the following steps:
Schema of dynamic clustering algorithm for mixed feature-type

symbolic data

1. Initialization.
Randomly choose a partition {C1 . . . , CK} of Ω or randomly choose K dis-
tinct objects L1, . . . , LK belonging to Ω and assign each objects i to the
closest prototype Lk∗, where k∗ = arg mink=1,...,K φ(x̃i,gk).

2. Representation step: definition of the best prototypes.
(the partition P is fixed)
For k=1, . . . , K, compute the vector of modal symbolic data gk =(g1

k, . . . , gp
k),

gj
k = (Dj ,vj(k)) (j = 1, . . . , p), representing the prototype Lk, where vj(k) =

(vj
1(k), . . . , vj

Hj
(k)) and vj

h(k) (h = 1, . . . , Hj) is given by equation (8).
3. Allocation step: definition of the best partition.

(the set of prototypes L is fixed)
test ← 0
for i = 1 to n do

define the cluster Ck∗ such that
k∗ = arg mink=1,...,K φ(x̃i,gk)

if i ∈ Ck and k∗ �= k
test ← 1
Ck∗ ← Ck∗ ∪ {i}
Ck ← Ck \ {i}

4. Stopping criterion.
If test = 0 then STOP, else go to (2).



A Partitioning Method for Mixed Feature-Type Symbolic Data 267

4 Experimental Evaluation

To show the usefulness of this method, experiments with synthetic symbolic
interval data sets of different degrees of clustering difficulty (clusters of different
shapes and sizes, linearly non-separable clusters, etc) and applications with real
data sets are considered. For synthetic symbolic interval data sets, the evaluation
was performed in the framework of a Monte Carlo experience: 100 replications
are considered for each interval data set.

To evaluate the clustering results furnished by this dynamic clustering method
an external index, the adjusted Rand index (CR), will be considered [15]. The
CR index measures the similarity between an a priori partition and a partition
furnished by the clustering algorithm.

The definition of the index CR is as follows.
Let U = {u1, . . . , ui, . . . , uR} and V = {v1, . . . , vj , . . . , vC} be two partitions

of the same data set having respectively R and C clusters. The corrected Rand
index is:

CR =

∑R
i=1

∑C
j=1

(
nij

2

) − (
n
2

)−1 ∑R
i=1

(
ni.

2

) ∑C
j=1

(
n.j

2

)

1
2 [

∑R
i=1

(
ni.

2

)
+

∑C
j=1

(
n.j

2

)
] − (

n
2

)−1 ∑R
i=1

(
ni.

2

)∑C
j=1

(
n.j

2

) (10)

where
(

n
2

)
= n(n−1)

2 and nij represents the number of objects that are in clusters
ui and vi; ni. indicates the number of objects in cluster ui; n.j indicates the num-
ber of objects in cluster vj ; and n is the total number of objects in the data set.
CR takes its values from the interval [-1,1], where the value 1 indicates perfect
agreement between partitions, whereas values near 0 (or negatives) correspond
to cluster agreement found by chance.

Our aim is to compare the approach presented in [5], which transforms inter-
val symbolic data on modal symbolic data represented by non-cumulative weight
distributions, with the approach presented in this paper, which transforms in-
terval symbolic data on modal symbolic data represented by cumulative weight
distributions.

4.1 The Monte Carlo Experiences

In each experiment, we considered two standard quantitative data sets in �2.
Each data set has 300 points scattered among three classes of unequal sizes 150,
100 and 50, respectively, and elliptical shapes. Each class in these quantitative
data sets were drawn according to a bi-variate normal distribution with vector
μ and covariance matrix Σ represented by:

μ =
[

μ1
μ2

]

and Σ =
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

We will consider two different configurations for the standard quantitative
data sets: 1) data drawn according to a bi-variate normal distribution with well
separated classes and 2) data drawn according to a bi-variate normal distribution
with overlapping classes.



268 R.M.C.R. de Souza, F. de A.T. de Carvalho, and D.F. Pizzato

Fig. 1. Symbolic interval (right side) and seed (left side) data sets 1

Each data point (z1, z2) of each one of these synthetic quantitative data sets is
a seed of a vector of intervals (rectangle): ([z1 − γ1/2, z1 + γ1/2], [z2 − γ2/2, z2 +
γ2/2]). These parameters γ1, γ2 are randomly selected from the same prede-
fined interval. The intervals considered in this paper are: [1, 10], [1, 20], [1, 30]
and [1, 40].

Symbolic interval data set 1 (Figure 1, right side), showing classes well sepa-
rated, was constructed from the standard data set 1 (Figure 1, left side) drawn
according to the following parameters:

a) Class 1: μ1 = 5, μ2 = 250, σ2
1 = 25, σ2

2 = 90 and ρ12 = 0.7;
b) Class 2: μ1 = 45, μ2 = 320, σ2

1 = 25, σ2
2 = 90 and ρ12 = 0.8;

c) Class 3: μ1 = 35, μ2 = 150, σ2
1 = 25, σ2

2 = 25 and ρ12 = −0.7;

Symbolic interval data set 2 (Figure 2, right side), showing overlapping classes,
was constructed from standard data set 2 (Figure 2, left side) drawn according
to the following parameters:

a) Class 1: μ1 = 45, μ2 = 22, σ2
1 = 25, σ2

2 = 90 and ρ12 = 0.7;
b) Class 2: μ1 = 60, μ2 = 30, σ2

1 = 25, σ2
2 = 90 and ρ12 = 0.8;

c) Class 3: μ1 = 52, μ2 = 38, σ2
1 = 25, σ2

2 = 25 and ρ12 = −0.7;

Fig. 2. Symbolic interval (right side) and seed (left side) data sets 2



A Partitioning Method for Mixed Feature-Type Symbolic Data 269

In each replication of a Monte Carlo experience a clustering method is run (until
the convergence to a stationary value of the adequacy criterion) 50 times and the
best result, according to the corresponding criterion, is selected. The average of
the corrected Rand (CR) index [15] among these 100 replications is calculated.

Tables 1 and 2 show the values of the average and standard deviation of the CR
index according to different methods and interval data sets 1 and 2, respectively.

Table 3. Comparison between clustering methods for interval data set 1

Range of values Cumulative Weight Data Non-Cumulative Weight Data
Homogenization Method Homogenization Method

of γi i = 1, 2 Average Standard Average Standard
Deviation Deviation

γi ∈ [1, 10] 0.9940 0.0000 0.7264 0.0091
γi ∈ [1, 20] 0.9925 0.0000 0.8167 0.0049
γi ∈ [1, 30] 0.9866 0.0001 0.8355 0.0086
γi ∈ [1, 40] 0.9799 0.0002 0.8520 0.0045

In conclusion, for these data configurations (showing well separated and over-
lapping classes), the clustering cumulative weight approach, as it takes into con-
sideration the ordered nature inherent to symbolic interval data, outperforms
the clustering non-cumulative weight one.

Table 4. Comparison between clustering methods for interval data set 2

Range of values Cumulative Weight Data Non-Cumulative Weight Data
Homogenization Method Non-Cumulative Weight Method

of γi i = 1, 2 Average Standard Average Standard
Deviation Deviation

γi ∈ [1, 10] 0.3515 0.0016 0.1680 0.0014
γi ∈ [1, 20] 0.3264 0.0035 0.1329 0.0006
γi ∈ [1, 30] 0.2548 0.0117 0.0956 0.0006
γi ∈ [1, 40] 0.1148 0.0100 0.0851 0.0007

4.2 Applications with Real Data Sets

We apply the dynamic clustering algorithm using the non-cumulative and cu-
mulative weight data homogenization approaches to two real symbolic interval
data sets.

Car data set. The car data set consists of a set of 33 car models described
by 8 interval, 3 multi-valued variables. In this application, the 8 interval
variables - Price, Engine Capacity, Top Speed, Acceleration, Step, Length, Width
and Height, 2 categorical non-ordered multi-valued variables - Alimentation and
Traction - have been considered for clustering purposes and 1 nominal variable



270 R.M.C.R. de Souza, F. de A.T. de Carvalho, and D.F. Pizzato

Table 5. Car data set with 8 interval, two non-ordered multi-valued and one nominal
variables

Model Price Engine Alimentation Traction . . . Height Category
Capacity

Alfa 145 [27806, 33596] [1370, 1910] (1,2) (1) . . . [143, 143] Utilitarian
Alfa 156 [41593, 62291] [1598, 2492] (1) (1) . . . [142, 142] Berlina

Alfa 166 L [64499, 88760] [1970, 2959] (1) (1) . . . [142, 142] Luxury
Aston Martin S [260500, 460000] [5935, 5935] (1) (2) . . . [124, 132] Sport

Audi A3 U [40230, 68838] [1595, 1781] (1) (1,3) . . . [142, 142] Utilitarian
Audi A6 B [68216, 140265] [1781, 4172] (1) (1,3) . . . [145, 145] Berlina
Audi A8 L [123849, 171417] [2771, 4172] (1) (3) . . . [144, 144] Luxury

Bmw serie 3 B [45407, 76392] [1796, 2979] (1) (2,3) . . . [142, 142] Berlina
. . . . . . . . . . . . . . . . . . . . . . . .

Rover 25 U [21492, 33042] [1119, 1994] (1,2) (1) . . . [142, 142] Utilitarian
Rover 75 B [50490, 65399] [1796, 2497] (1) (1) . . . [143, 143] Berlina

Skoda Fabia U [19519, 32686] [1397, 1896] (1,2) (1) . . . [145, 145] Utilitarian
Skoda Octavia B [27419, 48679] [1585, 1896] (1,2) (1) . . . [143, 143] Berlina

Passat L [39676, 63455] [1595, 2496] (1,2) (1,3) . . . [146, 146] Luxury

Car Category has been used as a a priori classification. Table 5 shows part of
this car data set.

Table 6 shows for each cluster their individuals and respective a priori class
labels given by the clustering algorithms using non-cumulative and cumulative
weight data homogenization methods. Concerning the result in this table, the CR
indices taken with respect to Car category were 0.558 and 0.2035, respectively,
for the cumulative and non-cumulative weight data homogenization methods.
This indicates that, for this data set, the cumulative version outperforms the
non-cumulative.

Table 6. Clustering Results for the Car data set

Method Cluster 1 Cluster 2 Cluster 3 Cluster 4
Cumulative weights 12/U 13/U 17/U 6/B 7/L 9/L 4/S 11/S 15/S 1/U 2/B 3/L 5/U

24/U 25/U 28/U 10/L 22/L 23/L 16/S 19/S 20/S 8/B 14/B 18/L
29/U 31/U 27/S 21/B 26/B 30/B

32/B 33/L
Non-Cumulative weights 4/S 9/L 11/S 6/B 12/U 13/U 1/U 14/B 26/B 2/B 3/L 5/U 7/L

15/S 19/U 20/S 17/U 18/L 24/U 30/B 32/B 8/B 16/B 27/S
21/B 22/L 23/L 25/U 29/U 31/U 30/B 32/B 28/U 33/L

Ecotoxicology data set. Several studies realized in French Guyana indicated
abnormal levels of mercury contamination in some Amerindian populations. This
contamination was connected to their high consumption of contaminated fresh-
water fish [3]. In order to get a better knowledge of this phenomenon, a data set
has been collected by researchers from the LEESA (Laboratoire d’Ecophysiologie
et d’Ecotoxicologie des Systèmes Aquatiques) laboratory.

This data set concerns 12 species of freshwater fish, each species being de-
scribed by 13 interval variables. These species are grouped into four a priori
clusters of unequal sizes according to diet: two clusters (Carnivorous and De-
tritivorous) of size 4 and two clusters of size 2 (Omnivorous and Herbivorous).
Table 7 shows the freshwater fish data set.



A Partitioning Method for Mixed Feature-Type Symbolic Data 271

Table 7. Freshwater Fish Data Set described by 13 interval symbolic variables

Individuals/labels Interval Variables
Length Weight ... Intestin/ Stomach/

Muscle Muscle
Ageneiosusbrevifili: 1 [1.8 : 7.1] [2.1 : 7.2] ... [7.8 : 17.9] [4.3 : 11.8]

Cynodongibbus: 1 [19 : 32] [77 : 359] . . . [0 : 0.5] [0.2 : 1.24]
Hopliasäımara: 1 [25.5 : 63] [340 : 5500] . . . [0.11 : 0.49] [0.09 : 0.4]

Potamotrygonhy: 1 [20.5 : 45] [400 : 6250] . . . [0 : 1.25] [0 : 0.5]
Leporinusfasciatus: 3 [18.8 : 25] [125 : 273] . . . [0 : 0] [0.12 : 0.17]
Leporinusfrederici: 3 [23 : 24.5] [290 : 350] . . . [0.18 : 0.24] [0.13 : 0.58]
Dorasmicropoeus: 2 [19.2 : 31] [128 : 505] . . . [0 : 1.48] [0 : 0.79]

Platydorascostatus: 2 13.7 : 25] [60 : 413] . . . [0.3 : 1.45] [0 : 0.61]
Pseudoancistrus: 2 [13 : 20.5] [55 : 210] . . . [0 : 2.31] [0.49 : 1.36]

Semaprochilodusvari: 2 [22 : 28] [330 : 700] . . . [0.4 : 1.68] [0 : 1.25]
Acnodonoligacanthus: 4 [10 : 16.2] [34.9 : 154.7] . . . [0 : 2.16] [0.23 : 5.97]

Myleusrubripinis: 4 [2.7 : 8.4] [2.7 : 8.7] ... [8.2 : 20] [5.1 : 13.3]

Table 8. Clustering Results for the Freshwater fish data set

Method Cluster 1 Cluster 2 Cluster 3 Cluster 4
Non-cumulative weights 4/1 7/2 8/2 10/2 9/2 11/4 12/4 1/1 2/1 3/1 5/3 6/3

Cumulative weights 4/1 9/2 6/3 11/4 1/1 2/1 3/1 5/3 12/4
7/2 8/2 10/2

Table 8 shows for each cluster their individuals and respective a priori class
labels given by the clustering algorithms using cumulative and non-cumulative
weight data homogenization methods. The CR indices obtained from the results
displayed in Table 8 are: 0.488 and 0.179 for the clustering cumulative and non-
cumulative weight approaches, respectively.

In conclusion, for these real data sets, the performance of the clustering cumu-
lative weight approach measured by the CR index is superior to the clustering
non-cumulative weight one.

5 Concluding Remarks

A partitioning clustering method for mixed feature-type symbolic data using a
dynamic cluster algorithm based on the squared Euclidean distance was pre-
sented in this paper. To be able to manage ordered and non-ordered mixed
feature-type symbolic data, it was introduced a preceding pre-processing step
the aim of which is to obtain a suitable homogenization of mixed symbolic data
into modal symbolic data represented by weight distributions. These weights
are non-cumulative, if the symbolic data are non-ordered sets of categories and
cumulative, if the symbolic data are ordered sets of categories or a set of ele-
mentary intervals. The algorithm locally optimizes an adequacy criterion that
measures the fitting between the classes and their representatives (prototypes).



272 R.M.C.R. de Souza, F. de A.T. de Carvalho, and D.F. Pizzato

To compare classes and prototypes, a suitable squared Euclidean distance for
modal data is introduced.

The dynamic clustering algorithm starts from an initial partition and alter-
nates a representation step and an allocation step until convergence when the
adequacy criterion reaches a stationary value representing a local minimum. In
the representation step, the solution for the best prototype of each class, pre-
sented in this paper, is a vector of (cumulative or non-cumulative) weight distri-
butions whose weights, for a given variable, are the average of the (cumulative
or non cumulative) weights computed for the objects belonging to this class.

An experimental evaluation in order to compare the results of the dynamic
clustering algorithm using non-cumulative and cumulative weight vectors to rep-
resent interval data has been carried out. The accuracy of the results furnished
by these clustering methods were assessed by the corrected Rand index consid-
ering synthetic interval data sets in the framework of a Monte Carlo experience
and applications with real data sets. These results clearly show that the accuracy
of the clustering method using cumulative weight vectors to represent interval
data is superior to that which uses non-cumulative weight vectors.

Acknowledgments. The authors would like to thank CNPq (Brazilian Agency)
for its financial support.

References

1. Bock, H. H.: Clustering algorithms and kohonen maps for symbolic data. Proc.
ICNCB, Osaka, 203-215. J. Jpn. Soc. Comp. Statistic, 15, (2002) 1–13

2. Bock, H. H. and Diday, E.: Analysis of Symbolic Data, Exploratory methods for
extracting statistical information from complex data. Springer, Heidelberg, (2000)

3. Bobou, A. and Ribeyre, F.: Mercury in the food web: accumulation and transfer
mechanisms, in Sigrel A. and Sigrel H. Eds., Metal Ions in Biological Systems. M.
Dekker, New York, (1998) 289-319.

4. Chavent, M. and Lechevallier, Y.: Dynamical Clustering Algorithm of Interval
Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance. In:
A. Sokolowski and H.-H. Bock (Eds.): Classification, Clustering and Data Analy-
sis. Springer, Heidelberg, (2002) 53–59

5. Chavent, M., De Carvalho, F. A. T., Lechevallier, Y. and Verde, R.: Trois nouvelles
mthodes de classification automatique de donnes symboliques de type intervalle.
Revue de Statistique Applique, v. LI, n. 4, p. (2003) 5–29

6. De Carvalho, F. A. T.: Histograms In Symbolic Data Analysis. Annals of Opera-
tions Research, v. 55, p. (1995) 229–322

7. De Carvalho, F. A. T.; Verde, R.; Lechevallier, Y.: A dynamical clustering of sym-
bolic objcts based on a context dependent proximity measure. In : Proceedings of
the IX International Symposium on Applied Stochastic Models and Data analysis.
Lisboa, Universidade de Lisboa, p. (1999) 237–242

8. De Carvalho, F.A.T, Souza, R.M.C.R., Chavent, M. and Lechevallier, Y.: Adaptive
Hausdorff distances and dynamic clustering of symbolic data. Pattern Recognition
Letters, 27 (3) (2006) 167–179

9. Diday, E. and Brito, P.: Symbolic Cluster Analysis. In: O. Opitz (Ed.): Conceptual
and Numerical Analysis of Data. Springer, Heidelberg, (1989) 45-84



A Partitioning Method for Mixed Feature-Type Symbolic Data 273

10. Diday, E. and Simon, J. J.: Clustering Analysis. In: Fu, K. S. (Eds): Digital Pattern
Recognition. Springer-Verlag, Heidelberg, (1976) 47-94

11. El-Sonbaty, Y. and Ismail, M. A.: Fuzzy Clustering for Symbolic Data. IEEE Trans-
actions on Fuzzy Systems 6, (1998) 195-204

12. Everitt, B.: Cluster Analysis. Halsted, New York (2001)
13. Gordon, A. D.: Classification. Chapman and Hall/CRC, Boca Raton, Florida

(1999)
14. Gordon, A. D.: An Iteractive Relocation Algorithm for Classifying Symbolic Data.

In: W. Gaul et al (Eds.): Data Analysis: Scientific Modeling and Practical Appli-
cation. Springer-Verlag, Berlin, (2000) 17-23

15. Hubert, L. and Arabie. P.: Comparing Partitions. Journal of Classification, 2
(1985) 193-218

16. Jain, A.K., Murty, M.N. and Flynn, P.J.: Data Clustering: A Review. ACM Com-
puting Surveys, 31, (3) (1999) 264-323

17. Ralambondrainy, H.: A conceptual version of the k -means algorithm. Pattern
Recognition Letters 16, (1995) 1147-1157

18. Souza, R. M. C. R. and De Carvalho, F. A. T.: Clustering of interval data based
on city-block distances. Pattern Recognition Letters, 25 (3), (2004) 353-365



On Generalizing Orientation Information in OPRAm

Frank Dylla and Jan Oliver Wallgrün

SFB/TR 8 Spatial Cognition
Universität Bremen

Bibliothekstr. 1, 28359 Bremen, Germany
{dylla,wallgruen}@sfbtr8.uni-bremen.de

Abstract. Research on qualitative spatial reasoning has produced a variety of
calculi for reasoning about orientation or direction relations between point ob-
jects or line segments. Altough it is obvious that some calculi are more general
than others, the exact relationships between the calculi have not been investigated
thoroughly. We show that many well-known orientation calculi can be expressed
in the more general OPRAm calculus which allows to translate information
from one calculus into another. In addition, we demonstrate that the mapping can
be exploited to automate typically complex tasks like determining or verifying
composition tables.

1 Introduction

Qualitative representation of space abstracts from the physical world and qualitative
spatial reasoning (QSR) enables computers to make predictions about spatial relations,
even when precise quantitative information is not available [2]. The two main research
directions in QSR are topological reasoning about regions [16,5,18] and positional
reasoning about configurations of point objects [8,6,11,10,14,13,17] or line segments
[15,19,4]. Calculi dealing with such information have been well investigated over the
recent years and provide general and sound reasoning mechanisms. An overview is
given in [3].

In this text we focus on calculi for reasoning about orientation or direction relations.
A variety of such calculi have been proposed, among them the FlipFlop Calculus [10]
and its LR [20] refinement, the Dipole Relation Algebra [15,19] with its fine grained
variants DRAf and DRAfp [4], the Single Cross Calculus [8] and Double Cross Cal-
culus [8], the Qualitative Trajectory Calculus [22], as well as the Oriented Point Rela-
tion Algebra (OPRAm) with adjustable granularity [13,12]. While some relationships
between these calculi are rather obvious – e.g. the Double Cross Calculus is a refine-
ment of the Single Cross Calculus – their relationships have not been investigated in
general.

On the other hand, we will argue that knowing the exact relationship between two
calculi can be exploited to build tools that reduce the typically complex tasks involved in
designing and implementing a spatial calculus. For instance, for every calculus the com-
position operation has to be specified which is usually done by creating the
composition table by hand. Determining the correct composition of two relations is
a time-consuming, difficult and error-prone process for most of the calculi listed above.

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 274–288, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



On Generalizing Orientation Information in OPRAm 275

However, if the calculus can be expressed in another already completely specified calcu-
lus this can facilitate the automatic generation or verification of the composition table.
Another problematic task which could be supported in a similar way is to determine the
neighborhood structure of a spatial calculus, if we want to employ it for neighborhood-
based reasoning [7,4].

We take a step towards understanding the relationships between the above-mentioned
calculi by showing that and how they all can be mapped to the OPRAm calculus which
turns out to be the most general one among those we consider here. Mapping other
calculi into the algebraically well-defined framework of OPRAm facilitates reasoning
over relations from different calculi. We will apply it to translate information from one
calculus to another which can be valuable for applications that employ multiple calculi.
In addition, we will consider the problem of automatically determining or verifying the
composition operation for a given calculus.

The remainder of the text is structured as follows: In Section 2 we give a brief
overview on the orientation calculi relevant for the rest of the paper. We then pro-
ceed by showing how each of these calculi can be mapped into the OPRAm calculus
(Section 3). In Section 4, we demonstrate the merits of these mappings by employ-
ing it to translate information from the Double Cross Calculus to the FlipFlop calculus
and by considering the task of determining the composition table for the Double Cross
Calculus.

2 Qualitative Orientation Calculi

Qualitative calculi are based on a certain type of entity, time intervals in the case of
Allen’s Interval Calculus [1], or points, line segments or regions in typical spatial cal-
culi. A calculus consists of a finite set of base relations forming a partition of all possible
relations. Generally speaking, a qualitative relation describes a property between an n-
tuple of entities abstracting from numerical values. In the following, we will investigate
a selected set of binary and ternary calculi proposed for reasoning about orientation
information. We will begin by briefly describing each of these calculi.

FlipFlop Calculus (FFC) and the LR Refinement. The FlipFlop calculus proposed
in [10] describes the position of a point C (the referent) in the plane with respect to
two other points A (the origin) and B (the relatum) as illustrated in Figure 1. It can for
instance be used to describe the spatial relation of C to B as seen from A or as the spatial
representation perceived after moving from A to B. For configurations with A �= B the
following base relations are distinguished: C can be to the left or to the right of the
oriented line going through A and B, or C can be placed on the line resulting in one
of the five relations inside, front, back, start (C = A) or end (C = B) (cp. Figure 1).
Relations for the case where A and B coincide were not included in Ligozat’s original
definition [10]. This was done with the LR refinement [20] that introduces the relations
dou (A = B �= C) and tri (A = B = C) as additional relations, resulting in 9 base
relations overall. A LR relation relLR is written as A, B relLR C, e.g. A, B r C as
depicted in Figure 1.



276 F. Dylla and J.O. Wallgrün

l

A B
C

b i
r

f
es

Fig. 1. The reference frame for the LR calculus, an enhanced version of the FlipFlop Calculus

Single Cross Calculus (SCC). The single cross calculus is a ternary calculus that de-
scribes the direction of a point C (the referent) with respect to a point B (the relatum)
as seen from a third point A (the origin). It has originally been proposed in [8]. The
plane is partitioned into regions by the line going through A and B and the perpendicu-
lar at B. This results in eight possible directions for C as illustrated in Figure 2(a). We
denote these base relations by numbers from 0 to 7 instead of using linguistic preposi-
tions, e.g. left instead of 2, as originally done in [8]. Relations 0,2,4,6 are linear ones,
while relations 1,3,5,7 are planar. In addition, three special relations exist for the cases
A �= B = C (bc), A = B �= C (dou), and A = B = C (tri). A single cross rela-
tion relSCC is written as A, B relSCC C, e.g. A, B 4 C or A, B dou C. The relation
depicted in Figure 2(a) is the relation A, B 5 C.

4

0

53

2

1

6

7

B

A

C

(a) Single Cross
Calculus reference
frame.

1
0

26
7

35

4

A

B 2

1
0

B

A

3

4

5 6 7

8

9

10

11

12
C

4

53

2

1

6

7
0

B

A

(b) The two Single Cross reference frames resulting in
the overall Double Cross Calculus reference frame.

Fig. 2. The Single and Double Cross Reference System

Double Cross Calculus (DCC). The double cross calculus [8] can be seen as an ex-
tension of the single cross calculus adding another perpendicular, this time at A (see
Figure 2(b) (right)). It can also be interpreted as the combination of two single cross
relations, the first describing the position of C with respect to B as seen from A and
the second with respect to A as seen from B (cp. Figure 2(b) (left)). The resulting par-
tition distinguishes 13 relations (7 linear and 6 planar) denoted by numbers from 0 to
12 and four special cases, A = C �= B (a), A �= B = C (b), A = B �= C (dou),
and A = B = C (tri), resulting in 17 base relations overall. In Figure 2(b) the relation
A, B 9 C is depicted.



On Generalizing Orientation Information in OPRAm 277

Dipole Relation Algebra: DRAf and DRAfp. A dipole is an oriented line segment
as e.g. determined by a start and an end point. We will write dAB for a dipole defined
by start point A and end point B. The idea was first introduced in [19] by Schlieder and
extended in [15]. The fine-grained dipole calculus (DRAf ) [4] describes the orientation
relation between two dipolesdAB and dCD. Each base relation is a 4-tuple (r1, r2, r3, r4)
of FlipFlop relations. r1 describes the relation of C with respect to the dipole dAB , r2
of D with respect to dAB , r3 of A with respect to dCD, and r4 of b with respect to dCD.
The relations are usually written without the commas, e.g. (rrll). Thus, the example in
Figure 3 shows the relation dAB (rlll) dCD. DRAf has 72 base relations.

An extended version called DRAfp [4] further classifies the angle s that would result
from translating dCD so that both start points coincide. Four cases are distinguished:
Parallel (s = 0◦), Anti-Parallel (s = 180◦), + (s ∈]0◦..180◦[), and - (s ∈]180◦..360◦[).
This results in 80 base relations and the example from Figure 3 depicts the DRAfp

relation (rlll+).

A B

C

D

Fig. 3. A dipole configuration:
dAB (rlll) dCD in the fine-grained
dipole relation algebra (DRAf ) or
dAB (rlll+) dCD in the extended
version DRAfp

tA
i

Bt i
Bt j

tA
j

Fig. 4. A spatial motion configuration
resulting in A (− + −−) B in QTC

Qualitative Trajectory Calculus (QTC). The Qualitative Trajectory Calculus [21,22]
was developed recently handling changes between two moving objects explicitly with
respect to a ’double cross’ reference system build up by the observation of two objects’
positions A and B at a certain time point ti, denoted by Ati and Bti in the following.
The relative position changes between ti and tj (with j > i) are expressed within this
reference system. The relations are denoted by sequences of four symbols taken from
+, -, or 0. The first symbol describes the change in distance of A wrt. the perpendicular
to the line AtiBti at point Bti that occurred during ti and tj . In Figure 4, Atj is on the
same side of the perpendicular at Ati as Bti , and thus it is closer and the symbol takes
the value -. The second symbol expresses the change in distance of Btj compared to
the perpendicular at Ati . Btj is further away from it, therefore the value is +. The third
and fourth symbol abstract the relative motion to the side regarding the directed line
from Ati to Bti , respectively from Bti to Ati . In our example A moves to the left (-) of
AtiBti and B to the left (-) of BtiAti . This results in the relation A (− + −−) B.

Oriented Point Relation Algebra OPRAm: A calculus based on two oriented
points. The OPRAm calculus [13,12] relates two oriented points A and B (points



278 F. Dylla and J.O. Wallgrün

in the plane with an additional direction parameter) and describes their relative orien-
tation towards each other. OPRAm is well suited for dealing with objects that have
an intrinsic front or a move in a particular direction and can be abstracted as points.
The granularity factor m ∈ N+ determines the number of distinguished relations. For
each of the points, m lines are used to partition the plane into 2m planar and 2m linear
regions. Figure 5 shows the partitions for the cases m = 2 (5(a)) and m = 4 (5(b)).
The orientation of the two points is depicted by the arrows starting at A and B, respec-
tively. The regions are numbered from 0 to (4m−1), region 0 always coincides with the
orientation of the point. An OPRAm relation relOPRAm

consist of pairs (regi, regj)
where regi is the region of A in which B falls into, while regj is the region of B that
contains A. They are usually written as A m∠j

i B with i, j ∈ Z4m
1. Thus, the ex-

amples in Figure 5 depict the relations A 2∠1
7 B and A 4∠3

13 B. Additional relations
describe situations in which both oriented points coincide. In these cases, the relation is
determined by the region reg of A the orientation arrow of B falls into as illustrated in
Figure 5(c). These relations are written as A 2∠reg B (A 2∠1 B in the example).

0

1

7
0

6
1

7 B 5
2 A

4
3 5

4

(a) with granularity m = 2:
A 2∠1

7 B

0

2

3

4

6
7 9 10

5

1

13

0 15 14
13

12
11

10
9

7

3

8

8

A B

(b) with granularity m = 4:
A 4∠3

13 B

A
B

0

1

2

3
4

5

6

7

(c) case where A and B coin-
cide: A 2∠1 B

Fig. 5. Two oriented points related at different granularities

3 Mapping Orientation Calculi into OPRAm

The idea of this text is to encode relations from different orientation calculi within a
single framework such that they can be combined in a single reasoning system and in-
formation can be translated from one calculi into the other. As we will see, the OPRAm

calculus is a suitable candidate for this framework as it is expressive enough to encode
the relations from the other considered calculi. In addition, it offers a clear algebraic
definition for transforming relations between different granularities especially if they
are multiples of each other [13,12]. In the following, we will give transformations for
representing the base relations of the other calculi in the OPRAm framework.

3.1 Preliminaries

In this section, we will on the one hand deal with normal points P being defined by
their position in the plane (P = (xP , yP ) ∈ R2). On the other hand we will deal with

1 Z4m defines a cyclic group with 4m elements.



On Generalizing Orientation Information in OPRAm 279

oriented points as required for the OPRAm calculus. An oriented point, written as O,
is an ordered pair of a point O represented by its Cartesian coordinates xO and yO,
with xO, yO ∈ R and a direction φO (O = ((xO, yO), φO)). φO ∈ [0, 2π] denotes
the angle between the oriented point orientation and an absolute reference direction.
The following notations will be used assuming A, B and C are normal points: The
direction φBC is defined as the direction from B towards C. We write ABC for the
oriented point ((xA, yA), φBC) that has the same position as the normal point A and
the direction φBC . We just write A, if the direction is unknown or unspecified, e.g.
if we want to define an oriented point that coincides with A but can have an arbitrary
direction. Note that A, AAC , and ABC are all different oriented points, coinciding
in position, but possibly differing in orientation. Additionally, we want to emphazise
that oriented point names like AAC are only identifiers we use for making their role
intuitively comprehensible. The knowledge that one oriented point coincides with or
points at another has to be explicitly represented by respective relations.

We use the abbreviation A m∠{k−l}
{i−j} B with i, j, k, l ∈ Z4m for the disjunction

j∨

a=i

l∨

b=k

A m∠b
a B.

∗ abbreviates all members 0 to (4m−1) of Z4m and {i, j} a disjunction of i and j such
that for example A m∠∗

{i,j} B denotes

(
4m−1∨

b=0

A m∠b
i B

)

∨
(

4m−1∨

b=0

A m∠b
j B

)

.

3.2 Encoding FlipFlop Calculus and LR in OPRAm

As stated in Section 2, LR is an enhanced variant of the FlipFlop Calculus. In the re-
mainder of this text, we will not distinguish between those two variants, but simply talk
about the FlipFlop calculus (FFC), always meaning the enhanced version. To encode
the nine ternary FlipFlop relations A, B relFFC C within OPRA1, we utilize three
oriented points: AAB , BAB and CBC . For cases with A �= B, the FlipFlop relations
right, left, front, inside, back, start and end are distinguished.

To formulate the condition A �= B in OPRAm and define the reference frame, we
introduce the following reference frame constraint 1 (rfcFFC

1 ), that has to hold for all
these relations:

rfcFFC
1 = AAB

1∠2
0 BAB .

This describes first, that AAB and BAB have different positions but the same orien-
tation, and second, that BAB is in front of AAB .

We can now describe the individual FlipFlop relations as configurations of the three
oriented points AAB , BAB and CBC . We always provide a complete description of the
configuration, though it is often sufficient to relate the referent to only one point of the
reference frame. For instance for the front case the following OPRA1 relations have
to hold in addition to rfcFFC

1 : AAB
1∠2

0 CBC and BAB
1∠2

0 CBC .



280 F. Dylla and J.O. Wallgrün

For inside, we get the following relations: AAB
1∠0

0 CBC and BAB
1∠2

2 C. And
for left the resulting relations are AAB

1∠1
1 CBC and BAB

1∠2
1 CBC .

We now turn to the special cases dou and tri. We need to formalize that A and B
have the same position in our second reference frame constraint that has to hold only
for dou and tri:

rfcFFC
2 = A 1∠∗ B .

The orientation of the oriented points for A and B is unimportant in this case and
we thus leave it unspecified.

In the dou case, we have to make sure that C is different from A and B. We achieve
this by the following relations: A 1∠2

∗ CBC and B 1∠2
∗ CBC . For tri, C has to be the

same as A and B: A 1∠∗ C and B 1∠∗ C.
The complete listing of formalizations for all FlipFlop relations is given in Table 1.

It describes a jointly exhaustive and pairwise disjoint set of configurations of three
oriented points that can be used to translate between FlipFlop and OPRAm.

Table 1. A mapping of FlipFlop relations to OPRA1 relations

A,B relF F C C OPRA1 representation
front rfcF F C

1 ∧ AAB
1∠2

0 CBC ∧ BAB
1∠2

0 CBC

end rfcF F C
1 ∧ AAB

1∠∗
0 C ∧ BAB

1∠∗ C
inside rfcF F C

1 ∧ AAB
1∠0

0 CBC ∧ BAB
1∠2

2 CBC

start rfcF F C
1 ∧ AAB

1∠2 CBC ∧ BAB
1∠2

2 CBC

back rfcF F C
1 ∧ AAB

1∠2
2 CBC ∧ BAB

1∠2
2 CBC

left rfcF F C
1 ∧ AAB

1∠1
1 CBC ∧ BAB

1∠2
1 CBC

right rfcF F C
1 ∧ AAB

1∠3
3 CBC ∧ BAB

1∠2
3 CBC

dou rfcF F C
2 ∧ A 1∠2

∗ CBC ∧ B 1∠2
∗ CBC

tri rfcF F C
2 ∧ A 1∠∗ C ∧ B 1∠∗ C

3.3 Encoding DCC in OPRAm

As stated above, the Double Cross Calculus (DCC) is a combination of two SCC2 refer-
ence frames with not all combinations possible. We adopt the original idea to conjunct
the two reference frames used in [7], although we are not using the inverse orientation
for the second reference frame for reasons of simplicity, i.e. we also use orientation AB
for the second reference frame instead of orientation BA (compare Fig. 2(b)). We will
now give the mapping of the 17 base relations based on the three oriented points CBC

to AAB and BAB and summarize it in Table 2.
For building the reference frame for the cases with A �= B we need to define the

reference frame constraint 1 as for the FlipFlop calculus, but this time on the basis
of granularity m = 2, because the perpendiculars to AAB and BAB are needed for
classification:

rfcDCC
1 = AAB

2∠4
0 BAB.

2 Because an OPRAm specification for SCC can be easily derived from the DCC representa-
tion, we omit it here.



On Generalizing Orientation Information in OPRAm 281

The second reference frame constraint required for dou and tri is:

rfcDCC
2 = A 1∠∗ B .

We need to relate referent CBC to AAB and BAB for representing DCC relations.
Given A, B 1 C in DCC C is left front of AAB (OPRA2 region 1) as well as left front
of BAB . BAB is straight back of CBC (region 4) and AAB can only be positioned in
region 3 of CBC . Therefore, it follows that A, B 1 C has to be encoded as rfcDCC

1 ∧
AAB

2∠3
1 CBC ∧ BAB

2∠4
1 CBC .

Cases with C being positioned between AAB and BAB (relDCC ∈ {3, 9, 12}) are
a little more complex. For instance, if relation A, B 3 C is given, CBC is left front of
AAB (region 1) and left back of BAB (region 3). BAB is straight back of CBC (region
4). Now imagine CBC being positioned quite close to the line segment AB. Then AAB

is positioned in region 1 of CBC . But CBC could be also positioned very far away from
this line, then AAB is positioned in region 3. The case with AAB being straight left is
also valid. Therefore rfcDCC

1 ∧ AAB
2∠{1−3}

1 CBC ∧ BAB
2∠4

3 CBC follows as the
correct encoding.

The special cases with A �= B = C (b) A = C �= B (a) as well as dou and tri can be
handled just like the according cases in FFC. Dou results in rfcDCC

2 ∧ A 2∠4∗ CBC ∧
B 2∠4

∗ CBC and tri in rfcDCC
2 ∧ A 2∠∗ C ∧ B 2∠∗ C. A complete list is given in

Table 2.

Table 2. A mapping of DCC relations to OPRAm relations

A,B relDCC C OPRAm representation
0 rfcDCC

1 ∧ AAB
2∠4

0 CBC ∧ BAB
2∠4

0 CBC

1 rfcDCC
1 ∧ AAB

2∠3
1 CBC ∧ BAB

2∠4
1 CBC

2 rfcDCC
1 ∧ AAB

2∠3
1 CBC ∧ BAB

2∠4
2 CBC

3 rfcDCC
1 ∧ AAB

2∠{1−3}
1 CBC ∧ BAB

2∠4
3 CBC

4 rfcDCC
1 ∧ AAB

2∠3
2 CBC ∧ BAB

2∠4
3 CBC

5 rfcDCC
1 ∧ AAB

2∠3
3 CBC ∧ BAB

2∠4
3 CBC

6 rfcDCC
1 ∧ AAB

2∠4
4 CBC ∧ BAB

2∠4
4 CBC

7 rfcDCC
1 ∧ AAB

2∠5
5 CBC ∧ BAB

2∠4
5 CBC

8 rfcDCC
1 ∧ AAB

2∠5
6 CBC ∧ BAB

2∠4
5 CBC

9 rfcDCC
1 ∧ AAB

2∠{5−7}
7 CBC ∧ BAB

2∠4
5 CBC

10 rfcDCC
1 ∧ AAB

2∠5
7 CBC ∧ BAB

2∠4
6 CBC

11 rfcDCC
1 ∧ AAB

2∠5
7 CBC ∧ BAB

2∠4
7 CBC

12 rfcDCC
1 ∧ AAB

2∠0
0 CBC ∧ BAB

2∠4
4 CBC

a rfcDCC
1 ∧ AAB

2∠4 CBC ∧ BAB
2∠4

4 CBC

b rfcDCC
1 ∧ AAB

2∠∗
0 C ∧ BAB

2∠∗ C
dou rfcDCC

2 ∧ A 2∠4
∗ CBC ∧ B 2∠4

∗ CBC

tri rfcDCC
2 ∧ A 2∠∗ C ∧ B 2∠∗ C

3.4 Encoding DRAf in OPRAm

We will now give a mapping of the 72 base relations of the fine grained Dipole Relation
Algebra (DRAf ). Introducing the parallelity distinction will cause some problems,
therefore we will investigate the additional feature of DRAfp in Section 3.5 separately.



282 F. Dylla and J.O. Wallgrün

We have to define the reference frame constraint such that A �= B ∧C �= D and line
AB as well as CD form a reference line:

rfc
DRAf

1 = AAB
1∠2

0 BAB ∧ CCD
1∠2

0 DCD.

A DRAf relation consists of four letters each of the case l, r, f, b, i, s, or e. Since
each letter is derived in the same way, just for different triples of points, and each
describes a FlipFlop relation, we begin by providing the FlipFlop encodings from Table
1, but with the concrete oriented points replaced by variables X, Y , and Z in Table 3.
dou and tri are not listed because of the preliminaries A �= B and C �= B. Table 4 lists
the instantiations that have to be chosen for X, Y, and Z for each of the four letters. The
first letter describes the FlipFlop relation between A, B and C, the second for A, B and
D, the third for C, D and A, and the fourth C, D and B. We give two examples on how
complete DRAf relations are mapped:

Example (1): dAB (rfll) dCD ≡ rfc
DRAf

1
∧ AAB

1∠3
3 CBC ∧ BAB

1∠2
3 CBC

∧ AAB
1∠2

0 DBD ∧ BAB
1∠2

0 DBD

∧ CCD
1∠1

1 ADA ∧ DCD
1∠2

1 ADA

∧ CCD
1∠1

1 BDB ∧ DCD
1∠2

1 BDB

Example (2): dAB (ebis) dCD ≡ rfc
DRAf

1
∧ AAB

1∠2
0 CAB ∧ BAB

1∠0 CAB

∧ AAB
1∠2

2 DBD ∧ BAB
1∠2

2 DBD

∧ CCD
1∠0

0 ADA ∧ DCD
1∠2

2 ADA

∧ CCD
1∠2 BDB ∧ DCD

1∠2
2 BDB

Table 3. Describing the local DRAf point configu-
rations (cp. Table 1)

XXY
1∠j

i Z ∧ Y XY
1∠l

k Z

front XXY
1∠2

0 ZY Z ∧ Y XY
1∠2

0 ZY Z

end XXY
1∠∗

0 Z ∧ Y XY
1∠∗ Z

inside XXY
1∠0

0 ZY Z ∧ Y XY
1∠2

2 ZY Z

start XXY
1∠2 ZY Z ∧ Y XY

1∠2
2 ZY Z

back XXY
1∠2

2 ZY Z ∧ Y XY
1∠2

2 ZY Z

left XXY
1∠1

1 ZY Z ∧ Y XY
1∠2

1 ZY Z

right XXY
1∠3

3 ZY Z ∧ Y XY
1∠2

3 ZY Z

Table 4. Instantiation mapping of
X, Y, Z in Table 3 according to the po-
sition in the DRAf relation tuple

position X Y Z

1st position (r1) A B C

2nd position (r2) A B D
3rd position (r3) C D A

4th position (r4) C D B

3.5 The DRAfp Enhancement in OPRAm

The DRAfp is an enhancement of DRAf by four additional distinctions about relative
orientation of the two dipoles indicated by a fifth letter at the end of the relation string.
The classes are Parallel, Anti-Parallel, B oriented mathematically positive regarding A
(+), and B negative towards A (-). Only four DRAf relations (rrrr, rrll, llrr, llll)



On Generalizing Orientation Information in OPRAm 283

have to be split into three new ones, for all other relations this parameter is uniquely
defined by the original configuration in DRAf . For details we refer to [4]. As seen in
Section 3.4, a mapping for DRAf to OPRAm exists. The problem now is to formalize
the additional relative orientation of dAB and dCD because the concept of parallelity is
not contained in OPRAm.

The keypoint is shifting point C onto A while keeping the relative orientation defined
by points C and D. Table 5 shows the formalization of the four additional distinctions.
The problem with this definition is that the point position is not part of orientation deter-
mination. Unfortunately, in perception based scenarios with an observer looking from
current position towards an object such a definition will cause problems. Nevertheless,
the given definition is valid in the sense of defining DRAfp correctly.

Table 5. The definitions for the fifth part of DRAfp relations

Parallel AAB
1∠0 ACD

Anti-Parallel AAB
1∠2 ACD

+ AAB
1∠1 ACD

- AAB
1∠3 ACD

3.6 Encoding QTC in OPRAm

QTC relations are based on a double cross reference frame spanned by the objects’ orig-
inal positions Ati and Bti at time point ti. The relations are defined on the differentiated
motion direction given by the positions of A and B at tj with i < j. We abbreviate Ati

with Ai and Atj with Aj . We define the reference frame in DCC manner based on Ai

and Bi.

rfcQTC = Ai
AiBi

2∠4
0 Bi

AiBi .

Table 6 shows the according mapping of the four single −, 0, + literals of the QTC
relation string. The first two literals are defined by the front/back dichotomy regarding
the perpendiculars relative to the reference orientation from Ai to Bi, the last two by
left/right regarding the reference orientation. For the example in Figure 4 (A (− +
−−) B) it follows Ai

AiBi 2∠4
{7−1} Aj

AiAj ∧ Bi
AiBi 2∠4

{7−1} Bj
BiBj for the

front/back part and Ai
AiBi 1∠2

1 Aj
AiAj ∧ Bi

AiBi 1∠2
3 Bj

BiBj for the left/right
part.

Table 6. An OPRAm representation schema for QTC relations

- 0 +
1st parameter Ai

AiBi 2∠4
{7−1} Aj

AiAj Ai
AiBi 2∠4

{2,6} Aj
AiAj Ai

AiBi 2∠4
{3−5} Aj

AiAj

2nd parameter Bi
AiBi 2∠4

{3−5} Bj
BiBj Bi

AiBi 2∠4
{2,6} Bj

BiBj Bi
AiBi 2∠4

{7−1} Bj
BiBj

3rd parameter Ai
AiBi 1∠2

1 Aj
AiAj Ai

AiBi 1∠2
{0,2} Aj

AiAj Ai
AiBi 1∠2

3 Aj
AiAj

4th parameter Bi
AiBi 1∠2

3 Bj
BiBj Bi

AiBi 1∠2
{0,2} Bj

BiBj Bi
AiBi 1∠2

1 Bj
BiBj



284 F. Dylla and J.O. Wallgrün

4 Applications of OPRAm Mappings

In this section, we demonstrate the merits of expressing other orientation calculi within
OPRAm by dealing with the problem of deriving FlipFlop relations from DCC rela-
tions and the problem of automatically determining the composition for the DCC.

4.1 From DCC Relations to FlipFlop Relations

So far it was not possible to translate relations between different calculi without an ex-
plicit description of such a mapping, or to reason with relations represented in different
calculi. By expressing arbitrary orientation calculi in OPRAm we provide the facili-
ties to do so. We give a simple example how a FFC relation can be derived from a DCC
relation on the basis of the OPRAm representation. The idea can be generalized for
more complex transformations as well.

Given relDCC = A, B 3 C we get rfcDCC
1 ∧AAB

2∠{1−3}
1 CBC∧BAB

2∠4
3 CBC

as OPRAm representation from Table 2. By changing the granularity from m = 2 to
m = 1 we get the FFC relation between A, B and C. How to map relations between
different granularities is explained in [13].

From rfcDCC
1 = AAB

2∠4
0 BAB follows AAB

1∠2
0 BAB = rfcFFC

1 . From
AAB

2∠{1−3}
1 CBC follows AAB

1∠1
1 CBC and from BAB

2∠4
3 CBC follows

BAB
1∠2

1 CBC .
The combined result rfcFFC

1 ∧ AAB
1∠1

1 CBC ∧ BAB
1∠2

1 CBC is the OPRAm

formalization for the FFC relation A, B l C (cf. Table 1).

4.2 DCC Composition with OPRAm

We want to derive the composition table for DCC based on the completely specified
composition of OPRAm. Thus, we have four points A, B, C, and D and want to
infer the relation A, B relDCC D from the given relations A, B relDCC C and
B, C relDCC D (cp. Figure 6(a)). The configuration modeled in OPRAm is shown in
Figure 6(b).

A

D

CB

(a) in DCC

BAB

BBC

AAB

DCD

CBC

(b) in OPRAm

Fig. 6. A general spatial configuration for composi-
tion

A

B

C

D

(a)

AAB

BAB

CBC

BBCDCD

(b)

Fig. 7. A, B 12 C and B, C 9 D for
composition in DCC and OPRAm



On Generalizing Orientation Information in OPRAm 285

To demonstrate the process of deriving the composition, we consider the example
of composing the DCC relations 12 and 9 (cf. Figure 7(a)). We will employ several
additional theorems that we give here without proof due to space restrictions:

X m∠j
i Y ⇒ Y m∠i

j X (converse) (1)

X m∠j
i Y ⇒ X m∠0

i Y Y X (orientation shift) (2)

X m∠0
i Y Y X ⇒ X m∠(2m + i) XY X (projection type 1) (3)

X m∠2m
i Y XY ⇒ X m∠i XXY (projection type 2) (4)

We start by turning the given DCC relations into OPRAm relations as described
in Section 3.3 (cf. Table 2). To do this, five oriented points have to be introduced (see
Figure 7(b)). A, B 12 C and B, C 9 D yield the following relations:

AAB
2∠0

0 CBC (5)

BAB
2∠4

4 CBC (6)

AAB
2∠4

0 BAB (rfcDCC
1 ) (7)

BBC
2∠{5−7}

7 DCD (8)

CBC
2∠4

5 DCD (9)

BBC
2∠4

0 CBC (rfcDCC
1 ) (10)

We will later need the relation between DCD and DBD. This can be derived from
(8) by employing first the converse theorem (1), then the orientation shift theorem (2),
and finally the projection type 1 theorem (3):

BBC
2∠{5−7}

7 DCD (1)
==⇒ DCD

2∠7
{5−7} BBC (2)

==⇒

DCD
2∠0

{5−7} BBD (3)
==⇒ DCD

2∠{1 − 3} DBD (11)

From applying the projection type 2 theorem to (6) follows:

BAB
2∠4

4 CBC ⇒ BAB
2∠4 BBC (12)

There are two paths that allow to derive information about the position of BAB and
DCD. First, by composing (12) with (10) and then with (9). And second, by composing
(12) with (8). Since both can constrain the possible position, we need to compute both
and take the intersection of the resulting disjunctions of base relations. Overall, we thus
compute (12) ◦ (((10) ◦ (9)) ∩ (8)). Composing (10) and (9) yields:

BBC
2∠4

0 CBC ◦ CBC
2∠4

5 DCD = BBC
(

2∠5
{5−7} ∨ 2∠{6−7}

7

)
DCD (13)

Taking the intersection with (8) we get:

BBC
2∠{5−7}

7 DCD (14)

And composing this with (12) results in the following disjunction for the relation
between BAB and DCD:

BAB
2∠4 BBC ◦ BBC

2∠{5−7}
7 DCD = BAB

2∠{5−7}
3 DCD (15)



286 F. Dylla and J.O. Wallgrün

We can now apply the orientation shift theorem to (15) to derive the following rela-
tion between BAB and DBD:

BAB
2∠{5−7}

3 DCD ⇒ BAB
2∠4

3 DBD (16)

To compute the relation between AAB and DBD there are again two paths to con-
sider. First, composing (7) with (16) and second, composing (5) and (9) and (11). This
results in the overall computation of ((7) ◦ (16))∩((5) ◦ (9) ◦ (11)). Composing (7) and
(16) yields:

AAB
2∠4

0 BAB ◦ BAB
2∠4

3 DBD = AAB
(

2∠{1−3}
1 ∨ 2∠3

2 ∨ 2∠3
3

)
DBD (17)

Composing (5) and (9) and (11) yields:

AAB
2∠0

0 CBC ◦ CBC
2∠4

5 DCD ◦ DCD
2∠{1 − 3} DBD = AAB

2∠{7−3}
1 DBD

(18)
Taking the intersection of (17) and (18) we get:

AAB
2∠{1−3}

1 DBD (19)

The resulting OPRAm relations (16) and (19) together with rfcDCC
1 can be looked

up in Table 2. The result is that they describe the DCC relation 3. Thus we have correctly
derived that 3 is the composition of 12 and 9.

5 Conclusion

As we have shown in this paper, OPRAm is a very expressive spatial calculus for rea-
soning about orientation and direction information and it is possible to map other point
or line-based orientation calculi to OPRAm. For a selected set of well-known calculi
these mappings have been presented. This does in no way imply that these calculi are
obsolete. In scenarios for which they are sufficiently expressive they can be the better
choice due to computational advantages (e.g. when employed for constraint-based rea-
soning). The merits of analyzing the relationships between different calculi have been
exemplarily demonstrated by showing that FFC relations can be extracted very easily
from a DCC relation and additionally, by showing the composition of DCC relations
can be derived from OPRAm composition. Other forms of application still need to be
investigated. One such application is the automatic construction of conceptual neigh-
borhood graphs from the neighborhood structure of OPRAm relations. However, to do
this, we first need to extend the notion of conceptual neighborhoods to configurations of
more than two objects on the OPRAm side. Moreover, we plan to provide OPRAm

formalizations for additional orientation calculi.

Acknowledgments. The authors like to thank Nico van de Weghe, Lutz Frommberger,
Diedrich Wolter, Reinhard Moratz, and Christian Freksa for fruitful discussions and
impulses. We would also like to thank the anonymous reviewers for their valuable com-
ments. Our work was supported by the DFG Transregional Collaborative Research Cen-
ter SFB/TR 8 Spatial Cognition.



On Generalizing Orientation Information in OPRAm 287

References

1. J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
pages 832–843, Nov. 1983.

2. A. G. Cohn. Qualitative spatial representation and reasoning techniques. In G. Brewka,
C. Habel, and B. Nebel, editors, KI-97: Advances in Artificial Intelligence, 21st Annual Ger-
man Conference on Artificial Intelligence, Freiburg, Germany, September 9-12, 1997, Pro-
ceedings, volume 1303 of Lecture Notes in Computer Science, pages 1–30, Berlin, 1997.
Springer.

3. A. G. Cohn and S. M. Hazarika. Qualitative spatial representation and reasoning: An
overview. Fundamenta Informaticae, 46(1-2):1–29, 2001.

4. F. Dylla and R. Moratz. Exploiting qualitative spatial neighborhoods in the situation calculus.
In Freksa et al. [9], pages 304–322.

5. M. J. Egenhofer. A formal definition of binary topological relationships. In 3rd Interna-
tional Conference on Foundations of Data Organization and Algorithms, pages 457–472,
New York, NY, USA, 1989. Springer.

6. A. Frank. Qualitative spatial reasoning about cardinal directions. In Proceedings of the
American Congress on Surveying and Mapping (ACSM-ASPRS), pages 148–167, Baltimore,
Maryland, USA, 1991.

7. C. Freksa. Conceptual neighborhood and its role in temporal and spatial reasoning. In
M. Singh and L. Travé-Massuyès, editors, Decision Support Systems and Qualitative Rea-
soning, pages 181 – 187. North-Holland, Amsterdam, 1991.

8. C. Freksa. Using orientation information for qualitative spatial reasoning. In A. U. Frank,
I. Campari, and U. Formentini, editors, Theories and methods of spatio-temporal reasoning
in geographic space, pages 162–178. Springer, Berlin, 1992.

9. C. Freksa, M. Knauff, B. Krieg-Brückner, B. Nebel, and T. Barkowsky, editors. Spatial
Cognition IV. Reasoning, Action, Interaction: International Conference Spatial Cognition
2004, volume 3343 of Lecture Notes in Artificial Intelligence. Springer, Berlin, Heidelberg,
2005.

10. G. Ligozat. Qualitative triangulation for spatial reasoning. In A. U. Frank and I. Campari,
editors, Spatial Information Theory: A Theoretical Basis for GIS, (COSIT’93), Marciana
Marina, Elba Island, Italy, volume 716 of Lecture Notes in Computer Science, pages 54–68.
Springer, 1993.

11. G. Ligozat. Reasoning about cardinal directions. Journal of Visual Languages and Comput-
ing, 9:23–44, 1998.

12. R. Moratz. Representing relative direction as a binray relation of oriented points. In ECAI
2006 Proceedings of the 17th European Conference on Artificial Intelligence, 2006. to ap-
pear.

13. R. Moratz, F. Dylla, and L. Frommberger. A relative orientation algebra with adjustable gran-
ularity. In Proceedings of the Workshop on Agents in Real-Time and Dynamic Environments
(IJCAI 05), 2005.

14. R. Moratz, B. Nebel, and C. Freksa. Qualitative spatial reasoning about relative position:
The tradeoff between strong formal properties and successful reasoning about route graphs.
In C. Freksa, W. Brauer, C. Habel, and K. F. Wender, editors, Spatial Cognition III, volume
2685 of Lecture Notes in Artificial Intelligence, pages 385–400. Springer, Berlin, Heidelberg,
2003.

15. R. Moratz, J. Renz, and D. Wolter. Qualitative spatial reasoning about line segments. In
W. Horn, editor, Proceedings of the 14th European Conference on Artificial Intelligence
(ECAI), Berlin, Germany, 2000. IOS Press.



288 F. Dylla and J.O. Wallgrün

16. D. A. Randell, Z. Cui, and A. Cohn. A spatial logic based on regions and connection. In
B. Nebel, C. Rich, and W. Swartout, editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the Third International Conference (KR’92), pages 165–176.
Morgan Kaufmann, San Mateo, California, 1992.

17. J. Renz and D. Mitra. Qualitative direction calculi with arbitrary granularity. In C. Zhang,
H. W. Guesgen, and W.-K. Yeap, editors, PRICAI 2004: Trends in Artificial Intelligence,
8th Pacific RimInternational Conference on Artificial Intelligence, Auckland, New Zealand,
Proceedings, volume 3157 of Lecture Notes in Computer Science, pages 65–74. Springer,
2004.

18. J. Renz and B. Nebel. On the complexity of qualitative spatial reasoning: A maximal tractable
fragment of the region connection calculus. Artificial Intelligence, 108(1-2):69–123, 1999.

19. C. Schlieder. Reasoning about ordering. In Spatial Information Theory: A Theoretical Basis
for GIS (COSIT’95), volume 988 of Lecture Notes in Computer Science, pages 341–349.
Springer, Berlin, Heidelberg, 1995.

20. A. Scivos and B. Nebel. The finest of its class: The practical natural point-based ternary
calculus LR for qualitative spatial reasoning. In Freksa et al. [9], pages 283–303.

21. N. van de Weghe. Representing and Reasoning about Moving Objects: A Qualitative Ap-
proach. PhD thesis, Ghent University, 2004.

22. N. van de Weghe, B. Kuijpers, P. Bogaert, and P. Maeyer. A qualitative trajectory calculus and
the composition of its relations. In First International Conference on GeoSpatial Semantics
(GeoS 2005), volume 3799, pages 181–211. Springer, 2005.



Towards the Visualisation of Shape Features
The Scope Histogram

A. Schuldt, B. Gottfried, and O. Herzog

Centre for Computing Technologies (TZI)
University of Bremen, Am Fallturm 1, D-28359 Bremen

Abstract. Classifying objects in computer vision, we are faced with a
great many features one can use. This paper argues that diagrammatic
representations help to comprehend properties of features. This is im-
portant for the purpose of deciding which features should be used for a
given classification task. We introduce such a diagrammatic representa-
tion for a shape feature and show how it enables one to decide whether
this feature helps to distinguish some categories given. Additionally, it
shows that the proposed feature keeps up with other features falling into
the same complexity class.

1 Introduction

In computer vision several features have been devised in order to describe objects.
While some of them are more intuitive than others, even the intuitive ones raise
the question whether they are appropriate given a number of categories which are
to be distinguished. For instance, a feature like the compactness obviously allows
two object categories to get distinguished which are clearly different regarding
their roundness. However, determining this feature for a number of categories it
is quite difficult to comprehend its meaning. What does a difference, lets say, of
0.1 tell us about the shapes of two object categories? This question is especially
to be asked from the point of view of the expert, who possesses particular skills
about his domain but not about some methods he needs to apply to this domain.

It is frequently difficult or even impossible to determine which object prop-
erties, and as a consequence, which categories can be distinguished by specific
features without thoroughly analysing them regarding that feature. Furthermore,
it is even more difficult to comprehend how a number of different features com-
bine. The problem we are faced with is more general and concerns the difficulty
to choose among a number of methods. Normally, the appropriateness of the
chosen method is not revealed before having used it. Here, we argue in favour
of visualisation techniques which relate to diagrammatic representations. Such
techniques enable us to assess the meaning of some method or feature by visu-
alising some of its properties. Thereby, its inherent structure is made explicit,
allowing attention to be guided in a specific way.

From the point of view of diagrammatic reasoning, [8] point out that attention
mechanisms are relevant when interpreting diagrams. In particular, the ease of
recognition is strongly affected by what information is explicit in a representa-
tion. The idea is to make use of these findings by devising diagrams which relate

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 289–301, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



290 A. Schuldt, B. Gottfried, and O. Herzog

a feature’s semantics to its range of values. In this paper we shall demonstrate
how this works for a representation which comprises a structure that enables a
specific feature defined on it to be visualised, so that the relationship between
semantics and structure is made visible. As a consequence, it can intuitively be
decided how well a number of categories can be distinguished by this feature.

In Sect. 2 previous work on a qualitative shape description is reviewed. At the
same time, a diagrammatic representation for a shape feature is introduced which
is based on this shape description. Applying this feature to shapes of the MPEG
test dataset, Sect. 3 shows that this feature is in fact more expressive than others
which pertain to the same class of features in terms of the complexity required for
comparisons. But more importantly, it also shows that the feature’s meaning can
be comprehended very well through its diagrammatic representation. Section 4
discusses for a number of pairwise similar as well as pairwise different categories
how their diagrammatic representation enables one to decide in favour or against
the application of our feature. Finally, Sect. 5 summarises our conclusions.

2 Scope Histograms

For the purpose of dealing with shape data we choose polygons to be the un-
derlying representation for our approach. Polygons can easily be extracted from
binary raster images containing the silhouette of an object. Additionally, they
allow the creation of a more compact representation through the application
of polygonal simplification algorithms — even with only little influence on the
perception of shape [2]. We apply especially the method proposed in [11], choos-
ing an approximation error of one percent of a polygon’s perimeter, in this way
being invariant regarding the scale.

Consider the 13 qualitative relations between one-dimensional time intervals
[1]. Their generalisation to two dimensions define the notion of positional-contrast
[7] which allows intervals in the two-dimensional plane to be characterised. Us-
ing the orientation grid of [12], [6] introduces 23 BA23 relations that can occur
between two line segments (Fig. 1 left and centre). This description is not only
restricted to single lines. Instead, using an ordered sequence of BA23 relations,
it is also possible to describe the course of a polygon w. r. t. one of its segments.
This description has linear space complexity, since each of the polygon’s segments
is described by one BA23 relation. Indeed, an even more compact description is
possible. This can be accomplished by characterising the polygon by its position
as a whole, instead of describing the positions of its segments individually.

2.1 Representing Polygons by Their Scope

While BA23 relations are suitable in order to describe arrangements between
line segments, they are not devised for the purpose of describing polygons as a
whole. This is due to the fact that, in contrast to single line segments, polygons
are not restricted to being straight. On this account, there exist polygons that
cannot be characterised by single BA23 relations, namely those with a course
circulating one or more times completely around the reference segment. BA12,



Towards the Visualisation of Shape Features: The Scope Histogram 291

Fl

Id

Fm

FOl
FOml FOmr FOr

FCrFCl

Dl Cl Cr Dr

BOrBOmr

BCrBCl

BOl BOml

Bm

Fr

Bl Br

Fig. 1. The 23 BA23 relations that can be distinguished between two line segments
in the two-dimensional plane. Left: Example arrangements. Centre: Mnemonic labels.
Right: Iconic representation of the respective scopes.

which is a subset of BA23, can be used instead. It contains only the relations
Bl, BOl, Dl, FOl, Fl, Fm, Fr , FOr, Dr, BOr, Br, and Bm. These relations
are referred to as atomic BA relations. They have the property of being located
either in only one of the orientation grid’s sectors or of passing exactly one of
the orientation grid’s singularities connecting two adjacent sectors.

Applying the notion of a scope [7], which is nothing other than a set of con-
nected BA12 relations, it is possible to describe the location of any other segment
or even the whole course w. r. t. the reference segment. As depicted on the right
hand side of Fig. 1 the scopes of the atomic relations contain only the respective
relation itself. In contrast, the scopes of the non-atomic BA23 relations are ob-
tained by simply computing the union of the atomic relations comprising their
positions. Starting from this, the description of a course is straightforward by
simply aggregating BA12 relations which together make up this course.

2.2 Conceptual Neighbourhoods of Scopes

Applying the scope representation described above, the characterisation of a
polygon’s course w. r. t. one of its segments can be accomplished with constant
space complexity. This is due to the fact that we are always dealing with a set
of at most twelve atomic relations. In theory, 212 = 4096 different scopes can
be distinguished. When dealing with simple, closed polygons, we can confine
ourselves to those scopes, which do not have gaps between their atomic relations.
The application of this definition restricts the number of realisable scopes to 133.

After having defined the set of realisable scopes, the question arises as to how
they relate concerning their similarity. As an example, the scope of relation Fl

may be considered to be more similar to Fm than it is to Br. As suggested in [4],
it is useful to connect qualitative relations explicitly by defining a conceptual
neighbourhood structure. This does not only allow coarse knowledge to be dealt
with, as described in [4], but also defines a distance between scopes. Starting from
the scope’s representation, we define two scopes to be conceptual neighbours if
they can directly be transformed into one another by shortening or elongating



292 A. Schuldt, B. Gottfried, and O. Herzog

them with exactly one atomic relation. Since the underlying reference system is
circular, the visualisation of the conceptual neighbourhood structure is circular,
too. The scopes of the BA12 relations are located at the outmost positions. The
more atomic relations a scope contains the shorter is its distance to the centre,
where the universal scope is located which contains all atomic relations. The top
left quadrant of this neighbourhood structure is depicted in Fig. 2. For instance,
in accordance to the neighbourhood structure the distance of the scopes of Fl

and Fm is two. In contrast, the scopes of Fl and Br are located at converse
locations within the neighbourhood structure, which corresponds to a distance
of twelve edges within this graph.

Fig. 2. The top left quadrant of the scope’s conceptual neighbourhood structure. The
missing quadrants can be created by reflecting the image along the bottom axis and
the right axis. Two adjacent scopes can be transformed into one another by shortening
or elongating one scope by exactly one atomic relation.

2.3 Computing Scope Histograms

The scope representation introduced in Sect. 2.1 has the advantage of allowing a
polygon to be described w. r. t. one of its segments with constant space complex-
ity. That is to say, we always deal with a set of at most twelve atomic relations



Towards the Visualisation of Shape Features: The Scope Histogram 293

regardless of how many line segments are required to represent a specific polygon.
Since this is a very coarse description, it is necessary to characterise a polygon
not only w. r. t. one of its segments, but w. r. t. to all of its segments. In doing
so, we gain a description with linear space complexity, O(n). This approach has
the disadvantage that its time complexity for the comparison of two polygons
is accordingly higher. This is due to the ordered sequences of scopes which are
circularly permutable and due to the fact that different polygons do not have the
same number of scopes, from what follows, that time complexity for the com-
parison of two scope sequences is O(mn3). Since efficient retrieval algorithms
are generally desired, it is worth analysing how performance can be improved.
Abandoning the scopes’ order, time complexity can be reduced to O(1) by com-
puting a histogram of the occurring scopes. This also leads to constant space
complexity for the description, since only the frequencies of occurring scopes
have to be described.

It is worth mentioning that when dealing with simple, closed polygons not all
of the 133 scopes introduced in Sect. 2.2 actually occur. By confining ourselves
to polygons with a mathematically positive order only 86 out of the 133 distin-
guishable scopes can be realised (Fig. 3 left). That is, only the frequencies of
this reduced set of scopes have to be determined.

Fig. 3. Left: Each of the 133 distinguishable scopes is depicted by a point which is
located accordingly to its position in the conceptual neighbourhood structure. The 86
scopes that are realisable by simple, closed polygons are depicted opaque, the others
transparent. Right: Scope histograms can be visualised by only taking into account
realisable scopes.

2.4 Visualising Scope Histograms

As mentioned before, an important property of scope histograms is that they
allow two polygons to be described and to be compared with constant complexity.
Another important property is the fact that a simple visualisation for scope
histograms exists. For this visualisation we arrange the scopes accordingly to
the conceptual neighbourhood structure (Fig. 2). As depicted on the right hand



294 A. Schuldt, B. Gottfried, and O. Herzog

side of Fig. 3 only the position of the 86 realisable scopes have to be taken into
consideration. The size of each entry in the histogram’s visualisation depends on
how often the scope appears for a given polygon. Fig. 4 shows two examples.

Fig. 4. Two polygons and their respective scope histograms. The size of an entry’s
depiction correlates with its frequency. Left: Since the polygon has the same posi-
tion w. r. t. each of its segments, there exists only one (particularly large) entry in
the histogram. Right: This polygon has different positions w. r. t. its segments. As a
consequence, its scope histogram also contains several different entries.

Since our visualisation arranges the histogram’s entries in accordance to their
position in the conceptual neighbourhood structure, even the non expert is able
to estimate how similar two entries are. This similarity can directly be derived
from their distance in the visualisation. Extending this observation to histograms
as a whole, it is even possible to judge the similarity of two polygons solely on the
basis of their histograms’ visualisations. Another property of this visualisation
is that it can easily be determined whether two scopes are mirror images of each
other. This is the case if their entries in the histogram can be mapped onto each
other by reflecting them along the middle axis. As depicted in Fig. 4, polygons
that have an axis of symmetry have a histogram which is symmetric w. r. t.
its middle axis. In contrast, not every scope histogram having this property
describes a reflection-symmetric polygon. With some experience, it is to some
extent possible to identify scopes only by their position in the histogram. It is
at least possible to get a coarse impression of the properties of a scope, relating
to the correspondence of structure (e.g. large entry for the universal scope) and
semantics (parts of the polygon circulating around other parts).

3 Categorising Objects

After having introduced the scope histogram in Sect. 2 we will now concentrate
on the evaluation of its performance before we discuss its visualisation in the
following Sect. 4.

A well-known method for the comparison of shape classification approaches is
the core experiment CE-Shape-1 [10] for the MPEG-7 standard. This experiment
compares approaches only by their retrieval results, instead of comparing the un-
derlying methods directly. We apply especially part B which tests the capability
of similarity-based retrieval techniques with a database of 1400 images. These
are semantically grouped into 70 shape classes, each one consisting of 20 object



Towards the Visualisation of Shape Features: The Scope Histogram 295

instances. During the test all 1400 images are used as a query one after another.
For each query all images in the database are ordered w. r. t. their similarity by
the approach under consideration. Subsequently, the images belonging to the
same class as the query are counted within the first 40 results. Since each class
contains 20 instances, for each query up to 20 correct matches can be found. For
all 1400 queries the total number of correct matches is 28000. The result of the
test is the ratio of the number of found objects and the total number of correct
matches.

In order to measure the performance of the scope histogram, we apply features
that pertain to the same class of complexity required for comparisons, i. e. that
they also allow two shapes to be compared with constant time complexity. Es-
pecially we use the compactness [3], which corresponds to the ratio 4πA

P 2 of area
and perimeter, the radius ratio Rmin

Rmax
of the minimum enclosing circle and the

maximal contained circle [5], and the aspect ratio Hr

Wr
of the minimal enclosing

rectangle [3]. Each of these features characterises the shape of an object by a
single number and therefore compares two objects with constant time complex-
ity. The performance of these features as well as that of the scope histogram is
listed in Table 1. The results show that the numeric features, namely compact-
ness, radius ratio, and aspect ratio gain results between about 16% and 24%.
In contrast, our scope histogram achieves results of about 46% and therefore
outperforms the other approaches. Better results can be achieved by combining
features. The results show that a combination of the three numeric features al-
ready gains about 52% correct matches. Combining these features with the scope
histogram almost 64% can be achieved. Eventually, it is worth mentioning that
this retrieval result is only about twelve percentage points less than the 76.46%
achieved by the correspondence of visual parts of [9]. However, this latter ap-
proach has a significantly higher time complexity of O(mn3) for the comparison
of two objects, while the 64% are achieved with constant time complexity.

Table 1. Classification results of compactness (CO), radius ratio (RR), aspect ratio
(AR), and scope histogram (SH) for CE-Shape-1 Part B. Furthermore, the classification
has been evaluated for the combination of all numeric features (NF) as well as their
combination with the scope histogram (NS).

CO RR AR SH NF NS

21.86 16.82 24.12 45.52 51.58 63.75

There is yet another advantage of scope histograms, namely that they allow
prototypes of categories to be defined. This is useful since a common categori-
sation technique is based on the definition of clusters which define classes by
training examples. In order to analyse whether the scope histogram qualifies it-
self as such a clustering method, we shall define clusters upon the MPEG dataset
and rerun our evaluation on this basis. For this purpose the average of the val-
ues of all features is taken for each class. For the scope histogram we determine



296 A. Schuldt, B. Gottfried, and O. Herzog

the average of the corresponding entries. In proceeding this way we define a
number of 70 prototypes, one for each class. Using these prototypes we achieve
the results listed in Table 2. It shows that the classification results of the three
numeric features do not significantly change when they are solely applied in a
clustering scenario. By contrast, the scope histogram’s results can be improved
by 20 percentage points to 66%. The scope histogram now even outperforms the
combination of the three numeric features, which achieve together about 63%.
A combination of the numeric features and the scope histogram leads to almost
83% correct matches.

Table 2. The classification results of Table 1 can be improved if a prototype is com-
puted for each class of the MPEG test dataset

CO RR AR SH NF NS

22.14 15.43 24.43 65.57 62.57 82.93

Summarising these results, the scope histogram combined with other features
offering constant time complexity achieves about 64% in the MPEG test. By
computing a prototype for each class the retrieval results for the MPEG test
dataset can even be improved to almost 83%. As elaborated above, this result
reflects the scope histogram’s qualification as a clustering method.

4 Discussion

In this section we will take a closer look at some selected scope histograms. On
this basis we will discuss how the visualisation introduced in Sect. 2.4 supports
decisions on whether the application of our approach is useful or not, given a
number of classes which are to be distinguished. For this purpose we analyse
the classes from the MPEG test dataset and especially their prototypes. The
prototypes’ scope histograms as well as one example instance from each class
are depicted in Figs. 5 to 7.

Comparing the polygons it shows that the prototype of the “Spring” class
can be distinguished from all other prototypes by the universal scope which
frequently occurs in this class; this scope consists of all twelve atomic BA12
relations, and it represents those line segments which are completely circulated
by their polygon’s course. In the case of the spring class, the frequency of the
universal scope can be attributed to those segments which are located within
its ends. This is a particular salient feature of this class in that the universal
scope appears in no other class so frequently. Analysing all classes the universal
scope is found rather seldom. Further remarkable occurrences can be determined
within the body of the “Sea Snake”, in the inner half of the “Horseshoe”, at the
inner side of the tail of the “Lizzard”, and within the handle of the “Cup” class.

Another notable scope is that one of the BA23 relation Cl (Fig. 1), i. e. the
relation containing all atomic relations located on the left side of the orientation



Towards the Visualisation of Shape Features: The Scope Histogram 297

grid. It does not only appear if line segments are in relation Cl but whenever
the polygon is located completely left w. r. t. the reference segment. Since this
scope describes a reference segment that is convex w. r. t. its polygon (i. e. the
segment is part of the polygon’s convex hull), it is not surprising that it appears
much more frequently than the universal scope. As an example, it has remarkable
occurrences in the “Bottle”, “Cellular Phone”, “Face”, and the “Pencil” classes.
It also appears quite often in the scopes of the “Apple” and the “Pocket” class.
As objects pertaining to these classes show, apples and pockets have in common
that they have a big round body with a significantly smaller part on the top.
This is reflected in their scope histograms, which show that there are five entries
in the case of the apple and similar frequencies at the very same entries in the
scope histogram of the pocket. It is worth mentioning, that due to the fact, that
we do not consider the order in which the scopes appear, there are yet other
classes which have similar scope histograms. This holds in particular for the
“Heart” class and the “Jar” class.

Apparently, the prototypes of some classes are described by very simple scope
histograms, i. e. they are made up of only a few different scopes. This can be ex-
plained by the fact, that all instances in these classes have very similar scope his-
tograms. On the one hand this brings in the advantage that distances between two
instances of this class are small. On the other hand this poses a problem if the dom-
inant scopes are very common and if their combination appears in other classes,
too. Examples for classes that do not contain dominant scopes and which have sim-
ilar scope histograms are the “Guitar”, the “Key”, as well as the “Spoon” class.

Another problem arises from classes containing instances with completely dif-
ferent shapes. This is due to the fact that the classes for the MPEG test dataset
have been compiled semantically, so that it is impossible to classify shapes cor-
rectly using solely shape information. Examples for classes of this kind are the
“Elephant” class as well as the various “Device” classes.

Coming to a conclusion, two classes of shapes can be distinguished very well by
our method if their scope histograms have frequencies which are both dominant
and different. It has been shown that the visualisations of the scope histograms
enable us to directly judge how promising their application is. Defining those
visualisations only on the basis of the size of the spots depicting frequencies in
the histograms, such diagrams are not difficult to interpret. Moreover, in contrast
to other histograms which are used to show, for example, the colour distribution
of images, the entries of the scope histogram have been arranged in a specific way.
By this means relations between semantics and structure are made explicit in
that the position of a spot in the diagram reflects the complexity of the polygon
w. r. t. specific reference segments as well as to specific shape properties such as
the convexity for specific parts.

5 Summary

We introduced a new approach for the description and comparison of objects by
their shape. Due to its intuitive diagrammatic visualisation, it can be easily esti-
mated whether the application of our approach is promising or not. Besides, our



298 A. Schuldt, B. Gottfried, and O. Herzog

approach offers a constant time complexity for the comparison of two objects. It
shows that by combining it with other features offering the same time complexity
retrieval results of about 64% can be achieved in the MPEG test. Furthermore,
retrieval performance for the MPEG test dataset can even be improved to almost
83% by the application of prototype shapes.

References

1. J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications
of the ACM, 26(11):832–843, 1983.

2. F. Attneave. Some Informational Aspects of Visual Perception. Psychological
Review, 61:183–193, 1954.

3. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley
and Sons, Inc., 1973.

4. C. Freksa. Temporal Reasoning Based on Semi-Intervals. Artificial Intelligence,
54(1):199–227, 1992.

5. G. D. Garson and R. S. Biggs. Analytic Mapping and Geographic Databases. Sage
Publications, Newbury Park, CA, 1992.

6. B. Gottfried. Reasoning about Intervals in Two Dimensions. In W. Thissen,
P. Wieringa, M. Pantic, and M. Ludema, editors, IEEE International Conference
on Systems, Man and Cybernetics, pages 5324–5332, The Hague, 2004. IEEE Press.

7. B. Gottfried. Shape from Positional-Contrast — Characterising Sketches with
Qualitative Line Arrangements. Deutscher Universitäts-Verlag, 2007.

8. J. H. Larkin and H. A. Simon. Why a Diagram is (Sometimes) Worth Ten Thousand
Words. Cognitive Science, 11:65–99, 1987.

9. L. J. Latecki and R. Lakämper. Shape Similarity Measure Based on Correspon-
dence of Visual Parts. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 22(10):1185–1190, 2000.

10. L. J. Latecki, R. Lakämper, and U. Eckhardt. Shape Descriptors for Non-rigid
Shapes with a Single Closed Contour. In IEEE International Conference on Com-
puter Vision and Pattern Recognition, pages 424–429, 2000.

11. D. A. Mitzias and B. G. Mertzios. Shape Recognition with a Neural Classifier
Based on a Fast Polygon Approximation Technique. Pattern Recognition, 27:627–
636, 1994.

12. K. Zimmermann and C. Freksa. Qualitative Spatial Reasoning Using Orientation,
Distance, and Path Knowledge. Applied Intelligence, 6:49–58, 1996.



Towards the Visualisation of Shape Features: The Scope Histogram 299

Apple: Bat: Beetle:

Bell: Bird: Bone:

Bottle: Brick: Butterfly:

Camel: Car: Carriage:

Cattle: Cellular Phone: Chicken:

Children: Chopper: Classic:

Comma: Crown: Cup:

Deer: Device0: Device1:

Fig. 5. Histogram prototype and example instance for each MPEG class (Part I)



300 A. Schuldt, B. Gottfried, and O. Herzog

Device2: Device3: Device4:

Device5: Device6: Device7:

Device8: Device9: Dog:

Elephant: Face: Fish:

Flatfish: Fly: Fork:

Fountain: Frog: Glas:

Guitar: Hammer: Hat:

Hcircle: Heart: Horse:

Fig. 6. Histogram prototype and example instance for each MPEG class (Part II)



Towards the Visualisation of Shape Features: The Scope Histogram 301

Horseshoe: Jar: Key:

Lizzard: Lmfish: Misk:

Octopus: Pencil: Personal Car:

Pocket: Rat: Ray:

Sea Snake: Shoe: Spoon:

Spring: Stef: Teddy:

Tree: Truck: Turtle:

Watch:

Fig. 7. Histogram prototype and example instance for each MPEG class (Part III)



A Robot Learns to Know People—First
Contacts of a Robot

Hartwig Holzapfel1, Thomas Schaaf 2, Hazım Kemal Ekenel1,
Christoph Schaa1, and Alex Waibel1,2

1 InterACT Research, Interactive Systems Labs,
Universität Karlsruhe, Germany
{hartwig,ekenel}@ira.uka.de

2 InterACT Research, Interactive Systems Labs,
Carnegie Mellon University Pittsburgh, USA

{tschaaf,waibel}@cs.cmu.edu

Abstract. Acquiring knowledge about persons is a key functionality for
humanoid robots. In a natural environment, the robot not only interacts
with different people who he recognizes and who he knows. He will also
have to interact with unknown persons, and by acquiring information
about them, the robot can memorize these persons and provide extended
personalized services. Today, researchers build systems to recognize a
person’s face, voice and other features. Most of them depend on pre-
collected data. We think that with the given technology it is about time
to build a system that collects data autonomously and thus gets to know
and learns to recognize persons completely on its own.

This paper describes the integration of different perceptual and dialog
components and their individual functionality to build a robot that can
contact persons, learns their names, and learns to recognize them in
future encounters.

1 Introduction

Recognizing and memorizing other people is an important part of human-human
communication. A humanoid robot, if equipped with such functionality, can offer
more natural ways of communication and provides a basis to provide personal-
ized services. Today, systems exist that can recognize a person’s face, voice or
identify persons using other biometric features. In addition, speech recognition
and dialog management supply robots with a natural way of communication.
We think that with the given technology it is about time to build a system that
collects data autonomously and thus gets to know and learns to recognize per-
sons completely on its own. The task of the robot is to meet persons that walk
by the system, to establish contact and to find out some information about the
person. Using speech recognition, the robot can understand a person’s name and
learns previously unknown names. The system stores information about these
encounters and recognizes the person the next time with a face-ID recognizer.
To our knowledge, such a system has not been presented before.

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 302–316, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Robot Learns to Know People—First Contacts of a Robot 303

In this paper we present such a system by describing its architecture, its
major components, and first experiments with parts of the system. Techniques
that are integrated in the system are speech recognition, unknown word de-
tection, phoneme recognition, spelling, extensible grammars, multimodal dialog
management, visual person detection, face detection, face-ID and recognition.
We describe the system in two main parts. First, we describe experiments to
obtain attention from a person and to maximize success rates in initiating a
dialog. Learning mechanisms were applied to classify the intention of the user
and to choose actions by the system to obtain attention. We present results of
this experiment in the next section. Second, we describe the components and
their integration to conduct a dialog with the person during which the system
learns the person’s name and face-id. The main components that are employed
are speech recognition with unknown-word-detection (OOV), face recognition
(face-ID) and multimodal dialog management. The components are described
and evaluated separately.

The long-term vision of the system is a robot that can patrol the entrance
area of a building or a corridor and get in touch with previously unknown people
completely on his own. The field of related work is broad due to its interdis-
ciplinary nature. Recently, several robotic systems and humanoid robots that
interact with humans have been developed. Our system, as a robot, is broadly
related to the field of social robotics [1,2], especially given its style of interaction
and the scenario of its employment. An interactive and self controlled robot for
example is Lewis [3], a robot with the task to take pictures of groups of persons,
visually triggered by certain regions of interest. In our task, the system tracks
(moving) persons with whom the robot wants to interact, which relates to visual
tracking e.g. [4], but also multimodal tracking e.g. [5] is helps finding the right
conversation partner. The following section, where we describe experiments to
obtain attention and to initiate a dialog with persons, also relates to studies on
engagement [6] in Human-Robot interaction.

Besides controlling a robot that interacts with people, the second great chal-
lenge is to conduct a dialog with the person to learn the person’s name. Some
work exists that describe language learning and learning of words on a multi-
modal basis. Dusan and Flanagan describe a system for learning words and their
meaning in a multimodal setting [7,8]. [9] describes understanding and ground-
ing of new words in situated dialog. Other work focuses on understanding new
words, which is a speech recognition task. Chung et al. [10] combine phoneme
recognition of spoken input to obtain phonetic representation of names with
telephone keypad input to obtain textual representation of names. Even if the
name is known but a very large vocabulary list is used, special attention is re-
quired. Chung et al. [11] describe a system with a dynamic vocabulary that can
be updated according to the given context. The approach from Scharenborg and
Seneff [12] runs multiple recognition passes on speech input, with a phone-based
OOV word-model in the first step, which is used to constrain the vocabulary in
the second step that best matches the resulting phone graph. More related work
on unknown words is described in section 3.3.



304 H. Holzapfel et al.

The paper is organized as follows. Section 2 describes experiments with proac-
tive behavior to obtain the user’s attention and initiate a dialog. Section 3
describes the system architecture, the dialog manager, speech recognition and
vision. Section 4 concludes the paper and gives an outlook to future work.

2 Obtaining Attention and Initiating Dialogs

A pretest with the system was conducted to evaluate if and how well the robot
can obtain the attention of persons passing by, and then initiate a dialog with
that person. We furthermore wanted to see which actions of the robot are most
important to obtain attention. For the experiment we first recorded and labeled
a series of persons passing by the robot, and a series of persons that were told to
walk towards the robot. Second, we trained a classifier to classify the person’s
’interest’ in the system. Finally, we evaluated the success rate of the system to
initiate a dialog with interested persons.

For this purpose, we placed the robot in the corridor of our research institute
and observed the behavior of people passing by. Each person was then inter-
viewed about the robots behavior and his/her own interest in the system and
how much attention was spent to the system when walking by. During each iter-
ation, the robot chose a single action or a combination of the following actions:
head movement (turn the head towards the person), play sounds, spoken output.
Spoken output was ”Hello! Please come closer!” and ”Please use the Headset to
say Hello!”. The success of initiating a dialog was later measured by how many
people took the headset to talk to the robot. Figure 1 shows a picture of the
robot waiting for persons.

The baseline for attention was estimated by interviewing six persons that have
never been in the building before. They were sent to an office at the other end
of the corridor and had to pass by the robot, which didn’t show any behavior.
When they arrived at the office they were interviewed how they had perceived
the robot. It was interesting to hear that only one person had even noticed that
there was a robot. Afterward, ten more people passed by the robot, in this case
the robot reacted by playing a moderate honking sound. Four persons didn’t
notice the sound, six persons noticed the sound, three of them also interpreted
the sound as a reaction of the robot. The baseline can be used to compare
the following set of artificial experiments, where persons walked intentionally
past the robot to judge its actions with this set of ”uninformed” persons. It also
shows that the robot itself is not eye-catching at all, and thus the robot’s actions
become more important to establish a dialog.

In a second experiment, we instructed eleven persons to walk by the robot
and judge its actions. Each user had to do this five times, each iteration with
different combination of actions. Table 1 shows the results of the experiment. The
evaluated categories are ’eye-catching’ (does the action influence my attention?)
and ’suitable’ (do you feel you should start a dialog with the system?). The values
for eye-catching are scaled to 0 (no influence), 1 (medium), 2 (annoying). The
values for ’suitable’ are scaled to -1 (not suitable), 0 (a little bit), 1 (yes). The



A Robot Learns to Know People—First Contacts of a Robot 305

Fig. 1. A picture of the robot, waiting for persons to interact with

Table 1. Evaluation of different system actions

action eye-catching suitable
play sound 0.9 -0.3
turn head 0.9 -0.3
say ’hello’ 0.9 0.8
play sound then say ’hello’ 0.9 0.3
turn head then say ’hello’ 1.0 0.9

experiment shows that playing a simple sound is already judged as eye-catching.
It should be noted that turning the head also makes some noise induced by
the pan-tilt unit. Turning the head offers no increase in attention over playing a
simple sound, but leads to the highest attention rate and suitability for initiating
a dialog when combined with speech.

The final experiment combines actions to obtain the user’s attention and
actions to initiate a dialog with an interest classifier. The classifier was trained
only on 3D tracking data from the robot’s stereo camera. This differs from
other work that use a laser scanner to determine the position of persons, and
vision-based face tracking doesn’t seem to achieve the same reliability. Interest
classification thus had to be made robust against recognition and tracking errors.
We trained a multi-layer perceptron (MLP) with two hidden layers to classify ’0’
(not interested) or ’1’ (interested). The input features that led to the best results
are (i) distance between person and robot (ii) angle between straight robot view



306 H. Holzapfel et al.

(straight ahead) and person (iii) walking speed of person (iv) angle between
person’s walking direction and robot. The MLP was trained on 1000 samples of
the (partly) noisy input data that was provided by the person tracker and hand-
labeled interested/not-interested tags. The error rate was on average 14.6% on
unseen data, averaged over five runs with different clustering of training, cross-
evaluation and test-sets.

The final evaluation then aims to evaluate how well the robot was able to
initiate a dialog. It was conducted in 100 attempts distributed over five persons.
The experiment was artificial in a way that the persons redid the same exper-
iment a couple of times and decided for themselves if they would interact with
the robot. The absolute numbers are thus subjective to the willingness of the
persons to interact with the robot. The system chose among four modes. All
four modes use different actions to obtain the person’s attention, but share the
same spoken output once the person is recognized to be ’interested’. In the first
and second mode, the system first plays a sound when detecting the person and
moves the head towards the person. In the second mode the state transitions
don’t rely on a single continuous tracking in contrary to the first mode. In the
third mode, the system first plays a sound when detecting the person, moves the
head towards the person and then follows the person with the head, and also
doesn’t rely on a single continuous tracking. In the fourth mode, the system only
plays a sound when detecting the person, and requires a continuous track again.
In all modes, the system says ”hello, please come closer!” when the user is inter-
ested and then ”use the headset to say hello” when the user remains interested
to start a dialog.

During some of the iterations the users could not be tracked correctly, e.g.
due to changing light conditions. When the system failed to track the user no
interaction could be initiated. Table 2 (left columns) shows for each user first
the tracker-recognition rate and second the success rate to start a dialog. The
table shows a dependency of recognition rate to success rate, but also different
behavior by different users. Evaluated on a per system-action modes base 2
(right columns), the results show a smoother distribution of the success rates. It
also shows that the modes that were more forgiving regarding the person tracks
received higher success rates. Figure 2 shows a series of pictures taken by the
robot camera during a single interaction.

Table 2. Evaluation of the success rates per user (left three columns), and evaluation
of the success rates per mode (right three columns)

person no. recognition rate success rate mode no. recognition rate success rate
1 80% 35% 1 76% 42%
2 100% 85% 2 80% 55%
3 60% 30% 3 76% 58%
4 70% 15% 4 96% 45%
5 100% 50%



A Robot Learns to Know People—First Contacts of a Robot 307

Fig. 2. Series of pictures taken by the robot camera during a single interaction

Tracking of persons was realized with a state-of-the art multi-person tracker
developed within the CHIL-project1. It uses single 2D-images to detect face-
candidates with a haar-cascade based face-detector. 3D-information is obtained
for each face-candidate by using disparity information from matching the left
and right camera images, including a size estimation for head candidates. More
details on the implementation can be found in [13].

3 Recognizing Persons and Names

After initiating a dialog, it is the task of the system to identify the person using
snapshots of the person’s face and speech input to understand the person’s name.
To facilitate this task we use a face tracker and keep the person to communicate
with in the field of view. A face-ID recognizer computes hypotheses of all snapshots
and recognizes either a known or an unknown person. The spoken dialog part is
then to ask for the unknown person’s name or confirm the name of a known person.

Information about persons, i.e. video snapshots, pictures, voice input, their
ID, their names as string and phonetic representation, and information about
their latest interactions are stored in a MYSQL database. This database is filled
during interaction and is used by the face-ID recognizer to build a model of
known persons. It is also used by the speech recognizer and the dialog manager,
which read names and their phonetic representations to create grammars for
speech recognition, understanding and spoken output.
1 http://chil.server.de



308 H. Holzapfel et al.

3.1 Face Recognition

Face recognition first tries to determine whether the person in question is known
to the system or not. If the person hasn’t been stored in the database yet, the
robot asks his/her name to enroll the person’s face images to the face database
labeled with his/her person name.

The face recognition system uses a face sequence, which is provided by a face
tracker module, as input. It processes the frames to locate the eyes and then
aligns the face images according to the eye center coordinates. The features that
will be used for classification purposes are extracted from each face image by
using a local appearance-based face recognition approach [14]. In this feature
extraction approach, the input face image is divided into 8x8 pixel blocks, and
on each block discrete cosine transform (DCT) is performed. The most relevant
DCT features are extracted using the zig-zag scan and the obtained features
are fused either at the feature level or at the decision level for face recognition
[14]. The approach is extensively tested on the publicly available face databases
and compared with the other well known face recognition approaches. The ex-
perimental results showed that the proposed local appearance based approach
performs significantly better than the traditional face recognition approaches.
Moreover, this approach is tested on face recognition grand challenge (FRGC)
version 1 data set for face verification [15], and a recent version of it is tested
on FRGC version 2 data set for face recognition [16]. In both tasks the sys-
tem provided better and more stable results than the baseline face recognition
system. For example, in the conducted experiments on the FRGC version 2
data set, 96.8% correct recognition rate is obtained under controlled conditions
and 80.5% correct recognition rate is obtained under uncontrolled conditions. In
these experiments, there are 120 individuals in the database and each individual
has ten training and testing images. There is a time gap of approximately +six
months between the capturing time of the training and the test set images. The
approach is also tested under video-based face recognition evaluations and again
provided better results [17,18]. For details please see [14,15,16,17,18].

After extracting the feature vectors from each face image in the sequence,
they are compared with the ones in the database using a nearest neighborhood
classifier. Each frame’s distance scores are normalized with Min-Max normaliza-
tion method [19], and then these scores are fused over the sequence using the
sum rule [20]. The obtained highest match score is compared with a threshold
value to determine whether the person is known or unknown. If the similarity
score is above the threshold, the identity of the person is assigned with that of
the closest match. If the similarity match score is below the threshold, then the
person is classified as unknown. In this case, the robot asks for person’s name
and saves his/her face images to the database.

3.2 System Integration and Dialog Components

The dialog implementation is based on the Tapas dialog manager [21,22]. It uses a
language and domain independent dialogue engine with discourse representation



A Robot Learns to Know People—First Contacts of a Robot 309

and goal-based dialogue strategies. The dialogue engine follows the Ariadne di-
alogue manager [23].

In our communication centered scenario, the dialogue manager is the main
component to decide which actions to take. Its dialog strategy defines which
information to request or which actions the system should take. The dialogue
manager also comprises interpretation of multimodal input and is responsible
for storing information in the database. All components communicate over a
message-based architecture. Figure 3 shows a diagram visualizing the integration
of the recognition and understanding components into the dialogue system. The
speech recognizer sends an n-best list of parse trees to the NLU-component that
converts the parse trees to semantics, formulated as typed feature structures
(TFS). The input TFS is converted and interpreted in the dialogue context
and finally updates the discourse. Typed feature structures (TFS) also represent
referenced database objects and user model data.

The dialogue engine’s strategy matches discourse states to dialogue goals, each
layer in the discourse corresponds to an unfinished dialog goal.

All semantic concepts that are used to represent user input and discourse rep-
resentations are defined in an ontology which provides inheritance information
and relations between concepts. The dialogue engine is language and domain in-
dependent. Language specific parts are semantic grammars for natural language
understanding and generation templates for spoken output. Grammar resources
for input understanding are an extension to JSGF grammars that are extended
with inheritance rules and semantic construction rules. The grammars are shared
by the dialogue manager’s NLU parts and the speech recognizer.

For speech recognition we use the Janus speech recognizer (JRTK)[24] with
the Ibis single-pass decoder[25]. Ibis allows to decode with context-free gram-
mars (CFGs) instead of statistical n-gram language models, and offers a tighter
integration of the dialogue manager and Janus by being able to weight grammar
rules depending on the dialogue context [26].

Fig. 3. Flow diagram visualizing the integration of recognition and understanding com-
ponents, as well as face-ID into the dialogue system



310 H. Holzapfel et al.

To be able to operate in dynamic environments, i.e. especially to be able to
update and understand new names, the system ontology and grammars need to
be updated during runtime. In our system, we store person information such as
names in an external database. The database information is used by dynamic
(grammar) nodes that generate grammar parts from database information, and
are update during runtime [27]. These nodes implement a caching mechanism
and can be updated from the database when necessary, e.g. when new user names
are added.

The following example shows a spoken interaction between the system and a
user (table 3). The dialog shows a simple interaction where a person is asked
for his name. In case of an unknown name, the system asks a second time to
get a better phoneme hypothesis and then asks for the spelling. In the scenario
shown here, the dialog manager doesn’t try to confirm the spelling. In contrast,
the strategy doesn’t need to rely on the correct spelling (letters) but uses in the
first place a phonetic description, respectively a joint hypothesis as described in
section 3.3 that can be used to recognize the name again the next time.

Table 3. A typical dialog with the system

System Hi, please tell me your name
User My name is Stephan
System Can you please repeat this?
User I Said, my name is Stephan
System I haven’t heard this name before, please spell it.
User S T E P H A N
System Thank you. I will recognize you next time.

3.3 OOV Recognition

The above section describes how information about a person and especially the
name, can be updated in the system to be recognized with the next input.
However, to recognize a new name for the first time (i.e. previously unknown
name of a person) a different approach has to be taken. Firstly, the speech
recognizer needs to detect that the user has spoken a word which is not covered
by the grammar at this point and also not in the vocabulary. This is called
unknown-word or out-of-vocabulary (OOV) detection [28,29].

The Hidden Markov Model framework is currently the state of the art in
speech recognition. In this framework, the possible output is constrained to the
search vocabulary of the recognizer. The search vocabulary usually consists of
words with some additional words to cover also acoustic events like hesitations
(aem), lip-smack, silence and general noise events. For English we use the simple
definition of a word as everything that is written between two blanks. Therefore
if a word is spoken that is not in the search vocabulary the recognizer cannot
hypothesize it. Actually, the recognizer usual comes up with one or more words
that are the closest match to the spoken word. Because the recognizer combines
an acoustic model and a language model, in general the words of the closest



A Robot Learns to Know People—First Contacts of a Robot 311

match do not always sound similar to what was said, or otherwise sounds similar
but doesn’t fit in the context, or even a combination of both. Hetherington [30]
found that in English on average the number of errors a speech recognizer makes
per OOV word is larger than one (1.5 - 1.8).

The standard approach to address the Out Of Vocabulary (OOV) problem is
to increase the vocabulary size until the average number of OOV words becomes
small and the effect on the word error rate becomes small. However, the word
error rate does not measure the importance of words and it is obvious that
names are very important. If they are missing, it is very hard to understand
what is going on. If we would know all names we need in advance this would
be nice, but this is in general not the case. Unfortunately, adding all names
we know to the search vocabulary can harm the recognition also by increasing
the acoustic confusability or because of the low probability of the names, they
are still misrecognized. Nevertheless, most important, we just do not know all
names that can come up, especially if we think about names that do not exist
yet. Therefore we need a dynamic way to extend the vocabulary on demand.

With our approach, the model is extended with special ’words’ that represent
any unknown sets of words. In a dialog, missing information is acquired and the
search vocabulary and language model - here a CFG-grammar - is updated.

Similar to the pioneer work by Asadi [31] who was the first to address the
OOV problem in speech recognition, the possible location for OOV words is
constrained by a grammar. He investigated two extensions of the recognition
model to cover the acoustics of an unknown ship-name, a simple (flat-) acoustic
model that is trained on multiple phonemes at the same time and duplicated
this model to achieve a minimum length constrained. His findings inspired many
researchers to find good acoustic models, and is still the prototype of the current
state of the art.

The main goal is to extend the acoustic recognition model with generic words,
which give a lower probability compared to the correct word model if the word
is known, but are preferred if the word is unknown. In our approach we use
Head-Tail-Models (HT-Models) [29] which are a combination of the same pre-
cise acoustic models that is used to model the context dependent phonemes of
the known words and a generic phoneme model that is trained with multiple
phonemes similar to the flat model of Asadi. In [28] this approach was advanced
to define the head part of the HT-Models based on the search vocabulary of the
recognizer. This has lead to vocabulary optimized HT-Models that also fit very
well in a phonetic prefix tree or other search graph structure.

The basic idea of the HT-Models is that it is not possible to decide already
after the first phonemes if a word is out of vocabulary because usually the prefix
is shared by many known words. Therefore, the head part of the model has the
task to compete with the known words until the OOV word starts to diverge
from all known words, in which the average likelihood of the exact models gets
worse.

If the hypothesis of the speech recognizer indicates the presence of an unknown
word, this triggers a dialog with the user to verify and learn the new word.



312 H. Holzapfel et al.

To add a new word, it has to be included in the search vocabulary and the
language model. To extend the search vocabulary, we need a phonetic description
of the new word that represents the pronunciation. For the robot domain, this
pronunciation usually serves two purposes. One is to allow the pronunciation of
the word, e.g. if it is a name, to address a person and therefore it requires a high
quality for speech synthesis. The other purpose is to describe the word close
enough, that it is not confused with other known words and can be recognized
later again. However, for this purpose the chosen phoneme sequence can be less
than perfect. There are two sources from which a phoneme sequence can be
derived, from a spoken version of the word and from the written form using
grapheme to phoneme rules. To get the written form of the name to learn the
robot asks the user to spell it. The recognition accuracy for this task is about
90% using a statistical N-Gram model allowing only letters and some human
noises. On average, 60% of spelled words have no error, which is comparable
to the performance from Hild without vocabulary constrained [32]. Therefore,
it is useful to use the top N hypotheses to generate pronunciations. However,
generating phoneme sequences for names from graphemes is difficult, especially
if the names also come from different languages. In addition, each written form
can generate more than one possible pronunciation. So it is necessary to select a
small set of pronunciations that is closes to the spoken form. This can be done
by using the original utterance to cross-validate. If a reasonable pronunciation
was generated by the speech recognizer it replaces the OOV-symbol after the
hypothesis is redecoded.

We use the same approach to find a good phoneme sequence, by asking the user
to say the word again and do phoneme recognition. The phoneme recognition
accuracy is about 65%. Therefore the phoneme recognizer also creates an n-
best list of phoneme sequences which are merged with the list generated by the
spelling recognizer. Actually, the cross-validation is performed on the merged
set. The pronunciation that wins is used to extend the speech recognizer. If
the winning pronunciation was generated by grapheme to phoneme, then the
attached grapheme sequence is used, otherwise the first best grapheme sequence.
If none of the learned pronunciations appear in the redecoded utterance, this
indicates that the found phoneme sequences do not generalize well and therefore
are not suitable for recognition. This allows to ask the user for more help until
the name is learned or to give up learning the name.

3.4 The Dialog Manager

The dialog manager is based on the Tapas dialog framework [21,22] which is
described briefly above. Here, we want to describe the extensions that were
made to the framework to handle special requirements of the given task. We
use most of its existing functionality, such as language understanding, discourse
modeling, and knowledge representation, but implemented new dialog strategies
that lead in the direction of better social communication. Also the abilities to
handle multimodal information [33,27] was extended to handle new types of
visual perception with communicative meaning.



A Robot Learns to Know People—First Contacts of a Robot 313

The dialog manager uses a short-term memory for ’active’ information and
a database that represents long-term memory, similar to Kawamura et al. [34].
In addition, we maintain a standard discourse model to represent communica-
tive information. The short term memory is organized in chunks that contain
semantic information, which is, like all other semantic data structures in our
system, represented by typed feature structures (TFS). One part of the short-
term memory is a user (focus) model that represents information about cur-
rently available communication partner(s). The user model collects information
from different modalities about the user. The collected information is compared
against database entries where the information either matches a single person,
a set of persons, or allows creating a new entry.

The dialog manager applies a method that we call behavior selection. Each
behavior defines a specific operation mode, and defines how the dialog manager
interprets incoming events, how information is interpreted in the discourse, and
which actions are taken by the strategy. In the given task we have found the
following four states: idle, obtain attention, initiate conversation, conduct dialog.
The full state-transition model is shown in figure 4. The state model contains
a number of ’hard-coded’ transitions. These are the transitions to idle if the
system recognizes that the user leaves the conversation or after a timeout where
no communication happens. The other transitions are defined from any state
(i.e. idle, obtain attention and initiate conversation) to ’dialog’, if the user has
picked up conversation with the system. The remaining transitions are defined
by the classifier and selection mechanism described in section 2. The behavior
model also provides a basis for further extending the transitions influenced by
motivations and drives.

Fig. 4. State model with full transitions

4 Conclusions and Future Work

4.1 Conclusions

We have presented a first approach for a robot that learns to known persons
completely on its own. The main challenges addressed are obtaining attention



314 H. Holzapfel et al.

from the person, initiating a dialog, understanding new names input, building
a face-ID database and recognizing persons, integration and decision-taking in
dialog. The first experiments conducted show that such a system is possible with
current technology, and motivate further development.

We have presented experiments on proactive behavior to obtain the user’s
attention and to initiate a dialog, so the robot doesn’t need to wait for a person to
initiate the dialog. During these experiments the robot has learned a behavior to
obtain the attention and interest of persons walking by, without molesting other
people, and a successive series of actions to initiate a dialog with interested
persons.

We have further presented our speech recognizer with OOV recognition capa-
bilities, as well as phoneme recognition and word spelling, and the integration
of the face-ID recognizer as the main component for recognizing known and un-
known persons prior to initiating a dialog. The dialog manager combines and
coordinates the different components within the system. The different compo-
nents have been evaluated individually, future experiments will show how the
system operates in a real-world environment.

4.2 Future Works

In the future we plan to conduct further experiments with the fully integrated
system, and evaluate the system in different environments and on different robots
(especially our SFB588-robot Armar III) in out-of-the-lab scenarios. Further im-
provement is necessary for robust processing of the persons IDs - both vision and
speech recognition can produce errors, so the database might contain different
IDs for same person, or a mixture of different persons with the same ID. During
the previous experiments, the system did not distinguish which persons to talk
to. Selective dialogs will help in the future to remove this fortuity and to solve
these errors by explicitly talking to specific persons. Furthermore, robustness is-
sues and more elaborate methods to obtain better spelling - letters or phonemes -
will be considered. The approach further motivates to obtain other personal
information from the communication partners that exceed the name-only task.

Acknowledgments

This work was supported in part by the German Research Foundation (DFG) as
part of the Collaborative Research Center 588 ”Humanoid Robots - Learning and
Cooperating Multimodal Robots” and by the interACT research scholarship.

References

1. Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots.
Robotics and Autonomous Systems 42 (2003) 143–166

2. Breazeal, C.: Social Interactions in HRI: The Robot View. IEEE Transactions on
Man Cybernetics and Systems Vol. 34, Issue 2, (2004) 181–186



A Robot Learns to Know People—First Contacts of a Robot 315

3. Byers, Z., Dixon, M., Smart, W.D., Grimm, C.M.: Say Cheese!: Experiences with
a Robot Photographer. AI Magazine 25, Nr. 3 (2004) 37–46

4. Schulz, D., Burgard, W., Fox, D., Cremers, A.B.: Tracking Multiple Moving Targets
with a Mobile Robot using Particle Filters and Statistical Data Association. Int.
Conf. on Robotics and Automation (ICRA), IEEE Press, New Orleans (2001)

5. Lang, S., Kleinehagenbrock, M., Hohenner, S., Fritsch, J., Fink, G.A., Sagerer,
G.: Providing the basis for human-robot-interaction: A multi-modal attention sys-
tem for a mobile robot. Proceedings of the Int. Conf. on Multimodal Interfaces,
Vancouver, Canada, (2003) 28–35

6. Sidner, C., Kidd, C., Lee, C., Lesh, N.: Where to look: A study of human-robot
engagement. Proceedings of the International Conference on Intelligent User Inter-
faces (IUI), ACM, (2004) 78–84

7. Dusan, S., Flanagan, J.: Adaptive Dialog Based upon Multimodal Language Acqui-
sition. Proceedings of the Fourth Int. Conf. on Multimodal Interfaces, Pittsburgh,
PA, USA, (2002)

8. Dusan, S., Flanagan J.: A System for Multimodal Dialogue and Language Acquisi-
tion. Invited, The 2nd Romanian Academy Conference on Speech Technology and
Human-Computer Dialogue, Romanian Academy, Bucharest, Romania (2003)

9. Gorniak, P., Roy, D.: Probabilistic Grounding of Situated Speech using Plan Recog-
nition and Reference Resolution. Proceedings of the Seventh International Confer-
ence on Multimodal Interfaces (2005)

10. Chung, G., Seneff, S.: Integrating Speech with Keypad Input for Automatic Entry
of Spelling and Pronunciation of New Words. Proceedings of ICSLP’02, Denver,
CO, USA (2002) 2061–2064

11. Chung, G., Seneff, S., Wang, C., Hetherington I.: A Dynamic Vocabulary Spoken
Dialogue Interface. Proceedings of ICSLP’04, Jeju Island, Korea (2004)

12. Scharenborg, O., Seneff, S.: Two-pass strategy for handling OOVs in a large vo-
cabulary recognition task. Proceedings of Interspeech’05 (2005) 1669–1672

13. Schaa, C.: Proaktive Initiierung von Dialogen für humanoide Roboter. Diploma
Thesis, Universität Karlsruhe (2005)

14. Ekenel, H.K., Stiefelhagen, R.: Local Appearance based Face Recognition Using
Discrete Cosine Transform. Proceedings of the 13th European Signal Processing
Conference (EUSIPCO), Antalya, Turkey, (2005)

15. Ekenel, H.K., Stiefelhagen, R.: A Generic Face Representation Approach for Local
Appearance based Face Verification. Proceedings of the CVPR IEEE Workshop on
FRGC Experiments, San Diego, CA, USA (2005)

16. Ekenel, H.K., Stiefelhagen, R.: Analysis of Local Appearance-based Face Recog-
nition on FRGC 2.0 Database. Face Recognition Grand Challenge Workshop
(FRGC), Arlington, VA, USA (2006)

17. Ekenel, H.K., Pnevmatikakis, A.: Video-Based Face Recognition Evaluation in the
CHIL Project - Run 1. Proceedings of the 7th Intl. Conf. on Automatic Face and
Gesture Recognition (FG 2006), Southampton, UK (2006)

18. Ekenel, H.K., Jin, Q.: ISL Person Identification System in the CLEAR Evaluations.
Proceedings of the CLEAR Evaluation Workshop, Southampton, UK (2006)

19. R. Snelick, M. Indovina: Large Scale Evaluation of Multimodal Biometric Authen-
tication Using State-of-the-Art Systems. IEEE Trans. Pattern Anal. Mach. Intell.,
27(3) (2005) 450–455

20. J. Kittler, M. Hatef, R. Duin, J. Matas: On Combining Classifiers. IEEE Trans.
Pattern Anal. Mach. Intell., 20(3) (1998)

21. H. Holzapfel: Building multilingual spoken dialogue systems. Special issue of
Archives of Control Sciences, G.eds. Z. Vetulani, 4 (2005)



316 H. Holzapfel et al.

22. H. Holzapfel and P. Gieselmann: A Way Out of Dead End Situations in Dialogue
Systems for Human-Robot Interaction. Humanoids (2004)

23. M. Denecke: Rapid Prototyping for Spoken Dialogue Systems. Proc. of the 19th
Int. Conf. on Computational Linguistics (COLING), Taiwan (2002)

24. Finke, M., P. Geutner, H. Hild, T. Kemp, K. Ries, and M. Westphal: The karlsruhe-
verbmobil speech recognition engine. Proc. of ICASSP’97, Germany (1997)

25. Soltau, H., F. Metze, C. Fuegen, and A. Waibel: A one pass- decoder based on
polymorphic linguistic context assignment. Proceedings of ASRU’01, Madonna di
Campiglio, Trento, Italy (2001)

26. Fügen, C., Holzapfel, H., Waibel, A.: Tight coupling of speech recognition and
dialog management - dialog-context grammar weighting for speech recognition.
Proceedings of ICSLP’04, Jeju Island, Korea (2004)

27. Gieselmann, P., Holzapfel, H.: Multimodal Context Management within Intelligent
Rooms. Proceedings of the 10th International Conference on Speech and Computer
(SPECOM’05), Patras, Greece (2005)

28. Schaaf, T.: Erkennen und Lernen neuer Wörter. PhD Thesis, Universität Karlsruhe
(2004)

29. Schaaf, T.: Detection Of OOV Words Using Generalized Word Models And A
Semantic Class Language Model. Proceedings of Eurospeech (2001)

30. Hetherington, L.: A Characterization of the problem of new, out-of-vocabulary
words in continuous speech recognition and understanding. Ph.D.-Thesis, MIT
(1995)

31. Asadi, A., Schwartz, R., Makhoul, J.: Automatic detection of new words in a
large-vocabulary continuous speech recognition system. Proceedings of ICASSP’90,
IEEE Signal Processing Society, Albuquerque, New Mexico, USA (1990)

32. Hild, H.: Buchstabiererkennung mit neuronalen Netzen in Auskunftssystemen.
Ph.D.-Thesis, Universität Karlsruhe, Fakultät für Informatik, Shaker Verlag,
Aachen, ISBN 3-8265-3155-8, Karlsruhe, Germany (1997)

33. Holzapfel, H., Nickel, K., Stiefelhagen, R.: Implementation and Evaluation of a
Constraint-Based Multimodal Fusion System for Speech and 3D Pointing Gestures.
Proc. of the Int. Conf. on Multimodal Interfaces, State College, PA, USA (2004)

34. Kawamura, K.: Cognitive Approach to a Human Adaptive Robot Development.
Proceedings of the Int. Workshop on Robot and Human Interactive Communication
(RO-MAN), Nashville, TN, USA (2005)



Recombinant Rule Selection in Evolutionary
Algorithm for Fuzzy Path Planner of Robot

Soccer

Jong-Hwan Park1, Daniel Stonier2, Jong-Hwan Kim2, Byung-Ha Ahn1,
and Moon-Gu Jeon1

1 Dept. of Mechatronics, Gwangju Institute of Science and Technology, South Korea
{jhpark, bayhay, mgjeon}@gist.ac.kr

2 Dept. of Electrical Engineering and Computer Science, Korea Advanced Institute of
Science and Technology, South Korea

{stonierd, johkim}@vivaldi.kaist.ac.kr

Abstract. A rule selection scheme of evolutionary algorithm is pro-
posed to design fuzzy path planner for shooting ability in robot soccer.
The fuzzy logic is good for the system that works with ambiguous in-
formation. Evolutionary algorithm is employed to deal with difficulty
and tediousness in deriving fuzzy control rules. Generic evolutionary al-
gorithm, however, evaluate and select chromosomes which may include
inferior genes, and generate solutions with uncertainty. To ameliorate this
problem, we propose a recombinant rule selection method for gene level
selection, which grades genes at the same position in the chromosomes
and recombine new parent for next generation. The method was evalu-
ated with application of designing the fuzzy path planner, where each
fuzzy rule was encoded as a gene. Simulation and experimental results
showed the effectiveness and the applicability of the proposed method.

1 Introduction

To control fast mobile robots, a simple controller is required, which satisfies the
mechanical properties such as limitations of wheel speed or translational speed
of the robot center. Efficiency of trajectories and short navigation time are also
to be ensured. When we consider dribbling and kicking action in robot soccer,
robot posture (position and orientation) is of utmost importance. This the paper
aims to address the specific problem of robot posture at the target position with
emphasis on optimizing the navigational path of the robot.

In the early stages of robot soccer, traditional navigation methods were pop-
ular, where the option was to use the simple shortest paths, Dubins path [1] or
the composition of rotation, circular motion and straight motion for the path
planning step [2,3]. Recently research interest is being focused on the application
of fuzzy logic, evolutionary computation, reinforcement learning, unified naviga-
tion method, and so on [4,5,6,7]. The use of fuzzy control and behavior-based
architectures has been intensively researched in the field of robot navigation,

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 317–330, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



318 J.-H. Park et al.

because fuzzy logic is a mathematical formulation that copes with uncertainty
in information [4].

However a commonly encountered problem is that the derivation of fuzzy
control rules is often time consuming, difficult and relies to a great extent on
process experts. An automated way to design fuzzy systems is preferable. In
this regard, numerous researches have been dedicated to exploring the use of
evolutionary algorithms (EAs) to automate the knowledge acquisition base and
construct appropriate rules for a given task [8,9,10].

The evolutionary algorithms employed for this purpose use individuals with
a single chromosome whose component genes are characterized as rules for the
fuzzy control system. During the evolutionary process, a chromosome’s perfor-
mance is tested and the best chromosomes (individuals) are selected for repro-
duction. A common drawback to this approach is that during testing, some genes
(rules) may be seldomly used. These genes contribute negligibly to a global fit-
ness function and consequently the evolutionary process is to a high degree,
insensitive to them.

This may lead to a stunted development in the evolution of certain genes as
chromosomes are typically selected for reproduction with little dependance on
these seldomly used genes. In the worst case scenario it may completely halt
development as random processes begin to dominate very slowly evolving genes.
In these situations, chromosomes can evolve that have high fitness and perform
well for most objectives, but are below par for the few that require the seldomly
used genes which have evolved poorly. This causes a variance in the consistency
of a chromosome’s performance and brings forth uncertainty in the solutions for
the real-world problem. These issues are highlighted with an illustrative path
planning example in Section 2.

In this paper, a scheme is formulated that automatically determines the sen-
sitivity of various genes in contributing to the fittest solution. A rule-scoring
mechanism ranks genes with the same role (allele) according to their perfor-
mance under scenarios in which the gene is actually utilized. The parents for
the next generation are then formed on the basis of this ranking. The method is
then finally trialled on a fuzzy path planner for developing shooting strategies
for mobile soccer robots.

This paper is organized as follows. In Section 2 we highlight the difficulties
discussed with an illustrative example. Section 3 we present our proposed mech-
anisms for the evolutionary algorithm. The proposed scheme is analyzed in both
simulations and experiments for a robot soccer system in Section 4. Finally,
concluding remarks follow in Section 5.

2 Illustrative Example - Path Planning

In this example, the path planning problem for mobile robot navigation is inves-
tigated in detail. For this task a path must be planned from a large number of
starting points contained in a discretised map of its environment to a specified
target. The rule set to be learned is simply a table of desired heading values for



Recombinant Rule Selection in Evolutionary Algorithm 319

each point on the discretised map. This rule set is expected to provide a good so-
lution regardless of where the mobile robot is initially placed. This now becomes
a multi-objective optimization problem, where each objective is characterized
uniquely by the initial conditions, or posture, of the robot relative to the target.

Figure 1 illustrates three sample paths generated for a conventionally evolved
rule set that has been developed for 48 different initial conditions (starting pos-
tures). Here the path planner uses a map of its environment that has been
discretised by a fuzzy segmentation of the robot’s relative distance and angle
from the target. The fitness function used in the evolutionary algorithm is a
linear combination of sub-fitness functions for each starting posture and these
sub-fitness functions are designed so that the mobile robot approaches its target
from the left and in the shortest time possible. For path generation, we also
assume the robot uses a controller that adequately tracks the desired heading
angle determined by the evolved rule set - this allows us to focus on the path
planner.

-60 -40 -20 0 20 40 60

0

20

40

60

A

BC

target

Fig. 1. Comparison of a chromosome’s performance for multiple objectives

For this particular scenario, rules that are located in the lower right corner of
the figure are utilized by fewer starting postures than rules elsewhere on the map,
particularly those immediately to the left of the target. For a uniformly dispersed
set of starting postures and a fitness function that weights the performance of
each starting posture equally, evolution of these rules may be poor as discussed
earlier. This is evident in figure 1 which exhibits reasonably optimal paths for
B and C but a less than optimal path for A.

These characteristics are highlighted in figure 2 by analyzing the strength and
the frequency with which the fuzzy rules are triggered for A, B and C (note that
the graph displays the normalized contribution of each fuzzy rule for a particular
trajectory - the equations used to generate these firing ratios are presented in
Section 3).

For paths B and C fewer rules are triggered - there are many redundancies in
the rule space for a particular objective. The rules that initially affect movement
from A, rules r1 to r12 (shaded grey in figure 2), have evolved poorly since very
few starting postures require them. Subsequently these contribute negligibly to
the global fitness function. They do not provide a very good solution for A, but



320 J.-H. Park et al.

0

0.1

0.2

0

0.1

0.2

0

0.1

0.2

1 7 14 21 27 35 42 49

Fuzzy Rules

F
ir
in

g
 R

a
ti
o

A

B

C

Fig. 2. Firing ratios of fuzzy rules for A, B and C

they are kept since the fuzzy rule set (chromosome) in general performs very
well. Note that the evolved rule set here provides very good directions in the
immediate vicinity to the left of the target - this is to be expected as almost
every starting posture must utilize these rules for a successful approach. As a
result the global fitness function will be highly sensitive to these rules and they
evolve both rapidly and accurately.

In order to ensure improved evolution for these underdeveloped rules, a means
for determining their sensitivity in the evolutionary process is needed as well as
an alternate method ranking the performance of the chromosomes.

3 Proposed Evolutionary Technique

The conventional evolutionary algorithm used for the illustrative example uti-
lized a selection scheme based on a q-tournament. A (μ, λ)-evolution strat-
egy [11] was used and the elite chromosome saved by the elitist strategy [12].
Here, various modifications are proposed for the parent selection process that
assist in the evolution of optimal solutions for multi-objective path planning
problems.

3.1 Parent Selection Process

For a highly redundant problem, a gene (rule) may only be a necessary parameter
for the optimization of a small portion of the objectives. Consequently evolving
a gene for a more globally optimal solution by considering the performance of
objectives that do not utilize it is redundant. It introduces complexity and in
the course of an evolutionary algorithm, this will slow or halt its evolution.

The usual process of parent selection in an evolutionary algorithm is to find the
best chromosome for all genes when tested against all objectives simultaneously.
Our approach is to develop a unique scoring method that finds the highest ranked
chromosomes for each gene when tested against only the objectives that utilize
that gene. We then form the parents for the next generation from this pool of
chromosomes. Some important aspects of the process are as follows:



Recombinant Rule Selection in Evolutionary Algorithm 321

– The method reverts to a conventional parent selection process if there is no
redundancy.

– The final solution will converge more rapidly for systems with redundancy.
– Where evolution of particular genes comes to a halt, increasing the rate of

gene evolution with this approach may provide an improvement in the final
solution.

3.2 Implementation

Implementing this method in an evolutionary algorithm can be broken down
into the following steps:

– Determining and prioritizing an objective’s dependence on a particular gene.
– Scoring method to find a gene’s ‘best’ chromosome.
– Forming the parents for the next generation.

Gene-Dependence. Given a chromosome and an objective, an objective’s de-
pendence on a particular gene can be found by prioritizing the frequency and
strength with which the fuzzy rule is triggered as a solution is generated for
the chromosome-objective pair. This is a process which is also gradually learned
by the evolutionary algorithm as chromosomes evolve. Figure 2 illustrated the
concept in the introductory example.

For the navigation problem, path generation is broken down into path plan-
ning and path following operations that are performed at discrete time intervals.
At each step, the chromosome is used to determine the genes that are triggered
and generate a desired path to follow. The path following controller is used to
track the desired path until the next time interval at which point the process is
repeated. By combining these discrete steps, a path is generated.

The mechanism for determining the strength and frequency with which rules
are triggered along these paths is presented as follows. Discrete time steps are
defined by ti, i = 0 . . . n where t0 = 0 and tn is the elapsed time taken for the
path to terminate. At the i-th step on the path generated for the j-th objective
(starting posture) using the k-th chromosome, we collect the normalized firing
strength of the l-th gene, the weight of each rule for center average defuzzifier
[13], is defined by

NFSi,j,k,l =
wj,k,l∑
m wj,k,m

∣
∣
∣
∣
ti

, (1)

where wj,k,l is the strength with which the l-th gene (fuzzy rule) is triggered.
The total firing strength of the l-th gene over the whole path is then

FSj,k,l =
n∑

i=1

NFSi,j,k,l. (2)

The firing ratio for the l-th gene on this path is simply the firing strength
normalized for the firing strength of all genes triggered on this path. This is
defined by



322 J.-H. Park et al.

FRj,k,l =
FSj,k,l∑
m FSj,k,m

. (3)

It is the firing ratio of each gene for a particular chromosome and starting posture
that can be seen graphically represented on the bar graph in figure 2.

Scoring Method. The next step is to rank chromosomes for each gene in a
prioritized order to find a gene’s ‘best’ chromosome. For this we define the Rule
Score of the k-th chromosome for the l-th gene with

RSk,l =
∑

j

(FRj,k,l × CWj,k), (4)

where CWj,k is the count of wins for the k-th chromosome by q-tournament for
the j-th objective (starting posture). Note that if an objective does not have any
dependence on a gene, it will not contribute to the rule score for that gene since
its firing ratio will be zero. It also works more effectively than a simple test for
each chromosome as it weights results according to the objective’s dependence
on the gene.

Forming the Parents. The final step is to assemble the parents (μ parents)
for the next generation from the existing group of highly ranked individuals (λ
chromosomes). The first parent is selected by the elitist strategy as the fittest
individual for the global solution. The remainder are formed by recombining
chromosomes at the gene level. The genes for a chromosome are ranked on the
basis of their score amongst others in the same column (allele) of chromosomes.
The genes of the first rank in each position, h, are collected into the first chro-
mosome, R′

1. The genes of the second rank form a second chromosome, R′
2 and

so forth. A single instance of this process is illustrated in figure 3. From these, an
extended family of parent chromosomes is formed that disperses itself through
the search space in a manner that allows solutions for seldomly triggered genes
(rules) to be more readily found.

r
1,49

r
1,hr

1,2
r
1,1 … …… …

r
i,49

r
i,hr

i,2
r
i,1 … …

r
λ,49

r
λ,hr

λ,2
r
λ,1 … …

… … … …

… …

r
e,49

r
e,hr

e,2
r
e,1 … …

r
5,49

r
15,h

r
12,2

r
3,1

r
9,49

r
11,h

r
14,2

r
18,1

…

…

…

…

…

…

…

…

… …

… …

λ Chromosomes:

Selection:

μ Parents:

Ranked by RS

Rearrange genes

Evaluate RS

R1:

Ri:

R
λ
:

R'1:

R'i:

R'
μ
:

Fig. 3. Reproduction with recombinant rule selection



Recombinant Rule Selection in Evolutionary Algorithm 323

4 Experiments

4.1 Robot Soccer System

To demonstrate the effectiveness and applicability of the proposed method,
a fuzzy evolutionary system was developed for enhancing the performance of
mobile robot behaviours in the MIROSOT soccer system [14,15,16]. Behaviours
for the Mirosot system that can be enhanced with the approach presented in
this paper include passing, defending and shooting. In this experiment the path
planning approach is applied for improving the speed, reliability and consistency
of the shooting behaviour. Localisation of the robots in the MIROSOT system
is achieved via an overhead vision system connected to an external PC that de-
velops strategies and controls which are then transmitted to the robots on the
playing field.

4.2 Fuzzy System

The fuzzy system that was developed is comprised of two modules connected in
hierarchical fashion, a fuzzy path planner and a fuzzy path-following controller
[17,18]. This is illustrated in figure 4. The fuzzy path planner is responsible
for generating the desired paths from the initial posture to the ball position
that are optimized for various shooting performance criteria and also satisfy any
necessary constraints. It is again assumed the fuzzy controller can adequately
track the desired heading angle so that the focus remains on the fuzzy path
planner.

The fuzzy planner is designed to accept fuzzified information describing the
mobile robot’s relative position with respect to the ball (ρ, ϕ) as inputs for
a set of fuzzy rules that determine the appropriate desired heading angle θD

corresponding to each input. These fuzzy inputs are used to discretise the map

θ

ρ

ϕ

Ball

Robot

X

Y

X

G
o
a
l

v

(a)

Destination

Fuzzy Planner

Fuzzy Path 

Following 

Controller

Robot

Fuzzy Navigation 

System

v
L
, v

R

ϕ
ρ

θ

x,y

V
is

io
n
 S

y
s
te

m

(b)

Fig. 4. Overall structure of fuzzy navigation system (a) Localisation variables (b) Fuzzy
navigation system



324 J.-H. Park et al.

of the robot’s environment and the rules are used to generate paths consisting
of singleton values for the direction at sampled positions for a trajectory to the
ball, like a univector field [19,20].

4.3 The Evolutionary Algorithm

An evolutionary algorithm with the modifications presented in Section 3 is used
to learn the fuzzy rules. The algorithm uses a (μ, λ)-strategy where the number of
parents (μ) and offspring (λ) is set to 10 and 20, respectively. The q-tournament
selects 10 competitors in each round.

Each chromosome in the algorithm represents an entire fuzzy rule set and each
gene represents an individual fuzzy rule mapping the inputs (ρ, ϕ) to the output
θD. Inputs are constrained to 0cm ≤ ρ ≤ 80cm and 0o ≤ ϕ ≤ 180o (there exists
a geometrical symmetry for the simple case containing no obstacles). A typical
chromosome is illustrated in Table 1 where each input variable is spanned by
seven membership functions (here the fuzzified ρ values range from very near to
very far and the angle ϕ from very small to very large). Subsequently, there are
in total 49 genes within the chromosome for this experiment.

Table 1. Rules for desired heading angle

θD ρ

ϕ VN AN SN MD SF AF VF
VS 11 144 119 125 76 74 206
LS 36 121 151 189 213 200 170
SS 315 169 231 234 203 239 242
MD 335 199 212 255 238 254 237
SL 153 268 269 267 301.7 276 295
AL 296 305 315 334 346.1 276 350
VL 6 344 351 349 332.3 335 331

Solutions to the evolutionary algorithm are required to be successful whilst
minimizing for elapsed time tl and vertical drift/orientation errors, ye, θe. The
x-axis represents the desired heading direction at the target. These variables
are considered to be the necessary performance criteria for shooting and are
illustrated in figure 5.

θe X

Y

ye

tl

Fig. 5. Performance factors for shooting ability



Recombinant Rule Selection in Evolutionary Algorithm 325

To evaluate the fitness of the i-th chromosome for the j -th objective (initial
posture), the performance index (PI) is defined as

PIi,j = Kt · tl + Kp · |θe| + Kd · y2
e , (5)

where Kt, Kp and Kd are positive constance. The performance index of the i-th
chromosome for a group, Σ of objectives is simply defined as the cumulative sum
of its performance indexes for each objective:

PIi =
∑

j∈Σ

PIi,j (6)

This is used in both the q-tournament and as a tool to evaluate the fitness of
chromosomes once the algorithm has completed. The coefficients were manually
tuned and finalized at Kt = 10, Kp = 1 and Kd = 3. These provided almost
equal weightings for each criteria in the performance index - that is Kt · tl ≈
Kp · |θe| ≈ Kd · y2

e for nearby solutions in this experiment.
Forty-eight points (initial postures) were selected for an exercise in which all

the genes were used at least once. The evolutionary algorithm was evolved for
3,000 generations in both the conventional and proposed rule-scoring methods.
To compare results, the evolutionary algorithm was applied using both conven-
tional and proposed scoring methodologies 62 times each. Performance index
values were recorded during evolution and utilized to calculate statistical data.
For the statistical analysis, consistency of the results was also defined as an
important measure of the reliability of the evolved chromosome as a solution.
For this, the coefficient of variation (CV) was used since it provides a degree
of invariance for comparing solutions with different initial postures and travel
lengths. The coefficient of variation for a variable x is defined as

CV (x) =
Std(x)

Mean(x)
× 100 (%). (7)

Table 2 shows the simulation results for each method based on the overall
performance index of the evolved rule set. Clearly the proposed method per-
forms better with a smaller mean value and has a standard deviation less than
the one-third that of the conventional method. It also shows a decrease in the
co-efficient of variation of the PI for individual starting postures (figure 6) and
exhibits faster convergence (figure 7) than the conventional method. Moreover,
the coefficient of variation was reduced by about 50% on average, and the coeffi-
cient of variation of the performance index for each objective (training point or

Table 2. Converged global performance index

Algorithm Mean Std
Conventional selection 434.39 45.88
Recombinant selection 382.51 15.22



326 J.-H. Park et al.

1 5 10 15 20 25 30 35 40 45 48
0

20

40

60

80

100

120

Conventional

Recombinant
selection

48 points for training

C
oe

ffi
ci

en
ts

 o
f v

ar
ia

tio
n 

(%
)

Fig. 6. Coefficient of variation of PI for individual training points

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

Generations

A
ve

ra
ge

 o
f P

er
fo

rm
an

ce
 In

de
x

Conventional
Recombinant

selection

340

360

380

400

420

440

460

480

500

D
is

tr
ib

ut
io

n 
of

 C
on

ve
rg

ed
 P

er
fo

rm
an

ce
 In

de
x

(a) (b)

Fig. 7. Comparison of global performance index (a) Convergence (b) Variance

initial condition) also improved evenly (figure 6). These results imply a tendency
for the proposed algorithm to consistently find more optimal solutions than the
conventional method.

4.4 Experiment Results

The applicability of the proposed method was physically tested on a mobile robot
where an improvement in shooting ability was desired. From the 62 fuzzy rule
sets generated by both conventional and proposed methods, 27 were randomly
selected for testing of the robot’s shooting ability. The robot was initialized from
five distinct postures with various pre-specified facings. To compensate for vari-
ation from the noise caused by physical disturbances and errors, the robot was
tested five times for each combination of starting posture and applied rule set.

The elapsed traveling time and the direction of the ball in motion were used
to evaluate path effectiveness. The direction of the ball (shooting angle error)
was used to represent the effects of both vertical drift and heading angle errors



Recombinant Rule Selection in Evolutionary Algorithm 327

as these were individually difficult to measure reliably. A statistical analysis is
shown in Tables 3 and 4. The results indicate the proposed rule-scoring method
consistently generates paths that have shorter elapsed times with significantly
reduced variation (CV). These satisfied the original goals (speed and improved
reliability of shooting) whilst maintaining a heading angle error reasonable for
the dimensions of the field. Improved heading angle error can be achieved by a
suitable tuning of the weightings in the Performance Index function.

Table 3. Elapsed time for shooting in experiments (sec)

Start Conventional selection Recombinant selection
point Mean Std CV(%) Mean Std CV(%)

A 2.60 0.33 12.61 2.33 0.14 6.00
B 2.23 0.28 12.71 2.00 0.11 5.60
C 1.93 0.28 14.46 1.71 0.10 5.60
D 1.73 0.23 13.63 1.60 0.06 3.61
E 1.77 0.22 12.45 1.59 0.07 4.09

Average 2.05 0.27 13.14 1.85 0.09 4.98

Table 4. Shooting Angle error for shooting in experiments (deg)

Start Conventional selection Recombinant selection
point Mean Std CV(%) Mean Std CV(%)

A 5.11 3.72 72.78 6.46 4.24 65.75
B 4.67 3.45 73.98 6.26 3.01 48.19
C 4.41 3.19 72.19 6.20 3.46 55.78
D 4.68 3.13 66.74 6.11 3.23 52.87
E 3.95 2.62 66.24 5.28 3.66 69.21

Average 4.36 3.22 70.20 6.06 3.52 58.8

Figure 8 illustrates several shooting solutions generated by both conventional
and proposed methods. Figure 8(a) shows several trajectories generated by an ap-
plied rule set derived using the conventional method. As discussed earlier, chro-
mosomes that performed well (relatively low PI) were selected to evolve the pop-
ulation. These often had genes (rules) that were triggered for a select few paths on
which they performed poorly. Consequently evolution of these genes did not occur
and the final rules needed for these poorly evolved points remained inferior. This
is clearly seen in the figure where paths generated for D and E provide successful
solutions, however the remaining paths for A, B and C deviate undesirably.

The proposed rule-scoring method discriminates among genes using the
strength of the rules. This eliminates inferior rules and allows for uniform evo-
lution of rules across the entire input space. This is highlighted in figure 8(b).

It is worth noting that this procedure can be used to derive the fuzzy path
following controller (refer to figure 4) by determining wheel velocities given a
relative heading angle error and the radial distance from the target as the inputs.



328 J.-H. Park et al.

-60 -40 -20 0 20 40 60 80 100
-10

0

10

20

30

40

50

60

70

x(cm)

y
(
c
m
)

B

A

CD

E

Robot
Ball

(a) conventional method

-60 -40 -20 0 20 40 60 80 100
-10

0

10

20

30

40

50

60

70

A

B

CD

E

x(cm)

y
(
c
m
)

Robot
Ball

(b) Proposed method

Fig. 8. Experiment of robot shooting

This problem exhibits the same properties as the path planner and the proposed
algorithm can assist in learning of the seldomly triggered rules.

4.5 Experimental Conclusions

One of the most important features of the path planning problem demonstrated
here is that there exists an optimal solution that is shared by all objectives (con-
sider two points in line with the target - the rule set for the rearmost point is
equally valid for the closer point). This property is typical of such path planning
problems in general. In these situations, the rule-scoring method helps identify
chromosomes that perform well for seldomly triggered rules and the gene recom-
bination used to form parents for the next generation more aggressively directs
the solution to progress towards the common goal.

For more complex nonlinear optimization problems with opposing objectives,
a pareto optimal solution must be found and an alternative process may be
needed for forming the non-elite parents of the next generation. Stochastic con-
tributions may be necessary to ensure gene recombination do not consistently
and adversely affect each other as they strive toward differing goals. This avenue
is currently being explored by the authors and is open to further research.



Recombinant Rule Selection in Evolutionary Algorithm 329

5 Conclusion

Conventional evolutionary algorithms for multi-objective problems evolve genes
by ranking chromosomes for the reproduction process based on their performance
on all objectives simultaneously. This often results in poorly evolved rules for
those rules which are needed by only a few objectives. In this paper, new meth-
ods are proposed for the mobile robot path planning problem which prioritize
objectives that utilize a particular gene and rank chromosomes against these
objectives on a gene by gene basis. The reproduction process then selects the
information from the best of each of these groups and rearranges the rules for
reproducing the parents of the next generation. This enables the seldomly trig-
gered rules to evolve at a much higher rate. Experimental results on a path
planning problem in robot soccer verifies these results. Solutions evolved with
the proposed method were faster and most importantly they exhibited a higher
consistency of performance than was possible using a conventional method.

Acknowledgement

This research is supported by the Ubiquitous Computing and Network (UCN)
Project, the Ministry of Information and Communication (MIC) 21st Century
Frontier R&D Program in Korea.

References

1. L. E. Dubins: On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. Amer. J. Math.,
79, (1957) 497-516

2. J.-H. Kim, H.-S. Shim, H.-S. Kim, M.-J. Jung, I.-H. Choi, and J.-O. Kim: A co-
operative multi-agent system and its real time application to robot soccer. IEEE
Proc. Int. Conf. Robot. Automat. Albuquerque, NM, (1997)638-643

3. W.-M. Shen et al: Building integrated mobile robots for soccer competition. IEEE
Proc. Int. Conf. Robot. Automat. vol. 3, Leuven, Belgium, May, (1998) 2613-2618

4. M.-J. Jung H. S. Kim, H. S. Shim, and J. H. Kim: Fuzzy rule extraction for
shooting action controller of soccer robot. IEEE Proc. Int. Conf. Fuzzy Syst. 1,
(1999) 556-561

5. D.-H. Kim et al.: Vector field based path planning and Petri-net based role selec-
tion mechanism with Q-learning for the soccer robot system. Intell. Automat. Soft
Comput. In: J.-H. Kim et al. (eds)., 6, (2000) 75-87

6. W.-G. Han et al.: GA based on-line path planning of mobile robots playing soccer
games. Proc. IEEE 40th Midwest Symp. Circuit Syst. Sacramento, CA, Sept.(1998)
522-525

7. J.-H. Kim et al.: Path planning and role selection mechanism for soccer robots.
Proc. IEEE Int. Conf. Robot. Automat. Vol. 4. Leuven, Belgium, (1998) 3216-
3221

8. F. Hoffmann: Evolutionary Algorithms for Fuzzy Control System Design. Proceed-
ings of the IEEE, 89 (9) (2001) 1318–1333.



330 J.-H. Park et al.

9. S.-J. Kang, C.-H. Woo, H.-S. Hwang, K.B. Woo: Evolutionary design of fuzzy
rule base for nonlinear system modeling and control. IEEE Transactions on Fuzzy
Systems. 8 (1) (2000), 37 – 45.

10. D.-H. Park, A. Kandel: Genetic-Based New Fuzzy Resoning Models with Applica-
tion to Fuzzy Control. IEEE Transactions on Sys., Man, and Cybernetics. 24(1)
(1994), 39–47

11. H.-P. Schwefel: Numerical Optimization of Computer Models. UK:John Wiley,
Chichester, (1981)

12. D. E. Goldberg: Genetic Alogrithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley (1989)

13. Li-Xin Wang: A Course in Fuzzy Systems and Control. Prentice Hall(Int. ed.).
(1997) 110

14. J.-H. Kim, (ed): Robotics and Autonomous Systems. Special Issue: First Micro-
Robot World Cup Soccer Tournament, MiroSot, 21(2)(1997).

15. J.-M. Yang and J-H. Kim: Sliding Mode Control for Trajectory Tracking of Non-
holonomic Wheeled Mobile Robots. IEEE Transactions on Robotics and Automa-
tion. 15(3) (1999), 578-587.

16. J.-H. Kim, D.-H. Kim, Y.-J. Kim, K.-T. Seow, Soccer Robotics (Springer Tracts
in Advanced Robotics), Springer Verlag, 3540218599, 326, 2004.

17. M.-J. Jung, H.-S. Shim, H.-S. Kim, J.-H. Kim: Fuzzy rule extraction for shooting
action controller of soccer robot. Fuzzy Systems Conference Proceedings. 1 (1999),
556 – 561.

18. M.-S. Lee, M.-J. Jung, J.-H. Kim: Evolutionary programming-based fuzzy logic
path planner and follower for mobile robots. Proceedings of the 2000 Congress on
Evolutionary Computation. 1 (2000), 139 – 144

19. Y.-J. Kim, J.-H. Kim and D.-S. Kim: Evolutionary Programming-Based Uni-vector
Field Navigation Method for Fast Mobile Robots. IEEE Trans. on Systems Man
and Cybernetics - Part B - Cybernetics. 31(3) (2001) 450–458

20. M. Mizumoto: Fuzzy controls by fuzzy sington-type resoning method. Proc. of the
Fifth IFSA world congress. Seoul, Korea, (1993) 945-948



A Framework for Quasi-exact Optimization Using
Relaxed Best-First Search

Rüdiger Ebendt� and Rolf Drechsler

Institute of Computer Science, University of Bremen
28359 Bremen, Germany

{ebendt,drechsle}@informatik.uni-bremen.de

Abstract. In this paper, a framework for previous and new quasi-exact exten-
sions of the A∗-algorithm is presented. In contrast to previous approaches, the
new methods guarantee to expand every state at most once if guided by a so-
called monotone heuristic. By that, they account more effectively for aspects of
run time while still guaranteeing that the cost of the solution will not exceed the
optimal cost by a certain factor. First a general upper bound for this factor is de-

rived. This bound is (1 + ε)� N
2 � where N is (an upper bound on) the maximum

depth of the search. Next, we look at specific instances of the algorithm class de-
scribed by our framework. For one of the new methods a linear, i.e. much tighter
upper bound is obtained: the cost of the solution will not exceed the optimal cost
by a factor greater than 1 + ε. The parameter ε ≥ 0 can be chosen by the user.
Within a range of reasonable choices for ε, all new methods allow the user to trade
off run time for solution quality. Besides that, the formal framework also serves
for a comparison in terms of other algorithmic properties of interest, e.g. in terms
of a necessary condition for state expansion.

The results of experiments targeting the minimization of Binary Decision Di-
agrams (BDDs) demonstrate large reductions in run time when compared to the
best known exact approach for BDD minimization and to previous relaxation
methods. Moreover, the quality of the obtained solutions is often much better
than the quality guaranteed by the theory.

1 Introduction

In many real-world problems, dominating effort is spent on search, often involving
huge state spaces. Therefore in the past many researchers have proposed heuristic and
exact search algorithms. The drawbacks of blind methods are overcome by heuristic
search methods to guide the search on a state space: with every state q a quantity h(q)
is associated which allows to search in the direction of the goal states. A prominent
guided search algorithm is the well-known A∗-algorithm [6]. A∗ can be devised to find
the minimum cost path in a graph describing the possible transitions from one state
to another, i.e. in a state space graph. In its original form, A∗ guarantees to find an
optimal solution and it is used in many fields of application, including diverse areas
such as robotics [7] and logic synthesis [5]. Hereby, two components of information
� Current address: German Aerospace Center, Member of the Helmholtz Association, In-

stitute of Transport Research, Rutherfordstrasse 2, 12489 Berlin, Germany, Email: ruedi-
ger.ebendt@dlr.de

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 331–345, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



332 R. Ebendt and R. Drechsler

are used with every state q: one is g(q), which is the information about the cost of the
path already covered. The other is the heuristic function h(q), an estimate of the least
cost of the remaining part. The first information, g(q), adds a breadth-first component
to the search while the second, h(q), can devise the search to delve deeper into certain
paths when they seem promising, i.e. it adds a depth-first component to the search. A∗

searches the state space by systematically expanding the most promising state (i.e., a
best-first search is performed) and generating states until a match to a goal condition
is found. For this purpose a prioritized list OPEN orders the search within the states
that are eligible for expansion, and closed states are maintained on a list CLOSED. If
certain requirements to the heuristic function guiding the search are met, A∗ will find a
minimum cost path to a goal state [6].

A serious drawback of A∗ is that, in the worst case, the run time as well as the amount
of memory required to store OPEN and CLOSED is exponential in the depth of the
search. This has led to several extensions of A∗, some of which are memory bounded,
e.g. [15], while others mainly target to reduce the run time by allowing for bounded
sub-optimality, i.e. they provide A∗-based quasi-exact approximation methods.

E.g., the idea of Dynamic Weighting (A∗
DW) [10] is to start with a high weighting

of the depth first component at the beginning of the search (as this may help to find
a promising direction more quickly) and then dynamically weigh the depth-first com-
ponent less heavily as the search goes deeper (as this may help to prevent too early,
i.e. premature termination). In contrast to that, in [9], the Traveling Salesman Problem
(TSP) has been tackled by an extension of A∗ called A∗

ε which relaxes the selection con-
dition of A∗. This condition triggers the choice of the next state for expansion (i.e. for
generating all its successors). More recently, a conceptually much simpler idea has been
used in [16]: here, the depth-first component is constantly inflated by a certain factor
1 + ε, ε > 0. It has also been embedded in a so-called Anytime Repairing variant of A∗

(ARA∗) in [7]. This idea is referred to as A∗
↑ throughout the paper.

The contributions of the paper are twofold: On the one hand, a formal analysis aims
at deeper theoretical insight and, based on the formal results, new improved methods
are devised. On the other, the new methods are compared with each other and with pre-
vious methods during an experimental evaluation. First, a formal framework provides
a unifying view that describes all of the above mentioned approaches. With the help
of this framework, all methods can be identified as special instances of one generic
relaxation algorithm. This is of particular interest since the ideas of the methods may
seem very different at first glance. As a next step, several interesting properties that are
shared among all considered methods can be directly deduced. These are the so-called
ε-admissibility and a necessary condition for state expansion: the first guarantees that
the deviation of the solution must be bounded by 1 + ε, the second one is important for
efficiency considerations.

When searching in large state spaces, a potential source of performance loss is the
repeated consideration of the same states, i.e. so-called reopenings. The following ques-
tion is of interest when considering the efficiency of A∗

↑ or A∗
DW: how do the meth-

ods behave in the case that a so-called monotone heuristic function guides the search?
And: in this case, can there exist states that are reopened and expanded (again and
again)? This question is answered in the paper, extending the scope of results given



A Framework for Quasi-exact Optimization Using Relaxed Best-First Search 333

in [4]: here, the effect of relaxing the selection condition of A∗ on potential reopenings
of states has been considered.

This is of particular interest since the original A∗-algorithm is known to expand
every distinct state at most once in the case of a monotone heuristic function [6]. If the
methods for relaxed best-first search cannot guarantee the same, performance can be
degraded. In a worst-case scenario, the overhead as caused by reopened states could
even exceed the savings provided by the relaxation.

In this paper it is shown by examples that both discussed relaxation methods in
fact can show the above (unwanted) behavior. As a remedy, new revised versions of
the methods are suggested that expand each state at most once. The property of ε-
admissibility must be reconsidered for the new approaches. Using the formal frame-
work, first a general upper bound for the deviation of the solution from the optimum is
derived. This upper bound is exponential in the depth of the search. Second, again by
use of the framework, the bound can be tightened to an only linear bound in the case
of a revised version of A∗

↑. This result confirms a previous result for this special case,
stated in a formal analysis of ARA∗ [7]. As a benefit from the provided formal frame-
work, our proof is kept considerably shorter and more concise, further strengthening
the framework. Experimental results give a comparison of all methods with each other
and with previous methods, showing the efficiency of the suggested approaches.

2 Search by A∗

A g- and an h-component associated with every state q are combined to the so-called
evaluation function ϕ(q) = g(q) + h(q). The minimal cost of a path from s to q is
denoted g∗(q). The minimal cost of a path from q to a goal state is denoted h∗(q). To
guarantee a minimal solution cost, it must be h(q) ≤ h∗(q) [6]. In this case, h is called
admissible. A∗ maintains a prioritized queue OPEN which is ordered with respect to
increasing values ϕ(q). In the beginning, this queue only contains the initial state s.
At each step, a state q with a minimal ϕ-value is expanded, dequeued and put on a list
called CLOSED. During expansion, the successor states of q are generated and inserted
into the queue OPEN according to their ϕ-values. For this, the values g and h of the
successor states are computed dynamically. The component g accumulates transition
costs as the sum of the cost c(r, r′) of all transitions r −→ r′ occurring on the cheapest
known path to q. If a path between q and q′ is optimal, its cost is denoted by k(q, q′).

A successor state q′ might be generated a second time if q′ has more than one pre-
decessor state. If a cheaper path from s to q′ is found in this case, g(q′) is updated. If q
was on the list CLOSED, q is reopened, i.e. it is put on OPEN again. By that, states get
a second chance during the search for the minimum cost path when new information
about them is available. The algorithm terminates if the next state to expand is a goal
state t. The estimate h(t) = h∗(t) must be zero. In this case, the path found up to t is
of minimal cost, denoted C∗, and it is reported as solution.

A heuristic function h is said to be monotone, if h(q) ≤ k(q, q′) + h(q′) for all de-
scendants q′ of q. In [6] it is shown that, in the case of a monotone heuristic function h,
A∗ finds optimal paths to all expanded nodes. This ensures that every state is expanded
at most once.



334 R. Ebendt and R. Drechsler

3 Previous Work

To keep the paper self-contained, next a brief review of previous quasi-exact approaches
based on A∗ follows. All approaches relax some of the conditions used by A∗ to derive
a faster algorithm with a provable upper bound on sub-optimality. The ideas, how this
is done, vary significantly and in the following three methods are distinguished.

3.1 Dynamic Weighting

The idea of Dynamic Weighting (A∗
DW) [10] is to relax the fixed weighting of the

breadth- and the depth-first component (i.e., of g and h) used by the additive evalu-
ation function ϕ(q) = g(q) + h(q) of A∗. Algorithm A∗

DW starts with a high weighting
of the depth first component at the beginning of the search (as this may help to find a
promising direction more quickly) and then dynamically weighs the depth-first com-
ponent less heavily as the search goes deeper, preventing premature termination. For
ε > 0, the evaluation function used by A∗

DW is

ϕDW(q) = g(q) + h(q) + ε ·
[

1 − d(q)
N

]

· h(q)

where d(q) denotes the depth of the node representing state q in the search graph, and
N denotes the depth of a goal node, respectively. Often, all paths to a node in this graph
are of equal length, and thus this depth is the number of edges on such a path. If N is
not known in advance, an upper bound or an estimate can be used instead.

It can be shown that A∗
DW is ε-admissible, i.e. it always finds a solution whose cost

does not exceed the optimal cost by more than a factor of 1 + ε.

3.2 Constant Inflation

More recently, a much simpler idea has been considered in [16] and also within the
framework of a so-called Anytime Repairing A∗-algorithm (ARA∗) [7]: the constant
inflation of the depth-first component by a fixed factor 1 + ε (ε > 0). That is, the
evaluation function

ϕ↑(q) = g(q) + (1 + ε) · h(q)

is used instead of the original evalution function ϕ of A∗.
In comparison to A∗

DW, no other precautions against premature termination are taken
here. However, it can be shown that bounding the inflation of h by the factor 1+ε already
suffices to guarantee the same bounded sub-optimality as with A∗

DW. This method is
referred to as A∗

↑ and it is further analyzed in Section 4.

3.3 Search Effort Estimates

Experiments have shown the following: during execution of an A∗-algorithm, a large
amount of time is spent discriminating among many paths whose cost do not vary sig-
nificantly from each other. To assure optimality of the final solution, A∗ spends a dis-
proportionately long time to select the best of roughly equal candidate states as next



A Framework for Quasi-exact Optimization Using Relaxed Best-First Search 335

state to expand. This behavior raises the idea of equipping A∗ with the capability of
terminating earlier with a sub-optimal but otherwise perfectly acceptable solution path.

In [9] an extension of A∗ called A∗
ε has been proposed, that addresses the above prob-

lem by adding a second queue FOCAL which maintains a subset of the states on OPEN.
This subset is the set of those states whose cost does not deviate from the minimum cost
of a state on OPEN by a factor greater than 1 + ε. Formally,

FOCAL = {q | ϕ(q) ≤ (1 + ε) · min
r∈OPEN

ϕ(r)}). (1)

The operation of A∗
ε is identical to that of A∗ except that A∗

ε selects a state q from
FOCAL with minimal value hF (q). The function hF is a second heuristic estimating the
computational effort required to complete the search. By this the nature of hF differs
significantly from that of h since h estimates the solution cost of the remaining path
whereas hF estimates the remaining time needed to find this solution. The choice of
hF puts a high degree of freedom to the approach which will be subject to further
investigation in Section 4. In [9], it has been suggested to use

a) hF = h or
b) to integrate properties of the subgraph emanating from a given state q.

The motivation behind a) is that minimizing the h-component for the states in the set
FOCAL means preferring the states with the highest g-component. Such states are least
estimative and a fast completion of the best known path to such a state, i.e., a fast
termination can be expected. As a concrete suggestion for b), hF (q) = N − d(q) will
be used later in the experimental evaluation (see Section 7): to minimize N − d(q)
means to prefer the deeper states in the search graph. This is done with the motivation
that the subgraphs emanating from them tend to be comparatively small and thus the
same can be expected for the remaining run time. Also A∗

ε is ε-admissible, i.e. we have
the upper bound 1 + ε on sub-optimality.

In [4], an example was given that shows that Algorithm A∗
ε has a serious drawback:

even when guided by a monotone heuristic h, A∗
ε can be doomed to reopen many states.

This is a source of degradation in run time and contrasts to the behavior of classical A∗

which expands every state at most once [6].
The following remedy has been suggested in [4]: instead of maintaining closed states

on a list CLOSED, states are simply marked as closed after expansion and removal from
OPEN. If the method finds a better path for a state q marked as closed, this better path is
ignored, i.e. g(q) is not updated. Otherwise, method Approx follows the usual operation
of A∗

ε . Although ε-admissibility can not be guaranteed for Approx in general, still the
following result holds [4].

Theorem 1. Let N be the maximal length of a solution path. When driven by a mono-
tone heuristic, algorithm Approx always finds a solution not exceeding the optimal cost

by a factor greater than (1 + ε)�N
2 �.

For smaller values of ε, this bound still is useful. Note that during practical operation,
Approx usually is far off this worst-case, i.e. it may yield much better results.



336 R. Ebendt and R. Drechsler

4 Unifying View

In this section, a framework provides a unifying view of the three approaches of the
previous section. They are characterized as special instances of one generic relaxation
algorithm. As the first step, the next result states a condition that guarantees the confor-
mity of an evaluation function with the strategy described in Section 3.2.

Theorem 2. Let us consider a state space together with an evaluation function ϕ =
g + h and let FOCAL be defined as before in Equation (1). For all states q of the state
space, let ϕ⇑(q) = (1 + ε) · ϕ(q) and let ϕ(q) ≤ ϕ′(q) ≤ ϕ⇑(q). Let

q̂ = arg min
q∈OPEN

ϕ′(q).1

Then it must be that q̂ ∈ FOCAL.

Proof. See the Appendix.

In Section 3.3 it has been mentioned that the choice of the heuristic function hF which
estimates the remaining search effort leaves a considerable degree of freedom to the
method. Next we go one step further, clarifying that the discussed relaxation methods
can be rediscovered simply by respective choices for hF . In detail, Theorem 2 allows to
characterize A∗

DW and A∗
↑ as two instantiations of the generic method given in Section

3.3. In this, Pearl and Kims’ proposal proves to be more than just another relaxation
algorithm: the next result shows that it also serves as a framework for the relaxation of
best-first search in general.

Theorem 3. Let us consider the graph representation of a state space and let g, h be
the breadth-first and the depth-first component of a relaxed best-first search algorithm,
respectively. For all states q of the state space, let ϕ↑(q) = g(q) + (1 + ε) · h(q), let
d(q) denote the depth of the node representing q, let N denote the depth of a goal node,

and let ϕDW = g(q) + h(q) + ε ·
[
1 − d(q)

N

]
· h(q). Further, assume that identical

tie-breaking rules are used in the algorithms. Then we have:

– The operation of Algorithm A∗
DW is identical to that of A∗

ε with search estimate
hF = ϕDW, and

– The operation of Algorithm A∗
↑ is identical to that of A∗

ε with search estimate
hF = ϕ↑.

Proof. See the Appendix.

In brief, the result states that the choice of the next node to expand as performed by
A∗

DW and A∗
↑ conforms to the relaxation strategy of A∗

ε as stated in Equation (1). Notice
that, despite the fact that A∗

DW and A∗
↑ are formulated by use of evaluation functions

that are different from that of A∗ or A∗
ε (i.e., different from ϕ = g + h), they provably

1 Throughout the paper, the following notation is used: arg minx∈S f(x) returns one x ∈ S that
minimizes the function f .



A Framework for Quasi-exact Optimization Using Relaxed Best-First Search 337

act as if ϕ = g + h would be used. This holds since they are also guided by the second
heuristic hF . It is precisely this function hF that then must be replaced by the respective
alternative evaluation function.

From now on, it will be distinguished between the new framework provided by A∗
ε

with this result and instantiations as one particular algorithm, e.g. as the algorithm
proposed in [9]. Hence, it is denoted A∗

ε , hF = . . . whenever a particular algorithm
is addressed, the introduced framework itself however is referred to as A∗

ε , i.e. without
giving a particular second heuristic function hF .

The result of Theorem 3 allows to transfer any provable result for A∗
ε directly to A∗

DW
and A∗

↑, as the two methods are special instances of A∗
ε . This results in the following

theorem which considers under what conditions states are eligible for state expansion.
It generalizes a known result in [9] and is helpful for efficiency considerations and
comparisons.

Theorem 4. Consider a state space with cost function g. Let us assume an admissible
heuristic function h, and consider an optimal path s, . . . , q′ where q′ is the first state
that currently also appears on OPEN during a (relaxed) best-first search algorithm A.
Further, let ϕ = g + h.

– A = A∗: ϕ(q) ≤ C∗ for all states expanded.
– A = A∗

ε : ϕ(q) ≤ (1 + ε) · C∗ for all states expanded.
– A = A∗

↑: for all states expanded, either ϕ(q) ≤ C∗ holds or we have ϕ(q) > C∗

and ϕ(q) ≤ UB where for h(q) ∈ [0, h(q′)[, UB ranges from (1 + ε) · C∗ down to,
but not including C∗.

– A = A∗
DW: for all states expanded, either ϕ(q) ≤ C∗ holds or we have ϕ(q) > C∗

and ϕ(q) ≤ UB where for h(q) ∈
[
0, N−d(q′)

N−d(q) · h(q′)
[
, UB ranges from (1+ε)·C∗

down to, but not including C∗.

Proof. See the Appendix.

This result indicates the following: Both for A∗
↑ and for A∗

DW, states q with C∗ <
ϕ(q) ≤ (1 + ε) · C∗ can only be eligible to expansion if their ϕ-value also stays below
the stated upper bound UB. To achieve the value (1 + ε) · C∗ for UB, the h-value of
the eligible state must be much less than h(q′) and/or the eligible state must reside at a
significantly deeper level in the search graph.

This contrasts to the situation in A∗
ε where no such additional restriction holds for

the eligibility for expansion. Moreover, in many AI problem domains typically a lot
more of breadth-fist search than depth-first search will be performed by an exact or
quasi-exact best-first search method (this also holds for BDD minimization). As a con-
sequence, during a typical algorithm run, often states with equal or similar h-values
and/or depth are expanded in a series of consecutive expansions. Thus, eligible states
that really are far enough “below” q′ (in terms of the h-value and/or depth) to be chosen
for expansion, are rare. Hence, for an eligible state q, ϕ(q) ≤ C∗ often is much more
typical.

Consequently it can be expected that the total number of states expanded during run
of A∗

↑ and A∗
DW typically is at least no more than that for A∗ (and often much less). This



338 R. Ebendt and R. Drechsler

0 2

3 0

4 0

1 1

2 0
0

1

1

1

1

2

s

q’

q

q

q’’

(a) An example for
a sub-optimal path
to an expanded
state.

1

1

2

last

2

last

s

q’

q

q’

q

t

q

q  =t

(b) Worst-case scenario with
⌊

N
2

⌋
deviations,

even and odd case.

Fig. 1. Examples for the behavior with and without reopenings

number is expected to still remain this low in the situations where A∗
ε using hF = h or

hF = N − d(q) runs into problems.

5 Monotonicity

In Section 1 the following question has been raised: provided that Algorithm A =
A∗

↑, A
∗
DW is guided by a monotone heuristic h, can states be reopened?

Next we give an example which shows that such states may exist for both choices
of A. In Fig. 1(a), the left datum annotated at a node is the g-value, the right one is the
h-value. Edges depict state transitions and the cost of the transition is annotated at each
edge. The heuristic function h is monotone since the series of ϕ-values is monotonic
non-decreasing along every path in the state space graph. In the case A = A∗

↑, let ε = 3
2 .

In the case A = A∗
DW, let the anticipated depth of a goal state N = 3 and ε = 9

4 . It is
easily verified that q is reopened for these choices.

To further analyze the operation of A∗
↑, the following new result states an upper

bound for the deviation of g from g∗ for an expanded state.

Lemma 1. Let ε > 0. The paths to expanded states found by an A∗
↑-algorithm that

is guided by a monotone heuristic may be sub-optimal. However, this deviation is
bounded, in detail:

∀q ∈ CLOSED : g(q) − g∗(q) ≤ ε · k(q′, q) (2)

where q′ is the first state on OPEN on an optimal path s, . . . , q′, . . . , q at the time of
expansion of q.

Proof. See the Appendix.



A Framework for Quasi-exact Optimization Using Relaxed Best-First Search 339

6 Preventing to Reopen States

The problem discussed in Section 5 can be addressed by the same strategy as for Approx

(see Section 3). The respective approaches that do not reopen any state will be called
Approx

↑ and Approx
DW , respectively. As a consequence of Theorem 3, the exponential upper

bound of Theorem 1 for Approx also holds for Approx
↑ and Approx

DW . However, in the case of
Approx

↑ , the upper bound can be strongly tightened:

Theorem 5. When driven by a monotone heuristic, algorithm Approx
↑ always finds a

solution not exceeding the optimal cost by a factor greater than 1 + ε.

Proof. See the Appendix.

Using the introduced framework, the proof is considerably more concise than that of a
similar previous result in [7]. Basically, the proof follows a similar flow of arguments
as the proof for ε-admissibility of A∗

ε [9], except that, due to the modified behavior of
the algorithm, we have to account for the following consequence. In Approx

↑ , the g-value
of states on an optimum path may irrecoverably be affected by deviations from the op-
timum g∗: by Lemma 1, states might be expanded while the best known path to them is
still sub-optimal and, due to the modified behavior of Approx

↑ , no reopening/improvement
can take place later. This effect increases the maximum deviation on an optimal path.
To what extent, is determined in the worst-case scenario: let N be the maximal length
of a path. Since always two nodes must be involved for a deviation of a g-value to occur
(see the proof of Lemma 1), the deviation of a g-value from g∗ increases at most

⌊
N
2

⌋

times, see Fig. 1(b): dashed transition are “late” transitions, i.e. the state they lead to
has already been opened along a sub-optimal path different from p. State qlast is the last
state that has been prematurely opened along such a sideway and thus is affected by a
deviation of the g-value. We have qlast = q�N

2 �, regardless whether n is odd or even

(see Fig. 1(b)). The proof then is an induction on i = 1, . . . ,
⌊

N
2

⌋
.

7 Experimental Results

To evaluate the algorithms described by our framework, respective methods targeting
the quasi-exact minimization of reduced ordered Binary Decision Diagrams (BDDs)
have been implemented. BDDs were introduced in [2] and are well known from hard-
ware verification and logic synthesis. They are Directed Acyclic Graphs (DAGs) rep-
resenting Boolean functions where a Shannon decomposition in a Boolean variable is
carried out with each node. Reduced diagrams are considered, derived by removing
redundant nodes and merging isomorphic subgraphs. For more details see [2].

Heuristic BDD minimization is done by thumb rules to reorder the Boolean variables,
e.g. [11]. The results are often far away from the optimum. For some applications,
this is a significant drawback. Especially in applications like logic synthesis targeting
multiplexor design styles, e.g. [8, 14], it is important to determine a good ordering,
since a reduction in the number of BDD nodes directly transfers to a smaller chip area.
For this reason, there is a high demand for faster exact or approximate methods with
bounded sub-optimality.



340 R. Ebendt and R. Drechsler

It has been shown that it is NP-complete to decide whether the number of nodes of
a given BDD can be improved by variable reordering [1]. Moreover, the existence of
a polynomial algorithm to approximate the optimal variable ordering of BDDs implies
P = NP [12]. For this reason, as with exact methods, the run time of an approximate
method to improve the variable ordering is expected to be much higher than that of
heuristics.

All experimental results have been carried out on a machine with a Dual Xeon pro-
cessor running at 3.2 GHz, with a main memory of 12 GByte and a run time limit of
3,600 CPU seconds. The memory requirement of all evaluated methods never exceeds
500 MBytes, hence no memory limit had to be applied. Three previous methods have
been implemented: the first is called Approx as described in [4], the second is called Dy-
namic Weighting (A∗

DW) [10]. An idea of [16] and of the so-called ARA∗ algorithm [7],
namely the constant inflation of the heuristic function as described in Section 3.2, has
been implemented as the approach A∗

↑. Moreover, revised versions of the mentioned
methods have been implemented as the corresponding methods Approx

DW , a revised ver-
sion of A∗

DW, and as the method Approx
↑ , a revised version of A∗

↑. To put up a testing
environment, all algorithms have been integrated into the CUDD package [13]. By this
it is guaranteed that they run in the same system environment. In the experiments, the
methods have been applied to BDDs built from a set of standard benchmark circuits of
LGSynth93 [3]. The implementation of all algorithms is based on the implementation
of the A∗-based approach to exact BDD minimization of [5].

In a first series of experiments A∗ and Approx have been compared to Approx
↑ . The

results are depicted in Fig. 2. In contrast to the behavior of Approx, the run time of Approx
↑

is monotonically decreasing. This confirms the result of Theorem 4 and shows that also
the revised version of A∗

↑, i.e. Approx
↑ , behaves according to the upper bounds stated in

Theorem 4. For Approx
↑ , the degradation of solution quality first increases slowly (e.g.,

for ε ∈ [0, 0.5]) and later ascends more steeply with increasing ε. When comparing the
run time of Approx

↑ to that of A∗, Fig. 3 illustrates how the gain in run time grows mono-
tonically with the degree of relaxation (the curve in the space spanned by the percentual
gain and the degree ε is a convex hyperbola). At the higher relaxation degree of ε = 3
the reduction in run time is already more than 90% on average. Taking into account that
Approx

↑ also has much more convenient theoretical properties than Approx (in particular,
Approx

↑ guarantees a much tighter upper bound for the deviation of the solution from the
optimum), Approx

↑ proves to be clearly superior to Approx both from a theoretical and a
practical standpoint. As Fig. 4 shows, high speed-ups can be obtained at an only small
degradation of solution quality. In fact the average degradation is considerably much
less than the worst-case degradation by a factor of 1 + ε as guaranteed by the theory.
Operating at 40% of relaxation, on average the results are only 0.5% larger than the
optimum BDD size. When using a degree of relaxation of 100%, i.e. when theoretically
allowing for solutions that are twice the minimum size, the average degradation still is
only 4.3%. Motivated by these positive results, also very high relaxations have been ex-
amined: Fig. 4 shows that the average degradation stays below 20% for a wide range of
high relaxation degrees, it first reaches 20.5% for ε = 20. Moreover, the resulting plot
forms a convex hyperbola where the steepness decreases with ascending degree of re-
laxation. In a second series of experiments, Approx

↑ has been compared to Approx
DW in terms



A Framework for Quasi-exact Optimization Using Relaxed Best-First Search 341

of quality and run time. Due to space limitation, the results of these experiments have
not been included. Summarized, Approx

DW has significantly higher run times than Approx
↑

(20-30%) while at the same time slightly better results can be obtained, i.e. there is a
significant penalty for small improvements in quality (below 3%) provided by Approx

DW .

0

1000

2000

3000

4000

5000

6000

3350 3400 3450 3500 3550 3600 3650 3700 3750

to
ta

lr
un

ti
m

e
in

se
co

nd
s

total number of BDD nodes

A∗

♦ ♦
Approx+

+
+

+

+

+

+

+
+

A
pprox
↑�

�

�
�
�

�

�

� �

�

Fig. 2. Trading off run time for solution quality with Approx and A
pprox
↑

8 Conclusions

A new framework for previous and new extensions of the A∗-algorithm has been pre-
sented. It describes a class of generic algorithms that tolerate provably bounded worst-
case increases in solution cost. This is achieved by different ideas to relax some of the
conditions of A∗, and happens in favour of smaller search efforts required to complete
the algorithm. The user has full control of the degree of relaxation and can trade off run
time for quality of the solution.

Besides the formal contributions of the paper, two new methods are derived from
the framework. They guarantee to expand every state at most once if provided with a
so-called monotone heuristic. This can largely reduce the run time and also strengthens
the robustness of the approaches.

Experimental results are reported that clearly demonstrate the efficiency of the pre-
sented new approaches. A comparison to the best known exact BDD minimization al-
gorithm (which is based on the generic A∗ algorithm) and to a previous relaxed method
shows reductions in run time by up to one order of magnitude. This is obtained while
the degradation of solution quality is provably bounded and stays below a few percents
on average.



342 R. Ebendt and R. Drechsler

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0 0.5 1 1.5 2 2.5 3

ga
in

(%
)

degree of relaxation (ε)

♦
♦

♦

♦
♦

♦

♦

♦
♦

Fig. 3. Degree of relaxation vs. gain in run time of A
pprox
↑

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20

lo
ss

(%
)

degree of relaxation (ε)

♦♦♦♦♦♦

♦

♦
♦

♦

♦

♦

Fig. 4. Degree of relaxation vs. loss in quality of A
pprox
↑



A Framework for Quasi-exact Optimization Using Relaxed Best-First Search 343

References

1. B. Bollig and I. Wegener. Improving the variable ordering of OBDDs in NP-complete. IEEE
Trans. on Comp., 45(9):993–1002, 1996.

2. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans. on
Comp., 35(8):677–691, 1986.

3. Collaborative Benchmarking Laboratory. 1993 LGSynth Benchmarks. North Carolina State
University, Department of Computer Science, 1993.

4. R. Ebendt and R. Drechsler. Quasi-exact BDD minimization using relaxed best-first search.
In IEEE Annual Symp. on VLSI, pages 59–64, 2005.

5. R. Ebendt, W. Günther, and R. Drechsler. Combining ordered-best first search with branch
and bound for exact BDD minimization. IEEE Trans. on CAD, 24(10):1515–1529, 2005.

6. P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of mini-
mum cost paths. IEEE Trans. Syst. Sci. Cybern., 2:100–107, 1968.

7. M. Likhachev, G. Gordon, and S. Thrun. ARA∗: Formal analysis. Technical report of the
Carnegie Mellon University, 2003.

8. L. Macchiarulo, L. Benini, and E. Macii. On-the-fly layout generation for PTL macrocells.
In Design, Automation and Test in Europe, pages 546–551, 2001.

9. J. Pearl and J. Kim. Studies in semi-admissible heuristics. IEEE Trans. on Pattern Analysis
and Machine Intelligence, PAMI-4(4):392–399, 1982.

10. I. Pohl. The avoidance of (relative) catastrophe, heuristic competence, genuine dynamic
weighting and computational issues in heuristic problem solving. In Proc. 3rd Int. Joint
Conf. on Artificial Intelligence., pages 12–17, 1973.

11. R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In Int’l Conf.
on CAD, pages 42–47, 1993.

12. D. Sieling. Nonapproximability of OBDD minimization. Information and Computation,
172(2):103–138, 2002.

13. F. Somenzi. CU Decision Diagram Package Release 2.4.0. University of Colorado at Boul-
der, 2004.

14. C. Yang and M. Ciesielski. BDS: a BDD-based logic optimization system. IEEE Trans. on
CAD, 21(7):866–876, 2002.

15. R. Zhou and E. Hansen. Memory-bounded A∗ graph search. In 15th Int. Florida Artificial
Intelligence Research Soc. Conf., pages 203–209, 2002.

16. R. Zhou and E. Hansen. Multiple sequence alignment using A∗. In Proc. of the National
Conference on Artificial Intelligence, Student Abstract, 2002.

Appendix

Proof of Theorem 2. Let q0 = argminq∈OPEN ϕ(q). We have

ϕ(q̂) ≤ ϕ′(q̂) (3)

≤ ϕ′(q0) (4)

≤ ϕ⇑(q0) (5)

= (1 + ε) · ϕ(q0)
= (1 + ε) · min

q∈OPEN
ϕ(q). (6)



344 R. Ebendt and R. Drechsler

Equation (3) holds by the definition of ϕ′ in the assumption. Next, Equation (4) holds
by definition of q̂. Then, Equation (5) holds again with the definition of ϕ′. By Equation
(6), q̂ ∈ FOCAL already follows. �	
Proof of Theorem 3. First it is easily verified that ϕ(q) ≤ ϕDW (q) ≤ ϕ↑(q) ≤ ϕ⇑(q)
for all states q of the considered state space. By Theorem 2, the respective next state
expanded by A∗

↑ and A∗
DW must be contained in FOCAL. Second, A∗

ε chooses a state qF

from FOCAL with qF = argminq∈FOCAL hF (q). As hF is assigned to the respective
evaluation function, and since the same respective tie-breaking rule is used, A∗

ε must
act exactly as A∗

DW and A∗
↑, respectively. �	

Proof of Theorem 4. The results for the cases A = A∗, A∗
ε are already well-known

[6,9]. They are merely opposed here to the new results. Because q is expanded before q′,

ϕ↑(q) = ϕ(q) + ε · h(q) ≤ ϕ↑(q′) (7)

in the case A = A↑, and

ϕDW(q) = ϕ(q) + ε ·
[

1 − d(q)
N

]

· h(q) ≤ ϕDW(q′) (8)

in the case of A = ADW. To derive the stated upper bounds for A = A↑, ADW, it now
suffices to separate ϕ(q) on the left side of the two equations (7) and (8), respectively.
The upper bounds range within the stated intervals since

– the term h(q′) can be bounded by h∗(q′) because of the admissibility of h, and
– since an optimal path is considered, we have g(q′) = g∗(q′) and finally ϕ∗(q′) ≤

C∗ . �	

Proof of Lemma 1. Consider an optimal path p from s to q. Let q′ be the first state on
p = s, . . . , q′, . . . , q which also appears on OPEN2. Assume that q 
= q′ and assume that
q is selected for expansion. Since q is expanded before q′, we have ϕ↑(q) ≤ ϕ↑(q′),
and, with the optimality of p and the monotonicity of h

g(q) + (1 + ε) · h(q) ≤ g(q′) + (1 + ε) · h(q′)
≤ g(q′) + (1 + ε) · (k(q′, q) + h(q))
= g∗(q′) + k(q′, q) + ε · k(q′, q) + (1 + ε) · h(q)
= g∗(q) + ε · k(q′, q) + (1 + ε) · h(q).

Hence, g(q) ≤ g∗(q) + ε · k(q′, q) and Equation (2) follows. �	
Proof of Theorem 5. Let N be the maximal length of a search path. The proof uses

g(qi) ≤ g(q′i) + (1 + ε) · k(q′i, qi) for 1 ≤ i ≤
⌊

N

2

⌋

. (9)

2 Note that it is straightforward to prove that, during operation of the algorithm, at least one state
on p must be an open state. The proof is an induction on the length of p which is started by s,
the very first state occuring both on OPEN and p.



A Framework for Quasi-exact Optimization Using Relaxed Best-First Search 345

This follows from the admissibility of h and the fact that qi is expanded before q′i: the
latter implies ϕ↑(qi) ≤ ϕ↑(q′i), thus g(qi) + (1 + ε) · h(qi) ≤ g(q′i) + (1 + ε) · h(q′i) ≤
g(q′i) + (1 + ε) · [k(q′i, qi) + h(qi)] and Equation (9) follows. We show

g(qi) − q∗(qi) ≤ ε ·
i∑

l=1

k(q′l, ql) for 1 ≤ i ≤
⌊

N

2

⌋

(10)

by induction on i. Then, by the optimality of the considered path, the deviation of
g(qlast) = g(q�N

2 �) must be less or equal than ε · C∗ and finally also the deviation of

the computed solution from the optimum can not be greater than 1 + ε.
To start the induction, let i = 1: the claim of Equation (10) holds by Lemma 1. The

lemma can be applied here since the operation of A∗
↑ and Approx

↑ is identical before the
first state has been reopened. Now let us assume that Equation (10) holds for i. For the
step i −→ i + 1 we derive

g(qi+1) − g∗(qi+1) ≤ g(q′i+1) + (1 + ε) · k(q′i+1, qi+1) − g∗(qi+1) (11)

= k(qi, q
′
i+1)+(1 + ε)· k(q′i+1, qi+1) + g(qi) − g∗(qi+1)(12)

= ε · k(q′i+1, qi+1) + g(qi) − g∗(qi) (13)

= ε · k(q′i+1, qi+1) + ε ·
i∑

l=1

k(q′l, ql) (14)

= ε

i+1∑

l=1

k(q′l, ql).

Equation (11) holds by Equation (9). Since q′i+1 is traversed via qi on an optimal path,
g(q′i+1) = k(qi, q

′
i+1) + g(qi). Thus, Equation (12) follows. We have g∗(qi+1) =

g∗(qi)+k(qi, q
′
i+1)+k(q′i+1, qi+1) since an optimal path is considered. Thus, Equation

(13) follows. Using the induction hypothesis, i.e. Equation (10), next Equation (14) is
obtained, completing the proof. �	



Gray Box Robustness Testing of Rule Systems

Joachim Baumeister, Jürgen Bregenzer, and Frank Puppe

Department of Computer Science
University of Würzburg, 97074 Würzburg, Germany
Phone: +49 931 888-6740; Fax: +49 931 888-6732

{baumeister,bregenzer,puppe}@informatik.uni-wuerzburg.de

Abstract. Due to their simple and intuitive manner rules are often used for the
implementation of intelligent systems. Besides general methods for the verifica-
tion and validation of rule systems there exists only little research on the evalu-
ation of their robustness with respect to faulty user inputs or partially incorrect
rules. This paper introduces a gray box approach for testing the robustness of rule
systems, thus including a preceding analysis of the utilized inputs and the applica-
tion of background knowledge. The practicability of the approach is demonstrated
by a case study.

1 Introduction

Validation and verification are two key issues for evaluating the real world practicability
of intelligent systems. In the past, an extensive amount of research was undertaken for
the evaluation of rule-based representations of such systems, e.g., [1,2,3]. Alternative
knowledge representations like Bayesian networks are also suitable and often more
precise for the formalization of domain knowledge. However, using rules is still very
popular due to their compact and intuitive manner, e.g., currently the ontology layer of
the Semantic Web stack is extended by an appropriate rule representation [4].

Whereas the correct behavior of rule bases (validation) and the correct implementa-
tion of rules bases (verification) have been investigated in much detail, there is only little
research available when such systems are applied in noisy environments. According to
Groot et al. [5] we call such an evaluation task robustness testing. In the context of in-
telligence enriched services on the web, e.g. Semantic Web applications, the robustness
is very important, since these services are usually provided for general users.

Robustness testing evaluates the correct behavior of the system with respect to either
incorrectly entered input or partially occurring errors in the rule base. Incorrect inputs
are the result of user mistakes that can be explained by uncertainty or ignorance of the
user when providing the answer to a particular question. A partially incorrect rule base
is often the result of a biased or incomplete knowledge acquisition. With robustness
testing such effects can be simulated by so called torture tests, that gradually decrease
the quality of the inputs or the quality of the available knowledge. In general, torture
tests are an extension of the well-known empirical testing method. With empirical test-
ing a collection of previously solved and correct test cases is given to the knowledge
system as input. Then, for each test case the solutions derived by the knowledge system
are compared with the solutions already stored in the cases. Typically, measures like

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 346–360, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Gray Box Robustness Testing of Rule Systems 347

the precision, the recall or the E-measure are used for a quantitative comparison of the
two solution sets. Torture tests run a series of empirical tests by degrading the quality
of settings, e.g. by gradually degrading the input quality or by gradually worsening the
quality of the rule base.

In this paper, we present torture tests as a gray box testing technique thus extend-
ing the basic work by Groot et al. [5]. We motivate that a sound implementation of
robustness testing should be preceded by a thorough analysis of the applied case base
and rule base, respectively. With the results of such an analysis additional background
knowledge can be applied yielding a reliable simulation of typical system usages.

The rest of the paper is organized as follows: In Section 2 we introduce the basic
notions for defining a rule-based system and sketch general measures for evaluating and
comparing the robustness of intelligent systems. In Section 3 we introduce the phases
of a degradation study, i.e., the implementation of a robustness testing. Furthermore,
we define measures for the analysis of the case base and rule base, and we discuss
implications that can be drawn from such an analysis. A case study with two rule-based
consultation systems is presented in Section 4. The paper is concluded with a summary
and an outlook in Section 5.

2 Measuring the Quality of Rule-Based Systems

We consider a rule-based system as a consultation system, i.e., a system deriving suit-
able solutions for a stated problem description. More formally, the input and output of
such a system is defined as follows.

Definition 1 (Input and Output). Let Ωobs be the (universal) set of observable input
values. A tuple f ∈ Ωobs with f = a : v is often called a finding, where a ∈ Ωa is an
input (attribute) and v ∈ dom(a) is an assignable value.

Let Ωsol be the universe set of (boolean) output values, i.e. solutions derivable by
the knowledge system.

A problem solving session is represented by a case containing the specified input and
(derived) output values for a given problem.

Definition 2 (Case). A case c is defined as a tuple c=(OBS c,SOL c ), where OBS c ⊆
Ωobs is the problem description of the case, i.e., the observed input values of the case
c; OBS c = {f1,c, . . . , fn,c}. The set SOL c ⊆ Ωsol contains the (derived) outputs of
case c.

A test suite is a collection of (test) cases that is used for robustness testing. In general,
we define a quality function for a given knowledge system and a collection of test cases
as follows.

Definition 3 (Rule Base). A rule r is defined as r : cr → ar , where the rule condition
cr is a combination of conjunctions/disjunctions of findings f ∈ Ωobs , and ar is the
rule action (consequent) of r. In the following, we see that ar will be used for deriving
outputs or for implementing a dialog strategy. A rule base R is defined as a collection
of rules defined in the input and output space.



348 J. Baumeister, J. Bregenzer, and F. Puppe

Examples of rule types are given in Section 3.1 for rule base properties.

Definition 4 (Quality Function). Let C be the universe of test cases, i.e., containing all
possible and reasonable combinations of input values, and let R be the rule base. Then,
q : C × R → [0, 1] is a quality function comparing the expected solution documented
in a case c and the solution of c derived by R.

Examples for a quality function are the precision, the recall or applications of the E-
measure, e.g., the F-measure. In the following, we discuss some properties of knowl-
edge systems with respect to the quality of its output. When the input quality is de-
graded, then the system should show a monotonically degrading output quality, i.e.,
no fluctuating output quality. In consequence, the output quality of the system is more
predictable. More formally we define the monotonic derivation quality of a system as
follows.

Definition 5 (Monotonic Derivation Quality). For a rule base R let C = (c1, . . . , cn)
be a sequence of cases sorted according to their input quality in ascending order; further
let q be a quality function. Then the system shows a monotonic derivation quality, if
q(ci, R) ≤ q(ci+1, R) for all 1 ≤ i ≤ n .

This criterion is a necessary requirement for any knowledge system, that should be
considered to be robust. Groot et al. [5] additionally introduce measures for comparing
two knowledge systems discussing their robustness: the quality value and the rate of
quality change. We briefly describe them in the following.

Definition 6 (Quality Value). For two rule bases R1 and R2 we say that R1 is more
robust than R2 for a given quality function q, if for any test case c the output quality of
R1 is higher than the output quality of R2, i.e., q(c, R1) > q(c, R2).

Whilst the quality value considers the isolated behavior of the system for each test
case, the rate of quality change emphasizes the comparison of dynamic behavior of the
systems.

Definition 7 (Rate of Quality Change). For two rule bases R1 and R2 and a quality
function q, we say that R1 is more robust than R2, if for any qualitatively ordered se-
quence of test cases the average quality of the output of R1 decreases more slowly than
for R2. The average output quality is computed by a series of degradation sequences
(see Section 3).

The measures presented so far are useful for comparing different aspects of the ro-
bustness of two knowledge bases. They can be intuitively applied for an analysis of a
degradation study that is introduced in the next section.

3 Phases of a Gray Box Degradation Study

The robustness of a knowledge system is investigated by a degradation study. Such a
study considers one particular aspect of the robustness, e.g., its behavior with respect



Gray Box Robustness Testing of Rule Systems 349

to noise in the input values or its behavior for biased knowledge. A degradation study
consists of a collection of degradation sequences. Each degradation sequence is exe-
cuted with the same settings and the result of the degradation study is determined by
the averaged results of the degradation sequences. Every degradation sequence consists
of a sequence of torture tests. In such a sequence the settings of the torture tests are
subsequently changed, e.g., the input quality is gradually decreased. In every torture
test all (possibly modified) cases are passed to the (possibly modified) system, and the
accuracy of the system is measured. The results of the single torture tests are then used
for computing the mean accuracy of the system in the particular degradation study. The
elements of a degradation study are depicted in Figure 1.

Change/Modify
Case/Rule Run Cases Evaluate

Accuracy

Torture test

Degradation sequence: Sequence of torture tests

Degradation study: Sequence of degradation sequences

averaged results

Fig. 1. Overview of the elements of a degradation study

Before discussing the various types of torture tests we first consider the pre-analysis
of the used data, i.e., the case base and the rule base.

3.1 The Pre-analysis: Case Base and Rules

The analysis of the properties of the case base and the rule base is essential for a sound
implementation of a degradation study. At best, all dimensions of the input-output space
are uniformly distributed when investigating the used case base. A biased occurrence
of parts of the input-output space would result in unbalanced results of the torture tests;
then, some possible input-output combinations are missing and are consequently not
investigated.

When concerning the rule base the perfect characteristics are not easy to define: in
the best case the possible input space is not restricted by previously answered questions,
i.e., the values of some inputs are only asked if values of previous inputs were assigned
by the user. A typical example for such a restricted knowledge base is the implementa-
tion of a decision tree: depending on given input values other inputs are presented to the
user to be answered. With the answers of the user the decision tree is traversed through
a path until a leaf is reached which usually contains a solution. It is easy to see that such
an interactive structure yields bad characteristics with respect to the robustness of the
system, i.e., a falsely answered input will turn the dialog to another path of the tree and
consequently will derive another or mostly no solution.

In the following we define measures for formally characterizing the properties of a
case base and a rule base, respectively.



350 J. Baumeister, J. Bregenzer, and F. Puppe

Case Base Properties. When investigating the case base we consider the number of
cases for each output, i.e., possible solution, and the number of findings typically con-
tained in a case. A sound degradation study would work with a case base, that on the
one hand contains equally distributed outputs, and on the other hand consists of equally
sized cases (concerning the finding set).

Average Number of Cases (NOC). In a first step, the used cases can be characterized
by the average number of cases for each output o ∈ Ωsol , i.e., the mean value with
standard deviation of cases c with o ∈ SOL c. A low number of cases makes it difficult
to generalize the obtained results of the torture tests since only a small spectrum of the
real world is possibly covered. A high deviation may indicate that some outputs only
contain very few cases or a high number of cases. Consequently, the robustness can be
very low or high for some outputs.

Average Number of Findings (NOF). A second analysis should consider the average
number of findings contained in the cases, i.e., the mean value with standard deviation
of the number of findings OBS c for the cases c is computed. A low expectation value
of findings can imply that the case base is not suitable for an extensive degradation
study, because then large percentages of noise are required in order to actually modify
the case; e.g., a noise level above 20% is needed to change at least one input value for
a case base with a mean of 5 inputs per case.

Rule Base Properties. A convincing degradation study should be also preceded by a
careful investigation of the properties of the rule base. The number of rules for every
output, the complexity of the rules, and the usage of the different types of rules are
important indicators for the applicability of a degradation study.

Average Number of Rules (NOR). For degradation studies concerning the modification
of the rule base the average number of rules for each output, i.e., the mean value with
standard deviation of derivation rules for each output, is an interesting measure. Deriva-
tion rules for an output o ∈ Ωsol are rules r ∈ R having output o in the rule consequent
ar. A low number of average rules or high deviation values can indicate that the results
of the robustness studies may not be representative for all outputs contained in the rule
base. The coverage of test cases has been investigated more thoroughly e.g. by Barr [6].
The analysis of the test cases is important for evaluating the sound execution of the
degradation studies.

Types of Rules. In classical systems the rule base only contained rules directly deriving
an output for a given condition. However, for real-world applications the rule base can
contain more refined types of rules. We distinguish three basic types of rules (cf. [7] for
a more formal description):

1. Derivation rules: For a given condition the rule r ∈ R derives a specified output
o ∈ Ωsol , i.e., having o in the rule consequent ar. For example, with a ∈ Ωa,
v ∈ dom(a) and o ∈ Ωsol , and the rule

a :v → derive(o) ,



Gray Box Robustness Testing of Rule Systems 351

a solution o is derived for a given finding a :v. In detail, we distinguish derivation
rules that derive an output categorically (as exemplified above) and derivation rules
deriving an output using evidential categories, e.g., weighting scores or probabilities.

2. Abstraction rules: For a given condition such rules r ∈ R derive the value v ∈
dom(a) for an intermediate abstraction a ∈ Ωa, that in turn can be also used in
further rule conditions. For example, with aj ∈ Ωa and vj ∈ dom(aj), and the rule

a1 :v1 ∧ a2 :v2 → set value(a3 :v3) ,

the finding a3 : v3 is derived, if the two findings a1 : v1 and a2 : v2 are contained
in the problem description. Abstraction rules are suitable for improving the reuse
of existing knowledge or to enhance the design/understandability of a knowledge
base.

3. Indication rules: These rules are used to implement an adaptive and efficient di-
alog of the system with a user. For a given rule condition the rule indicates new
questions/inputs a ∈ Ωa to be presented to the user, e.g., for aj ∈ Ωa and vj ∈
dom(aj), and the rule

a1 :v1 ∧ a2 :v2 → indicate(a3) ,

the input a3 is presented as a question to the user, when a1 : v1 and a2 : v2 holds.
Such rules are commonly used for the implementation of a decision tree structure.

We see that a rule base containing not only derivation rules but also abstraction and in-
dication rules is much more difficult to test for robustness. Thus, eliminating a specific
question can prevent the system to ask the original questions of the given case, and thus
entirely changes the semantics of the case. The availability of abstraction rules intro-
duces rule chains in the knowledge base and therefore the elimination or modification
of a specific input value can also change large parts of the original case. For this reason,
no accurate evaluation may be possible.

Complexity of Rules. For evaluating the results of degradation studies the complexity
of the included rules is an interesting measure. In general, the complexity of a rule is
calculated by the number of simple conditions (i.e., evaluating the value of a single
input) included in the rule condition. This measure can be integrated in the previously
described measure Average Number of Rules (NOR) by weighting the single rules with
their complexity. Several of complexity measures focusing on the complexity of scoring
rules were presented in [8].

3.2 Types of Torture Tests

As described earlier a degradation study considers the application of torture tests within
a degradation sequence. We distinguish four different types of torture tests. It is impor-
tant to notice that for one degradation study only one type of torture test is used. In
the following we sketch the idea of the particular torture test types and motivate their
applicability.



352 J. Baumeister, J. Bregenzer, and F. Puppe

Torture by Case Input Deletion. For every sequence in a degradation study a number
of torture tests is executed: for each subsequent torture test a higher number of ran-
domly selected inputs is not given as an input to the (unchanged) rule system. The test
investigates the behavior of the system concerning an incomplete data acquisition, i.e.,
missing values.

Torture by Case Input Modification. This test is similar to the case input deletion test
above, but does not omit an increasing number of inputs from the cases. In contrast an
increasing number of input values is modified before passing them to the knowledge
system. With this type of torture test the robustness of the system with respect to an
incorrect data acquisition can be evaluated, i.e., noise in the input space.

Torture by Rule Deletion. The torture tests executed in degradation sequence are run-
ning the (unmodified) test cases with an decreased rule base quality: here, every sub-
sequent torture test omits an increasing number of randomly selected rules during the
problem solving session. The test can be useful to evaluate the robustness of the knowl-
edge base with respect to an incomplete knowledge acquisition.

Torture by Rule Modification. In contrast to omitting an increasing number of rules,
as for the torture by rule deletion test, an increasing number of rules is modified. With
this test the robustness of the knowledge system with respect to a biased or a faulty
knowledge acquisition can be evaluated. For example, how dramatically do some incor-
rect rules worsen the accuracy of the system? In the context of our work we changed
the weighting of the rule actions, i.e., the weighting of outputs, in order to simulate a
biased domain specialist.

Input space

Cases Rules

Torture by case 
input deletion

Torture by case 
input modification

Torture by rule 
modification

Torture by 
rule deletion

Deletion

Torture action

Modification

Fig. 2. A two-fold categorization of torture tests.

The four types of torture tests can be categorized in two ways: first, the tests can be
classified according to the type of input that is target of the torture, i.e., tests concerning
a worsening of the case base and the knowledge base, respectively.

Second, we can classify the tests according to the actual torture action that is per-
formed during the study, i.e., there are tests fully deleting parts of the case base or rule
base, and there are tests modifying parts of the case base or knowledge base. The two
possible categorizations are depicted in Figure 2; the particular torture tests are written
in italics.



Gray Box Robustness Testing of Rule Systems 353

3.3 Gray Box Testing with Background Knowledge

In a previous section we have motivated that the analysis of the case base and knowl-
edge base is an essential precondition for robustness testing. The identified character-
istics of the knowledge base are useful for predicting general robustness properties of
the knowledge. Then, a rule base containing many indication and abstraction rules is
more likely to be less robust than a knowledge base without a detailed dialog structure.
Additionally, the complexity and type of rule conditions obviously plays a major role
for the robustness properties: derivation rules with mostly single conditions should be
indicators for a robust inference layer 1.

Furthermore, in a degradation study artificial noise is generated by randomly se-
lecting the elements, i.e., input values or rule parts, for their deletion or modification.
However, it is easy to see that in a real world setting not all input values have an equal
"probability" to be falsely answered by the user. For example, inputs only relevant for
the dialog structure are commonly answered correctly, since deciding about answers
for such questions is mostly very easy. In the following we present two disjoint types of
background knowledge in order to conduct more realistic degradation studies even for
knowledge bases with a dialog structure.

Since the actual implementation of the knowledge base is considered and background
knowledge is used for guiding the torture tests we call such a degradation study a gray
box test.

Preserving Important Inputs. As discussed above some input values are very unlikely
to be answered incorrectly by the user but can be very important for the dialog structure.
In a gray box degradation study we can provide a set of such important inputs.

Then, the important inputs IV a ⊂ Ωa are categorically excluded from the elimi-
nation and modification procedures of the torture tests. The set of important inputs is
disjoint with the set of ambivalent inputs that is introduced in the following.

Ambivalence of Inputs. In contrast to the definition of important inputs the procedure
of a degradation study can be also directed by the definition of ambivalent inputs. In a
real world setting there often exists a set of inputs that are more likely to be mixed up by
a user than other inputs. Such inputs commonly have a large range of possible values or
the actual answer is difficult to give. For example, in the medical domain some inputs
like the age or height of a patient are very simple to obtain, whereas other inputs like
the findings of a liver examination are more difficult to acquire.

A set of ambivalent inputs AIa ⊂ Ωa can be defined for a degradation study, where
AIa ∩ IV a = ∅. In consequence, these inputs are selected with a higher probability
during the modification/deletion procedures of the torture tests. A typical setting for a
degradation study would be that inputs i ∈ AIa are selected with a doubled probability
for torturing than inputs i′ ∈ Ωa \ (AIa ∪ IV a).

The presented types of background knowledge only cover the tests modifying or
deleting the inputs from cases. Here, for a case c the number of questions to be modified
or deleted is not randomly selected from the entire set OBS c but from a restricted
input space, e.g., OBS c \IV a for a degradation study preserving important inputs. The

1 However, it is clear that the formalization of domain knowledge often requires the conjunction
of many single conditions.



354 J. Baumeister, J. Bregenzer, and F. Puppe

second type of background knowledge even concerns the randomness of the selection.
Up to now we have not considered background knowledge that adapts torture tests
concerning the deletion or modification of the rule base.

4 Case Study

We demonstrate the presented work by two case studies, one testing the robustness of a
biological consultation system, and one testing the robustness of a medical consultation
system. The two corresponding rule bases show different characteristics with respect
to their implementation structure: Whereas, the biological rule base mainly consists
of simple rules and no complex dialog control, the medical rule base contains many
indication rules for the implementation of a sophisticated dialog structure. Furthermore,
this rule base has a large portion of complex derivation rules.

4.1 Degradation of a Plant Rule Base

The first case study was conducted in the biological domain with the rule base of a
plant consultation system [9]. This system identifies the most common flowering plants
vegetating in Franconia, Germany. For a classification of a given plant the user enters
findings concerning the flowers, leaves and stalks of the particular plant. Since the sys-
tem was planned to be used by non-expert users the diagnostic scores [10] pattern was
applied. This knowledge formalization pattern proposes to implement only derivation
rules with single conditions, i.e., conditions over one finding, in order to increase the
robustness of the system, e.g., concerning possibly erroneous data acquisition.

The rule base contains 5623 derivation rules, and the used case base consists of 96
cases (with a mean of 40 different inputs and in total 39 distinct outputs). All cases are
correctly solved with the original version of the rule base.

For each degradation study 5 iterations of degradation sequences were performed
with 20 degrading torture tests in each sequence (plus one initial torture tests with 0%
modification, i.e. 100% quality). Since all cases contained only single outputs as so-
lution for a case we used the measures precision and recall for the evaluation of the
accuracy. The precision calculates the degree of inferred outputs that are actually cor-
rect, and can be defined as follows:

precision(SOL c,SOL c′) =

⎧
⎪⎨

⎪⎩

|SOL c∩SOL c′ |
|SOL c′ | if SOL c′ �= {} ,

1 if SOL c′ = {} and SOL c = {} ,

0 otherwise.

where SOL c,SOL c′ are the output of the stored case c and the derived output of the
problem solving case c′, respectively. The recall measures the degree of expected out-
puts that are actually derived, and is defined by

recall (SOL c,SOL c′) =

{ |SOL c ∩SOL c′ |
|SOL c| if SOL c �= ∅

1 otherwise
,

where SOL c,SOL c′ are the output of the stored case c and the derived output of the
problem solving case c′, respectively.



Gray Box Robustness Testing of Rule Systems 355

Case Torture Tests. The first degradation study used the torture test type case input
deletion in order to see how the system behaves with respect to missing values. The
second degradation study used the torture test type case input modification simulating
incorrect user inputs. In Figure 3 the precision values of the two degradation studies

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

00,050,10,150,20,250,30,350,40,450,50,550,60,650,70,750,80,850,90,951

Input quality (case input deletion/modification)

O
ut

pu
t q

ua
lit

y 
(p

re
ci

si
on

)

Deletion Deletion Background Change Change Background

Fig. 3. Precision values for the plant system without and with ambivalence knowledge (dotted
lines): precision values of the case input deletion tests are displayed as lines with squares and
rhombus, respectively. Precision values of the case input change test are displayed as triangled
and crossed lines, respectively. Degraded input quality is displayed on the x-axis.

are displayed: on the x-axis the degrading input quality (less user inputs vs. less correct
user inputs) are displayed; on the y-axis the averaged precisions of the particular tor-
ture tests are depicted. Precision values of the case input deletion tests are displayed as
lines with squares and rhombus, respectively. Precision values of the case input change
test are displayed as triangled and crossed lines, respectively. The tests uncovered that
for an incomplete data acquisition the system has an acceptable precision for an input
quality between 70% and and 100%, i.e., the system is able to take about 30% missing
data. In contrast, the system lacks an acceptable precision for faulty data input, since the
precision falls below 85% for an input quality less than 95%. In Figure 4 the recall val-
ues of the degradation studies are shown. Recall values of the case input deletion tests
are displayed as lines with squares and rhombus, respectively. Recall values of the case
input change test are displayed as triangled and crossed lines, respectively. Degraded
input quality is displayed on the x-axis. Here, we see a similar behavior as described for
the precision of the system: The expected solutions of the cases were also derived by the
system for a completeness level greater than 65%. However, the system is very sensitive
for changed input values and is only able to derive the expected solutions for a com-
pleteness level greater than 95%. Concerning the application of background knowledge
we see that the increased omission of ambivalent inputs yield a worse accuracy both
for the precision and recall of the plant system. Surprisingly, the (slight) modification
of input values of ambivalent inputs had no significant effect on the reasoning accuracy
of the system. This behavior can be explained by the fact that there exist similar rules
for ambivalent inputs in the rule base. A change of such values therefore resulted in



356 J. Baumeister, J. Bregenzer, and F. Puppe

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

00,050,10,150,20,250,30,350,40,450,50,550,60,650,70,750,80,850,90,951

Input quality (case input deletion/modification)

O
ut

pu
t q

ua
lit

y 
(r

ec
al

l)

Deletion Deletion Background Change Change Background

Fig. 4. Recall values for the plant system without and with ambivalence knowledge (dotted lines):
recall values of the case input deletion tests are displayed as lines with squares and rhombus,
respectively. Recall values of the case input change test are displayed as triangled and crossed
lines, respectively. Degraded input quality is displayed on the x-axis.

the activation of rules with similar or equivalent consequents. In general, the degrada-
tion studies with respect to the case input showed a monotonic derivation quality (see
Definition 5).

Rule Torture Tests. Figure 5 displays the results of the torture tests deleting and mod-
ifying parts of the rule base. Here, the precision as well as the recall values of the tests
are shown. In the upper part of the figure we see the precision and recall values for the
torture test rule modification. The rule base consists of rules a :v → derive(o) , where
derive(o) either adds a positive or negative weight to the given output o. In this test
the weights were randomly reduced or increased by one weight category when selected
for the torture test. Interestingly, the modification of the rule weights did not affect the
precision and the recall significantly. Moreover we see that the tests uncovered a non-
monotonic derivation quality, i.e., a worse input quality can result in a better derivation
quality. The lower part of the figure depicts the precision and recall values for the tor-
ture test rule deletion. Here we see that an increased elimination of rules result in an
almost monotonic decrease of the output quality. The improvements of the derivation
quality can be explained by the stochastic variance of the tests: for each torture test
new rules are randomly selected and removed. Here one collection of selected rules had
more impact on the reasoning behavior than another collection of rules.

4.2 Degradation of the SonoConsult Rule Base

The second case study considered the degradation of the medical knowledge system
SonoConsult [11], a consultation system for sonographic examinations. Here, 427 in-
puts and 221 outputs are structured in a taxonomy, where only a small portion of "leaf"
inputs and outputs are actually visible to the user. The rule base consists of 4234 deriva-
tion rules, 2298 abstraction rules, and 2151 indication rules implementing a complex
dialog structure. Due to its different characteristics the system was not supposed to be as



Gray Box Robustness Testing of Rule Systems 357

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

00,050,10,150,20,250,30,350,40,450,50,550,60,650,70,750,80,850,90,951

Input quality (rule deletion/modification)

O
ut

pu
t q

ua
lit

y 
(p

re
ci

si
on

/r
ec

al
l)

Deletion precision Deletion recall Change precision Change recall

Fig. 5. Precision and recall values for the plant system while degrading the quality of the rule
base: precision values of the rule deletion tests are displayed as lines with squares; the recall for
the deletion test is depicted with a dotted line and a rhombus. Precision values of the rule change
test are displayed as triangled lines; the recall of this test is displayed with crossed dotted lines.
Degraded input quality is displayed on the x-axis.

robust as the previously described plant system. The torture tests were performed using
250 cases, where each case contains about 60 findings as the problem description and
a mean of 6 outputs as its solution. Due to the multiple faults (outputs) characteristics
of the case base the application of the measures precision and recall seemed to be not
appropriate; the E-measure combining both, precision and recall, was used instead. The
general E-measure is defined as follows:

E(c, c′) =
(β2 + 1) · precision(SOL c,SOL c′) · recall(SOL c,SOL c′)

β2 · precision(SOL c,SOL c′) + recall(SOL c,SOL c′)
,

where SOL c,SOL c′ are the output of the stored case c and the derived output of the
problem solving case c′, respectively. In the case study we used β = 1 which is balanc-
ing the precision and the recall, i.e., the F-measure.

Case Torture Tests. Figure 6 shows the F-measure values of the degradation stud-
ies for the torture test type case input deletion and the type case input change. In the
case study 5 degradation sequences were performed with a quality stepwidth of 10%
resulting in 10 torture tests for each degradation sequence (plus one torture test with
100% input quality). On the x-axis the degrading input quality (less user inputs vs. less
correct user inputs) are displayed; on the y-axis the averaged F-measure values of the
particular torture tests are depicted. F-measure values of the case input deletion tests
are displayed as lines with squares and rhombus, respectively. F-measure values of the
case input change test are displayed as triangled and crossed lines, respectively. The re-
sults confirm the expectations that the rule base only provides a limited robustness. The
inclusion of background knowledge weakens the trend only for lower quality values,
which can be explained that even more important inputs should be included as back-
ground knowledge; up to now only 35 inputs are marked as important and some more



358 J. Baumeister, J. Bregenzer, and F. Puppe

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

00,10,20,30,40,50,60,70,80,91
Input quality (case input deletion/modification)

O
ut

pu
t q

ua
lit

y

Deletion Deletion Background Change Change Background

Fig. 6. F-measure values without and with important inputs knowledge (dotted lines): F-measure
values of the case input deletion tests are displayed as lines with squares and rhombus, respec-
tively. F-measure values of the case input change test are displayed as triangled and crossed lines,
respectively. Degraded input quality is displayed on the x-axis.

indication questions are possibly contained in the rule base. The similar behavior for the
delete inputs tests and the change input value tests suggests, that even slightly changing
an input value has the same worsening behavior like completely omitting the input.

Rule Torture Tests. Figure 7 shows the F-measure values of the degradation studies
of the torture test types rule deletion and rule change. In the case study 5 degradation
sequences were performed with a quality stepwidth of 5% resulting in 20 torture tests
for each degradation sequence (plus one torture test with 100% input quality). The
results for the torture test rule change were quite surprising since slight changes of

0
0,05
0,1
0,15
0,2
0,25
0,3
0,35
0,4
0,45
0,5
0,55
0,6
0,65
0,7
0,75
0,8
0,85
0,9
0,95
1

00,050,10,150,20,250,30,350,40,450,50,550,60,650,70,750,80,850,90,951

Input quality (rule deletion/modification)

O
ut

pu
t q

ua
lit

y 
(F

-m
ea

su
re

)

Deletion Change

Fig. 7. F-measure values of the rule deletion test are displayed as lines with squares; F-measure
values of the rule modification test are displayed as triangled and dotted lines. Degraded input
quality is displayed on the x-axis.



Gray Box Robustness Testing of Rule Systems 359

the rule weights did not yield a significant decrease of the derivation quality. As for
the plant system the rule base also contained redundant knowledge that compensates
possible changes of the rule weights. In contrast, the deletion of rules yielded an almost
monotonic decrease of the output quality. The slight improvements of the derivation
quality for input qualities 0.6 and 0.5 can be explained by the stochastic variance of the
tests as already described in the case study with the plant system. We expect that for a
larger number of degradation sequences this variation will be removed and the results
will show a strict monotonic behavior.

5 Conclusion and Outlook

Rules are an intuitive and simple representation for the formalization of domain knowl-
edge. In the past, there has been much research on general validation and verification
methods for rule bases. However, for the practical applicability of intelligent systems
also their robustness is of importance. In this paper, we presented an approach for test-
ing the robustness of rule bases extending previous approaches (cf. [5]) by background
knowledge and an intensive pre-analysis, thus defining a gray box test. It is worth notic-
ing that on the one hand the pre-analysis of the knowledge base and the case base is
necessary for a sound interpretation of the study results. On the other hand, background
knowledge is used for a more concise definition of the robustness tests. The work was
demonstrated by a case study reporting robustness tests on two larger rule bases taken
from the biological and the medical domain. As a general contribution, degradation
studies can help to determine the self-confidence level of a system: for example, if a
given number of omitted inputs is exceeded, then the system can retain from giving a
solution, thus avoiding to give a wrong solution with a high probability.

In the future, we are planning to improve the applicability of background knowledge:
first, currently no background knowledge for the adaptation of rule torture tests is con-
sidered. For example, when using rules deriving an output with a certain probability we
can expect that rules with a medial probability are more likely to be biased or noisy than
rules with probabilities near to 1 or 0. Second, the definition of background knowledge
can be simplified by automatically generating proposals for important inputs and am-
bivalent inputs. Important inputs typically are inputs contained in indication rules but
not in derivation or abstraction rules. An input can be considered as an ambivalent in-
put if the corresponding input values are occurring very frequently in rules for different
outputs.

References

1. Ayel, M., Laurent, J.P.: Validation, Verification and Test of Knowledge-Based Systems. Wi-
ley (1991)

2. Preece, A., Shinghal, R.: Foundation and Application of Knowledge Base Verification. In-
ternational Journal of Intelligent Systems 9 (1994) 683–702

3. Knauf, R.: Validating Rule-Based Systems: A Complete Methodology. Shaker, Aachen,
Germany (2000)

4. Horrocks, I., Patel-Schneider, P.F., Bechhofer, S., Tsarkov, D.: OWL Rules: A Proposal and
Prototype Implementation. Journal of Web Semantics 3(1) (2005) 23–40



360 J. Baumeister, J. Bregenzer, and F. Puppe

5. Groot, P., van Harmelen, F., ten Teije, A.: Torture Tests: A Quantitative Analysis for the
Robustness of Knowledge-Based Systems. In: Knowledge Acquisition, Modeling and Man-
agement. LNAI 1319, Berlin, Springer (2000) 403–418

6. Barr, V.: Applications of Rule-Base Coverage Measures to Expert System Evaluation.
Knowledge-Based Systems 12 (1999) 27–35

7. Baumeister, J.: Agile Development of Diagnostic Knowledge Systems. AKA Verlag, DISKI
284 (2004)

8. Atzmueller, M., Baumeister, J., Puppe, F.: Semi-Automatic Learning of Simple Diagnostic
Scores utilizing Complexity Measures. AI in Medicine 37(1) (2006) 19–30

9. Ernst, R.: Untersuchung verschiedener Problemlösungsmethoden in einem Experten- und
Tutorsystem zur makroskopischen Bestimmung krautiger Blütenpflanzen [Analysis of vari-
ous problem solving methods with an expert and tutoring system for the macroscopic classi-
fication of flowers]. Master’s thesis, University Würzburg, Biology department (1996)

10. Puppe, F.: Knowledge Formalization Patterns. In: Proceedings of PKAW 2000, Sydney,
Australia (2000)

11. Hüttig, M., Buscher, G., Menzel, T., Scheppach, W., Puppe, F., Buscher, H.P.: A Diagnostic
Expert System for Structured Reports, Quality Assessment, and Training of Residents in
Sonography. Medizinische Klinik 3 (2004) 117–22



A Unifying Framework for Hybrid Planning
and Scheduling

Bernd Schattenberg and Susanne Biundo

Dept. of Artificial Intelligence
University of Ulm, Germany

firstname.lastname@uni-ulm.de

Abstract. Many real-world application domains that demand planning
and scheduling support do not allow for a clear separation of these ca-
pabilities. Typically, an adequate mixture of both methodologies is re-
quired, since some aspects of the underlying planning problem imply
consequences on the scheduling part and vice versa. Several integration
efforts have been undertaken to couple planning and scheduling meth-
ods, most of them using separate planning and scheduling components
which iteratively exchange partial solutions until both agree on a result.

This paper presents a framework that provides a uniform integra-
tion of hybrid planning –the combination of operator based partial order
planning and abstraction based hierarchical task network planning– and
a hierarchical scheduling approach. It is based on a proper formal ac-
count of refinement planning, which allows for the formal definition of
hybrid planning, scheduling, and search strategies. In a first step, the
scheduling functionality is used to produce plans that comply with time
restrictions and resource bounds. We show how the resulting framework
is thereby able to perform novel kinds of search strategies that oppor-
tunistically interleave what used to be separate planning and scheduling
processes.

1 Introduction

Hybrid planning – the combination of hierarchical task network (HTN) plan-
ning with partial order causal link (POCL) techniques – turned out to be most
appropriate for complex real-world planning applications [1] like crisis manage-
ment support [2,3], etc. Here, the solution of planning problems often requires
the integration of planning from first principles with the utilization of prede-
fined plans to perform certain complex tasks. Beyond the challenge to produce
complex courses of action, planning support in these domains has to consider all
kinds of resources, ranging from limited time and material to power and supplies,
which all define success and efficiency of the mission.

These two aspects of the planning task used to be regarded as two differ-
ent kinds of problems, called planning and scheduling, one performed after the
other. Newer approaches take into account, that the two problem solving phases
interact to a huge extent, and neither can be reasonably carried out without

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 361–373, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



362 B. Schattenberg and S. Biundo

knowledge and feedback about the progress of the other. This motivates to get
more information out of resource analysis into the planning process, e.g. via
resource profiles [4] or constraint-based techniques on shared memory [5]. It
allows for some corrective steps on the “planner’s side”, respectively offers al-
ternative plans to pursue. Another frequently used technique is to keep the plan
and schedule generating processes completely separate, using the result of one
as the input for the other. In this fashion, [6] proposes to perform classic plan
generation on a relaxed problem without resource information and to give the
result to a scheduler. [7] places scheduling in a pre-planning phase in order to
determine necessary overlapping actions and minimal resource capacities. In all
these approaches, the plan generation process is not guided by resource demands
and vice versa. The IxTeT temporal planning system [8] integrates scheduling in
an POCL planner by using temporally qualified expressions throughout the rep-
resentation formalism, which represent state transitions and state persistences of
the planning domain. The authors share our view of opportunistic scheduling as
additional plan modification steps which can be interleaved with other planning
steps: closing open or unachieved preconditions, resolving (resource) conflicts,
and adding constraints to evade bottlenecks. An important feature is the dy-
namic construction of a resource hierarchy (not to be confused with hierarchical
resources as introduced by [9]) based on condition analysis in the current partial
plan [10]. The hierarchy represents a partial order on the “importance” of the re-
sources for plan causality, and with that the order in which the different resources
should be addressed by the reasoning process. This technique can be considered
to be included as an additional strategic advice to our proposed approach.

Our aim is to provide a framework in which planning and scheduling func-
tionality is uniformly integrated. Integration should not be limited to a planner
delivering plans to be judged by a scheduler but it should be possible to generate
and abandon plans schedule-driven and vice versa. We will show in a first step,
what a system configuration under these requirements looks like for generating
plans that are resource and time compliant.

To this end, we make use of the hybrid planning approach presented in [11]. It
provides a formal framework, in which the plan generation process is functionally
decomposed into well-defined flaw detecting and plan modification generating
functions. We are going to show, how scheduling capabilities can be integrated
and exploited in the plan generation process. Flexible planning and scheduling
strategies operate opportunistically instead of following a fixed plan generation
schema, thereby completely interleaving what used to be separate planning and
scheduling processes.

The rest of the paper is organized as follows. In Section 2 we present the
refinement-based planning framework on which our integrated hybrid approach
relies; we define the necessary refinement operators and flaws for our purposes.
Section 3 introduces the resulting system components and Section 4 describes
strategies that are capable of guiding search in the integrated planner and sched-
uler. We conclude in Section 5 with a glimpse on future developments and some
final remarks.



A Unifying Framework for Hybrid Planning and Scheduling 363

2 A Refinement-Based Framework

We employ a hybrid planning formalism that relies on a sorted logical language
L = {Z, P , C, V , O, T }. Z describes a hierarchy of sort symbols, P is a Z∗-
indexed set of predicate symbols, and C and V are non-empty finite Z-indexed
sets of constant symbols and variables. O denotes a non-empty finite set of op-
erator symbols, T a finite set of task symbols; both symbol sets are Z∗-indexed.
All sets are assumed to be disjoint. Z contains two designated sort symbols:
Resource and its sub-sort Symbolic for modeling symbolic resources. By spec-
ifying sub-sorts of Symbolic, we employ the notion of hierarchical resources
in our approach. For presentation purposes we will focus in the following on
(shareable) symbolic resources, e.g. Vehicle with sub-sorts Truck and Jeep.
The difference between symbolic resources and other objects is subtle: the iden-
tity of a resource entity is explicitly not of interest. This allows for efficient
reasoning mechanisms that analyze allocation profiles and identify bottlenecks,
potential and necessary over-allocations, etc., rather than dealing with equations
and un-equations in constraint sets. For a detailed discussion on hierarchical re-
source representations, also beyond subsumption (including numeric resources),
see [9].

An operator schema o(τ̄ ) = (prec(o(τ̄ )), add(o(τ̄ )), del(o(τ̄ )), dmin
o(τ̄), d

max
o(τ̄) )

specifies the preconditions and the positive and negative effects of that oper-
ator (o ∈ O, τ̄ = τ1, . . . , τn with τi ∈ {C ∪V} for 1 ≤ i ≤ n and n being the arity
of o). Preconditions and effects are sets of literals and atoms over P ∪ C ∪ V ,
respectively. Symbolic resources do not have to be allocated explicitly by spe-
cific predicates but are implicitly by their use in the condition atoms. dmin

o(τ̄) is
the minimal duration of the operator, dmax

o(τ̄) the maximal.
A ground instance of an operator schema is called an operation. A state is

a finite set of ground atoms and an operation o(c̄) is applicable in a state s iff
for the positive literals in the precondition of o: prec⊕(o(c̄)) ⊆ s and for the
negative literals: prec�(o(c̄)) ∩ s = ∅. The result of applying o(c̄) in state s is a
state s′ = (s ∪ add(o(c̄))) \ del(o(c̄)). Operators are also called primitive tasks.
Executability of sequences of operations is defined inductively.

Abstract actions are represented by complex tasks, which in hybrid planning
show preconditions and effects like primitive ones. They are defined by task
schemata t(τ̄ ) = (prec(t(τ̄ )), add(t(τ̄ )), del(t(τ̄ )), dmin

t(τ̄) , d
max
t(τ̄) ) for t ∈ T . A de-

composition method m = (t(τ̄ ), d) relates a complex task t(τ̄ ) to a task network
d. This task network can be seen as a pre-defined implementation of a complex
task and therefore the duration intervals of abstract actions have to be valid
lower, respectively upper bounds for all their implementing networks. While
HTN planning approaches like [12] deduce bounds for resources in abstract tasks
from information about resource allocation by more primitive tasks, our notion
of hybrid planning has to take into account, that implementing networks might
not be complete and that the user’s specification might therefore add some es-
timated extra time overhead, for example. Consequently, as it will be shown in
the definition of the task expansion plan modification, the temporal artifacts of
abstract task time bounds persist in the respective constraint sets of a plan.



364 B. Schattenberg and S. Biundo

For this presentation we omit axiomatic state refinements for modeling dif-
ferent abstraction levels on preconditions and effects for abstract task [2]. This
restricts task networks occuring in methods to those in which all preconditions
and effects of the abstract task have to occur explicitly.

A task network –or partial plan– over a language L, a set of primitive and
complex task schemata T, and a set of decomposition methods M, is a tuple
(TE, ≺, V C, CL, TC) with TE being a set of plan steps task expressions te =
l : t(τ1, . . . , τm), where l represents a unique label in TE and t(τ1, . . . , τm) an
instance of a task schema in T, using variables unique in TE. ≺ is a set of
ordering constraints imposing a partial order on the steps in TE. V C denotes
a set of variable constraints, which codesignate and non-codesignate variables
that occur in TE with each other or constants. It also contains sort restrictions:
Constraints of the form v∈̇Z and v ˙	∈Z, Z ∈ Z, include or exclude variables
from being assigned to terms of the specified sort. CL is a set of causal links
tei

φ−→ tej with tei, tej ∈ TE and φ being a literal with σ(φ) ∈ σ(prec(tej)) and
σ(φ) ∈ σ(add(tei)), if φ is positive, and σ(|φ|) ∈ σ(del(tei)), if φ is negative. σ is
a V C-compatible variable substitution, i.e. a substitution that is consistent with
the variable constraints. A causal link indicates that a task (l : ti(τ̄ )) establishes
a precondition of a task (l′ : tj(τ̄ ′)) and is used in the usual sense as a book
keeping entity.

Finally, TC represents the temporal information as a simple temporal problem
[13]. TC is a constraint system (Z, D, C) with Z being a set of variables that
represent time points and D : Z → R+ a function for assigning sets of real
numbers (including the symbol ∞ for representing an infinite amount of time)
to each variable in Z. The set of real numbers Dxi that is assigned by D to a
variable xi ∈ Z is called the domain of that variable. C is a set of unary and
binary constraints. A binary constraint represents the temporal distance between
two time point variables xi and xj by an interval [dmin, dmax], which stands for
the equation dmin ≤ xj − xi ≤ dmax. A unary temporal constraint specifies a
time point x by an interval [early, late], which means that early ≤ x ≤ late. The
temporal network specifies for each task expression te ∈ TE two time points that
denote that beginning and the end of the action: startte in [0, ∞) and end te in
[startte + dmin

te , startte + dmax
te ]. For any two task expressions tei, tej ∈ TE with

tei ≺∗ tej (the transitive closure of ≺), the temporal relation endmax
tei

≤ starttej

holds, i.e. their temporal distance is given by the interval [0, ∞). Conversely, for
every two tasks with endmax

tei
≤ starttej , the transitive closure of the ordering

relation ≺∗ contains tei ≺ tej . A causal link tei
φ−→ tej ∈ CL is reflected by a

temporal relation starttei ≤ endmax
tej

.
An integrated planning and scheduling problem (d, T, M, sinit, sgoal) consists of

an initial task network d, a set of task and operator schemata T, and a set M
of decomposition methods for implementing the complex tasks in T. The state
sinit represents the initial world state, including resource capacities, and sgoal is
a specification of the desired goal state and the overall makespan limit. Like it is
common in partial order planning, we encode the initial and (optional) goal state
as artificial task expressions teinit and tegoal in TE(d) with respective effects and



A Unifying Framework for Hybrid Planning and Scheduling 365

preconditions, artifacts in the temporal constraint system, and the obligation to
order any other task between them.

Given a problem specification (d, T, M, sinit, sgoal), a hybrid planning and
scheduling system transforms the initial task network d into a task network that
is considered a solution to the problem. A partial plan P = (TE, ≺, V C, CL, TC)
is a solution to the problem, if and only if P is obtained from d by the applica-
tion of plan modification steps, if TE includes only primitive task expressions,
and if P is executable in sinit and generates send. P is called executable in a
state s and generates a state s′, if all ground linearizations of P , that means
all linearizations of all ground instances of the task expressions in TE that are
compatible with ≺ and V C, are executable in s and generate a state s′′ ⊇ s′.
No linearization may exceed the capacities specified in sinit in any intermediate
state by its accumulated allocations, nor it may exceed the time limit specified
in sgoal by its makespan in TC.

The presented framework makes violations of the solution criteria explicit by
introducing flaws, data structures that literally “point” to deficiencies in the
plan and allow for the problems’ classification. This will allow us to guide the
search process in particular to address specific problems at a specific time.

Definition 1 (Flaws). For a given planning and scheduling problem specifica-
tion and a plan P that is no solution to the problem, a flaw f is a pair (flaw, E)
with “flaw” denoting the flaw class and E being the set of components in P to
which the flaw refers.

The set of flaws is denoted by F with subsets Fflaw for given labels flaw. The set
F of flaw classes in a partial plan P = (TE, ≺, V C, CL, TC) for a given problem
(d, T, M, sinit, sgoal) addresses the solution criteria by the following sub-sets (some
of which being classical plan generation flaws, some related to a scheduling view):

1. (AbstractTask, {te}) with te = l : t(τ̄ ) ∈ TE, t ∈ T being an abstract task
expression. P is not yet primitive and this flaw class is typically associated
with hybrid planning.

2. (OrdInconsistency, {te1, . . . , tek}) with tei ∈ TE, tei ≺∗ tei, 1 ≤ i ≤ k, i.e.
if ≺∗ defines a cyclic partial order. There exists no defined linearization of
P , which makes this flaw related to planning and scheduling likewise.

3. (VarInconsistency, {v}) with v ∈ V being a variable for which V C |= v 	= v
holds. Since V C is inconsistent, no V C-compatible ground substitutions can
be deduced to gain grounded operations from TE. This criterion is needed
in both paradigms.

4. (OpenVarBinding, {v}) with v ∈ V being a variable occurring in TE and
there exists a constant c ∈ C with V C 	|= v = c and V C 	|= v 	= c. The solution
criterion requests all ground linearizations to be executable, therefore it has
to be decided whether an operation is compatible with V C or not, for plan
as well as for schedule generation.

5. (OpenPrecondition, {te, φ}) with φ ∈ prec(te), te ∈ TE, denotes a not fully

supported task, i.e., for the subset of te-supporting causal links {tei
φi−→

te|1 ≤ i ≤ k} ⊆ CL we find
⋃

1≤i≤k φi ⊂ prec(te). If not all necessary



366 B. Schattenberg and S. Biundo

precondition establishers have yet been identified in P , some, if not all ground
linearizations might not be executable. This is a typical planning-only flaw.

6. (OrdInconsistency, {te1, te2}) with te1, te2 ∈ TE being causally linked task

expressions, say te1
φ−→ te2 ∈ CL, for which te2 ≺∗ te1 does hold. If an

identified establisher for a given precondition is ordered after the respective
consumer, no linearization will be executable. Like the previous flaw, this
one belongs to the area of classical planning.

7. (Threat, {tei
φ−→ tej , tek}) with tek 	≺∗ tei or tej 	≺∗ tek and there exists a

V C-compatible substitution σ such that σ(φ) ∈ σ(del(tek)) for positive liter-
als φ and σ(|φ|) ∈ σ(add(tek)) for negative literals. A classical planning flaw,
because tek will corrupt executability of at least some ground linearizations.

8. Temporal constraint inconsistencies belong to scheduling and occur if inter-
vals for time variables collapse or temporal distances become negative. The
flaw structure is either (TempInconsistency, {te}) with te ∈ TE being the
task expression for which startte or end te time point intervals have collapsed,
or it is (TempInconsistency, {te1, te2}) with te1, te2 ∈ TE being two task
expressions for which the temporal distance between associated variables be-
came negative. An overrun of the specified maximum makespan is covered
by the interval for start tegoal

.
9. (SymbolicOverAllocation, {v1, . . . , vn}) with v1, . . . , vn ∈ V being vari-

ables for which V C 	|= vi = vj , 1 ≤ i < j ≤ n and n exceeding the capacity
of any common (sub-) sort of the v1, . . . , vn (cf. potential allocations and
resource profiles discussed in [9]). It is a classical scheduling aspect of the
problem, that too many objects of one kind might be required at one point
in time.

It can be shown that the above flaw definitions are complete in the sense,
that for any given planning problem (d, T, M, sinit, sgoal) and plan P that is not
flawed, P is a solution to the problem.

We now define the refinement operators for the integrated system, some of
them origin in hybrid planning, some in scheduling.

Definition 2 (Plan Modifications). For a given partial plan P over a lan-
guage L, a set of primitive and complex task schemata T, and a set of decomposi-
tion methods M, a plan modification m is a pair (mod, E⊕ ∪ E�). “mod” denotes
the modification class, E⊕ and E� are sets of elementary additions and dele-
tions of plan components over L, P , T, and M. These two sets are assumed to be
disjoint and E⊕ ∪ E� 	= ∅.
The set of all plan modifications is denoted by M and grouped into subsets
Mmod for given classes mod. The application of a plan modification is charac-
terized by the generic plan transformation function app : M × P → P, which
takes a plan modification m = (mod, E⊕ ∪E�) and a plan P , and returns a plan
P ′ in which all elements of E⊕ have been added to and that of E� have been
removed from P .

In the integrated hybrid planning and scheduling approach, the following
classes of correct plan modifications are defined for manipulating a given



A Unifying Framework for Hybrid Planning and Scheduling 367

partial plan P = (TE, ≺, V C, CL, TC) over a given language L and sets of
task schemata T and expansion methods M:

1. (InsertTask, {⊕te, ⊕(te
φ−→ te′), ⊕(v1 = τ1), . . . , ⊕(vk = τk)}) with te = l :

t(τ̄ ) 	∈ TE, t ∈ T, being a new task expression to be added, te′ ∈ TE, and
σ′(φ) ∈ σ′(add(te)) for positive literals φ, σ′(|φ|) ∈ σ′(del(te)) for negative
literals, and σ′(φ) ∈ σ′(prec(te′)) with σ′ being a V C′-compatible substitu-
tion for V C′ = V C ∪ {vi = τi|1 ≤ i ≤ k}.

We focus on symbolic resources, which cannot be “produced”. Adding a
new task is therefore only done for planning purposes.

2. (AddOrdConstraint, {⊕(tei ≺ tej)}) for tei, tej ∈ TE. This lies in the do-
main of planning as well as scheduling.

3. (AddVarConstraint, {⊕(v = τ)}) for codesignating variables v ∈ V with
terms τ ∈ V ∪ C and (AddVarConstraint, {⊕(v 	= τ)}) for a correspond-
ing non-codesignation. Cotyping and non-cotyping constraints are added
by (AddVarConstraint, {⊕(v∈̇Z)}) and (AddVarConstraint, {⊕(v ˙	∈Z)}) for
Z ∈ Z. Variable constraints are in the focus of plan generation as well as
scheduling methods.

4. (AddCausalLink, {⊕(tei
φ−→ tej), ⊕(v1 = τ1), . . . , ⊕(vk =τk)}), with tei, tej ∈

TE. The codesignations represent necessary variable substitutions, such that
after the modification execution, they induce a V C′-compatible substitution
σ′ for V C′ = V C ∪{(v1 = τ1), . . . , (vk = τk)} for which σ′(φ) ∈ σ′(add(tei))
for positive literals φ, σ′(|φ|) ∈ σ′(del(tei)) for negative literals, and σ′(φ) ∈
σ′(prec(tej)). This treatment of causal links is originated in classical partial
order planning.

5. Given an abstract task expression te = l : t(τ̄ ) in TE, t ∈ T and an expansion
method m = (t, (TEm, ≺m, V Em, CLm, TCm)) in M, the expansion of te is
defined as:

(Expansion, {�te} ∪ {⊕tem|tem ∈ TEm}∪
{⊕(tem1 ≺ tem2)|(tem1 ≺m tem2)}∪
{⊕(tem1

φ−→ tem2)|(tem1
φ−→ tem2) ∈ CLm}

{⊕(v = τ)|(v = τ) ∈ V Cm} ∪ {⊕(v 	= τ)|(v 	= τ) ∈ V Cm}∪
{�(te′ ≺ te), ⊕(te′ ≺ tem)|(te′ ≺ te), tem ∈ TEm}∪
{�(te ≺ te′), ⊕(tem ≺ te′)|(te ≺ te′), tem ∈ TEm}∪
{�(te

φ−→ te′), ⊕(tem
φ−→ te′)|(te φ−→ te′) ∈ CL,

tem ∈ TEm, |φ| ∈ add(tem) ∪ del(tem)}∪
{�(te′

φ−→ te), ⊕(te′
φ−→ tem)|(te′ φ−→ te) ∈ CL,

tem ∈ TEm, φ ∈ prec(tem)}∪
{⊕(dmin ≤ xj − xi ≤ dmax)|(dmin ≤ xj − xi ≤ dmax) ∈ TCm}

During an expansion the abstract task is replaced by the decomposition
network with all its sub-tasks being ordered between the predecessors and
successors of the abstract task and with all the causalities re-distributed
among the appropriate sub-tasks. If the causal links cannot be re-distributed
unambiguously, that means if there is more than one task in the expansion



368 B. Schattenberg and S. Biundo

network that carries the respective precondition, one expansion modification
has to be generated for each such permutation. This modification is clearly
associated with (hierarchical) planning.

6. (AddTempConstraint, {⊕(dmin ≤ xj − xi ≤ dmax)} adds the specified bi-
nary distance constraint [dmin, dmax] between two temporal variables xi

and xj in TC. The handling of temporal constraints is in the focus of
scheduling. It is a refinement that is used to narrow the temporal dis-
tance interval between two time point variables xi and xj in TC. The
variant (AddTempConstraint, {⊕(d′min ≤ x ≤ d′max)} defines, respectively
contracts, the interval for a time point x.

These plan modifications are the canonical plan transformation generators in
a refinement-based planner: starting from an initial task network, the current
plan can be checked against the solution criterion, and while that is not met, all
refinements are applied. If no applicable modification exists, backtracking is per-
formed. In order to make the search more systematic and efficient, the algorithm
should focus on those modification steps which are appropriate to overcome the
deficiencies in the current plan. Based on the formal notions of plan modifica-
tions and flaws, a generic algorithm and planning strategies can be defined. A
strategy specifies how and which flaws in a partial plan are eliminated through
appropriate plan modification steps. We therefore need to define the conditions
under which a plan modification can in principle eliminate a given flaw.

Definition 3 (Appropriate Modifications). A class of plan modifications
Mm ⊆ M is appropriate for a class of flaws Ff ⊆ F iff there exist partial plans
P , which contain flaws f ∈ Ff , and modifications m ∈ Mm such that the refined
plans P ′ = app(m, P ) do not contain f.

The defined plan modifications perform a strict refinement, i.e., a subsequent
application of them does never result in the same plan twice; the plan develop-
ment is inherently a-cyclic. Given that, the same flaw cannot be re-introduced
once it has been eliminated. This qualifies the appropriateness relation as a valid
strategic advice for plan and schedule generation and motivates its use as the
following trigger function for plan modifications:

Definition 4 (Modification Triggering Function). Flaws in a partial plan
can be removed by triggering the application of suitable plan modification steps
according to the following function: α(Fx) =

MExpansion if Fx = FAbstractTask

MAddVarConstraint if Fx = FOpenVarBinding

MAddCausalLink ∪ MInsertTask ∪ MExpansion if Fx = FOpenPrecondition

MExpansion ∪ MAddOrdConstraint ∪ MAddVarConstraint if Fx = FThreat

MExpansion ∪ MAddVarConstraint if Fx = FSymbolicOverAllocation

∅ else

Modification class 7 is missing intentionally in this line-up: the manipulation of
temporal constraints, MAddTempConstraint, is not used “actively” or as a “point



A Unifying Framework for Hybrid Planning and Scheduling 369

of choice” for this presentation, since temporal reasoning is only performed in
order to check for schedule executability. Their utilization for additional plan
inferences will be shown later.

We have to omit the appropriateness proofs for the above function due to
a lack of space, we would however like to sketch the arguments for two par-
ticular relationship expressed in α which displays the outstanding flexibility of
the unified hybrid planning and scheduling: a) Threats of causal links can not
only be addressed as usual by relocating the threatening task outside the scope
of the causal link or by decoupling variable constraints. If an abstract task is
involved in the threat situation, hybrid planning can alternatively make use of
task expansion for producing “overlapping” task networks that may offer less
strict promotion or demotion opportunities, since the causalities in the expan-
sion network are typically linked from and to several of the introduced sub-tasks.
As a side effect, the variable constraints of such a network may also rule out the
threat. b) The flaws and associated modifications reflect the interplay between
planning and scheduling aspects. E.g., in a plan with an abstract task, there are
n different symbolic resources allocated of a given sort Z ∈ Z. This implies a po-
tential need of n such objects for every sub-sort of Z – which are not available. An
expansion now concretizes a specific resource demand by co-typing constraints
in its implementing task network, thereby assigning some of the allocations to
one of the sub-sorts of Z, which lowers the need in other sub-sorts.

Ordering cycles FOrdInconsistency and variable FVarInconsistency and temporal in-
consistencies FTempInconsistency obviously cannot be resolved by our modifications
and do therefore not trigger any modification.

3 Integrated Hybrid Planning and Scheduling

It is an important property of this approach, that the trigger function allows to
completely separate the computation of flaws from that of modifications, and
in turn both computations to be independent from search issues. The system
architecture relies on this separation and exploits it in two ways: module invo-
cation and interplay are specified through α while reasoning about search can
be performed on the basis of flaws and modifications without taking their ac-
tual computation (or even their origin in the planning or scheduling field) into
account. The issued flaws can only be addressed by the assigned modification
generators; if none can solve the flaw, the system has to backtrack. Hence, we
can map flaw and modification classes directly onto groups of modules which are
responsible for their computation.

Definition 5 (Detection Modules). A detection module x is a function that,
given a partial plan P , returns all flaws of type x in P :

fdet
x : P → 2Fx

It may rank the flaws according to local priorities. E.g., fdet
OpenPrecondition prioritizes

its detections according to the number of literals in the tasks’ preconditions.



370 B. Schattenberg and S. Biundo

Definition 6 (Modification Modules). A modification module y is a func-
tion which computes all plan modifications of type y that are appropriate for
given flaws:

fmod
y : P × 2Fx → 2My for My ⊆ α(Fx)

These modules also prioritize their answers by local preferences. Priorities for
modifications in MInsertTask correlate with the number of available task schemata
and implied variable constraints, for example. Scheduling related modules can
quantify their expected gain in plan quality or simply use their local cost esti-
mates, e.g. preferring variable co-typing modifications in the least allocated sort.

Definition 7 (Strategy Modules). A strategy module z is a function that
selects plan modifications for their application to the current plan, possibly taking
into account the detected flaws. It is defined by the projection

fstrat
z : P × 2F × 2M → M ∪ ε

Strategies discard a current plan P if any flaw remains un-addressed by the
associated modification modules, i.e., if for any fdet

x and fmod
y1

, . . . , fmod
yn

with
My1 ∪ . . . ∪ Myn = α(Fx):

⋃

1≤i≤n

fmod
yi

(P, fdet
x (P )) = ∅

A very important consequence of the last definition is, that planning and schedul-
ing flaws can force a backtracking at any time, in contrast to approaches where
a plan has to be fully developed before it can be checked by the scheduler, etc.

In order to keep the design as flexible as possible, it is necessary to provide
additional inference capabilities to the system, which may be shared by the
participating modules. For all inference tasks on the plan which are not subject
to choice, we define inference rules in the following way:

Definition 8 (Inference Modules). An inference module ρ is a function that
computes plan modifications of type ρ which represent necessary changes on the
plan to uncover implicit information:

f inf
ρ : P → 2Mρ

These inferences are used in hybrid planning to add ordering constraints be-
tween causally linked primitive tasks (cf. modification classes InsertTask and
AddCausalLink, which both do not add ordering constraints in order to main-
tain flexibility in the case of a later overlapping of abstract task expansions).
In the presented integrated hybrid planning and scheduling system, an AC-3
based constraint engine keeps the TCSP arc-B-consistent (cf. [14]), includes the
implicit constraints respectively narrows down intervals, and synchronizes tem-
poral and ordering constraints. This is done by the two specific inference modules
f inf
AddTempConstraint and f inf

AddOrdConstraint.



A Unifying Framework for Hybrid Planning and Scheduling 371

The following generic algorithm implements a stepwise refinement of par-
tial plans by applying plan modifications according to detected deficiencies, i.e.,
flaws. It is used as the core component of any integrated planning and scheduling
system that is to be implemented within our architecture:

plan(P, T, M):
F ← ∅
for all fdet

x do
F ← F ∪ fdet

x (P )
if F = ∅ then

return P
M ← ∅
for all Fx = F ∩ Fx with Fx 	= ∅ do

answered ← false
for all fmod

y with My ⊆ α(Fx) do
M ′ ← fmod

y (P, Fx)
if M ′ 	= ∅ then

M ← M ∪ M ′

answered ← true
if answered = false then

return fail
return plan(infer(apply(P, fstrat

z (P, F, M))), T, M)

The procedure infer recursively calls all provided inference modules and
applies their modifications on the plan, until no further inferences are issued.

Please note, that the algorithm is formulated independently from the deployed
modules, since the options to address existing flaws by appropriate plan mod-
ifications is defined via α. The call of the strategy function z is of course the
backtracking point of the system.

4 Search Strategies

The translation of existing search strategies for hybrid planning revealed that
practically all of them are fixed in the sense, that they represent a preference
schema on the flaw type they want to get eliminated primarily and then select
appropriate modification methods. For example, it is very common to care for
the plan to become primitive first and then to deal with causal interactions. A
similar situation can be observed in integrated planning and scheduling systems,
where the typical process is first to generate a plan and then to verify whether
it can be scheduled or not. We propose the use of flexible strategies [11], which
are capable of operating on a more general level by exploiting flaw/modification
information: they are neither flaw-dependent as they do not primarily rely on
a flaw type preference schema, nor modification-dependent as their do not have
to be biased in favor of specific modification types. An example is the following
strategy in the least commitment fashion that has proven to be very effective in
the context of hybrid planning alone.



372 B. Schattenberg and S. Biundo

Definition 9 (Least Committing First). Let f∈F be a flaw and m1, . . . , mn ∈
M a set of modifications that has been issued for the current plan. The commit-
ting level lc of such a flaw is defined as follows:

lc(f, {m1, . . . , mn}) =

⎧
⎨

⎩

0 for n = 0
1 + lc(f, {m1, . . . , mn−1}) for mn answering f
lc(f, {m1, . . . , mn−1}) otherwise

The Least Committing First strategy selects from the set of modifications those,
which deal with flaws that have a minimal lc value.

fstrat
LCF (P, F, M) = m ∈ {mf |f ∈ min(lc(f, M))

It can easily be seen, that this is a flexible strategy, since it does not depend on
the actual types of issued flaws and modifications: it just compares answer set
sizes in order to keep the branching in the search space low.

Moreimportantly,itisalsoopportunisticwithrespecttoplanningandscheduling,
since it selects whatever modification has the lowest commitment level; planning
and scheduling flaws and modifications will be addressed, respectively solved, in
an interleaving manner. In this way, a planning process guides the scheduling and
vice versa. And if one of the two formerly separate processes finds a reason to
discard the current plan, the system performs backtracking immediately.

5 Conclusions and Future Developments

We have presented a novel unifying framework and architecture for integrated
planning and scheduling systems. It relies on a formal account of hybrid planning
and scheduling, which allows to decouple flaw detection, modification computa-
tion, and search control. Problem solving capabilities – in this case HTN, POCL,
and scheduling – can easily be combined by orchestrating respective elementary
modules via an appropriate strategy module. In particular it can be configured
as a classical partial order planner, an HTN planner, a resource scheduler, or
any hybrid of these methods. The implemented system can be employed as a
platform to implement and evaluate various planning methods and strategies.
It can be easily extended to additional functionality, e.g. probabilistic reasoning
[15,16], without implying changes to the deployed modules – in particular flex-
ible strategy modules – and without jeopardizing system consistency through
interfering activity.

Future work includes experimental evaluation of search strategies, e.g., the
flexible HotSpot technology [11] as well as providing modification modules with
local optimization techniques.

References

1. Estlin, T.A., Chien, S.A., Wang, X.: An argument for a hybrid HTN/operator-
based approach to planning. In Steel, S., Alami, R., eds.: Proceedings of the
4th European Conference on Planning. Volume 1348 of LNAI., Springer (1997)
182–194



A Unifying Framework for Hybrid Planning and Scheduling 373

2. Biundo, S., Schattenberg, B.: From abstract crisis to concrete relief – A preliminary
report on combining state abstraction and HTN planning. In Cesta, A., Borrajo,
D., eds.: Proceedings of the 6th European Conference on Planning. LNCS, Springer
(2001) 157–168

3. Castillo, L., Fdez-Olivares, J., González, A.: On the adequacy of hierarchical plan-
ning characteristics for real-world problem solving. In: Proceedings of the 6th
European Conference on Planning. (2001)

4. Drabble, B., Tate, A.: The use of optimistic and pessimistic resource profiles to
inform search in an activity based planner. In Hammond, K., ed.: Proceedings
of the 2nd International Conference on Artificial Intelligence Planning Systems,
AAAI (1994) 243–248

5. Garrido, A., Salido, M.A., Barber, F.: Scheduling in a planning environment. In
Sauer, J., Köhler, J., eds.: Proceedings of the 14th European Conference on Arti-
ficial Intelligence Workshop on New Results in Planning, Scheduling and Design.
(2000) 36–43

6. Srivastava, B., Kambhampati, S.: Scaling up planning by teasing out resource
scheduling. In Biundo, S., Fox, M., eds.: Proceedings of the 5th European Confer-
ence on Planning. Volume 1809 of LNCS., Springer (2000) 172–186

7. El-Kholy, A., Richards, B.: Temporal and resource reasoning in planning: The
parcPLAN approach. In Wahlster, W., ed.: Proceedings of the 12th European
Conference on Artificial Intelligence, John Wiley & Sons (1996) 614–618

8. Laborie, P., Ghallab, M.: Planning with sharable resource constraints. In Mel-
lish, C.S., ed.: Proceedings of the 14th International Joint Conference on Artificial
Intelligence, Morgan Kaufmann (1995) 1643–1651

9. Schattenberg, B., Biundo, S.: On the identification and use of hierarchical resources
in planning and scheduling. In Ghallab, M., Hertzberg, J., Traverso, P., eds.:
Proceedings of the 6th International Conference on Artificial Intelligence Planning
Systems, AAAI (2002) 263–272

10. Garcia, F., Laborie, P.: Hierarchisation of the seach space in temporal planning.
In Ghallab, M., Milani, A., eds.: New Directions in AI Planning, Proceedings of
the 3rd European Workshop on AI Planning. Volume 31 of Frontiers in Artificial
Intelligence., IOS Press (1996) 217–232

11. Schattenberg, B., Weigl, A., Biundo, S.: Hybrid planning using flexible strate-
gies. In Furbach, U., ed.: Proceedings of the 28th German Conference on Artificial
Intelligence. Volume 3698 of LNAI., Springer (2005) 258–272

12. Clement, B.J., Barrett, A.C., Rabideau, G.R., Durfee, E.H.: Using abstraction in
planning and scheduling. In Cesta, A., Borrajo, D., eds.: Proceedings of the 6th
European Conference on Planning. LNCS, Springer (2001) 145–156

13. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelli-
gence 49 (1991) 61–91

14. Lhomme, O.: Consistency techniques for numeric CSPs. In Bajcsy, R., ed.: Proceed-
ings of the 13th International Joint Conference on Artificial Intelligence, Morgan
Kaufmann (1993) 232–238

15. Biundo, S., Holzer, R., Schattenberg, B.: Dealing with continuous resources in
AI planning. In: Proceedings of the 4th International Workshop on Planning and
Scheduling for Space (IWPSS’04), European Space Agency Publications Division
(2004) 213–218

16. Biundo, S., Holzer, R., Schattenberg, B.: Project planning under temporal un-
certainty. In Castillo, L., Borrajo, D., Salido, M.A., Oddi, A., eds.: Planning,
Scheduling, and Constraint Satisfaction: From Theory to Practice. Volume 117 of
Frontiers in Artificial Intelligence and Applications. IOS Press (2005) 189–198



C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 374 – 388, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

A Hybrid Time Management Approach to Agent-Based 
Simulation 

Dirk Pawlaszczyk1 and Ingo J. Timm2 

1 Technische Universität Ilmenau, Institute for Information Systems, 
Postfach 10 05 65, 98684 Ilmenau, Germany 
Dirk.Pawlaszczyk@tu-ilmenau.de 

2 Center of Computing Technologies (TZI), University of Bremen  
Postfach 33 04 40, 28334 Bremen, Germany 

i.timm@tzi.de 

Abstract. In this paper we describe a time management approach to distributed 
agent-based simulation. We propose a new time management policy by joining 
optimistic synchronization techniques and domain-specific knowledge based on 
agent communication protocols. With respect to our experimental results, we 
assume that our approach helps to prevent too optimistic event execution. Con-
sequently, the probability of time consuming rollbacks is reduced in comparison 
to a pure time warp based solutions. The approach has been implemented as a 
synchronization service for the JADE agent platform SimJade. The paper con-
cludes by the discussion of our experimental results and future improvements. 

1   Introduction 

Research on systems of autonomous agents, called multiagent systems (MAS), has 
received much interest in the domain of (distributed) artificial intelligence, in recent 
years. MAS are most suitable for the development of distributed applications, with 
uncertain and a dynamically changing environment. For validation of those systems 
agent based simulation seems to be well-suited [1].     

Simulation is the imitation of a system’s behaviour and structure in an experimen-
tal model to reach findings, which are transferable to reality. In multiagent-based 
simulation (MABS) real world systems are modelled using multiple agents. The sys-
tem emerges by interaction of the individual agents as well as their collective behav-
iour. Agents send messages with respect to some communication protocol and are 
disposed at some discrete point in time (see Definition 1). In this context, a software 
agent is defined as, a program that acts autonomously, communicates with other 
agents, is goal-oriented (pro-active) and uses explicit knowledge [2]. Beyond this, 
MABS is influenced and grounded on existing simulation techniques such as object 
oriented simulation and distributed simulation [3]. Agent-based simulation has 
reached a growing attention from both science and industry in recent years. Agent-
based modeling and therefore agent-based simulation seems to be the right tool for 
domains characterized by discrete decisions and distributed local decision makers 
[4],[5]. MABS is an appropriate method if we wish to understand the evolution of a 
distributed system, minted with non-linear dynamics. For instance, a rising number of 
contributions are dealing with agent-based simulation models in the context of supply 
chain management since this domain provides distributed entities with autonomous 



 A Hybrid Time Management Approach to Agent-Based Simulation 375 

behaviour [6]. Furthermore agents based simulation can be applied to evaluate decen-
tralized decision policies for example within agile or holonic manufacturing systems 
[4]. As a third point agent-based simulation can help to analyze the behavior of com-
plex self-organizing and emergent systems [8]. Last but not least MABS can be used 
to validate multiagent systems within the simulation model, before they are deployed 
to real environments, as part of the software development process [1],[9]. 

Definition 1. (Simulation Model): 
A Simulation model S is defined as  a tuple  <A*, M*, P*, T*>  where 

 A* = {a0, a1, … ,an}  is a set of agents,  
M*= { m0, m1, … ,mn}  is a set of messages,  
P* = { p0, p1, … , pn}  is a set of agent communication protocols, and 
T* = {t0 , t1, … , tn}  is a set of time stamps within simulation time (n∈Ν). 

Let M(p)⊆M* define a set of messages that belongs to some protocol p (p∈P*). 
Let T(a)⊆T* denote a set of time stamps that some agent a (a∈A*) processes 

during a simulation run. 

Obviously, MABS has strong requirements with respect to its inherent computational 
complexity. Nevertheless, in many domains, when distributed systems or high com-
plex world models are in question, MABS seems to be the most adequate form of 
distributing the simulation model resp. to run agents on multiple computational 
nodes in a parallel manner. The distribution of the simulation model, however, leads 
to an additional challenge: Correctness of experimental results generated by a dis-
tributed simulation run mainly depends on the accuracy of the underlying synchroni-
zation mechanism. Event-based simulation is the ‘gold standard’ for simulation. In 
distributed simulation, the distributed simulation processes could compute progress 
in the simulation in an asynchronous way, i.e., simulation events in the distributed 
computational node are happening at different time points with respect to the time in 
simulation as well as the current time in the real world. Events, which were sched-
uled to happen after each other, could happen in a varying order if the computational 
nodes would not be synchronized. However, complete synchronization would create 
an almost sequential simulation behaviour, which is not desirable and would prevent 
the system to scale with respect to speed-up. In Consequence, synchronization is the 
key challenge in distributed simulation [10],[11],[12]. In this paper, we propose a 
hybrid event driven time management approach based on local knowledge to provide 
efficient distributed simulation. Therefore, we first give a short introduction on time 
management protocols and why they have relevance in distributed simulation. In 
section 3 we propose a new synchronization approach to MABS using constrained 
optimistic behaviour. Furthermore, we introduce SimJade as a prototypical imple-
mentation of the resulting synchronization service with our approach to time man-
agement policy. Finally, we present experiential results, discuss related work, and 
conclude with a discussion and a brief outline of future work. 

2   Synchronization – Technical Background 

The main component of simulation is the simulation model. Commonly, it is repre-
sented by a set of variables and specific behaviour for their value changes, i.e.,  



376 D. Pawlaszczyk and I.J. Timm 

induced by some input, each variable is modified with respect to the input and its 
value over time. Another key component of simulation is the time model. There are 
different notions of time within simulation [10]. The physical time denotes the time of 
the physical system, whereas the simulation time is used to represent the physical 
time within the simulation model. Beyond this, we have to discern the wallclock time, 
which refers to the processing or lead-time of the simulation program.  

Depending on their timely fashion, simulation approaches are distinguished as con-
tinuous and discrete simulation techniques. Within continuous simulation, changes to 
the system state occur continuously in time, whereas in discrete models states are 
modified at discrete time points only. Continuous simulation is normally performed 
by using a system of differential equations. 

Discrete simulation can further be slit into time-stepped models, where simulation 
advances in equidistant time steps, and event-driven models, where the system state is 
changed only if an event is fired [10]. In a time-stepped model, simulation time can 
only advance systematically. In fact, not every state variable is really changed in each 
time step, but must be synchronized anyway. Actions occurring at the same time step 
are normally considered to be simultaneous and therefore independent of each other. 
For many problem domains, such an assumption seems to be rather insufficient. By 
choosing a high granularity of the time steps such situation may be avoided. However, 
this again must be paid with a high synchronization overhead. Nevertheless, many 
agent-based simulation test beds rely on this synchronization approach, since it is easy 
to implement [5],[9],[13].  

Within event-driven simulation, a time stamp is assigned to each event, to indicate 
the point in simulation time, when the event occurs. Discrete event simulation can 
easily be realized on a single machine using one global event list that manages the 
events of all Logical Processes (LP), i.e. the agent process. All agents in the simula-
tion model are synchronized by a centralized data structure. Hence, it is ensured that 
events are processed in the correct order of time stamps (sequential simulation ap-
proach). But this solution is clearly contradictory to the underlying idea of MABS, 
i.e., the inherent parallelism is hardly used. The dominant approach in parallel event-
driven simulation (PEDS) on the other hand is based on the approach, that each LP 
maintains its own local simulation time (Local Virtual Time (LVT)).  

Definition 2. (local virtual time): LVT(a, t) denotes the current local virtual time, 
i.e., how far an agent has progressed in simulation time, with a∈A*, t∈T(a).   

During simulation, the progress of the agents varies from agent to agent. Additionally, 
it is assumed, that there is no global event list but each LP contains an individual 
event list, locally. As soon as simulation is processed on different processors, there is 
the necessity of synchronizing event execution to preserve the correct event order 
with respect to their time stamps. Since every agent manages its event list independ-
ently, the correct order of events with respect to their time stamps is not ensured. This 
is commonly known as the causality problem within distributed simulation [10]. Fig-
ure1 gives an example for violation of causality. Corresponding to this figure, we can 
define a straggler message (see definition 3a). 



 A Hybrid Time Management Approach to Agent-Based Simulation 377 

wallclock time

Agent  a1

Agent a2

Agent a3

e10

e11

e12e19

event message

event with time stamp tet

e18

straggler event
forcing rollback  

Fig. 1. Scenario in distributed simulation causing violation of event ordering (causality error). 
When event e12 arrives, e19 has already been processed by agent a1 (straggler event). 

Definition 3a. (straggler message): If a message m is received by agent a with time 
stamp t2 which is less than current local time of the agent LVT(a,t1), this “late” mes-
sage is referred to as straggler message:  

∀ a, t1 ,t2 , m: (LVT(a, t1) ∧ received(a, m, t2) ∧ (t2<t1) → isStraggler(m)) 
a∈A*, m∈M*, t1,t2∈T(a)      

The ternary relation received(a, m, t) denotes  that agent a  has received message m 
on time stamp t. 

see definition (1),(2) 

There are two main approaches in place to ensure correct time stamp order: conserva-
tive and optimistic synchronization. Conservative synchronization algorithms intro-
duce constraints on events and therefore avoid violation and ensure local causality 
Conservative algorithms prevent the event ordering from being violated. Accordingly, 
a situation as illustrated in Figure 1 should never occur when using a conservative 
synchronization scheme. Therefore conservative protocols cannot fully take advan-
tage of parallelism within the application resp. the parallel infrastructure of multiple 
computational nodes, as in the conservative approach, the guidance is addressed to the 
worst-case scenario only, i.e. the incoming of a straggler message, which may rarely 
actually occur in practice.  Optimistic algorithms like Jefferson’s Time Warp mecha-
nism on the other hand explicitly allow causality errors, and provide suitable tech-
niques to recover from an incorrect system state. In the example introduced above, 
agent a1 has to go back in time and rollback its execution state from LVT 19 to LVT 
12. Occasionally, an incorrect message that has already been processed by an agent 
can result in the generation of additional incorrect messages that have been processed 
by other agents, which results in still other incorrect messages. Undoing all effects of  
incorrect computations, the agent has to unsent all previously sent (possibly) incorrect 
messages using so called anti-messages[10]. Each agent that receives such an anti-
message has to rollback its state as well. Therefore a rollback within optimistic simu-
lation can be defined as: 
 



378 D. Pawlaszczyk and I.J. Timm 

Definition 3b. (rollback):  Let m be an anti-message resp. a straggler message  re-
ceived in t2 , the rollback is defined as the behavior initiated by the receiving agent a. 
Doing so, the agent reactivates its state to a former point in time t3  (new LVT) that is 
less then the current local virtual time t1, and less or equal  t2 (cf. definition 
(1),(2),(3a)):  

∀ a, t1 ,t2, t3, m: (LVT(a, t1) ∧ (isAntiMessage(m) ∨  isStraggler(m)) ∧  
received(a, m, t2) →  rollback(a, t3 ) ∧  newLVT(a, t3)) 

a∈A*, m∈M*, t1, t2, t3∈ T(a), with t3≤ t2 < t1 

Conservative as well as optimistic time management protocols have gained remark-
able speedups in the recent years. Various approaches have been proposed to control 
the optimism of the simulation model. Conservative synchronization scales well, if 
the lookahead, i.e. the ability of an LP to make predictions about its own future, is 
high. But, in dynamic environments with frequently changing relationships between 
model entities optimistic synchronization insures a better scalability, since it does not 
rely on the lookahead of a certain simulation model. Additionally, the model devel-
oper has not to be familiar with details of synchronization, as within conservative 
simulation. Since we are looking for a suitable time management approach to agent-
based simulation that provides enough performance for a wide range of models opti-
mistic synchronization seems to be a good choice. 

3   The Hybrid Approach 

In conservative synchronization, algorithms prevent the event ordering from being 
violated. Within pure Time Warp implementations, no constraints exist on the dis-
tance in time an agent process resp. the advance ahead of others into future. Conse-
quently, the probability of incorrect computations increases. As shown above, each 
straggler message causes one or even more rollbacks. If the time to perform a rollback 
is high, i.e. many states have to be rolled back, the performance of the simulation 
decreases significantly. This commonly known performance hazard within optimistic 
synchronization is caused by too optimistic event execution [10]. A good time man-
agement protocol should avoid such situations. At the same time, it has to be ensured, 
that parallelism is not fully lost within the simulation model, as it is caused by a too 
restrictive time management policy for example. The question that arises is how to 
prevent these potential performance hazards? Communication is one of the key fea-
tures in agent technology. Messages are sent out from a sender to a receiver resp. a 
list of receivers. Messages are encoded in an Agent Communication Language (ACL), 
an external language that defines intended meaning of a message by using performa-
tives. A series of messages produces a dialog. A dialog normally follows a predefined 
structure – the Interaction Protocol (IP). Commonly, communication of agents is 
based on such protocols. The FIPA specification, as an internationally agreed agent 
standard, defines an agent communication language as well as a set of interaction 
protocols, most commonly used [14]. The FIPA Request Interaction Protocol for 
example allows an agent to request another agent to perform some action. The par-
ticipant needs to decide whether to accept or refuse the request. In any case, the mes-
sage receiver has to respond with a reply to a request message. Even if the receiver 



 A Hybrid Time Management Approach to Agent-Based Simulation 379 

does not have any clue how to deal with a message, the specification prescribes to 
send a least a not-understood message. With this in mind we define policies for time 
management (see def. 4.) Furthermore we have to consider some special cases, where 
the agent exceptionally is allowed to do something, even if it is waiting for a reply-
message (see def.5a,5b). 

Definition 4. (wait for rule): Given agent a1 which has sent a message m1 to agent 
a2, and assuming that there is at least one valid reply m2 for m1. The rule “wait for” is 
defined as follows: If  the expected reply message was not received yet, the agent 
should wait for this particular message, before going on with the next message:  

∀ m1, m2 ,a1 ,a2,  p: (sent(a1, m1, a2) ∧ validReply(m2, m1)∉∅  ∧   
¬received(a1, m2 ,t) → wait-for(a1, m2))  

 a1,a2 ∈A*, a1  a2, m1,m2 ∈M(p),  m1  m2 ,  p∈P*, t∈ T(a)  

Whereby the ternary relation sent(a1, m1, a2) denotes  that  agent a1  has sent message 
m1  to the receiver a2. 

see definition (1) 
 

Definition 5a. (execution condition):  Given some message m2 which has been re-
ceived while agent a is waiting for message m1 of the same sender, and message m2  
matches to m1 (message performative and conversation ID of m2  are  the same as in 
m1) the execution condition is defined as the following behavior of the agent: agent a 
does not need to rollback, process the message and remove wait-for condition: 

∀ a,m1,m2 , p, t:(wait-for(a, m1,) ∧ received(a, m2, t) ∧ matched(m1 , m2) →   
¬rollback(a) ∧  process(m2) ∧ ¬wait-for(a, m1,))  

 
a ∈A*, m1,m2 ∈M(p), p∈P*, t∈T*  

see definition (1),(3b),(4) 

 

Definition 5b. (delayed execution condition):  A delayed execution condition is 
defined by some message m2 which is received while agent a  is waiting for message 
m1 from a sender different to the sender of  m2, whereby  m2 is not part of the current 
interaction protocol p. In this case the message is buffered. 

∀ a,m1,m2 , p, t:(wait-for(a, m1,) ∧ received(a, m2, t) ∧ sender(m1)  sender(m2) ∧ 
m1∈M(p) ∧ m2∉M(p) → bufferMessage(a , m2))  

 
a ∈A*, m1,m2 ∈M*, p∈P*, t∈T*  

see definition (1),(3b),(4)  

We have to avoid deadlock situations, where agent a1 waits for agent a2, and to the 
same time agent a2 waits for agent a1, since both independently have sent a message 
to each other. Both agents are blocked; each is waiting for a message event which will 



380 D. Pawlaszczyk and I.J. Timm 

never occur. Hence, the agent must also process a message from its opponent even if 
it is not belonging to the protocol it currently processes: 

Definition 6. (deadlock avoidance condition): If some message m2 is received while 
agent a is waiting for message m1 of the same sender, but m2 does not belong to the 
current interaction protocol (m2∉M(p)), and agent a doesn’t need to rollback, then 
the deadlock avoidance condition is defined as the behavior of processing the new  m2 

despite of any wait-for condition: 

∀ a, m1 ,m2 , p, t: (wait-for(a,m1) ∧ received(a,m2,t) ∧  
 (sender(m1)= sender(m2)) ∧  m1∈M(p) ∧ m2∉M(p) ∧  ¬rollback(a) 

 →  process(a , m2))  
 

a ∈A*, m1,m2 ∈M*, p∈P*, t∈T(a)   
See definition (1),(3b),(4) 

 

Definition 7. (consideration of cyclic dependencies):  If some message m2 is re-
ceived while agent a is waiting for message m1 with a sender different to the sender of  
m2, and the new message m2  does belong  to the current interaction protocol 
(m2∈M(p)), and agent a doesn’t need  to rollback, then the condition consideration of 
cyclic dependencies is defined as the behavior of processing m2 in despite of any wait-
for condition, since the protocol could not proceed otherwise: 

∀ a, m1, m2, p, t:(wait-for(a, m1) ∧ received(a, m2 , t) ∧ sender(m1)≠ sender(m2) ∧  
(m1,m2 ∈M(p))  ∧   ¬rollback(a) →  process(a , m2))  

 
     a ∈A*, m1,m2 ∈M*, p∈P*, t∈T(a) 

see definition (1),(3b),(4) 

Finally, cyclic dependencies have to be handled adequately. Although situations as de-
scribed in the following are not very probable, there may occur situations when for exam-
ple in multi-staged-protocols an agent receives a request within the same conversation, 
from a new communication partner different from its original opponent. In such a case, 
this message of course must be processed before going to wait state again (see def. 7). 

Accordingly, on each message send agent ai executes: 

send(message msg) to an{... 
    if (msg.requiresReply()∉∅) then{ 
       waitForReply:=true;      //[def.4] 
       MsgTemplate = msg.createReplyTemplate(); 
    }... 
} 

When a message is received by agent ai it exectues: 

receive(message msg){... 
     if (LVT(ai)>msg.Time)∨ msg.isANTIEVENT = true)  
         then rollback();         //[def.3] 
     else  



 A Hybrid Time Management Approach to Agent-Based Simulation 381 

     if(waitForReply = true) then  
        if (MessageTemplate.match(msg)=true) then 
        { 
            waitForReply:=false;    
            process(msg);         //[def.5a] 
        } 
        else 
        if(msg.Sender = MsgTemplate.Sender)     
            then process(msg);    //[def.6] 
        else  
        if(msg.ProtocolID = MsgTemplate.ProtocolID)  
            then process(msg);    //[def.7]    
        else 
            bufferMessage(msg);   //[def.5b]  
     } 
     else process(msg); //no wait condition was set 
} 

Now remembering the example from section 2, where a straggler message caused the 
agent to rollback and recover to an earlier point in time. With the new policy in place 
such situations could easily be avoided. Now the agent waits until it gets a reply mes-
sage, and not simply processes with the next message (see figure 2).  As shown 
above, delayed execution helps to preserve event order and therefore avoids wrong 
computation. Of course, such a policy cannot fully prevent rollback situations. In fact, 
there are conceivable cases, where this policy may fail. But it seems to be at least 
fairly better than a pure TW solution, without fully loss of parallelism, and is consid-
ered within the evaluation of this approach. Furthermore the implementation effort of 
this solution is considerable low. The agent has to be provided with information about 
the structure of the used protocols at initialization stage only. Depending on the  
protocol length, the policy is applied more frequently. Particular long interaction 
 

wallclock time

e10

e11

e13e12 e19

ACL-Message

FIPA:request FIPA:agree FIPA:inform-done

event with time stamp tet

e18
FIPA:propose

related events of  protocol 1 related events of protocol 2

delayed execution

ê19

wait for remaining message

Agent  a1

Agent a2

Agent a3

 

Fig. 2. Delayed event execution based on protocol information. Agent a1 receives a proposal 
from Agent a3, while he is waiting for an inform-done message of Agent a2. Instead of immedi-
ately processing the incoming message, the execution is delayed. Thus, event order is preserved 
and still valid. 



382 D. Pawlaszczyk and I.J. Timm 

Table 1. Communication complexity for some standard FIPA Agent Interaction Protocols (m – 
number of participants) [14] 

Protocol name Min. message  number Max.  message number 
Propose 2 2 
Request  2 3 
Query  2 3 
Contract Net 2m 5m 

protocols, like the fipa-contract-net are most eligible (see Table 1). Since this ap-
proach is joining optimistic techniques with constrained optimism, we actually pursue 
a hybrid time management approach. 

4   The SimJade Synchronization Service 

A prototype implementation of the proposed synchronization service was realized by 
using the Java Agent Development Environment (JADE) [15]. This framework offers 
an appropriate middleware to simplify the implementation of multiagent systems. 
Beyond this, it is widely used in academia. As one part of this agent toolkit, there are 
ready-to-use behaviour objects for standard interaction protocols such as fipa-request 
and fipa-query-ref. By supporting generic interaction protocols, application develop-
ers just need to implement domain specific actions, while the framework will carry 
out all application independent protocol logic. Since JADE is FIPA compliant, a high 
degree of interoperability is guaranteed. To test our approach, we have implemented 
an extension named SimJade to support a local synchronization scheme. This service 
implements optimistic Time Warp based synchronization algorithm, first introduced 
by Jefferson and discussed in [10]. Each agent is equipped with a local control 
mechanism for event scheduling. Furthermore, a dedicated synchronization service, 
which is integrated into the agent platform, is provided. This service offers the func-
tionality of computing state copies of an agent as well as recovering a former agent 
state. A specialized simulation manager agent implements global control mechanisms, 
like memory reclaiming, starting and stopping simulation of experiments, as well as 
detecting termination of simulation runs. For distributed computation of the global 
virtual time, a procedure based on a snapshot algorithm first proposed by Mattern has 
been implemented [16]. Unused memory is reclaimed by using fossil collection [10]. 
Most of the described functionality is transparent to the agent developer. This is real-
ized by encapsulating all time management functionality within a single agent super-
class. Using the new service only requires that the domain agents are inherited from 
this new agent class instead of the default agent class.  

Since SimJade synchronization service is based on a widespread agent toolkit it 
enables the testing of multiagent systems developed within JADE before they are 
deployed in the real world. Moreover using an optimistic synchronization scheme 
relieves the agent developer from most technical issues associated with time man-
agement. Thus, the programmers can concentrate their efforts on implementing the 
domain specific application logic.  



 A Hybrid Time Management Approach to Agent-Based Simulation 383 

5   Evaluation  

To evaluate the proposed time management policy, we performed a number of ex-
periments using the SimJade service together with a self-defined agent model. Our 
test environment consists of a mini-cluster with five P4 2.8 GHz workstations (256 
MB RAM, Suse Linux 8) which are connected by a 100 Mbit switched Ethernet. 

The test model comprises of 30 agents. In a single run those agents together ex-
change over 2000 event messages. To emulate a realistic workload, each agent in our 
evaluation scenario implements standard reasoning capabilities using JESS-engine 
and the respective behaviour for integration in JADE [17]. The JESS contribution can 
easily be combined with the generic interaction protocols provided by JADE [15]. If 
an agent process receives a message, the JESS inference engine, to create a suitable 
reply-message, first interprets this message. A combination of different standard FIPA 
protocols (see Table 1) with mixed communication lengths where used within each 
run. We tracked the wall clock time required to finish as simulation run, as well as the 
total number of rollbacks to measure the efficiency of our approach. Figure 3 shows 
the obtained lead times. For orientation, the dotted line shows the cycle time using 
sequential synchronization scheme. As can be seen, our time management policy 
clearly outperforms the pure time warp implementation in this scenario. Even more, a 
remarkable speedup could be gained, compared to sequential synchronization ap-
proach. The last fact is not self-evident, since results are crucially determined by the 
parallelism of the application and even more by the synchronization overhead caused 
by distribution. The main reason for these good performance results probably grounds 
on the small number of rollbacks compared to none-constrained optimistic synchroni-
zation policy (Figure 4). Within the pure Time Warp solution agents tend to be too far 
ahead of each other in simulation time, and therefore more frequently causing roll-
backs. By deploying message delays we could minimize the probability of time con-
suming rollbacks, at least for the test scenario. To summarize, there is a clear connec-
tion of rollback frequency and obtained speed up, whereby our time management 
policy seems to have an advantage over the pure time warp based solution. 

 

Fig. 3. The figure shows the arising average execution times with and without an advanced 
time management policy in place. The dotted line indicates the lead time reached by using a 
sequential (none distributed) synchronization policy. 



384 D. Pawlaszczyk and I.J. Timm 

average rollback number

0

50
100
150
200
250
300
350

1 2 3 4 5
number of hosts

skcabllor latot

Pure TimeWarp Hybrid Synchronization
 

Fig. 4. The figure depicts the total number of rollbacks within a single simulation run compar-
ing pure time warp solution with our advanced synchronization approach 

6   Related Work 

Many different agent-based simulation toolkits have been proposed in recent years. 
So far, the majority neither offer a support to distributed simulation nor provide any 
advanced time management schemes.  

One of the first general purpose frameworks for agent-based simulation is the 
GENSIM system by Anderson and Evans [18], where agents are given perceptions at 
fixed intervals, and with a fixed amount of time to react to each perception. Within 
the distributed version, DGENSIM a time-stepped synchronization mode is used [19]. 
A support for swarm-like simulation is realized within SWAGES simulation envi-
ronment [20]. This framework gives support to parallel execution of agent-based 
models and dynamic load balancing. Therefore, simulated agents are referred to a 
spatial model. Agents are allowed to act asynchronously within their event horizon, 
but have to consider whenever a non-local entity could potentially influence them, 
and potentially affects the sphere of influence of an agent.  

The SYNCER framework is another remarkable contribution, that enables running 
a distributed simulation with the well known SWARM agent toolkit based on a time 
stepped time management approach, whereas remote communication is realized via  
proxy objects located on each computational node [21]. The simulators used in the 
RoboCup Simulation Leagues like rescue and 2D soccer simulator use a fixed step 
discrete time model [22]. In [5], a sequential synchronization service for linking dif-
ferent agent simulation test beds is presented. Popov et al [223] again describe a par-
allel sequential simulation approach to simulation of 106 agents to capture the behav-
iour of web users. This vast number of simulated agents is reached by keeping the 
agent implementation unchanged. Furthermore they are using a relative weak notion 
of agency, and do not consider deliberative agent structures.  

A conservative synchronization approach is discussed as part of the MPADES 
framework, a middleware for building (distributed) simulation environments [24]. 
Furthermore there are some contributions in place concerning the distributed  
simulation through federation of agent-based simulation environments using the  



 A Hybrid Time Management Approach to Agent-Based Simulation 385 

High Level Architecture (HLA), a generic, language-independent specification, that 
allows the integration of different sequential simulators, and was originally initiated 
by the Department of Defence and meanwhile committed as an ISO standard 
[25],[26].  With HLA simulators, referred to as federates, can be integrated into a 
global simulation context known as federation. A strict hierarchical tree-oriented 
model is used to structure respective federations. Communication between certain 
simulators is enabled by predefined gateways. Thus HLA can be considered as a cen-
tralized coordination approach to distributed simulation resources. HLA_AGENT for 
example introduces support for distributed simulation to the SIMAGENT toolkit [26]. 
HLA_REPAST is another distributed simulation environment that uses HLA to paral-
lelize simulation of the artificial life-toolkit REPAST [25]. HLA clearly focuses on 
the interoperability between different sequential simulation toolkits and is not de-
signed to gain speedups.   

To enable the simulation of large-scale agent system the MACE3J system by Gas-
ser and Kakugawa provides services, for registration, scheduling and messaging of so-
called ActivationGroups [27]. These groups again consist of Active Objects, i.e. the 
agents within the system.  Scaling up is on main design criteria of the system. The 
time management relies on a conservative synchronization regime. MACE3J has been 
run with up to 5000 agents on a shared memory system too prove scalability; admit-
tedly, agents have not changed any messages in this test. In [28] scalable multi agent 
simulation using the grid approach is discussed. This contribution clearly aims on 
providing an infrastructure for distributed simulation, without treating synchroniza-
tion issues in detail. 

The first simulation framework that gives support to optimistic time management 
is the well-known JAMES system [29]. Actually, there is no report about using any 
adaptive optimism schemes. Furthermore, JAMES does not support a general simula-
tion model, since it comes with predefined agent architecture. Another contribution 
from Logan et al proposes a metric to compute the degree of optimism based on the 
shared state of the agent system. This metric is used to define a moving time window 
for constraining optimism. To test their approach they are using an external library 
together with the SIM_AGENT toolkit [11]. This approach is comparable to our 
simulation service, since it relies on the idea of constraining the optimism of the simu-
lation model.  

To enable testing to a wide range of real world agent applications Helleboogh et al 
propose a semantic duration model to capture timing requirements that reflect the 
semantic of agent activities in an explicit way [30]. This time management approach 
is primary meant to ensure causality within a simulation run. Beyond this, it is not 
supporting efficient simulation or distributed simulation by default. At last several 
time management policies have been introduced within the context of conventional 
parallel discrete event simulation [10]. However, these approaches of course do not 
consider the deviations of agent-based simulation approach effectively, but could be 
easily combined with our policy.  

Although MABS has received a lot of attention in recent years there are only a few 
contributions that deal with the problem of efficient time management. Moreover, 
only a small set of agent-based simulation toolkits does support distribution of simu-
lation over multiple hosts. In fact, most currently existing simulation environments 
support a simple time-stepped model, which is inappropriate to simulate multitude 



386 D. Pawlaszczyk and I.J. Timm 

real world system in reliable manner (see section 3). Namely, the JAMES simulation 
toolkit [29] and contributions by Lees and Logan [31] explicitly make use of an opti-
mistic synchronization scheme within the context of multi-agent-based simulation. 
Beside this, nearly all existing general-purpose simulation frameworks are lack to be 
compatible with the FIPA standard. Mostly, they refer to a particular type of agent 
model respectively application field, like artificial life or social science. Since they 
oblige to some particular agent architecture, there is a low degree of freedom to the 
application developer left. 

7   Conclusion  

Simulation is one of the key features for testing and evaluating distributed systems 
[1]. However, the simulation of multiagent systems or the simulation using agent-
based models is still under research. It is commonly assumed, that the inherent distri-
bution of multiagent systems could also be used for scale-up resp. speed-up simula-
tion. However, in practice this does not has to be true. The objective of our approach 
outlined in this paper was to introduce a new time management approach to agent-
based simulation. The approach integrates time warp synchronization with con-
straints. Therefore a hybrid framework for synchronization in simulation has been 
introduced consisting of policies to avoid excessive rollbacks as well as too high de-
viations in simulation time of the various agent processes. As we’ve pointed out, 
using interaction protocols within agent-based simulation can offer an appropriate 
way to constrain optimism of the underlying simulation model.  First experimental 
results show a significant benefit of this hybrid approach compared to pure time warp 
based solution.  

The evaluation of the proposed algorithm is still going on; concurrently with the 
integration of new simulation models from manufacturing and logistics domain. Addi-
tional performance improvements, as well as the introduction of advanced load bal-
ancing schemes are planed, to support scalable simulation for a wide range of agent 
based models.  

References 

1. Timm, I.J.; Scholz, T.; Fürstenau, H.: From Testing to Theorem Proving. Chapter IV.8 in 
Kirn, S. et al. (Hrsg.): Multiagent Engineering - Theory and Application in Enterprises. 
Springer-Verlag (Handbuch): Berlin, (2006), pp. 531-554. 

2. Weiss, G.: Multiagent Systems – A Modern Approach to Distributed Artificial Intelli-
gence. The MIT Press: Cambridge, Massachusetts, (1999) 

3. Davidsson, P.: Multiagent Based Simulation: Beyond Social Simulation. In: Moss, S., 
Davidsson, P. (eds.): 3. Workshop on Multiagent Based Simulation (MABS) 2000, LNAI 
Vol.1997. Springer-Verlag Berlin Heidelberg New York, (2000) 97-107 

4. Gentile, M., Paolucci, M., Sacile, R.: Agent-Based Simulation. In: Paolucci, M., Sacile, 
R.: Agent-Based Manufacturing and Control Systems: new agile manufacturing solution 
for achieving peak performance. CRC Press LCC, (2005) 

5. Braubach, L., Pokahr, A. et al: A Generic Simulation Service for Distributed Multi-Agent  
Systems. In: Trappl, R. (eds.): Cybernetics and Systems 2004 (Vol. 2), Vienna, Austria,  
(2004) 576-581 



 A Hybrid Time Management Approach to Agent-Based Simulation 387 

6. Dangelmaier, W., Franke, H., et al: Agent-based Simulation of Transportation Nets. In: 
Coelho, H., Espinasse, B.(eds.): 5 th Workshop on Agent-based Simulation. Lisboa, Por-
tugal, (2004) 174-179 

7. Kádár, B., Pfeifer, A., Monostori, L.: Building Agent-Based Systems in a Discrete-Event 
Simulation Environment. In: Pechoucek, M., Petta, P., Varga L.Z. (eds.): CEEMAS 2005, 
LNAI Vol. 3690, Springer-Verlag Berlin Heidelberg New York, (2005) 595-599 

8. Serugendo, G.D.: Engineering Emergent Behaviour: A Vision. In: D. Hales et al (eds.): 
Multiagent Based Simulation (MABS) 2003, LNAI 2927, (2003) 1-7 

9. Klügl, F.; Herrler, R.; Oechslein, C.: From Simulated to Real Environments: How to use 
SeSAm for software development In: M. Schillo et al. (eds) Multiagent System Technolo-
gies - 1st German Conferences MATES, (LNAI 2831), (2003) 13-24 

10. Fujimoto, R.M.: Parallel and Distributed Simulation Systems. John Wiley & Sons Inc. 
(2000) 

11. Lees, M., Logan, B. et al: Time Windows in Multi-Agent Distributed Simulation. (2004) 
12. Wang, F., Turner, S. J., Wang L.: Agent Communication in Distributed Simulations. In: 

Davidsson, P. et al (eds.): Workshop on Multiagent Based Simulation (MABS) 2004, 
LNAI Vol.3415. Springer-Verlag Berlin Heidelberg New York, (2005) 11-24 

13. Timm, I.J.: Dynamisches Konfliktmanagement als Verhaltenssteuerung Intelligenter 
Agenten. DISKI 283 – Dissertationen Künstliche Intelligenz, infix-AKA Verlagsgruppe, 
(2004) 

14. Foundation For Intelligent Physical Agents (FIPA): Interaction Protocol Specification  
Document no. SC00026H-SC00036H, http://www.fipa.org/specs/, (2002) 

15. JADE Framework, http://sharon.cselt.it/projects/jade/  
16. Mattern, F.: Efficient algorithms for distributed snapshots and global virtual time ap-

proximation. In: Journal of Parallel and Distributed Computing 18(4), (1993) 423-434 
17. Friedman-Hill, E. J.: Jess, The Rule Engine for the Java Platform. Distributed Computing 

Systems, Sandia National Laboratories, Livermore, CA21 http://herzberg.ca.sandia.gov/ 
jess 

18. Anderson, J., Evans, M.: A Generic Simulation System for Intelligent Agent Designs. In: 
Applied Artificial Intelligence 9:5, (1995) 527-562 

19. Anderson, J.: A Generic Distributed Simulation System For Intelligent Agent Design And 
Evaluation. http://www.citeseer.ist.psu.edu/399301.html, (2000) 

20. Scheutz, M., Schermerhorn, P.: Adaptive Algorithms for the Dynamic Distribution and 
Parallel Execution of Agent-Based Models, (2005) 
http://www.nd.edu/%7Eairolab/publications/scheutzschermerhorn06pardist.pdf 

21. Goic, J., Sauter, J. A., Toth-Fejel, T.: Syncer: Distributed simulations using swarm. In: 
SwarmFest 2001, Santa Fe, NM, (2001) 

22. Homepage ot the RoboCup-Rescue Simulation Project: 
http://www.rescuesystem.org/robocuprescue/simulation.html  

23. Popov, K. et al:  Parallel Agent-Based Simulation on a Cluster of Workstation. In: Kosch, 
H., Böszörményi, H. Hellwagner, H. (eds.): Euro-Par 2003, Springer-Verlag Berlin 
Heidelberg New York,  (2003) 470-480  

24. Riley, P.: MPADES: Middleware for Parallel Agent Discrete Event Simulation. In: 
Kaminka, G.A., Lima, P.U. and Rojas, R. (eds.): RoboCup 2002, LNAI Vol. 2752, 
Springer-Verlag Berlin Heidelberg New York, (2003) 162-178 

25. Minson, R., Theordoropoulos, G.: Distributing repast agent based simulations with HLA. 
In: Proceedings of the 2004 European Simulation Interoperability Workshop, Edinburgh, 
UK, (2004) 



388 D. Pawlaszczyk and I.J. Timm 

26. Lees, M., Logan, B.: Simulating Agent-Based Systems with HLA: The Case of 
SIM_AGENT - Part II (03E-SIW-076), (2003) 

27. Gasser, L., Kakugawa, K. et al: Smooth Scaling Ahead: Progressive MAS Simulation 
from Single PCs to Grids. In: Proceedings of the Joint Workshop on Multi-Agent & Multi-
Agent-Based Simulation, Autonomous Agents & Multiagent Systems (AAMAS) New 
York, USA, (2004) 1-10 

28. Ingo J. Timm, I.J., Pawlaszczyk, D.: Large scale multiagent simulation on the grid. In:  
IEEE International Symposium on Cluster Computing and the Grid <5, 2005, Cardiff>, 
NJ: IEEE Operations Center, (2005) 334-341 

29. Uhrmacher, A.M., Schattenberg, B.:  Agents in Discrete Event Simulation. In: Bargiela, 
A., Kerckhoffs, E. (eds.): Proceedings of the 10TH ESS'98, SCS Publications Ghent, 
(1998) 129-136 

30. Helleboogh, Holvoet, T. Weyns, D.: Extending Time Mangement Support for Multiagent 
Systems. In: Davidsson et al. (eds): Multi Agent Based Simulation (MABS) 2004, LNAI 
3415, (2005) 37-48 

31. Lees, M., Logan, B., Theodoropoulos, G.: Adaptive optimistic synchronisation for multi-
agent distributed simulation. In: Proceedings of the 5th EUROSIM Congress on Modelling 
and Simulation (EuroSim’04), (2004) 



Adaptive Multi-agent Programming in GTGolog

Alberto Finzi1,2 and Thomas Lukasiewicz2,1

1 Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

2 Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”
Via Salaria 113, I-00198 Rome, Italy

{finzi,lukasiewicz}@dis.uniroma1.it

Abstract. We present a novel approach to adaptive multi-agent programming,
which is based on an integration of the agent programming language GTGolog
with adaptive dynamic programming techniques. GTGolog combines explicit
agent programming in Golog with multi-agent planning in stochastic games.
A drawback of this framework, however, is that the transition probabilities and
reward values of the domain must be known in advance and then cannot change
anymore. But such data is often not available in advance and may also change
over the time. The adaptive generalization of GTGolog in this paper is directed
towards letting the agents themselves explore and adapt these data, which is more
useful for realistic applications. We use high-level programs for generating both
abstract states and optimal policies, which benefits from the deep integration be-
tween action theory and high-level programs in the Golog framework.

1 Introduction

In the recent years, the development of controllers for autonomous agents has become
increasingly important in AI. One way of designing such controllers is the program-
ming approach, where a control program is specified through a language based on
high-level actions as primitives. Another way is the planning approach, where goals
or reward functions are specified and the agent is given a planning ability to achieve
a goal or to maximize a reward function. An integration of both approaches for multi-
agent systems has recently been proposed through the language GTGolog [7] (gener-
alizing DTGolog [3]), which integrates explicit agent programming in Golog [20] with
game-theoretic multi-agent planning in stochastic games [16]. It allows for partially
specifying a high-level control program (for a system of two competing agents or two
competing teams of agents) in a high-level language as well as for optimally filling in
missing details through game-theoretic multi-agent planning.

However, a drawback of GTGolog (and also of DTGolog) is that the transition prob-
abilities and reward values of the domain must be known in advance and then can-
not change anymore. But such data often cannot be provided in advance in the model.
It would thus be more useful for realistic applications to make the agents themselves
capable of estimating, exploring, and adapting these data.

This is the main motivating idea behind this paper. We present a novel approach to
adaptive multi-agent programming, which is an integration of GTGolog with reinforce-
ment learning as in [13]. We use high-level programs for generating both abstract states

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 389–403, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



390 A. Finzi and T. Lukasiewicz

and policies over these abstract states. The generation of abstract states exploits the
structured encoding of the domain in a basic action theory, along with the high-level
control knowledge in a Golog program. A learning process then incrementally adapts
the model to the executive context and instantiates the partially specified behavior.

To our knowledge, this is the first adaptive approach to Golog interpreting. Differ-
ently from classical Golog, here the interpreter generates not only complex sequences
of actions, but also an abstract state space for each machine state. Similarly to [2,11], we
rely on the situation calculus machinery for state abstraction, but in our system the state
generation is driven by the program structure. Here, we can take advantage from the
deep integration between the action theory and programs provided by Golog: deploying
the Golog semantics and the domain theory, we can produce a tailored state abstrac-
tion for each program state. In this way, we can extend the scope of programmable
learning techniques [4,17,5,1,14] to a logic-based agent [12,20,21] and multi-agent [6]
programming framework: the choice points of partially specified programs are associ-
ated with a set of state formulas and are instantiated through reinforcement learning and
dynamic programming constrained by the program structure.

2 Preliminaries

In this section, we recall the basics of the situation calculus and Golog, matrix games,
stochastic games, and reinforcement learning.

2.1 The Situation Calculus and Golog

The situation calculus [15,20] is a first-order language for representing dynamically
changing worlds. Its main ingredients are actions, situations, and fluents. An action is
a first-order term of the form a(u1, . . . , un), where the function symbol a is its name
and the ui’s are its arguments. All changes to the world are the result of actions. For
example, the action moveTo(r, x, y) may stand for moving the agent r to the position
(x, y). A situation is a first-order term encoding a sequence of actions. It is either a
constant symbol or of the form do(a, s), where do is a distinguished binary function
symbol, a is an action, and s is a situation. The constant symbol S0 is the initial situa-
tion and represents the empty sequence, while do(a, s) encodes the sequence obtained
from executing a after the sequence of s. For example, the situation do(moveTo(r,
1, 2), do(moveTo(r, 3, 4),S0 )) stands for executing moveTo(r, 1, 2) after executing
moveTo(r, 3, 4) in the initial situation S0 . We write Poss(a, s), where Poss is a distin-
guished binary predicate symbol, to denote that the action a is possible to execute in the
situation s. A (relational) fluent represents a world or agent property that may change
when executing an action. It is a predicate symbol whose most right argument is a sit-
uation. For example, at(r, x, y, s) may express that the agent r is at the position (x, y)
in the situation s. In the situation calculus, a dynamic domain is represented by a basic
action theory AT =(Σ, Duna , DS0 , Dssa , Dap), where:

• Σ is the set of (domain-independent) foundational axioms for situations [20].
• Duna is the set of unique names axioms for actions, which express that different

actions are interpreted in a different way.



Adaptive Multi-agent Programming in GTGolog 391

• DS0 is a set of first-order formulas describing the initial state of the domain (repre-
sented by S0 ). For example, at(r, 1, 2,S0 ) ∧ at(r′, 3, 4,S0 ) may express that the
agents r and r′ are initially at the positions (1, 2) and (3, 4), respectively.

• Dssa is the set of successor state axioms [20]. For each fluent F (x, s), it con-
tains an axiom of the form F (x, do(a, s))≡ ΦF (x, a, s), where ΦF (x, a, s) is a
formula with free variables among x, a, s. These axioms specify the truth of the
fluent F in the next situation do(a, s) in terms of the current situation s, and are a
solution to the frame problem (for deterministic actions). For example, the axiom
at(r, x, y, do(a, s))≡ a =moveTo(r, x, y) ∨ (at(r, x, y, s) ∧ ¬∃x′, y′ (a =move-
To(r, x′, y′))) may express that the agent r is at the position (x, y) in the situa-
tion do(a, s) iff either r moves to (x, y) in the situation s, or r is already at the
position (x, y) and does not move away in s.

• Dap is the set of action precondition axioms. For each action a, it contains an
axiom of the form Poss(a(x), s) ≡ Π(x, s), which characterizes the preconditions
of the action a. For example, Poss(moveTo(r, x, y), s) ≡ ¬∃r′ at(r′, x, y, s) may
express that it is possible to move the agent r to the position (x, y) in the situation s
iff no other agent r′ is at (x, y) in s.

We use the concurrent version of the situation calculus [20,18], which is an extension
of the standard situation calculus by concurrent actions. A concurrent action c is a set
of standard actions, which are concurrently executed when c is executed.

The regression of a formula φ through an action a, denoted Regr(φ), is a formula φ′

that holds before executing a, given that φ holds after executing a. The regression of φ
whose situations are all of the form do(a, s) is defined inductively using the successor
state axioms F (x, do(a, s)) ≡ ΦF (x, a, s) as follows:

Regr(F (x, do(a, s))) = ΦF (x, a, s), Regr(¬φ)= ¬Regr(φ),
Regr(φ1 ∧φ2)=Regr(φ1) ∧ Regr(φ2), and Regr(∃xφ)= ∃x (Regr(φ)) .

Golog [12,20] is an agent programming language that is based on the situation calculus.
It allows for constructing complex actions from the primitive actions defined in a basic
action theory AT , where standard (and not so standard) Algol-like control constructs
can be used, in particular, (i) sequence: p1; p2; (ii) test action: φ?; (iii) nondetermin-
istic choice of two programs: (p1 | p2); (iv) nondeterministic choice of an argument:
πx (p(x)); and (v) conditional, while-loop, and procedure. For example, the Golog pro-
gram while ¬at(r, 1, 2) do πx, y (moveTo(r, x, y)) repeats moving the agent r to a
nondeterministically chosen position (x, y) while r is not at (1, 2). The semantics of
a Golog program p is specified by a situation-calculus formula Do(p, s, s′), which en-
codes that s′ is a situation which can be reached from s by executing p. That is, Do
represents a macro expansion to a situation calculus formula. For example, the action
sequence is defined through Do(p1; p2, s, s

′) = ∃s′′(Do(p1, s, s
′′)∧Do(p2, s

′′, s′)).
For more details on the core situation calculus and Golog, we refer the reader to [20].

2.2 Matrix Games

Matrix games from classical game theory [23] describe the possible actions of two
agents and the rewards that they receive when they simultaneously execute one action



392 A. Finzi and T. Lukasiewicz

each. Formally, a matrix game G= (A, O, Ra , Ro) consists of two nonempty finite
sets of actions A and O for two agents a and o , respectively, and two reward functions
Ra , Ro : A× O →R for a and o. The matrix game G is zero-sum iff Ra = −Ro ; we
then often omit Ro and abbreviate Ra by R.

A pure (resp., mixed) strategy specifies which action an agent should execute (resp.,
which actions an agent should execute with which probability). If the agents a and o
play the pure strategies a ∈A and o∈ O, respectively, then they receive the rewards
Ra(a, o) and Ro(a, o), respectively. If the agents a and o play the mixed strategies πa∈
PD(A) and πo ∈PD(O), respectively, then the expected reward to agent k ∈{a ,o} is
Rk(πa , πo)=E[Rk(a, o)|πa , πo ] =

∑
a∈A, o∈O πa (a) · πo(o) · Rk(a, o).

We are especially interested in pairs of mixed strategies (πa , πo), called Nash equi-
libria, where no agent has the incentive to deviate from its half of the pair, once the
other agent plays the other half: (πa , πo) is a Nash equilibrium (or Nash pair) for G iff
(i) Ra(π′

a , πo)≤ Ra(πa , πo) for any mixed π′
a , and (ii) Ro(πa , π′

o)≤ Ro(πa , πo) for
any mixed π′

o . Every two-player matrix game G has at least one Nash pair among its
mixed (but not necessarily pure) strategy pairs, and many have multiple Nash pairs.

2.3 Stochastic Games

Stochastic games [16], or also called Markov games [22,13], generalize both matrix
games [23] and (fully observable) Markov decision processes (MDPs) [19].

They consist of a set of states S, a matrix game for every state s ∈S, and a transition
function that associates with every state s ∈S and combination of actions of the agents
a probability distribution on future states s′ ∈S. Formally, a (two-player) stochastic
game G= (S, A, O, P, Ra , Ro) consists of a finite nonempty set of states S, two finite
nonempty sets of actions A and O for two agents a and o , respectively, a transition
function P : S×A×O → PD(S), and two reward functions Ra , Ro : S×A×O → R
for a and o . The stochastic game G is zero-sum iff Ra= − Ro ; we then often omit Ro .

Assuming a finite horizon H ≥ 0, a pure (resp., mixed) time-dependent policy asso-
ciates with every state s ∈S and number of steps to go h ∈{0, . . . , H} a pure (resp.,
mixed) matrix-game strategy. The H-step reward to agent k ∈ {a ,o} under a start
state s ∈S and the pure policies α and ω, denoted Gk(H, s, α, ω), is Gk(0, s, α, ω) =
Rk(s, α(s, 0), ω(s, 0)) and Gk(H, s, α, ω) = Rk(s, α(s, H), ω(s, H))+

∑
s′∈SP (s′|s,

α(s, H), ω(s, H)) · Gk(H−1, s′, α, ω) for H > 0. The notions of an expected H-step
reward for mixed policies and of a Nash pair can then be defined in a standard way.
Every two-player stochastic game G has at least one Nash pair among its mixed (but
not necessarily pure) policy pairs, and it may have exponentially many Nash pairs.

2.4 Learning Optimal Policies

Q-learning [24] is a reinforcement learning technique, which allows to solve an MDP
without a model (that is, transition and reward functions) and can be used on-line. The
value Q(s, a) is the expected discounted sum of future payoffs obtained by executing
a from the state s and following an optimal policy. After being initialized to arbitrary
numbers, the Q-values are estimated through the agent experience. For each execution
of an action a leading from the state s to the state s′, the agent receives a reward r, and



Adaptive Multi-agent Programming in GTGolog 393

the Q-value update is Q(s, a) := (1 −α) · Q(s, a) + α · (r + γ · maxa′∈A Q(s′, a′)),
where γ (resp., α) is the discount factor (resp., the learning rate). This algorithm con-
verges to the correct Q-values with probability 1 assuming that every action is executed
in every state infinitely many times and α is decayed appropriately.

Littman [13] extends Q-learning to learning an optimal mixed policy in a zero-
sum two-player stochastic game. Here, the Q-value update is Q(s, a, o) := (1 −α) ·
Q(s, a, o) + α · (r + γ · maxπ∈PD(A) mino′∈O

∑
a′∈A Q(s′, a′, o′) · π(a′)), where the

“maxmin”-term gives the expected reward of a Nash pair for a zero-sum matrix game.

3 Adaptive GTGolog (AGTGolog)

In this section, we first define the domain theory behind Adaptive GTGolog (AGT-
Golog) and then the syntax of AGTGolog.

3.1 Domain Theory of AGTGolog

A domain theory DT =(AT ,ST ,OT ) of AGTGolog consists of a basic action the-
ory AT , a stochastic theory ST , and an optimization theory OT , as defined below.

We first give some preliminaries. We assume two zero-sum competing agents a
and o (called agent and opponent, respectively, where the former is under our con-
trol, while the latter is not). The set of primitive actions is partitioned into the sets of
primitive actions A and O of agents a and o , respectively. A two-player action is any
concurrent action c over A∪O such that |c ∩A| ≤ 1 and |c ∩O| ≤ 1. For example, the
concurrent actions {moveTo(a , 1, 2)} ⊆A, {moveTo(o , 2, 3)} ⊆O, and {moveTo(a ,
1, 2), moveTo(o , 2, 3)} ⊆A∪O are all two-player actions. We often write a, o, and
a‖o to abbreviate {a} ⊆A, {o} ⊆O, and {a, o} ⊆A∪O, respectively.

A state formula over x, s is a formula φ(x, s) in which all predicate symbols are flu-
ents, and the only free variables are the non-situation variables x and the situation vari-
able s. A state partition over x, s is a nonempty set of state formulas P (x, s)= {φi(x,
s) | i ∈{1, . . . , m}} such that (i) ∀x, s (φi(x, s)⇒¬φj(x, s)) is valid for all i, j ∈ {1,
. . . , m} with j > i, (ii) ∀x, s (

∨m
i=1 φi(x, s)) is valid, and (iii) every ∃x, s (φi(x, s)) is

satisfiable. For state partitions P1 and P2, we define their product as follows:

P1 ⊗ P2 = {ψ1 ∧ψ2 | ψ1 ∈P1, ψ2 ∈P2, ψ1 ∧ψ2 �= ⊥} .

We often omit the arguments of a state formula when they are clear from the context.
We next define the stochastic theory. As usual [3,10,2], stochastic actions are ex-

pressed by a finite set of deterministic actions. When a stochastic action is executed,
then “nature” chooses and executes with a certain probability exactly one of its de-
terministic actions. We use the predicate stochastic(a, s, n) to associate the stochastic
action a with the deterministic action n in situation s. We also specify a state partition
P a,n

pr (x, s)= {φa,n
j (x, s) | j ∈ {1, . . . , m}} to group together situations s with common

p such that “nature” chooses n in s with probability p, denoted prob(a(x), n(x), s)= p :

∃p1, . . . , pm (
∧m

j=1(φ
a,n
j (x, s)⇔ prob(a(x), n(x), s)= pj)) .



394 A. Finzi and T. Lukasiewicz

A stochastic action s is indirectly represented by providing a successor state axiom for
each associated nature choice n. Thus, AT is extended to a probabilistic setting in a
minimal way. We assume that the domain is fully observable. For this reason, we in-
troduce observability axioms, which disambiguate the state of the world after executing
a stochastic action. For example, after executing moveS (a, x, y), we test at(a, x, y, s)
and at(a, x, y +1, s) to see which of the deterministic actions was executed (that is,
moveTo(a, x, y) or moveTo(a, x, y +1)). This condition is denoted condSta(a, n, s).
For example, condSta(moveS (a, x, y),moveTo(a, x, y + 1), s) ≡ at(a, x, y + 1, s).
Similar axioms are introduced to observe which actions the two agents have chosen.

As for the optimization theory, for every two-player action a, we specify a state par-
tition P a

rw(x, s)= {φa
k(x, s) | k ∈{1, . . . , q}} to group together situations s with com-

mon r such that a(x) and s assign the reward r to a , denoted reward(a(x), s)= r:

∃r1, . . . , rq (
∧q

k=1(φ
a
k(x, s)⇔ reward(a(x), s)= rk)) .

Moreover, a utility function associates with every reward v and success probability pr a
real-valued utility utility(v, pr ). We assume that utility(v, 1)= v and utility(v, 0)=0
for all v. An example of such a function is utility(v, pr )= v · pr .

Example 3.1 (Stratagus Domain). Consider the following scenario inspired by [14].
The stratagus field consists of 9 × 9 positions (see Fig. 1). There are two agents, denoted
a and o , which occupy one position each. The stratagus field has designated areas rep-
resenting two gold-mines, one forest, and one base for each agent (see Fig. 1). The two
agents can move one step in one of the directions N, S, E, and W, or remain stationary.
Each of the two agents can also pick up one unit of wood (resp., gold) at the forest
(resp., gold-mines), and drop these resources at its base. Each action of the two agents
can fail, resulting in a stationary move. Any carried object drops when the two agents
collide. After each step, the agents a and o receive the (zero-sum) rewards ra − ro

and ro − ra , respectively, where rk for k ∈{a ,o} is 0, 1, and 2 when k brings nothing,
one unit of wood, and one unit of gold to its base, respectively.

The domain theory DT = (AT ,ST ,OT ) for the above stratagus domain is defined
as follows. As for the basic action theory AT , we assume the deterministic actions
move(α, m) (agent α performs m among N , S, E, W , and stand), pickUp(α, o)
(agent α picks up the object o), and drop(α, o) (agent α drops the object o), as well
as the relational fluents at(q, x, y, s) (agent or object q is at the position (x, y) in the
situation s), and holds(α, o, s) (agent α holds the object o in the situation s), which are
defined through the following successor state axioms:

at(q, x, y, do(c, s)) ≡ agent(q) ∧ (at(q, x, y, s) ∧ move(q, stand) ∈ c ∨
∃x′, y′ (at(q, x′, y′, s) ∧ ∃m (move(α, m) ∈ c ∧ φ(x, y, x′, y′, m))))∨
object(q) ∧ (at(q, x, y, s) ∧ ¬∃α (pickUp(α, q) ∈ c)∨
∃α ((drop(α, q) ∈ c ∨ collision(c, s)) ∧ at(α, x, y, s) ∧ holds(α, q, s))) ;

holds(α, o, do(c, s)) ≡ holds(α, o, s)∧
drop(α, o) �∈ c ∧ ¬collision(c, s) ∨ pickUp(α, o) ∈ c.

Here, φ(x, y, x′, y′, m) represents the coordinate change due to m, and collision(c, s)
encodes that the concurrent action c causes a collision between the agents a and o in



Adaptive Multi-agent Programming in GTGolog 395

a

a’s base

wood

o
’s

baseo

gold

gold

Fig. 1. Stratagus Domain

the situation s. The deterministic actions move(α, m), drop(α, o), and pickUp(α, o)
are associated with precondition axioms as follows:

Poss(move(α, m), s) ≡ � ;
Poss(drop(α, o), s) ≡ holds(α, o, s) ;
Poss(pickUp(α, o), s) ≡ ¬∃x holds(α, x, s) .

Furthermore, we assume the following additional precondition axiom, which encodes
that two agents cannot pick up the same object at the same time (where α �= β):

Poss({pickUp(α, o), pickUp(β, o)}, s) ≡
∃x, y, x′, y′(at(α, x, y, s) ∧ at(β, x′, y′, s) ∧ (x �= x′ ∨ y �= y′)) .

As for the stochastic theory ST , we assume the stochastic actions moveS (α, m)
(agent α executes m among N , S, E, W , and stand ), pickUpS (α, o) (agent α picks
up the object o), dropS (α, o) (agent α drops the object o), which may succeed or fail.
We assume the state partition P a,n

pr = {�} for each pair consisting of a stochastic action
and one of its deterministic components:

∃p (prob(pickUpS (α, o), pickUp(α, o), s) = p) ;
∃p (prob(pickUpS (α, o),move(α, stand), s) = p) ;
∃p (prob(dropS (α, o), drop(α, o), s) = p) ;
∃p (prob(dropS (α, o),move(α, stand), s) = p) ;
∃p (prob(moveS (α, d),move(α, d), s) = p) ;
∃p (prob(moveS (α, d),move(α, stand), s) = p) ;
∃p (prob(a‖o, a′‖o′, s) = p ≡ ∃p1, p2 (prob(a, a′, s) = p1∧

prob(o, o′, s) = p2 ∧ p = p1 · p2)) .

As for the optimization theory OT , we use the product as the utility function utility .
Furthermore, we define the reward function reward as follows:



396 A. Finzi and T. Lukasiewicz

reward(α, a, s)= r ≡ ∃rα, rβ (rewAg(α, a, s)= rα ∧
∃β (rewAg(β, a, s)= rβ) ∧ r = rα − rβ) ;

∃r1, . . . , rm (
∧m

j=1(φ
α,a
j (s) ⇔ rewAg(α, a, s) = rj)) .

Here, φα,a
j (x, s) belongs to Pα,a

rw , which is defined as follows. If a =moveS (α, x, y),
then Pα,a

rw = {�}; if a = pickUpS (α, o), then Pα,a
rw = {¬h ∧ atg , ¬h ∧ atw , ¬h ∧ ato,

h}; if a = dropS (α, o), then Pα,a
rw = {hw ∧ atb, hg ∧ atb, ¬atb ∧h, ¬h}, where h, atg ,

atw , atb, hg , hw , ato are formulas that stand for α holding something, being at the
gold-mine, being at the wood, being at the base, holding gold, holding wood, and be-
ing close to an object, respectively.

3.2 Syntax of AGTGolog

AGTGolog has the same syntax as standard GTGolog: Given the actions specified by a
domain theory DT , a program p in AGTGolog has one of the following forms (where α
is a two-player action, φ is a condition, p, p1, p2 are programs, and a1, . . . , an and
o1, . . . , om are actions of agents a and o , respectively):

1. Deterministic or stochastic action: α. Do α.
2. Nondeterministic action choice of a: choice(a : a1| · · · |an).

Do an optimal action (for agent a) among a1, . . . , an.
3. Nondeterministic action choice of o: choice(o : o1| · · · |om).

Do an optimal action (for agent o) among o1, . . . , om.
4. Nondeterministic joint action choice:

choice(a : a1| · · · |an) ‖ choice(o : o1| · · · |om).
Do any action ai‖oj with an optimal probability πi,j .

5. Test action: φ?. Test the truth of φ in the current situation.
6. Sequence: p1; p2. Do p1 followed by p2.
7. Nondeterministic choice of two programs: (p1 | p2). Do p1 or p2.
8. Nondeterministic choice of an argument: πx (p(x)). Do any p(x).
9. Nondeterministic iteration: p�. Do p zero or more times.

10. Conditional: if φ then p1 else p2.
11. While-loop: while φ do p.
12. Procedures, including recursion.

Example 3.2 (Stratagus Domain cont’d). We define some AGTGolog programs rela-
tive to the domain theory DT = (AT ,ST ,OT ) of Example 3.1. The following AGT-
Golog procedure carryToBase describes a partially specified behavior where agent a
is trying to move to its base in order to drop down an object:

proc carryToBase
choice(a : moveS (a , N) |moveS (a , S) |moveS (a , E) |moveS (a , W ));
if atBase then πx (dropS (a , x))

else carryToBase
end.

The subsequent procedure pickProc(x) encodes that if the two agents a and o are at
the same location, then they have to compete in order to pick up an object, otherwise
agent a can directly use the primitive action pickUpS (a , x):



Adaptive Multi-agent Programming in GTGolog 397

proc pickProc(x)
if atSameLocation(a ,o) then tryToPickUp(x)

else pickUpS (a , x)
end.

Here, the joint choices of the two agents a and o when they are at the same location are
specified by the following procedure tryToPickUp(x) (which will be instantiated by a
mixed policy):

proc tryToPickUp(x)
choice(a : pickUpS (a , x) | moveS(a , stand)) ‖

choice(o : pickUpS (o , x) |moveS (o, stand))
end.

4 Learning Optimal Policies

We now define state partitions SF for finite-horizon AGTGolog programs p. We then
show how to learn an optimal policy for p. Intuitively, given a horizon h ≥ 0, an h-step
policy π of p relative to a domain theory is obtained from the h-horizon part of p by
replacing every single-agent choice by a single action, and every multi-agent choice by
a collection of probability distributions, one over the actions of each agent.

4.1 State Partition Generation

Given a GTGolog program p, a machine state consists of a subprogram p′ of p and a
horizon h. A joint state (φ, p′, h) consists of a state formula φ and a machine state (p′, h).
Note that the joint state represents both the state of the environment and the executive
state of the agent. Every machine state (p, h) is associated with a state partition, denoted
SF (p, h)= {φ1(x, s), . . . , φm(x, s)}, which is inductively defined relative to the main
constructs of AGTGolog (and naturally extended to all the other constructs) by:

1. Null program or zero horizon:

SF (nil , h)=SF (p, 0)= {�}.

At the program or horizon end, the state partition is given by {�}.
2. Deterministic first program action:

SF (a; p′, h) = P a
rw(x, s) ⊗ {Regr(φ(x, do(a, s))∧ Poss(a, s) |

φ(x, s)∈ SF (p′, h − 1)} ∪{¬Poss(a, s)} \ {⊥}.

Here, the state partition for a; p′ with horizon h is obtained as the product of the
reward partition P a

rw(x, s), the state partition SF (p′, h − 1) of the next machine
state (p′, h − 1), and the executability partition {¬Poss(a, s), Poss(a, s)}.

3. Stochastic first program action (nature choice):

SF (a; p′, h) =
⊗k

i=1(SF (ni; p′, h) ⊗ P a,ni
pr (x, s)),

where n1, . . . , nk are the deterministic components of a. That is, the partition
for a; p′ in h, where a is stochastic, is the product of the state partitions SF (ni; p′, h)
relative to the deterministic components ni of a combined with the partitions P a,ni

pr .



398 A. Finzi and T. Lukasiewicz

4. Nondeterministic first program action (choice of agent k):

SF (choice(k : a1| · · · |an); p′, h) =
⊗n

i=1 SF (ai; p′, h),

where a1, . . . , an are two-player actions. That is, the state partition for a single
choice of actions is the product of the state partitions for the possible choices. Note
that the state partition for the joint choice of both agents is defined in a similar way.

5. Nondeterministic choice of two programs:

SF ((p1 | p2); p′, h) = SF (p1; p′, h) ⊗ SF (p2; p′, h).

The state partition for a nondeterministic choice of two programs is obtained as the
product of the state partitions associated with the possible programs.

6. Test action:

SF (φ?; p′, h)= {φ, ¬φ} ⊗ SF (p′, h).

The partition for (φ?; p′, h) is obtained by composing the partition {φ, ¬φ} induced
by the test φ? with the state partition for (p′, h).

4.2 Learning Algorithm

The main learning algorithm is Learn in Algorithm 1. For each joint state σ = (φ, p, h),
where (p, h) is a machine state and φ∈SF (p, h), it generates an optimal h-step policy
of p in φ, denoted π(σ). We use a hierarchical version of Q-learning.

More concretely, the algorithm takes as input a program state (p, h) and generates as
output an optimal policy π for each associated joint state (φ, p, h). In line 1, we initial-
ize the learning rate α to 1; it decays at each learning cycles according to decay . In line
2, we also initialize to 〈1, 1〉 the variables 〈v, pr〉 representing the current value func-
tion (or v-function). At each cycle, the current state φ∈ SF (p, h) is estimated (that is,
the agent evaluates which of the state formulas describes the current state of the world).
Then, from the joint state σ =(φ, p, h), the procedure Update(φ, p, h) (see Section 4.3)
executes the program p with horizon h, and updates and refines the v-function 〈v, pr〉
and the policy π. At the end of the execution of Update , if the learning rate is greater
than a suitable threshold ε, then the current state φ is estimated and a new learning cycle
starts. At the end of the algorithm Learn , for suitable decay and ε, each possible execu-
tion of (p, h), from each φ, is performed often enough to obtain the convergency. That
is, the agent executes the program (p, h) several times refining its v-function 〈v, pr〉
and policy π until an optimal behavior is reached.

4.3 Updating Step

The procedure Update(φ, p, h) in Algorithms 2 and 3 (parts 1 and 2, respectively) im-
plements the execution and update step of a Q-learning algorithm. Here, each joint
state σ of the program is associated with a variable 〈v, pr〉(σ), which stores the current
value of the v-function, and the variable π(σ), which contains the current optimal policy
at σ. Notice here that 〈v, pr〉(σ) collects the cumulated reward v and probability pr of



Adaptive Multi-agent Programming in GTGolog 399

Algorithm 1. Learn(p, h)
Require: AGTGolog program p and finite horizon h.
Ensure: optimal policy π(φ, p, h) for all φ∈SF (p, h).

1: α := 1;
2: for each joint state σ do 〈v, pr〉(σ) := 〈1, 1〉;
3: repeat
4: estimate φ∈ SF (p, h);
5: Update(φ, p, h);
6: α := α · decay
7: until α <ε;
8: return (π(φ, p, h))φ∈SF (p,h).

successful execution of σ, and utility(〈v, pr〉) is the associated utility. The procedure
Update(φ, p, h) updates these value during an execution of a program p with horizon h,
from a state φ ∈ SF (p, h). It is recursive, following the structure of the program.

Algorithm 2 describes the first part of the procedure Update(φ, p, h). Lines 1–4 en-
code the base of the induction: if the program is empty or the horizon is 0, then we set
the v-function to 〈0, 1〉, that is, reward 0 and success probability 1. In lines 5–8, we
consider the nonexecutable cases: if a primitive action a is not executable in the current
state (here, ¬Poss(a, φ) abbreviates DT ∪ φ |= ¬Poss(a, s)) or a test failed in the cur-
rent situation (here, ¬ψ[φ] stands for DT ∪φ |= ¬ψ(s)), then we have the reward 0 and
the success probability 0. In lines 9–15, we describe the execution of a primitive action
a from (φ, a; p, h) (here, Poss(a, φ) is a shortcut for DT ∪ φ |= Poss(a, s)): after the
execution, the agent receives a reward from the environment. Here, the update of the
v-function and of the policy π is postponed to the execution Update(do(a, φ), p′, h−1)
of the rest of the program, (p′, h−1), from the next state formula do(a, φ), that is, the
state formula φ′ ∈ SF (p′, h−1) such that Regr(φ′(do(a, s))) equals to φ(s) relative to
DT . Then, the v-function 〈v, pr 〉 is updated as for Q-learning (v(do(a, φ), p′, h) is for
a Q-value for a in σ), while the success probability pr is inherited from the next joint
state. In lines 16–22, we consider the stochastic action execution: after the execution,
we observe a reward and the executed deterministic component nq, then we update as
in the deterministic case. The generated strategy is a conditional plan where each pos-
sible execution is considered. Here, φi are the conditions to discriminate the executed
component (represented by the observability axioms).

The core of the learning algorithm (lines 24–55) is in Algorithm 3, where we show
the second part of the procedure Update(φ, p, h). This code collects the agent choice
constructs and describes how the agent learns an optimal probability distribution over
the possible options in the choice points. Here, the algorithm selects one possible
choice with the exploration strategy explore: with probability α, the agent selects ran-
domly, and with probability 1−α, the agent selects according to the current policy π(σ).
Upon the execution of the selected action through the procedure Update , the v-func-
tion 〈v, pr 〉(σ) is updated. In the case of an agent (resp., opponent) choice (see lines
24–30 (resp., 31–38)), the current policy π(σ) selects the current maximal (resp., min-
imal) choice; in the case of joint choices (see lines 39–48), following [13], an optimal



400 A. Finzi and T. Lukasiewicz

Algorithm 2. Update(φ, p, h): Part 1
Require: state formula φ, AGTGolog program p, and finite horizon h.
Ensure: updates 〈v, pr〉(σ) and π(σ), where σ = (φ, p, h).

1: if p =nil ∨h = 0 then
2: 〈v, pr〉(σ) := 〈0, 1〉;
3: π(σ) := stop
4: end if;
5: if p = a; p′∧¬Poss(a, φ)∨ p =ψ?; p′∧¬ψ[φ] then
6: 〈v, pr〉(σ) := 〈0, 0〉;
7: π(σ) := stop
8: end if;
9: if p = a; p′ ∧Poss(a, φ) and a is deterministic then

10: execute a and observe reward ;
11: Update(do(a, φ), p′, h−1);
12: 〈v, pr〉(σ) := 〈(1 − α) · v(σ) + α · (reward +
13: γ · v(do(a, φ), p′, h−1)), pr (do(a, φ), p′, h−1)〉;
14: π(σ) := a; π′(do(a, φ), p′, h−1)
15: end if;
16: if p = a; p′ ∧Poss(a, φ) and a is stochastic then
17: “nature” selects any deterministic action nq of the action a;
18: Update(φ, nq; p′, h);
19: 〈v, pr〉(σ) := 〈v, pr 〉(φ, nq ; p′, h);
20: π(σ) := a; if φ1 then π(φ, n1; p′, h) . . .
21: else if φk then π(φ, nk; p′, h)
22: end if;
23: � The algorithm is continued in Alg. 3, where the agent choices are described.

current mixed policy is given by the Nash pair computed by a Nash selection function
selectNash from the matrix game defined by the possible joint choices. Then, depend-
ing on the case, the v-function is updated accordingly. Lines 49–55 encode the agent
choice among programs. Finally, lines 55–60 define the successful test execution.

4.4 Example

We now illustrate the learning algorithm in the Stratagus Domain.

Example 4.1 (Stratagus Domain cont’d). Let the AGTGolog program p and the hori-
zon h be given by p =PickProc(x ); carryToBase and h =3, respectively. The learning
algorithm for this input (that is, Learn(p, 3)) then works as follows. The agent runs sev-
eral times p with horizon 3, playing against the opponent, until the learning ends and
the variables 〈v, pr〉 are stabilized for each joint state (φ, p, h) associated with (p, 3)
obtaining the relative policies π(φ, p, h).

The state partition of (p, 3) is given by SF (p, 3)=SF (p1, 3)⊗{asl}∪SF (p′1, 3)⊗
{¬asl}, where p1 = tryToPickUp(x ); carryToBase and p′1 = pickUpS (a , x); carry−
ToBase . In the machine state (p1, 3), we have the joint choices ch

a‖ck
o , where



Adaptive Multi-agent Programming in GTGolog 401

Algorithm 3. Update(φ, p, h): Part 2

24: if p = choice(a : a1| · · · |an); p′ then
25: select any q ∈{1, . . . , n} with strategy explore;
26: Update(φ,a :aq; p′, h);
27: k := argmaxi∈{1,...,n}utility(〈v, pr 〉(φ,a :ai; p′, h));
28: 〈v, pr〉(σ) := 〈v, pr 〉(φ,a :ak; p′, h);
29: π(σ) := π(φ,a :ak; p′, h)
30: end if;
31: if p = choice(o : o1| · · · |om); p′ then
32: select any q ∈{1, . . . , m} with strategy explore;
33: Update(φ,o :oq; p′, h);
34: k := argmini∈{1,...,m}utility(〈v, pr 〉(φ,o :oi; p′, h));
35: 〈v, pr〉(σ) := 〈v, pr 〉(φ,o :ok; p′, h);
36: π(σ) := if φ1 then π(φ,o :o1; p′, h) . . .

37: else if φm then π(φ,o :om; p′, h)
38: end if;
39: if p = choice(a : a1| · · · |an) ‖ choice(o : o1| · · · |om); p′ then
40: select any r ∈ {1, . . . , n} and s ∈{1, . . . , m} with strategy explore;
41: Update(φ,a :ar‖o:os; p′, h);
42: (πa , πo) := selectNash({ri,j = utility(〈v, pr 〉(φ,a :ai‖o:oj ; p′, h)) | i, j};
43: 〈v, pr〉(σ) :=

∑n
i=1

∑m
j=1 πa(ai) · πo(oj) · 〈v, pr〉(φ,a :ai‖o:oj ; p′, h);

44: π(σ) := πa‖πo ; if φ1∧ψ1 then π(φ,a :a1‖o:o1; p′, h) . . .

45: else if φn∧ψm then π(φ,a :an‖o:om; p′, h)
46: end if;
47: if p =(p1 | p2); p′ then
48: select any i ∈{1, 2} with strategy explore;
49: Update(φ, pi; p′, h);
50: k := argmaxi∈{1,2}utility(〈v, pr 〉(φ, pi; p′, h));
51: 〈v, pr〉(σ) := 〈v, pr〉(φ, pk; p′, h);
52: π(σ) := π(φ, pk; p′, h)
53: end if;
54: if p =ψ?; p′ ∧ψ[φ] then
55: Update(φ, p′, h);
56: 〈v, pr〉(σ) := 〈v, pr 〉(φ, p′, h);
57: π(σ) := π(φ, p′, h)
58: end if.

cpk
α = pickUpS (α, x) and cpk

α = moveS (α, stand), and the agent is to learn the proba-
bility distributions of the relative mixed policies. The choices ch

a‖ck
o are associated with

the programs ph,k = ch
a‖ck

o ; p2, where p2 = carryToBase . In the machine state (p2, 2),
we have another choice point over the possible moves m(q)= moveS (a , q) towards the



402 A. Finzi and T. Lukasiewicz

base. Each choice m(q) is associated with the program pq = m(q); p3, where p3 = if
atb then dropS (a , x) else p2 (atb abbreviates atBase). Here, the partition is SF (pq, 2)
= {atbq ∧ hw , atbq ∧ hg , ¬atbq, ¬h}, where atbq represents atb after m(q) obtained
form Regr(ab, m(q)). If ¬atb is represented by atb0, and atbq1 ∧ · · · ∧ atbq4 is repre-
sented by atbq1,...,q4 , then SF (p2, 2) = ⊗q SF (pq, 2)= {¬h, atb0,...,0}∪{atbk1,...,k4 ∧
hg | ∃i : ki �=0}∪{atbh1,...,h4 ∧hw | ∃i : ki �=0}. For each state formula φ∈SF (p2, 2),
the algorithm Learn(p, 3) continuously refines, through the Update step, the probabil-
ity distribution over the policies π(φ, p2, 2). For example, training the agent against
a random opponent, in the state φ= atbS,0,0,0 ∧hg, the algorithm produces a pol-
icy π(φ, p2, 2) assigning probability 1 for the component q =S, and probability 0 for
q �=S. Analogously, in the choice point (p1, 3), Learn(p1, 3) defines a mixed pol-
icy π(φ, p1, 3) for each state φ∈ SF (p1, 3)=⊗h,k SF (ph,k, 3). For example, given
φ1 ∈ SF (p1, 3) equal to ¬asl ∧ag ∧atbk1,...,k4 ∧¬ha ∧ho , we get probability 1 for the
choice cpk ,s in π(φ1, p1, 3), instead, for φ2 ∈SF (p1, 3) equal to asl ∧ag ∧atbk1,...,k4 ∧
¬ha ∧ ¬ho , we get probability 0 for cpk ,s, cs,pk , cpk ,pk , and probability 1 for cs,s.

5 Summary and Outlook

We have presented a framework for adaptive multi-agent programming, which inte-
grates high-level programming in GTGolog with adaptive dynamic programming. It
allows the agent to on-line instantiate a partially specified behavior playing against an
adversary. Differently from the classical Golog approach, here the interpreter generates
not only complex sequences of actions (the policy), but also the state abstraction in-
duced by the program at the different executive stages (machine states). In this way, we
show how the Golog integration between action theory and programs allows to naturally
combine the advantages of symbolic techniques [2,11] with the strength of hierarchical
reinforcement learning [17,5,1,14]. This work aims at bridging the gap between pro-
grammable learning and logic-based programming approaches. To our knowledge, this
is the first work exploring this very promising direction.

An interesting topic of future research is to explore whether the presented approach
can be extended to the partially observable case.

Acknowledgments. This work was supported by the Austrian Science Fund Project
P18146-N04 and by a Heisenberg Professorship of the German Research Foundation
(DFG). We thank the reviewers for their comments, which helped to improve this work.

References

1. D. Andre and S. J. Russell. State abstraction for programmable reinforcement learning
agents. In Proceedings AAAI-2002, pp. 119–125.

2. C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming for first-order MDPs.
In Proceedings IJCAI-2001, pp. 690–700.

3. C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-level agent
programming in the situation calculus. In Proceedings AAAI-2000, pp. 355–362.

4. P. Dayan and G. E. Hinton. Feudal reinforcement learning. In Proc. NIPS-1993, pp. 271–278.
5. T. G. Dietterich. The MAXQ method for hierarchical reinforcement learning. In Proceedings

ML-1998, pp. 118–126.



Adaptive Multi-agent Programming in GTGolog 403

6. A. Ferrein, C. Fritz, and G. Lakemeyer. Using Golog for deliberation and team coordination
in robotic soccer. Künstliche Intelligenz, 1:24–43, 2005.

7. A. Finzi and T. Lukasiewicz. Game-theoretic agent programming in Golog. In Proceedings
ECAI-2004, pp. 23–27.

8. A. Finzi and T. Lukasiewicz. Relational Markov games. In Proceedings JELIA-2004,
Vol. 3229 of LNCS/LNAI, pp. 320–333.

9. A. Finzi and T. Lukasiewicz. Game-theoretic Golog under partial observability. In Proceed-
ings AAMAS-2005, pp. 1301–1302.

10. A. Finzi and F. Pirri. Combining probabilities, failures and safety in robot control. In Pro-
ceedings IJCAI-2001, pp. 1331–1336.

11. C. Gretton and S. Thiebaux. Exploiting first-order regression in inductive policy selection.
In Proceedings UAI-2004, pp. 217–225.

12. H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. GOLOG: A logic program-
ming language for dynamic domains. J. Logic Program., 31(1–3):59–84, 1997.

13. M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Proceedings ICML-1994, pp. 157–163.

14. B. Marthi, S. J. Russell, D. Latham, and C. Guestrin. Concurrent hierarchical reinforcement
learning. In Proceedings IJCAI-2005, pp. 779–785.

15. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of Artificial
Intelligence. In Machine Intelligence, Vol. 4, pp. 463–502. Edinburgh University Press, 1969.

16. G. Owen. Game Theory: Second Edition. Academic Press, 1982.
17. R. Parr and S. J. Russell. Reinforcement learning with hierarchies of machines. In Proceed-

ings NIPS-1997, Vol. 10, pp. 1043–1049.
18. J. Pinto. Integrating discrete and continuous change in a logical framework. Computational

Intelligence, 14(1):39–88, 1998.
19. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley, 1994.
20. R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dy-

namical Systems. MIT Press, 2001.
21. Michael Thielscher. Programming of reasoning and planning agents with FLUX. In Pro-

ceedings KR-2002, pp. 435–446.
22. J. van der Wal. Stochastic Dynamic Programming, Vol. 139 of Mathematical Centre Tracts.

Morgan Kaufmann, 1981.
23. J. von Neumann and O. Morgenstern. The Theory of Games and Economic Behavior. Prince-

ton University Press, 1947.
24. C. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge, UK,

1989.



Agent Logics as Program Logics:
Grounding KARO

Koen V. Hindriks1 and John-Jules Ch. Meyer2

1 Nijmegen Institute for Cognition and Information, Radboud University Nijmegen,
The Netherlands

k.hindriks@nici.ru.nl
2 Utrecht University, Department of Information and Computing Sciences,

The Netherlands
jj@cs.uu.nl

Abstract. Several options are available to relate agent logics to com-
putational agent systems. Among others, one can try to find useful exe-
cutable fragments of an agent logic or use a model checking approach. In
this paper, an alternative approach is explored based on the view that
an agent logic is a program logic. Using the same starting point, one of
the established agent logics, we ask instead if it is possible to construct a
programming language for that agent logic. We show that the program-
ming language and the agent logic are formally related by constructing
a denotational semantics. As a result, the agent logic can be used as as
a design tool to specify and verify the corresponding agent programs.

In particular, we construct an agent programming language that is for-
mally related to the KARO agent logic. The KARO logic is an agent logic
that builds on top of dynamic logic. The approach is based on mapping
worlds in the modal semantics for KARO onto a state-based semantics.
The state-based semantics can be used to define an operational semantics
for KARO programs. In this way, we obtain a computationally grounded
semantics for a significant part of the KARO logic, including the oper-
ators for knowledge or beliefs, motivational attitudes and belief revision
actions of a rational KARO agent.

1 Introduction

Various agent logics have been proposed as models of so-called intelligent or
rational agents. Some of the more influential ones have been those of [1,2,3].
These agent logics have played a guiding role in the research on the so-called
strong notion of intelligent agent.

At the same time, the use of modal agent logics for engineering rational agents
has been questioned (see for an extensive discussion also [4]). Agent logics have
not been as useful as was hoped for in the specification and verification of agent
systems. Consequently, the development of agent architectures and progamming
languages has been inspired by operational systems such as the PRS system,
which motivated the definition of AgentSpeak(L) [5].

The issue concerning the relation between agent logics and systems goes both
ways: (i) can a suitable logical framework for reasoning about existing agent

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 404–418, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Agent Logics as Program Logics: Grounding KARO 405

systems be constructed? and (ii) can a suitable operational framework for engi-
neering agent systems be constructed that is related to an existing agent logic
“in the right way”? These questions have been referred to as the gap between
theory and practice. In this paper, we will not pursue the first question (see
e.g. [6,7]) but only consider the second. There are good reasons to continue the
search for a solution to bridge the gap. Agent systems are inherently complex
due to the many different components and mechanisms such systems consist of.
To be able to build such complex systems, at least two conditions should be met.
First, it should be unambiguously clear how these components and mechanisms
operate. One of the proven approaches to provide such an unambiguous inter-
pretation is to provide a mathematical semantics that specifies the operation of
an agent system. Second, tools for the design, specification and verification of
agent systems should be available. This additionally requires the development of
a design method including proof techniques for agent systems. Both conditions
require that a precise relation between agent logics and systems is established.

As discussed in [4], various approaches to demonstrate the applicability of
agent logics are available. Each of these approaches proposes techniques for re-
lating agent logics to computational agent systems. For example, one method is
to apply techniques for directly executing the logic. The goal of such methods
is to find fragments that can be executed efficiently. Relevant work in this area
is, for example, that of [8,9]. A drawback, however, is that these techniques are
applicable only to relatively small fragments of agent logics.

In this paper, an alternative approach is proposed. Using the same starting
point, one of the established agent logics, we ask instead if it is possible to
construct an agent programming framework for that agent logic. The idea is to
construct an agent programming framework for engineering agent systems that
is related to an agent logic in a way such that the logic can be used to prove
properties of the agent system. The idea promoted here is that agent logics are
program logics. Program logics are used as a design tool to specify and verify
agent programs instead as directly executable frameworks. It is shown that this
approach can be successfully applied to close the gap between theory and practice
by constructing a programming framework for the KARO logic [3].

2 Grounding Agent Logics

Agent logics typically are modal logics. Since the associated possible world se-
mantics is abstract, in [4], the issue has been framed as the question whether it is
possible to ground the semantics of agent logics. As the authors explain, “there
is usually no precise relationship between the abstract accessibility relations
that are used to characterize an agent’s state, and any concrete computational
model.” Such a precise relationship, in a mathematical sense, is exactly what
we will be looking for in this paper. To achieve this objective, we briefly clarify
what we mean by (i) an agent logic, (ii) a concrete computational system, and
(iii) the relation between the two.



406 K.V. Hindriks and J.-J. Ch. Meyer

What is an Agent Logic? Any logic that is explicitly constructed as a tool for
modeling rational agents and is rich enough to model agents that derive their
choice of action from their beliefs and motivations is an agent logic. In this
paper, agent logics are single agent modal logics. Some of the better known
agent logics such as [1,2,3] fit this definition and are reference examples. Agent
logics based on dynamic logic (e.g. [3]) can be distinguished from agent logics
based on temporal logic (e.g. [2]). Since in dynamic logic programs are explictly
represented, agent logics based on dynamic logic provide a good starting point
for our purposes.

What is a Concrete Computational System? To be able to construct a concrete
computational system that relates to an agent logic in the right way, we start with
providing a rather abstract definition and then move on to provide a concrete
instance of this definition.

The main assumption that we introduce here is that computational systems
are state-based. We take this to mean that the possible behavior of such a system
can be uniquely predicted given its current state. Moreover, states are extensional
and do not have an intensional flavour. That is, computational systems behave
identically whenever they are in the same state at different times.

In fact, we will be more concrete and take a computational system to be a
system that is programmed using a particular programming language. A pro-
gramming language is a set of programming constructs to perform operations on
specific data structures. Here, we are particularly interested in the set of data
structures of agent systems, i.e. agent states, and associated agent programming
frameworks for dynamically changing such states.

Programming frameworks typically have features for inspecting states of a
computational system. For example, the language AgentSpeak(L) includes tests
on the beliefs of an agent. The power that such tests have, however, may vary
considerably. We distinguish so-called poor tests from rich tests (cf. [10]). Poor
tests only allow inspection of the current state of a system whereas rich tests
allow inspection of potential future states as well. Rich tests thus presuppose
capabilities, called look ahead facilities, to perform tests on future states. In
general, it is not clear how to provide a computational interpretation for rich
tests. The second assumption we introduce is that computational systems do not
have look ahead facilities. It will turn out, in fact, that the latter assumption will
require the most effort in constructing a suitable agent programming framework.
Computations thus are local in the sense that actions and tests are performed
on the current state and do not require additional resources. The approach to
define a state-based semantics is inspired by [11], but differs in its aim to derive a
programming language from an agent logic. Any computational framework that
introduces programming constructs to build computational systems and satisfies
the two assumptions discussed is called a programming framework. As far as
we know, all agent programming languages in the literature are programming
frameworks in this sense (e.g. [5,12,13]).

How are Agent Logics and Computational Systems Related? The view promoted
here is that agent logics are program logics for the specification and verification



Agent Logics as Program Logics: Grounding KARO 407

of agent programs. Agent logics provide declarative specifications of what an
agent program should compute, whereas agent programming languages provide
operational specifications how to execute an agent program. The semantics of
the first is provided by possible worlds semantics. Structural operational seman-
tics is used here to define computation steps that provide an interpretation of
the operations of an agent program [14]. The precise relation between the two is
established by proving that both semantics are equivalent. Formally, a denota-
tional semantics for programs is derived from the logical semantics of an agent
logic and is shown to be equivalent to the operational semantics. This is a stan-
dard technique in programming theory to show that a logic can be used to verify
(partial correctness) properties of programs. The approach differs from directly
executing an agent logic since the logic itself is only used to verify properties of
an executable agent program. It differs from a model checking approach in that
the logic is not used to check whether execution traces of a program satisfy a
specification, but instead is used to axiomatically verify program properties based
on the program text.

3 Grounding KARO

To demonstrate the approach discussed in the previous section, an agent pro-
gramming language for KARO is presented. The exposition of KARO is based
on [3]. For additional explanation about the logic and some of the choices made
in modeling rational agents in KARO the reader is referred to this paper. For
an example application of KARO to specify agents see e.g. [9]. KARO is an
integrated logical framework for modeling rational agents that offers a logical
theory of how actions, information and motivation of agents are related. All of
these notions are formalised in a modal logic that is a blend of dynamic and epis-
temic logic extended with operators that model several motivational attitudes
of agents.

It is shown that a substantial fragment of KARO is the corresponding pro-
gram logic for a particular agent programming language. KARO agent programs
ground the KARO logic, and, consequently, the KARO logic can be applied as a
specification and verification tool for KARO agent systems that are built using
that programming language.

KARO is a very expressive logic in which several concepts are defined using
non-local constraints. Such constraints refer to potential future states of a sys-
tem and do not naturally fit into a state-based approach. In particular, KARO
introduces three non-local constraints:

– In the definition of the concept of ability, a constraint is included to verify the
ability of an agent in potential future states. Complex abilities of an agent are
defined in terms of a dynamic operator 〈do(π)〉 that models the opportunities
and results achieved by actions. Because of the dynamic operators in the
definition of abilities that involve tests on potential future states, the ability
operator Aπ has been excluded from the fragment that is discussed here. It is
not clear by inspection of the logical semantics how the abilities of an agent



408 K.V. Hindriks and J.-J. Ch. Meyer

change and a computational interpretation is not obtained by providing a
state-based semantics for KARO.

– In the definition of the concept of a goal, quantification over actions is used
to verify that a goal can be achieved via the execution of some plan by
the agent. This verification involves reference to potential future states and
some mechanism to test the possibility of performing an action in those
states. It is not clear how to implement such look ahead facilities in a state-
based approach. Instead of this non-local definition of goals in the KARO
framework, a slightly weaker notion is defined that is implied by the KARO
definition of goals, but not vice versa.

– In the definition of commitments, a test whether a plan can be executed is
included. The actions commit to to make a commitment and uncommit to
remove a commitment similarly are defined in terms of the possibility to
execute a plan. These definitions presuppose that KARO agents have look
ahead facilities which do not straightforwardly translate into a computational
semantics. Therefore, the commitment operator Comπ is excluded here.

The computational complexity of KARO has been located primarily in the non-
local constraints that are made use of in the definition of some operators. The
logical semantics does not provide a clue on how to operationalize such con-
straints. It is an interesting question whether these constraints can somehow be
operationalized in a state-based approach.

In the remainder, it is shown that the KARO fragment excluding operators
that are defined by non-local constraints can be grounded. This fragment in-
cludes the modal operators [do(π)] to represent the actions, Bk, Bo to represent
innate and observational knowledge, W to represent the wishes or desires, and
C to represent the choices or goals of an agent. It also includes the informa-
tional actions expand ϕ and contract ϕ to add or remove a proposition ϕ from
the observational knowledge base, and the action select ϕ to select ϕ as goal.
Additionally, program constructs for tests, written as confirmϕ, conditional
composition if then else and repetition while do are part of the KARO
language. Due to space restrictions, the latter is not discussed. The label KARO
will be used below to refer to this fragment.

A distinguishing feature of KARO is the distinction of various belief clusters.
Due to space restrictions, we only discuss two of the four clusters. First, built-in
knowledge represents the fixed, objective options an agent considers possible.
Second, observational knowledge is based on perceptual sources and may change
through time. The built-in knowledge is restricted to objective propositional for-
mulae. This seems reasonable since built-in knowledge is supposed to pertain to
the external world and not to states of the agent itself. Moreover, this restriction
will allow us to model the relation between built-in knowledge and observational
knowledge in the state-based semantics. In this context, we do not allow an agent
to have wishes about the fixed built-in knowledge, and allow an agent only to
have wishes to obtain knowledge through its perceptual apparatus.

Definition 1. (KARO Propositions)
Let L0 be a classical propositional language, built from an infinite set At of



Agent Logics as Program Logics: Grounding KARO 409

propositional atoms, the connectives ¬, ∧ and let Lobs be the standard extension
of L0 to an epistemic modal language with epistemic operator Bo. Let Act be a
set of atomic actions. Then:

The KARO language L is defined by:
– At ⊆ L,
– if ϕ, ψ ∈ L,χ ∈ L0, then ¬ϕ, ϕ ∧ ψ, Bkχ, Boϕ ∈ L,
– if ϕ ∈ L and π ∈ Π, then [do(π)]ϕ ∈ L,
– if ϕ ∈ Lobs, then Wϕ inL, Cϕ ∈ L.

The set of KARO programs Π is defined by:
– Act ⊆ Π,
– if ϕ ∈ L0, then expand ϕ, contract ϕ ∈ Π,
– if ϕ ∈ Lobs, then select ϕ ∈ Π,
– if ϕ ∈ L, π1, π2 ∈ Π, then confirmϕ,
ifϕ thenπ1 elseπ2 , π1; π2 ∈ Π.

The semantics of KARO is defined as usual by Kripke structures.

Definition 2. (KARO Structure)
A KARO structure M is a tuple 〈W, R, Bk, Bo, D, C, V 〉 with:
– W a non-empty set of worlds, typically denoted by w,
– R a partial function such that for each a ∈ Act, Ra : W ⇀ W ,
– Bk, Bo ⊆ W × W equivalence relations, such that Bo ⊆ Bk,
– D ⊆ W × W ,
– C : W → ℘(Lobs), a mapping of worlds to subsets of Lobs, and
– V a truth function such that (s.t.) V (p, w) ∈ {1, 0} for p ∈ At.

The knowledge operators are modal S5 operators as usual in agent logics. Knowl-
edge obtained by perception always extends the agent’s built-in knowledge since
Bo ⊆ Bk. Observe that wishes modeled by the relation D may be inconsistent.

Definition 3. (KARO Semantics)
Let M = 〈W, R, Bk, Bo, D, C, V 〉, w ∈ W and x ∈ {k, o}.
The truth conditions for KARO propositions are defined by:
– M, w |= p iff V (p, w) = 1,
– M, w |= ¬ϕ iff M, w �|= ϕ,
– M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ,
– M, w |= Bxϕ iff M, w′ |= ϕ, ∀w′ s.t. wBxw′,
– M, w |= [do(π)]ϕ iff M, w′ |= ϕ, ∀w′ s.t. wRπw′,
– M, w |= Wϕ iff M, w′ |= ϕ, ∀w′ s.t. wDw′,
– M, w |= Cϕ iff ϕ ∈ C(w).
The meaning of KARO programs is defined by:
Ra,
Rconfirmϕ = {(w, w) | M, w |= ϕ},
Rifϕthenπ1 elseπ2

= (Rπ1 ∩ ([[ϕ]] × W ))∪
(Rπ2 ∩ ([[¬ϕ]] × W )),

Rπ1;π2 = Rπ1 ◦ Rπ2 .



410 K.V. Hindriks and J.-J. Ch. Meyer

where [[ϕ]]M = {w | M, w |= ϕ}, written [[ϕ]] when the structure M is clear from
the context, and R ◦ S = {(a, c) | ∃b(aRb ∧ bSc)}.
Note that all KARO programs are deterministic since the transition relation R
for actions is a function. In KARO, complex motivational attitudes such as goals
are defined in terms of the basic motivational operators W and C. KARO defines
goals as those wishes that are (a) selected by the agent, (b) not (yet) fulfilled
and (c) implementable. Condition (c) is defined by quantifying over actions and
involves tests on potential future states. It does not satisfy the constraints on
state-based systems. A weaker version, by dropping (c), can be defined, however.
The goal operator G is then defined as: Gϕ ≡ Wϕ∧¬ϕ∧Cϕ. Note that tautologies
cannot be goals and neither are goals closed under implication.

Changing One’s Mind. One interesting feature of KARO is that it incorporates
specific instances of atomic actions to change the knowledge or motivations of
an agent. KARO thus not only formalizes the logic of propositional attitudes
but also provides a theory about how an agent can change its knowledge or
motivations by performing mental “actions”.

Since mental actions do not change the (external) world, a natural way in
modal semantics to model these actions is to change the knowledge or motiva-
tional components Bk, Bo, D, C in a KARO structure instead of a world w (see
for extensive discussion [3]). This type of action semantics extends the compo-
nent R in a structure to apply to pairs (M, w) as well as worlds w. Actions thus
are interpreted as structure transformers. Some notation is introduced to facili-
tate the semantic definition of the KARO actions. Given an equivalence relation
S, the equivalence class of w is defined as: [w]S = {w′ | wSw′}. Due to space
restrictions, the semantics of contract ϕ is not discussed.

Definition 4. (Semantics of KARO Actions)
Let M = 〈W, R, Bk, Bo, D, C, V 〉 be a structure and w ∈ W . R is extended to a
structure transforming semantics as follows:
Ra(M, w) = (M, Ra(w)),
Rexpand ϕ(M, w) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(〈W, R, Bk, Bo′
, D, C, V 〉, w) such that:

[w′]Bo′ = [w′]Bo ∩ [[ϕ]], ∀w′ ∈ [w]Bk ∩ [[ϕ]],
[w′]Bo′ = [w′]Bo ∩ [[¬ϕ]], ∀w′ ∈ [w]Bk ∩ [[¬ϕ]], and
[w′]Bo′ = [w′]Bo , ∀w′ �∈ [w]Bk , if M, w |= ϕ,

∅ otherwise.
Rselect ϕ(M, w) =⎧

⎪⎪⎨

⎪⎪⎩

(〈W, R, K, D, C′, V 〉, w) such that:
C′(w) = C(w) ∪ {ϕ},
C′(w′) = C(w′), ∀w′ �= w, if M, w |= Wϕ,

∅ otherwise.
The extension for compound constructs can be defined analogously.

The semantics for expand ϕ ensures that an agent after (successfully) perform-
ing it knows ϕ, i.e. Boϕ, still knows what it knew before, and doesn’t change



Agent Logics as Program Logics: Grounding KARO 411

anything when the agent already knew ϕ. This semantics validates the proposi-
tions ϕ → [do(expand ϕ)]Boϕ, Boψ → [do(expand ϕ)]Boψ, and Boϕ → (Boψ ↔
[do(expand ϕ)]Boψ), for ϕ, ψ ∈ L0, which are expected properties of adding true
information to ones knowledge.

A State-Based Semantics for KARO. A programming language with KARO as
its associated program logic must account for each of the components in a KARO
structure. Except for the relation R all components will be represented in the
state of a KARO agent program. These states, additionally, must be extensional,
i.e. they can be uniquely identified by their syntactic content.

To avoid overly complex states, an additional axiom on top of the KARO
axioms is introduced to relate the knowledge and wishes of an agent. As for
knowledge, we assume that an agent is also able to introspect its motivational
attitudes. If an agent has a wish, consequently, it knows it has a wish. Formally,
we introduce the axioms BoWϕ ↔ Wϕ and Bo¬Wϕ ↔ ¬Wϕ. From now on, we
will assume that these axioms are part of the KARO logic.

The assignment function V and possible worlds W in the modal semantics
are replaced by so-called world states v ⊆ At representing the external world in
the state-based semantics. A corresponding world state can be defined for each
w ∈ W by v = {p | V (p, w) = 1}. The informational components Bk and Bo are
replaced by knowledge bases. Corresponding knowledge and observational bases
can be defined for each w ∈ W respectively by k = {ϕ ∈ L0 | M, w |= Bkϕ}
and o = {ϕ ∈ L0 | M, w |= Boϕ}. The motivational components D and C are
replaced by a set of wishes d ⊆ Lobs closed under logical consequence and a set
of choices c ⊆ Lobs. Finally, the function R that provides the meaning of actions
is quite straightforwardly replaced by a similar function Rc defined on KARO
states instead. A KARO state can be viewed as the agent’s internal, mental
state.

Definition 5. (State-Based KARO Structure)
A state-based KARO structure M c is a tuple 〈W c, Rc〉 with:

– W c a set of states of the form (v, k, o, d, c), with v a world state, k, o knowl-
edge bases such that |=v k, |=v o and o |= k, d, c ⊆ Lobs a set of wishes
and choices respectively, and such that W c satisfies the following closure
conditions: if (v, k, o, d, c) ∈ W c, then:

• (v′, k, o, d, c) ∈ W c for all v′ such that |=v′ k,
• (v′, k, o, d, c) ∈ W c for all v′ such that |=v′ o,
• (v′, k, o′, d, c) ∈ W c for all v′, o′ such that |=v′,o′ d.

– Rc a partial function such that for each a∈Act or a∈{expand ϕ, select ϕ},
Rc

a : W c ⇀ W c.

The definition of states clarifies the nature of the states in the state-based seman-
tics. States are tuples of various databases which are the data structures that a
KARO program operates on. To ensure a proper relation with the modal seman-
tics, these components need to be related in the right way, which explains the



412 K.V. Hindriks and J.-J. Ch. Meyer

various constraints on states. These constraints correspond to e.g. the relations
between the accessibility relations in the modal semantics.

The truth conditions using state-based structures are defined next. The se-
mantic clauses for atomic actions, tests and compound actions are the same as
in definition 3 and are not repeated. Typically, states (v, k, o, d, c) are denoted
by s, s′ and we write s[v′/v], s[k′/k], ... to denote the state that results from
replacing v by v′, k by k′, etc. Note the subscript c to distinguish |=c from the
standard relation |=.

Definition 6. (State-Based Semantics for KARO)
Let M c = 〈W c, Rc〉 and s = (v, k, o, d, c) ∈ W c. Then:
The truth conditions for KARO propositions ϕ are defined by:
– M c, s |=c p iff p ∈ v,
– M c, s |=c ¬ϕ iff M c, s �|=c ϕ,
– M c, s |=c ϕ ∧ ψ iff M c, s |=c ϕ and M c, s |=c ψ,
– M c, s |=c [do(π)]ϕ iff M c, s′ |=c ϕ, ∀s′ s.t. sRc

πs′,
– M c, s |=c Bkϕ iff M c, s[v′/v] |=c ϕ, ∀v′ s.t. |=v′ k,
– M c, s |=c Boϕ iff M c, s[v′/v] |=c ϕ, ∀v′ s.t. |=v′ o,
– M c, s |=c Wϕ iff M c, s[v′/v, o′/o] |=c ϕ,

∀v′, o′ s.t. |=v′,o′ d,
– M c, s |=c Cϕ iff ϕ ∈ c.
where |=v ϕ is v |= ϕ and |=v,o ϕ is defined by the first three clauses above and
the clause for Bo.
The semantics of KARO programs π is defined by:
Rc
expand ϕ

= {(s, s[exp(o, ϕ)/o′]) | M c, s |= ϕ},
Rc
select ϕ

= {(s, s[c ∪ {ϕ}/c]) | M c, s |= Wϕ}
Rc
confirmϕ

= {(s, s) | M c, s |= ϕ}.
with exp(o, ϕ) defined as {ψ | ∀v′(|=v′ o ∧ ϕ ⇒|=v′ ψ)}.
The modal and state-based semantics are equivalent, i.e. the expressive power is
not reduced by introducing a state-based semantics.

Theorem 7. (Equivalence of |= and |=c for KARO)
The standard and the state-based semantics for KARO are equivalent. That is,
assuming the set of propositional atoms At is infinite, for any ϕ ∈ L:

|= ϕ iff |=c ϕ

Proof. We give a sketch of the proof, the full proof is available in the full paper.
First, observe that the structure-transforming action semantics in the standard
modal semantics can be replaced with a standard Kripke semantics, by defining a
super structure with worlds wM for each pair (M, w). The right to left implication
then is proved by a straightforward mapping from state-based structures to stan-
dard structures. For the left to right implication, use the finite model property for
the (super structure) Kripke semantics to show the equivalence with the state-
based semantics. We need to prove that if M c, s �|= ϕ, then also M, w �|= ϕ. Since



Agent Logics as Program Logics: Grounding KARO 413

the truth of ϕ can only depend on a finite number of propositional atoms, an
infinite number of atoms remains that can be used as names for possible worlds
in the standard structure to keep track of these worlds in a state-based structure.
Using this observation, then set up a correspondence between possible worlds and
states to define a state-based structure and show their equivalence. ��
Note that no restrictions are imposed on the KARO language in theorem 7. The
state-based semantics is defined for arbitrary formulae of the KARO language.
To provide an operational interpretation, as discussed, however, we need to re-
strict the tests that are allowed in programs. The KARO language is a rich test
version of a dynamic agent logic. To avoid the introduction of undecidable look
ahead facilities into the programming framework, a poor test variant of KARO is
introduced. The tests that can be allowed are those that can be evaluated in the
current state. Consequently, propositions without occurrences of dynamic oper-
ators [do(π)], called intentional propositions (since they refer to intentional or
mental states), can be used as tests since KARO states contain the information
needed to evaluate such propositions. We use Li to denote the set of intentional
propositions; note that Lobs ⊂ Li. The fragment of KARO with restricted tests
confirmϕ such that ϕ is an intentional proposition is called poor test KARO
and denoted by Lp. Lp is strictly less expressive as L.

The computational interpretation for intentional propositions, and, conse-
quently, poor tests, is provided by the state-based semantic clauses for the non-
dynamic operators. The definition below provides a computational interpretation
since it identifies concrete data structures on which operations can be performed
by a computer. Moreover, the computational interpretation is state-based and
thus fits our definition of a computational system.

Definition 8. (Computational Interpretation of Poor Tests)
Let s = (v, k, o, d, c) be a state such that |=v k, |=v o, and o |= k. Then the truth
conditions for intentional propositions are defined by:
– |=s p iff p ∈ v,
– |=s ¬ϕ iff �|=s ϕ,
– |=s ϕ ∧ ψ iff |=s ϕ and |=s ψ,
– |=s Bkϕ iff |=s[v′/v] ϕ, ∀v′ s.t. |=v′ k,
– |=s Boϕ iff |=s[v′/v] ϕ, ∀v′ s.t. |=v′ o,
– |=s Wϕ iff |=s[v′/v,,o′/o] ϕ, ∀v′, o′ s.t. |=v′,o′ d,
– |=s Cϕ iff ϕ ∈ c.

In case an intentional proposition is of the form Xϕ with X some non-dynamic
operator and ϕ ∈ L0 a state proposition, we have |=v,k,o,d,c ϕ iff x |= ϕ for
x = k, o, d, c respectively. For example, it is easy to show that |=v,k,o,d,c Wϕ iff
d |= ϕ.

Lemma 9. Let ϕ ∈ L0 be a state proposition. Then we have:

|=v,k,o,d,c Boϕ iff o |= ϕ,
|=v,k,o,d,c Wϕ iff d |= ϕ,
|=v,k,o,d,c Cϕ iff ϕ ∈ c.



414 K.V. Hindriks and J.-J. Ch. Meyer

Proof. The last item follows immediately from the semantic definition of C. The
proof of the other three statements is similar. We prove the case for Wϕ. By
definition, we have that |=v,k,o,d,c Wϕ iff for all v′, k′, o′ such that |=v′,k′,o′ d
we have |=v′,k′,o′,d,c ϕ. Since ϕ ∈ L0 is a state proposition, its truth evaluation
depends only on the world state component v′. Now suppose that d �|= ϕ. Then
there is a model of d in which d is true, but ϕ is not true. I.e., there are v′, k′, o′

such that |=v′,k′,o′ d and �|=v′,k′,o′ ϕ, contrary to the assumption that |=v,k,o,d,c

Wϕ. ��
In the remainder of this section, we use the computational interpretation of
intentional propositions to provide a transition semantics for KARO programs.
A transition semantics, defined in terms of a computation step relation −→,
provides a computational semantics for KARO programs.

Interestingly, in the transition semantics for KARO programs transition rules
are required for the specific actions expand ϕ and select ϕ. Agents that explic-
itly represent their knowledge and motivational attitudes in their mental states
need capabilities to modify these mental structures. In this respect, KARO con-
tributes to an understanding of such capabilities, for both informational as well
as motivational attitudes. Of course, agent logics allow for the specification of
additional actions and the fact that KARO can be used as a program logic for
KARO programs, proven below, shows that such specifications can be usefully
applied to build agent programs.

In the transition semantics a transition function T (a, s) maps actions and
a state to their successor state. This function must respect the constraints on
states from definition 5. This translates into the following condition on transition
functions T : if T (a, v, k, o, d, c) = (v′, k′, o′, d′, c′), then we have |=v′ k′, |=v′ o′

and o′ |= k′. KARO states in state-based structures are tuples (v, k, o, d, c) such
that |=v k, |=v o and o |= k to ensure that beliefs of an agent are always true in
the current world state and the belief clusters k and o are properly related. In
the transition semantics, this relation between world states and knowledge bases
also needs to be enforced.

If a KARO program starts in an initial state that satisfies this condition, then
the constraint on transition relations ensures that states during the execution
of the program invariantly satisfy this condition. Next, the transition semantics
is defined. The rules for sequential composition and the if then else are
standard and not included here (cf. [14]).

Definition 10. (Transition Semantics for KARO Programs)
Let s, s′ be states, T a transition function, ϕ ∈ Li, ψ ∈ L0 and χ ∈ Lobs. We
use the symbol E to denote successful program termination. Then the transition
semantics for KARO programs is defined by:

T (a, s) = s′

〈a, s〉 −→ 〈E, s′〉
|=s ϕ

〈confirmϕ, s〉 −→ 〈E, s〉



Agent Logics as Program Logics: Grounding KARO 415

|=s ψ

〈expand ψ, s〉 −→ 〈E, s[exp(o, ψ)/o]〉
|=s Wχ

〈select χ, s〉 −→ 〈E, s[c ∪ {χ}/c]〉

The operational semantics for KARO programs defines the input-output relation
on KARO states for arbitrary KARO programs in terms of the transitive closure
−→∗ of the transition relation −→.

Definition 11. (Operational Semantics for KARO Programs)
The operational semantics for KARO programs is defined by:

O(π)(s) = s′ for s′ such that 〈π, s〉 −→∗ 〈E, s′〉
Note that the definition of the operational semantics is well-defined since KARO
programs are deterministic.

The denotational semantics for KARO programs is derived from the logical
semantics for KARO. In the definition of the denotational semantics the state-
based semantics for KARO is used, which is justified by theorem 7. To provide
a definition of the denotational semantics, we need to fix an interpretation of
atomic actions. It will be convenient to ensure that this interpretation is equiva-
lent to the one that is fixed in the transition semantics by the transition function
T since we need this later on to prove the equivalence of both types of semantics.

Definition 12. (T -compatible)
Let M c = 〈W c, Rc〉 be a state-based KARO structure. We say that M c and the
accessibility relation Rc are T -compatible if the following condition is satisfied:
sRc

as′ iff T (a, s) = s′ for all KARO actions.

The denotational semantics can now be defined using the concept of a T -
compatible KARO structure; that is, a unique, well-defined and compositional
semantic function can be defined for KARO programs.

Definition 13. (Denotational Semantics for KARO Programs)
Let M c = 〈W c, Rc〉 be a state-based, T -compatible KARO structure. Then the
denotational semantics for KARO programs is defined by:

[[a]](s) =
{

s′ , if sRc
as′,

undefined , otherwise,

[[expand ϕ]](s) =
{

s[exp(o, ϕ)/o′] , if M c, s |=c ϕ,
undefined , otherwise

[[select ϕ]](s) =
{

s[c ∪ {ϕ}/c] , if M c, s |=c Wϕ,
undefined , otherwise

[[confirmϕ]](s) =
{

s , if M c, s |=c ϕ
undefined , otherwise

[[ifϕ thenπ1 elseπ2 ]](s) =
{

[[π1]](s) , if M c, s |=c ϕ,
[[π2]](s) , otherwise

[[π1; π2]](s) = [[π2]]([[π1]](s)),



416 K.V. Hindriks and J.-J. Ch. Meyer

It is easy to show that [[ ]] is well-defined. The next step is to show that the
denotational and operational semantics are equivalent. This provides the precise
relationship of the computation step relation −→ and the logical semantics of
KARO that we were looking for and shows that the logic can be used as a
program logic to verify properties of KARO programs.

Theorem 14. (Denotational Equivalent to Operational Semantics)
The denotational and operational semantics of KARO programs are equivalent,
i.e. [[π]](s) = O(π)(s).

Proof. Use induction on the structure of programs. ��

The equivalence of the denotational and operational semantics shows that KARO
has an application in the verification of KARO programs, in particular, to prove
partial correctness properties of KARO programs. This fact is expressed mathe-
matically in the following corollary:

Corollary 15. (Proving Partial Correctness Properties)
Let π be a poor test KARO program, ϕ, ψ ∈ Li, and MT be the set of all T -
compatible KARO structures. Then we have:

∀s, s′ : if |=s ϕ and 〈π, s〉 −→∗ 〈E, s′〉 , then |=s′ ψ
iff

|=MT ϕ → [π]ψ

Proof. Immediate from theorem 7 and 14. ��

By using the techniques explored in the previous section, we have been able to
define a state-based programming framework that corresponds to a substantial
fragment of the original KARO logic. In other words, the KARO logic is a
program logic for the KARO programming framework introduced in this section.

The KARO programming framework introduced can be compared to existing
agent programming languages in the literature. It is instructive, for example, to
compare the transition semantics of the KARO programming framework with
similar approaches. For example, this style of semantics has been proposed for the
closely related programming languages AgentSpeak(L), ConGolog, and 3APL
(cf. e.g. [15]). Even though the KARO programming framework introduced here
does not include all aspects of these languages (notably concurrency is absent),
it also includes features that are not present in one of the mentioned program-
ming languages. The most important distinguishing features are the presence of
declarative motivational attitudes and the definition of specific actions to change
the agent’s mind. For example, in AgentSpeak(L) the structures called intentions
or plans are similar to the KARO programs and do not have a declarative inter-
pretation. Instead, the motivational components in KARO program states are
declarative. Another way to illustrate the same point is the observation that the
corresponding program logic for 3APL proposed in [7] includes an operator for
beliefs but not for motivational operators as the KARO logic does.



Agent Logics as Program Logics: Grounding KARO 417

4 Conclusion

In this paper, we have explored formal techniques for relating agent logics to
agent programming frameworks. We showed that this is a viable approach which
clarifies the use of agent logics in the practice of agent engineering as specifi-
cation and verification tools. The approach has been illustrated by construct-
ing a programming framework for KARO, an agent logic that extends dynamic
logic.

One of the benefits of our approach is that it explores the space of program-
ming languages from a logical point of view. Taking an agent logic as our starting
point, we showed what a programming language related to that logic looks like.
This clarifies at least partly which agent logics are related to which agent pro-
gramming languages.

A precise relationship between agent logics and agent programming frame-
works will clarify what an agent programming language should be like from a
logical agent perspective. The precise analysis of states of agents and the associ-
ated operations, moreover, facilitates a comparison between various agent logics
as well as between various agent programming frameworks.

In the paper, it is shown that the approach based on the view that agent
logics are useful as program logics resolves at least part of the gap between the-
ory and practice. As discussed in [4], various approaches to show the usefulness
of agent logics are available. These approaches are not each as practical as the
other. Directly executing agent logics, for example, has to face the high compu-
tational complexity of agent logics. Model checking approaches suffer from other
problems, as highlighted in [4]. By taking another view and viewing agent logics
not as executable frameworks but as program logics we were able to circumvent
some of these problems.

There have been other attempts to provide a computational grounding of
KARO. In [9] a reduction approach is presented, based on translating KARO to
first order logic. Alternatively, a translation of a fragment of the KARO logic
to a combination of branching time logic CTL and a modal S5 logic, has been
proposed (cf. [9]). In this approach, the core - as it is called - of the KARO frame-
work is first translated into another logical formalism, to obtain an executable
fragment. However, the fragment that can be translated into executable form is
smaller and does not include multiple belief clusters, the wishes and choices of
an agent, nor the specific KARO actions that are included here.

References

1. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial
Intelligence 42 (1990) 213–261

2. Rao, A., Georgeff, M.: Decision Procedures for BDI Logics. Journal of Logic and
Computation 8(3) (1998) 293–343

3. van der Hoek, W., van Linder, B., Meyer, J.-J.Ch.: An Integrated Modal Approach
to Rational Agents. In Wooldridge, M., ed.: Foundations of Rational Agency.
Kluwer, Dordrecht (1999) 133–168



418 K.V. Hindriks and J.-J. Ch. Meyer

4. van der Hoek, W., Wooldridge, M.: Towards a Logic of Rational Agency. Logic
Journal of the IGPL 11(2) (2003) 133–157

5. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In van der Velde, W., Perram, J., eds.: Agents Breaking Away. Number
1038 in LNAI, Springer (1996) 42–55

6. de Boer, F., Hindriks, K., van der Hoek, W., Meyer, J.-J.Ch.: A Verification
Framework for Agent Programming with Declarative Goals. Accepted for the
Journal of Applied Logic (2006)

7. Hindriks, K., de Boer, F., van der Hoek, W., Meyer, J.-J.Ch.: A Programming
Logic for part of the Agent Language 3APL. In Rash, J., ed.: Proceedings of the
First Goddard Workshop on Formal Approaches to Agent-Based Systems. Number
1871 in LNCS, Springer (2001) 78–89

8. Fisher, M.: A Survey of Concurrent MetateM. In: Proceedings of the First Inter-
national Conference on Temporal Logic (ICTL). Number 827 in LNCS, Springer
(1994) 480–505

9. Hustadt, U., Dixon, C., Schmidt, R., Fisher, M., Meyer, J.-J.Ch., van der Hoek,
W.: Reasoning about Agents in the KARO Framework. In Bettini, C., Montanari,
A., eds.: Proc. of the Eighth Int. Symposium on Temporal Representation and
Reasoning. (2001) 206–213

10. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
11. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Knowledge-based programs.

Distributed Computing 10(4) (1997) 199–225
12. Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F., eds.: Multi-Agent Program-

ming: Languages, Platforms and Applications. Springer (2005)
13. de Giacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, a Concurrent Program-

ming Language Based on the Situation Calculus. Artificial Intelligence 121(1-2)
(2000) 109–169

14. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, Computer Science Department, Aarhus University (1981)

15. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.Ch.: A Formal
Embedding of AgentSpeak(L) in 3APL. In Antoniou, G., Slaney, J., eds.: Advanced
Topics in Artificial Intelligence. Number 1502 in LNAI. Springer (1998) 155–166



On the Relationship Between Playing Rationally
and Knowing How to Play: A Logical Account

Wojciech Jamroga

Department of Informatics,
Clausthal University of Technology, Germany

wjamroga@in.tu-clausthal.de

Abstract. Modal logics of strategic ability usually focus on capturing
what it means for an agent to have a feasible strategy that brings about
some property. While there is a general agreement on abilities in scenarios
where agents have perfect information, the right semantics for ability
under incomplete information is still debated upon. Epistemic Temporal
Strategic Logic, an offspring of this debate, can be treated as a logic that
captures properties of agents’ rational play.

In this paper, we provide a semantics of etsl that is more compact
and comprehensible than the one presented in the original paper by van
Otterloo and Jonker. Second, we use etsl to show that a rational player
knows that he will succeed if, and only if, he knows how to play to succeed–
while the same is not true for rational coalitions of players.

Keywords: multi-agent systems, theories of agency, game-theoretical
foundations, modal logic.

1 Introduction

Modal logics of strategic ability usually focus on capturing what it means for
an agent to have a feasible strategy that brings about some property. While
there is a general agreement on abilities in scenarios where agents have perfect
information, the right semantics for ability under incomplete information is still
debated upon. Epistemic Temporal Strategic Logic, proposed by van Otterloo
and Jonker [13], is an offspring of this debate, but one that leads in an orthogonal
direction to the mainstream solutions. The central operator of etsl can be read
as: “if A play rationally to achieve ϕ (meaning: they never play a dominated
strategy), they will achieve ϕ”. Thus, one may treat etsl as a logic that captures
properties of agents’ rational play in a sense.

This paper contains two main messages. First, we provide a semantics of etsl
that is more compact and comprehensible than the one presented in [13]. Etsl
is underpinned by several exciting concepts. Unfortunately, its semantics is also
quite hard to read due to a couple non-standard solutions and a plethora of
auxiliary functions, which is probably why the logic never received the attention
it deserves. Second, and perhaps more importantly, we use etsl to show that a
rational player knows that he will succeed if, and only if, he knows how to play
to succeed – while the same is not true for rational coalitions of players.

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 419–433, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



420 W. Jamroga

2 Reasoning About Abilities of Agents

Modal logics of strategic ability [1,2] form one of the fields where logic and game
theory can successfully meet. The logics have clear possible worlds semantics, are
axiomatizable, and have some interesting computational properties. Moreover,
they are underpinned by intuitively appealing conceptual machinery for model-
ing and reasoning about systems that involve multiple autonomous agents.

2.1 Atl: Ability in Perfect Information Games

Alternating-time Temporal Logic (atl) [1, 2] can be seen as a logic for sys-
tems involving multiple agents, that allows one to reason about what agents can
achieve in game-like scenarios. Since atl does not include incomplete informa-
tion in its scope, it can be seen as a logic for reasoning about agents who always
have perfect information about the current state of affairs. Formula 〈〈A〉〉ϕ,
where A is a coalition of agents, expresses that A have a collective strategy to
enforce ϕ. Atl formulae include temporal operators: “ �” (“in the next state”),
� (“always from now on”) and U (“until”). Operator ♦ (“now or sometime in the
future”) can be defined as ♦ϕ ≡ � U ϕ. Like in ctl, every occurrence of a tem-
poral operator is preceded by exactly one cooperation modality 〈〈A〉〉.1 Formally,
the recursive definition of atl formulae is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 �ϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕU ϕ

A number of semantics have been defined for atl, most of them equivalent [3].
In this paper, we use a variant of concurrent game structures,

M = 〈Agt, St, Π, π, Act, d, o〉,

which includes a nonempty finite set of all agents Agt = {1, ..., k}, a nonempty
set of states St, a set of atomic propositions Π , a valuation of propositions π :
Π → P(St), and a nonempty set of (atomic) actions Act. Function d : Agt×St →
P(Act) defines actions available to an agent in a state, and o is a deterministic
transition function that assigns an outcome state q′ = o(q, α1, . . . , αk) to state q,
and a tuple of actions 〈α1, . . . , αk〉 that can be executed by Agt in q. A strategy
of agent a is a conditional plan that specifies what a is going to do for every
possible situation (sa : St → Act such that sa(q) ∈ d(a, q)). A collective strategy
(called also a strategy profile) SA for a group of agents A is a tuple of strategies
Sa, one per agent a ∈ A. A path Λ in M is an infinite sequence of states that can
be effected by subsequent transitions, and refers to a possible course of action
(or a possible computation) that may occur in the system; by Λ[i], we denote
the ith position on path Λ. Function out(q, SA) returns the set of all paths that
may result from agents A executing strategy SA from state q onward:

1 The logic to which such a syntactic restriction applies is sometimes called “vanilla”
atl (resp. “vanilla” ctl etc.).



On the Relationship Between Playing Rationally and Knowing How to Play 421

out(q, SA) = {λ = q0q1q2... | q0 = q and for every i = 1, 2, ... there exists a
tuple of actions 〈αi−1

1 , ..., αi−1
k 〉 such that αi−1

a = Sa(qi−1) for each a ∈ A,
αi−1

a ∈ d(a, qi−1) for each a /∈ A, and o(qi−1, α
i−1
1 , ..., αi−1

k ) = qi}.

Now, the semantics of atl formulae can be given via the following clauses:

M, q |= p iff q ∈ π(p) (where p ∈ Π);
M, q |= ¬ϕ iff M, q 	|= ϕ;
M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ;
M, q |= 〈〈A〉〉 �ϕ iff there is a collective strategy SA such that, for every Λ ∈

out(q, SA), we have M, Λ[1] |= ϕ;
M, q |= 〈〈A〉〉�ϕ iff there exists SA such that, for every Λ ∈ out(q, SA), we have

M, Λ[i] for every i ≥ 0;
M, q |= 〈〈A〉〉ϕU ψ iff there is SA st. for every Λ ∈ out(q, SA) there is i ≥ 0, for

which M, Λ[i] |= ψ, and M, Λ[j] |= ϕ for every 0 ≤ j < i.

2.2 Strategic Ability and Incomplete Information

Atl is unrealistic in a sense: real-life agents seldom possess complete informa-
tion about the current state of the world. Alternating-time Temporal Epistemic
Logic (atel) [12] enriches the picture with an epistemic component, adding to
atl operators for representing agents’ knowledge: Kaϕ reads as “agent a knows
that ϕ”. Additional operators EAϕ, CAϕ, and DAϕ refer to mutual knowledge
(“everybody knows”), common knowledge, and distributed knowledge among the
agents from A. Models for atel extend concurrent game structures with epis-
temic accessibility relations ∼1, ..., ∼k⊆ Q × Q (one per agent) for modeling
agents’ uncertainty; the relations are assumed to be equivalences. We will call
such models concurrent epistemic game structures (cegs) in the rest of the pa-
per. Agent a’s epistemic relation is meant to encode a’s inability to distinguish
between the (global) system states: q ∼a q′ means that, while the system is in
state q, agent a cannot determine whether it is not in q′. Then:

M, q |= Kaϕ iff ϕ holds for every q′ such that q ∼a q′.

Relations ∼E
A, ∼C

A and ∼D
A , used to model group epistemics, are derived from

the individual relations of agents from A. First, ∼E
A is the union of relations

∼a, a ∈ A. Next, ∼C
A is defined as the transitive closure of ∼E

A. Finally, ∼D
A is

the intersection of all the ∼a, a ∈ A. The semantics of group knowledge can be
defined as below (for K = C, E, D):

M, q |= KAϕ iff ϕ holds for every q′ such that q ∼K
A q′.

Example 1. (Gambling Robots) Two robots (a and b) play a simple card
game. The deck consists of Ace, King and Queen (A, K, Q); it is assumed that
A beats K, K beats Q, but Q beats A. First, the “environment” agent env deals
a random card to both robots (face down), so that each player can see his own
hand, but he does not know the card of the other player. Then robot a can



422 W. Jamroga

q0

q
w

q
l

win

q
AK

q
AQ

q
KQ

q
KA

q
QA

q
QK

a a ab b

b

keep,nop keep,nop

keep,nop

keep,nopkeep,nop
keep,chg keep,chg

keep,chg

keep,chg

exch,nop
exch,nop

exch,nop

exch,nop

exch,nop

exch,chg
exch,chg

exch,chg

keep,chg

exch,nop

exch,chg

exch,chg

keep,nop

keep,chg

exch,chg

Fig. 1. Gambling Robots game. Arrows represent possible transitions of the system (la-
beled with tuples of agents’ actions); dashed lines connect states that are indiscernible
for particular agents.

exchange his card for the one remaining in the deck (action exch), or he can
keep the current one (keep). At the same time, robot b can change the priorities
of the cards, so that A becomes better than Q (action chg) or he can do nothing
(nop). If a has a better card than b after that, then a win is scored, otherwise
the game ends in a “losing” state. A cegs for the game is shown in Figure 1;
we will refer to the model as M0 throughout the rest of the paper. Note that
M0, q0 |= 〈〈a〉〉♦win (and even M0, q0 |= Ka〈〈a〉〉♦win), although, intuitively, a has
no feasible way of ensuring a win. This is a fundamental problem with atel,
which we discuss briefly below.
It was pointed out in several places that the meaning of atel formulae is some-
what counterintuitive [5, 6, 10]. Most importantly, one would expect that an
agent’s ability to achieve property ϕ should imply that the agent has enough
control and knowledge to identify and execute a strategy that enforces ϕ (cf.
also [11]). This problem is closely related to the well known distinction between
knowledge de re and knowledge de dicto.

A number of frameworks were proposed to overcome this problem [5,6,11,10,
13, 4], yet none of them seems the ultimate definitive solution. Most of the so-
lutions agree that only uniform strategies (i.e., strategies that specify the same
choices in indistinguishable states) are really executable. However, in order to
identify a successful strategy, the agents must consider not only the courses of
action, starting from the current state of the system, but also from states that
are indistinguishable from the current one. There are many cases here, especially
when group epistemics is concerned: the agents may have common, ordinary or
distributed knowledge about a strategy being successful, or they may be hinted
the right strategy by a distinguished member (the “boss”), a subgroup (“head-
quarters committee”) or even another group of agents (“consulting company”).
Most existing solutions [11, 13, 4] treat only some of the cases (albeit rather
in an elegant way), while others [6, 10] offer a more general treatment of the



On the Relationship Between Playing Rationally and Knowing How to Play 423

problem at the expense of an overblown logical language (which is by no means
elegant).

Recently, a new, non-standard semantics for ability under incomplete infor-
mation has been proposed in [8,9], which we believe to be both intuitive, general
and elegant. We summarize the proposal in the next section, as we will use it
further to capture strategic abilities of agents.

2.3 An Intuitive Semantics for Ability and Knowledge

In [8,9], a non-standard semantics for the logic of strategic ability and incomplete
information has been proposed, which we believe to be finally satisfying. In the
semantics, formulae are interpreted over sets of states rather than single states.
Moreover, we introduce “constructive knowledge” operators Ka, one for each
agent a, that yield the set of states, indistinguishable from the current state
from a’s perspective. Constructive common, mutual, and distributed knowledge
is formalized via operators CA,EA, and DA. The language, which we tentatively
call Constructive Strategic Logic (csl) here, is defined as follows:

ϕ ::= p | ¬ϕ | ∼ϕ | ϕ ∧ ϕ | 〈〈A〉〉 �ϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕU ϕ | CAϕ | EAϕ | DAϕ |
CAϕ | EAϕ | DAϕ.

Individual knowledge operators can be derived as: Kaϕ ≡ E{a}ϕ and Kaϕ ≡
E{a}ϕ. Moreover, we define ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), and ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2.

The models are concurrent epistemic game structures again, and we consider
only memoryless uniform strategies. Let img(q, R) be the image of state q with
respect to relation R, i.e. the set of all states q′ such that qRq′. Moreover, we use
out(Q, SA) as a shorthand for ∪q∈Qout(q, SA), and img(Q, R) as a shorthand
for ∪q∈Qimg(q, R). The notion of a formula ϕ being satisfied by a set of states
Q ⊆ St in a model M is given through the following clauses.
M, Q |= p iff q ∈ π(p) for every q ∈ Q;
M, Q |= ¬ϕ iff M, Q 	|= ϕ;
M, Q |= ∼ϕ iff M, q 	|= ϕ for every q ∈ Q;
M, Q |= ϕ ∧ ψ iff M, Q |= ϕ and M, Q |= ψ;
M, Q |= 〈〈A〉〉 �ϕ iff there exists SA such that, for every Λ ∈ out(Q, SA), we

have that M, {Λ[1]} |= ϕ;
M, Q |= 〈〈A〉〉�ϕ iff there exists SA such that, for every Λ ∈ out(Q, SA) and

i ≥ 0, we have M, {Λ[i]} |= ϕ;
M, Q |= 〈〈A〉〉ϕU ψ iff there exists SA such that, for every Λ ∈ out(Q, SA), there

is i ≥ 0 for which M, {Λ[i]} |= ψ and M, {Λ[j]} |= ϕ for every
0 ≤ j < i;

M, Q |= KAϕ iff M, q |= ϕ for every q ∈ img(Q, ∼K
A) (where K = C, E, D);

M, Q |= K̂Aϕ iff M, img(Q, ∼K
A) |= ϕ (where K̂ = C,E,D and K = C, E, D,

respectively).

We will also write M, q |= ϕ as a shorthand for M, {q} |= ϕ, and this is the
notion of satisfaction (in single states) that we are ultimately interested in – but
that notion is defined in terms of the satisfaction in sets of states.



424 W. Jamroga

Now, Ka〈〈a〉〉ϕ expresses the fact that a has a single strategy that enforces ϕ
from all states indiscernible from the current state, instead of stating that ϕ can
be achieved from every such state separately (what Ka〈〈a〉〉ϕ says, which is very
much in the spirit of standard epistemic logic). More generally, the first kind
of formulae refer to having a strategy “de re” (i.e. having a successful strategy
and knowing the strategy), while the latter refer to having a strategy “de dicto”
(i.e. only knowing that some successful strategy is available; cf. [6]). Note also
that the property of having a winning strategy in the current state (but not
necessarily even knowing about it) is simply expressed with 〈〈a〉〉ϕ. Capturing
different ability levels of coalitions is analogous, with various “epistemic modes”
of collective recognizing the right strategy.

Example 2. Robot a has no winning strategy in the starting state of the game:
M0, q0 |= ¬〈〈a〉〉♦win, which implies that it has neither a strategy “de re” nor “de
dicto” (M0, q0 |= ¬Ka〈〈a〉〉♦win ∧ ¬Ka〈〈a〉〉♦win). On the other hand, he has a
successful strategy in qAK (just play keep) and he knows he has one (because
another action, exch, is bound to win in qAQ); still, the knowledge is not con-
structive, since a does not know which strategy is the right one in the current
situation: M0, qAK |= 〈〈a〉〉 �win∧Ka〈〈a〉〉 �win∧¬Ka〈〈a〉〉 �win. Also, b’s playing
chg enforces a transition to qw for both qAQ, qKQ, so M0, qAQ |= Kb〈〈b〉〉 �win
(robot b has a strategy “de re” to enforce a win from qAQ).

Finally, qQK |= 〈〈a, b〉〉♦win ∧ E{a,b}〈〈a, b〉〉♦win ∧ C{a,b}〈〈a, b〉〉♦win
∧¬E{a,b}〈〈a, b〉〉♦win∧D{a,b}〈〈a, b〉〉♦win: in qQK , the robots have a collective strat-
egy to enforce a win, and they all know it (they even have common knowledge
about it); on the other hand, they cannot identify the right strategy as a team
– they can only see one if they share knowledge at the beginning (i.e., in qQK).

3 Epistemic Temporal Strategic Logic

A very interesting variation on the theme of combining strategic, epistemic and
temporal aspects of a multi-agent system was proposed in [13]. Epistemic Tem-
poral Strategic Logic (etsl) digs deeper in the repository of game theory, and
focuses on the concept of undominated strategies. Thus, its variant of coopera-
tion modalities has a different flavor than the ones from atl, atel, csl etc. In
a way, formula 〈〈A〉〉ϕ in etsl can be summarized as:

“If A play rationally to achieve ϕ (meaning: they never play a dominated
strategy), they will achieve ϕ”.

Etsl can be treated as a logic that describes the outcome of rational play under
incomplete information,2 in the same way as csl can be seen as a logic that

2 We emphasize that this is a specific notion of rationality (i.e., agents are assumed
to play only undominated strategies). Game theory proposes several other rational-
ity criteria as well, based e.g. on Nash equilibrium, dominant strategies, or Pareto
efficiency. In fact, it is easy to imagine etsl-like logics based on these notions instead.



On the Relationship Between Playing Rationally and Knowing How to Play 425

captures agents’ strategic abilities (regardless of whether the agents play ratio-
nally or not). The main claim we propose in this paper is that a rational player
knows that he will succeed if, and only if, he has a strategy “de re” to succeed
– while the same is not true for rational coalitions of players. However, before
we present and discuss the claim formally in Section 4, we must re-write the
semantics of etsl in several respects.

First, the original semantics of etsl is defined only for finite turn-based acyclic
game models with epistemic accessibility relations, and we will generalize the
semantics to concurrent epistemic game structures. Next, the semantics comes
with a plethora of auxiliary functions and definitions (and a couple of omissions),
which makes it rather hard to read. In fact, this is probably the reason why the
logic never received the attention it deserves, and it is definitely worth trying
to make the semantics more compact. Finally, the authors of [13] propose that
a model should include also a “grand strategy profile” SAgt, defining the actual
strategies of all agents (or at least constraining them in some way, since non-
deterministic strategies are allowed in etsl). While the idea seems interesting
in itself (a similar idea was later exploited e.g. in [7] to allow for explicit analysis
of strategies and reasoning about strategy revision), we will show that it does
not introduce a finer-grained analysis of “vanilla” etsl formulas: if a formula
holds in M, q for one strategy profile, it holds in M, q for all the other strat-
egy profiles, too. Moreover, it can be proved that the semantics of cooperation
modalities 〈〈A〉〉 is the same regardless of whether we consider non-deterministic
strategies or not. In consequence, we will be able to show a “vanilla” etsl se-
mantics expressed entirely in terms of concurrent epistemic game structures and
their states.

3.1 The Semantics Made Easier to Read

Formulae of etsl come with no restriction wrt grouping of temporal operators:

ϕ := p | ¬ϕ | ϕ ∧ ψ | 〈〈A〉〉ϕ | �ϕ | �ϕ | ϕU ψ | Kaϕ.

After some re-writing (and having it generalized to general game structures,
not only turn-based trees), the semantics can be given as follows. Strategies are
allowed to be non-deterministic, i.e. Sa : St → P(Act).3 We require strategies
to be uniform, although [13] does not do it explicitly (we take it as a simple
omission, because otherwise many claims in that paper seem to be false). A
collective strategy (strategy profile) SA is a tuple of strategies, one per agent from
A. S0

a is the “neutral strategy” with no restriction on a’s actions (S0
a(q) = Act for

each q ∈ St), and strategy profile S0
A assigns neutral strategies to agents from A.

Moreover, we generalize function out(q, SA) to handle nondeterministic strategies
too; in out′(q, SA), “αi−1

a = Sa(qi−1)” is replaced with αi−1
a ∈ Sa(qi−1).

Now, the semantics can be given through the following clauses (the semantics
for p, ¬ϕ and ϕ ∧ ψ is analogous to the one presented in Section 2.1):

3 To preserve seriality (“time flows forever”), we assume that Sa(q) �= ∅ for all q ∈ St.



426 W. Jamroga

M, SAgt, q |= 〈〈A〉〉ϕ iff for all strategies TA, undominated wrt q, ϕ, we have
M, (TA, S0

Agt\A), q |= ϕ;
M, SAgt, q |= �ϕ iff for every Λ ∈ out′(q, SAgt) we have M, SAgt, Λ[1] |= ϕ;
M, SAgt, q |= �ϕ iff for every Λ ∈ out′(q, SAgt) and i ≥ 0 we have

M, SAgt, Λ[i] |= ϕ;
M, SAgt, q |= ϕU ψ iff for every Λ ∈ out′(q, SAgt) there is i ≥ 0 such that

M, SAgt, Λ[i] |= ψ and for all j such that 0 ≤ j < i we
have M, SAgt, Λ[j] |= ϕ;

M, SAgt, q |= Kaϕ iff for all q ∼a q′ we have M, (SAgt(a), S0
Agt\{a}), q

′ |= ϕ.

Definition 1. Strategy SA dominates TA with respect to formula ϕ, model M ,
and state q, if SA achieves ϕ better then TA, i.e. iff:

1. for every q′ such that q ∼A q′: if M, (TA, S0
Agt\A), q′ |= ϕ then also

M, (SA, S0
Agt\A), q′ |= ϕ, and

2. there exists q′ such that q ∼A q′, and M, (SA, S0
Agt\A), q′ |= ϕ, and

M, (TA, S0
Agt\A), q � ϕ.

Remark 1. Definition 1 uses epistemic relation ∼A. However, epistemic accessi-
bility relations are defined only for individual agents in [13], which is perhaps
another omission. In this study, we take the liberty to fix ∼A as ∼E

A.
We also point out that etsl can be extended with collective epistemic oper-

ators EA, CA, DA in a straightforward manner.

Example 3. Consider the gambling robots again. Robot a has two undominated
strategies wrt �win, M, qAK : namely, to play exch in both qAK , qAQ, or to play
keep in both (other choices do not matter). Since playing exch fails in qAK ,
so: M0, qAK 	|= 〈〈a〉〉 �win. Furthermore, playing keep is the only undominated
strategy in qKQ and qKA (and it succeeds only in qKQ). Thus, M0, qKQ |=
〈〈a〉〉 �win, and M0, qKA 	|= 〈〈a〉〉 �win. Hence, M0, qKQ 	|= Ka〈〈a〉〉 �win.

3.2 A Few Properties

In this section, we present several properties of etsl formulae that will allow us
to give an even simpler semantic definition of “vanilla” etsl.

Proposition 1. For every “vanilla” ETSL formula ϕ, concurrent epistemic game
structure M , and state q in M : M, SAgt, q |= ϕ iff M, S′

Agt, q |= ϕ for any pair of
“grand” strategy profiles SAgt, S

′
Agt.

Proof. By induction on the structure of ϕ. Note that it is sufficient to prove the
implication one way, as the choice of SAgt, S

′
Agt is completely arbitrary.

Case ϕ ≡ p: M, SAgt, q |= p, so q ∈ π(q), so M, S′
Agt, q |= p.

Case ϕ ≡ ¬ψ: M, SAgt, q |= ¬ψ, so M, SAgt, q 	|= ψ, so (by induction hypoth-
esis) M, S′

Agt, q 	|= ψ, so M, S′
Agt, q |= ¬ψ. (As the choice of SAgt, S

′
Agt was

completely arbitrary, the implication holds the other way too.)



On the Relationship Between Playing Rationally and Knowing How to Play 427

Case ϕ ≡ ψ1 ∧ ψ2: analogous.
Case ϕ ≡ 〈〈A〉〉 �ψ: M, SAgt, q |= 〈〈A〉〉 �ψ iff M, (TA, S0

Agt\A), Λ[1] |= ϕ for all
undominated TA and Λ ∈ out′(q, (TA, S0

Agt\A)). Note that the latter condi-
tion does not refer to SAgt, so M, S′

Agt, q |= 〈〈A〉〉 �ψ too.
Cases ϕ ≡ 〈〈A〉〉�ψ and ϕ ≡ 〈〈A〉〉ψ1 U ψ2: analogous.
Case ϕ ≡ Kaψ: M, SAgt, q |= Kaψ, so M, (SAgt(a), S0

Agt\{a}), q
′ |= ψ for all q ∼a

q′. By induction hypothesis, also M, (S′
Agt(a), S0

Agt\{a}), q
′ |= ψ for all q ∼a

q′, so M, S′
Agt, q |= Kaψ.

Remark 2. We point out that restricting the scope of Proposition 1 to “vanilla”
etsl formulae is important. In particular, the epistemic opertor Ka has a non-
standard interpretation when the full language of etsl is considered.

Proposition 2. Let Φ ≡ �ψ, �ψ, or ψ1 U ψ2 where ψ, ψ1, ψ2 are “vanilla” etsl
formulae. Moreover, let |Φ| denote the set of paths for which Φ holds; formally,
| �ψ| = {Λ | M, Λ[1] |= ψ}, |�ψ| = {Λ | ∀iM, Λ[i] |= ψ}, and
|ψ1 U ψ2| = {Λ | ∃i(M, Λ[i] |= ψ2 ∧ ∀0≤j<iM, Λ[j] |= ψ1}.
Then, SA dominates TA wrt Φ, M , and q iff:

1. for every q′, q ∼E
A q′: if out(q′, TA) ⊆ |Φ| then also out(q′, SA) ⊆ |Φ|, and

2. there exists q′, q ∼E
A q′, such that out(q′, SA) ⊆ |Φ| and out(q′, TA) 	⊆ |Φ|.

Proof. Straightforward from the definition.

Remark 3. Note that dominance can be characterized in an even more compact
way. Let succq,Φ(SA) = {q ∈ img(q, ∼E

A) | out(q, SA) ⊆ |Φ|} be the set of states
from img(q, ∼E

A), for which sa succeeds to enforce Φ. Now, SA dominates TA wrt
Φ, M, q iff succq,Φ(TA) � succq,Φ(SA).

Proposition 3. Let Φ ≡ �ψ, �ψ, or ψ1 U ψ2 where ψ, ψ1, ψ2 are “vanilla” etsl
formulae. Strategy TA is dominated wrt Φ, M, q by a strategy SA iff it is domi-
nated wrt Φ, M, q by a deterministic strategy S′

A.

Proof. ⇒: Let TA be dominated by SA (wrt ϕ, M, q). We construct the de-
terministic strategy S′

A by fixing arbitrary (uniform) choices out of SA. For-
mally, for every agent a ∈ A and abstraction class img(q′, ∼a) ⊆ St such that
Sa(q′) = {α, α′, ...}, we fix S′

a(q′′) = α for all q′′ ∈ img(q′, ∼a). (By uniformity of
SA, we have α ∈ Sa(q′′) for all q′′ ∈ img(q′, ∼a), so S′

A is a valid strategy.) First,
this enforces uniformity of S′

A. Second, out(q̄, S′
A) ⊆ out(q̄, SA) for all q̄ ∈ St (by

definition of out). Thus, we can use Proposition 2 to show that S′
A dominates

TA, which concludes the proof.

⇐: Straightforward.

Proposition 4. Let Φ be as above. Then, M, SAgt, q |= 〈〈A〉〉Φ iff for all deter-
ministic strategies TA, undominated wrt Φ, we have M, (TA, S0

Agt\A), q |= Φ.



428 W. Jamroga

Proof. ⇒: Straightforward.

⇐: Assume that M, (TA, S0
Agt\A), q |= Φ for all deterministic strategies TA, un-

dominated wrt Φ, and suppose that there is a nondeterministic undominated SA

such that M, (SA, S0
Agt\A), q 	|= Φ. Let us fix a deterministic uniform strategy S′

A

out of SA in a similar way as in Proposition 3. Now, out(q̄, S′
A) ⊆ out(q̄, SA) for

all q̄ ∈ St, so out(q′, SA) ⊆ |Φ| implies out(q′, S′
A) ⊆ |Φ| (S′

A is never worse than
SA wrt Φ). Moreover, out(q, S′

A) ⊆ |Φ| and out(q, SA) 	⊆ |Φ|. By Proposition 2,
S′

A dominates SA, so SA is dominated – a contradiction.

3.3 Etsl in Terms of Concurrent Epistemic Game Structures

We have shown that, for “vanilla” etsl, strategies do not have to be referred
explicitly in the interpretation of formulae (Propositions 1 and 2). Moreover, we
can restrict the set of considered strategies to deterministic strategies (Proposi-
tions 3 and 4). In consequence, we can express the semantics of “vanilla” etsl
equivalently in atl-like fashion:
M, q |= 〈〈A〉〉 �ϕ iff for every strategy SA, undominated wrt q, �ϕ, and every

Λ ∈ out(q, SA), we have that M, Λ[1] |= ϕ;
M, q |= 〈〈A〉〉�ϕ iff for every strategy SA, undominated wrt q, �ϕ, and every

Λ ∈ out(q, SA) and i ≥ 0 we have M, Λ[i] |= ϕ;
M, q |= 〈〈A〉〉ϕU ψ iff for every strategy SA, undominated wrt q, ϕU ψ, and every

Λ ∈ out(q, SA), there is i ≥ 0 such that M, Λ[i] |= ψ and for
all j such that 0 ≤ j < i we have M, Λ[j] |= ϕ.

Only uniform deterministic strategies are taken into account. The semantics
of p, ¬ϕ, ϕ ∧ ψ, and the epistemic operators is the same as for atl and atel.

4 Playing Rationally vs. Knowing How to Play

We can finally present the main result of this paper, namely, that a rational
player knows that he will succeed if, and only if, he has a strategy “de re” to
succeed. The result holds under the assumption that the model is finite,4 or more
generally, that it includes at least one undominated strategy.

Moreover, we show that having common knowledge how to succeed is, in
general, a stronger property than knowing that one will succeed for rational
coalitions of players. That is, if rational agents have common knowledge about
a winning strategy, then they have common knowledge that they will succeed –
but the converse is not true any more. Surprisingly enough, it turns out that the
relationship is strictly reverse for distributed knowledge: if a rational coalition
has distributed knowledge that it will succeed, then it has distributed knowledge
about a winning strategy – but not necessarily the other way around. For mutual
knowledge, the relationship holds neither way.

In what follows, we use |=etsl and |=csl to denote the etsl and csl satis-
faction relation, respectively.
4 We use the term “finite model” to denote a cegs with a finite set of states St.



On the Relationship Between Playing Rationally and Knowing How to Play 429

4.1 Rational Play of Individual Agents

We begin with two important lemmas.

Lemma 1. Given a finite model M , state q in M , formula Φ and agent a, there
is a strategy sa which is undominated wrt M, q, Φ.

Proof. First, we consider the simpler case when the set of actions Act is finite.
In such a case, the set of strategies is also finite, and the dominance relation
is transitive and antireflexive. Suppose that every strategy is dominated; then,
there must be a strategy which is dominated by itself – a contradiction.

We sketch the proof for infinite Act as follows. We partition the infinite set of
strategies into equivalence classes, such that strategies in the same class have the
same outcome paths for every state q (i.e., sa ≈ ta iff ∀qout(q, sa) = out(q, ta)).
Obviously, if sa dominates ta, then all strategies s′a ≈ sa dominate ta too. Now,
at every state q (and therefore at every point on a path from out(q′, sa)) there is a
finite number of possible sets of successor states (the actual set being determined
by the choice sa(q)). Moreover, the same choice must be taken at every further
occurrence of the same state q on a path, since sa is a memoryless strategy. In
consequence, there is only a finite number of different sets of outcome paths, and
hence a finite number of the equivalence classes. Again, dominance is transitive
and antireflexive, so an undominated strategy must exist.

Remark 4. Note that the result in Lemma 1 does not extend to cegs with infinite
state spaces. Consider the game of “Fuzzy Blackjack” (called so all the more
because our robots play it usually after having consumed too much machine
oil). Only a single player is necessary, and we use positive real numbers as states
and actions (i.e., St = Act = R+). When the player chooses a number in state
q, the number is added to the state: o(q, α) = q + α. The values below 1 are
the winning ones, i.e. π(win) = (0, 1) (it should be 21, but this would make
the game too complicated for a drunken robot). Moreover, the robot cannot
distinguish between the states below 1: q ∼a q′ for all q, q′ ∈ (0, 1). Now, there
is no undominated strategy wrt 0.5, �win.

To prove this, suppose that a strategy sa is undominated. The strategy is
uniform, so sa(q) = α for some α ∈ R+ and all q ∈ (0, 1). Obviously, α ∈ (0, 1),
because else sa never succeeds. Now, the set of states in which sa is successful
is: succ0.5, �win(sa) = (0, 1 − α). Let ta(q) = q + α/2. Now, succ0.5, �win(ta) =
(0, 1 − α/2) � succ0.5,Φ(sa) – a contradiction. Note also that:

– If we replace R+ with the set of positive rational numbers, the result is the
same. So, there may be no undominated strategies even when we restrict St
and Act to countable sets.

– In order to show the same for countable St and finite Act, it is sufficient
to modify the example so that Act = {0, 1, call}, and the initial state and
every subsequent action α = 0, 1 are simply stored in the resulting state.
Now o(q, call) takes the initial state q0 and the string of 0s and 1s α1, ..., αn

stored in q, and returns q′ = q0 + (0.α1...αn1)2. For such a game, there is no
undominated strategy wrt 0.5, ♦win.



430 W. Jamroga

Lemma 2. Given M, q, Φ, a, if there is an undominated strategy wrt M, q, Φ,
then there is also an undominated strategy wrt M, q′, Φ for every q′ ∈ img(q, ∼a).

Proof. Take any sa undominated wrt M, q, Φ (*). Suppose now that sa is domi-
nated by some strategy ta wrt another state q′ ∈ img(q, ∼a) (**).

1. By (*) and Prop. 2: ∀q′′∈img(q,∼a) (out(q′′, ta) ⊆ |Φ| ⇒ out(q′′, sa) ⊆ |Φ|).
2. By (**) and Prop. 2: ∃q′′∈img(q′,∼a) (out(q′′, ta) ⊆ |Φ| ∧ out(q′′, sa) 	⊆ |Φ|).

Moreover, img(q, ∼a) = img(q′, ∼a) because is ∼a is an equivalence relation –
which gives a contradiction between (1) and (2).

Remark 5. We note that Lemma 2 may hold even for indistinguishability re-
lations that are not equivalences. In fact, it is sufficient to require that ∼a

is transitive. In that case, q′ ∈ img(q, ∼a) and q′′ ∈ img(q′, ∼a) implies that
q′′ ∈ img(q, ∼a), and we also get the contradiction.

We are ready to prove the main claim of this paper now.

Theorem 1. Let us consider only finite models, and formulae Φ ≡ �ψ, �ψ, or
ψ1 U ψ2 where ψ, ψ1, ψ2 are “vanilla” etsl formulae. An agent has a strategy “de
re” to enforce Φ if, and only if, he knows that his rational play will bring about
Φ. Formally, for every finite M and state q in M :

M, q |=etsl Ka〈〈a〉〉Φ iff M, q |=csl Ka〈〈a〉〉Φ.

Proof. Induction on the structure of Φ. We prove the theorem for the case Φ ≡
�ψ. Other cases are analogous.

⇒: Let M, q |=etsl Ka〈〈a〉〉�ψ. Then, ∀q′∈img(q,∼a)M, q′ |=etsl 〈〈a〉〉�ψ, and
hence M, q |=etsl 〈〈a〉〉�ψ in particular. By Lemmas 1 and 2, there is a strategy
sa, undominated wrt M, q′, �ψ for every q′ ∈ img(q, ∼a).

Then: ∀q′∈img(q,∼a)∀Λ∈out(q′,sa)∀iM, Λ[i] |=etsl �ψ. By the induction hypoth-
esis, also ∀q′∈img(q,∼a)∀Λ∈out(q′,sa)∀iM, Λ[i] |=csl ψ. Thus, ∀Λ∈out(img(q,∼a),sa)∀i

M, Λ[i] |=csl ψ and so M, img(q, ∼a) |=csl 〈〈a〉〉�ψ, and finally M, q |=csl
Ka〈〈a〉〉�ψ.

⇐: Let M, q |=csl Ka〈〈a〉〉�ψ, i.e. M, img(q, ∼a) |=csl 〈〈a〉〉�ψ. Consider q′ ∈
img(q, ∼a). By transitivity of ∼a, we have img(q′, ∼a) ⊆ img(q, ∼a), so also
∀q′∈img(q,∼a)M, img(q′, ∼a) |=csl 〈〈a〉〉�ψ. Then, for every q′ ∈ img(q, ∼a), there
must be sa such that ∀q′′∈img(q′,∼a)∀Λ∈out(q′′,sa)∀iM, Λ[i] |=csl ψ, and hence (by
induction) ∀q′′∈img(q′,∼a)∀Λ∈out(q′′,sa)∀iM, Λ[i] |=etsl ψ. So, succq′,�ψ(sa) =
img(q′, ∼a), and therefore succq′,�ψ(ta) = img(q′, ∼a) for every other undomi-
nated strategy ta (otherwise ta would be dominated by sa). Thus, M, q′ |=etsl〈〈a〉〉�ψ for every q′ ∈ img(q, ∼a), and finally M, q |=etsl Ka〈〈a〉〉�ψ.

Theorem 2. More generally, for every Φ as above, and M, q such that there
exists an undominated strategy wrt M, q, Φ: M, q |=etsl Ka〈〈a〉〉Φ iff M, q |=csl
Ka〈〈a〉〉Φ.



On the Relationship Between Playing Rationally and Knowing How to Play 431

4.2 Rational Coalitions Are at Disadvantage

Beside some philosophical insight into the nature of knowledge and rational
play, Theorems 1 and 2 provide us with an alternative way of decomposing
strategic abilities under incomplete information into a strategic and epistemic
part. The definition of the strategic dimension is more sophisticated and less
straightforward than usually; on the other hand, we do not pay the price of a non-
standard satisfaction relation. Unfortunately, such decomposition is not valid
any more when abilities of collective agents are concerned. Now, the relationship
is much more limited: if a coalition has common knowledge how to play, then
it has also common knowledge that rational play will be successful; the same
does not hold for other types of collective knowledge. Moreover, the converse
relationship is guaranteed for distributed knowledge, but not for common nor
mutual knowledge.

Theorem 3. Let Φ ≡ �ψ, �ψ, or ψ1 U ψ2 where ψ, ψ1, ψ2 are “vanilla” etsl
formulae. Then, if a coalition has common knowledge how to play, then it has
common knowledge that rational play will be successful:

if M, q |=csl CA〈〈A〉〉Φ then M, q |=etsl CA〈〈A〉〉Φ.

The same holds for neither mutual nor distributed knowledge.

Proof. Common knowledge: Let M, q |=csl KA〈〈A〉〉�ψ, i.e. M, img(q, ∼C
A)

|=csl 〈〈A〉〉�ψ. Consider q′ ∈ img(q, ∼C
A). We have img(q′, ∼E

A) ⊆ img(q′, ∼C
A) ⊆

img(q, ∼C
A), so also ∀q′∈img(q,∼C

A)M, img(q′, ∼E
A) |=csl 〈〈A〉〉�ψ. Then, for every

q′ ∈ img(q, ∼C
A), there must be SA such that ∀q′′∈img(q′,∼E

A)∀Λ∈out(q′′,SA)∀iM, Λ[i]
|=csl ψ, and hence (by induction) ∀q′′∈img(q′,∼E

A)∀Λ∈out(q′′,SA)∀iM, Λ[i] |=etsl
ψ. So, succq′,�ψ(SA) = img(q′, ∼E

A), and therefore succq′,�ψ(TA) = img(q′, ∼E
A)

for every other undominated strategy TA (otherwise TA would be dominated
by SA). Thus, M, q′ |=etsl 〈〈A〉〉�ψ for every q′ ∈ img(q, ∼C

A), and finally
M, q |=etsl CA〈〈A〉〉�ψ.

Mutual knowledge: for a counterexample, consider a modification of the game
from Figure 1, in which a third robot c is introduced. The robot can only execute
nop, and its epistemic relation ∼c= {(q, q) | q ∈ St}∪{(qKQ, qKA), (qKA, qKQ)},
i.e. c can distinguish all states except qKQ, qKA. Moreover, the transition function
is slightly changed: now, o(qKA, keep, nop) = qw. For the resulting system M1, we
have that M1, qAQ |=csl E{b,c}〈〈b, c〉〉 �win, but at the same time M1, qAQ 	|=etsl
E{a,c}〈〈a, c〉〉 �win because M1, qKQ 	|=etsl 〈〈a, c〉〉 �win.

Distributed knowledge: analogously, M1, qKQ |=csl D{b,c}〈〈b, c〉〉 �win, yet
M1, qKQ 	|=etsl D{a,c}〈〈a, c〉〉 �win because M1, qKQ 	|=etsl 〈〈a, c〉〉 �win.

Theorem 4. Let Φ ≡ �ψ, �ψ, or ψ1 U ψ2 where ψ, ψ1, ψ2 are “vanilla” etsl
formulae, and let M be a finite cegs.5 Then, if A have distributed knowledge
5 Alternatively, we can request that A have at least one undominated strategy for

every relevant state.



432 W. Jamroga

q0

q1 q2

q
w

q
l

win

q4 q3

a

a,d

b,c

a,
b

c,d

c

bd(A)

q0 q1a ab q2 q3

q
w

q
l

1,1

1,1

2,2
2,2

1,1

2,2

win

(B)

Fig. 2. (A) Model M2: four agents a, b, c, d, epistemic relations shown with the dashed
lines, Act = {1, 2, 3, 4}. Transitions: o(qi, j, j, j, j) = qw for j �= i, otherwise the system
proceeds to the “losing” state ql; (B) Model M3: two agents a, b, two actions 1, 2.
The tuples of actions that are absent in the graph lead to ql.

that rational play will bring about Φ, then they have distributed knowledge how
to play to bring about Φ. Formally:

if M, q |=etsl DA〈〈A〉〉Φ then M, q |=csl DA〈〈A〉〉Φ.

The same holds for neither mutual nor common knowledge.

Proof. (sketch) Distributed knowledge: the proof is analogous to the proofs
of Lemma 2 and Theorem 1 (part ⇒), as we can exploit the fact that ∼D

A is
transitive, and img(q, ∼D

A ) ⊆ img(q, ∼E
A).

Mutual knowledge: for a counterexample, consider model M2 from Figure 2A.
Let q denote the state “opposite” to q, i.e. q1 = q3, q2 = q4 etc. Furthermore,
let Si

Agt denote the strategy of playing 〈i, i, i, i〉 in all states. Now, Si
Agt is the

only undominated strategy wrt qi, �win for i = 1, ..., 4, and S1
Agt, ..., S

4
Agt are

exactly the strategies undominated wrt q0, �win. So, M2, qi |=etsl 〈〈Agt〉〉 �win
for every i = 0, 1, ..., 4, and therefore M2, q0 |=etsl EAgt〈〈Agt〉〉 �win. On the
other hand, there is no single strategy that succeeds for all q0, q1, ..., q4.

Common knowledge: consider model M3 from Figure 2B. Let S{a,b} be the
strategy “play 〈1, 1〉 everywhere”, and T{a,b} be “play 〈2, 2〉 everywhere”. Note
that S{a,b} is the only undominated strategy wrt q, �win for q = q0, q1, and T{a,b}
is the only undominated strategy wrt q, �win for q = q2, q3. Thus, for every q =
q0, ..., q3: M3, q |=etsl 〈〈a, b〉〉 �win, and hence M3, q1 |=etsl C{a,b}〈〈a, b〉〉 �win.
On the other hand, M3, q1 	|=csl C{a,b}〈〈a, b〉〉 �win.

5 Conclusions

In this paper, the relationship between rational play and knowing how to play
is investigated in a formal way. To this end, we dust off Epistemic Temporal
Strategic Logic by van Otterloo and Jonker [13], and propose a simpler semantics
expressed entirely in terms of concurrent epistemic game structures and their
states; we prove that the new semantics is equivalent to the original one for



On the Relationship Between Playing Rationally and Knowing How to Play 433

“vanilla” etsl formulae. Etsl serves as a device for talking about the outcome
of rational play (in the sense that agents are assumed to play only undominated
strategies). To capture properties of the other kind (“knowing how to play”), we
use the recent proposal of Constructive Strategic Logic [8, 9].

The main result of this paper states that, for finite models, a rational player
knows that he will succeed if, and only if, he knows how to succeed. We also
show that the relationship is much more limited for rational coalitions. That is,
if rational agents have common knowledge about a winning strategy, then they
have common knowledge that they will succeed – but the converse is not guar-
anteed any more. Moreover, it turns out that the relationship is strictly reverse
for distributed knowledge: if a rational coalition has distributed knowledge that
it will succeed, then it has distributed knowledge about a winning strategy –
but not necessarily the other way around. Finally, for mutual knowledge, the
relationship does not hold either way in general. This is a curious result, and
one that may lead to interesting philosophical conclusions.

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic.
In Proceedings of FOCS, pages 100–109. IEEE Computer Society Press, 1997.

2. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic.
Journal of the ACM, 49:672–713, 2002.

3. V. Goranko and W. Jamroga. Comparing semantics of logics for multi-agent sys-
tems. Synthese, 139(2):241–280, 2004.

4. A. Herzig and N. Troquard. Knowing how to play: Uniform choices in logics of
agency. In Proceedings of AAMAS’06, 2006. To appear.

5. W. Jamroga. Some remarks on alternating temporal epistemic logic. In Proceedings
of FAMAS 2003, pages 133–140, 2003.

6. W. Jamroga and W. van der Hoek. Agents that know how to play. Fundamenta
Informaticae, 63(2–3):185–219, 2004.

7. W. Jamroga, W. van der Hoek, and M. Wooldridge. Intentions and strategies in
game-like scenarios. In Proceedings of EPIA 2005, volume 3808 of Lecture Notes
in Artificial Intelligence, pages 512–523. Springer Verlag, 2005.

8. W. Jamroga and Thomas Ågotnes. Constructive knowledge: What agents can
achieve under incomplete information. Technical Report IfI-05-10, Clausthal Uni-
versity of Technology, 2005.

9. Wojciech Jamroga and Thomas Ågotnes. What agents can achieve under incom-
plete information. In Proceedings of AAMAS’06, 2006.

10. G. Jonker. Feasible strategies in Alternating-time Temporal Epistemic Logic. Mas-
ter thesis, University of Utrecht, 2003.

11. P. Y. Schobbens. Alternating-time logic with imperfect recall. Electronic Notes in
Theoretical Computer Science, 85(2), 2004.

12. W. van der Hoek and M. Wooldridge. Tractable multiagent planning for epistemic
goals. In Proceedings of AAMAS-02, pages 1167–1174, 2002.

13. S. van Otterloo and G. Jonker. On Epistemic Temporal Strategic Logic. ENTCS,
126:77–92, 2005. Proceedings of LCMAS’04.



C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 437–438, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

1956-1966 How Did It All Begin? - Issues Then and Now 

Marvin Minsky 

MIT Media Lab and MIT AI Lab  
Professor Emeritus, Media Arts and Sciences Professor of E.E. and C.S., M.I.T  

minsky@media.mit.edu 

Extended Abstract 

Many computer programs today show skills that appear to rival those of outstanding 
human consultants.  However, while each such program does certain things well, it is 
helpless at doing anything else.  Why do our present-day programs lack the versatility 
and resourcefulness that a typical person shows?  Clearly, those programs are 
deficient in both commonsense knowledge and commonsense reasoning.  I'll argue 
that this has happened because the field of AI has evolved in a backwards direction, 
as compared with how a typical person develops-and that this is because our AI 
programmers have not appreciated the importance of making their system able to use 
more 'reflective' ways to think.  

We can see this backwards trend in the earliest years.  Consider the following list 
of AI accomplishments.  

 
1957 Arthur Samuel: A machine that plays master-level Checkers. 
1957 Newell, Shaw and Simon.  Proving theorems in Propositional Logic. 
1960 Herbert Gelernter: Proving theorems in Euclidean Geometry  
1960 James Slagle: Symbolic Integral Calculus 
1963 Lawrence G. Roberts: 3-D Visual Perception 
1964 Thomas G. Evans: Solving Geometry Analogy problems. 
1965 Daniel Bobrow:  Solving word problems in Algebra 
1969 C. Engelman, W. A. Martin and J. Moses: the MACSYMA project. 
1969 Minsky, Papert, et al: A robot builds structures with wooden blocks. 
1970 Patrick Winston: A robot that learns to recognize such structures. 
1970 Terry Winograd: A program that understands many sentences. 
1972 Gerald Sussman:  A program that recognizes some bugs in programs. 
1974 Eugene Charniak: A program that understands a few simple stories  
 
Although there are many exceptions to this, one can discern a trend in which the 

early programs made progress at 'expert' tasks-whereas the later programs attempted 
to do things that typical four-year-olds do.  In retrospect, we can clearly see that those 
'more advanced' skills were easier because they required less commonsense 
knowledge and reasoning. The situation is still the same today: no visual program can 
recognize the objects in a typical room, or answer simple-seeming questions about the 
stories in a typical first-grade storybook. 

In subsequent years most AI researchers aimed to discover some single problem-
solving technique could keep extending itself.  Consequently the field of AI divided 



438 M. Minsky 

itself into such specialties as Rule-Based Systems, Artificial Neural Networks, 
Statistical Inference Systems, Formal Mathematical Logic, Genetic Programs, and so 
on.  Each of these were effective in certain types of situations, but never became very 
competent in other kinds of realms of domains. 

It seems to me that what went wrong was that too many researchers became 
advocates and too few attempted to discover the limitations of their favorite method.  
Instead, most such researchers publish only instances in which their favorite scheme 
solves some particular problem, but the literature shows little discussion or 
classification of the realms in which each such system fails. 

For example, in 1969 Seymour Papert and I published a book that showed some 
serious limitations of certain three-layer non-reentrant neural networks-but most 
researchers in that field have wrongly assumed that those limitations would not hold 
for such networks with more layers.  However, so far as I can see, almost all of our 
theorems still apply, in the sense that the size of the networks and their coefficients 
still grow exponentially with the scale of the problem.  The basic problem is that such 
networks compute only non-recursive functions.  In other words, they simply cannot 
do any  'reflective thinking' about why their recent activities failed or succeeded-and 
this limited the effectiveness of what they could learn from experience. An attempt to 
describe a more reflective system appeared in a 1960 paper by Newell, Shaw, and 
Simon, but I have seen no later references to that proposed approach. 

My lecture will describe some ideas about how we could build more resourceful 
machines, by designing system that can learn when and how to switch between many 
different ways to think.  More details about these ideas are discussed on my website at 
http://web.media.mit.edu/~minsky/E8/eb8.html. If there is time, I will also discuss the 
early years of working with Warren McCulloch and other pioneers. 



C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 439–441, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Fundamental Questions 

Aaron Sloman 

School of Computer Science  
The University of Birmingham  

Birmingham, B15 2TT England, UK 
A.Sloman@cs.bham.ac.uk 

Extended Abstract 

I first heard about AI in 1969 from Max Clowes, then an AI vision researcher, when I 
was a philosophy lecturer at Sussex University (with a background in mathematics and 
physics). Gradually I came to realise that the best way to make progress in most areas of 
philosophy (e.g. philosophy of mind, epistemology, philosophy of language, philosophy 
of science, philosophy of mathematics, and probably even aesthetics) was to do AI. 

Attempting (and usually failing) to design and implement working fragments of 
minds with human-like capabilities is a much more rapid route to understanding the 
real problems than the typical arm-chair analysis and  smoke-filled seminar 
discussions of philosophers (in those days). That was partly because apriori 
philosophical analyses are usually based on ignorance of requirements and constraints 
that must be met by working systems and also ignorance of the full range of possible 
mechanisms, architectures, forms of representation, virtual machine types, etc. 

For example, philosophical discussions about free will are often based on 
simplistic assumptions about the nature of human decision making and the kinds of 
mechanisms that might support such processes. This leads to spurious oppositions 
between determinism and freedom. By exploring a wide variety of information 
processing architectures, whether produced by evolution or by engineers and 
philosopher-designers, we can show that there are more varied and complex cases 
than philosophers had previously considered, and explain why desirable forms of 
freedom and responsibility depend on deterministic mechanisms rather than being 
incompatible with them. 

Likewise by investigating architectures involving multiple concurrent sub-
architectures, including some that monitor and modulate others, we can begin to 
understand more varieties of consciousness and self consciousness than philosophers 
were able to dream up in their arm chairs. 

During those early years it became clear that whereas much of AI research in the 
past had been focused on algorithms and representations, it was also necessary to start 
thinking about how to put all the pieces together in an *architecture* combining 
multiple kinds of functionality, in concurrently active components, especially if we 
are to explain or model the kind of autonomy and creativity found in humans and 
other animals. (This was the topic of Chapter 6 of The Computer Revolution in 
Philosophy (1978) now online http://www.cs.bham.ac.uk/research/cogaff/crp/) 

Two other philosophers whose interest in AI grew in that period were Dan Dennett, 
whose book Brainstorms (1978) also attempted to build bridges between the two 



440 A. Sloman 

disciplines, and Margaret Boden whose two books (Purposive Explanation in 
Psychology (1972) and Artificial Intelligence and Natural Man (1978)) helped to 
spread the word to wider audiences. [OUP will shortly publish her new 2 volume 
History of Cognitive Science which will help to illuminate the early years of AI.] 
Other philosophers also became interested. 

Apart from the impact of AI on philosophy there was also a need for AI 
researchers to develop philosophical expertise in order to help them in their work. 
One reason was that they were often insensitive to the crudeness of the questions they 
asked (e.g. how can we model emotions? learning? creativity? consciousness?) 
because they did not know how to analyse complex concepts, and tended (and still 
tend) to assume over-simple analyses, as a result of which they often make inflated 
claims (e.g. to have modelled learning, or emotions, or scientific discovery, when all 
they have modelled are very simple and shallow special cases). 

One example was the strong tendency among many AI researchers in the first 
decade to think that all reasoning or problem solving had to make use of essentially 
logical or sentential information structures -- an assumption I challenged in my first 
AI paper in 1971, claiming that Fregean and analogical modes of representation and 
reasoning are both important. Many others have made the same point, but I think it is 
fair to say that whereas logicist AI has many important achievements there has been 
little success in modelling visual/spatial/diagrammatic reasoning: mainly because 
most of the problems of vision are still unsolved in AI, even though there has been a 
lot of work on sub-problems, such as recognition, tracking and route-finding. There is 
far more to seeing a spanner than recognising it, as you can tell by watching a 3-year 
old trying to use one. 
[http://www.cs.bham.ac.uk/research/projects/cosy/papers/#tr0603] 

Another reason for AI researchers to learn philosophy is that old philosophical 
problems can inspire new AI research. One example is the old philosophical debate 
between empiricists (e.g. Hume) and apriorists (mainly Kant) which, reformulated in 
modern terms, leads to investigations of nature-nurture tradeoffs. Unfortunately many 
AI theorists just assume that any learning system must start off with as little prior 
knowledge as possible, and must derive all its concepts by abstraction from 
experienced instances (concept empiricism/symbol grounding) --- as if proposing that 
the human genome should discard millions of years of learning about the nature of the 
environment: unlike all the many animals that start off highly competent at birth. The 
time is ripe to re-open that discussion in collaboration with biologists studying 
varieties of animal cognition. 

One of the philosophical conflicts between Hume and Kant that drove my own 
research interests concerned the nature of mathematics. Kant criticised Hume for 
allowing nothing to exist between the empirical knowledge acquired through the 
senses and trivial tautologies that are true by definition. Kant thought mathematical 
discoveries were not empirical and truly expand our knowledge. He was right of 
course. 

If we can shift from attempting to model the theorem-proving done by adult 
mathematicians (which many AI researchers have attempted to do) to attempting to 
model the processes of learning about numbers, shape, motion, and operations such as 
counting, grouping, constructing things, and learning to apply such operations to 
themselves (e.g. counting counting operations), as happens in many human children 



 Fundamental Questions 441 

during the first decade, we may both come to understand better what needs to go on in 
a robot with human-like intelligence, including mathematical intelligence, and also 
understand better what goes wrong in much mathematical education in primary 
schools because it is based on incorrect models of learning and discovery. (Piaget 
tried, but lacked the conceptual tools.)  

There were many technical achievements in AI in the 1970s, many of them 
concerned with new engineering applications including the early development of 
expert systems and many tools now taken for granted by researchers (e.g. Matlab, 
Mathematica). A major robotic achievement, now generally forgotten, was Freddy the 
Edinburgh robot, which could assemble a toy wooden car in 1973, though it could not 
see and act at the same time. Minsky's frame-systems paper was very influential, and 
inspired many formalisms and toolkits. Logic programming started to take off. 

AI vision research was also starting to get off the ground, at last moving away from 
pattern recognition. E.g. pioneering work was done by Barrow and Tennenbaum, 
published in 1978, and by others working on ways of getting 3-D structure from static 
or moving image data. However many did not appreciate the importance of the third 
dimension and merely tried to classify picture regions -- a task that still occupies far 
too many researchers who could be doing something deeper.  

Gibson's ideas were just beginning to be noticed around that time, especially his 
emphasis on the importance of optical flow and texture gradients. Some people were 
already trying to resurrect neural nets. Many worked on new higher level languages 
and toolkits (though not architecture toolkits). Prolog was an example. There was 
much work on natural language processing, including European translation projects 
and the DARPA speech understanding project. My own vision project (POPEYE) 
based on a multi-level multi-processing visual architecture made some progress then 
hit a funding wall. I also started trying, without much success, to get people to think 
about surveying spaces of possibilities and the tradeoffs therein instead of (vainly) 
competing to find the single best solution to a problem. 

During the following decade the field started increasingly to fragment for several 
different reasons (including rapid growth in numbers), with many bad effects, 
including killing off some major promising developments (e.g. research on 3-D 
vision). AI has become far more a collection of narrow specialisms with most 
researchers barely aware of anything going on outside their own sub-fields. Perhaps 
we can now start re-integrating AI, both as engineering and as the most general 
science of mind. At least the hardware support is more powerful than ever before. For 
a 'Grand Challenge' proposal see http://www.cs.bham.ac.uk/research/cogaff/gc/ And 
for a suggested means to re-integrate AI see  
http://www.cs.bham.ac.uk/research/cogaff/gc/aisb06/sloman-gc5.pdf   



C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 443–444, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Towards the AI Summer 

Wolfgang Bibel 

FG Intellektik, FB Informatik  
Technische Universität Darmstadt  

Hochschulstr. 10, D-64283 Darmstadt, Germany 
bibel@informatik.tu-darmstadt.de 

Extended Abstract 

The talk summarizes the beginnings of AI as a discipline in Germany until around 
1982. This includes the formation of a community in 1975 by establishing a German 
AI conference series, a quarterly newsletter, and a representative body for AI within 
the GI, all of which is still in existence and thriving today. It also includes the 
embedding of the national activities within the international AI community by 
organizing the first "ECAI" conference as an AISB/GI conference in Hamburg, the 
foundation of ECCAI, the European AI umbrella society, and many other initiatives 
of German AI researchers. 

AI as pursued in Germany is rooted mainly in the GOFAI (good old- fashioned AI) 
vision which is vigorously developed until this day (without neglecting novel methods 
in addition). A fundamental part thereof is the processing of coded knowledge in 
artificially intelligent systems. Because it has become apparent that perhaps hundreds 
of millions of knowledge chunks are needed to enable truly intelligent behavior at a 
human level of breadth and depth the author takes the position that we are just now 
beginning to approach the blossoming period of GOFAI. He argues that the time has 
come for putting AI (converging with other technologies) into the service of  
enhancing science and the humanities in a fundamental and revolutionary way and of 
overcoming the numerous problems mankind is facing in our times such as climate 
change and ecological destruction, energy and resources crisis, public problem 
solving and governance including social justice, global epidemics, social  
disintegration, cultural communication, education, and so forth. In other words, AI 
could and should make the decisive difference in the "promise and perish" dichotomy 
which is at stake. 

As representatives for such a change of paradigm the challenge problems of a 
competitive door to door public transportation system and of a harmonized legal 
system out of the currently 26+ different legal systems in Europe are proposed (as 
companions of the RoboCup challenge). 

References 

W.  Bibel, The Beginnings of AI in Germany (2006). 
W. Bibel, Information Technology. Report, European Commission (2005). ftp://ftp.cordis.lu/ 

pub/foresight/docs/kte_informationtech.pdf 



444 W. Bibel 

W. Bibel et al., Converging Technologies and the Natural, Social and Cultural World. Report, 
European Commission (2004). http:// europa.eu.int/comm/research/conferences/2004/ntw/ 
pdf/sig4_en.pdf 

W. Bibel, AI and the Conquest of Complexity in Law. Artificial  Intelligence and Law Journal 
12, 159-180 (2004). 

W. Bibel, Lehren vom Leben - Essays Ã¼ber Mensch und  Gesellschaft. Deutscher 
Universitäts-Verlag, Wiesbaden (2003). 



C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, p. 445, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

History of AI in Germany  
and  

The Third Industrial Revolution 

Jörg Siekmann 

DFKI GmbH,  
Deduktion und Multiagentensysteme, 

Stuhlsatzenhausweg 3,  
D-66123 Saarbrücken 

Joerg.Siekmann@dfki.de 

Extended Abstract 

This forthcoming book, jointly written by Corinna Elsenbroich (history and 
philosophy of science) and Jörg Siekmann (one of the founders of AI in Germany) 
explores the history of the establishment of AI in Germany with respect to two central 
themes: 

(A) The pattern of development of a high-tech academic discipline (like AI) with 
substantial industrial and economic potential, follows an interesting, but different 
pattern from the well known and much older research subjects. 

(B) The historical development of AI should not be viewed in isolation, but 
within the context of the so called “Third Industrial Revolution”, i.e. the age of 
information processing and the computer, with all its societal consequences, such as 
economic globalization as well as the global information on the web. 

Due to its loss of academic excellence after 1933, the emigration or loss of life of a 
whole generation of leading scientists and the aftermath of the Second World War, 
Germany had a late start in almost all modern scientific subjects.  

In particular, computer science started about two decades later than in the Anglo-
Saxon countries. 

On the other hand, in the span of about thirty years, German research in AI and its 
industrial exploitation succeeded in closing the gap to the now dominant worldwide 
scientific standards and became again a well recognized scientific and technological 
country with not only the largest national AI society, the most substantial AI funding 
(when calibrated against the size of the population), the worldwide largest AI institute 
(the DFKI), but also measured against its number of publications, projects or citation 
index.  

Thus under the magnifying glass of less than half a century, we can observe a 
unique pattern of development which we claim appears to be typical for many modern 
scientific fields. 

The talk will concentrate and outline the general pattern of development which 
currently forms our hypothesis. 



C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 447–448, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Three Decades of Human Language Technology in 
Germany 

Wolfgang Wahlster 

German Research Center for AI, 
DFKI GmbH, 

Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany 
wahlster@dfki.de 

Extended Abstract 

Natural language understanding is one the most challenging goals of artificial 
intelligence. Since almost everyone speaks and understands a language, the 
development of natural language systems allows the average person to interact with 
computer systems anytime and anywhere without special skills or training, using 
common devices such as a cell phone. Full natural language understanding is AI-
complete, in other words it requires solutions to all other core AI problems like 
knowledge representation, reasoning, vision, learning, and action planning. 
Nevertheless, after three decades of intensive and successful research, every day 
millions of users experience human language technology by calling directory 
assistance, getting train table or account information, dictating an SMS or a patient 
record, or telling a navigation system their destination. Human language technology 
has grown from an esoteric research area, 30 years ago, to a multi-billion euro market 
with a total revenue of more than two billion euro just for spoken dialog systems. 

Thirty years ago, in March 1976, the first official workshop of the German 
Informatics Association’s (GI) special interest group on AI brought together 48 
participants in the town of Freudenstadt in the black forest. It is typical for the 
development and strength of AI in Germany, that the first official workshop, which 
was chaired by Joachim Laubsch, dealt with “Natural Language Dialog and 
Knowledge Representation”, since these are core topics of AI, to which German 
researchers have made seminal contributions.  

The 1976 proceedings include papers about the two pioneering German question-
answering systems HAM-RPM (v. Hahn, Hoeppner, Jameson, Wahlster) and PLIDIS. 
Both systems were implemented in LISP. HAM-RPM included many advanced 
features like user modelling or meta-communication and could deal with certain 
aspects of vagueness, spatial reference, presuppositions, and why-questions. This 
early system used already a precursor to description logics with a conceptual (today: 
T-Box) and referential semantic (today: A-Box) network based on model-theoretic 
semantics. PLIDIS was based on a theorem prover coupled with a database that was 
used to answer typed natural language questions about wastewater control. 

Ten years later, in 1986, the first international conference on user modelling was 
held in the medieval abbey of Maria Laach jointly chaired by Alfred Kobsa and 
myself, which led to a worldwide breakthrough of this AI subfield. Today, there is an 
international journal (User Modeling and User-Adapted Interaction), ranked among 



448 W. Wahlster 

the 5% computer science journals, and a biannual conference series (User Modeling), 
which has been already held ten times. From its beginning, user modeling was mainly 
motivated by the research on natural language dialog systems as the title of the first 
comprehensive book “User Models for Dialog Systems (Kobsa/Wahlster 1989) 
suggests. The largest project on text understanding the world has ever seen, LILOG 
supported by IBM, was also started in 1986, combining advanced methods of 
linguistics and logic (Herzog/Rollinger 1991) in a Prolog-based system. LILOG 
produced seminal results in unification-based parsing, discourse representation 
theory, and the processing of temporal and spatial expressions. 

Another 10 years later, in 1996, the second phase of the large speech-to-speech 
translation project VERBMOBIL was started. VERBMOBIL was a speaker-
independent and bidirectional speech-to-speech translation system for spontaneous 
dialogs in mobile situations. VERB¬- MOBIL used a multi-engine and multi-
blackboard approach, e.g. it used five concurrent trans¬lation engines: statistical 
translation, case-based translation, substring-based transla¬tion, dialog-act based 
translation, and semantic transfer. Other distinguishing features were the multilingual 
prosody module and the generation of dialog summaries. VERBMOBIL has 
successfully met the project goals with more than 80% of approximately correct 
translations and a 90% success rate for dialog tasks.  

Another 10 years later, in 2006, the largest German project on Human Language 
Technology is SmartWeb. It is the follow-up project to the SmartKom project, which 
led to the first fully symmetric multimodal dialog system. In face-to-face situations, 
human dialogue is not only based on speech but also on nonverbal communication 
including gesture, gaze, facial expression, and body posture. Multimodal dialogue 
systems exploit one of the major characteristics of human-human interaction: the 
coordinated use of different modalities. Although SmartKom worked in multiple 
domains (e.g. TV program guide, telecommunication assistant, travel guide), it 
supports only restricted-domain dialogue understanding. The follow-up project 
SmartWeb goes beyond SmartKom in supporting open-domain question answering 
using the entire Web as its knowledge base.  

One of the main lessons learned from all the research during the past three decades 
is that the problem of natural language understanding can only be cracked by the 
combined muscle of deep and shallow processing approaches. This means that 
corpus-based and probabilistic methods must be integrated with logic-based and 
linguistically inspired approaches to achieve true progress on this AI-complete 
problem. 



C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 449–450, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

1996-2006 Autonomous Robots 

Sebastian Thrun 

Stanford AI Lab,  
Stanford University, 

353 Serra Mall, Stanford, CA 94305, USA 
thrun@ai.stanford.edu 

Extended Abstract 

The "fifth decade of Artificial Intelligence", the period from 1996 to 2006, has been a 
decade of success for AI. Computers beat the residing world chess champion.  AI 
companies like Google and Yahoo! have been taking over the world. And AI research 
changed forever the nature of other scientific fields, like biology and cognitive 
science. So how could this happen? 

In my humble opinion, the fifth decade of AI has been the decade of data and 
statistics. Data has been available for many years, but somehow the amount of 
available data exploded in the past decade. The advent of the World Wide Web made 
huge numbers of documents, images, and videos available online.  Hundreds of AI 
researchers refocused their energy on the Web. AI systems were developed for 
learning people's browsing patterns, for raking online music, for finding and parsing 
job advertisements, and for making search more effective. Out of this grew a billion-
dollar industry, with Google being the most significant example. 

Data has also exploded in biology. Early in fifth decade of AI, the human genome 
was decoded, and now the race is up to actually understand it. AI techniques were 
developed to find genes in the DNA string, to model gene expression in cells, to link 
DNA information to diseases, and to find commonalities among the DNA in different 
species. Today, we have a field of biocomputation that has profoundly changed the 
field of biology. And AI has played a major role in all this.  

Data has also become abundant in robotics and in physical spaces. In the beginning 
of this decade, there were less than one million robots operating around the world. 
iRobot alone, an AI company, has sold over two million robots in the past five years. 
Thanks to much improved sensor technology, it has become easy to equip cars with 
sensors for driver and environment perception. Five of these cars just drove 
autonomously across a 131-miles long desert course, fueled by some very advanced 
AI. And the field of sensor networks, which is still in its infancy, is beginning to 
create some interesting data sets worthy of AI research. 

But data along would not have been sufficient. 
The other ingredient is statistics. AI has embraced the field of statistics in great 

many ways. Early examples include statistical approaches to machine translation, 
which outperformed then-popular hand-crafted grammars in a stunning series of 
experiments. Since then, many other fields have gone statistic: computer vision, 
machine learning, inference, information retrieval, robotics, speech recognition, to 
name a few. The advent of statistics in AI has led to great new ways to extract 



450 S. Thrun 

information from data. To do all this, we needed faster computers. Somehow in the 
mid-1990s, we reached the critical speed that makes it possible to run complex 
statistical techniques on large amount of data in reasonable time. 

In my talk, I intend to focus on some of these advances. I will in large parts focus 
on robotics, in which statistics, data, and fast computers have had a profound effect in 
the recent decade. Robots are now programmed probabilistically, and they use 
extensive numerical simulations of statistical equations to make robust decisions. In 
doing so, they are now much more robust to noise in the sensor data, and to the 
uncertainly that naturally exists in physical spaces. 

One of my own robots, named Stanley, just won the DARPA Grand Challenge, the 
131-miles long autonomous robot desert race. In developing this robot, AI played a 
significant role, as did data and statistics. Stanley uses probabilistic techniques to 
reason about sensor data. We, the developers, extensively relied on machine learning 
to endow the robot with advanced perception and control abilities ahead of the race. 
During the race, the robot used statistical machine learning to continuously adapt its 
perceptual routines to the terrain ahead---which gave it a key advantage. For a field 
like robotics, which has traditionally been dominated by non-AI research (despite the 
perception of many AI researchers!), this is a treat.  

So what's next? It is time for AI to become mainstram in computer science. Why 
don't we have programming languages that make it possible to handle uncertain data? 
Why can't software diagnose itself and fix its bug based on data? What don't we 
routinly train our computers with examples, and why can't our databases adapt to the 
type unstructured information available in places like the Web?   

And what have we learned about human-level AI lately? How can we understand 
brain activities recoded by fMRI, a technology that has been rapidly improving in the 
past few years? And where are those universal robots that can do many different task, 
not just one, and act as if  endowed with common sense?  

These are all challenging topics. But with all the success in the fifth decade of AI, 
and all those new technical insights, it's time to try again to solve the big problems  
in AI.  



C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 451–453, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Projects and Vision in Robotics 

Hiroshi Ishiguro1,2,3 

1 Department of Adaptive Machine Systems, Osaka University 
2 ATR Intelligent Robotics and Communications Laboratories 

3 JST ERATO ASADA Synergistic Intelligence Project 
ishiguro@ams.eng.osaka-u.ac.jp 

Extended Abstract 

Current Robotics and Research Projects 

The history of intelligent robotics started with Shakey developed at SRI in 1965. 
Shakey provided us several important research issues and we, robotics researchers, 
focused on the fundamental issues for making it more intelligent, such as Artificial 
Intelligence, Computer Vision, and Language Recognition. After Shakey, we have 
spent 40 years and developed humanoids as new Shakeys by using the developed 
technologies. The humanoids provide us new important research issues as Shakey did. 
The research issues lies on interdisciplinary areas among Robotics, Cognitive 
Science, Neuroscience, and Social Science.   

Current projects running in the world are categorized as follows. Each category 
aims at a different new purpose. Note the list is not perfect and there are many other 
projects. In these projects, we are trying to identify new fundamental issues and 
establish new research areas by integrating the interdisciplinary areas. 

Studies on Hardware Mechanisms of Humanoids  

− ASHIMO Project, Honda Co., Ltd.  
− HRP Project, National Institute of Advanced Industrial Science and Technology 

(AIST), Japan 
− Humanoid Project, University of Karlsruhe 

Studies on Cognitive Mechanism of Humanoids 

− Cog Project, MIT 
− QRIO Project, SONY Intelligence Dynamics Laboratories, Inc. 
− COGNIRON Project, European research institutes including LAAS, EPFL, FhG 

IPA, GPS, KTH, … 

Studies on Interactive Robots 

− Robovie Project, ATR Intelligent Robotics and Communications Laboratories 
− KISMIT Project, MIT 



452 H. Ishiguro 

Studies on Social and Network Robots 

− Network Robot Forum, Japanese companies including ATR, Toshiba, Panasonic, 
NTT,  
MHI, … 

− Ubiquitous Robotic Companion Project, Ministry of Information and 
Communication, Korea 

One of the Future Research Directions 

Obviously, our robot is getting close to a human as the technologies progress. Why 
are we attracted in humanoids? The answer is simple. It is because of our tendency to 
anthropomorphize non-human things. We, humans, always anthropomorphize targets 
of communication and interaction. Therefore, we expect much with humanoids. In 
other words, we find a human itself in the humanoid.  

One of the future research directions to directly dealing with this fundamental 
issue is to develop androids. Here, Let me briefly introduce our android projects. The 
project has been stated with a neglected issue in the human-robot interaction study. 
That is “appearance vs. behavior problem.” The interactive robots that have been 
developed thus far are non-android types. Evidently, the appearance of the robot 
influences impressions of the subjects, and it is a very important factor in the 
evaluation of the interaction. Although there are many technical reports that compare 
robots with different behaviors, the appearance of the robots has not been focused 
upon. There are many empirical discussions on very simplified robots such as dolls. 
However, the design of a robot’s appearance, particularly to make it appear a 
humanoid, has always been a role of industrial designers. This is a serious problem 
for developing and evaluating interactive robots. The appearance and the behavior 
are tightly coupled, and further, the results of the evaluation change with the 
appearance.  

Android Science that Bridges Science and Engineering  

One of the methods to tackle to the neglected issue is to develop a very humanlike 
robot, i.e., an android, and use it for studying human-robot interaction. The right 
figure of Figures 1 shows the developed android by Ishiguro. The android has 42 air 
actuators for the upper torso, excluding fingers. In the development, we have 
determined the positions of the actuators by analyzing the movements of a real human 
by using a precise 3D motion capture system. The actuators can represent the 
unconscious movements such as chest movements due to breathing in addition to 
conscious large movements of the head and arms. Furthermore, the android has a 
function for generating facial expressions that are important for interaction with 
humans.  

The following figure shows a humanoid and android. The left picture shows a 
humanoid Eveliee P1 based on WAKAMARU that was developed by Mitsubishi 
Heavy Industry Co. Ltd.; and the right one shows an android Repliee Q2 developed 
by cooperation with KOKORO (www.kokoro-dreams.co.jp) Co. Ltd.  

 



 Projects and Vision in Robotics 453 

    

 
The development of the androids requires contributions from both robotics and 

cognitive science. In order to realize a more humanlike android, knowledge from 
human science is necessary. This new framework is called “android science” Thus, 
android science is an interdisciplinary framework between engineering and cognitive 
science. Robotics attempts to build very humanlike robots based on the knowledge 
from cognitive science. Cognitive science employs the robot for verifying 
hypotheses for understanding humans.  

In the past, robotics research used knowledge from cognitive science, while 
research in cognitive science utilized robots. However, the contribution from 
robotics to cognitive science has not been adequate. Appearance and behavior could 
not be handled separately and non-android type robots were not sufficient as tools of 
cognitive science. We expect that this problem can be solved by using the android 
that has a very humanlike appearance. On the other hand, robotics research based on 
the cues from knowledge in cognitive science faces a similar problem, since it is 
difficult to recognize properly whether the cues pertain solely to robot behaviors, 
isolated from their appearance, or the combination of its appearance and behavior. In 
the framework of android science, androids enable us to directly share knowledge 
between the development of androids in engineering and the understanding of 
humans in cognitive science. 

Let me summarize major research issues in android science here. The issues in 
Robotics are to develop the very humanlike appearance with silicon, the humanlike 
movement, and the humanlike perception by integrating with ubiquitous sensor 
systems. On the other hand, the issue in cognitive science is “conscious and 
unconscious recognition.” The goal of android science is to realize a humanlike 
robot and find the essential factors of human likeness. How can we define human 
likeness? Further, how do we perceive human likeness? It is well known that a 
human has conscious and unconscious recognition. When we observe objects, 
various modules are activated in our brain. Each of them matches the input sensory 
data with the human models, and then they affect on reactions. A typical example is 
that even if we recognize the robot as an android, we react to it as a human. This 
issue is fundamental both for the engineering and scientific approaches. It will be an 
evaluation criterion in the development of the android, and it provides us cues for 
understanding the human brain mechanism of recognition. 



What Will Happen in Algorithm Country?

Simon Schmitt

Kippenberg-Gymnasium

During the last few days I learned a little about artificial intelligence and it was
fascinating. I read an heard about things like machine learning and the idea of
artificial emotions as the basis of artificial intelligence, which I had considered to
be deepest science fiction some weeks before. In fact I just touched the surface,
but the glimpse behind the curtain, that I got, left me stunned and made me
think about the future. I thought how life would be in times, when you have
to talk of intelligent artificial beings or even individuals instead of computer
programs, because they seem to be living.

One of my next thoughts was whether those artificial intelligent individuals will
just exist to fulfil certain tasks or if they might have fun together or with us.

Of course we are used to play chess against computers, but to play the violin
together with an android, who changes the speed if I would play to slow or maybe
an android member of a jazz band playing his solo does not fit in our picture of
toady’s real life.

But why should our communication just contain giving commands and getting
debugging information or further questions on the artificial intelligent individuals
task? Why could we not talk and interact together just because we want to? But
could you call that a social relationship or is friendship just possible between
humans?

How deep are our feelings towards these intelligent machines? Suppose you
have one of those RoboCup dogs (AIBO). Of course it would be very old then,
but it is your best friend. Assume his accumulator being very old and while
playing with the garbage it switches off, so that it is taken by the garbage
collector because it seemed to be very old.

Of course all of us would be sad, but one could say: “Just buy a new one.” In
fact you might not be satisfied, because it is not the same mixture between the
artificial mind and the physical engine you are used to. Shall we treat artificial
beings like living ones or even like humans, because of our own feelings? Would
we have to redefine our laws in this case? If the hard disc of an several years old
android will be destroyed, due to an update or just because it is to old. Is that
a crime? Maybe a kind of electronic murder, because we wipe out the mind - or
the data, which forms what we consider to be the mind?

Suppose we decide because of the well modelled nature-like mind of artificial
beings to avoid deleting anything. As a consequence artificial beings can not die.
They continue consuming resources and might even become depressed immortals.
Think of Marvin the paranoid android form “The Hitchhiker’s Guide to the
Galaxy”. On the other hand if we keep them running, we do not know how the
artificial intelligent being would react, if its third owner dies?

C. Freksa, M. Kohlhase, and K. Schill (Eds.): KI 2006, LNAI 4314, pp. 455–456, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



456 S. Schmitt

The other question that keeps bugging me is what could happen with us
humans in such a future? Currently machines and the artificial intelligence are
used in order to do our work and to solve our problems. But what happens if
all our major problems are solved? What will our task be? Will we just have
to become engineers keeping the system running? Will we otherwise become
philosophers searching for problems we do not have? Or will we just get bored,
depressed and longing for happy times in cyberspace or searching for perfect
computer games with full body simulators or with direct connections to our
brain.

But doesn’t that mean, that in our assumed world, which we consider being
Utopian, we would voluntarily enter a virtual reality, which makes us dull? All
in all the hope that one day, we might be able to hand all problems over to
artificial beings seems to be unnatural for humans born to solve problems.

But I am not afraid because it will take very long if it is even possible until we
might have the psychological problem of having no real life problems anymore.



Author Index

Ahn, Byung-Ha 317
Arcos, Josep-Llúıs 1

Bach, Joscha 7
Bauer, Colin 7
Baumeister, Joachim 346
Benzmüller, Christoph 159
Bibel, Wolfgang 443
Biundo, Susanne 361
Bredeweg, Bert 33
Bregenzer, Jürgen 346

Cardoso Rodrigues de Souza,
Renata Maria 260

de Boer, Viktor 202
Drechsler, Rolf 331
Dylla, Frank 274

Ebendt, Rüdiger 331
Ekenel, Hazım Kemal 302

Finzi, Alberto 113, 389
Furbach, Ulrich 174

Gottfried, Björn 289
Grachten, Maarten 1
Grinberg, Maurice 76
Güngör, Tunga 91

Haarslev, Volker 188
Herzog, Otthein 289
Hindriks, Koen V. 404
Hofmann, Thomas 244
Holzapfel, Hartwig 302
Horacek, Helmut 159

Ishiguro, Hiroshi 451

Jamroga, Wojciech 419
Jannach, Dietmar 49
Jeon, Moon-Gu 317

Kim, Jong-Hwan 317
Kokinov, Boicho 76

Kruijff-Korbayová, Ivana 159
Kusper, Gábor 128

Lesourd, Henri 159
Liem, Jochem 33
Lisetti, Christine L. 19
López de Mántaras, Ramon 1
Lukasiewicz, Thomas 113, 389

Marpaung, Andreas 19
Mehta, Bhaskar 244
Meyer, John-Jules Ch. 404
Minsky, Marvin 437
Möller, Ralf 188

Naydenov, Tchavdar 76

Obermaier, Claudia 174
Ohlbach, Hans Jürgen 214
Özgür, Arzucan 91

Park, Jong-Hwan 317
Pawlaszczyk, Dirk 374
Petkov, Georgi 76
Pizzato, Daniel F. 260
Puppe, Frank 346

Saad, Emad 143
Schaa, Christoph 302
Schaaf, Thomas 302
Schattenberg, Bernd 361
Schiller, Marvin 159
Schmid, Ute 64
Schmitt, Simon 455
Schuldt, Arne 289
Siekmann, Jörg 445
Sloman, Aaron 439
Stonier, Daniel 317

Tang, Lappoon R. 102
Tenorio de Carvalho, Francisco de

Assis 260
Thrun, Sebastian 449
Timm, Ingo J. 374

van Someren, Maarten 202
Veloso, Manuela 229



458 Author Index

von Hundelshausen, Felix 229
Vuine, Ronnie 7

Wahlster, Wolfgang 447
Waibel, Alex 302

Wallgrün, Jan Oliver 274
Weller, Stephan 64
Wessel, Michael 188
Wielinga, Bob J. 202
Wolska, Magdalena 159


	Title Page
	Preface
	Organization
	Table of Contents
	Expressivity-Preserving Tempo Transformation for Music – A Case-Based Approach
	The Problem of Generating Expressive Music
	TempoExpress
	Results
	Conclusions

	MicroPsi: Contributions to a Broad Architecture of Cognition
	Introduction
	Assumptions of the Psi Theory
	MicroPsi
	Current Experiments: Neural Prototyping


	Affective Cognitive Modeling for Autonomous Agents Based on Scherer’s Emotion Theory
	Introduction
	Related Research
	Developing Socially Intelligent Agents
	A Three-Layered Emotional State Generator
	Sensory Motor Level
	Schematic Level
	Conceptual Level
	Stimulus Evaluation Checks (SECs)

	Affective-Cognitive Architecture and Embodiment Forms
	Functionalities of Our Robot
	Navigation with Sonar and Vision
	Integration of Face Recognition with Social Status Knowledge

	Sensory Motor Level Design and Implementation
	Behavior State Generator (BSG)

	Integration on a Robotic Platform with Anthropomorphic Interface
	Conclusion
	References

	OWL and Qualitative Reasoning Models
	Introduction
	Qualitative Reasoning
	Representing General Situations
	The Formalisation of Relations
	Representing Values
	Relation Restriction Through Classification
	Implementation
	Conclusions and Discussion

	Techniques for Fast Query Relaxation in Content-Based Recommender Systems
	Introduction
	Non-interactive Relaxation
	Interactive Relaxation
	Implementation and Evaluation
	Conclusion and Future Work

	Solving Proportional Analogies by E–Generalization
	Introduction
	Syntactic Anti-unification and E--Generalization
	Syntactic Anti-unification
	E--Generalization

	Letter String Analogies
	Solving Proportional Analogies by E--Generalization
	Illustration of the Approach
	Algorithmic Realization of E-Generalization
	Using E-Generalization to Solve Proportional Analogies
	Implementation

	Conclusion and Further Work

	Building Robots with Analogy-Based Anticipation
	Introduction
	The DUAL Architecture
	Basic Properties
	DUAL–Agents
	The Coalitions of Agents

	The AMBR Model
	Main Ideas
	Mechanisms Used in AMBR
	Anticipation by Analogy

	Simulation Results
	Mapping Between Close Situations
	Single Run of the Model
	Statistical Results from Many Runs of the System

	Conclusion
	References

	Classification of Skewed and Homogenous Document Corpora with Class-Based and Corpus-Based Keywords
	Introduction
	Document Representation
	Keyword Selection
	Experiment Results
	Document Data Sets
	Results and Discussion

	Conclusion
	References

	Learning an Ensemble of Semantic Parsers for Building Dialog-Based Natural Language Interfaces
	Introduction
	Background
	Bagging Classifiers
	Inductive Logic Programming

	Ensemble Learning for Semantic Parsing
	The {\sc Chill} Architecture for Semantic Parser Induction
	The {\sc ChillE} Algorithm

	Experimental Evaluation
	Domains and Corpora
	Experimental Design
	Discussion of Results

	Related Work
	Conclusion and Future Work

	Game-Theoretic Agent Programming in Golog Under Partial Observability
	Introduction
	Preliminaries
	The Situation Calculus
	Golog
	Normal Form Games
	Partially Observable Stochastic Games

	Partially Observable GTGolog (POGTGolog)
	Domain Theory
	Belief States
	Syntax
	Semantics

	A POGTGolog Interpreter
	Summary and Outlook

	Finding Models for Blocked 3-SAT Problems in Linear Time by Systematical Refinement of a Sub-model
	Introduction
	Definitions
	The Blocked SAT Problem
	The Blocked SAT Solver Algorithm
	Blocked Clause Rules

	Towards the Computation of Stable Probabilistic Model Semantics
	Introduction
	Normal Hybrid Probabilistic Programs
	Probabilistic Strategies
	Language Syntax
	Satisfaction and Models

	Stable Probabilistic Model Semantics
	An Algorithm for Computing Stable P-Models
	PAtleast(P,h) and PAtmost(P,h)
	Conclusions

	DiaWOz-II – A Tool for Wizard-of-Oz Experiments in Mathematics
	Introduction
	Design Aspects
	The DiaWOz-II System
	$\TeX \lower.5ex\hbox{\bfseries {\sc macs}$
	\TeX \lower.5ex\hbox{\bfseries {\sc macs} as Base Component of DiaWOz-II
	Student and Wizard Interfaces
	The Server
	Implementation

	An Empirical Study Using DiaWOz-II 
	Method
	Discussion

	Conclusion

	Applications of Automated Reasoning
	Introduction
	State of the Art in Automated Deduction
	Applications
	Knowledge Compilation
	Conclusion

	On the Scalability of Description Logic Instance Retrieval
	Introduction
	Lehigh University Benchmark
	Optimization Techniques
	Query Optimization
	Indexing by Exploiting Told and Taxonomical Information
	Obvious Non-instances: Exploiting Information from One Completion
	Obvious Instances: Exploiting Information from the Precompletion
	Index Structures for Optimizing Tableau Provers
	Transforming Sufficient Conditions into Conjunctive Queries

	Evaluation
	Conclusion and Future Work

	Relation Instantiation for Ontology Population Using the Web
	Introduction
	Relation Instantiation Task
	Redundancy-Based Relation Instantiation
	Approach
	Method Specification

	Extracting Artist-Art Style Relation
	Cultural Heritage Domain
	Experiment Setup
	Evaluation
	Results for 'Neue Sachlichkeit'
	Results for the Nine Art Styles
	Discussion

	Related Work
	Conclusions and Further Research

	GeTS – A Specification Language for Geo-Temporal Notions
	Motivation and Introduction
	Basic Data Structures in CTTN and GeTS
	Time Points and Time Intervals
	Partitionings
	Durations

	The GeTS Language
	Types in the GeTS Language
	Language Constructs for GeTS
	Built-ins for Time Intervals

	Summary and Related Work

	Active Monte Carlo Recognition
	Introduction
	Related Work
	Active Monte Carlo Recognition (AMCR)
	Analogy Between Object Recognition and Mobile Robot Localization
	An Example
	Overview
	Definitions
	Probabilistic Formulation
	The AMCR-Algorithm

	Radial-AMCR: AMCR for Shape Recognition
	The Affine Estimator and the Measurement Model
	The Motion Model
	Feedback Loops
	Lookup Tables
	The Focus of Attention

	Experimental Results
	Conclusions

	Cross System Personalization and Collaborative Filtering by Learning Manifold Alignments
	Introduction
	Automatic Cross System Personalization
	Non Linear Dimensionality Reduction and Manifold Alignment
	Laplacian Eigenmaps
	Aligned Manifold Learning
	Locally Linear Embedding
	Reconstructing Points from Alignments

	The Manifold Alignment Collaborative Filtering Algorithm
	Evaluation
	Dataset and Evaluation Scheme

	Discussion
	Implementation and Performance
	Computation Complexity
	Usefulness in Practical Scenarios
	Privacy
	Scaling to a $n$-System Scenario

	Conclusions and Future Work

	A Partitioning Method for Mixed Feature-Type Symbolic Data Using a Squared Euclidean Distance
	Introduction
	Data Homogenization Pre-processing Step
	Categorical Multi-valued Variables
	Interval Variables
	Example

	A Dynamic Clustering Algorithm for Mixed Feature-Type Symbolic Data
	Representation Step: Definition of the Best Prototypes
	Allocation Step: Definition of the Best Partition
	The Algorithm

	Experimental Evaluation
	The Monte Carlo Experiences
	Applications with Real Data Sets

	Concluding Remarks

	On Generalizing Orientation Information in $OPRAm$
	Introduction
	Qualitative Orientation Calculi
	Mapping Orientation Calculi into $OPRAm$
	Preliminaries
	Encoding FlipFlop Calculus and $LR$ in $OPRAm$
	Encoding DCC in $OPRAm$
	Encoding $DRAf$ in $OPRAm$
	The $DRAfp$ Enhancement in $OPRAm$
	Encoding QTC in $OPRAm$

	Applications of $OPRAm$ Mappings 
	From DCC Relations to FlipFlop Relations
	DCC Composition with $OPRAm$

	Conclusion

	Towards the Visualisation of Shape Features The Scope Histogram
	Introduction
	Scope Histograms
	Representing Polygons by Their Scope
	Conceptual Neighbourhoods of Scopes
	Computing Scope Histograms
	Visualising Scope Histograms

	Categorising Objects
	Discussion
	Summary

	A Robot Learns to Know People—First Contacts of a Robot
	Introduction
	Obtaining Attention and Initiating Dialogs
	Recognizing Persons and Names
	Face Recognition
	System Integration and Dialog Components
	OOV Recognition
	The Dialog Manager

	Conclusions and Future Work
	Conclusions
	Future Works


	Recombinant Rule Selection in Evolutionary Algorithm for Fuzzy Path Planner of Robot Soccer
	Introduction
	Illustrative Example - Path Planning
	Proposed Evolutionary Technique
	Parent Selection Process
	Implementation

	Experiments
	Robot Soccer System
	Fuzzy System
	The Evolutionary Algorithm
	Experiment Results
	Experimental Conclusions

	Conclusion

	A Framework for Quasi-exact Optimization Using Relaxed Best-First Search
	Introduction
	Search by A*
	Previous Work
	Dynamic Weighting
	Constant Inflation
	Search Effort Estimates

	Unifying View
	Monotonicity
	Preventing to Reopen States
	Experimental Results
	Conclusions

	Gray Box Robustness Testing of Rule Systems
	Introduction
	Measuring the Quality of Rule-Based Systems
	Phases of a Gray Box Degradation Study
	The Pre-analysis: Case Base and Rules
	Types of Torture Tests
	Gray Box Testing with Background Knowledge

	Case Study
	Degradation of a Plant Rule Base
	Degradation of the SonoConsult Rule Base

	Conclusion and Outlook

	A Unifying Framework for Hybrid Planning and Scheduling
	Introduction
	A Refinement-Based Framework
	Integrated Hybrid Planning and Scheduling
	Search Strategies
	Conclusions and Future Developments

	A Hybrid Time Management Approach to Agent-Based Simulation
	Introduction
	Synchronization – Technical Background
	The Hybrid Approach
	The $SimJade$ Synchronization Service
	Evaluation
	Related Work
	Conclusion
	References

	Adaptive Multi-agent Programming in GTGolog
	Introduction
	Preliminaries
	The Situation Calculus and Golog
	Matrix Games
	Stochastic Games
	Learning Optimal Policies

	Adaptive GTGolog (AGTGolog)
	Domain Theory of AGTGolog
	Syntax of AGTGolog

	Learning Optimal Policies
	State Partition Generation
	Learning Algorithm
	Updating Step
	Example

	Summary and Outlook

	Agent Logics as Program Logics: Grounding KARO
	Introduction
	Grounding Agent Logics
	Grounding KARO
	Conclusion

	On the Relationship Between Playing Rationally and Knowing How to Play: A Logical Account
	Introduction
	Reasoning About Abilities of Agents
	$\acro{Atl}$: Ability in Perfect Information Games
	Strategic Ability and Incomplete Information
	An Intuitive Semantics for Ability and Knowledge

	Epistemic Temporal Strategic Logic
	The Semantics Made Easier to Read
	A Few Properties
	$\acro{Etsl}$ in Terms of Concurrent Epistemic Game Structures

	Playing Rationally vs. Knowing How to Play
	Rational Play of Individual Agents
	Rational Coalitions Are at Disadvantage

	Conclusions

	1956-1966 How Did It All Begin? - Issues Then and Now
	Fundamental Questions
	Towards the AI Summer
	History of AI in Germany and The Third Industrial Revolution
	Three Decades of Human Language Technology inGermany
	1996-2006 Autonomous Robots
	Projects and Vision in Robotics
	What Will Happen in Algorithm Country?
	Author Index



