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Abstract. We study the problem of computing geometric spanners for
(additively) weighted point sets. A weighted point set is a set of pairs
(p, r) where p is a point in the plane and r is a real number. The distance
between two points (pi, ri) and (pj , rj) is defined as |pipj | − ri − rj . We
show that in the case where all ri are positive numbers and |pipj | ≥ ri+rj

for all i, j (in which case the points can be seen as non-intersecting disks
in the plane), a variant of the Yao graph is a (1 + ε)-spanner that has
a linear number of edges. We also show that the Additively Weighted
Delaunay graph (the face-dual of the Additively Weighted Voronoi dia-
gram) has constant spanning ratio. The straight line embedding of the
Additively Weighted Delaunay graph may not be a plane graph. Given
the Additively Weighted Delaunay graph, we show how to compute a
plane embedding with a constant spanning ratio in O(n log n) time.1

1 Introduction

Let G be a complete weighted graph where edges have positive weight. Given
two vertices u, v of G, we denote by δG(u, v) the length of a shortest path in G
between u and v. A spanning subgraph H of G is a t-spanner of G if δH(u, v) ≤
tδG(u, v) for all pair of vertices u and v. The smallest t having this property
is called the spanning ratio of the graph H with respect to G. Thus, a graph
with spanning ratio t approximates the

(
n
2

)
distances between the vertices of G

within a factor of t. Let P be a set of n points in the plane. A geometric graph
with vertex set P is an undirected graph whose edges are line segments that are
weighted by their length. The problem of constructing t-spanners of geometric
graphs with O(n) edges for any given point set has been studied extensively; see
the book by Narasimhan and Smid [2] for an overview.

In this paper, we address the problem of computing geometric spanners with
additive constraints on the points. More precisely, we define a weighted point set
as a set of pairs (p, r) where p is a point in the plane and r is a real number. The
distance between two points (pi, ri) and (pj , rj) is defined as |pipj|− ri − rj . The
problem we address is to compute a spanner of a complete graph on a weighted
point set. To the best of our knowledge, the problem of constructing a geometric
spanner in this context has not been previously addressed. We show how the Yao
� Research partially supported by NSERC, MRI, CFI, and MITACS.
1 Due to space constraints, some proofs have been omitted. All missing proofs can be

found in the technical report version of this paper [1].
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graph can be adapted to compute a (1 + ε)-spanner in the case where all ri are
positive real numbers and |pipj | ≥ ri +rj for all i, j (in which case the points can
be seen as non-intersecting disks in the plane). In the same case, we also show
how the Additively Weighted Delaunay graph (the face-dual of the Additively
Weighted Voronoi diagram) provides a plane spanner that has the same spanning
ratio as the Delaunay graph of a set of points. Since |pipj | < ri + rj implies
that the distance is negative, we believe that the restriction |pipj | ≥ ri + rj is
reasonable because the t-spanner problem does not make sense when there are
negative distances.

2 Related Work

Well known examples of geometric t-spanners include the Yao graph [3], θ-
graphs [4], the Delaunay graph [5], and the Well-Separated Pair Decomposition
[6]. Let θ < π/4 be an angle such that 2π/θ = k, where k is an integer. The Yao
graph with angle θ is defined as follows. For every point p, partition the plane
into k cones Cp,1, . . . , Cp,k of angle θ and apex p. Then, there is an oriented
edge from p to q if and only if q is the closest point to p in some cone Cp,i.
For Yao graphs [3], the spanning ratio is at most 1/(cos θ − sin θ) provided that
θ < π/4. For θ-graphs, the spanning ratio is at most 1/(1 − 2 sin θ

2 ) provided
that θ < π/3 [4].

Given a set of points in the plane, there is an edge between p and q in the
Delaunay graph if and only if there is an empty circle with p and q on its bound-
ary [5]. The spanning ratio of the Delaunay triangulation is at most 2.42 [5]. The
Voronoi diagram [7] of a finite set of points P is a partition of the plane into
|P | regions such that each region contains exactly those points having the same
nearest neighbor in P . The points in P are also called sites. It is well known that
the Voronoi diagram of a set of points is the face dual of the Delaunay graph of
that set of points [7], i.e. two points have adjacent Voronoi regions if and only if
they share an edge in the Delaunay graph.

3 Definitions and Notation

Definition 1. A set P = {(p1, r1), . . . , (pn, rn)} of ordered pairs, where each pi

is a point in the plane and each ri is a real number, is called a weighted point
set. The notation pi ∈ P means that there exists an ordered pair (pi, ri) such
that (pi, ri) ∈ P . The additive distance from a point p �∈ P in the plane to a
point pi ∈ P , noted d(p, pi), is defined as |ppi| − ri, where |ppi| is the Euclidean
distance from p to pi. The additive distance between two points pi, pj ∈ P , noted
d(pi, pj), is defined as |pipj|−ri −rj, where |pipj | is the Euclidean distance from
pi to pj.

The problem we address in this paper is the following:

Problem 1. Let P be a weighted point set and let K(P ) be the complete weighted
graph with vertex set P and edges weighted by the additive distance between



Spanners of Additively Weighted Point Sets 369

Fig. 1. A straightforward generalization of the Yao graph

their endpoints. Compute a t-spanner with O(n) edges of K(P ) for a fixed con-
stant t > 1.

Notice that in the case where all ri are positive numbers, the pairs (pi, ri)
can be viewed as disks Di in the plane. If, for all i, j we also have d(pi, pj) ≥ 0,
then the disks are disjoint. In that case, the distance d(Di, Dj) = d(pi, pj) =
|pipj | − ri − rj is also equal to min{|qiqj | : qi ∈ Di and qj ∈ Dj}, where the
notation qi ∈ Di means |piqi| ≤ ri. To compute a spanner of an additively
weighted point set is then equivalent to computing a spanner of a set of disks in
the plane. From now to the end of this paper, it is assumed that all ri

are positive numbers and d(pi, pj) ≥ 0 for all i, j. If D is a set of disks in
the plane, then a spanner of D is a spanner of the complete graph whose vertex
set is D and whose edges (Di, Dj) are given weights equal to d(Di, Dj).

Notice also that the additive distance may not be a metric since the triangle
inequality does not necessarily hold. Although this may seem counter-intuitive,
this makes sense in some networks, since a direct communication is not always
easier than routing through a common neighbor. For example, in wireless net-
works, the amount of energy that is needed to transmit a message is a power
of the Euclidean distance between the sender and the receiver. Therefore, using
several small hops can be more energy efficient than a direct communication over
one long-distance link.

ε

ε
2

Fig. 2. The straightforward generalization of the Yao graph does not have constant
spanning ratio
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Figure 1 shows how the Yao graph can be generalized using the additive dis-
tance: every node keeps an outgoing edge with the closest disk that intersects
each cone. However, this graph is not a spanner. Figure 2 shows how to con-
struct an example with four disks that has an arbitrarily large spanning ratio.
Nonetheless, in Section 4, we see that a minor adjustment to the Yao graph can
be made in order to compute a (1 + ε)-spanner of a set of disjoint disks that has
O(n) edges.

The Delaunay graph in the additively weighted setting is computable in time
O(n log n) [8]. To the best of our knowledge, its spanning properties have not
been previously studied. In Section 6, we show that it is a spanner and that its
spanning ratio is the same as that of the standard Delaunay graph.

4 The Additively Weighted Yao Graph

As we saw in the previous section, a straightforward generalization of the Yao
graph fails to provide a graph with bounded spanning ratio. In this section, we
show how a few subtle modifications to the construction, provide an approach
to build a (1 + ε)-spanner. We define the modified Yao construction below.

Definition 2. Let D be a finite set of disjoint disks and θ ≤ 0.228 be an angle
such that 2π/θ = k, where k is an integer. The Yao(θ, D) graph is defined as
follows. For every disk D = (p, r), partition the plane into k cones Cp,1, . . . , Cp,k

of angle θ and apex p. A disk blocks a cone Cp,i provided that the disk intersects
both rays of Cp,i. Let F ∈ D be a disk different from D with center in Cp,j.
Add an edge from D to F in Yao(θ, D) if and only if one of the two following
conditions is met:

1. among all blocking disks that have their center in Cp,j , F is the one that is
the closest to D;

2. among all disks that have their center in Cp,j and are at a distance of at
least r from D, F is the one that is the closest to D.

Notice that there are two main changes. Within each cone, we now add poten-
tially two edges as opposed to only one edge in the case of unweighted points.
Next, in the second condition to add an edge, we do not add an edge to the
closest disk within a cone but to the closest disk whose distance is at least r
from the disk centered at the apex with radius r. We now prove that these two
modifications imply that the resulting graph is a (1 + ε)-spanner.

Lemma 1. Let p1, p2, p3 such that the angle ∠p3p1p2 = α ≤ θ < π/4 and
|p1p3| ≤ |p1p2|. Then |p2p3| ≤ |p1p2| − (cos θ − sin θ)|p1p3|.

Theorem 1. Let D be a finite set of disjoint disks and θ ≤ 0.228. Then Y (θ, D)
is a t-spanner of D, where t = 1/(cos 2θ − sin 2θ − 2 sin(θ/2)).

Proof: We proceed by induction on the rank of the weighted distances between
the pairs of disks D1 and D2.
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Base case: The disks D1 and D2 form a closest pair. In that case, the edge
(D1, D2) is in Yao(θ, D). To see this, let r1 ≤ r2. If D2 is blocking the cone
centered at p1 that contains it, then it is in Yao(θ, D) by Case 1 of Defini-
tion 2. Otherwise, then it is at distance at least r1 from D1 and therefore it is
in Yao(θ, D) by Case 2 of Definition 2.

Induction case: Let D1 = (p1, r1) and D2 = (p2, r2). Without loss of generality,
r1 ≤ r2. If the edge (D1, D2) is in Yao(θ, D), then there is nothing to prove.
Otherwise, there are two cases to consider depending on whether or not the
shortest path from D1 to D2 in the complete graph on D is the edge (D1, D2).
If the shortest path is not the edge (D1, D2), then all edges on the shortest path
must have length less than d(D1, D2). By applying the induction hypothesis on
each of those edges, we conclude that the distance from D1 to D2 in Yao(θ, D) is
at most t times the length of the shortest path D1 to D2 in the complete graph
on D, as required.

We now consider the case when the edge (D1, D2) 1) is not in Yao(θ, D) and
2) is the shortest path from D1 to D2 in the complete graph. Observe that the
conjunction of those two facts imply that the disk D2 does not block the cone
whose apex is p1 and contains p2: If D2 was blocking the cone, then since (D1, D2)
is not an edge in Yao(θ, D), there must be a disk D3 that is also blocking the
cone and is closer to D1 than D2. However, this implies that the shortest path
from D1 to D2 in the complete graph is not the edge (D1, D2) (see Figure 3).

The conjunction of the following three facts:

1. r1 ≤ r2;
2. θ ≤ 0.228 < sin−1(1/3) and
3. D2 does not block the cone,

imply that d(D1, D2) > r1. Since (D1, D2) is not an edge, there is another
disk whose distance is at least r that is closer to D1. Let D3 = (p3, r3) be the
closest disk to D1 such that p3 is in the same θ-cone with apex at p1 as p2 and
d(D1, D3) ≥ r1. By definition, the edge (D1, D3) is in Yao(θ, D). Observe that
d(D2, D3) < d(D1, D2). To see this, let a := d(D1, D2) − r1. We have that

d(D2, D3) ≤ a + 4r1 sin(θ/2) ≤ a + 4r1 sin(0.114) < a + r1 = d(D1, D2).

Let p′1 be the point of D1 that is the closest to D3, p′′1 be the point of D1 that is

θ

D1

D2

D3

Fig. 3. If D2 blocks the cone but the edge (D1, D2) is not in Yao(θ, D), then there
exists D3 such that d(D1, D3) + d(D3, D2) < d(D1, D2)
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p1

p2

θ

p3
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p′1 p′3

p′2p′′1

Fig. 4. Illustration of the proof of Theorem 1

the closest to D2, p′2 be the point of D2 that is the closest to D1, and p′3 be the
point of D3 that is the closest to D1 (see Figure 4). Notice that |p′1p′3| ≤ |p′1p′2|
and that since d(D1, D2) ≥ d(D1, D3) ≥ r1, then the angle ∠p′2p

′
1p

′
3 is at most

2θ < π/4. Therefore, we can apply Lemma 1 to conclude that

|p′2p′3| ≤ |p′1p′2| − (cos 2θ − sin 2θ)|p′1p′3|,

which implies that

d(D2, D3) ≤ d(D1, D2) + |p′1p′′1 | − (cos 2θ − sin 2θ)d(D1, D3).

Also, since |p′1p′′1 | ≤ 2 sin(θ/2)r1 ≤ 2 sin(θ/2)d(D1, D3), we have

d(D2, D3) ≤ d(D1, D2) − (cos 2θ − sin 2θ − 2 sin(θ/2))d(D1, D3).

Finally, since d(D2, D3) < d(D1, D2), the induction hypothesis tells us that
Yao(θ, D) contains a path from D2 to D3 whose length is at most td(D2, D3).
This means that the distance from D1 to D2 in Yao(θ, D) is at most

d(D1, D3) + td(D2, D3) ≤ d(D1, D3) + t(d(D1, D2) − 1
t
d(D1, D3)) = td(D1, D2).

Using Maple, we verified that the value 0.228 is an upper bound on the values
of θ such that t > 0. �

Corollary 1. For any ε > 0 and any set D of n disjoint disks, it is possible to
compute a (1 + ε)-spanner of D that has O(n) edges.

Proof: The bound on the number of edges comes from the fact that each cone
contains at most two edges, and the stretch factor of 1 + ε comes from the fact
that lim

θ→0
1/(cos 2θ − sin 2θ − 2 sin(θ/2)) = 1. �
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5 Quotient Graphs and Quotient Spanners

The main idea in the remainder of this paper is the following: we show how to
compute a set of points from each Di such that the (standard) Delaunay graph
of those points is equivalent to the Additively Weighted Delaunay graph. By
choosing the appropriate equivalence relation as well as the appropriate point set,
we can then show that the spanning ratio of the Additively Weighted Delaunay
graph is bounded by the spanning ratio of the standard Delaunay graph. The
reduction of one graph to another is done by means of a quotient:

Definition 3. Let P1 and P2 be non-empty sets of points in the plane. The
distance between P1 and P2, denoted by |P1P2|, is defined as the minimum |p1p2|
over all pairs of points such that p1 ∈ P1 and p2 ∈ P2.

Definition 4. Let G = (V, E) be a geometric graph and V be a partition of V .
The quotient graph of G by V, denoted G/V, is the graph having V as vertices
and there is an edge (U, W ) (where U and W are in V) if and only if there exists
an edge (u, w) ∈ E with u ∈ U and w ∈ W . The weight of the edge (U, W ) is
equal to |UW |.

If P is a (non-weighted) point set and P is a partition of P , then the notation
P/P designates the quotient of the complete Euclidean graph on P by P . If S
is a set of pairwise disjoint sets of points in the plane such that P ⊆

⋃
S, then

the notation P/S designates the quotient of the complete Euclidean graph on P
by the partition of P induced by S.

Lemma 2. Let G = (V, E) be a complete geometric graph, V be a partition of
V and S be a t-spanner of G. Then S/V is a t-spanner of G/V.

6 The Additively Weighted Delaunay Graph

Lee and Drysdale [9] studied a variant of the Voronoi diagram called the Addi-
tively Weighted Voronoi diagram, which is defined as follows: Let P be a weighted
point set. The Additively Weighted Voronoi diagram of P is a partition of the
plane into |P | regions such that each region contains exactly the points in the
plane having the same closest neighbor in P according to the additive distance.
In other words, the Voronoi cell of a pair (pi, ri) contains the points p such that
d(p, pi) is minimum over all other pairs in P . The Additively Weighted Delau-
nay graph (AW-Delaunay graph) is defined as the face-dual of the Additively
Weighted Voronoi diagram.

Alternatively, if all ri are positive and for all i, j, we have |pipj | ≥ ri + rj ,
then the pairs (pi, ri) can be seen as disks Di of radius ri centered at pi and
d(p, Di) is the minimum |pq| over all q ∈ Di. For a set D of disks in the plane, we
denote the AW-Delaunay graph computed from D as Del(D). When no two disks
intersect, the AW-Delaunay graph is a natural generalization of the Delaunay
graph of a set of points. We say that two intersecting disks A and B properly
intersect if |A ∩ B| > 1 (i.e. they are not tangent).
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Proposition 1. Let D be a set of disjoint disks in the plane, and A, B ∈ D.
The edge (A, B) is in Del(D) if and only if there is a disk C that is tangent to
both A and B and does not properly intersect any other disk in D.

Proof: Suppose (A, B) is in Del(D), and let c be a point on the boundary of the
Voronoi cells of A and B and r be the distance from c to A. Since c is equidis-
tant from A and B, it is also at distance r from B. This means that the disk C
centered at c is tangent to both A and B. This disk cannot properly intersect
any other disk of D, since this would contradict the fact that c is in the Voronoi
cells of A and B. Similarly, if there is a disk that is tangent to both A and B
but does not properly intersect any other disk of D, then A and B are Voronoi
neighbors. �

Note that the Additively Weighted Delaunay graph is not necessarily isomorphic
to the Delaunay graph of the centers of the disks. When all radii are equal,
however, the two graphs coincide. We now show that if D is a set of disks in
the plane, then Del(D) is a spanner of D. The intuition behind the proof is the
following: we show the existence of a finite set of points P such that K(P )/D
(where K(P ) is the complete graph with vertex set P ) is isomorphic (i.e. there is
a one-to-one relation between the nodes that preserves the lengths of the edges)
to the complete graph on D and Del(P )/D is a subgraph of Del(D). Then, we
use Lemma 2 to prove that Del(P )/D is a spanner of D, which implies that
Del(D) is a spanner of D.

Definition 5. Let A, B be disjoint disks and S a set of points such that A∩S = ∅
and B ∩ S = ∅. A set of points R represents S with respect to A and B if for
every disk F that is tangent to both A and B, we have F ∩ S �= ∅ ⇒ F ∩ R �= ∅.
If D is a set of disjoint disks, then a set of points R represents D if for all
A, B, C ∈ D, there is a subset of R that represents C with respect to A and B.

Lemma 3. Let D be a set of n disjoint disks. There exists a set of at most 2
(
n
3

)

points that represents D.

Lemma 4. Let A and B be two disjoint disks and C be a disk intersecting both
of them. Then there exists a disk G inside C that is tangent to both A and B.

Proof: We show how to construct G. Let a, b, c and rA, rB , rC respectively
be the centers and radii of A, B and C. Without loss of generality, assume
|ac| − rC ≤ |bc| − rB . Let F be the disk centered at c and having radius
rF = |bc| − rB . The disk F is tangent to B. If F is also tangent to A, then
let G = F and we are done. Otherwise, F is properly intersecting A. In that
case, let p be the tangency point of F and B, l be the line through b and c, and
G be the disk through p having its center on l and tangent to A. The result
follows from the fact that G is tangent to B and inside C. �

Definition 6. Let A and B be two disks in the plane. The distance points of A
and B are the two ends of the shortest line segment between A and B.If D is a
set of disjoint disks, then the set of distance points of D is the set containing
the distance points of every pair of disks in D.
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Fig. 5. Illustration of the proof of Theorem 2

Theorem 2. Let D be a set of n disjoint disks. Then Del(D) is a t-spanner of
D, where t is the spanning ratio of the Delaunay triangulation of a set of points.

Proof: By Lemma 3, let R be a set of size at most 2
(
n
3

)
that represents D, let S

be the set of distance points of D, and let P = R∪S. Since Del(P ) is a t-spanner
of P , by Lemma 2, we have Del(P )/D is a t-spanner of K(P )/D, where K(P )
is the complete graph with vertex set P . Since P contains the distance points
of D, K(P )/D is isomorphic to the complete graph defined on D. We show that
each edge (A, B) of Del(P )/D is in Del(D). Let (A, B) be an edge of Del(P )/D.
This means that in P , there are two points a and b with a ∈ A, b ∈ B such that
there is an empty circle C through a and b. By Lemma 4, C contains a disk
G that is tangent to both A and B. The disk G is a witness of the presence of
the edge (A, B) in Del(D). If that was not the case, this would mean that there
exists a disk F ∈ D such that G ∩ F �= ∅. By definition of R, this implies that
G ∩ R �= ∅ and thus C ∩ P �= ∅, which contradicts the fact that C is an empty
circle. Therefore, the edge (A, B) is in Del(D). Since Del(P )/D is a t-spanner of
D and a subgraph of Del(D), Del(D) is a t-spanner of D. �

7 Computing a Plane Embedding

Note that the embedding of the AW-Delaunay graph that consists of straight
line segments between the centers of the disks is not necessarily a plane graph.
However, the Voronoi diagram of a set of disks D, denoted Vor(D), is planar [10].
Since Del(D) is the face-dual of Vor(D), it is also planar. An important charac-
teristic of the Delaunay graph of a set of points regarded as a spanner is that
it is a plane graph. Therefore, a natural question is whether Del(D) has a plane
embedding that is also a spanner.

The proof of Theorem 2 suggests the existence of an algorithm allowing to
compute such an embedding: compute the Delaunay triangulation of the set P
that contains the distance points and the representative of D. The graph Del(P )
can be regarded as a multigraph whose vertex set is D. Then, for each pair of
disks that share one or more edges, just keep the shortest of those edges. This
simple algorithm allows us to compute a plane embedding of Del(D) that is also
a spanner of D. However, its running time is O(n3 log n).
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On the other hand, it is also possible to compute in time O(n log n) a plane
spanner of D whose spanning ratio is t2, where t is the spanning ratio of the
Delaunay graph of a set of points. Here is how to do this: First, compute Del(D).
Then, let P be the set of distance points of all pairs of disks that share an edge
in Del(D). Compute Del(P ). Since P has size O(n), this can be done in time
O(n log n). Also, Del(P ) is a plane graph. As in the above paragraph, the graph
Del(P ) can be regarded as a multigraph whose vertex set is D. Again, for each
pair of disks that share one or more edges, just keep the shortest of those edges.
All that remains to explain is why the resulting graph is a t2-spanner of D. Let
D1, D2 ∈ D. The straight line embedding of Del(D) contains a t-spanning path
between D1 and D2. The endpoints of the edges of that path are the distance
points between the disks. In Del(P ), each of those edges is approximated within a
factor of t, leading to a spanning ratio of t2. Therefore, we showed the following:

Theorem 3. Let D be a set of n disjoint disks and t be the spanning ratio of the
Delaunay triangulation of a set of points. In time O(n3 log n), it is possible to
compute a plane t-spanner of D, and in time O(n log n), it is possible to compute
a plane t2-spanner of D.

8 Conclusion

In this paper, we showed how, given a weighted point set where weights are
positive and |pipj | ≥ ri + rj for all i �= j, it is possible to compute a (1 + ε)-
spanner of that point set that has a linear number of edges. We also showed that
the Additively Weighted Delaunay graph is a t-spanner of an additively weighted
point set in the same case. The constant t is the same as for the Delaunay
triangulation of a point set (the best current value is 2.42 [5]). We could not see
how the Well-Separated Pair Decomposition (WSPD) can be adapted to solve
that problem. The first difficulty resides in the fact that it is not even clear
that, given a weighted point set, a WSPD of that point set always exists. Other
obvious open questions are whether our results still hold when some weights are
negative or |pipj | < ri + rj for some i �= j. Also, we did not verify whether our
variant of the Yao graph can be computed in time O(n log n). Finally, whether
or not it is possible to compute a plane embedding of Del(D) that has the same
spanning ratio than the Delaunay graph of a set of points in time O(n log n)
remains a open question.
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