
Reoptimization of Steiner Trees�

Davide Bilò, Hans-Joachim Böckenhauer, Juraj Hromkovič, Richard Královič,
Tobias Mömke, Peter Widmayer, and Anna Zych

Department of Computer Science, ETH Zurich, Switzerland
{dbilo,hjb,juraj.hromkovic,richard.kralovic,

tobias.moemke,peter.widmayer,anna.zych}@inf.ethz.ch

Abstract. In this paper we study the problem of finding a minimum
Steiner Tree given a minimum Steiner Tree for similar problem instance.
We consider scenarios of altering an instance by locally changing the
terminal set or the weight of an edge. For all modification scenarios we
provide approximation algorithms that improve best currently known
corresponding approximation ratios.

1 Introduction

Traditional optimization theory focuses on searching for solutions when noth-
ing or very little is known a’priori about the problem instance. In reality, prior
knowledge is often at our disposal, because a problem instance can arise from
a small modification of a previous problem instance. As an example, imagine
that we are given a set of nodes (points in some metric space), and the network
graph of shortest length interconnecting them, where the length is the sum of
the distances between adjacent nodes. Now imagine one node is excluded from
the network. It is intuitively obvious that we should profit from the old network
when we try to find a new one. The general idea we pursue is: given a problem
instance with an optimal solution, and a variation of the problem instance ob-
tained through a local modification, what can we learn about the new solution?
We believe that looking at NP-hard problems from this perspective will allow to
explore them deeper and learn more about the nature of their complexity.

The problem we deal with in this paper is reoptimization of the Minimum
Steiner Tree (ST) problem. Given an edge-weighted graph and a set of terminal
vertices, the ST problem asks for a minimum tree spanning the terminal set.
The ST problem is a very prominent optimization problem with many practical
applications, especially in network design, see for example [6,7]. The best up to
date approximation ratio for non-reoptimization case is ≈ 1.55 [8]. The problem
of reoptimizing ST where the local modification consists of adding/deleting one
vertex to/from the input graph was considered in [5]. For the local modifica-
tion of adding/removing a vertex to/from the terminal set a 1.5-approximation
algorithms have been provided in [2]. We improve over these results, providing

� This work was partially supported by SBF grant C 06.0108 as part of the COST 293
(GRAAL) project funded by the European Union.

J. Gudmundsson (Ed.): SWAT 2008, LNCS 5124, pp. 258–269, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reoptimization of Steiner Trees 259

1.344-approximation algorithm for adding a terminal vertex, and 1.408 for re-
moving a terminal vertex, while for the scenarios of increasing and decreasing
the weight of an edge we obtain 4/3 and 1.302 approximation ratio respectively.

The paper is organized as follows. In Section 2 we provide basic notation,
definitions and facts used throughout the paper. In Section 3 we describe the
basic techniques used in Section 4, Section 5, Section 6 and Section 7 where we
provide our results for the four local modification scenarios we consider.

2 Preliminaries

Let us begin with a formal definition of the Minimum Steiner Tree Problem
(ST). We call a complete graph G = (V, E, c) with edge weight function c : E →
R

+ metric, if the edge weights satisfy the triangle inequality, i.e., c((u, v)) ≤
c((u, w)) + c((w, v)) for all u, v, w ∈ V.

The Minimum Steiner Tree Problem (ST) is defined as follows:
Instance: A metric graph G = (V, E, c) and a terminal set S ⊆ V
Solution: A Steiner tree, i.e., a subtree T of G containing S
Objective: Minimize the sum of the weights of the edges in the subtree T .

The ST problem is APX-complete even when the edge weights are restricted to
the set {1, 2} [1]. The best up to date approximation ratio is σ = 1+ log 3

2 ≈ 1.55
for general edge costs and 1.28 for edge costs from {1, 2} [8]. We denote the best
up to date approximation algorithm for ST as ApprST(G, S) and view it as a
function from the instance space to the solution space. The ST problem can be
solved optimally in time exponential in the size of S with an algorithm proposed
by Dreyfus and Wagner [4]. We denote this algorithm as OptST(G, S).

Below we define the reoptimization problems we investigate in this paper. The
objective for all of them is to minimize the cost of Steiner tree T .

1. Minimum Steiner Tree Terminal Addition (ST-S+)
Instance: Metric graph G = (V, E, c), terminal set SO ⊆ V , an optimal
Steiner tree TO for (G, SO), and terminal set SN = SO ∪ {t} for some t ∈ V
Solution: Steiner tree T for (G, SN).

2. Minimum Steiner Tree Terminal Removal (ST-S−)
Instance: Metric graph G = (V, E, c), terminal set SO ⊆ V , an optimal
Steiner tree TO for (G, SO), and terminal set SN = SO \ {t} for some t ∈ V
Solution: Steiner tree T for (G, SN).

3. Minimum Steiner Tree Edge Cost Increase (ST-E+)
Instance: Metric graph GO = (V, E, co), terminal set S ⊆ V , an optimal
Steiner tree TO for (G, SO), and metric graph GN = (V, E, cn), where cn = co

on all but one edge e ∈ E for which cn(e) ≥ co(e)1

Solution: Steiner tree T for (GN , S).
4. Minimum Steiner Tree Edge Cost Decrease (ST-E−)

Instance: Metric graph GO = (V, E, co), terminal set S ⊆ V , an optimal
Steiner tree TO for (G, SO), and metric graph GN = (V, E, cn), where cn = co

1 Whenever co and cn coincide on some edge f , we drop the subscripts and write c(f).

260 D. Bilò et al.

on all but one edge e ∈ E for which cn(e) ≤ co(e)1

Solution: Steiner tree T for (GN , S).

Lemma 1 ([2,3]). The aforementioned problems are strongly NP-hard. 	

Let us adopt the following notation. With TN we denote an optimal Steiner
tree for the modified instance (G, SN) or (GN , S). Given a simple graph G, we
denote its set of vertices with V (G) and its set of edges with E(G). An edge
(u, v) ∈ E(G) can be seen as a subgraph H of G with V (H) = {u, v} and
E(H) = {(u, v)}. A vertex v ∈ V (G) can be seen as a subgraph H of G with
V (H) = {v} and E(H) = ∅. The degree of a vertex v ∈ V (G) is degG(v). If H
is a subgraph of G, we write H ⊆ G. The notation c(G) denotes the cost of G,
i.e. the sum of all its edge costs. With G − v we denote graph G after removing
node v ∈ V (G) and incident edges. For two subgraphs of G: H1, H2 ⊆ G (Hi can
be a single edge) we introduce the following notation. With H1 − H2 we denote
a graph such that V (H1 − H2) = V (H1) and E(H1 − H2) = E(H1) \ E(H2).
With H1 + H2 we denote a graph such that V (H1 + H2) = V (H1) ∪ V (H2)
and E(H1 + H2) = E(H1) ∪ E(H2). We denote with CheapestEdge(H1, H2) the
cheapest edge in G connecting H1 and H2. Expression min{H1, . . . , Hi} returns a
cheaper graph among H1, . . . , Hi w.r.t. their cost. A forest F is a graph composed
of node-disjoint trees T1, . . . , Ti. Such tree decomposition of F is denoted as
F = T1+ · · ·+Ti. For a connected subgraph H ⊆ G of G, with Contract(G, H, h)
we denote a weighted graph G′ = (V ′, E′, c′) obtained from G by contracting H
into node h, where if after contraction multiedges occur between h and any node
v ∈ V (G) \V (H), then we set c′((v, h)) = c(CheapestEdge(v, H)). We describe a
path in a graph as a sequence of its vertices. The length of a path is its number of
edges. The cost of a path is the sum of costs of its edges. In a shortest path, the
length of the path is minimized whereas in a cheapest path its cost is minimized.

For a complete graph G = (V, E, c) with an arbitrary edge weight function
c : E → R

+, we define the metric closure of G as the graph G̃ = (V, E, c̃) where
c̃((u, v)) is defined as the cost of the cheapest path in G from u to v. It is well
known (see for example [7]) that a tree T is a minimum Steiner tree for (G, S)
if and only if it is also a minimum Steiner tree for (G̃, S) where G̃ is the metric
closure of G. Because of this fact, for ST-S+ and ST-S−, we can assume w.l.o.g.
that the given graph G is metric. For problems ST-E+ and ST-E− we assume
as well that the local modification preserves metricity, however in this case this
assumption is a restriction as changing the weight of one edge in a metric graph
G can result in altering the cost of many edges in its metric closure. Finally, we
can assume without loss of generality that the given minimum Steiner tree TO

has no non-terminal vertex of degree two; due to the metricity these vertices can
be removed using the direct edge between the two adjacent vertices instead.

3 Techniques

In this section we present standard procedures used further in reoptimization
algorithms. Algorithm 1 is based on the assumption, that we know a large part

Reoptimization of Steiner Trees 261

Ts of an optimal solution TN for (G, SN) or (GN , S). Provided that knowledge,
we contract Ts to a single node, make it a terminal, and use σ-approximation
algorithm ApprST to obtain the solution for the remaining part of the graph.

Algorithm 1. Shrink(G, S, Ts)

Input: A metric graph G, a terminal set S ⊆ V (G), and a tree Ts ⊆ G
1: G′ := Contract(G, Ts, ts)
2: T ′ := ApprST (G′,

(
S ∩ V (G′)

)
∪ {ts})

3: Obtain T : Expand T ′ by substituting ts with Ts

Output: T

Lemma 2. Let Topt be an optimal solution for (G, S). Given that Ts ⊆ Topt,
and c(Ts) ≥ αc(Topt), Algorithm 1 applied to (G, S, Ts) returns

(
σ − α(σ − 1)

)
-

approximation of Topt.

Proof. Let G′ := Contract(G, Ts, ts), S′ =
(
S ∩ V (G′)

)
∪ {ts}, and T ′ be as de-

fined in Algorithm 1. Note, that given Ts ⊆ Topt, solution Contract(Topt, Ts, ts)
with cost c(Topt)−c(Ts) is optimal for (G′, S′). Thus c(T ′) ≤ σ(c(Topt)−c(Ts)).
Since σ ≥ 1, then the cost of solution tree T returned by Shrink(G, S, Ts) is:

c(T) ≤ σ(c(Topt) − c(Ts)) + c(Ts) ≤
(
σ − α(σ − 1)

)
c(Topt).

	

The other technique, shown in Algorithm 2 is used for connecting optimally
a given forest F . Provided that the number of trees in F = T1 + · · · + Ti is
logarithmic in the input size, we can connect F optimally in polynomial time.

Algorithm 2. Connect(G, F)
Input: A metric graph G, a forest F = T1 + · · · + Ti, where Ti ⊂ G and T1 . . . Ti are

pairwise node-disjoint
1: G1 := Contract(G, T1, t1)
2: For j = 2, . . . , i do Gj := Contract(Gj−1, Tj , tj)
3: S := {t1, . . . , ti}
4: T ′ := OptST(Gi, S)
5: Obtain tree T by substituting each ti with Ti and keeping the edges of T ′ for

connecting Ti with the rest of graph G
Output: T

Lemma 3. If i = O(log |V (G)|), then Algorithm 2 runs in polynomial time.

Proof. The running time of Dreyfus-Wagner algorithm OptST() is exponential
in size of terminal set [4]. Since we apply OptST to S of size O(log |V (G)|), the
overall running time of Algorithm 2 is polynomial. 	

262 D. Bilò et al.

Remark 1. Let (G, S) be an instance of ST and Topt be an optimal solution for
that instance. If F = T1 + · · · + Ti ⊆ G and Tj=1...i ∩ S = ∅, then solution T
returned by Algorithm 2 satisfies c(T) ≤ c(F) + c(Topt).

4 Removing One Terminal

In this section we present a 1.408-approximation algorithm for ST-S−, thus im-
proving the result in [2]. The algorithm we propose computes several feasible
solutions and chooses the one of minimal cost. Let f1, . . . , fk be the edges adja-
cent in TO to the terminal t that is supposed to be removed. We distinguish 4
cases depending on the value of k. We remark here, that Algorithm 3 improves
the worst case of k = 2. The other cases are dealt with in the same manner as
in algorithm provided in [2]. For the sake of completeness however, we provide
here the full analysis.

Algorithm 3. MinSTP-S-
Input: A metric graph G, a terminal set SO ⊆ V (G), an optimal Steiner tree TO ⊆ G

for (G, SO), and SN = SO \ {t} for some terminal t ∈ SO

1: Let f1, . . . , fk be the list of edges adjacent to t in TO

2: if k = 3 then
3: Compute shortest paths p1, p2, p3 connecting t with SN , such that fi ∈ E(pi) for

i = 1, . . . , 3
4: F := TO − (p1 + p2 + p3) − t
5: return Connect(G, F)
6: end if
7: if k = 2 then
8: T1 := minf∈E(G){Shrink(G, SN , f)}
9: Compute shortest paths p1, p2, p3, p4 connecting t with SN , such that f1 ∈

E(p1), E(p2) and f2 ∈ E(p2), E(p3)
10: F := TO − (p1 + p2 + p3 + p4) − t
11: T2 := Connect(G, F)
12: return min{T1, T2}
13: end if
14: if k = 1 then
15: Let f1 = (t, v). if v ∈ SN then return T := TO − t
16: else return MinSTP-S-(G, SN ∪ {v}, TO − t, SN)
17: end if
Output: TO

Theorem 1. Algorithm 3 is a 1.408-approximation algorithm for ST-S−.

Proof. Let p be a cheapest path connecting t with SN . Let α ≥ 0 be a parameter
that shall be fixed later. We want to compute the smallest α, for which Algorithm 3
returns (1+α)-approximation of TN . If c(p) ≤ αc(TN), then TO ≤ c(TN)+ c(p) ≤
(1+α)c(TN), thereforeweassume fromnowon, that c(p) > αc(TN).Wedistinguish
four cases depending on the degree of t in TO.

Reoptimization of Steiner Trees 263

Case 1. Assume degTO
(t) > 3 or equivalently k > 3, and note that c(TN) ≤

c(TO). Since degTO
(t) ≥ 4, there exist four edge-disjoint paths from t to terminals

in TO and thus c(TO) ≥ 4 · c(p). On the other hand, since TN + p is a solution
for (G, SO), we know c(TN)+ c(p) ≥ c(TO). Therefore, c(TN) ≥ 3 · c(p) and thus
c(TO) ≤ c(TN) + c(p) ≤ 4

3c(TN).

Case 2. Assume degTO
(t) = 3 or equivalently k = 3. Let p1, p2, p3 be as in the

Algorithm 3 in case k = 3 (see Figure 1). Since p1, p2, p3 are paths minimal in
the number of nodes ending in a terminal, and each non-terminal is branching
(degTO(v) > 2 for v /∈ S), thus |pi| ≤ log |V (G)|. Therefore the number of
trees in F is bounded by 3 log |V (G)|, and thus by Lemma 3 Connect(G, F)
runs in polynomial time. For connecting the forest F optimally we pay at most
c(TN), because each tree of F contains a terminal from SN . Therefore for tree T2
computed by the algorithm we have that c(T2) ≤ c(TO)− c(p1)− c(p2)− c(p3)+
c(TN) ≤ c(TN) + c(p) − 3c(p) + c(TN) ≤ 2c(TN)(1 − α). This value is bounded
from above by (1 + α)c(TN) for any α ≥ 1

3 .

Case 2

t
TO

f1 f2 f3

p1 p2 p3

t
TO

f1 f2

g

T ′ T ′′TN

Case 3

CheapestEdge(T ′, T ′′)

Fig. 1. Illustration for Case 2 and first case of Case 3 (A)

Case 3. Assume degTO
(t) = 2 or equivalently k = 2. Let now β be a parameter

that shall be fixed later. We distinguish two cases: c(f1) + c(f2) ≤ βc(p) and
c(f1) + c(f2) > βc(p).

Assume (A) c(f1) + c(f2) > βc(p). Let μ be a parameter which we will fix
later. Let T ′ and T ′′ be the trees attached to t in TO with f1 and f2 respectively,
as shown in Figure 1. Let p′ be the cheapest path in TN connecting T ′ with
T ′′. Note, that T ′ + T ′′ + p′ is a feasible solution in (G, SN) and that c(T ′ +
T ′′ + p′) ≥ c(T2). If there exists an edge g contained in all paths in TN from
T ′ to T ′′, then such an edge is unique. Otherwise let g be an imaginary edge
of cost 0. By minimality of p′ and due to the fact, that TN is branching on
each endpoint of g into disjoint paths to T ′ or T ′′, we have c(p′) ≤ c(TN)−c(g)

2 +
c(g) = 1

2 (c(TN) + c(g)). If c(g) > μc(TN), then by Lemma 2 Shrink(G, SN , g)
returns solution T1 of cost c(T1) ≤ (σ − μ(σ − 1))c(TN). This value is bounded
from above by (1 + α)c(TN) for α ≥ (σ − 1)(1 − μ). If c(g) ≤ μc(TN), then
c(T2) ≤ c(TO) − c(f1) − c(f2) + c(p′) ≤ c(TN) + c(p) − βc(p) + 1

2 (c(TN) − c(g)),
therefore c(T2) ≤ (3

2 + α(1 − β) + μ
2)c(TN). This in turn is bounded from above

by (1 + α)c(TN) for α ≥ 1+μ
2β . Setting 1+μ

2β = (σ − 1)(1 − μ) to obtain later

minimal α satisfying both inequalities gives μ = 2β(σ−1)−1
2β(σ−1)+1 and α ≥ 2(σ−1)

2β(σ−1)+1 .

264 D. Bilò et al.

Now assume (B) c(f1)+ c(f2) ≤ βc(p). Let p1, p2, p3, p4 be the shortest paths
p1, p2, p3, p4 connecting t with SN , such that p1 ∩ p2 = f1 and p2 ∩ p3 = f2. If
f1 = (t, v1) and v1 is a terminal, then p1 = p2 = f1 (same holds for f2), otherwise
there must be two edge disjoint paths from v1 to SN not passing trough t. The
same argument as in Case 2 shows that after removing these paths from TO we
can reconnect obtained forest F in polynomial time. The cost of T2 is bounded
from above by c(T2) ≤ c(TO)−c(p1)−c(p2)−c(p3)−c(p4)+c(f1)+c(f2)+c(TN),
because for reconnecting the obtained forrest optimally we again pay at most
c(TN). Thus c(T2) ≤ c(TN) + c(p) − 4c(p) + βc(p) + c(TN), what gives c(T2) ≤
2c(TN)−(3−β)αc(TN) (assuming β < 3). This is upper bounded by (1+α)c(TN)
when α ≥ 1

4−β . To compute the minimal α for which this inequality and the

inequality obtained for Case (A) are satisfied, we set 1
4−β = 2(σ−1)

2β(σ−1)+1 . That

gives β = 2 − 1
4(σ−1) and the minimum value of α is 4(σ−1)

8(σ−1)+1 . Plugging in

σ = 1 + log 3
2 guarantees 1.408 approximation ratio for Case 3.

Case 4. Assume degTO
(t) = 1 or equivalently k = 1. In this case, there is

exactly one v ∈ V (G) such that f1 = (t, v) ∈ E(G) is incident to t. Tree TO − t
is an optimal Steiner tree for (G, (S ∪{v})\{t}). Therefore we get a new, smaller
problem instance. Since we exclude non-terminals of degree two, either v is a
terminal or degTO

(v) ≥ 3. If v is a terminal, the algorithm yields a solution that
costs at most c(TO − t), which is the optimum. Otherwise, degTO−t(v) ≥ 2 and
we have to continue with one of the other three cases. 	

5 Adding One Terminal

In this section we present a 1.344-approximation algorithm for the scenario of
adding a vertex to the terminal set S, thus improving the result in [5,2].

Algorithm 4. MinSTP-S+
Input: A metric graph G, a terminal set SO ⊆ V (G), an optimal Steiner tree TO ⊆ G

for (G, SO) and a new terminal set SN := SO ∪ {t} for some non-terminal t.
1: T1 := TO + CheapestEdge(TO, t)
2: Let T2 be any spanning tree in G
3: for t′ ∈ V (G) \ V (TO), u ∈ V (G) \ {t, t′}, v ∈ V (G) \ {t, t′, u} do
4: Let T ′ be a tree on V (T ′) = {t, t′, u, v} with edges E(T ′) = {(t, t′), (t′, u), (t′, v)}

5: T2 := min{T2,Shrink(G, SN , T ′)}
6: end for

Output: min{T1, T2}

Theorem 2. Algorithm 4 is a 1.344-approximation algorithm for ST-S+.

Proof. Let α > 1
3 be a parameter which we fix later. Because TN is a feasible

solution for the old instance, there holds c(TO) ≤ c(TN). If t ∈ TO then T1 = TO

Reoptimization of Steiner Trees 265

is optimal. Otherwise, let fmin = (w, t) be a cheapest edge connecting TO with t.
We can assume that c(fmin) > αc(TN), otherwise c(T1) ≤ c(TO) + c(fmin) ≤
(1 + α)c(TN) gives (1 + α)-approximation. Let f1, . . . , fk be the edges that are
adjacent to t in TN . There must be k edge disjoint paths in TN from t to SO, and
by metricity the cost of each of them is greater then c(fmin) > αc(TN) > 1

3c(TN).
Therefore c(TN) > k

3 c(TN) implies k ≤ 2. We distinguish two cases.

Case 1 Case 2

t

p2 p4

TO

TN

u v
t′
f

t

p2 p4

TO

u v

p1 p3 p1 p3

f2f1
f2f1

TN

Fig. 2. Pattern for adding a terminal

Case 1: k = 2. Let f1 = (t, u) and f2 = (t, v). Algorithm 4 exhaustively
searches trough all triples of nodes that are candidates for t, u and v. When it
hits the triple t, u, v with t′ = t, it applies Shrink(G, SN , T ′) for tree T ′ ⊆ TN

which contains only edges f1 and f2. It looks for minimum T2 over all triples,
thus c(T2) ≤ Shrink(G, SN , T ′) for that particular T ′. Let p1 and p2 be two
edge disjoint paths in TN connecting u with TO. If u /∈ TO, its degree in TN is
at least 2 and therefore such paths exist. If u ∈ TO, then let p1 = p2 = {u} and
c(p1) = c(p2) = 0. We define p3 and p4 analogically with respect to vertex v.
The situation is shown in Figure 2. By metricity the following inequalities hold:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(f1) + c(p1) > αc(TN)
c(f1) + c(p2) > αc(TN)
c(f2) + c(p3) > αc(TN)
c(f2) + c(p4) > αc(TN)

(1)

Summing all the inequalities in (1) gives c(f1) + c(f2) + c(TN) ≥ c(f1) + c(f2) +
c(f1) + c(f2) +

∑4
i=1 c(pi) > 4αc(TN) and thus c(f1) + c(f2) > (4α − 1)c(TN).

Therefore by Lemma 2 we get c(T2) ≤ c(Shrink(G, SN , T ′)) ≤ (σ− (4α−1)(σ−
1))c(TN). This is bounded by (1 + α)c(TN) for any α satisfying α ≥ 2(σ−1)

4(σ−1)+1 .

Plugging in σ = 1 + log 3
2 ensures 1.344 approximation ratio in this case.

Case 2: k = 1. The situation is shown in Figure 2. Let f = (t, t′) be the
only edge adjacent to t in TN . In this case TN − t is a feasible solution for the
old instance, and thus c(TO) ≤ c(TN) − c(f). Let fmin be the cheapest edge
connecting t′ with TO. If c(fmin) ≤ αc(TN) we have c(T1) ≤ c(TO) + c(fmin) +
c(f) ≤ (1+α)c(TN). Assume c(fmin) > αc(TN). If t′ ∈ TO, then T1 is an optimal
solution. Otherwise t′ is non terminal and there must be two edges f1 = (t′, u)
and f2 = (t′, v) adjacent to t′ in TN . Further analysis is identical as in Case 1,
taking t′ instead of t, and gives 1.344 approximation ratio. 	

266 D. Bilò et al.

6 Increasing the Weight of One Edge

Throughout this and the next section we will assume that a modification of
edge weights do not affect the metricity of the graph, as already discussed in
Section 2. In this section we consider the local modification where the cost of
one edge e ∈ E(G) increases: cn(e) > co(e). As a consequence c(TN) ≥ c(TO).

Algorithm 5. MinSTP-E+
Input: A metric graph GO = (V, E, co), a terminal set S ⊆ V (G), an optimal Stainer

Tree TO for (GO, S), and a new metric graph GN = (V, E, cn), where cn = co on
all but one edge e for which co(e) ≤ cn(e).

1: Let TO
′ and TO

′′ be the subtrees obtained from TO by removing e.
2: T1 := TO − e + CheapestEdge(TO

′, TO
′′)

3: Let e = (u, v) and f1, . . . , fk be the edges adjacent to e in TO

4: F := TO − u − v
5: if k < 3 then T3 := Connect(GN , F)
6: T4 := minx∈V (G)\{u,v},y∈V (G)\{x,u}{Shrink(GN , S, T(u,x,y))}

T5 := minx∈V (G)\{u,v},y∈V (G)\{x,v}{Shrink(GN , S, T(v,x,y))}
where T(w,x,y) denotes tree on vertices {u, v, x, y} spanning edges
{(u, x), (x, v)(w, y)}

Output: min{TO , T1, T3, T4, T5}

Theorem 3. Algorithm 5 is a 4
3 -approximation algorithm for ST-E+.

Proof. Let α = 1
3 . If e /∈ E(TO) or e ∈ E(TN), then TO is an optimal solution

for the new instance. Therefore we consider the only non trivial case when e =
(u, v) ∈ E(TO) and e /∈ E(TN). Let f1, . . . , fk be the edges adjacent to e in TO.
Assume there is an edge fi = (u, w) ∈ E(TO), such that c(fi) ≤ αc(TN). Let
g = (w, v). Then c(T1) ≤ c(TO)−cO(e)+c(g), thus by metricity we have c(T1) ≤
c(TN) + c(fi) ≤ (1 + α)c(TN). Therefore we can assume that c(fi) > αc(TN) ≥
1
3c(TN). Hence degTN (u) + degTN (v) ≤ 3. Moreover, since c(TN) ≥ c(TO), there
are at most two such edges in TO. We can also assume

cn(e) − co(e) > αc(TN) (2)

otherwise c(TO) ≤ (1 + α)c(TN). Observe that for each fi adjacent to e holds:1

c(fi) ≥ cn(e) − co(e)
2

. (3)

If k = 2, then c(T3) ≤ c(TO)−c(f1)−c(f2)−co(e)+c(TN) ≤ 2c(TN)− 2
3c(TN) =

4
3c(TN). The remaining case is when there is only one edge f adjacent to e in
TO. In this particular case both u and v are terminal vertices. We distinguish
further cases regarding the number of edges in TN adjacent to e.
1 Let h be an edge that forms a triangle with e and f3. By metricity: cn(e) + c(f3) ≥

c(h) ≥ co(e) − c(f3) which gives the inequality we use.

Reoptimization of Steiner Trees 267

Case 1: degTN (u) + degTN (v) = 3. Let puv be the path from u to v in TN . If
(A) there are two nodes x, y ∈ V (puv) other than u and v (see Figure 3, Case
1A), then there must edge disjoint paths from x and y to terminals. Moreover
there must be another path edge disjoint with these two from u or v to a ter-
minal, since degTN (u) + degTN (v) = 3. This gives three paths of cost greater
than 1

3c(TN) which can not be the case. Assume (B) there is only one node
x ∈ V (puv) other then u and v. This situation is shown in Figure 3, Case 1B.
Let f1 = (u, x), f2 = (x, v) and w.l.o.g let f3 = (v, y), f1, f2, f3 ∈ E(TN).
When computing T4, the algorithm exhaustively searches trough all candidates
for x and y, therefore c(T4) ≤ c(Shrink(GN , S, T(v,x,y))), where T(v,x,y) spans
f1, f2, f3. By metricity and (2) we get c(f1) + c(f2) > αc(TN). By (3) and (2),
we get c(f3) ≥ cn(e)−co(e)

2 ≥ α
2 c(TN). Therefore c(f1 + f2 + f3) > 3α

2 c(TN) and
Lemma 2 gives the following bound: c(T4) ≤ σc(TN) − 3α

2 (σ − 1)c(TN). This
guarantees (1 + α)-approximation for any α ≥ 2(σ−1)

3(σ−1)+2 . Plugging in best up to
date σ ensures in this case 4/3-approximation ratio.

> αc(TN)> αc(TN)

> αc(TN)

e
v

TN

u

Case 1: deg(u) + deg(v) = 3

A

f1

e
vu

e
vu

f1 f2

TO TO

T ′

f2
TN

T ′′

TN

A B

pmin

Case 2: deg(u) + deg(v) = 2

f1
f3

e
vu

f2

B

TN

Fig. 3. Pattern for increasing the cost of edge e

Case 2: degTN
(u)+degTN

(v) = 2. In this case we distinguish two subcases (see
Figure 3 Case 2), mainly (A) when there is only one node on the path puv ⊆ TN

from u to v, and when (B) there are at least two nodes on this path. For both
cases, let w.l.o.g. f = (u, w) be the only edge in TO adjacent to e.

Assume that (A) x ∈ V (puv) is the only node on the path other than u and
v. This implies that v is a leaf in TO. Let f1 = (u, x), f2 = (v, y) be the edges
adjacent to e in TN . Since degTN

(u) + degTN
(v) = 2, both u and v are leaves in

TN . Thus, tree T ′ = TO − v is an optimal solution for (GN , S \ {v}) (otherwise
we could improve TO in (GO, S)). Since v is a leaf in TN , tree T ′′ = TN − v is
a feasible solution for (GN , S \ {v}), and therefore c(T ′) ≤ c(T ′′). The situation
is presented in Figure 3 Case 2A. This gives c(TO) − co(e) + c(f2) ≤ c(TN). But
c(T1) ≤ c(TO)−co(e)+c(f1)+c(f2) ≤ c(TN)+c(f1). It follows immediately, that
if c(f1) ≤ αc(TN), then T1 is (1+α) - approximation. Otherwise c(f1) > αc(TN).
From (3) and (2) holds c(f2) > α

2 c(TN), what together with the above inequality
implies c(f1) + c(f2) > 3

2αc(TN), and applying Shrink(GN , S, T(u,x,v)) when
y = v guarantees by Lemma 2 that c(T4) ≤ (1 + α)c(TN) for any α ≥ 2(σ−1)

3(σ−1)+2 .
Plugging in best up to date σ ensures also in this case 4/3 approximation ratio.

Now assume (B) f1 = (u, x), f2 = (v, y) ∈ E(puv) ⊆ TN , and x = y. We
may assume y /∈ TO, otherwise T1 is optimal. Since α ≥ 1

3 , there must be

268 D. Bilò et al.

c(TN) ≤ 3αc(TN). By (3) and (2) holds c(f1) ≥ α
2 c(TN) and c(f2) ≥ α

2 c(TN),
what implies c(TN) − c(f1) − c(f2) ≤ 2αc(TN). Because y is a non terminal, we
have degTN (y) ≥ 3, thus there must be two edge disjoint paths in TN−f1−f2 from
y to S\{u, v}. Minimal such path pmin must satisfy c(pmin) ≤ c(TN)−c(f1)−c(f2)

2 ≤
αc(TN). Therefore c(T1) ≤ c(TO) − co(e) + c(f2) + c(pmin) ≤ c(TN) + c(pmin) ≤
(1 + α)c(TN) gives the desired bound. 	

7 Decreasing the Weight of One Edge

In this subsection, we present a 1.302-approximation algorithm for ST-E−. The
local modification is the decrease of the cost of one edge: cn(e) ≤ co(e).

Algorithm 6. MinSTP-E-
Input: A metric graph GO = (V, E, co), a terminal set S ⊆ V (G), an optimal Stainer

Tree TO for (GO, S), and a new metric graph GN = (V, E, cn), where cn = co on
all but one edge e = (u, v) for which co(e) ≥ cn(e).

1: if u ∈ S and v ∈ S then
2: Let fmax be the most expensive edge on the path from u to v in TO

3: TA := TO − fmax + e
4: end if
5: TS := mint,w∈{u,v},x,y∈V (G),x �=y{Shrink(GN , S, T(x,t,w,y)} where T(x,t,w,y) is a tree

on {x, t, w, y} spanning edges {(t, x), (w, y), e}
Output: min{TO , TA, TS}

Theorem 4. Algorithm 6 for ST-E− achieves an approximation ratio of 1.302.

Proof. Let α = 22
73 . Clearly c(TN) ≤ c(TO). If e /∈ E(TN), then TN is a feasible

solution for (G, S, co), and thus TO is optimal for the new instance. If e ∈ E(TN)
and e ∈ E(TO), then cn(TN) − cn(e) + co(e) ≥ co(TO) because TN is feasible
in GO. But that implies cn(TO) ≤ cn(TN) and thus TO is optimal for (GN , S).
Further we analyze the only non trivial case when e /∈ E(TO) and e ∈ E(TN).

Let f1, . . . , fk ∈ E(TN) be the edges adjacent to e in TN . W.l.o.g. let fi =
(u, xi). Let gi = (xi, v). A feasible solution for (GO, S) is TN − e + gi, thus
c(TO) ≤ c(TN) − cn(e) + c(gi). By metricity c(gi) ≤ c(fi) + cn(e), and therefore
for each edge fi adjacent to e in TN holds

c(TO) ≤ c(TN) + c(fi). (4)

For the remaining part of the proof we can assume that

c(fi) > αc(TN) (5)

co(e) − cn(e) > αc(TN), (6)

otherwise, from (4) and from the fact that c(TO) ≤ c(TN) − cn(e) + co(e) we
have that TO is a (1 + α)-approximation. We distinguish two cases.

Reoptimization of Steiner Trees 269

Case 1: k > 1 or (k = 1 and c(f1)+ cn(e) > 3
2αc(TN)). If there are at least two

edges f1, f2 ∈ E(TN) adjacent to e, Shrink(GN , S, T(u,v,x,y)) must be called at
some step for T(u,v,x,y) spanning e, f1, f2. Note, that by (5) we get at this step
c(T(u,v,x,y)) ≥ c(f1) + c(f2) ≥ 2αc(TN) ≥ 3

2αc(TN). If there is only one edge f1
adjacent to e in TN , Shrink(GN , S, T(u,v,x,y)) is called at some step for T(u,v,x,y)

spanning e, f1. Then, c(T(u,v,x,y)) ≥ c(f1) + cn(e) > 3
2αc(TN). Thus, in both

cases from Lemma 2 after calculations and plugging in best up to date σ, we
obtain (1 + α)-approximation for any α ≥ 22

73 .

Case 2: k = 1 and c(f1) + cn(e) ≤ 3
2αc(TN). In this case both u and v are

terminals, thus Algorithm 6 computes solution TA. For any edge f adjacent to
e in G, by (3), there must hold c(f) ≥ co(e)−cn(e)

2 . Since on the path from u
to v in TO there are two edges adjacent to e, we are guaranteed c(fmax) ≥
co(e)−cn(e)

2 ≥(6) α
2 c(TN). Therefore

c(TA)=c(TO)−c(fmax)+cn(e) ≤(4) c(TN)+c(f1)+cn(e)−c(fmax) ≤ (1+α)c(TN).

	

References

1. Bern, M.W., Plassmann, P.E.: The Steiner problem with edge lengths 1 and 2. Inf.
Process. Lett. 32(4), 171–176 (1989)

2. Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Rossmanith, P.: Reop-
timization of steiner trees: Changing the terminal set. Theoretical Computer Science
(to appear)

3. Böckenhauer, H.-J., Hromkovič, J., Mömke, T., Widmayer, P.: On the hardness of
reoptimization. In: 34th International Conference on Current Trends in Theory and
Practice of Computer Science, SOFSEM 2008, pp. 50–65 (2008)

4. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1, 195–207
(1971/1972)

5. Escoffier, B., Milanic, M., Paschos, V.T.: Simple and fast reoptimizations for the
Steiner tree problem. Technical Report 2007-01, DIMACS (2007)

6. Hwang, F., Richards, D., Winter, P.: The Steiner Tree Problems. Annals of Discrete
Mathematics, vol. 53. North-Holland, Amsterdam (1992)

7. Prömel, H.J., Steger, A.: The Steiner Tree Problem. Advanced Lectures in Mathe-
matics. Friedr. Vieweg & Sohn, Braunschweig (2002)

8. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In: Pro-
ceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2000, pp. 770–779. ACM Press, New York (2000)

	Reoptimization of Steiner Trees
	Introduction
	Preliminaries
	Techniques
	Removing One Terminal
	Adding One Terminal
	Increasing the Weight of One Edge
	Decreasing the Weight of One Edge

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

