
1 Polydispersity and Heterogeneity

The heterogeneity immanent to materials that show scattering but not diffraction
patterns should not be ignored. An assessment concerning the significance of results
can only be expected if the collected data are complete (cf. Sect. 8.4.2) and show
low noise (exposure time long enough). Whenever a measured parameter value is
discussed, heterogeneity results in fundamental questions to be answered: What kind
of average does my method return? Is it possible to determine the width and skewness
of the parameter value distribution? A brief review of such “probability distributions”
and their moments is given for later reference.

1.1 Scattering, Polydispersity and Materials Properties

Except for biopolymers, most polymer materials are polydisperse and heteroge-
neous. This is already the case for the length distribution of the chain molecules
(molecular mass distribution). It is continued in the polydispersity of crystalline do-
mains (crystal size distribution), and in the heterogeneity of structural entities made
from such domains (lamellar stacks, microfibrils). Although this fact is known for
long time, its implications on the interpretation and analysis of scattering data are, in
general, not adequately considered.

DEBYE & MENKE (1931) [1]: “It is futile

Figure 1.1. P. Debye (1884-1966) and
his small-angle light-scattering device
on a Dutch stamp

to draw distinct conclusions if genuine scatter-
ing curves are not at hand. It is insufficient un-
der any circumstances if authors state that an
interference maximum or several of them ex-
ist at certain angular positions. Only a contin-
uous scattering pattern can be the fundament
of proper reasoning. Concerning the abundant
reports on disordered materials it must unfor-
tunately be stated that they are unsatisfactory
in this respect. Although even in this way, by
mere accumulation of data and comparison of
data from materials with similar chemical composition, some valuable conclusion
was drawn with a higher or a lower level of significance. This situation is the result
of the fact that we are insufficiently informed on the theory of the arrangement of
molecules in a fluid. Only if it were possible to theoretically describe this arrange-
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ment in a similar manner as can be done for the arrangement of atoms in a crystal, it
would be sufficient to report interference maxima.”

Heterogeneity. In reality, structure is frequently heterogeneous. For example, if
colloidal crystals have been produced by means of nanotechnology, it must be as-
sumed that the material is not perfect. Thus it is of some importance to describe the
deviation of the individual sample from the ideal material. For such purposes scat-
tering methods are frequently employed and the scattering patterns are qualitatively
interpreted. Nevertheless, the mechanisms of structure formation remain obscured as
long as the amount of heterogeneity cannot be determined quantitatively during the
structure formation process.

Different kinds of heterogeneity can be imagined. In the most simple case only
a few differing structural entities are found to coexist without correlation inside the
volume irradiated by the primary beam. In this case it is the task of the scientist to
identify, to separate and to quantify the components of such a multimodal structure.
In an extreme case heterogeneity may even result in a fractal structure that can no
longer be analyzed by the classical methods of materials science.

Polydispersity. Quite frequently many different but similar structural entities can
be found in a material. This is the common notion of polydispersity. Thus polydis-
persity means that every structural unit in the sample can be generated by compres-
sion or expansion (dilation) from a template. This building principle is mathemati-
cally governed by the Mellin convolution [2], which generates the observed structure
from the template structure and its size distribution. The determination of the latter
is a major goal in the field of materials science. Considering the simple case of pure
particle scattering, the searched size distribution is the particle dimension distribu-
tion [3]. If, for example, the studied particles are spheres, the number distribution
of sphere diameters would be of interest, and the material would advantageously be
characterized by the mean diameter and the variance of the sphere diameters. More-
over, even a value describing the skewness of the sphere diameter distribution may
become important in order to understand property variations of different materials.

1.2 Distribution Functions and Physical Parameters

A general principle is governing the relation between physical parameters and under-
lying distribution functions. Its paramount importance in the field of soft condensed
matter originates from the importance of polydispersity in this field. Let us recall
the principle by resorting to a very basic example: molecular mass distributions of
polymers and the related characteristic parameters.

1.2.1 The Number Molecular Mass Distribution

In the basic molecular mass distribution, N (M), the number N of molecules in a
sample is plotted vs. their molecular mass, M. Figure 1.2 presents a sketch of a
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Figure 1.2. A number molecular mass distribution N (M) of an ideal chain polymer. N (M) is
defined for integer multiples of Mm, the monomer mass. The integer factor, P, is called the
degree of polymerization

molecular mass distribution. For ideal chains the distribution is a discrete function
which is only defined for integer multiples of the monomer mass, Mm. The function
is called the number molecular mass distribution, because it exhibits the number of
molecules with a certain molecular weight M.

The function N (M) can be considered a continuous function, if the average
molecular weight of the chains is high enough. In this case we draw a continuous
line through the points in Fig. 1.2.

It is reasonable to normalize N (M) with respect to the total number of molecules
in the sample

n(M) = N (M)/

∫ ∞

0
N (M) dM. (1.1)

Now the function displays the number fraction of molecules with a certain molecular
mass. Its integral is 1 by definition. Nevertheless, we still call it the number molecular
weight distribution because the factor

∫
N (M) dM is nothing but a constant.

1.2.2 The Number Average Molecular Mass

The obvious definition of the number average, Mn, of the distribution is the position
on the M-axis that divides the area under the n(M)– curve in equal parts (cf. Fig. 1.3).
Because of the fact that n(M) is normalized to 1, each of the subareas is equal to 0.5.
As 50% of all the molecules are shorter than Mn, the other 50% are longer than Mn.
Bearing in mind the normalization, the number average molecular mass is

Mn =
∫ ∞

0
M n(M) dM. (1.2)

This equation is, as well, the definition of the mean (cf. ABRAMOWITZ [4] chap. 26)
– the first moment of the distribution n(M) about origin. In fact, with respect to a
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Figure 1.3. The number average molecular mass, Mn, is the position that divides the area
under the corresponding distribution in equal parts

normalized distribution (
∫

n(M) dM = 1) the mean is the center of gravity of the
distribution.

In order to describe the discussed distribution function, three characteristic pa-
rameters are used in polymer science. They are named number average1, weight
average (Mw), and centrifuge average (Mz)

Mn =
∫

M1 n(M) dM∫
M0 n(M) dM

(1.3)

Mw =
∫

M2 n(M) dM∫
M1 n(M) dM

(1.4)

Mz =
∫

M3 n(M) dM∫
M2 n(M) dM

(1.5)

This series of equations demonstrates a general principle in physics, namely how
measurable materials parameters are generated from moments of the related distri-
bution function.

1.3 Moments

The i-th moment (about origin) of a distribution h(x) is defined by

µ ′
i (h) =

∫
xi h(x) dx (1.6)

(ABRAMOWITZ [4] chap. 26). We have demonstrated that the structure parameters
of a polydisperse structure are closely related to these moments. µ ′

0 (h) is the norm

1This is the center of gravity of the distribution n(M).
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and m(h) := µ ′
1 (h) the mean of the distribution on which the definition of central

moments

µi (h) :=
∫

(x−m(h))i dx (1.7)

is based. As a measure of distribution width it is common to report the variance

σ2 (h) := µ2 (h) (1.8)

or the standard deviation, σ (h). µ3 (h)/σ3 (h) is known as skewness of the distribu-
tion (ABRAMOWITZ [4] chap. 26).

Application in the Field of Scattering. Let us consider two important distri-
bution functions, hc (x) and hL (x). These functions shall describe the thicknesses of
crystalline layers and the distances (long periods) between them, respectively. In this
case we take into account polydispersity of the crystalline layers, if (at least) the two
parameters d̄c and σc/d̄c are determined which are defined as the average thickness
of the crystalline layers,

d̄c =
µ ′

1 (hc)
µ ′

0 (hc)
,

and the relative standard deviation of the crystalline layer distribution,

σc

d̄c
=

σ (hc)
d̄c

.

In the classical treatment of the paracrystal, HOSEMANN [5] refers to the quantity
σc/d̄c as “g-factor”.

If we knew that the long periods are varying from stack to stack, but not within
one and the same stack, the quantities

L̄ =
µ ′

1 (hL)
µ ′

0 (hL)

(average long period) and
σL

L̄
=

σ (hL)
L̄

(relative standard deviation of the long periods, which is another HOSEMANN

g-factor) describe the polydispersity of this material.




