
Design Patterns for Decentralised Coordination
in Self-organising Emergent Systems

Tom De Wolf and Tom Holvoet

AgentWise@DistriNet Research Group
Department of Computer Science, KULeuven
Celestijnenlaan 200A, 3001 Leuven, Belgium
{Tom.DeWolf,Tom.Holvoet}@cs.kuleuven.be

http://www.cs.kuleuven.be/~tomdw

Abstract. There is little or no guidance to systematically design a
self-organising emergent solution that achieves the desired macroscopic
behaviour. This paper describes decentralised coordination mechanisms
such as gradient fields as design patterns, similar to patterns used in
mainstream software engineering. As a consequence, a structured consol-
idation of best practice in using each coordination mechanism becomes
available to guide engineers in applying them, and to directly decide
which mechanisms are promising to solve a certain problem. As such,
self-organising emergent solutions can be engineered more systematically,
which is illustrated in a packet delivery service application.

1 Introduction

Modern distributed systems exhibit an increasingly interwoven and completely
decentralised structure [13] (e.g. ad-hoc networks, transportation systems, etc.).
Different subsystems interact with each other in many, often very complex, dy-
namic, and unpredictable ways. More systems need to achieve their requirements
autonomously [15]. A promising approach is to use a group of agents that co-
operate to autonomously achieve the required system-wide or macroscopic be-
haviour using only local interactions, local activities of the agents, and locally
obtained information. Such decentralised multi-agent systems (MASs) exhibit
self-organising emergent behaviour [5].

When engineering a self-organising emergent solution, the problem-solving
power mainly resides in the interactions and coordination between the agents
instead of in the intelligent reasoning of single agents. Therefore, a major archi-
tectural design decision is the choice of suitable decentralised coordination mech-
anisms such as digital pheromones [3], gradient fields [22], market-based control
[26], tags [12], or tokens [31]. Many of such mechanisms are already applied to a
number of case studies in literature [3,21,22,18,20,19,25,12,31,26,32,4,10,11,17,24].
However, a fundamental problem is the lack of guidance on how to systematically
choose anduse themost suitable coordinationmechanism.Themain reason is that,
currently, all existing knowledge and best practice on coordination mechanisms is
spread over hundreds of papers without a clearly structured and directly usable
description of the mechanisms.

S. Brueckner et al. (Eds.): ESOA 2006, LNAI 4335, pp. 28–49, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Design Patterns for Decentralised Coordination 29

The main contribution of this paper, and the extended report in [7], is twofold.
First, the paper shows how decentralised coordination mechanisms can be struc-
turally described as design patterns. Secondly, the paper illustrates how an en-
gineer can use these patterns to systematically choose how to coordinate agents
and achieve the desired global behaviour. Section 2 motivates design patterns as
a description to support engineers in their choice of decentralised coordination
mechanisms. The section also outlines in detail the structure of the pattern de-
scription. After that, sections 3, 4 and 5 give an usable pattern summary of a
number of coordination mechanisms and apply the design pattern description in
detail to two example mechanisms, i.e. gradient fields and market-based control.
In section 6, a case study on a packet delivery service illustrates how design pat-
terns allow to engineer more systematically a self-organising emergent solution.
Finally, section 7 concludes and discusses future work.

2 Decentralised Coordination Mechanisms as Design
Patterns

Typically, engineering MASs means having 99% of the effort go to conventional
computer science and only 1% involves the actual agent paradigm [8]. Therefore,
to engineer self-organising emergent MASs, developers should exploit conven-
tional software technologies and techniques wherever possible [29]. Such exploita-
tion speeds up development, avoids reinventing the wheel, and enables sufficient
time to be devoted to the value added by the multi-agent paradigm [30]. From
this point of view, [6] proposes a step plan based on an existing industry-ready
software engineering process, i.e. the Unified Process [14]. The UP process is cus-
tomised to explicitly focus on how to address the desired macroscopic behaviour
of self-organising emergent MASs. Figure 1 shows that almost every discipline
in the UP process is customised.

This paper focusses on the Design which emphasises a solution that fulfills
the requirements, rather than its implementation or the requirements them-
selves. More specifically the focus is on the coarse-grained architectural design.
The author of [16] states that architectural design is partially a science and
partially an art. The science of architecture is the collection and organisation
of information about architectural significant requirements (e.g. non-functional
and macroscopic functionality). The art or architecture is making skillful choices
and constructing a solution that meets the requirements, taking into account
trade-offs, interdependencies, and priorities. The ‘art’ of architectural design is
the creative step where designers exploit knowledge and best practice from a
number of areas (e.g. architectural styles and patterns, technologies, pitfalls,
and trends) to reach a suitable solution. For self-organising emergent systems
the main source of knowledge to exploit in this creative step are the different
mechanisms to coordinate the desired macroscopic functionality such as digital
pheromones [3], gradient fields [22], and market-based coordination [26]. This
paper captures this knowledge on decentralised coordination mechanisms as ar-
chitectural design patterns.



30 T. De Wolf and T. Holvoet

����������	

���
�
�
 ��
��� ���
����	�	��� ��������	���

�����	��	���

��
���

��	��
��
��
���

��������
	
��
��
���
��
�������

����������
�������
��
� 
�
	
��
��
���
��
�������

�������
�����
�

����
��
�

	���
����� 
�
������ �
������

�����
�� ��
� �������
��
� �
 ������

���� � ����
���
��
� �
 
������ �
��
��
��� ��
�������

Fig. 1. A Unified Process engineering iteration annotated with customisations for issues
specific for self-organising emergent MASs

2.1 Motivation for Design Patterns

As stated earlier, the main problem-solving power resides in the coordination
between agents and a major architectural design decision concerns the choice
of one or more decentralised coordination mechanisms to achieve the desired
macroscopic behaviour. The mechanism used to coordinate has a strong impact
on what is and can be communicated [21]. A lot of such mechanisms are used
in literature but experience and knowledge about how to use them is currently
spread out over hundreds of articles. A more structured and useful description
is needed to consolidate this best practice.

In mainstream software engineering, current best practice and knowledge
about known solutions is captured in what is called ‘design patterns’. The most
famous reference is the Gang of Four design patterns book [9]. This paper sup-
ports applying decentralised coordination mechanisms by describing them as de-
sign patterns, similar to patterns used in mainstream software engineering. An
important issue in engineering self-organising emergent solutions is to under-
stand for which kind of macroscopic behaviour each coordination mechanisms
is useful, which is more appropriate in which situation, etc. Design patterns
describe each decentralised coordination mechanism in a structured way, inher-
ently including this kind information. Using such a set of structured patterns,
self-organising emergent system can be designed more systematically.

2.2 The Pattern Description Format

Patterns can be described at several levels of abstraction. The patterns in the
Gang of Four book [9] are described at the class or implementation level. An-
other level of abstraction to describe design patterns is the architectural or even
conceptual level in which the focus is more on the coarse-grained and conceptual
structure. The decentralised coordination mechanisms in this paper are described
at the architectural and conceptual level. The class level is not described because
such mechanisms can be implemented in multiple ways and little is known about
the best way to do this.



Design Patterns for Decentralised Coordination 31

This paper uses the guidelines and patterns for describing patterns from [23].
As such, the decentralised coordination mechanisms are described in a format
known in mainstream software engineering which promotes their usage. For ex-
ample, also the Gang of Four patterns book [9] uses a similar format. The general
structure is extended in subsections to better describe issues specific for de-
centralised coordination in self-organising emergent solutions. The format used
involves the following sections:

– Pattern Name/Also Known As: A clear name and aliases referring to
the solution used or a useful metaphor. The name is given in the title of the
pattern’s section.

– Context/Applicability: The circumstances in which the problem being
solves requires a solution. Often described via a ‘situation’. In this paper
this context typically indicates when a self-organising emergent solution is
promising.

– Problem/Intent: What is solved by this pattern? Engineers compare this
section with their problem in order to select coordination mechanisms.

– Forces: Often contradictory considerations that must be taken into account
when choosing a solution to a problem.

– Solution: A description of how the problem is solved and described in close
relation to the forces it resolves. This section has a more detailed structure:

• Inspiration: Most coordination mechanism are inspired by some natural,
biological, physical, or social phenomena.

• Conceptual Description: A conceptual description of how the inspira-
tional mechanism works and is used in computer systems. This sec-
tion allows to map the concepts used in the coordination mechanism to
domain-specific entities in the system under construction, i.e. the con-
cepts and their relationships indicate what is needed in order to use this
coordination mechanism.

• Parameter Tuning: Typically, such coordination mechanisms have a lot
of parameters that need to be tuned. This section enumerates them and
gives some guidelines to tune them.

• Infrastructure: Some mechanisms need a supporting infrastructure. More
specifically, what is needed to support the design at the class level.

• Characteristics: Using the mechanism imposes some characteristics on
the solution including advantages, disadvantages, and other useful prop-
erties.

– Related Mechanisms/Patterns: An enumeration of patterns that are
related in which the differences and similarities are emphasised.

• Variations: Variations of the same pattern which can be more general
or (domain) specific variations.

• Other Coordination Mechanisms: Alternative coordination mechanisms
that solve the same (or related) problem.

– Examples/Known Uses: Examples of known uses of the pattern in case
studies.



32 T. De Wolf and T. Holvoet

In addition to a separate description for each pattern, a ‘Problem/Solution
Summary’ is provided to help the reader find the pattern(s) which solve(s) their
specific problems. Such a summary is typically a table with a brief description of
the problem each pattern solves and how. In what follows, section 3 gives such a
summary for a limited set of widely used coordination mechanisms and sections
4 and 5 describe two patterns in more detail following the structure given in this
section.

3 Problem/Solution Summary

This section summarises the patterns by giving a so called ‘Problem/Solution
Summary’. An engineer uses this to find the pattern(s) or coordination mech-
anism(s) which solve(s) their specific problem(s). The Problem/Solution Sum-
mary can be found in Table 1 where a brief description of the problem and
the corresponding solution is linked to the pattern to use. Due to space limita-
tion only two pattern descriptions are given in (limited) detail in the following
sections. However, a full detailed pattern catalogue can be found in [7].

4 Pattern 1: Gradient Fields

Also Known As: Computational Fields, Co-Fields, Morphogen gradients [18],
Field-based coordination, Force Fields [21].

4.1 Context/Applicability

A solution is needed to coordinate multiple autonomous entities, situated in
an environment, in a decentralised way to achieve a globally coherent spatial
movement of the agents. The coordination mechanism has to be robust and
flexible in the face of frequent changes. Also, local estimates of global information
are the only possible way to coordinate. As such, decentralised coordination is
the only possible alternative.

4.2 Problem/Intent

– Spatial Movement: How to adaptively orchestrate in a decentralised way the
spatial movement of a large set of agents in large-scale distributed systems
[21,20,18]? As such global Pattern Formation can be achieved.

– Structure Formation: How to adaptively self-configure a modular structure
achieving the desired shape/structure (e.g. modular robots) [18]?

– Routing: How to achieve routing for messages, agents, etc. [18]?
– Integration of Contextual Information: How to provide agents with abstract,

simple yet effective contextual information from various sources supporting
and facilitating the required motion coordination activities [21,20,18] (i.e.
spatial information such as distance/direction to source)?



Design Patterns for Decentralised Coordination 33

Table 1. Problem/Solution Summary

Problem(s) Solution Pattern
Spatial Source to
Destination Routing,
Task Recruitment,
Relation Identifica-
tion, Integration of
various information
sources

Agents explicitly search for goals, tasks,
or related items and drop pheromones
to gradually form historical paths for
other agents to follow. Reinforcement
of an existing path by other agents can
be seen as a reinforcement of the re-
lation between source and destination.
Evaporation, Aggregation, and Propa-
gation keep the pheromones up-to-date
and support integration of information.

Digital Pheromone Paths [3]

Spatial Movement,
Pattern Formation,
Structure Formation,
Routing, Integra-
tion of Contextual
Information

Spatial, contextual, and coordination
information is automatically and in-
stantaneously propagated by the en-
vironment as computational fields.
Agents simply follow the “waveform” of
these fields to achieve the coordination
task, i.e. no explicit exploration.

Gradient Fields [22]

Resource Alloca-
tion in general
(resource=task,
power, bandwidth,
space, time, etc.) ,
Integration of re-
source Usage/Need
Information

A virtual market where resource users
sell and buy resource usage with virtual
currency. The price evolves according
to the market dynamics and indicates
a high (high price) or low (low price)
demand. This information is used by
agents to decide on using the resource
or not. Economic market theory states
that the prices converge to a stable
equilibrium.

Market-based Coordination [26]

Trust and rep-
utation, Team-
formation, Discour-
age selfish behaviour
in Teams, Specialisa-
tion of skills within
Teams

Agents put and modify tags on other
agents and a team is formed by only
collaborating with agents with the
same tag or some other condition.
If tags indicate how well agents be-
haved in collaborations with others
then trust and reputation information
can be available.

Tags [12]

Resource Access
Control/Allocation,
Role Allocation,
Enforce Organi-
sation Structure,
Information Sharing

Information, resources, or roles are rep-
resented by a token. Only the holder
has exclusive access to the information
and resource. Holding a role token com-
mits to executing that role. Tokens are
passed among agents to get adaptive
coordination.

Tokens [31]

etc. etc. etc.

4.3 Forces

– Explore vs. Exploit : In order to be adaptive the solution has to explore suf-
ficiently compared to only exploiting already known information. Otherwise
the approach can get trapped in local optima or never find new targets at



34 T. De Wolf and T. Holvoet

all. However, to much exploration may result in an approach that is very
inefficient.

– Centralised vs. Decentralised : A decentralised solution often requires a huge
amount of communication and coordination overhead which a centralised
solution has not. A centralised solution often optimally controls the system.
However, a centralised solution is often a bottleneck and single point of
failure in a very dynamic context.

– Optimality vs. Robustness/Flexibility: An adaptive approach that has no
central means to optimise its efficiency may result in suboptimal solutions.
However, an optimal solution only exists with respect to a static situation,
which is never reached in the face of frequent changes. As such, a robust
and flexible approach may be preferred to an approach that is optimal but
inflexible.

– Responsibility of Environment vs. Agents: Coordination needs complex
processing and communication. There is a trade-off to make the agents them-
selves or the environment responsible. Making the agents responsible allows
agents to explicitly reason about and control how information is distributed
but sometimes requires complex algorithms. On the other hand, making the
environment responsible allows agents to simply be guided by the results in
the environment, i.e. a “red carpet’ that avoids complex processing within
agents, but the agents are no longer in control of the information distribution.
Such coordination can be more dynamic and adaptive because the source of
changes, i.e. environment, also supplies the coordination information.

– Greedy vs. Focussed : A “greedy” approach to coordination disregards that
a small sacrifice now, i.e. not exploiting a piece of coordination information,
could possibly lead to greater advantages in the future. However, it is a
general drawback of distributed solutions, where the possibility of globally
informed decisions by distributed agents is often ruled out due to the need
for efficient and adaptive coordination [19].

4.4 Solution

Inspiration. The Gradient Field coordination mechanism takes its inspiration
from physics and biology. In physics [20,19,21], the same mechanism can be found
in the way masses and particles in our universe adaptively move and globally
self-organise their movements accordingly to the locally perceived magnitude of
gravitational/electro-magnetic/potential fields. The particles follows the “wave-
form” of the fields (see figure 2). In biological organisms, a coherent, reliable and
complex behaviour is achieved from the local cooperation of large numbers of
identically “programmed” cells [18]. In particular, chemicals are diffused among
cells and cells are driven in their behaviour by the locally sensed gradients of
diffused proteins (“morphogen gradients”). Morphogen gradients is a mechanism
used to determine positional information and polarity. For example, cells use the
concentration of different morphogens to determine whether they lie in the head,
thorax, or abdominal regions to achieve wing and limb development.



Design Patterns for Decentralised Coordination 35

����

����
�	
�

��
��
�
��

�

����

���	

�����

����

���
�
�

���
��


��

��
��

���������

�	
��
��
 ���

����

� 
����

� 
�
�

��� ��
��
�
���

Fig. 2. A gradient field with propagation direction and agent movements shown

Conceptual Description. To use this as a decentralised coordination mech-
anism in software systems such a gravitational/electro-magnetic/chemical field
has to be translated into an artificial data structure representing the Gradient
Field, i.e. a computational field or Co-Field [22,21,19]. Figure 3 illustrates
the conceptual structure of such a solution in UML class diagram notation.
A Gradient Field is data structure which is spatially distributed, as Gradient
Parts, over Locations in the Environment. Each field is characterised by a
unique identifier, the necessary contextual information such as a location-
dependent numeric value (representing the field strength in that location), and a
Propagation Rule determining how the numeric value should change in space.

A gradient field is started, initiated, or injected into the environment from a
certain “source” location by a Gradient Initiator (i.e. a Location itself, an
Agent, or some other entity in the system) conveying some application-specific
information about the local environment and/or about the initiator itself [21].
The Environment makes sure that the Gradient Field is propagated, accord-
ing to its Propagation Rule, from the starting location to the neighbours of
that location (typically increasing the strength of the gradient, initially set to
zero; decreasing gradients are also possible). In turn, the neighbouring locations
modify the strength and re-broadcast the gradient to their neighbours which is
repeated until the gradient has propagated far enough. Each intermediate loca-
tion stores and forwards only the gradient part with the minimum strength value
it has received for that particular gradient field. As such a “waveform” gradient
map is formed in the environment which conveys useful context information for
the coordination task.

Agents observe multiple Gradient Parts on the neighbouring locations of
the location on which the agent is situated. Then agents follow the waveform
(deterministically or with some probability) by moving to a neighbouring lo-
cation. This allows agents to coordinate their movement with respect the the



36 T. De Wolf and T. Holvoet

gradient initiator. For example, in figure 2 agents move downhill (attracted by
the initiator), uphill (repelled by the initiator), or on an equipotential line (equal
strength around initiator).

����������
�������� 	��
�

�����	�

�������� ����

�
���

�������������������

����
��� �����
����
��� ��

����
���

����
��� ��

��������

�����
���

�� ���	
���� ��

����
	
���

������
 �
��
�������� ���������

����
�

��

����

�

�

�

�
�

�

�
��

�������� �

����	
���� �
����
����
	
���� �
��

�����
�����
��
�

����
�

�

������������ 	��
�

�������� 	��
�

�
����
��� ����

����

�

��� � ��
���	 ���������

���
� �������� ������
����
� ������������

Fig. 3. A conceptual model of the gradient coordination mechanism

The gradient field mechanism can be schematised as follows [22,21,20,19]:

– The environment is represented and abstracted by “computational fields”
which provide agents with a location-dependent and local perspective on the
global situation of the system to facilitate the required motion coordination.

– The coordination policy is realised by letting the agents move locally follow-
ing the “waveform” of these fields. Agents can autonomously decide whether
to follow the gradient fields or not.

– Environmental dynamics and movement of entities induce changes in the
fields’ surface. For example, when the initiator of a gradient field moves, the
field -with some propagation delay- has to be updated in the environment
to reflect that move. As such, a feedback cycle is formed that consequently
influences agent movement.

– This feedback cycle lets the system self-organise. A globally coordinated and
self-organised behaviour in the agent’s movements emerges in a fully de-
centralised way due to the interrelated effects of agents following the fields’
shape and of dynamic field re-shaping [21,20].

However, the achievement of an application-specific coordination task is rarely
relying on the evaluation, as it is, of an existing computational field. Rather, in
most cases, an application-specific task relies on the evaluation of an application-
specific Coordination Field [21,20,19]. This coordination field can be an ex-
isting gradient field but typically it is a Combined Field, calculated as a combi-
nation (e.g. linear) of some of the locally perceived fields or other coordination
fields. The coordination field is a new field in itself, and it is built with the goal of
encoding in its shape the agent’s coordination task. Once a proper coordination



Design Patterns for Decentralised Coordination 37

field is computed, agents can achieve their coordination task by simply following
the shape of their coordination field.

Parameter Tuning. Every gradient field has a number or parameters, or “set-
tings”: a Propagation Factor determining how much is added to or removed from
the gradient strength each propagation step and a Propagation Rate indicating
how fast propagation occurs; a dynamic gradient has to be updated regularly
which is determined by a certain Refresh Rate; the Initial Strength of a Gradient
is the strength at the source location; each propagation rule can have its own
rule-specific parameters, e.g. using another propagation factor at a distance of
X from the initiator.

Infrastructure. A proper infrastructure or middleware is required (e.g. TOTA
[20]) that supports data storage (to store field values), communication (propa-
gate field values), event notification and subscription mechanisms (notify inter-
ested agents about field changes, as well as update fields to support changes),
mobile-code services (dynamically configure field-propagation algorithms and
coordination fields composition rules), and localisation mechanisms (to discover
where agents are).

Characteristics

– Typically, following the gradient field downhill is the shortest path towards
the initiator of the field [18].

– The structure of the environment in which the agents are working should
reflect the current “problem” the agents are working on and the gradient
structure and distribution should guide the agents to the current “solution”
to that problem.

– Spatial Context Information is distributed: Gradients support information
spreading/distribution. Gradient-Fields mainly deliver spatial information
such as the direction or distance to a gradient initiator [20]. However, gra-
dients can also embed any other necessary information.

– Feedback Cycle [22]: Feedback is given by the fact that gradients can change
when changes occur in the environment or when the agent that emits the
gradient decides to move or change the gradient. Other agents or gradient-
emitting entities can then take that change in the gradient into account and
react on it by for example changing its own gradient info. As such a feedback
cycle is established to self-organise.

– Simple Agents - Complex Environment: Field-based approaches delegate to
a middleware infrastructure in the environment the task of constructing and
automatically updating the gradient field [20]. As such, the environment
makes sure that not too much computational and communication burden is
imposed on the agents themselves [19]. The context is represented as gra-
dient fields, i.e. a kind of “red carpet”, which represents how to achieve a
coordination task by simply following the field.



38 T. De Wolf and T. Holvoet

– Greedy Approach [20,19]: A weakness of field-based approaches is that they
are “greedy” because of the strictly local perspective in which agents act.
Agents disregard whether as small sacrifice now, climbing a field hill instead
of descending it - could possibly lead to greater advantages in the future.

– etc. (see [7] for more characteristics)

4.5 Related Mechanisms/Patterns

Variations

– Propagation Inhibition or Selective Propagation [20,18]: The propagation of
a field can be bounded to a portion of space by having the propagation pro-
cedure to check conditions such as the local spatial coordinates, the gradient
type or its strength to decide on further propagation or not.

– Multiple Types of Fields [20,21,19]: As mentioned earlier, multiple gradient
instances can be combined in a coordination field to follow as a whole. All
used gradients are typically of the same type. A logical extension is using dif-
ferent types of fields depending on the specific motion pattern to enforce. As
such, they can be propagated and combined in coordination fields according
to field-specific rules.

– etc. (see [7] for more variations)

Other Coordination Mechanisms. Digital Pheromone Paths is a specific
instance of Gradient Fields where a number of small fields or pheromones aggre-
gate into a gradient path and evaporate over time [20]. Also pheromone paths
are constructed explicitly and, as such, agents also explicitly have to discover
targets. Gradients make targets immediately and automatically (by the environ-
ment) visible through the presence of a gradient field for that target. Agents do
not have to explore pro-actively. In addition, pheromones constitute a memory
of the recent past, while gradient fields are instantaneous.

4.6 Examples/Known Uses

Some known uses or possible applications are: spatial shape formation [18], urban
traffic management [21], reconfiguring modular robots’ shape [21,25], control of
autonomous characters in video games [21,19], tourist movement in museum
[19,20], forklifts activity in a warehouse [19], software agents exploring the web
[19], etc.

5 Pattern 2: Market-Based Control

Also Known As: Market Control, Market-Oriented Programming [32].

5.1 Context/Applicability

You need to coordinate multiple autonomous entities in a decentralised way
to achieve a common and globally coherent goal while sharing a set of scarce



Design Patterns for Decentralised Coordination 39

��������

�
	�


�

� 
�����
� ������

��

��

�

�

Fig. 4. The theory of Supply and Demand

resources. The coordination mechanism has to be robust and flexible in the
face of frequent changes. Also, local estimates of global information are the
only possible way to coordinate. As such, decentralised coordination is the only
possible alternative. Some locally available information is needed indicating the
global usage of resources.

5.2 Problem/Intent

– Resource Allocation: How to do efficient resource allocation [26,4,10,32] in
a distributed and decentralised manner? Resources can be interpreted as
tasks, bandwidth, manufacturing devices, etc.

– Integration of Resource Usage/Need Information: How to have locally avail-
able information about the global usage of and need for resources?

5.3 Forces

– Centralised vs. Decentralised (see section 4.3 in Gradient Field pattern).
– Optimality vs. Robustness/Flexibility (see section 4.3).
– Responsibility of Environment vs. Agents (see section 4.3).

5.4 Solution

Inspiration. The inspiration and metaphor came from human economies and
market mechanisms, i.e. the free-market economies. In such an economy, goods
or resources are allocated to the participants in a decentralised, robust, and self-
organising manner. Participants act as buyers and/or sellers of goods by offering
to buy or sell a good to other participants for a certain price. As long as the
participants act completely self-interested then the market achieves a globally
optimal allocation of goods. Transaction prices converge to a global equilibrium
price, i.e. the market price. Note, that the degree of convergence depends on the
market characteristics (e.g. elasticity, shape of demand and supply curves, etc.).

This price mechanism depends on the evolution of the demand and available
supply of goods. Figure 4 illustrates this by plotting the evolution of supply



40 T. De Wolf and T. Holvoet

and demand. The demand curve shows the quantity of good that consumers are
willing and have the capacity to buy at the given price. The supply curve shows
the quantity that suppliers are willing to sell at a given price. If the quantity
of a good demanded by consumers in a market is greater than the quantity
supplied, competition between consumers causes the price of the good to rise.
As such, according to situation A in figure 4 this can both reduce the quantity
demanded (because some consumers can no longer afford it) and increase the
quantity supplied (because some suppliers may be more interested in selling at
higher prices). Similar effects occur when the quantity supplied is greater than
the quantity demanded (situation B in figure 4). According to classical economic
theories the market equilibrates (see arrows in figure 4): transaction prices ap-
proach an equilibrium value (p1, q1) where the quantity demanded matches the
quantity supplied. As such, an efficient means of societal resource/goods alloca-
tion exists.

Conceptual Description. The aim of market-based coordination in computer
science is fundamentally different from the aim of economic theory [32]. In
market-based coordination, microeconomic theory is taken as given. Whether
or not the microeconomic theory actually reflects human behaviour is not the
critical issue. The important question is instead how microeconomic theory can
be utilised for the implementation of successful resource allocation mechanisms
in computer systems. Although decision-making is only local, economic theory,
which has an immense body of formal study [28], provides means to generate
and predict macroscopic properties such as the equilibrium price and others that
can be deduced from that price information. The aim is that computer systems
exhibit the same decentralisation, robustness, and capacity for self-organisation
as do real economies [4]. In designing a market of computational agents, a key
issue is to identify the consumers and producers [11]. Various preferences and
constraints are introduced through the definition of the agents’ trading behav-
iour. This ability to explicitly program the trading behaviour is an important
difference from human markets. Finally, the mechanism for matching buyers and
sellers must be specified.

Figure 5 illustrates market-based coordination conceptually in UML class di-
agram notation. A group of agents negotiate and trade with each other on an
virtual market of scarce resources. The agents communicate with messages en-
capsulating offers, bids, commitments, and payments for resources [10]. The
agents’ goal is to acquire the resources of a certain Resource Type that they
need. All agents start with an initial amount of Currency [11]. Resources are at
each moment in time owned/used by one agent. Some agents act as ‘consumers’
or ‘buyers’ and have a Demand for a certain quantity of a resource and are willing
to pay a certain price for it, based on the Currency they have and possibly other
conditions. Other agents act as ‘producers’ or ‘suppliers’ and have a Supply of a
certain quantity of a resource and are willing to sell at a certain price. The goal is
to maximise their profit. Each Agent is self-interested and decides to participate
as a buyer/consumer in an Transaction with a supplier/producer to transfer a
certain quantity of resources. The behaviour of each agent depends on its local



Design Patterns for Decentralised Coordination 41

�����

������
������	


��	
�
�
	�	� ��	
�
������	��

���
��

��	
�
�
	�	� ��	
�
������	��

�����


������	�

������	� �
��

��	
�
������	��

��
��
	����

���
���

����

�������

����
	��

������ �	��

���������

��

� �

��

�
�

����
	�� �����

�

����

�

�

�

�

��
��
�
���� ���	�

������� ��

������� ��

�

�

�

�

�������	
����

����
��

�����

���

�

��������������


�����	
���� �	��

��

��	��

�
�	���� �������

�

�

�

�

� ����	�� �	��
�	��

��� � ����
	��	��


����
��
���

Fig. 5. Conceptual model of Market-based Coordination

information as well as market prices that communicate global information. For
each unit to trade, each agent has a limit price that is unknown to others [4].
A buyer couldn’t pay more than its limit price, and a seller couldn’t sell for less
than its limit price. The distribution of limit prices determines the evolution of
the supply and demand curves.

Similar to a real free-market economy the process of demand and supply de-
termines the Market Price to which the transaction prices evolve. When supply
is greater than demand (resources are plentiful), the price of the resource will
fall; and when demand exceeds supply (resources are scarce), the price rises.
The aim then is that prices rise and fall, dynamically matching the quantity
demanded to the quantity supplied, while these quantities also vary dynamically
[4]. Agents set their prices solely on the basis of their implicit perception of
supply and demand [10] through their success of bidding at particular prices. A
special case occurs when an agent is at the same time a seller and a buyer [10]
which implies a strategy to maintain an inventory level (i.e. number of owned
resource units) that maximises its profit, i.e. that suits the market demand. The
amount of available resources can be limited [11]. This is taken into account
in the demand and supply. For instance, if the amount of available resources
increases suddenly then the supply curve on figure 4 shifts to the right because
suppliers are willing to supply more for each price. This results in an equilibrium
increase in the supply and decrease in price (similarly demand curve shifts when
agents suddenly need more resources). A globally limited amount of resources
makes the market mechanism a resource allocation mechanism that generates
an equilibrium distribution of resources that maximises global welfare [10].

There are two approaches to establish a market in a computer system
[10,4,32,11,1]:

– Auctioneer-mediated Markets (Centralised): The market is mediated by an
auctioneer agent. Agents send demand/supply functions or bids telling how
much they like to consume/produce at different prices. The auctioneer then
immediately establishes an equilibrium market price vector such that supply



42 T. De Wolf and T. Holvoet

meets demand for all resources. Then agents exchange the resources as stated
by their bid and the calculated equilibrium price.

– Direct Markets (Decentralised): Real bids are used instead of calculating
based on demand and supply functions. The market is executed for real and
the agents bid and adapt their bidding to the outcomes of the auctions over
time. A transaction occurs whenever one trader accepts an offer or a bid
quoted by another trader. Transactions depend on pairwise encounters in
which agents exchange their bid or price for a resource (e.g. traders distrib-
uted in space only transact with nearby traders). The agents bid and adapt
their bidding to their success over time which iteratively balances supply
and demand at the equilibrium [10].

Note, that the speed or stability of equilibration in a market can be affected by
the type of market. An auction-mediated market typically equilibrates immedi-
ately in each auction cycle while a decentralised market needs multiple transac-
tions cycles before the market equilibrates. However, the system should not rely
on the operation of any single critical component, i.e. a centralised auctioneer
[4]. The failure of any one trading agent in a market-based system should result
in only a minor impairment to the overall behaviour of the system, rather than
a total breakdown. A truly decentralised and robust system in which agents bar-
gain directly with each other is preferred to a failure-prone and inflexible central
one. However, firm guarantees that the (optimal) equilibrium price is reached
are not always available because less theory is available for decentralised markets
compared to centralised markets.

Parameter Tuning. Depending on the specific use of the market mechanism, a
number of parameters have to be tuned: limit prices determine the demand and
supply curve behaviour and the profit of agents, the initial amount of currency
influences the limit prices, the number of agents participating influences the
convergence to equilibrium, and the price-adaptation behaviour (speed and size
of increase/decrease of prices) influences the demand/supply curves and thus the
speed and efficiency of the market. For the decentralised market, the specification
of who trades with who is also an important parameter (e.g. a distance-limit
between agents in a 2D world can determine if they can trade or not).

Infrastructure. Because most of the coordination happens directly between
agents no real infrastructure support is needed, except for communication in-
frastructure.

Characteristics

– Information Distribution. Markets deliver to agents information on the
resource-usage through the price mechanism. A high price reflects a high
demand and/or low remaining supply, i.e. high usage. A low price reflects
a low demand and/or high remaining supply, i.e. low usage.

– Feedback Cycle. The price mechanism serves as a feedback cycle. A high
price implies that agents buy less which diminishes the demand and as



Design Patterns for Decentralised Coordination 43

such the price reflects this by decreasing. In turn, a lower price changes the
behaviour of agents to start buying again which increases the demand. As
such feedback about the global market is given through the price evolution.

– Agents have all responsibility. The responsibility of coordination is com-
pletely situated with the agents themselves, i.e. no environment-mediated
coordination. However, for auction-based markets the auctioneer can be
considered as the environment.

– Decentralisation - Robustness - Self-Organisation [32,10,4]: Market-based
control without an auctioneer allows for truly distributed systems with the
same decentralisation, robustness to participant failures, and self-organising
properties as real free-market economies. A central auctioneer would be a
single point of failure.

– Price Information indicates Global and Local Performance: For example for
network routing in [10], the cost of each network call can be computed from
the available price information which allows more efficient call charging.
Trading resources for some sort of money enables evaluation of local
performance and valuation of resources [32] based on the price, so that it
becomes apparent which resources are the most valuable and which agents
are using the most of these.

– Stabilisation at Equilibrium - Pareto Optimality [4,17,32]: For markets
to be of genuine use in applications, they should exhibit smooth and fast
convergence to the equilibrium. Transaction prices stabilise rapidly at an
equilibrium that is predictable from economic theory and which is stable
and robust with respect to sudden changes in the market. Actions of groups
of individuals, engaging in simple trading interactions driven by self-interest
can result in optimal resource allocation. Market-based systems are termed
Pareto optimal. Pareto optimality means that no agent can do better with-
out diminishing the performance of another. However, there are indications
in theoretical economic studies that the dynamics of some decentralised
markets may converge to stable but highly sub-optimal equilibria.

– etc. (see [7] for more characteristics)

5.5 Related Mechanisms/Patterns

Variations

– Multiple Markets [10]: Multiple related markets are used. An example on how
such markets can be related is when resources on one market are a composite
of resources on another market (e.g. ‘network path’ contains ’network links’
[10]).

– etc. (see [7] for more variations)

Other Coordination Mechanisms. Another coordination mechanism that
can solve resource allocation is the Tokens mechanism. A token then represents
the capability and authority to use a certain resource exclusively and the number
of tokens in the system is limited to the available amount of resources.



44 T. De Wolf and T. Holvoet

5.6 Examples/Known Uses

Some known uses and possible applications are: manufacturing control [24] (re-
source = machine), power distribution [32] (resource = power), routing in net-
works [10] (resource = bandwidth), stabilisation of unstable (civil) structures
[11,17] (resource = power to push somewhere), climate control in buildings [32]
(resource = cold air), and other cases on distributed resource allocation [32,4].

6 Case Study: A Packet Delivery Service

This section considers the design of a packet delivery service application to
illustrate the use of decentralised coordination patterns. First the requirements
are described and then a design is proposed using the patterns.

Problem Statement and Requirements. A packet delivery service [27] al-
lows customers to submit an order to come and pick up a packet and transport it
to a given destination or delivery location (see figure 6). At each moment in time,
new pickup and delivery locations can be added to the system by customers. A
fleet of trucks is available which has to self-organise efficiently to accommodate
the current request for transport. As such, the orders of customers form a dy-
namic overlay network of pickup and delivery locations between which trucks
have to move routing themselves through a street map. So basically there are
two main requirements for this problem:

– Dispatching: every new order has to be assigned to a truck that will be
responsible for handling the requested transport.

– Routing: trucks have to be adaptively routed through a street map in order
to reach new pickup locations for orders to which they were assigned and to
reach delivery locations for orders already inside the truck.

These requirements have to be achieved in the face of frequent changes: new
orders arriving at any moment, changes to the delivery location of existing or-
ders, congestion and obstacles on streets, trucks failing, etc. On the other hand
there are a number of timing constraints that have to be reached: pickup time-
window in which the pickup should occur, delivery time-window, regular breaks
for drivers to rest, etc. This is a highly dynamic problem in which the informa-
tion needed to decide how to route or dispatch is inherently decentralised over
a number of trucks, customers, streets, etc. As such a self-organising emergent
solution is promising.

Design with Decentralised Coordination Patterns. As mentioned earlier,
the problem-solving power resides in the interaction between agents. Therefore
for each of the requirements that have to be coordinated one has to discover
which information is needed to take the appropriate decisions and actions. And
especially, which decentralised coordination mechanism allows to exchange that
kind of information and to coordinate the agents to achieve the requirements.



Design Patterns for Decentralised Coordination 45

������� �

	
����

 �

	
����

 �

������� �

������� �

������� �

������� �

������� �

������� �

������� �

	
����

 �
	
����

 �

	
����

 �

	
����

 �

	
����

 �

����������

�

�

��

�	��
���

�	��
���

�	��
���

�	��
���

�	��
���

������� �

	
����

 �

	
����

 �

Fig. 6. The Packet-Delivery Problem

Consider the dispatching requirement for which new orders have to be as-
signed as a task to available trucks. Information is needed to decide which truck
is chosen, such as the distance of the truck to the pickup location or its estimated
arrival time, the trucks available with enough room to carry the packet, and the
estimated delivery times of trucks. The best truck at that moment should be al-
located. To solve this problem systematically, the ‘Problem/Solution Summary’
described in Table 1 is used. The engineer has to find a problem description
matching the dispatching problem. Some kind of allocation of resources is re-
quired. The resource is the room available in trucks that has to be allocated
to an order. Table 1 states that a Market-based Coordination mechanism may
be suitable. Therefore, the consumers and suppliers of the resource market have
to be determined. For example, consider the trucks as the suppliers of available
transportation room, and order agents, representing orders, are the consumers
of that room. Another important aspect of markets is the instantiation of the
price mechanism. According to the pattern, a number of price values are involved
such as limit prices under which the room is not bought or sold, prices offered
in individual bids, and the market price. These prices should depend on infor-
mation important for making the allocation decisions because in a market limit
prices, offered prices, and market price determine what is allocated to whom. As
such, for the order dispatching a truck could have a limit price that increases
with the distance or estimated travel time to reach the pickup, increases with
the estimated delivery time, decreases with the amount of available room in the
truck, etc. The order’s limit price can depend on the wanted delivery and pickup
time constraints so that an order willing to pay a high price is willing to wait
longer before pickup and/or doesn’t require a short delivery time. A market is
started when an order is submitted by a customer and stops only when it has
been assigned to a truck. During the market execution trucks will offer to supply
room at a certain price as far as possible above their limit price to maximise
their profit (i.e. for example, the higher the price payed, the more time the truck
has to deliver the order). Orders will bid to buy the room at certain prices that



46 T. De Wolf and T. Holvoet

are as far as possible below their limit price in order to get the best deal (i.e.
for example, the lower the price, the quicker the delivery is done). The market
mechanism of demand and supply then allocates the trucks to the orders in such
a way that approximates a globally efficient optimum at that moment.

The second requirement was to actually route the trucks through the street
map. The problem to be solved is a routing or spatial movement problem for
which there are two possible coordination patterns according to table 1: digital
pheromones or gradient fields. To decide which one is the most promising the
patterns need to be studied in more detail, i.e. which characteristics match the
needs for routing trucks, etc. Assume that the gradient field approach is the most
suitable mainly because the digital pheromone approach requires that trucks ac-
tively search for delivery locations, orders, etc. On the other hand, the gradients
are automatically propagated by the environment and trucks only have to follow
their coordination gradient to be routed through the street map efficiently. As
such new orders are immediately found by trucks which is an important require-
ment. Without giving a more detailed solution the main idea is using different
types of gradients:

– Delivery Location Gradients: each delivery location emits a gradient as soon
as the order is assigned to a truck. The truck then simply follows that gra-
dient.

– Pickup Location Gradients: each pickup location emits a gradient to signal
the presence of a new order. The truck assigned to the order simply follows
the gradient to reach the pickup.

– Market Communication Gradients: to facilitate direct interaction and nego-
tiation needed for markets between trucks and orders at pickup locations
each can emit a market gradient. That gradient is used to actively send bids
to buy room, offers to sell room, payments, etc. These messages can route
themselves by simply following the right gradient. Each truck and order have
their own gradient.

Note that a requirements was to cope with dynamics such as congestion and
obstacles. The gradients used above all take into account these changes in their
propagation rules. For example, the propagation occurs slower, not at all, or
with a higher increase in strength through congested streets. Similar for other
dynamics.

Once the coordination mechanisms are chosen, the pattern description offers
a guide to actually apply them: different variants can be considered, the para-
meters to tune are known, guidelines are available, etc. In particular, a gradient
solution requires an environment capable of storing and propagating gradients,
i.e. an infrastructure. Such an environment is not available or too expensive on
a real street network. Alternatively, a decentralised solution which is not dis-
tributed on the street network can be used. As such a server emulates the street
network as a graph environment in which gradients propagate and on which
truck agents move in sync with and actively coordinate the movement of the
real trucks. Changes such as information on congestion and obstacles is updated
in that emulated environment in a decentralised manner by directly linking the



Design Patterns for Decentralised Coordination 47

real world trucks with the agents. Customers submit their orders to this server.
The advantages of a self-organising solution are preserved because the solution
is constantly adapting to changes without a central controlling entity and is still
robust to truck failure. Of course, a failure of the server emulating the environ-
ment would break the system. However, making the server failure-safe remains
cheaper than embedding a gradient infrastructure in a real street network.

7 Conclusion and Future Work

To systematically design a self-organising emergent solution, guidance on which
decentralised coordination mechanisms to use is essential because the problem-
solving power resides in the coordination process. Decentralised coordination
mechanisms can be described as design patterns, similar to patterns used in
mainstream software engineering. Such a clear and structured description format
helps in making the engineering process more systematic for two reasons:

– Firstly, pattern descriptions allow to directly find a solution based on the
problem.

– Secondly, each pattern is a consolidation of best practice to use it, which
systematically guides engineers in applying the coordination mechanisms.

However, the patterns in this paper and in [7] have a conceptual focus. More
work is needed on patterns for designing coordination mechanisms at the class
or implementation level. Even for the conceptual patterns given, more structure
is possible. For example, identifying the participants and interactions and rep-
resenting this structurally in UML interaction diagrams; or identifying new sec-
tions in the pattern format that address issues specific for self-organising emer-
gent systems. Also, many other coordination mechanisms should be captured as
design patterns to easily compare and choose between them when engineering a
self-organising emergent solution. Exemplary work can be found in [2].

Acknowledgements. This work is supported by the K.U.Leuven research
council as part of the concerted research action on Autonomic Computing for
Decentralised Production Systems (project 3E040752).

References

1. R. Axtell and J. Epstein. Distributed Computation of Economic Equilibria via
Bilateral Exchange. Brookings Institution, Washington DC, 1997.

2. O. Babaoglu, G. Canright, A. Deutsch, G.A. Di Caro, F. Ducatelle, L.M. Gam-
bardella, N. Ganguly, M. Jelasity, R. Montemanni, A. Montresor, and T. Urnes.
Design patterns from biology for distributed computing. ACM Transactions on
Autonomous and Adaptive Systems, 1(1):26–66, September 2006.

3. S. Brueckner. Return From The Ant - Synthetic Ecosystems For Manufacturing
Control. PhD thesis, Humboldt-Universitt, Berlin, 2000.



48 T. De Wolf and T. Holvoet

4. D. Cliff and J. Bruten. Simple bargaining agents for decentralized market-based
control. Technical Report HPL-98-17, HP Labs, Bristol, UK, 1998.

5. T. De Wolf and T. Holvoet. Emergence and Self-Organisation: a statement of
similarities and differences. In Proc. of the 2nd Int. Workshop on Engineering
Self-Organising App., 2004.

6. T. De Wolf and T. Holvoet. Towards a methodolgy for engineering self-organising
emergent systems. In H. Czap, R. Unland, C. Branki, and H. Tianfield, editors,
Self-Organization and Autonomic Informatics (I), volume 135 of Front. in Artif.
Intell. and App. IOS Press, 2005.

7. T. De Wolf and T. Holvoet. A catalogue of decentralised coordination mecha-
nisms for designing self-organising emergent applications. CW 458, Department of
Computer Science, K.U.Leuven, August 2006.

8. O. Etzioni. Moving Up the Information Food Chain: Deploying Softbots on the
World Wide Web. In Proc. of the 13th Int. Conf. on Artificial Intelligence, 1996.

9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Professional Computing Series. Addison-
Wesley, 1995.

10. M. A. Gibney, Nicholas R. Jennings, N. J. Vriend, and Jos&#233;-Marie Griffiths.
Market-based call routing in telecommunications networks using adaptive pricing
and real bidding. In IATA ’99: Proceedings of the Third International Workshop
on Intelligent Agents for Telecommunication Applications, pages 46–61, London,
UK, 1999. Springer-Verlag.

11. O. Guenther, T. Hogg, and B. Huberman. Power markets for controlling smart
matter. Computing in Economics and Finance 1997 62, Society for Computational
Economics, 1997.

12. D. Hales. Choose your tribe! - evolution at the next level in a peer-to-peer network.
In Proc. of the 3rd Workshop on Engineering Self-Organising Applications (EOSA
2005), 2005.

13. K. Herrmann, G. Mhl, and K. Geihs. Self-Management: The Solution to Complex-
ity or Just Another Problem? IEEE Distributed Systems Online, 6(1), 2005.

14. I. Jacobson, G. Booch, and J. Rumbaugh. The unified software development
process. Addison Wesley, 1999.

15. J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE
Computer Magazine, 36(1):41–50, Jan 2003.

16. C. Larman. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development. Prentice Hall, 3rd edition, 2005.

17. J.P. Lynch and K.H. Law. Decentralized control techniques for large-scale civil
structural systems. In Proc. of the 20th Int. Modal Analysis Conference (IMAC
XX), 2002.

18. M. Mamei, M. Vasirani, and F. Zambonelli. Experiments of morphogenesis in
swarms of simple mobile robots. Applied Artificial Intelligence, 18(9-10):903–919,
2004.

19. M. Mamei and F. Zambonelli. Motion coordination in the quake 3 area environ-
ment: A field-based approach. In Danny Weyns, H. Van Dyke Parunak, and Fabien
Michel, editors, Environments for Multi-agent Systems - First E4MAS workshop,
New York, NY, July 19, 2004, Revised Selected Papers, volume 3374 of Lecture
Notes in Computer Science, page 264. Springer Verlag, 2005.

20. M. Mamei and F. Zambonelli. Theory and practice of field-based motion coordi-
nation in multiagent systems. J. Appl. Artif. Intell., 19, 2005. to be published.



Design Patterns for Decentralised Coordination 49

21. M. Mamei, F. Zambonelli, and L. Leonardi. Distributed motion coordination with
co-fields: A case study in urban traffic management. In Proc. of the The 6th Int.
Symp. on Autonomous Decentralized Systems (ISADS’03), page page 63, Washing-
ton, DC, USA, 2003. IEEE CS.

22. M. Mamei, F. Zambonelli, and L. Leonardi. Co-fields: A physically inspired ap-
proach to motion coordination. IEEE Pervasive Computing, 3(2), 2004.

23. G. Meszaros and J. Doble. Metapatterns: A pattern language for pattern writing. In
The 3rd Pattern Languages of Programming conference, Monticello, Illinois, USA,
September 1996.

24. H. V. D. Parunak, A. D. Baker, and S. J. Clark. The aaria agent architecture: From
manufacturing requirements to agent-based system design. Integrated Computer-
Aided Engineering, 8(1):45–58, 2001.

25. E. Rimon and D. E. Kodischek. Exact robot navigation using artificial potential
functions. IEEE Transactions on Robotics and Automation, 8(5):501–518, 1992.

26. Editor S. H. Clearwater. Market-Based Control: A Paradigm for Distributed Re-
source Allocation. World Scientific, Signapore, 1996.

27. M. W. P. Savelsbergh and M. Sol. The general pickup and delivery problem.
Transportation Science, 29:1729, 1995.

28. H. Varian. Intermediate Microeconomics. W.W.Norton, New York, USA, 1999.
29. D. Weyns, A. Helleboogh, E. Steegmans, T. De Wolf, K. Mertens, N. Bouck, and

T. Holvoet. Agents are not part of the problem, agents can solve the problem. In
Proc. of the OOPSLA Workshop on Agent-Oriented Methodologies, 2004.

30. M. Wooldridge and N.R. Jennings. Software engineering with agents: Pitfalls and
pratfalls. IEEE Internet Computing, 3(3):20–27, 1999.

31. Y. Xu, P. Scerri, B. Yu, S. Okamoto, M. Lewis, and K. Sycara. An integrated token-
based algorithm for scalable coordination. In Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems (AAMAS), pages
407–414, Utrecht, NL, 2005.

32. F. Ygge and H. Akkermans. Decentralized markets versus central control: A com-
parative study. Journal of Artificial Intelligence Research, 11:301–333, 1999.


	Introduction
	Decentralised Coordination Mechanisms as Design Patterns
	Motivation for Design Patterns
	The Pattern Description Format

	Problem/Solution Summary
	Pattern 1: Gradient Fields
	Context/Applicability
	Problem/Intent
	Forces
	Solution
	Related Mechanisms/Patterns
	Examples/Known Uses

	Pattern 2: Market-Based Control
	Context/Applicability
	Problem/Intent
	Forces
	Solution
	Related Mechanisms/Patterns
	Examples/Known Uses

	Case Study: A Packet Delivery Service
	Conclusion and Future Work

