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Abstract. The paper discusses the merits of temporal testers, which can serve
as a compositional basis for automata construction corresponding to temporal
formulas in the context of LTL, PSL, and MITL logics. Temporal testers can be
viewed as (non-deterministic) transducers that, at any point, output a boolean
value which is 1 iff the corresponding temporal formula holds starting at the
current position.

The main advantage of testers, compared to acceptors (such as Büchi au-
tomata) is their compositionality. Namely, a tester for a compound formula can
be constructed out of the testers for its sub-formulas. Besides providing the con-
struction of testers for formulas specified in LTL, PSL, and MITL, the paper also
presents a general overview of the tester methodology, and highlights some of the
unique features and applications of transducers including compositional deduc-
tive verification of LTL properties.

1 Introduction

Automata theory plays a central role in formal methods. For example, the classical
way of model checking an LTL property ϕ over a finite-state system S, represented by
the automaton M

S
, is based on the construction of an ω-automaton A¬ϕ that accepts

all sequences that violate the property ϕ. Having both the system and its specification
represented by automata, we may form the product automaton MS × A¬ϕ and check
that it accepts the empty language, implying that there exists no computation of S which
refutes ϕ [24]. For the working of this algorithm, it is sufficient that the automaton
is a proper recognizer for the language L(¬ϕ) specified by the formula ¬ϕ. It is no
surprise that acceptors such as ω-automata is a formalism widely used by researchers
and engineers alike.

However, with the advancements in the field of the formal verification, several draw-
backs of acceptors became noticeable. First of all, modern model checkers may expect
the automaton to be symbolic (BDD-based). Therefore, if one is to use the standard
tableau-based construction, some encoding may be necessary. In addition, new tempo-
ral languages such as PSL [1] have been developed to address the need for formalizing
more elaborate and intricate specifications. In particular, PSL has several features to
support bottom-up construction of complex properties, where lower level properties are
composed to construct more complex properties. Acceptors do not fit into this paradigm
very well since they do not compose. That is, having constructed automata Aϕ and Aψ
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Fig. 1. Composition of transducers to form T [ϕU ψ]

for LTL formulas ϕ and ψ, there is no simple recipe for constructing the automaton for
a compound formula that combines ϕ and ψ, such as ϕUψ.

One remedy to this problem is to enhance ω-automata with universal non-
determinism (i.e., alternating ω-automata) [6]. In this approach, there are no special
requirements on the sub-automata, and any two acceptors can be composed using alter-
nation. An orthogonal solution to the problem is to impose the responsibility of being
composable on the sub-automata themselves. In particular, we suggest that an automa-
ton not only tells whether the entire (infinite) input sequence is in the language, but
does so for every suffix of the input word. We call such an automaton a temporal tester,
which has been introduced first in [13]. More formally, a tester for a formula ϕ can be
viewed as a transducer that keeps observing a state sequence σ and, at every position
j ≥ 0, outputs a boolean value which equals 1 iff (σ, j) |= ϕ.

While acceptors, such as the Büchi automata Aϕ, do not easily compose, temporal
testers do. In Fig. 1, we show how transducers for the formulas ϕ, ψ, and p U q can be
composed into a transducer for the formula ϕU ψ.
Below is a summary of several important features of temporal testers that make them
very useful:

• The construction is compositional. Therefore, it is sufficient to specify testers for
the basic temporal formulas. In case of LTL, we only need to consider the formulas
X! p1 and p U q, where p and q are assertions (state formulas). Testers for more
complex formulas can be derived by composition as in Fig. 1.

• The testers for the basic formulas are naturally symbolic. Thus, a general tester,
which is a synchronous parallel composition (automata product) of symbolic mod-
ules can also be easily represented symbolically. As was shown in [21], the basic
processes of model checking and run-time monitoring can be performed directly on
the symbolic representation of the testers. There is no need for partial determiniza-
tion to handle alternation nor conversion from explicit state representation.

• Extensions of an existing logic can be handled by constructing testers only for
the newly introduced basic operators. This feature has been utilized to a great
advantage when a compositional approach to the construction of transducers

1 Inspired by the PSL notation, we write X! p for “next p”.



174 A. Pnueli and A. Zaks

corresponding to LTL formulas [13] has been extended to handle the logics PSL

[21] and MITL [16] which are extensions of LTL.
• In spite of the fact that transducers are more functionally complex than acceptors,

the complexity of constructing a transducer (temporal tester) for an arbitrary LTL,
PSL, or MITL formula is not worse than that of the lower-functionality acceptor. In
its symbolic representation, the size of a tester is linear in the size of the formula.
This implies that the worst-case state complexity is exponential for LTL and PSL

formulas, which is an established lower bound.

Note that we can always regard a temporal tester as an acceptor. Therefore, it is in-
teresting to compare automata construction using temporal testers to other techniques
such as tableau construction for LTL [15] and alternating-automata based construction
for PSL [8]. First, we note that the complexity of all of these techniques as well as that
of the testers approach equally match the established lower bound. Of course, there is
plenty of room for practical considerations and local improvements. Surprisingly, for
LTL, a tableau-based approach [15] yields an automaton identical to the one induced by
the transducer constructed according to [13]. Similarly, for PSL, the tester construction
of [21] induces an acceptor almost identical to the one obtained in [8]. Actually, the two
automata become exactly alike after several optimizations are applied to an alternating
automata based approach, most of the optimizations become much more obvious once
we realize how to build a proper transducer for these operators.

Nevertheless, the testers approach offers a conceptually new methodology, and while
similarities are not accidental and rather striking, the differences are equally remark-
able. Let us again compare temporal testers to tableau construction and alternation
techniques, but now with an emphasis on the process itself rather than on the final
result. The main building blocks of tableau construction are the expansion formulas,
like b1 U b2 ⇐⇒ b2 ∨ (b1 ∧ X ![b1 U b2]). Such expansion formulas, which exist for
all the temporal operators, relate the value of an expression involving the operator at
the current position to the values of its arguments in the current and next position and
to the value of the expression in the next position. For past operators, the expansion
formula relates the value of the expression and its arguments in the current position to
their values in the previous position.

When constructing testers for an operator that has an expansion formula (such as all
the LTL operators), one uses the expansion formula as the core for the transition rela-
tion of the tester. However, when developing testers for more complicated or simply
”unknown” (new) operators, the expansion formula approach may not always be an op-
tion. In such cases, one may use the intuition that treats a tester as a non-deterministic
guesser, the correctness of whose output needs to be confirmed at a later stage. That was
the approach successfully applied for handling PSL and MITL operators. And, while the
tester construction for PSL produced expansion formulas as a nice side effect, there is
no such result for MITL, where reliance on ”guessing” plays a crucial role. When com-
paring testers to an alternating automata, the main philosophical distinction is that an
alternating automata is less structured than a non-deterministic acceptor, while testers,
on the other hand, have more structure than classical acceptors.

The additional support provided by a transducer make them truly plug-and-play
objects, which has several important practical implications. The most straightforward
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illustration of this phenomenon is application of tester towards CTL∗ model checking
[14]. The paper shows how to reduce CTL∗ model checking problem to that of CTL .
Essentially, each path-quantifier free sub-formula is replaced by the corresponding LTL

transducer. We could have performed a similar reduction using acceptors. However,
using testers we have a freedom for each such sub-formula to leave the outer-most tem-
poral operator intact and construct the tester for the remaining part. This results in a
true CTL∗ to CTL reduction, where we may still have temporal operators in the final
CTL formula. The ability to decompose an LTL formula using testers is also crucial for
deductive verification, which we will discuss in a great detail in Section 11.

Another benefit of the plug-and-play nature of testers is the possibility to use differ-
ent algorithms for different parts of the formula. For example, a user can manually build
a highly optimized tester for a sub-formula, and the rest of the formula can be handled
automatically. We can also combine testers with other techniques as was done in [7],
where PSL operators are handled using the tester approach, but the rest of the formula
uses an existing LTL to NBA transformation which, according to the experimental data,
results in the fastest available implementation for PSL to NBA conversion.

2 Accellera PSL

In this section we introduce the property specification language PSL [1]. The construc-
tion of testers for PSL formulas will be presented in Section 8.

In this paper, we only consider a subset of PSL. For brevity, we omit the discussions
of OBE (Optional Branching Extension) formulas that are based on CTL . Note that using
testers we can obtain a model checking algorithm even for CTL∗ branching formulas by
combining PSL testers with the work in [14]. In addition, we do not consider clocked
formulas and formulas with abort operator. This is not a severe limitation since none of
the above add any expressive power to PSL. One can find a rewriting scheme for the @
operator (clock operator) in [10] and for the abort operator in [22]. The rewriting rules
produce a semantically equivalent formula not containing the operators, which is linear
in the size of the original formula.

2.1 Syntax

The logic Accellera PSL is defined with respect to a non-empty set of atomic proposi-
tions P . Let B be the set of boolean expressions over P . We assume that the expressions
true and false belong to B.

Definition 1 (Sequential Extended Regular Expressions (SEREs)) .

– Every boolean expression b ∈ B is a SERE.
– If r, r1, and r2 are SEREs, then the following are SEREs:

• {r} • r1 ; r2 • r1 : r2 • r1 | r2
• [∗0] • r1 && r2 • r[∗]
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Definition 2 (Formulas of the Foundation Language (FL formulas)) .

– If r is a SERE, then both r and r! are FL formulas.
– If ϕ and ψ are FL formulas, r is a SERE, and b is a boolean expression, then the

following are FL formulas:
• (ϕ) • ¬ϕ • ϕ ∧ ψ • 〈r〉ϕ
• X !ϕ • [ϕU ψ] • ϕ abort b • r �→ ϕ

Definition 3 (Accellera PSL Formulas) .

– Every FL formula is an Accellera PSL formula.

2.2 Semantics

The semantics of FL is defined with respect to finite and infinite words over Σ = 2P ∪
{�, ⊥}. We denote a letter from Σ by l and an empty, finite, or infinite word from Σ by
u, v, or w (possibly with subscripts). We denote the length of word v as |v|. An empty
word v = ε has length 0, a finite word v = (l0l1l2 . . . lk) has length k+1, and an infinite
word has length ω. We use i, j, and k to denote non-negative integers. We denote the ith

letter of v by vi−1 (since counting of letters starts at zero). We denote by vi.. the suffix
of v starting at vi. That is, for every i <|v|, vi.. = vivi+1 · · · vn or vi.. = vivi+1 · · · .
We denote by vi..j the finite sequence of letters starting from vi and ending in vj . That
is, for j ≥ i, vi..j = vivi+1 · · · vj and for j < i, vi..j = ε. We use lω to denote an
infinite-length word, each letter of which is l.

We use v̄ to denote the word obtained by replacing every � with a ⊥ and vice versa.
We call v̄ the complement of v.

The semantics of FL formulas over words is defined inductively, using as the base
case the semantics of boolean expressions over letters in Σ. The semantics of a boolean
expression is assumed to be given as a relation ‖= ⊆ Σ × B relating letters in Σ with
boolean expressions in B. If (l, b) ∈ ‖=, we say that the letter l satisfies the boolean
expression b and denote it by l ‖= b. We assume the two special letters � and ⊥
behave as follows: for every boolean expression b, � ‖= b and ⊥ ‖�= b. We assume
that, otherwise, the boolean relation ‖= behaves in the usual manner. In particular, that
for every letter l ∈ 2P , atomic proposition p ∈ P and boolean expressions b, b1, b2 ∈
B, (i) l ‖= p iff p ∈ l, (ii) l ‖= ¬b iff l ‖�= b, and (iii) l ‖= true and l ‖�= false .
Finally, we assume that for every letter l ∈ Σ, l ‖= b1 ∧ b2 iff l ‖= b1 and l ‖= b2.

Semantics of SEREs. SEREs are defined over finite words from the alphabet Σ. The
notation v |≡ r, where r is a SERE and v a finite word means that v tightly models r.
The semantics of unclocked SEREs are defined as follows, where b denotes a boolean
expression, and r, r1, and r2 denote unclocked SEREs.

– v |≡ {r} ⇐⇒ v |≡ r
– v |≡ b ⇐⇒|v|= 1 ∧ v0 ‖= b
– v |≡ r1 ; r2 ⇐⇒ ∃v1, v2 s.t. v = v1v2, v1 |≡ r1 and v2 |≡ r2
– v |≡ r1 : r2 ⇐⇒ ∃v1, v2, and l s.t. v = v1lv2, v1l |≡ r1 and lv2 |≡ r2
– v |≡ r1 | r2 ⇐⇒ v |≡ r1 or v |≡ r2
– v |≡ r1 && r2 ⇐⇒ v |≡ r1 and v |≡ r2
– v |≡ [∗0] ⇐⇒ v = ε
– v |≡ r[∗] ⇐⇒ v = ε or ∃v1, v2 s.t. v1 �= ε, v = v1v2 and v1 |≡ r and v2 |≡ r[∗]
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Semantics of FL. Let v be a finite or infinite word, b be a boolean expression, r be a
SERE, and ϕ, ψ be FL formulas. We use � to define the semantics of FL formulas. If
v � ϕ we say that v models (or satisfies) ϕ.

– v � (ϕ) ⇐⇒ v � ϕ
– v � ¬ϕ ⇐⇒ v̄ � ϕ
– v � ϕ ∧ ψ ⇐⇒ v � ϕ and v � ψ
– v � b! ⇐⇒|v|> 0 and v0 ‖= b
– v � b ⇐⇒|v|= 0 or v0 ‖= b
– v � r! ⇐⇒ ∃j <|v| s.t. v0..j |≡ r
– v � r ⇐⇒ ∀j <|v|, v0..j�ω � r!
– v � X !ϕ ⇐⇒|v|> 1 and v1.. � ϕ
– v � [ϕU ψ] ⇐⇒ ∃k <|v| s.t. vk.. � ψ, and ∀j < k, vj.. � ϕ
– v � [ϕW ψ] ⇐⇒ ∃k <|v| s.t. vk.. � ψ, and ∀j < min(k, |v|) vj.. � ϕ
– v � ϕ abort b ⇐⇒ v � ϕ or ∃j <|v| s.t. vj ‖= b and v0..j−1�ω � ϕ
– v � 〈r〉ϕ ⇐⇒ ∃j <|v| s.t. v̄0..j |≡ r, vj.. � ϕ
– v � r �→ ϕ ⇐⇒ ∀j <|v| s.t. v̄0..j |≡ r, vj.. � ϕ

2.3 Associating a Regular Grammar with a SERE

Following [12], a grammar G = 〈V , T , P , S〉 consists of the following components:

• V : A finite set of variables.
• T : A finite set of terminals. We assume that V and T are disjoint. In our framework,

T consists of boolean expressions and a special terminal ε.
• P : A finite set of productions. We only consider right-linear grammars, so all pro-

ductions are of the form V → aW or V → a, where a is a terminal, and V and W
are variables.

• S: A special variable called a start symbol.

We say that a grammar G is associated with a SERE r if, intuitively, they both define
the same language. While this definition is not accurate, we show a precise construction
of an associated grammar for a given SERE in Appendix A. For example, we associate
the following grammar G with SERE r = (a1b1)[∗] && (a2b2)[∗]

V1 → ε | (a1 ∧ a2)V2
V2 → (b1 ∧ b2)V1

Theorem 1. For every SERE r of length n, there exists an associated grammar G with
the number of productions O(2n). If we restrict SERE’s to the three traditional op-
erators: concatenation ( ; ), union ( | ), and Kleene closure ( [∗] ), the number of
productions becomes linear in the size of r.

3 Signals, Their Temporal Logic and Timed Automata

In this section we presented the real-time logic MITL, for which we will present testers
in Section 9. Most of the material in this section and in Section 9 is taken from [16].
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3.1 Signals

Two basic semantic domains can be used to describe timed behaviors. Time-event
sequences consist of instantaneous events separated by time durations while discrete-
valued signals are functions from time to some discrete domain. The reader may con-
sult the introduction to [5] for more details on the algebraic characterization of these
domains. In this work we use Boolean signals as the semantic domain, which is the
natural choice for MITL.

Let the time domain T be the set R≥0 of non-negative real numbers. A Boolean
signal is a function ξ : T → B

n. We use ξ[t] for the value of the signal at time t and
the notation σt1

1 · σt2
2 · · · for a signal whose value is σ1 at the interval [0, t1), σ2 in the

interval [t1, t1 + t2), etc. For the sake of simplicity we restrict ourselves to such left-
closed right-open signal segments and to timed modalities that use only closed intervals.
As a consequence we prohibit signal with punctual intervals which are meaningless in
the algebraic definition of signals in [5].

3.2 Real-Time Temporal Logic

The syntax of MITL is defined by the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U[a,b]ϕ2 | ϕ1Uϕ2

where p belongs to a set P = {p1, . . . , pn} of propositions and b > a ≥ 0 are rational
numbers (in fact, it is sufficient to consider integer constants). From the basic MITL

operators one can derive other standard Boolean and temporal operators, in particular
the time-constrained eventually and always operators:

� [a,b] ϕ = T U[a,b]ϕ and � [a,b] ϕ = ¬ � [a,b] ¬ϕ

We interpret MITL[a,b] over n-dimensional Boolean signals and define the satisfiability
relation similarly to LTL.

(ξ, t) |= p ↔ p[t] = T

(ξ, t) |= ¬ϕ ↔ (ξ, t) �|= ϕ
(ξ, t) |= ϕ1 ∨ ϕ2 ↔ (ξ, t) |= ϕ1 or (ξ, t) |= ϕ2
(ξ, t) |= ϕ1Uϕ2 ↔ ∃t′ ≥ t (ξ, t′) |= ϕ2 and ∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ1
(ξ, t) |= ϕ1U[a,b]ϕ2 ↔ ∃t′ ∈ [t + a, t + b] (ξ, t′) |= ϕ2 and ∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ1

Note that our definition of the semantics of the time-bounded until operator differs
slightly from definition in [3] which requires ϕ1 to hold in the open interval (t′, t).
Hence our definition can be expressed in their terms as ϕ1 ∧ (ϕ1U[a,b](ϕ1 ∧ ϕ2)). A
signal ξ satisfies the formula ϕ iff (ξ, 0) |= ϕ.

3.3 Timed Automata

We use a variant of timed automata which differs slightly from the classical definitions
[2], [23] as it reads multi-dimensional dense-time Boolean signals, hence the alphabet
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letters are associated with states rather than with transitions. We also extend the domain
of clock values to include the special symbol ⊥ indicating that the clock is currently
inactive.2

The set of valuations of a set C = {c1, . . . , cn} of clock variables, each denoted as
v = (v1, . . . , vn), defines the clock space H = (R≥0 ∪ {⊥})n. A configuration of a
timed automaton is a pair of the form (q, v) with q being a discrete state. For a clock
valuation v = (v1, . . . , vn), v + t is the valuation (v′1, . . . , v

′
n) such that v′i = vi if

vi = ⊥ and v′i = vi + t otherwise. A clock constraint is a Boolean combination of
conditions of the forms c ≥ d or c > d for some integer d.

Definition 1 (Timed Automaton). A timed automaton over signals is a tuple A =
(Σ, Q, C, λ, I, Δ, q0, F ) where Σ is the input alphabet (Bn in this paper), Q is a finite
set of discrete states and C is a set of clock variables. The labeling function λ : Q → 2Σ

associates a subset of the alphabet to every state while the staying condition (invariant)
I assigns to every state q a subset Iq of H defined by a conjunction of inequalities of
the form x ≤ d, for some clock x and integer d. The transition relation Δ consists
of elements of the form (q, g, ρ, q′) where q and q′ are discrete states, the transition
guard g is a subset of H defined by a clock constraint and ρ is the update function, a
transformation of H defined by a assignments of the form c := 0 or c := ⊥. Finally q0
is the initial state and F ⊆ Q is the acceptance condition.

The behavior of the automaton as it reads a signal ξ consists of an alternation between
time progress periods where the automaton stays in a state q as long as ξ[t] ∈ λ(q) and
Iq holds, and discrete instantaneous transitions guarded by clock conditions. Formally,
a step of the automaton is one of the following:

• A time step: (q, v) σt

−→ (q, v + t), t ∈ R+ such that σ ∈ λ(q) and v + t satisfies Iq

(due to the structure of Iq this holds as well for every t′, 0 ≤ t′ < t).

• A discrete step: (q, v) δ−→ (q′, v′), for some transition δ = (q, g, ρ, q′) ∈ Δ, such
that v satisfies g and v′ = ρ(v)

A run of the automaton starting from a configuration (q0, v0) is a finite or infinite se-
quence of alternating time and discrete steps of the form

ξ : (q0, v0)
σ

t1
1−→ (q0, v0 + t1)

δ1−→ (q1, v1)
σ

t2
2−→ (q1, v1 + t2)

δ2−→ · · · ,

such the
∑

ti diverges. A run is accepting if the set of time instants in which it visits
states in F is unbounded. The signal carried by the run is σt1

1 · σt2
2 · · · The language of

the automaton consists of all signals carried by accepting runs.

4 Computational Model

In this section we present the computational model for describing software and hard-
ware systems whose properties we wish to verify.

2 This is a syntactic sugar since clock inactivity in a state can be encoded implicitly by the fact
that in all paths emanating from the state, the clock is reset to zero before being tested [9].
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4.1 Fair Discrete Systems with Finite Computations

As our computational model We take a just discrete system (JDS), which is a variant
of fair transition system [19], and is a weaker version of the more general fair discrete
system considered in [13]. Under this model, a system D : 〈V, Θ, R, J , F 〉 consists of
the following components:

• V : A finite set of system variables. A state of the system D provides a type-
consistent interpretation of the system variables V . For a state s and a system vari-
able v ∈ V , we denote the value assigned to v by the state s by s[v] .

• Θ: The initial condition. This is an assertion (state formula) characterizing the ini-
tial states. A state is defined to be initial if it satisfies Θ.

• R(V, V ′): The transition relation, which is an assertion that relates the values of
the variables in V interpreted by a state s to the values of the variables V ′ in an
R-successor state s′.

• J : A set of justice (weak fairness) requirements. Each justice requirement is an
assertion. An infinite computation must include infinitely many states satisfying
the assertion.

• F : The termination condition, which is an assertion specifying the set of final states.
Each finite computation must end in a final state.

A computation of a JDS D is a non-empty sequence of states σ : s0, s1, s2, ..., satisfying
the requirements:

• Initiality: s0 is initial.
• Consecution: For each i ∈ [0, |σ|), the state si+1 is a R-successor of state si. That

is, 〈si, si+1〉 ∈ R(V, V ′) where, for each v ∈ V , we interpret v as si[v] and v′ as
si+1[v].

• Justice: If σ is infinite, then for every J ∈ J , σ contains infinitely many occur-
rences of J-states.

• Termination: If σ = s0, s1, s2, ..., sk (i.e., σ is finite), then sk must satisfy F .

Given two JDS’s, D1 and D2, their synchronous parallel composition, D1 ||| D2, is the
JDS whose sets of variables and justice requirements are the unions of the corresponding
sets in the two systems, whose initial and termination conditions are the conjunctions of
the corresponding assertions, and whose transition relation is defined as the conjunction
of the two transition relations. Thus, a step in an execution of the composed system is a
joint step of the systems D1 and D2.

4.2 Interpretation of PSL Formulas over a JDS

We assume that the set of atomic propositions P is a subset of the variables V , so we can
easily evaluate all the propositions at a given state of a JDS. We say that a letter l ∈ 2P

corresponds to a state s if p ∈ l iff s[p] = 1. Similarly, we define a correspondence
between words and computations. We say, that a computation σ models (or satisfies)
PSL formula ϕ, denoted σ � ϕ, if the corresponding word v satisfies PSL formula ϕ.
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5 Temporal Testers

One of the main problems in constructing a Büchi automaton for a PSL formula (or for
that matter any ω-regular language) is that the conventional construction is not com-
positional. In particular, given Büchi automata Aϕ and Aψ for formulas ϕ and ψ, it is
not trivial to build an automaton for ϕU ψ. Compositionality is an important consider-
ation, especially in the context of PSL. It is expected that specifications are written in
a modular way, and PSL has several language constructs to facilitate that. For example,
any property can be given a name, and a more complex property can be built by simply
using a named sub-property instead of an atomic proposition.

One way to achieve compositionality with Büchi automata is to use alternation [6].
Nothing special is required from the Büchi automata to be composed in such man-
ner, but the presence of universal branching in the resulting automaton is undesirable.
Though most model checkers can deal with existential non-determinism directly and
efficiently, universal branching is usually preprocessed at exponential cost.

Our approach is based on the observation that while there is very little room to ma-
neuver during the merging step of two Büchi automata, the construction process of the
sub-components is wide open for a change. In particular, we suggest that each sub-
component assumes the responsibility of being easily composed with other parts. The
hope is that, by requiring that individual parts be more structured than the traditional
Büchi automata, we can significantly simplify the composition process.

Recall that the main property of Büchi automata (as well as any other acceptor) is
to correctly identify a language membership of a given sequence of letters, starting
from the very first letter. It turns out that for composition it is also very useful to know
whether a word is in the language starting from an arbitrary position i. We refer to
this new class of objects as testers. Essentially, testers are transducers that at each step
output whether the suffix of the input sequence is in the language. Of course, the suffix
is not known by the time the decision has to be made, so the testers are inherently
non-deterministic.

Formally, a full tester for a formula ϕ is a JDS Tϕ, which has a distinguished boolean
variable xϕ, such that:

• Soundness: For every computation σ : s0, s1, s2, ... of Tϕ , si[xϕ] = 1 iff (σ, i) |=
ϕ

• Completeness: For every sequence of states σ : s0, s1, s2, ..., there is a correspond-
ing computation of Tϕ σ′ : s′0, s

′
1, s

′
2, ... such that for each i, si and s′i agree on the

interpretation of ϕ-variables.

Intuitively, the second condition requires that a tester must be able to correctly inter-
pret xϕ for an arbitrary input sequence. Otherwise, the first condition can be trivially
satisfied by a JDS that has no computations.

5.1 Positive and Negative Testers

For many applications, such as model checking, a full tester can be too powerful. In-
deed, everywhere where an acceptor suffices, we can use a full tester, but in such case
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we are really only interested in the very first output value and only when the value is
true. While we still need intermediate output values for compositionality, we can re-
lax the soundness condition to concentrate on the positive values of xϕ. Another way
to look at the problem is the fact that a full tester for a formula ϕ not only implicitly
defines an acceptor for ϕ itself, but also for ¬ϕ. An undesirable consequence of this
fact is that a full tester for a safety property such as � p will have a non trivial justice
requirement since it is also a full tester for � ¬p. To address this issue, we define posi-
tive and negative testers. Formally, a positive tester for a formula ϕ is a JDS T+

ϕ , which
has a distinguished boolean variable xϕ, such that:

• Soundness: For every computation σ : s0, s1, s2, ... of T +
ϕ , if si[xϕ] = 1 then

(σ, i) |= ϕ

• Completeness: For every sequence of states σ : s0, s1, s2, ..., there exists a corre-
sponding T +

ϕ -computation σ′ : s′0, s
′
1, s

′
2, ... such that for each i, si and s′i agree on

the interpretation of ϕ-variables, and si[xϕ] = 1 iff (σ, i) |= ϕ.

The definition of a negative tester is fully analogous.

Theorem 1. A full tester is also a proper positive tester and a negative tester.

Theorem 2. If T +
ϕ a positive tester and T−

ϕ is a negative tester for a formula ϕ that may
only share ϕ-variables, then a full tester can be defined as the composition T +

ϕ ||| T−
ϕ ,

whose transition relation is augmented with the following conjunct that defines the out-
put variable xϕ:

(x+
ϕ → xϕ) ∧ (xϕ → x−

ϕ )

From now on, we may refer to a full tester as simply a tester.

6 LTL Testers

We continue the presentation of testers by considering the two basic LTL operators X!
(next) and U (until), which are also part of the PSL logic (being an extension of LTL).
First, we show how to build testers for the two basic formulas X! b and b1 U b2, where
b, b1, and b2 are boolean formulas. Then, we demonstrate the compositionality of the
testers by easily extending the construction to cover full LTL. Note that our construction
for LTL operators is very similar to the one presented in [13].

6.1 A Tester for ϕ = X! b

Let Tϕ = 〈Vϕ, Θϕ, Rϕ, Jϕ, Fϕ〉 be the tester we wish to construct. The components of
Tϕ are defined as follows:

T (X! b) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Vϕ : Vars(b) ∪ {xϕ}
Θϕ : 1

Rϕ(V, V ′) : xϕ = b′

Jϕ : ∅
Fϕ : ¬xϕ



On the Merits of Temporal Testers 183

The set Vars(b) contains all the propositions on which the boolean formula b depends.
It almost immediately follows from the construction that T (X! b) is indeed a good

tester for X! b. The soundness of the T (X! b) is guaranteed by the transition relation
with the exception that we still have a freedom to incorrectly interpret xϕ at the very
last state. This case is handled separately by insisting that every final state must interpret
xϕ as false . The completeness follows from the fact that we do not restrict the Vars(b)
variables in any way by the transition relation, and we can always interpret xϕ properly,
by either matching b′ or setting it to false in the last state.

6.2 A Tester for ϕ = b1 U b2

The components of Tϕ are defined as follows:

T (b1 U b2) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Vϕ : Vars(b1, b2) ∪ {xϕ}
Θϕ : 1

Rϕ(V, V ′) : xϕ = [b2 ∨ (b1 ∧ x′
ϕ)]

Jϕ : ¬xϕ ∨ b2
Fϕ : xϕ ↔ b2

Unlike the previous tester, T (b1 U b2) has a non-empty justice set. A technical reason
is that the transition relation allows xϕ to be continuously set to true without having a
single state that actually satisfies b2. The situation is ruled out by the justice require-
ment. Another way to look at the problem is that Rϕ represents an expansion formula
for the U (until) operator, namely b1 U b2 ↔ b2 ∨ (b1 ∧ X![b1 U b2]). In general, start-
ing with an expansion formula is a good first step when building a tester. However, the
expansion formula alone is usually not sufficient for a proper tester. Indeed, consider
the operator W (weak until, unless), which has exactly the same expansion formula,
namely b1W b2 ↔ b2 ∨ (b1 ∧ X![b1W b2]). We use justice to differentiate between the
two operators. Note that the justice is only needed to confirm true output values. There-
fore, a negative tester T−

ϕ for ϕ = b1 U b2 is simpler (no justice) and can be formally
defined as:

T−(b1 U b2) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Vϕ : Vars(b1, b2) ∪ {xϕ}
Θϕ : 1

Rϕ(V, V ′) : b2 ∨ (b1 ∧ x′
ϕ)→ xϕ

Jϕ : ∅
Fϕ : b2 →xϕ

7 Tester Composition

In Fig. 2, we present a recursive algorithm that builds a tester for an arbitrary LTL

formula ϕ. In Example 1, we illustrate the algorithm by applying the tester construction
for the formula ϕ = true U

(
X![b1 U b2] ∨ (b3 U [b1 U b2])

)
.
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• Base Case: If ϕ is a basic formula (i.e., ϕ = X! b or ϕ = b1 U b2), use construc-
tion from Section 6. For the trivial case, when the formula ϕ does not contain any
temporal operators, we can use a tester for false U ϕ.

• Induction Step: Let ψ be an innermost basic sub-formula of ϕ, then Tϕ =
Tϕ[ψ/xψ] ||| Tψ, where ϕ[ψ/xψ] denotes the formula ϕ in which each occur-
rence of the sub-formula ψ is replaced with xψ.

Fig. 2. Tester construction for an arbitrary LTL formula ϕ

Example 1. A tester for ϕ = true U
(
X![b1 U b2] ∨ ¬(b3 U [b1 U b2])

)

We start by identifying b1 U b2 to be the innermost basic sub-formula and building the
corresponding tester, Tb1 U b2 . Assume that z is the output variable of the tester Tb1 U b2 .
Let α = ϕ[b1 U b2/z]; after the substitution α = true U

(
X! z ∨ ¬(b3 U z)

)
. Note that

we performed the substitution twice, but there is no need for two testers, which can
result in significant savings. We proceed in similar fashion and build two more testers
TX! z and Tb3 U z with the output variables x and y. After the substitutions, we obtain
β = true U [x∨¬y]. Since x∨¬y is just a boolean expression, the formula satisfies the
condition of the base case, and we can finish the construction with one more step. The
final result can be expressed as:

Tϕ = Tβ ||| TX! z ||| Tb3 U z |||Tb1 U b2 .

7.1 Composition Rules for Positive and Negative Testers

Definition 4 (Polarity of a sub-formula ψ) Given a formula ϕ, the polarity of a sub-
formula ψ with respect to ϕ is positive if the number of negations enclosing ψ in ϕ is
even and negative otherwise.

To build a positive tester T +
ϕ , we optimize the induction step in Fig. 2 as follows:

• If sub-formula ψ has a positive polarity, then T +
ϕ = T +

ϕ[ψ/xψ] ||| T +
ψ

• If sub-formula ψ has a negative polarity, then T +
ϕ = T +

ϕ[ψ/xψ] ||| T−
ψ

• Otherwise, if sub-formula appears with both positive and negative polarity, then
T +

ϕ = T +
ϕ[ψ/xψ] ||| Tψ

The algorithm for building a negative tester is fully symmetric. To illustrate this con-
struction consider the formula ϕ presented in Example 1. A positive tester is given by:

T +
ϕ = T +

β ||| T +
X! z ||| T−

b3 U z ||| Tb1 U b2 .

A negative tester is given by:

T−
ϕ = T−

β |||T−
X! z ||| T +

b3 U z ||| Tb1 U b2 .

Also note that while we assumed that ϕ is an LTL formula, the algorithms described in
this section are applicable for PSL and MITL as well. The only extension necessary is
the ability to deal with additional basic formulas.
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8 PSL Testers

As we have mentioned before, to handle the full PSL it is enough to handle all the
basic PSL formulas. More complicated formulas can be handled via tester composition
according to the algorithm in Fig. 2. There are only two additional PSL basic formulas
that we need to consider, namely ϕ = 〈r〉b and ϕ = r, where r is a SERE and b is a
boolean expression. All other PSL temporal operators can be expressed using those two
and the LTL operators, X ! and U . For example, r! ≡ 〈r〉true , and r �→ b ≡ ¬(〈r〉¬ϕ).

8.1 A Tester for ϕ = 〈r〉b

Let Tϕ = 〈Vϕ, Θϕ, Rϕ, Jϕ, Fϕ〉 be the tester we wish to construct. Assume that xϕ is
the output variable. Let G = 〈V , T , P , S〉 be a grammar associated with r. With no loss
of generality, we assume that G has variables V1, . . . , Vn with V1 being the start symbol.
In addition, each variable Vi, has derivations of the form:

Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

where α1, . . . , αm, β1, . . . , βn are boolean expressions. The case that variable Vi does
not have a particular derivation Vi → βjVj or Vi → αk, is covered by having βj =
false , and similarly, αk = false . Note that by insisting on this specific form, which does
not allow ε productions, we cannot express whether an empty string is in the language.
However since, by definition of the 〈·〉 operator, a prefix that satisfies r must be non-
empty, we do not need to consider this. The tester Tϕ is given by:

Tϕ :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vϕ : Vars(r, b) ∪ {xϕ} ∪ {X1, . . . , Xn, Y1, . . . , Yn}
Θϕ : 1
Rϕ : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to ρ the conjunct
Xi = (α1 ∧ b) ∨ · · · ∨ (αm ∧ b) ∨ (β1 ∧ X ′

1) ∨ · · · ∨ (βn ∧ X ′
n)

and the conjunct
Yi → (α1 ∧ b) ∨ · · · ∨ (αm ∧ b) ∨ (β1 ∧ Y ′

1) ∨ · · · ∨ (βn ∧ Y ′
n)

the output variable is constrained by the conjunct
xϕ = X1

Jϕ : {¬Y1 ∧ · · · ∧ ¬Yn, X1 = Y1 ∧ · · · ∧ Xn = Yn}
Fϕ : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to F the conjunct
Xi = (α1 ∧ b) ∨ · · · ∨ (αm ∧ b)

Example 2. A Tester for ϕ = 〈{pq}[∗]〉b.

To illustrate the construction, consider the formula 〈{pq}[∗]〉b. Following the algorithm
from Appendix A and removing ε productions, the associated right-linear grammar for
the SERE {pq}[∗] is given by

V1 → pV2
V2 → q | qV1
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Consequently, a tester for 〈{pq}[∗]〉b is given by

T (〈{pq}[∗]〉b) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vϕ : {p, q, b, xϕ} ∪ {X1, X2, Y1, Y2}
Θϕ : 1

Rϕ(V, V ′) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(X1 = (p ∧ X ′
2)) ∧

(X2 = (q ∧ b) ∨ (q ∧ X ′
1)) ∧

(Y1 → (p ∧ Y ′
2)) ∧

(Y2 → (q ∧ b) ∨ (q ∧ Y ′
1)) ∧

xϕ = X1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Jϕ : {¬Y1 ∧ ¬Y2, X1 = Y1 ∧ X2 = Y2}
Fϕ : (X1 = false) ∧ (X2 = q ∧ b)

The variables {X1, . . . , Xn, Y1, . . . , Yn} are expected to check that the rest of the
sequence from now on has a prefix satisfying the SERE r. Thus, the subsequence
sj , . . . , sk, . . . � 〈r〉b iff there exists a generation sequence V j = V1, V

j+1, . . . , V k,
such that for each i, j ≤ i < k, there exists a grammar rule V i → βV i+1, where
si ‖= β, V k → α, and sk ‖= (α ∧ b).

The generation sequence is represented in a run of the tester by a sequence of true
valuations for the variables Zj = Z1, Z

j+1, . . . , Zk where Zi ∈ {X i, Y i} for each i ∈
[j..k]. An important element in this checking is to make sure that any such generation
sequence is finite. This is accomplished through the double representation of each Vi

by Xi and Yi. The justice requirement (X1 = Y1) ∧ · · · ∧ (Xn = Yn) guarantees that
that any true Xi is eventually copied into Yi. The justice requirement ¬Y1 ∧ · · · ∧ ¬Yn

guarantees that all true Yi’s are eventually falsified. Together, they guarantee that there
exists no infinite generation sequence. The double representation approach was first
introduced in [20].

8.2 A Tester for ϕ = r

We start the construction exactly the same way as we did for ϕ = 〈r〉b, in Section 8.1.
Let Tϕ = 〈Vϕ, Θϕ, Rϕ, Jϕ, Fϕ〉 be the tester we wish to construct. Assume that xϕ is
the output variable. Let G = 〈V , T , P , S〉 be a grammar associated with r.

The tester Tϕ is given by:

T (r) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vϕ : Vars(r) ∪ {xϕ} ∪ {X1, . . . , Xn, Y1, . . . , Yn}
Θϕ : 1

Rϕ(V, V ′) : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to ρ the conjunct
Xi = α1 ∨ · · · ∨ αm ∨ (β1 ∧ X ′

1) ∨ · · · ∨ (βn ∧ X ′
n)

and the conjunct
α1 ∨ · · · ∨ αm ∨ (β1 ∧ Y ′

1) ∨ · · · ∨ (βn ∧ Y ′
n) → Yi

the output variable is constrained by the conjunct
xϕ = X1

Jϕ : {Y1 ∧ · · · ∧ Yn, X1 = Y1 ∧ · · · ∧ Xn = Yn}
Fϕ : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to F the conjunct
Xi = α1 ∨ · · · ∨ αm ∨ β1 ∨ · · · ∨ βn
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The variables {X1, . . . , Xn, Y1, . . . , Yn} are expected to check that the rest of the se-
quence from now on has a prefix that does not violate SERE r. We follow a similar
approach as for the tester ϕ = 〈r〉b. However, now we are more concerned with false
values of the variables X1 . . .Xn. The duality comes from the fact that, now, we are
trying to prevent postponing the violation of the formula r forever.

8.3 Complexity of the Construction

Theorem 2. For every PSL formula ϕ of length n, there exists a tester with O(2n)
variables. If we restrict SERE’s to three traditional operators: concatenation ( ; ), union
( | ), and Kleene closure ( [∗] ), the number of variables is linear in the size of ϕ.

To justify the result, we can just count the fresh variables introduced at each step of
the tester construction. There is only linear number of sub-formulas, so there is a linear
number of output variables. The only other variables introduced are the ones that are
used to handle SERE’s. According to Theorem 1, the associated grammars contain at
most O(2n) non-terminals (O(n) - for the restricted case). We conclude by observing
that testers for the formulas ϕ = 〈r〉b and ϕ = r introduce exactly two variables, Xi

and Yi, for each non-terminal Vi.

9 MITL Testers

In this section we show how to build for every MITL formula ϕ a timed tester, which is
a timed automaton Tϕ that accepts a language defined by the formula ϕ ∧ �(xϕ ≡ ϕ).
For untimed operators, we can use LTL testers defined in Section 5. In addition, we can
use tester composition algorithm described in Section 7. Therefore, in order to handle
an arbitrary MITL formula, we just need to build one additional tester for ϕ = p U[a,b] q.
Much of the material in this section is taken from [16].

Our construction for timed until would follow the lines for the untimed case, based
on generating predictions for xϕ and aborting when actual values of the signals p and
q show they were wrong. However, working on dense time we have the problem that a-
priori, the set of potential predictions even for a bounded period of time includes signals
with an arbitrary number of switchings between true and false, and such predictions
cannot be memorized by a finite-state timed device. An analogous problem exists with
untimed case also, since, there, we also make an unbounded number of prediction that
should be a checked sometime in the futures. We have resolved the problem for the
untimed case based on the observation that our guesses essentially form a finite number
of equivalence classes, so we only need to memorize finitely many things. For example,
consider untimed until, ϕ = p U q. Assume, that at the current state p is true and q is
false, and we guess that xϕ is true, meaning ϕ holds at the current position. Moreover, at
the next state again p∧¬q is true, and we again predict that xϕ is true. There is no need
to distinguish the prediction done at the current and the previous state, and it is enough
to remember and verify just one of them. The solution for the timed case is completely
different and based on the observation that predictions that switch too frequently cannot
be correct. The following lemma, taken from [16] formalizes this observation:
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Lemma 1. Let x be a boolean signal satisfying �(x ≡ p U[a,b] q) for some arbitrary
signals p and q. Then, for any factorization x = v · 1r1 · 0r2 · 1r3 · 0r4 · w we have
r2 + r3 > min{a, b − a}.

Proof: The following observations concerning the constraints on the values of x, p and
q at every t follow from the definitions:

1. If x holds at t, p must hold in all the interval [t, t + a];
2. If q holds at t+ b and p holds throughout [t, t+ b] then x holds during [t, t+ b−a].

Let [t1, t2) and [t2, t3) be the corresponding intervals for 0r2 and 1r3 , respectively (see
Fig. 3), and let us show that (t2−t1) < a implies that (t3, t2) ≥ b−a. Since (t2−t1) <
a and x(t1 − ε) = 1, observation 1 implies that p = 1 throughout the interval [t1, t2].
As x(t) = 1 for all t ∈ [t2, t3), it follows that p(t) = 1 for all t ∈ [t1, t3). This
implies that q must start holding at t2 + b and not before that, because otherwise this
will imply that x holds inside the interior of [t1, t2] contrary to our assumptions. It
follows by observation 2 that x holds continuously in [t2, t2 + b − a]. Consequently,
t3 ≥ t2 + b − a, implying that (t3 − t2) ≥ b − a

The importance of this property is that it bounds the variability of any reasonable
prediction and constrains the relation between the logical and metrical length of the
candidate signals. Let d = min{a, b − a} and m = b/d. Each 01 part of x has metric
length of at least d, and an acceptable prediction of the form (01)m · 0 has a metric
length beyond b. Therefore, its initial part can be forgotten and the remaining part has
at most 2m predictions left unverified.

In addition to the above lemma, we are going to use the following equivalence:

p U [a,a+b] q ≡ � a

[
� [0,a] p ∧ (p U [0,b] q)

]

where � a is a “shift by a” operator, a shorthand for � [a,a], and � [0,a] p is a past
analog of the �[a,b]operator. Note that � [a,a]p is not a proper MITL formula since
operator � [a,b] requires that a < b. The formula � [0,a] p is also not in the language,
but it can be added if needed. We define that the formula � [0,a] p is satisfied iff p has
been continuously true for the last a time units.

Thus, assuming that we have constructed testers T [� a p], T [� [0,a] p], and
T [p U [0,b] q] for the corresponding formulas, then T [p U [a,a+b] q] can be given by the
three ways synchronous parallel composition:

T [p U [0,b] q] ||| T [� [0,a] p] ||| T [� a(xp U [0,b] q ∧ x� [0,a] p)].

t1 t2

r2 = t2 − t1

t3

r3 = t3 − t2

Fig. 3. A signal u satisfying �(x ≡ p U[a,b] q)
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4 : pqx
t ≤ b

0 : px

1 : pqx

2 : pqx 3 :
pqx
t ≤ b

t := 0

t := 0

t ≤ b

t ≥ b

Fig. 4. A tester for p U[0,b] q

Next, we are going to present the three remaining testers. By convention, each node
in Fig. 4, Fig. 5, and Fig. 6 has an implicit self-loop; the self-loops are omitted for
sake of clarity. We also assume that all the clocks are initially set to 0. In addition, note
that unlike the untimed case, for the timed testers shown in this paper the validity of
predictions is always resolved in finite time. Therefore, we do not need any conditions
at infinity.

9.1 A Tester for p U [0,b] q

In Fig. 4, we present a tester for this formula.

9.2 A Tester for � [0,a] p

In Fig. 5, we present a tester for the formula � [0,a] p.

9.3 A Tester for � a p

In general, it is impossible to construct a tester for the formula � a p with a bounded
number of clocks. However, if we know that the signal p has bounded variability, then
such a construction is possible. We assume in the following that p has no more than k
changes for each period of length a. This holds in our case since operator� a is only
used as an auxiliary construct to handle U [a,a+b] operator to which Lemma 1 applies.
The tester for � a p can be given by the following parallel composition:

U ||| P ||| ON [0] ||| OFF [0] ||| · · · ||| ON [k−1] ||| OFF [k−1]

In Fig. 6, we present the automata U , P , and generic ON [i] and OFF [i].

t := 00 : px 2 : px

t ≤ a

t ≥ a1 : px
t ≤ a

Fig. 5. A tester for � [0,a] p
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/xoff
x x

/ xoff

P :

g ≤ a

U :

toff [i] ≤ aton[i] ≤ a

xon / ton[i] := 0 xoff / toff [i] := 0

pon [ton[i] ≥ a] poff [toff [i] ≥ a]

p p

g ≥ a / pon

/pon
g ≥ a / poff

/poff

xoff /xon /

OFF [i] :ON [i] :

/ xon

/xon

Fig. 6. The automata U , P , ON [i], and OFF [i]

10 Using Testers for Model Checking

One of the main advantages of our construction is that all the steps, as well as the final
result – the tester itself, can be represented symbolically. That is particularly handy if
one is to use symbolic model checking [4]. Assume that the formula under consideration
is ϕ, and Tϕ = 〈Vϕ, Θϕ, Rϕ, Jϕ, Fϕ〉 is the corresponding tester. Let JDS D represent
the system we wish to model check.

We are going to use traditional automata theoretic approach based on synchronous
composition, as in [4]. We perform the following steps:

• Compose D with T +
ϕ to obtain D |||T +

ϕ .
• Check if D |||T +

ϕ has a (fair) computation, such that s0[xϕ] = 0.
D ||| T +

ϕ has such a computation iff D does not satisfy ϕ.

As can be seen, a tester can be used anywhere instead of an automaton. Indeed, we can
always obtain an automaton from a tester by restricting the initial state to interpret xϕ

as true.

11 LTL Deductive Verification

Another important application of testers is deductive verification, which is ultimately
the only approach towards verification of infinite state systems. A complete deductive
proof system for linear-time temporal logic (LTL) has been presented in [17] and fur-
ther elaborated in [18] and [19]. The approach first defines deductive proof rules for
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special form formulas, the most important of which are formulas of the form p ⇒ � q,
p ⇒ � q, and � � p ⇒ � � q, where p and q are arbitrary past formulas, where
ϕ ⇒ ψ is a shorthand for � (¬ϕ ∨ ψ). To deal with arbitrary formulas, [17] invokes a
general canonic-form theorem, according to which every (quantifier-free) LTL formula
is equivalent to a conjunction of formulas of the form � � pi ⇒ � � qi, for some
past formulas pi and qi. While this approach is theoretically adequate, it is not a prac-
tically acceptable solution to the verification of arbitrary LTL formulas. This is because
the best known algorithms for converting an arbitrary LTL formula into canonic form
are at least doubly exponential (e.g., [11] which is actually non-elementary).

The new tester-based approach which has been first introduced in [14], is based on
a successive elimination of temporal operators from a given formula ϕ until we hit a
special form, to which we can apply the predefined rules. Elimination of the temporal
operators is based on the construction of temporal testers, as presented in Section 5. Let
ϕ be a an arbitrary LTL or even PSL formula containing one or more occurrences of the
sub-formula ψ. In Fig. 7, we present the rule that reduces the proof of ϕ with respect to
some system D to the proof of ϕ[ψ/xψ] over D |||T [ϕ], where T [ϕ] is a temporal tester
for ϕ, xϕ is the output variable of T [ϕ], and ϕ[ψ/xψ ] denotes the formula ϕ in which
each occurrence of the sub-formula ψ is replaced with xψ.

For an arbitrary PSL formula ϕ and FDS D,

D ||| Tϕ |= ϕ[ψ/xψ]

D |= ϕ

Fig. 7.

We are going to illustrate application of the rule from Fig. 7 on the following example:

1 : p 2 : p0 : p

The property whose validity we wish to establish is � � p. First, we construct a tester
for � p and compose it with our system. The transition relation of the new system
D ||| T [ϕ] is presented in Fig. 8.

The justice requirement associated with D ||| T [ϕ] is x� ∨ ¬p, and all just states are
depicted using double ovals. The new property under consideration ϕ[� p/x

�
], which

after the substitution is simply � x
�

. This is one of the special form formulas, and we
can apply the deductive proof from Fig. 9. Strictly speaking our original formula also
has a specialized rule, but for the sake of example we ignored it. However, this is not
totally artificial since the rule we are going to apply is simpler. Of course, our system
after composition is more complex. Nevertheless, one can argue that the additional state
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1 : px
�

2 : px
�

0 : px
�

1 : px
�

2 : px
�

0 : px
�

Fig. 8. System D ||| T [ϕ]

For an FDS D with transition relation ρ and justice set J = {J1, . . . , Jm},
assertions p, q, ϕ1, . . . , ϕm,
well-founded domain (A, �) and a ranking function δ : Σ �→ A

W1. p ⇒q ∨
m∨

j=1

ϕj

W2. For i = 1, . . . , m

ϕi ∧ ρ ⇒q′ ∨ (¬J ′
i ∧ ϕ′

i ∧ δ = δ′) ∨
(

m∨

j=1

ϕ′
j ∧ (δ � δ′)

)

p ⇒ � q

Fig. 9. Well-founded eventuality under justice

variable x
�

makes thing easier since it essentially provides CTL like statification for
the formula � p, where all fair paths out of a state with x

�
set to true must satisfy � p.

To apply the rule from Fig. 9, we need to define a well-founded domain (A, �),
a ranking function δ, and a set of intermediate assertions ϕ1, . . . , ϕm. The function δ
is intended to measure the distance of the current state to a state satisfying the goal
q. Premise W1 states that every p-state satisfies q or one of ϕ1, . . . , ϕm. Premise W2
states that for every i, 1 ≤ i ≤ m, a ϕi-state with rank δ = u is followed by either a
q-state or a ϕi-state that does not satisfy Ji and has the same rank u, or by a ϕj-state
(1 ≤ j ≤ m) with a smaller rank (i.e., u � δ). The rule claims that if premise W1,
and the set of m premises W2 are D-valid, then for all (fair) computations a p-state is
eventually followed by q-state. In our case, we take p to be true, δ = 2 − state id (e.g.,
δ for the state labeled with [0 : px

�
] is 2 − 0 = 2), ϕ1 = x

�
.
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A Associating a Regular Grammar with a SERE

Let b be a boolean expression, r′, r, r1, r2 be SEREs, and G′, G, G1, G2 the correspond-
ing grammars. Our algorithm is recursive and we assume that G, G1, and G2 have already
been properly constructed. Our goal is to build G′ = 〈V ′, T ′, P ′, S′〉 for the SERE r′.

• r′ = b

− V ′ = {V }
− T ′ = {b}
− P ′ = {V → b}
− S′ = V

• r′ = r1 ; r2

− V ′ = V1 ∪ V2

− T ′ = T1 ∪ T2

− P ′ =

{V → aW | V → aW ∈ P1} ∪
{V → aS2 | V → a ∈ P1, a �= ε} ∪
{V → aS2 | V → aW ∈ P1, W → ε ∈ P1} ∪
P2

− S′ = S1

• r′ = r1 : r2

− V ′ = V1 ∪ V2

− T ′ = T1 ∪ T2

− P ′ =

{V → aW | V → aW ∈ P1} ∪
{V → a ∧ b | V → a ∈ P1, S2 → b ∈ P2} ∪
{V → (a ∧ b)W | V → a ∈ P1, S2 → bW ∈ P2} ∪
P2

where a ∧ b =

⎧
⎪⎪⎨

⎪⎪⎩

ε, if a = b = ε
a, if b = ε
b, if a = ε
a ∧ b, otherwise

− S′ = S1

• r′ = r1 | r2

− V ′ = {S′} ∪ V1 ∪ V2

− T ′ = T1 ∪ T2

− P ′ =

{S′ → aW | S1 → aW ∈ P1} ∪
{S′ → aW | S2 → aW ∈ P1} ∪
P1 ∪
P2

− S′ = S′
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• r′ = r1 && r2
− V ′ = V1 × V2
− T ′ = T1 ∪ T2

− P ′ =
{(V, X) → a ∧ b(W, Y ) | V → aW ∈ P1, X → bY ∈ P2} ∪
{(V, X) → a ∧ b | V → a ∈ P1, X → b ∈ P2}

− S′ = (S1, S2)

• r′ = [∗0]
− V ′ = {V }
− T ′ = {b}
− P ′ = {V → ε}
− S′ = V

• r′ = r[∗]
− V ′ = V
− T ′ = T

− P ′ =
{S → ε} ∪
{V → aS | V → a ∈ P , a �= ε} ∪
{V → aS | V → aW ∈ P , W → ε ∈ P}

− S′ = S
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