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Preface

The Fourth International Workshop on Engineering Self-Organizing Applica-
tions (ESOA) was held on May 9, 2006 in conjunction with the 2006 Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS 2006), in Hakodate,
Japan. The present post-proceedings volume contains revised versions of the
seven papers presented at the workshop, and six additional invited papers. Con-
tinuing the tradition of previous editions, this book discusses a broad variety of
topics in an effort to allow room for new ideas and discussion, and eventually a
better understanding of the important directions and techniques of our field.

In “Hybrid Multi-Agent Systems: Integrating Swarming and BDI Agents”—
an article based on an invited talk at the workshop by Van Parunak—Parunak
et al. address an important question facing the ESOA community: how should
self-organizing swarm-like agent approaches relate to the techniques of the multi-
agent community at large? ESOA techniques primarily rely on simple reactive
agents, whose intelligence emerges at the group level via carefully designed in-
teraction rules. These simple agents might have some internal state that allows
them to remember the history of their interactions at some (low) level of detail,
but generally the complexity in such systems arises from the dynamics. In con-
trast, the mainstream multi-agent systems community uses intelligent agents,
which apply sophisticated algorithms to build up internal models of their en-
vironments and complex protocols to communicate about their models. This
general approach, of which the BDI frameworks are an example, warrant a more
cognitive analogy than the typical ESOA ideas. Parunak et al.’s work shows how
the two approaches could profitably interact.

Two of the articles advance novel “design concepts”—that is, architectures
that are optimized for achieving decentralized behavior from the algorithm de-
sign perspective. In “An Analysis and Design Concept for Self-Organization in
Holonic Multi-Agent Systems,” Rodriguez et al. describe the concept of a holon
as a particular kind of multi-agent hierarchy, and apply it to design adaptive sys-
tems. Tom De Wolf and Tom Holvoet fold the standard motifs of emergent multi-
agent systems into the programming techniques of standard computer science.
By making gradients, a technique of spatial distributed systems, and market-
mechanisms, a technique of non-spatial distributed systems, into standardized
design patterns, they provide the beginnings of a framework for systematic de-
sign of self-organizing systems.

In “Measuring Stigmergy: The Case of Foraging Ants,” Gulyas et al. begin
to explore well-defined system-level observables that can quantitatively capture
the qualitative sense of emergence in multi-agent systems. In the specific case of
ant agents foraging in a 2D spatial environment for a conserved food resource,
they define an entropy-like measure of disorder on the ant positions and food
positions, and observe the dynamics off these measures. Although preliminary,
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VI Preface

this paper raises the important question of whether there are underlying sta-
tistical mechanics-like principles that apply to emergent multi-agent systems.
Answering this question will in the long run provide an important part of the
underlying theory of emergent distributed systems.

In “Dynamic Decentralized Any-Time Hierarchical Clustering,” Parunak
et al. introduce a technique for maintaining the hierarchical clustering of dynam-
ically changing, streaming data using strictly local computations. The algorithm
is inspired by ant nest-building.

Mamei and Zambonelli’s work on “Programming Modular Robots with the
TOTA Middleware” and Shabtay et al.’s paper on “Behaviosites: A Novel
Paradigm for Affecting Distributed Behavior” shared the common theme of de-
veloping frameworks for the simple manipulation and control of distributed sys-
tems. The TOTA middleware, as developed in the past few years by Mamei and
Zambonelli, is an efficient and elegant language through which general distrib-
uted behaviors can be designed and propagated through multi-agent systems.
A Tuple on the Air is a data structure that contains a behavioral program, to-
gether with rules for its propagation and maintenance. If a single robot in a
system is infected with the appropriate TOTA, its behavior can effectively prop-
agate and emergently control the functioning of the system as a whole. Here,
Mamei and Zambonelli apply the TOTA approach to programming a variety of
motion routines (walk, crawl, roll, etc.) in snake-like robots.

While the Mamei and Zambonelli work is inherently spatial, referring as it
does to the geometric motions of physical robots, the Shabtay et al. work is about
behavioral programming in non-spatial systems. Their behaviosites are pieces of
code that infect and multiply within a community of functioning agents, ma-
nipulating the responses of the agents so as to change and potentially improve
their behavior. They apply their idea to the El Farol bar problem. Although the
two papers are applied to quite different problems, their common idea of stan-
dardized code fragments that affect global behavior as they infect local agents
is striking.

In “An Adaptive Self-Organizing Protocol for Surveillance and Routing in
Sensor Networks,” Jorge Simao exploits the diffusion of information around a
sensor network to design a decentralized routing protocol that is efficient both
in identifying an emergency situation as well as in using energy at each sensor.
By using the correlations between sources of information and event types, the
algorithm propagates information along a gradient in much the way the De Wolf
and Holvoet design patterns describe.

In “Towards the Control of Emergence by the Coordination of Decentralized
Agent Activity for the Resource Sharing Problem,” Armetta et al. propose an
agent communication model, called a negotiation network, in which (situated)
agents and contracts are assigned to each other, and stigmergic coordination
procedures, where agents can dynamically evaluate and select contracts. The
performance of the resulting system, CESNA, is comparable to centralized op-
timization techniques.
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Preface VII

A number of contributions apply or target evolutionary techniques, a main
source of inspiration for achieving self-organization. Eiben et al. optimize evolu-
tionary algorithms on the fly in “Reinforcement Learning for Online Control of
Evolutionary Algorithms.” They use a control loop that involves a reinforcement
learning component to capture the abstract structure of the ongoing optimiza-
tion, that is, the way performance depends on parameters.

In “Greedy Cheating Liars and the Fools Who Believe Them”, Arteconi
et al. apply an important idea originating from evolutionary computing: tags.
In the protocol they present, the tag-based evolutionary system can successfully
resist certain types of malicious attacks. All network nodes make local decisions
to implement selection, replication and fitness evaluation, and still, through the
application of tags, it becomes possible to implicitly reward groups that work
together in a cooperative way.

In Nowostawski and Purvis’ work on “Evolution and Hypercomputing in
Global Distributed Evolvable Virtual Machines Environment,” the authors ex-
hibit a blend between evolving genetic algorithms and distributed spatial
structures. They develop agents on a discrete grid that can cooperate with (or
parasitize) each other to evolve solutions to linear polynomial computations.
In doing so, they are able to observe the diffusion of knowledge and know-how
through the multi-agent system, providing a clear and effective demonstration
of the abstract principles of collective intelligence and learning.

In “A Decentralized Car Traffic Control System Simulation Using Local Mes-
sage Propagation Optimized with a Genetic Algorithm,” Kelly and Di Marzo
Serugendo describe a decentralized approach to control traffic in an urban envi-
ronment. The control system is based on emergent phenomena that can be tuned
using a few simple parameters. In the article these parameters are set using a
genetic algorithm that utilizes a simulation of the control system to evaluate
candidate settings.

Finally, we need to mention that this edition is the last in the ESOA
series as the workshop will merge into the International Conference on Self-
Adaptation and Self-Organization (SASO): a federated conference series cover-
ing our field starting in 2007. This signals the growth of interest in engineering
self-organization. We believe that this last volume represents interesting contri-
butions in this direction that the readers will find inspiring and useful in their
research.

November 2006 Sven Brueckner
Salima Hassas
Márk Jelasity

Daniel Yamins
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Hybrid Multi-agent Systems: Integrating Swarming  
and BDI Agents 
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Abstract. The individual agents that interact in a multi-agent system typically 
exist along a continuum ranging from heavyweight cognitive agents (often of 
the “BDI” type) to lightweight agents with limited individual processing (digital 
ants). Most systems use agents from a single position along this spectrum. We 
have successfully implemented several systems in which agents of very 
different degrees of internal sophistication interact with one another. Based on 
this experience, we identify several different ways in which agents of different 
kinds can be integrated in a single system, and offer observations and lessons 
from our experiences. 

1   Introduction 

It has been said that to a small boy with a hammer, every problem looks like a nail. 
Technologists often seek to press every problem into the mold of their favorite 
mechanism. In the domain of multi-agent systems, a wide range of agent models have 
been developed. Some are highly sophisticated cognitive agents that aspire to 
individual human level intelligence, while other emulate insect-level cognition and 
exhibit intelligence only at the level of collective behavior. 

For several years, we have been exploring different ways of combining 
heterogeneous models of cognition in a single system. Our experiences show that this 
approach is not only possible, but that it yields benefits that would be difficult to 
obtain within a homogeneous framework.  

Just as there is no single best agent model, there is no single best way to combine 
different models. We exhibit a number of different architectures and discuss the 
situations in which they can be most profitably applied. 

Section 2 describes the range of agent models that we hybridize in our work. 
Section 3 surveys and illustrates the different modes of integration that we have 
explored. Section 4 offers discussion and conclusion. 

2   Alternative Agent Models  

Software agents exist across a range of complexities. At some risk of oversimplification, 
we describe two extremes, and then illustrate some points in the middle. For expository 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



2 H. Van Dyke Parunak et al. 

purposes, we call the two extremes “heavyweight” and “lightweight” agents, but these 
titles are more mnemonic than definitive. Table 1 summarizes the differences between 
these two extremes. 

2.1   Heavyweight Agents 

Heavyweight agents are based on the cognitively-inspired AI programs developed in 
the heyday of artificial intelligence. Each such program then, and each individual 
agent now, aspires to human-level intelligence. In this domain, an intelligent agent 
system consists of a system composed of individually intelligent agents. Well-known 
researchers in the heavyweight tradition include Durfee [7], Jennings [16], Laird [19], 
Lesser [21], Sycara [34], and Wooldridge [37]. 

Heavyweight agents have inherited classical AI’s emphasis on symbolic 
representations manipulated with some form of formal logic. The symbols are 
intended to represent cognitive constructs that are meaningful to people, such as 
beliefs, desires, and intentions (thus the common rubric “BDI agent” [13, 30]). These 
constructs, and the logical entailments among them, are elicited by a process of 
knowledge engineering. This process seeks to capture human intuitions about the 
appropriate partitioning of a problem domain and self-reflective models of how 
people reason about the domain.  

Because heavyweight agents are built around human-inspired cognitive 
constructs, they facilitate communication with their users. If an agent has a 
concept of “danger” that corresponds to a human’s concept, there is a good chance 
that when the agent tells the human that a situation is dangerous, the human will 
understand. 

This benefit comes at a cost. The process of knowledge engineering is intensive 
and time-consuming. In addition, logical computation is subject to a number of 
limitations. For example, logical computations are often 

Table 1. Two Extreme Types of Software Agents 

Class of Agent Heavyweight Lightweight 

Origins Artificial Intelligence/Cognitive 
Science Artificial Life 

Locus of intelligence Within a single agent In the interactions among 
agents 

Internal representations 
and processing Symbolic Numeric: polynomials, neural 

networks, matrix manipulations 

Concepts represented Explicit beliefs, desires, 
intentions/goals, plans Sensor states, actuator levels 

Development approach Knowledge engineering Optimization 

Strengths Intelligible to humans Computationally efficient 
Degrades gracefully 

Weaknesses 
Computationally intractable for large 
problems 
Brittle 

Difficult to understand 
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• Intractable, their computational complexity increasing exponentially or worse in 
the size of the problem, so that problems of realistic size cannot be executed fast 
enough for the answer to be useful [10], 

• Undecidable, so that some questions expressible in the logic simply cannot be 
answered [11], or 

• Brittle, with performance that degrades rapidly (either in accuracy or speed) as one 
nears the limits of the domain. 

2.2   Lightweight Agents 

At the other extreme, lightweight agents draw their inspiration from computerized 
work in ethology, the study of animal behavior. Biologists often construct computer 
models of animals in order to study their interactions with one another. In many cases 
(such as ants), no one imagines that the individual agent has anything like human-
level intelligence, but the society as a whole can exhibit impressive behavior that 
might be described as intelligent. In this context, an intelligent agent system is a 
system of agents that is collectively intelligent. Well-known researchers in this 
tradition include Bonabeau [3], Brueckner [4], Ferber [8], Ilachinski [15] and Parunak 
[22]. 

Lightweight agents do not rely on cognitively meaningful internal representations, 
for two reasons. First, biologists tend to resist anthropomorphizing the mental 
behavior of ants and termites. Second, even if it were appropriate to describe their 
mental operations in the same terms that emerge from human introspection, we would 
have no way to interrogate the organism about these constructs. What is accessible to 
the biologist is the entity’s environment and its observed actions, so the representation 
tends to focus on sensory inputs and signals sent to actuators. These are customarily 
described in analog terms, leading to widespread use of numerical reasoning, usually 
as some form of matrix algebra (a framework that includes weighted polynomials and 
neural networks).  

Programming such an agent is a matter of identifying the appropriate numerical 
parameters and setting their values. Knowledge engineering is of little use with a 
digital insect. Instead, one uses optimization methods such as evolutionary 
computation to explore the parameter space. We can compare the observed behavior 
of the agent either with the observed behavior of the domain entity (in a modeling 
application) or with the desired behavior (in a control application), and use the 
difference between the two as an objective function [32].  

Because their internal processes are essentially numerical, lightweight agents are 
usually more computationally efficient than heavyweight agents, avoiding issues of 
tractability and decidability. Their representations extrapolate naturally, avoiding the 
challenge of brittleness. But they can be difficult for users to understand, for two 
reasons. 

1. The mapping from internal numerical parameters to cognitively meaningful 
constructs may not be direct. An agent’s behavior may be dominated by the fact 
that the weight between two nodes in a neural network is 0.375, but that knowledge 
is of little use to a human seeking to validate the agent. 
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4 H. Van Dyke Parunak et al. 

2. Lightweight agents often yield useful behavior, not as individuals, but as a 
collective. The dynamic of emergence, by which global behavior arises from 
individual behaviors, is often counter-intuitive [31]. 

2.3   Intermediate Agents 

The two categories of “heavyweight” and “lightweight” agents as described above are 
extreme cases, and a number of intermediate architectures have been used. 

Scripted agents use a state machine to shift from one cognitively meaningful state 
to another, based on external stimuli. Thus they avoid some of the computational 
complexity issues associated with richer computational models such as theorem 
proving. 

One mechanism for scripted agents is the Task Frame [5]. Task Frames are used in 
military simulations such as OneSAF, JSAF, and ModSAF to decompose tasks, 
organize information, and sequence through the steps of a process. Finite state 
machines are used to sequence through the task states, however the code within these 
states is unrestricted.  

Sometimes scripted transitions are combined with lighter-weight mechanisms. 
MANA [20] is a combat model whose agents make decisions based on matrix 
multiplications, along the line of EINSTein [15]. However, the personality vector that 
weights the effect of environmental stimuli can be changed discontinuously by certain 
distinguished events, allowing the agent to change among different behavior patterns 
depending on environmental stimuli. 

Bayes networks [29] combine symbolic and numeric processing, in a manner 
similar to iconic neural networks. Each node corresponds to a concept or proposition 
that is meaningful to a human, in a manner consistent with symbolic representations, 
but the links among the nodes represent conditional probabilities, and processing 
consists of numeric computations of the propagation of evidence through the network. 

Bayes networks have proven most useful at interpretation of activity from 
observations.  For example, seeing a person with wet hair enter the office could either 
imply that it is raining or they have just taken a shower.  However, if we observe 
several people with wet hair the belief that it is raining would increase. 

These intermediate agent architectures combine in a single agent mechanisms from 
different points in the spectrum in a single agent.  

3   Integration Modes 

In this section, we discuss why it is difficult to integrate agents with different 
cognitive levels in a single system, and then exhibit a number of different approaches 
that we have explored. Our list of examples is open-ended, and we invite other 
researchers to expand it on the basis of their experience. 

3.1   Why Is Integration Difficult? 

The hybrid systems that we discuss here differ from the “intermediate agents” 
discussed in Section 2.3. Those examples combined mechanisms from different points 
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in the spectrum in a single agent. Here, we explore patterns for combining distinct 
agents that differ in their cognitive mechanisms.  

There are three challenges in developing a hybrid system: issues internal to 
individual agents, issues relating an individual agent to its external environment, and 
issues dealing with the overall structure of the system. 

Internal Issues: Any agent, however simple or complex, is responsible to perceive its 
environment and take some action based on that perception. Each agent in the system 
must have the capacity to solve the problem with which it is tasked.  

External Issues: The widespread use of heavyweight agents leads naturally to agent 
interactions that draw on the cognitive constructs that the individual agents are 
presumed to support. This assumption is the basis of messaging standards such as 
KQML/KIF and FIPA ACL. Lightweight agents interact through their sensors and 
actuators rather than through messages with explicit cognitive content. Thus 
communication between the two types of agents requires special attention. 

System Issues: When we provide our small boy with a screwdriver and a wrench in 
addition to his hammer, we have made his life much more complicated. Now he has 
to decide which tool to use in which situation. When we permit the use of multiple 
levels of agent cognition in a single system, we need to think about which kind of 
agent to use where, and why. 

3.2   Swarm as Subroutine 

Sometimes a community of lightweight agents can perform a specialized task in 
support of a heavyweight agent. We used this approach in an experimental extension 
of TacAir-Soar [17]. The basic TacAir-Soar system is a classic heavyweight 
architecture based on the Soar architecture for general AI. Geospatial reasoning such 
as path planning is cumbersome in such an architecture [9], but straightforward for a 
swarm of lightweight agents. Biological ants use a simple pheromone mechanisms to 
generate minimal spanning trees that connect their nests with food sources [12], and 
these mechanisms have been applied successfully in robotic path planning to 
approach targets while avoiding threats [33].  

We merged these two classes of agents by having the Soar agent invoke a swarm 
of lightweight agents to plan paths. Fig. 1 shows the structure of the implemented 
system. Communication between the agents is at the cognitive level required by the 
pilot agent. A wrapper 
around the path planning 
swarm handles the 
translation. In a typical 
dialog, the pilot reports its 
current location and its 
destination, and requests a 
route. The wrapper 
instantiates a nest of agents 
at the current location, a food 
source at the destination, and 
turns the swarming agents 

Path Planner

Battle 
Simulator 

(JSAF)

Pilot

Network

Hybrid Agent

conceptual information 
exchange

physical information exchange

Path Planner

Battle 
Simulator 

(JSAF)

Pilot

Network

Hybrid Agent

conceptual information 
exchange

physical information exchange

 

Fig. 1. Swarming path planner as subroutine to Soar AI 
pilot 
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6 H. Van Dyke Parunak et al. 

loose. They generate a field of digital pheromones whose crest indicates the desired 
path. The wrapper then translates the turning points in this path into a series of 
waypoints, which it reports to the pilot. 

3.3   Polyagent 

Closely related to the previous example is the use of multiple lightweight agents to 
explore alternatives being considered by the heavyweight agent. We have formalized 
this construct as the polyagent [23], and other researchers have developed similar 
mechanisms under the rubric of “delegate Multi-Agent Systems” (because the 
heavyweight agent delegates its task to the lightweight agents) [14, 18].  

The justification for using lightweight agents to explore alternatives is 
computational efficiency. If there were no constraint on computational resources, the 
heavyweight agent could just explore the alternatives itself (perhaps through parallel 
invocations of its environment). By using lightweight agents, it can explore more 
alternatives in shorter time. 

The difference between the polyagent and the swarm as subroutine is that the 
heavyweight agent in the polyagent (the “avatar”) considers each of its lightweight 
agents (“ghosts”) individually in making use of their results, rather than simply 
consuming their aggregate output as in the swarming subroutine. As a result, instead 
of wrapping a translator around the lightweight agents to enable them to speak the 
language of the heavyweight agent, we require the heavyweight agent to examine the 
environmental changes (e.g., digital pheromones) produced by the actions of the 
lightweight agents.  

3.4   Transitional Agents 

Transitional agents morph between heavy and light weight agents depending on the 
needs of the application. 

For example, in a large scale simulation it is infeasible to simulate every entity at a 
very high level of fidelity, yet humans who participate in the simulation will not be 
challenged by the actions of an insect level intelligence. To provide both the desired 
breath of scale and richness of interaction, the majority of the entities can be 
controlled by lightweight agents, while those few agents who come into contact with 
humans can be controlled by heavyweight agents. 

The simplest interface simply notes that an interaction is imminent, destroys the 
lightweight controlled entity and replaces it with a heavyweight controlled entity, or 
replaces a heavyweight entity with a lightweight when the entity is no longer within 
human interaction range.  

One problem with this approach can be exemplified as “waking up in the middle of 
a dogfight.” The agent needs to acclimate itself to the situation, obtain historical 
information from the other controller, and plan a strategy for the encounter. During 
this time the agent is helpless. To overcome this transition interval, an entity’s new 
control method should be started while the entity is under control of the previous 
method. In order to facilitate the transition, each controller must incur an overhead of 
logging additional information that is useful to the other controller.  
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3.5   Swarming Integration of  
        Cognitive Reasoners 

Sometimes it is desirable to 
integrate the results of multiple 
reasoning engines operating on a 
single domain. Within the 
paradigm of symbolic AI, the 
standard approach is to construct 
yet another reasoner that does 
meta-level reasoning over the 
knowledge produced by each of the 
component reasoners. This process 
is liable to the same challenges of 
tractability, decidability, and 
brittleness as any symbolic process. 
It is often exacerbated by the 
increased size of the problem 
(involving the union of the results 
of multiple reasoners) and the 
difficulty of ensuring semantic 
compatibility across the reasoners.  

Instead of reasoning about the 
intermediate results, an alternative 
approach is to treat them as 
constraints that are imposed on an 
emulation of the domain. This approach uses the semantics of the emulation as the 
interface standard across the different reasoners. Whether the emulation is tractable or 
not depends on its underlying technology. An equation-based model of the domain is 
completely tractable and decidable, but has a number of shortcomings compared with 
an agent-based model [28]. If the agents in an agent-based model are heavyweight 
agents, the emulation itself may be no more efficient than metalevel reasoning. The 
highly efficient execution of lightweight agents enables us to run an emulation fast 
enough to support real-time fusion of results from multiple reasoners. This approach 
is in some sense a mirror image of the “Swarm as Subroutine” model of Section 3.2. 
There, a swarm of lightweight agents solved a specific problems for a heavyweight 
agent. Here, the heavyweight agents are the focused problem-solvers, and it is the 
swarm that integrates their results. 

An important challenge to this approach is the question of fidelity. Whether a 
model can accurately fuse constraints imposed by component reasoners depends on 
how faithfully it represents the domain, and a priori one might expect lightweight 
agents, with their simplified internal modeling, to yield less accurate models of 
behavior than heavyweight agents. In many domains, the constraints imposed by the 
environment are more important to determining the system-level outcome of a model 
than the internal reasoning of the agents, a phenomenon that we have termed 
“universality” [25]. In such domains, lightweight agents are equal to the task. 
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Fig. 2. Three Synergistic Reasoners.—Statistical 
reasoner estimates threat regions; Bayes network 
projects intentions; swarming emulation integrates 
these results by using the to constrain dynamics of 
emulated entities 
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We have taken this approach in fusing multiple reasoners in a system for predicting 
battlefield behavior. Fig. 2 shows the structure of this system. The central element, 
Behavioral Evolution and Extrapolation (BEE), is a swarming model of the 
battlespace that itself predicts entity behavior using polyagents (Section 3.3). It also 
fuses the results of two other reasoners. Statistical Anomaly Detection (SAD) 
identifies regions of the battlespace that are likely to be perceived as threatening, and 
thus repulsive, to domain entities, while Knowledge-based Intention Projection (KIP) 
uses Bayesian networks to suggest entity goals, which are attractors. Fig. 3 shows 
how the swarming BEE ghosts form predictions of entity movement that satisfy these 
constraints. This prediction technology outperforms human experts, and also other 
technical approaches (such as game-theoretic predictors) with which it has been 
compared [24]. 

In the example shown in Fig. 2, SAD and KIP interface with the swarming 
simulation by depositing pheromones reflecting their results. In principle, they could 
also modulate the simulation by changing the structure of its underlying topology, or 
by modifying the personalities of the swarming agents. 

3.6   Cognitive Interface, Swarming Processing 

The cognitive transparency of heavyweight agents makes them a natural candidate for 
a user interface to an underlying swarming system. In this approach, the heavyweight 
agent maintains a model of the user’s interests. It focuses the behavior of the swarm 
in accordance with those interests, and then translates the swarm’s results into terms 
understandable to the user. Metaphorically, the heavyweight agent constructs the 
DNA that guides the behavior of the lightweight agents. 

An example of this architecture is the Ant CAFÉ, a system that supports 
Indications and Warnings analysts as they try to connect clues gleaned from massive 
quantities of complex data [35]. The system is an iterative loop: analysts ask the 
system to find evidence that supports a hypothesis, the system returns assemblies that 
organize relevant evidence, 
and the analyst reviews the 
evidence and in the process 
improves her understanding 
of the problem. The analyst-
system interaction leads to a 
revised representation of the 
hypothesis, and the loop 
iterates repeatedly in this 
manner as the investigation 
advances. Fig. 4 provides a 
high level overview. 

Hypotheses are repre-
sented as concept maps [6]. 
The concept maps are 
utilized in every stage of 
processing; they essentially 
act as templates for the 
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c
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Fig. 3. Results of Fused Reasoners.—For red unit at d 
(red tail shows recent past), BEE integrates predicted goal 
(a) from KIP and threat regions (c) from SAD with 
dynamics of interactions with environment to yield 
predicted path (b) in the face of future threats, 
engagements, and force activity 
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construction of evid-
ence assemblies. Con-
cept maps are graphs 
with labeled nodes and 
edges. The nodes are 
nouns and the edges 
are verbs or verb-
prepositions. We call 
the nouns and verbs 
concepts. We call two 
nodes and their 
connecting edge, toge-
ther, a relation. We 
consider concept maps 
to be a low-commi-
tment form of 
ontology-like symb-
olic knowledge repre-
sentation. They are 
becoming quite ubiq-
uitous for modeling 
domain knowledge, and are now widely taught in middle schools and elsewhere. 

The left side of Fig. 4 (the Analyst Modeling Environment, or AME) involves 
modeling the analyst’s interests as represented in the concept maps, using a 
heavyweight agent that explicitly manipulates high-level concepts. Issues include 
initial acquisition of concept maps, tuning weights associated with concepts and 
relations to reflect analyst interests by observing their behavior, and evolving concept 
maps in semi-automatic ways to capture increasing understanding as investigations 
progress [1]. The use of a heavyweight agent to model the analyst and interpret the 
results returned by the Ant Hill is necessary to enable humans to use the system 
effectively. 

The right side of Fig. 4 is the Ant Hill, which uses lightweight agents in swarming 
processes to cluster data, identify relations, and assemble evidence. Each of these 
stages employs a distinct swarming mechanism. They are sequential in terms of 
logical data flow, but execute concurrently. All of the processes use anytime 
algorithms: where some answer is available at any time, and the quality of the answer 
improves as time passes. Lightweight swarming agents are appropriate for the Ant 
Hill because they can efficiently process the massive dynamic data that the system 
must handle. 

The concept maps form the interface between the Analyst Modeling Environment 
and the Ant Hill. The AME can interpret them as symbolic structures to capture the 
analyst’s interests and explain the structure of results, while the Ant Hill can use the 
concepts and their associated weights to define a feature vector that supports low-
level self-organizing processes such as dynamic distributed hierarchical clustering 
[27]. 

 

Fig. 4. Overview of the Ant CAFÉ architecture 
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3.7   Peer Interactions 

Because lightweight agents do not require the degree of knowledge engineering that 
heavyweight agents do, and because of their relative efficiency of execution, they can 
often be attractive as a way to increase the population of a multi-agent model without 
unduly increasing its cost or its computational expense. In this approach, lightweight 
and heavyweight agents function as peers in an agent-based model. 

Military operations unfold within the constraints of a particular physical 
environment. Operational effectiveness is a product of the joint “system” of the 
military operations and the environment. These emergent dynamics often vary widely 
as the state of the environment varies, to the point where the dynamics and thus the 
outcome of particular military operations may be completely dominated by the 
environment in which they are embedded. Recognizing this relationship between the 
operations and their environment is important at different levels. At the level of 
sensors and communication networks, local variations in environmental factors such 
as weather, soil conductivity, and foliage can lead to wide variation in system 
performance. At the level of fighting units such as urban combat with small 
distributed teams, FCS system of systems, or highly distributed mixed-initiative 
systems, the outcome depends on the availability of information and the interaction of 
numerous entities and the complex environment in which they are embedded.  

The interaction of various noncombatants with different states within the 
environment of a military operation may also strongly determine the outcome of the 
operations. Noncombatants interact with the operations in two ways. On the one hand, 
they are simply affected by the ongoing operations (e.g., seeking refuge, being 
injured, etc.), but on the other hand, they may also influence the progress of the 
operation directly or indirectly. A direct impact occurs when some of the objectives of 
the operation are contingent on the state of the noncombatants (e.g., minimize 
casualties, control refugee flows). Noncombatants indirectly influence the progress of 
the operations as they may provide cover for combatants or obstruct the line-of-sight 
to targets.  
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Fig. 5. Interfacing peer heavyweight and lightweight agents 
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We have implemented this approach to add swarming non-combatants to the 
scripted combatants in an urban combat modeled in COMBAT XXI [2]. Fig. 5 shows 
how we interface them. The swarming clutter agents live on a graph model whose 
nodes maintain digital pheromone concentrations. The scripted combatants live on a 
map. We add a process to the computational environment that translates between 
pheromone concentrations on the swarming side and events and state information on 
the heavyweight side. Such a process is an instance of the kind of services that make 
it important to consider the environment a first-class object in multi-agent systems 
[36]. 

4   Discussion and Prospectus 

We can now return to the challenges to integration that we raised in Section 3.1, and 
also outline some directions for further research. 

4.1   Internal and System Issues 

Fig. 6 summarizes the relative strengths and complementarity of heavyweight (e.g., 
BDI) and lightweight (typically swarming) agents. In one way or another, each of our 
examples seeks to combine the strengths of the two models. 

This prototypical summary of the capabilities and weaknesses of the different 
models is moderated by the principle of agent universality [25]. As the level of 
constraint imposed by the environment increases, differences in the cognitive 
capability of agents become less important. In effect, there is a trade-off between the 
information that agents can gain from the environment and the information they must 
generate by their own reasoning. Highly-constrained environments may provide so 
much exogenous information that even very simple agents are all that is needed, while 
in environments with no constraints, swarming lightweight agents may not be able to 
function effectively. 

4.2   External Issues: Agent Interfacing 

Our examples show a number 
of different approaches to agent 
interfacing. Lightweight agents 
are by their nature represent-
ationally impoverished relative 
to heavyweight agents, so it is 
natural that heavyweight agents 
will need to learn to “speak 
their language” rather than the 
other way around. This may 
take the form of depositing and 
reading pheromones that are 
visible by stigmergic agents  
(as KIP and SAD do in the 
swarming integration example). 
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Because lightweight agents are so simple, it is possible to have heavyweight agents 
custom-craft them for specific tasks (as in the Polyagent, or along the lines of the 
cognitive interface example). 

4.3   Future Research 

Once we begin to think in terms of using lightweight and heavyweight agents together 
in the same system, a number of research questions become evident. 

To what extent can we construct a unified development methodology that supports 
both extremes (and thus intermediate agent types as well)? It is clumsy to have to use 
one methodology [38] for BDI agents, and a completely separate one [26] for 
swarming agents. Hybrid systems will only become commonplace when both kinds of 
agents can be developed within an integrated framework. 

Sometimes the cognitive complexity of an agent may need to differ during its 
lifetime. For example, imaging a crowd of lightweight agents representing non-
combatants. At some point, an intelligence operative might want to engage one of 
them in conversation about what she has seen recently, a process that requires the 
cognitive capabilities of a heavyweight agent. One approach is the transitional agent 
approach described in Section 3.4. Another would be to add an interpreter to the 
lightweight agent along the lines of Section 3.6. Such a dynamic change in agent 
complexity has not been explored to any great degree, and poses a number of 
interesting research challenges. 

The schemes summarized in this paper are the result of surveying projects that we 
have executed. A further stage of analysis might yield a more systematic theory of 
how one can integrate different agent models, which in turn might suggest further 
approaches to this important problem. 
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Abstract. Holonic Multi-Agent Systems (HMAS) are a convenient way
to engineer complex and open systems. HMAS are based upon self-
similar entities, called holons, which define an organizational structure
called holarchy. An open issue of HMAS is to give holons means of self-
organization to satisfy their goals. Our works focus on modeling and
engineering of complex systems using a holonic organizational approach.
This paper introduces the concept of capacity as the description of agents
know-how. This concept allows the representation and reasoning about
agents know-hows. Even more, it encourages a reusable modeling and
provides agents with means to self-organize.

1 Introduction

Software agents and multi-agents systems (MAS in the sequel) are recognized as
both abstractions and effective technologies for modelling and building complex
distributed applications. However, they are still difficult to engineer. The current
practice of MAS design tends to be limited to individual agents and small face-
to-face groups of agents that operate in closed systems [13]. However, MAS
aim large scale systems operating in open environments. Moreover, agents are
expected to organize and cooperate in order to fullfill system’s goals. It seems
improbable that a rigid unscalabe organization could handle real world problems
in this context. The holonic paradigm [7] has proven to be an effective solution to
several problems with such complex underlying organizations [10,21,22]. Holons
are defined as self-similar structure composed of holons as substructure. They
are neither parts nor wholes in an absolute sense. The organizational structure
defined by holons, called holarchy, allows the modelling at several granularity
levels. Each level corresponds to a group of interacting holons. One issue is that
holons need a representation of their know-hows in order to efficiently group,
cooperate and achieve their respective goals.

In this paper, we introduce the notion of capacity as a description of a know-
how or a service. We define this notion and integrate it into a holonic framework
to enable holons to find the right holon to cooperate with.
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This paper is organized as follows : secion 2 introduces the holonic framework
we use and defines the concept of capacity. Section 3 shows how to use capacities
and finally section 4 concludes and future research directions are presented.

2 Concepts

2.1 An Organizational Approach for Holonic Systems

A holon is a self-similar structure composed of holons as sub-structures. This
hierarchical structure composed of holons is called a holarchy. A holon can be
seen, depending on the level of observation, either as an autonomous ”atomic”
entity or as an organization of holons. This duality is sometimes called the Janus
Effect1, in reference to the two faces of a holon. A holon is a whole-part construct
that is composed of other holons, but it is, at the same time, a component of
a higher level holon. Examples of holarchies can be found in every-day life.
Probably the most widely used example is the human body. The body cannot
be considered as a whole in an absolute sense. It is, in fact, composed of organs,
that in turn are composed of cells, molecules, etc.

Holonic Systems have been applied to a wide range of applications. Thus it is
not surprising that a number of models and framework have been proposed for
these systems[11,22,23]. However, most of them are strongly attached to their
domain of application and use specific agent architectures. In order to allow
modular and reusable modelling that minimizes the impact on the underlying
architecture we propose a framework based on an organizational approach. We
have selected the Role-Interaction-Organization (RIO) model [5] to represent
organizations. We have leaned for this model since it enables formal specification,
animations and proofs based on the OZS formalism [4].

In order to maintain this framework generic, we need to distinguish between
two aspects that overlap in a holon. The first is directly related to the holonic
character of the entity, i.e. a holon (super-holon) is composed of other holons
(sub-holons or members). This aspect is common to every holons, thus called
holonic aspect. And the second is related to the problem the members are trying
to solve, and thus specific to the application or domain of application.

A super-holon is an entity in its own right, but it is composed by its members.
Then, we need to consider how members organize and manage the super-holon.
This constitutes the first aspect of the holonic framework. To describe this as-
pect, we define a particular organization called Holonic Organization. We have
adopted the moderated group[3] as management structure of the super-holon,
due to the wide range of configurations it allows. In a moderated group, a subset
of the members, namely heads, will represent all the sub-holons with the outside
world.

The Holonic Organization represents a moderated group in terms of roles and
their interactions. To describe the status of a member inside a super-holon, it
1 Roman god with two faces. Janus was the god of gates and doorways, custodian of

the universe and god of beginnings.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



An Analysis and Design Concept for Self-organization in HMAS 17

defines three main roles: The Head role players are the representatives or mod-
erators of the group, and a part of the visible interface. For the represented
members we define two different roles. The Part role represents members be-
longing to only one super-holon. The Multi-Part role is played by sub-holons
shared by more than one super-holon.

In our approach, every super-holon must contain at least one instance of
the Holonic Organization. Every sub-holon must play at least one role of this
organization to define its status in the composition of the super-holon.

Super-holons are created with an objective and to perform certain tasks. To
achieve these goals/tasks, the members must interact and coordinate their ac-
tions. Our framework also offers means to model this second aspect of the super-
holons. This goal-dependent interactions are modeled using organizations. We
give them the name of Internal Organizations, since they are specific to each
holon and its goals/tasks. The behaviors and interactions of the members can
thus be described independently of their roles as a component of the super-
holon. The set of internal organizations can be dynamically updated to describe
additional behaviors. The only strictly required organization is the Holonic or-
ganization that describes member’s status in the super-holon.

Fig. 1. Computer Science Department Holon

This approach guarantees a clear separation between the management of the
super-holon and the goal-specific behaviors and favors modularity and
re-usability.
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For example, lets consider a department in a university. The holonic aspect
makes reference to the fact that the students and teachers compose and manage
the department. This is modeled using the Holonic Organization. On the other
hand, the department is created with a specific purpose and, thus, to fulfill pre-
cise goals/tasks in the system. How members coordinate and interact to achieve
these goals is modeled using the internal organizations. In the department exam-
ple, we use two organizations: Lecture and Council. The RIO diagrams of these
organizations are shown in figure 1(a).

At the holon level, an organization is instanciated into groups. In our example,
the Department Holon is decomposed into three groups. The first represents an
instance of the Holonic Organization. The other two groups instanciate the goals-
dependent organizations : Lecture and Council. The notation g1:Lecture denotes
that the g1 group is an instance of the organization Lecture. A holon may contain
several instances of the same organization.

Further details on the framework can be found in [14,16]. A formal specifica-
tion of the roles described above can be found in [15].

2.2 Capacity

Large scale systems are expected to organize and cooperate in open environ-
ments. To satisfy their needs and goals, agents often have to collaborate. Thus
an agent has to be able to estimate the competences of its future partners to
identify the most appropriate collaborator. We have introduced the notion of ca-
pacity to deal with this issue. The capacity allows to represent the competences
of an agent or a set of agents.

Definition. A capacity is a description of a know-how/service. This description
contains at least a name identifying the capacity and the set of its input and
output variables which may have default values. The requires field defines the
constraints that should be verified to guarantee the expected behavior of the
capacity. Then the ensures field describe what properties the capacity guarantees
if requires is satisfied. Finally we add a textual description to informally describe
the behavior of the capacity.

In our model the capacity can thus be represented using the structure pre-
sented in figure 2 (inspired by [19] and [12]) :

By logical constraints we refer to pre/post conditions on operations and in-
variants on states. For example, lets consider a capacity called FindShortestPath.
This capacity finds the shortest path in a weighted directed graph G from a
source node s to a destination d. The description of this capacity can be stated
as depicted in the figure 3. This capacity takes as input : a directed graph G
consisting of nodes N and edges E valued by a weight function w, a source and
a destination node. The output produced by this capacity, P , consists in a se-
quence of nodes. The requires clause states that the node and edge sets must
not be empty. It also impose that the source and destination nodes belong to
the graph nodes and that the weight function gives only positive values. The
ensures clause says that there cannot be a shorter path than P from s to d.
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Name : the name of the capacity
Input : the declaration of input variables, their type and possibly a default

value.
Output : the declaration of output variables, their type and possibly an ex-

pected value for input default value.
Requires : Logical constraints defined on input variables
Ensures : Logical constraints defined on output variables
Textual Description : A textual description of the capacity

Fig. 2. The general structure of a capacity

Name : FindShortestPath
Input :

– G = (N,E), directed graph. E = N × N
– w : E → R, weight function.
– s ∈ N , source node.
– d ∈ N , destination node.

Output : P = 〈s = i0, i1, · · · , in−1, d = in〉, with ∀k ∈ {0..n}, ik ∈ N
the shortest path P between s and d.

Requires : N �= ∅ and E �= ∅ and ∀(u, v) ∈ E/w(u, v) ≥ 0
Ensures : ∀jt ∈ N , t ∈ {0..m}

∀Q = 〈s = j0, j1 · · · , jm = d〉 : P = Q ∨
m−1∑

t=0

w(jt, jt+1) ≥
n−1∑

k=0

w(ik, ik+1)

There exists no path Q in the graph linking s to d shorter than P .
Textual Description : provides a solution to the single-source shortest path

problem for a directed graph with non-negative edge weights.

Fig. 3. The FindShortestPath capacity

The definition of the capacity doesn’t include any references to entities ex-
hibiting this know-how/service. Indeed, we want to clearly separate the capacity
of how it is realized.

However, from the super-holon point of view, we can categorize its capacities
in three subcategories:

Atomic. The capacity is already present in one of the members of the super-
holon. In this case, the head has to simply request the member possessing
the required capacity to perform it.

Liaised. The capacity is obtained from a subset of the member’s capacities
following a known protocol.
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Emergent. The capacity is not present as an atomic capacity nor it can be
obtained as composition of them. The capacity emerges from the interactions
of the members.

The capacity is atomic for the super-holon if one of the members provides the
capacity, but it does not have any implications on how this member obtains this
capacity. This taxonomy of capacity is only relative to the super-holon point of
view. The distinction between the capacity and the means to obtain it, and how
we have integrated this concept into our holonic organizational model, will be
detailed in the next section.

2.3 Integrating Capacities into a Holonic Organizational
Perspective

As we already mentioned, we use an organizational approach to model holonic
MAS. We propose an extension of the RIO model[5] to integrate the concepts
of Holon and Capacity. An overview of this meta-model is presented in figure 4
using an UML-like diagram.
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Fig. 4. Overview of the Organizational Meta-Model

As in RIO, the behaviors of the members are specified in terms of roles and
their interactions. A role is defined as the abstraction of a behavior or/and a
status in an organization. An interaction is a link between two roles such that an
action in the first role produces a reaction on the second one. An organization
is defined by a set of roles, their interactions and a common context. Finally a
capacity is defined as presented in the previous section.

To obtain a generic model of organization, we need then to define a role
without making any assumptions on the architecture of the holon which will
play this role. Basing the description of these behaviors (Roles) on capacities
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enables a modular and reusable modeling of holonic MAS. Indeed, capacities
describe what the holon is capable of doing (Abstract Level), independently
of how it does it (Concrete Level). So to catch these two different levels of
abstraction in our organizational model, we introduce the notion of capacity
implementation. The capacity is the description of a given competence/service,
while its implementations are the way to obtain that competence or service. For
the example of the capacity FindShortestPath, the Dijkstra’s and the Bellman-
Ford algorithms constitute two available implementations. From a programming
point of view, the notion of capacity implementation promotes re-usability and
modularity and in this sense can be considered as a basic software component.
Multiple implementations can be associated to a single capacity.

A role defines a behavior based on what the holon is capable of doing (i.e.
the holon’s capacities). Thus, a role requires that the role player has specific
capacities. A holon has to possess all capacities required by a role to play that
role.

On the other hand, a role confers to its player a certain status in the orga-
nization and the right to perform its capacities. A role thus confers holon the
authorization to wield some of its capacities in the context defined by the or-
ganization. This context is materialized at the Concrete Level by the Group. A
group represents then an instance of an organization. A holon belonging to a
group must play at least one role in this group. A holon can belong to several
groups.

In addition a holon may be composed of groups. A super-holon contains at
least the holonic group and possibly a set of internal groups, instances of internal
organizations. Of course a super-holon cannot be a member of one of its internal
groups.

We suppose that every holon has a set of basic capacities. It may also have a
set of specific capacities (e.g. FindShortestPath) that, as we will see in section
3.2, can dynamically evolve.

3 Using Capacities to Enable HMAS Self-organization

3.1 Organization Capacities

As described by John H Holland : ”The behavior of a whole complex adaptive
system[cas ] is more than a simple sum of the behaviors of its parts; cas abound
non linearity” [6].

The notion of capacity provides means to control and exploit these additionnal
behaviors, emerging from members interactions, by considering an organization
as a capacity implementation. Organizations used to model members interac-
tions offer a simple way to represent how these capacities are obtained from
the members. This becomes specially useful to represent Liaised and Emergent
Capacities.

For example, we have already mentioned that the Dijkstra’s and Bellman-Ford
algorithms can be two possible implementations of the capacityFindShortestPath.
If we consider that organizations can also be seen as possible implementations,
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the Ant Colony organization may then be also considered as an implementation
of the capacity FindShortestPath. The Ant Colony is a well known organization
able to determine a solution to the shortest path problem in a directed graph. The
solution (the shortest path) results from Ants interaction in their environment.
According to the description stated at the figure 3, the environment is represented
by the graph G, the source node s is assimilited to the Ant-hill, and the destination
node d to a source of food.

The figure 5 shows an example of three holons in interactions. Holon 1, playing
the Route Requester role, is looking for the shortest route to a given destina-
tion, and thus asks the Route Providers. The behavior, described by the Route
Provider role, is based on the assumption that the role player has the Find-
ShortestPath capacity. As long as the implementation honors the constraints
established by the capacity, the holon is authorized to play the role. In our ex-
ample, two implementations are present. The holon 2 owns an implementation
based on the Dijkstra’s algorithm while holon 3 obtains its capacity through
an Ant Colony. Holon 3 contains an instance of the Ant Colony organization
(depicted in figure 6) noted g1 : Ant Colony. This denomination indicates that
group g1 is an instance of the Ant Colony organization. As a such, members
involved in the group play one of the roles defined on the RIO diagram given at
figure 6.

The fact that an organization can provide a capacity takes all its sense when
we associate it to the holonic vision. Because the super-holon can exploit the
additional behavior emerging from its members interactions and so play roles
inaccessible to its members. It remains one more issue in order to integrate
it into the holonic modelling : how to map the external stimuli of the super-
holon to the actions and capacities of the members. The head represents the
solution to this problem. The members playing this role are part of the interface
of the super-holon. Thus, in charge of redistributing or translating the external
incoming information to the other members of the holon (playing Part and
MultiPart roles). Certain organizations may require to be adapted to this mode
of representation. For the Ant Colony organization (cf. figure 6), a special role :
the Supervisor, played by the Head, have been added. First of all, the Supervisor
is in charge of initializing the environment of the colony with the specified input
graph G and emitting the signal to launch the Ants. Then it observes the Ant
Colony to determine when the result is available and forward it to its super-
holon. This result being emergent, the presence of an observer to determine the
availablity of the result is imperative. The holon 3 in figure 5 contains a group
g1 which is an instance of the Ant Colony Organization.

In this sense, an organisation can, under certain conditions, provide one or
more capacities. Thus, it represents a way to implement or obtain a capacity.
This feature can be exploited in the Analysis and Design phase. To that end,
the capacities provided by an organization have to be added to its description
(especially in Organizational Design Pattern).

The self-organization mechanisms enabled by the notion of capacity will be
detailed in the following section.
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Fig. 5. Atomic or Emergent Capacity

Fig. 6. RIO Diagram of the Ant Colony Organization

3.2 Capacity Dynamics

As we have already precised, each holon originally possess a set of capacities
that can dynamically evolve. In order to acquire a new capacity a holon may
instanciate a new internal organization providing the required capacity. This
process can be summarized by the following steps and is depicted in figure 7 :

1. First, the holon tries to match the capacities provided in organizations’ de-
scriptions with the required capacity. To assure this matchmaking process in
an open system a common description language is required to match holon
capacites, [19,20] propose a model to deal with dynamic service matchmaking
that can be easily adapted to our case.

2. If matches are found the holon has to choose among the different organi-
zations the one which seems the fittest. This choice is essentially based on
the capacities required by the chosen organization and the already present
member’s capacities.

3. When an organization has been chosen the holon has yet to instantiate the
defined roles and interactions. Either the chosen organization’s roles are
played by sub-holons member, or it has to recruit new members capable
of playing those roles.
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4. When each role defined in the chosen organization has a player in the freshly
instanciated group. The super-holon is able to obtain the capacity implemen-
tation and can thus play new roles.

To illustrate these steps, lets now consider our FindShortestPath capacity ex-
ample. We suppose that the group g0 of figure 5 contains a Route Requester
and only one Route Provider. The holon 3 wish integrate this group as Route
Provider but it doesn’t possess the required capacity FindShortestPath (cf.
fig. 7, step 1).

It has thus two possibilities. First, the recruitment of a member, already
owning the FindShortestPath capacity. In this case it would also obtain it as an
atomic capacity.

Second, instanciate an organization able to provide it, like the Ant Colony or-
ganization. This organization is found using a matchmaking process (cf.
fig. 7, step 2). Lets condiser the situation where holon 3 choses this alterna-
tive and integrates an additional internal group, instanciating the Ant Colony
organization (cf. fig. 7, step 3). It recruits new members able to play the various
role of this organization (cf. fig 6).

Owning henceforth the required capacity, it’s able to play the Route Provider
role and thus joins the group g0 (cf. fig. 7, step 4).

Fig. 7. Acquiring a new capacity by integrating a new internal organization

4 Related Works

Several approaches related to agent capabilities have been already proposed in
various domains of MAS.
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In the domain of Semantic Web and Web Agents, [19,20] propose an Agent
Capability Description Language (LARKS) and discuss the Service Matchmak-
ing process using it. Thus a first description of Agent Capability using LARKS is
given. However this decription is only used in the Service Matchmaking process
and not used during the analysis nor the modelling phases. These aspects are
tackled in our approach with the notion of capacity as a basic decription of an
agent know-how.

To distinguish the agent from its competences, [17] and [18] have introduced
the notion of skill to describe basic agent abilities and allowing the definition of
an atomic agent, that can dynamically evolve by learning/acquiring new skills.
Then [1,2] have extended this approach to integrate this notion of skill as a
basic building block for role specification. [8,9] also consider agent capability
as a basic building block for role specification in their meta-model for MAS
modeling. But these capabilities are inherent to particular agents, and thus to
specific architectures. In these models the role is considered as a link between
agents and a collection of behaviors embodied by the skills. This really differs
from our view of the notion of role. For us a role is a first class entity, the
abstraction of a behavior or/and a status in an organization (extension of [5]),
that should be specified without making any assumptions on its susceptible
players. In other words, in these approaches, the skill is directly related to the way
to obtain a service, and thus represents a basic software component. However,
the description of the general class of related services and the fact that a given
agent ability can be obtained by various implementations is not developed. We
can thus consider that these aspects are captured in our model with the notion
of capacity implementation.

In a more general way, we can consider that our approach is situated in the
confluence of these various models, linking the description of an agent capability
and its various possible implementations. We thus provide agents with means to
reason about their needs/goals and to identify the way to satisfy/achieve them.
We thus benefit of the advantages of both approaches, increasing reuasibility
and modularity by separating the agent from its capacities, and the capacity
from its various implementations.

Considering an organization as a possible capacity implementation constitutes
our main contribution. We can thus consider that a group of interacting agent
can provide a capacity to an upper level. This takes all its interest in the case of
holonic MAS, where the super-holon can exploit additionnal behaviors emerging
from members interactions to obtain a new capacity. In a same way, we also
provide a modeling tool to deal with intrinsic emergent properties of a system
and catch them directly from the analysis phase.

5 Conclusion

In this paper, we have presented the concept of capacity to enable a modular
and reusable model of organizations. To achieve that, the role specification is
based on the description of required know-hows, described using capacities. To
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play a role, a holon has to possess an implementation (that could be specific
according to its architecture) for each required capacity.

By considering, an organization as a possible capacity implementation, we
provide means to exploit additional behaviors emerging from a group of agents
in interaction. Combining this representation with the holonic approach, the
super-holon, by instanciating specific organizations, can obtain new capacities
from the collaboration of its members and therefore play roles, inaccessible to
its members as individuals.

Finally we introduce self-organization mechanisms allowing a holon to dy-
namically change its set of capacities and so achieve its new goals.

This work is part of larger effort to define a well founded framework for
Holonic MAS applications. Future research will deepen the formal specification of
capacities and define a matchmaking process to find capacities implementations.
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Abstract. There is little or no guidance to systematically design a
self-organising emergent solution that achieves the desired macroscopic
behaviour. This paper describes decentralised coordination mechanisms
such as gradient fields as design patterns, similar to patterns used in
mainstream software engineering. As a consequence, a structured consol-
idation of best practice in using each coordination mechanism becomes
available to guide engineers in applying them, and to directly decide
which mechanisms are promising to solve a certain problem. As such,
self-organising emergent solutions can be engineered more systematically,
which is illustrated in a packet delivery service application.

1 Introduction

Modern distributed systems exhibit an increasingly interwoven and completely
decentralised structure [13] (e.g. ad-hoc networks, transportation systems, etc.).
Different subsystems interact with each other in many, often very complex, dy-
namic, and unpredictable ways. More systems need to achieve their requirements
autonomously [15]. A promising approach is to use a group of agents that co-
operate to autonomously achieve the required system-wide or macroscopic be-
haviour using only local interactions, local activities of the agents, and locally
obtained information. Such decentralised multi-agent systems (MASs) exhibit
self-organising emergent behaviour [5].

When engineering a self-organising emergent solution, the problem-solving
power mainly resides in the interactions and coordination between the agents
instead of in the intelligent reasoning of single agents. Therefore, a major archi-
tectural design decision is the choice of suitable decentralised coordination mech-
anisms such as digital pheromones [3], gradient fields [22], market-based control
[26], tags [12], or tokens [31]. Many of such mechanisms are already applied to a
number of case studies in literature [3,21,22,18,20,19,25,12,31,26,32,4,10,11,17,24].
However, a fundamental problem is the lack of guidance on how to systematically
choose anduse themost suitable coordinationmechanism.Themain reason is that,
currently, all existing knowledge and best practice on coordination mechanisms is
spread over hundreds of papers without a clearly structured and directly usable
description of the mechanisms.

S. Brueckner et al. (Eds.): ESOA 2006, LNAI 4335, pp. 28–49, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Design Patterns for Decentralised Coordination 29

The main contribution of this paper, and the extended report in [7], is twofold.
First, the paper shows how decentralised coordination mechanisms can be struc-
turally described as design patterns. Secondly, the paper illustrates how an en-
gineer can use these patterns to systematically choose how to coordinate agents
and achieve the desired global behaviour. Section 2 motivates design patterns as
a description to support engineers in their choice of decentralised coordination
mechanisms. The section also outlines in detail the structure of the pattern de-
scription. After that, sections 3, 4 and 5 give an usable pattern summary of a
number of coordination mechanisms and apply the design pattern description in
detail to two example mechanisms, i.e. gradient fields and market-based control.
In section 6, a case study on a packet delivery service illustrates how design pat-
terns allow to engineer more systematically a self-organising emergent solution.
Finally, section 7 concludes and discusses future work.

2 Decentralised Coordination Mechanisms as Design
Patterns

Typically, engineering MASs means having 99% of the effort go to conventional
computer science and only 1% involves the actual agent paradigm [8]. Therefore,
to engineer self-organising emergent MASs, developers should exploit conven-
tional software technologies and techniques wherever possible [29]. Such exploita-
tion speeds up development, avoids reinventing the wheel, and enables sufficient
time to be devoted to the value added by the multi-agent paradigm [30]. From
this point of view, [6] proposes a step plan based on an existing industry-ready
software engineering process, i.e. the Unified Process [14]. The UP process is cus-
tomised to explicitly focus on how to address the desired macroscopic behaviour
of self-organising emergent MASs. Figure 1 shows that almost every discipline
in the UP process is customised.

This paper focusses on the Design which emphasises a solution that fulfills
the requirements, rather than its implementation or the requirements them-
selves. More specifically the focus is on the coarse-grained architectural design.
The author of [16] states that architectural design is partially a science and
partially an art. The science of architecture is the collection and organisation
of information about architectural significant requirements (e.g. non-functional
and macroscopic functionality). The art or architecture is making skillful choices
and constructing a solution that meets the requirements, taking into account
trade-offs, interdependencies, and priorities. The ‘art’ of architectural design is
the creative step where designers exploit knowledge and best practice from a
number of areas (e.g. architectural styles and patterns, technologies, pitfalls,
and trends) to reach a suitable solution. For self-organising emergent systems
the main source of knowledge to exploit in this creative step are the different
mechanisms to coordinate the desired macroscopic functionality such as digital
pheromones [3], gradient fields [22], and market-based coordination [26]. This
paper captures this knowledge on decentralised coordination mechanisms as ar-
chitectural design patterns.
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Fig. 1. A Unified Process engineering iteration annotated with customisations for issues
specific for self-organising emergent MASs

2.1 Motivation for Design Patterns

As stated earlier, the main problem-solving power resides in the coordination
between agents and a major architectural design decision concerns the choice
of one or more decentralised coordination mechanisms to achieve the desired
macroscopic behaviour. The mechanism used to coordinate has a strong impact
on what is and can be communicated [21]. A lot of such mechanisms are used
in literature but experience and knowledge about how to use them is currently
spread out over hundreds of articles. A more structured and useful description
is needed to consolidate this best practice.

In mainstream software engineering, current best practice and knowledge
about known solutions is captured in what is called ‘design patterns’. The most
famous reference is the Gang of Four design patterns book [9]. This paper sup-
ports applying decentralised coordination mechanisms by describing them as de-
sign patterns, similar to patterns used in mainstream software engineering. An
important issue in engineering self-organising emergent solutions is to under-
stand for which kind of macroscopic behaviour each coordination mechanisms
is useful, which is more appropriate in which situation, etc. Design patterns
describe each decentralised coordination mechanism in a structured way, inher-
ently including this kind information. Using such a set of structured patterns,
self-organising emergent system can be designed more systematically.

2.2 The Pattern Description Format

Patterns can be described at several levels of abstraction. The patterns in the
Gang of Four book [9] are described at the class or implementation level. An-
other level of abstraction to describe design patterns is the architectural or even
conceptual level in which the focus is more on the coarse-grained and conceptual
structure. The decentralised coordination mechanisms in this paper are described
at the architectural and conceptual level. The class level is not described because
such mechanisms can be implemented in multiple ways and little is known about
the best way to do this.
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This paper uses the guidelines and patterns for describing patterns from [23].
As such, the decentralised coordination mechanisms are described in a format
known in mainstream software engineering which promotes their usage. For ex-
ample, also the Gang of Four patterns book [9] uses a similar format. The general
structure is extended in subsections to better describe issues specific for de-
centralised coordination in self-organising emergent solutions. The format used
involves the following sections:

– Pattern Name/Also Known As: A clear name and aliases referring to
the solution used or a useful metaphor. The name is given in the title of the
pattern’s section.

– Context/Applicability: The circumstances in which the problem being
solves requires a solution. Often described via a ‘situation’. In this paper
this context typically indicates when a self-organising emergent solution is
promising.

– Problem/Intent: What is solved by this pattern? Engineers compare this
section with their problem in order to select coordination mechanisms.

– Forces: Often contradictory considerations that must be taken into account
when choosing a solution to a problem.

– Solution: A description of how the problem is solved and described in close
relation to the forces it resolves. This section has a more detailed structure:

• Inspiration: Most coordination mechanism are inspired by some natural,
biological, physical, or social phenomena.

• Conceptual Description: A conceptual description of how the inspira-
tional mechanism works and is used in computer systems. This sec-
tion allows to map the concepts used in the coordination mechanism to
domain-specific entities in the system under construction, i.e. the con-
cepts and their relationships indicate what is needed in order to use this
coordination mechanism.

• Parameter Tuning: Typically, such coordination mechanisms have a lot
of parameters that need to be tuned. This section enumerates them and
gives some guidelines to tune them.

• Infrastructure: Some mechanisms need a supporting infrastructure. More
specifically, what is needed to support the design at the class level.

• Characteristics: Using the mechanism imposes some characteristics on
the solution including advantages, disadvantages, and other useful prop-
erties.

– Related Mechanisms/Patterns: An enumeration of patterns that are
related in which the differences and similarities are emphasised.

• Variations: Variations of the same pattern which can be more general
or (domain) specific variations.

• Other Coordination Mechanisms: Alternative coordination mechanisms
that solve the same (or related) problem.

– Examples/Known Uses: Examples of known uses of the pattern in case
studies.
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In addition to a separate description for each pattern, a ‘Problem/Solution
Summary’ is provided to help the reader find the pattern(s) which solve(s) their
specific problems. Such a summary is typically a table with a brief description of
the problem each pattern solves and how. In what follows, section 3 gives such a
summary for a limited set of widely used coordination mechanisms and sections
4 and 5 describe two patterns in more detail following the structure given in this
section.

3 Problem/Solution Summary

This section summarises the patterns by giving a so called ‘Problem/Solution
Summary’. An engineer uses this to find the pattern(s) or coordination mech-
anism(s) which solve(s) their specific problem(s). The Problem/Solution Sum-
mary can be found in Table 1 where a brief description of the problem and
the corresponding solution is linked to the pattern to use. Due to space limita-
tion only two pattern descriptions are given in (limited) detail in the following
sections. However, a full detailed pattern catalogue can be found in [7].

4 Pattern 1: Gradient Fields

Also Known As: Computational Fields, Co-Fields, Morphogen gradients [18],
Field-based coordination, Force Fields [21].

4.1 Context/Applicability

A solution is needed to coordinate multiple autonomous entities, situated in
an environment, in a decentralised way to achieve a globally coherent spatial
movement of the agents. The coordination mechanism has to be robust and
flexible in the face of frequent changes. Also, local estimates of global information
are the only possible way to coordinate. As such, decentralised coordination is
the only possible alternative.

4.2 Problem/Intent

– Spatial Movement: How to adaptively orchestrate in a decentralised way the
spatial movement of a large set of agents in large-scale distributed systems
[21,20,18]? As such global Pattern Formation can be achieved.

– Structure Formation: How to adaptively self-configure a modular structure
achieving the desired shape/structure (e.g. modular robots) [18]?

– Routing: How to achieve routing for messages, agents, etc. [18]?
– Integration of Contextual Information: How to provide agents with abstract,

simple yet effective contextual information from various sources supporting
and facilitating the required motion coordination activities [21,20,18] (i.e.
spatial information such as distance/direction to source)?

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Design Patterns for Decentralised Coordination 33

Table 1. Problem/Solution Summary

Problem(s) Solution Pattern
Spatial Source to
Destination Routing,
Task Recruitment,
Relation Identifica-
tion, Integration of
various information
sources

Agents explicitly search for goals, tasks,
or related items and drop pheromones
to gradually form historical paths for
other agents to follow. Reinforcement
of an existing path by other agents can
be seen as a reinforcement of the re-
lation between source and destination.
Evaporation, Aggregation, and Propa-
gation keep the pheromones up-to-date
and support integration of information.

Digital Pheromone Paths [3]

Spatial Movement,
Pattern Formation,
Structure Formation,
Routing, Integra-
tion of Contextual
Information

Spatial, contextual, and coordination
information is automatically and in-
stantaneously propagated by the en-
vironment as computational fields.
Agents simply follow the “waveform” of
these fields to achieve the coordination
task, i.e. no explicit exploration.

Gradient Fields [22]

Resource Alloca-
tion in general
(resource=task,
power, bandwidth,
space, time, etc.) ,
Integration of re-
source Usage/Need
Information

A virtual market where resource users
sell and buy resource usage with virtual
currency. The price evolves according
to the market dynamics and indicates
a high (high price) or low (low price)
demand. This information is used by
agents to decide on using the resource
or not. Economic market theory states
that the prices converge to a stable
equilibrium.

Market-based Coordination [26]

Trust and rep-
utation, Team-
formation, Discour-
age selfish behaviour
in Teams, Specialisa-
tion of skills within
Teams

Agents put and modify tags on other
agents and a team is formed by only
collaborating with agents with the
same tag or some other condition.
If tags indicate how well agents be-
haved in collaborations with others
then trust and reputation information
can be available.

Tags [12]

Resource Access
Control/Allocation,
Role Allocation,
Enforce Organi-
sation Structure,
Information Sharing

Information, resources, or roles are rep-
resented by a token. Only the holder
has exclusive access to the information
and resource. Holding a role token com-
mits to executing that role. Tokens are
passed among agents to get adaptive
coordination.

Tokens [31]

etc. etc. etc.

4.3 Forces

– Explore vs. Exploit : In order to be adaptive the solution has to explore suf-
ficiently compared to only exploiting already known information. Otherwise
the approach can get trapped in local optima or never find new targets at

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



34 T. De Wolf and T. Holvoet

all. However, to much exploration may result in an approach that is very
inefficient.

– Centralised vs. Decentralised : A decentralised solution often requires a huge
amount of communication and coordination overhead which a centralised
solution has not. A centralised solution often optimally controls the system.
However, a centralised solution is often a bottleneck and single point of
failure in a very dynamic context.

– Optimality vs. Robustness/Flexibility: An adaptive approach that has no
central means to optimise its efficiency may result in suboptimal solutions.
However, an optimal solution only exists with respect to a static situation,
which is never reached in the face of frequent changes. As such, a robust
and flexible approach may be preferred to an approach that is optimal but
inflexible.

– Responsibility of Environment vs. Agents: Coordination needs complex
processing and communication. There is a trade-off to make the agents them-
selves or the environment responsible. Making the agents responsible allows
agents to explicitly reason about and control how information is distributed
but sometimes requires complex algorithms. On the other hand, making the
environment responsible allows agents to simply be guided by the results in
the environment, i.e. a “red carpet’ that avoids complex processing within
agents, but the agents are no longer in control of the information distribution.
Such coordination can be more dynamic and adaptive because the source of
changes, i.e. environment, also supplies the coordination information.

– Greedy vs. Focussed : A “greedy” approach to coordination disregards that
a small sacrifice now, i.e. not exploiting a piece of coordination information,
could possibly lead to greater advantages in the future. However, it is a
general drawback of distributed solutions, where the possibility of globally
informed decisions by distributed agents is often ruled out due to the need
for efficient and adaptive coordination [19].

4.4 Solution

Inspiration. The Gradient Field coordination mechanism takes its inspiration
from physics and biology. In physics [20,19,21], the same mechanism can be found
in the way masses and particles in our universe adaptively move and globally
self-organise their movements accordingly to the locally perceived magnitude of
gravitational/electro-magnetic/potential fields. The particles follows the “wave-
form” of the fields (see figure 2). In biological organisms, a coherent, reliable and
complex behaviour is achieved from the local cooperation of large numbers of
identically “programmed” cells [18]. In particular, chemicals are diffused among
cells and cells are driven in their behaviour by the locally sensed gradients of
diffused proteins (“morphogen gradients”). Morphogen gradients is a mechanism
used to determine positional information and polarity. For example, cells use the
concentration of different morphogens to determine whether they lie in the head,
thorax, or abdominal regions to achieve wing and limb development.
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Fig. 2. A gradient field with propagation direction and agent movements shown

Conceptual Description. To use this as a decentralised coordination mech-
anism in software systems such a gravitational/electro-magnetic/chemical field
has to be translated into an artificial data structure representing the Gradient
Field, i.e. a computational field or Co-Field [22,21,19]. Figure 3 illustrates
the conceptual structure of such a solution in UML class diagram notation.
A Gradient Field is data structure which is spatially distributed, as Gradient
Parts, over Locations in the Environment. Each field is characterised by a
unique identifier, the necessary contextual information such as a location-
dependent numeric value (representing the field strength in that location), and a
Propagation Rule determining how the numeric value should change in space.

A gradient field is started, initiated, or injected into the environment from a
certain “source” location by a Gradient Initiator (i.e. a Location itself, an
Agent, or some other entity in the system) conveying some application-specific
information about the local environment and/or about the initiator itself [21].
The Environment makes sure that the Gradient Field is propagated, accord-
ing to its Propagation Rule, from the starting location to the neighbours of
that location (typically increasing the strength of the gradient, initially set to
zero; decreasing gradients are also possible). In turn, the neighbouring locations
modify the strength and re-broadcast the gradient to their neighbours which is
repeated until the gradient has propagated far enough. Each intermediate loca-
tion stores and forwards only the gradient part with the minimum strength value
it has received for that particular gradient field. As such a “waveform” gradient
map is formed in the environment which conveys useful context information for
the coordination task.

Agents observe multiple Gradient Parts on the neighbouring locations of
the location on which the agent is situated. Then agents follow the waveform
(deterministically or with some probability) by moving to a neighbouring lo-
cation. This allows agents to coordinate their movement with respect the the
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gradient initiator. For example, in figure 2 agents move downhill (attracted by
the initiator), uphill (repelled by the initiator), or on an equipotential line (equal
strength around initiator).
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Fig. 3. A conceptual model of the gradient coordination mechanism

The gradient field mechanism can be schematised as follows [22,21,20,19]:

– The environment is represented and abstracted by “computational fields”
which provide agents with a location-dependent and local perspective on the
global situation of the system to facilitate the required motion coordination.

– The coordination policy is realised by letting the agents move locally follow-
ing the “waveform” of these fields. Agents can autonomously decide whether
to follow the gradient fields or not.

– Environmental dynamics and movement of entities induce changes in the
fields’ surface. For example, when the initiator of a gradient field moves, the
field -with some propagation delay- has to be updated in the environment
to reflect that move. As such, a feedback cycle is formed that consequently
influences agent movement.

– This feedback cycle lets the system self-organise. A globally coordinated and
self-organised behaviour in the agent’s movements emerges in a fully de-
centralised way due to the interrelated effects of agents following the fields’
shape and of dynamic field re-shaping [21,20].

However, the achievement of an application-specific coordination task is rarely
relying on the evaluation, as it is, of an existing computational field. Rather, in
most cases, an application-specific task relies on the evaluation of an application-
specific Coordination Field [21,20,19]. This coordination field can be an ex-
isting gradient field but typically it is a Combined Field, calculated as a combi-
nation (e.g. linear) of some of the locally perceived fields or other coordination
fields. The coordination field is a new field in itself, and it is built with the goal of
encoding in its shape the agent’s coordination task. Once a proper coordination
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field is computed, agents can achieve their coordination task by simply following
the shape of their coordination field.

Parameter Tuning. Every gradient field has a number or parameters, or “set-
tings”: a Propagation Factor determining how much is added to or removed from
the gradient strength each propagation step and a Propagation Rate indicating
how fast propagation occurs; a dynamic gradient has to be updated regularly
which is determined by a certain Refresh Rate; the Initial Strength of a Gradient
is the strength at the source location; each propagation rule can have its own
rule-specific parameters, e.g. using another propagation factor at a distance of
X from the initiator.

Infrastructure. A proper infrastructure or middleware is required (e.g. TOTA
[20]) that supports data storage (to store field values), communication (propa-
gate field values), event notification and subscription mechanisms (notify inter-
ested agents about field changes, as well as update fields to support changes),
mobile-code services (dynamically configure field-propagation algorithms and
coordination fields composition rules), and localisation mechanisms (to discover
where agents are).

Characteristics

– Typically, following the gradient field downhill is the shortest path towards
the initiator of the field [18].

– The structure of the environment in which the agents are working should
reflect the current “problem” the agents are working on and the gradient
structure and distribution should guide the agents to the current “solution”
to that problem.

– Spatial Context Information is distributed: Gradients support information
spreading/distribution. Gradient-Fields mainly deliver spatial information
such as the direction or distance to a gradient initiator [20]. However, gra-
dients can also embed any other necessary information.

– Feedback Cycle [22]: Feedback is given by the fact that gradients can change
when changes occur in the environment or when the agent that emits the
gradient decides to move or change the gradient. Other agents or gradient-
emitting entities can then take that change in the gradient into account and
react on it by for example changing its own gradient info. As such a feedback
cycle is established to self-organise.

– Simple Agents - Complex Environment: Field-based approaches delegate to
a middleware infrastructure in the environment the task of constructing and
automatically updating the gradient field [20]. As such, the environment
makes sure that not too much computational and communication burden is
imposed on the agents themselves [19]. The context is represented as gra-
dient fields, i.e. a kind of “red carpet”, which represents how to achieve a
coordination task by simply following the field.
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– Greedy Approach [20,19]: A weakness of field-based approaches is that they
are “greedy” because of the strictly local perspective in which agents act.
Agents disregard whether as small sacrifice now, climbing a field hill instead
of descending it - could possibly lead to greater advantages in the future.

– etc. (see [7] for more characteristics)

4.5 Related Mechanisms/Patterns

Variations

– Propagation Inhibition or Selective Propagation [20,18]: The propagation of
a field can be bounded to a portion of space by having the propagation pro-
cedure to check conditions such as the local spatial coordinates, the gradient
type or its strength to decide on further propagation or not.

– Multiple Types of Fields [20,21,19]: As mentioned earlier, multiple gradient
instances can be combined in a coordination field to follow as a whole. All
used gradients are typically of the same type. A logical extension is using dif-
ferent types of fields depending on the specific motion pattern to enforce. As
such, they can be propagated and combined in coordination fields according
to field-specific rules.

– etc. (see [7] for more variations)

Other Coordination Mechanisms. Digital Pheromone Paths is a specific
instance of Gradient Fields where a number of small fields or pheromones aggre-
gate into a gradient path and evaporate over time [20]. Also pheromone paths
are constructed explicitly and, as such, agents also explicitly have to discover
targets. Gradients make targets immediately and automatically (by the environ-
ment) visible through the presence of a gradient field for that target. Agents do
not have to explore pro-actively. In addition, pheromones constitute a memory
of the recent past, while gradient fields are instantaneous.

4.6 Examples/Known Uses

Some known uses or possible applications are: spatial shape formation [18], urban
traffic management [21], reconfiguring modular robots’ shape [21,25], control of
autonomous characters in video games [21,19], tourist movement in museum
[19,20], forklifts activity in a warehouse [19], software agents exploring the web
[19], etc.

5 Pattern 2: Market-Based Control

Also Known As: Market Control, Market-Oriented Programming [32].

5.1 Context/Applicability

You need to coordinate multiple autonomous entities in a decentralised way
to achieve a common and globally coherent goal while sharing a set of scarce
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Fig. 4. The theory of Supply and Demand

resources. The coordination mechanism has to be robust and flexible in the
face of frequent changes. Also, local estimates of global information are the
only possible way to coordinate. As such, decentralised coordination is the only
possible alternative. Some locally available information is needed indicating the
global usage of resources.

5.2 Problem/Intent

– Resource Allocation: How to do efficient resource allocation [26,4,10,32] in
a distributed and decentralised manner? Resources can be interpreted as
tasks, bandwidth, manufacturing devices, etc.

– Integration of Resource Usage/Need Information: How to have locally avail-
able information about the global usage of and need for resources?

5.3 Forces

– Centralised vs. Decentralised (see section 4.3 in Gradient Field pattern).
– Optimality vs. Robustness/Flexibility (see section 4.3).
– Responsibility of Environment vs. Agents (see section 4.3).

5.4 Solution

Inspiration. The inspiration and metaphor came from human economies and
market mechanisms, i.e. the free-market economies. In such an economy, goods
or resources are allocated to the participants in a decentralised, robust, and self-
organising manner. Participants act as buyers and/or sellers of goods by offering
to buy or sell a good to other participants for a certain price. As long as the
participants act completely self-interested then the market achieves a globally
optimal allocation of goods. Transaction prices converge to a global equilibrium
price, i.e. the market price. Note, that the degree of convergence depends on the
market characteristics (e.g. elasticity, shape of demand and supply curves, etc.).

This price mechanism depends on the evolution of the demand and available
supply of goods. Figure 4 illustrates this by plotting the evolution of supply

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



40 T. De Wolf and T. Holvoet

and demand. The demand curve shows the quantity of good that consumers are
willing and have the capacity to buy at the given price. The supply curve shows
the quantity that suppliers are willing to sell at a given price. If the quantity
of a good demanded by consumers in a market is greater than the quantity
supplied, competition between consumers causes the price of the good to rise.
As such, according to situation A in figure 4 this can both reduce the quantity
demanded (because some consumers can no longer afford it) and increase the
quantity supplied (because some suppliers may be more interested in selling at
higher prices). Similar effects occur when the quantity supplied is greater than
the quantity demanded (situation B in figure 4). According to classical economic
theories the market equilibrates (see arrows in figure 4): transaction prices ap-
proach an equilibrium value (p1, q1) where the quantity demanded matches the
quantity supplied. As such, an efficient means of societal resource/goods alloca-
tion exists.

Conceptual Description. The aim of market-based coordination in computer
science is fundamentally different from the aim of economic theory [32]. In
market-based coordination, microeconomic theory is taken as given. Whether
or not the microeconomic theory actually reflects human behaviour is not the
critical issue. The important question is instead how microeconomic theory can
be utilised for the implementation of successful resource allocation mechanisms
in computer systems. Although decision-making is only local, economic theory,
which has an immense body of formal study [28], provides means to generate
and predict macroscopic properties such as the equilibrium price and others that
can be deduced from that price information. The aim is that computer systems
exhibit the same decentralisation, robustness, and capacity for self-organisation
as do real economies [4]. In designing a market of computational agents, a key
issue is to identify the consumers and producers [11]. Various preferences and
constraints are introduced through the definition of the agents’ trading behav-
iour. This ability to explicitly program the trading behaviour is an important
difference from human markets. Finally, the mechanism for matching buyers and
sellers must be specified.

Figure 5 illustrates market-based coordination conceptually in UML class di-
agram notation. A group of agents negotiate and trade with each other on an
virtual market of scarce resources. The agents communicate with messages en-
capsulating offers, bids, commitments, and payments for resources [10]. The
agents’ goal is to acquire the resources of a certain Resource Type that they
need. All agents start with an initial amount of Currency [11]. Resources are at
each moment in time owned/used by one agent. Some agents act as ‘consumers’
or ‘buyers’ and have a Demand for a certain quantity of a resource and are willing
to pay a certain price for it, based on the Currency they have and possibly other
conditions. Other agents act as ‘producers’ or ‘suppliers’ and have a Supply of a
certain quantity of a resource and are willing to sell at a certain price. The goal is
to maximise their profit. Each Agent is self-interested and decides to participate
as a buyer/consumer in an Transaction with a supplier/producer to transfer a
certain quantity of resources. The behaviour of each agent depends on its local

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Design Patterns for Decentralised Coordination 41

�����

������
������	


��	
�
�
	�	� ��	
�
������	��

���
��

��	
�
�
	�	� ��	
�
������	��

�����


������	�

������	� �
��

��	
�
������	��

��
��
	����

���
���

����

�������

����
	��

������ �	��

���������

��

� �

��

�
�

����
	�� �����

�

����

�

�

�

�

��
��
�
���� ���	�

������� ��

������� ��

�

�

�

�

�������	
����

����
��

�����

���

�

��������������


�����	
���� �	��

��

��	��

�
�	���� �������

�

�

�

�

� ����	�� �	��
�	��

��� � ����
	��	��


����
��
���

Fig. 5. Conceptual model of Market-based Coordination

information as well as market prices that communicate global information. For
each unit to trade, each agent has a limit price that is unknown to others [4].
A buyer couldn’t pay more than its limit price, and a seller couldn’t sell for less
than its limit price. The distribution of limit prices determines the evolution of
the supply and demand curves.

Similar to a real free-market economy the process of demand and supply de-
termines the Market Price to which the transaction prices evolve. When supply
is greater than demand (resources are plentiful), the price of the resource will
fall; and when demand exceeds supply (resources are scarce), the price rises.
The aim then is that prices rise and fall, dynamically matching the quantity
demanded to the quantity supplied, while these quantities also vary dynamically
[4]. Agents set their prices solely on the basis of their implicit perception of
supply and demand [10] through their success of bidding at particular prices. A
special case occurs when an agent is at the same time a seller and a buyer [10]
which implies a strategy to maintain an inventory level (i.e. number of owned
resource units) that maximises its profit, i.e. that suits the market demand. The
amount of available resources can be limited [11]. This is taken into account
in the demand and supply. For instance, if the amount of available resources
increases suddenly then the supply curve on figure 4 shifts to the right because
suppliers are willing to supply more for each price. This results in an equilibrium
increase in the supply and decrease in price (similarly demand curve shifts when
agents suddenly need more resources). A globally limited amount of resources
makes the market mechanism a resource allocation mechanism that generates
an equilibrium distribution of resources that maximises global welfare [10].

There are two approaches to establish a market in a computer system
[10,4,32,11,1]:

– Auctioneer-mediated Markets (Centralised): The market is mediated by an
auctioneer agent. Agents send demand/supply functions or bids telling how
much they like to consume/produce at different prices. The auctioneer then
immediately establishes an equilibrium market price vector such that supply
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meets demand for all resources. Then agents exchange the resources as stated
by their bid and the calculated equilibrium price.

– Direct Markets (Decentralised): Real bids are used instead of calculating
based on demand and supply functions. The market is executed for real and
the agents bid and adapt their bidding to the outcomes of the auctions over
time. A transaction occurs whenever one trader accepts an offer or a bid
quoted by another trader. Transactions depend on pairwise encounters in
which agents exchange their bid or price for a resource (e.g. traders distrib-
uted in space only transact with nearby traders). The agents bid and adapt
their bidding to their success over time which iteratively balances supply
and demand at the equilibrium [10].

Note, that the speed or stability of equilibration in a market can be affected by
the type of market. An auction-mediated market typically equilibrates immedi-
ately in each auction cycle while a decentralised market needs multiple transac-
tions cycles before the market equilibrates. However, the system should not rely
on the operation of any single critical component, i.e. a centralised auctioneer
[4]. The failure of any one trading agent in a market-based system should result
in only a minor impairment to the overall behaviour of the system, rather than
a total breakdown. A truly decentralised and robust system in which agents bar-
gain directly with each other is preferred to a failure-prone and inflexible central
one. However, firm guarantees that the (optimal) equilibrium price is reached
are not always available because less theory is available for decentralised markets
compared to centralised markets.

Parameter Tuning. Depending on the specific use of the market mechanism, a
number of parameters have to be tuned: limit prices determine the demand and
supply curve behaviour and the profit of agents, the initial amount of currency
influences the limit prices, the number of agents participating influences the
convergence to equilibrium, and the price-adaptation behaviour (speed and size
of increase/decrease of prices) influences the demand/supply curves and thus the
speed and efficiency of the market. For the decentralised market, the specification
of who trades with who is also an important parameter (e.g. a distance-limit
between agents in a 2D world can determine if they can trade or not).

Infrastructure. Because most of the coordination happens directly between
agents no real infrastructure support is needed, except for communication in-
frastructure.

Characteristics

– Information Distribution. Markets deliver to agents information on the
resource-usage through the price mechanism. A high price reflects a high
demand and/or low remaining supply, i.e. high usage. A low price reflects
a low demand and/or high remaining supply, i.e. low usage.

– Feedback Cycle. The price mechanism serves as a feedback cycle. A high
price implies that agents buy less which diminishes the demand and as
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such the price reflects this by decreasing. In turn, a lower price changes the
behaviour of agents to start buying again which increases the demand. As
such feedback about the global market is given through the price evolution.

– Agents have all responsibility. The responsibility of coordination is com-
pletely situated with the agents themselves, i.e. no environment-mediated
coordination. However, for auction-based markets the auctioneer can be
considered as the environment.

– Decentralisation - Robustness - Self-Organisation [32,10,4]: Market-based
control without an auctioneer allows for truly distributed systems with the
same decentralisation, robustness to participant failures, and self-organising
properties as real free-market economies. A central auctioneer would be a
single point of failure.

– Price Information indicates Global and Local Performance: For example for
network routing in [10], the cost of each network call can be computed from
the available price information which allows more efficient call charging.
Trading resources for some sort of money enables evaluation of local
performance and valuation of resources [32] based on the price, so that it
becomes apparent which resources are the most valuable and which agents
are using the most of these.

– Stabilisation at Equilibrium - Pareto Optimality [4,17,32]: For markets
to be of genuine use in applications, they should exhibit smooth and fast
convergence to the equilibrium. Transaction prices stabilise rapidly at an
equilibrium that is predictable from economic theory and which is stable
and robust with respect to sudden changes in the market. Actions of groups
of individuals, engaging in simple trading interactions driven by self-interest
can result in optimal resource allocation. Market-based systems are termed
Pareto optimal. Pareto optimality means that no agent can do better with-
out diminishing the performance of another. However, there are indications
in theoretical economic studies that the dynamics of some decentralised
markets may converge to stable but highly sub-optimal equilibria.

– etc. (see [7] for more characteristics)

5.5 Related Mechanisms/Patterns

Variations

– Multiple Markets [10]: Multiple related markets are used. An example on how
such markets can be related is when resources on one market are a composite
of resources on another market (e.g. ‘network path’ contains ’network links’
[10]).

– etc. (see [7] for more variations)

Other Coordination Mechanisms. Another coordination mechanism that
can solve resource allocation is the Tokens mechanism. A token then represents
the capability and authority to use a certain resource exclusively and the number
of tokens in the system is limited to the available amount of resources.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



44 T. De Wolf and T. Holvoet

5.6 Examples/Known Uses

Some known uses and possible applications are: manufacturing control [24] (re-
source = machine), power distribution [32] (resource = power), routing in net-
works [10] (resource = bandwidth), stabilisation of unstable (civil) structures
[11,17] (resource = power to push somewhere), climate control in buildings [32]
(resource = cold air), and other cases on distributed resource allocation [32,4].

6 Case Study: A Packet Delivery Service

This section considers the design of a packet delivery service application to
illustrate the use of decentralised coordination patterns. First the requirements
are described and then a design is proposed using the patterns.

Problem Statement and Requirements. A packet delivery service [27] al-
lows customers to submit an order to come and pick up a packet and transport it
to a given destination or delivery location (see figure 6). At each moment in time,
new pickup and delivery locations can be added to the system by customers. A
fleet of trucks is available which has to self-organise efficiently to accommodate
the current request for transport. As such, the orders of customers form a dy-
namic overlay network of pickup and delivery locations between which trucks
have to move routing themselves through a street map. So basically there are
two main requirements for this problem:

– Dispatching: every new order has to be assigned to a truck that will be
responsible for handling the requested transport.

– Routing: trucks have to be adaptively routed through a street map in order
to reach new pickup locations for orders to which they were assigned and to
reach delivery locations for orders already inside the truck.

These requirements have to be achieved in the face of frequent changes: new
orders arriving at any moment, changes to the delivery location of existing or-
ders, congestion and obstacles on streets, trucks failing, etc. On the other hand
there are a number of timing constraints that have to be reached: pickup time-
window in which the pickup should occur, delivery time-window, regular breaks
for drivers to rest, etc. This is a highly dynamic problem in which the informa-
tion needed to decide how to route or dispatch is inherently decentralised over
a number of trucks, customers, streets, etc. As such a self-organising emergent
solution is promising.

Design with Decentralised Coordination Patterns. As mentioned earlier,
the problem-solving power resides in the interaction between agents. Therefore
for each of the requirements that have to be coordinated one has to discover
which information is needed to take the appropriate decisions and actions. And
especially, which decentralised coordination mechanism allows to exchange that
kind of information and to coordinate the agents to achieve the requirements.
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Fig. 6. The Packet-Delivery Problem

Consider the dispatching requirement for which new orders have to be as-
signed as a task to available trucks. Information is needed to decide which truck
is chosen, such as the distance of the truck to the pickup location or its estimated
arrival time, the trucks available with enough room to carry the packet, and the
estimated delivery times of trucks. The best truck at that moment should be al-
located. To solve this problem systematically, the ‘Problem/Solution Summary’
described in Table 1 is used. The engineer has to find a problem description
matching the dispatching problem. Some kind of allocation of resources is re-
quired. The resource is the room available in trucks that has to be allocated
to an order. Table 1 states that a Market-based Coordination mechanism may
be suitable. Therefore, the consumers and suppliers of the resource market have
to be determined. For example, consider the trucks as the suppliers of available
transportation room, and order agents, representing orders, are the consumers
of that room. Another important aspect of markets is the instantiation of the
price mechanism. According to the pattern, a number of price values are involved
such as limit prices under which the room is not bought or sold, prices offered
in individual bids, and the market price. These prices should depend on infor-
mation important for making the allocation decisions because in a market limit
prices, offered prices, and market price determine what is allocated to whom. As
such, for the order dispatching a truck could have a limit price that increases
with the distance or estimated travel time to reach the pickup, increases with
the estimated delivery time, decreases with the amount of available room in the
truck, etc. The order’s limit price can depend on the wanted delivery and pickup
time constraints so that an order willing to pay a high price is willing to wait
longer before pickup and/or doesn’t require a short delivery time. A market is
started when an order is submitted by a customer and stops only when it has
been assigned to a truck. During the market execution trucks will offer to supply
room at a certain price as far as possible above their limit price to maximise
their profit (i.e. for example, the higher the price payed, the more time the truck
has to deliver the order). Orders will bid to buy the room at certain prices that
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are as far as possible below their limit price in order to get the best deal (i.e.
for example, the lower the price, the quicker the delivery is done). The market
mechanism of demand and supply then allocates the trucks to the orders in such
a way that approximates a globally efficient optimum at that moment.

The second requirement was to actually route the trucks through the street
map. The problem to be solved is a routing or spatial movement problem for
which there are two possible coordination patterns according to table 1: digital
pheromones or gradient fields. To decide which one is the most promising the
patterns need to be studied in more detail, i.e. which characteristics match the
needs for routing trucks, etc. Assume that the gradient field approach is the most
suitable mainly because the digital pheromone approach requires that trucks ac-
tively search for delivery locations, orders, etc. On the other hand, the gradients
are automatically propagated by the environment and trucks only have to follow
their coordination gradient to be routed through the street map efficiently. As
such new orders are immediately found by trucks which is an important require-
ment. Without giving a more detailed solution the main idea is using different
types of gradients:

– Delivery Location Gradients: each delivery location emits a gradient as soon
as the order is assigned to a truck. The truck then simply follows that gra-
dient.

– Pickup Location Gradients: each pickup location emits a gradient to signal
the presence of a new order. The truck assigned to the order simply follows
the gradient to reach the pickup.

– Market Communication Gradients: to facilitate direct interaction and nego-
tiation needed for markets between trucks and orders at pickup locations
each can emit a market gradient. That gradient is used to actively send bids
to buy room, offers to sell room, payments, etc. These messages can route
themselves by simply following the right gradient. Each truck and order have
their own gradient.

Note that a requirements was to cope with dynamics such as congestion and
obstacles. The gradients used above all take into account these changes in their
propagation rules. For example, the propagation occurs slower, not at all, or
with a higher increase in strength through congested streets. Similar for other
dynamics.

Once the coordination mechanisms are chosen, the pattern description offers
a guide to actually apply them: different variants can be considered, the para-
meters to tune are known, guidelines are available, etc. In particular, a gradient
solution requires an environment capable of storing and propagating gradients,
i.e. an infrastructure. Such an environment is not available or too expensive on
a real street network. Alternatively, a decentralised solution which is not dis-
tributed on the street network can be used. As such a server emulates the street
network as a graph environment in which gradients propagate and on which
truck agents move in sync with and actively coordinate the movement of the
real trucks. Changes such as information on congestion and obstacles is updated
in that emulated environment in a decentralised manner by directly linking the
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real world trucks with the agents. Customers submit their orders to this server.
The advantages of a self-organising solution are preserved because the solution
is constantly adapting to changes without a central controlling entity and is still
robust to truck failure. Of course, a failure of the server emulating the environ-
ment would break the system. However, making the server failure-safe remains
cheaper than embedding a gradient infrastructure in a real street network.

7 Conclusion and Future Work

To systematically design a self-organising emergent solution, guidance on which
decentralised coordination mechanisms to use is essential because the problem-
solving power resides in the coordination process. Decentralised coordination
mechanisms can be described as design patterns, similar to patterns used in
mainstream software engineering. Such a clear and structured description format
helps in making the engineering process more systematic for two reasons:

– Firstly, pattern descriptions allow to directly find a solution based on the
problem.

– Secondly, each pattern is a consolidation of best practice to use it, which
systematically guides engineers in applying the coordination mechanisms.

However, the patterns in this paper and in [7] have a conceptual focus. More
work is needed on patterns for designing coordination mechanisms at the class
or implementation level. Even for the conceptual patterns given, more structure
is possible. For example, identifying the participants and interactions and rep-
resenting this structurally in UML interaction diagrams; or identifying new sec-
tions in the pattern format that address issues specific for self-organising emer-
gent systems. Also, many other coordination mechanisms should be captured as
design patterns to easily compare and choose between them when engineering a
self-organising emergent solution. Exemplary work can be found in [2].
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Abstract. Software today is no longer monolithic, but typically part of a  
system consisting of many components. As engineers are no longer in control 
of the entire system, novel methods are sought to design complex software 
systems that are built from the bottom up and are robust in a dynamically 
changing environment. The coordination method called stigmergy that is in-
spired by the collective behavior of social insects is one of the candidates to 
help solving this problem. In this paper we make a first step in formally un-
derstanding the essence of stigmergetic behavior by studying the famous ant 
foraging model of Deneubourg et al. We explore the relationship between the 
initial (dis)order in the environment and the performance of the ant foraging 
behavior. We further study how this configuration of the task to solve  
governs the behavior of the ant colony, with special focus on the level of  
coordination that is achieved.  

1   Introduction 

Software today is not as it used to be. [26] Systems are no longer monolithic, but they 
are typically part of a larger system consisting of many components, which are partly 
interconnected and partly co-existing or competing. Software engineers are no longer 
in control of the entire system; rather, they design solutions that are intended to  
co-exist with other components, so that the emerging behavior at the system level 
conforms to the stated goals. As a consequence, novel methods to design ‘complex 
software systems’ are sought. 

Stigmergy is one of the promising concepts to attack the problems of complex 
software systems. The concept is that of a spatial self-regulatory community of active 
components, where the product of the ongoing work motivates the workers and regu-
lates the process. This is underlined by the term itself, which was coined by Pierre-
Paul Grassé, a French biologist, in 1959 and originates from the Greek words of 
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stigma (sign) and ergon (work). [9] Stigmergy is common in insect societies. One of 
the most known examples is the foraging behavior of any colonies. 

In this paper we explore the relationship between the initial (dis)order in the envi-
ronment and the performance of the ants’ foraging behavior. We further study how 
this configuration of the task to solve governs the behavior of the ant colony, with 
special focus on the level of coordination that is achieved. Our motivation is best 
summarized by Parunak and Brueckner, who state that “The natural tendency of a 
group of autonomous processes is to disorder, not to organization. (…) We will be 
successful in engineering agent-based systems just to the degree that we understand 
the interplay between disorder and order.” [18] In a sense, we explore formally the 
phenomena of Herbert Simon’s famous ant. [23] According to Simon, an ant crawling 
on the beach may appear to exhibit complex behavior, even though it is only follow-
ing simple rules that make it mirror the complexity of the terrain. Applying this meta-
phor, we seek to understand the relationship between the complexity of the food col-
lecting task at hand, and the complex behavior of the ant colony that solves it. Here 
we present the preliminary results of a larger project aiming at the understanding of 
the role of order/disorder in self-organization methods that use the environment of the 
agents as the primary medium for coordination. 

1.1   Foraging Ants 

When ants swarm out of their nest they appear to wander randomly at first, but soon 
they form a well-pronounced trail between the nest and the food source. Surprisingly, 
the trail found is typically fairly close to the shortest possible path. When there  
are multiple food sources, the ant colony usually exploits them in the order of their  
distance. 

Individual ants wander out of the nest in random directions, leaving a trail of 
‘homing pheromone’ (a volatile chemical substance) behind. When an ant finds food, 
it sets out for the nest, this time dropping ‘food pheromone’ as it goes. Food-seeking 
ants follow the gradient of ‘food pheromone’ in their local neighborhood, while 
homing ants seek places with high amounts of ‘homing pheromone’. Below a certain 
threshold pheromone level and also with a constant probability, the ants move 
randomly. This latter component controls the balance between ‘exploitation’ and 
‘exploration’, the essence of optimizing behavior.  

Foraging in ant societies is a complex, organized behavior at the colony level, 
while individual ants apply a simple, probabilistic rule set. It is exactly this agent-
level simplicity what makes ant behavior appealing when seeking to tackle complex 
distributed problems. The key in organizing the colony level behavior is communica-
tion via the environment, i.e. via pheromones. The communication is always local on 
the part of the ants (they always leave the pheromone on their actual location), but it 
is channeled by the physical environment (diffusion and evaporation). Thus, the indi-
vidual ant has a local communication method using the chemical pheromone, but the 
colony itself has no global communication methods. The colony must therefore 
achieve its macro-goals by coordinating or tuning the individual micro-level ant  
behavior.  
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2   A Formal Model of Foraging Ants 

In the rest of the paper we will work with the following model of the above described 
behavior, after Deneubourg et. al. [6] Let’s consider N ants (indexed by integers from 
1 to N) living on a discrete, two-dimensional lattice L of size S with periodic bound-
ary conditions (i.e., a torus). Let li

t∈L denote the location of ant i at time t, and f(p)≥0 
the amount of food (in discrete units) at position p∈L. Initially, all ants are located in 
the nest, i.e., li

0∈K, for all i∈[1..N]. The nest is defined as a disc of radius R located at 
an arbitrary position in L. (Due to the periodic boundary conditions of the lattice, the 
location of K may always be interpreted as being in the ‘middle’.) The task of the ants 
is to collect all food units to the nest. For future reference, let F be the amount of food 

to be collected: ∑
∈

=
Lp

pfF )( . 

The ants leave a trail by depositing pheromone at their current location. The type 
of the substance depends on whether the ant is homing or seeking food, while the 
amount A depends on the time T the ant has spent on its current activity: A = max(m – 
(T-1)⋅d, 0), where m and d are model parameters. The emitted pheromone diffuses to 
neighboring cells and also slowly evaporates. Thus, φz

t(p) gives the amount of phero-
mone type z at time t at location p. 
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where δ is the evaporation rate and ρ is the rate of diffusion, both model parameters. 
Ai

t stands for the amount of pheromone emitted by ant i at time t. 
During their walk, ants follow a simple probabilistic rule: they move to the 

neighboring cell with the highest pheromone level (depending on their destination, 
they either seek ‘homing pheromone’ or ‘food pheromone’ locations). Below a certain 
threshold, and with a given probability w, they move randomly. However, the ants 
prefer not to turn, i.e., their selection of new location is biased by their direction. Let 
hi

t be the direction of ant i’s head at time t, given as one of the cells neighboring li
t. 

Moreover, let left(h) and right(h) denote the directions immediately to the left and 
right from direction h, respectively. The ants’ moving rule is then defined as 
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where functions random(·) and pheromone_seeking(·) are defined as follows. 
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3   Order In and Out of the Ant Colony 

The efficiency and flexibility of the above ‘algorithm’ is very appealing, because it is 
exactly in line with the anticipated needs of modern software systems. However, as 
Simon observes, an ant crawling on a beach, simply following the erratic surface of 
sand, will leave an intricately complex pattern of movement. [23] Therefore, it is 
possible that the efficiency, seen here as a demonstration of complexity, of the forag-
ing ant colony originates from the order present in the initial environment. (Here we 
use the term ‘order’ to describe the non-randomness of food-placement.) 

3.1   Ant Efficiency Depends on Order in the Environment 

To test our hypothesis, we have performed computer simulations. During these we 
have explored various initial configurations of the F units of food. We distributed 
food equally among G food sources, placed randomly on L. Units of food were placed 
in the sources with a deviation of σ.  We varied G between 1 and 10, and σ between 1 
and 50. The other parameters of the model were set according to Table 1. Notice that 
we kept all parameters directly governing the ‘ant algorithm’ constant. We only var-
ied the task to be solved. 

In order to quantify the order in a configuration of food, we calculated the average 
distance between pairs of food units. This measure, which clearly depends on S and F, 
increases with decreasing order. Therefore, in the following we will loosely call it the 
disorder of the food configuration. (The dependence on system size can be neglected  
in case of the experiments reported here, since the two parameters were held constant.) 

On the other hand, as a measure of ant colony performance, we used the simulated 
time that it took to collect 0.9·F units of food in the nest. The reason for the 90% 
threshold is that the location of the last few remaining food units is essentially random 
(within the source), and thus they are almost always collected by random walk, since 
no pheromone trail can prevail that connects them. Accounting for this last random 
period would add an amount of ‘random noise’ to our measurements. Nonetheless, 
our findings hold even if the limit is raised to 100%, albeit in a little less strict form. 

Table 1. The parameter settings of our experiments 

Parameter Value Parameter Value 
N 100 W 0.1 
S 100 α 1 
R 5 δ 0.01 
F 800 ρ 0.86 
m 100 D 2 
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Fig. 1. The dependence of the ant colony’s performance on the initial order in food placement. 
The horizontal axis shows the measure of disorder in the initial food configuration, while the 
vertical axis represents the number of time steps that it took for the ant colony to collect 90% of 
the food in the nest. Each mark represents the result of a simulation run with the default pa-
rameter set. Food placement parameters were varied: G took the values of 1, 2, 5 and 10, while 
σ varied between 1, 2, 5, 10, 15 and 20. For G=1 we also explored 8, 20, 25, 30, 40 and 50 for 
σ. Each combination was run with 10 different pseudo random number generator (RNG) seeds 
for food placement, and each initial configuration was tested with 10 different RNG seeds. That 
is, the figure shows 10x10 marks for each combination of G and σ. 

Fig. 1 summarizes the dependence of ant colony performance on the initial order 
in food placement. The horizontal axis shows the measure of order in the initial food 
configuration, while the vertical axis represents the number of time steps that it took 
for the ant colony to collect 90% of the food in the nest. It is evident that the per-
formance decays (the number of time steps required to collect the food increases) 
about linearly as the disorder of the initial configuration increases. However, the 
variance in performance also increases dramatically, which blurs the picture. There-
fore, on Fig. 2 we separate the two ‘sources of disorder’, i.e., the cases when we 
increased the number of food sources and those when the original order was dis-
rupted by increased deviation from the source. The figure shows the results for G>1, 
and those with σ>1 separately. (The cases when both placement parameters were 
varied are omitted.) 

It is clear that the foraging ants favor more ‘pointed’ food sources, even to the  
extent of being quicker in collecting several ‘compact’ food sources than a single,  
but ‘disordered’ source. The reason for this tendency is that information about a 
pronounced food source can be ‘communicated’ (even if indirectly) within the ant  
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Fig. 2. The dependence of the ant colony’s performance on the initial order in food placement, 
separating single food source cases from ones with multiple sources. The horizontal axis shows 
the measure of disorder in the initial food configuration, while the vertical axis represents the 
number of time steps that it took for the ant colony to collect 90% of the food in the nest. Each 
mark represents the result of a simulation run with the default parameter set. Food placement 
parameters were varied. Hollow squares represent runs with G=1 and σ taking values of 1, 2, 5, 
8, 10, 15, 20, 25, 30, 40 and 50. Crosses stand for runs where σ=1 and G varies over 2, 5 and 
10. Each combination was run with 10 different pseudo random number generator (RNG) seeds 
for food placement, and each initial configuration was tested with 10 different RNG seeds. That 
is, the figure shows 10x10 marks for each combination of G and σ. 

community, while this is less efficient for dispersed sources. The thus identified food 
sources can even be exploited in parallel, explaining the better performance for  
multiple sources. 

It may appear that these results so far are not much more than saying that the  
algorithm’s performance depends on the difficulty of the task at hand. While this is 
evidently true, it is important to see that it is not much known about what kind of 
tasks can be solved efficiently by ant-like systems. Albeit analyzing worst-, best-, and 
average-case performance is common in studies of algorithms, the efforts dedicated to 
analyze the capabilities of ant algorithms have been limited. [16] Moreover, the point 
here is that performance depends on the level of (dis)order in the initial food place-
ment and that this dependence is vaguely linear. Fig. 3 demonstrates that this kind of 
dependence is not trivial, by comparing our findings to the performance of a colony of 
uncoordinated ants performing random walks. The main message of this figure is not 
that stigmergetic ants outperform the uncoordinated colony, but the clearly different 
nature of the dependence between the two societies’ performance and the initial level 
of order in the environment. 
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Fig. 3. Comparison of the ant colony’s performance to the performance of ‘ants’ performing 
random walks. The horizontal axis shows the measure of disorder in the initial food configura-
tion, while the vertical axis represents the number of time steps that it took for the colony to 
collect 90% of the food in the nest. Hollow squares represent the same runs as on Fig. 1, while 
crosses stand for the performance of the ‘random ant’ colony for the same initial configura-
tions. To implement the ‘random ant’ colony we used the above ant algorithm with w=1.0. 

3.2   Order in the Ant Colony Corresponds to Order in the Environment 

Computer programs solve problems by processing information. That is, they convert 
data from one format to another, changing its information content. In case of the for-
aging ant society, food units are carried from the source to the nest. That is, the col-
ony changes the configuration of food in the environment. It would be nice to say that 
the ant colony’s task is to reduce the disorder of the food, but this is not always true. 
Especially, it is often not true in the simplest case, when there is only a single food 
source. In this case, whether the overall disorder of food decreases or not depends on 
the size of the food source, compared to that of the nest.  

Therefore, we are interested in how the disorder (cf. information content) of the 
environment changes during the foraging process, and how this change is reflected in 
the order of the ant colony itself. In the following, we will focus our study on the 
single food source case. 

We measure the (dis)order in food configuration as in the previous section. Simi-
larly, we quantify the ant colony’s (dis)order by the average distance between pairs of 
ants in the colony. 

Fig. 4 and Fig. 5 show the development of food and ant colony disorder in case of 
a single food source. Each panel on the figures shows the change of both food (solid 
lines) and ant colony disorder (dashed lines) for 10 runs (with different random seeds 
for ant behavior). Each row contains results for a specific value of food variation (σ) 
around the randomly selected single food source. The value increases from the top to 
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the bottom. The two figures show two examples of food source placement (values 
resulting from two different seeds). 

The initial value of the ant colony’s disorder is the same (low value) on each graph, 
because the ants start by hiving out from the nest. When the ants start exploring the 
environment, their disorder rises radically. It reaches its peak when the colony dis-
covers the food source. Then, the ants start forming a trail between the source and the 
nest, which decreases their disorder. The timing and height of the peak depends on the 
actual location of the food source. When it is closer to the nest, the random explora-
tion period is shorter and thus the disorder of the ant colony is lower. The peak is also 
affected by the variation parameter (σ). If the food source is spread out more, this 
brings its edge closer to the nest.  

At the end of the foraging, when most of the food is already in the source, the  
disorder of the ant colony raises again. This is because there is no more enough food 
to occupy all the ants, so they start exploring again. However, the persistence of the 
pheromone trail may delay this phenomenon, as observable on the panels of the first 
two rows of Fig. 4 and Fig. 5. In some cases, the disorder of the colony in this last 
period is even higher than its former peak. This depends on two factors. First, on the 
time it took for the colony to discover the food source. If they were quick, the peak is 
likely to be at a lower value. The other factor is a measuring effect: namely, when the 
recording of the process was stopped. When all food units are in the nest, in the long 
run, the ant colony’s disorder should approach the theoretical maximum value of 
disorder defined by the parameters of the closed system. This is because the ants 
move randomly in the absence of food.  

On the other hand, the initial disorder of food is the same in each row, as it is  
governed by the variation around the center of the single food source, but increases with 
the growth of σ. After the initial random exploration phase of the foraging, a few ants 
find the food source, and the disorder of the food changes gradually. As the ants’ disor-
der starts to drop, that of the food raises. This is because some of the food units are now 
taken away from the relatively ordered configuration of the food source, and are now on 
their way to the nest. Later during the process, the food units are divided in three 
classes. Some still reside in the source; others are already collected in the nest, while the 
remaining is in transit. This results in an initial increase in the disorder of food. How-
ever, after half of the food units are collected in the nest, each additional unit that leaves 
the source will bring the disorder down. Even those in transit will, since they are almost 
certainly traveling towards the nest, thus decreasing their distance to more than half of 
the other food units. (For larger food sources, i.e., when σ is high, the initial disorder of 
food is so high that the first part of the above described ‘hill’ in the trajectory partially 
disappears.) 

A significant observation is that the ant colony reaches its minimum disorder about 
the same time when the food disorder peaks. This is when the ants found the ‘opti-
mized’ trail between the source and the nest, and most of them are walking this path 
back and forth, carrying food to the nest. Clearly, this is the most ordered (or coordi-
nated) behavior that the ant colony displays during the whole process. On the other 
hand, this is when they are most effective in transferring food. Therefore, this is when 
the highest number of food units are ‘in transit’, i.e., scattered along the ant trail. This 
explains the peak in food disorder.  
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 Food Source Placement #1 

σ=1 

 

σ=2 

 

σ=5 

 

σ=8 

 

Fig. 4. The in-run development of food and ant colony disorder in case of a single food source. 
Each figure shows the time-trajectories of both food (solid lines) and ant colony disorder 
(dashed lines) for 10 runs (with different random seeds for ant behavior). The rows represent 
increasing values of food variation (σ) around the randomly selected food source. 
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 Food Source Placement #2 
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Fig. 5. Another example of the in-run development of food and ant colony disorder in case of a 
single food source (using a different seed for food source placement) 
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The exact values of the ants’ minimum disorder and the maximum disorder value 
of food placement depend on the distance between the nest and the source. This fol-
lows from our earlier explanation of the correspondence. If we assume the ants to be 
uniformly scattered along the trail at each time, their disorder will clearly be a func-
tion of trail length. Similarly, since the food units are carried by the ants, the disorder 
of food will also be dependent on trail length during this phase. 

When the size of the food source is larger (i.e., when σ is higher), the increase in 
the ant colony’s disorder starts earlier. This is because, as observed in the previous 
section, the colony is less efficient in case of more dispersed food sources. Techni-
cally, this is because the trail is most efficient in connecting two points, i.e., the area 
of the food source that was found first, and the location in the nest closest to it. If the 
food source is large, the original end of the trail runs out of food before the entire 
source would be exploited and thus the ants need to start exploring again. Obviously, 
they can find other parts of the source easily, since they start exploring from the end 
of the trail, but still, some ants will wander off from the nest. This explains the tail of 
the ant disorder curves, and also accounts for the colony’s degraded performance in 
collecting the last 10% of the food. 

When all food is collected in the nest, the disorder of the food reaches its final 
value. In case of high σ, this value is lower than the initial food disorder. This is be-
cause the radius of the initial food source is larger than that of the nest. Also, ants are 
likely to deposit the food in the nest right at the end of the trail, lowering the food 
disorder even further, resulting in a value that is slightly lower than the initial disorder 
of the ant colony. 

Fig. 4 and Fig. 5 show two different random locations for the center of the food 
source. By comparing the timeline of the different runs it is clear that the ant colony is 
more efficient in the environments on Figure 5. This is independent of the particular 
values of σ. However, within each figure, increasing initial food placement variation 
reduces the efficiency of the ant colony, as observed in the previous section. 

Another observation is that higher σ values result in higher variance across the 
runs. That is, the food disorder curve is fairly similar, but the disorder of the ant col-
ony differs more and more with increasing variation in the initial food placement. 
Especially, this is true for the phase following the minimum disorder value. The pre-
vious observation is important, because the ant colony uses a probabilistic algorithm. 
Yet, in case of ‘point like’ food sources, the performance appears almost independent 
of the given random number seed. On the other hand, for higher σ, the efficiency of 
the ant colony becomes more dependent on random factors. Notice that this depend-
ence is on probabilistic elements in the foraging algorithm, and not in the random 
initial placement of the food units, even though the σ parameter controls the latter. 

Above we focused on environments with a single food source. Multiple food 
sources may be analyzed similarly. When food sources are exploited sequentially, 
multiple ‘hills’ in food disorder are visible. The later ‘hills’ are often superimposed on 
a plunge towards the final, very low food disorder value. This is due to the amount of 
food approaching 0.5⋅F. The ‘hills’ also correlate with the ‘valleys’ of ant colony 
disorder, albeit parallel explorations may make this less clear. Also, in between two 
sequential exploitations, the disorder of both the ant colony and food may increase 
simultaneously. This is caused by the explorative behavior of the ants switching from 
one source to the other. 
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4   Discussion and Related Work 

The behavior of social insects has inspired a growing body of work in computer  
science. [19] A fair amount of this work was based on different models of the ant 
foraging behavior. Dorigo et al. give an extensive overview on various theoretical and 
practical applications of this approach, which amounts to the traveling salesman and 
quadratic assignment problems, graph coloring, routing in telecommunications net-
works, task scheduling, etc. [8] They also describe the original phenomena, as  
observed in [6], by Deneubourg et al. on the ant species Linepithema humile.  

The algorithms inspired by ant foraging behavior has been grouped and general-
ized under the Ant Colony Optimization (ACO) metaheuristic. [5] Although this  
approach supersedes the ant foraging model of Deneubourg et al. in detail and in 
practical applicability, we constrained our analysis to the latter in this paper. This is 
due to our different motivation: we were seeking the underlying reasons why ant 
foraging works, for which a simpler model seems more appropriate. 

The theoretical analysis of the above range of algorithms so far amounted to show-
ing various convergence properties of ACO, to establishing that a colony of ants can 
approximate the shortest path between the nest and the food source, and to discover-
ing second order phase transitions separating random and ordered behavior. [8][4] 
However, less effort has been dedicated to analyze why, in essence, ant algorithms 
work; a step of reasonable necessity in order to devise ant-like algorithms not directly 
mimicking the behavior of real colonies.  

Ramos et al. analyzes the role the environment and negative or positive feedbacks 
play in the workings of ant sorting. [20] Yet, the most significant attempt to date to 
explore the problem is by Parunak and Brueckner. [18] Their key observation is that 
ant-like systems involve multiple coupled levels and that global (macro) self-
organization is fueled by the entropy increase at the local (micro) level. (This issue is 
analyzed formally by Bar-Yam, who also finds that the sum of the complexity at all 
scales of a system with a fixed degree of freedom is constant and independent of the 
particular system. [1]) Parunak et al.’s interpretation of macro-level entropy is based 
on ant movement, while they consider the configuration of pheromone molecules for 
micro entropy. Although, according to this approach, our measurements in this paper 
are all at the global level, the results of our second set of experiments also support 
their explanation. Parunak and his colleagues also study the more general problem of 
achieving global objectives by programming local decisions. [17] Observing that 
“much current work on constructing systems of this sort is more art than science”, 
they present a simple model of adaptive walk (a minimal version of ant sorting behav-
ior) and illustrate how important properties of three practical applications can be de-
rived from the analysis of this model. Our work is another step in this direction by 
providing insights into the workings of the ant foraging algorithm. 

Another attempt to address similar issues, in the context of ant sorting, is by 
Gutowitz. [10] His focus is on local criteria (ant behaviors) necessary for global effi-
ciency. He compares ‘basic’ and ‘complexity seeking’ ants, to find that the latter are 
more suitable for the task. In contrast to Parunak et al., he argues that disorder is 
‘pumped’ into the system by the energy consumption of the ants, which balances the 
increased order-level in the environment. Gutowitz’s focus is thus on energy effi-
ciency, measured as the time dedicated to information processing by the ant prior to 
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moving decisions. This departs from our approach to relate the order-level of the 
environment to that of ant colony behavior. 

The issues addressed in this paper are also related to collective robotics. In their 
pioneering work Denebourg et al. suggest that sorting and clustering ants may serve 
as a behavioral model for mobile robots. [7][2] A series of subsequent works 
investigate the performance of ant-clustering. Martinoli et al. measure the dynamics 
of average cluster size depending on the number of cooperating robots. [15] Holland 
et al. experiment with arena size, probability of retention, and sensor characteristics. 
[12] In a more general framework, Handl et al. compare the performance of ant-based 
clustering to traditional clustering methods on specific data sets. [11] Wilson et al. 
analyze three different annular sorting mechanisms with respect to separation, 
compactness, shape, and completeness. [25] Contrary to our approach, however, none 
of these works analyze the dependence of the algorithm’s performance on the 
aggregate properties of the input. Similarly, Krieger et al. experiment with a group of 
robots solving an ant foraging-like task, but do not address performance’s dependence 
on the properties of the task to be solved. [13]  

Our work is also motivated by that of Boer, albeit at a more general level. Boer ar-
gues that information retrieval and processing of a stochastic system can be captured 
by measuring its entropy. Applying this idea to the process of operating a machine, 
Boer discusses the relation between the level of control and the entropy of movements 
using the machine’s levers. [3] 

4.1   Measuring Order and Disorder 

Several of the works discussed above consider the entropy, information-level or 
(dis)order of various systems. However, they use a variety of measures to quantify 
these properties. Parunak et al. discuss the inherent problem of terminology related to 
such endeavors: namely, the dichotomy of the term ‘entropy’ in thermodynamics and 
information theory. [18] While the latter, as defined by Shannon, even has a strong 
formal similarity to the former, their intrinsic relationship is unclear. [22] Parunak et 
al. opt for a spatial version of information entropy, and observe problems in its use, 
like the dependency on the (artificial) grid’s size used to model space. On the other 
hand, Gutowitz applies two different measures at the micro and macro levels. In the 
former case, complexity means the density of items at and around a certain location. 
In the latter, he considers spatial entropy and also discusses the results’ dependence 
on grid resolution. 

In preparation for the experiments reported in this paper, we also considered 
several options to measure the complexity of both the food and the ant society. For 
theoretical soundness, Shannon’s original definition of information entropy was a 
strong candidate. Ecologists and demographers also use this measure to determine the 
homogeneity of an area, regarding the diversity of certain species or residential 
segregation. [21][24] However, as discussed by both Gutowitz and Parunak et al., this 
measure brings a strong (and artificial) dependency on resolution, which we wanted to 
avoid. Moreover, we were seeking a measure that would also express the difficulty of 
the food collection problem.  
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Another, commonly used option to measure the (dis)order of behavior in higher 
dimensions is to compare the trajectory of the system to a fixed baseline case. For 
example, this approach has been used to measure the entropy of saccadic eye move-
ments during the recognition of a face. [14] In our case this option would mean to fix 
a food or colony configuration and calculate the relative difference between what is 
actually displayed and this ‘ideal case’. However, due to the parallel changes in the 
configuration of food and that of the ants, as well as to the dependence of the baseline 
case on the actual location of the food source, we voted against this option. 

5   Conclusions and Future Work 

Algorithms inspired by the behavior of social insects became popular over the last 
decade. This popularity is due to the growing need to ‘engineer emergent phenomena’ 
in order to cope with today’s and tomorrow’s software engineering problems. [26] A 
growing number of applications have been put forward based on the ‘ant colony’ 
approach, as well as a generalized and well-formalized metaheuristic under the name 
of Ant Colony Optimization (ACO). [5] However, most of these algorithms and ap-
plications follow closely one of the well-known and widely discussed insect models, 
like ant foraging, ant sorting, or task differentiation. ACO generalizes the foraging 
model, making it applicable to a truly wider set of problems, but tells us nothing about 
why exactly the heuristic works and under what specific circumstances. As discussed 
above, a limited number of papers dealt with this issue, but the question still remains 
essentially open.  

In this paper we proposed a disorder measuring approach to analyze this issue. As 
a first step, we investigated how the foraging ant colony’s performance depends on 
the (dis)order in the initial configuration of food in the environment (as a proxy for 
the difficulty of the task at hand). We found that execution time depends about line-
arly on the initial disorder. We also studied the time-trajectory of food disorder to-
gether with the level of coordination in the ant colony in case of a single food source. 
Our main finding is that the ant colony reaches its minimum disorder about the same 
time when the food disorder peaks. This is when the ants established the ‘optimized’ 
trail between the source and the nest. We also found that, in case of a single food 
source, increasing the disorder of the initial food configuration makes the colony’s 
performance more sensitive to the stochastic elements governing its behavior.  

These preliminary results show that this type of analysis has a potential for success 
in understanding the ‘driving force’ of stigmergetic algorithms. Given this under-
standing one would be in the position to design completely novel ‘insect-like’ distrib-
uted algorithms for complex problems. This is the long term goal of our work, but 
before getting there we intend to perform a series of further experiments. We would 
like to extend our study to the analysis of the two pheromone fields. Since these fields 
convey information about food placement to the ant colony, these measurements are 
expected to shed light on the correspondence between the order of the ant colony and 
the order of the environment and on the efficiency of information transmission in this 
stigmergetic system. Similarly, we will revisit the use of classic spatial entropy to 
determine our finding’s dependence on the particular measure used. Finally, at a later 
stage, we also plan to extend our approach to other stigmergetic algorithms, e.g., to 
ant sorting.  
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Abstract. Hierarchical clustering is used widely to organize data and search for 
patterns. Previous algorithms assume that the body of data being clustered is 
fixed while the algorithm runs, and use centralized data representations that 
make it difficult to scale the process by distributing it across multiple 
processors. Self-Organizing Data and Search (SODAS) inspired by the 
decentralized algorithms that ants use to sort their nests, relaxes these 
constraints. SODAS can maintain a hierarchical structure over a continuously 
changing collection of leaves, requiring only local computations at the nodes of 
the hierarchy and thus permitting the system to scale arbitrarily by distributing 
nodes (and their processing) across multiple computers. 

1   Introduction 

Clustering is a powerful, popular tool for discovering structure in data. Classical 
algorithms [17] are static, centralized, and batch. They are static because they assume 
that the data and similarity function do not change while clustering is taking place. 
They are centralized because they rely on data structures (such as similarity matrices) 
that must be accessed, and sometimes modified, at each step of the operation. They 
are batch because they run their course and then stop. 

Some applications require ongoing processing of a massive stream of data. This 
class of application imposes several requirements that classical clustering algorithms 
do not satisfy. 

Dynamic Data and Similarity Function.—Because the stream continues for a long 
time, both the data and users’ requirements and interests may change. As new data 
arrives, it should be able to find its way in the clustering structure without the need to 
restart the process. If the distribution of new data eventually invalidates the older 
organization, the structure should reorganize. A model of the user’s interest should 
drive the similarity function applied to the data, motivating the need to support a 
dynamic similarity function that can take advantage of structure compatible with both 
old and new interests while adapting the structure as needed to take account of 
changes in the model. 
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Decentralized.—For massive data, the centralized constraint is a hindrance. 
Distributed implementations of centralized systems are possible, but the degree of 
parallel execution is severely limited by the need to maintain the central data 
structure. One would like to use parallel computer hardware to scale the system to the 
required level, with nearly linear speed-up. 

Any-time.—Because the stream is continual, the batch orientation of conventional 
algorithms, and their need for a static set of data, is inappropriate. The clustering 
process needs to run constantly, providing a useful (though necessarily approximate) 
structuring of the data whenever it is queried.  

Biological ants cluster the contents of their nests using an algorithm that meets 
these requirements. Each ant picks up items that are dissimilar to those it has 
encountered recently, and drops them when it finds itself among similar items. This 
approach is dynamic, because it easily accommodates a continual influx of new items 
to be clustered without the need to restart. It is decentralized because each ant 
functions independently of the others. It is any-time because at any point, one can 
retrieve clusters from the system. The size and quality of the clusters increase as the 
system runs.  

Previous researchers have adapted this algorithm to practical applications. Like 
natural ants, these algorithms only partition the objects being clustered. A hierarchical 
clustering structure would enable searching the overall structure in time logarithmic in 
the number of items, and permit efficient pruning of large regions of the structure if 
these are subsequently identified as expendable.  

Our hierarchical clustering algorithm is inspired by previous ant clustering 
algorithms. Nodes of the hierarchy climb up and down the emerging hierarchy based 
on locally sensed information. Like previous ant clustering algorithms, it is dynamic, 
decentralized, and any-time. Unlike them, it yields a hierarchical structure. We 
designate the items being clustered as leaves, characterized by feature vectors. In our 
original application, they are documents characterized by keyword vectors. 

The acronym “SODAS” promises self-organizing search as well as self-organizing 
data. This paper describes only the self-organization of the data. The search process 
has two components. First, foraging agents based on a semantic model of the user [1] 
continually traverse the hierarchy. As they descend, they make stochastic choices at 
each node weighted by the similarity between the agent and each possible route. 
When they encounter a leaf, they assess its relevance, and then ascend the hierarchy, 
depositing a digital pheromone [6] on each node. Aggregated over many foragers, this 
pheromone field identifies the subset of the tree most likely to satisfy queries. The 
second component consists of real-time queries, which sense the pheromone field to 
move even more directly to relevant leaves. In the absence of foragers, search in a 
hierarchy requires time O(k logk n), where k is the average number of children per 
node and n is the total number of leaves subsumed. The foragers effectively reduce 
the factor of k. 

Section 2 summarizes previous relevant research in cluster analysis, swarm 
intelligence, and swarming clustering. Section 3 outlines our algorithm, while Section 
4 provides mathematical details on decentralized similarity computations. Section 5 
reports on the behavior of the system. Section 6 concludes. 
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2   Previous Research 

SODAS rests on two bodies of previous research: clustering, and swarm intelligence. 
We review relevant work in both areas, as well as previous attempts to synthesize 
them. 

2.1   Clustering 

Clustering as a method of data analysis has been extensively studied for the last forty 
years. For a general survey, see [17]. 

Clustering algorithms fall into two broad categories: those that partition the data 
(such as K-means) and those that yield a hierarchy. We wish to construct and 
maintain a hierarchy. [11] offers a detailed survey of five approaches to this task.  

The most common approach is agglomerative clustering, which repeatedly 
identifies the closest two nodes in the system and merges them until the hierarchy is 
complete.  

Divisive algorithms begin with all leaves in a single cluster. At each stage a cluster 
is selected and divided into subclusters in a way that maximizes the similarity of the 
items in each cluster.  

Incremental algorithms add leaves one by one to the growing structure. This 
approach supports a certain degree of dynamism in the data, but in work up to now, 
the emergent structure is strongly dependent on the order in which the leaves are 
presented, and cannot adjust itself if the distribution of data changes over time. 

Optimization algorithms adjust the hierarchy’s structure to minimize some measure 
of distance between the similarity matrix and the cophenetic distances induced from 
the hierarchy. Current versions of this approach are centralized. 

Parallel methods attempt to distribute the computing load across multiple 
processors. Olson [25] summarizes a wide range of distributed algorithms for 
hierarchical clustering. These algorithms distribute the work of computing inter-
object similarities, but share the resulting similarity table globally. Like centralized 
clustering, they form the hierarchy monotonically, without any provision for leaves to 
move from one cluster to another. Thus they are neither dynamic nor any-time.  

SODAS includes both agglomerative and divisive operations. It is incremental in 
allowing continuous addition of data, but in the limit the structure that emerges is 
independent of the order in which leaves are presented. It can be interpreted as a hill-
climbing optimizer, and runs on multiple processors, without the requirement for 
centralization in previous work. 

2.2   Swarm Intelligence 

SODAS’ basic mechanisms fall in the category of swarm intelligence [4, 27], and are 
inspired by biological mechanisms that enable coordination among highly populous, 
distributed processing entities with only local knowledge of their environment [7]. 
The particular example that underlies SODAS is nest sorting in ants. 

An ant hill houses larvae, eggs, cocoons, and food. The ant colony keeps these 
items sorted by kind. When an egg hatches, the larva does not stay with other eggs, 
but is moved to the area for larvae. Biologists have developed an algorithm that is 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Dynamic Decentralized Any-Time Hierarchical Clustering 69 

compatible with the capabilities of an ant and that yields collective behavior 
comparable to what is observed in nature [5, 9]. Each ant executes the following steps 
continuously. 

1. Wander randomly around the nest. 
2. Sense nearby objects, and maintain a short memory (about ten steps) of what has 

been seen.  
3. If an ant is not carrying anything when it encounters an object, decide 

stochastically whether or not to pick up the object, with probability that decreases 
if the ant has recently encountered similar objects.  

4. If an ant is carrying something, at each time step decide stochastically whether or 
not to drop it, with probability that increases if the ant has recently encountered 
similar items in the environment.  

The Brownian walk of individual ants guarantees that wandering ants will 
eventually examine all objects in the nest. Even a random scattering of different items 
in the nest yields local concentrations of similar items that stimulate ants to drop other 
similar items. As concentrations grow, they tend to retain current members and attract 
new ones. The stochastic nature of the pick-up and drop behaviors enables multiple 
concentrations to merge, since ants occasionally pick up items from one existing 
concentration and transport them to another. 

2.3   Previous Work on Swarming Clustering 

Several researchers have applied the biological algorithm to engineered systems. 
These implementations fall into two broad categories: those in which the digital ants 
are distinct from the objects being clustered, and those that eliminate this distinction. 
All of these examples form a partition of the objects, without any hierarchical 
structure. 

2.3.1   Distinct Ants and Objects 
A number of researchers have emulated the distinction in the natural ant nest between 
the objects being clustered and the “ants” that carry them around. All of these 
examples cluster objects in two-dimensional space. 

Lumer and Faieta [21] present what is apparently the earliest example of such an 
algorithm. The objects being clustered are records in a database. Instead of a short-
term memory, their algorithm uses a measure of the similarity among the objects 
being clustered to guide the pick-up and drop-off actions. 

Kuntz et al. [19] apply the Lumer-Faieta algorithm to partitioning a graph. The 
objects being sorted are the nodes of the graph, and the similarity among them is 
based on their connectivity. Thus the partitioning reflects reasonable component 
placement for VLSI design.  

Hoe et al. [16] refine Lumer and Faieta’s work on data clustering by moving empty 
ants directly to available data items. Handl et al. [12] offer a comparison of this 
algorithm with conventional clustering algorithms. 

Handl and Meyer [13] cluster documents returned by a search engine, to generate a 
topic map. Documents have a keyword vector of length n, thus situating them in an  
n-dimensional space. This space is then reduced using latent semantic indexing, and 
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then ant clustering projects them into two dimensions for display. This multi-stage 
process requires a static document collection. 

These efforts use only leaf similarity to guide clustering. Ramos [30] adds a 
pheromone mechanism. Ants deposit digital pheromones as they move about, thus 
attracting other ants and speeding up convergence. 

Walsham [33] presents a useful summary of the Lumer-Faieta and Handl-Meyer 
efforts and studies the performance of these algorithms across their parameter space. 

Oprisen [26] applies the Deneubourg model to foraging robots, and explores 
convergence speed as a function of the size of the memory vector that stores the 
category of recently encountered objects. 

Monmarché [23] clusters data objects on a two-dimensional grid, basing drop-off 
probabilities on fixed similarity thresholds. Inter-object distance is the Euclidean 
distance between the fixed-length vectors characterizing the objects. To speed 
convergence, once initial clusters have formed, K-means merges stray objects. Then 
the sequence of ant clustering and K-means is applied again, this time to whole 
clusters, to merge them at the next level (without retaining hierarchical structure). 
Kanade and Hall [18] use a similar hybrid process, employing fuzzy C-means instead 
of K-means as the refinement process. The staged processing in these models has the 
undesirable consequence of removing them from the class of any-time algorithms and 
requiring that they be applied to a fixed collection of data. 

Schockaert et al. [31] also merge smaller clusters into larger ones (without 
retaining hierarchical structure), but using a real-time decision rule that tells an ant 
whether to pick up a single object or an entire cluster. Thus their algorithm, unlike 
Monmarché’s, can accommodate a dynamic population. 

2.3.2   Active Objects 
A natural refinement of these algorithms eliminates the distinction between ant and 
object. Each object is active, and can move itself. These methods are less explicit in 
acknowledging their relationship to the underlying biological mechanism. 

Beal [2] discovers a hierarchical organization among processors in an amorphous 
computing system. The nodes have fixed locations, but efficient processing requires 
grouping them into a hierarchy and maintaining this hierarchy if the medium is 
divided or merged or if some processors are damaged. Processors form groups based 
on their distance from each other: they find neighbors and elect leaders. These leaders 
then repeat the process at the next level. The similarity function is implicit in the RF 
communication connectivity and conforms to a low-dimensional manifold, very 
different from the topology induced by similarity between arbitrary feature vectors. 

Ogston et al. [24] consider a set of agents distributed over a network, initially with 
random links to one another. Agents form clusters with their closest neighbors, and 
share their own links with those neighbors to expand the set of agents with whom they 
can compare themselves. The user specifies the maximum desired cluster size, to keep 
clusters from growing too large. This system is naturally distributed, any-time, and 
could reasonably be applied to dynamic situations, but it creates a partition, not a 
hierarchy. 

Chen et al [8] apply the active object model to clustering data elements on a two-
dimensional grid. The dissimilarity of data objects is the distance measure that drives 
clustering. They seek to manage the processor cycles consumed by the leaf agents  
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(a concern that is managed in the systems of the previous section by limiting the 
number of ants). Their solution is to have leaves fall asleep when they are comfortable 
with their surroundings, awakening periodically to see if the world has changed.  

We have implemented [29] a flat clustering mechanism with active objects. The 
other algorithms discussed so far form clusters on a two-dimensional manifold, but 
our algorithm clusters them on a graph topology reflecting the interconnections 
between processors in a computer network. The nodes of the graph are places that can 
hold a number of documents, and documents move from one place to another. Each 
document is characterized by a concept vector. Each element of the concept vector 
corresponds to a subsumption subtree in WordNet [10, 22], and has value 1 if the 
document contains a lexeme in the WordNet subtree, and 0 otherwise. Similarity 
between documents is the cosine distance between their concept vectors. Each time a 
document is activated, it compares itself with a sample of documents at its current 
node and a sample of documents at a sample of neighboring nodes, and 
probabilistically decides whether to move. This algorithm converges exponentially 
fast [29], even when documents are added while the process runs. To manage the 
computational cost of the active objects, each one uses pheromone learning [28] to 
modulate its computational activity based on whether recent activations have resulted 
in a move or not.  

2.3.3   Synopsis 
All previous work on ant clustering other than our own clusters documents spatially 
on a two-dimensional manifold. In addition, some of these algorithms are multi-stage 
processes that cannot be applied to a dynamically changing collection of documents, 
and even those that could be applied to such a collection have not been analyzed in 
this context. 

Previous ant clustering on arbitrary feature vectors (thus excluding [2]), including 
our own, produces a flat partition and thus does not offer the benefits of a hierarchical 
clustering. SODAS yields a searchable hierarchy to speed retrieval, and can function 
dynamically with a changing population. 

3   Local Operations Achieve Global Structure 

We first consider the nature of the data structure we want to achieve, and next 
propose some simple operations that can construct and maintain it. Then we provide 
further details on our decision logic, and finally deal with some housekeeping 
measures. 

3.1   Objective: A Well-Formed Hierarchy 

In our hierarchies, all data lives in the leaves. We constrain neither overall depth nor 
the branching factor of individual nodes. The set of all nodes N = R  ∪ L  ∪ I has three 
subclasses: 

1. The set of root nodes R has one member, the root, which is an ancestor of all the 
other nodes, and has no distinct parent. (For simplicity in describing the algorithm, 
it is convenient to consider the root as its own parent.) 
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2. The set of leaf nodes L represents the data items being clustered. Leaves have no 
children.  

3. All other nodes are internal nodes, elements of I. Each internal node has exactly 
one parent, and one or more children that may be either leaves or other internal 
nodes.  

We define two set-valued functions of a node. children(i) ⊂ L  ∪ I includes all the 
nodes that are children of node i, and desc(i) ⊂ L is the set of leaves that descend 
(directly or indirectly) from node i. children(i) = desc(i) = ∅ (the empty set) if i ∈ L . 
We envision a search process that selects among the children of a node in time 
proportional to the number of children. 

Each node i is characterized by a measure called “homogeneity,” H(i), which 
estimates the collective similarity among desc(i). Later we will consider possible 
measures for homogeneity, but for now we observe the following constraints that any 
reasonable measure should satisfy. 

1. H(i) ∈ [0,1], where H(i) = 0 indicates that desc(i) are completely dissimilar from 
one another, and 1 indicates that they are completely similar to one another. 
“Dissimilar” and “similar” are defined with respect to the user’s interests. In our 
work, they are defined by functions grounded in feature vectors associated with 
each leaf. 

2. For any leaf i, H(i) = 1. A leaf is perfectly homogeneous. 
3. For any non-leaf node j, H(j) is a function of the complete set of leaves currently 

subsumed by the node, and ideally does not depend on the internal structure of the 
hierarchy. Because we require only that H(j) estimate the similarity among leaf 
nodes, in practice H(j) may vary with the structure, but we prefer measures that 
minimize such dependency. 

4. In a well ordered hierarchy, if n, p, and c are the indices of a node, its parent, and 
one of its children, we expect H(p) ≤ H(n) ≤ H(c). That is, homogeneity should 
increase monotonically as one descends the hierarchy. We call this characteristic of 
a well-ordered hierarchy, the Homogeneity Monotonicity Condition (HMC). 
Deviations from HMC indicate regions of the hierarchy that are not well ordered, 
and that should be restructured.  

The HMC is necessary for a well-formed hierarchy, but not sufficient. In addition, 
all of the children of a node should be similar to one another. One way of quantifying 
this condition is to require that the removal of any one child from a node should have 
minimal impact on its homogeneity.  

To be more concrete, let j = parent(i), and let j\i represent a node having all the 
children of j except for i. Then we can define the contribution of node i to the 
homogeneity of its parent cont(i) ≡ H(j) – H(j\i) ∈ [-1, +1]. (It is not the intent that 
H(j) = ∑cont(i) over j’s children.) We would like the difference between the 
maximum and minimum values of  cont(i) for i ∈ children(j) to be minimal. Call this 
difference (which is between 0 and 2) a node’s “dispersion.” We seek hierarchies that 
minimize the dispersion at each node, a condition we call the Dispersion 
Minimization Condition, or DMC. (The difference between homogeneity and 
dispersion is analogous to the difference between the average of a set of numbers and 
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their variance. Low homogeneity is consistent with either high or low dispersion, but 
high homogeneity requires low dispersion.) 

3.2    Operations: Promote and Merge 

In view of the desired “any-time” 
property, we consider a hierarchy 
that has already formed, and define 
decentralized processes that can 
improve it incrementally. The spirit 
of our operations is anticipated by 
Hartigan [15], who defines a global 
quality metric over a tree with 
respect to a similarity matrix, and 
then explores combinations of local 
modifications to the tree (rebranch, 
which reconnects a node; kill, which 
deletes a node, and make, which 
introduces a new node) that will improve this metric. This promising approach (which 
is centralized and relies on global knowledge) is strangely absent from subsequent 
clustering research, and is not expounded in his subsequent book on the subject [14], 
perhaps because in the universe of centralized methods it is computationally costly. 

The unit of processing in SODAS is a single non-leaf node, the active node. This 
node knows its parent and its children. (Since the active node is the parent of its 
children, the word “parent” is ambiguous. We use “grandparent” to refer to the parent 
of the active node.) It can estimate the local quality of the hierarchy by comparing its 
homogeneity with that of its children, and by computing its dispersion, as described in 
the next section. It seeks to improve these qualities by manipulating them with two 
operations, Promote and Merge. The only nodes involved in the operation are the 
active node and its parent and children. Because of its shape (left side of Fig. 1), we 
refer to this complex as a “crow’s foot.”  

In Promoting, a node chooses one 
of its children and makes it a child of 
the grandparent (Fig. 1). If the node is 
the root, Promoting has no effect. 
Otherwise Promoting flattens the 
hierarchy. It moves misplaced nodes 
up the hierarchy until they meet other 
nodes with which they are more 
suitably associated. Promoting is an 
instance of Hartigan’s rebranch, and 
is a local version of the basic step in 
divisive hierarchical clustering. 

In Merging, a node chooses some 
of its children and combines them into 
a single node (Fig. 2). (For the sake of concreteness we describe the merging of two 
children, but a larger set of children could be merged at a single step.) If either of the 

 

Fig. 1. Promoting.—A node chooses a child and 
makes it the child of its parent 

 

Fig. 2. Merging.—A node joins two highly 
similar children 
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nodes being merged is internal, their children are combined (a combination of 
Hartigan’s rebranch and kill). A new internal node is added (Hartigan’s make) only 
when two leaves are merged. Merging makes the hierarchy deeper. It is a local 
version of the basic step in agglomerative hierarchical clustering. 

The general dynamic of SODAS is that subtrees climb upward, out of branches 
where they do not belong, and then merge back down into more appropriate branches. 
This vision of nodes moving up and down the tree in response to homogeneity 
estimates is analogous to the movement of ants in ant clustering on the basis of item 
similarity, and motivates our comparison of the two methods. 

Promoting and Merging are sufficient to support the basic characteristics of Any-
Time, Dynamic, Distributed hierarchical clustering. 

Distributed.—Because a node can estimate H locally, it can sense the HMC and 
DMC, and thus make decisions to promote or merge its children without affecting any 
nodes other than its parent and its children. Thus many nodes in the hierarchy can 
execute concurrently on different processors. We envision the nodes (root, internal, 
and leaves) being distributed across as many processors as are available. 

Dynamic.—Classical algorithms for hierarchical clustering presume that the 
structure is correct at every step. Promote and Merge assume that it is incorrect, and 
take local actions to improve it. Promoting moves nodes that are in an inappropriate 
branch of the hierarchy higher up, to a more general level. Merging joins together 
nodes that are very similar, thus growing hierarchical structure downward. As these 
processes execute concurrently over the nodes of the hierarchy, nodes continually 
climb up and down the hierarchy, finding their best place in the overall structure. New 
leaf nodes can be added anywhere to the structure, and will eventually find their way 
to the right location. If the similarity measure changes, nodes will relocate themselves 
to account for the changed measure, while taking advantage of any of the existing 
structure that is still appropriate. 

Any-Time.—Because the algorithm dynamically corrects errors, it never needs to 
be restarted. The longer it runs, the better the structure becomes. Empirically, it 
converges exponentially after a short initialization period, and its characteristics are 
very similar to those of our flat clustering algorithm, for whose exponential 
convergence we have a theoretical analysis [29]. Thus one can consult the structure at 
any time for retrieval purposes. 

3.3   Detailed Decision Logic 

The merge and promote operations are local atomic behaviors of the node. In each 
decision cycle, the node will select one of its atomic behaviors for execution with 
probability proportional to the value that each behavior offers at the moment. 

Once the node selects a behavior, that behavior decides whether in fact to execute. 
Experience with swarming algorithms suggests that this decision should be stochastic, 
not deterministic, both to break symmetries that might otherwise arise, and to escape 
from local extrema. We use a Boltzmann distribution whose temperature is a tuning 
parameter of the system. High temperatures encourage more search, while low ones 
lead to rapid (though often suboptimal) convergence. The use of stochastic decisions 
based on local information rather than deterministic ones based on global information 
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is a major distinction between our work and [15], and enables us to handle 
dynamically changing sets of leaves in distributed processing environments.  

Both behaviors 
follow the same 
generic scheme for 
computing their 
value. Each behavior 
affects an entity 
made up of one or 
more of the node’s 
children, and has a 
"figure of merit" m.” Table 1 summarizes the behaviors, the affected entities, and the 
computation of the figure of merit for an entity. 

Execution of a behavior depends on two conditions. 

1. The behavior must enhance the increase of homogeneity as one descends the tree. 
Promotion must increase the homogeneity of the active node. The node resulting 
from a merger must have greater homogeneity than its parent. If this condition is 
not satisfied, the behavior is not permitted. 

2. The merit of taking the behavior on an entity must be significantly greater than the 
merit of taking it on another entity in the same node. If merit for all entities in a 
node are about equal, we do not have adequate guidance to select one entity over 
another. An entity’s merit must lie above a threshold (currently, the third quartile 
of all entities) for the behavior to be enabled.  

To assess the second condition, we need figures of merit for at least three entities. 
If the greatest is much larger than the others, we favor the action, but if all of the 
figures of merit are close together, we do not. We can apply this test with all the 
entities under a node, or (if the complete set of children is too large to compute the 
figures of merit efficiently) with a randomly chosen subset that includes three or 
more. The entities are pairs of children (in the case of merger) or individual children 
(in the case of promotion). In both cases we need at least three children, which 
generate 3C2 = 3 pairs. 

We order the entities’ figures of merit from largest to smallest, and compute the 
median and the quartiles. All entities with figures of merit greater than zero and above 
the upper quartile are candidates for action. In principle, we can select stochastically 
among them, weighted by merit, but currently we use the largest. If no entities have 
positive figures of merit, or if all figures of merit are between the quartiles, the 
behavior under consideration is not taken. 

We now focus on three figures of merit: 

1. mc is the maximal figure of merit, associated with the candidate. 
2. mm is the median figure of merit. 
3. md (“diameter”) is the inter-quartile spread. 

We use md to measure how far the candidate is from the median. We can consider 
either (mc – mm)/md or the inverse. Because we are interested in cases where this 
ratio is large, and to keep the quantity bounded, we focus on the inverse, md/(mc – 
mm), which we call the candidate’s proximity. The node learns the maximum 

Table 1. Calculating a Behavior’s Value 

Behavior Affected 
Entity Merit 

Merger Pair of Children Pairwise similarity, mmerge = h(c1 + c2) – 
h(n). Promotes HMC. 

Promotion Single Child 
Increase in node’s homogeneity if child 
is removed, mpromotion = h(n\c) – h(n). 
Promotes DMC. 
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proximity value it has seen, proxMax, and then computes the candidate’s separation 
as 1 – proximity/proxMax.  

We learn a separate proxMax for each behavior. 
We use the separation in two ways. It is the value that the node uses to select which 

behavior to perform, and also to compute the probability of performing the selected 
action (via the Boltzmann function).  

3.4   Housekeeping 

When a node is activated, and before it decides to merge or promote, it does some 
housekeeping. First, if it has only one child, it is superfluous, so it deterministically 
promotes its child and dies. Second, if it has exactly two children, either promote or 
merge would leave it with only one, so it does neither. Third, it compares its 
homogeneity with that of its parent, and if it violates HMC, it promotes its children 
deterministically and then dies. 

4   A Local Homogeneity Measure 

A critical requirement for implementing the algorithm outlined in the previous section 
is the availability of a homogeneity measure that a node can compute based only on a 
fixed length-summary available at its immediate children. Notionally, a node’s 
homogeneity is a measure over all of the leaves that it subsumes. A straightforward 
way to estimate homogeneity, consistent with the definition in Section 3.1, would be 
an appropriately normalized average pairwise similarity of all leaves subsumed by a 
node, using one’s favorite measure of similarity between feature vectors, such as 
cosine distance, Euclidean distance, or Hamming distance. However, such a 
computation would require either that we access all of a node’s leaves for each such 
evaluation (impairing our ability to distribute the algorithm), or else that we store the 
feature vectors for all leaves in each ancestor internal node (which would greatly 
expand the required storage requirements for large populations of leaves, particularly 
for nodes high in the tree). 

We use a homogeneity function derived from the mutual information between the 
leaves and the elements of their feature vectors. This measure can be computed from 
three constant-length variables stored at each node of the tree. 

Let C be a cluster of leaves subsumed by a node, and C’ ⊂ C a subset of that 
cluster, subsumed by a child of the node. Let (X,Y) be a joint random variable over 
leaves x and features y, with marginal probability xp•  on leaf x. (assumed to be 

uniform). We can now define ∑ ′∈ •′• ≡
Cx xC pp , the marginal probability of the 

cluster C’, which for a cluster with only one leaf x is just p.x. For higher-level clusters,  

∑ ⊂′ ′•• =
CC CC pp  (1) 

 

xxyyx ppp •≡  is the joint probability of finding feature (e.g., word) y in leaf (e.g., 

document) x, so ∑ ′∈′ ≡
Cx yxCy pp  is the joint probability of finding word y in cluster 
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C’. Then CCyCy ppp ′•′′• ≡ /  is the cluster-conditioned marginal probability of a 

given feature y, and for a single-leaf cluster is just 
xyp . For higher-level clusters,  

∑ ⊂′
•

′•
′•• =

CC
C

C
CyCy p

p
pp  (2) 

 

This quantity permits us to compute the cluster-conditional information content of 
the feature set, 

Cyy CyCY ppI ••∑−= ln  

Let 
( ) ∑ ∑∈ •−≡

Cx xyy xyCxCXY pppI || ln  be the marginal information of Y given X, 

conditioned on C. For a cluster with a single word, this is just the entropy of the 
conditional probability 

xyp , ( ) xyy xyCXY ppI ln∑−≡ . For higher-level nodes,  

( ) ( ) CXYCC
C

C
CXY I

p

p
I ′∈′

•

′•∑≡  (3) 

 

Cp ′•
, 

Cyp ′•
, and ( ) CXYI ′

are the three constant-length values (of length 1, |Y|, and 1, 

respectively) that each node stores. They can be updated by a node from its children 
with Equations 1, 2, and 3, thereby locally updating  

( ) CXYCYCYX IIM −=  (4) 

 

MYX|C is the cluster-conditional mutual information, the average amount of 
information one would gain towards identifying a leaf x in C given a feature y.  

MYX|C is the basis for the similarity computations that drive SODAS. If the feature 
distributions in the various leaves in a cluster are very similar ( 0≈CYXM ), one learns 

very little from a given feature. If they are very different (
CXCYX IM ≈ ), one learns 

much. We modify this measure in two ways to define the homogeneity of a cluster. 
First, we normalize it by a (not necessarily least) upper bound IX|C, which under our 

assumptions is just ln(|C|). It turns out that normalizing each cluster by its size (the 
number of leaves it subsumes) leads to severe nonlinearities in the similarity measure, 
so we compute IX|C based on the size of the entire population as our normalizing 
factor. This normalization (as well as the marginal probability

xp•
) depends on 

knowledge of the size of the population of leaves being clustered. If old leaves are 
deleted at the same rate as new ones are added, the size is constant. Otherwise an 
estimate of the size needs to be propagated throughout the hierarchy.  

Second, because we want a measure of homogeneity, not of diversity, we subtract 
the normalized mutual information from 1. 

Thus our homogeneity measure for a node n that subsumes a cluster of leaves C is  

DX

CYX

I

M
nh −≡ 1)(  (5) 

where D is the entire set of leaves. 
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5   Experimental Results 

The behavior of SODAS is most clearly seen using synthetic data with feature vectors 
randomly selected from [0,255]3. By interpreting each vector as an RGB color, a 
treemap [3] clearly displays the increasing organization of the data over time.  

To avoid the expense of printing color, we do not show these plots here. Instead, 
we report the behavior of an order-based version of the cophenetic correlation 
coefficient (CCC) [32]. To avoid undue influence by outliers, we use the Spearman 
rank correlation coefficient instead of the conventional correlation coefficient. We 
demonstrate the algorithm in three 
steps. 

First, as a baseline, we cluster 
populations of random color data of 
size 200 and 500, using a version of 
standard agglomerative clustering 
under the similarity metric of 
Equation 5. At each step, we 
deterministically merge the two 
nodes for which the resulting new 
node has maximal homogeneity 
under Equation 5, breaking ties 
randomly. Though the clustering 
step is deterministic, the generation 
of the colors and the breaking of 
ties are both random, so we explore 
13 replications of each experiment. 
The mean (standard deviation) of 
the CCC for 200 leaves is 0.53 
(0.05), and for 500 leaves, 0.52 
(0.03). The difference is statistically 
indistinguishable, as confirmed by 
the Mann-Whitney rank sum test: 
the sum of ranks for the two 
populations are 181 (for 200) and 170 (for 500), within about a quarter of a standard 
deviation (19.5/4) of the expected mean of 175.5. By construction, clustering n items 
in this way requires n – 1 steps. 

Second, we exercise our algorithm on a random tree with k = 5. This configuration 
requires the algorithm to exercise both merging and promoting, and emulates an 
application in which the data begin on different processors. If we began with a flat 
tree, the behavior of the algorithm would differ little from conventional agglomerative 
clustering. We plot the CCC every 100 cycles until convergence. Fig. 3 shows the 
dynamics for representative runs. Because flat ant clustering exhibits very strong 
exponential convergence, we also show exponential fits, though they are not as close 
as in the flat case.  

The mean (standard deviation) asymptotes for SODAS are 0.47 (0.07) for 200 
leaves and 0.48 (0.04) for 500, again indistinguishable; the Mann-Whitney rank 
sums are 173 and 178, respectively. These are lower than the baseline. The Mann-
Whitney rank sums for all 26 baseline runs compared with all 26 SODAS runs are 

 

Fig. 3. Convergence of 200 (top) and 500 (bottom) 
random color vectors 
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875 and 503, which are 3.40 standard deviations from the mean of 689, significant 
at the 0.1% level.  

In ant-based partitional clustering, the exponent is inversely proportional to the size 
of the population [29]. SODAS qualitatively follows this trend, with an exponent on 
the order of 10-3 for 200 leaves and 10-4 for 500. The stochastic element in SODAS 
requires many more cycles to achieve convergence than does the deterministic 
baseline (for 200 leaves, about 1200 cycles to increase the CCC by a factor of 1 – 1/e, 
compared with 200 to completion for the baseline algorithm). This disadvantage is 
offset by the ability to distribute the computation over many concurrent processors, 
the availability of partial results at any time during the clustering, and the algorithm’s 
ability to handle dynamic data. Such trade-off is common in swarming algorithms: 
“Gottes Mühlen mahlen langsam, mahlen aber trefflich klein”1 [20]. 

To show SODAS’ ability to handle 
dynamically changing data, we begin the 
process with a random tree of 200 color 
leaves, and add one additional color leaf 
every 100 time steps. Fig. 4 shows the 
convergence when the additional leaves 
are added at randomly selected nodes, 
along with a (admittedly rough) fit. 
Consistent with our experience in 
partitional clustering, the asymptote 
drops, and the continual addition of new 
leaves keeps the dynamics from settling 
down. 

6   Conclusion and Prospectus 

Hierarchical clustering is a powerful tool for data analysis, but has hitherto been 
restricted to applications in which the data being analyzed is relatively static, and 
small enough to be handled on a single processor. By adapting mechanisms inspired 
by social insects, SODAS generates and maintains a hierarchical clustering of a 
dynamically changing body of data, scaling to arbitrarily large amounts of data by 
distributing the processing across multiple processors. It supports a twofold 
information retrieval process, in which foraging agents continuously maintain 
markers on subtrees that have high relevance to a model of the user, enabling efficient 
processing of individual queries. While its convergence is slower than conventional 
deterministic algorithms, it can provide any-time organization of massive, changing 
data in a distributed environment, an important class of application for which 
conventional algorithms are ill-suited. 
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Abstract. In this paper we present the Behaviosite paradigm, a new
approach to affecting the behavior of distributed agents in a multiagent
system, which is inspired by biological parasites with behavior manipu-
lation properties. Behaviosites are special kinds of agents that “infect”
a system composed of agents operating in that environment. The be-
haviosites facilitate behavioral changes in agents to achieve altered, po-
tentially improved, performance of the overall system. Behaviosites need
to be designed so that they are intimately familiar with the internal
workings of the environment and of the agents operating within it, and
behaviosites apply this knowledge for their manipulation, using various
infection and manipulation strategies.

To demonstrate and test this paradigm, we implemented a version
of the El Farol problem, where agents want to go to a bar of limited
capacity, and cannot use communication to coordinate their activity.
Several solutions to this problem exist, but most yield near-zero utility
for the agents. We added behaviosites to the El Farol problem, which
manipulate the decision making process of some of the agents by making
them believe that bar capacity is lower than it really is. We show that
behaviosites overcome the learning ability of the agents, and increase
social utility and social fairness significantly, with little actual damage
to the overall system, and none to the agents.

1 Introduction

Biology-based technology (biomimetics) often provides insight into ways of im-
proving technology based on biological metaphors [1]; nature and evolution have
worked hard at finding solutions to many problems that are also present in ar-
tificial environments. Parasites have been examined in the biomimetic context,
in particular for their special abilities (such as safe navigation inside the human
body, needed for microendoscopy [2]).

However, one of the most interesting abilities of biological parasites has re-
ceived little attention in technological contexts — their ability to manipulate
and alter their host’s behavior. Usually, parasites alter host behavior so as to
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transmit themselves to the next host, as in the case of rabies (by generating
aggressive host behavior). In rare cases, biological parasites can actually benefit
the host or the host’s society. The word “parasite” [3] derives from the Greek
word parasitos, which means “beside the grain”, and originally had a positive
connotation; a parasite was a fellow guest who ate beside you at the dinner ta-
ble. Only later did it receive the meaning of someone eating at the expense of
another.

In the computer science literature, the term “parasite” is used in three differ-
ent contexts, none dealing with behavior manipulation: parasites in simulations
of evolution, parasites as a driving force in genetic algorithms, and parasites as
a common name for malware (computer viruses, trojan horses, etc.).

1.1 The Behaviosite Paradigm

In this paper, we present a novel paradigm that employs a special kind of agent
(called a behaviosite) that manipulates the behavior of other agents so as to
achieve altered, possibly improved, performance of the entire system. The be-
haviosite (by definition) is not itself necessary for the normal conduct of the
system; thus, it is termed a kind of “parasite”.

Within the field of MultiAgent Systems (MAS), the behaviosite is closely
related to the idea of adjustable autonomy (AA) [4], although it approaches
issues of autonomy in a novel way. AA is about agents varying the level of
their own autonomy based upon the situation (thus leveraging three alternative
modes of operation, fully autonomous, semi-autonomous, and teleoperated). AA
often deals with agents transferring control to human users [5] in cooperative
settings. In the context of the Behaviosite paradigm, an agent transfers some
of its autonomy to the behaviosite (usually unwittingly, and in any case the
agent is better described as ceding autonomy). The behaviosite manipulates the
agent’s behavior to achieve altered performance of the system. In this way, the
behaviosite may create improved performance of the overall system (as we will
demonstrate in the parasitized El Farol problem [6]), or it may facilitate new
behaviors of the system.

Introducing behaviosites into a system may be either planned as part of the
overall system design, or added (after the fact) to an already working system.
When planned as part of the overall system, it is possible to choose between
applying internal behaviosites (design hooks inside agents, so that behaviosites
can attach to the agent and manipulate them) or external behaviosites (which
manipulate only the input/output of the agent, vis-à-vis the environment). When
applied to an already working system, external behaviosites are usually the only
option. Both internal and external behaviosites are discussed in Section 3.

Internal behaviosites require cooperation at the level of agent designer(s), so
that the appropriate hooks are in place for them to run (and alter agent be-
havior). Centrally-designed MAS systems, of course, may include behaviosite
hooks because overall system performance can be improved. However, even
in systems of self-interested, heterogeneous agents, inclusion of a behaviosite
hook may be mandated as a requirement for operation within a given
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environment — thus giving the environment designer an additional tool for im-
proving overall system behavior.

1.2 A Distributed Approach to Altered Behavior

One of the major strengths of the Behaviosite paradigm is that it is a distributed
solution to issues raised in a distributed environment. Consider, for example, the
El Farol problem [6] as an example of such a distributed environment. All agents
want to go to a bar called El Farol, but it has limited (comfortable) capacity. If
there are more attendees at the bar than that capacity, all attendees suffer from
the crowdedness. With no option for communication or collusion, an agent must
learn the behavior of other agents en masse, in order to reach a decision: go to
the bar, or stay at home.

With very simple agent behavior, the system reaches an equilibrium around
the given capacity. Unfortunately, personal and social utilities are extremely low,
since about half the time the bar is overcrowded. To this setting, we introduce
behaviosites, and the problem becomes the “parasitized El Farol” problem. We
show that with simple infection and manipulation strategies of these special
agents, it is possible to dramatically increase personal and social utilities, and
even improve social fairness.

Although the El Farol problem is artificial, it has implications for many
fields, including game theory, congestion problems in networking, logic, and
economics [7]. In most, if not all, of these areas, the Behaviosite paradigm is
applicable. There are, in addition, other possible applications for behaviosites,
as will be discussed in Section 5.

The rest of the paper is organized as follows. In Section 2 we present a for-
malization of the Behaviosite paradigm. In Section 3, we discuss the El Farol
problem, and how behaviosites could be employed in its solution. In Section 4 we
briefly overview the concept of “parasite” in biology and computer science. We
conclude in Section 5 with an overall discussion of our approach and of future
work.

2 Behaviosite Formalization

2.1 Overall Structure

The Behaviosite paradigm is composed of three parts: the environment, agents
(also referred to as hosts), and behaviosites. Environment, agents, and be-
haviosites will be referred to collectively as “the system” (as in ecosystem).
See Figure 1 for an illustration of the environment/agent relationship.

Environment : Encapsulates all of the external factors, conditions, and influences
that affect a community of agents and behaviosites. For example, during the
course of a program run, it stores the runtime state of the system, and it is
discarded when the program ends. In some cases, the environment can be a
degenerate instance, as in the case where agents only influence one another. In
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Fig. 1. The environment/agent relationship

other cases, it may have an important role in the conduct of the system, as in
the parasitized El Farol problem.

Agent society: A society of agents is a system composed of multiple, interacting,
possibly cooperating agents (see [8]). As there are many definitions of agency,
we use the one suggested by Franklin and Graesser [9]: An autonomous agent
is a system situated within and as part of an environment that senses that en-
vironment and acts on it, over time, in pursuit of its own agenda and so as to
effect [sic] what it senses in the future.

Behaviosite: Most basically, a specialized type of agent. A behaviosite is an
additional property/information added to a system with a society of agents,
and is not (and should not be) a property of the agent or the environment.
The behaviosite is not required for the system, but should be beneficial in some
sense; too many behaviosites can degrade some aspects of the system. Below,
we present specific definitions regarding behaviosite elements. These definitions
are further clarified in Section 3, which presents (in the context of the El Farol
problem) what behaviosites are, and their advantages within a system.

2.2 Behaviosite Specifics

Required Traits
Benefiting the system: Behaviosites come with costs to the system, as will be
discussed below. The design and use of behaviosites is unnecessary, unless they
are beneficial to the system in some respect. Behaviosites may influence a system
in two desired ways: they may increase social utility, or they may create new
features in a working system. Both are accomplished by altering the behavior of
some of the agents. Note that in the behaviosite paradigm, unlike with parasites
in nature, the utility of the behaviosite itself is not important when declaring
them successful.

System knowledge: A behaviosite must be designed with deep understanding of
how the system works: agent-agent interactions, agent-environment interactions,
and also internal workings of the agents in some cases. Such knowledge is es-
sential for the success of the behaviosites in improving the system. One type of
system in which behaviosites can be beneficial is a system that works in a subop-
timal equilibrium. When building a system, usually suboptimality is caused by
the need to make it robust against failure. However, there are examples in which
sub-optimality results from the inherent structure of the system. The internet is
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one example of a system in suboptimal equilibrium, with regard to the conges-
tion problem caused by packet routing. The El Farol problem presents another,
similar example.

Not a property of the agent nor of the environment : Behaviosites exist in the
middle ground between agents and the environment, and should not be a prop-
erty of either of them.

Optional Traits
Hidden or apparent infection: We usually will not want agents to know who is
infected by the behaviosite. Such knowledge may help individual agents exploit
the situation, harnessing its own behaviosite or some other parasitized agent to
its own needs and thereby damaging the designed mechanism of environment-
agents-behaviosites. However, there are some settings in which such knowledge
can benefit the system (as also occurs in nature), for example, the elimination
of ill-functioning agents (a process known as “apoptosis” in cells).

Finding the host : In many cases in nature, finding the host is essential for the
parasite. In the Behaviosite paradigm, it may also be an issue. A behaviosite
designer may endow the environment with the responsibility of infecting agents
in the system using some strategy (like in the parasitized El Farol problem), or it
may leave the task of infection to the behaviosites themselves, thus making the
behaviosites more autonomous. In certain contexts, hosts may also be equipped
with defense mechanisms against infection.

Behaviosite communication: Behaviosites may communicate with one another
within a host (the host may be infected with more than one behaviosite), or
across hosts. The latter enables formation of a network of parasitized hosts,
which may act in some kind of parasite-induced coalition. This may enable the
behaviosites to be a catalyst for the creation of norms or social laws.

2.3 Placing the Behaviosite

To alter host behavior, the behaviosite designer must decide where to place the
behaviosite in the flow of the system, as can be seen in Figure 2.

In general, behaviosites can be divided into two main groups, external be-
haviosites, and internal behaviosites. External behaviosites can alter the input
or output of the agent vis-à-vis the environment (Figure 2a). In this way, the
host designer(s) need not know of the possible existence of a behaviosite now or
in the future. Moreover, the behaviosite designer may introduce them into an
existing system.1

On the other hand, internal behaviosites usually require the system to be
designed “plug and play” for the behaviosite (Figure 2b). The host designer(s)
will leave a (sufficiently protected) hook, into which behaviosites can be plugged,
possibly created by another designer. Allowing the behaviosite internal access
may seem dangerous, but it holds many advantages.
1 Of course, these external behaviosites affect inter-agent communication only if it,

too, travels via the environment.
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Fig. 2. (a) marks where an external behaviosite can alter the host’s behavior, by al-
tering its input/output. (b) marks where an internal behaviosite can alter the host’s
behavior, by altering internal data or by partial or full replacement of behavior mod-
ules.

Internal behaviosites can have two main manipulation methods: changing the
host’s internal data (Figure 2b, interaction between see-behavior-act modules)
or replacing some or all of its behavioral modules (Figure 2b, behavior module).
In the first form of manipulation, only relevant data will be changed, and in
some scenarios, it can actually solve the problem of dealing with noise resulting
from the transduction of input from the environment.2

The hook for the second manipulation method is very easy to program, by
using the behavioral design patterns suggested by the “gang of four” [11]. Intro-
ducing a new behaviosite to a well-designed system may at times be much like
programming a new, special behavior for an agent (though it should not be a
regular property of the host). In specific systems, if needed, security measures
will have to be taken to protect the host from malicious parasites, which could
exploit the existence of the hook. Such security measures are abundant; one easy-
to-implement example is public/private key encryption (further consideration of
these security issues is beyond the scope of this paper).

2.4 Cost of Manipulation

In different scenarios, behaviosites have different types of costs. The first cost
that should be considered is the cost to the system designer, for there is the
immediate issue of designing behaviosites and testing them. Analyzing system
behavior can be very complex, and analysis of a system in which behaviosites
are integrated is even more complex. This is because their impact on the system
is usually hard to predict without extensive testing. Other costs of behaviosites
are system specific, such as balancing behaviosite complexity and number with
the benefit they give to the system, cost of possibly increased variation in the
society, oscillations, run-time costs, and so forth. Despite all of the above, there
are many scenarios in which behaviosites prove themselves very useful.

2 This is somewhat reminiscent of Brooks’ subsumption architecture [10], in which
various levels can be designed to suppress input/output on other levels.
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3 Parasitized El Farol Problem

3.1 The El Farol Problem and Related Work

The El Farol problem (or the Santa Fe bar problem) was introduced by Brian
Arthur [6] as a toy problem in economics for using inductive reasoning and
bounded rationality. In this problem, N (e.g., 100) agents decide independently
each week whether to go to the El Farol bar or not. Comfortable capacity is lim-
ited, and the evening is enjoyable only if the bar is not overcrowded (specifically,
fewer than 60 agents out of the possible 100 attend).

In the original problem, no communication or collusion is possible, and the
only information available to the agents is the number of attendees in the past.
An agent will go if it predicts less than 60 agents will go, and will stay home oth-
erwise. Arthur suggested that bounded rationality, together with learning, can
yield solutions to problems of resource allocation in decentralized environments,
using the El Farol problem as an example [12]. At this point, the problem in
the research literature diverged into two branches, differentiated by their utility
functions. The first branch was as in Arthur’s paper:

Util(ag[i]) =

⎧
⎪⎨

⎪⎩

x attended and undercrowded

0 did not attend

−y attended and overcrowded

The second branch used another kind of utility function:

Util(ag[i]) =

{
x part of minority group

−y not part of minority group

In this paper, we use the first utility function, where x = y = 0.5.3 Arthur
showed [6] that if each agent uses a set of personal basic deterministic strategies
(such as going if more than 55 agents went last time), combined with a simple
learning algorithm, then the system converges to the capacity after some initial
learning time. Moreover, membership kept changing, and some degree of fairness
was maintained. Arthur described the emergent ecology as almost organic in
nature. In his work, Edmonds [14] took this analogy a step further by using
genetic algorithms for learning, and allowing communication. Edmonds showed
that these were sufficient for the development of different, interesting social roles.

However, both solutions produced systems that fluctuated chaotically around
the capacity, resulting in low personal and social utility. High variation in the
system was one reason for suboptimality. The second was that at many times the
bar was overcrowded (above capacity), thus giving negative utility to attending
agents.

Bell [15] tried to deal with the overcrowdedness problem by a simple adaptive
strategy used by all agents, which led to an outcome close to the socially optimal
attendance. Bell’s solution holds two pitfalls. The first is that the same strategy
must be used by all agents, perhaps too strong a requirement in a distributed
3 For a review of the minority problem, see [13].
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system with different designers. The second is that in his simulations most of
the attendees were “regulars” who came all of the rounds, thus making for social
injustice with the “casuals”.

Greenwald [7] also tackled this suboptimality problem, but using a different
method. Agents that attended El Farol were required to “pay” some of their
utility, and this payoff was distributed among all agents that did not attend.
Not surprisingly, the optimal payoff for optimal social utility converged to a 40%
attendance fee, for the scenario of 100 agents and bar capacity of 60. Again, this
solution may also be problematic in many distributed systems, since it requires
a central “utility distributer” that can reach all agents.

The learning algorithm used in the parasitized El Farol simulation was the
additive updating learning algorithm, introduced in [12]. Basically, each agent
has a pool of simple, personal deterministic strategies. Each such behavior has a
weight, initially distributed uniformly. The weights of all these basic strategies
are updated in an additive manner once a round, according to the number of
attendees in that round, above or below capacity (0.5 or −0.5 utility to attendees,
respectively, or zero if it chooses not to attend).

3.2 Using Behaviosites in the Parasitized El Farol Problem

The El Farol bar problem presents a distributed system, with suboptimal social
and personal utility. The main idea of the parasitized El Farol problem is to
increase social utility with as few side effects as possible, using behaviosites. The
main problem was that agents learn and adapt themselves to new situations.
If the behaviosites are not carefully crafted, then either their effect will soon
vanish, and the system will return to the equilibrium around the capacity with
suboptimal social utility, or in each round behaviosites will need to make a
stronger impact to achieve the same effect.

Fig. 3. An illustration of the environment/agent/behaviosite relationship

The system is composed of environment, agents (hosts) and behaviosites
(Figure 3). Each agent has an internal behaviosite field that is always occupied,
usually with the null behaviosite (see [11]) which has no effect over its host’s
behavior. Each round, the environment infects some of the agents according to
an infection strategy (as will be discussed below), and infection lasts only one
round. Agents are asked to provide a decision (whether they will go to the bar
or not). Then, the agent gives its behaviosite private information before making
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the decision. If the behaviosite is not the null behaviosite, it alters the relevant
host’s data (the behaviosite is placed between “see” and “behavior” of Figure 2).
In this way, the agent comes to a decision not using the data received from the
environment, but rather by using manipulated data.

Environment infection strategies: In this simulation, the environment had three
strategies of infection, which were not mixed. In the first strategy, all agents
were candidates for infection (infect all). In the second, only attending agents
in the given round were candidates for infection (infect attending). In the third,
candidates for infection were all attending agents at the given round, but only
when the bar was overcrowded (infect overcrowded). In each strategy, only a
percentage of the candidates for infection actually got infected (responsibility of
the behaviosite design), depending on the infection rate (0%-100%).4

Behaviosite manipulation strategies: The chosen manipulation strategy was quite
simple. The behaviosite replaced the parasitized agents’ belief regarding the
current capacity with a lower one, common to all behaviosites. Since capacity
information was kept as the private history of the agent, this decrease was also
considered in future rounds by the agent. If a parasitized agent decided to attend
the bar and the number of attending agents was higher than the capacity the
agent currently believed, it suffered a utility decrease, even if the bar was actually
undercrowded. This was intended to enforce a stricter approach; agents were
affected by the world according to their personal beliefs, and not according to
some global truth.

3.3 Parasitized El Farol Simulation Results

The parasitized El Farol problem was simulated for 2000 rounds, assuming 100
agents in the system. Three different capacities were tested: 50, 60, and 80, where
the behaviosite manipulation strategy was to decrease capacity for parasitized
agents (50 decreased to 40, 60 also decreased to 40, and 80 decreased to 60). For
each such capacity, three different environment infection strategies were tested,
as mentioned above: infect all, infect attending, and infect overcrowded, giving a
total of 9 different simulations. For each of the 9 simulations, a different percent-
age of the agents who were candidates for infection were actually infected, with
infection rates ranging from 0% to 100% with jumps of 10% (total of 11 differ-
ent simulations for each). Each of these 99 different simulations was repeated 50
times.

Mean Attendance. As was mentioned above, agents’ mean attendance in the
El Farol problem converges to the capacity of the bar. In the parasitized El
Farol problem, we would like to increase the social utility, without lowering by
too much the mean attendance. From the bar owner’s point of view, this is one
of the most important parameters. From a social utility point of view, decreased
mean attendance takes us further away from an optimal solution.
4 Another possible design is that the entire infection strategy is a property of the

behaviosite, but this was not implemented.
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Fig. 4. Mean attendance for capacities of 50, 60, 80, respectively. Legend: .... :Infect
All, —:Infect Attending, - - - :Infect Overcrowded.

Figure 4 shows how different infection strategies affected the mean atten-
dance. For all three different capacities, the infect all strategy decreased the
mean attendance severely, as a function of the behaviosites’ infection rate. For
100% infection rate of potential agents (in this case, all agents), the system con-
verged to the capacity induced by the behaviosites. For example, for capacity
of 60, infection rate of 100% of course resulted in convergence to 40, since the
behaviosites’ manipulation strategy is to make the host believe that the capacity
is 40.

The infect overcrowded strategy resulted in a relatively low effect on the mean
attendance, since behaviosites infect agents only in a most particular situation
— only attendees, and only when the bar is overcrowded. The outcome of the
infect attending strategy depended on the bar’s capacity. For capacity of 80,
the infect all and infect attending strategies yielded very similar results, since
most of the agents are candidates for infection. For the capacities of 50 and 60,
infect attending strategy’s effect resembles the infect overcrowded strategy, since
it affects only a relatively small portion of the agent society.

Mean Utility. The main objective in the parasitized El Farol problem simula-
tion was to show that it is possible to increase social utility using behaviosites.
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Fig. 5. Mean utility for Infect All, Infect Attending, Infect Overcrowded strategies,
respectively. Capacity legend: o–o: 50, +–+:60, *–*:80.

This can be seen clearly in Figure 5, which compares the effect of different ca-
pacities for each strategy. Another goal, with roughly the same importance, was
not to cause too much harm to the system, namely social injustice, which will
be discussed later.

infect all : Infecting all agents resulted in a similar graph shape for all three
capacities, differing in the position of the peak, with impressive improvement
of mean utility. For capacities of 60 and 80 the improvement was 7–9 times the
minimal received in a system without behaviosites, and relatively close to the
optimal (0.12 utility out of possible 0.3 for capacity of 60, and 0.23 utility out
of possible 0.4 for capacity of 80). For capacity of 50, improvement was 27 times
the minimal, though still near zero (0.065 out of possible 0.25).

infect overcrowded : For all three different capacities, the mean utility increase
was moderate, with respect to other strategies. For capacities of 60 and 80, the
maximal mean utility was about 2.5–3.5 times the minimal mean utility, re-
ceived by a system with no behaviosites. For the capacity of 50, the maximal
mean utility was 22 times better than the minimal mean utility received for a
system with no behaviosites, but still near zero (0.034). For capacity of 80, the
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Fig. 6. System’s fairness for capacities of 50, 60, 80, respectively. Legend: - - - :Infect
All, —:Infect Attending, .... :Infect Overcrowded.

maximal mean utility (0.112) was not significantly lower than the optimal pos-
sible (0.4), especially when compared to a system without behaviosites (utility
of 0.032).

infect attending: The outcome of this strategy depended heavily on the level of
the used capacity. For high capacities (specifically 80), the strategy’s behavior
was very much like infect all, because infecting all attending agents is very much
like infecting all agents. For low capacities (specifically 50), the strategy’s out-
come was very much like infect overcrowded, because it affected only a relatively
small portion of the society, and the actual effect of the behaviosite was mild.
In between (specifically 60), the behavior of this strategy combined features of
both.

Forced Justice. As was described earlier, two previous attempts to increase
social utility resulted in two proposed solutions, both with undesirable features
in certain settings. One feature was the need to charge utility from attending
agents [7], which basically kept the social utility within the system. Another led
to the creation of bullies [15] — regulars and casuals. In the original El Farol
problem, the membership of the agents kept changing, thus keeping some level
of social fairness. Social fairness is an important parameter when characterizing
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Fig. 7. Mean utility with and without harming behaviosites for capacities of 50, 60,
80, respectively. Legend: - - - :Infect All, —:Infect Attending, .... :Infect Overcrowded.
+ is for behaviosites that do not cause harm.

the effect of behaviosites on the system, since we do not wish to create regulars
and casuals. This is especially true if agents are self-interested, and have no
prior incentive to allow behaviosites to infect and affect them. Social fairness
was calculated by the following formula:

1 − 1
#trials

∑
t∈trials

Personal Attendance SD[t]
Mean Attendence[t]

Social fairness is captured by the mean of standard deviation, normalized
according to the mean of a specific iteration. In Figure 6, we can see that for
capacities of 50 and 60, infect attending and infect overcrowded strategies con-
stantly increase the social fairness as a function of infection rate. For capacity
of 80, they improved social fairness only a small amount, since already the vast
majority of agents go to the bar. However, the infect all strategy increased social
fairness as a function of infection rate until a certain maximum was reached, and
then decreased again. For capacity of 80, it reached exactly the level of social
fairness of capacity 60, as would be expected.

Cost of Manipulation. In the specific design of this parasitized El Farol prob-
lem, behaviosites caused actual damage to the received utility of agents. If an
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agent came to an undercrowded bar, but believed it was overcrowded, it would
suffer utility loss that unparasitized agents would not — thus imposing a cost
upon agents. From the Designer Perspective, behaviosites in the parasitized El
Farol problem have several types of costs — run time, integration time of be-
haviosites, and testing time of various infection and manipulation strategies.

Reflections About Design. The behaviosite in the parasitized El Farol prob-
lem presented above is an example of an internal behaviosite, in a system de-
signed to accommodate behaviosites. However, it is also possible to create an ex-
ternal behaviosite, one that the agents need know nothing about. The behaviosite
can reside in the interface between the environment and the agent (Figure 2a).
Parasitized agents can receive manipulated information from the environment
regarding the current capacity, or manipulated information of number of atten-
dees in a specific round. The effect of such altered data should be the same as
presented above, and social utility should, again, increase.

4 Related Work

4.1 Related Work in Biology

In nature, most common recorded behavior manipulations are done by parasites
with a complex life cycle, as it ensures host-to-host transmission. For example,
in the case of Dicrocoelium [16], parasitized ants’ behavior (the upstream hosts)
is modified so that they crawl up grass stalks, thus improving chances of being
ingested by a passing cow (the downstream host). Although most parasite ma-
nipulations are harmful to the host, there are examples in which parasites are
beneficial, either to the host or to the society.

Increasing the fitness of the hosts’ society can usually be seen in the case of
close kin, such as ants or bees. Bumblebees have successfully mastered the use
of parasite-induced altered behavior to their own advantage [17]. A parasitized
worker bee prolongs its life span by changing its behavior and staying in the cold
of night at the field (the cold retarded parasitoid development). This way, the
entire colony benefits from this infection, due to increased foraging.

4.2 Related Work in Computer Science

The term “parasite” is used in various contexts in the computer science liter-
ature. However, in each context its meaning is substantially different from its
use in the Behaviosite paradigm. Host-parasite paradigm in computer science
previously existed in three main roles: for simulations of evolution such as Ray’s
Tierra computer program [18], as a driving force in genetic algorithms (usually
in the context of predator-prey and co-evolution [19]), and as malware in the
electronic world. None talked about using parasites to change the behavior of
individual agents, to shift the equilibrium of the entire society.

In their work, Mamei, Roli and Zambonelli [20] presented an idea closely
related to that of the Behaviosite Paradigm, within the context of cellular au-
tomata. They presented a method for controlling the global behavior of cellular

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



96 A. Shabtay, Z. Rabinovich, and J.S. Rosenschein

automata using local influences. In their approach, a subset of the cellular array
was selected on which to introduce a beneficial signal, either compatible or de-
structive of some global pattern. This signal was then diffused within the cellular
system due to asynchronous time lines and globally effective random perturba-
tion. The Behaviosite Paradigm can be viewed as having a similar structure —
behaviosites infect an agent (with an infection strategy more sophisticated than
just perturbation), and change its output behavior (the “special” cellular au-
tomata). However, Behaviosites’ effect is local in time and space, in contrast to
what is discussed in [20]. The former also do not rely on an existing diffusion ef-
fect, but rather rely on their mobility and infection strategies to seek key control
points.

Computer Agents’ Behavior. Behaviosites affect behavior, but what consti-
tutes “behavior”, both the agent’s and the system’s, is quite difficult to define;
there are numerous ways of approaching the issue. Two of the most common are
logic-based behavior and Brooks’ [10,21] emergent behavior and subsumption
architecture. Behavior is considered as an aspect of the individual agent, of an
agent in a society, and of the whole society. Much research explores the creation
of agents with defined behavior, or analyzes an existing system’s behavior. For
our purposes, we do not attempt to define exactly what behavior is, but rather
use Brooks’ view, that behavior results from the agent’s interaction with the
environment.

5 Discussion and Future Work

In this paper, we presented the Behaviosite paradigm in the spirit of biomimetics
— parasites manipulating their hosts’ behavior. Although the term “parasite”
is not new in computer science, it has been used in different contexts than the
Behaviosite paradigm describes. We specified the behaviosite concept, which in
essence is a special type of agent, which infects and manipulates other agents
to achieve altered performance of the system. We described the parasitized El
Farol problem, and showed that social and personal utilities and social fairness
can be increased using behaviosites; in some cases, mean attendance deviates
from the capacity by only a small amount.

The behaviosites used were internal behaviosites with a fixed, unchanging in-
fluence over the agents (though it is equally possible to use external behaviosites,
or those with dynamic influence). The parasitized El Farol problem simulated
self-interested agents. However, behaviosites could also be integrated into a co-
operative society to form new norms or social laws, or to eliminate ill-functioning
agents.

In our view, the major contribution of the Behaviosite paradigm is conceptual
— thinking of a system composed of environment and agents as whole, something
that can be manipulated using external forces (behaviosites) that employ local
changes (affecting agents’ individual behaviors) to bring about altered behavior
of the entire system. However, as users of this paradigm, we do not consider
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ourselves omnipotent — we just use existing capabilities of the (possibly self-
interested) agents and environment. Hence this is not simply mechanism design,
but rather augmenting the system, or parasitizing it. It also differs from existing
research in adjustable autonomy, because of this holistic view, which AA is
lacking.

After understanding what the Behaviosite paradigm is, one might wonder
if the term “parasite” is appropriate. There are, indeed, significant differences.
The behaviosite is not an autonomous agent in and of itself. Moreover, in nature
the utility gain of behavior manipulation is of the parasite, and not the host;
is it not an important part of being a parasite? However, we intend parasitic
activity to be a metaphor, and need not require an exact match between nature
and behaviosites. The key analogy is the fact that behaviosite actions constitute
behavior manipulation of the host.

Behaviosites are not just a way of propagating false information within a
system. The intimacy of agent-behaviosite induces far more powerful effects. Lies
can be disregarded or overcome by agents. However, when a host is parasitized,
the behaviosite is considered an almost integral part of the agent. Agents can
doubt external information, but rely on their internal beliefs — as was shown in
the parasitized El Farol problem, not acting on the basis of personal belief did
not help “shake” the influence of the behaviosite.

As with the agent metaphor itself, the Behaviosite paradigm can be very
appealing, but could also conceivably be overused. It is certainly the case that
it is possible to use solutions other than behaviosites — behavioral change can
be entirely inside the agent (e.g., random coin flips inside agents in the El Farol
problem, with strategies similar to the ones applied by the behaviosites), or it can
be totally a property of the environment. The analogy with agents is clear, for
although sometimes an agent-like approach is inappropriate (and solutions can
theoretically always be engineered in other ways), the key question is “what is
the best solution?”. In some cases, the Behaviosite paradigm presents conceptual
advantages.

In the future, we would like to further strengthen the Behaviosite para-
digm by showing it is applicable and desirable in other scenarios. One exam-
ple is using external behaviosites in an already-built real-time environment,
namely the internet, for dealing with the packet congestion problem. The so-
lution should be similar to that of the parasitized El Farol problem with some
modifications. Another application is the automatic generation of stories; it is a
rapidly growing field, with high potential in the gamer community. Behaviosites
are an excellent solution for altering stories by changing some of the charac-
ters’ behavior and adding new, unpredictable system behavior in a distributed
manner.
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Abstract. Modular robots represent a perfect application scenario for
multiagent coordination. The autonomous modules composing the robot
must coordinate their respective activities to enforce a specific global
shape or a coherent motion gait. Here we show how the TOTA (“Tuples
On The Air”) middleware can be effectively exploited to support agents’
coordination in this context. The key idea in TOTA is to rely on spa-
tially distributed tuples, spread across the robot, to guide the agents’
activities in moving and reshaping the robot. Three simulated examples
are presented to support our claims.

1 Introduction

A modular (or self-reconfigurable) robot is a flexible robot made up of a collection
of (typically simple) autonomous elements connected with each other with some
degree of freedom in their relative movements [1,2,3,4,5,6].

The key idea underlying a modular robot is to have its components execute
distributed control algorithms so as to coordinate their actions and let the robot
assume a specific shape or move according to some specific motion pattern (i.e.,
gait).

The flexibility of modular robots is highly desirable for tasks to be performed
in hostile environments, such as fire fighting, search and rescue after an earth-
quake, and battlefield reconnaissance [7,8,9,10]. In these cases, robots can en-
counter unexpected situations and obstacles, hard to overcome for fixed-shape
monolithic robots. A modular robot, instead, could shape itself depending on
needs. For example, to pass through a hole, the robot can transform itself into a
sort of snake; to move through a downhill slope, it can assume a circular shape
and roll; to enter a room through a closed door, a modular robot may disassem-
ble itself into a set of smaller units, crawl under the door, and then reassemble
itself in the room.

Modular robots represent a perfect application scenario for multiagent sys-
tems. On the one hand, the modules constituting the modular robot should be
autonomous and running agent applications. This, in fact, avoids single point
of failure and bottlenecks. If one module breaks down the other can reorganize

S. Brueckner et al. (Eds.): ESOA 2006, LNAI 4335, pp. 99–114, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



100 M. Mamei and F. Zambonelli

their activities leaving the broken element behind. Autonomy enables also dis-
connected operations: modules can disassemble, move along different paths and
reassemble subsequently. On the other hand, the main task the modules have to
undertake is coordination. The agents governing the modules must coordinate
their respective activities to enforce a specific global shape or a coherent motion
gait in the whole robot (i.e., multiagent system).

For the purpose of supporting agent coordination, in our research, we devel-
oped a general middleware called “Tuples On The Air” (TOTA). TOTA supports
the creation of distributed overlay data structures spread across a distributed
network. Up to now, TOTA has been proved useful in developing a number
of multiagent applications in distributed computing systems including: motion
coordination in pervasive computing scenarios, on-demand routing protocols
in MANET, P2P protocols and swarm intelligence algorithms [11,12]. Imple-
menting all these applications becomes relatively simple when suitable overlay
data structures can be spread across the network to guide agents’ coordination
activities.

In this paper, we want to further test the TOTA’s generality by implement-
ing some advanced mechanisms required for the control of a modular robot. In
particular, our goal is to show that TOTA enables to easily and flexibly express
and program biologically-inspired control algorithms (i.e. hormone-based [5]) for
modular robots’ coordination.

The rest of the paper is organized as follows. Section 2 briefly presents the
main concepts at the core of the TOTA middleware and its programming model.
Section 3 focuses on a specific hormone-based approach to control modular ro-
bots (as adopted by [5]) and shows how it can be implemented by means of the
TOTA middleware. Moreover, we explain the advantages of our implementation
and discuss some related works. Section 4 presents three examples of modular
robot’s coordination using TOTA. The examples have been implemented on the
Polybot modular robot simulator [4]. Finally, Section 5 presents some concluding
remarks.

2 The Tuples on the Air Approach

TOTA is a general-purpose middleware for multiagent coordination, in distrib-
uted computing scenarios [12]. In TOTA we assume the presence of a network
of possibly mobile nodes, each running an agent application. Each agent is sup-
ported by a local version of the TOTA middleware. Nodes are connected by
only short-range network links; there are not long backbones in the network.
Each agent has only a local (one-hop) perception of its environment. Long range
interactions must be mediated by other agents. Upon the distributed space iden-
tified by the dynamic network of TOTA nodes, each agent is capable of locally
storing tuples [13] and letting them diffuse through the network. Tuples are in-
jected in the system from a particular node, and spread hop-by-hop accordingly
to a specified propagation rule (see Figure 1(top)). In the modular robot sce-
nario, this reflects in having each agent installed in a module of the robot. The
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Fig. 1. (top) The general scenario of TOTA: application components live in an envi-
ronment in which they can inject autonomously propagating tuples and sense tuples
present in their local neighborhood. The environment is realized by means of a peer-to-
peer network in which tuples propagates by means of a multi-hop mechanism. (bottom)
TOTA in modular robots.

modules (and thus the agents) are connected according to the topology of the
robot. Tuples are injected and propagate across the robot’s body (see Figure
1(bottom)).

In TOTA, distributed tuples T=(C,P,M) are characterized by a content C,
a propagation rule P and a maintenance rule M. The content C is an ordered set
of typed fields representing the information carried on by the tuple. The propa-
gation rule P determines how the tuple should be distributed and propagated in
the network. This includes determining the “scope” of the tuple (i.e. the distance
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at which such tuple should be propagated and possibly the spatial direction of
propagation) and how such propagation can be affected by the presence or the
absence of other tuples in the system. In addition, the propagation rules can
determine how tuple content should change while it is propagated to actually
create distributed data structures. The maintenance rule M determines how a
tuple’s distributed structure should react to events occurring in the environment.
For instance, when new nodes get in touch with a network, TOTA automatically
checks the propagation rules of the already stored tuples and eventually prop-
agates the tuples to the new nodes. Similarly, when the topology changes due
to nodes’ movements, the distributed tuple structure changes to reflect the new
topology.

From the application components’ point of view, executing and interacting
basically reduces to define and inject tuples in the network (inject method) and
to read local (read method) and one-hop neighbor (readOneHop method) tuples
via a pattern-matching mechanism. TOTA provides a compact API to perform
these operations.

We developed a first prototype of TOTA running on Linux IPAQs equipped
with 802.11b WLAN and Java (J2ME, CDC, Personal profile). Moreover, we
have implemented an emulator to analyze TOTA behavior in presence of hun-
dreds of nodes [11]. To perform experiments with modular robots, we connected
our TOTA simulator with the Polybot modular robot simulator [4]. This pro-
gram can simulate the behavior of various types of modular robots, taking into
account both the characteristics of the joints connecting different parts of the
robot and the physical forces acting on the robot (e.g., gravitation), and offers
a 3D view of the robot’s actual configuration and movements. Distributed algo-
rithms to control the robot can be implemented with this simulator. Specifically,
each module of the robot is provided with an API enabling us to drive the mod-
ule actuator, and to sample and possibly change the way in which the robot is
connected to the other modules. To connect this simulator with the TOTA one,
we created an object having access both to the TOTA API and to the modular
robot API. This object “runs,” at the same time, in the TOTA simulator and
in the modular robot simulator, connecting the two.

3 Multiagent Coordination in Modular Robots

From a multiagent perspective, the main challenge in modular robots is the de-
sign of decentralized coordination mechanisms enabling autonomous agents (i.e.,
modules) to coordinate their actions to achieve a specific global shape, or a spe-
cific motion gait. Some of the most innovative approaches to control a modular
robot adopt the biologically inspired idea of hormones. These approaches have
been used to control the CONRO modular robot and directly inspired our work
[5]. Hormone signals are actually sort of messages, spread across the robot and
triggering the individual actuator’s bending. For example, a “head” module in
a modular robot (see later for details) can inject in the robot a sequence of hor-
mone signals. All the other modules can be programmed to react to the income
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of such signals by bending their actuator by a specified angle. A motion gait
would be encoded by means of a specific sequence of hormones to be injected
in the robot and by means of specific reactions triggered by these hormones,
changing the bending angles.

The idea of hormones is a perfect match for TOTA distributed tuples and
our approach has been to re-implement hormones with the support of our mid-
dleware. With this regard, it is fair to remark that we do not propose a novel
approach for modular robot coordination. We just take advantage of the TOTA
middleware to implement (with some changes) the hormone-based approach [5].
In particular, the main subject of our research has been the chain-type modular
robot. This kind of robots is characterized by the fact modules are connected
in a line configuration (e.g., snake-like), or - eventually - in a tree-like configu-
ration (e.g., robot with legs), see the figures in next pages. In our experiments,
we assumed that the robot is composed of very simple equal modules (i.e., joint
actuators). Each module has a “front” side and a “back” side. On each side
there are two docking points and an infrared network link. The two docking
points enable a module to physically connect with other ones. This is of course
fundamental to actually building the chain constituting the modular robot. The
infrared (IR) link enables communication between connected modules (see Fig-
ure 3). Modules connect by their IR links in a network, resembling the robot
topology.

Each module runs the TOTA middleware and an agent in charge of driving the
module joint. The agent, looking at the active IR links, is able to infer whether
it is the “head,” the “tail,” or a part of the “body” of the robot. Specifically,
the “head” agent is the one with only the back IR link active, the “tail” agent
is the one with only the front IR link active, a “body” agent is one having both
the IR links active. The process of assessing whether an IR link is active or not
can be based on “ping” messages and can be executed iteratively to take into
account topological reconfigurations and module breakdown.

From a methodology point of view and in very general terms, the proposed
approach consists in codifying a motion gait by means of a Gait tuple. Such a
tuple has the structure depicted in Figure 2. Once this tuple is injected in the
modular robot, it propagates hop by hop across all the modules changing its
content to the desired gait. For the upcoming discussion – where we will present
concrete code samples – it is important to remark that the, in TOTA, tuples are
implemented by means of objects. The TOTA middleware executes the tuple’s
methods to “animate” it. In particular the changeTupleContent method allows
a tuple to change its content and the move method actually propagate the tuple
to neighbor nodes where it will be executed again.

When an agent installed on a module senses the income of a tuple of this kind,
it reacts by bending the module joint by the angle specified in the tuple. So, for
example, if in a robot composed of N modules a tuple having in its content
a fixed angle of about (360/N)◦ is spread, the robot closes into a loop. More
specifically, the presented approach (that is strongly inspired by [5]) is based on
the following key points.
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Abstract GaitTuple
C = (id, angle)
P = (propagate hop-by-hop, changing the content so as to encode in the “angle”-
distributed data structure the shape the robot has to assume)
M = (if the network topology changes, restart propagation according to new head,
body and tail position)

Fig. 2. Structure of the abstract GaitTuple. This tuple encodes in its distributed shape
(i.e., angle field values) the form we want the robot to assume.

Degree of Freedom

Docking Point

Docking Point

IR Link

Front

Back

Fig. 3. A single module composing the modular robot. In our research we focus on
simple module having just two docking points and two IR network links one for each
side (front and back) of the module.

1. The head agent injects in the network (i.e., in the robot modules) a specific
GaitTuple, representing the shape (or a step of the gait) the robot has to
assume.

2. The tuple propagates from the head to the tail letting the robot bend ac-
cordingly.

3. When the tail receives the tuple, it injects another tuple (with constant
value) for the purpose of notifying the head that the Gait Tuple completed
its travel.

4. When the head receives the above constant tuple it can inject another Gait-
Tuple implementing the second configuration the robot has to assume (i.e.,
second step in a motion gait). Or, alternatively, the constant tuple can au-
tomatically trigger a change in the content of the GaitTuple to let the robot
assume the second configuration.

5. The process continues iteratively.

3.1 Related Approaches

As already introduced, the research on CONRO modular robot [5] directly in-
spired our experiments. However, the control mechanism, based on TOTA, ex-
tends the original hormone-based approach. TOTA tuples are active data struc-
tures and can change while being stored in the modular robot. Thus, even a
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complex gait can be obtained by using just one TOTA tuple that changes to
let the robot assume different configurations. On the contrary original hormones
are passive and modules have to use several hormones to create a single gait.

In another research [2], each module of the modular robot runs a simple finite
state automaton in which state transitions are driven by the local state, the state
of neighbor modules, their locations, and some external information. Communi-
cations are limited to the immediate neighborhood and a limited number of bits
are exchanged at each time step. The goal is not to create an exact predefined
shape, but a structure with the correct properties (structural, morphological,
etc.). Any stable “emergent” structure that exhibits the desired properties is
considered satisfactory, with no regard for the “optimality” or details of the re-
sulting geometry. This approach is very similar to ours, although our goal is to
actually create engineered shapes and gaits, and not just purely emergent ones.
The works [14,3] goes further and introduces a compiler to automatically derive
local rules from an high-level shape description.

The research in [15,6] presents an interesting approach oriented toward self-
reconfiguration and shape formation. In this approach, the desired configuration
is grown from an initial seed agent. The initial seed produces growth by creating
a gradient (similar to a TOTA distributed tuple), which attracts other agents.
Once positioned, the agents become seed to let the shape grow again. The growth
is guided by a representation of the desired configuration, which can be automat-
ically generated from a 3D CAD model. Although very powerful, this approach
focuses on shape formation and almost disregards gait coordination. Moreover,
the approach assumes the presence of individual modules, more complex than
the ones presented here.

Another thread of research, in modular robots, involves conceptually central-
ized control mechanisms [16]. In these approaches, a control table, specifying how
each module must bend its actuator, is compiled off-line and then uploaded into
the modules. The main advantage of this approach is that it allows us to design
even complex motion gaits rather easily. The main drawback is that the control
table is built for a specific robot configuration, and if the robot changes (e.g., new
modules get connected), the table must be rebuilt from scratch. The research
in this area is mainly oriented to devising new languages to build the control
table. One of the most advanced proposals is PARSL (Phase Automata Robot
Scripting Language) [4]. PARSL is a scripting language based on XML syntax,
designed to express motion gaits for chain-type modular robots. In PARSL it is
possible to design a motion gait by means of abstract “waves of activity” travel-
ing across the robot. Such high-level description is then automatically compiled
to create the control table.

4 Experiments

In the rest of this section we will use TOTA to support three motion gaits in
modular robot: the “caterpillar gait” (that lets the robot proceed by mimicking
the motion of a snake) and the “rolling gait” (that lets the robot close in a loop,
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CaterpillarGait Tuple
C = (state, angle)
P = (propagate hop-by-hop, storing on intermediate nodes changing the content
accordingly to the table in Figure 5)
M = (If on the head node and upon the receipt of a gait-tuple, re-apply propagation)

Fig. 4. The structure of the CaterpillarGaitTuple tuple

Current State New State New Angle
INIT A +45◦

A B +45◦

B C −45◦

C D −45◦

D A +45◦

Fig. 5. This table shows how the content of the CaterpillarGaitTuple changes

and then roll). Finally, we will present a gait for legged robots where agents
coordinate legs’ movements to proceed forward. It is worth noting that while
the mechanisms underlying the former two gaits are well known in modular
robot research [5,16], the latter one has been designed from scratch.

4.1 Caterpillar Gait

To implement the caterpillar gait, the head agent starts the movement by in-
jecting a caterpillar tuple (i.e., a TOTA tuple of the class CaterpillarGaitTuple).
The general structure of such a tuple is depicted in Figure 4, it propagates across
the robot letting it bend accordingly. Once the tail agent receives the tuple, ac-
cording to the general description given above, it injects another tuple to notify
the head that a new step is ready to be executed. At this point, the head agent
updates the Caterpillar GaitTuple accordingly to the Table 5 and injects it again.
Once spread, this tuple lets the gait proceed by another step. Useful insights to
understand how the caterpillar gait works and how the Table 5 has been com-
piled can be found in Figure 6. The code implementing the CaterpillarGaitTuple
tuple can be found in Figure 7. This process is iterated letting the whole robot
move performing the caterpillar gait (see Figure 8).

4.2 Rolling Gait

The idea of this gait is to let the robot close in a loop and then roll. Unfor-
tunately, the modular robot simulator we employed does not allow structures
with loops. Structures with loops are overconstrained. The simulation does not
solve the constraint satisfaction problem. The simulation does not detect self-
collision either. To overcome this problem, we let the robot bend in an open loop
(something like a ‘C’ shape) and then roll. Although this complicates the rolling
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Fig. 6. The caterpillar gait works by letting a pattern of activity travel along the robot,
letting it going forward

public class CaterpillarGaitTuple extends GaitTuple {
/* constant declaration as in caterpillar gait table */
/* tuple sates: INIT, A,B,C,D and respective angles
degA,degB,degC,degD are defined */

public int state = INIT;
public int angle = 0;

protected void changeTupleContent()
{
switch(state)
{
case INIT : state = A;

angle = degA;
break;

case A : state = B;
angle = degB;
break;

case B : state = C;
angle = degC;
break;

case C : state = D;
angle = degD;
break;

case D : state = A;
angle = degA;
break;

}
}

}

Fig. 7. The code realizing the CaterpillarGaitTuple TOTA class

procedure, it allows us to maintain the general approach described before. In
fact, we still have a “head” and a “tail” agent that would be otherwise removed
if the loop were actually closed (i.e., with only “body” agents). The RollingGait-
Tuple is the tuple employed to let the robot roll. In general terms, it can have
two states, T (turn) and F (flat). Consider, for example, a robot composed of
12 modules and assuming a turning angle of 45◦. A tuple spread in the robot
with a distributed shape like “FTTFTTFTTFTT” (see Figure 9) closes in a
loop. Then, if the tuple changes its content by “rolling” the above string (like
the ROL assembler command), the robot performs the rolling gait. From the
single tuple point of view, this consists in changing its content to assume values
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Fig. 8. Some stages of a caterpillar gait, in a chain-typed modular robot, composed of
six actuators
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Fig. 9. In the rolling gait, the robot moves in one direction by shifting the turning
modules (T) to the opposite direction

Rolling Gait Tuple
C = (state, angle)
P = (propagate hop-by-hop, cycling between the states F - T - T. Set the angle to
45deg if the state is T. Set the angle to 0 if the state is F)
M = (if the network topology changes, restart propagation according to new head,
body and tail position)

Fig. 10. The rolling gait tuple
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public class RollingGaitTuple extends GaitTuple {
// number of modules composing the robot
private static final int N_MODULES;
// number of turning points
private static final int N_TURNS;
// radius of the turn
private static final int RADIUS ;
// turning angle in deg
private static final int TURN;

public int state = 0;
public int angle = 0;

protected void changeTupleContent()
{
if(this.getSourceFromId().equals(tota.toString()))
state = (state + 1)% N_MODULES;

int mod = Integer.parseInt(tota.toString().substring(1));

boolean cond = false;
for(int i=0;i<N_TURNS;i++)
{
boolean cond1 =
((state+(i*N_MODULES)/N_TURNS) % N_MODULES) == mod;
boolean cond2 =
((state+(i*N_MODULES)/N_TURNS) % N_MODULES) ==
((mod + RADIUS)% N_MODULES);
if(cond1 || cond2)
{
cond = true;
break;

}
}

if(cond)
angle = TURN;
else
angle = 0;

}
}

Fig. 11. The code realizing the RollingGaitTuple TOTA class

F - T - T iteratively. It is worth noting that such a kind of content change crit-
ically depends on the number of modules composing the robot and the number
of turns we want to implement to let the robot close in a loop. For example,
three turns of 60◦ each create a triangular track, four turns of 90◦ each create a
rectangular track, etc. Moreover, it depends on the number of modules involved
in each turn. For example, in Figure 9, two modules bend by 45◦ to create a
90◦ turn. Despite all these parameters, it is rather easy to build a general algo-
rithm enabling a tuple to create dynamically, at runtime, the sequence of F and
T states it has to cycle (e.g., F - T - T) to enable the rolling gait. A general
description of the RollingGaitTuple enabling the rolling gait in the case of a ro-
bot composed of 12 modules and assuming four turns of 90◦ each, split between
two modules bending by 45◦, is illustrated in Figure 10. The code realizing the
RollingGaitTuple can be found in Figure 11. Some snapshots showing the rolling
gait in action are in Figure 12.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



110 M. Mamei and F. Zambonelli

Fig. 12. Some stages of a rolling gait in a chain-typed modular robot composed of 32
actuators

 

Fig. 13. A modular robot arranged in a 6-legged configuration

4.3 Walking Gait

We performed this experiment on a “legged” robot that can move by coordinat-
ing legs movements. The idea of this experiment is to have the modules of the
robot connected in a 6-legs configuration (see Figure 13), and then coordinate
the actions of these modules so as to let the legged robot walk. In this example,
the robot is built from two types of modules (both available from the Poly-
bot simulator): joints and connectors. Among the several possible configurations
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Fig. 14. (left) Detail of a robot leg. The pitch-yaw orientation between the two modules
allows high flexibility. (right) Different neighbor connections allow each module to
estimate its role within the robot (0 = HEAD, 1 = SPINE, 3 = LEFT-SHOULDER,
4 = RIGHT-SHOULDER, 5 = LEFT-LEG, 6 = RIGHT-LEG).

   

Fig. 15. A 6-legged robot stands up

public class StandUpTuple extends GaitTuple {

// bend degree
private static final int Deg = 90;
public int angle;

protected void changeTupleContent()
{
int role = (RoleTuple)tota.read(new RoleTuple()).role;
if (role == RIGHT-LEG) angle = -Deg;
else if (role == LEFT-LEG) angle = Deg;
else angle = 0;

}
}

Fig. 16. The code realizing the StandUpTuple TOTA class

upon which it is possible to build a legged robot, the one we choose presents
three key advantages:

– The adopted configuration is very modular. In order to crate a robot with
more legs it is sufficient to add other legs (in multiples of two) at the end of
the previous robot.

– The robot is highly flexible. It can swing in pitch and yaw both the backbone
and the legs.
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public class WalkerGaitTuple extends GaitTuple {
//states
private static final int FORWARD = 0;
private static final int REVERSE = 1;

public int state = FORWARD;
public int angle = 0;

protected void changeTupleContent()
{
int role = (RoleTuple)tota.read(new RoleTuple()).role;

if (role == RIGHT-LEG) angle = -45;
if (role == LEFT-LEG) angle = 45;
if (role == SPINE) angle = 0;

if (state == FORWARD)
{
if (role == LEFT-SHOULDER) angle = 0;
if (role == RIGHT-SHOULDER) angle = -45;
state = REVERSE;

}
else
{
if (role == LEFT-SHOULDER) angle = 45;
if (role == RIGHT-SHOULDER) angle = 0;
state = FORWARD;

}
}

Fig. 17. The code realizing the WalkerGaitTuple TOTA class

  

Fig. 18. The legged robot walks by coordinating legs movements

– Most importantly for the upcoming discussion, modules have a direction
(front-rear) and they can distinguish both the kind of module to which
the are attached (i.e., joint or connector) and the orientation of the con-
nection (i.e., pitch-pitch, yaw-yaw, or pitch-yaw), see Figure 14(left). Thus
each module can infer its position within the robot. Since connectors have
no degrees of freedom – they are passive components – they do not need
to localize. In particular it is possible to identify the following six im-
portant roles for modules: HEAD, SPINE, LEFT-SHOULDER, RIGHT-
SHOULDER, LEFT-LEG, and RIGHT-LEG (see Figure 14(right)).
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The robot in Figure 13 is in the rest mode. The first tuple we envisioned is the
one forcing the robot to stand up (see Figure 15). The code of this StandUpTuple
tuple (reported in Figure 16) is really simple. It basically forces all leg modules
to turn 90◦. More precisely, the way in which modules are connected implies that
left legs should bend by 90◦, while right legs by −90◦. Once the robot is standing
up, it can start moving the legs to proceed upward. This again is realized by
letting the head of the robot inject another tuple that propagates across the
modules. This WalkerGaitTuple tuple is very simple: it alternatively lets the left
and right robot legs swing 45◦ forward. The code of this tuple is reported in
Figure 17, while some screen-shots of the actual robot movement are presented
in Figure 18.

5 Conclusions

In this paper we applied the TOTA middleware to support agents’ coordination
in a modular robot application scenario. As illustrated with concrete code ex-
amples, TOTA distributed tuples represent a valid abstraction to guide agents’
activities. Despite the simplicity of the experiments reported in this paper, we
are confident that the capability of distributed tuples (and of TOTA middle-
ware) will have an important role in future research. However, we are also aware
that the widespread exploitation of the proposed mechanisms will require the
identification of proper methodologies to help designers in the development of
complex applications (e.g. complex shape or articulated motion gait). In addi-
tion to that, we must also recognize that additional mechanisms – not dealt
with by this paper – may also have an important role in this field. These include
game-theoretic approaches [17] and cellular automata approaches [18,19]. Part of
our future work is about studying how these other approaches can be integrated
with ours.
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Abstract. We present a simple model of self-organization for sensor
networks that addresses two conflicting requirements: hazard situations
should be reported to a sink node with as little delay as possible, even
in highly dynamic regimes; and power consumption by individual nodes
should be as low as possible and balanced. The model includes a sur-
veillance protocol that explores correlation between source location and
event types, and a variation of gradient-based routing that adapts contin-
uously to energy available at selected routers and to changes in topology.
Simulation runs provide support to the heuristics we implemented to se-
lect routers and nodes to report events, since network longevity increases
when compared to other solutions for sensor networks. The performance
increase is particularly accentuated when the correlation between event
types at neighboring nodes is significant.

1 Introduction

The effectiveness of wireless sensor networks — networks of low-cost, low-power
devices capable of sensing the physical world and communicating over a wireless
medium, is largely dependent on the ability of sensor nodes to self-organize and
relay messages in a power efficient manner [1].

Consider the following model: 1) the sensor nodes are displaced (quasi) ran-
domly in space, and nodes are allowed to be installed and started at different
times; 2) each node is assumed to be capable of monitoring its immediate en-
vironment, detected hazard situations (e.g. temperature raising above a safety
threshold), and broadcasting data messages to other nodes within a communca-
tion range; 3) the communication range is assumed to be much smaller than the
diameter of the deployment area; 4) nodes are capable of receiving data messages
sent by nearby nodes, process the information received, and relay data messages
to other nodes.

Our goal is to design a set of protocols for the sensor network that cope with
two conflicting requirements:

– Hazard situations should be reported to a sink node with as little delay as
possible, even in highly dynamic regimes.

S. Brueckner et al. (Eds.): ESOA 2006, LNAI 4335, pp. 115–131, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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– Power consumption by individual nodes should be as low as possible and
balanced.

The first requirement implies that a low-latency routing mechanism must be
available to relay messages between nodes further away from the sink node and
nodes near the sink1. In particular, message caching and aggregation techniques
should not be used to reduce traffic because they increase the latency of event
notifications [2,3]. Since node batteries may have short lifetimes, communication
may be unstable, and new nodes may be added to the network to increase cov-
erage, density, or replace dead nodes, the protocols should be adapted to highly
dynamic regimes.

The second requirement implies that coordination protocols should use as
few messages as possible, and energy usage should be balanced among nodes
within a local neighboorhood. This is a distinctive feature of sensor networks
since energy available at nodes is limited. Considering this aspects from start
allows the network to operate for longer periods of time, reducing the rate at
which power sources or node need to be replaced. If battery reload is supported
(e.g. using solar energy), this will also give more time for power sources to
reload. Balancing power consumption mitigates the possibility that key nodes
be prematurely drown out of energy, and normal operation of the network be
disrupted (e.g., due to partitioning).

An additional requirement is that the operation of the network does not de-
pend on the working of one or several central nodes. Thus, the mode of op-
eration should be fully distributed. Furthermore, individual nodes should not
require specially tailored configurations. This means, that sensor nodes should
self-organize to establish roles, priorities, and other forms of coordination. Ad-
ditionally, to handle dynamics and large networks, nodes should use local rules
(or heuristics) that do not require global information.

The contribution we present has two innovations compared to existing self-
organizing approaches to sensor network design. First, message routing contin-
uously adapts to available energy at selected routers without generating extra
traffic or requiring global link cost information to be collected at nodes [4]. Min-
imum hop count paths are discovered, even in the presence of network dynamics
and with minimal increased message traffic. Secondly, the surveillance protocol
uses source location, events descriptions, and awareness of available energy to
decide if hazard notifications should be reported to the sink. Namely, nodes may
select neighboring nodes that have more critical information to report, that are
closer to the sink, or that have higher energy levels to represent them at the sink.
The representation role is canceled if critical information, not known by the sink,
needs to be reported. This is motivated by the fact that reporting less critical
information about a region near a more critical information provides little in-
formation gain. Moreover, if two surveillance points are physically located near
each other, a single notification is needed to trigger localized intervention by the
1 The sink node is defined as a special node in the network whose role is to maintain

a global view of network (e.g., to make a report to a human operator, or to publish
collected data in the Internet).
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staff and/or systems processing the information that arrives at the sink (e.g.,
sending rescue to the affected area). This may reduce traffic without incurring
in significant loss of information.

We delay the review of related work to section 4. The rest of this paper is
organized as follows: in section 2, we present our model design (ASOS) in detail.
In section 3, we evaluate the model by simulating a sensor networks with some
dynamics. Section 4 discusses the results, compares our approach with other
approaches to self-organization on sensor-networks, and points directions for
future research. Finally, section 5 presents our conclusions.

2 Model Design

Our network model comprises a collection of sensor nodes S(t) = {ni} displaced
in space. Nodes can be added and removed from the network dynamically. That
is, S(t + 1) is not necessarily the same as S(t). Each node ni is configured with
a fixed unique identifier id(ni), that is used to discriminate between nodes. We
assume that the sink node is able to map the identifiers of nodes to physical lo-
cations in some coordinate system. Two possibilities solutions to implement this
are: node location is pre-registered in a data-base at deployment time, or iden-
tifiers include location information directly (e.g., obtained from a GPS receiver
installed in each node). We also assume that control programs on the nodes
can read the current energy level from the hardware (e.g., percentage full). For
node ni, we designate such value as energy(ni). This is used to tailor network
operation in such a way that the standard deviation of energy available at nodes
σ({energy(ni)}), ni ∈ S(t), is reduced.

The main task of each node is to monitor its immediate environment and
detect possibly hazard situations. We assume that each node can detect several
types of hazards (e.g. inferred from polled conditions in different sensors of the
node, such as a thermometer and/or a smoke detector). A type identifier, com-
mon to all nodes, is used to identify the specific type of hazard. Once a hazard
situation is detected the node may proceed to notify a sink node using an alarm
message (ALARM). To allow several types of hazards to be notified in a sin-
gle message, type identifiers are defined as integer powers of two. This way, a
combined hazard can be coded using the logical operation OR2. As a working
definition, we say that an hazard type t1 is more encompassing than hazard type
t2, if t1 reports all individual hazard situations reported in t2 and at least one
more not reported in t2.

We propose two simple protocols: A surveillance protocol and a routing proto-
col. The surveillance protocol is used to determine which nodes in a local neigh-
boorhod are responsible for sending ALARM messages. The protocol works by
allowing a node to select a neighboor, its leader, as its representative to the
sink. A node only sends ALARM messages if it has information that is more
critical than its leader (i.e. with additional hazard types). In selecting leaders,
nodes reporting more hazards, closer to the sink, or higher in energy supply take
2 The sink node uses appropriate masks to retrieve the individual types.
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precedence over others. This reduces the average and standard deviation of the
consumed energy, thus fostering network longevity.

The routing protocol is used to push messages from sensor nodes to a sink
node. This is done using a variation of gradient-based routing (GBR) [3]. In
GBR, each node selects as its router one or more of its neighboring node whose
distance to the sink is lower. If a node has more than one router, then energy
aware heuristics are used to spread routing workload. We take this energy aware
heuristics approach one step forward, by using a new heuristic that always selects
the router with higher energy level. Additionally, GBR is a data centric protocol
which requires flooding of interest messages sent by a sink to establish routes.
This can be costly if the network is very large and very dynamic. ASOS uses an
efficient scheme to handle topology changes by having nodes overhear neighboor
activity and possible changes in distance information. Because our version of
GBR incorporates several new improved features, we describe it in detail. Below,
we present the routing protocol first and next the surveillance protocol because
the later depends on the former. The two protocols are, nevertheless, intertwined.

2.1 Routing Protocol

When a node is started, its first task it to estimate the distance to the sink node.
The distance metric we use is simply the minimal number of hops required to
reach the sink. For node ni, we represent such distance estimation as dist(ni).

For a node to obtain its distance to the sink, it starts by broadcasting a
WHO message and wait for nearby nodes to respond with a DIST message.
DIST messages contain the distance to the sink and the energy level of the
sending node. If node nj replies to node ni with a DIST message specifying
dist(nj) = d, and dist(ni) is unknown, then node ni sets its dist(ni) value to
d + 1. This captures the fact that k + 1 hops are required to reach the sink from
node ni — one to reach nj from ni, and d to reach the sink from nj . Henceforth,
nj is considered by ni as one of its routers; this information is saved in a router
list routers(ni). A node only sends a WHO message with a DIST message if it
has at least one router.

If DIST messages, sent by a node nj , are received by ni when dist(ni) is
known, then the following cases are considered: if dist(nj) < dist(ni)−1, dist(ni)
is set to dist(nj)+1, routers(ni) is cleared, and nj is added to routers(ni). This is
the case where a better router (closer to the sink) is found. If dist(nj) ≥ dist(ni)
and nj /∈ routers(ni), then the message is ignored, because a better router
is known. If dist(nj) = dist(ni) − 1 then nj is added to routers(ni) as an
additional router (unless nj is already a router for ni, in which case the message
is ignored). If dist(nj) ≥ dist(ni) and nj is the only router for ni then dist(ni)
is updated to dist(nj) + 1. If dist(nj) ≥ dist(ni), but ni has other routers, then
nj is removed from routers(ni). The rules described allow the nodes to keep
distance information consistent as the network topology changes. The rules are
also applied when ALARM messages are received (see below), since they also
include distance information. As can be inferred from the rules, all routers of
a node are estimated (by that node) to be at the same distance from the sink
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(dist(ni) − 1). Whenever node ni changes dist(ni), it sends a DIST message
so neighboring nodes can learn about the new value. In table 1, we present a
summary of the rules for the routing and surveillance protocols.

If no DIST message is received by ni within a time period of td duration after
it sent a WHO message, then ni sends a new WHO message. Thus, a node will
keep probing its neighborhood until at least one neighboor replies with a DIST
message. This permits the network to be started incrementally without interest
messages being regularly sent by a sink as is done in data-centric models [2].
Figure 1 shows an illustraction of how nodes learn about distance values.

A particular case of the routing initialization procedure is for nodes at mini-
mum distance from the sink node. That is, nodes whose messages can be directly
received by the sink node. For these nodes dist(ni) is always set to 1. This can
be done by having the sink node participate in the routing protocol, by sending
DIST messages (with distance 0) whenever it receives WHO messages. Alterna-
tively, one or a few special sensor nodes physically located near the sink can be
parametrized with distance 1 at start-up.

Nodes keep estimates of the residual energy available to its routers. We write
the value of nj energy level, as estimated by ni, as energy(nj , ni). The router
of ni estimated to have higher energy level is designated the assigned router
of ni (arouter(ni)). Formally, arouter(ni) = maxargnj

(energy(nj , ni)), nj ∈
routers(ni). This is the router most likely to relay the next message transmitted
by ni.

Whenever a node wants to route a message to the sink node (e.g., an ALARM
message), it broadcasts the message including as data field the identity of its
assigned router. If node nj receives a message from a node ni specifying nj as
the assigned router, and nj knows dist(nj), then nj retransmits the message.
Moreover, when nj retransmits the message it changes the router data field in
the message to the identity of its own assigned router (arouter(nj)).

Nodes monitor the activity of their assigned routers. If node ni broadcast an
ALARM message and detects no activity of arouter(ni) during a time period
tr, then it removes arouter(ni) from routers(ni), and chooses another router
from routers(ni) as its assigned router for future transmissions. If routers(ni) is
empty, ni set dist(ni) as unknown and restarts the routing initialization protocol
by sending a WHO message.

To keep accurate estimates of routers energy level at all times, ALARM and
DIST messages always include information about the current energy level of the
sending node3. If a node nj ∈ routers(ni), announces an energy level energy(nj)
such that energy(nj) > energy(arouter(nj), ni), then nj becomes the new as-
signed router for ni. This scheme allow traffic sent by ni to be spread among its
routers in such a way that variance in residual energy at nodes is reduced. This
promotes network longevity by not allowing key nodes to die too soon due to
excessive message relay. Figure 2 shows a sketch of the operation of the routing
protocol and state maintained by nodes.

3 We assume that adding this extra data field to messages has a negligible energetic
cost.
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nl
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nj

Sink

dist(nl)= ?
routers(nl)= []

at time t:
    dist(ni)= ?
    routers(ni) = []

at time t+dt:
    dist(ni)= d
    routers(ni) =[nj,nk]

dist(nk)= d-1
routers(nl)= [nx]

dist(nj)= d-1
routers(nj)= [nx]

nx

some path to sink

WHO

WHO

WHO

DIST

DIST

dist(nx)= d-2

ny

dist(ny)= d
routers(ny)= [nj]

WHO

DISTDIST

Fig. 1. DIST and WHO messages are exchanged so nodes can learn about distance
values: ni broadcasts request for distance information using a WHO message. nj and
nk, at distance d − 1, and ny at distance d reply with a DIST message. If the message
from ny arrives first at ni, dist(ni) is first set to d+1 and after set to d. If the message
from nj or nk arrives first, ny message is ignored. routers(ni) is changed accordingly.
Once ni learns its distance value it sends a DIST message so nl can learn about this.

To enable the sink node to have feedback about the status of all nodes in the
network (e.g., to detected mal-functional nodes or nodes with low power), every
node sends an ALIVE message sporadically. An ALIVE message is also sent by
a node when the routing initialization protocol ends, i.e., when a DIST message
is received (e.g., at start up). If the node generates an ALARM message, the
timer associated with ALIVE messages is reset. Router monitoring also applies to
ALIVE messages. Both ALIVE and ALARM message contain sequence numbers
so that delayed messages can be detected by the sink.

2.2 Surveillance Sub-protocol

As mentioned above, the main function of sensor nodes is to detect hazards
and notify the sink by broadcasting ALARM messages. However, not all sensor
nodes in a local neighborhood need to send ALARM messages at all times and in
all situations that they detect hazards. Instead, nodes can monitor the activity
of their neighbors and only send an ALARM if critical new information needs
to be reported. The heuristic we use is to have nodes with more encompassing
hazard types to take priority over other neighboring nodes. In the case where
neighboring nodes detect the same type of events, nodes closer to the sink take
priority.

To implement the surveillance protocol, each node regards one of its neighbor-
ing nodes or itself as its leader. For node ni, we designate its leader as leader(ni).
If ni is leader of itself (leader(ni) = ni), we say that ni is a self-leader. Only self-
leaders send ALARM messages. At start up, a node is always self-leader. Leader
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Fig. 2. Message routing from sensor nodes to sink: node ni has two routers — nj

and nk, both at d − 1 distance from sink; ni currently assigned router is nk since the
estimate energy level of nk is higher than for nj (energy(nk, ni) > energy(nj, ni)).
The solid line show the probable path of an ALARM message sent by nl. Dash line
notes possible router change in the near future.

identify may change as ALARM messages are received (see below). A node ni

keeps an estimate of the distance to sink of its leader, and its energy level. We
represent these values as dist(leader(ni), ni) and energy(leader(ni), ni), respec-
tively. A node also memorizes the type of hazard last reported by its leader.

A node that is a self-leader broadcasts ALARM messages periodically. If an
hazard has been detected, the time period for ALARM messages broadcast is
ta; if no hazard has been detected, the time period is made longer (tc > ta)4.
This periodic transmission allows the state of the environment be known by the
sink at all times, including the detection of a hazard, updates to hazard types,
notification of hazard extinctions, corrections to false alarms (caused by errors
in sensor reading), and recover from lost ALARM messages. In addition to pe-
riodically send ALARM messages, a self-leader also sends an ALARM message
whenever its hazard type changes (even if it has recently sent an ALARM mes-
sage). This allows for novel events to be quickly notified at the sink. The timer
associated with ALARM sending is also reset. An ALARM message is also sent
whenever a node becomes a self-leader.

If a node ni overhears an ALARM message sent by node nj whose source is
also nj , it procedes as follows: if nj is ni current leader, ni updates the leader
information, and checks if its hazard type become more encompassing than its
leader. If so, ni becomes a self-leader and sends an ALARM message. If nj is not
ni current leader, than ni checks if nj alarm type is more encompassing than its
leader. If so, nj becomes the leader of ni. If not, ni selects as its leader the node
closer to the sink.

When the hazard type of node ni that is not a self-leader changes (due to
changes in the physical environment), the node also checks if its alarm type

4 The alarm type identifier we use to represent a cleared hazard is 0.
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Table 1. Summary of rules for routing and surveillance protocols: ni receives messages
from nj

Condition =⇒Action
When ALARM ∨ DIST is received:

dist(ni) = nil =⇒dist(ni) = dist(nj) + 1, arouter(ni) = nj , leader(ni) = ni

dist(nj) < dist(ni) =⇒routers = {}, arouter(ni) = nj

dist(nj) ≥ dist(ni) ∧ nj /∈ routers(ni) =⇒ ignore
dist(nj) = dist(ni) − 1 =⇒routers(ni) = routers(ni) ∪ {nj}

dist(nj) ≥ dist(ni) ∧ routers(ni) = {nj} =⇒dist(ni) = dist(nj) + 1
dist(nj) ≥ dist(ni) ∧ |routers(ni)| > 1 =⇒routers(ni) = routers(ni) − {nj}

When ALARM is received ∧nj is the source:
nj = leader(ni) ∧ type(ni) > type(nj) =⇒ leader(ni) = ni

nj �= leader(ni) ∧ type(nj) > type(leader(ni)) =⇒ leader(ni) = nj

nj �= leader(ni) ∧ ¬(type(nj) < type(leader(ni)) ∨ type(j) > type(leader(ni))
=⇒ leader(ni) = minargnk

{dist(nj , ni), dist(leader(ni), nk)}
energy(leader(ni), ni) < energy(ni) · f ∧ dist(ni) = dist(leader(ni), ni)

=⇒ leader(ni) = ni

When type(ni) changes:
type(ni) > type(leader(ni)) =⇒ leader(ni) = ni

type(ni) < type(leader(ni)) =⇒ ignore
type(ni) = type(nj) ∧ dist(ni) = dist(nj , ni) =⇒ leader(ni) = ni

� (type(ni) = type(nj) ∨ type(ni) > type(leader(ni)) ∨ type(ni) < type(leader(ni))
=⇒ leader(ni) = ni

become more encompassing than the type of the leader. If so, ni becomes a self-
leader and sends an ALARM message. If the leader’s type continues to be more
encompassing than ni than nothing is done. If the hazard types are identical, ni

becomes self-leader if it is closer to the sink. The first two rules allow nodes to
overrule current leaders if they hold critical hazard information that is not being
reported by the leader (e.g., because its sensors have not detected the hazard
yet). The last two rules allow nodes closer to the sink to takes precedence in
leadership if hazard types are identical.

A node ni, that is not a self-leader, also becomes a self-leader and sends an
ALARM message, if energy(leader(ni), ni) < energy(ni) · f (f < 1), and its
distances to the sink is the same as its leader (dist(ni) = dist(leader(ni), ni)).
This allow nodes at the same distance to the sink to take turns in leadership as
energy is dissipated, which contributes to reduce σ2({energy(ni)}, ni ∈ S(t)).
Often this event makes the previous leader of ni elect ni as its new leader (i.e.,
there is a role reversal).

If a node ni does not receive an ALARM message from its leader during a
tw > tc time period, it becomes a self-leader and sends an ALARM message.
This is used to recover from crashes and communication failures with leader
nodes. When there is a change of the leader the timer associated with leader
disconnection is reset. Figure 3 shows an illustration of the operation of the
surveillance protocol.
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Fig. 3. Leader selection in the surveillance protocol: nodes nk an nj have the same
hazard types, are at the same distance from sink, but nk is leader of nj because it has
higher energy level. Node nk is also leader of ni, because it is closer to the sink. Node
nl is a self-leader although is further away from the source than its router ni, because
ni is not a self-leader and nk ALARM messages can not reach nl. nz is a self-leader
because its alarm type is more encompassing than the one of its router ny .

Below, we present the structure of the messages exchanged by sensor nodes
while involved in the routing and surveillance protocol. A summary description
of the messages’ purpose is also shown.

– ALARM[source id, sender id, router id, type, seq, dist, energy] — Message
routed to sink node to report hazards. Sent when an hazard is detected or as
clear message, and periodically resend every ta time period (if type �= 0), or
every tc time period (if type = 0). source id is the identifier of the node that
first generate the message, sender id is the identifier of the node sending the
message, router id is the identifier of the assigned router for this message,
type is the hazard type identifier, seq is a sequence counter, and dist and
energy are, respectively, the current distance to sink and energy level of the
sender.

– WHO[sender id] — Message sent by nodes to query neighboring nodes. Sent
when a node is started or connection to all current routers is lost. Repeated
periodically every tw time period until at least one neighboor responds. This
kind of message is not routed to the sink.

– DIST[sender id, distance, energy] — Message sent in reply to a WHO mes-
sage sent by neighbooring node; includes information about distance to sink
node. It is also sent when the distance to sink of the source changes. This
kind of message is also not routed to the sink.

– ALIVE[source id, sender id, router id, timestamp] — Message routed to
sink node to report active presence of node; sent very rarely (e.g. once a
day)
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Table 2. Parameters of the routing and surveillance protocol

Parameter Description
td maximum waiting period before a new WHO message is sent
tr maximum idle time for a router
tl time period for ALIVE messages broadcast (tl � ta)
ta time period before ALARM message is broadcast (ta < tr)
tc time period before ALARM message with hazard type = 0 is broadcast (tc > ta)
tw maximum idle time for leader node (tw > tc)
f maximum percentage difference of energy level of a node and its leader

In table 2, we present the list of parameters used by the routing and surveil-
lance protocols, a summary description of their meaning, and suggested values.

3 Model Evaluation Using Simulation

To evaluate the model design and performance we have built a visual simulator
of a sensor network. The simulator does not implement a detailed model of any
specific MAC layer or sensor node hardware. Instead, it is a simple environment
where the performance and key features of our model can be easily tested. Ad-
ditionally, we assume that all nodes are identical (possibly with the exception of
the sink). In particular, transmission range is made equal for all nodes, and the
same number and type of alarms can be raised by all nodes. The sink node is
located at the border of the surveyed environment. We model message passing
using arbitrary large reception and transmission buffers. Because transmission
range is short we assume that message transmission is instantaneous. That is, if
a node broadcasts a message it is immediately put in the reception buffer of all
nodes within the transmission range. Time is made to evolve synchronously in
all nodes, with a time step corresponding, by convention, to 1 second. Each time
step is divided in two phases: in the first phase, all messages in sending buffers
are put in the reception buffers of nodes within the transmission range; in the
second phase, the control code of the nodes is allowed to run (in an arbitrary
order).

3.1 Goals, Metrics, and Methodology

In evaluating our model using simulation we have the following goals in mind:

– Compare the performance of our protocol whit other protocols proposed in
the literature. In particular, we investigate experimentally how ASOS com-
pares with gradient-based routing. Other protocols are informally compared
in section 4.

– Evaluate what parameters have more influence in performance gains.
– Study how well the model scales with the size of the network.
– Test if routing mechanisms work efficiently and speedily even if the network

topology changes frequently.
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For this purpose, we use several metrics:

Hazard cost. This is the average amount of energy that the network uses per
hazard event generated at some node. Includes the routing cost, and addi-
tional protocol messages overhead.

Network longevity. How long does the network stays functional given some
battery capacity for nodes. The metric we use is to consider a network non
functional if all nodes that are neighbors of the sink exhaust their power
supply. This means that no more messages can arrive at the sink, rendering
the network (temporarily) useless. Other alternative metrics are: the time
before a fraction of sink neighbors to exhaust their power supply, and the
time it takes for information accuracy at sink to drop below some fixed
threshold.

Accuracy of information at sink. How accurate is the view that the sink
has of the network. The metric we use is the average proportion of correct
inferences about the state of hazard type indicators at all active nodes, during
the live time of the network.

The methodology we use to realize the above goals is as follows.
Nodes are semi-randomly located in a square environment. Care is taken so

that all nodes, with the exception on border nodes, have the same number of
neighbors (K). Moreover, no initial partition on the network graph is allowed.
In the first experiments, we start all nodes at the same time. In the dynam-
ics regime, we force some fixed percentage of nodes to be down at all times.
To simplify analysis of the results, message passing between neighboring nodes
is assumed to be reliable. Nevertheless, sensor misreading is accounted by the
protocol due to periodic retransmission of ALARM messages.

Message sending and message reception (plus processing) is assumed to cost
one unit of energy. All nodes are started with the same amount of energy E. We
trigger hazards with the same probability pa for all nodes, and all Nt hazard
types have equal probability of being raised or cleared. When there is a change
on the status of an hazard type there is a probability R that the new status is
changed to the value of the corresponding hazard type in some random neighbor.
With probability 1 − R the hazard type is toggled. Thus, R is a measure of the
correlation between hazard types at neighboring nodes.

To investigate the performance of ASOS when compared to GBR routing, we
have simulated the behavior of GBR by making a few modifications to ASOS:
selection between alternative routers is made stochastically, which is one of the
heuristics that have been tested in GBR; nodes are always self-leaders, mean-
ing that the surveillance protocol of ASOS is not used and all events trigger
alarm messages. On the other hand, distance information in our version of GBR
is known using the same mechanism as ASOS, instead of having the sink dif-
fuse interest messages as in standard GBR. We designate this approximation as
GBR-S, which is actually an improved version of GBR that handles dynamics
effectively. To keep the comparisons fair, we make nodes running GBR-S send
ALARM messages every ta (or tc) time steps as is done in ASOS. In [3], the au-
thors prove that GBR performs better than the directed diffusion protocol, and
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in [2,5] the authors prove that directed diffusion performs better than flooding.
Thus, claiming that ASOS performs better than GBR, entails in principle that
ASOS performs better than flooding and directed diffusion. However, because
implementation details and measures used can bias results we are working on
additional simulations to compare ASOS with these other protocols.,

When comparing the performance of ASOS and GBR for a given network
size, we use exactly the same set of network topology for the two protocols. For
each network size, we used 20 different network topologies. This increases the
significance of the simulation results. Moreover, we generate exactly the same
sequence of hazard event for the two protocols for a given network size (same
seed used for random number generator). The network sizes we use range from
50 to 400 nodes, with increments of 50.

3.2 Comparative Evaluation

In running our simulations, we use the following parameter settings for the sur-
veillance and routing protocols: the time before a WHO message is retransmitted
td was set to 10 seconds (i.e., 10 simulation time steps); the time routers are al-
lowed to remain idle is 60 seconds; the time for ALIVE message transmission is
20 minutes; the maximum time between ALARM transmissions for a self-leader
ta is set to 30 seconds, and 60 seconds for cleared hazards (tc); the maximum
idle time for a self-leader tw was set to 15 minutes; finally, the fraction of energy
reduction for leadership over-ruling f is set to 0.8.

For the simulator parameters we use the following values: E = 10000, meaning
that a node can send or receive up to 10000 messages. The number of neigh-
bors K was set to 4. Different settings for these two parameters do not change
the comparative results we present, although they change the absolute values
obtained. The number of alarm types we consider is 2, and the probability of
an alarm being raised at a node pa is set to 0.1. This creates constant activity
throughout the networks.

In figure 4(a), we show the average energy cost per hazard for ASOS and GBR-
S, when there is no correlation between hazards at neighboring nodes (R = 0).
The results show that ASOS performs better then GBR-S for the full range
of network sizes considered. This is explained by the fact that in ASOS many
hazard event do not generate ALARM messages. Namely, events at nodes that
are not at that time self-leaders. This includes the cases where the leader of the
node is reporting a more encompassing hazard type, or cases where the leader
is closer to the sink (and the hazard type of the node is not more encompassing
than the one of the leader). Contrary to this, GBR-S always generates ALARM
messages whenever an hazard event is generated. Hazard energy cost decreases
with network size, because the number of hazards generated until time t grows
linearly with the number of nodes and the average distance to the sink grows
sub-linearly.

In figure 4(b) we plot the network longevity for ASOS and GBR-S. Here,
the results demonstrate the superiority of the ASOS compared to GBR-S, for
all network sizes considered. For a network with size 50 there is an increase of
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about 25% in network longevity. This means that for the same starting energy a
sensor network operation with the ASOS protocol is able to deliver surveillance
information during longer timer periods than GBR-S. This is explained, in part,
because the surveillance protocol considerably reduces the number of ALARM
messages sent. Network longevity is also increased because router selection is
made to compensate variation in available energy at the routers. We are cur-
rently working to disentangle the effects of the two characteristic mechanisms
of ASOS — leadership selection and router selection, to see what is the relative
contribution of each in explaining the increased network longevity. Note that
network longevity is roughly the same for all network size considered. Network
longevity is quite sensitive to network topology as indicated by the error bars
for standard deviations in figure 4(b).

In figure 4(c) we show the data for the information accuracy at the sink.
We have found that the accuracy for ASOS is quite similar to GBR-S. These
results are explained, first, because we are considering a small number of haz-
ard types (2), and secondly, because ASOS is quiet conservative in pre-empting
event reporting. More aggressive design solutions to explore event correlation
are possible, exchanging energy saving for accuracy (e.g., to have node over-rule
a leader only if they are reporting a larger quantity of hazard types than their
leader). Note that in ASOS non reported events are always less critical than the
events at some neighboring node (the leader), thus the slightly drop in informa-
tion accuracy for ASOS does not correspond to lost information about important
hazards. The information accuracy drops with network size. This is explained
by the fact that in larger networks partitions, caused by the exhaustion of one
or a few nodes, tend to contain more nodes.

In figure 4(d) we make a comparison of the network longevity when nodes are
running ASOS for different values of correlation between alarms at neighboring
nodes (R = 0, R = 0.4, R = 0.8). The plots validate the intuition that higher cor-
relation produces longer longevity of the network. This is the case because higher
correlation means that a node is less likely to experience hazards different for
its leader and therefore become a self-leader. The increase in network longevity
when there is a change from zero correlation to high correlation is about 40%.
Comparing ASOS with GBR-S with R = .8 gives an advantage to ASOS of
more than 80%. Sensitivity analysis have shown that similar comparative re-
sults also apply when K = 8. This suggests that exploiting event correlation at
neighboring nodes to increase network longevity is a viable and useful approach.

3.3 Impact of Dynamics

To study the effects of dynamics in the performance of our model we imposed a
failure regime where some D fraction nodes is always down at a given point in
time. The network already starts with D nodes down, and with some probability
F at each time step a down node is started and a running node is made to fail.
Nodes start with a high level of energy so that energy consumption is not relevant
in this experiment. Simulations are run for 20000 time steps.
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Fig. 4. Simulation results: a) energy cost per hazard for ASOS and GBR-S (R = 0);
b) network longevity for ASOS and GBR-S (R = 0); c) average accuracy of network
information at sink (R = 0); d) network longevity for ASOS for different values of
hazard correlation (R = 0, R = 0.4, R = 0.8).
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Fig. 5. Simulation results for dynamics: a) energy cost per hazard; b) information
accuracy at sink

In figure 5(a) we plot the average cost per hazard for the dynamic regime
with F = 0.01, and for 0%, 10%, 20% failed nodes. In figure 5b) we plot the
information accuracy at the sink for the same failure regimes. As can be seen
from the plots the performance of ASOS measured by hazard cost for the three
regimes is comparable. Note that F = 0.01 represents a very harsh dynamic
regime, beyond the demands of most real world applications (it corresponds to
have a node going down and another starting every 100 seconds). The drop in
information accuracy up to 10% reflects possible cuts in connectivity for some
network sub-graphs, and the time that it takes for nodes to detected lost routers

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



ASOS: An Adaptive Self-organizing Protocol 129

and lost leaders. Reducing the values of parameters tr and tw increases infor-
mation accuracy, at the expense of increased energy cost per alarm (plots not
shown).

4 Discussion, Related, and Future Work

Our routing protocol is a variation of gradient-based routing (GBR) [3], which
is an improvement to the directed diffusion model [2,5]. Both GBR and directed
diffusion are data-centric model, where sink nodes diffuse interest messages to
advertise an interest in a piece of named data. Interests are diffused through the
network so that relevant nodes can learn about the interest, and allow nodes to
trace back routes to the sink [6]. In GBR this is done by using the number of
hops to the sink as a distance metric (called height in GBR), and relaying event
messages through the neighbor closer to the sink.

In our intended application, a sink is always interest in getting information
about hazard events, therefore sending interest messages is pointless and costly.
We use a different mechanism to keep distance values update from GBR. Instead
of diffusing interest messages, nodes exchange DIST and WHO messages to
handle network reconfigurations efficiently.

Gradient following methods related to GBR and ASOS have also been used in
robotics and autonomous agents research for robot navigation and manipulation
— the artificial potential field approach [7].

Several heuristics for traffic spreading have been explored in GBR. In the
stochastic scheme, message routing is assigned randomly to one of the neighbor-
ing nodes closer to the sink. This is the heuristic we attributed to GBR when
comparing it to ASOS. Two other additional heuristics, are the energy-based
scheme, that makes nodes low on energy to discourage others to send messages
trough it by advertising an increased height value which is propagated down the
network, and stream-based scheme which assigns a router to specific nodes. The
performance difference between these heuristics is small [3]. Contrary to this, the
heuristic we used in ASOS provide considerable increases in network longevity.
More work is needed to disentangle the relative merit of traffic spreading and
leader selection mechanisms in ASOS. Whatever the results of this analysis may
be, we have showed that the two mechanisms working together deliver consider-
able improvements over GBR.

Similar to our approach, the Maximum lifetime energy routing protocol uses
residual energy information for routing in sensor networks [4]. This protocol
compute optimal paths to sink nodes using a distance metric that includes both
energy consumed to reach the sink and residual energy at nodes along a path.
The protocol uses a graph shortest-path algorithm that requires global informa-
tion at nodes. Although this approach provides, in principle, better results than
a using only local information for routing decision, it may be unfeasible in very
large and dynamic networks due to the overhead of maintaining link cost tables
updated. Our routing protocol does not consider residual energy at all nodes in
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a path, only neighbors. This allows the protocols to scale with network size, and
perform well in dynamic regimes.

The approach we use in the surveillance protocol has some connections with
work on energy-aware routing protocols with hierarchical clustering [8]. For ex-
ample, in LEACH [9], nodes within a local neighboorhood self-organize to select
a cluster header or leader. This cluster head becomes the local router. Cluster
leaders turn take, based on a random number generated at each node, so en-
ergy dissipation is balanced. Our approach is different. Router selection is not
random, but relies on energy awareness. Leader selection in not used for routing
purposes but rather to explore correlation of space and events between neigh-
bors. This allows reduction in message traffic in a way not explored previously
be other protocols.

Although our protocol pursues strong performance criteria, there is still much
space for additional optimizations and services. An obvious improvement is
for the retransmission time of WHO messages to increases exponentially when
no neighboring node responds with a DIST message (as is done IEEE 802.11
CSMA/CD Ethernet). This may save considerable amount of energy if nodes
are started asynchronously.

A drawback of our design is that sensing resolution/precision is made to match
the communication range of sensors. However, for many applications this is not
a serious issue because sensors communication range is usually small. There
are also practical solutions to address this issue. We suggest two: nodes may
estimate the spatial distance of neighbors by measuring the power signalling,
and not consider as leader a node that is too distant; or nodes may send ALARM
messages even if they are not leaders, although less frequently.

Although our base model does not support multiple distributed located sinks,
it can be adapted for this. The simplest solution is to have nodes memorize
distance and router information independently for each sink. If different sinks
can coordinate activity (e.g. using the Internet), then a different subset of nodes
can be assigned to each sink. No modification is needed in ASOS to handle this
kind of scenario.

In the future, we plan to evaluate our model with a more sophisticate sensor
network simulator including detailed models of the radio MAC layer. Further-
more, use of ASOS in a real-world scenario would be an important test to the
protocol. Modeling realistic hazard events regimes is also expected to give a bet-
ter estimate of model performance (e.g., use a cellular automata to model the
spreading of a fire in a forest tree surveyed with a sensor network). We are also
evaluating how variance in transmission range influences protocol performance.
Finally, integration or extension of ASOS to handle mobile sinks and mobile
sensor nodes can be pursued [10].

5 Conclusions

In this paper, we have proposed a model of self-organization for sensor networks.
The task of each sensor in the network is to report hazard situations to a sink
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node, and to route messages from nearby nodes. For this purpose we specified
two protocols: a surveillance protocol and a routing protocol. The surveillance
protocol uses correlation between event types to reduce traffic for hazard noti-
fications. The routing protocol uses a variation of gradient-based routing that
adapts continuously to energy available at selected routers and handles network
dynamics efficiently. We have performed simulations to compare our protocol
with gradient-based routing with a modified implementation. Results show that
our approach increases network longevity. The effect in more accentuated if cor-
relation between event types at neighboring nodes is high. Our work illustrates
how ideas and principles from self-organized adaptive systems can be used for
engineering network applications. The implementation of the sensor network
test-bed is available from LIACC5.
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Abstract. Explicit and high semantic level communications are not al-
ways the best approaches to coordinate the global system activity in the
context of Multi-Agent Systems (MAS). Insect societies take advantage
of a stigmergic way to communicate which does not require centralized
control, but enable insects to coordinate their complex global tasks. In
this paper, we describe and motivate a new approach to elaborate Com-
plex Exchanges between Stigmergic Negotiating Agents (CESNA), for
the critical resource sharing problem. We describe a negotiating net-
work as a generic and suitable representation of the problem, along with
its implemented behaviours. We present some promising results and at-
tempt a first interpretation of how this decentralized system leads local
behaviours to a global problem solution.

1 Introduction

In this paper, we propose a Multi Agent approach for the critical resource shar-
ing problem in a dynamic environment. For this problem, a set of consumers try
to acquire a set of shared resources to achieve a set of tasks. In this context the
resources allocation process is submitted to a set of constraints (such as chrono-
logical constraints) related to tasks to be achieved by the consumers. These
constraints make the system, obtained by the consumers and the resources,
react as a complex system, since intermediate states leading to a solution of
the resources allocation problem, are interrelated in a retroactive way: one re-
source assignment impacts on the remaining possibilities of future assignments
of other resources. We propose in this work to address this problem through
a decentralized multi-agent negotiation process: each agent elaborates a sub-
part of the global solution by negotiating with other agents, through complex
exchanges, expressing its preferences for potential resources assignments. Do-
ing so, the Multi-Agent System constructs a negotiation network, representing
contracts of potential resources repartition/exchange between agents to be vali-
dated/invalidated. Agents negotiate to validate/invalidate contracts fitting their
needs with respect to the needs of other agents. For this problem, the agents
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must coordinate their activity to elaborate a global allocating pattern fitting
the complex problem needs. Moreover, the Muti-Agent System has to cover the
set of possible states balancing efficiently exploration and exploitation periods.
During exploration, the system attempts new possible patterns among the vast
set of possibilities. During exploitation, the system reinforces the elaborated
combinations it perceives as relevant.

We present in section 2 the critical resource sharing problem from a multi-
agent point of view. Section 3 presents some related works. In section 4, we
propose a negotiation network through which the characteristics of the prob-
lem of critical resources sharing are exhibited. This network serves as a medium
for agents negotiation to solve the critical resource sharing problem. The im-
plemented behaviours presented in section 5 provide promising results studied
in section 6. We propose in section 7 a first analysis of the system capacity to
control its decentralised activity and exhibit some co-relations between the local
behaviours of agents and the global activity of the system. Finally, we illustrate
in section 8 the interest of our approach by giving some comparing results for
the graph coloring problem, and conclude in section 9.

2 The Critical Resource Sharing Problem

2.1 Description of the Problem

In this paper, we address the general resource sharing problem as a dynamic dis-
tributed constraint satisfaction problem. For our study, we represent this prob-
lem through 3 components as follows:

– A set of consumers : each consumer consumes parts of resource(s) to be
satisfied.

– A set of resources : The resources propose a limited quantity of services.
– A set of constrained relations between consumers allocations : Consumers

have to respect some allocation patterns allowing the constraints satisfaction.

These components are represented differently following the different instances
of the critical resource sharing problem:

– For the manufacturing scheduling problem, one has to schedule the reparti-
tion of a set of tasks on a set of machines with respect to a set of constraints
: like chronological constraints related to the manufacturing of a product
which imposes the execution of a set of task in a specified order. In this
context a consumer is a product task to achieve, which consumes a part of
time on a resource. The objective of the resources allocation problem here
is to provide a planning of the resources use for the different tasks which
respects the chronological constraints between the tasks of a same product
manufacturing. For this problem, additional constraints like the respect of
due dates for products delivery, resource use optimisation, etc.. often make
the problem more difficult to solve.
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– For the graph coloring problem, each vertex needs to be assigned a color
which is different from all the colors assigned to its neighbors. When the
number of authorised colors is limited, each color is a critical resource. In
this case, allocations must fit the constraints represented by the coloring
network structure.

– For the problem of human resources assignment, tasks to be achieved (pro-
duce, learn, teach, ..etc) require adequate teams (resource allocation pat-
terns). Each human has some competence (that can evolve) and can con-
tribute to different activities.

– etc.

To solve these problems using a multi-agents approach, we need to make explicit
the representation of the problem characteristics. Agents have partial vision of
the whole problem, and act locally on the elaboration of partial solutions. Partial
solutions are inter-related. Their constructions need to be co-ordinated to reach
a satisfying global solution for the problem.

2.2 A Need for Coordination Between Agents

Multi-Agent Systems approach the critical resource sharing problem as a decen-
tralized negotiation problem. The negotiation process is held on the different
possible resources assignments, to satisfy the problem constraints. To address
this problem we consider the search space, that represent the set of all the com-
binations of potential problem variables assignments. As in many optimisation
problems, the search space size grows exponentially with the problem size (num-
ber of variables). Generally, the search space size is considered as an important
criterion to define the problem solving hardness. We consider the sparsity of
solutions through the search space as a second criterion of difficulty. The rarer
the solutions, the more difficult they are to find. Generally, the strongest the
constraints applied on a problem, the rarer the solutions tend to be.

In the context of a decentralized negotiation, we wish to explicitly consider a
third criterion of difficulty : at what extent relations between a solution sub-parts
are constrained? For the resource sharing problem, how much the constrained re-
lations between consumers make the elaboration of patterns difficult to achieve?
In [9], Parunak’s team describes an hyperactivity phenomena for a resource shar-
ing problem (the graph coloring problem). In our opinion, the hyperactivity of
agents arise from a lack of agents ability to co-ordinate their respective activi-
ties. In [2], we show that this hyperactivity results from a lack of communication
between agents, which prevent them to perceive the complex characteristics of
the problem during the solving process, and thus to elaborate complex patterns
of negotiation. We show in section 3 that this coordinating problem appears in
many situations. This observation leads to the proposal of a new approach for
multi-agent systems, in order to efficiently coordinate their negotiating activity.

3 Self-organizing Systems and Resource Sharing

In [4], the authors propose a Multi-Agent System approach to dispatch trucks
on painting machines. Their approach is based on the emergent specialisation of
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painting machines leading to reduce functioning costs. In [5], multi-agent systems
seem to be appropriate for the manufacturing problem. An adequate allocation of
products on machine queues permits to increase the production system output.
Nevertheless, these approaches do not allow to make plannings in advance, and
to benefit from anticipating information. The anticipation could provide useful
properties like robustness, flexibility, etc. which are required in many production
situations (respect of due dates, minimisation of stocks, etc.). For the scheduling
problem, anticipating increases the complexity of the solutions to build : each
task assignment to a resource must respect a chronological consistency with
the assignments of tasks belonging to the same product manufacturing process.
Some other problems lead to an inherent complexity of tasks assignments. In our
opinion, the presented models do not address perfectly the co-ordination problem
of the agents activity in a constrained environment. The multi-agents negotiation
process depends upon the medium of agents communication. A first category of
works are based on the Contract Net protocol. In [11], this protocol permits a
consumer agent to bid for supplier agents. We implemented this protocol for
a resource sharing problem. In our model, each agent bids for resources fitting
its needs. We noticed that this protocol does not permit to reach a solution
when the complexity of patterns to elaborate increases. It induces latency within
social interactions. Each agent undergoes many constraints which induce several
negotiations to manage in parallel. When problems are complex, the latency
introduced by each act of negotiation is added to latency introduced by the
other negotiations being conducted in parallel and may lead to the global system
deadlock. This protocol seems to be adequate for an agent requesting services
from other agents (relation cardinality : 1-n) ; But in our case, many agents share
the same environment and simultaneously request services from several other
agents (relation cardinality : n-n) : we can not validate a contract locally without
considering the complex associated negotiating environment. Nevertheless, there
are different ways to address these issues (to establish contracts undergoing
incertitudes, heuristics to minimize the set of solution to evaluate, etc.). In [1], a
way to reduce the difficulties inherent to the Contract Net protocol to establish
complex contracts, is presented.

The second way for an agent to address this problem is to benefit from a
stigmergic communication inspired from social insects : each agent marks tags
on the environment to communicate. In [8], a way to coordinate the global ac-
tivity of agents is presented. While tagging their environment, agents elaborate
a schedule for the production chain. Local interactions allow a global solving
process. However, the perceived improvement must be significant for an agent
to decide to change its resource use. Indeed, the changes blindly impact the
overall system, they propagate through the problem constraints. For instance,
product tasks must respect a chronological order. If a task agent changes its
scheduled time, this can affect its associated product tasks and the global sched-
ule. Changes applied on the current solution propagate through the complex
system which produce hyperactivity of agents and lead to a chaotic behavior.
In [9], the authors propose to calm hyperactive agents. In [3], a graph coloring

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



136 F. Armetta et al.

problem is addressed through a stigmergic approach. In this work, the emerging
system-level performance may decrease when agents consider obsolete informa-
tion in the context of a large-scale system. Different local patterns emerge and
influence the problem solving. The associated abstract representation propagates
through the system. Then, the question is : ‘how to make agents select locally
appropriate actions that lead them to adequate behaviours and permit to reach
a global solution? It is difficult to analyze the behaviour of such systems. In [10]
an interesting work has been presented in this perspective.

In this section, we have presented some limits for the Contract Net protocol
to elaborate complex patterns. We believe that stigmergic communication is
appropriate to the multi-negotiation (many local negotiations at the same time
through a complex environment). Our objective consists in making patterns
emerge within social interactions among agents. To do so, we propose to provide
a negotiation support structure, on which the complex characteristics of the
problem to address as well as the complex agents exchanges could be expressed.

4 Representation of the Resource Sharing Problem Using
a Negotiation Network

For this approach, we follow the framework defined in [7]. Reactive and situated
agents interact by using the environment as a medium for their actions effects
inscription. This allows to express the influence of past and persistent effects
issued from past behaviours, on the future behaviours of agents. In order to
endow the system with a self-organizing capacity (capacity to make a structure
emerge without external control), agents behaviours need to balance exploration
and exploitation of the environment. Random exploration allows to diversify
the research through the environment in order to find new potential ways. The
exploitation enables to reinforce promising ways in a self-catalytic manner (i.e.
the more a way is promising, the more it is exploited).

With our model called CESNA (Complex Exchanges between Stigmergic Ne-
gotiating Agents), the general problem is represented by a negotiation network,
represented by potential contracts to be validated or invalidated by negotiating
agents. Each agent acts upon a sub-network that represents the contracts to
which the agent participates. Each agent must validate a satisfying sub-set of
its associated contracts by negotiating with agents expressing needs that are in
conflict with its needs.

More formally, we define a network as a graph G =< N, R > where N = B∪C.
Let A = {a1, a2, a3, . . . , an} be a set of agents. We associate a node from the
set B to each agent. In the rest of this paper, we consider that an agent will be
represented in the graph by its associated node ( B = A).

– Let B =
{
Bor ∪ Band ∪ . . .

}
= {b1, b2, b3, . . . , bn} be a set of connecting

nodes standing for logical relations. Theses relations allow to express the
agents satisfying configurations according to their associated contracts.

– Let C = {c1, c2, c3, . . . , cm} be a set of contrat nodes.
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– Let R = {r1, r2, r3, . . . , rp} be a set of edges between the nodes of the net-
work. We denote suc(wi) = {y|(wi, y) ∈ R} the set of successors for a node
wi, and pred(wi) = {x|(x, wi) ∈ R} the set of predecesors for a node wi.

This network respects the following rules :

– ∀a ∈ A, pred(a) = ∅
– ∀b ∈ B, suc(b) ∈ {B ∪ C}
– ∀c ∈ C, suc(c) = ∅, pred(c) ∈ B

Contracts and Agents are linked as described below :

– The set of contracts associated with the agent a is denoted by : C(a), a ∈
A, C(a) ⊂ C. This set is established by the procedure 1 getContrats.

– The set of agents associated with the contract c is denoted by : A(c), c ∈
C, A(c) ⊂ A.

– The validity state of a contract for an agent is denoted by : ϕ(c, a), c ∈
C, a ∈ A, ϕ(c, a) ∈ {true, false}. The validity state for a contract is denoted
by : ϕ(c) = ∧ai∈A(c)ϕ(c, ai) = (∀ai ∈ A(c), ϕ(c, ai) = true), c ∈ C, ϕ(c) ∈
{true, false}.

Function 1. getContracts(n ∈ N)
Set return ← emptySet()
if n ∈ C then

return.add(n)
else

for all w ∈ suc(n) do
return.add(getContracts(w))

end for
end if
return return

The whole network expresses the problem in its totality :

– A set of accessible states : with our model, the search space is represented
by the set of validity states combinations for the contracts of the network.

– A set of constraints to follow : logical relations from the set B stand for
these constraints. They allow to compute the satisfaction agent, with respect
to the validity state of its associated contracts, thanks to the procedure 2
getSatisfaction.

Finally, this network allows to express the possible satisfying situations for
an agent, with respect to a set of selected contracts. Each agent must reach
the satisfaction for a subset of its associated contracts so as to find a global
solution, that is to find Cvalid ⊂ C| {∀c ∈ Cvalid, ∀ai ∈ A(c), ϕ(c, ai) = true},
{∀a ∈ A, getSatisfaction(a) = true}.
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Function 2. {true, false} getSatisfaction(n ∈ N)
if n ∈ C then

c ← n
return (�a ∈ A(c)|ϕ(c, a) = false)

else if n ∈ Band then
return (�s ∈ suc(n)|getSatisfaction(s) = false)

else if n ∈ Bor then
return (∃s ∈ suc(n)|getSatisfaction(s) = true)

else if n ∈ N ... then
. . . {specific behaviour for the connecting node}

end if

Fig. 1. An illustration of the problem representation

Thanks to its capacity to represent complex relations between agents, the
network can be applied to a spatial negotiation problem, presented on the figure
1, or to critical resource sharing problems. In our model, we do not fix what
an agent accounts for (task, resource, etc.), nor the contract types (resource ex-
change, coordinated move, coherent change, etc.). The network structure can be
extended in order to express specific constraints between agents. In this article,
we focus on the generic capacity to express relations between agents sharing the
same resources.

5 Negotiating Behaviour

While the system evolves, each agent executes a life procedure described in
procedure 3. We define an activity period as a life procedure perception/action
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executed for each agent in a random order. For each activity period, each agent
perceives its environment, and influences other agents for the contracts it chooses
(figure 2). Each agent benefits from a stigmergic communication : what are the
most promising contracts ? Then, each agent makes a reactive choice : it selects
a set of satisfying contracts and marks its choices in its environment, influences
for its requested contracts.

Function 3. agents Life
while ∃a ∈ A|getSatisfaction(a) = false do

for all a ∈ A, random order do
perceiveEnvironment(a)
influenceForContracts(a, a, true)

end for
end while

5.1 Perceive Environment

An agent perceives and communicates through the environment. To permit that,
each node of the network is associated to a value λ(n|n ∈ N) ∈ N. For a contract,
this value, which express the strength of the attractiveness / repulsiveness, is
initialized to zero at the beginning of the resolution process. For the connecting
nodes, this value provides a memorization of the perception ; it is updated by
the procedure 4.

Function 4. perceiveEnvironment(n ∈ N)
if n ∈ C then

return λ(n)
else if n ∈ B then

List buffer ← emptyList()
for all s ∈ suc(n) do

buffer ← buffer + perceiveEnvironment(s)
end for
if n ∈ Band then

λ(n) ← average(buffer) {return the mean of successors}
else if n ∈ Bor then

λ(n) ← maximum(buffer) {return the max of successors}
else if n ∈ B... then

. . . {specific behaviour for the connecting node}
end if
return λ(n)

end if

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



140 F. Armetta et al.

5.2 Influence for Contracts

From this point, as described in the procedure 5, an agent considers the perceived
values to select contracts and request for contracts that could satisfy him.

The ε function, not detailed in this paper, allows to give a feedback on the λ
value for a contract. If the agent requests the contract, it increases the λ value
for the contract in order to raise attention of other associated agents on the
contract. On the contrary, when an agent rejects the contract, he decreases the
λ value for the contract. Other agents associated with the contract will perceive
this communicating act for their next life procedure.

The exploratoryExpression function embodies the exploration/exploitation
balance for the system. It allows an agent to initiate new contracts. The explo-
ration rate influences the system’s performance, as described in section 6.

Function 5. influenceEnvironment(n ∈ N, a ∈ A, state ∈ {true, false})
if n ∈ C then

c ← n
ϕ(c, a) ← state
λ(c) ← λ(c)+ ε(c, state) {ε , not detailed for this paper, communicate the interest
of the agent for the contract}

else if n ∈ Band then
for all s ∈ suc(n) do

influenceEnvironment(s, a, state)
end for

else if n ∈ Bor then
if state = true then

sucMax = Maxs∈suc(n)λ(s) {Max return a random select among equal max
values}
sucMax = expressionExploration(sucMax, getSuc(n))
{exploratoryExpression can change sucMax for an other node, thanks to
an exploration parameter described later}
influenceForContracts(sucMax, a, true)
for all s ∈ suc(n)|s �= sucMax do

influenceEnvironnement(sucMax, a, false)
end for

else
for all s ∈ suc(n) do

influenceEnvironnement(s, a, state)
end for

end if
else if n ∈ B... then

. . . {specific behaviour for the connecting node}
end if
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Fig. 2. Perceiving / acting process for an agent

6 Global Coordination Measures

We applied our approach to some randomly generated problems in order to
measure the coordination capacity of agents to establish complex contracts. The
generated problems contain both Nor and Nand nodes. We used :

– ∀n ∈ B, 1 < suc(n) < 5
– ∀a ∈ A, ∀c ∈ C, 1 < δ(a, c) < 6, with δ(c, a) the distance between a and c

We guarantee a solution for each generated problem. Whatever the generated
problem size, the solving process always reaches the explicitly built solution. For
each studied problem, solutions are rare among the set of possible unsuccessful
arrangements. It is probable that there is only one solution, that is suitable for
the study of the coordination capacity of agents in a constrain environment.

In this section, each collected dot stands for 100 computations. In order to
save computing time for our experiments, we stop the solving process after 1000
activity periods. We consider that the process fails, record the failure and count
1000 activity periods for the current measure. In 6.1, we measure the performance
of the system with respect to the variation of the exploration parameter value.
In 6.2, we measure the influence of the problem size on the time spent before
reaching a solution.

6.1 Influence of the Exploration Parameter

On the chart of the figure 3, we represent the influence of the exploration
parameter on the average activity period measure. In procedure 5, the func-
tion exploratoryExpression allows to randomly select a different node from
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the successor perceived as the more promising, with a probability equal to
explorationParameter/100. We randomly select the following problem : 21
agents must validate 85 contracts (guaranteed solution) among 374 in a 847
nodes graph.
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The general aspect of the curve leads to state that the efficient value for
the parameter is situated around one percent. In other experiments, like those
presented further for the graph coloring problem, the optimal value is located in
the same area. It slightly varies according to the graph topology : the exploration
depends both on the amount of node from Bor and theirs positions in the graph.

We observe that for near zero values, the Multi-Agent System quickly finds
the solution, or stands a long time (much than 1000 activity periods) in a bad
solving configuration without reaching the solution. Moreover, a large explo-
ration leads to a bad functioning. In this case, it appears difficult to perform
complex exchange with a high noise factor. The standard deviation value tends
to decrease because the system tends to homogeneously exceed the time limit.
The large distance between collected measures point out the necessity for reac-
tive Multi-Agent Systems to ensure a good balancing between exploration and
exploitation.

6.2 Influence of the Problem Size

On chart of the figure 4, we show the system response to the increasing of the
problem size. We present the average amount of perception/action of agents (=
average amount of activity periods * number of agents) according to the size of
the search space. For the presented problems, the contracts set size varies from
100 to more than 1000. We represent the search spaces on a logarithmic scale.
We set the exploration parameter to 1%.

We notice that the computing time does not depend solely on the problem size.
Although consuming time tends to increase with the problem size, we are faced
to particularly difficult problems. For the most difficult problems, the solving
process never exceeds a few seconds, the success probability is situated around
90%. The linear tendency of the bezier curve approximation represents a logarith-
mic increasing of the average perception/action done according to the increasing
of the addressed problems. For this study, we do not compare the system per-
formance with other approaches for specific problems. We address the problem
of agents co-ordination in order to elaborate complex patterns. These satisfying
results show that it is possible to coordinate the agent activity in order to build
complex exchanges. The proposed negotiation doesn’t generate the hyperactivity
that we noticed with other models. The previous models react unappropriately
to the complexity of patterns, and to the sparsity of the solutions. The pro-
posed multi agent system is successful for constrained problems thanks to its
capacity to express the complex characteristics and the choices of agents within
the negotiating network. To go further, we attempt a first understanding of the
relation between the micro/macro level of the solving process. In section 7, we
present other measurements in order to understand the emerging behaviours
arising through the negotiation network.

7 Behaviour Analysis

The agent activity allows to cover the accessible states for the system, in order
to find a global satisfying pattern. It is difficult to analyze the raw trace arising
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from the transition state of ϕ(c) ∈ {true, false} , c ∈ C. We do not perceive any
coherence on this raw signal which seems to arise from a chaotic behaviour. How-
ever, the collected performance measures indicate that the system can address
difficult problems. What is the dynamic between order and disorder allowing
the coordination of decentralized decisions ? In this section we attempt to show
up consistent elements from the raw trace in order to facilitate its study, which
allow to partially validate first hypothesis about the emerging behaviour of the
system.

7.1 Local to Global and Global to Local Information Propagations

We measure the state transitions for ϕ(c) ∈ {true, false} , c ∈ C in order to
complete the perceived informations, we also memorize and report the state
transitions for ϕ(b) ∈ {true, false} , b ∈ B which stand for the validity state
propagated by agents during the procedure 5. On the chart of the figure 5,we
propose to foreground deep changes from the raw trace while underlining low
transition rate occurrences applied on distinct perimeters :

– deep change measure : Each node is associated with a deep change variable
initialized to zero. Each time a node transition occurs (toward satisfied or
unsatisfied state) we reset the variable value to zero. Otherwise, we increase
the variable value to express the node stability. On the figure 5, we sum this
value for nodes belonging of the same perimeter. This allow to observe deep
changes over time for each area.

– Distinct perimeters : Starting with a local contract node associated with the
perimeter 0, we increase the perimeter each time we cover a connecting node.

While measuring low transition rate occurrences, we can observe a correlation
of activity between subparts of the network, from local to global and from global
to local. Some of these transitions stand for a branch point for the exploration of
the search space. On the chart of the figure 5, we observe the influence of these
transitions : they can propagate from local to global (left part) or from global
to local (right part). These results comfort our suspicion that the constraints
expressed through the network facilitate a non explicit communication between
agents, about their state during the solving process. We discuss in the next
section the influences between emerging patterns through the network, and the
survival conditions for patterns.

7.2 Ability to Memorize

In section 3, we notice that the agent hyperactivity can sometimes prevent the
system from reaching a solution. Each time an agent goes on an exploring be-
haviour, he risks to destroy definitively a pattern that is being constructed. Our
model allows agents to perceive the complex characteristics of the problem they
are trying to solve and to perceive their state during the solving process. Thanks
to this ability, subparts of the negotiating network could influence each others.
Nevertheless, how does the system behave face to the demolishing effects of the
exploration ? This aspect is related to the capacity of the system to self-organize.
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Fig. 6. Pattern memorization

A system self-organizes if it can create and maintain inner stable structures
without external control. We represent on the figure 6 a subpart of a network
for which an agent d conflicts with a pattern preserved by agents a, b and c.
We only represent the Band connection nodes. these nodes are sufficient to rep-
resent a pattern (the Bor connecting nodes represent alternatives for patterns).
Let us study the activity process in this case. The agent d communicates its
disagreement, the contract between d and b is invalidated, the agent b perceives
it (procedure 4). The agent b also perceives the support given by agents a and
c (the agent b perceives from the environment the mean of influences from a,
d and c thanks to the procedure 4). The agent b attitude (that is to influence
the agent d to take part of the pattern, or discourages the achievement of the
pattern supported by the agents a and c) depends on the intensity and on the
frequency of the perceived influences. We believe that the survival condition for
a pattern depends on its relevance in its environment which represents the state
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of the problem solving. The system activity allows for the covering of the search
space, which is an opportunity for relevant patterns to grow. Two compatibles
patterns can merge or be partially adapted if necessary.

8 Application to the Graph Coloring Problem

Graph coloring consists in assigning colours to the graph node in such a way
that each directly connected nodes admit different colors. We deal with the k-
coloring problem. In this context, we know in advance the number of available
colours (k).

The graph coloring problem is a very representative complex resource sharing
problem. The problem sub-solutions are interdependent. We describe in section
8.1 a representation of this problem in our framework. Then, we compare the
performance of our solving process to some other existing approaches.

8.1 A Representation for the Problem in Our Framework

We see on the Figure 7 the network for the graph colouring from the agent
point of view. According to our model, each agent is associated with a node of
the graph to colour. An agent thus selects a colour. To be satisfied, the selected
colour must be coherent with the agent’s environment, i.e., the direct neighbours
of the considered node in the graph to be coloured (outer consequences of the
choice). In addition, the agent communicates its choice in its environment (inner
consequences of the choice). Thus, an agent choosing the colour B communicates
the fact that it does not carry the colour R : N(R), nor the colour V : N(V).
This transverse decomposition allows the agent’s of the neighbourhood to check
that they are not in conflict, without knowing the precise state of the colouring
choice made by the agent.

On the Figure 8, we perceive more precisely the connections between the
agents on a complete instance of the model. Each agent expresses its choice

Fig. 7. Colouring network : an agent point of view

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Towards the Control of Emergence 147

Fig. 8. Coloring network

(inner consequences) and perceives the state of its environment (external con-
sequences). The two channels of communication are however both symmetrical
: agents perceive and expresses influences on the two channels of communica-
tion. For this representation, we use the most classical nodes of the sets Bor,
Band and C. An adaptation was carried out for the nodes of the set Bor′

. For
this kind of nodes, we broadcast the preferences by flooding (Function 5 influ-
enceEnvironnement ) according to the colouring information carried out by the
nodes of the set Band. Moreover, the node satisfaction is checked by counting as
much contract agreements as the number of its neighbours in the colouring graph
(Function 2 getSatisfaction ). Indeed, the agent does not consider the distrib-
ution of the agreements between its offspring. Only the number of agreements
that allow him to guarantee that he is not contradicting its environment are
considered.

8.2 Performance Measures

We applied CESNA to several graph colouring problems with different difficulty
levels (Figure 9). For some difficult problems, CESNA quickly converges towards
a solution. Solving these problems requires one activity period (AP) on average,
even for big size instances (such the graph miles1000 from Mycielsky which
comprises 128 nodes, and requires 42 colors). For these kind of problem, our
approach allows to easily perceive the complex characteristics of problems.

In order to study the behaviour of our system on more difficult instances,
we used the various graphs studied in [6]. The authors propose a specific EVA
algorithm (Evolutionary Annealing algorithm ) to the problem of scheduling
which take profit from a centralized representation of the tackled problems.
The hybrid approach presented combines both the genetic algorithm and the
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Problem CESNA
approach

EVA Algo-
rithm

Solved
(100 run)

Exploration
parameter
(%)

AP average AP Stan-
dard
deviation

Runtime
average
(Athlon
3.5 GHz.)

Best time
(SUN Sparc
10)

miles1000 100 % 0 1.5 5.1 1.1 s. N.C.
100 % 0.1 1 0.3 0.1 s. N.C.
100 % 0.2 3.6 13.1 5.6 s. N.C.

school 100 % 0.1 5.2 36.7 15.7 s. 12 s.
100 % 0.2 2 1.3 3.6 s. 12 s.
100 % 0.3 3.2 2.8 8.4 s. 12 s.

school nsh 99 % 0.1 5.8 29.9 12.9 s. 29 s.
100 % 0.2 2.1 1.7 3 s. 29 s.
100 % 0.3 2.8 2.2 5.2 29 s.

le450 5a 0 % - - - - 366 s.
le450 15c 0 % - - - - 73392 s.

Fig. 9. CESNA performances for various graph coloring problems

simulated annealing principles for the graph colouring problem. We represent
some comparative results on the table of figure 9. The computing times are given
as an indication (different machines, language of implementation used for EVA
unknown), but permits to have an idea of the solving abilities of the proposed
CESNA model.

CESNA gave its best performances with a parameter of exploration bordering
0.1%. The problems such as school1 and school1 nsh studied in [6] are solved
without difficulties. Some instances recognized as being difficult (Leighton graphs
le450 5a and le450 15c ) are currently not solved by the CESNA model. Al-
though the approach does not claim to solve the most difficult problem instances,
we did not yet exploit all the capacities of our approach and do not exclude to
improve these first results. I

9 Conclusion

In this paper, we have described the critical resource sharing problem as a very
complex one, for which we have proposed a MAS negotiation model based on the
elaborating of contracts through a network. We have underlined the necessity
for the solving process to represent the complex characteristics of the addressed
problem in order to allow the coordination of the agent activity. The presented
network elaborated and exploited by situated agents, is described as a generic
and suitable representation for the problem. We have presented stigmergy as
an appropriate communication mechanism in this context. We underline the
necessity for the agents to efficiently combine exploitation (reinforcement) and
exploration (diversification) behaviours. We have shown that the exploration rate
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determines the system performances. The analysis of the system behaviour point
up a concordance between the local and the global negotiating levels, that allows
the coordination process to validate/invalidate emerging patterns. The ability
to memorize sub-solutions in order to evaluate them permit to the system to
efficiently organize the covering of the search space. Indeed, a pattern (a set of
validate coherent contracts on a perimeter) does not disappears because of a bad
system decision, but thanks to an extended incompatible activity which describes
it as not relevant in its environment, and then not suited for the solution to
build. The influences expressed through the network between patterns allow a
more relevant covering of the search space and a better convergence speed to a
solution.

The good characteristics for this system lead to believe it is self-organized,
which mean it make internal structures emerge without external control. We
have presented some experimentations to measure the coordination capacity of
agents, and have given some first very promising results. We have shown that we
can compare CESNA performances to the ones from other specific optimisation
methods which benefit from a central representation of the problem.

For the resource sharing domain, there are relatively few reports on the use of
reactive behaviours when problem are very constrained. We think that this is due
to lack of capacity to consider complex characteristics between contracts during
the resolution process with known protocols, and from the associated difficulties
to well balance exploration and exploitation in order to find a solution. The
presented work contributes to answer those problematics and open a new way
to consider the resource sharing problems using multi-agent systems.
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Abstract. The research reported in this paper is concerned with assess-
ing the usefulness of reinforcment learning (RL) for on-line calibration
of parameters in evolutionary algorithms (EA). We are running an RL
procedure and the EA simultaneously and the RL is changing the EA
parameters on-the-fly. We evaluate this approach experimentally on a
range of fitness landscapes with varying degrees of ruggedness. The re-
sults show that EA calibrated by the RL-based approach outperforms a
benchmark EA.

1 Introduction

During the history of evolutionary computing (EC), the automation of finding
good parameter values for EAs have often been considered, but never really
achieved. Related approaches include meta-GAs [1,6,15], using statistical meth-
ods [5], “parameter sweeps” [11], or most recently, estimation of relevance of
parameters and values [10]. To our knowledge there is only one study on using
reinforcement learning (RL) to calibrate EAs, namely the mutation step size [9].
In this paper we aim at regulating “all” parameters. To position our work we
briefly reiterate the classification scheme of parameter calibration approaches in
EC after [2,4].

The most conventional approach is parameter tuning, where much experi-
mental work is devoted to finding good values for the parameters before the
“real” runs and then running the algorithm using these values, which remain
fixed during the run. This approach is widely practicised, but it suffers from two
very important deficiencies. First, the parameter-performance landscape of any
given EA on any given problem instance is highly non-linear with complex in-
teractions among the dimensions (parameters). Therefore, finding high altitude
points, i.e., well performing combinations of parameters, is hard. Systematic, ex-
haustive search is infeasible and there are no proven optimization algorithms for
such problems. Second, things are even more complex, because the parameter-
performance landscape is not static. It changes over time, since the best value
of a parameter depends on the given stage of the search process. In other words,
finding (near-)optimal parameter settings is a dynamic optimisation problem.
This implies that the practice of using constant parameters that do not change
during a run is inevitably suboptimal.

S. Brueckner et al. (Eds.): ESOA 2006, LNAI 4335, pp. 151–160, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Such considerations have directed the attention to mechanisms that would
modify the parameter values of an EA on-the-fly. Efforts in this direction are
mainly driven by two purposes: the promise of a parameter-free EA and perfor-
mance improvement. The related methods – commonly captured by the umbrella
term parameter control can further be divided into one of the following three
categories [2,4]. Deterministic parameter control takes place when the value of a
strategy parameter is altered by some deterministic rule modifying the strategy
parameter in a fixed, predetermined (i.e., user-specified) way without using any
feedback from the search. Usually, a time-dependent schedule is used. Adaptive
parameter control works by some form of feedback from the search that serves
as input to a heuristic mechanism used to determine the change to the strat-
egy parameter. In the case of self-adaptive parameter control the parameters
are encoded into the chromosomes and undergo variation with the rest of the
chromosome. The better values of these encoded parameters lead to better in-
dividuals, which in turn are more likely to survive and produce offspring and
hence propagate these better parameter values. In the next section we use this
taxonomy/terminology to specify the problem(s) to be solved by the RL-based
approach.

2 Problem Definition

We consider an evolutionary algorithm to be a mechanism capable of optimising
a collection of individuals, i.e., a way to self-organise some collective of entities.
Engineering such an algorithm (specifically: determining the correct/best para-
meter values) may imply two different approaches: one either designs it such
that the parameters are (somehow) determined beforehand (like in [10]), or one
includes a component that controls the values of the parameters during deploy-
ment. This paper considers such a control component.

Thus, we assume some problem to be solved by an EA. As presented in [10],
we can distinguish 3 layers in using an EA:

– Application layer: The problem(s) to solve.
– Algorithm layer: The EA with its parameters operating on objects from

the application layer (candidate solutions of the problem to solve).
– Control layer: A method operating on objects from the algorithm layer

(parameters of the EA to calibrate).

The problem itself is irrelevant here, the only important aspect is that we
have individuals (candidate solutions) and some fitness (utility) function for
these individuals derived from the problem definition. Without significant loss
of generality we can assume that the individuals are bitstrings and the EA we
have in mind is a genetic algorithm (GA). For GAs the parameter calibration
problem in general means finding values for variation operators (crossover and
mutation), selection operators (parent selection and survivor selection), and pop-
ulation size. In the present investigation we consider four parameters: crossover
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rate pc, mutation rate pm, tournament size k1, and population size N . This gives
us a paramater quadruple 〈N, k, pm, pc〉 to be regulated. Other components and
parameters are the same as for the simple GA that we use as benchmark, cf.
Section 4. The rationale behind applying RL for parameter calibration is that
we add an RL component to (“above”) the GA and use it to specify values for
〈N, k, pm, pc〉 to the underlying GA. Monitoring the behavior of the GA with the
given parameters enables the RL component to calculate new, hopefully better,
values – a loop that can be iterated several times during a GA run. Within this
context, the usefulness of the RL approach will be assessed by comparing the
performance of the benchmark GA with a GA regulated by RL.

To this end, we investigate RL that can perform on-the-fly adjustment of
parameter values. This has the same functionality as self-adaptation, but the
mechanics are different, i.e., not by co-evolving parameters on the chromosomes
with the solutions. Here, RL enables the system to learn from the actual run
and to calibrate the running EA on-the-fly by using the learned information in
the same run.

The research questions implied by this problem description can now be sum-
marized as follows.

1. Is the performance of the RL-enhanced GA better than that of the bench-
mark GA?

2. How big is the learning overhead implied by using RL?

As for related work, we want to mention that including a control component
for engineering self organising applications is not new - the field of autonomic
computing recognises the usefulness of reinforcement learning for control tasks
[12]. Exemplar applications are autonomous cell phone channel allocation, net-
work packet routing [12], and autonomic network repair [8]. As usual in rein-
forcement learning problems, these applications typically boil down to finding
some optimal control policy that best maps actions to system states. For ex-
ample, in the autonomic network repair application, a policy needs to be found
that optimally decides on carrying out costly test and repair actions in order to
let the network function properly. The aim of our work is slightly different than
finding such a control policy: we assume some problem on the application level
that needs to be solved by an EA on the algorithm layer. As explained before,
we consider the self organisation to take place on the algorithm level rather than
the application level (as is the case for autonomic computing applications).

3 Reinforcement Learning

Our objective is to optimize the performance of an EA-process by dynamically
adjusting the control parameters as mentioned above with help of reinforcement
learning. The EA-process is split into a sequence of episodes and after each

1 Because the population size can vary we use tournament proportion or tournament
rate (related to the whole population), rather than tournament size.
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Table 1. Components of State and Action vectors

Index State Parameter Type Range
s1 Best fitness IR 0-1
s2 Mean fitness IR 0-1
s3 Standard deviation of the fitness IR 0-1
s4 Breeding success number IN 0-control window
s5 Average distance from the best IR 0-100
s6 Number of evaluations IN 0-99999
s7 Fitness growth IR 0-1
s8 − s11 Previous action vector
Index Control Parameter Type Range
c1 Population size IN 3-1000
c2 Tournament proportion IR 0-1
c3 Mutation probability IR 0-0.06
c4 Crossover probability IR 0-1

episode an adjustment of control parameters takes place. The state of the EA-
process (measured at the end of every episode) is represented by a vector of
numbers that reflect the main properties of the current population: mean fitness,
standard deviation of fitness, etc. In a given state an action is taken: new control
parameters are found and applied to EA to generate a new episode. The quality
of the chosen action, the reward, is measured by a function that reflects the
progress of the EA-process between the two episodes. Clearly, our main objective
is to apply reinforcement learning to learn the function that maps states into
actions in such a way that the overall (discounted) reward is maximized. In this
paper we decided to represent states and actions by vectors of parameters that
are listed in Table 1. The reward function could be chosen in several ways. For
example, one could consider improvement of the best (or mean) fitness value, or
the success rate of the breeding process. In [9] four different rewarding schemes
were investigated and following their findings we decided to define reward as the
improvement of the best fitness value.

3.1 The Learning Algorithm

Our learning algorithm is based on a combination of two classical algorithms
used in RL: the Q-learning and the SARSA algorithm, both belonging to the
broader family of Temporal Difference (TD) learning algorithms, see [14] and [7].
The algorithms maintain a table of state-action pairs together with their esti-
mated discounted rewards, denoted by Q(s, a). The estimates are systematically
updated with help of the so-called temporal difference:

rt+1 + γQ(st+1, a
∗
t+1) − Q(st, at)

where r, s, a denote reward, state and action, indexed by time, and γ is the
reward discount factor. The action a∗

t+1 can be either the best action in the
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state st+1 (according to the current estimates of Q) or an action (not necessarily
optimal) which is actually executed (in the exploration mode of the learning
algorithm). When the best action is chosen we talk about on-policy TD control
(SARSA learning), otherwise we talk about off-policy TD control (Q-learning),
[14].

As noticed in [14], both learning strategies have different characteristics con-
cerning convergence speed and ability of finding optima. Therefore, our version
of reinforcement learning will be switching between on- and off-policy control at
random, with a pre-specified frequency δ.

The approach outlined above works with discrete tables of state-action pairs.
In our case, however, both states and actions are continuous. Therefore, during
the learning process we will maintain a table of observed states, taken actions
and obtained rewards and use this table as a trainig set for modeling the func-
tion Q with help of some regression model: a neural network, weighted nearest-
neighbour algorithm, regression tree, etc. This, in turn, leads to a yet another
problem: given an implicit representation of Q and a current state s, how can we
find an optimal action a∗ that maximizes Q(s, a)? For the purpose of this paper
we used a genetic algorithm to solve this sub-problem. However, one could think
about using other (perhaps more efficient) optimization methods.

There are two more details that we have implemented in our RL-algorithm:
periodical retraining of the Q-function and a restricted size of the training set.
Retraining the regression model of Q is an expensive process, therefore it is
performed only when a substantial number of new training cases are gener-
ated; we will call this number a batch size. Using all training cases that were
generated during the learning process might be inefficient. For example, “old”
cases are usually of low quality and they may negatively influence the learning
process. Moreover, a big training set slows down the training process. Therefore
we decided to introduce an upper limit on the number of cases that are used in
retraining, memory limit, and to remove the oldest cases when necessary. The
pseudo-code of our training algorithm is presented in Figure 1.

The randomization process that is mentioned in lines 6 and 10 uses several
parameters. Reinforcement learning has to spend some effort on exploring the
unknown regions of the policy space by switching, from time to time, to the
exploration mode. The probability of entering this mode is determined by value
of the parameter ε. During the learning process this value is decreasing expo-
nentially fast, until a lower bound is reached. We will refer to the initial value
of ε, the discount factor and the lower bound as ε-initial value, ε-discount factor
and ε-minimal, respectively.

In exploration mode an action is usually selected at random using a uniform
probability distribution over the space of possible actions. However, this common
strategy could be very harmful for the performance of the EA. For instance, by
decreasing the population size to 1 the control algorithm could practically kill
the EA-process. To prevent such situations we introduced a new mechanism
for exploration that explores areas that are close to the optimal action. As the
optimal action is found with help of a separate optimization process, we control
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1 Initialize Q abitrarily
2 Initialize ε
3 Repeat (for each episode)
4 Ask the controlled system for initial state s
5 Choose an action a′ according to the optimization over the function Q(s, a′)
6 a = randomize a′ with ε probability.
7 Repeat (for each step of the episode)
8 Do action a, and observe r, s′

9 Choose an action a′ that oprimizes the function Q(s′, a′)
10 a′′ = randomize a′ with ε probability.
11 Add new training instance to Q: 〈s, a, r + γ(δQ(s′, a′) + (1 − δ)Q(s′, a′′))〉
12 Re-train Q if the number of new cases reached the batch size
13 s = s′

14 a = a′′

15 (until s is not a terminal state)
16 Decrease ε

Fig. 1. The pseudo-code of our training algorithm

our exploration strategy with a parameter that measures the optimization effort.
Clearly, the smaller the effort, the more randomness in the exploration process.
As mentioned earlier, in this research we used a separate genetic algorithm to
find optimal actions. Therefore, we can express the optimization effort in terms
of the rate of decrease of the number of evaluations in the underlying genetic
process.

3.2 System Architecture

The overall architecture of our learning system is shown in Figure 2. It con-
sists of three components: General Manager, State-Action Evaluator and Action
Optimizer.

Base EA to be 
tuned/controlled

State-Action 
Evaluator

General Manager

Action
Optimizer

c s

c s

Expected reward

〈s,c〉

Training Asking reward

RL system

Fig. 2. The architecture of a RL-controller for EA
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General Manager is responsible for managing the whole process of RL. It
maintains a training set of state vectors, together with taken actions and rewards,
activates the training procedure for modeling the Q function and calls Action
Optimizer to chose an action in a given state.

Action Optimizer contains an optimisation procedure (in our case: a genetic
algorithm referred to as AO-EA) which is responsible for seeking an optimal
action (a vector of control parameters). In other words, for a given state s the
module seeks an optimum of the function Q(s, ) that is maintained by the
State-Action Evaluator module.

State-Action Evaluator maintains a function that estimates the expected
discounted reward values for arbitrary state-action pairs. The function is im-
plemented as a regression model (a neural network, weighted nearest-neigbour,
regression tree, etc.) and can be retrained with help of a suitable learning alr-
goritm and a training set that is maintained by the General Manager Module.

4 Experiments

The test suite2 for testing GAs is obtained through the Multimodal Problem
Generator of Spears [13]. We generate 10 landscapes of 1, 2, 5, 10, 25, 50, 100,
250, 500 and 1000 binary peaks whose heights are linearly distributed and where
the lowest peak is 0.5. The length L of these bit strings is 100. The fitness of
an individual is measured by the Hamming distance between the individual and
the nearest peak, scaled by the height of that peak.

We define an adaptive GA (AGA) with on-the-fly control by RL. The AGA
works with control heuristics generated by RL on the fly. RL is thus used here
at runtime to generate control heuristics for the GA.

The setup of the SGA is as follows (based on [3]). The model we use is a
steady-state GA. Every individual is a 100-bitstring. The recombination oper-
ator is 2-point crossover; the recombination probability is 0.9. The mutation
operator is bit-flip; the mutation probability is 0.01. The parent selection is 2-
tournament and survival selection is delete-worst-two. The population size is
100. Initialisation is random. The termination criterion is f(x) = 1 or 10,000
evaluations.

The parameters of the RL system have to be tuned, which has been done
through extensive tuning and testing resulting in the parameter settings shown
in Table 2. We used the REPTree algorithm [16] as the regression model for the
State-Action Evaluator.

As mentioned in the introduction, the Success Rate (SR), the Average number
of Evaluations to a Solution (AES) and its standard deviation (SDAES), and the
Mean Best Fitness (MBF) and its standard deviation (SDMBF) are calculated
after 100 runs of each GA.

The results of the experiments are summarised in Figure 3. The experiments
1-10 on the x-axis correspond the different landscapes with 1, 2, 5, 10, 25, 50,
100, 250, 500 and 1000 binary peaks, respectively.
2 The test suite can be obtained from the webpage of the authors of this paper.
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Table 2. Parameter settings of the RL system

Parameter Value

Reward discount factor (γ) 0.849643
Rate of on- or off-policy learning (δ) 0.414492
Memory limit 8778
Exploration probability (ε) 0.275283
ε-discount factor 0.85155
ε-minimal 0.956004
Probablility of uniform random exploration 0.384026
Optimization effort 0.353446
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Fig. 3. SR, MBF and AES results for SGA and AGA

The results shown in Figure 3 contain sufficient data to answer our research
questions from Section 2 – at least for the test suite used in this investigation.
The first research question concerns the performance of the benchmark SGA vs.
the RL-enhanced variant. Considering the MBF measure it holds that the AGA
consistently outperforms the SGA. More precisely, on the easy problems SGA
is equally good, but as the number of peaks (problem hardness) is growing, the
adaptive GA becomes better. The success rate results are in-line with this pic-
ture: the more peaks the greater the advantage of the adaptive GA. Considering
the third performance measure, speed defined by AES, we obtain another rank-
ing. The SGA is faster than the AGA. This is not surprising, because of the RL
learning overhead.
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We are also interested in the overhead caused by reinforcement learning. From
the systems perspective this is measurable by the lenghts of the GA runs. The
AES results indicate the price of using RL in the on-line mode: approximately
20-30% increase of effort.3 From the users perspective there is an overhead as
well. The RL extension needs to be implemented (one-time investment) and
the RL system needs to be calibrated. This latter one can take substantial time
and/or innovativeness. For the present study we used a semi-automated approach
through a meta-RL to optimize the parameters of our RL controlling the GA. We
omit the details here, simply remarking that the RL parameter settings shown
in Table 2 have been obtained by this approach.

5 Conclusions and Further Research

This paper described a study into the usefulness of reinforcement learning for
online control of evolutionary algorithms. The study shows: firstly, concerning
fitness and succes rate, the RL-enhanced GA outperforms the benchmark GA;
concerning speed (number of evaluations), the RL-enhanced GA is outperformed
by the benchmark GA. Secondly, also for the overhead of RL the user needs to
tune the RL parameters causing overhead.

For future work, we consider a number of options. Firstly, our results indicate
that on-the-fly control can be effective in design problems (given time interval, in
search of optimal solution). To find best solutions to a problem, we hypothesize
it is better to concentrate on solving the problem rather than finding the optimal
control of the problem. This hypothesis requires further research. Secondly, the
RL systems may be given more degrees of freedom: choice of probability of ap-
plying different operators, type of selection mechanism, include special operators
to jump out of local optima. Finally, whereas RL in the presented work controls
global parts of the EA, we consider the inclusion of local decisions like selection
of individuals or choosing the right operator for each individual.
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Abstract. Evolutionary algorithms based on “tags” can be adapted to
induce cooperation in selfish environments such as peer-to-peer systems.
In this approach, nodes periodically compare their utilities with random
other peers and copy their behavior and links if they appear to have bet-
ter utilities. Although such algorithms have been shown to posses many
of the attractive emergent properties of previous tag models, they rely
on the honest reporting of node utilities, behaviors and neighbors. But
what if nodes do not follow the specified protocol and attempt to sub-
vert it for their own selfish ends? We examine the robustness of a simple
algorithm under two types of cheating behavior: a) when a node can lie
and cheat in order to maximize its own utility and b) when a node acts
nihilistically in an attempt to destroy cooperation in the network. For
a test case representing an abstract cooperative application, we observe
that in the first case, a certain percentage of such “greedy cheating liars”
can actually improve certain performance measures, and in the second
case, the network can maintain reasonable levels of cooperation even in
the presence of a limited number of nihilist nodes.

1 Introduction

Recent evolutionary “tag” models developed within social simulation and com-
putational sociology [7,16] have been proposed as possible candidates for robust
distributed computing applications such as peer-to-peer file sharing [9]. These
models exhibit a mechanism by which even greedy, local optimizers may come
to act in an unselfish manner through a “group like” selection process.

Evolutionary models rely on the concept of a “fitness” or “utility” which can
be derived by each individual within a population, usually based on how well it
is performing some task. Variants of behavior within the population are assumed
to be selected and reproduced in proportion to relative utilities, resulting in fitter
variants growing in the population.

In order to apply these evolutionary models to distributed systems, we need
to capture the notion of fitness or utility, as well as the process of differential
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spreading of behavioral variants. In previously proposed P2P applications, each
node derived its utility from some measure of on-going performance. For ex-
ample, in a file-sharing application, the number of successful downloads can be
used [9]. Nodes then periodically compared their utility with another peer cho-
sen randomly from the population. Of the pair, the node with the lower utility
then copied the behavior and links of the “fitter” peer. This sort of “tournament
selection” rule can be seen as “reproducing” fitter nodes and replacing the less
fit ones. Alternatively it can be viewed as less fit nodes copying fitter nodes to
improve their performance.

For this mechanism to work, however, nodes must behave correctly and re-
port their local state to other nodes honestly. Yet, a node may deviate from its
expected behavior or lie to other nodes about any one of the following: its utility,
its behavior and its neighbor links (when the other node wishes to copy them).
What happens if such “cheating liar” nodes are allowed to enter the network?
What if they cheat for their own benefit or act maliciously to destroy cooperation
that may exist among other nodes?

In this paper we make a distinction between different kinds of node behaviors.
Nodes that follow a protocol specification but act selfishly to increase their own
performance rather than cooperating to improve global system performance (e.g.
leechers in a file-sharing system) are called selfish nodes. On the other hand nodes
that do not follow the protocol specification we term deviant, while nodes which
use their knowledge of the protocol to act against it and to achieve some local
goal we call cheaters.

In an earlier work, we have shown that an evolutionary inspired protocol
called SLACER can achieve and maintain small-world networks with chains of
cooperating nodes linking all node pairs (so-called artificial social networks) in
a robust manner [8]. In this paper, we study SLACER when it is subjected
to four different types of deviant node behavior. In each case, deviant nodes
use their knowledge of the SLACER protocol and the application task at hand
(the canonical Prisoners’ Dilemma game) in an attempt to exploit those that
are faithfully following the protocol. The four variants of deviant behavior fall
into two classes based on their goals: 1) Greedy Cheating Liars (GCL) try to
maximize their own utility; 2) Nihilists (NIH) try to degrade the utility of the
entire network, even at their own expense.

We find that the SLACER protocol is surprisingly robust, exhibiting graceful
degradation of performance measures even when large proportions of nodes are
Greedy Cheating Liars. Even more interestingly, we observe that under certain
conditions, GCL nodes actually improve certain network performance parame-
ters. In a way, we can view GCL nodes as performing a sort of “service” for which
the honest nodes are “taxed”. This observation suggests that P2P applications
can perhaps be designed to accommodate certain deviant behaviors rather than
trying to detect and isolate them.

Nihilist nodes, on the other hand, are more disruptive for the SLACER pro-
tocol and even relatively limited proportions of such nodes can degrade the
performance of other nodes significantly.
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The rest of the paper is organized as follows: in Section 2 we briefly discuss
related work on deviant and selfish nodes. In Section 3 the SLACER protocol is
described and its vulnerabilities are presented. In Section 4 experimental results
for SLACER with honest nodes are analyzed. We introduce the four deviant
behavior variants in Section 5 and in Section 6 present experimental results in
their presence. Finally in Section 7 conclusions are drawn.

2 Related Work

Given the decentralized nature of P2P systems and the consequent lack of central
control, cooperation between nodes is fundamental. To achieve this goal, different
incentives and trust mechanisms have been developed [11,14].

Classical approaches to detect deviant nodes and avoid system inconsistencies
include data replication, quorum techniques [12] and distributed state machines
(DSM) [4]. Although originally designed for client-server systems to solve prob-
lems such as data consistency between replicated servers, such methods have
recently been used to address cooperation as well as reliability in closed P2P
systems requiring some kind of central authority to manage node identities and
capabilities to join the system [1]. On the other hand, open P2P networks, where
nodes can freely join the system without any cost, can be extremely large and
dynamic due to continuous joining and leaving of nodes and rewiring of their
neighbor links. In such environments, the proposed techniques appear not to
be feasible. Alternative solutions are given by fully decentralized, probabilistic
punishment schemes as in [5], but again dynamicity remains a problem in that
a deviant node can subvert such a system by frequently rewiring to different
nodes.

A more sophisticated approach, able to deal with free-riding nodes as well as
cheating and deviant ones, is described in [6]. Here a distributed shared history
mechanism is used to calculate trust values for all nodes including strangers (new
nodes). This method can limit the incentives for selfish and cheating behavior
as well as deterring colluders (cheating nodes jointly operating to exploit other
nodes in the network). This approach is limited, however, because no distinc-
tion is made between new nodes joining the system (strangers) because a single
entry in the shared history is used to take all of them into account as if they
were a single node. This means whitewashers - nodes that constantly adopt new
identities to escape detection of their deviant behavior - can potentially make
the system expensive to join, in the sense that strangers (even non-deviant ones)
may be initially punished as if they were deviant nodes, hence they might be
discouraged from joining the network.

Our approach called SLACER (see next section) is based on simple, local node
interactions with no need for notions and mechanisms such as trust, incentives
and shared histories.

Algorithms based on reciprocity (e.g., the well-known tit-for-tat strategy [3])
require that each node store the last interaction it had with each other node it
encounters. The strategy works by punishing non cooperative behaviour in future
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interactions. This can be a problem in a large and dynamic system where nodes
often interact with strangers they have never met before. In this case, tit-for-
tat dictates that strangers be treated with unconditional cooperation, and this
allows selfish nodes to exploit tit-for-tat. Our solution draws on an evolutionary
approach that does not require reciprocity [18,16]. The novel approach used in
SLACER obviates the need for maintaining histories of past node behaviour or
on-going interactions between the same nodes.

3 The SLACER Protocol

SLACER (Selfish Link Adaptation for Cooperation Excluding Rewiring) is a
decentralized, local protocol that builds small-world like artificial social (overlay)
networks with high levels of cooperation between nodes [8].

Each node in SLACER has a strategy which is an application-defined behavior
(for example, how willing the node shares files with others), a view which is a
bounded-size list of immediate neighbors in the network and a utility which is
again defined by the application and measures how well the node is performing.
SLACER assumes that nodes are able to modify their local views and strategies,
as well as copy them from other peers, in an effort to increase their utility. It
requires a random peer sampling service selectPeer() to be used in reproduc-
tion and view mutation steps1. The basic steps of the SLACER protocol consist
of each node periodically selecting a random peer, comparing the local utility
with that of the random peer, and copying the peer’s strategy and view if it has
a higher utility.

By copying another node’s view, a node performs a rewiring of its links to a
new neighborhood and effectively “moves” to a new location in the network2. A
node’s life is divided into cycles. In addition to performing application-specific
tasks, at each cycle every node tries to increase its performance by copying
nodes with higher utility with a given probability ρ. This action, also called
reproduction after the evolutionary inspiration, is illustrated in Figure 1.

j ← peerSelect() //pick a random node
if i.utility ≤ j.utility then
for each element e of i.view do

remove e with probability ω
i.strategy ← j.strategy
i.view ← i.view ∪ j.view ∪ j //add j and j.view
i.utility ← 0 //reset local utility

Fig. 1. Slacer reproduction phase pseudocode

After the reproduction phase nodes “mutate”. Mutation can affect both node
strategy and view. With some (low) probability μ, a node replaces its strat-
egy with a different one. With some other (low) probability ν, a node changes
1 In our implementation, we use the NEWSCAST protocol for peer sampling[10].
2 If node view exceeds size-limit random elements are dropped.
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its view by removing each link with probability ω (the same value used in the
reproduction phase) and then linking to a node selected randomly over the pop-
ulation.

SLACER can be seen as a middleware layer (see Figure 2) for building dy-
namic artificial social (overlay) networks that are conducive to cooperation. To
use SLACER, an application must define an appropriate utility function captur-
ing the effective local benefit derived from the behavior adopted by a node (for
example, number of packets received in a routing scenario, downloaded files in a
file sharing application, detected spam messages in a collaborative spam filter,
etc.).

Fig. 2. SLACER middleware architecture

In this paper the Prisoners’ Dilemma game is used as a benchmark application
to test SLACER performance. This is an interesting and relevant application for
our study since it captures the tension between “individual rationality” and
“common good” that is typical of many P2P scenarios.

3.1 Prisoners’ Dilemma Test Application

The single-round Prisoners’ Dilemma (PD) game consists of two players select-
ing independently one out of two possible choices: to cooperate (C) or to defect
(D), and receiving different payoffs according to the four possible outcomes as
illustrated in Table 1.

C D

C R,R S, T

D T, S P, P

Table 1. Prisoners’ Dilemma payoff matrix

The game captures scenarios where collective interest contradicts the individ-
ual one. This game has been selected as a test application because it captures a
wide range of possible application tasks where nodes need to establish cooper-
ation and trust with their neighbors without any central authority or coordina-
tion. Some practical examples include file or resource sharing, routing messages
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to facilitate communication between senders and receivers, or warning friends
about a virus program and supplying them with a locally available fix.

The dilemma originates from the following constraints among the payoff values
under the assumption that players wish to maximize their own payoff: T > R >
P > S and 2R > T + S. Hence although both players would prefer the highest
payoff T , only one can obtain it in a single round of the game. When both players
select D this leads to the Nash equilibrium [13] as well as an evolutionary stable
strategy (ESS) [17]. Hence, in a population of randomly paired players, a rational
selfish player (one that is trying to maximize its own utility) would always play
D. If both players select C, they would both perform better (earning R each)
than if they both selected D (earning P each) but evolutionary pressure and
individual rationality result in mutual defection, so players are pushed to play
D and consequently earn P .

In the context of SLACER, the PD test application consists of nodes peri-
odically playing a single-round PD with a randomly selected neighbor from the
social network that is constructed by SLACER3. A node can only choose between
the two pure strategies “always cooperate” or “always defect”. The node utility
value is obtained by averaging the payoffs received during past game interactions
as defined by the PD application. The SLACER protocol then adapts the links
and strategies of nodes in an evolutionary fashion as discussed previously.

4 Experimental Results Without Cheaters

In order to obtain a base-line performance, we simulated the SLACER protocol
without deviant or cheating nodes — all the nodes follow the protocol faithfully.
All of the simulations were performed using PeerSim, a P2P overlay network
simulator developed at the University of Bologna [15]. We examine cooperation
formation (how long it takes for cooperation to spread and the levels reached)
and network topology (connectivity, clustering coefficient, etc).

The SLACER parameters used were: ω = 0.9, ρ = 0.2, μ = 0.01 and ν = 0.005
with a view size limit of 20. Our results show averages over 10 different runs along
with 90% confidence intervals when present.

4.1 Cooperation Formation

Figure 3 shows the evolution of cooperation level during a single, typical
SLACER run, starting from a random network of all defector nodes. Coop-
eration reaches very high levels (about 95% of the nodes are cooperating) within
a few hundred cycles.

When starting from complete defection, for cooperation to start increasing,
it is necessary that two neighboring nodes mutate to cooperating strategies and
play a PD round obtaining payoff R. From this point onwards, since cooperating
node clusters perform better than defecting node clusters, cooperation rapidly
spreads throughout the network by reproduction.
3 Note that the reproduction phase utilizes a different random overlay network: that

constructed by the NEWSCAST protocol for peer selection.
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Fig. 3. Cooperation evolution for 4000 nodes

In Figure 4, the time needed to achieve a 95% cooperation level for different
network sizes is shown. It is interesting to note that the larger the network, the
less time it takes to achieve the same level of cooperation. Furthermore, for larger
networks, the results have smaller variance. This is a consequence of fact that
the mutation rate and the maximum view size are independent of the network
size, and the probability for triggering cooperation as described above increases
with network size.
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Fig. 4. Time to achieve cooperation for different network sizes

4.2 Network Topology

To analyze properties of the network resulting from SLACER, we adopt tra-
ditional topology metrics such as clustering coefficient (CC) and average path
length (APL) in addition to specific metrics largest cooperative component
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Fig. 5. Clustering Coefficient and Average Path Length for different network sizes

(LCC), connected cooperative path (CCP) and connected cooperative path length
(CCPL).

LCC measures the size of the largest cluster in the subnetwork formed by
cooperative nodes only, relative to the total network size. CCP is the proportion
of node pairs that are connected through cooperative paths — paths of either
length one or that contain cooperating nodes exclusively. CCPL measures the
average length of such cooperative paths.

Observing the CC and APL for networks of different sizes produced by
SLACER (see Figure 5), we note that they belong to the small world family
— CC is high and APL small. Moreover, APL scales log-linearly with respect to
network size while CC remains constant suggesting that the network is composed
of a growing number of interconnected clusters.

The very large LCC values displayed in Figure 6 indicates a single connected
component that accounts for almost the entire network. In other words, par-
titioning of the network appears not to occur even though SLACER is highly
dynamic due to the rewiring of nodes.

Finally, because the CCP values are high and CCPL values are similar to
APL (as discussed in [2]), we conclude that selfish nodes in the network (those
that have opted to play D in the PD) do not occupy important positions block-
ing paths between cooperating nodes or resulting in cooperative clusters to be
partitioned.

5 Four Kinds of Cheating Nodes

So far we have shown how SLACER can effectively handle selfish nodes — nodes
that adopt the defect strategy. What happens if nodes not only act selfishly, but
deviate deliberately from the protocol specification?

One way for a node to deviate is to lie about its state to other nodes. When
asked during the reproduction phase, a node can report arbitrary values to a peer
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for its strategy, its utility or its view. A deviant node may have the objective
to exploit or to destroy the network. A node that wants to exploit the network
wants to maximize its own utility without any regard for the rest of the system.
A node aiming to destroy the network wants to lower the utility of all others.
We term both such kinds of nodes as cheating nodes. In the next sections we
outline four possible types of cheating behaviors.

5.1 Greedy Cheating Liars (GCL)

Let us first consider nodes that want to maximize their own utility at the expense
of others. In the PD application, but the reasoning applies to any other similar
scenario, the maximum possible payoff is obtained by a defecting node when it
plays against a cooperating one.

To achieve a high utility then, a node will play the pure strategy “always
defect” and never change it. To force its neighbors to behave altruistically, it
will report a cooperating strategy when asked. So as not to be excluded from
cooperative clusters (through rewiring), it has to rig the utility comparison to
guarantee being the “winner” of any utility comparison by another node. This
can be easily achieved by lying about utility, reporting always a very large value.
Finally, when a node finds itself in a neighborhood that is unsatisfactory (i.e.,
playing against defectors resulting in an average payoff less than T ) it rewires
its view causing it to move to a new location in the network.

In summary, a node that wants to exploit the network behaves as follows:

– Always plays D.
– Always declares to be playing C.
– Always declares a high utility (e.g., 2T ).
– Rewires when surrounded by mostly defectors (average payoff less than T ).

We call such nodes Greedy Cheating Liars (GCL).
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5.2 Nihilists (NIH)

Nihilist nodes try to destroy the network by forcing it towards defection, irre-
spective of their own utilities. To achieve this, a nihilist node itself needs to play
the pure strategy “always defect” and bring other nodes to defection as well
through a technique similar to GCL nodes.

Since the goal is to spread defection, a nihilist node does not need to lie
about it’s strategy. On the contrary, it always defects and always reports a
defecting strategy. On the other hand, to spread defection and build clusters of
only defecting nodes, it needs to win all of the utility comparisons it participates
it. This can be obtained by declaring very high utility.

When a nihilist node is surrounded by mostly defectors (i.e., average payoff
close to P ) it rewires its view trying to destroy other parts of the network.

In summary, a node that wants to destroy the network behaves as follows:

– Always plays D.
– Always declares to be playing D.
– Always declares a high utility (e.g., 2T ).
– Rewires when surrounded by mostly defectors (average payoff close to P ).

We call such nodes Nihilists (NIH).

5.3 Lying About Views

We have also tested what we call “GCL+” and “NIH+” nodes that lie about
views as well. When asked for their view, GCL+ nodes report only a link to
themselves in an effort to become “hubs” for other nodes and exploit them.
NIH+ nodes, on the other hand, report a set of random links from the population
as their view in an attempt to spread defection to a wider population. These two
cheating variants do not lead to significant differences in cooperation formation
behavior with respect to the original GCL and NIH cases. They do, however,
affect network topology which we discuss elsewhere [2].

6 Experimental Results with Cheaters

SLACER performance when cheating nodes are present will be now evaluated.
We will analyze how cheating nodes influence previously studied cooperation
formation and network topology. Moreover, the relative performances of cheating
and non-cheating nodes will be compared and discussed.

6.1 Cooperation Formation with Cheaters

Cheating nodes force other nodes to adopt strategies by lying about their state,
and as a consequence, cooperation formation follows a different pattern from
the case where all nodes are truthful. In Figure 7 the cooperation levels that
are achieved and time necessary to achieve them are shown as a function of
percentage of cheating nodes in a network of 4000 nodes.
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Fig. 7. Cooperation formation with cheating nodes. (a) Cooperation level achieved,
(b) Time to achieve cooperation.

GCL nodes try to force other nodes to be cooperators so that they can exploit
them (by defecting). As a result their presence in the network accelerates the
spread of cooperation. Almost all the non-GCL nodes become cooperative with
high cooperation reached in a shorter time than in a network with no cheaters
(see Figure 7(b)).

Having more NIH nodes, on the other hand, increases the time to cooperation.
Even though the presence of NIH nodes generally has a negative effect on the
network, large numbers of them are needed to bring cooperation down to critical
levels as can be seen in Figure 7(a). This indicates the network is resilient though
not immune from this kind of attack.

The irregularity in Figure 7(b) for low quantities of NIH nodes results from
the fact that NIH nodes make time to cooperation quite unstable (highly variable
over different runs) as illustrated by the large confidence interval.
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6.2 Network Topology with Cheaters

The presence of GCL and NIH nodes does not affect SLACER network topology
formation. Even though cooperation performance could be significantly changed,
GCL and NIH nodes use SLACER defined drop and rewiring rules, hence no
significant topology modification is involved.
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Fig. 8. Utility values in the presence of (a) Greedy Cheating Liars, and (b) Nihilists

6.3 Utilities

Here we consider how node utilities change when there are cheating nodes in the
network.

PD payoffs used are T = 1, R = 0.8, P = 0.1, S = 0 so average payoff should
be equal to 0.8 for a totally cooperating network and 0.1 for a totally defecting
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one, while the main goal is to have average payoff equal to 1 for GCL nodes, and
0.1 for NIH nodes4.

Looking at Figure 8, with a small amount of GCL nodes, both cheating and
non-cheating nodes have average payoff close to the maximum possible value (1
and 0.8 respectively), but increasing the number of cheating nodes results in
both their payoffs decreasing. Normal nodes’ payoff decreases because a larger
quantity of them is being suckered by cheaters, while GCL nodes’ payoff de-
creases because the more of them there are in the network the more likely two
of them end up linking to each other and obtaining payoff P = 0.1.

Even for big quantities of GCL nodes there is no dramatic drop in achieved
utilities, in fact increasing the number of GCL nodes seems to be more harmful
to cheating nodes than to non-cheating ones.

With NIH nodes the average utility decreases linearly with increasing quantity
of cheaters (as in GCL), but a large proportion of them is needed to seriously
decrease utility (i.e. 20% cheating nodes needed to halve global average payoff
value).

7 Conclusions

A protocol called SLACER has been presented to build cooperative artificial so-
cial networks in P2P systems. It is based on periodic state comparisons between
random nodes and copying of the better-performing node’s characteristics.

SLACER has been shown to lead to cooperation, even when initiated in a
completely non-cooperative network, and has been tested against four types of
malicious, deviant nodes that attempt to subvert the protocol. Such nodes lie
about their state according to the goal they want to achieve. Two principle
cheating categories have been described: Greedy Cheating Liar (GCL) nodes,
whose aim was to optimize their own utility, and Nihilist (NIH) nodes, whose
aim was to destroy cooperation in the network.

SLACER was shown to be robust against such behaviors in simulations. Al-
though NIH nodes managed to decrease system performance, a large proportion
of them were needed to bring performance under a critical level. Since P2P
networks can be very large (thousands or millions of nodes), a relatively large
fraction, such as 10%, of cheating nodes would seem improbable — although, of
course, certain types of coordinated attacks are possible.

Interestingly, GCL nodes that exploit the network for their own benefit, offered
a kind of “service” to SLACER. When GCL nodes were present in the network,
cooperation spread faster at the expense of a small decrease in the non-cheating
nodes’ average payoff.

Robustness against misbehaving entities, as well as cooperation between
nodes, are important features for P2P systems since they usually lack any cen-
tral control and have an open structure. SLACER not only succeeded in reaching
4 These values are chosen so the PD payoffs could be parameterized over the R value

while keeping T , P and S fixed. Results similar to the one presented here were
obtained with different R values as long as PD constraints hold (0.5 < R < 1).
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both of these goals but, from a cooperation formation point of view, it even ben-
efited (for the “time to cooperation” measure) from the presence of cheating
nodes trying to exploit the system.

It is important, however, to emphasize that our results show that cheating
nodes do obtain higher relative utilities than non-cheating nodes. But we assume
that cheating nodes would not report honestly their cheating strategy to other
nodes since they have a negative incentive to do this. Why would a liar be
honest about its lying, and moreover, what would this mean? These are subtle
yet crucial points which we expand on in another work [8].

Our results suggests a provocative idea: in open systems, perhaps the best
strategy for dealing with malicious cheating nodes is not trying to detect and
stop them, but to let them act freely yet turn their misbehaving into a social
benefit for the whole system while trying to minimize their damage. Perhaps
those who believe what greedy cheating liars tell them are not such fools after
all!
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Abstract. Inspired by advances in evolutionary biology we extended ex-
isting evolutionary computation techniques and developed a self-
organising, self-adaptable cellular system for multitask learning, called
Evolvable Virtual Machine (EVM). The system comprises a specialised
program architecture for referencing and addressing computational units
(programs) and an infrastructure for executing those computational units
within a global networked computing environment, such as Internet.
Each program can be considered to be an agent and is capable of call-
ing (co-operating with) other programs. In this system, complex rela-
tionships between agents may self-assemble in a symbiotic-like fashion.
In this article we present an extension of previous work on the single
threaded, single machine EVM architecture for use in global distributed
environments. This paper presents a description of the extended Evolv-
able Virtual Machine (EVM) computational model, that can work in a
global networked environment and provides the architecture for asyn-
chronous massively parallel processing. The new computational environ-
ment is presented and followed with a discussion of experimental results.

1 Introduction

This paper extends previous work [1] and presents more extensive experimental
investigations of the model. The extended EVM computational model provides a
unified architecture that is asynchronous, can span computers over the network,
and can utilise different existing computational components. With this architec-
ture independent crawlers and search engines1 can be used to search computers
over the Internet for specified computational resources, and individual compo-
nents can assemble into co-operating distributed computational units. The pro-
posal also addresses a main challenge in multi-task learning (and one of the

1 Crawlers and search engines for computational resources work based on analogous
principles as the text-based equivalents, however, instead of matching textual pat-
ters, the computational crawlers try to match computational sequences (code snip-
pets) that match a predefined behaviour).
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problems of the original EVM architecture) which concerns the enormous com-
putational resources required to tackle non-trivial program-generation problems.
The extended EVMs architecture not only offers new possibilities for unifying
the way evolutionary, self-organising and self-adaptable computing research is
performed, but also offers a framework that can span millions of computers on
the Internet, providing researchers with the required computational resources to
tackle more challenging problems.

2 The World Wide Web Analogy

In 1945 Vannevar Bush published an article “As We May Think” in Atlantic
Monthly [2]. In the article, Bush theorised that people do not think in linear
structures2, and he proposed a visionary, at the time, model of a computing ma-
chine: Memex. Memex was designed for information retrival and cross-referencing
based on high-resolution microfilms coupled to multiple screen viewers, cameras
and electromechanical controls. On the design diagrams it looked like a big desk
with a camera recording what users wrote and then linking it to other pieces of
information indexed in the machine storage space. Bush described Memex as a
”device in which an individual stores his books, records and communications and
which is mechanised so it may be consulted with exceeding speed and
flexibility. It is an enlarged intimate supplement to his memory.” (Emphasis
added.)

There are two important points about the Memex machine. First, it repre-
sents a belief that the way humans think goes beyond Turing computability
models. The Memex description, which was written years before the first digital
computers had been successfully built and utilised, is a clear reference to what
these days would be called hypercomputation. Bush’s beliefs are now shared by
contemporary researchers from different fields working in the area of hypercom-
puting. Our asynchronous model of the EVM computing architecture in some
way is similar to the principles of the Memex architecture.

The second important point about the Memex machine is the stress on the
ability to mechanically crawl, index, re-index and generate new information from
the vast amount of available textual documents. That directly inspired and led
to a shift of how we store and process information today. This line of thinking
has been continued by Theodor Nelson through the invention and development
of hypertext and his efforts for the Xanadu project [3] and later by the work on
World Wide Web by Tim Berners-Lee in 1989-91.

The extended EVM architecture, aims at addressing the two points mentioned
above. On one hand, it provides a hypercomputing infrastructure for information
processing by utilising multiple hosts with multiple asynchronously executed
2 Interestingly enough, it contrasts profoundly with what his contemporary, Alan Tur-

ing, assumed for his models of computation. The collection of independently com-
puting and asynchronously communicating agents is believed to be a more powerful
model of computation, and some believe that it closely mimics the way human cog-
nitive processes work.
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threads of operation. On the other hand, we propose an analogy of hypertext and
Word Wide Web to computation itself. We present a model of computation, that
can be hyperlinked with other computational units, in a global framework where
all computational units are exposed and shared in a way that is analogous to
sharing textual information on WWW. The aim is to allow mechanised crawling,
indexing, assembling and executing computational units in a similar fashion to
text-oriented web pages on WWW.

We first present the extension of the single threaded, single machine based
implementation of the Evolvable Virtual Machine (EVM) architecture [1] for
the global distributed environment such as the Internets3. We then present the
new extended EVM computational model which is asynchronous, is not limited
to a single machine but can span computers on the Internet, and which can
utilise existing computational components written in EVM assembly language4.
Our expanded EVM model provides a unified architecture to share and inter-
link any computational resources (programs). This generalises the way that the
WWW is used (by human users) to share and link textual information. The
power of the architecture resides in the possibility of independently developed
crawlers and search engines that can utilise this global computing environment.
One of the simple automated ”computing search agents” or crawlers can be as
simple as stochastic search discussed earlier in [4]. The biggest challenge in multi-
task learning and one of the issues with the original EVM architecture is that
it requires enormous computational resources to be able to tackle more difficult
problems. The character of our EVM architecture not only presents possibilities
for unifying the way evolutionary, self-organising and self-adaptable computing
research is performed, but it also provides us with the architecture that can span
millions of computers on the Internet, providing researchers with enough com-
putational power. It opens up new possibilities and challenges, e.g. integrating
and assembling distributed independently found solutions for sub-problems into
a coherent solution for bigger tasks.

3 Existing Efforts

There are several existing technologies that try to address different aspects of
global heterogeneous computing architectures. On the lowest level of operation,
we have some very popular and powerful computing virtual machines, such as the
Java Virtual Machine (JVM) by James Gosling et al., or the Common Language
Infrastructure (CLI, also known as .NET) virtual machine (Microsoft et al.).

3 Due to the flexible and hierarchical nature of the EVM architecture, the term EVM
can be used in the context of a single machine, or in a context of multiple inter-
linked machines alike. Usually, we refer to a single computing cell as emlet, and to
the overall architecture with multiple cells as on extended EVM, or just EVM for
short. The distinction should be easy to infer from a given context.

4 We plan to extend the current implementation with the Java bytecode to EVM
assembly compiler, and develop tools that allow arbitrary programming languages
integration.
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These technologies facilitate possible cooperation between multiple program-
ming languages and between independently developed software components.
With these technologies it is relatively easy to combine independently devel-
oped software programs together. However, locating appropriate components,
and understanding their function is difficult. It strongly relies on humans pro-
grammers – automated search engines cannot do that. This situation will not
improve much with the availability and uptake of UDDI and other semantic
information for web-services – again, human programmers must do the appro-
priate decisions, linking and bindings. There is a need for automated indexing
and referencing of computational resources. It should allow automated discovery,
linking and re-linking of individual computing modules. This requirements have
led to the burst of agent-oriented technologies and web services.

Objective 1. Virtual Machine. We believe that an important property of
the virtual machine for the global computing architecture is the ability to intro-
spect and reify itself. In other words, we believe that the base virtual machine
cannot be rigidly designed. Instead, it should be flexible and allow ongoing cus-
tomization and reification mechanisms, so in time, multiple, individually crafted
and specifically targeted virtual machines can work and cooperate together. The
virtual machine must allow itself to evolve and adapt to changing requirements
and needs.

Objective 2. Indexing and semantic information. Similarly to the premise
above, we believe that the way computational modules are semantically indexed,
should be achieved through ongoing refinement and hierarchical descriptions,
that are automatically generated. The semantic information should not be rigid
and should not be specified in advance. Instead, it should be flexible, customiz-
able and created on-the-fly for a given context. Descriptions and indexing mech-
anisms will vary, depending on the needs, applications, and uses, and the global
computing architecture should provide mechanisms that make it possible. The
architecture should facilitate multiple “search engines” and many “indexing and
description” directories with specialized methods of combining and presenting
information about computational modules.

The two objectives described above are interlinked. In order to facilitate the
dynamic indexing and semantic description of the piece of code (Objective 2)
the executable program itself must be exposed for inspection and introspection
(on the virtual machine level). That puts us back to the demand of introspective
and reflective virtual machine of the objective 1.

Objective 3. Learning. We believe that as more computational units become
available, the more complex problems can be solved by re-use and cross-linking of
existing solutions for simpler problems. The overall goal of the EVM architecture
is to provide a global environment to facilitate the learning process by combining
existing computational units – the process of learning that can be automated
and mechanised.
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4 Biological Inspirations

Current research in evolutionary computation (EC) emphasises information-
centric methods that are inspired by Darwinian theory of random mutations
and natural selection. This is visible in well-established computational optimisa-
tion methods, such as genetic algorithms (GA), genetic programming (GP), and
their variations, such as assorted artificial life systems. Despite some successes,
the typical simple single-layer evolutionary systems based on random mutation
and selection have been shown to be insufficient (in principle) to produce an
open-ended evolutionary process with potential multiple levels of genetic mate-
rial translation [5,6].

The Evolvable Virtual Machine architecture (EVM) is a novel model for build-
ing complex hierarchically organised software systems [4,1]. From the biological
perspective, the learning in our extended EVMs model is primarily based on
Darwin’s principle of natural selection, which is widely used in current compu-
tational models of evolutionary systems for optimisation or simulation purposes,
and in evolutionary computation (EC) in general. Some authors regard natural
selection as axiomatic, but this assumption is not necessary. Natural selection
is simply a consequence of the properties of population dynamics subjected to
specified external constraints [5].

Symbiosis is defined as the interaction between two organisms living together.
At least one member benefits from the relationship. The other member (the host)
may be positively or negatively affected. Proponents of symbiogenesis argue that
symbiosis is a primary source of biological variation, and that acquisition and
accumulation of random mutations alone are not sufficient to develop high levels
of complexity [7,8] and also [5,6].

K. Mereschkowsky [9] and I. Wallin [10] were the first to propose that indepen-
dent organisms merge (spontaneously) to form composites (new cell organelles,
new organs, species, etc). For example, important organelles, such as plastid
or mitochondria, are thought to have evolved from an endosymbiosis between
a Gram-negative bacterium and a pre-eukaryotic cell. A similar hypothesis can
also be made regarding the origin of the nucleus [11]. Based on global phyloge-
nies of numerous protein sequences, it is suggested that the ancestral eukaryotic
cell arose by a unique endosymbiotic event involving engulfment of an eocyte
archaebacterium by a Gram-negative eubacterial host. According to Margulis
[12], “Life did not take over the globe by combat, but by networking”.

Another phenomenon widely spread in nature which occurs at all levels of
biological organisation from molecules to populations, is specialisation. As an
example, the cells of a vertebrate body exhibit more than 200 different modes of
specialisation [13]. Specialisation is the process of setting apart a particular sub-
system (reducing its complexity) for better efficiency of a particular function.
Our working hypothesis is, that specialisation together with symbiosis facilitate
reaching higher complexity levels.

Recent work in incremental reinforcement learning methods also advocate re-
tention of learnt structures (or learnt information) [14]. The sub-structures devel-
oped or acquired during the history of the program self-improvement process are
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kept in the program data-structures. It is therefore surprising that this general
procedure is not being exploited by any of the (standard) evolutionary program-
ming models, such as GP or GAs [15]. Although these evolutionary programming
models are inspired by biological evolution, they do not share some significant
aspects that are recognised in current evolutionary biology, neither can they be
used (directly) in an incremental self-improvement fashion. In our EVM model,
on the other hand, the central architectural element is based on the notion of
retaining previously developed structures. The structures are retained as long as
possible, and replaced only when they are not useful in any of the current system
configurations (tasks to be solved). This aspect of the system will be discussed
later in more details.

5 Hypercomputing

Any computation that goes beyond that defined by the Turing machine is called
hypercomputation. Such computation is also known as super-Turing, non-
standard or non-recursive computation. Hypercomputing is a relatively new,
multi-disciplinary research area, spanning a wide variety of fields: computer sci-
ence, mathematics, philosophy, physics, biology and others.

Even though hypercomputing is a theoretically possible and mathematically
sound concept, there are many controversies as to the physical realisation of
a machine capable of hypercomputing. Some believe that human mind, even
though embodied in a finite physical entity, is capable of hypercomputing. Others
believe that hypercomputing can be achieved by so called trial-and-error machine
[16]. Inspired by Kugel’s seminal paper, we argue that evolutionary processes
work in similar fashion to what can be called trial-and-error computing. The
EVM architecture provides a sound model of computation that potentially goes
beyond the Turing limit. Due to possible uncomputable asynchronous processing
of independent hosts, the overall characteristics of the computing may exhibit
hypercomputing. This somewhat speculative area of research will be pursued
further when the EVM architecture is successfully deployed on large numbers of
hosts.

6 EVM as a Virtual Machine

The EVM Virtual Machine5 is designed with Objective 1 in mind. It is composed
of a processing unit and the program together with data structures, all coded as
64-bit integers. Our current implementation of the EVM architecture is based on
a stack-machine, such as Forth, or the Java Virtual Machine (JVM). In fact, with
small differences, it is comparable to an integer-based subset of the JVM (the
design was inspired by existing virtual machines, among others: Forth, JVM,
CLI, Smalltalk, and Lisp).

5 The implementation is written entirely in Java, and developers can obtain the source
code from CVS http://www.sf.net/projects/cirrus
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The basic data unit for processing in our current implementation is a 64-bit
signed integer6. The basic input/output and argument-passing capabilities are
provided by the operand stack, called here the data stack, or for short the stack.
The data stack is a normal integer stack, just as in the JVM, for example. All
the operands for all the instructions are passed via the stack. The only exception
is the instruction push, which takes its operand from the program itself. Unlike
the JVM, our virtual machine does not provide any operations for creating and
manipulating arrays. Instead, EVM facilitates operations on lists. There is a
special stack, called the list stack for storing integer-based lists. Execution frames
are managed in a similar way to the JVM, via a special execution frames stack.
There is a lower-level machine handle attached to each of the execution frames.
This is a list of lists, where each individual list represents an implementation of
a single instruction for the given machine. In other words, the machine is a list
of lists of instructions, each of which implements a given machine instruction. Of
course, if the given instruction is not one of the Base Machine units (primitive
instructions for that machine), the sequence must be executed on another lower-
level machine. The Base Machine implements all the primitive instructions that
are not reified further into more primitive units.

In our work we deal with programs capable of universal computation (e.g. with
loops, recursion, etc.). In other words, the virtual machine running our programs
must be Universal Turing-machine equivalent. Potentially, EVM programs can
run indefinitely and therefore each thread of execution has an instruction time
limit to constrain the time of each program in a multi-EVM environment. Each
execution thread (a single program) has a maximum number of primitive instruc-
tions that it can execute. Once the limit is reached, the program unconditionally
halts.

The EVM offers reflection and reification mechanisms. The computing model
is relatively fixed at the lowest-level, but it does provide the user with multiple
computing architectures to choose from. The model allows the programs to reify
the virtual machine on the lowest level. For example, programs are free to modify,
add, and remove instructions from or to the lowest level virtual machine. Also,
programs can construct higher-level machines and execute themselves on these
newly created levels. In addition, a running program can switch the context of
the machine, to execute some commands on the lower-level, or on the higher-
level machine. All together it provides near limitless flexibility and capabilities
for reifying EVM execution.

The programming language used for search in EC plays an important role.
Some languages are particularly suited for some, but not for all, problems. An
appealing aspect of a multi-level search process is that, in principle, it is possible
to specify a new base level and a new programming language that is specialised
for a given task at that level. We want the EVM language to exploit this property.

The base instruction set is called EVM Base Machine. This set is implemented
by at least one machine on each of the EVM hosts. The extension to 64-bits of our
original EVM architecture allows us to link to arbitrary instruction in the global

6 Note, in [1] we used 32-bit integer architecture.
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computing environment. The way it is currently achieved is through a so called
EVM Communication Protocol. This protocol can be implemented over any other
lower-level networking protocols, such as HTTP. The initial implementation uses
raw TCP/IP sockets to transmit the data. Each EVM instruction is indexed by
the second half of the 64-bits. This is the 32-bit long instruction index (as it was
in the original EVM architecture). The first 32-bits now code the IP address of
the remote EVM host.

The EVM protocol offers two modes of operation. In the passive mode, a de-
sired program is requested, and the implementation of this instruction, for the
EVM Based Machine, is transferred back to the requesting host. This is analo-
gous of downloading the source of a program and executing it locally with respect
to the existing data. The active mode allows the requested code to be executed
remotely. This is analogous to web services and other remote procedure calls,
and facilitates computing modules that are not implemented in EVM assembly
language, but with an arbitrary implementation instead. The local data stack
and the list stack are transfered to the remote host, and a program with an
appropriate index will be remotely executed with the existing data.

The EVM Base Machine contains instructions capable of performing reflection
on and modifications of the Base Machine itself. Because of this reflective nature
of the EVM, remotely executed code may alter the instruction sets on the remote
host. The architecture splits the space of each of the EVM hosts into two parts
- the Read-Only instruction set, and the Read-Write instruction set. The Read-
Only part of the host can be altered only by the owner of the host. The Read-
Write part can be altered by any of the EVM programs – local and remote
alike.

7 EVM as a Self-adapting Cellular System

The architecture consists of individual EVM machines (emlets), this includes a
list of primitive or complex individual programs. and of the external environment
that manages the individual machines, executes programs, schedules tasks, and
collects statistics on the use of individual programs. The system described here
is just one of the many possible implementations of the actual environmental
mechanisms for EVM architecture. The strength of the EVM architecture is
that the users are not locked into a rigid design, but instead, there are many
possible implementations of the management layer, all working together on the
same network of EVM hosts.

Cellular systems are characterised by many locally interacting components
(cells), therefore performing a parallel, decentralised, highly redundant compu-
tation e.g. [17]. In biology, cellular systems, such as insect colonies, cellular tis-
sues, or animal brain, have proven to be efficient, adaptive, and robust. Because
of the non-reliance on a global, central control, they are not prone to major fail-
ure. Their emergent properties have been successfully applied in diverse fields
of computer science, e.g. Cellular Automata [18], Membrane Computing [19], or
Ants Algorithms [20].
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A cell is the fundamental component of our system. All cells run asynchro-
nously and in parallel on multiple EVM hosts. Each single host is potentially
composed of up to 232 cells indexed by a single 32-bit integer. All individual cells
react to local interactions with their neighbours and with the environment. From
a machine learning perspective, the goal of each of the cells is to solve one of the
tasks available in the environment, whereas from an artificial life perspective,
the cell aims at collecting enough food to survive. The cell without enough food
is “recycled”, which means the content is substituted with a new content (old
program is replaced with a new program).

Every cell maintains a program7 The cell’s goal is to find a successful program:
one that, by solving a task, yields enough food for the cell to survive. Programs
can call other programs (Figure 1. Moreover, if a program gets a reward, it will
share it with any programs used as “assistance” to compute the solution. All
of them will benefit from their relationship. In other words, symbiotic relation-
ships will appear between programs. This ability to access other programs has
thus opened the door to complex hierarchical organisation (self-assembly). As a
consequence, cells are now able to collaborate to solve complex problems
(Figure 2).

Fig. 1. The dark cell executes its program. Arrows show instructions that call neigh-
bours’ programs.

Cell specialisation. The cell self-adapts to a particular task in the environment,
and must find a successful program. Several specialisation mechanisms have been
studied by the authors: classic genetic algorithm, ad-hoc stochastic search main-
taining a tree of probabilities of potential building blocks, or an adaptation of an
environment-independent reinforcement learning method proposed by Schmid-
huber [21]. However, since this paper focuses on the global behaviour of our
system, we present without lose of generality only the results obtained with the
simplest specialisation mechanism: random search (Figure 3).

7 A program is a sequence of instructions in EVM assembly language.
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Fig. 2. Typical run exhibiting self assembly. 3 tasks: 2x, 3x, and 3x+2y. After 5,000 it-
erations, several cells can solve the two simple tasks (2x and 3x). After 10,000 iterations,
one cell (C1,3) uses its left and down neighbours to solve the hard task (3x+2y), and all
these 3 cells share the rewards (symbiosis). Shortly afterwards, some of its neighbours
take advantage of it: they simply solve the task by calling C1,3 (parasitism). Finally,
after 20,000 iterations, we can observe another cluster of solutions at the bottom of
the grid.

Fig. 3. The random search mechanism has two states. In the first, initial state, it
randomly generates a new program for P . If a selected program p is rewarded, the mech-
anism transits to the second state. In the second state, p is always selected for P . It will
stay (’survive’) in that state as long as p remains successful. It is implemented by stor-
ing the cumulative rewards (called provisions) gained by p. At every time step, a fixed
amount is subtracted from provisions. If the cumulative rewards drops below zero, p is
considered unsuccessful and the mechanism transits back to state 1 (the cell ’dies’).

8 Environment

The environment represents the external constraints on our system (Figure 4).
Its role is to keep the system under pressure to force it to solve the tasks specified
from the outside. The environment is modelled as a set of resources. There is a
one-to-one mapping between the resources and the tasks to solve (every resource
corresponds to a task). The purpose of these resources is to give rewards to the
cells when they solve their task. How many rewards are given and how accessible
are the resources is the topic of this section. Every resource has two attributes:
quantity and quality. Values for these attributes specify how much food (reward)
will be given to the cell that consumes the given resource.

Resource’s quantity. This parameter (QUANTITY , capitalized to highlight its
static nature) represents the abundance of resources in the environment. This
value is set ab initio and is the same for each of the resources. It allows us to
tune the amount of cells that will be able to survive.
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Fig. 4. Global view of our system. A dynamic set of tasks is provided to the system.
Tasks are mapped to environmental resources. A web of cells interacts with the envi-
ronment to try to solve the tasks. We use a schematic representation for the web to
stress its flexible connectionism.

Resource’s quality. The resource’s quality must reflect how difficult a task is. It
facilitates a mechanism to give more rewards for hard tasks (requirement 2), as
more difficult tasks may involve several cells that will have to share the rewards.
There are several ways of measuring the difficulty of a task. Some are ab initio
(using expert knowledge), but it can be more interesting to adjust it dynamically
based on the observed difficulty. For example, the resource’s quality may be set
based on the observed average time it takes to solve it, or on how many cells
can solve it, etc. We decided to set the resource’s quality to the current minimal
number of cells required to solve the task. It will reflect dynamically the task’s
complexity without depending on randomness and without the use of an extra
parameter that would need to be tuned for the search process.

Food. When a cell consumes a resource, it gets the following amount of food
(rewards):

food =
QUANTITY · quality

consumers
, (1)

where consumers is the number of cells consuming the resource. Moreover, a
cell is required to share its food with all the neighbours it used to solve the task.
Every cell used will get the same share of food.8

At every iteration, a cell needs to eat one unit of food. If it eats more, it can
makes provisions by storing the excess. If it eats less it will die from starvation
once its provisions are empty.

provisiont = provisiont−1 + food − 1 (2)

This environmental model is the result of our previous investigations with
different models and parameters. It ensures that all the tasks will eventually
be solved (requirement 1)9. This may take a long time. However, if there is
something in common between the tasks, our system will take advantage of it

8 For these early experiments, we have chosen a very simple reward mechanism. More
complicated models will be investigated in our future work.

9 In some of the previous models, cells have been observed to tend to specialise in easy
tasks only.
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by reusing it, therefore speeding up the search process by exploiting correlations
between tasks.

9 Multi-task Learning

Multitask learning is an area of machine learning which studies methods that
can take advantage of previously learned knowledge by generalising and reusing
it while solving a set of possibly related tasks [22]. Multitask learning has already
shown promising results when applied to Artificial Neural Networks [23].

Some argue that multitask problems that share similar internal structure are
much more common than one might imagine [24]. Most likely this may be a cer-
tain feature of all living systems. The human being, for instance, is continually con-
fronted with new tasks. It must solve these tasks in parallel, using a single brain
that has accumulated experience about all the previous tasks encountered since
birth. On another level, populations work in a similar way. In computer science,
traditionally multiple problems are translated into single task problems. The main
advantage of multitask learning is the ability to reuse previously acquired knowl-
edge. Solutions (or parts of them) of previous problems, can be reused to solve the
current tasks. The system can shift its bias to search for a hypothesis space that
contains good solutions to many of the problems in the environment.

Requirements. In order to be efficient in a multitask context, our model should
fulfill the following requirements (these are the desiderata of all open multi-agent
systems):

1. All tasks must be solved (eventually).
2. Solving difficult tasks should lead to greater rewards than solving easy ones.
3. Computational resources should focus on unsolved tasks.
4. Solutions must not be forgotten, as long as they are useful.
5. Knowledge diffusion should be facilitated (previous solutions must be acces-

sible).
6. Dynamic environments should be supported: tasks can be added and/or

removed at any time, dynamically.

10 Observations

For preliminary testing, we use a set of simple arithmetical tasks, such as 2x,
|x|, 3x + 2y, 49 − x, etc. These tasks enable the creation of related, incremental
problems, that will highlight the main features of our model. What’s more, it
is straightforward to tune the desired difficulty level according to the computa-
tional resources at disposition.

Density. The two main environmental parameters: the resource’s quantity and
the food needed for a cell to survive can be represented as one parameter;
DENSITY .

DENSITY =
QUANTITY

SIZE
, (3)
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Fig. 5. Example with two different density settings: 10% and 30%. The parameter
DENSITY enables to hand-tune the maximum percentage of cells that will be able to
solve a task.

where SIZE is the total number of cells. This simplifies the model, because only
the respective ratio is really important. DENSITY controls the utilisation of
the cells in the web. Figure 5 depicts two different settings for that parameter.

This parameter may be extremely difficult to tune, since it involves a trade-
off between requirements 5 and 3. Indeed, if it is too small, knowledge won’t be
accessible (few cells solving tasks). On the other hand, if the density is too large,
there will be no room left to solve complex tasks.

Parasites and knowledge diffusion. There is another interesting behaviour of in-
teracting cells that can be observed (see Figure 6). When a cell Cs solves a
difficult task for the first time, the solution is almost immediately parasited by
its neighbours (Figure 6b). That phenomenon enables the solution to be diffused
around the successful cell Cs, thus rendering this solution accessible to an in-
creasing number of cells. Since some cells may need this solution to compute
a more difficult problem, knowledge diffusion is highly desirable. Competition
between parasites is very intense. They usually appear, survive a couple of it-
erations, disappear, and after a while appear again, and so on. The dynamism
exhibited looks like Cs is trying to reach something in its neighbourhood. For
instance, if the diffusion manages to reach the neighbourhood of a cell C1 that
needs it, it will be used and thus the whole chain of parasites from Cs to C1 will
receive significant rewards and survive (Figure 6e).

Once some other cells in the web solve the same task as Cs on their own
(without parasiting), it becomes more and more difficult for the parasites of Cs

to survive (as they always have to share their food with the cells they use). As
a consequence, knowledge diffusion will progressively decrease.

Equilibrum/stability. Another parameter, PROV ISIONMAX , has been
added. It sets a maximal bound for provisions stored by a cell. Its value dras-
tically affects the dynamism of the web. If PROV ISIONMAX is high, most
of the cells are stable and only a few appear and disappear (regime A). If
PROV ISIONMAX is low, we observe much more dynamic structural patterns
on the web, with cyclic episodes similar to a kind of catastrophe scenario [25].
Good solutions spontaneously appear in the web, and after awhile there are too
many cells competing for the same resource. As a consequence, the quantity of
the resource they are consuming decreases below 1. Since they don’t have enough
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Fig. 6. Knowledge diffusion. Thanks to its parasites, the cell that manages to find
the solution to 49 − x can diffuse it (a and b). A cell that computes 3x + 2y does
the same (c). Eventually, in special spots surrounded by solutions to both problems,
solutions to 49 − (3x + 2y) are likely to appear (d). In the long run, new solutions to
3x + 2y and 49 − x will appear (e and f). It thus becomes more difficult for parasites
to survive. Parasites connected to the solution of 49− (3x+2y), however, receive more
rewards from that solution and won’t disappear. Cells with thick border are hosts.

provisions, they will soon almost all disappear. New cells can then start a new
cycle (regime B).

There seems to be no smooth transition between these two dramatically dif-
ferent regimes. Regime A represents a stable and fixed solid state, similar to
Wolfram’s class 1 of cellular automata (CA) classification [18]. Regime B repre-
sents a cyclic state, and is similar to Wolfram’s CA class 2.10

Robustness. Our system exhibits high levels of robustness. First, multiple solu-
tions to the same task are available in the web. Due to this redundancy, losing
one of them is not dramatic. Also, more food will be available for this resource
(since consumers have decreased in Equation 1), creating a new solution to re-
place the lost one (a kind of self-repair). Second, if part of the solution is lost
(e.g. one cell dies in a 5-cells solution), the provision variable enables the rest
of the solution to survive for a short period, allowing the defective cell to have
enough time to recover.

Locality. In living systems, locality has been shown to be an important factor
for evolutionary processes (e.g. ecological niches). It also plays a prime role in

10 Wolfram’s Classes 3 and 4 can be achieved by tuning an extra parameter
PROV ISIONINITIAL, which specifies the initial amount of food a cell receives
when it solves a task for the first time.
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our system. To compute solutions of higher complexity that reuse previously ac-
quired knowledge, a cell has to be surrounded by useful neighbours (requirement
5). Parameters like DENSITY , but also the topology (neighbourhood) or the
program length for a single cell, have a direct impact on it. It may be difficult,
or even impossible, to find a good value for the general case. Issues in scalability
are to be expected, too.

The risk is that solutions to simple problems that are to be assembled remain
too far from each other. In such circumstances, spontaneous catastrophic-events,
like regime B, may be useful to reset part of the system when it seems to be
stuck in a suboptimal situation.

11 Conclusion

In this paper, we have presented a general, self-adaptable, global computing ar-
chitecture designed for multitask learning. The architecture can be implemented
in various ways. Our prototype implementation uses Java, and the Evolvable
Virtual Machines [1] framework as the underlying virtual machine. The imple-
mentation is composed of a network (a web) of interconnected computing pro-
grams (agents). Unlike existing cellular models, our cells are capable of universal
computation on Turing-like virtual machines, and can modify and manipulate
their own code via self-reflection. The cells can also autonomously self-specialise
into simpler and more efficient instruction sets, allowing better exploration of
the overall search space. Cells contain programs that can call each other; there-
fore the architecture facilitates collaboration in a symbiotic fashion. This system
is self-adaptable in the sense that it can adapt to a dynamic environment with-
out human input and/or predefined behaviour. It is also self-organising, as its
internal structure emerges from the symbiotic interactions between cells. These
symbiotic interactions enable reuse of previously acquired knowledge. Our archi-
tecture is designed to performs well in a multitask context. Up to now, interesting
features have been observed at both the cellular and macroscopical levels. This
includes, but is not limited to, parasitism, knowledge diffusion, self-assembly of
inter-dependent symbiotic structures, and self-organising utilisation of resources.
An interesting phenomenon regarding the cells connectivity has also been ob-
served – the cells connectivity becomes an intrinsic (emergent) resource in its
own right. Future research includes investigations of different search methods
and dynamic indexing of the program spaces.
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Abstract. This paper describes a car traffic control simulation realised
in a decentralised way by message propagations: congested
nodes (roads intersections) send speed-up or slow-down messages to
neighbouring nodes. Different types of journeys have been modelled: reg-
ular car journeys, accidents and emergency cars journeys. These journeys
have different lengths and speeds, and affect the system differently. Op-
timal values of parameters, used during the simulations for controlling
the cars, have been determined through the use of a genetic algorithm
(GA). This paper reports as well a preliminary experiment on different
simulations realised with parameters values derived from the GA.

1 Introduction

Car traffic control and monitoring systems are receiving much attention since
several years because of huge and increasing traffic volume and traffic flows (e.g.
27 million journeys, and 32.7 billion vehicle-kilometres in total in London in
2004 [1]). This raises obvious issues related to ecology, economy and safety.

Traffic managements are already in place, they assist traffic officers to monitor
and control traffic on cities or motorways by allowing visualisation of traffic,
or analysis of real-time traffic information. Decisions are usually taken from
control centres and propagated to users by the means of road signs (traffic lights,
motorway screens).

This paper reports on an initial experiment towards an adaptive decentralised
control solution based on local propagation of messages among nodes (roads
intersections). Optimisation of key parameters has been realised by running a
Genetic Algorithm (GA).

Section 2 describes the elements of the model, while Section 3 provides details
about the control system and the simulations. Section 4 describes the GA used
to derive optimal parameters. Section 5 reports the initial experiments realised
so far. The way how such a simulation can be useful in an actual scenario is
highlighted in Section 6. Finally, Section 7 mentions some related works.

S. Brueckner et al. (Eds.): ESOA 2006, LNAI 4335, pp. 192–210, 2007.
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2 Model

A simulation considers a set of 1000 car journeys travelling through a portion
of a city during a certain period (e.g. from 8am to 10am). Traffic is controlled
by locally propagating messages in the city. A graphical interface, representing
a town and depicting cars, allows visual animation of the simulations.

2.1 Town Model

The city is modelled merely as interlinked laneways representing individual
”sides” of the road. Figure 1 shows a GUI that represents a map modelling
the city as a series of dynamically adjusting throughways. The virtual city is
modelled on 3km * 3km with an on-screen view of 600m * 600m, with 1 pixel
equating to one meter. Vehicles are mapped as a point with a surrounding circle,
and a line indicating the direction with the line length as a function of speed.
Speeds are measured in metres per second and increase in discrete blocks rather
than from a continuous curve - a true production system would differ by following
a curve.

Fig. 1. Screen Shot showing a 600m * 600m portion of modelled town

Each cycle through the software model, calling each vehicle to move and con-
sequent broadcast and evaluation of methods for up to 1,000 vehicles is regarded
as a virtual second, i.e. one complete iteration of all city artefacts.
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Journeys. A set of 1000 pre-established journeys (or routes) has been estab-
lished. A journey is a set of paths which are followed from start to finish. Table 1
shows the distribution of the 1000 routes according to their length. Journeys (or
routes) are of varied length and speed and may occur in parallel. They typically
represent the journeys taking place in a given portion of a city during a given
time slot.

It should be noted that the set of 1000 routes is auto-generated, and therefore
not necessarily the greatest distribution of journeys. In an attempt to better dis-
tribute the routes within the 3km * 3km block, the generation algorithm chooses
equidistant points across and down the grid as starting points for journeys. Natu-
rally this does not eliminate favouritism with some routes more heavily travelled
than others, but neither does it blandly plan routes so that all traffic is dis-
tributed perfectly, this better represents actual traffic patterns without being
completely random.

Table 1. Routes Distribution

Distance (km) 1.5km 1.8km 2.0km 2.2km 2.6km 2.7km 2.9km 3.1km 3.3km 3.4km
# Routes 119 122 144 131 90 88 80 74 79 73

Roads have various innate speeds, these speeds further vary according to
the relative amounts of congestion, nearby road conditions, and the current
parameters set governing the simulation. Vehicles move on one side of a road,
known as a path, the path dictates the velocity of member vehicles. Speeds vary
from 8km/h to 96km/h.

Accidents and Emergencies. In addition to regular vehicles that go at the
speed dictated by the lane, the model supports accidents and emergency vehicles:
emergency vehicles have a higher speed, while offending vehicles (accident) are
blocking vehicles. A simulation involves regular, emergency and offending cars.

Accident journeys are journeys along which an accident will occur randomly
on one of the paths comprising the route. An emergency journey is one taken
at a higher speed. 25 accidents will take place during the execution of each
simulation, with 25 emergency routes also undertaken. Accidents temporarily
block traffic flow on one path of a roadway; emergency routes block traffic on
both paths, but allow the routing emergency vehicle to operate at the roads
optimal speed. On exiting a path, both sides of the road may resume normal
operations. The emergency vehicles, and also journeys where accidents occur,
take place every 40 journeys, with the first accident occurring at journey 35 for
accidents, at journey 40 for emergencies, and at 40 journey intervals for both
thereafter (35 & 40, 75 & 80, etc.).

Accidents and emergencies are not governed directly by the control system;
they are a condition of the environment. However they do impact on through-
put and efficiency, for example when an accident occurs all vehicles behind the
accident vehicle are stalled, this can block the path, and have a knock-on or
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accumulative effect in inbound paths. Likewise for emergencies, for any path an
emergency vehicle is on, the other vehicles on both sides of the road are stopped
completely. This is to model the effect of pulling cars into the side of the road
to make way for the emergency vehicle.

An accident merely blocks a path for a given number of cycles, stifling progress
on one or more paths. An emergency is effectively a high priority journey, which
halts all vehicles on a road (both sides) while it traverses at an emergency speed.

2.2 Parameters

The main idea behind the parameters selections has been the willingness to en-
force a decentralised control over the cars using message propagation: congested
paths send messages to neighbouring paths (Rearward and/or Forward).

The four following parameters have been chosen:

– Threshold : the level at which a path reacts to congestion;
– Range: the distance and direction a path is willing to broadcast messages to

its neighbours relative to its level of congestion;
– Sensitivity: the elasticity of the reaction to inbound messages pertaining to

neighbouring paths;
– Persistence: the durability and significance of messages.

The parameters model a throttling process. Our goal is to maximise through-
put in the system and therefore to correlate speed with volumes as terms dictate.
The parameters selected above, Threshold, Sensitivity, Persistence, Range, con-
trol local velocity and its residual short-term affects. The Threshold indicates
when the path will start issuing control messages, while the Range indicates how
far to broadcast. The Sensitivity and Persistence parameters control how much
a path reacts to a message and for how long the path remains influenced by the
message respectively. Each parameter has six possible levels of expression.

Threshold. The Threshold parameter is the controlling factor related to
throughput. It is determined by the ratio of the current Population on the con-
sidered path to total Capacity of the path. Threshold represents the sensitivity
of the path to the rate of increase and represents: Population/Capacity. It will
trigger velocity changes on the current path, and depending on the Range pa-
rameter, may trigger broadcast messages to all neighbours. Table 2 shows the
different values for Threshold. For instance, if the Threshold is set at 1, broad-
cast messages to all neighbours will start being sent as soon as the number of
vehicles on the related path will reach 10% of the whole capacity of the path.
On the contrary, if the Threshold is at 6, the messages will be sent only when
the capacity of that particular path reaches 60%.

Range. The Range parameter represents the range and direction of communi-
cations or broadcast targets for the messages sent among the paths. As soon as
a path reaches the threshold rate specified by Threshold, it will start sending
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Table 2. Threshold Parameters Values

1 2 3 4 5 6
10% 20% 30% 40% 50% 60%

messages to its neighbouring paths. There are two types of messages used during
the simulations: R (for Rearward messages) and F (for Forward messages). Rear-
ward messages are almost always of the slow-down variety, forward messages are
always indications to speed-up. It is left to each path to decay their messages and
return to optimal state, the messages reflect a response to short-term prevailing
conditions which tend to propagate traffic (rearward or forward) toward areas
of less density as an emergent property.

The use of offset antagonistic pairs of messages was considered for this solu-
tion, i.e. send a speed-up message, and then when conditions alleviate, send a
slow-down message. However the path controls its own destiny, may disregard
messages entirely due to prevailing conditions (such as all-stop, or maximum
speed reached), or may ignore messages.

Messages are actually propagated by nodes - the intersection points of the
3km * 3km grid modelling the city (see Figure 1). A node is simply a congruence
of paths, nodes have inbound and outbound paths, they transmit and receive
messages originating from paths, the node is also responsible for decrementing
message range.

Table 3 shows the 6 possible cases of message range propagation. If Range is
set at 1 (R1F0), this means that Rearward messages are sent to the immediate
(connected) neighbours rearward the path (R1 stands for one hop - one node -
Rearward), while no Forward messages are sent (F0). Similarly, if Range is set
at 4, this means that Rearward messages are propagated for two hops rearward
the path (R2 stands for two hops - two nodes - Rearward); and the same for
Forward messages (F2 stands for two hops forward the path).

Table 3. Range Parameter Values

1 2 3 4 5 6
R1F0 R1F1 R0F1 R2F2 R2F1 R1F2

Sensitivity. Sensitivity represents the reaction of a node to inbound peer mes-
sages. It is not simply a one to one relationship: an arriving message from a
neighbour does not immediately activate a reaction from the paths connected to
the receiving node. Indeed, the reaction is also affected by the rate of inbound
messages: faster the messages coming in, greater the reaction as determined by
Sensitivity. An arriving message partially fills a ”capacitor”, when the number
of messages has arrived which completely fills the capacitor the message effect
is then triggered. This equates roughly to the activation function in neural net-
works. It is complemented by the Persistence parameter which works to diminish
any elevated state.
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Table 4 below shows the different values for Sensitivity. For instance, if Sensi-
tivity is set at 3, as soon as the rate of incoming messages reaches 30%, the node
receiving the messages will actually modify the speed of the corresponding path
according to the messages received (slow-down or speed-up). A high Sensitivity
will cause the path to react strongly to messages, while low Sensitivity will need
many more messages to accrue an influence.

Table 4. Sensitivity Parameter Values

1 2 3 4 5 6
10% 20% 30% 40% 50% 60%

Persistence. This is the decay rate for known state, i.e. a road may be unused
but has altered state due to inbound peer messages. The Persistence rate is the
rate of reduction in the excited state, i.e. how long it perseveres in the altered
state before returning to the normal state. This will also affect the message
capacitor (see Sensitivity parameter), since it will serve to reduce its charge.
This rate may be seen as similar to the evaporation rate used for modelling ant
trails.

The table below shows the different levels for the Persistence parameter. For
instance, if the Persistence parameter is set at 4, the simulation will keep memory
of received (slowing-down or speed-up) messages for 20s (virtual seconds) before
going back to the normal state.

When messages are received and evaluated, the Sensitivity and Persistence
become important. How much of a reaction a path has to a message is governed
by Sensitivity, i.e. how much will it speed-up or slow-down. Persistence dictates
how long a period of time that message will be remembered, similar to the
pheromone trail. Persistence does not dictate the period for which messages are
sent. The age of a message has significance. Older messages exert less influence
than new messages in proportion to what percentage of maximum persistence
the message has reached.

Table 5. Persistence Parameter Values

1 2 3 4 5 6
5s 10s 15s 20s 25s 30s

3 Control Model and Simulation

This section describes how the different simulations are done. A single simula-
tion involves 1000 (pre-established) journeys. The parameters values will be the
same for all paths in the city for a given simulation, i.e. all paths will have the
same propensity to communicate, will communicate over the same distances, will
persist messages for the same time, etc.
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Each operational cycle represents the passage of one virtual second. Each
virtual second, each vehicle moves the number of metres per second equating to
the speed dictated by the path they are on.

A simulation uses the following elements:

– Packet : represents a vehicle;
– Path: represents a side of a road;
– Route: represents a journey (it is a collection of serially connected paths );
– Node: represents an intersection between paths. Nodes connect paths in a

single route, and join multiple routes together. Nodes are used in the prop-
agation of messages within the system.

Congestion Detection: from paths to nodes. Paths are sensitive to conges-
tion according to their Threshold value. When they detect congestion accruing
they raise messages according to their Range parameter. These messages are
sent to the paths inbound and outbound nodes (Rearward/Forward in accor-
dance with Range), the nodes then transmit the message to the correct paths as
appropriate.

Propagation: from nodes to paths. If a node must propagate a message
to the next node, this is flagged to the connecting path and the notified path
contacts its outbound node (or inbound node depending on the direction of
propagation of the message) with the message as necessary.

When a node receives a message (speed-up or slow-down) it decrements the
messages distance attribute. It then iterates through its set of outbound paths
(for a forward messages) or its set of inbound paths (for rearward messages).
Messages cannot ”echo” back to a node as they propagate away from the orig-
inating path in the given direction. Even if the message range was sufficiently
large to allow a message to travel back to the point of origin it would not con-
tinue indefinitely as the message’s distance is decremented as it passes through
each node.

Reaction: change of path’s speed. When the path receives the message, it
adds it either to its increasing messages collection or to its decreasing messages
collection based on the message type, i.e. whether it is a speed-up or a slow-
down message. The path will evaluate its messages when cars enter or leave -
messages are evaluated no more than once per real second to avoid thrashing
unnecessarily.

When a path receives a message (to speed up or slow down) its reaction is
based upon its Sensitivity parameter, this acts as a type of suppressor or mul-
tiplier (depending on the activation level) which tends either to retard message
influence or to promote it.

The Sensitivity is effectively a multiplier on the stock increase or decrease
in speed undertaken during message evaluation, the values range from a 10%
increase to a 60% increase. It is not based on message direction, it augments the
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paths reaction when evaluating messages (speed-up versus slow-down, the age
of the messages, etc.) to determine the current velocity for a path.

The Sensitivity rate is never ”reached” per se. It is a multiplier, an augment
on how the path reacts to messages. The cars themselves don’t receive messages.
When they move they proceed at the prevailing velocity for the current path, in
a real world scenario there would be some transmission to vehicles. In the model
vehicles know the set of path’s which comprise their route, when they move
they use the current path’s velocity to determine how far to travel in metres per
second.

The Persistence parameter works either to prolong or curtail the duration of
message influence. Path velocity is a combination of self-determined and peer-
group influenced factors. Its own velocity is a function of congestion, its peer
group may influence that velocity through messaging, i.e. a road is uncongested
with a velocity of 14 metres per second, however due to congestion ahead, the
messages received by its peer cause the path to reduce speed by 50%, the level
of persistence is similar to the rate of evaporation of ant-trails. It determines the
rate at which messages’ influence is reduced. If a path maintains a peer-influenced
rate for a very long time it may falsely report max speed, as above, 50% lower
than its true maximum. If Sensitivity is also low, an inbound path may have
to raise many messages for it to alter its state. Persistence helps to ameliorate
this factor over time, meaning that state will change on request (according to
Sensitivity) but will decay over time and the influence of contrary messages.

Throttling Messages. Forward (speed-up) messages are transmitted forward,
triggered by the Threshold parameter value to attempt to clear the route forward
to alleviate congestion on a given path.

Rearward (slow-down) messages are transmitted rearward to anticipate con-
gestion, i.e. when a path fills up, the feeding path cannot enter. Therefore throt-
tling by congestion is an emergent state, slowing down inbound paths when
Threshold is hit may help to avoid a stalled path condition.

Messages serve to alter the optimal state of a pathway. The pathway has an
innate tendency to maintain its optimal state, reflected in the Persistence para-
meter which tends to maintain or direct a path towards this state. Messages may
also serve to excite or inhibit path velocity, how a path responds is controlled by
the Sensitivity parameter, high values for this parameter exhibit greater response
to inbound messages.

As said before, the Threshold and Range (distance) parameters are primarily
responsible for the message propagation.

When a path hits a level of congestion that breaches the setting defined by
threshold it initiates a message to intersecting paths, basically telling inbound
paths to slow down, i.e. to feed fewer vehicles, and outbound paths to speed up,
so it may feed vehicles to them faster.

The range of the message, or how far this message propagates is governed by
the Range parameter.

An individual with a value of R1F2 in this parameter will propagate slow-down
messages rearward to one node (and therefore to all inbound paths
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Fig. 2. Messages Propagation

registered with that node), it will also send speed-up messages to its outbound
node (and consequently to all outbound paths), when these paths receive the
speedup message, they notice that a range counter is not zero and therefore fur-
ther propagate the message to their outbound nodes. When a node receives a
message for propagation it first decrements this counter to register the consump-
tion of the message before passing it to each neighbouring path (see Figure 2).

The Persistence parameter controls the period of influence of the message,
once the time is past the message is removed entirely. Also older messages exert
lesser influence than newer messages (a 28 second old message is inferior to a
brand new arrival as the new arrival more correctly reflects prevailing condi-
tions). Paths use the decay rate/persistence level for two purposes: to modify
path velocity appropriate to congestion levels both of itself and of the conditions
of the local group; and also to control the return to optimum speed for the path.
This optimum speed is the speed it attempts to maintain. When a path returns
to its optimum speed through message decay, it informs any paths that it sent
slowdown messages to disregard the message; thereby influencing neighbouring
paths which may reflect and artificially slow velocity to snap back to equilibrium
faster.

Cascading Message Propagation. When an accident blocks the path that
it is on, this may have a knock-on effect on paths that connect to this path
as vehicles may not be able to join as the path becomes blocked. A first node
raises a series of slow-down messages, those messages are propagated as R1
(for instance), now the receiving nodes start actually slowing down the vehicles.
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The nodes further up the path, or these receiving nodes themselves, will start
observing congestion, and start sending messages for slowing-down, so a new
series of R1 is propagated - but not from the original node.

In case of an emergency the behaviour is slightly different, both sides of a road
are stopped to allow an emergency vehicle to traverse. When the emergency
vehicle moves off the path to its next path, that road is freed up for travel
once again, and the subsequent road is stopped, these actions continue until the
emergency route is complete.

Collisions. Collision avoidance is undertaken by projecting a bounding rectan-
gle forward from the vehicle’s position; its width is set to the bounding circle
indicating the vehicle’s location, its length projects forward from the vehicle in
proportion to the current speed. As a vehicle moves from one path to another,
it ensures there is room for the vehicle at the point of entry (by calling a specific
method on the target path). Otherwise as the vehicle travels it checks that it is
not about to collide with a neighbour prior to executing the move. This allows
vehicles to queue up behind one another. Vehicles will not take oncoming traffic
into consideration when detecting potential collisions. Vehicles will overtake a
blocking vehicle on the same path after a small random number of initial ”waits”
this prevents vehicles who are stuck waiting to turn onto an adjoining path from
blocking all vehicles behind it from carrying on forward. This represents a simple
model of typical behaviour, the turning vehicle normally assumes a position on
one extreme side of their lane, rearward vehicles must ameliorate their behaviour
to accommodate, hence the waiting for a random number of cycles (currently
set to a maximum of 5).

4 Optimisation of Parameters with a Genetic Algorithm

The purpose of genetic algorithms is to derive solutions to optimisation prob-
lems. A genetic algorithm starts with a population made of randomly chosen
individuals each represented by its own set of genes. Each individual represents
a possible solution to the optimisation problem.

GA Overview. Our goal is to find the set of parameters values which result in
the most efficient resolution of the congestion problem. Therefore, the optimisa-
tion problem consists in determining parameters values (i.e. genes) that, when
used to control the runs of 1000 journeys in a city, the (total) time to complete
(to simulate) these 1000 journeys is the shortest possible time.

An individual is then a 4 tuple (i.e. 4 genes) and represents the run (one
simulation) of 1000 journeys in the 3km * 3km city (see below for a description of
the genes). When the 1000 journeys are being simulated the values of the 4 genes
are used for running these journeys; consequently the time implied to complete
these 1000 journeys is then an indicator of how ”good” (fit) the corresponding
individual is. The 4 gene values stand for the values of the 4 parameters of
Section 2.
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The initial population is made of 1024 (45) individuals. The simulations are
run on those 1024 individuals. Each simulation starts with 1000 vehicles in the
city (each driving one of the pre-established routes). As vehicles complete their
journeys they are removed from the city. When fewer than 200 vehicles remain,
the simulation stops. The fitness function is then evaluated on this simulation.
The fitness function is given by the total amount of time the simulation has
implied to complete the 800 first journeys.

After the initial population of 1024 simulations is evaluated, we pick the top
100 individuals, the rest is discarded. The GA crossover and mutation (2%)
aspects are enabled in order to evolve the population from that point. A new
generation of individuals will be produced, which will then undergo another
simulation-selection-crossover/mutation process for another 1000 generations.

Each organism represents a gene sequence equating to individual genotype.
The organism is tested against the same criteria, and with the same input data:
the same set of 1000 journeys is used throughout the whole experiments (among
which only the 800 first completed are considered for the fitness function eval-
uation). The testing environment only differs according to the influence of the
individual organism’s genotype.

The goal of the whole system is then to find optimal parameters values that
when applied in the car control simulation allow minimising the total length (in
time) of all undertaken journeys.

GA Genes. As said above, the GA genes are exactly the parameters: Thresh-
old, Sensitivity, Range and Persistence. The possible values are those given by
tables 2 to 5. Each gene has then 6 levels of expressions: this ensures a population
large enough with enough variety so that evolution would demonstrate successful
candidates but not so large or finely tuned as to represent a great many wasted
cycles comparing with almost-like candidates. Of equal importance is not select-
ing a population of such small size and coarsely-grained attributes that would
render evolution unnecessary for purposes of evaluation.

GA Initialisation. The GA starts with 1024 randomly chosen individuals (4-
uples of genes) but with a central tendency. Indeed, i.e. the first population
contains few if any 1 or 6 strength genes. This was chosen to avoid evaluation
of sets of genotype with all minimum or all maximum attributes in the initial
population.

GA Selection and Termination. Once the simulations (a set of 1000 journeys
each) are run on the initial population of 1024 individuals (1024 different genes),
the fitness function is applied on each of these simulations. It is given by the
total amount of time in virtual seconds needed to complete the first 800 (out of
1000) journeys. This measurement is based on the distance travelled, and the
virtual time taken.

This initial population provides a gene-pool for further searching through
crossover and mutation. Indeed, a set of 100 fittest candidates is maintained for
a further 1000 generations. At the end of each simulation if the current candidate
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is fitter than the minimum it is added to that set, the minimum candidate is
dropped off the end of the list.

The process is the following:

select the two fittest candidates from the set of 100 individuals
loop:1000
create two offspring and evaluate them
take the fittest of these
if they are fitter than the minimum, then

add them to the set of 100
end loop

This requires 2000 evaluations to proceed through 1000 evolutions (1 per off-
spring). This also means that if the fittest candidate were in the initial population
it will not be replaced.

GA Crossover/Mutation. When two candidates are identified for breeding, a
random number is chosen between zero and 3, representing the point of crossover.
Two new individuals are then generated from the complementary pairs due to
the parent genotype split at the point chosen at random. Mutation applies to
the new chromosome at a rate of 2%.

About the 800 first completed journeys. The fact that we choose the 800
first completed routes for computing the fitness function could be seen as intro-
ducing a bias factor in the evaluation of the results. Indeed, it could be argued
that the worst journeys would not complete correctly, or some may be blocked
somewhere in a deadlock or in a similar situation. According to the experiments
done, the remaining 200 are not blocked in a deadlock as all the simulations com-
plete for all journeys. They are cut off deliberately at this point because of the
fact that on a 3km * 3km city the last couple of hundred vehicles have the streets
to themselves. At this low congestion level there is no contention for resources
and no comparison to be found between differing individuals. Thresholds would
not be hit at such low congestion levels, and it is not a good representation of
an urban traffic environment. We believe that all performance related aspects
of the system will have demonstrated their fitness through the evaluation of 800
journeys, in contention for resources with up to 1000 other vehicles, and one or
two journeys in the latter stages of evaluation should have no bearing on the cal-
culation. If a set of genes is not fit, its weaknesses will have been demonstrated
by mismanagement of the traffic scenario for the preceding journeys.

5 Experiments

This section describes two sets of results obtained when running the GA de-
scribed in the previous section as well as a modified version of it. These results
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Fig. 3. Fitness Function Distribution Over Last 256 Generations

need to be complemented by additional experiments in order to further confirm
and better analyse these results. However, they already show that the determi-
nation of the parameters, by running a GA, help finding optimal solutions, and
thus enhancing the city performance.

Experiment 1: Fitness Function Distribution. Figure 3 shows an ordered
distribution of the fitness function value over the last 256 generations (out of
the 1000 initial, and 2000 (1000 * 2) generations).The fitness functions values
range from 102s to 15s of virtual time. This measurement is based on the actual
distance travelled, and the virtual time taken. As said above, a virtual second
elapses when an entire cycle of all city artefacts has been realised (calling each
vehicle to move the number of meters corresponding to one second of the speed
specified by the road they are currently in, broadcast of all the necessary mes-
sages, and evaluation of corresponding methods).

The resulting data show that there are many viable (optimal) solutions, i.e.
95 of these solutions are below 30s, of which 50 are below 20s. The above figure
shows an ordered distribution of the solutions, however the solutions produced
by the consecutive generations do not demonstrate any convergence of the fitness
values.

Experiment 2: Modified GA. A modified version of the original GA of Sec-
tion 4 has been realised in order to try to observe more quickly any convergence
of the solutions.

The genes types and values are the same except for the Persistence gene that
now takes the values given by Table 6 below. By running the simulations, it
appeared that with efficient 4-uples of genes, the fitness value function is below
20s, thus the Persistence does not need to exceed this value.

In the modified GA, the first generation has been created from 100 randomly
selected individuals (instead of 1024 in the original GA). A global set of the
fittest individuals is maintained throughout each generation.
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Table 6. New Persistence Parameter Values

1 2 3 4 5 6
3s 6s 9s 12s 15s 18s

Fig. 4. Fitness Function Distribution Over Last 12 Generations

Next generations are produced in the following way: individuals are selected
at random from the set of fittest individuals. A random number is selected to
indicate the point of crossover. Each individual is then subject to a 5% potential
for mutation on each gene, however only one gene may be mutated per individ-
ual. Once the set of candidates is complete, the evaluations begin again. Thirty
generations were executed with values remaining stable and consistent in the
later 12 generations.

The simulations of the first generation (made of 100 individuals with pure
random selected gene values) show fitness functions ranging from 53s to 13s.
The 12 last generations have fitness functions for the set of individuals comprised
between 13s and 22s, and the last ones clearly around 17s (see Figure 4).

Examples taken from the best solutions obtained during this experiment,
among the 12 last generations, are given by Table 7 below. High Sensitivity
and Persistence are frequently observed for good solutions.

An interesting point to report is the apparently direct correlation between the
Range value and the Fitness Function on random individuals (first generation).
Indeed, Figure 5 shows on the lower part an ascending arrangement of the fitness
function, and on the upper part the corresponding Range values: when the Range
values are 3 or 5, the fitness function stays between 13s and 20s, when the Range
value is 2, 4 or 6, then the fitness function raises above 25s.

However, in the last 12 generations, such a correlation does not appear (Range
values are indifferently distributed among the 6 possible values). A possible
explanation would be that the set of 4 parameters, modified through the GA
procedure, have a combined influence on the fitness function.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



206 M. Kelly and G. Di Marzo Serugendo

Table 7. Examples of Efficient Genes Values

Threshold Range Sensitivity Persistence Fitness
1 30% 5 50% 18s 13s
2 30% 5 20% 9s 14s
3 40% 2 50% 15s 15s
4 60% 6 50% 15s 16s

Fig. 5. Range vs Fitness Function in Random Population

A similar phenomenon has been observed on the last 256 generations of Ex-
periment 1 as well. This lets presuppose that in Experiment 1, more cycles would
be necessary before any convergence could be visible, and that the results are
similar to randomly chosen individuals.

Results. Results reported here are very preliminary, and simply show (confirm)
that the use of a GA is actually useful in determining specific optimal parameters
further used to control the city car traffic.

Additional experiments are necessary to investigate the actual influence of
the parameters, their correlation, as well as the behaviour of the city under
different conditions (other sets of journeys), and under different control schema
(e.g. different sets of parameters).
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The current model is simple and consequently has some limitations, for in-
stance it uses the same parameters values for the whole city portion considered.
However, since the size of the considered city is rather small, this may be ac-
ceptable here. Further extensions should consider a bigger city, or a combination
of smaller portions having each their own sets of genes values.

6 Towards an Actual Traffic Simulation System

By communicating traffic levels in real-time, we could apply the decentralised
message propagation system today by controlling throughput using traffic sig-
nals. In the future vehicles will be given a maximum upper or optimal speed
limit, thus allowing an actual implementation closer to the proposed model.
Modification to vehicles would be unnecessary: some vehicle recognition system
to measure inbound and outbound vehicles would be sufficient. Such recognition
systems are already available in major cities. Of course, the GA should first be
run on actual (recorded) traffic values related to a well identified city zone, so
that optimal parameters could be derived.

Currently, most traffic control systems are not tuned to prevailing dynamics.
The system described in this paper demonstrates the improvements in efficiency
capable by cooperation and coordination at local level. For example, in the
system above the widest broadcast signal is two nodes forward and two nodes
rearward; this avoids the complexity of centralised command and isolates the grid
from massive message propagation which could flood the network. Applying the
principal of decay to the message allows it to have influence on a curve rather
than a simple digital switch. This is taken directly from ant-colony optimisation;
it reduces the complexity of message management (i.e. having to fire messages
as transactions in antagonistic pairs). It is particularly important in allowing the
local conditions to adapt and recover to dynamic conditions. However it should
be pointed out, that any path which sends slow-down messages to inbound nodes
will always send a speed-up message to it closest inbound node once its own
velocity resets to optimum.

In addition to communication among nodes, direct communication among
cars can be envisaged in the future thanks to current works on wireless inter-
vehicle communication. In this case, the system described here could be extended
in different ways: to act according to the school of fish metaphor, where each
car maintains a sufficient but minimal distance from neighbour cars favouring
fluidity of traffic; or to propagate information along a series of cars (several hops)
to support re-routing in case of congestion, etc.

7 Related Works

Car Traffic Control Systems Projects. Actual implemented systems use one
or several control centres receiving real-time traffic data, and from which both
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manual and automated decisions can be taken and propagated to the vehicles
through different means.

The technology aiming at acquiring real-time data related to traffic conditions
is already available: traffic detectors able to detect the volume of traffic, the
average speed of vehicles, time between vehicles, blocked traffic; visual control of
traffic is available through video surveillance cameras. Similarly, the technology,
aiming at informing the drivers are also quite advanced: either through specific
devices on the vehicle, or through signs on the motorways.

Complete traffic managements, combining acquisition, decisions, and informa-
tion to drivers are of different nature: detection of accidents, fluidity of traffic,
delivery of traffic information to drivers via broadcasting media such as radio;
enforcement of traffic policies (e.g. London congestion charge).

The city of Athens has a particularly interesting complete system, built for the
Olympics, which uses cameras, an airship, and distributed command to control
traffic light phases and durations1. From one hand, it incorporates data traffic ac-
quisition using diverse techniques such as TV cameras or ground detectors; official
vehicles used as mobile sensors to continuously monitor traffic recording of traffic
volume via sensors. On the other hand, a decision making system designs solutions
to solve traffic problems, and sends automatically corresponding information to
vehicles on the road (traffic signals), or alerting police. Several similar projects are
currently under way in large cities such as Beijing or Hong Kong.

Adaptive Control Strategies. Several works can be mentioned that make
use of different techniques in order to provide car traffic control strategies that
adapt to real-time situations.

Swarm-based traffic control usually employs ant metaphor for inducing a de-
centralised traffic control. We can cite [3] who apply the pheromone metaphor
to provide a decentralised traffic congestion prediction system: cars deposit
pheromone along their route which is later retrieved by forthcoming cars. The
amount of pheromone deposited depends on the speed of the car, and represents
the density of traffic: low speed produces high concentrations of pheromone,
while high speed produces low concentrations of pheromone. The amount of
pheromone later retrieved by other cars provides an indication about traffic con-
gestion and thus serves for short-time traffic predictions.

Similarly [4] uses the ant metaphor to communicate among cars and to provide
a simulation of traffic dynamics in different scenarios. In this case, an additional
evolutionary algorithm, including a swarm voting system for preferred traffic light
timing, is introduced in order to minimise the average waiting time of vehicles.

As an alternative to swarm-based techniques,we canmention the works on intel-
ligent transportation systems focusing on self-managing and self-organising solu-
tions based on service-oriented architectures and the corresponding middleware2.

As far as the use of genetic algorithm is concerned, we can mention works at
the Utah Traffic Lab on the use of GA for optimising traffic signal timings3. This
1 http://www.roadtraffic-technology.com/projects/athens/
2 http://www.dsg.cs.tcd.ie/transport
3 http://www.trafficlab.utah.edu/
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work makes use as well of a simulation used for evaluating the different identified
timing plans; or the works of [2] reporting as well the use of GA for optimising
light traffic timing. GA have also been used for finding optimal solutions to
air traffic control, for instance [5] uses GA to derive flight plans and optimise
time-route problems.

8 Conclusion

This work will be continued and the model, the GA and the simulations will be
revised. A series of future directions for enhancing this work have already been
identified.

Evaluations will have to extend past a mere 800 journeys, and instead may focus
on time-slices with fitness evaluated on the throughput achieved during each pe-
riod.Wewouldwant tomeasure systemperformanceunder different conditions and
states, and evaluate each of these with different sets of parameters. This is achiev-
able by adding some conditions governing routes available and vehicles available to
undertake those journeys, in different geographical areas, for each testing phase.

The initial population of 45 individual has been chosen randomly among the
total possible population of 46 (4 genes with 6 level of expressions). Future ver-
sions will likely introduce performance improvement allowing an enhanced search
among the whole population by increasing the size of the initial population.

Accident and emergency rates should be made somewhat relative to prevailing
traffic conditions, for example more accidents will occur on congested streets, or
streets pushed close to their maximum velocity, that is, there should be a cost
function associated with allowing streets to build up congestion, or to permit
too great an upper speed-limit. There should be an element of independent
accident and emergency propensity per traffic period given that accidents and
emergencies occur that are unrelated to traffic volumes.

In order to moderate a larger city and identify different areas or similar areas,
different path categories could be included. In addition, by modelling each path-
way as individual entities, the local clustering of pathways may better represent
the dynamic and volatile requirements of urban traffic.

Further to the concept of nodes, it may be desirable to investigate cells in
particular cells of varying area/population. This may be based on the concept of
activation thresholds in ant/termite colony, e.g. removing workers will demon-
strate worker behaviour in soldiers, albeit after a greater exposure to stimulus.

In the current version of the system re-routing does not occur (cars are slowing
down, or blocked but do not change route). In the next version of the system,
we would want to add a querying capability to the network, i.e. a vehicle can
request alternative routes from nodes when progress is stifled.
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