

Lecture Notes in Computer Science 5000
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Orna Grumberg Helmut Veith (Eds.)

25 Years
of Model Checking

History, Achievements, Perspectives

13

Volume Editors

Orna Grumberg
Technion - Israel Institute of Technology
Computer Science Department
Technion City, Haifa 32000, Israel
E-mail: orna@cs.technion.ac.il

Helmut Veith
Technische Universität Darmstadt, Fachbereich Informatik
Hochschulstr. 10, 64289 Darmstadt, Germany
E-mail: veith@forsyte.cs.tu-darmstadt.de

Cover illustration: taken from
"Das große Rasenstück" by Albrecht Dürer (1471-1528)
Current location of the original painting: Albertina, Vienna

Library of Congress Control Number: 2008929605

CR Subject Classification (1998): F.3, D.2.4, D.3.1, D.2, F.4.1, I.2.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-69849-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69849-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12326419 06/3180 5 4 3 2 1 0

Preface

As this volume is going to print, model checking is attracting worldwide media
attention, and we are celebrating the ACM Turing Award 2007 for the paradigm-
shifting work initiated a quarter century ago. Today, model checking technology
evidently ranges among the foremost applications of logic to computer science
and computer engineering. The model checking community has achieved multiple
breakthroughs, bridging the gap between theoretical computer science, hardware
and software engineering, and is reaching out to new challenging areas such as
systems biology and hybrid systems. Model checking is extensively used in the
hardware industry, and has become feasible for verifying many types of software
as well. Model checking has been introduced into computer science and electrical
engineering curricula at universities worldwide, and has become a universal tool
for the analysis of systems.

This volume presents a collection of invited papers based on talks at the sym-
posium “25 Years of Model Checking (25MC).” In addition, we have included fac-
simile reprints of the two visionary papers on model checking by Edmund Clarke,
Allen Emerson, Jean-Pierre Queille, and Joseph Sifakis. The 25MC symposium
was part of the 18th International Conference on Computer Aided Verification
(CAV), which in turn was part of the Federated Logic Conference (FLOC) 2006
in Seattle. The program was complemented by a panel on “Verification in the
Next 25 Years” organized by Limor Fix.

In organizing 25MC, we aimed to encourage a sense of common achieve-
ment in the model checking community, and also to give students and young
researchers a global perspective on the field. As the number of research groups
and conferences in model checking is steadily increasing, the 25MC symposium
focused on the state of the art and the future challenges, seen through the eyes
of the researchers who have shaped the field during the last decades. The in-
vited speakers were encouraged to reflect on historical perspectives as well as
exciting future research directions. Consequently, the present volume contains
recollections and surveys as well as original technical contributions.

As the 25MC symposium replaced traditional tutorials in CAV 2006, our
program was confined to a single day with a limited number of slots. In selecting
the invited speakers and the sessions, our main goal was to reflect the diversity
of schools and topics in the community, and to make the event exciting and
enjoyable. Given the size and success of our community, our selection of speakers,
alas, was inevitably contingent. Nevertheless, we are somewhat proud that 25MC
brought together three Turing award winners, and, with an overlap of two at the
time of writing, seven Kannelakis award winners.

We are grateful to many people who helped make this enterprise a success, in
particular to Ed Clarke, Allen Emerson, Joseph Sifakis (who unfortunately was
unable to attend FLOC 2006), and Jean-Pierre Queille for agreeing to reprint

VI Preface

their papers in this volume; to Alfred Hofmann of Springer and his colleagues
Ronan Nugent and Ursula Barth for their enthusiasm and support in this project;
to the CAV 2006 Chairs Tom Ball and Robert Jones for making 25MC possible,
as well as the CAV 2008 Chairs Aarti Gupta and Sharad Malik for presenting
this volume at the 20th anniversary CAV in Princeton 2008. We also thank Mo-
hammad Khaleghi and Stefan Kugele for Web design and editorial help with
the proceedings. The panel and the lunch were sponsored by the ACM Distin-
guished Lectureship Program – a program that encourages technical education
and dissemination of technical information.

The cover painting of this volume evokes a period when art and science came
together. Completed by Albrecht Dürer 505 years ago, Das große Rasenstück is
both a celebrated Renaissance masterpiece, and an accurate model of a bug-free
piece of nature. Ad multos annos !

April 2008 Orna Grumberg
Helmut Veith

From left to right: Amir Pnueli, Gerard Holzmann, Moshe Vardi, Bob Kurshan,
David Dill, Ken McMillan, Edmund Clarke, Tom Henzinger, Limor Fix, Randy
Bryant, Rajeev Alur, Allen Emerson. (Photography by Robert Jones)

Table of Contents

The Birth of Model Checking . 1
Edmund M. Clarke

The Beginning of Model Checking: A Personal Perspective 27
E. Allen Emerson

Verification Technology Transfer . 46
R.P. Kurshan

New Challenges in Model Checking . 65
Gerard J. Holzmann, Rajeev Joshi, and Alex Groce

A Retrospective on Murϕ . 77
David L. Dill

Model Checking: From Tools to Theory . 89
Rajeev Alur

Value Iteration . 107
Krishnendu Chatterjee and Thomas A. Henzinger

Fifteen Years of Formal Property Verification in Intel 139
Limor Fix

A View from the Engine Room: Computational Support for Symbolic
Model Checking . 145

Randal E. Bryant

From Church and Prior to PSL . 150
Moshe Y. Vardi

On the Merits of Temporal Testers . 172
A. Pnueli and A. Zaks

Design and Synthesis of Synchronization Skeletons Using Branching
Time Temporal Logic . 196

Edmund M. Clarke and E. Allen Emerson

Specification and Verification of Concurrent Systems in Cesar 216
J.P. Queille and J. Sifakis

Author Index . 231

The Birth of Model Checking�

Edmund M. Clarke

Department of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA
emc@cs.cmu.edu

“When the time is ripe for certain things, these things appear in different
places in the manner of violets coming to light in early spring.” (Wolfgang
Bolyai to his son Johann in urging him to claim the invention of non-
Euclidean geometry without delay [Vit88]).

1 Model Checking

Model Checking did not arise in a historical vacuum. There was an important
problem that needed to be solved, namely Concurrent Program Verification.
Concurrency errors are particularly difficult to find by program testing, since
they are often hard to reproduce. Most of the formal research on this topic in-
volved constructing proofs by hand using a Floyd-Hoare style logic. Probably, the
best known formal system was the one proposed by Owicki and Gries [OG76] for
reasoning about Conditional Critical Regions. Although I had written my the-
sis on the meta-theory of Hoare Logic [Cla77a, Cla77b, Cla78, Cla79a, Cla79c,
Cla80] and was very familiar with the Owick-Gries proof methodology, I was
quite skeptical about the scalability of hand constructed proofs. There had been
some practical research on state exploration methods for communication proto-
cols by Gregor Bochmann and others, but it was largely ignored by the “Formal
Verification Community”. Also, in the late 1970’s, Pnueli [Pnu77] and Owicki
and Lamport [OL82] had proposed the use of Temporal Logic for specifying con-
current programs. Although they still advocated hand constructed proofs, their
work demonstrated convincingly that Temporal Logic was ideal for expressing
concepts like mutual exclusion, absence of deadlock, and absence of starvation.

Allen Emerson and I combined the state-exploration approach with Temporal
Logic in an efficient manner and showed that the result could be used to solve
non-trivial problems. Here is a quote from our original 1981 paper [CE81]:

� This research was sponsored by the National Science Foundation under grant nos.
CNS- 0411152, CCF-0429120, CCR-0121547, and CCR-0098072, the US Army Re-
search Office under grant no. DAAD19-01-1-0485, and the Office of Naval Research
under grant no. N00014-01-1-0796. The views and conclusions contained in this doc-
ument are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

O. Grumberg and H. Veith (Eds.): 25MC Festschrift, LNCS 5000, pp. 1–26, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 E.M. Clarke

“The taskof proof construction is ingeneralquite tedious andagooddeal of
ingenuitymayberequiredtoorganize theproof inamanageable fashion.We
argue that proof construction is unnecessary in the case of finite state con-
current systems and can be replaced by a model-theoretic approach which
willmechanicallydetermine if the systemmeets a specification expressed in
propositional temporal logic. The global state graph of the concurrent sys-
tems can be viewed as a finite Kripke structure and an efficient algorithm
can be given to determine whether a structure is a model of a particular
formula (i.e. to determine if the program meets its specification).”

1.1 What Is Model Checking?

The Model Checking problem is easy to state:

Let M be a Kripke structure (i.e., state-transition graph). Let f be a
formula of temporal logic (i.e., the specification). Find all states s of M
such that M, s |= f .

We used the term Model Checking because we wanted to determine if the tempo-
ral formula f was true in the Kripke structure M , i.e., whether the structure M
was a model for the formula f . Some people believe erroneously that the use of
the term “model” refers to the dictionary meaning of this word (e.g., a miniature
representation of something or a pattern of something to be made) and indicates
that we are dealing with an abstraction of the actual system under study.

Emerson and I gave a polynomial algorithm for solving the Model Checking
Problem for the logic CTL. The figure below shows the structure of a typical Model
Checking system. A preprocessor extracts a state transition graph from a program
or circuit. The Model Checking engine takes the state transition graph and a tem-
poral formula and determines whether the formula is true or not (Figure 1).

Preprocessor Model Checker

Program or circuit

Formula f

True or False

Fig. 1. Model Checker Structure

1.2 Advantages of Model Checking

Model Checking has a number of advantages compared to other verification
techniques such as automated theorem proving or proof checking. A partial list
of some of these advantages is given below:

The Birth of Model Checking 3

– No proofs! The user of a Model Checker does not need to construct a cor-
rectness proof. In principle, all that is necessary is for the user to enter a
description of the circuit or program to be verified and the specification to
be checked and press the “return” key. The checking process is automatic.

– Fast. In practice, Model checking is fast compared to other rigorous methods
such as the use of a proof checker, which may require months of the user’s
time working in interactive mode.

– Diagnostic counterexamples. If the specification is not satisfied, the Model
Checker will produce a counterexample execution trace that shows why the
specification does not hold (Figure 2). It is impossible to overestimate the
importance of the counterexample feature. The counterexamples are invalu-
able in debugging complex systems. Some people use Model Checking just
for this feature.

– No problem with partial specifications. It is unnecessary to completely spec-
ify the program or circuit before beginning to Model Check properties. Thus,
Model Checking can be used during the design of a complex system. The
user does not have to wait until the design phase is complete.

– Temporal Logics can easily express many of the properties that are needed
for reasoning about concurrent systems. This is important because the reason
some concurrency property holds is often quite subtle, and it is difficult to
verify all possible cases manually.

Safety Property:
bad state unreachable

Counterexample

Initial State

Fig. 2. Diagnostic Counterexample

1.3 Disadvantages of Model Checking

Over the last twenty-five years I have heard many objections to the use of Model
Checking. I discuss some of these objections below:

– Proving a program helps you understand it. I do not believe that this is a valid
objection. In my opinion it is somewhat like the saying that “Sufferingmakes us
stronger”. It is possible to understand a program just as well, if not better, by
checking properties and examining the counterexamples when they are false.

– Temporal logic specifications are ugly. I think this depends on who is writing
the specifications. I have seen very complicated and unreadable specifications
in languages designed for formal specification based on Z (Zed) notation
[ASM80]. A good rule of thumb is to keep the specifications as short as

4 E.M. Clarke

possible. Some model checkers have a macro facility that allows the user
to encapsulate sub-expressions of formulas that would otherwise make it
complicated. Temporal logics like PSL [EF06] have very expressive sets of
operators that facilitate writing specifications.

– Writing specifications is hard. This is true. But it is also true of other ver-
ification techniques like automated theorem proving. Certainly, part of the
solution is better education. Very few computer science and electrical engi-
neering departments currently offer courses on formal verification. (Electri-
cal engineers in the U.S. often spend more time learning about the Laplace
transform than writing formal specifications for circuits!)

– State explosion is a major problem. This is absolutely true. The number of
global system states of a concurrent system with many processes or com-
plicated data structures can be enormous. All Model Checkers suffer from
this problem. In fact, the state explosion problem has been the driving force
behind much of the research in Model Checking and the development of new
Model Checkers.

2 Verification Tools Before 1981

Automated verification tools in use before 1981 were either based on theorem
proving or exhaustive state exploration. I will focus on the state exploration
techniques since they are more closely related to Model Checking.

2.1 Petri Net Tools

When I started research on this paper, I was certain that there had been earlier
work on tools for verifying Petri Nets. I contacted two researchers, Tadao Murata
and Kurt Jensen, who were active in the Petri Net community in the 1970’s. To
my surprise, I quickly discovered that there had been little serious work on
verification tools for Petri Nets before 1981. I include brief quotes from Murata
and Jensen below.

Murata:
“I started working on Petri nets from mid-1970, and attended the First
International Workshop on Petri Nets held in 1980 and thereafter. But
I do not recall any papers discussing formal verification using Petri Nets
(PNs) BEFORE 1981. Also, I doubt there were any PN reachability tools
before 1981. MetaSoft Company was selling earlier PN drawing tools and
may have had a primitive one before 1981.”

Jensen:

“Like Tad, I do not think there is any work on Petri net tools prior to
1981.The first Meta Software tool was made in the mid 80’s and was
merely a drawing tool for low level Petri nets. High-level Petri nets were
invented in the late 70’s. The first two publications appeared in TCS

The Birth of Model Checking 5

in 1979 and 1980. It is only after this that people really started the
construction of tools. The first simulator for high-level nets and the first
state space tools for these were made in the late 80’s.”

2.2 Bochmann and Protocol Verification

Around 1980, I became aware of the use of automatic verification techniques
based on exhaustive state exploration by researchers in communication proto-
col verification. In particular, I read several very interesting papers by Gregor
Bochmann. While researching my 25MC presentation, I contacted Bochmann
and asked him to comment about his work on this topic. I enclose below a quote
from his email message:

Bochmann:

“For a workshop organized by Andre Danthine, I prepared the paper Fi-
nite State Description of Protocols in which I presented a method
for the verification of communication protocols using the systematic ex-
ploration of the global state space of the system (sometimes called reach-
ability analysis). This paper was later published in Computer Networks
(1978) and was much cited. At the same time, Colin West had devel-
oped some automated tools for doing essentially the same as what I was
proposing, but I learned about his activities only later.”

In the same message Bochmann commented about the importance of Model
Checking.

“The need for exploring the reachable state space of the global system
is the basic requirement in protocol verification. Here model checking
has not provided anything new. However, temporal logic has brought a
more elegant way to talk about liveness and eventuality; in the protocol
verification community we were talking about reachable deadlock states
(easy to characterize) or undesirable loops (difficult to characterize).”

I believe that Bochmann’s comment is very perceptive, although I disagree with
his statement that Model Checking has not contributed to the task of computing
the reachable state space of a protocol. Indeed, much of the research in Model
Checking has focused on finding efficient techniques computing and representing
the set of reachable states. Symbolic Model Checking [BCM+90], for example,
was a major breakthrough because it enabled much larger state spaces to be
searched than was possible using explicit state space traversal.

2.3 Holzmann and Protocol Verification

I was not aware of Gerard Holzmann’s work on protocol verification until the
late 1980’s. In preparing for my 25MC presentation, I contacted him to find out
about his early work on automatic techniques for protocol verification.

6 E.M. Clarke

Holzmann:

“My first paper-method (never implemented) was from 1978-1979 – as
part of my PhD thesis work in Delft. My first fully implemented sys-
tem was indeed the Pan verifier (a first on-the-fly verification system),
which found its first real bug in switching software (based on a model
that I built in the predecessor language to Spin’s Promela) at AT&T on
November 21, 1980.”

Spin did not use temporal logic for specifications until 1987 or 1988 and thus
was not a true Model Checker in the sense that Emerson and I used the term
until the late 1980’s.

Holzmann continued:

“Things changed quite a bit towards the late eighties, with machines
getting faster and RAM memory larger. I implemented a small set of
temporal properties (inspired by Pnueli’s Tools and Rules for the
Practicing Verifier) that expressed liveness in my verification system
for SDL (the first such system built) in 1987/1988. That led to Spin in
1989 which generalized the method and allowed correctness properties
to be expressed as unrestricted omega-regular properties (i.e., as never
claims). The first full Spin version is from 1989. The converter from LTL
to never claims was later designed by Doron, I think around 95, to make
it easier for users to express LTL formulae directly.”

Holzmann argues that a Model Checker need not provide a logic for writing
specifications.

“When do we call an efficient checker that uses models a Model Checker
though? I sometimes use the distinction between Model Checker and
Logic Model Checker” – where to qualify for the latter term you need to
support a logic.”

I believe that Holzmann does have a valid point. Verification tools that com-
pute some representation for the set of reachable states are often called Model
Checkers as are sequential equivalence checkers in hardware verification. This is
reasonable to me, although the term is not used in the spirit that Emerson and
I originally intended.

3 Fixpoint Theory, Hoare Logic, and Concurrency

There is a close relationship between fixpoint theory and Model Checking algo-
rithms for Branching-Time Logics. I read many papers on this topic as back-
ground research for my Ph.D. thesis. Perhaps the two most important results
for my subsequent research on Model Checking were Tarski’s Fixpoint Lemma
[Tar55] and Kleene’s First Recursion Theorem [Kle71]. Most Symbolic Model
Checkers exploit Tarski’s Lemma [Tar55] that every monotonic functional on a

The Birth of Model Checking 7

complete lattice has a fixpoint. A paper by David Park Finiteness is Mu-
Ineffable [Par74] gives a first-order version of the Mu-calculus that I sug-
gested as the logical basis for the first paper on Symbolic Model Checking that
Burch, Dill, McMillan and I published in the 1990 LICS conference [BCM+90,
BCM+92].

My first paper with Emerson [EC80] made the connection between Branching-
Time Logics and the Mu-calculus. Kozen references the 1980 paper that Emerson
and I wrote in his influential paper on the propositional Mu-calculus [Koz83].

Because of the close connection between the Mu-Calculus and Branching-time
Temporal Logics, I believe it was inevitable that Model Checking algorithms were
developed for Branching-time Logics before Linear-time Logics.

3.1 Thesis Research on Hoare Logic

My thesis dealt with the Soundness and Completeness of Hoare Logic. The two
papers that influenced me most were:

– J. deBakker and L. Meertens, On the Completeness of the Inductive
Assertion Method, [dBM75].

– S. Cook, Soundness and Completeness of an Axiom System for Pro-
gram Verification, [Coo78].

Cook’s paper introduced the notion of Relative Completeness of Hoare Logics.
I started on my thesis, entitled Completeness and Incompleteness The-

orems For Hoare Logics, in July 1975 and finished it a year later in August
1976. Robert Constable was my advisor at Cornell. I waited until I had com-
pleted my thesis before publishing any papers on my research. I wrote three
papers based on my thesis:

– E. Clarke, Programming Language Constructs for which it is impos-
sible to obtain Good Hoare-like Axiom Systems, [Cla77b, Cla79c].

– E. Clarke, Program Invariants as Fixedpoints, [Cla77a, Cla79a].
– E. Clarke, Proving Correctness of Coroutines Without History Vari-

ables, [Cla78, Cla80].

In later research, I addressed the question of what programming language con-
structs could have good Hoare axiomatizations, i.e., sound and relatively com-
plete axiomatizations.

– E. Clarke, S. German, J. Halpern, Effective Axiomatizations of Hoare
Logic, [CGH83].

– E. Clarke, Characterization Problem for Hoare Logics, [Cla85].

The paper with German and Halpern gives a necessary and sufficient condition
for the existence of a sound and relatively complete Hoare axiomatization. The
1985 paper gives a unified account of my research on Hoare logic and extends
the results to total correctness.

8 E.M. Clarke

3.2 Program Invariants as Fixed Points

In my thesis I showed that soundness and relative completeness results are really
fixed point theorems. I gave a characterization of program invariants as fixed
points of functionals obtained from the program text. For example, let b ∗ A
denote while b do A. Let wp[S](P) be the weakest precondition for partial
correctness of the Predicate P and the programming language statement S.
Thus, wp[S](P) satisfies two properties:

1. The Hoare triple {wp[S](P) } S {P } is true in the logical structure under
consideration, and

2. If the triple {P } S {Q } is true, then P → wp[S](Q) is true.

It is not difficult to prove

wp[b ∗A](Q) = (¬b ∧Q) ∨ (b ∧ wp[A](wp[b ∗A](Q)))

Thus, wp[b ∗A](Q) is a fixpoint of the functional

τ(U) = (¬b ∧Q) ∨ (b ∧wp[A](U)).

In fact, wp[b ∗ A](Q) is the greatest fixpoint of the functional τ . The fixpoint
characterizations are more complicated for programming language constructs
that are not tail recursive.1

I showed that Relative Completeness is logically equivalent to the existence of
a fixed point for an appropriate functional, and that Relative Soundness follows
from the maximality of the fixed point.

For finite interpretations, the results give a decision procedure for partial
correctness, i.e., a primitive Model Checker for partial correctness! When I orig-
inally proved these results, this idea occurred to me, but I thought it would not
be practical and did not pursue the idea further at the time.

3.3 Data-Flow Analysis

In 1978, I moved to Harvard. At Harvard, I taught the undergraduate course on
Compilers. In preparing for this course, I read a number of papers on data-flow
analysis including:

– G. Killdall, A Unified Approach to Global Program Optimization,
[Kil73].

1 I was unaware of the work by Basu and Yeh [BY75] until I saw it cited in Emerson’s
paper in this volume. The paper shows that the weakest precondition for total cor-
rectness is the least fixed point of a functional obtained from the body of a while loop.
The theory in my thesis and the papers mentioned above applies to partial correct-
ness as well as total correctness and handles general loops (regular recursions) and
non-regular recursions as well. I also relate my fixpoint theory to relative soundness
and completeness proofs of Cook and others.

The Birth of Model Checking 9

– J. B. Kam and J. D. Ullmann, Monotone Data-flow Analysis Frame-
works, [KU77].

– Richard N. Taylor and Leon J. Osterweil, Anomaly Detection in Con-
current Software by Static Data Flow Analysis, [TO80].

– P. Cousot and R. Cousot, Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Ap-
proximation of Fixpoints, [CC77].

The paper by Taylor and Osterweil was definitely ahead of its time. Although
it was written thirty years ago, the title sounds surprisingly modern. In fact,
several papers with similar sounding titles have been published in recent CAV
and TACAS conferences.

Data-flow analysis can be considered to be an instance of Model Checking as
the 1998 paper by David Schmidt demonstrates:

– D. Schmidt, Data-flow Analysis is Model Checking of Abstract In-
terpretations, [Sch98].

3.4 My Early Research on Concurrency

In 1977 I read the classic paper by Owicki and Gries [OG76] on methods for rea-
soning about concurrent systems using conditional critical regions for synchro-
nization. My research focussed on fixpoint equations, abstract interpretation,
and widening for concurrent programs. This research led to three papers:

– E. M. Clarke, Synthesis of Resource Invariants for Concurrent Pro-
grams, [Cla79b].

– E. Clarke and L. Liu, Approximate Algorithms for Optimization of
Busy Waiting in Parallel Programs, [CL79].

– L. Liu and E. Clarke, Optimization of Busy Waiting in Conditional
Critical Regions, [LC80].

4 Temporal Logic

Temporal logics describe the ordering of events in time without introducing time
explicitly. They were developed by philosophers and linguists for investigating how
time is used in natural language arguments. Most temporal logics have an opera-
tor like Gf that is true in the present if f is always true in the future. To assert that
two events e1 and e2 never occur at the same time, one would write G(¬e1∨¬e2).
Temporal logics are often classified according to whether time is assumed to have
a linear or a branching structure. The meaning of a temporal logic formula is de-
termined with respect to a labeled state-transition graph or Kripke structure.

4.1 Temporal Logic and Program Verification

Burstall [Bur74], Kröger [Krö77], and Pnueli [Pnu77], all proposed using tempo-
ral logic for reasoning about computer programs. Pnueli was the first to use tem-
poral logic for reasoning about concurrency. He proved program properties from

10 E.M. Clarke

a set of axioms that described the behavior of the individual statements. The
method was extended to sequential circuits by Bochmann [Boc82] and Malachi
and Owicki [MO81]. Since proofs were constructed by hand, the technique was
often difficult to use in practice.

4.2 Pnueli’s 1977 Paper and Model Checking

I reread Pnueli’s 1977 paper [Pnu77] in preparing for my 25MC lecture. The
section entitled Finite State Systems is extremely interesting, although I do not
remember reading it before Emerson and I wrote our 1981 paper [CE81]. After
rereading this section, an obvious question is whether Pnueli should be credited
with inventing Model Checking in 1977. Theorems 4 and 5 in his paper are
particularly noteworthy.

Theorem 4: The validity of an arbitrary eventuality G(A → FB) is
decidable for any finite state system.

The proof of this theorem uses strongly connected components and is very similar
to the technique used for EG(P) in CES 83/86 [CES83, CES86]. Theorem 5 is
quite general.

Theorem 5: The validity of an arbitrary tense formula on a finite state
system is decidable and the extended system Kb is adequate for proving
all valid (propositional) tense formulas.

The proof of Theorem 5 is briefly discussed in an appendix to Pnueli’s paper.

Theorem 5 may be proved by reduction of the problem of validity of a
propositional tense formula on a finite state system to that of the valid-
ity of a formula in the Monadic Second Order Theory of Successor.

We show that for each propositional tense formula formula W , we can
construct an ω-regular language L(W) which describes all those Sω se-
quences on which W is true.

Our decision problem reduces to the question is L(AΣ) ⊆ L(W), i.e.
do all proper execution sequences of AΣ satisfy W .

The reference that Pnueli [Pnu77] gives for checking containment of ω-regular
languages does not indicate how an efficient algorithm could be constructed for
this purpose. Clearly, if Pnueli did discover Model Checking in 1977, he also
discovered Automata Theoretic Model Checking at the same time.

4.3 Branching-Time Logics

Emerson and I [EC80] proposed a very general branching-time temporal logic
based on Computation Trees (Figure 3) and made the connection with the mu-
calculus. Ben-Ari, Manna, and Pnueli (81 / 83) [BAMP83] gave an elegant syntax

The Birth of Model Checking 11

Fig. 3. Kripke Structure and Computation Tree

for a branching time logic called UB. Here is how inevitably p would be expressed
in both logics. In EC 80, we wrote ∀path∃node p. The notation in BMP 81 was
much more concise. They simply wrote AF p. In [CE81] we adopted the UB
notation and introduced two versions of the until operator (AU and EU).

4.4 Expressive Power of Temporal Logic

Lamport was the first to investigate the expressive power of various temporal
logics for verification. His 1980 POPL paper [Lam80] discusses two logics: a sim-
ple linear-time logic and a simple branching-time logic. He showed that each
logic could express certain properties that could not be expressed in the other.
Branching-time logic cannot express certain natural fairness properties that can
be easily expressed in the linear-time logic. Linear-time logic cannot express the
possibility of an event occurring sometime in the future along some computa-
tion path. Technical difficulties made Lamport’s result somewhat like comparing
”apples and oranges”.

Emerson and Halpern [EH86] provided a uniform framework for investigating
this question. They formulated the problem in terms of a single logic called CTL*,
which combines both linear-time and branching-time operators. A state formula
may be obtained from a path formula by prefixing it with a path quantifier, either
be an A (for every path) or an E (there exists a path). Linear-time logic (LTL) is
identified with the set of CTL* state formulas Af where f is a path formula not
containing any state sub-formulas. The branching-time part (CTL) consists of all
state formulas in which every linear-time operator is immediately preceded by a
path quantifier. Since both LTL and CTL consist entirely of state formulas, they
were able to avoid the uniform framework problem in Lamport’s paper.

12 E.M. Clarke

They showed that there exists a formula of LTL that cannot be expressed
in CTL and vice versa. In general, the proofs of their inexpressibility results
are quite long and tedious. For example, the proof that the linear-time formula
A(FGp) is not expressible in CTL uses a complicated inductive argument that
requires 3.5 journal pages to present. Furthermore, the technique that they use
does not easily generalize to other examples.

In [CD88], Anca Dragahicescu (now Browne) proved the following theorem:

Theorem: Let M = (S, R, L, F) be a Kripke Structure with Müller
Fairness Constraints, and let M ′ = (S, R, L, F ′) where the set of con-
straints F ′ extends F . Then for all CTL formulas f and all states s ∈ S,
M, s |= f if and only if M ′, s |= f .

We used the theorem to give a short proof that no CTL formula can express
A(FGp) for the special case of Kripke structures with Müller fairness con-
straints.

5 Temporal Logic Model Checking

The basic papers on the use of Temporal Logic Model Checking were written
in the early 1980’s. I describe what was done and comment on similarities and
differences between various approaches.

5.1 Clarke and Emerson 1981

My work with Emerson came first in the spring of 1981 [CE81]. It was presented
in a predecessor conference of LICS organized by Dexter Kozen.

• Edmund M. Clarke and E. Allen Emerson,
• Design and Synthesis of Synchronization Skeletons Using Branching-Time

Temporal Logic.
• Presented at the Logics of Programs Workshop at Yorktown Heights, New

York in May 1981.
• The proceedings were published in LNCS 131.
• Also in Emerson’s 1981 Ph.D. Thesis.

The temporal logic model checking algorithms that Emerson and I developed
allowed this type of reasoning to be automated. Checking that a single structure
satisfies a formula is much easier than proving the validity of a formula for all
structures. Our algorithm for CTL was polynomial in the product of |M | and |f |.
We also showed how fairness could be handled without changing the complexity
of the algorithm.

Emerson and I had a Harvard undergraduate (Marshall Brin) implement the
fixpoint algorithm for Model Checking. Unfortunately, the implementation was
incorrect. There was a problem with fairness constraints. To our embarrassment,
we discovered this when we demonstrated the Model Checker to Bochmann when
he gave a lecture at Harvard.

The Birth of Model Checking 13

5.2 My Eureka Moment

In the fall of 1980 and the spring of 1981, Emerson was writing his Ph.D. thesis
on the synthesis of finite state concurrent programs from CTL specifications.
The idea was to use a decision procedure for satisfiability of CTL formulas to
extract a finite model from a specification in CTL. The concurrent program
could then be extracted from the finite model. There were two disadvantages to
this approach: the exponential complexity of the decision procedure (in practice
as well as theory) and the need to completely specify the concurrent program in
temporal logic.

In January of 1981, I attended POPL where the paper by Ben-Ari, Manna,
and Pnueli [BAMP83] on ”The Temporal Logic of Branching Time” was orig-
inally presented. I had trouble understanding non-trivial formulas of the logic.
I spent several hours drawing Kripke Structures and checking to see if various
formulas were true or not. If the structures had many states and the formulas
were complicated, this turned out to be more complicated than I expected, and
my first guess was often wrong. I tried to find an algorithm to automate this
process. For some operators like AF p, the algorithm was obvious–just perform a
depth-first search starting from the initial state of the structure and see if there
was a path ending in a cycle along which ¬p always held. I suspected that there
was a linear algorithm for the problem, but getting it correct for all of CTL was
tricky.

After trying several examples, it occurred to me that often complex communi-
cation and synchronization protocols were specified by state machines and that
an efficient algorithm for checking formulas on models could be used to see if the
state machines satisfied their specifications. This was my ”Eureka moment”! I
realized that the important problem for verification was not the synthesis prob-
lem but the problem of checking formulas on finite models. I began to work on
a depth-first search algorithm for the Model Checking problem. When I told
Emerson about my conclusion, he saw how fixpoint techniques could be used to
obtain an algorithm for the complete logic that was quadratic in the size of the
model. Of course, the quadratic complexity of the algorithm meant that it did
not scale to large models. I doubt if it would have been able to handle a model
with a 1000 states.

In the fall of 1982 after my move to Carnegie Mellon, I developed a strictly
graph theoretic algorithm for CTL Model Checking with Fairness Constraints.
My algorithm had linear complexity in the size of the model. I implemented the
algorithm myself in the EMC Model Checker. I wrote the program in a language
called ”Franz Lisp” and still have the original code! The new implementation is
described in my 1983 POPL paper with Emerson and Sistla [CES83, CES86].

5.3 Queille and Sifakis 1982

The work of Queille and Sifakis was presented at a conference in the Spring of
1982 [QS82], although a technical report version appeared in June of 1981. I
learned about their research when I was working on CES 83 / 86 probably late

14 E.M. Clarke

in the fall of 1982. Their work was certainly independent of ours. I regard this
as a case of essentially simultaneous discovery of an idea whose time was ripe.

• J.P. Queille and J. Sifakis
• Specification and Verification of Concurrent Systems in CESAR
• Technical Report 254 June 1981
• International Symposium on Programming, Turin, April, 1982
• Springer Lecture Notes in Computer Science 137, published in 1982

There are a number of similarities between the work that Emerson and I did
and the work of Quielle and Sifakis:

– Both used a branching-time temporal logic related to [BAMP83]. (POT is
like EF and INEV is like our AF.)

– Formula evaluation in [QS82] is by computing fixpoints as in [CE81]. In
[CES83, CES86] more efficient graph algorithms are used.

– The programming language CSP [Hoa85] is used for describing models in
both [QS82] and [CES83, CES86]. The Alternating Bit Protocol [BSW69] is
also used for illustration in both [QS82] and [CES83, CES86].

– There is a clear distinction between the model and the formula to be checked
in both (the term “Model Checking” originates with [CE81], however).

There are also a number of important differences:

– The logic used in [QS82] does not have an until operator U (trivial).
– Queille and Sifakis do not analyze the complexity of their algorithm.
– Finally, they did not implement fairness constraints.

Their paper references Clarke [Cla77a, Cla79a] and Cousot [CC77] for computing
fixed points of monotonic operators on a lattice 2.

5.4 The EMC Model Checker

My paper with Emerson and Sistla [CES83, CES86] gave an improved algorithm
that was linear in the product of |M | and |f |. The algorithm was implemented
in the EMC Model Checker and used to check a number of network protocols
and sequential circuits (EMC stands for Extended Model Checker. At the risk of
being obvious, note the similarity to my initials). It could check state transition
graphs with between 104 and 105 states at a rate of about 100 states per second
for typical formulas. In spite of these limitations, EMC was used successfully to
find previously unknown errors in several published circuit designs.

The EMC Model Checker was the first Model Checker to implement Fairness
Constraints. Fairness Constraints are formulas that must hold infinitely often

2 I sent a draft of this paper to Sifakis. He replied that they had another paper in FOCS
1982 and Acta Inf. 1983 [QS83] that included the until operator and could express
a particular class of fairness properties. However, this paper references [CE81], and
after 25 years, Sifakis was unable to explain how it differed from our first paper.

The Birth of Model Checking 15

Fig. 4. Self-Timed FIFO Queue from Mead and Conway

on each fair path. This feature made it possible to check some important prop-
erties that could not be expressed in CTL. An example of such a property is
A(GF enabled → GF executed), which expresses the property that a process
that is enabled for execution infinitely often must actually be executed infinitely
often. Because of this feature, the EMC algorithm was able to solve the Empti-
ness Problem for Non-deterministic Büchi Automata in time linear in the size
of the automaton.

Hardware Verification. My student, Bud Mishra, was the first to use Model
Checking for Hardware Verification [MC85]. He found a bug in the Sietz FIFO
Queue (Figure 4) from Mead and Conway’s book, Introduction to VLSI Sys-
tems [MC79]. David Dill and Mike Browne also started working on hardware
verification. The four of us wrote several papers on applying Model Checking to
hardware verification [MC85, BCD85, BCD86, BCDM86, DC86]

Witnesses and Counterexamples. EMC did not give counterexamples for
universal CTL properties that were false or witnesses for existential properties
that were true. I asked my student, Michael C. Browne, to add this feature to
the MCB model Checker in 1984 (MCB stands for Model Checker B. However,
note the similarity to Browne’s initials). It has been an important feature of
Model Checkers ever since (Figure 5).

5.5 LTL and CTL*

Complexity of LTL. Sistla and I [SC86] analyzed the model checking prob-
lem for LTL and showed that the problem was PSPACE-complete. Pnueli and
Lichtenstein [LP85] gave an algorithm that is exponential in the length of the

16 E.M. Clarke

Preprocessor Model Checker

Program or circuit

Formula f

True or Counterexample

Fig. 5. A Model Checker that supports Counterexamples

formula, but linear in the size of the Model. Based on this observation, they
argued that LTL model checking is feasible for short formulas.

CTL* Model Checking. CTL* is a very expressive logic that combines both
branching-time and linear-time operators. Model checking for this logic was first
considered in [CES83, CES86] where it was shown to be PSPACE-complete.
Emerson and Lei [EL85] showed that CTL* and LTL Model Checking have the
same complexity in |M | and |f |. Thus, for purposes of Model Checking, there
is no practical complexity advantage to restricting oneself to a linear temporal
logic.

5.6 Automata Theoretic Techniques and Process Algebra

Using Automata for Both Models and Specifications. Alternative tech-
niques for verifying concurrent systems have been proposed by a number of
other researchers. Some approaches use automata for specifications as well as
for implementations. The implementation is checked to see whether its behavior
conforms to that of the specification. Thus, an implementation at one level can
be used as a specification for the next level. The use of language containment is
implicit in the work of Kurshan, which ultimately resulted in the development
of the COSPAN verifier [AKS83, HK87, Dil89].

Automata Theoretic Model Checking with LTL. Vardi and Wolper
[VW86] first proposed the use of ω-automata (automata over infinite words) for
automated verification. They showed how linear temporal logic Model Checking
could be formulated in terms of language containment. Many explicit state LTL
Model Checkers (e.g., Spin) use a variant of this construction. It can also be
used with Symbolic and Bounded Model Checkers as well.

Links to Process Algebra. If two finite Kripke Structures can be distin-
guished by some CTL* formula, then they can be distinguished by a CTL for-
mula. In [BCG88] we showed that for any finite Kripke structure M , it is possible
to construct a CTL formula FM that uniquely characterizes M . We use a notion

The Birth of Model Checking 17

of equivalence between Kripke Structures, similar to the notion of bisimulation
studied by Milner [Mil71] and Park [Par81]. The first construction of FM uses of
the next-time operator X . We also considered the case in which the next-time
operator is disallowed. The proof, in this case, required another notion of equiv-
alence, equivalence with respect to stuttering. We gave a polynomial algorithm
for determining if two structures are stuttering equivalent.

6 Dealing with Very Complex Systems

Significant progress was made on the State Explosion Problem around 1990.
Both Symbolic Model Checking and the Partial Order Reduction were developed
about this time.

6.1 Symbolic Model Checking

In the original implementation of the Model Checking algorithm, transition rela-
tions were represented explicitly by adjacency lists. For concurrent systems with
small numbers of processes, the number of states was usually fairly small, and
the approach was often quite practical. In systems with many concurrent parts
the number of states in the global state transition graph was too large to han-
dle. In the fall of 1987, McMillan, then a graduate student of mine at Carnegie
Mellon, realized that by using a symbolic representation for the state transition
graphs, much larger systems could be verified. The new symbolic representation
was based on ordered binary decision diagrams (OBDDs) [BCM+90, McM93].
OBDDs provide a canonical form for boolean formulas that is often substantially
more compact than conjunctive or disjunctive normal form, and very efficient
algorithms have been developed for manipulating them. Because the symbolic
representation captures some of the regularity in the state space determined by
circuits and protocols, it is possible to verify systems with an extremely large
number of states—many orders of magnitude larger than could be handled by
the explicit-state algorithms. By using the original CTL Model Checking algo-
rithm of Clarke and Emerson with the new representation for state transition
graphs, it became possible to verify some examples that had more than 1020

states. Since then, various refinements of the OBDD-based techniques by other
researchers have pushed the state count up to more than 10120.

The SMV Model Checker. The Model Checking system that McMillan de-
veloped as part of his Ph.D. thesis is called SMV [McM93]. It is based on a
language for describing hierarchical finite-state concurrent systems. Programs
in the language can be annotated by specifications expressed in temporal logic.
The Model Checker extracts a transition system represented as an OBDD from
a program in the SMV language and uses an OBDD-based search algorithm to
determine whether the system satisfies its specification. If the transition system
does not satisfy some specification, the verifier will produce an execution trace
that shows why the specification is false. The SMV system has been widely

18 E.M. Clarke

distributed, and a large number of examples have now been verified with it.
These examples provide convincing evidence that SMV can be used to debug
real industrial designs. Now there are two widely used versions of SMV: Ca-
dence SMV released by Cadence Berkeley Labs and an open source version,
called NuSMV [CCGR00], released by IRST in Trento, Italy.

Verification of the cache coherence protocol in the IEEE Futurebus+ standard
illustrates the power of the SMV Model Checker. Development of the protocol
began in 1988, but all previous attempts to validate it were based on informal
techniques. In the summer of 1992 my group at Carnegie Mellon constructed a
precise model of the protocol. Using SMV we were able to find several previously
undetected errors and potential errors in the design of the protocol. This was
the first time that an automatic verification tool had been used to find errors in
an IEEE standard [CGH+93, Lon93].

Other Work on Symbolic Model Checking. Several other researchers in-
dependently discovered that OBDDs can be used to represent state-transition
systems. Coudert, et al. [CBM89] gave an algorithm for sequential equivalence
checking that used OBDDs for the transition functions. Bose and Fisher [BF89],
Pixley [Pix90], and Coudert et al. [CBM90] also experimented with symbolic
Model Checking algorithms.

6.2 Partial Order Reduction

Verifying software causes some problems for Model Checking. Software tends
to be less structured than hardware. In addition, concurrent software is usually
asynchronous , i.e., most of the activities taken by different processes are per-
formed independently, without a global synchronizing clock. For these reasons,
the state explosion phenomenon is a particularly serious problem for software.
Consequently, Model Checking has been used less frequently for software verifi-
cation than for hardware verification. The most successful techniques for dealing
with asynchronous systems are based on the partial order reduction. These tech-
niques exploit the independence of concurrently executed events. Two events
are independent of each other when executing them in either order results in the
same global state.

Model Checking algorithms that incorporate the partial order reduction are
described in several different papers. The stubborn sets of Valmari [Val90], the
persistent sets of Godefroid [God90] and the ample sets of Peled [Pel94] differ on
the actual details, but contain many similar ideas. Other methods that exploit
similar observations about the relation between the partial and total order mod-
els of execution are McMillan’s unfolding technique [McM93] and Godefroid’s
sleep sets [God90].

6.3 Special Purpose Techniques

Special techniques are needed when symbolic methods and the partial order
reduction don’t work. Four basic techniques are

The Birth of Model Checking 19

– Compositional Reasoning,
– Abstraction,
– Symmetry Reduction,
– Induction and Parameterized Verification.

Compositional Reasoning. This technique exploits the modular structure
of complex circuits and protocols. Many finite state systems are composed of
multiple processes running in parallel. The specifications for such systems can
often be decomposed into properties that describe the behavior of small parts of
the system. An obvious strategy is to check each of the local properties using only
the part of the system that it describes. If the system satisfies each local property,
and if the conjunction of the local properties implies the overall specification,
then the complete system must satisfy this specification as well.

The naive form of compositional reasoning may not be feasible because of
mutual dependencies between the components. When verifying a property of
one component assumptions are needed about the behavior of the other com-
ponents. The assumptions must later be discharged when the correctness of the
other components is established. This strategy is called assume-guarantee rea-
soning [MC81, Jon83, Pnu84, GL94].

The main problem in employing assume-guarantee style reasoning in verifi-
cation relates to effectively computing environment assumptions for each com-
ponent. Initial attempts to perform such reasoning focused on hardware sys-
tems [McM97, AH99] and the assumptions were provided manually. Recently,
a method for automatically generating these assumptions has been proposed
[CGP03]. Here, the task of computing an assumption is posed as a machine learn-
ing problem, where a learning algorithm for regular languages L∗ [Ang87, RS93]
is used to generate a finite-state assumption in an iterative fashion by making
queries to a teacher entity. A model checker plays the role of the teacher and
assists the learner by answering queries and providing counterexamples. Exten-
sions of this approach have been used to solve the Component Substitutability
Problem [CCSS05, CCST05]. A symbolic extension of this approach using BDDs
has also been proposed [AMN05].

Abstraction. Abstraction is essential for reasoning about reactive systems that
involve data. It is based on the observation that specifications of systems usu-
ally involve simple relationships among data values. For example, verifying a
program may depend on simple arithmetical relationships (predicate abstrac-
tion). In such situations abstraction can be used to reduce the complexity of
Model Checking. The abstraction is usually specified by a mapping between
data values in the system and a small set of abstract data values. By extending
the mapping to states and transitions, it is possible to produce a much smaller,
abstract version [CGL92, BBLS92, CGL94].

Symmetry Reduction. Symmetry [ID93, CFJ93, ES93] can be used to re-
duce the state explosion problem. Finite state concurrent systems often contain
replicated components, e.g., a network of identical processes communicating in
some fashion. This information can be used to obtain reduced models. Having

20 E.M. Clarke

physical symmetry in a system often implies existence of a non-trivial permuta-
tion group that preserves the transition graph. The permutation group can be
used to define an equivalence relation on the state space. The resulting reduced
model can be used to simplify verification of Temporal logic properties.

Parameterized Systems. Induction involves reasoning automatically about
entire families of finite state systems. Typically, circuit and protocol designs are
parameterized, that is, they define an infinite family of systems. For example, a
bus protocol may be designed for an arbitrary number of processors. Ideally, one
would like to be able to check that every system in a given family satisfies some
temporal logic property. In general, the problem is undecidable [AK86]. Often
it is possible to provide an invariant process that represents the behavior of an
arbitrary member of the family. Using the invariant, one can check the property
for all members of the family at once [CGB86, KM89, WL89].

7 Big Events Since 1990 and Future Challenges

The pace of research in Model Checking has accelerated since 1990. Below I
list several of the most important breakthroughs during this period. I only cite
the initial paper (or papers) that led to the breakthrough, although each of the
seminal papers led to many papers often containing significant extensions of the
original work.

– Timed and Hybrid Automata [ACD90, HKPV95]
– Model Checking for Security Protocols [Ros94, MCJ97]
– Bounded Model Checking [BCCY99, BCC+03]
– Localization Reduction and CEGAR [Kur94, CGJ+00]
– Compositional Model Checking and Learning [MC81, Jon83, Pnu84, GL94]
– Predicate Abstraction [GS97, BMMR01]
– Infinite State Systems (e.g., pushdown systems) [BEM97]

I conclude with a list of challenges for the future. I believe that all of the problems
in the list are important and that all require major breakthroughs in order to
become sufficiently practical for widespread use in industry.

– Software Model Checking, Model Checking and Static Analysis
– Model Checking and Theorem Proving
– Exploiting the Power of SAT, Satisfiability Modulo Theories (SMT)
– Probabilistic Model Checking
– Efficient Model Checking for Timed and Hybrid Automata
– Interpreting Counterexamples
– Coverage (incomplete Model Checking, have I checked enough properties?)
– Scaling up even more!!

I expect the next twenty-five years will hold many surprises and be at least
as exciting as the past twenty-five. I look forward with great enthusiasm to
participating in at least some of this research.

The Birth of Model Checking 21

Acknowledgements. The author wishes to thank Nishant Sinha for his help
in preparing this document. Martha Clarke, Jonathan Clarke, and Katie Clarke
read early versions of this document and gave useful comments.

References

[ACD90] Alur, R., Courcourbetis, C., Dill, D.: Model-checking for real-time systems.
In: Proceedings of the 5th Symp. on Logic in Computer Science, pp. 414–
425 (1990)

[AH99] Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System
Design: An International Journal 15(1), 7–48 (1999)

[AK86] Apt, K., Kozen, D.: Limits for automatic verification of finite-state sys-
tems. IPL 15, 307–309 (1986)

[AKS83] Aggarwal, S., Kurshan, R.P., Sabnani, K.: A calculus for protocol speci-
fication and validation. In: Rudin, H., West, C.H. (eds.) Protocol Specifi-
cation, Testing and Verification, pp. 19–34. North-Holland (1983)

[AMN05] Alur, R., Madhusudan, P., Nam, W.: Symbolic Compositional Verification
by Learning Assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 548–562. Springer, Heidelberg (2005)

[Ang87] Angluin, D.: Learning regular sets from queries and counterexamples. In-
formation and Computation 75(2), 87–106 (1987)

[ASM80] Abrial, J.-R., Schuman, S.A., Meyer, B.: Specification language. In: McK-
eag, R.M., Macnaughten, A.M. (eds.) On the Construction of Programs,
pp. 343–410. Cambridge University Press (1980)

[BAMP83] Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time.
Acta Informatica 20, 207–226 (1983)

[BBLS92] Bensalem, S., Bouajjani, A., Loiseaux, C., Sifakis, J.: Property preserving
simulations. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS,
vol. 663, pp. 260–273. Springer, Heidelberg (1992)

[BCC+03] Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded
Model Checking. Advances in computers, vol. 58. Academic Press (2003)

[BCCY99] Clarke, E., Biere, A., Cimatti, A., Zhu, Y.: Symbolic Model Checking
without BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999.
LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

[BCD85] Browne, M.C., Clarke, E.M., Dill, D.: Checking the correctness of sequen-
tial circuits. In: Proceedings of the 1985 International Conference on Com-
puter Design, Port Chester, New York, October 1985, pp. 545–548. IEEE
(1985)

[BCD86] Browne, M.C., Clarke, E.M., Dill, D.L.: Automatic circuit verification us-
ing temporal logic: Two new examples. In: Formal Aspects of VLSI Design.
Elsevier Science Publishers, North Holland (1986)

[BCDM86] Browne, M.C., Clarke, E.M., Dill, D.L., Mishra, B.: Automatic verification
of sequential circuits using temporal logic. IEEE Transactions on Comput-
ers C-35(12), 1035–1044 (1986)

[BCG88] Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing finite Kripke
structures in propositional temporal logic. Theoretical Computer Sci-
ence 59(1–2), 115–131 (1988)

[BCM+90] Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, J.: Symbolic
model checking: 1020 states and beyond. In: Proc. 5th Ann. Symp. on Logic
in Comput. Sci., IEEE Comp. Soc. Press (June 1990)

22 E.M. Clarke

[BCM+92] Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Sym-
bolic model checking: 1020 states and beyond. Information and Computa-
tion 98(2), 142–170 (1992)

[BEM97] Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown
automata: Application to model-checking. In: International Conference on
Concurrency Theory, pp. 135–150 (1997)

[BF89] Bose, S., Fisher, A.: Verifying pipelined hardware using symbolic logic sim-
ulation. In: IEEE International Conference on Computer Design (October
1989)

[BMMR01] Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic pred-
icate abstraction of C programs 36(5), 203–213 (June 2001)

[Boc82] Bochmann, G.V.: Hardware specification with temporal logic: An example.
IEEE Transactions on Computers C-31(3) (March 1982)

[BSW69] Bartlett, K.A., Scantlebury, R.A., Wilkinson, P.T.: A note on reliable full-
duplex transmission over half-duplex links. Commun. ACM 12(5), 260–261
(1969)

[Bur74] Burstall, R.M.: Program proving as hand simulation with a little induction.
In: IFIP congress 1974, pp. 308–312. North Holland (1974)

[BY75] Basu, S.K., Yeh, R.T.: Strong verification of programs. IEEE Trans. Soft-
ware Eng. 1(3), 339–346 (1975)

[CBM89] Coudert, O., Berthet, C., Madre, J.C.: Verification of synchronous sequen-
tial machines based on symbolic execution. In: Sifakis [Sif89], pp. 365–373.

[CBM90] Coudert, O., Berthet, C., Madre, J.C.: Verifying temporal properties of
sequential machines without building their state diagrams. In: Kurshan,
Clarke [KC90], pp. 23–32

[CC77] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In: Proc. 4th Ann. ACM Symp. on Principles of Prog. Lang., pp. 238–252
(January 1977)

[CCGR00] Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: Nusmv: A new
symbolic model checker. STTT 2(4), 410–425 (2000)

[CCSS05] Chaki, S., Clarke, E., Sharygina, N., Sinha, N.: Dynamic component sub-
stitutability analysis. In: Proc. of Conf. on Formal Methods (2005)

[CCST05] Chaki, S., Clarke, E., Sinha, N., Thati, P.: Automated assume-guarantee
reasoning for simulation conformance. In: Proc. of Computer-Aided Veri-
fication (2005)

[CD88] Clarke, E.M., Draghicescu, I.A.: Expressibility results for linear time and
branching time logics. In: de Bakker, J.W., de Roever, W.-P., Rozenberg,
G. (eds.) Linear Time, Branching Time and Partial Order in Logics and
Models for Concurrency. LNCS, vol. 354, pp. 428–437. Springer, Heidel-
berg (1989)

[CE81] Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization
skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic
of Programs 1981. LNCS, vol. 131. Springer, Heidelberg (1982)

[CES83] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-
state concurrent systems using temporal logic specifications. In: Proc. 10th
Ann. ACM Symp. on Principles of Prog. Lang. (January 1983)

[CES86] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans-
actions on Programming Languages and Systems 8(2), 244–263 (1986)

The Birth of Model Checking 23

[CFJ93] Clarke, E.M., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic
model checking. In: Courcoubetis [Cou93], pp.450–462

[CGB86] Clarke, E.M., Grumberg, O., Browne, M.C.: Reasoning about networks
with many identical finite-state processes. In: Proceedings of the Fifth
Annual ACM Symposium on Principles of Distributed Computing, pp.
240–248. ACM (August 1986)

[CGH83] Clarke, E.M., German, S.M., Halpern, J.Y.: Effective axiomatizations of
Hoare logics. J. ACM 30(3), 612–636 (1983)

[CGH+93] Clarke, E.M., Grumberg, O., Hiraishi, H., Jha, S., Long, D.E., McMillan,
K.L., Ness, L.A.: Verification of the Futurebus+ cache coherence protocol.
In: Claesen [Cla93]

[CGJ+00] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-
guided abstraction refinement. In: Computer Aided Verification (CAV),
pp. 154–169 (2000)

[CGL92] Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction.
In: POPL, pp. 342–354 (1992)

[CGL94] Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction.
ACM Transactions on Programming Languages and Systems 16(5), 1512–
1542 (1994)

[CGP03] Cobleigh, J., Giannakopoulou, D., Păsăreanu, C.S.: Learning Assumptions
for Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) ETAPS
2003 and TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg
(2003)

[CL79] Clarke, E.M., Liu, L.: Approximate algorithms for optimization of busy
waiting in parallel programs (preliminary report). In: 20th Annual Sympo-
sium on Foundations of Computer Science, pp. 255–266. IEEE Computer
Society (1979)

[Cla77a] Clarke, E.M.: Program invariants as fixed points (preliminary reports). In:
18th Annual Symposium on Foundations of Computer Science, pp. 18–29.
IEEE Computer Society (November 1977)

[Cla77b] Clarke, E.M.: Programming language constructs for which it is impossible
to obtain good hoare-like axiom systems. In: Fourth ACM Symposium on
Principles of Programming Languages, pp. 10–20. ACM Press, New York
(1977)

[Cla78] Clarke, E.M.: Proving the correctness of coroutines without history vari-
ables. In: ACM-SE 16: Proceedings of the 16th annual Southeast regional
conference, pp. 160–167. ACM Press, New York (1978)

[Cla79a] Clarke, E.: Program invariants as fixed points. Computing 21(4), 273–294
(1979)

[Cla79b] Clarke, E.M.: Synthesis of resource invariants for concurrent programs. In:
POPL, pp. 211–221 (1979)

[Cla79c] Clarke, E.M.: Programming language constructs for which it is impossible
to obtain good Hoare axiom systems. J. ACM 26(1), 129–147 (1979)

[Cla80] Clarke, E.: Proving correctness of coroutines without history variables.
Acta Inf. 13, 169–188 (1980)

[Cla85] Clarke, E.M.: The characterization problem for hoare logics. In: Proc. of a
discussion meeting of the Royal Society of London on Mathematical logic
and programming languages, Upper Saddle River, NJ, USA, pp. 89–106.
Prentice-Hall, Inc (1985)

[Cla93] Claesen, L. (ed.): Proc. 11th Int. Symp. on Comput. Hardware Description
Lang. and their Applications. North-Holland (April 1993)

24 E.M. Clarke

[Coo78] Cook, S.A.: Soundness and completeness of an axiom system for program
verification. SIAM Journal on Computing 7(1), 70–90 (1978)

[Cou93] Courcoubetis, C. (ed.): CAV 1993. LNCS, vol. 697. Springer, Heidelberg
(1993)

[dBM75] de Bakker, J.W., Meertens, L.: On the completeness of the inductive as-
sertion method. Journal of Computer and System Sciences 11, 323–357
(1975)

[DC86] Dill, D.L., Clarke, E.M.: Automatic verification of asynchronous circuits
using temporal logic. IEE Proceedings, Part E 133(5) (1986)

[Dil89] Dill, D.L.: Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. In: ACM Distinguished Dissertations. MIT Press
(1989)

[EC80] Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of par-
allel programs using fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.)
ICALP 1980. LNCS, vol. 85, pp. 169–181. Springer, Heidelberg (1980)

[EF06] Eisner, C., Fisman, D.: A Practical Introduction to PSL (Series on Inte-
grated Circuits and Systems). Springer, New York (2006)

[EH86] Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never” revisited:
On branching time versus linear time. Journal of the ACM 33, 151–178
(1986)

[EL85] Emerson, E.A., Lei, C.-L.: Modalities for model checking: Branching time
strikes back. In: Twelfth Symposium on Principles of Programming Lan-
guages, New Orleans, La, pp. 84–96 (January 1985)

[ES93] Emerson, E.A., Sistla, A.P.: Symmetry and model checking. In: Courcou-
betis [Cou93], pp. 463–478

[GL94] Grumberg, O., Long, D.E.: Model checking and modular verification. ACM
Transactions on Programming Languages and Systems 16, 843–872 (1994)

[God90] Godefroid, P.: Using partial orders to improve automatic verification meth-
ods. In: Kurshan, Clarke [KC90]

[GS97] Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In:
Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer,
Heidelberg (1997)

[HK87] Har’El, Z., Kurshan, R.P.: The COSPAN user’s guide. Technical Report
11211-871009-21TM, AT&T Bell Labs (1987)

[HKPV95] Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable
about hybrid automata? In: Proceedings of the 27th Annual Symposium
on Theory of Computing, pp. 373–382. ACM Press (1995)

[Hoa85] Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
[ID93] Ip, C.W., Dill, D.L.: Better verification through symmetry. In: Claesen

[Cla93]
[Jon83] Jones, C.B.: Specification and design of (parallel) programs. In: Proceed-

ings of IFIP 1983, pp. 321–332. North-Holland (1983)
[KC90] Kurshan, R.P., Clarke, E.M.: Proc. 1990 Workshop on Comput.-Aided

Verification (June 1990)
[Kil73] Kildall, G.A.: A unified approach to global program optimization. In:

POPL, pp. 194–206 (1973)
[Kle71] Kleene, S.C.: Introduction to Metamathematics, Wolters-Noordhoff,

Groningen (1971)
[KM89] Kurshan, R.P., McMillan, K.L.: A structural induction theorem for pro-

cesses. In: Proc. 8th Ann. ACM Symp. on Principles of Distributed Com-
puting, pp. 239–247. ACM Press (August 1989)

The Birth of Model Checking 25

[Koz83] Kozen, D.: Results on the propositional mu-calculus. Theoretical Com-
puter Science 27, 333–354 (1983)

[Krö77] Kröger, F.: Lar: A logic of algorithmic reasoning. Acta Inf. 8, 243–266
(1977)

[KU77] Kam, J.B., Ullman, J.D.: Monotone data flow analysis frameworks. Acta
Inf. 7, 305–317 (1977)

[Kur94] Kurshan, R.P.: Computer-aided verification of coordinating processes: the
automata-theoretic approach. Princeton University Press (1994)

[Lam80] Lamport, L.: “Sometimes” is sometimes “Not Never”. In: Ann. ACM
Symp. on Principles of Prog. Lang., pp. 174–185 (1980)

[LC80] Liu, L., Clarke, E.: Optimization of busy waiting in conditional critical re-
gions. In: 13th Hawaii International Conference on System Sciences (Jan-
uary 1980)

[Lon93] Long, D.E.: Model Checking, Abstraction, and Compositional Reasoning.
PhD thesis, Carnegie Mellon Univ. (1993)

[LP85] Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent pro-
grams satisfy their linear specification. In: Proc. 12th Ann. ACM Symp.
on Principles of Prog. Lang., pp. 97–107 (January 1985)

[MC79] Mead, C., Conway, L.: Introduction to VLSI Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston (1979)

[MC81] Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Transac-
tions on Software Engineering SE-7(4), 417–426 (1981)

[MC85] Mishra, B., Clarke, E.M.: Hierarchical verification of asynchronous circuits
using temporal logic. Theoretical Computer Science 38, 269–291 (1985)

[MCJ97] Marrero, W., Clarke, E., Jha, S.: Model checking for security protocols
(1997)

[McM93] McMillan, K.L.: Symbolic Model Checking: An Approach to the State
Explosion Problem. Kluwer Academic Publishers (1993)

[McM97] McMillan, K.L.: A compositional rule for hardware design refinement. In:
Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 24–35. Springer,
Heidelberg (1997)

[Mil71] Milner, R.: An algebraic definition of simulation between programs. In:
Proc. 2nd Int. Joint Conf. on Artificial Intelligence, pp. 481–489 (Septem-
ber 1971)

[MO81] Malachi, Y., Owicki, S.S.: Temporal specifications of self-timed systems.
In: Kung, H.T., Sproull, B., Steele, G. (eds.) VLSI Systems and Compu-
tations, Comp. Sci. Press (1981)

[OG76] Owicki, S., Gries, D.: Verifying properties of parallel programs: an ax-
iomatic approach. Commun. ACM 19(5), 279–285 (1976)

[OL82] Owicki, S., Lamport, L.: Proving liveness properties of concurrent pro-
grams. ACM Trans. Program. Lang. Syst. 4(3), 455–495 (1982)

[Par74] Park, D.M.R.: Finiteness is mu-ineffable. Theory of Computation Report
No. 3, Warwick (1974)

[Par81] Park, D.: Concurrency and automata on infinite sequences. In: Deussen,
P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg
(1981)

[Pel94] Peled, D.: Combining partial order reductions with on-the-fly model-
checking. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390.
Springer, Heidelberg (1994)

[Pix90] Pixley, C.: Introduction to a computational theory and implementation of
sequential hardware equivalence. In: Kurshan, Clarke [KC90], pp. 54–64

26 E.M. Clarke

[Pnu77] Pnueli, A.: The temporal semantics of concurrent programs. In: 18th An-
nual Symposium on Foundations of Computer Science (1977)

[Pnu84] Pnueli, A.: In transition for global to modular temporal reasoning about
programs. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems,
NATO ASI series F, vol. 13. Springer (1984)

[QS82] Quielle, J.P., Sifakis, J.: Specification and verification of concurrent sys-
tems in CESAR. In: Proceedings of the 5th International Symposium on
Programming, pp. 337–350 (1982)

[QS83] Queille, J.P., Sifakis, J.: Fairness and related properties in transition sys-
tems - a temporal logic to deal with fairness. Acta Inf. 19, 195–220 (1982)
(presented originally in FOCS 1982)

[Ros94] Roscoe, A.W.: Model-checking CSP. In: Roscoe, A.W. (ed.) A Classical
Mind: Essays in Honour of C. A. R. Hoare, pp. 353–378. Prentice-Hall
(1994)

[RS93] Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing
sequences. Inf. Comp. 103(2), 299–347 (1993)

[SC86] Sistla, A.P., Clarke, E.M.: Complexity of propositional temporal logics.
Journal of the ACM 32(3), 733–749 (1986)

[Sch98] David, A.: Schmidt. Data flow analysis is model checking of abstract in-
terpretations. In: POPL, pp. 38–48 (1998)

[Sif89] Sifakis, J. (ed.): Automatic Verification Methods for Finite State Systems.
LNCS, vol. 407. Springer, Heidelberg (1989)

[Tar55] Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pa-
cific J. Math. 5, 285–309 (1955)

[TO80] Taylor, R.N., Osterweil, L.J.: Anomaly detection in concurrent software by
static data flow analysis. IEEE Trans. Software Eng. 6(3), 265–278 (1980)

[Val90] Valmari, A.: A stubborn attack on the state explosion problem. In: Kur-
shan, Clarke [KC90]

[Vit88] Vitanyi, P.M.B.: Andrei nikolaevich kolmogorov. 1, 3–18 (1988)
[VW86] Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic

program verification. In: Proc. 1st Ann. Symp. on Logic in Comput. Sci.
IEEE Computer Society Press, Los Alamitos (1986)

[WL89] Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes
with network invariants. In: Sifakis [Sif89]

The Beginning of Model Checking:

A Personal Perspective�

E. Allen Emerson1,2

1Department of Computer Sciences
2Computer Engineering Research Center

The University of Texas at Austin,
Austin TX 78712, USA
emerson@cs.utexas.edu

www.cs.utexas.edu/∼emerson/

Abstract. Model checking provides an automated method for verify-
ing concurrent systems. Correctness specifications are given in tempo-
ral logic. The method hinges on an efficient and flexible graph-theoretic
reachability algorithm. At the time of its introduction in the early 1980’s,
the prevailing paradigm for verification was a manual one of proof-
theoretic reasoning using formal axioms and inference rules oriented to-
wards sequential programs. The need to encompass concurrent programs,
the desire to avoid the difficulties with manual deductive proofs, and the
small model theorem for temporal logic motivated the development of
model checking.

Keywords: model checking, model-theoretic, synthesis, history, origins.

1 Introduction

It has long been known that computer software programs, computer hardware
designs, and computer systems in general exhibit errors. Working programmers
may devote more than half of their time on testing and debugging in order
to increase reliability. A great deal of research effort has been and is devoted
to developing improved testing methods. Testing successfully identifies many
significant errors. Yet, serious errors still afflict many computer systems including
systems that are safety critical, mission critical, or economically vital. The US
National Institute of Standards and Technology has estimated that programming
errors cost the US economy $60B annually [Ni02].

Given the incomplete coverage of testing, alternative approaches have been
sought. The most promising approach depends on the fact that programs and
more generally computer systems may be viewed as mathematical objects with
behavior that is in principle well-determined. This makes it possible to specify
using mathematical logic what constitutes the intended (correct) behavior. Then

� This work was supported in part by National Science Foundation grants CCR-009-
8141 & CCR-020-5483 and funding from Fujitsu Labs of America.

O. Grumberg and H. Veith (Eds.): 25MC Festschrift, LNCS 5000, pp. 27–45, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

28 E.A. Emerson

one can try to give a formal proof or otherwise establish that the program meets
its specification. This line of study has been active for about four decades now.
It is often referred to as formal methods.

The verification problem is: Given program M and specification h determine
whether or not the behavior of M meets the specification h. Formulated in terms of
Turing Machines, the verification problem was considered by Turing [Tu36]. Given
a Turing Machine M and the specification h that it should eventually halt (say on
blank input tape), one has the halting problem which is algorithmically unsolv-
able. In a later paper [Tu49] Turing argued for the need to give a (manual) proof
of termination using ordinals, thereby presaging work by Floyd [Fl67] and others.

The model checking problem is an instance of the verification problem. Model
checking provides an automated method for verifying concurrent (nominally)
finite state systems that uses an efficient and flexible graph search, to determine
whether or not the ongoing behavior described by a temporal property holds of
the system’s state graph. The method is algorithmic and often efficient because
the system is finite state, despite reasoning about infinite behavior. If the answer
is yes then the system meets its specification. If the answer is no then the system
violates its specification; in practice, the model checker can usually produce a
counterexample for debugging purposes.

At this point it should be emphasized that the verification problem and the
model checking problem are mathematical problems. The specification is for-
mulated in mathematical logic. The verification problem is distinct from the
pleasantness problem [Di89] which concerns having a specification capturing a
system that is truly needed and wanted. The pleasantness problem is inherently
pre-formal. Nonetheless, it has been found that carefully writing a formal specifi-
cation (which may be the conjunction of many sub-specifications) is an excellent
way to illuminate the murk associated with the pleasantness problem.

At the time of its introduction in the early 1980’s, the prevailing paradigm for
verification was a manual one of proof-theoretic reasoning using formal axioms
and inference rules oriented towards sequential programs. The need to encom-
pass concurrent programs, and the desire to avoid the difficulties with manual
deductive proofs, motivated the development of model checking.

In my experience, constructing proofs was sufficiently difficult that it did seem
there ought to be an easier alternative. The alternative was suggested by tem-
poral logic. Temporal logic possessed a nice combination of expressiveness and
decidability. It could naturally capture a variety of correctness properties, yet
was decidable on account of the “Small” Finite Model Theorem which ensured
that any satisfiable formula was true in some finite model that was small. It
should be stressed that the Small Finite Model Theorem concerns the satisfia-
bility problem of propositional temporal logic, i.e., truth in some state graph.
This ultimately lead to model checking, i.e., truth in a given state graph.

The origin and development of model checking will be described below. De-
spite being hampered by state explosion, over the past 25 years model checking
has had a substantive impact on program verification efforts. Formal verification

The Beginning of Model Checking 29

has progressed from discussions of how to manually prove programs correct to
the routine, algorithmic, model-theoretic verification of many programs.

The remainder of the paper is organized as follows. Historical background is
discussed in section 2 largely related to verification in the Floyd-Hoare paradigm;
protocol verification is also considered. Section 3 describes temporal logic. A very
general type of temporal logic, the mu-calculus, that defines correctness in terms
of fixpoint expressions is described in section 4. The origin of model checking
is described in section 5 along with some relevant personal influences on me.
A discussion of model checking today is given in section 6. Some concluding
remarks are made in section 7.

2 Background of Model Checking

At the time of the introduction of model checking in the early 1980’s, axiomatic
verification was the prevailing verification paradigm. The orientation of this
paradigm was manual proofs of correctness for (deterministic) sequential pro-
grams, that nominally started with their input and terminated with their out-
put. The work of Floyd [Fl67] established basic principles for proving partial
correctness, a type of safety property, as well as termination and total correct-
ness, forms of liveness properties. Hoare [Ho69] proposed an axiomatic basis for
verification of partial correctness using axioms and inference rules in a formal
deductive system. An important advantage of Hoare’s approach is that it was
compositional so that the proof a program was obtained from the proofs of its
constituent subprograms.

The Floyd-Hoare framework was a tremendous success intellectually. It en-
gendered great interest among researchers. Relevant notions from logic such
as soundness and (relative) completeness as well as compositionality were in-
vestigated. Proof systems were proposed for new programming languages and
constructs. Examples of proofs of correctness were given for small programs.

However, this framework turned out to be of limited use in practice. It did not
scale up to “industrial strength” programs, despite its merits. Problems start
with the approach being one of manual proof construction. These are formal
proofs that can involve the manipulations of extremely long logical formulae.
This can be inordinately tedious and error-prone work for a human. In practice,
it may be wholly infeasible. Even if strict formal reasoning were used throughout,
the plethora of technical detail could be overwhelming. By analogy, consider the
task of a human adding 100,000 decimal numbers of 1,000 digits each. This is
rudimentary in principle, but likely impossible in practice for any human to
perform reliably. Similarly, the manual verification of 100,000 or 10,000 or even
1,000 line programs by hand is not feasible. Transcription errors alone would be
prohibitive. Furthermore, substantial ingenuity may also be required on the part
of the human to devise suitable assertions for loop invariants.

One can attempt to partially automate the process of proof construction us-
ing an interactive theorem prover. This can relieve much of the clerical burden.

30 E.A. Emerson

However, human ingenuity is still required for invariants and various lemmas.
Theorem provers may also require an expert operator to be used effectively.

Moreover, the proof-theoretic framework is one-sided. It focuses on providing
a way to (syntactically) prove correct programs that are genuinely (semantically)
correct. If one falters or fails in the laborious process of constructing a proof of
a program, what then? Perhaps the program is really correct but one has not
been clever enough to prove it so. On the other hand, if the program is really
incorrect, the proof systems do not cater for proving incorrectness. Since in
practice programs contain bugs in the overwhelming majority of the cases, the
inability to identify errors is a serious drawback of the proof-theoretic approach.

It seemed there ought to be a better way. It would be suggested by temporal
logic as discussed below.

Remark. We mention that the term verification is sometimes used in a specific
sense meaning to establish correctness, while the term refutation (or falsification)
is used meaning to detect an error. More generally, verification refers to the two-
sided process of determining whether the system is correct or erroneous.

Lastly, we should also mention in this section the important and useful area of
protocol validation. Network protocols are commonly finite state. This makes it
possible to do simple graph reachability analysis to determine if a bad state is ac-
cessible (cf. [vB78], [Su78]). What was lacking here was a flexible and expressive
means to specify a richer class of properties.

3 Temporal Logic

Modal and temporal logics provided key inspiration for model checking. Originally
developed by philosophers, modal logic deals with different modalities of truth,
distinguishing between P being true in the present circumstances, possibly P hold-
ing under some circumstances, and necessarily P holding under all circumstances.
When the circumstances are points in time, we have a modal tense logic or tem-
poral logic. Basic temporal modalities include sometimes P and always P .

Several writers including Prior [Pr67] and Burstall [Bu74] suggested that tem-
poral logic might be useful in reasoning about computer programs. For instance,
Prior suggested that it could be used to describe the “workings of a digital
computer”. But it was the seminal paper of Pnueli [Pn77] that made the crit-
ical suggestion of using temporal logic for reasoning about ongoing concurrent
programs which are often characterized as reactive systems.

Reactive systems typically exhibit ideally nonterminating behavior so that
they do not conform to the Floyd-Hoare paradigm. They are also typically non-
deterministic so that their non-repeatable behavior was not amenable to testing.
Their semantics can be given as infinite sequences of computation states (paths)
or as computation trees. Examples of reactive systems include microprocessors,
operating systems, banking networks, communication protocols, on-board avion-
ics systems, automotive electronics, and many modern medical devices.

Pnueli used a temporal logic with basic temporal operators F (sometimes) and
G (always); augmented with X (next-time) and U (until) this is today known as

The Beginning of Model Checking 31

LTL (Linear Time Logic). Besides the basic temporal operators applied to propo-
sitional arguments, LTL permitted formulae to be built up by forming nestings
and boolean combinations of subformulae. For example, G¬(C1 ∧C2) expresses
mutual exclusion of critical sections C1 and C2; formula G(T1 ⇒ (T1 U C1) spec-
ifies that if process 1 is in its trying region it remains there until it eventually
enters its critical section.

The advantages of such a logic include a high degree of expressiveness permit-
ting the ready capture of a wide range of correctness properties of concurrent
programs, and a great deal of flexibility. Pnueli focussed on a proof-theoretic
approach, giving a proof in a deductive system for temporal logic of a small
example program. Pnueli does sketch a decision procedure for truth over finite
state graphs. However, the complexity would be nonelementary, growing faster
than any fixed composition of exponential functions, as it entails a reduction
to S1S, the monadic Second order theory of 1 Successor, (or SOLLO; see be-
low). In his second paper [Pn79] on temporal logic the focus is again on the
proof-theoretic approach.

I would claim that temporal logic has been a crucial factor in the success
of model checking. We have one logical framework with a few basic temporal
operators permitting the expression of limitless specifications. The connection
with natural language is often significant as well. Temporal logic made it possible,
by and large, to express the correctness properties that needed to be expressed.
Without that ability, there would be no reason to use model checking. Alternative
temporal formalisms in some cases may be used as they can be more expressive
or succinct than temporal logic. But historically it was temporal logic that was
the driving force.

These alternative temporal formalisms include: (finite state) automata (on
infinite strings) which accept infinite inputs by infinitely often entering a desig-
nated set of automaton states [Bu62]. An expressively equivalent but less succinct
formalism is that of ω-regular expressions; for example, ab�cω denotes strings of
the form: one a, 0 or more bs, and infinitely many copies of c; and a property
not expressible in LTL (true P)ω ensuring that at every even moment P holds.
FOLLO (First Order Language of Linear Order) which allows quantification over
individual times, for example, ∀i ≥ 0 Q(i); and SOLLO (Second Order Language
of Linear Order) which also allows quantification over sets of times corresponding
to monadic predicates such as ∃Q(Q(0)∧∀i ≥ 0(Q(i)⇒ Q(i+1)).1 These alterna-
tives are sometimes used for reasons of familiarity, expressiveness or succinctness.
LTL is expressively equivalent to FOLLO, but FOLLO can be nonelementarily
more succinct. This succinctness is generally found to offer no significant practi-
cal advantage. Moreover, model checking is intractably (nonelementarily) hard
for FOLLO. Similarly, SOLLO is expressively equivalent to ω−regular expres-
sions but nonelementarily more succinct. See [Em90] for further discussion.

Temporal logic comes in two broad styles. A linear time LTL assertion h is
interpreted with respect to a single path. When interpreted over a program there

1 Technically, the latter abbreviates ∃Q(Q(0) ∧ ∀i, j ≥ 0(i < j ∧ ¬∃k(i < k < j)) ⇒
(Q(i) ⇒ Q(j)).

32 E.A. Emerson

is an implicit universal quantifications over all paths of the program. An assertion
of a branching time logic is interpreted over computation trees. The universal A
(for all futures) and existential E (for some future) path quantifiers are important
in this context. We can distinguish between AFP (along all futures, P eventually
holds and is thus inevitable)) and EFP (along some future, P eventually holds
and is thus possible).

One widely used branching time logic is CTL (Computation Tree Logic) (cf.
[CE81]). Its basic temporal modalities are A (for all futures) or E (for some fu-
ture) followed by one of F (sometime), G (always), X (next-time), and U (until);
compound formulae are built up from nestings and propositional combinations
of CTL subformulae. CTL derives from [EC80]. There we defined the precursor
branching time logic CTF which has path quantifiers ∀fullpath and ∃fullpath ,
and is very similar to CTL. In CTF we could write ∀fullpath∃stateP as well as
∃fullpath∃stateP These would be rendered in CTL as AFP and EFP , respec-
tively. The streamlined notation was derived from [BMP81]. We also defined
a modal mu-calculus FPF, and then showed how to translate CTF into FPF.
The heart of the translation was characterizing the temporal modalities such as
AFP and EFP as fixpoints. Once we had the fixpoint characterizations of these
temporal operators, we were close to having model checking.

CTL and LTL are of incomparable expressive power. CTL can assert the
existence of behaviors, e.g., AGEF start asserts that it is always possible to
re-initialize a circuit. LTL can assert certain more complex behaviors along a
computation, such as GF en ⇒ F ex relating to fairness. (It turns out this formula
is not expressible in CTL, but it is in “FairCTL” [EL87]) The branching time
logic CTL* [EH86] provides a uniform framework that subsumes both LTL and
CTL, but at the higher cost of deciding satisfiability. There has been an ongoing
debate as to whether linear time logic or branching time logic is better for
program reasoning (cf. [La80], [EH86], [Va01]).

Remark. The formal semantics of temporal logic formulae are defined with re-
spect to a (Kripke) structure M = (S, S0, R, L) where S is a set of states, S0

comprises the initial states, R ⊆ S × S is a total binary relation, and L is
a labelling of states with atomic facts (propositions) true there. An LTL for-
mula h such as FP is defined over path x = t0, t1, t2 . . . through M by the rule
M, x |= FP iff ∃i ≥ 0 P ∈ L(ti). Similarly a CTL formula f such as EGP holds
of a state t0, denoted M, t0 |= EGP , iff there exists a path x = t0, t1, t2, . . . in
M such that ∀i ≥ 0 P ∈ L(ti). For LTL h, we define M |= h iff for all paths
x starting in S0, M, x |= h. For CTL formula f we define M |= f iff for each
s ∈ S0, M, s |= f . A structure is also known as a state graph or state transition
graph or transition system. See [Em90] for details.

4 The Mu-calculus

The mu-calculus may be viewed as a particular but very general temporal logic.
Some formulations go back to the work of de Bakker and Scott [deBS69]; we deal
specifically with the (propositional or) modal mu-calculus (cf. [EC80], [Ko83]).

The Beginning of Model Checking 33

The mu-calculus provides operators for defining correctness properties using re-
cursive definitions plus least fixpoint and greatest fixpoint operators. Least fix-
points correspond to well-founded or terminating recursion, and are used to
capture liveness or progress properties asserting that something does happen.
Greatest fixpoints permit infinite recursion. They can be used to capture safety
or invariance properties. The mu-calculus is very expressive and very flexible. It
has been referred to as a “Theory of Everything”.

The formulae of the mu-calculus are built up from atomic proposition con-
stants P, Q, . . ., atomic proposition variables Y, Z, . . ., propositional connectives
∨,∧,¬, and the least fixpoint operator, μ as well as the greatest fixpoint opera-
tor, ν. Each fixpoint formula such as μZ.τ(Z) should be syntactically monotone
meaning Z occurs under an even number of negations, and similarly for ν.

The mu-calculus is interpreted with respect to a structure M = (S, R, L).
The power set of S, 2S, may be viewed as the complete lattice (2S , S, ∅, ⊆, ∪,
∩). Intuitively, each (closed) formula may be identified with the set of states
of S where it is true. Thus, false which corresponds to the empty set is the
bottom element, true which corresponds to S is the top element, and implication
(∀s ∈ S[P (s) ⇒ Q(s)]) which corresponds to simple set-theoretic containment
(P ⊆ Q) provides the partial ordering on the lattice. An open formula τ(Z)
defines a mapping from 2S → 2S whose value varies as Z varies. A given τ :
2S → 2S is monotone provided that P ⊆ Q implies τ(P) ⊆ τ(Q).

Tarski-Knaster Theorem. (cf. [Ta55], [Kn28])
Let τ : 2S → 2S be a monotone functional. Then

(a) μY.τ(Y) = ∩ {Y : τ(Y) = Y } = ∩ {Y : τ(Y) ⊆ Y },
(b) νY.τ(Y) = ∪ {Y : τ(Y) = Y } = ∪ {Y : τ(Y) ⊇ Y },
(c) μY.τ(Y) = ∪i τ i(false) where i ranges over all ordinals of cardinality at most

that of the state space S, so that when S is finite i ranges over [0:|S|], and
(d) νY.τ(Y) = ∩i τ i(true) where i ranges over all ordinals of cardinality at most

that of the state space S, so that when S is finite i ranges over [0:|S|].

Consider the CTL property AFP . Note that it is a fixed point or fixpoint of
the functional τ(Z) = P ∨AXZ. That is, as the value of the input Z varies, the
value of the output τ(Z) varies, and we have AFP = τ(AFP) = P ∨AXAFP .
It can be shown that AFP is the least fixpoint of τ(Z), meaning the set of states
associated with AFP is a subset of the set of states associated with Z, for any
fixpoint Z = τ(Z). This might be denoted μZ.Z = τ(Z). More succinctly, we
normally write just μZ.τ(Z). In this case we have AFP = μZ.P ∨AXZ.

We can get some intuition for the the mu-calculus by noting the following
fixpoint characterizations for CTL properties:

EFP = μZ.P ∨ EXZ
AGP = νZ.P ∧AXZ
AFP = μZ.P ∨AXZ
EGP = νZ.P ∧EXZ
A(P U Q) = μZ.Q ∨ (P ∧AXZ)
E(P U Q) = μZ.Q ∨ (P ∧EXZ)

34 E.A. Emerson

For all these properties, as we see, the fixpoint characterizations are simple
and plausible. It is not too difficult to give rigorous proofs of their correctness
(cf. [EC80], [EL86]). We emphasize that the mu-calculus is a rich and powerful
formalism; its formulae are really representations of alternating finite state au-
tomata on infinite trees [EJ91]. Since even such basic automata as deterministic
finite state automata on finite strings can form quite complex “cans of worms”,
we should not be so surprised that it is possible to write down highly inscrutable
mu-calculus formulae for which there is no readily apparent intuition regard-
ing their intended meaning. The mu-calculus has also been referred to as the
“assembly language of program logics” reflecting both its comprehensiveness
and potentially intricate syntax. On the other hand, many mu-calculus char-
acterizations of correctness properties are elegant due to its simple underlying
mathematical organization.

In [EL86] we introduced the idea of model checking for the mu-calculus instead
of testing satisfiability. We catered for efficient model checking in fragments of the
the mu-calculus. This provides a basis for practical (symbolic) model checking
algorithms. We gave an algorithm essentially of complexity nd, where d is the
alternation depth reflecting the number of significantly nested least and greatest
fixpoint operators. We showed that common logics such as CTL, LTL, and CTL*
were of low alternation depth d = 1 or d = 2. We also provided succinct fixpoint
characterizations for various natural fair scheduling criteria. A symbolic fair
cycle detection method, known as the “Emerson-Lei” algorithm, is comprised of
a simple fixpoint characterization plus the Tarski-Knaster theorem. It is widely
used in practice even though it has worst case quadratic cost. Empirically, it
usually outperforms alternatives.

5 The Origin of Model Checking

There were several influences in my personal background that facilitated the de-
velopment of model checking. In 1975 Zohar Manna gave a talk at the University
of Texas on fixpoints and the Tarski-Knaster Theorem. I was familiar with Di-
jkstra’s book [Di76] extending the Floyd-Hoare framework with wlp the weakest
liberal precondition for partial correctness and wp the weakest precondition for to-
tal correctness. It turns out that wlp and wp may be viewed as modal operators,
for which Dijkstra implicitly gave fixpoint characterizations, although Dijkstra
did not favor this viewpoint. Basu and Yeh [BY75] at Texas gave fixpoint char-
acterizations of weakest preconditions for while loops. Ed Clarke [Cl79] gave
similar fixpoint characterizations for both wp and wlp for a variety of control
structures.

I will now describe how model checking originated at Harvard University. In
prior work [EC80] we gave fixpoint characterizations for the main modalities of
a logic that was essentially CTL. These would ultimately provide the first key
ingredient of model checking.

Incidentally, [EC80] is a paper that could very well not have appeared.
Somehow the courier service delivering the hard-copies of the submission to

The Beginning of Model Checking 35

Amsterdam for the program chair at CWI (Dutch for “Center for Mathemat-
ics and Computer Science”) sent the package in bill-the-recipient mode. Fortu-
nately, CWI was gracious and accepted the package. All that remained to undo
this small misfortune was to get an overseas bank draft to reimburse them.

The next work, entitled “Design and Synthesis of Synchronization Skeletons
using Branching Time Logic”, was devoted to program synthesis and model
checking. I suggested to Ed Clarke that we present the paper, which would be
known as [CE81], at the IBM Logics of Programs workshop, since he had an
invitation to participate.

Both the idea and the term model checking were introduced by Clarke and
Emerson in [CE81]. Intuitively, this is a method to establish that a given program
meets a given specification where:

– The program defines a finite state graph M .
– M is searched for elaborate patterns to determine if the specification f holds.
– Pattern specification is flexible.
– The method is efficient in the sizes of M and, ideally, f .
– The method is algorithmic.
– The method is practical.

The conception of model checking was inspired by program synthesis. I was
interested in verification, but struck by the difficulties associated with manual
proof-theoretic verification as noted above. It seemed that it might be possible
to avoid verification altogether and mechanically synthesize a correct program
directly from its CTL specification. The idea was to exploit the small model
property possessed by certain decidable temporal logics: any satisfiable formula
must have a “small” finite model of size that is a function of the formula size.
The synthesis method would be sound: if the input specification was satisfiable,
it built a finite global state graph that was a model of the specification, from
which individual processes could be extracted The synthesis method should also
be complete: If the specification was unsatisfiable, it should say so.

Initially, it seemed to me technically problematic to develop a sound and com-
plete synthesis method for CTL. However, it could always be ensured that an
alleged synthesis method was at least sound. This was clear because given any
finite model M and CTL specification f one can algorithmically check that
M is a genuine model of f by evaluating (verifying) the basic temporal modal-
ities over M based on the Tarski-Knaster theorem. This was the second key
ingredient of model checking. Composite temporal formulae comprised of nested
subformulae and boolean combinations of subformulae could be verified by re-
cursive descent. Thus, fixpoint characterizations, the Tarski-Knaster theorem,
and recursion yielded model checking.

Thus, we obtained the model checking framework. A model checker could be
quite useful in practice, given the prevalence of finite state concurrent systems.
The temporal logic CTL had the flexibility and expressiveness to capture many
important correctness properties. In addition the CTL model checking algorithm
was of reasonable efficiency, polynomial in the structure and specification sizes.
Incidentally, in later years we sometimes referred to temporal logic model checking.

36 E.A. Emerson

The crucial roles of abstraction, synchronization skeletons, and finite state
spaces were discussed in [CE81]:

The synchronization skeleton is an abstraction where detail irrelevant to
synchronization is suppressed. Most solutions to synchronization prob-
lems are in fact given as synchronization skeletons.

Because synchronization skeletons are in general finite state ... proposi-
tional temporal logic can be used to specify their properties.

The finite model property ensures that any program whose synchroniza-
tion properties can be expressed in propositional temporal logic can be
realized by a finite state machine.

Conclusions of [CE81] included the following prognostications, which seem to
have been on target:

[Program Synthesis] may in the long run be quite practical. Much addi-
tional research will be needed, however, to make it feasible in practice.
... We believe that practical [model checking] tools could be developed
in the near future.

To sum up, [CE81] made several contributions. It introduced model checking,
giving an algorithm of quadratic complexity O(|f ||M |2). It introduced the logic
CTL. It gave an algorithmic method for concurrent program synthesis (that
was both sound and complete). It argued that most concurrent systems can be
abstracted to finite state synchronization skeletons. It described a method for
efficiently model checking basic fairness using strongly connected components.
An NP-hardness result was established for checking certain assertions in a richer
logic than CTL. A prototype (and non-robust) model checking tool BMoC was
developed, primarily by a Harvard undergraduate, to permit verification of syn-
chronization protocols.

A later paper [CES86] improved the complexity of CTL model checking to lin-
ear O(|f ||M |). It showed how to efficiently model check relative to unconditional
and weak fairness. The EMC model checking tool was described, and a version
of the alternating bit protocol verified. A general framework for efficiently model
checking fairness properties was given in [EL87], along with a reduction showing
that CTL* model checking could be done as efficiently as LTL model checking.

Independently, a similar method was developed in France by Sifakis and his
student [QS82]. Programs were interpreted over transition systems. A branching
time logic with operators POT (EF) and INEV (AF) and their duals was used;
omitted were the X (next-time) and U (until) operators available in CTL. Inter-
estingly, there was no emphasis on the role of finiteness, no complexity analysis,
and no proof of termination. However, the central role of fixpoint computation
was identified. (The follow-on paper [FSS83] does emphasize the importance of

The Beginning of Model Checking 37

finiteness.) A tool CESAR is described and the verification of an alternating bit
protocol discussed.

Remark. The study of program synthesis together with analysis of programs (or
verification) has a long history. In 1956 Kleene [Kl56] proposes (i) the synthe-
sis problem: from a given regular expression h, construct an equivalent finite
state automaton M ; and (ii) the analysis problem: given a finite automaton M
construct an equivalent regular expression h, i.e., in other words the strongest
specification h such that M verifies h. Strictly speaking, Kleene dealt with ma-
chinery suitable for reasoning about ongoing but finite behavior; however, the
results generalize to infinite behavior.

6 Model Checking Today

The fundamental accomplishment of model checking is enabling broad scale for-
mal verification. Twenty five years ago our community mostly just talked about
verification. Today we do verification: many industrial-strength systems have
been verified using model checking. More are being verified on a routine basis.
Formal verification is becoming a staple of CS and EE education. At the same
time there is ever growing research interest in model checking.

How and why did this come about? I would argue that it is due to the fol-
lowing. In [CE81] a feasible framework including a usefully expressive branching
time temporal logic (CTL) and a reasonably efficient model checking algorithm
was introduced. Its utility was clear for small examples. Plainly one could model
check many interesting programs because they could be represented at a mean-
ingful level of abstraction by a finite state system with dozens to hundreds or
thousands of states. Protocols provide many examples of this. Yet there was
doubtless a need to be able to handle larger programs. This garnered the atten-
tion of a sizable and still growing number of researchers in both academia and
industry.

The most serious (and obvious) drawback of model checking is the state explo-
sion problem. The size of the global state graph can be (at least) exponential in
the size of the program text. A concurrent program with k processes can have a
state graph of size exp(k). For instance in a banking network with 100 automatic
teller machines each controlled by a finite state machine with 10 states, we can
have 10100 global states. Systems with infinite state spaces, in general, cannot
be handled.

To reduce the state explosion problem, methods based on abstraction, sym-
bolic representation, and compositional reasoning are used. These are discussed
in more detail subsequently.

Today, model checkers are able to verify protocols with millions of states and
many hardware circuits with 1050 or more states. Even some systems with an
infinite number of states can be amenable to model checking, if we have a suitable
finite representation of infinite sets of states in terms of symbolic constraints.

Model checking has made verification commonplace in many industrial set-
tings where applications are safety critical or economically vital. These include

38 E.A. Emerson

hardware and CAD companies such as IBM, Intel, Cadence, and Synopsys, soft-
ware companies such as Microsoft, and government agencies such as NASA.

Today there are many logics and methods for model checking. CTL and the
mu-calculus with associated fixpoint-based model checking algorithms are still in
widespread use. There is also linear temporal logic LTL model checking. It was
considered in a tableaux-theoretic approach by Lichtenstein and Pnueli [LP85].
More generally, LTL model checking can be done through reduction to automa-
ton nonemptiness as shown by Vardi and Wolper [VW86], and independently
by Kurshan (cf. [Ku94]). The automata-theoretic approach readily generalizes
to a broader class of linear formalisms than just LTL. Interestingly, it is often
implemented on top of a mu-calculus or (fair) CTL model checking algorithm
(cf. [EL86], [EL87]), where linear temporal model checking over one structure is
transformed to checking fairness over another structure.

A crucial factor is the formulation and application of abstractions. Given
original system M an abstraction is obtained by suppressing detail yielding a
simpler and likely smaller system M that is, ideally, equivalent to M for purposes
of verification. The precise nature of the abstraction and the correspondence
between M and M can vary considerably.

An exact abstraction guarantees that M is correct if and only if M is correct. A
bisimulation is a technical concept [Pa81] associating M and M that guarantees
an exact abstraction, and such that the original and the abstraction cannot be
distinguished by any “reasonable” temporal logic.

Systems M comprised of multiple, interchangeable subcomponents typically
exhibit symmetry which may be thought of as a form of redundancy. This can
be abstracted out by identifying symmetric states to get abstraction M that is
bisimilar to M . The symmetry abstraction can be exponentially smaller than the
original, yielding a dramatic speedup in model checking. A resource controller
with 150 homogeneous processes and a global state graph M of size about 1047

states2 can be model checked over the abstract M in a few tens of minutes
[ES97].

A related problem is parameterized model checking. Given a family of n similar
processes, establish correctness for systems of all sizes n. (Note that collectively
this amounts to an infinite state program.) While in general an undecidable
problem, various restricted cases can be solved. In [EN96] we developed a math-
ematical theory for a restricted but still useful framework. In [EN98] we showed
how to use this theory to verify parameterized correctness of the Society of Au-
tomotive Engineers SAE-J1850 automotive bus protocol. This solved a problem
relating to the use of multiple embedded Motorola micro-controllers in Ford
automobiles.

A conservative abstraction ensures that correctness of M implies correctness
of M . An abstraction obtained from M by partitioning and clustering states
in the natural way will be conservative. A simulation from M to M yields a

2 It should be emphasized that the original state graph of size 1047 is not and cannot
be constructed by the model checker. A smaller abstract graph representing the
essential information is built instead.

The Beginning of Model Checking 39

conservative abstraction, preserving correctness in M to M . On the other hand, if
M is incorrect the error may be bogus and the abstraction too coarse. Repeatedly
refining it as needed and as resources permit typically leads to determination of
correctness vs. incorrectness for M (cf. [Ku94]).

For hardware verification a basic aid is symbolic representation of the pro-
gram’s states and state transitions using data structures called Reduced Ordered
Binary Decision Diagrams (ROBDDs) [Br86] often called BDDs for short (cf.
[Le59], [Ak78]). A BDD is essentially an acyclic deterministic finite state au-
tomaton. Given a set P of system states, each a string of bits b1b2 . . . bn, the
BDD for P accepts exactly those states in P . Note that a BDD with a polyno-
mial number of nodes may have an exponential number of paths. In this way, a
BDD may represent a vastly larger set of states.

Symbolic model checking [B+90] is based on the original CTL logic and fix-
point based model checking algorithm [CE81] plus BDDs to represent sets of
states and transitions. It is routinely able to verify hardware designs modeled
with 100 to 300 or more state variables and having about 1030 to 1090 or more
global states. This corresponds to a large enough chunk of real estate on a chip
to be extremely valuable. Larger components are often amenable to verification
through decomposition and compositional reasoning.

BDDs tend to blow up in size for large designs. Conventional BDDs have
topped out for systems with a few hundred state variables. SAT-based bounded
model checking is an alternative approach [B+99]. The SAT approach can ac-
commodate larger designs than the BDD approach. However it only explores
for “close” errors at depth bounded by k where typically k ranges from a few
tens to hundreds of steps. In general it cannot find “deep” errors and provide
verification of correctness.

Remark. It should be emphasized that not all systems with, say, 1090 states can
be handled, since there are relatively few succinct representations and they are
insufficient to cover all such astronomically large systems. The pertinent fact is
that the method works routinely on the large systems encountered in practice.
On the other hand, there are some relatively small hardware systems for which
BDDs are too big, while a conventional explicit state representation is workable.

In software model checking, Microsoft has routinely verified device drivers
with 100,000 lines of code. The task is made easier by the fact that drivers
are more or less sequential code. Therefore state explosion is less of an issue.
However, software is usually more difficult to verify than hardware. It typically
has less of a regular organization. It may involve significant use of recursion, and
complex, dynamic data structures on the heap. It can also be extremely large.

A remaining significant factor in ameliorating state explosion is the exponen-
tial growth in computer power, speed and especially memory size, expressed in
Moore’s law which has obtained over the past quarter century. For example, in
1981 the IBM PC had less than 1M (random access) memory while today many
PC’s have 1G or more memory. Such a 1000-fold or larger increase in memory
permits significantly larger programs to be handled.

40 E.A. Emerson

There are numerous model checking tools. They typically include a model-
ing language for representing the program corresponding to the structure M , a
specification logic such as CTL or LTL for capturing correctness properties f , a
model checking algorithm that is often fixpoint based, and perhaps special data
structures such as BDDs for symbolic model checking or for incrementally build-
ing the state graph for explicit state model checking. Some of these are academic
tools, others are industrial internal tools, and some are for sale by CAD vendors.

7 Conclusions and Future Trends

The fundamental accomplishment of model checking is enabling broad scale for-
mal verification. Twenty five years ago our community mostly just talked about
verification. Today we do verification: many industrial-strength systems have
been verified using model checking. More are being verified on a routine basis.
Model checking thus has produced an era of feasible, automatic, model-theoretic
verification. It should be emphasized that a model checker decides correctness:
yes or no. Thus it caters for both verification and refutation of correctness prop-
erties. Since most programs do contain errors, an important strength of model
checkers is that they can readily provide a counter-example for most errors.

Model checking realizes in small part the Dream of Leibniz (1646 – 1716) to per-
mit calculation of the truth status of formalized assertions. The Dream of Leibniz
was comprised of two parts: lingua characteristica universalis, a language in which
all knowledge could be formally expressed; and calculus ratiocinator, a method of
calculating the truth value of such an assertion. Leibniz’s original Dream was un-
workable because its scope was too vast and the level of available precision too low.

Model checking is feasible because its domain is both well-defined and much
more narrow. Temporal logic is also precisely defined while limited in expressive
power especially in comparison to formalisms such as First Order Arithmetic
plus Monadic Predicates; yet, temporal logic and related formalisms seem ide-
ally suited to describing synchronization and coordination behavior of concurrent
systems; the restriction to finite state systems means that model checking pro-
cedures are in principle algorithmic and in practice efficient for many systems
of considerable size. It is in just these coordination aspects that errors are most
prone to occur for concurrent programs.

Beyond the Dream of Leibniz, model checking also validates in small part
the seemingly naive expectation during the early days of computing that large
problems could be solved by brute force computation including the technique
of exhaustive search. Model checking algorithms are typically efficient in the
size of the state graph. The difficulty is that the state graph can be immense.
Abstraction can be helpful because it in effect replaces the original state graph
by a much smaller one verifying the same formulae.

Model checking has been an enabling technology facilitating cross disciplinary
work. Problems from diverse areas distinct from formal methods can with some
frequency be handled with existing model checking tools and possibly without
a deep understanding of model checking per se.

The Beginning of Model Checking 41

It is worth mentioning some of the applications of model checking elsewhere.
These include understanding and analyzing legal contracts, which are after all
prescriptions for behavior [Da00]; analyzing processes in living organisms for
systems biology [H+06]; e-business processes such as accounting and workflow
systems [Wa+00]. Model checking has also been employed for tasks in artificial
intelligence such as planning [GT99]. Conversely, techniques from artificial intel-
ligence related to SAT-based planning [KS92] are relevant to (bounded) model
checking.

In the present formal methods research milieu, the ideal paper contributes
both new theory and practical experimental evidence of the merits of the theory.
A significant benefit of this tight coupling is that it promotes the development of
concretely applicable theory. On the other hand, such a synchronous organization
may risk slowing down the rate of advance on the theoretical track as well as
on the practice track. It will be interesting to see if as the field develops in the
future it might adopt something of the more specialized organization of older
disciplines. For instance, one has the broad divisions of theoretical physics and
experimental physics, which are more loosely coupled.

Model checking would benefit from future theoretical advances. This is espe-
cially important in view of the fact that many model checking methods are in
principle algorithmic but of high theoretical, worst case complexity. Their good
performance in practice has a heuristic character and is not well-understood on
a mathematical basis. Many efficiency enhancement techniques produce an un-
predictable gain in efficiency. To gain a better theoretical understanding of when
good efficiency obtains would be a very desirable goal for the future.

It is thus especially important to obtain convincing empirical documentation
of a verification method’s effectiveness and efficiency. One way to do this might
be to establish a broad set of benchmarks. A major obstacle, however, is that
proprietary hardware designs and software code are virtually never available in
an open fashion because they are patented, or trade secrets, etc. This means
that, to the extent that success at verifying industrial systems is the yardstick
of merit, we have lost the critical standard of repeatability normally associated
with experimental sciences.

Various interesting remarks have been made concerning model checking. Eds-
ger W. Dijkstra commented to me that it was an “acceptable crutch” if one was
going to do after-the-fact verification. When I had the pleasure of meeting Saul
Kripke and explaining model checking over Kripke structures to him, he com-
mented that he never thought of that. Daniel Jackson has remarked that model
checking has “saved the reputation” of formal methods [Ja97].

In summary, model checking today provides automatic verification that is
applicable to a broad range of sizable systems including many that are industrial
strength. At the same time the verification problem is not solved. We still have
quite a way to go.

Grand Challenge for Hardware. Hardware designs with a few hundreds to thou-
sands of state variables can be model checked in some fashion; but not an entire

42 E.A. Emerson

microprocessor. It would be a Grand Challenge to verify an entire microprocessor
with one hundred thousand state variables.

Grand Challenge for Software. Software device drivers have been shown
amenable to software model checking. These are mostly sequential software with
up to one hundred thousand lines of code. Of course, there is software with mil-
lions of lines of code. Windows Vista contains somewhat over 50 million lines
of code, and entails concurrency as well. It would be a Grand Challenge to to
verify software with millions to tens of millions lines of code.

In the future, we should see progress on the key topics of limiting state ex-
plosion, improved abstractions, better symbolic representations, broader param-
eterized reasoning techniques, and the development of temporal formalisms spe-
cialized to particular application domains (cf. [IEEE05]). It seems likely that
parallel and distributed model checking will grow in importance (cf. [HvdP06]).
In any case, I expect that model checking will become yet more useful.

References

[Ak78] Akers, S.B.: Binary Decision Diagrams. IEEE Trans. on Computers C-27(6),
509–516 (1978)

[AENT01] Amla, N., Emerson, E.A., Namjoshi, K.S., Trefler, R.J.: Assume-Guarantee
Based Compositional Reasoning for Synchronous Timing Diagrams. In: Mar-
garia, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031,
pp. 465–479. Springer, Heidelberg (2001)

[B+90] Birch, J., Clarke, E., MacMillan, K., Dill, D., Hwang, L.: Symbolic Model
Checking: 1020 States and Beyond. In: Logic in Computer Science. LICS,
pp. 428–439 (1990)

[B+99] Clarke, E., Biere, A., Cimatti, A., Zhu, Y.: Symbolic Model Checking with-
out BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999.
LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

[BMP81] Ben-Ari, M., Manna, Z., Pnueli, A.: The Temporal Logic of Branching Time.
In: Principles of Programming Languages, POPL 1981, pp. 164–176 (1981)

[Br86] Bryant, R.: Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Trans. Computers 35(8), 677–691 (1986)

[BY75] Basu, S.K., Yeh, R.T.: Strong Verification of Programs. IEEE Trans. on
Software Engineering SE-1(3), 339–345 (1975)

[Bu62] Buchi, J.R.: On a Decision Method in Restricted Second Order Arithmetic.
In: Proc. of Int’l. Congress on Logic Method, and Philosophy of Science
1960, pp. 1–12. Stanford Univ. Press (1962)

[Bu74] Burstall, R.M.: Program Proving as Hand Simulation with a Little Induc-
tion. In: IFIP Congress, pp. 308–312 (1974)

[CE81] Clarke, E.M., Emerson, E.A.: The Design and Synthesis of Synchronization
Skeletons Using Temporal Logic. In: Proceedings of the Workshop on Logics
of Programs, IBM Watson Research Center, Yorktown Heights, May 1981.
LNCS, vol. 131, pp. 52–71. Springer, New York (1981)

[CES86] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite
State Concurrent Systems Using Temporal Logic Specifications. ACM Trans.
Prog. Lang. and Sys. 2(8), 244–263 (1986)

The Beginning of Model Checking 43

[Cl79] Clarke, E.M.: Program Invariants as Fixpoints. Computing 21(4), 3–294
(1979)

[Da00] Daskalopulu, A.: Model Checking Contractual Protocols. In: Breuker,
Leenes, Winkels (eds.) Legal Knowledge and Information Systems. JURIX
2000: The 13th Annual Conference, pp. 35–47. IOS Press, Breuker (2000)

[DEG06] Deshmukh, J., Emerson, E.A., Gupta, P.: Automatic Verification of Param-
eterized Data Structures. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006
and ETAPS 2006. LNCS, vol. 3920, pp. 27–41. Springer, Heidelberg (2006)

[deBS69] de Bakker, J.W., Scott, D.: A Theory of Programs (unpublished manuscript,
1969)

[Di76] Dijkstra, E.W.: Discipline of Programming. Prentice-Hall (1976)
[Di89] Dijkstra, E.W.: In Reply to Comments. EWD1058 (1989)
[EC80] Emerson, E.A., Clarke, E.M.: Characterizing Correctness Properties of Par-

allel Programs Using Fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.)
ICALP 1980. LNCS, vol. 85, pp. 169–181. Springer, Heidelberg (1980)

[EH86] Emerson, E.A., Halpern, J.Y.: Sometimes and Not Never revisited: on
branching versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)

[EJ91] Emerson, E.A., Jutla, C.S.: Tree Automata, Mu-calculus, and Determinacy.
In: FOCS 1991, pp. 368–377 (1991)

[EL86] Emerson, E.A., Lei, C.-L.: Efficient Model Checking in Fragments of the
Propositional Mu-Calculus. In: Logic in Computer Science, LICS 1986, pp.
267–278 (1986)

[EL87] Emerson, E.A., Lei, C.-L.: Modalities for Model Checking: Branching Time
Strikes Back. Sci. of Comp. Prog. 8(3), 275–306 (1987)

[Em90] Emerson, E.A.: Temporal and Modal Logic. In: Handbook of Theoretical
Computer Science, vol. B. North-Holland (1990)

[EN96] Emerson, E.A., Namjoshi, K.S.: Automatic Verification of Parameterized
Synchronous Systems. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS,
vol. 1102, pp. 87–98. Springer, Heidelberg (1996)

[EN98] Emerson, E.A., Namjoshi, K.S.: Verification of a Parameterized Bus Arbi-
tration Protocol. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp.
452–463. Springer, Heidelberg (1998)

[ES97] Allen Emerson, E., Prasad Sistla, A.: Utilizing Symmetry when Model-
Checking under Fairness Assumptions: An Automata-Theoretic Approach.
ACM Trans. Program. Lang. Syst. 19(4), 617–638 (1997)

[FG99] Giunchiglia, F., Traverso, P.: Planning as Model Checking. In: ECP 1999,
pp. 1–20 (1999)

[Fl67] Floyd, R.W.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Pro-
ceedings of a Symposium in Applied Mathematics. Mathematical Aspects of
Computer Science, vol. 19, pp. 19–32 (1967)

[FSS83] Jean-Claude Fernandez, J., Schwartz, P., Sifakis, J.: An Example of Spec-
ification and Verification in Cesar. The Analysis of Concurrent Systems,
199–210 (1983)

[GT99] Giunchiglia, F., Traverso, P.: Planning as Model Checking. In: ECP 1999.
LNCS (LNAI), Springer (1999)

[H+06] Heath, J., Kwiatowska, M., Norman, G., Parker, D., Tymchysyn, O.: Prob-
abilistic Model Checking of Complex Biological Pathways. In: Priami, C.
(ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer (October
2006)

[HvdP06] Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.): FMICS 2006
and PDMC 2006. LNCS, vol. 4346. Springer, Heidelberg (2006)

44 E.A. Emerson

[Ho69] Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Commun.
ACM 12(10), 576–580 (1969)

[Ho96] Holzmann, G.J.: On-The-Fly Model Checking. ACM Comput. Surv. 28(4es),
120 (1996)

[IEEE05] IEEE-P1850-2005 Standard for Property Specification Language (PSL).
[Ja97] Jackson, D.: Mini-tutorial on Model Checking. In: Third IEEE Intl. Symp.

on Requirements Engineering, Annapolis, Maryland, January 6-10 (1997)
[JPZ06] Jurdenski, M., Paterson, M., Zwick, U.: A Deterministic Subexponential Al-

gorithm for Parity Games. In: ACM-SIAM Symp. on Algorthms for Discrete
Systems, pp. 117–123 (January 2006)

[Ko83] Kozen, D.: Results on the Propositional Mu-Calculus. Theor. Comput.
Sci. 27, 333–354 (1983)

[Kl56] Kleene, S.C.: Representation of Events in Nerve Nets and Finite Automata.
In: McCarthy, J., Shannon, C. (eds.) Automata Studies, pp. 3–42. Princeton
Univ. Press (1956)

[Kn28] Knaster, B.: Un théorème sur les fonctions d’ensembles. Ann. Soc. Polon.
Math. 6, 1332̆013134 (1928)

[KS92] Kautz, H., Selman, B.: Planning as Satisfiability. In: Proceedings European
Conference on Artificial Intelligence. ECAI (1992)

[Ku94] Kurshan, R.P.: Computer Aided Verification of Coordinating Processes: An
Automata-theoretic Approach. Princeton University Press (1994)

[La80] Lamport, L.: “Sometimes” is Sometimes ’Not Never’ - On the Temporal
Logic of Programs. In: Principles of Programming Languages, POPL 1980,
pp. 174–185 (1980)

[Le59] Lee, C.Y.: Representation of Switching Circuits by Binary-Decision Pro-
grams. Bell Systems Technical Journal 38, 985–999 (1959)

[LP85] Lichtenstein, O., Pnueli, A.: Checking that Finite State Programs meet their
Linear Specification. In: Principles of Programming Languages, POPL, pp.
97–107 (1985)

[Lo+94] Long, D.E., Browne, A., Clarke, E.M., Jha, S., Marero, W.: An improved
Algorithm for the Evaluation of Fixpoint Expressions. In: Dill, D.L. (ed.)
CAV 1994. LNCS, vol. 818, pp. 338–350. Springer, Heidelberg (1994)

[NASA97] Formal Methods Specification and Analysis Guidebook for the Verification
of Software and Computer Systems, vol. II, A Practioners Companion, p.245
(1997) [NASA-GB-01-97]

[NK00] Kedar, S., Namjoshi, R.P.: Syntactic Program Transformations for Auto-
matic Abstraction. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 435–449. Springer, Heidelberg (2000)

[Ni02] National Institute of Standards and Technology, US Department of Com-
merce, Software Errors Cost U.S. Economy $59.5 Billion Annually, NIST
News Release (June 28, 2002),
http://www.nist.gov/public affairs/releases/n02-10.htm

[Pa69] Park, D.: Fixpoint induction and proofs of program properties. In: Meltzer,
B., Michie, D. (eds.) Machine Intelligence, Scotland, vol. 5, Edinburgh Uni-
versity Press, Edinburgh (1969)

[Pa81] Park, D.: Concurrency and Automata on Infinite Sequences. Theoretical
Computer Science, pp. 167–183 (1981)

[Pn77] Pnueli, A.: The Temporal Logic of Programs. Foundations of Computer
Science, FOCS, pp. 46–57 (1977)

[Pn79] Pnueli, A.: The Temporal Semantics of Concurrent Programs. Semantics of
Concurrent Computation, pp 1–20 (1979)

http://www.nist.gov/public_affairs/releases/n02-10.htm

The Beginning of Model Checking 45

[Pr67] Prior, A.: Past, Present, and Future. Oxford University Press (1967)
[QS82] Queille, J.-P., Sifakis, J.: Specification and verification of concurrent systems

in CESAR. In: Symposium on Programming. LNCS, vol. 137, pp. 337–351.
Springer (1982)

[Su78] Sunshine, C.A.: Survey of protocol definition and verification techniques.
ACM SIGCOMM Computer Communication Review 8(3), 35–41 (1978)

[Ta55] Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac.
J. Math. 5, 285–309 (1955)

[Tu36] Turing, A.M.: On Computable Numbers, with an Application to the
Entscheidungproblem. Proc. London Math. Society 2(42), 230–265 (1936);
A Correction, ibid 43, 544–546

[Tu49] Turing, A.M.: Checking a Large Routine. In: EDSAC Inaugural Conference,
Typescript published in Report of a Conference on High Speed Automatic
Calculating Machines, pp. 67–69 (June 24, 1949)

[Va01] Vardi, M.Y.: Branching vs. Linear Time: Final Showdown. In: Margaria, T.,
Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp. 1–22.
Springer, Heidelberg (2001)

[VW86] Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic
Program Verification (Preliminary Report). In: Logic in Computer Science.
LICS, pp. 332–344 (1986)

[vB78] von Bochmann, G.: Finite State Description of Communication Protocols.
Computer Networks 2, 361–372 (1978)

[Wa+00] Wang, W., Hidvegi, Z., Bailey, A., Whinston, A.: E-Process Design and
Assurance Using Model Checking. IEEE Computer 33(10), 48–53 (2000)

Verification Technology Transfer

R. P. Kurshan

Cadence Design Systems, Inc., New Providence, NJ 07974

Abstract. In the last quarter century computer-aided verification – es-
pecially in the form of model checking – has evolved from a research con-
cept to a commercial product. While the pace of this technology transfer
was anything but rapid, the new technology had almost insuperable hur-
dles to jump on its way to the market place. Hurdle number one was a
required significant change in methodology. On account of its limited ca-
pacity, model checking must be applied only to design components (RTL
blocks in the case of hardware) instead of the whole design as with sim-
ulation test. Thus, the functional behavior of these design components
must be specified. Since component level functionality is often revealed
at best obscurely in the design’s functional specification, either designers
must convey component functionality to those doing the testing or else
testers must somehow fathom it on their own. The former was consid-
ered an unacceptable diversion of vaunted designer resources while the
latter was often undoable. A second hurdle was uncertainty surround-
ing the quality of the new tools. Initially the tools were incomparable
and required the user to create considerable tool-specific infrastructure
to specify properties before a tool could be evaluated. Recreating the re-
quired infrastructure for several tools was infeasible. This meant choosing
a tool without a head-to-head evaluation against other tools. With the
high cost and uncertain outcome afforded by these hurdles, no circuit
manufacturer was willing even to consider seriously this new technology.
Not, that is, until the cost of testing-as-usual became higher than the
cost of jumping these formidable hurdles. This essay is the saga of the
transfer of computer-aided verification technology from research to the
market place.

1 Introduction

Computer-aided verification could be said to derive from Russell-Whitehead’s
Principia Mathematica (1910-1913) [WR13], which laid a foundation for axiomatic
reasoning. More germane was Alan Turing’s model of computation [Tur36]. The
Turing Machine led to automata theory developed by Rabin and Scott [RS59]
for languages of strings and then by Büchi [Büc62] for languages of sequences.
The latter provided the basis for automata-theoretic verification [Kur94,VW86]
on which model checking can be founded. Model checking per se was developed
in 1980 by Clarke and Emerson [CE82] and Queille and Sifakis [QS82] indepen-
dently. Earlier, around 1960, computer-aided verification was introduced in the
form of automated theorem proving. Theorem proving derived especially from

O. Grumberg and H. Veith (Eds.): 25MC Festschrift, LNCS 5000, pp. 46–64, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Verification Technology Transfer 47

the resolution method of Robinson [Rob65], which evolved into other more prac-
tical non-resolution methods by Bledsoe and others, leading to the UT Austin
school of automated theorem proving that featured Gypsy (by Ron Goode and
J. C. Browne) and then the famous Boyer-Moore theorem prover – see [BL84].
Until 1990, most of the investment in computer-aided verification went to auto-
mated theorem proving. This was especially true for U. S. government support,
which was lavished on automated theorem proving during this period.

For all its expressiveness and proving potential, automated theorem proving
has not quite yet made it into main-stream commercial use for computer-aided
verification. One important reason is scalability of use: using an automated the-
orem prover requires specialized expertise that precludes its broad use in indus-
try. Moreover, even in the hands of experts, using an automated theorem prover
tends to take more time than would allow it to be applied broadly and still
track the development of a large design project. Therefore, to the extent that
automated theorem proving is used on commercial projects, it tends to be used
for niche applications like verification of numerical algorithms (hardware multi-
pliers and dividers, for example). Although one company in particular, AMD,
has made extensive practical use of theorem proving for such applications, uti-
lization is presently too narrow and specialized to attract much attention in the
Electronic Design Automation (EDA) marketplace, where vendors such as Ca-
dence, Synopsys, Mentor Graphics and others sell software tools for industrial
development of integrated circuits. A brief exception was the failed attempt by
Abstract Hardware Ltd. of Scotland to market the LAMBDA theorem prover
based on HOL [GMW79]. Based on Milner’s ML, HOL had been developed orig-
inally for hardware verification. Its commercialization was led by M. Fourman
and R. Harris.

Perhaps it was the inherent difficulties in applying automated theorem prov-
ing that led Amir Pnueli to envision a more restricted but potentially simpler
approach to verifying concurrent programs for properties expressed in Temporal
Logic [Pnu77]. Although he too was focused on deductive reasoning, he noted (in
passing) that Temporal Logic formulas could be checked algorithmically. In this
incidental observation, commercial computer-aided verification could be said to
have been conceived. Its birth would come three years later as model checking.

Analyzing a finite state coordinating system through an exploration of its
composite state space was actually proposed by Rudin and West [RW82,Wes78]
around 1980 too. However, it was model checking that formalized the process in
terms of checking a model for a property defined in a temporal logic. This differ-
ence was very germane to practicality, as it led to decision procedures. Moreover,
only with model checking could properties cast as assertions to be checked be
reused as constraints to define the environment of an adjoining block. These
two: formalization of assertions and algorithmic verification paved the path to
the broad success of model checking. In fact, the gating issues for technology
transfer were procedural, not technical. Model checking technology has continu-
ously far out-stripped its pace of adoption.

48 R. P. Kurshan

1.1 First Projects

Although the theory spoke of verification, anyone who applied the theory soon
realized that its real value lay in falsification. Go to a designer with the the claim
“I verified that your design is correct” and you get a muffled yawn – of course her
design is correct, she thinks, why wouldn’t it be? (And who knows what “verified”
means anyway.) But, show her a bug in a form she can readily comprehend (a
simulation error trace) and she immediately recognizes the value: you found a bug
that she did not know was there. From the first applications of model checking, it
was clear that the real value of model checking was that it was an uncommonly
good debugger – reductio ad bug. It is more effective to find a bug by trying to prove
that there is none, than to go looking for it directly – the bug is always where you
didn’t think to look. As a debugger, the model checker is forgiven for any black
magic that went into its application (like abstractions, restrictions, unsoundness)
since it’s only the bug that matters; no need to understand the means. “I don’t
need to understand what model checking is, because I know a bug when I see it
(and ‘verified’ only means ‘failed to find a bug’).”

In 1983 I applied an early version of the COSPAN [HHK96] model checker
to a model that I created by hand. The model was a very high level abstrac-
tion of an implementation developed in AT&T of the link-level protocol of the
X.25 standard. Through this process I found 2 bugs that were manifest in their
implementation (among about a dozen artifactual failures manifest by my ab-
straction, but not reflecting design errors). Although before this event my “ver-
ification” work was viewed with jaundiced suspicion at Bell Labs Research, my
“practical contribution” lent me some (begrudged) breathing room. (Begrudged,
because my work was hard to categorize among recognized fields of research that
were supported at Bell Labs.) With this breathing room I found another simi-
lar application that was credited with saving AT&T a half-million dollars. This
earned me the resources to re-write and develop COSPAN, which I then started
with Zvi Har’el in 1985. During this process, I began to understand what I was
doing (having been embarrassingly ignorant of the entire relevant literature).
COSPAN was based on ω-automata, which I then learned were classical objects
in computer science. In 1986 I proposed a development methodology based on
automata-theoretic verification, in which design testing (via verification) could
be started earlier in the development flow than previously possible and this I
claimed would accelerate the design development process [KH90].

As I found others working in this area, especially Ed Clarke whom I met in
1985, I learned that my application experiences were common and shared by
most who tried to apply algorithmic verification. In fact Ed and his students
had made interesting and relevant advances that I could use, as had others. Ed
was impressed that COSPAN (circa 1986) could explore as many as a million
states (!), and did much to encourage me to continue my work.

In 1987-89 COSPAN was applied to an ambitious hardware development
project: a packet layer controller chip (PLC). With an anticipated layout of
200,000 transistors, it was medium-sized at the time. The project was spec’d
but rejected by Marketing based on its projected development cost – 30 staff

Verification Technology Transfer 49

years. The disgruntled project manager had read an early draft (internal TM)
of [KH90] and invited me to try my method on his design, which we would run
as a “black bag” job – off the record. I agreed to contribute 100% of my time
and he would contribute his architect for the project. Together (in the end, he
contributed 2 more people), we completed the project in 6 staff years, 2 calen-
dar years. We had succeeded to verify over 200 properties (well, more or less),
drawn from a list of what the test group would test for. The design was developed
through a 4-level abstraction hierarchy, wherein each subsequent refinement was
correct by construction. The bottom level was synthesized automatically, from
C code generated by COSPAN. Although the performance of the design was
only half as fast as expected – on account of some architectural decisions we
had made to simplify verification – the design passed system integration test
with flying colors. It was said to have the level of reliability of a second generic
release. The low development cost (20% of what had been projected) and speed
to market was said to out-weigh its somewhat poor performance.

The PLC project created a stir in AT&T MicroElectronics, as the TM that
documented the project was circulated. By this time both myself and the project
manager were vindicated and rewarded. It was 1989, and I was confident that the
last six years of wandering had finally reached a conclusion and all that remained
was to help shepherd this new and obviously valuable technology into general use.
Little could I imagine that I had another 15 years of shepherding ahead of me.

1.2 The Catch 22 of Technology Transfer

Post-PLC, I was certain that my new technology would be in great demand. I
worked out a triage plan to deal with the anticipated requests for my time, to
avoid dilution of effort and remain effective. I would demand assistants, carefully
select which projects I would handle.

But after a few days, my phone had registered nary a ring. Was my name
misspelled in the TM? Where are all my anticipated fans? What’s going on?

Swallowing my pride, I went back to the same development group that had the
success with the PLC and asked about their next project. Were they planning to
use the PLC methodology? (A rhetorical politeness for “why haven’t you called
me for the next project?”) To my astonishment, the answer was “no” – no future
anticipated application of the PLC methodology! Amazing! What’s going on?
“Well,” they said, “the PLC was a great project, but we could never implement
your methodology ourselves, you may be the only one in the world who can do
this for all we know, and anyway we could never rely on ‘Research software’ for
a ‘real’ (i.e., non-black-bag) project – who would maintain the software? Next
month you may be working on something else, and then who do we go to when
your software breaks?”. “No, go to our CAD group”, they counseled, “convince
them to support your software and then we will eagerly use it”.

Ah, so reasonable! How could I have been so naive? Off to the CAD group.
“Had they heard about the PLC project?” “Well, here’s who to speak to.” “What
do you mean, ‘no point’? This is a proven productivity enhancer! You must
support it! Ask them.”

50 R. P. Kurshan

The answer remained “No”. They said “We cannot support a complex piece
of software embedded in a revolutionary new methodology just because one
development team asks us to – we would never make back our investment. Come
back to us when you have 20 development teams asking us to support this. Then
we will consider it.”

“Hmm.. At 2 years per project, I could reach 20 successes in 40 years. Would the
firstproject stillbearound to remember?”Tobebroadlyused itmustbe supported;
to be supported, it must already be broadly used. The inescapable vicious circle!

Utterly depressed, I accepted an invitation to give a course on this technology,
first at UC Berkeley, then at the Technion in Israel. (My book [Kur94] came
directly from my Berkeley course notes.) Attending my Technion course were four
designers from Intel. They invited me down to Intel to give a mini-course there. It
was 1990. From the mini-course came a challenge: verify this P5 cache protocol.
It had been simulated for 13 months with billions of vectors, and had no known
problems, but they were still worried about it. They drew some diagrams on the
board, I translated them into a model, tried to verify the model, found a “bug”
and they explained to me, based on the bug, what was wrong with my model.
This process repeated for ten days, generating about two revisions per day. In
fact, I wasn’t allowed to use the Intel computers (nor was I authorized to down-
load COSPAN there), so all my runs were at the Technion where a university
licensed COSPAN was installed. The explanations for revisions came by email.
By the afternoon of the tenth day, I still had not received an explanation of what
was wrong with model version 19. I called – had they received my latest error
track? “Come down to Intel” was the answer. When I arrived, I was greeting by
a small reception committee of designers: they had been studying my last bug
all morning and had just demonstrated that it was a real bug in their P5 design.

The next day the head of Intel-Israel, Dov Fromann came up from Jerusalem
to meet me: “I don’t know what this COSPAN is, but whatever it is, we want
it!” Thus ensued a year-long haggling match between AT&T and Intel. Intel
offered $.25M, AT&T demanded $2.5M. (AT&T had no idea of the value of
COSPAN, but they figured 10x was a good negotiating position.) It turned ugly,
Intel threatened that it would just take CMU software for free (SMV had just
become available), while AT&T decided that Intel was wasting their time for
too little money and the negotiations were broken off. However, back at AT&T,
the head of AT&T MicroElectronics was alerted to the situation and called me
in to ask “If this is so valuable to Intel, why isn’t it of value to us?”

Well, I commended his excellent question (in fact, her question, as it was
asked by a consultant who had been brought in to figure out why AT&T Mi-
croElectronics was losing money – she saw the Intel contract drafts and called
me in). Thus I got to relate the “Alice’s Restaurant” saga with its Catch 22 to
the head of AT&T MicroElectronics. He set up a meeting with the CAD head
whom he proceeded to chastise in an unseemly fashion in front of me. (I could
guess from this why MicroElectronics was losing money, and it had nothing to
do with COSPAN.) From this day, COSPAN would be developed and officially
supported by the MicroElectronics CAD group.

Verification Technology Transfer 51

I knew that a shotgun wedding was not a union made in heaven, and indeed, for
the first three years, very little happened. Arno Penzias, the head of Bell Labs Re-
search (and a Nobel Laureate) asked me to keep quiet: he would make it work. And
indeed, he used $.5M of his discretionary funds to pay the MicroElectronics CAD
group to seed their support for COSPAN. At the time I thought this was bizarre
and outrageous – that we should pay MicroElectronics to allow us to help them –
but in the end, this made it work. By 1993, MicroElectronics support for COSPAN
was begun in earnest and it was released internally as the CAD tool FormalCheck.
The first internal users were in the misbegotten AT&T acquisition NCR. But in-
ternal use was slack, and after a huge fight, it was decided to market FormalCheck
externally. The basis of the fight was fear of “back-bite”: “what if our competitors
figure out how to use FormalCheckmore effectively than we have (because we never
like to change our methodology and never learned how to be really competitive)?
It is better to kill it than expose it to our competitors!” The fight was resolved by
the transfer of the CAD group from MicroElectronics to Advanced Technologies,
from where they were free to market FormalCheck externally.

The decision to market FormalCheck was fortuitous, as in 1995 AT&T was
broken up, Lucent Technologies was formed out of Bell Labs, NCR was regur-
gitated (to their great joy) and MicroElectronics was spun off as Agere. Thus,
the FormalCheck internal user base evaporated and product development could
be justified only by anticipated external users. By then the FormalCheck de-
velopment team had grown to 30 and it had gotten far enough along that it
was decided to complete its development for the external market – the only re-
maining potential user base. In 1998, FormalCheck was released into the EDA
marketplace. In 9 months it generated a stunning $4.5M, after which it was
“sold” (actually, licensed exclusively) to Cadence Design Systems. FormalCheck
continued to be supported by Cadence until 2005 when it was replaced by a
new model checking tool – IFV – that integrated COSPAN with new SAT-based
technology from Cadence Berkeley Labs.

What does this say about technology transfer? Was COSPAN a successful
technology transfer? In 1990, my Executive Director Sandy Fraser suggested
(facetiously?) that the “Intel Model” for technology transfer may be the best
way: get an outside organization to ask for the technology, so that we know it
is useful and then we will develop it. I always considered the experience as a
demonstration that technology transfer of “disruptive” technologies was next to
impossible. That the COSPAN transfer succeeded was a fluke.

With more hindsight, however, I see another view of this saga as a blundering
into a process whereby a disruptive technology can be effectively transferred
from research to commerce. A discussion of this forms the sequel.

2 Impediments to Change

In retrospect it is crystal clear what were the impediments to the COSPAN
technology transfer: the required methodology change and the lack of inter-
changeability of tools.

52 R. P. Kurshan

Anything new is suspect – and for good reason. Just think of all the question-
able ideas that are eagerly advanced by the research community. Industry has
neither the bandwidth nor expertise to evaluate them (and engineers eventually
tire of hearing about yet another great idea that will save the day).

Acceptability of a new technology is inversely proportional to the required
change in the user interface. A faster compiler that plugs in transparently is an
immediate win, because the users see no change (beyond improved performance).
Model checking intrudes into the entire development flow. It requires developers
to become part of the verification process (by specifying properties). It requires
the test team to learn a completely new tool with new concepts and new con-
siderations. The concept of model checking is not transparent to someone who
understands testing in terms of executing the design through scenarios. Even
today it is sometimes a challenge to wean testers from their tendency to write
properties that look like scenarios instead of global properties. E.g., instead of
writing a property that enumerates the various steps of packet-handling under
a variety of contingencies – that will invariably be incomplete on account of
the combinatorial explosion of possibilities – instead write the simple high-level
property “Every packet is received within two clock cycles after it is sent”.

Properties that are successfully model-checked need not be simulated. Since
model checking can be started before a simulation test bench is available, the flow
should be changed to accommodate the introduction of model checking before
simulation test would normally start. (Doing so is one of the big productivity en-
hancers afforded by model checking – finding bugs earlier in the design flow can
greatly decrease the cost of development, of which 50%–80% is allocated to test.)

Capacity (the size model that can be checked) has always been (and still is) an
issue. The smaller the capacity, the more partitioning is required for verification.
Partitioning at RTL block boundaries is natural (given that partitioning is nec-
essary). If capacity is below the size of a typical RTL block, then the block itself
must be partitioned. Typically, partitioning a single block would be considered too
much effort and too fraught with the risk of introducing errors to be seriously sup-
ported in a real developmentflow. Therefore, block-level capacity is an essential in-
gredient for technology transfer. The advent of BDD-based algorithms to support
symbolic model checking [McM93] elevated model checking capacity above block
level, thus eliminating capacity as a show-stopper in many cases. Since then capac-
ity has steadily improved, especially with the introduction of SAT-based symbolic
model checking [CBRZ01,McM03], which has afforded as much as two orders of
magnitude increase in capacity over BDDs. Nonetheless, while necessary, thus im-
proving capacity was not sufficient for technology transfer.

Considerations driven by capacity limitations require the user to understand
abstraction, partitioning, compositional verification and restriction. Even when
these are automated in the tool, the boundaries of the automation can be reached
and then must be addressed. Since performance is critical, the user often must
become familiar with a variety of “engines” like BDD-based algorithms and
SAT-based algorithms, or complete algorithms for verification vs incomplete

Verification Technology Transfer 53

falsification engines such as bounded model checking [CBRZ01]. These have dif-
ferent sweet-spots that may be hard to identify automatically.

A design factory cannot risk a major disruptive process change that could
destroy a thin margin of profitability, even as the change promises to improve
profitability. Therefore, a major methodology change is almost always a killer
for technology transfer.

Of course, no industry would consider turning a major development process
upside-down over night. A potentially valuable change is carefully evaluated, first
in a dark corner by a summer intern, then if that shows promise, by the CAD
group in their spare time on an old design. Only after a succession of promising
evaluations might the new process be evaluated tentatively (in parallel with the
old process) on a real design. Only when all these evaluation hurdles are passed
might the new technology begin to be fully integrated into the design flow.

To facilitate this evaluation process, a variety of products are compared head-
to-head. Competition among vendors breeds confidence. Several vendors advanc-
ing similar products lends verisimilitude to the field, whereas a unique product
without competition is suspect.

If each product requires substantial unique infrastructure – like properties spec-
ified in an manner that is compatible with that product alone – then it may be
too costly to perform such an evaluation at all. This was a severely limiting factor
when each model checking product had its own proprietary specification language.

In summary, it takes much time and thus cost to generate confidence in a new
disruptive technology. In view of the high cost of change, it requires a compelling
need.

2.1 Pain and Gain

For the industry the tradeoff is simple: the pain of doing nothing in the face of
deteriorating test coverage vs the gain and associated cost of improving reliability
via model checking.

Here’s a “theorem”:

Theorem 1. Commercial Electronic Design Automation will inevitably be based
on Formal Methods.
Proof
Functional complexity grows exponentially with IC size. Therefore, adequate sim-
ulation test analysis will soon (if not already) become intractable. The only known
way to deal with intractability is divide-and-conquer. That is, analyze compo-
nents then “stitch” together component solutions into a virtual global solution.
This cannot be done without mathematical precision, i.e., Formal Methods.

Around 1990, major IC designers like Intel and IBM began to understand that
the increasing functional complexity of designs was rendering them untestable.
Without a dramatic change, decreasing reliability would become the gating factor
in design complexity. The new circuits could be built, but they would malfunc-
tion. There is nothing like a half-billion dollar bug [Coe95] to drive this message
home.

54 R. P. Kurshan

Today, there is a rapidly growing sector of the IC design community that has
come to the realization that maintaining testing-as-usual would drive them out of
business on account of the rapidly degraded quality that accompanies increasing
functional complexity. They are driven to seek almost any promising remedy –
even one so disruptive as model checking – in view of the fatal alternative. This
is what the academic community had been predicting for decades; over the last
decade, it finally has become a reality.

3 False Starts

In 1993, FormalCheck was at the “cutting edge” – meaning, it was ahead of its
time. Only a very few companies had started to feel enough pain to seriously
consider formal verification. A few more were looking to the future, but would
not yet be serious customers. These included TI, Motorola, Cray/SGI and a few
others. Today that has all changed, but back then it was hard to get a good
sense of direction from prospective customers.

One of the first – classical – mistakes made in the architecture of FormalCheck
concerned the issue of power vs automation. Coming from a research background,
it was all too tempting to convince oneself that all the current knowledge and
power of model checking must be supported and used. How else could one expect
to verify global properties? FormalCheck came with 150 pages of painstakingly
drawn documentation, plus a two-day lab course. It was more than many could
handle. Only a decade later did we understand that “less is more”: at Cadence,
the new goal was to do the most that is possible fully automatically, not more
than that. (Today, 13 years later, customers are starting to request more power
through user control, but this is now the second generation of users that has
gained considerable sophistication in the interim.) In 1993, it seemed inconceiv-
able to manage with less than what was needed for hierarchical and composi-
tional verification, as all the important design properties needed that. Ten years
later we learned that users were more than content to check “unimportant” local
properties, as long as it could be done fully automatically, without “education”.
That is, take a small step before taking a larger step.

A beautiful case in point here was equivalence checking. Equivalence checking
grew quitely in the 90s before it burst forth as a very successful product that is used
extensively and broadly in the design development flow. The ideas of equivalence
checking had been simmering quietly since around 1980. Then the problem was
capacity, but the main ideas – mapping states to convert sequential equivalence
checking into combinational equivalence checking and then further mapping nets
via names and topology – were already established. With the advent of BDDs, the
capacity issue ameliorated and products emerged. The research community took
little note, as the great challenges were in model checking. But suddenly, by the
turn of the century, equivalence checking was fully established as a main-stream
product. A small step. But one of great significance and value.

Perhaps the grand-daddy of classical mistakes was around verification vs fal-
sification. We wanted things that worked. Broken things were shameful and

Verification Technology Transfer 55

hidden. No one was proud of finding a bug. The only means that was (poten-
tially) powerful enough to prove that a program was correct was automated
theorem proving. Hence the enormous early investment in automated theorem
proving. However, somewhere along the line bugs became beautiful. Remember
the designer: she doesn’t even believe “verified”, but knows a bug when she sees
one. This is when model checking began to leave theorem proving in the dust: go
for the bugs. Model checking is an uncommonly useful debugging tool. Dijkstra’s
dream of verified software would have to wait.

Since the name of the game became falsification, completeness was less of an
issue. This opened the door for under-approximations such as restrictions on
inputs (for example, setting some data paths to near-constants) and restriction
of the depth of search as with bounded model checking. Less is more.

Even soundness became expendable to some extent. This sounds horrific, but
even in the early days, soundness was discarded when error tracks from abstrac-
tions were admitted. The user would need to try to simulate the error track. As
long as there were not too many false fails, the user was content. At no time
would a false pass be considered acceptable, and yet almost no product is with-
out bugs, so there may well be some false passes out there – if only as an artifact
of faulty book-keeping. But this is the real world: you do your best, but keep
moving. A Herculean effort to verify the correctness of a model checker would
not be a welcome diversion of resources. Early focus on proving the soundness of
the model checker was misplaced. More important than soundness is coverage:
instead of worrying about correctness, worry about writing more properties to
check more of the design. That’s the value assessment. After all, simulation test
has known semantic faults, and these are tolerated. Only academics worry about
them.

As a last “false start” I’ll mention interoperability. In the early days, model
checking was an alternative to simulation test. The two at best were disdaining
neighbors: model checking could not put simulation out of business, although the
secret wish was there. Simulation was the work-horseof the test community; model
checking by comparison seemed a toy. As a result, the two efforts evolved in dif-
ferent groups. The company 0-In (recently acquired by Mentor Graphics) may
have been the first to establish peace between the two in the form of an alliance
aptly called hybrid verification (not to be confused with “hybrid systems”). The
idea was to use a simulator to quickly drive the design to “deep” states unreach-
able with a model checker. From those deep states, model checking (perhaps on
an abstraction) could be started. Synopsys has perfected the idea with their tool
MagellanTM , and today others are finding other useful ways to combine simula-
tion test and model checking. A big virtue of this hybrid is that it moves model
checking into more familiar territory for the vast majority of the testing commu-
nity who practice simulation test. Through this connection lies the best chance
to put a model checker on the desk of everyone who today runs a simulator. The
idea of hybrid was overlooked (or passed by) because it seemed to those working
in model checking like a meager contribution. In retrospect, it was a important
early opportunity that was overlooked. A small but valuable step.

56 R. P. Kurshan

4 A Framework for Technology Transfer

So what then was the grand technology transfer lesson learned here? What in
1995 seemed like a blundering into a fluke technology transfer, in retrospect
points to a process whereby a disruptive technology can be effectively transferred
from research to commerce.

The key method inferred here is a process based upon small steps. Each step
entails only a small change for the user, thus avoiding excessive disruption. Each
step produces some positive benefit, thus demonstrating efficacy and justifying
the next (small) step.

One starts with a roadmap with two points: where we are now, and where we
want to reach, technologically. Then one fills in the middle with a succession of
small steps, each of which will show some positive benefit and is small enough
to avoid excessive disruption.

This is not a brilliant strategy, but only a simple observation of how things are.
Disruptive technologies get adopted incrementally. The increments are sustained
by successive benefits – even small benefits are good enough to show “promise”
and keep the process going.

As simple and natural an observation as this is, it provides a cautionary note
to the over-eager: dig in for the long slog; get a hobby that will compensate for the
frustration; be prepared for many false starts and keep adjusting the roadmap.

The real art here is filling in the roadmap – solving the “getting from here to
there” problem. That takes great vision or many course changes.

5 Formal Functional Verification in Commercial Use
Today

Automated theorem proving is used today in a few niche applications, primarily
for data-path verification of numerical algorithms such as multipliers. AMD is
one of the primary companies that has found a way to use this effectively in
their development flow. Today it is not supported commercially by the Electronic
Design Automation (EDA) industry (although a decade ago it briefly was, in the
UK). The reasons for this have already been discussed.

Equivalence checking is broadly used and of all formal methods is the one that
has most pervasively penetrated the IC industry development flow. It is a central
product in EDA. Presently, the focus is on combinational equivalence checking –
checking the equivalence of stateless boolean functions. However, there is presently
an important push towards sequential equivalence checking: checking the equiv-
alence of full circuit designs with latches (states) that cannot readily be mapped
from one design to the hopefully equivalent one. In the limit, sequential equivalence
checking reduces to model checking. While organizationally, equivalence checking
and model checking have developed separately in the EDA industry, the advent of
sequential equivalence checking will inevitably bring them together.

While not yet commercially supported by the EDA industry, model checking
high-level (abstract) models of complex protocols such as cache protocols is rou-
tine in the processor design industry. This application of model checking is less

Verification Technology Transfer 57

main-stream than checking local properties of RTL blocks, so the EDA industry
has not gotten here yet, in spite of its importance and perfect fit with model
checking technology. Meanwhile, the tool of preference for those who design cache
protocols is MurPhi [DDHY92] designed by David Dill and his students. While
David has moved on to other interests, MurPhi is actively maintained by Ganesh
Gopalakrishnan at the University of Utah, thus providing an important service
to this segment of the industry.

The application of formal methods to software design and development has
proved much harder than for hardware1. There are numerous reasons for this.
First is the relative lack of semantics for C code. Hardware specification lan-
guages were no better, but had a semantics forced on them by the need to
automatically synthesize a program into a circuit. It is precisely this imputed
semantics that provides the hooks for model checking. Formal analysis of soft-
ware entails assigning a semantics that in some cases may be arbitrary and fail
to match the semantics imputed in other contexts.

Moreover, the performance of synthesis for hardware is intimately tied to an
efficient assignment of sequential elements (states) to the design. Optimizing
which program variables are “state” variables has been the object of enormous
effort in the EDA industry for the purpose of efficient synthesis. Model checking
capitalizes on this effort by using the synthesis assignment.

Since software has no such concern for synthesis, model checking for software
must incorporate a step wherein sequentiality is imputed to the program: which
actions happen simultaneously, which occur sequentially. Again, doing this ef-
ficiently is very important for the performance of the model checking, but in
the case of software, there are no years of effort in this direction to stand upon.
The general solution for software has been to assume that actions are sequen-
tial, and that actions in different “processes” interleave. This is satisfactory for
small software models, but does not come close to passing the component ca-
pacity threshold discussed earlier. Interleaving also tends to be more efficiently
implemented by explicit state analysis, further limiting capacity.

There are still other impediments to software verification. Since C is the lan-
guage of choice for designs, pointers, memory handling and the general infinite
state of the system all must be handled. While there has been some impressive
progress in this area [CKL04], it has some distance to go before it can be picked
up for commercial use.

Nonetheless, there has been one important achievement in commercial soft-
ware verification: at Microsoft, SLAM [BR02] has penetrated main-stream driver
development. It uses a software model based on a driver program’s control flow
graph to overcome all the problems cited above. Its verification is based on a
push-down automaton associated with the control flow graph. While SLAM has
been fanned out into the design development process in Microsoft and is an
important example of model checking technology transfer, its very particular

1 In our context, “hardware” means HDL, e.g., verilog code, whereas “software” means
primarily C or C++ code. Of course, pedantically speaking they are both “software”,
whereas “hardware” is something attached with a soldering iron.

58 R. P. Kurshan

application must be understood as brushing the boundary of what is currently
possible for model checking software in an industrial setting.

Europe has recently taken a more “progressive” attitude toward technology
than the US or the Far East. (I attribute this to the pervasive availability of
government and now EU funding for new technology, allowing many ideas to
flourish without passing the acid test of the free market, as required elsewhere.
This atmosphere is reminiscent of the lavish post-Sputnik funding in the US,
fueled by freely flowing government grants in the sciences, defining a period that
coincided with the “golden age” of research in the US, but also with a level
of “dead-end” research that would no longer be tolerated). Be that as it may,
there are a number of commercial formal verification successes in the EU, for
example, Esterel Technologies whose web site has many pointers to its industrial
applications. Although model checking was not a key to its success, the ability
to analyze formal models may have been. The background technology was de-
veloped over more than a decade by Girard Berry [BG92]. Esterel Technologies
has applied formal analysis to high-level models of critical applications, promi-
nently aerospace and automotive, thereby circumventing the obstacles of C code
verification.

Likewise, iLogix has seen commercial success with its implementations of Stat-
eCharts. Driven by David Harel and Amir Pnueli, the basic ideas have evolved
in the literature over decades. Again, the object is analysis of high-level models.
iLogix has had successful use in the telephony industry. Again, while based on a
formal semantics that is important for the analysis they do, formal verification
may have been peripheral to the company’s success.

Finally we come to hardware model checking. This – at long last – is now a
success story of technology transfer of computer-aided verification. As recently
as five years ago, the jury was still out on whether the then nascent commercial
hardware model checking would gain traction in the EDA industry. The barriers
to technology transfer were primarily procedural, as already explained, and the
technology has far outstripped its supported level in EDA. Today, commercially
supported EDA model checking is only for local (RTL block-level) properties.
These include properties such as arbitration, resource allocation (request/grant
properties), flow control (underflow/overflow), local message delivery, local seri-
alization as well as an endless list of hardware particulars (often of questionable
value, having been derived from a simulation mind-set rather than the mind-set
of correct design functional behavior).

The final great enabler to commercial hardware model checking was the intro-
duction in 2003 of the Accellera Standard for property specification. The impetus
was support for “Assertion-Based Verification” (ABV), meaning a more stan-
dard means for writing monitors for simulation. Simulation monitors evolved
into “assertions” under the influence of model checking, but the driving motive
was to simplify the creation of simulation test benches. The salutary effect on
model checking was serendipitous. (Thus, two great enablers of model check-
ing technology transfer were provided by established technologies: capitalizing
on synthesis for state-efficient models, and capitalizing on ABV for standardized

Verification Technology Transfer 59

property specification. The importance of these for technology transfer – and the
good luck of the synergies for model checking – are often overlooked. Software
model checking will need both of these: efficient state models and a standard-
ized property specification language before it can become a broadly supported
commercial technology, it would seem.)

Originally chartered to establish a single property specification language, com-
mercial politics drove the Accellera Committee to settle on three. (Remember
the joke, “A camel is a horse designed by a committee”?) The first, OVL, is a
very simple template language with severely limited expressiveness whose advan-
tage is its nominal learning curve. The other two, PSL and SVA, are sufficiently
(or even overly) expressive, and suffer from numerous “camelisms”.

But all is forgiven, even the drudgery of having to support three (instead of
one) property specification language. All is forgiven because it was only with
a standard property specification language that the EDA industry could finally
create products that could be effectively run interchangeably. Relieved from the
requirement to create a tool-specific infrastructure for defining properties, all
available tools could be run on the same design.

In particular, CAD groups could build their flow for model checking without
being tied to a specific product. This liberation was a prime enabler for the
acceptance of model checking in mainstream design flows. The interoperabil-
ity afforded by the standards bred competition among the vendors, predictably
increasing the quality of the the model checking products. It also liberated start-
ups from the need to create a property specification infrastructure, allowing them
to focus on the core technology. This in turn bred more competition.

Competition breeds confidence: confidence for the consumer that they can
switch to the best available product without disturbing their flow; confidence
for the vendor that this is a real product, not a “hair-brained” idea. No main-
stream EDA vendor has the guts to to supply a product that no other vendor
is supplying. One of the best arguments to vendor management to invest in a
product is to point to the competition and show that if we don’t invest in this
product, the competition will pull ahead. With few exceptions (FormalCheck
was one), completely new products enter the marketplace though start-ups, not
the main-stream vendors.

Today there is an impressive array of EDA vendors competing in the model
checking arena, including the big three: Cadence, Synopsys and Mentor Graph-
ics, as well as a heady swell of start-ups with impressive model checking prod-
ucts, including Jasper, Calypto, Prover, Averant, RealIntent, @HDL, and oth-
ers. Although not really an EDA vendor, IBM has nonetheless made impressive
headway marketing their RuleBase model checker as well.

6 Algorithms

Until the advent of symbolic model checking based on BDDs [McM93] model
checking was based on explicit state enumeration. This allowed searching a few
million states typically, a bit more today with bigger and faster computers, but

60 R. P. Kurshan

not enough to provide the capacity required to break through the RTL block
threshold discussed above. With BDDs, blocks with 1050 states or more could
be checked. This corresponds to 100–200 state bits, in contrast to around 20
state bits for explicit search.

However, BDDs have their own problems, mainly their chaotic thus unpre-
dictable performance. In the late 90s Ed Clarke suggested using SAT as an al-
ternative for model checking [BCC+99,CBRZ01]. (Some, including this writer,
voiced skepticism regarding the value of this approach, and in time were proved
wrong. Ed deserves great credit for his insight.)

Today, model checking can be based on explicit state enumeration or symbolic
state enumeration based on BDDs or SAT, as well as ATPG. McMillan’s interpola-
tion method [McM03] was the first complete SAT-based model checking algorithm
and in our benchmark tests in Cadence, this generally out-performs all the others.

Unfortunately, there are a sufficient number of cases when each of the other
algorithms does best that it is not feasible to rely only on interpolation. There-
fore, all the above are supported. The best result comes from running several
algorithms in parallel and killing the others as soon as the first finishes. Experi-
ence has shown a super-linear speed-up using this method when checking many
properties, over running only the over-all single best algorithm.

Superimposed on top of the basic model checking algorithms are a variety
of proof strategies. Many of these are based on abstraction, the most impor-
tant lever for lifting large state spaces. One is localization wherein portions
of the design that are irrelevant to checking a given property are eliminated
through abstraction. In its original formulation [Kur94, Kur00] the algorithm
iterates over abstractions determined by successive counterexamples on the ab-
stractions. Ed Clarke et al refined this algorithm with a SAT-based decision
procedure [CGJ+00]. In a significant SAT-based improvement [MA03], the suc-
cessive abstractions are determined not by the counterexamples but by the SAT
clauses used to refute the property on the original model at the depth of the last
counterexample. This “Abstraction-Refinement” loop has led to many further
improvements of this basic idea, driven by the strength of the SAT solver in
finding efficient refutations. Recently, Ranjit Jhala and Ken McMillan have ex-
tended the method using interpolation [JM05]. Through the successive improve-
ments, the SAT solver is brought into play more and and more as a deductive
reasoning engine. Will quantifiers be supported next? One may speculate if au-
tomated theorem proving will re-emerge through this thrust as truly automated
deduction inspired by DPLL-style deductive procedures.

Other proof strategies in commercial play today include predicate abstraction,
induction, symmetry reduction and (automatic) assume-guarantee reasoning.
Assume-guarantee reasoning can be flat or can follow the design hierarchy.

The same core algorithms used for model checking are used for synthesis
optimizations and automatic test bench synthesis for simulation. For the latter,
BDDs or SAT are used for constraint-solving. Alternatively, properties viewed
as constraints are converted to generators that generate only legal inputs. All of
these are in main-stream product use today.

Verification Technology Transfer 61

0.1

1

10

100

1000

10000

100000

0 100 200 300 400 500 600 700 800 900

tim
e

models

’INTERP’
’ABSREF’

’BDD’

Fig. 1. BDD vs SAT (Interpolation, Abstraction-Refinement)

For falsification, various restrictions are used. The depth of search can be
restricted with bounded model checking. The input space can be restricted as
well, especially by restricting the range of data-path inputs.

In order to tune the choice of algorithms, extensive data bases of “typical” cus-
tomer models are required. At Cadence, we tune and select algorithms using a
data base of 1000 such models (cf. Figure 1). Relying on the results of such per-
formance testing, heuristics and new algorithms are developed. Figure 1 shows
the relative performance on 900 models of three algorithms: BDD-based symbolic
model checking, interpolation-based symbolic model checking (using SAT) and
abstraction-refinement (using SAT and BDDs). Each point gives the time for the
model indexed on the X-axis using the designated algorithm. The models are or-
dered in increasing BDD time. The data suggest that when BDD is fast, it wins,
but as it slows, the others are better, and of the other two, neither dominates.

7 Future

The easiest prediction for the future of commercial computer-aided verification
is that today’s technology will catch up with that future. This means that model
checking will arrive to general software development – after the synthesis problem
is solved for efficiency, and a standardized property language is adopted (perhaps
they will simply adopt one of the hardware camels – why not).

For hardware (first) we are headed strongly to the support of hierarchical
verification for top-down/bottom-up design. Languages such as SystemC and
System Verilog are first attempts in this direction, but they do not address how

62 R. P. Kurshan

to relate successive levels of abstraction. We need to be able to write a high-
level design, verify it and then refine it to a low-level implementation target
in a manner that guarantees that each successive refinement is consistent with
its abstraction. In this way, properties verified at one level of abstraction are
guaranteed to hold at all successive levels of refinement. This is a divide-and-
conquer method that (potentially) supports the verification of global properties
(beyond the reach of today’s commercial model checkers). Global properties are
verified once and for all in high-level abstractions, and then are guaranteed to
hold in all refinements. A promising way to construct refinements is in a manner
that guarantees that its is correct by construction. This saves the overhead of
additional verification, but places restrictions on the structure of refinements.
However, refinements must be guided by the low-level architecture in any case, so
this restriction may be acceptable. In effect it leads to a dual top-down/bottom-
up design methodology. With hierarchical verification the emphasis shifts from
falsification to verification, as the correctness of the implementation depends
upon verifying the correctness of the high-level abstractions.

The next easy prediction – because it is already happening – is integration
of model checking with simulation for “hybrid” algorithms (cf. above) and in-
tegration of model checking with sequential equivalence checking. The latter is
natural because in the worst case (when states and nets cannot be mapped) se-
quential equivalence checking is model checking. Sequential equivalence checking
may also be used to check the correctness of refinements, if they are not already
correct by construction.

With hierarchical verification comes the integration of model checking with
design: since a high-level model will be verified before refinements are even de-
signed, model checking becomes a design tool in which the correctness of ar-
chitectures and algorithms are checked. In the course of checking algorithms,
theorem proving may be brought into play, and in the future, a theorem prover
may be an accessory to every model checker. While this requires expertise, by
this time a new generation of designers hopefully will be ready for the challenge.
Note that as an accessory, theorem proving can add its power without delaying
the design process.

Theorem proving may re-emerge as a fully automatic DPLL-style deductive
engine. There already is a trend in this direction (see above).

Finally, there will undoubtedly be ever greater use of pre-verified components
(“IP”). This “reuse”, a very important productivity enhancer, can fit in with
hierarchical verification and top-down design. Moreover, when designs are out-
sourced, a more reliable contract than one that describes the design through
discourse is one that specifies the design formally, requiring contractually that
the completed design will pass a list of formally verified properties.

8 Conclusion

Computer-aided verification technology has finally – after 25 years – been trans-
ferred to the EDA industry in the form of equivalence checking and model

Verification Technology Transfer 63

checking. Equivalence checking was a fairly easy transfer because it was not
impeded by the two great impediments to the transfer of model checking. These
were: a required methodology change for model checking and required infrastruc-
ture for defining properties to be checked. The required methodology change was
accomplished through a process of small steps, each of which demonstrated pos-
itive value. This is why it took so long (and it still continues). The required
infrastructure for defining properties was established through standardization
of property specification languages. The gating issues for these technologies re-
mains speed and capacity. Speed is continuously improving as technology ad-
vances. Capacity is improving as well, but is limited by the intrinsic infeasibility
of the technologies. To circumvent the capacity limitation, the only known gen-
eral strategy is abstraction-based divide-and-conquer. This is where the cutting
edge research is focused.

References

[BCC+99] Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model
checking using SAT procedures instead of BDDs. In: Proc. 36th Design
Automation Conference, pp. 317–320. IEEE Computer Society Press, Los
Alamitos (1999)

[BG92] Berry, G., Gonthier, G.: The Esterel Synchronous Programming Language:
Design, Semantics, Implementation. Science of Computer Programming,
vol. 19, pp. 87–152 (1992)

[BL84] Bledsoe, W.W., Loveland, D.W. (eds.): Automated Theorem Proving: Af-
ter 25 Years, Contemporary Math. 29, pp. 119–132. Amer. Math. Soc.
(1984); Especially the paper Proof-Checking, Theorem-Proving and Pro-
gram Verification by R. S. Boyer and J. S. Moore

[BR02] Ball, T., Rajamani, S.K.: The SLAM Project: Debugging System Software
via Static Analysis. In: Symposium on Principles of Programming Lan-
guages (POPL), pp. 1–3. ACM (January 2002)

[Büc62] Büchi, J.R.: On a Decision Method in Restricted Second-Order Arithmetic.
In: Methodology and Philosophy of Science, Proc., 1960 Stanford Intern.
Congr., pp. 1–11. Stanford Univ. Press, Stanford (1962)

[CBRZ01] Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using
satisfiability solving. In: Formal Methods in System Design, vol. 19, Kluwer
Academic Publishers (July 2001)

[CE82] Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization
Skeletons for Branching Time Temporal Logic. In: Logic of Programs
1981. LNCS, vol. 131, pp. 52–71 (1982)

[CGJ+00] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-
guided abstraction refinement. In: Computer Aided Verification, pp. 154–
169 (2000)

[CKL04] Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs.
In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–
176. Springer, Heidelberg (2004)

[Coe95] Coe, T.: Inside the Pentium FDIV Bug. Dr. Dobbs Journal 20, 129–135
(1995)

64 R. P. Kurshan

[DDHY92] Dill, D.L., Drexler, A.J., Hu, A.J., Yang, C.H.: Protocol Verification as
a Hardware Design Aid. In: IEEE International Conference on Computer
Design: VLSI in Computers and Processors, pp. 522–525. IEEE Computer
Society (1992)

[GMW79] Gordon, M., Milner, R., Wadsworth, C.P.: Edinburgh LCF: A Mechanised
Logic of Computation. LNCS, vol. 78 (1979)

[HHK96] Hardin, R.H., Har’El, Z., Kurshan, R.P.: COSPAN. In: Alur, R., Henzinger,
T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 423–427. Springer, Heidelberg
(1996)

[JM05] Jhala, R., McMillan, K.L.: Interpolant-based transition relation approx-
imation. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 39–51. Springer, Heidelberg (2005)

[KH90] Kurshan, R.P., Har’El, Z.: Software for analytical development of commu-
nication protocols. AT&T Tech. J. 69(1), 45–59 (1990)

[Kur94] Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes:
The Automata-Theoretic Approach. Princeton University Press (1994)

[Kur00] Kurshan, R.P.: Program Verification. Notices of the AMS 47(5), 534–545
(2000)

[MA03] McMillan, K.L., Amla, N.: Automatic Abstraction without Counterexam-
ples. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003.
LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003)

[McM93] McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers
(1993)

[McM03] Kenneth, L., McMillan, K.L.: Interpolation and sat-based model checking.
In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp.
1–13. Springer, Heidelberg (2003)

[Pnu77] Pnueli, A.: The Temporal Logic of Programs. In: Proc. of the Eighteenth
Symposium on Foundations of Computer Science (FOCS), Providence, RI,
pp. 46–57 (1977)

[QS82] Queille, J.P., Sifakis, J.: Programming 1982. LNCS, vol. 137, pp. 337–351
(1982)

[Rob65] Robinson, J.A.: Machine-Oriented Logic Based on the Resolution Principle.
Journal of the Association for Computing Machinery 12, 23–41 (1965)

[RS59] Rabin, M.O., Scott, D.: Finite Automata and Their Decisions Problems.
IBM J. Res. and Dev. 3, 114–125 (1959)

[RW82] Rudin, H., West, C.: A validation technique for tightly coupled protocols.
Transactions on Computers (April 1982)

[Tur36] Turing, A.: On Computable Numbers, With an Application to the
Entscheidungsproblem. In: Proceedings of the London Mathematical Soci-
ety, vol. 42 (1936)

[VW86] Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic
Program Verification. In: Proc (1st) IEEE Symposium on Logic in Com-
puter Science (LICS), Boston, pp. 322–331 (1986)

[Wes78] West, C.H.: Generalized technique for communication protocol validation.
IBM Journal of Res. and Devel. 22, 393–404 (1978)

[WR13] Alfred North Whitehead and Bertrand Russell. Principia Mathematica,
pp. 1910–1913. Cambridge University Press (1913)

O. Grumberg and H. Veith (Eds.): 25MC Festschrift, LNCS 5000, pp. 65– 76, 2008.
© Springer-Verlag Berlin Heidelberg 2008

New Challenges in Model Checking

Gerard J. Holzmann, Rajeev Joshi, and Alex Groce

NASA/JPL Laboratory for Reliable Software, Pasadena, CA 91109, USA
{Gerard.Holzmann,Rajeev.Joshi,Alex.Groce}@jpl.nasa.gov

Abstract. In the last 25 years, the notion of performing software verification
with logic model checking techniques has evolved from intellectual curiosity to
accepted technology with significant potential for broad practical application. In
this paper we look back at the main steps in this evolution and illustrate how the
challenges have changed over the years, as we sharpened our theories and tools.
Next we discuss a typical challenge in software verification that we face today –
and that perhaps we can look back on in another 25 years as having inspired the
next logical step towards a broader integration of model checking into the soft-
ware development process.

Keywords: Logic model checking, software verification, software reliability,
software structure, grand challenge project, flash file system challenge.

1 Introduction

The idea to build a practically useful tool to check the correctness of program code
quite possibly already occurred to the first people who attempted to write code. Not
by coincidence, many of those people were mathematicians. Goldstein and Von Neu-
mann took a first step in 1947 when they introduced the notion of an assertion in pro-
gram design [7] (see also [5]):

For this reason we will denote each area in which the validity of such
limitations is being asserted, by a special box, which we call an 'asser-
tion box.’

A series of foundational papers on program analysis and program verification
techniques appeared in the sixties and seventies, including seminal work by Robert
Floyd, Tony Hoare, and Edsger Dijkstra, that we will not attempt to summarize here.
More closely related to the topic of this paper and the theme of this symposium is
work that started in the late seventies on model based verification techniques. Among
the earliest models used for this purpose were Petri nets and finite automata, initially
paired with manual analysis procedures (e.g., [3]). Carl Sunshine described a basic
reachability analysis method for automata models in 1975 [20], a variant of which
was applied in a verification tool built by West and Zafiropulo at IBM [24]. The latter
tool attracted attention by uncovering relatively simple defects in trusted international
standards for data communication. A favored example of an automaton model
from this period was also the simple alternating bit protocol [2]. It is in retrospect

66 G.J. Holzmann, R. Joshi, and A. Groce

remarkable that some of the early verification tools could not yet handle the complex-
ity of this very basic protocol.

Work on what later became the SPIN model checker started in 1980 at Bell Labo-
ratories. This first tool, named pan, was also based on an optimized reachability
analysis procedure, though initially supported by an algebraic specification formalism
[8]. Like the IBM tool, this tool attracted attention within AT&T by successfully un-
covering defects in models of trusted telephony software. Pan was restricted to the
verification of safety properties, and was therefore not a true logic model checking
system as intended in [4]. The restriction to safety properties did however allow us to
verify models with up to millions of reachable states, although the latter could take a
good week of computation on the fastest available hardware at that time. We did not
contemplate an extension of the verification system to properties specified in linear
temporal logic, and more broadly the set of omega-regular properties, until the late
eighties, when available compute power had increased, and our verification tech-
niques had sharpened.

Looking back, we can recognize some patterns in what we considered to be the
main obstacles to a broader application of model checking techniques to problems in
software verification. As obstacles were overcome, new challenges were identified
and targeted. The following list sketches some of the deciding issues that influenced
the evolution of the SPIN model checker.

1. Specification formalisms: The initial challenge, in a period that we can indi-
cate very approximately as 1975-1985, was to find a usable formalism for
constructing models with verifiable properties. The focus in this period was
on the identification of specification formalisms that could facilitate analysis.
Ultimately, automata-based models were found to provide the most solid
foundation, and much work has since been focused on them. Trace, the suc-
cessor to pan and the next step in the evolution of SPIN, dropped pan’s
process algebra specification formalism in favor of automata models in 1983,
leading the way for SPIN to easily conform to the automata-theoretic foun-
dation from [22].

2. Efficient Algorithms: The next challenge, between approximately 1985 and
1995, was on developing new data structures and algorithms that could im-
prove the range and efficiency of model checking systems. This development
produced BDD-based and symbolic verification methods, as well as the par-
tial order reduction methods that are at the core of model checking systems
today. Partial order reduction was integrated into SPIN in the early nineties
[9].

3. Model Extraction from Code: The third challenge, between 1995 and 2005,
was to find ways to apply model checking techniques more directly to im-
plementation level code, using software abstraction and model extraction
techniques. This work led to the extension of the SPIN model checker with
support for embedded software in abstract models. This change enabled the
application of SPIN to the verification of unmodified, implementation level
software for call processing in a commercial voice and data switch, and as
such perhaps the first application of formal software verification at this scale

 New Challenges in Model Checking 67

[10]. Similarly, this third challenge led to the successes at Microsoft in the
formal verification of device driver code [19], and the work at Stanford on
the CMC model checker [17].

4. Today’s Challenge: This brings us to the next, and current, challenge for
work that may well turn out to define the primary emphasis for our work in
logic model checking for the period 2005 to 2015. This fourth challenge is to
find effective ways to structure software such that formal verification tech-
niques, and especially logic model checking techniques, become simpler to
use and more effective in identifying potential violations of correctness
properties in executable code.

We will devote the remainder of this paper to a description of this new challenge.

2 The New Challenge

The “Grand Challenge in Verification” recently posed by Sir Tony Hoare [23],
prompted us to propose a mini-version, which is to design and implement a verifiable
file system for non-volatile memory [14]. This mini-challenge was of course not cho-
sen arbitrarily. Space exploration missions need a reliable capability to record data
that is either received from earth (e.g., commands and parameters), or to be returned
to earth (e.g., telemetry and images). Often a spacecraft is temporarily pointed away
from earth to capture an image or take a measurement. The data can only be returned
later, sometimes much later, when communication with the Deep Space Network on
earth is restored.

The MER Rovers that currently explore the surface of Mars, for instance, use flash
memory cards to store critical data. The reliability of hardware components can often
be increased by adding nominally redundant backups. The flash memory cards used
on spacecraft are special radiation-hardened designs that can be duplicated for redun-
dancy if needed. For software, though, increasing reliability is not nearly as simple to
achieve, and a number of mission anomalies related to data storage on flash memory
cards can be traced back to software flaws. Curiously, the software used for the man-
agement of flash memory cards in missions to date has consisted of off-the-shelf code
that was designed and built primarily for use in cameras and home computers, but not
for reliable operation in space, resisting hardware failures, power-loss, and sudden
reboots. What makes failures in this software so difficult to accept is that a file system
is easily one of the best understood modules on a spacecraft in terms of its required
functionality. It should be possible to design an ultra-reliable version of this type of
software. These observations provided the motivation behind our mini-version of the
grand challenge. The real challenge, though, is somewhat broader:

Is there a way to structure software in such a way that the application
of logic model checking techniques becomes a trivial exercise?

It is of course all too easy to pose a challenge problem and wait for others to solve it.
We have therefore decided take our own challenge and to pursue a full design, a full
verification, and a complete implementation of a flight-qualified file system module
that can withstand the rigors of space. We have also committed to building the mod-
ule to standards that satisfy all existing flight software development requirements at

68 G.J. Holzmann, R. Joshi, and A. Groce

JPL. This decision rules out a number of choices for the design and development that
otherwise might have been possible. It means, for instance, that the target program-
ming language is most conveniently C (the language most commonly used at JPL for
implementing mission critical software), the target operating system VxWorks® (a
real-time operating system), and the process followed must comply with all reporting
and book-keeping requirements for software development at our host institution.
Naturally, our desire is to not just comply with the existing process, but to show how
it can be exceeded. Our goal is further to chart a course for reliable software devel-
opment that can later plausibly be followed by non-experts in formal software verifi-
cation.

At the time of writing, we have completed a first implementation of the file system
software that we will use as a reference for our formal verification attempts. The pro-
totype is written to a high standard of reliability, compliant with all JPL coding re-
quirements, as well as conforming to a small set of fairly strict additional coding
rules, described in [15]. These additional rules are in part meant to simplify, if not
enable, formal verification with logic model checking techniques.

3 Our Plan

We started on our mini challenge in the middle of 2005, initially pursuing three tracks
in parallel.

1. The first track is to build a simulation environment for a file system that can
reproduce all relevant behavior of the target hardware. A software simulation
of the environment will simplify the use of model-driven verification tech-
niques, as outlined in [12]. We have meanwhile completed several versions
of this hardware simulation layer, supporting different levels of abstraction.
The most accurate simulation module supports a bit-level accurate represen-
tation of a typical flash memory card.

2. The second track is to develop a formalization of all relevant requirements,
including standard POSIX requirements for the user interface to the file sys-
tem [18]. As always with requirements specifications, identifying and captur-
ing a representative set of requirements is a non-trivial task. The primary
requirements for file systems, for instance, are functional and not temporal in
nature, and there are few if any adequate formalisms available for expressing
such requirements. We currently plan to capture most requirements of this
type as system invariants, and as pre- and post-conditions on basic file sys-
tem operations.

3. The third track includes the detailed design of the file system itself. This is in
principle a white-board design, aspects of which are currently being verified
with the SPIN model checker [13] and with the ACL2 theorem-prover [1].

3.1 Constraints

To give a flavor for the design requirements, note that flash-memory is typically logi-
cally organized into separately mountable file system partitions (sometimes called

 New Challenges in Model Checking 69

volumes), but physically they are organized in pages, blocks, and banks. On a typical
NAND flash memory card there may be 2 banks, 1024 blocks per bank, and 32 pages
per block, each page able to record 4096 bytes of information.

Pages on NAND-flash devices must always be written in their entirety, in one op-
eration. The information can be read back in portions, but only sequentially and not
randomly. A page can be read any number of times without degrading the information
that is stored in it, but it should be written only once. After a page has been written, it
should be erased before it is reused for new write operations. A page, of course, holds
no useful information until it is written. The reason for the single-write requirement is
that a page erase operation on flash memory sets all bits on the page to one, and sub-
sequent write operations can only set bits to zero. Once a bit is zero, it can only be
reset to one in an erase operation.

To make things more interesting still, pages on a flash memory card can only be
erased in multiples of blocks (i.e., 32 pages at a time). This means that there are in
principle only three types of operations that can be performed on a flash disk: read a
page, write a page, and erase a block of pages. A block, finally, can only be erased a
limited number of times, e.g., 100,000 times, and the reliability of the pages in a block
degrades with the number of erasures that have taken place. Since we don’t want
some blocks to wear out long before others, blocks have to be erased and reused in
such a way that the wear on all blocks is roughly the same. This process is called
wear-leveling. Page read- and write-operations, and block erase operations can fail,
sometimes intermittently, sometimes permanently. On such a failure, a block may
have to be marked as bad, to indicate that no further write or erase operations should
be attempted on that block. When a block goes bad, the pages in that block can no
longer be written or erased, although any correctly written page in the block may still
be read.

A first observation about the target design for our file system is that no information
can be stored in a fixed location on disk, not even information that is unlikely to
change. The wear-leveling requirement means that all stored data may have to move
from time to time, so that all blocks can be erased and reused roughly equally. Since
stored data is the only information that will survive a reboot, it must also be possible
to reconstruct all relevant information about the file system from scratch, without
knowing in advance where it is stored on disk. Another requirement, orthogonal to the
wear-leveling requirement, is that the consistency of the file system must be main-
tained at all times, even in the presence of arbitrary reboots or a sudden loss of power.
That means that all operations on the file system must be interruptible. No data should
be lost or corrupted when the system is interrupted at a random point in its execution.
A user of the file system must be able to assume that changes in the stored data are
atomic, even if they take multiple page writes to complete. A strong design require-
ment is that, with very few exceptions, file system operations must either succeed
completely or fail completely, never leaving visible evidence of intermediate states
when interrupted.

In the target environment, the file system should also be able to deal with random
data errors caused by radiation, which can be particularly severe during solar flares.
To give one small example of the problems that this can pose: a so-called Single
Event Upset (SEU) in the address register of a flash memory device during a
read_page operation could alter the page address and result in the wrong page being

70 G.J. Holzmann, R. Joshi, and A. Groce

read, without an error condition being flagged (i.e., the data read from the page can
pass a checksum test successfully). The same type of error during a write_page opera-
tion could result in a page different than the one intended being written, again without
detectable error unless special precautions are taken in the design that is adopted.

3.2 Verification Challenges

A key challenge in this project is to provide the ability to prove the integrity of the file
system under all types of hardware error, and power-loss scenarios. A model of the
flash hardware can capture the relevant assumptions about the lower interface to the
hardware, and a model of nominal user behavior can capture our assumptions about
the upper interface. This leads to a sandwich model of the file system: enclosed be-
tween two SPIN models that define the environment in which it is meant to operate
and against which it must be verified, as illustrated in Figure 1.

The user behavior, though conceptually simple, can add a surprising amount of
complexity. Note that for even very small systems, there are a very large number of
possible ways to define directory hierarchies, file contents, and file and directory
names. Rename operations can move files arbitrarily between different locations in
the directory hierarchy, and seek operations can change where new contents are writ-
ten to or read from in a file. Files may be truncated, moved, removed, recreated, etc.
This means that it is not simple to define a single user model and hope to perform an
exhaustive verification against that model. To alleviate some of these problems, dif-
ferent levels of abstraction and different subsets of possible user behaviors can be
defined to perform a series of targeted verification runs against a relevant subset of
the correctness properties.

non-volatile
file system

design

user
model

hardware

model

correctness requirements

Fig. 1. Sandwich Model for File System Verification

A simple model of user behavior could, for instance, specify the manipulation of a
single file by a user, performing random reads and writes to that file, resetting the file
pointer to the start of the file at arbitrary points, while the hardware model fails read
and write operations arbitrarily. We have been able to demonstrate that such a model
can indeed be verified exhaustively, when applied to the prototype software

 New Challenges in Model Checking 71

implementation, using model driven verification techniques and fairly straightforward
conservative abstractions of the file system state.

A simple version of an abstract model for the flash hardware is shown in Figure 2.
This model captures only basic behavior of the hardware, allowing page reads and
writes, with the possibility of failure and the sudden appearance of bad blocks, and

active proctype flash_disk()
{ byte b, p;
 bool v;

 do
 :: flash?readpage(b,p,_) ->
 assert(b < NBL);
 assert(p < PPB);
 if /* non-deterministic choice */
 :: blocks[b].meta[p] != free ->
 user!success
 :: blocks[b].meta[p] != verified ->
 user!error
 fi

 :: flash?writepage(b,p,v) ->
 assert(b < NBL);
 assert(p < PPB);
 assert(blocks[b].meta[p] == free);
 if
 :: blocks[b].bad -> user!error
 :: else ->
 if
 :: blocks[b].meta[p] = v;
 user!success
 :: blocks[b].bad = true ->
 user!error
 fi fi

 :: flash?eraseblock(b,_,_) ->
 assert(b < NBL);
 if
 :: blocks[b].bad -> user!error
 :: else ->
 if
 :: blocks[b].bad = true ->
 user!error
 :: erase_pages(b) ->
 user!success
 fi fi
 od
}

Fig. 2. Simplified Model of the Flash Hardware

72 G.J. Holzmann, R. Joshi, and A. Groce

allowing for a distinction between meta-data (directory information) and regular file
data. Meta-data is typically stored with a verified write cycle, which is slower than
regular write operations, but lowers the probability of subsequent page read errors. In
a verified write operation the information is read back and compared with the original
data to make sure it can be retrieved correctly.

A sample correctness property for the file system is that no page is written more
than once before it is erased. This property could be expressed in LTL as follows:

[] (pw -> X (!pw U be))

where pw indicates the occurrence of write operation on an arbitrary given page, and
be indicates a block erase operation on the block that contains the given page.

A more complete model of the flash hardware will also record page header infor-
mation; so that one can track which pages are current and which are obsolete and
erasable, in the verification of the properties of the file system software. With that
model we should also be able to prove that a block with only obsolete pages and no
free pages will eventually be erased for reuse, for instance expressed as:

[] (ob -> <> be)

where ob is true when some given block contains only obsolete pages, and be is true
when that block is erased.

4 On Code Structure

One focus of our project is to study if the adoption of specific code and data structures
can enable stronger types of verification, and make it easier to apply existing software
verification methods. Clearly, code can be written in such a way that most properties
of interest become unprovable. It is unfortunately easier to demonstrate this point than
it is to show that the opposite is also possible. To achieve the opposite, to write code
in such a way that it can be verified, takes more planning, but the additional level of
effort required may still be relatively small. We adopted strong coding rules for our
project, that include a restricted use of pointers, statically verifiable bounds on all
loops, absence of dynamic memory allocation, and even the absence of direct and
indirect recursion [15].

A loop to traverse a linked list, for instance, can be bounded as follows:

SET_BOUND(MAX);
for (ptr = start; ptr != null; ptr = ptr->nxt)
{ ...
 CHECK_BOUND();
}

Where SET_BOUND and CHECK_BOUND are macros. The first macro call will initialize
a predefined loop variable to the boundary value that should never be exceeded. The
second macro call decrements the variable value and asserts that the result remains
positive. The protection here is against infinite loops, so the precise bound is often not
that important, as long as it is a finite number. (Nested loops should be rare in high
integrity code, and are handled separately since they will require us to track more than
one loop bound.)

 New Challenges in Model Checking 73

Assertions are also handled differently. The standard assertion definition from the
C assert.h library is not really adequate for our purposes. An abort on assertion
failure is rarely the right response in embedded systems, and in most, if not all, cases
processing should also not continue normally when an assertion fails. Instead, some
type of corrective or recovery action should be initiated to handle the unexpected
situation. We therefore define an assertion as a Boolean pseudo-function that nor-
mally returns true, but will optionally print a diagnostic message when it fails and
then return false, so that the caller of the assertion can take the required corrective
action. With some C preprocessor magic, this can be written as follows:

#define ASSERT(e) ((e) ? (1) : \
 output(“%s:%d assert(%s) failed\n”,
 __FILE__, __LINE__, #e), 0)

The macro definition makes use of the predefined preprocessor names __FILE__
and __LINE__ to print the location of the assertion in the source files, and of the C
preprocessor operator # to reproduce the text of the failing assertion. Assertions, then
are always used as expressions in a conditional and never as standalone statements.

The use of an assertion to defend against a null-pointer dereference could for in-
stance be written as follows:

if (!ASSERT(ptr != NULL))
{ return ERROR;
}

This forces the programmer to think about the corrective action that would be
needed in case the assertion fails.

For embedded code, where there is typically no mechanism for printing output, the
assertion can be redefined after testing with the variant:

#define ASSERT(e) (e)

which maintains the protection and the original functionality of the assertion (so that
all test results remain valid), but removes the diagnostic output on failure.

The rules we adopted allow us to derive bounds on memory and stack use, and to
prove the finiteness of all file system operations. Without recursion, the function call
graph is acyclic and can be analyzed with traditional logic model checking tech-
niques. We use, for instance, the uno static analyzer [11,21] to generate the function
call graph for the software, and convert it with a small awk-script into a SPIN model,
that is automatically annotated with relevant operations (e.g., semaphore operations).
Then we use the SPIN model checker to prove additional properties of the code such
as proper locking orders, bounds on stack use, and absence of direct or indirect recur-
sion.

Importantly, the data structures for the prototype file system are organized in such
a way that it becomes easy to set up a connection with the model checker for model-
driven verification runs. Just two data structures (a mount table and a partition struc-
ture) hold all state information that must be tracked in the model checking process,
and the required tracking statements are trivially defined – possibly even mechani-
cally derivable from the source code. It is also relatively straightforward, thanks to
these structuring conventions, to set up abstraction functions for the model checker

74 G.J. Holzmann, R. Joshi, and A. Groce

over the relevant state data, that will allow us to exploit, for instance, symmetry ab-
stractions. We further make sure that the level of atomicity in the source code, en-
forced through VxWorks semaphores, matches the level of granularity that the model
driven verification method handles best (i.e., function level atomicity).

5 Testing?

To perform an initial check of the working of our prototype implementation, we have
relied on a number of methods that include strong static source code analysis, and
randomized differential testing [16]. These more conventional testing methods serve
not only for us as designers to gain confidence in our initial prototype, they also help
to win the trust of colleagues who may need to be convinced of the added value of a
more formal verification effort of the same code. We have not attempted to generate
implementation level code from high level design models (e.g., Spin models), al-
though we may revisit that decision later once the full design and its verification chal-
lenges are thoroughly understood.

A few more words on the random differential testing method we used may be of
interest. For these tests, one or more reference systems are needed to serve as a judge
of the validity of operations that are performed on the system under test. Fortunately,
for a standard file system, reference implementations are readily available. As part of
our tests, we ran randomly generated usage scenarios on the flash file system, com-
paring against reference file systems on Solaris, Linux, and Cygwin. Perhaps not sur-
prisingly, we found defects not only in our own prototype software but also in some
of the widely-used reference implementations. The Linux implementation proved to
be the most reliable, and was used for the majority of our tests. A test fails in this
setup when the file system created by the module under test differs from that created
on the reference system when given the same sequence of POSIX operations. Each
such test failure is inspected manually and in cases of doubt the official POSIX re-
quirements are consulted to determine which implementation is at fault: the prototype
file system or the reference system. The test harness used in these tests randomly in-
jects simulated hardware faults, such as bad blocks and sudden reboots. Because these
faults cannot easily be reproduced on the reference system, our integrity requirement
was that the module under test either completes an operation fully, matching the result
of the completed operation on the reference system, or fails the operation completely,
matching the state of the reference system before the operation is executed, but never
creating an intermediate or a corrupted state. Long error scenarios found through this
method are minimized with a method based on Zeller’s delta-debugging system [6]
and all error scenarios found are preserved in a regression test suite.

The differential test method is easily automated. The random tests run in principle
non-stop in the background on our machines. Even at that pace, there is of course no
hope that these tests can be exhaustive, yet our experience so far is that new defects in
the code are found quickly.

There is an opportunity to replace at least part of the differential test system with a
stronger Spin driven verification system, using models along the lines of what is
shown in Figure 2, where we replace the random choices from the tester with

 New Challenges in Model Checking 75

non-deterministic choices that are controlled by the model checker. Our real challenge
here is to make the model driven software verification methods work as easily, and be
as effective as the original differential test method.

A switch to the model driven verification method will allow us to formulate and
verify more complicated correctness properties in linear temporal logic, to perform
the verifications more systematically, and has the potential for a significantly greater
accuracy in catching requirements violations.

6 Summary

In this paper we have posed a challenge that illustrates where we believe the new
frontier in the application of logic model checking techniques rests today. To realize
the full potential of logic model checking techniques for software verification, we will
need to find ways to structure code in such a way that verification becomes easier. We
believe that the main potential in this area is in the application of model-driven verifi-
cation techniques. To give substance to these ideas, we have described a specific chal-
lenge problem that we, and we hope many others, will try to solve fully in the coming
years. The domain in which we have phrased this problem is that of space explora-
tion, but it could be any other application domain where the correctness of software is
critically important. Like many organizations, JPL and NASA already have strict re-
quirements for the development of mission-critical software components. Still,
anomalies that can be traced to software defects do occur, and have on occasion led to
mission failures. Stronger types of software verification are therefore essential to
reach higher levels of software reliability.

JPL today lists among its strategic goals in software development the adoption of
formal methods for software design, an increased use of model-driven software veri-
fication techniques, and routine application of logic model checking techniques to
mission software by the year 2013. The work we have sketched is an attempt to real-
ize at least some of these goals.

Acknowledgements. We are grateful to Len Day for building the bit-level accurate
software simulator for flash hardware, and to Cheng Hu for his initial formalization of
the POSIX requirements for our file system.

The research described in this paper was carried out at the Jet Propulsion Labora-
tory, California Institute of Technology, under a contract with the National Aeronau-
tics and Space Administration.

References

[1] Kaufmann, M., Manolios, P., Strother Moore, J.: Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Publishers (July 2000),
http://www.cs.utexas.edu/users/moore/publications/acl2-
books/car/index.html

[2] Bartlett, K.A., Scantlebury, R.A., Wilkinson, P.T.: A note on reliable full-duplex trans-
mission over half-duplex lines. Comm. ACM 12(5), 260–265

76 G.J. Holzmann, R. Joshi, and A. Groce

[3] Bochmann, G.V.: Finite state description of communication protocols, Publ. 236, Dept.
d’Informatique, University of Montreal (July 1976)

[4] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM Trans. On Programming Lan-
guages and Systems 8(2), 244–263 (1986)

[5] Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion checking in
software development. ACM SIGSOFT Software Engineering Notes 31(3), 25–37 (2006)

[6] http://www.st.cs.uni-sb.de/dd/ on delta debugging techniques
[7] Goldstein, H.H., Von Neumann, J.: Planning and coding problems for an electronic com-

puting instrument. Part II, vol. 1, Princeton (April 1947)
[8] Holzmann, G.J.: PAN: a protocol specification analyzer, Tech Report TM81-11271-5,

AT&T Bell Laboratories (March 1981)
[9] Holzmann, G.J., Peled, D.: An improvement in formal verification. In: Proc. 7th Int.

Conf. on Formal Description Techniques (FORTE) 1994, pp. 197–211. Chapman and
Hall (1994)

[10] Holzmann, G.J., Smith, M.H.: Automating software feature verification. Bell Labs Tech-
nical Journal 5(2), 72–87 (2000)

[11] Holzmann, G.J.: Static source code checking for user-defined properties. In: Proc. 6th
World Conference on Integrated Design & Process Technology (IDPT), Pasadena CA,
USA (June 2002)

[12] Holzmann, G.J., Joshi, R.: Model-Driven Software Verification. In: Graf, S., Mounier, L.
(eds.) SPIN 2004. LNCS, vol. 2989, pp. 77–92. Springer, Heidelberg (2004)

[13] Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley (2003)

[14] Holzmann, G.J., Joshi, R.: A mini grand challenge: build a verifiable file-system (position
paper), Grand Challenge in Verified Software – Theories, Tools, Experiments, Zurich,
Switzerland (October 2005)

[15] Holzmann, G.J.: The Power of Ten: rules for developing safety critical code. IEEE Com-
puter (June 2006)

[16] McKeeman, W.M.: Differential testing for software. Digital Technical Journal 10(1),
100–107 (1998)

[17] Musuvathi, M., Park, D.Y.W., Chou, A., Engler, D.R., Dill, D.L.: CMC: A pragmatic ap-
proach to model checking real code. In: Proc. Fifth Symposium on Operating Systems
Design and Implementation, OSDI (December 2002)

[18] http://www.opengroup.org/
[19] Rajamani, S.K., Ball, T.: Automatically Validating Temporal Safety Properties of Inter-

faces. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057. Springer, Heidelberg (2001)
[20] Sunshine, C.A.: Interprocess Communication Protocols for Computer Networks, Ph.D.

Thesis, Dept. of Computer Science, Stanford Univ., Stanford, CA (1975)
[21] http://spinroot.com/uno/
[22] Vardi, M., Wolper, P.: An authomata-theoretic approacj to automatic program verifica-

tion. In: Proc. 1st Annual Symposium on Logic in Computer Science, LICS, pp. 332–344
(1986)

[23] Grand Challenge in Verified Software – Theories, Tools, Experiments (VSTTE), Zurich,
Switzerland (October 2005), http://vstte.ethz.ch/

[24] West, C.H., Zafiropulo, P.: Automated validation of a communications protocol: the
CCITT X. 21 recommendation, IBM J. Res. Develop. 22(1), 60–71 (1978)

A Retrospective on Murϕ

David L. Dill

Stanford University
dill@stanford.edu

Abstract. Murϕ is a formal verification system for finite-state concurrent sys-
tems developed as a research project at Stanford University. It has been widely
used for many protocols especially for multiprocessor cache coherence protocols
and cryptographic protocols. This paper reviews the history of Murϕ, some of
results that of the project, and lessons learned.

1 Introduction

Murϕ (pronounced “Murphy”) is a formal verification system for finite-state concur-
rent systems. It was developed by my group in the Stanford University Computer Sys-
tems Laboratory during the 1990’s. It has been a fairly successful project, resulting in
a widely-used tool and in a number of published research results that have influenced
other systems. Based on my discussions with members of design teams, it seems that
Murϕ has been used at some point in the development of the cache coherence protocols
for almost every major commercial shared memory multiprocessor system. Murϕ has
also been used for a variety of other problems, including verification of cryptographic
protocols [1,2].

I learned much from the Murϕ project about formal verification, the design of prac-
tical tools in an academic setting, and research strategy. This paper is a first-person
recollection of how the Murϕ project unfolded. It is intended to provide an overview of
some of the issues and technical advances in explicit state model checking, a realistic
portrayal of how a research project actually happened (information that does not appear
in the technical papers about Murϕ), and as a source of some hard-earned knowledge
about building a formal verification tool in an academic environment.

2 Early Years

2.1 The Motivation for the Project

The Murϕ project came out of a desire to show that formal verification tools could
have practical value. When I arrived at Stanford, in 1987, several faculty and many
students in my building were involved in the DASH project [3], a large effort to design
and build a shared-memory multiprocessor. The heart of the DASH system was a cache
coherence protocol to maintain consistency between multiple distributed cached copies
of data from memory. Not surprisingly, when I polled these colleagues about important
problems in the hardware verification area, they frequently mentioned the challenge of
assuring the correctness of cache coherence protocols.

O. Grumberg and H. Veith (Eds.): 25MC Festschrift, LNCS 5000, pp. 77–88, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

78 D.L. Dill

At about the same time, my research group was exploring the use of Boolean decision
diagrams (BDDs) for symbolic model checking of large state spaces [4]. A BDD is a
data structure that compactly represents Boolean functions that arise in practice [5]. The
essence of BDD-based model checking is to compute the reachable state space using
only operations on BDDs, so that explicit lists or tables of states never have to be saved.
BDD verification connected with cache coherence when I saw a talk by Ken McMillan,
then a PhD student in Computer Science at Carnegie Mellon University, on verification
of the Gigamax cache coherence protocol using BDDs [6].

A group of three PhD students, Andreas J. Drexler and Alan J. Hu and C. Han Yang
and I decided to try the same techniques on a different cache coherence protocol. Ken
had used the “m4” macro processing language to improvise a description language that
could be translated into BDDs. We attempted a similar approach, but, after a few weeks,
the students expressed the unanimous view that the method was far too labor-intensive,
and that we could accelerate the project by first building a translator for a more user-
friendly description language. That language eventually became Murϕ.

2.2 The Murϕ Description Language Design

The basic concepts of the Murϕ description language sprang from the UNITY model-
ing language of Misra and Chandy [7], which I had learned about a few years earlier,
and found to be simple and appealing. In the UNITY model, a concurrent system is rep-
resented as a set of global variables and guarded commands. Each guarded command
consists of predicate on the state variables, called a guard, and a set of assignments that
update those variables to change the state. The “control structure” of a UNITY program
consists of a single infinite loop, which repeatedly executes two steps: (1) evaluate all
the guards, given the current values of the global variables and (2) arbitrarily choose
one of the commands whose guard is true and execute it, updating the variables.

A UNITY model defines an implicit state graph, where each state is an assignment
of values to the global variables. The initial values of the variables are specified as part
of the model. The commands define the next-state relationship: if a command has a
guard that is true in state s, and state t is obtained by executing the assignments of that
command, then there is an edge from s to t in the global state graph.

Modeling concurrency in UNITY is trivial. UNITY has no notion of a process or
thread, but a process can be represented as a set of variables and commands. The joint
behavior of several processes is simply the union of the variables and commands for
each process. This approach provides an asynchronous, interleaving model of concur-
rency, where all synchronization and communication is through global variables. Non-
deterministic choices by a scheduler are subsumed by the nondeterministic choice of
which guarded command to execute on each iteration of UNITY’s loop.

While preserving the basic concepts of UNITY, we quickly found that it was very
helpful to have more conventional programming language constructs for the basic data
types of the language (records, arrays, integer subranges, enumerated types, etc.) and
for the predicates and statements appearing in the commands. We even included “while”
loops in the commands, in spite of some initial concerns about potential problems from
non-terminating commands (in retrospect, these concerns were completely unimportant
– infinite loops in commands are are rare, and easily detected and fixed). Pointers and

A Retrospective on Murϕ 79

heap-allocated memory were not included because of a desire to discourage the writing
of descriptions requiring very large state representations. It is not clear to me that this
was a good decision, since it resulted in significant inconvenience when modeling some
software applications.

Murϕ could check several kinds of properties. It could detect deadlocks, which were
defined as a state with no successors other than (possibly) itself. Murϕ descriptions
are supposed to be deadlock-free. The user could also specify invariants, which are
predicates on the state variables (in the Murϕ language) that are supposed to hold
in all global states. We soon discovered that assertions and error statements embedded
in commands also very useful, because it is often easier to specify an error condition in
the context of the logic of a rule than to separate it from the rule. For example, users
frequently handle a range of possibilities with a “case” statement or nested condition-
als, and want to add “otherwise, it is an error” for all the cases that are not supposed
to occur. Whenever a new state is constructed, these properties are all checked and an
error message and error trace are produced if one is violated.

The Murϕ model could be translated to logic by writing each command as a logi-
cal relation, and then representing the next-state relation as a disjunction of predicates,
one for each Murϕ command. This translation seemed attractive for BDD-based veri-
fication, because BDD-based evaluation of reachability has an outermost existentially
quantified variable which can be distributed over the disjunction of predicates, mini-
mizing the size of intermediate BDDs generated during the computation (this trick is
very important to BDD computations; it is called “early quantification”).

The three students began implementing the system. My recollection is that Andreas
worked on the description language translation, Alan worked on the BDD verifier, and
Han worked on examples. Unfortunately, we soon ran into a barrier: There were effi-
ciency problems with the BDD verifier. As a interim measure to allow Han to work on
examples before the BDD verifier was functioning we decided to implement a simple
explicit-state on-the-fly verifier for Murϕ, with the intention of throwing it away in a
few months.

Explicit on-the-fly verification is a simple depth-first or breadth-first search of the
state graph for a state that violates a property. An on-the-fly algorithm checks each state
as it is created, so that an error can be reported before the entire set of reachable states
is explored. Such methods had already been used for protocol verification for over a
decade. The search algorithm uses two large data structures: a queue of states whose
successor states need to be searched (the queue) and a hash table of states that do not
need to be visited again (the state table).

2.3 Murϕ’s First Major Application

Shortly after we had our first working prototype of Murϕ, I connected with Andreas
Nowatzyk, who was designing an experimental shared-memory multiprocessor at Sun
Microsystems called S3.mp [8]. I knew Andreas from the PhD program at Carnegie
Mellon University, where he had shared an office with Michael Browne, another stu-
dent of Ed Clarke’s who was working on model checking. Andreas became familiar
with model checking through his officemate, and later worked with Ken McMillan,
who found a bug in an early version of the cache coherence protocol that Andreas was

80 D.L. Dill

designing. We decided to apply Murϕ to this problem. I, personally, did much of the
work on this, and soon became the main user of Murϕ. I generated a long list of re-
quests for improvement in the language and the system to make it more usable. Murϕ
improved rapidly, and we found several bugs and other issues in the protocol. Later,
Han Yang applied Murϕ to many problems related to S3.mp.

When working on the S3.mp protocol, we learned some things about how to use
Murϕ. For example, we discovered the importance of downscaling. It was impossible
to represent the protocol at the scale it was implemented, with potentially hundreds of
processors and millions of cache lines. Instead, bugs could be often found with scaled-
down models having, for example, three processors and one “cache line” with only one
bit of data. Using such a model, the verifier could exercise many subtle scenarios and
find bugs quickly in such a model that would be very difficult to find with system-level
simulation. Also, when a problem with a scaled-down model was discovered, it was
much easier to understand the problem than it would have been using a larger-scale
model [9]. Indeed, it was a good idea to try the smallest possible model that made any
sense at all, find and fix any bugs, and then scale the model up slightly and repeat the
process. Changing scales was also useful when Murϕ ran up against capacity limits, by
allowing the user to increase the scale of one dimension (e.g.,the number of cache lines)
while decreasing the scale of another dimension (e.g., the number of processors).

It became obvious that Murϕ needed to support verification of the same model at
different scales with minimal changes to the description. We found that easy rescal-
ability could be achieved with three simple features: (1) named constants, (2) arrays,
and (3) parameterized sets of commands. For example, a generic model could be writ-
ten for n processors. Each processor could have an associated numerical index in the
range 1 . . . n, the global state variables for processor i could be stored in one or more
arrays at index i, and the guarded commands for the processor could be nested inside a
ruleset, a new Murϕ construct that defines a symbolic parameter to represent a process
index. Each command inside a ruleset was actually a family of commands, one for each
possible value of the ruleset parameter. Each command could use the process index
to access the appropriate array element, and as a storeable value for the name of the
process (for example, the process index might be stored in a variable representing the
owner of a cache line). With such a representation, the number of processors verified
could be changed simply by re-defining the symbolic constant n.

After these improvements, we found that useful results could be obtained with our
“interim” explicit-state implementation, and that we could compensate for some of the
obvious efficiency problems with the verifier by judicious use of abstractions, as well
as generally minimizing the number of state variables.

2.4 BDD Research

Meanwhile, Alan Hu was still struggling with the BDD-based verifier for Murϕ. He de-
fined a somewhat simpler input language (eventually called “EVER”), so that he could
find out if BDDs could be made to work efficiently for the problems of interest before
investing the effort to handle the entire Murϕ description language. It seemed that our
distributed cache implementations led to BDD blowup regardless of what we did. It
eventually dawned on us that there was an inherent problem: Many of the transactions

A Retrospective on Murϕ 81

in the cache model involved sending a message from processor A to processor B and
storing the message. In the midst of such a transaction, processor A would be in a state
waiting for a response to the message it sent, processor B would be in a state waiting for
a message, and the message itself would have “from” address of A and a “to” address
of B. All of these relationships would be implicit in a BDD representing the reachable
states of the system.

BDD variables must be placed in a single total order. As a rule, BDDs explode in
size when highly correlated variables are widely separated in this total order. But there
seemed to be no way to avoid separating closely correlated variables in the system we
were modeling, because there could be many transactions in process at the same time,
and transactions could involve any pair of processors. So, a variable order that put the
variables for processor A and B near each other would separate variables for A and C,
A and D, etc., which also correlated. So the BDDs would always blow up.

We came up with a two ideas for reducing this problem. The first was to note that,
in many cases, when there were several related variables, some of them were actually
redundant – their values could be inferred from the values of other variables. For ex-
ample, the state of a process that has just sent a message might be a determinable from
the contents of the message. One idea was to declare variables that are functionally
dependent on other variables, and treat them as abbreviations rather than as separate
variables [10]. This reduces some of the redundancy that causing BDD blowup. Since
the declarations of functional dependencies could be wrong, the verification algorithm
verifies that there really is a functional dependency before exploiting it.

Another, more general, idea was to maintain a list of separate BDDs for sets of
related variables, such as those in an individual processor or in the network, the con-
junction of which represented the reachable state space. Most BDDs would capture the
relationships between a small set of related variables, such as the variables describing
the state of a processor. Since these BDDs had a small number of variables, the related
variables could be close together. Other BDDs could focus on different properties in-
volve different sets of variables (the sets of variables did not have to be disjoint). There
would be a BDD at the end of the list that included all the variables, but the relations
captured in the earlier, smaller BDDs in the list would be factored out of the large one,
to keep it small. So, in the best case, we would have several small BDDs instead of one
huge BDD [11,12].

Both of these ideas worked moderately well on artificial examples, but we still could
not handle the S3.mp cache coherence protocol, and we eventually concluded that there
were several different causes of blowup, each of which was going to require a com-
plicated solution – if all were even solvable. We were never able to verify distributed
cache coherence algorithms with BDDs. To my knowledge, no one else has been able
to use BDDs successfully for this problem, even now.

3 Optimizations

3.1 State Reduction

Subsequently, another student, C. Norris Ip, joined the project. Norris and I noticed
that, in many of the examples, Murϕ was searching many redundant states because of

82 D.L. Dill

symmetry in the system description. For example, some of our cache coherence exam-
ples would have three different kinds of symmetry. Processors, cache lines, and memory
locations could all be interchanged in a state without changing the future behavior of
the system in any important way. More precisely, once a state had been visited and its
descendents searched without finding a bug, it was pointless to search a state that was
identical except for a permutation of the processors [13,14].

We also noticed that symmetries in our descriptions corresponded to the use of nu-
merical indices, which were represented as subrange types in Murϕ. Equivalent states
corresponded to different permutations of the elements of these subranges. If Murϕ
could standardize each state to find an equivalent representative state before looking
it up in the state table, the search algorithm would only search the descendants of the
representative state instead of all the states equivalent to it. It turned out that standard-
izing states was a difficult problem (at least as hard as graph isomorphism), but it was
possible to find reasonably accurate and fast heuristics.

However, if symmetry reduction were applied inappropriately, identifying states that
were not equivalent, Murϕ could miss errors. The solution was to invent a new, more ab-
stract type for subranges (which we called a “scalarset”) values of which could only be
assigned to variables, used as array indices, or used as ruleset parameters. Under these
restrictions, it could be guaranteed that permuting the elements of a scalarset (which
were represented as small integers) would preserve state equivalence. So, symmetry
could be “declared” by change subrange declarations to scalarsets, and the Murϕ com-
piler would detect any symmetry-breaking operations that might lead to missed error
states.

We made an important discovery when looking at graphs of the numbers of states
searched as a function of scalarset sizes. For some scalarsets, the number of states
stopped increasing even as the size of the scalarset was increased. We realized that
Murϕ could automatically verify an infinite family of systems, completely automati-
cally, under certain circumstances! For example, if the scalarset type s was only stored
in three places in a state, the representative state would map the original values to 0,
1, and 2 – even if s had a hundred possible values. We called scalarsets that were used
in this limited way “data scalarsets,” and the phenomenon where the state graph stops
growing “data saturation.”

Scalar sets only capture full symmetry, in which the members of the set can be per-
muted arbitrarily. Other researchers have explored other types of symmetry that can
occur in systems, [15,16,17,18] but full symmetry is easy to express, occurs frequently
in practice, and saves more states than other types of symmetry, so we made a choice,
in the engineering of Murϕ and in our research strategy, not to pursue the topic more
deeply.

3.2 Reducing the Primary Memory Bottleneck

One of the major problems with explicit on-the-fly verification, as described above,
is poor locality of reference in the state table. The queue needs to store entire states,
because all of the information in each state may be necessary to compute the successor
states, so it uses a lot of memory. But the queue has good locality of reference – states
that are in use tend to be located in memory near other states that are in use – so most

A Retrospective on Murϕ 83

of the states can be migrated to the disk without major losses in efficiency when they
verifier is not using them. However, the state table, being a large hash table, has no
locality of reference. Once the size of the state table approaches the size of available
primary memory, parts of it are paged out to the disk, resulting in slowdowns of many
orders of magnitude. Thus, available primary memory effectively limits the number of
states than can be searched.

Ulrich Stern, then a visiting student from Germany, joined our group and began in-
vestigating whether we could reduce memory usage by using probabilistic techniques
such as the bit-state hashing method pioneered by Holzmann [19,20] or the hash com-
paction method that had recently been published by Wolper and Leroy [21,22]. These
techniques save memory, but at the expense of some probability that states (and, possi-
bly, errors) will be missed. Bit-state hashing does not provide any guarantees about that
probability, but Wolper and Leroy could provide an upper bound on the probability of
missing an error, if the verifier completed without finding any errors.

Instead of storing full states in the state table, the Wolper/Leroy scheme stored nu-
merical signatures, computed using a hash function. The signatures were much smaller
than the states. In this method, states could be missed when they have the same signa-
ture. If the signature of state s1 is stored in the table, and s2 with the same signature
is looked up, the verifier will find the signature of s2 in the state table and mistakenly
conclude that the descendents of s2 have already been searched, and never visit them.
If all of the error states are descendents of s2, this can result in missed errors.

Wolper and Leroy could bound the probability of missed errors after the completion
of the search by counting the number of states actually visited and computing the prob-
ability that two of them had the same signature. This number could be made reasonably
small if there were sufficiently many bits in the signatures. In theory, the user could
raise that small probability to the nth power by verifying n times with different hash
functions.

Uli’s first improvement to this scheme was to improve the probability bound by notic-
ing that a state could only be missed if it had the same signature as another state and
hashed to the same location in the hash table – so the log of the number of buckets in
the hash table could be used in place of bits in the signatures.

A more significant improvement came from using breadth-first search. A particular
error state, e, can be missed only if some state on a path from the start state to e is missed
due to a signature collision. Hence, the probability of missing e can be minimized by
minimizing the lengths of the paths searched by the verifier – which is what breadth-
first search does. If search completes with no errors, the probability that this answer
is incorrect is no greater than the probability that state e was missed. That probability
can be computed, after verification, from the maximum number of breadth-first search
levels and the number of states in the hash table. Empirically, many of the state graphs
of our applications had small number of levels, so this improvement resulted in another
50% reduction in the number of bits required per state, while preserving the same small
probability of missed errors.

Uli also discovered a way to make effective use of secondary storage for the state ta-
ble. This idea was inspired by an earlier algorithm by A.W. Roscoe [23]. Uli discovered
a simpler and more efficient scheme, which again relied on breadth-first search. Only

84 D.L. Dill

the current level of breadth-first search states are kept in primary memory. Redundant
states within the same level are detected using a hash table in primary memory. After
all the states in a level have been generated, the stored states on the disk are scanned
linearly, and states are deleted from the newly-computed breadth-first layer when those
states are read off the disk. In practice, this algorithm allowed orders of magnitude more
states to be searched, with a small percentage increase in computational overhead.

Parallel Murϕ

Hash compaction and the improved use of disk storage converted the storage bottle-
neck to a CPU-time bottleneck, in many cases. Fortunately, Uli also devised a search
algorithm that made effective use of parallel computing to reduce the CPU bottleneck.

The basic algorithm is simple. The state table is partitioned among many processors,
and each processor “owns” the states that hash to its part of the state table, so, essen-
tially, the states are allocated randomly to processors. Newly created states are sent to
the processors that own them. Those processors check whether the states they were sent
are already in the state table. If not, the processor computes the successors of the state
and sends those to their owners. Uli also devised an efficient (and correct) distributed
termination detection algorithm that worked well in practice.

Parallel Murϕ is surprisingly effective at balancing the load. It exhibited linear
speedup and high efficiency even with relatively large numbers of processors (e.g., a
speedup of a factor of 44 to 53 when running on a 63-processor system).

Conflict with Liveness Checking

The original plan for Murϕ was to implement checking for liveness properties as well
as simple safety properties and deadlock checking. Seungjoon Park, another Stanford
PhD student, implemented checking for properties a simple subset of linear temporal
logic (LTL) formulas that captured some of the most common liveness and fairness
properties, using a modified depth-first search algorithm. However, it seemed that every
major efficiency improvement conflicted with these algorithms. Symmetry reduction
of a state graph, as described above, does not preserve liveness properties, and it is not
simple to modify the symmetry reduction or liveness checking algorithms to make them
compatible (Later, Gyuris, Sistla and Emerson implemented clever liveness checking
algorithms that exploit symmetry reduction [18,24]).

The state table and disk optimizations relied heavily on breadth-first search. But on-
the-fly verification of liveness properties seem generally rely on depth-first search algo-
rithms. Unfortunately, an efficient on-the-fly breadth-first search algorithm for liveness
properties still does not exist.

Given a choice between verifying safety properties and liveness properties, safety
properties are probably more important in practice. However, it would be better not
to have to choose, because liveness properties are also extremely important. I have had
several students in class projects develop protocols that they verify successfully in Murϕ
only because the protocols livelock before they can reach an error state.

A Retrospective on Murϕ 85

4 Lessons Learned

Our team learned many lessons about verification, research strategy, and tool design
from the Murϕ project. Unfortunately, I have validated many of these lessons by ignor-
ing them in other projects, and suffering the consequences. Findings such as these are
rarely written in technical papers. I am writing them here in the hope that they may be
of value to others.

Bug Hunting is More Rewarding than Proving Correctness. I had already learned
this in my graduate work, but our work on Murϕ strongly reinforced the lesson. Finding
bugs in a system is usually much easier than proving correctness, and the impact is
usually greater. Designers of systems implicitly believe that the systems are correct,
so they are impressed, if not pleased, when a bug is found. Additionally, some people
don’t believe proofs of correctness, but a bug is explainable and demonstrable. This is
the justification for using Murϕ and similar tools on partial, abstracted, scaled-down
models of systems.

Start Using the Tool to Solve Real Problems as Early as Possible, and Make What-
ever Changes are Necessary to Maximize the Tool’s Usefulness. In the the best case,
the user is an implementer of the system (or, even better, the manager of the project,
as I was in the early days). The tool should be put to use as early as possible, so that
improvements in the tool can be driven by the demands of the problem. Every PhD stu-
dent who maintained (and rewrote) Murϕ was also worked on challenging verification
problems using Murϕ.

This heuristic is helpful to ensure that a tool is useful for at least one thing. That may
not seem to be an ambitious goal, but it is frighteningly easy to make tool that is useful
for no applications, because of faulty intuition about the answers to crucial questions,
such as “What are the critical language features?” and “Where are the performance
bottlenecks?” However, using the tool on a real problem very rapidly reveals these mis-
conceptions. Useful additional features and optimizations will become apparent with
use; more importantly, many complex and difficult features will never be implemented
because they are never really needed.

To keep the tool in use, it is necessary to respond to demands quickly. This pressure
leads to creative enhancements to the tool that solve the user’s problems with minimal
redesign and implementation – and these solutions often turn out to be better for the
system and user than a feature requiring more elaborate implementation. (However,
over time, a certain number of sub-optimal but expedient decisions accumulate, and the
tool needs to be redesigned and reimplemented more-or-less from scratch. Murϕ has
been completely re-written at least four times.)

Almost every decision in the design of the Murϕ language and verifier was pro-
foundly affected by this application-oriented philosophy. We abandoned BDDs because
we found they did not work for the application, and the explicit state verifier evolved
from incremental improvements from an algorithm that we initially thought would be
impractical. The invention of scalarsets came from examination of the symmetries in
the application, and from the pervasive use of small integer subranges to represent sets
that turned out to be symmetric.

86 D.L. Dill

Make it Easy for People to Audition the Tool. Potential users are impatient, and
they have to encounter many broken and/or useless tools on the Internet. It is time-
consuming and frustrating to sort through all the advertised systems that are available
for a particular process to find out which ones actually work. My unscientific estimate
is that the potential user community for a tool declines exponentially with the number
of minutes it takes to see whether a tool works.

The tool should be easy to download and run. I’m amazed at the number of tools that
require a user to download five different programs and libraries from different sources
before anything will compile. Of course, some of those programs are broken, or conflict
with other software on the user’s system, etc. It is best to make pre-compiled binaries
available, and statically link them (when possible) so that library version problems don’t
arise, and otherwise do whatever can be done to make sure the tool works “out of the
box.” When a tool doesn’t work, sometimes highly motivated or obsessive users will fix
it, if they have access to the source code – so it is good to distribute source code.

Murϕ did well in some regards and not so well in others. We did distribute bina-
ries for linux and some other Unix operating systems. We did not support Windows –
although, at that time, most interested users were probably running on Unix systems.
The biggest problem with Murϕ was that the compiler translated the Murϕ descrip-
tion to a C++ program that then had to be compiled and executed to search the state
space (this idea was borrowed from SPIN [25]). The problem with this approach is that
C++ semantics would shift from version to version of the compiler. In particular, se-
mantic analysis often became more stringent with new releases, so that generated C++
code would suddenly produce errors or warnings because a user tried to compile with
a newer version of g++. A more pragmatic solution would have been to compile to a
least-common-denominator dialect of C, but a series of implementers of Murϕ found it
much easier to generate C++ – so that’s what they did.

Minimize Intellectual Property Issues. We initially considered whether we should
protect the potential commercial value of Murϕ by restricting the license for noncom-
mercial use. After conversations with potential users at some very large corporations, it
eventually became clear that we, as well as potential users, would have to spend far too
much time talking to lawyers before someone at these companies could use our tool.
Even the Gnu Public License (GPL) created complications. We thought explicitly about
our strategy, and concluded that the impact of our research would be maximized if we
made the license terms as liberal as possible. We then adopted something very similar
to the MIT and Berkeley licenses, which allow users great freedom in using, modifying,
and incorporating code into other systems. I’m not sure Murϕ would have been at all
successful had we done otherwise.

Acknowledgments

Murϕ was the work of many students, and occasional post-docs and staff, at Stanford.
The roles of Andreas Drexler, Alan J. Hu, and C. Han Yang, Norris Ip, Seungjoon
Park, and Ulrich Stern are partially described above. Andreas, Norris, and Uli each
almost completely rewrote the system. Unfortunately, space does not permit discussion

A Retrospective on Murϕ 87

of many of the contributions of each, including large examples verified, variations of
Murϕ developed, and papers written.

In addition, Ralph Melton (an undergraduate at that time) maintained and almost
completely rewrote the system, and Denis Leroy (a Master’s student at the time) main-
tained and improved it. There have been so many helpful collaborators that I’m bound to
forget some, but some of them were Satyaki Das, Steven German, Ganesh Gopalakrish-
nan, Richard Ho, Paul Loewenstein, John L. Mitchell, Andreas Nowatzyk, John Rushby,
Jens Skakkebaek, and Vitaly Shmatikov.

The Murϕ project was supported financially by a series of sponsors, including the
National Science Foundation MIP-8858807, the Defense Advanced Research Projects
Agency (through contact number N00039-91-C-0138, and, later, NASA grant NAG-2-
891).), the Semiconductor Research Foundation (contract 95-DJ-389), financial gifts
from the Powell Foundation, Mitsubishi Electronics Research Laboratories, the Stan-
ford Center for Integrated Systems, equipment gifts from Sun Microsystems, Hewlett-
Packard, IBM, and Intel.

The Murϕ project resulted in a tool that has no doubt made widely-used systems
notably more reliable. It also trained some of the most talented computer technologists
in the country, who are now key contributors at companies and universities. I believe
that the support of the above sponsors has yielded benefits to the U.S. and the world
that are many times greater than the investment. I would like not only to thank the
sponsoring organizations, but the individuals within them who were responsible for
deciding to fund our project in the hope that we would produce something of value.

Of course, any statements, findings, conclusions, or recommendations above are my
own, and do not necessarily reflect the views of any of the project funders.

References

1. Mitchell, J.C., Mitchell, M., Stern, U.: Automated analysis of cryptographic protocols using
murφ. In: IEEE Symposium on Security and Privacy, pp. 141–153 (1997)

2. Mitchell, J.C.: Finite-state analysis of security protocols. In: Computer Aided Verification.
LNCS, pp. 71–76 (1998)

3. Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W.D., Gupta, A., Hennessy, J., Horowitz,
M., Lam, M.: The Stanford DASH multiprocessor. Computer 25(3) (1992)

4. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model checking: 1020

states and beyond. In: 5th IEEE Symposium on Logic in Computer Science (1990)
5. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions

on Computers C-35(8) (1986)
6. McMillan, K.L., Schwalbe, J.: Formal verification of the gigamax cache-consistency proto-

col. In: Proceedings of the International Symposium on Shared Memory Multiprocessing,
Information Processing Society of Japan, pp. 242–251 (1991)

7. Chandy, K.M., Misra, J.: Parallel Program Design — a Foundation. Addison-Wesley (1988)
8. Nowatzyk, A., Aybay, G., Browne, M., Kelly, E., Parkin, M., Radke, W., Vishin, S.: The

s3.mp scalable shared memory multiprocessor. In: International Conference on Parallel Pro-
cessing (1995)

9. Dill, D.L., Drexler, A.J., Hu, A.J., Yang, C.H.: Protocol verification as a hardware design aid.
In: IEEE International Conference on Computer Design: VLSI in Computers and Processors,
pp. 522–525 (1992)

88 D.L. Dill

10. Hu, A.J., Dill, D.L.: Reducing BDD size by exploiting functional dependencies. In: 30th
Design Automation Conference, pp. 266–271 (1993)

11. Hu, A.J., Dill, D.L.: Efficient verification with BDDs using implicitly conjoined invariants.
In: 5th International Conference on Computer-Aided Verification (1993)

12. Hu, A.J., York, G., Dill, D.L.: New techniques for efficient verification with implicitly con-
joined bdds. In: 31th Design Automation Conference, pp. 276–282 (1994)

13. Ip, C.N., Dill, D.L.: Better verification through symmetry. In: 11th International Symposium
on Computer Hardware Description Languages and Their Applications, pp. 87–100 (1993)

14. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in System De-
sign 9(1/2), 41–75 (1996)

15. Clarke, E., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic model
checking. Formal Methods in System Design 9(1/2), 77–104 (1996)

16. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods in System De-
sign 9(1/2), 105–131 (1996)

17. Emerson, E., Sistla, A.: Utilizing symmetry when model checking under fairness assump-
tions: An automata-theoretic approach. In: 7th International Conference on Computer-Aided
Verification (1995)

18. Gyuris, V., Sistla, A.P.: On-the-fly model checking under fairness that exploits symmetry.
Formal Methods in System Design 15(3), 217–238 (1999)

19. Holzmann, G.J.: On limits and possibilities of automated protocol analysis. In: Protocol
Specification, Testing, and Verification. 7th International Conference, pp. 339–344 (1987)

20. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice-Hall, Englewood
Cliffs (1991)

21. Wolper, P., Leroy, D.: Reliable hashing without collision detection. In: Computer Aided Ver-
ification. 5th International Conference, pp. 59–70 (1993)

22. Wolper, P., Leroy, D.: Reliable hashing without collision detection (unpublished revised ver-
sion of [21])

23. Roscoe, A.: Model-checking CSP. Prentice-Hall (1994)
24. Sistla, A.P., Gyuris, V., Emerson, E.A.: Smc: a symmetry-based model checker for verifi-

cation of safety and liveness properties. ACM Transactions Software Engineering Method-
olgy 9(2), 133–166 (2000)

25. Holzmann, G.: Design and validation of computer protocols. Prentice-Hall (1991)

Model Checking: From Tools to Theory�

Rajeev Alur

University of Pennsylvania

Abstract. Model checking is often cited as a success story for transi-
tioning and engineering ideas rooted in logics and automata to practice.
In this paper, we discuss how the efforts aimed at improving the scope
and effectiveness of model checking tools have revived the study of logics
and automata leading to unexpected theoretical advances whose impact
is not limited to model checking. In particular, we describe how our ef-
forts to add context-free specifications to software model checking led us
to the model of nested words as a representation of data with both a
linear ordering and a hierarchically nested matching of items. Such dual
structure occurs in diverse corners of computer science ranging from ex-
ecutions of structured programs where there is a well-nested matching of
entries to and exits from functions and procedures, to XML documents
with the hierarchical structure specified by start-tags matched with end-
tags. Finite-state acceptors of nested words define the class of regular
languages of nested words that has all the appealing theoretical prop-
erties that the class of regular word languages enjoys. We review the
emerging theory of nested words, its extension to nested trees, and its
potential applications.

1 Introduction

The abstract for the talk titled “The Birth of Model Checking” by Ed Clarke at
the 25 Years of Model Checking symposium begins as follows

The most important problem in model checking is the State Explosion
Problem. In particular, it is far more important than the logic or speci-
fication formalism that is used – CTL, LTL, CTL*, Büchi automata, or
the μ-calculus.

Indeed, without the spectacular progress on combating the state explosion prob-
lem, it is not clear if model checking would have had any impact on indus-
trial practice at all. However, we would like to argue that theory, in particular,
specification languages based on temporal logics, automata, and fixpoint logics,
have contributed significantly to the success of model checking. First, theory
of regular languages of finite and infinite words and trees, gives a clear un-
derstanding of which properties are algorithmically checkable. Second, modern

� This research was partially supported by NSF grants CPA 0541149, CNS 0524059,
and CCR 0410662.

O. Grumberg and H. Veith (Eds.): 25MC Festschrift, LNCS 5000, pp. 89–106, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

90 R. Alur

industrial-strength specification languages such as PSL are rooted in the the-
ory of temporal logics [PSL05]. Such standardized specification languages have
an important role beyond model checking, namely, in testing as well as simula-
tion. Third, since fixpoint logic has a strong computational flavor, logics have
suggested ways of implementing symbolic model checkers. Finally, the vigorous
debate on relative merits of different specification languages has contributed to
the intellectual health and growth of the field. It is also worth noting that one
key manner in which model checking differs from program analysis is the use
of specification languages: model checking typically has focussed on efficiently
checking generic classes of properties such as safety and liveness, while program
analysis has emphasized specific analysis questions such as pointer analysis and
buffer overflows.

The foundational work on monadic second order logics and ω-automata over
words and trees dates back to research in 1960s. Particularly noteworthy results
include

1. Büchi’s Theorem: A language of infinite words is definable using monadic
second order logic of linear order (S1S) iff it is accepted by a (finite) Büchi
automaton [Büc62].

2. Kamp’s Theorem: A property of infinite words is expressible in first-order the-
ory of linear order iff it is expressible in linear temporal logic LTL [Kam68].

3. Rabin’s Theorem: The monadic second order theory of binary trees (S2S) is
decidable [Rab69].

The automata-theoretic approach to verification, advocated by Vardi and oth-
ers, connects model checking tools to the above results and their subsequent
refinements, and has been celebrated with numerous awards including the 2006
ACM Kannellakis Theory in Practice Award [WVS83, VW94, KVW00, Tho90,
Hol97, Kur94]. We wish to argue that, as the success of model checking tools
brought intense focus on expressiveness and decidability boundary, and this led
to fundamental advances in theory. Since automata and logics have applications
to other areas of computing, such as databases, document processing, and plan-
ning, model checking continues to contribute to these areas. We list two such
developments for illustrative purposes.

Tree automata, μ-calculus, and parity games: The use of branching-time
logics such as CTL [CE81] and μ-calculus [Koz83] in symbolic model checking
tools such as SMV [McM93] led researchers revisit the theory of infinite trees.
While classical theory of trees considers binary trees and their regular proper-
ties, programs are best modeled by trees that are unordered and unranked, and
we want to focus on properties that do not distinguish among bisimilar systems
(the notion of bisimilarity was introduced in theory of concurrency [Mil89]).
The resulting body of research led to new notions of automata such as alter-
nating tree automata [EJ91, JW96, MS85, CDG+02]. We now know that, for a
set L of infinite, unordered, unranked trees, the following are equivalent: (1)
L is bisimulation-closed and definable using monadic second order logic, (2)
L is definable in μ-calculus, and (3) L is accepted by an alternating parity

Model Checking: From Tools to Theory 91

tree automaton. This work also connects to deciding two-player games with
parity winning condition, and provides the basis for synthesis of correct con-
trollers with respect to LTL specifications and modular verification of open sys-
tems [Tho02,KVW01,AHK02].

Timed automata: Traditional automata do not admit an explicit modeling of
time, and consequently, in order to extend model checking techniques to timed
circuits, timed automata [AD94] were introduced as a formal notation to model
the behavior of real-time systems. Timed automata accept timed languages con-
sisting of sequences of events tagged with their occurrence times. Many analysis
problems for timed automata are solvable, and this has led to tools such as
Uppaal for verifying finite-state real-time systems [LPY97,DOTY96]. Theory of
regular timed languages has also been developed with an accompanying study
of real-time temporal logics [ACD93,AH94,AH93,HRS98]. Timed automata are
now used as a formal model of real-time computation in contexts beyond model
checking (see, for instance, textbooks on Signals and systems [LV02] and con-
trol theory [CL99]). The main technique for analysis of timed automata relies
on constructing a finite quotient of the infinite space of real-valued state vec-
tors [AD94], and this has led to many abstraction techniques for dynamical and
hybrid systems [AHLP00,PS02].

In the rest of this paper, we focus in detail on our current line of research. We
describe how our efforts to understand limits of algorithmically checkable proper-
ties of pushdown models led us to the model of nested words as a representation
of data with both a linear ordering and a hierarchically nested matching of items.
Such dual structure occurs in diverse corners of computer science ranging from
executions of structured programs where there is a well-nested matching of en-
tries to and exits from functions and procedures, to XML documents with the
well-nested structure given by start-tags matched with end-tags. We review the
emerging theory of nested words and its potential applications [AM04,AEM04,
AKMV05,ACM06a,ACM06b,AM06,KMV06a,Alu07,AAB+07].

2 History of Verification of Pushdown Systems

Pushdown automata naturally model the control flow of sequential computation
in typical programming languages with nested, and potentially recursive, invo-
cations of program modules such as procedures and method calls. Consequently,
a variety of program analysis, compiler optimization, and model checking ques-
tions can be formulated as decision problems for pushdown automata.

When viewed as a generator of words, a pushdown model specifies a context-
free language of words. Decidability of regular requirements of pushdown models,
then, follows from classical results on pushdown automata: the product of a
pushdown automaton and a finite-state automaton gives a pushdown automaton,
and the emptiness of the language of a pushdown automaton can be checked
in polynomial-time (see any standard textbook on automata theory, such as,
[HU79]). The decision procedure for emptiness of pushdown automata, in fact,

92 R. Alur

forms the basis for many inter-procedural dataflow analysis problems [SP81,
RHS95] (see [Rep98] for a survey).

In the context of model checking, a pushdown automaton can be interpreted
as a generator of a context-free language of infinite words. Model checking of LTL
requirements against pushdown models is known to be decidable [BS92,BEM97]
(see, also, [ABE+05] for refined complexity bounds). Checking μ-calculus re-
quirements of pushdown models, and similarly, solving games over pushdown
graphs with winning condition specified in LTL, are also known to be decid-
able [Wal01]. The emergence of software model checking, as implemented in tools
such as SLAM and BLAST, brought pushdown verification to forefront [BR01,
HJM+02]. In these tools, a C program is mapped to a pushdown model (more
specifically, to Boolean programs that allow stack-based control flow, but with
only Boolean data variables) using predicate abstraction, and then symbolic
model checking is used to analyze the resulting model.

The typical program analysis tools over control-flow graphs and BDD-based
model checking tools such as Bebop, are based on the so-called summary com-
putation for pushdown models [BR00,Rep98]. Intuitively, the analysis algorithm
computes, for each procedure or a component, summaries of the form (x, y),
meaning that if the component is invoked with input x, it may return with out-
put y. The number of such summaries is finite, and can be computed by an
inductive fixpoint computation. An alternative view is based on the so-called
regular model checking [BEM97]. In a pushdown model, the state is completely
described by the control state and a finite word over the alphabet of stack sym-
bols describing the contents of the stack. It turns out that the set of reachable
states of a model is regular and can be represented by a finite-state automaton.
Model checking can be viewed as computation of the edges of this automaton,
and the model checker Moped is based on this approach [EHRS00]. Finally, there
exist interesting decidability results for logics interpreted over pushdown graphs,
typically using interpretation over trees [Cau03,KPV02].

While many analysis problems can be captured as regular requirements, and
hence, specifiable in LTL or μ-calculus, many others require inspection of the
stack or matching of calls and returns, and are context-free. Even though the
general problem of checking context-free properties of pushdown automata is
undecidable, algorithmic solutions have been proposed for checking many dif-
ferent kinds of non-regular properties. For example, access control requirements
such as “a module A should be invoked only if the module B belongs to the
call-stack,” and bounds on stack size such as “the number of interrupt-handlers
in the call-stack should never exceed 5,” require inspection of the stack, and
decision procedures for certain classes of stack properties already exist [JMT99,
CW02,EKS03,CMM+04]. Our own efforts to add expressiveness to LTL, while
maintaining decidability of model checking with respect to pushdown models,
led to the definition of temporal logic CaRet that allows matching of calls and
returns. CaRet can express the classical correctness requirements of program
modules with pre and post conditions, such as “if p holds when a module is
invoked, the module must return, and q holds upon return” [AEM04].

Model Checking: From Tools to Theory 93

This suggests that the answer to the question “which class of properties are
algorithmically checkable against pushdown models?” should be more general
than “regular.” The key feature of checkable requirements, such as stack inspec-
tion and matching calls and returns, is that the stacks in the model and the
property are correlated: while the stacks are not identical, the two synchronize
on when to push and when to pop, and are always of the same depth. We first
formalized this intuition by defining visibly pushdown automata (VPA). Such an
automaton operates over words over an alphabet that is partitioned into three
disjoint sets of calls, returns, and internal symbols. While reading a call symbol,
the automaton must push, while reading a return symbol, it must pop (if the
stack is non-empty), and while reading an internal symbol, it can only update
its control state. A language over a partitioned alphabet is a visibly pushdown
language if there is such an automaton that accepts it. This class has desirable
closure properties, tractable decision problems, multiple equivalent characteri-
zations, and adequate for formulating program analysis questions.

We now believe that a better way of exposing the matching call-return struc-
ture of the input word is by explicitly adding nesting edges [AM06]. Nested words
integrate trees and words as the underlying signature has both a linear order and
a hierarchical nesting relation. Finite-state acceptors of nested words define the
class of regular languages of nested words that has all the appealing theoretical
properties that the class of classical regular word languages enjoys. As we will
describe, this allows us to view programs as finite-state generators of regular
languages of nested words, as opposed to (infinite-state) pushdown generators of
(restricted classes of) context-free languages of words, thereby allowing model
checking of stronger requirements.

3 Nested Words

A nested word consists of a sequence of linearly ordered positions, augmented
with nesting edges connecting calls to returns (or open-tags to close-tags). The
edges create a properly nested hierarchical structure, while allowing some of the
edges to be pending. We will present definitions for finite nested words, but the
theory extends to infinite words.

We use edges starting at −∞ and edges ending at +∞ to model “pend-
ing” edges. A nesting relation � of length � is a subset of {−∞, 1, 2, . . . �} ×
{1, 2, . . . �, +∞} such that if i � j then i < j; if i � j and i � j′ and i �= −∞
then j = j′, if i � j and i′ � j and j �= +∞ then i = i′, and if i � j and
i′ � j′ then it is not the case that i < i′ ≤ j < j′. The definition ensures that
nesting edges go only forward, do not cross, and every position is involved in
at most one nesting edge. Source positions for nesting edges are call positions,
target positions for nesting edges are return positions, and a position that is
neither a call or a return is called internal. A nested word n over an alphabet Σ
is a pair (a1 . . . a�,�), such that ai, for each 1 ≤ i ≤ �, is a symbol in Σ, and
� is a nesting relation of length �.

94 R. Alur

a b a a b a b a a b a a

a a a b b a

a

a b

a a b a a a a

n1

n2

n3

<a <b a a> <b a b> a> <a b a a>

a a> <b a a> <a <a

<a <a a> <b b> a> a(a(),b())

Fig. 1. Sample nested words

This nesting structure can be uniquely represented by a sequence specifying
the types of positions (calls, returns, and internals). In particular, we assume that
〈 and 〉 are special symbols that do not appear in the alphabet Σ. Then, define
the tagged alphabet Σ̂ to be the set that contains the symbols 〈a, a, and a〉 for
each a ∈ Σ. Given a nested word over Σ, we can map it to a word over Σ̂: at every
call position labeled a, output 〈a; at every return position labeled a, output a〉;
and at every internal position labeled a, output a. This correspondence between
nested words and words over tagged symbols is a bijection. Figure 1 shows some
nested words over the alphabet {a, b} along with their linear encodings.

Finite-state acceptors over nested words can process both linear and hierar-
chical structure. A nested word automaton (NWA) A over an alphabet Σ consists
of a finite set Q of states, an initial state q0 ∈ Q, a set of final states F ⊆ Q,
a call-transition function δc : Q × Σ �→ Q × Q, an internal-transition function
δi : Q × Σ �→ Q, and a return-transition function δr : Q × Q × Σ �→ Q. The
automaton A starts in the initial state, and reads the nested word from left to
right. The state is propagated along the linear edges as in case of a standard
word automaton. However, at a call, the nested word automaton can propa-
gate a state along the outgoing nesting edge also. At a return, the new state is
determined based on the states propagated along the linear as well as the nest-
ing incoming edges. Formally, a run r of the automaton A over a nested word
n = (a1 . . . a�,�) is a linear sequence q0, . . . , q� of states and a nesting sequence
qij , for i � j, of states such that for each position 1 ≤ i ≤ �, if i is a call with
i � j, then δc(qi−1, ai) = (qi, qij); if i is an internal, then δi(qi−1, ai) = qi; and
if i is a return such that j � i, then δr(qi−1, qji, ai) = qi, where if j = −∞
then qji = q0. For a given nested word n, the automaton has precisely one run
over n. The automaton A accepts the nested word n if in this run, q� ∈ F .
The language L(A) of a nested-word automaton A is the set of nested words it
accepts. The resulting class of regular languages of nested words seems to have
all the appealing theoretical properties that the classes of classical regular word
and tree languages enjoy.

It is easy to see that if L is a regular language of nested words, then the
corresponding language of words over tagged symbols is a context-free language.

Model Checking: From Tools to Theory 95

This is because a nested word automaton can be interpreted as a pushdown
automaton over words: call transitions can be simulated by pushing the state
along nesting edge, and return transitions can access this state by popping the
stack. Languages of words with well-bracketed structure have been studied as
Dyck languages and parenthesis languages, and shown to have some special
properties compared to context-free languages (for example, decidable equiva-
lence problem) [McN67, Knu67]. The new insight is that the matching among
left and right parenthesis can be considered to be an explicit component of the
input structure, and this leads to a robust notion of regular languages using
finite-state acceptors.

There is an emerging and growing body of literature studying nested word
automata, and we review some of the results below.

Closure: The class of regular languages of nested words is (effectively) closed
under union, intersection, complementation, concatenation, and Kleene-∗. If L is
a regular language of nested words then all the following languages are regular:
the set of all prefixes of all the words in L; the set of all suffixes of all the words
in L; the set of reversals of all the words in L. Regular languages are closed
under tree-like operations that use hierarchical structure.

Determinization: A nondeterministic NWA A has finite set Q of states, a set
of initial states Q0 ⊆ Q, a set F ⊆ Q of final states, a call-transition relation
δc ⊆ Q×Σ×Q×Q, an internal-transition relation δi ⊆ Q×Σ×Q, and a return-
transition relation δr ⊆ Q×Q×Σ×Q. The automaton now has a choice at every
step, and accepts a word if one of the possible runs accepts. Nondeterministic
nested word automata are no more expressive than the deterministic ones: given
a nondeterministic automaton A with s states, one can effectively construct a
deterministic NWA B with 2s2

states such that L(B) = L(A). The construction
is a generalization of the classical subset construction for determinizing word
automata, and a state of B is set of pairs of states of A.

Logic based characterization: The classical correspondence between monadic
second order logic and finite recognizability for words and trees continues to hold
for nested words. The monadic second-order logic of nested words (MSO) is given
by the syntax:

φ := Qa(x) | x ≤ y | x� y | φ ∨ φ | ¬φ | ∃x.φ | ∃X.φ,

where a ∈ Σ, x, y are first-order variables, and X is a second order variable. The
semantics is defined over nested words in a natural way. A language L of nested
words over Σ is regular iff there is an MSO sentence φ over Σ such that L is the
set of all nested words that satisfy φ.

The correspondence between linear temporal logic and first-order logic con-
tinues to hold too. The logic Nested Word Temporal Logic (NWTL) has atomic
propositions, logical connectives, the linear next and previous operators, the hi-
erarchical next and previous operators (e.g., “hierarchical-next ϕ” holds at a
call position iff ϕ holds at the matching return), and until and since operators
that are interpreted over the “summary” paths. The summary path between two

96 R. Alur

positions i and j is the shortest path in the graph of the nested word: if the sum-
mary path from i to j reaches a call position k such that i ≤ k� k′ ≤ j, then it
will follow the nesting edge from k to k′. A language L of nested words is definable
in first-order logic of nested words (that is, the logic above without the second-
order variables X) iff it is expressible in the temporal logic NWTL [AAB+07].

Decision problems: Given a nested word automaton A and a nested word
n, the membership problem (is n in L(A)?) can be solved in linear time. The
space required is proportional to the depth of n since one needs to remember
the labeling of pending nesting edges at every position. If A is nondeterministic,
membership problem can be solved in time O(|A|3�) using dynamic programming
similar to the one used for membership for pushdown word automata.

The emptiness problem for nested word automata(is L(A) empty?) can be
solved in cubic time using techniques similar to the ones used for pushdown
word automata or tree automata.

Problems such as language inclusion and language equivalence are decidable.
These problems can be solved using constructions for complementation and lan-
guage intersection, and emptiness test. If one of the automata is nondetermin-
istic, then this would require determinization, and both language inclusion and
equivalence are Exptime-complete for nondeterministic NWAs.

4 Revised Formulation of Software Model Checking

Traditionally, execution of a program is modeled as a word over an alphabet Σ,
where the choice of Σ depends on the desired level of detail. As an example,
suppose we are interested in tracking read/write accesses to a program variable
x. Then, we can choose the following set of symbols: rd to denote a read access to
x, wr to denote a write access to x, en to denote beginning of a new scope (such
as a call to a function or a procedure), and ex to denote the ending of the current
scope, and sk to denote all other actions of the program. A program P generates,
then, a set L(P) of words over this alphabet. The specification S is given as a set
of “desirable” words, and verification corresponds to checking whether the inclu-
sion L(P) ⊆ S holds. Since typical programming languages are Turing complete,
the verification problem is undecidable. The first step in algorithmic program
verification is to approximate a program using data abstraction, where the data
in a program is abstracted using a finite set of boolean variables that stand for
predicates on the data-space [SH97,BMMR01,HJM+02]. The resulting model P ′

hence has finite data and stack-based control flow (see Boolean programs [BR00]
and recursive state machines [ABE+05] as concrete instances of pushdown mod-
els of programs). The language L(P ′) is a context-free language of words. If the
specification S is a regular language, then the verification question L(P ′) ⊆ S
can be solved. Consider the requirement that every write access is followed by a
read access. This can be expressed by the LTL formula �(wr → ♦ rd), and is
indeed a regular property. However, if we want to express the requirement that
“if a procedure writes to x, it must read x,” we must capture the scope of each
procedure by matching of en and ex symbols, and the requirement is not a regular

Model Checking: From Tools to Theory 97

language, and thus, not expressible in the specification languages supported by
existing software model checkers such as SLAM [BR00] and BLAST [HJM+02].
The specification is a context-free language, but this is not useful for algorithmic
verification since context-free languages are not closed under intersection, and
decision problems such as language inclusion and emptiness of intersection of
two languages are undecidable for context-free languages.

In the revised formulation, an execution is modeled as a nested word. In
addition to the linear sequence of symbols given by the program execution, from
each entry symbol en, there is a nesting edge to the matching exit symbol ex.
Following the nesting edge corresponds to skipping the called procedure, and a
path that uses only nesting and internal edges gives the part of the execution
that is local to a procedure. We can interpret the abstracted program P ′ as a
nested word automaton, and associate with it a regular language L′(P ′) of nested
words. It is worth noting that, in general, pushdown models can be interpreted
as nested word automata as syntactically the two definitions are same (in NWAs,
stack alphabet coincides with the set of states, acceptance is by final state, call
transitions are same as push transitions, and return transitions are same as pop
transitions). The difference is only in the semantics: pushdown automata define
word languages while NWAs define nested word languages.

The specification, now, is given as a language S′ over nested words, and verifi-
cation reduces to the language-inclusion problem for nested words: L′(P ′) ⊆ S′.
The question is solvable as long as S′ is a regular language of nested words.
Clearly, every regular language of words is also a regular language of nested
words. The requirement that “if a procedure writes to x, it must read x” also
becomes regular now, and there is a natural two-state deterministic nested-word
automaton that specifies it. The initial state is q0, and has no pending obli-
gations, and is the only final state. The state q1 denotes that along the local
path of the current scope, a write-access has been encountered, with no follow-
ing read access. The transitions are: for j = 0, 1, δi(qj , rd) = q0; δi(qj ,wr) = q1;
δi(qj , sk) = qj ; δc(qj , en) = (q0, qj); and δr(q0, qj , ex) = qj . The automaton reini-
tializes the state to q0 upon entry, while processing internal read/write symbols,
it updates the state as in a finite-state word automaton, and at a return, if the
current state is q0 (meaning the called context satisfies the desired requirement),
it restores the state of the calling context.

Further, we can design temporal logics for programs that exploit the nested
structure. An example of such a temporal logic is CaRet [AEM04], which ex-
tends linear temporal logic by local modalities such as ©aφ, which holds at a
call if the return-successor of the call satisfies φ. The formula �(wr → ♦a rd)
captures the specification “if a procedure writes to x, it must read x.” CaRet

can state many interesting properties of programs, including stack-inspection
properties, pre-post conditions of programs, local flows in programs, etc. Anal-
ogous to the theorem that a linear temporal formula can be compiled into an
automaton that accepts its models [VW94], any CaRet formula can be com-
piled into a nested word automaton that accepts its models. Decidability of

98 R. Alur

inclusion then yields a decidable model-checking problem for program models
against CaRet [AM04,AEM04].

Software model checking tools such as SLAM and BLAST support an asser-
tion language for writing monitors checking for violations of safety properties.
The monitor M is observing the executions of P , and reaches an error state
if an undesirable execution is detected. The verification question is to check if
the monitor can reach an error state. Given a C program P and a monitor M
written in the query language, the model checker first constructs an annotated C
program P ′ such that the verification problem reduces to analysis of P ′. While
current assertion languages for monitors support automata over words, now we
can strengthen them to allow automata over nested words. The transformation
of P to the annotated program P ′, to account for M , can be done with equal
ease even for this more expressive language. The resulting program P ′ can be
subjected to different analysis techniques such as testing, runtime monitoring,
static analysis, and model checking. Thus, the nested-word formulation can be
useful for any analysis technique. Even though we have emphasized pushdown
models in the theory of nested words, the proposed reformulation is useful even
if programs are not recursive as long as they are structured with stack-based
control flow.

5 Fixpoints for Local and Global Program Flows

In the branching-time approach to program verification, a program P is mod-
eled by an unranked unordered infinite tree TP such that nodes in TP are la-
beled with program states, and paths in TP correspond to executions of P . The
branching-time specification specifies the set S of desirable trees, and model
checking corresponds to the membership test TP ∈ S. The μ-calculus [Koz83]
is a modal logic with fixpoints, and is an extensively studied branching-time
specification formalism with applications to program analysis, computer-aided
verification, and database query languages [Eme90, Sti91]. From a theoretical
perspective, its status as the canonical temporal logic for regular requirements
is due to the fact that its expressiveness exceeds all commonly used tempo-
ral logics such as LTL, CTL, and CTL∗, and equals alternating parity tree
automata or the bisimulation-closed fragment of monadic second-order theory
over trees [EJ91, JW96]. From a practical standpoint, iterative computation of
fixpoints naturally suggests symbolic evaluation, and symbolic model checkers
such as SMV check CTL properties of finite-state models by compiling them into
μ-calculus formulas [BCD+92,McM93].

There are at least three reasons that motivated us to extend the theory of
nested words to the branching-time case. First, while algorithmic verification
of μ-calculus properties of pushdown models is possible [Wal01,BS99], classical
μ-calculus cannot express pushdown specifications that require inspection of the
stack or matching of calls and returns. This raises the question about the right
theoretical extension of μ-calculus that can capture CaRet and nested word
automata. Second, in the program analysis literature, it has been argued that

Model Checking: From Tools to Theory 99

data flow analysis, such as the computation of live variables and very busy ex-
pressions, can be viewed as evaluating μ-calculus formulas over abstractions of
programs [Ste91, Sch98]. This correspondence does not hold when we need to
account for local data flow paths. For instance, for an expression e that involves
a variable local to a procedure P , the set of control points within P at which e
is very busy (that is, e is guaranteed to be used before any of its variables get
modified), cannot be specified using a μ-calculus formula even though interproce-
dural dataflow analysis can compute this information. Can we extend μ-calculus
so that it can capture interprocedural dataflow analysis? Finally, the standard
reachability property “some p-state is reachable” is expressed by the μ-calculus
formula ϕ = μX.(p ∨ ©X). The meaning of ϕ is the smallest set X such that if
a state satisfies p or has a successor in X then it is in X . While this formula cap-
tures reachability over all models, over finite-state models, the specification also
encodes the symbolic algorithm for computing the set of states satisfying ϕ by
successive approximations of the fixpoint: let X0 to be the set of states satisfying
p, and at each step i, compute Xi+1 from Xi by adding states that can reach Xi

in one step (termination is obtained when Xi = Xi+1). Over pushdown models,
such a computation may not terminate. The correct way to compute reacha-
bility, as implemented in dataflow analysis or tools such as SLAM, is based on
“summarization” of paths. The summarization algorithm can be viewed as a
fixpoint computation over pairs of states of the form (x, y) meaning that state
y is reachable if the current procedure is called with input state x. This raises
the question if there is a different way of expressing reachability over pushdown
models.

A nested tree is a labeled tree T augmented with a nesting relation � over
the vertices of T such that every path through the tree is a nested word (see
[ACM06a] for precise definition). In context of program verification, the tree TP

corresponding to a program P , will be unranked, unordered, and infinite, and
the nesting relation is obtained by adding edges from call nodes to matching
returns. Note that a call node can have multiple matching returns (and, no
matching returns along some paths corresponding to executions in which the
called procedure does not return). It turns out there is an appealing fixpoint
calculus NTμ over nested trees that has the following properties:

1. The model-checking problem for NTμ is effectively solvable against push-
down models with no more effort than that required for weaker logics such
as CTL (Exptime-complete).

2. Evaluating NTμ formulas over pushdown models captures the standard
summary-based analysis algorithms, and thus, expressing a property in NTμ

amounts to describing symbolic computation for evaluation.
3. The logic NTμ encompasses all properties expressed by nested word au-

tomata as well as by the classical μ-calculus. This makes NTμ the most ex-
pressive known program logic for which algorithmic software model checking
is feasible. In fact, the decidability of most known program logics (μ-calculus,
temporal logics LTL and CTL, CaRet, etc.) can be understood by their

100 R. Alur

interpretation in the monadic second-order logic over trees. This is not true
for the logic NTμ, making it a new powerful tractable program logic.

4. The logic NTμ can capture local as well as global program flows, and thus,
interprocedural dataflow analysis problems can be stated in NTμ.

5. Expressiveness of NTμ coincides with alternating parity automata over nested
trees (APNTA). An APNTA is a finite-state tree automaton such that (a)
its transition relation is alternating, so along an edge it can send multiple
copies, (b) its acceptance condition is defined using parity condition over
the infinite run, and (c) like a nested word automaton, at a call node, the
automaton sends states to the immediate tree successor as well as to the
return successors along nesting edges, and at a return node, the state can
depend on the state at the immediate tree parent as well as the state along
the nesting edge from the matching call parent.

6. While the correspondence between alternating tree automata and fixpoint
calculus holds as in the classical tree case, the correspondence between
monadic second order logic and fixpoint calculus fails: the monadic second
order logic over nested trees and NTμ seem to have incomparable expressive-
ness (though this is not proved formally yet). Both logics have undecidable
satisfiability problem [ACM06b].

We intuitively describe the logic NTμ below. The variables of the calculus
evaluate not over sets of vertices, but rather over sets of subtrees that capture
summaries of computations in the “current” program block. The fixpoint oper-
ators in the logic then compute fixpoints of summaries. For a given vertex s of
a nested tree, consider the subtree rooted at s such that the leaves correspond
to the matching returns as specified by the nesting relation (while modeling
program, such a subtree captures all the computations till the procedure that s
belongs to returns). In order to be able to relate paths in this subtree to the trees
rooted at the leaves, we allow marking of the leaves: a 1-ary summary is speci-
fied by the root s and a subset U of the leaves of the subtree rooted at s. Each
formula of the logic is evaluated over such a summary. The central construct
of the logic corresponds to concatenation of call trees: the formula 〈call〉ϕ{ψ}
holds at a summary 〈s, U〉 if the vertex s has a call-edge to a vertex t, and there
exists a summary 〈t, V 〉 satisfying ϕ and for each leaf v that belongs to V , the
subtree 〈v, U〉 satisfies ψ.

This logic is best explained using the specification of local reachability: let us
identify the set of all summaries 〈s, U〉 such that there is a local path from s
to some node in U (i.e. all calls from the initial procedure must have returned
before reaching U). In our logic, this is written as the formula ϕ = μX.〈ret〉R1∨
〈loc〉X ∨ 〈call〉X{X}. The above means that X is the smallest set of summaries
of the form 〈s, U〉 such that (1) there is a return-edge from s to some node in
U , (2) there is an internal edge from s to t and there is a summary 〈t, U〉 in X ,
or (3) there is a call-edge from s to t and a summary 〈t, V 〉 in X such that from
each v ∈ V , 〈v, U〉 is a summary in X . Notice that the above formula identifies
the summaries in the natural way it will be computed on a pushdown system:

Model Checking: From Tools to Theory 101

compute the local summaries of each procedure, and update the reachability
relation using the call-to-return summaries found in the procedures called.

Using the above formula, we can state local reachability of a state satisfying
p as: μY.(p ∨ 〈loc〉Y ∨ 〈call〉ϕ{Y }) which intuitively states that Y is the set of
summaries (s, U) where there is a local path from s to U that goes through a
state satisfying p. The initial summary (involving the initial state of the program)
satisfies the formula only if a p-labeled state is reachable in the top-most context,
which cannot be stated in the standard μ-calculus. This example also illustrates
how local flows in the context of dataflow analysis can be captured using our
logic.

6 Modeling and Processing Linear-Hierarchical Data

While nested words were motivated by program verification, they can poten-
tially be used to model data with the dual–linear and hierarchical, structure.
Such dual structure exists naturally in many contexts including XML docu-
ments, annotated linguistic data, and primary/secondary bonds in genomic se-
quences. Also, in some applications, even though the only logical structure on
data is hierarchical, linear sequencing is added either for storage or for stream
processing. Data with linear-hierarchical structure is traditionally modeled us-
ing binary (or more generally, ordered) trees and queried using tree automata
(see [Nev02, Lib05, Sch04] for recent surveys on applications of tree automata
and tree logics to document processing).

Even though tree models and tree automata are extensively studied with a
well-developed theory with appealing properties (see [CDG+02]), they seem ill
suited to capture and query the linear structure. First, tree-based approach im-
plicitly assumes that the input linear document can be parsed into a tree, and
thus, one cannot represent and process data that may not parse correctly. Word
operations such as prefixes, suffixes, and concatenation, while natural for docu-
ment processing, do not have analogous tree operations. Second, tree automata
do not generalize word automata. Finite-state word automata can be exponen-
tially more succinct than tree automata. For example, the query that patterns
p1, . . . pn appear in the document in that order (that is, the regular expres-
sion Σ∗p1Σ

∗ . . . pnΣ∗) compiles into a deterministic word automaton with n+1
states, but standard deterministic bottom-up tree automaton for this query must
be of size exponential in n. This deficiency shows up more dramatically if we
consider pushdown acceptors: a query such as “the document contains an equal
number of occurrences of patterns p and q” is a context-free word language but
is not a context-free tree language.

In a nutshell, binary/ordered trees encode both linear and hierarchical struc-
ture, but not on an equal footing. Recently we have argued that the model of
nested words is a better integration of the two orderings, and can either sim-
plify or improve existing ways of document processing [KMV06b, Alu07]. We
have already seen that words are nested words where all positions are internals.
Ordered trees can be interpreted as nested words using the following traversal:

102 R. Alur

to process an a-labeled node, first print an a-labeled call, process all children in
order, and print an a-labeled return. Binary trees, ranked trees, unranked trees,
forests, and documents that do not parse correctly, all can be represented with
equal ease. Figure 1 shows the ordered tree corresponding to the third nested
word, the first two do not correspond to trees.

Since XML documents already contain tags that specify the position type,
they can be interpreted as tagged encoding of nested words without any pre-
processing. As we have seen already, the class of regular languages of nested
words seems to have all the appealing theoretical properties that the classes
of classical regular word and tree languages enjoy, and decision problems such
as membership, emptiness, language inclusion, and language equivalence are all
decidable, typically with the same complexity as the corresponding problem for
tree automata.

In order to study the relationship of nested word automata to various kinds
of word and tree automata, let us consider restricted classes of nested word
automata and the impact of these restrictions on expressiveness and succinct-
ness [Alu07]. Flat automata do not propagate information along the nesting
edges at calls, and correspond exactly to classical word automata accepting the
weaker class of regular word languages. Bottom-up automata, on the other hand,
do not propagate information along the linear edges at calls. Over the sub-
class of nested words corresponding to ordered trees, these automata correspond
exactly to bottom-up tree automata for binary trees and stepwise bottom-up
tree automata [BKMW01] for unranked trees. However, there is an exponen-
tial price in terms of succinctness due to this restriction. The class of joinless
automata avoids a nontrivial join of information along the linear and nesting
edges at returns, and this concept is a generalization of the classical top-down
tree automata. While deterministic joinless automata are strictly less expressive,
nondeterministic ones can accept all regular languages of nested words. The suc-
cinctness gap between nested word automata and traditional tree automata holds
even if we restrict attention to paths (that is, unary trees): nested word automata
are exponentially more succinct than both bottom-up and top-down automata.
We have also studied pushdown nested word automata by adding a stack to the
finite-state control of nondeterministic joinless automata. Both pushdown word
automata and pushdown tree automata are special cases, but pushdown nested
word automata are strictly more expressive than both. In terms of complexity
of analysis problems, they are similar to pushdown tree automata: membership
is Np-complete and emptiness is Exptime-complete.

These results suggest that nested words and nested word automata may be
a more suitable way to model and process linear-hierarchical data. We need to
explore if compiling existing XML query languages into nested word automata
reduces query processing time in practice.

Acknowledgements. I would also like to thank Marcelo Arenas, Pablo Barcelo,
Swarat Chaudhuri, Kousha Etessami, Neil Immerman, Leonid Libkin, P. Mad-
husudan, Benjamin Pierce, and Mahesh Viswanathan, for past and ongoing re-
search collaboration on nested words.

Model Checking: From Tools to Theory 103

References

[AAB+07] Alur, R., Arenas, M., Barcelo, P., Etessami, K., Immerman, N., Libkin, L.:
First-order and temporal logics for nested words (unpublished manuscript,
2007)

[ABE+05] Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannakakis,
M.: Analysis of recursive state machines. ACM Transactions on Program-
ming Languages and Systems 27(4), 786–818 (2005)

[ACD93] Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time.
Information and Computation 104(1), 2–34 (1993)

[ACM06a] Alur, R., Chaudhuri, S., Madhusudan, P.: A fixpoint calculus for local and
global program flows. In: Proceedings of the 33rd Annual ACM Symposium
on Principles of Programming Languages, pp. 153–165 (2006)

[ACM06b] Alur, R., Madhusudan, P., Chaudhuri, S.: Languages of Nested Trees. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 329–342.
Springer, Heidelberg (2006)

[AD94] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer
Science 126, 183–235 (1994)

[AEM04] Alur, R., Etessami, K., Madhusudan, P.: A Temporal Logic of Nested
Calls and Returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 467–481. Springer, Heidelberg (2004)

[AH93] Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness.
Information and Computation 104(1), 35–77 (1993)

[AH94] Alur, R., Henzinger, T.A.: A really temporal logic. Journal of the
ACM 41(1), 181–204 (1994)

[AHK02] Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal
logic. Journal of the ACM 49(5), 1–42 (2002)

[AHLP00] Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.: Discrete abstrac-
tions of hybrid systems. Proceedings of the IEEE 88(7), 971–984 (2000)

[AKMV05] Alur, R., Madhusudan, P., Viswanathan, M., Kumar, V.: Congruences for
Visibly Pushdown Languages. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1102–
1114. Springer, Heidelberg (2005)

[Alu07] Alur, R.: Marrying words and trees (unpublished manuscript, 2007)
[AM04] Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of

the 36th ACM Symposium on Theory of Computing, pp. 202–211 (2004)
[AM06] Alur, R., Madhusudan, P.: Adding Nesting Structure to Words. In: H.

Ibarra, O., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer,
Heidelberg (2006)

[BCD+92] Burch, J.R., Clarke, E.M., Dill, D.L., Hwang, L.J., McMillan, K.L.: Sym-
bolic model checking: 1020 states and beyond. Information and Computa-
tion 98(2), 142–170 (1992)

[BEM97] Boujjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown au-
tomata: Applications to model checking. In: Mazurkiewicz, A., Winkowski,
J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidel-
berg (1997)

[BKMW01] Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regu-
lar hedge languages over unranked alphabets: Version 1. Technical Report
HKUST-TCSC-2001-0, The Hongkong University of Science and Technol-
ogy (2001)

104 R. Alur

[BMMR01] Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predi-
cate abstraction of C programs. In: SIGPLAN Conference on Programming
Language Design and Implementation, pp. 203–213 (2001)

[BR00] Ball, T., Rajamani, S.: Bebop: A symbolic model checker for boolean pro-
grams. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS,
vol. 1885, pp. 113–130. Springer, Heidelberg (2000)

[BR01] Ball, T., Rajamani, S.: The SLAM toolkit. In: Computer Aided Verifica-
tion, 13th International Conference (2001)

[BS92] Burkart, O., Steffen, B.: Model checking for context-free processes. In:
Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 123–137.
Springer, Heidelberg (1992)

[BS99] Burkart, O., Steffen, B.: Model checking the full modal mu-calculus for
infinite sequential processes. Theoretical Computer Science 221, 251–270
(1999)

[Büc62] Büchi, J.R.: On a decision method in restricted second-order arithmetic.
In: Proceedings of the International Congress on Logic, Methodology, and
Philosophy of Science 1960, pp. 1–12. Stanford University Press (1962)

[Cau03] Caucal, D.: On infinite transition graphs having a decidable monadic the-
ory. Theoretical Computer Science 290(1), 79–115 (2003)

[CDG+02] Comon, H., Dauchet, M., Gilleron, R., Lugiez, D., Tison, S., Tom-
masi, M.: Tree automata techniques and applications. Draft (2002),
http://www.grappa.univ-lille3.fr/tata/

[CE81] Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization
skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic
of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

[CL99] Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems.
Kluwer Academic Publishers, Dordrecht (1999)

[CMM+04] Chatterjee, K., Ma, D., Majumdar, R., Zhao, T., Henzinger, T.A., Pals-
berg, J.: Stack size analysis for interrupt driven programs. Information and
Computation 194(2), 144–174 (2004)

[CW02] Chen, H., Wagner, D.: Mops: an infrastructure for examining security prop-
erties of software. In: Proceedings of ACM Conference on Computer and
Communications Security, pp. 235–244 (2002)

[DOTY96] Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. In:
Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066,
pp. 208–219. Springer, Heidelberg (1996)

[EHRS00] Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms
for model checking pushdown systems. In: Emerson, E.A., Sistla, A.P.
(eds.) CAV 2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg
(2000)

[EJ91] Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus, and determinacy.
In: Proceedings of the 32nd IEEE Symposium on Foundations of Computer
Science, pp. 368–377 (1991)

[EKS03] Esparza, J., Kucera, A., Schwoon, S.S.: Model-checking LTL with regular
valuations for pushdown systems. Information and Computation 186(2),
355–376 (2003)

[Eme90] Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier Sci-
ence Publishers, Amsterdam (1990)

http://www.grappa.univ-lille3.fr/tata/

Model Checking: From Tools to Theory 105

[HJM+02] Henzinger, T.A., Jhala, R., Majumdar, R., Necula, G.C., Sutre, G.,
Weimer, W.: Temporal-Safety Proofs for Systems Code. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 526–538. Springer,
Heidelberg (2002)

[Hol97] Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software
Engineering 23(5), 279–295 (1997)

[HRS98] Henzinger, T.A., Raskin, J.-F., Schobbens, P.: The Regular Real-Time
Languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 580–593. Springer, Heidelberg (1998)

[HU79] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley (1979)

[JMT99] Jensen, T., Le Metayer, D., Thorn, T.: Verification of control flow based
security properties. In: Proceedings of the IEEE Symposium on Security
and Privacy, pp. 89–103 (1999)

[JW96] Janin, D., Walukiewicz, I.: On the expressive completeness of the proposi-
tional mu- calculus with respect to monadic second order logic. In: Sassone,
V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 263–277.
Springer, Heidelberg (1996)

[Kam68] Kamp, J.: Tense Logic and the Theory of Linear Order. PhD thesis, Uni-
versity of California, Los Angeles (1968)

[KMV06a] Kumar, V., Madhusudan, P., Viswanathan, M.: Minimization, Learning,
and Conformance Testing of Boolean Programs. In: Baier, C., Hermanns,
H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 203–217. Springer, Heidel-
berg (2006)

[KMV06b] Kumar, V., Madhusudan, P., Viswanathan, M.: Visibly pushdown lan-
guages for XML. Technical Report UIUCDCS-R-2006-2704, UIUC (2006)

[Knu67] Knuth, D.E.: A characterization of parenthesis languages. Information and
Control 11(3), 269–289 (1967)

[Koz83] Kozen, D.: Results on the propositional mu-calculus. Theoretical Computer
Science 27, 333–354 (1983)

[KPV02] Kupferman, O., Piterman, N., Vardi, M.Y.: Model Checking Linear Proper-
ties of Prefix-Recognizable Systems. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 371–385. Springer, Heidelberg (2002)

[Kur94] Kurshan, R.P.: Computer-aided Verification of Coordinating Processes: the
automata-theoretic approach. Princeton University Press (1994)

[KVW00] Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach
to branching-time model checking. Journal of the ACM 47(2), 312–360
(2000)

[KVW01] Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Information
and Computation 164(2), 322–344 (2001)

[Lib05] Libkin, L.: Logics for Unranked Trees: An Overview. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 35–50. Springer, Heidelberg (2005)

[LPY97] Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Springer Inter-
national Journal of Software Tools for Technology Transfer 1 (1997)

[LV02] Lee, E.A., Varaiya, P.: Structure and interpretation of signals and systems.
Addison-Wesley (2002)

[McM93] McMillan, K.L.: Symbolic model checking: an approach to the state explo-
sion problem. Kluwer Academic Publishers (1993)

[McN67] McNaughton, R.: Parenthesis grammars. Journal of the ACM 14(3), 490–
500 (1967)

106 R. Alur

[Mil89] Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
[MS85] Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and

second-order logic. Theoretical Computer Science 37, 51–75 (1985)
[Nev02] Neven, F.: Automata, Logic, and XML. In: Bradfield, J.C. (ed.) CSL 2002

and EACSL 2002. LNCS, vol. 2471, pp. 2–26. Springer, Heidelberg (2002)
[PS02] Pappas, G.J., Simic, S.: Consistent abstractions of affine control systems.

IEEE Transactions on Automatic Control 47(5), 745–756 (2002)
[PSL05] IEEE 1850 standard for property specification language (PSL) (2005)
[Rab69] Rabin, M.O.: Decidability of second order theories and automata on infinite

trees. Transactions of the AMS 141, 1–35 (1969)
[Rep98] Reps, T.: Program analysis via graph reachability. Information and Soft-

ware Technology 40(11-12), 701–726 (1998)
[RHS95] Reps, T., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis

via graph reachability. In: Proceedings of the ACM Symposium on Princi-
ples of Programming Languages, pp. 49–61 (1995)

[Sch98] Schmidt, D.A.: Data flow analysis is model checking of abstract interpreta-
tions. In: Proceedings of the 25th Annual ACM Symposium on Principles
of Programming Languages, pp. 68–78 (1998)

[Sch04] Schwentick, T.: Automata for XML – a survey. Technical report, University
of Dortmund (2004)

[SH97] Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In:
Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Hei-
delberg (1997)

[SP81] Sharir, M., Pnueli, A.: Two approaches to inter-procedural data-flow anal-
ysis. In: Program flow analysis: Theory and applications. Prentice-Hall,
Englewood Cliffs (1981)

[Ste91] Steffen, B.: Data flow analysis as model checking. In: Ito, T., Meyer, A.R.
(eds.) TACS 1991. LNCS, vol. 526, pp. 346–365. Springer, Heidelberg
(1991)

[Sti91] Stirling, C.S.: Modal and temporal logic. In: Handbook of Logic in Com-
puter Science, pp. 477–563. Oxford University Press (1991)

[Tho90] Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, vol. B, pp. 133–191. Elsevier Sci-
ence Publishers (1990)

[Tho02] Thomas, W.: Infinite Games and Verification. In: Brinksma, E., Larsen,
K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 58–64. Springer, Heidelberg
(2002)

[VW94] Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Informa-
tion and Computation 115(1), 1–37 (1994)

[Wal01] Walukiewicz, I.: Pushdown processes: Games and model-checking. Infor-
mation and Computation 164(2), 234–263 (2001)

[WVS83] Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation
paths. In: Proceedings of the 24th IEEE Symposium on Foundations of
Computer Science, pp. 185–194 (1983)

Value Iteration�

Krishnendu Chatterjee1 and Thomas A. Henzinger1,2

1 University of California, Berkeley
2 EPFL, Switzerland

Abstract. We survey value iteration algorithms on graphs. Such algo-
rithms can be used for determining the existence of certain paths (model
checking), the existence of certain strategies (game solving), and the
probabilities of certain events (performance analysis). We classify the
algorithms according to the value domain (boolean, probabilistic, or
quantitative); according to the graph structure (nondeterministic, prob-
abilistic, or multi-player); according to the desired property of paths
(Borel level 1, 2, or 3); and according to the alternation depth and con-
vergence rate of fixpoint computations.

1 Introduction

Symbolic model checking is an instance of value iteration on graphs. In value
iteration, each vertex of a graph is assigned a value, and the values are iteratively
improved until a fixpoint is reached. The improvement function is local, meaning
that the new, improved value at a vertex depends on the old values at neighboring
vertices. For symbolic model checking, the value domain is a boolean algebra of
atomic propositions. Termination is guaranteed if the number of vertices is finite.

We take a systematic look at value iteration along four dimensions. First, we
consider three different value domains. In the boolean domain, a value repre-
sents the truth or falsehood of atomic propositions. In the probabilistic domain,
a value represents a probability. In the quantitative domain, a value is a real
number (possibly greater than 1) which represents a reward, i.e., some quanti-
tative information associated with a vertex. In the two nonboolean cases, the
termination of value iteration is not guaranteed even for finite sets of vertices.
However, an acceleration towards the fixpoint may be possible to ensure finite
convergence. If even this proves difficult, then we investigate whether by value
iteration the fixpoint can be approximated within any given error bound.

Second, as carrier of values, we consider three different kinds of graph struc-
tures, and their combinations. Simple graphs are nondeterministic generators of
paths. Game graphs generate paths according to the competitive decisions made
by two players. Probabilistic graphs represent stochastic processes that generate
paths. Over simple graphs, value iteration can be used to determine the existence
of certain paths, e.g., paths that satisfy a specification; over game graphs, it can be

� This research was supported in part by the Swiss National Science Foundation and
by the NSF grants CCR-0225610 and CCR-0234690.

O. Grumberg and H. Veith (Eds.): 25MC Festschrift, LNCS 5000, pp. 107–138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

108 K. Chatterjee and T.A. Henzinger

used to determine the existence of certain strategies, e.g., strategies that achieve
an objective; and over probabilistic graphs, it can be used to determine the prob-
ability of certain events, where an event is a measurable set of paths.

Third, we consider increasingly complex specifications, objectives, and events;
for uniformity, we refer to all of these as objectives. Objectives can be classified
according to their Borel complexity. The values of Borel level-1 objectives are de-
termined by finite paths. For example, reachability and safety specifications are
Borel level-1, and so are the objectives to maximize or minimize a one-time re-
ward. The Borel level-2 objectives are the simplest objectives whose values depend
on infinite paths. For example, deterministic Büchi and coBüchi specifications are
Borel level-2, and so are the objectives to maximize or minimize an infinitely recur-
ring reward (i.e., limsup and liminf objectives). More general kinds of objectives
include ω-regular specifications (Borel level-2 1

2), and objectives to maximize or
minimize the average of infinitely many rewards (Borel level-3).

Fourth, we consider three increasingly complex value iteration (or fixpoint
computation) schemes. Alternation-free value iteration computes an increasing
or decreasing sequence of values at each vertex. Value iteration of alternation
depth-1 computes an increasing sequence of decreasing value sequences (or vice
versa). General value iteration arbitrarily alternates the successive approxima-
tion of least and greatest fixpoints. Alternation-free value iteration can be used to
compute the values of Borel level-1 objectives (e.g., symbolic CTL model check-
ing; solving reachability and safety games). Value iteration of alternation depth-1
can be used to compute the values of Borel level-2 objectives (e.g., symbolic CTL
model checking on structures with weak-fairness constraints; solving Büchi and
coBüchi games). General value iteration can be used to compute the values of ω-
regular objectives (e.g., symbolic CTL model checking on structures with strong
fairness constraints; LTL model checking; solving parity games). However, by
adjusting the value domain, even the values of complex Borel objectives (e.g.,
parity games and limit-average games) can be computed by an alternation-free
value iteration. In this paper we only survey and generalize some known results;
there remains much room for a detailed investigation of the connections and
trade-offs between the complexity of the value domain, the Borel level of the
objective, and the alternation depth of the fixpoint computation.

Section 2 defines the graph structures we consider. Sections 3 and 4 present
alternation-free value iteration for Borel level-1 objectives, and alternation
depth-1 value iteration for Borel level-2 objectives. Section 5 provides some re-
marks on more general objectives. Section 6 concludes with thoughts on related
topics, such as strategy iteration (as opposed to value iteration) and discounting.

2 Graph Models of Systems

The states and transitions of a system can be viewed as vertices and edges
of a graph. Often the states carry values, such as truth values for observable
propositions, or quantitative values that represent resource data (e.g., buffer
size, power consumption). This leads us to the model of valued graphs.

Value Iteration 109

2.1 Valued Graphs

A valued graph (S, E,D) consists of the following components.

1. A finite set S of states.

2. A binary transition relation E ⊆ S × S. For a state s ∈ S, we write E(s) =
{s′ ∈ S | (s, s′) ∈ E} for the set of successors. We require that every state
has at least one successor; that is, E(s) �= ∅ for all s ∈ S.

3. A complete lattice D of values. In the cases that we consider in this paper,
the value set D is a subset of the real numbers, and the lattice order is the
usual ordering ≤ on the reals. We will encounter the following three cases.

Boolean. The value set D is the set B = {0, 1} of booleans. The least upper
bound is disjunction; the greatest lower bound, conjunction.

Probabilistic. The value set D is the closed interval [0, 1] of reals between 0
and 1. The least upper bound is max (for infinite sets, sup); the greatest
lower bound, min (for infinite sets, inf).

Quantitative. The value set D is the set R
∞
≥0 = R≥0 ∪ {∞} of nonnegative

reals together with the top element ∞. Upper and lower bounds are as
in the probabilistic case.

Throughout the paper, we use n = |S| for the number of states, and m = |E| for
the number of transitions. Note that m ≥ n, because every state has a successor.

Valuations. A valuation is a function v: S → D that maps every state to
a value. In the boolean case, where D = B, a valuation corresponds to a set
v ⊆ S of states; in this case, for a valuation v and a state s, we use the two
expressions “v(s) = 1” and “s ∈ v” interchangeably. We write V for the set of
valuations. The ordering on values is lifted to valuations in a pointwise fashion:
for two valuations v1, v2 ∈ V , we write v1 ≤ v2 iff v1(s) ≤ v2(s) for all states
s ∈ S. The valuations with ordering ≤ form a complete lattice. In this lattice,
a chain is an infinite sequence C = 〈v0, v1, v2, . . .〉 of valuations such that either
v0 ≤ v1 ≤ v2 ≤ · · · , or v0 ≥ v1 ≥ v2 ≥ · · · . In the former case, the chain is
increasing, and lim C = lub C denotes its least upper bound; in the latter case,
the chain is decreasing, and lim C = glb C denotes its greatest lower bound.

Objectives. A path is an infinite sequence 〈s0, s1, s2, . . .〉 of states such that
(si, si+1) ∈ E for all i ≥ 0. We write Ω the set of paths, and Ωs for the set
of paths that start from a given state s ∈ S. An objective is a Borel function
W : Ω → D that maps every path to a value.1 In the boolean case, an objective
corresponds to a Borel set W ⊆ Ω of paths; in this case, for an objective W and
a path ω, we use the two expressions “W (ω) = 1” and “ω ∈W” interchangeably.

1 We require objectives to be Borel (with respect to the Cantor topology on paths and
the order topology on values) for measurability.

110 K. Chatterjee and T.A. Henzinger

2.2 Generalized Graphs

We define several extensions of valued graphs: deterministic games; probabilistic
graphs; probabilistic games; and concurrent games.

Deterministic games. A deterministic game consists of (1) a valued graph
(S, E,D) and (2) a partition (S1, S2) of the set S of states into two subsets,
S1 and S2. We refer to the states in S1 as player-1 states; and to the states
in S2, as player-2 states. At player-1 states, player 1 chooses a successor; at
player-2 states, player 2 chooses a successor.

Probabilistic graphs. A probabilistic graph consists of (1) a valued graph
(S, E,D); (2) a partition (S1, S∗) of the set S of states into the two subsets S1

(player-1 states) and S∗ (probabilistic states); and (3) a probabilistic transition
function δ: S∗ → Dist(S) that maps every probabilistic state to a probability
distribution of successors.2 We require that for all states s ∈ S∗ and s′ ∈ S, we
have (s, s′) ∈ E iff δ(s)(s′) > 0. At a probabilistic state s, a successor s′ ∈ E(s) is
chosen with probability δ(s)(s′). The probabilistic graphs are commonly known
as Markov decision processes.

Probabilistic games. A probabilistic game consists of (1) a valued graph
(S, E,D); (2) a partition (S1, S2, S∗) of the set S of states into three subsets
(player-1, player-2, and probabilistic states); and (3) a probabilistic transition
function δ: S∗ → Dist(S). As for probabilistic graphs, we require that for all
states s ∈ S∗ and s′ ∈ S, we have (s, s′) ∈ E iff δ(s)(s′) > 0. Note that the
deterministic games (S∗ = ∅), the probabilistic graphs (S2 = ∅), and the valued
graphs (both S2 = ∅ and S∗ = ∅) are special cases of probabilistic games.

Concurrent games. The most general class of graph models we consider are the
concurrent games. A concurrent game consists of (1) a valued graph (S, E,D);
(2) two finite sets A1 and A2 of player-1 and player-2 moves; and (3) a prob-
abilistic transition function δ: S × A1 × A2 → Dist(S). We require that for
all states s, s′ ∈ S, we have (s, s′) ∈ E iff δ(s, a1, a2)(s′) > 0 for some moves
a1 ∈ A1 and a2 ∈ A2. Given a state s ∈ S and two moves a1 ∈ A1 and a2 ∈ A2,
let E(s, a1, a2) = {s′ ∈ S | δ(s, a1, a2)(s′) > 0}. At a state s, both players choose
moves simultaneously and independently; if player 1 chooses move a1 ∈ A1,
and player 2 chooses a2 ∈ A2, then a successor s′ ∈ E(s, a1, a2) is chosen with
probability δ(s, a1, a2)(s′). The probabilistic games are equivalent to the special
case of concurrent games where for all states s ∈ S and all moves a1 ∈ A1

and a2 ∈ A2, either δ(s, a1, a2) = δ(s, a1, a
′
2) for all player-2 moves a′

2 ∈ A2, or
δ(s, a1, a2) = δ(s, a′

1, a2) for all player-1 moves a′
1 ∈ A1; that is, in each state

only one of the two players can influence the choice of successor. This is why, in
contrast to the more general concurrent games, the probabilistic games are also
known as turn-based games.

2 For a finite set X, we write Dist(X) for the set of probability distributions on X.

Value Iteration 111

3 Level-1 Objectives and Alternation-Free Value
Iteration

The simplest kind of objectives are boolean reachability and safety objectives.
In the quantitative case, these Borel level-1 objectives generalize to maximizing
and minimizing objectives.

3.1 Maximizing and Minimizing Objectives

Consider a valued graph (S, E,D). A reward function p: S → D is a valuation;
the value p(s) at a state s is interpreted as a reward that is collected when
s is visited. We assume that p(s) > 0 for some state s ∈ S. Given a reward
function p, the maximizing objective Max(p): Ω → D is the function that maps
every path to the maximal reward appearing along the path. Formally, for all
paths ω = 〈s0, s1, s2, . . .〉,

Max(p)(ω) = max{p(si) | i ≥ 0}.

In the boolean case, where D = B, maximizing objectives are reachability ob-
jectives; they require a path to visit a target set p: we have ω ∈ Max(p) iff si ∈ p
for some i ≥ 0. The minimizing objective Min(p): Ω → D is defined dually, by

Min(p)(ω) = min{p(si) | i ≥ 0}.

Boolean minimizing objectives are safety objectives; they require a path to stay
in a safe set p: we have ω ∈ Min(p) iff si ∈ p for all i ≥ 0. While the boolean
Max(p) objective corresponds to the formula �p of linear temporal logic (a logic
that is interpreted over paths), the boolean Min(p) objective corresponds to the
formula �p. Both maximizing and minimizing objectives lie on level 1 of the
Borel hierarchy.

3.2 Value Improvement

We refer to alternation-free value iteration as value improvement. The value
improvement algorithm operates on a valued graph G = (S, E,D) using two
functions: an improvement function and a limit function.

Improvement functions. An improvement function Imp: V → V is a function
on valuations which satisfies the following requirements.

Monotone. For all valuations v1, v2 ∈ V , if v1 ≤ v2, then Imp(v1) ≤ Imp(v2).
Continuous. For every chain C = 〈v0, v1, v2, . . .〉 of valuations, the monotonicity

of Imp ensures that Imp(C) = 〈Imp(v0), Imp(v1), Imp(v2), . . .〉 is a chain. We
require that Imp(lim C) = lim Imp(C).

Directed. Either v ≤ Imp(v) for all valuations v ∈ V ; or v ≥ Imp(v) for all
valuations v ∈ V . In the former case, the function Imp is extensive; in the
latter case, reductive.

112 K. Chatterjee and T.A. Henzinger

Algorithm 1. ValueImprovement

Input: valued graph G, improvement function Imp, limit function Lim,
precision α ∈ R≥0, and initial valuation v0 ∈ V .

Output: valuation v∗ ∈ V .

i := 0;
do {

vi+1 := Imp(vi);
i := i + 1;
} until diff(vi−1, vi) ≤ α;

return v∗ := Lim(vi, α).

The improvement functions we consider satisfy also the property of locality,
which is defined as follows: for all states s ∈ S and all valuations v1, v2 ∈ V ,
if v1(s′) = v2(s′) for all successors s′ ∈ E(s), then Imp(v1)(s) = Imp(v2)(s).
Locality states that the value of the improvement function at a state s only
depends on the values of the states that are successors of s. Locality restricts
the power of improvement functions.

Limit functions. We define a distance between valuations: for two valuations
v1, v2 ∈ V , let diff(v1, v2) = max{|v1(s) − v2(s)| | s ∈ S}. A limit function
Lim: V × R≥0 → V maps each valuation v ∈ V and real α ≥ 0 to a valuation
Lim(v, α) such that diff(Lim(v, α), v) ≤ α; that is, at each state, the input and
output values of Lim do not differ by more than α. In particular, if α = 0, then
Lim(v, α) = v.

The value improvement algorithm. The value improvement algorithm (Al-
gorithm 1) takes as input a valued graph, an improvement function Imp, a limit
function Lim, a precision α ∈ R≥0, and an initial valuation v0 ∈ V . Starting
from the initial valuation, the algorithm iteratively “improves” the valuation by
applying the directed improvement function Imp: it computes a prefix of the
improvement chain C(v0, Imp) = 〈v0, v1, v2, . . .〉, where vi+1 = Imp(vi) for all
i ≥ 0. For boolean values, the improvement chain converges in a finite num-
ber of steps —that is, vi+1 = vi for some i ≥ 0— and (provided the precision
α is less than 1) the algorithm returns Lim(vi+1, α) = vi, which is the limit of
the improvement chain. However, for probabilistic and quantitative values, finite
convergence is not guaranteed. This is where the precision and the limit function
come into play. If diff(vi, vi+1) ≤ α for some i ≥ 0, then the algorithm applies
the limit function and returns the valuation Lim(vi+1, α). Thus, for precisions
α > 0, the algorithm may terminate even if the improvement chain does not
converge in a finite number of steps.

Fixpoint characterization. Since (V,≤) is a complete lattice, and Imp is a
monotone and continuous function, the limit v∞ = lim C(v0, Imp) of the im-
provement chain is a fixpoint of the improvement function, i.e., Imp(v∞) = v∞.
We refer to v∞ as the improvement fixpoint. By Kleene’s fixpoint theorem, if

Value Iteration 113

Imp is extensive, then v∞ is the least fixpoint of Imp above v0; that is,

v∞ = glb{v ∈ V | v ≥ v0 and Imp(v) = v} = (μX ≥ v0) Imp(X),

where the notation of the right-most expression is borrowed from the μ-
calculus [10]. Symmetrically, if Imp is reductive, then v∞ is the greatest fixpoint
of Imp below v0; that is,

v∞ = lub{v ∈ V | v ≤ v0 and Imp(v) = v} = (νX ≤ v0) Imp(X).

Rate of convergence. In the limit, the improvement chain always converges
to the improvement fixpoint. From an algorithmic perspective, the rate of con-
vergence is important. Given a valued graph G, an improvement function Imp, a
limit function Lim, and a complexity class C, we are interested in the following
three questions.

Finitely reachable fixpoint. Does Algorithm 1 terminate for all initial valuations
v0 and precision α = 0? Finite reachability asks if the improvement fixpoint
is reached in finitely many iterations of the improvement function: for all
v0 ∈ V , does there exist an i ≥ 0 such that Imp(vi) = vi? If the answer is
Yes, then v∗ = v∞; that is, the algorithm returns the improvement fixpoint.
We furthermore wish to know if the required number i of iterations, given
as a function of the valued graph G and the initial valuation v0, lies in the
complexity class C.

Finitely computable fixpoint. Does there exist a precision α > 0 such that for all
initial valuations v0, Algorithm 1 terminates and returns the improvement
fixpoint v∗ = v∞? Finite computability asks if the improvement fixpoint can
be computed using the limit function after finitely many iterations of the
improvement function: is there an α > 0 such that for all v0 ∈ V , we have
(1) for all i ≥ 0, if diff(vi, vi+1) ≤ α, then Lim(vi+1, α) = v∞; and (2) there
exists an i ≥ 0 such that diff(vi, vi+1) ≤ α. If the answer is Yes, then when
given a suitable α > 0 as input, the algorithm returns the improvement
fixpoint. More precisely we wish to know if there exists such a suitable α
such that required number i of iterations, given as a function of the valued
graph G and the initial valuation v0, lies in the complexity class C.

Finitely approximable fixpoint. For every real ε > 0 and initial valuation v0 ∈ V ,
there exists an i ≥ 0 such that diff(vi, v∞) ≤ ε. We wish to know if the
required number i of iterations, given as a function of the valued graph G
and the initial valuation v0, lies in the complexity class C. In other words,
finite approximability asks if the improvement fixpoint can be approximated
within error ε using only the resources (time or space) provided by the
complexity class C. If the answer is Yes, then Algorithm 1 can be run with
precision α = 0 and stopped after i iterations with output vi, which is
guaranteed to deviate from the improvement fixpoint v∞ by at most ε.

Whenever the finite reachability of an improvement fixpoint is not ensured, we
investigate its finite computability, i.e., the existence of a suitable limit function.

114 K. Chatterjee and T.A. Henzinger

In cases where finite computability cannot be guaranteed for any α, we study fi-
nite approximability. We will also address the finer algorithmic question whether
a value improvement scheme can be implemented (possibly with auxiliary data
structures) so that its running time matches the best known upper bound for
computing (or ε-approximating) the improvement fixpoint.

3.3 Graphs

Graph values of objectives. On a valued graph G = (S, E,D), every objective
W defines a valuation sup W : S → D , namely,

sup W (s) = sup{W (ω) | ω ∈ Ωs}

for all states s ∈ S. We refer to supW as the graph valuation of the objective W .
The graph value of a maximizing objective Max(p) at a state s is the maximal
reward that appears along any path from s. In the boolean case, for a state
s ∈ S, we have s ∈ supMax(p) iff some path from s leads to a state in p;
and s ∈ supMin(p) iff some path from s contains only states in p. In other
words, the graph valuation of the boolean Max(p) objective corresponds to the
formula ∃�p of branching temporal logic (a logic that is interpreted over states);
and the graph valuation of the boolean Min(p) objective corresponds to the
formula ∃�p. The dual, universal interpretation of objectives can be defined by
inf W (s) = inf{W (ω) | ω ∈ Ωs}; however, we will not further pursue this case,
which is symmetric.

Maximizing and minimizing problems on graphs. Given a valued graph
G and a reward function p, we wish to compute the graph valuations of the
objectives Max(p) and Min(p) over G. In the boolean case, this corresponds to
the model-checking problem for the branching temporal logic CTL [10].

Graph predecessor operator. The graph predecessor operator maxPre: V →
V is the function on valuations defined by

maxPre(v)(s) = max{v(s′) | s′ ∈ E(s)}

for all valuations v ∈ V and all states s ∈ S; that is, the value of maxPre(v) at
a state s is the maximal value of v at the states that are successors of s. In the
boolean case, we have s ∈ maxPre(v) iff there exists a successor s′ ∈ E(s) such
that s′ ∈ v. The function maxPre is monotone, continuous, and local.

Graph valuations as improvement fixpoints. The graph valuations of maxi-
mizing and minimizing objectives can be computed as finitely reachable improve-
ment fixpoints. Consider a reward function p, and the corresponding objectives
Max(p) and Min(p). We define two improvement functions:

maxImp(v)(s) = max{v(s), maxPre(v)(s)};
minImp(v)(s) = min{v(s), maxPre(v)(s)};

for all valuations v ∈ V and all states s ∈ S. Note that maxImp is exten-
sive, and minImp reductive. In the boolean case, maxImp(v) = v ∪ maxPre(v)

Value Iteration 115

0

s0

s1 s2

s3 s4 s5

0

4 1510

0

Fig. 1. Graph with maximizing objective

and minImp(v) = v ∩ maxPre(v). The improvement fixpoint lim C(p, maxImp)
for the initial valuation p and the improvement function maxImp is the graph
valuation supMax(p) of the maximizing objective. Similarly, the improvement
fixpoint lim C(p, minImp) is the graph valuation supMin(p) of the minimizing
objective. Both fixpoints are finitely reachable, and the number of improvement
steps is bounded by the number of states. Hence the value improvement algo-
rithm (Algorithm 1) with initial valuation v0 = p, improvement function maxImp
(resp. minImp), and precision α = 0, returns the valuation v∗ = vi = sup Max(p)
(resp. v∗ = vi = sup Min(p)) after at most i = n iterations (regardless of the
limit function, because α = 0).

Example 1 (Graph with maximizing objective). Consider the valued graph shown
in Figure 1. The reward function p is given by the state labels. We consider the
objective Max(p) for player 1. The value improvement algorithm proceeds by
computing value vectors, which consist of one value for each state. We denote
by vi the value vector at iteration i. The j-th component of vi indicates the
value for state sj−1 at iteration i. The initial value vector is given by p, that
is, v0 = 〈0, 0, 0, 4, 10, 15〉. Applying the improvement function maxImp to v0, we
obtain v1 = 〈0, 10, 15, 4, 10, 15〉. This vector contains, for each state, the maximal
reward that can be obtained in a single transition. Applying maxImp to v1, we
obtain v2 = 〈15, 10, 15, 4, 10, 15〉, which indicates for each state the maximal
reward that can be obtained in two transitions. Since maxImp(v2) = v2, this
is the improvement fixpoint; that is, the vector v2 contains for each state the
maximal reachable reward. ��

Optimality. Every improvement step (i.e., each application of the function
maxImp or minImp) can be computed in O(m) time. Hence a direct implemen-
tation of Algorithm 1 has the time complexity O(mn). However, in the boolean
case, the value improvement scheme can be implemented to run in O(m) time.
This is because each transition, once considered in the computation of some
valuation vi, is never revisited in subsequent iterations. Thus, in the boolean
case, value improvement yields an optimal, linear-time algorithm for solving the
maximizing and minimizing problems on graphs. In the quantitative case, the
two problems can be solved in O(m + n log n) time by first sorting the rewards

116 K. Chatterjee and T.A. Henzinger

of all states, and then computing the states from which a reward can be reached,
in descending (or ascending) order of rewards. We know of no implementation
of value improvement which matches this time complexity.

3.4 Deterministic Games

Deterministic strategies. Central to games is the notion of strategies. For
games played on graphs, a strategy is a recipe that instructs a player which
successor state to choose. Let G = ((S, S1, S2), E,D) be a deterministic game.
For player k ∈ {1, 2}, given a finite prefix of a path which represents the history
of the game played so far, and which ends in a player-k state, a deterministic
strategy for player k specifies how to extend the path by a transition. For-
mally, a deterministic player-k strategy is a function σ: S∗ · Sk → S such that
σ(w · s) ∈ E(s) for all w ∈ S∗ and all s ∈ Sk. We write ΣD and ΠD for the sets
of deterministic player-1 and player-2 strategies, respectively. Given two deter-
ministic strategies σ ∈ ΣD and π ∈ ΠD, and a state s ∈ S, we write ωσ,π

s for
the path 〈s0, s1, s2, . . .〉 ∈ Ω such that (1) s0 = s and (2) for all i ≥ 0, we have
σ(〈s0, s1, . . . , si〉) = si+1 if si ∈ S1, and π(〈s0, s1, . . . , si〉) = si+1 if si ∈ S2; that
is, if the game is started in state s and the two players play according to the
strategies σ and π, then the result is the path ωσ,π

s .

Game values of objectives. On a deterministic game G, every objective W
defines a valuation supinf W : S → D , namely,

supinf W (s) = sup
σ∈ΣD

inf
π∈ΠD

W (ωσ,π
s).

We refer to supinf W as the deterministic game valuation of the objective W . The
game value of a maximizing objective Max(p) at a state s is the maximal reward
that player 1 can ensure to appear along a path from s, against any strategy
for player 2. In the boolean case, for a state s ∈ S, we have s ∈ supinf Max(p)
iff there exists a player-1 strategy σ such that for every player-2 strategy π,
the path from s given σ and π leads to a state in p. Similarly, if D = B, then
s ∈ supinf Min(p) iff there exists a player-1 strategy σ such that for every player-
2 strategy π, the path from s given σ and π contains only states in p. Thus,
the game valuation of the boolean Max(p) objective corresponds to the formula
〈〈1〉〉�p of the alternating temporal logic ATL [1]; and the game valuation of the
boolean Min(p) objective corresponds to the ATL formula 〈〈1〉〉�p.

Maximizing and minimizing problems on deterministic games. Given
a deterministic game G and a reward function p, we wish to compute the deter-
ministic game valuations of the objectives Max(p) and Min(p). In the boolean
case, this corresponds to the model-checking problem for ATL.

Game predecessor operator. The deterministic game predecessor operator
maxminPre: V → V is the function on valuations defined by

maxminPre(v)(s) =

{
max{v(s′) | s′ ∈ E(s)} if s ∈ S1;
min{v(s′) | s′ ∈ E(s)} if s ∈ S2;

Value Iteration 117

that is, the value of maxminPre(v) at a player-1 state s is the maximal value of
v at the successors of s, and at a player-2 state s it is the minimal value of v
at the successors of s. In the boolean case, we have s ∈ maxminPre(v) iff (1) if
s ∈ S1, then there exists a successor s′ ∈ E(s) such that s′ ∈ v; and (2) if s ∈ S2,
then s′ ∈ v for all successors s′ ∈ E(s). The function maxminPre is monotone,
continuous, and local.

Deterministic game valuations as improvement fixpoints. As in the case
of graphs, the deterministic game valuations of maximizing and minimizing ob-
jectives can be computed as finitely reachable improvement fixpoints. Consider
a reward function p, and the corresponding objectives Max(p) and Min(p). We
redefine the two improvement functions:

maxImp(v)(s) = max{v(s), maxminPre(v)(s)};
minImp(v)(s) = min{v(s), maxminPre(v)(s)}.

Note that maxImp is still extensive, and minImp reductive. The improvement
fixpoint lim C(p, maxImp) for the initial valuation p and the improvement func-
tion maxImp is the deterministic game valuation supinf Max(p) of the maxi-
mizing objective. Similarly, the improvement fixpoint lim C(p, minImp) is the
deterministic game valuation supinf Min(p) of the minimizing objective. Both
fixpoints are finitely reachable, and as in the case of graphs, the number of
improvement steps is bounded by the number of states. Hence the value im-
provement algorithm (Algorithm 1) with initial valuation v0 = p, improvement
function maxImp (resp. minImp), and precision α = 0, returns the valuation
v∗ = vi = supinf Max(p) (resp. v∗ = vi = supinf Min(p)) after at most i = n
iterations.

Example 2 (Deterministic game with maximizing objective). Consider the deter-
ministic game shown in Figure 2. The � states are player 1 states, and the �

state is a player 2 state (we will follow this graphical convention in all figures
of this paper). We consider the objective Max(p) for player 1. From the initial
valuation v0 = 〈0, 0, 0, 4, 10, 15〉 given by the reward function p (indicated by
the state labels), we obtain v1 = 〈0, 10, 0, 4, 10, 15〉. Note that state s2 chooses
the successor with the minimum value, i.e., the value of s0. Applying maxImp
again, we obtain v2 = 〈10, 10, 0, 4, 10, 15〉, and then v3 = 〈10, 10, 10, 4, 10, 15〉.
This is the improvement fixpoint, which represents the value of the deterministic
maximizing game at each state. ��

Optimality. The situation is similar to the case of graphs. Each application of
maxImp or minImp can be computed in O(m) time, yielding the time complexity
O(mn) for Algorithm 1. In the boolean case, the value improvement scheme can
be implemented to run in O(m) time, which is optimal. Consider the case of a
reachability (i.e., boolean maximizing) objective. We maintain a counter for each
state s, which is initialized to 0 and incremented whenever a transition from s to
some valuation vi is visited. If s ∈ S1, then s is included in vi+1 as soon as the
counter becomes positive (i.e., some successor of s lies in vi); if s ∈ S2, then s is
included in vi+1 when the counter reaches the outdegree of s (i.e., all successors

118 K. Chatterjee and T.A. Henzinger

0

s0

s1

s3 s4 s5

0

4 1510

0 s2

Fig. 2. Deterministic game with maximizing objective

of s lie in vi). In this way, each transition is visited only once. In the quantitative
case, the maximizing and minimizing problems on deterministic games can be
solved in O(m + n log n) time [2], but we know of no implementation of value
improvement which matches this bound.

3.5 Probabilistic Graphs

Probabilistic strategies. A probabilistic strategy extends a finite path by a
probability distribution of successors. Although probabilistic graphs do not con-
tain player-2 states, we define probabilistic strategies right away for the more
general case of probabilistic games. Let ((S, S1, S2, S∗), (E, δ),D) be a proba-
bilistic game, and let k ∈ {1, 2}. A probabilistic player-k strategy is a function
σ: S∗ ·Sk → Dist(S) such that for all w ∈ S∗ and all s, s′ ∈ Sk, if σ(w ·s)(s′) > 0,
then s′ ∈ E(s). We write ΣP and ΠP for the sets of probabilistic player-1 and
player-2 strategies, respectively. Given two probabilistic strategies σ ∈ ΣP and
π ∈ ΠP , and a state s ∈ S, we write Prσ,π

s for the probability measure on the set
Ω of paths which is defined inductively as follows: for all w ∈ S∗ and all t, t′ ∈ S,
(1) Prσ,π

s (t ·Sω) is 1 if t = s, and it is 0 otherwise; and (2) if Prσ,π
s (w · t ·Sω) = x,

then Prσ,π
s (w · t · t′ · Sω) is x · σ(w · t)(t′) if t ∈ S1, it is x · π(w · t)(t′) if t ∈ S2,

and it is x · δ(t)(t′) if t ∈ S∗. From this definition of Prσ,π
s for all basic open sets

of paths, we obtain probabilities for all Borel sets. For an objective W ⊆ Ω, we
write Eσ,π

s [W] for the expected value of W under the probability measure Prσ,π
s .

Example 3 (Probabilistic graph). Consider the probabilistic graph shown in Fig-
ure 3, with the single probabilistic state s2 (probabilistic states are indicated
by circles). The probabilities of the transitions from s2 to s0 and to s5 are
both 1

2 . We consider the following three deterministic strategies σ1, σ2, and σ3

for player 1: strategy σ1 chooses at state s0 the successor s1, and at s1 the succes-
sor s3; strategy σ2 chooses at s0 the successor s1, and at s1 the successor s4; and
strategy σ3 chooses at s0 the successor s2. Given strategy σ1 and start state s0,
the outcome is the path ωσ1

s0
= s0 · s1 · sω

3 ; given σ2 and s0, the outcome is the
path ωσ2

s0
= s0 · s1 · sω

4 . Given strategy σ3 and start state s0, the outcome is a set
of possible paths, namely, ((s0 ·s2)∗ ·sω

5)∪(s0 ·s2)ω. Observe that the probability

Value Iteration 119

s2

s0

s1

s3 s4 s5

0

0 10

00

Fig. 3. Probabilistic graph with reachability objective

of visiting s2 for n times and never visiting s5 is (1
2)n, which goes to 0 as n goes

to ∞. Therefore Prσ3
s0

((s0 · s2)∗ · sω
5) = 1, and Prσ3

s0
((s0 · s2)ω) = 0. ��

Probabilistic graph values of objectives. On a probabilistic graph G =
((S, S1, S∗), (E, δ),D), an objective W defines the valuation supW : S → D given
by

sup W (s) = sup{Eσ
s [W] | σ ∈ ΣP }.

We refer to sup W as the probabilistic graph valuation of the objective W . The
probabilistic graph value of a maximizing objective Max(p) at a state s is the
maximal expectation of the function Max(p) that player 1 can ensure from s.
Note that if W is a boolean objective (that is, W : Ω → B), in general the
valuation sup W has probabilistic values (that is, supW : S → [0, 1]). If W is
a quantitative objective (that is, W : Ω → R

∞
≥0), then supW is a quantitative

valuation.

Maximizing and minimizing problems on probabilistic graphs. Given a
probabilistic graph G and a reward function p, we wish to compute the proba-
bilistic graph valuations of the objectives Max(p) and Min(p).

Probabilistic graph predecessor operator. The probabilistic graph prede-
cessor operator maxPreP : V → V is the function on valuations defined by

maxPreP (v)(s) =

{
max{v(s′) | s′ ∈ E(s)} if s ∈ S1;∑

s′∈E(s) v(s′) · δ(s)(s′) if s ∈ S∗;

that is, the value of maxPreP (v) at a player-1 state s is the maximal value of v
at the successors of s, and at a probabilistic state s it is the average value of v at
the successors of s. Note that if v is a boolean valuation (that is, v: S → B), in
general the predecessor valuation maxPreP (v) has probabilistic values (that is,
maxPreP (v): S → [0, 1]). If v is a quantitative valuation, then so is maxPreP (v).
In all cases, the function maxPreP is monotone, continuous, and local.

Probabilistic graph valuations as improvement fixpoints. The probabilis-
tic graph valuations of maximizing and minimizing objectives can be expressed
as improvement fixpoints, but these fixpoints are not finitely reachable. Consider

120 K. Chatterjee and T.A. Henzinger

a reward function p, and the corresponding objectives Max(p) and Min(p). We
redefine the two improvement functions:

maxImp(v)(s) = max{v(s), maxPreP (v)(s)};
minImp(v)(s) = min{v(s), maxPreP (v)(s)}.

Note that maxImp is still extensive, and minImp reductive. The improvement
fixpoint lim C(p, maxImp) for the initial valuation v0 = p and the improvement
function maxImp is the probabilistic graph valuation supMax(p) of the maximiz-
ing objective [16]. Similarly, the improvement fixpoint lim C(p, minImp) is the
probabilistic graph valuation sup Min(p) of the minimizing objective. Example 4
(below) shows that the two fixpoints are not finitely reachable.

Precision of values. We assume that all transition probabilities and rewards
are given as rational numbers. From results of [12,35] it follows that all values
of the probabilistic graph valuations supMax(p) and supMin(p) are again ratio-
nals, and that the denominators can be bounded. Let δu = max{d | δ(s)(s′) =
n
d for s ∈ S∗ and s′ ∈ E(s)} be the largest denominator of all transition prob-
abilities. Let pu = lcm{d | p(s) = n

d for s ∈ S} be the least common multiple
of all reward denominators. Let pmax = max{n | p(s) = n

d for s ∈ S} be the
largest numerator of all rewards; note that pmax > 0 because at least one reward
is positive. Then, for all states s ∈ S, both supMax(p)(s) and supMin(p)(s) have
the form n

d for a nonnegative integer n and a positive integer d ≤ γ, where

γ = δ4m
u · pu · pmax.

This boundedness property of probabilistic graph values for maximizing and
minimizing objectives is the key for proving the finite computability of the
two improvement fixpoints supMax(p) = lim C(p, maxImp) and sup Min(p) =
lim C(p, minImp). The value improvement algorithm (Algorithm 1) with initial
valuation v0 = p, improvement function maxImp (resp. minImp), and precision
α = 1

2γ , computes a valuation vi such that diff(vi, vi+1) ≤ α within a number
i ∈ O(γ2) of iterations. In particular, the number of iterations depends expo-
nentially on the number of states and on the size of rewards. The limit function
Lim to obtain v∗ from vi is defined as follows: for each state s ∈ S, round the
value vi(s) to the nearest multiple of 1

γ . Then v∗ is the desired improvement
fixpoint; that is, v∗ = sup Max(p) (resp. v∗ = supMin(p)).

Example 4 (Probabilistic graph with reachability objective). Recall the proba-
bilistic graph from Figure 3, and consider the boolean maximizing objective to
reach state s5 (the reward at s5 is 1, and the rewards at all other states are 0).
We focus on the value improvements at the two states s0 and s2. Initially, both
values are 0. After 2i improvement steps, both values are 2i−1

2i . To see this,
observe that in the (2i + 1)-st iteration, the value at s2 becomes

1
2
·
(

2i − 1
2i

+ 1
)

=
2i+1 − 1

2i+1
;

Value Iteration 121

and in the (2i + 2)-nd iteration, the value at s0 becomes 2i+1−1
2i+1 . Hence both

values approach 1. Indeed, as we argued in Example 3, the player-1 strategy σ3

ensures that the target state s5 is reached with probability 1. Moreover, by the
boundedness property of probabilistic graph values, once the values at s0 and s1

exceed 1− 1
237 , we can conclude that both values are 1. ��

Optimality. The maximizing and minimizing problems on probabilistic graphs
can be solved in polynomial time using linear programming [18]. The linear-
programming approach works equally for boolean and quantitative objectives.
However, no better bound than an exponential bound in the number of states is
known for the value improvement algorithm on probabilistic graphs, even in the
special case of boolean reachability objectives.

3.6 Probabilistic Games

Probabilistic game values of objectives. On a probabilistic game G =
((S, S1, S2, S∗), (E, δ),D), an objective W defines the valuation supinf W : S → D
given by

supinf W (s) = sup
σ∈ΣP

inf
π∈ΠP

Eσ,π
s [W].

We refer to supinf W as the probabilistic game valuation of the objective W . The
probabilistic game value of a maximizing objective Max(p) at a state s is the
maximal expectation of the function Max(p) that player 1 can ensure from s
against any strategy for player 2. The maximizing and minimizing problems on
probabilistic games ask, given a probabilistic game G and a reward function p,
to compute the probabilistic game valuations supinf Max(p) and supinf Min(p).

Probabilistic game predecessor operator. The probabilistic game predeces-
sor operator maxminPreP : V → V is the function on valuations defined by

maxminPreP (v)(s) =

⎧⎪⎨
⎪⎩

max{v(s′) | s′ ∈ E(s)} if s ∈ S1;
min{v(s′) | s′ ∈ E(s)} if s ∈ S2;∑

s′∈E(s) v(s′) · δ(s)(s′) if s ∈ S∗.

The function maxminPreP is monotone, continuous, and local.

Probabilistic game valuations as improvement fixpoints. Consider a re-
ward function p, and the corresponding objectives Max(p) and Min(p). We rede-
fine the two improvement functions:

maxImp(v)(s) = max{v(s), maxminPreP (v)(s)};
minImp(v)(s) = min{v(s), maxminPreP (v)(s)}.

Note that maxImp is still extensive, and minImp reductive. The improvement
fixpoint lim C(p, maxImp) for the initial valuation v0 = p and the improvement
function maxImp is the probabilistic game valuation supinf Max(p) of the max-
imizing objective [16], and the improvement fixpoint lim C(p, minImp) is the

122 K. Chatterjee and T.A. Henzinger

probabilistic game valuation supinf Min(p) of the minimizing objective. Since
the probabilistic games generalize the probabilistic graphs, the two fixpoints are
not finitely reachable. However, as in the case of probabilistic graphs, we have
finite computability. If all transition properties and rewards are rational, then
we can show the following boundedness property: for all states s ∈ S, both
supMax(p)(s) and sup Min(p)(s) have the form n

d for a nonnegative integer n
and a positive integer d ≤ γ, where the bound γ is defined as for probabilistic
graphs [12,35]. Furthermore, the value improvement algorithm (Algorithm 1)
with initial valuation v0 = p, improvement function maxImp (resp. minImp), and
precision α = 1

2γ , computes a valuation vi such that diff(vi, vi+1) ≤ α within a
number i ∈ O(γ2) of iterations. Thus the limit function Lim can be defined as
for probabilistic graphs, and guarantees that Algorithm 1 returns supinf Max(p)
(resp. supinf Min(p)).

Optimality. The maximizing and minimizing problems on probabilistic games
lie in NP ∩ coNP. This was shown for boolean reachability objectives in [11], and
the argument can be generalized to quantitative objectives. No polynomial-time
algorithms are known for solving the maximizing and minimizing problems on
probabilistic games, even in the special case of boolean reachability objectives.
In particular, the linear-programming approach for probabilistic graphs does not
generalize to probabilistic games.

3.7 Concurrent Games

Concurrent strategies. Concurrent strategies are probabilistic. However, in
concurrent games, the players choose distributions of moves, not of successor
states. Let G = (S,A1,A2, (E, δ),D) be a concurrent game. For k ∈ {1, 2},
a concurrent player-k strategy is a function σ : S+ → Dist(Ak). We write Σ
and Π for the sets of concurrent player-1 and player-2 strategies, respectively.
Given two concurrent strategies σ ∈ Σ and π ∈ Π , and a state s ∈ S, we
write Prσ,π

s for the probability measure on the set Ω of paths which is defined
as follows: for all w ∈ S∗ and all t, t′ ∈ S, (1) Prσ,π

s (t · Sω) is 1 if t = s, and
it is 0 otherwise; and (2) if Prσ,π

s (w · t · Sω) = x, then Prσ,π
s (w · t · t′ · Sω) =

x ·
∑

a1∈A1

∑
a2∈A2

σ(w · t)(a1) · π(w · t)(a2) · δ(t, a1, a2)(t′). This definition of
Prσ,π

s for the basic open sets of paths suffices to obtain probabilities for all Borel
sets.

Concurrent game values of objectives. On a concurrent game G, an objec-
tive W defines the valuation supinf W : S → D given by

supinf W (s) = sup
σ∈Σ

inf
π∈Π

Eσ,π
s [W].

We refer to supinf W as the concurrent game valuation of the objective W .
The maximizing and minimizing problems on concurrent games ask, given a
concurrent game G and a reward function p, to compute the concurrent game
valuations supinf Max(p) and supinf Min(p).

Value Iteration 123

Concurrent game predecessor operator. The concurrent game predecessor
operator supinfPre: V → V is the function on valuations defined by

supinfPre(v)(s) =
sup

τ1∈Dist(A1)

inf
τ2∈Dist(A2)

∑
s′∈S

∑
a1∈A1

∑
a2∈A2

v(s′) · τ1(s)(a1) · τ2(s)(a2) · δ(s, a1, a2)(s′);

that is, the value of supinfPre(v) at a state s is the maximal value of v which
player 1 can ensure at a successor of v, against all probabilistic choices of moves
for player 2. In other words, the predecessor operator supinfPre solves a matrix
game whose payoff function is specified by the valuation v. The function supinfPre
is monotone, continuous and local.

Concurrent game valuations as improvement fixpoints. The concurrent
game valuations of maximizing and minimizing objectives can be expressed as
improvement fixpoints, but these fixpoints are not known to be finitely com-
putable. Consider a reward function p, and the corresponding objectives Max(p)
and Min(p). We redefine the two improvement functions:

maxImp(v)(s) = max{v(s), supinfPre(v)(s)};
minImp(v)(s) = min{v(s), supinfPre(v)(s)}.

Note that maxImp is still extensive, and minImp reductive. The improvement
fixpoint lim C(p, maxImp) for the initial valuation v0 = p and the improvement
function maxImp is the concurrent game valuation supinf Max(p) of the maximiz-
ing objective, and the improvement fixpoint lim C(p, minImp) is the concurrent
game valuation supinf Min(p) of the minimizing objective. This was shown for
boolean objectives in [16], and the argument can be generalized to quantitative
objectives. It is an open problem if the two improvement fixpoints are finitely
computable. Indeed, even if all transition probabilities are rational, in general the
values of boolean reachability objectives are irrational (but algebraic) [16]. This
is in stark contrast to turn-based probabilistic games. For concurrent games, it
is not even known if the improvement fixpoints are finitely approximable. More
precisely, we do not know a time-bounded complexity class C such that for every
real ε > 0 and every initial valuation v0, there exists a function f ∈ C such that
diff(vi, v∞) ≤ ε for v∞ = lim C(p, maxImp) and i = f(G, v0, ε).

Optimality. The best known complexity bound for the maximizing and min-
imizing problems on concurrent games is EXPTIME. Specifically, since all im-
provement functions we consider can be defined in the theory of the reals with
addition and multiplication, we can also express improvement fixpoints in this
theory, which can be decided in EXPTIME. For boolean objectives a better
bound is known: given a rational r in binary and an integer d > 0 in unary,
there exists an NP Turing machine that is guaranteed to answer Yes if the con-
current game value of a boolean maximizing (or minimizing) objective at a state
is greater than r + 1

d , and No if it is less than r − 1
d . This was shown (but

misstated) in [4]. However, the argument does not generalize to quantitative
objectives.

124 K. Chatterjee and T.A. Henzinger

Table 1. Value improvement for maximizing and minimizing objectives. Recall that γ
is such that 16n ∈ O(γ).

n states Objective Max(p) Objective Min(p)

Valued Imp(v) = max{v, maxPre(v)} Imp(v) = min{v, maxPre(v)}
graphs iteration converges in n steps iteration converges in n steps

Deterministic Imp(v) = max{v, maxminPre(v)} Imp(v) = min{v, maxminPre(v)}
games iteration converges in n steps iteration converges in n steps

Probabilistic Imp(v) = max{v, maxPreP (v)} Imp = min{v, maxPreP (v)}
graphs iteration converges in O(γ2) steps iteration converges in O(γ2) steps

Probabilistic Imp(v) = max{v, maxminPreP (v)} Imp(v) = min{v, maxminPreP (v)}
games iteration converges in O(γ2) steps iteration converges in O(γ2) steps

Concurrent Imp(v) = max{v, supinfPre(v)} Imp(v) = min{v, supinfPre(v)}
games iteration converges in the limit iteration converges in the limit

(no known bound) (no known bound)

Summary. We summarize the situation for maximizing and minimizing objec-
tives in Table 1.

4 Level-2 Objectives and Depth-1 Value Iteration

Maximizing and minimizing objectives are obtained within a finite number
of transitions. The simplest kind of infinite objectives are boolean Büchi and
coBüchi objectives. In the quantitative case, these Borel level-2 objectives gen-
eralize to limsup and liminf objectives.

4.1 Limsup and liminf Objectives

Consider a valued graph (S, E,D) and a reward function p: S → D . The limsup
objective LimSup(p): Ω → D is the function that maps every path to the maximal
reward appearing infinitely often along the path. Formally, for all paths ω =
〈s0, s1, s2, . . .〉,

LimSup(p)(ω) = lim
n→∞ max{p(si) | i ≥ n}.

Observe that C = 〈p0, p1, p2, . . .〉, where pn = max{p(si) | i ≥ n} for all n ≥ 0,
is a decreasing sequence (chain) of values, and its limit is the greatest lower
bound of C. In the boolean case, limsup objectives are Büchi objectives; they
require a path to visit a recurrent set p infinitely often: we have ω ∈ LimSup(p)
iff si ∈ p for infinitely many i ≥ 0. The liminf objective LimInf(p): Ω → D is
defined dually, by

LimInf(p)(ω) = lim
n→∞min{p(si) | i ≥ n};

that is, LimInf(p) is a least upper bound. Boolean LimInf objectives are coBüchi
objectives; they require a path to eventually stay in a persistent set p: we have

Value Iteration 125

Algorithm 2. NestedValueImprovement

Input: valued graph G, binary improvement function Imp2, limit function Lim,
precision α ∈ R≥0, and two initial valuations v0, u0 ∈ V .

Output: valuation v∗ ∈ V .

i := 0;
do {

vi+1 := innerLoop(vi, u0);
i := i + 1;
} until diff(vi−1, vi) ≤ α;

return v∗ := Lim(vi, α).

procedure innerLoop(vi, u0
i):

j := 0;
do {

uj+1
i := Imp2(vi, uj

i);
j := j + 1;

} until diff(uj−1
i , uj

i) ≤ α;

return u∗
i := Lim(uj

i , α).

ω ∈ LimInf(p) iff si ∈ p for all but finitely many i ≥ 0. While the boolean
LimSup(p) objective corresponds to the formula ��p of linear temporal logic,
the boolean LimInf(p) objective corresponds to the formula ��p. Both limsup
and liminf objectives lie on level 2 of the Borel hierarchy.

Limsup and liminf problems. Given a valued graph G (resp. a determin-
istic game; a probabilistic graph; a probabilistic game; or a concurrent game),
and a reward function p, we wish to compute the valuations sup LimSup(p) and
sup LimInf(p) over G. Note that the graph valuation of the boolean LimSup(p)
objective corresponds to the formula ∃��p of branching temporal logic; and
the graph valuation of the boolean LimInf(p) objective corresponds to the for-
mula ∃��p. Hence in the boolean case, the limsup and liminf problems on
graphs (resp. games) arise in model checking CTL (resp. ATL) over structures
with weak-fairness (Büchi) constraints [10]. Also the model-checking problem
for the linear temporal logic LTL can be reduced to the boolean limsup problem
on graphs (or probabilistic graphs), by converting the negation of a given LTL
formula into a nondeterministic Büchi automaton of exponential size [13,10].

4.2 Nested Value Improvement

We refer to value iteration schemes of alternation depth-1 as nested value im-
provement. The nested value improvement algorithm operates on a valued graph
G = (S, E,D) using a binary improvement function Imp2 and a limit func-
tion Lim. A binary improvement function maps a pair of valuations to a new
valuation.

126 K. Chatterjee and T.A. Henzinger

Binary improvement functions. The valuation pairs V ×V form a complete
lattice —the product lattice— with the following ordering: for two valuation
pairs (v1, u1), (v2, u2) ∈ V × V , let (v1, u1) ≤ (v2, u2) iff both v1 ≤ v2 and u1 ≤
u2. Thus all infinite increasing and decreasing sequences (chains) of valuation
pairs have limits. Every chain C = 〈(v0, u0), (v1, u1), (v2, u2), . . .〉 of valuation
pairs consists of two chains C1 = 〈v0, v1, v2, . . .〉 and C2 = 〈u0, u1, u2, . . .〉 of
valuations; note that lim C = (lim C1, lim C2). A binary improvement function
Imp2: V × V → V is a function on valuation pairs which satisfies the following
requirements.

Monotone. For all valuation pairs (v1, u1), (v2, u2) ∈ V ×V , if (v1, u1) ≤ (v2, u2),
then Imp2(v1, u1) ≤ Imp2(v2, u2).

Continuous. For every chain C = 〈(v0, u0), (v1, u1), (v2, u2), . . .〉 of valuation
pairs, the sequence Imp2(C) = 〈Imp2(v0, u0), Imp2(v1, u1), Imp2(v2, u2), . . .〉
is a chain of valuations because of the monotonicity of Imp2. We require that
Imp2(lim C) = lim Imp2(C).

Directed. Either v ≤ Imp2(v, u) ≤ u for all valuations v, u ∈ V with v ≤ u; or
v ≥ Imp2(v, u) ≥ u for all valuations v, u ∈ V with v ≥ u.

The binary improvement functions we consider also satisfy the following locality
property: for all states s ∈ S and all valuation pairs (v1, u1), (v2, u2) ∈ V ×
V , if v1(s′) = v2(s′) and u1(s′) = u2(s′) for all successors s′ ∈ E(s), then
Imp2(v1, u1)(s) = Imp2(v2, u2)(s).

The nested value improvement algorithm. The nested value improvement
algorithm (Algorithm 2) takes as input a valued graph, a binary improvement
function Imp2, a limit function Lim, a precision α ∈ R≥0, an outer initial val-
uation v0 ∈ V , and an inner initial valuation u0 ∈ V . The algorithm returns
a valuation v∗ ∈ V that lies between v0 and u0 with respect to the lattice or-
dering of valuations. It suffices to choose the initial valuations v0 and u0 such
that the desired result v∗ lies between v0 and u0. Thus, it is possible to choose
either v0 to be the bottom element of the lattice, and u0 the top, or vice versa.
Alternatively, in our uses of the algorithm, we can always choose one of them
to be min p and the other one max p, where (min p)(s) = min{p(t) | t ∈ S} and
(max p)(s) = max{p(t) | t ∈ S} for all states s ∈ S. This is because the values
of the rewards that appear infinitely often along a path, or that appear all but
finitely often along a path, lie between min p and max p. However, the result v∗

of the algorithm depends on the ordering of the two initial valuations; that is,
it is important whether the outer initial valuation is less than the inner initial
valuation (case v0 ≤ u0), or greater (case v0 ≥ u0).

Starting from the outer initial valuation v0, the algorithm iteratively improves
the valuation in order to compute the limit v∞ of an outer improvement chain
C1(v0, u0, Imp2) = 〈v0, v1, v2, . . .〉 of valuations. Each outer improvement step is
itself the result of computing the limit of an inner improvement chain: we have
vi+1 = u∞

i = lim Ci
2(vi, u0, Imp2) for all i ≥ 0. For each i ≥ 0, the i-th inner

improvement chain Ci
2(v

i, u0, Imp2) = 〈u0
i , u

1
i , u

2
i , . . .〉 of valuations results from

Value Iteration 127

iteratively applying the directed improvement function Imp2 to the inner initial
valuation u0: we have u0

i = u0, and uj+1
i = Imp2(vi, uj

i) for all j ≥ 0. In other
words,

v∞ = lim
i→∞

u∞
i = lim

i→∞
lim

j→∞
uj

i .

In case v0 ≤ u0, since Imp2 is directed, for all i ≥ 0, the inner improvement
chain Ci

2(v
i, u0, Imp2) is decreasing. Since Imp2 is directed, we also have vi ≤ uj

i

for all i, j ≥ 0. Hence vi ≤ u∞
i = vi+1, and thus the outer improvement chain

C1(v0, u0, Imp2) is increasing. On the other hand, in case v0 ≥ u0, all inner
improvement chains Ci

2(v
i, u0, Imp2) are increasing, and the outer improvement

chain C1(v0, u0, Imp2) is decreasing. Observe that, as Imp2 is monotone, also
uj

i ≤ uj
i+1 for all i, j ≥ 0 if v0 ≤ u0, and uj

i ≥ uj
i+1 for all i, j ≥ 0 if v0 ≥ u0.

If successful, the algorithm returns the limit v∞ of the outer improvement
chain. As in the alternation-free case, success means either that all limits u∞

i ,
for i ≥ 0, and v∞ are finitely reachable, or that they are finitely computable using
the precision α and the limit function Lim for acceleration. If finite computability
fails, then we ask the question of finite approximability of the outer limit v∞.

Fixpoint characterization. We consider first the case v0 ≤ u0. For all i ≥ 0,
the limit u∞

i of the i-th inner improvement chain Ci
2(vi, u0, Imp2) is the greatest

fixpoint below u0 of the monotone and continuous function Imp2(vi, ·): V → V .
The limit v∞ of the outer improvement chain C1(v0, u0, Imp2) is the least fixpoint
above v0 of the function f : V → V , which is defined by f(v) = lub{u ∈ V | u ≤
u0 and Imp2(v, u) = u} for all valuations v ∈ V . Note that f is again monotone
and continuous. Thus, in this case, the outer limit v∞ is the least fixpoint of a
function whose values are greatest fixpoints. In μ-calculus notation,

v∞ = (μX ≥ v0)(νY ≤ u0) Imp2(X, Y).

The case v0 ≥ u0 is symmetric. In this case, the outer limit v∞ is the greatest
fixpoint of a function whose values are least fixpoints, namely,

v∞ = (νX ≤ v0)(μY ≥ u0) Imp2(X, Y).

We henceforth refer to v∞ as outer improvement fixpoint, and to u∞
i as i-th

inner improvement fixpoint, for i ≥ 0.

Parametric improvement functions. We define binary improvement func-
tions with a parameter Pre that, for different classes of graph models, will be
instantiated by different predecessor operators. Consider a reward function p,
and the corresponding objectives LimSup(p) and LimInf(p). Given a function
Pre: V → V , we define the two parametric functions limsupImp[Pre]: V ×V → V
and liminfImp[Pre]: V × V → V by

limsupImp[Pre](v, u) = min{max{p, u, Pre(u)}, v, max{u, Pre(v)}};
liminfImp[Pre](v, u) = max{min{p, u, Pre(u)}, v, min{u, Pre(v)}};

for all valuations v, u ∈ V (the functions max and min are lifted from val-
ues to valuations in a pointwise fashion). Observe that if v ≥ u, then v ≥

128 K. Chatterjee and T.A. Henzinger

limsupImp[Pre](v, u) ≥ u; and if v ≤ u, then v ≤ liminfImp[Pre](v, u) ≤ u. Thus
both limsupImp[Pre] and liminfImp[Pre] are directed. For different graph models,
we will instantiate the parameter Pre by one of the predecessor operators maxPre,
maxminPre, maxPreP , maxminPreP , or supinfPre from Section 3. It should be re-
marked that in the cases we consider, we can simplify the definitions of the
binary improvement functions as follows:

limsupImp[Pre](v, u) = min{max{p, u, Pre(u)}, v, Pre(v)};
liminfImp[Pre](v, u) = max{min{p, u, Pre(u)}, v, Pre(v)};

for all valuations v, u ∈ V . To see why the simplification works, let uj+1 =
limsupImp[Pre](v, uj) (according to the original, unsimplified definition) for all
j ≥ 0. For all valuations v ≥ u0, if Pre(v) ≥ u0, then for all j ≥ 0, both v ≥ uj

and Pre(v) ≥ uj , and therefore uj+1 = min{max{p, uj, Pre(uj)}, v, Pre(v)}. If
u0 = min p, and Pre is one of maxPre, maxminPre, maxPreP , maxminPreP , or
supinfPre, then for all valuations v ≥ u0, we have Pre(v) ≥ u0, and thus the above
simplification works. The case u0 = max p and liminfImp[Pre] is symmetric.

4.3 Graphs

Finitely reachable nested fixpoints. The graph valuations of limsup and
liminf objectives can be computed by nested value improvement. On a valued
graph G = (S, E, D), the outer improvement fixpoint lim C1(v0, u0, Imp2), for
the outer initial valuation v0 = max p, the inner initial valuation u0 = min p,
and the improvement function Imp2 = limsupImp[maxPre], is the graph valuation
sup LimSup(p) of the limsup objective. Similarly, the outer improvement fixpoint
lim C1(min p, max p, liminfImp[maxPre]) is the graph valuation sup LimInf(p) of
the liminf objective. Each inner improvement fixpoint is finitely reachable within
at most n steps, and the outer improvement fixpoints are finitely reachable
within at most n computations of inner improvement fixpoints. Hence the total
number of applications of the improvement function Imp2 in Algorithm 2 is
bounded by n2 when computing sup LimSup(p) or sup LimInf(p) on graphs.

Optimality. Every improvement step (i.e., each application of the function
limsupImp or liminfImp) can be computed in O(m) time. Hence a direct im-
plementation of Algorithm 2 has the time complexity O(mn2). In the boolean
case, the nested value improvement scheme can be sped up to run in O(mn)
time by computing inner improvement fixpoints using techniques similar to the
O(m) implementations of Max and Min objectives. Yet, unlike in the case of
maximizing and minimizing objectives, the nested value improvement scheme is
not known to have an optimal implementation even in the boolean case. This
is because the graph valuations of Büchi and coBüchi objectives (i.e., boolean
limsup and liminf objectives) can be computed in O(m) time by finding the
maximal strongly connected components of a graph. In the quantitative case,
the limsup and liminf problems on graphs can be solved in O(m + n log n)
time by sorting the rewards of all states, computing maximal strongly connected

Value Iteration 129

components, and applying the algorithms for Max (resp. Min) objectives in de-
scending (resp. ascending) order of rewards. We know of no implementation of
the nested value improvement scheme which matches this complexity.

4.4 Deterministic Games

Finitely reachable nested fixpoints. Thedeterministicgamevaluationsof lim-
supand liminfobjectivescanagainbecomputedbynestedvalue improvement,using
a different predecessor operator. On a deterministic game G = ((S, S1, S2), E, D),
the outer improvement fixpoint lim C1(max p, min p, limsupImp[maxminPre]) is
the deterministic game valuation supinf LimSup(p) of the limsup objective, and
lim C1(min p, max p, liminfImp[maxminPre]) is the deterministic game valuation
supinf LimInf(p) of the liminf objective. Each inner improvement fixpoint is finitely
reachable within at most n steps, and the outer improvement fixpoints are finitely
reachable within at most n computations of inner improvement fixpoints. Hence,
as in the case of graphs, the total number of applications of the improvement func-
tion Imp2 in Algorithm 2 is bounded by n2 when computing supinf LimSup(p) or
supinf LimInf(p) on deterministic games.

Example 5 (Deterministic game with limsup objective). Consider the determin-
istic game shown in Figure 4, where the reward function p is indicated by
state labels. We consider the objective LimSup(p) for player 1 (the � player).
We specify valuations as value vectors as before; the outer initial valuation is
v0 = 〈15, 15, 15, 15, 15〉, and the inner initial valuation is u0 = 〈5, 5, 5, 5, 5〉. We
compute the first inner improvement fixpoint: u0

0 = 〈5, 5, 5, 5, 5〉, and since

uj+1
0 = min{max{p, uj

0, maxminPre(uj
0)}, v0, maxminPre(v0)}

for all j ≥ 0, where v0 = maxminPre(v0) = 〈15, 15, 15, 15, 15〉, we obtain u1
0 =

〈5, 5, 15, 10, 5〉. Note that u1
0 coincides with the reward function p. Next we obtain

u2
0 = 〈10, 5, 15, 10, 10〉, because max{p, u1

0, maxminPre(u1
0)} = 〈10, 5, 15, 10, 10〉.

Finally u3
0 = u4

0 = 〈10, 10, 15, 10, 10〉, which is the first inner improvement fix-
point v1. The second inner improvement chain starts with u0

1 = 〈5, 5, 5, 5, 5〉
using

uj+1
1 = min{max{p, uj

1, maxminPre(uj
1)}, v1, maxminPre(v1)},

where v1 = 〈10, 10, 15, 10, 10〉 and maxminPre(v1) = 〈10, 10, 10, 10, 10〉. Since
max{p, u0

1, maxminPre(u0
1)} = 〈5, 5, 15, 10, 5〉, we obtain u2

1 = 〈10, 5, 10, 10, 10〉.
Then u3

1 = u4
1 = 〈10, 10, 10, 10, 10〉, which is the second inner improvement

fixpoint v2. This is also the desired outer improvement fixpoint; that is, v∞ =
v2 = v3 = 〈10, 10, 10, 10, 10〉. The player-1 strategy that chooses at state s0

the successor s3 ensures that against all strategies of player 2, the reward 10
will be visited infinitely often. Dually, the player-2 strategy that chooses at s1

the successor s0 ensures that against all strategies of player 1, the reward 15
will be visited at most once. Hence 〈10, 10, 10, 10, 10〉 is the deterministic game
valuation of the player-1 objective LimSup(p): from any start state, player 1 can

130 K. Chatterjee and T.A. Henzinger

5

s0

s2 s1 s3 s4

5

15 5 10

Fig. 4. Deterministic game with limsup objective

ensure that reward 10 will be visited infinitely often, but she cannot do so for
reward 15. ��

Optimality. The situation is similar to the case of graphs. The direct imple-
mentation of nested value improvement yields a O(mn2) time complexity. In
the boolean case, the scheme can be sped up to run in O(mn) time by using
O(m) implementations for Max and Min objectives to compute inner improve-
ment fixpoints. However, unlike in the case of graphs, O(mn) is the best known
time bound for solving deterministic games with Büchi or coBüchi objectives;
that is, nested value improvement for deterministic games with boolean objec-
tives is optimal. In the quantitative case, the limsup and liminf problems on
deterministic games can be solved in O((m+log n) ·n) time [2], but we know of
no implementation of nested value improvement which matches this complexity.

4.5 Probabilistic Graphs

Finitely computable nested fixpoints. The probabilistic graph valua-
tions of limsup and liminf objectives can be expressed as nested improve-
ment fixpoints; while these fixpoints are not finitely reachable, they are
finitely computable. On a probabilistic graph G = ((S, S1, S∗), (E, δ), D),
the outer improvement fixpoint lim C1(max p, min p, limsupImp[maxPreP]) is
the probabilistic graph valuation sup LimSup(p) of the limsup objective, and
lim C1(min p, max p, liminfImp[maxPreP]) is the probabilistic graph valuation
sup LimInf(p) of the liminf objective. Neither the inner nor the outer improvement
fixpoints are finitely reachable. However, the boundedness property of probabilis-
tic graph values for maximizing and minimizing objectives carries over to limsup
and liminf objectives. This is the key for proving the finite computability: the
nested value improvement algorithm (Algorithm 2) with precision α = 1

2γ , where
γ is defined as in Section 3, achieves the following: (1) in the outer loop, Algo-
rithm 2 computes a valuation vi such that diff(vi, vi+1) ≤ α within a number
i ∈ O(γ2) of iterations; and (2) in the inner loop, for each i ≥ 0, Algorithm 2
computes a valuation uj

i such that diff(uj
i , u

j+1
i) ≤ α within a number j ∈ O(γ2)

of iterations. Thus the limit function Lim to obtain v∗ from vi, and each u∗
i

from uj
i , can be defined as follows: for every state s ∈ S, round the value vi(s)

(resp. uj
i (s)) to the nearest multiple of 1

γ . Then for each i ≥ 0, the accelerated
valuation u∗

i is the i-th inner improvement fixpoint u∞
i , and v∗ is the outer

improvement fixpoint v∞.

Value Iteration 131

Optimality. While no better bound than an exponential bound in the number
of states is known for the nested value improvement scheme, the probabilistic
graph valuations of limsup and liminf objectives can be computed in polynomial
time. In the boolean case, for Büchi and coBüchi objectives, the polynomial-
time computation proceeds as follows: first compute the value-1 set T ⊆ S of
the given Büchi or coBüchi objective (i.e., the set of states s such that the prob-
abilistic graph valuation at s is 1), and then compute the probabilistic graph
valuation of the reachability objective with target set T ; the latter values can
be computed by linear programming (see Section 3 on maximizing and mini-
mizing objectives). A polynomial-time algorithm for computing the value-1 set
T for Büchi and coBüchi objectives is presented in [14,8]. In the quantitative
case, the probabilistic graph valuations of limsup and liminf objectives can be
obtained by first computing the value-1 sets for Büchi (resp. coBüchi) objec-
tives in descending (resp. ascending) order of the rewards, and then using the
linear-programming approach to compute the probabilistic graph valuations for
maximizing (resp. minimizing) objectives. As pointed out in Section 3, these
techniques based on linear programming do not generalize to probabilistic games,
even in the special case of boolean objectives.

4.6 Probabilistic Games

Finitely computable nested fixpoints. The probabilistic game valuations
of limsup and liminf objectives can again be expressed as nested improve-
ment fixpoints: on a probabilistic game G = ((S, S1, S2, S∗), (E, δ), D), the
outer improvement fixpoint lim C1(max p, min p, limsupImp[maxminPreP]) is the
probabilistic game valuation supinf LimSup(p) of the limsup objective, and
lim C1(min p, max p, liminfImp[maxminPreP]) is the probabilistic game valuation
supinf LimInf(p) of the liminf objective. The boundedness property and finite-
computability results for limsup and liminf objectives on probabilistic graphs
carry over to probabilistic games; see Table 2.

Optimality. Unlike in the case of probabilistic graphs, no polynomial-time al-
gorithms are known for solving the limsup and liminf problems on probabilistic
games, not even in the special case of boolean (Büchi and coBüchi) objectives.
The problems of computing probabilistic game valuations for general (quantita-
tive) limsup and liminf objectives can be shown to lie in NP ∩ coNP.

4.7 Concurrent Games

Nested improvement fixpoints. The concurrent game valuations of
Büchi and coBüchi objectives can be expressed as nested improvement
fixpoints, but these fixpoints are not known to be finitely computable.
On a concurrent game G = (S, A1, A2, (E, δ), D), the outer improve-
ment fixpoint lim C1(max p, min p, limsupImp[supinfPre]) is the concurrent
game valuation supinf ��p of the boolean limsup (Büchi) objective, and
lim C1(min p, max p, liminfImp[supinfPre]) is the concurrent game valuation

132 K. Chatterjee and T.A. Henzinger

Table 2. Nested value improvement for limsup and liminf objectives. Recall that γ is
such that 16n ∈ O(γ).

n states Objective LimSup(p) Objective LimInf(p)

Valued Imp2(v, u) = Imp2(v, u) =
graphs limsupImp[maxPre](v, u) liminfImp[maxPre](v, u)

iteration converges in n2 steps iteration converges in n2 steps

Deterministic Imp2(v, u) = Imp2(v, u) =
games limsupImp[maxminPre](v, u) liminfImp[maxminPre](v, u)

iteration converges in n2 steps iteration converges in n2 steps

Probabilistic Imp2(v, u) = Imp2(v, u) =
graphs limsupImp[maxPreP](v, u) liminfImp[maxPreP](v, u)

iteration converges in O(γ4) steps iteration converges in O(γ4) steps

Probabilistic Imp2(v, u) = Imp2(v, u) =
games limsupImp[maxminPreP](v, u) liminfImp[maxminPreP](v, u)

iteration converges in O(γ4) steps iteration converges in O(γ4) steps

Concurrent Imp2(v, u) = Imp2(v, u) =
games limsupImp[supinfPre](v, u) liminfImp[supinfPre](v, u)
(boolean p) iteration converges in the limit iteration converges in the limit

(no known bound) (no known bound)

supinf ��p of the boolean liminf (coBüchi) objective [16]. Neither the inner nor
outer improvement fixpoints are known to be finitely computable. As in the case
of reachability and safety objectives, it is not even known if any improvement
fixpoints are finitely approximable. The quantitative case has not been studied
in the literature: we conjecture that the above characterizations of the concur-
rent game valuations for Büchi and coBüchi objectives generalize to quantitative
limsup and liminf objectives.

Optimality. The complexity results for concurrent games with reachability and
safety objectives (see Section 3) generalize to Büchi and coBüchi objectives.

Summary. We summarize the situation for limsup and liminf objectives in
Table 2.

5 Level-3 Objectives

We briefly discuss the most important objectives above Borel level 2: parity
objectives and limit-average objectives. The parity objectives are a canonical
form to express all ω-regular objectives, and the limit-average (often called mean-
payoff) objectives are studied widely in game theory. For parity objectives, the
value lattice is a finite linear order (or alternatively, a finite product of two-valued
boolean lattices); for limit-average objectives, the value lattice is quantitative.

Parity objectives. Let D = {0, 1, . . . , d − 1} or D = {1, 2, . . . , d}; the d in-
tegers in D are called priorities. Consider a valued graph (S, E, D) and a
reward function p: S → D. The parity objective Parity(p): Ω → B is the

Value Iteration 133

function that maps a path to 1 if the maximal priority that appears along
the path infinitely often is even. Formally,

Parity(p) = {ω ∈ Ω | LimSup(p)(ω) is even}.

Büchi and coBüchi objectives are special cases of parity objectives with two
priorities: for Büchi objectives, let D = {1, 2}, and p(s) = 2 iff s is in the
recurrent set; for coBüchi objectives, let D = {0, 1}, and p(s) = 0 iff s is in
the persistent set.

Limit-average objectives. Let D = R
∞
≥0. Consider a valued graph (S, E, D)

and a reward function p: S → D. The limit-average objective LimAvg(p):
Ω → D is the function that maps every path to the long-run average of the re-
wards that appear along the path. Formally, for all paths ω = 〈s0, s1, s2, . . .〉,

LimAvg(p)(ω) = lim
n→∞ inf{ 1

k
·

k−1∑
i=0

p(si) | k ≥ n}.

Borel complexity. The parity objectives lie in the intersection of the third
levels of the Borel hierarchy, in Σ3∩Π3; they are hard for the second levels, i.e.,
both Σ2-hard and Π2-hard [31]. The limit-average objectives are Π3-complete:
for every real β ≥ 0, the set of paths ω ∈ Ω with LimAvg(p)(ω) ≥ β is definable
in Π3 by

(∀m ≥ 1)(∃n ≥ 0)(∀k ≥ n)(
1
k
·

k−1∑
i=0

p(si) ≥ β − 1
m

);

and the set of paths ω ∈ Ω with LimAvg(p)(ω) ≤ β is definable in Π2 by

(∀n ≥ 0)(∃k ≥ n)(
1
k
·

k−1∑
i=0

p(si) ≤ β).

The Π3-hardness of limit-average objectives is proved in [3].

Parity and limit-average problems. Given a valued graph G (resp. a de-
terministic game; a probabilistic graph; a probabilistic game; or a concurrent
game), and a reward function p, we wish to compute the graph valuations
supParity(p) and sup LimAvg(p) (resp. the game valuations supinf Parity(p) and
supinf LimAvg(p)) over G. The parity problem on graphs (resp. games) arises in
model checking CTL (resp. ATL) over structures with strong-fairness (Streett)
constraints, which can be converted to parity constraints. Also the synthesis
problem for LTL can be reduced to a parity problem on games, by converting a
given LTL formula into a deterministic parity automaton of double-exponential
size [29].

5.1 Parity Objectives

Value iteration solutions for parity (and limit-average) objectives were proposed
first for deterministic games; so we start with this case.

134 K. Chatterjee and T.A. Henzinger

Deterministic games. The parity problem on deterministic games is equiva-
lent to μ-calculus model checking [17]: given a value set with d priorities, the
deterministic game valuation sup Parity(p) can be computed by evaluating a μ-
calculus expression over the deterministic game predecessor operator maxminPre.
The μ-calculus expression has alternation depth d− 1, that is, it contains d− 1
alternations of the least-fixpoint operator μ and the greatest-fixpoint operator ν
(the μ-calculus formulas for Büchi and coBüchi objectives from Section 4, which
have alternation depth 1, are obtained as special cases for d = 2). The μ-calculus
expression defines a value iteration scheme that computes d nested fixpoints. All
fixpoints are finitely reachable, and thus the value iteration algorithm runs in
O(mnd−1) time.

For the value iteration scheme obtained from the μ-calculus expression of [17],
the values are boolean. In [21], a different value lattice is considered, namely,
tuples of nonnegative integers with lexicographic ordering. A valuation assigns
to each state a so-called rank (or small-progress measure), which is a d-tuple
such that every even coordinate is 0, and every odd coordinate is an integer
between 0 and n. For such “rich” valuations, an alternation-free value iteration
scheme (similar to Algorithm 1) can be used to solve parity games. The value
improvement fixpoint is finitely reachable and can be computed in O(mn	d/2
)
time [21]. It is an interesting question when and how in general the complexity of
a value iteration scheme can be traded off against the complexity of a modified
value domain. If d ≤

√
n, then [21] is the best known algorithm. In [22], a

subexponential-time algorithm for solving deterministic parity games is given;
the running time of that algorithm is nO(

√
n), which improves on [21] when

d �∈ O(
√

n). No polynomial-time algorithm is known for the parity problem on
deterministic games, which lies in NP ∩ coNP [17].

Graphs. The parity problem on graphs can be solved in O(m log d) time [24].
Value iteration is not optimal, because the value iteration solutions that have
been devised for deterministic games require exponentially many iterations even
when applied to the special case of graphs. A reduction from parity objectives
to limit-average objectives [20], followed by value iteration for graphs with limit-
average objectives [27] (see below), yields an O(mn2) value iteration solution
for the parity problem on graphs, which is still not optimal.

Probabilistic graphs. The parity problem on probabilistic graphs can be
solved in polynomial time by first computing the value-1 set T of the given
parity objective, and then computing (by linear programming; see Section 3)
the probabilistic graph valuation of the reachability objective with target set T
[14,8]. The known value iteration solutions require exponentially many iterations.

Probabilistic games. The parity problem on probabilistic games lies in NP ∩
coNP [8]. A value iteration scheme can obtained from the μ-calculus expression
for deterministic games, essentially by replacing the deterministic game pre-
decessor operator maxminPre with the probabilistic game predecessor operator
maxminPreP [16]. The nested fixpoints are not finitely reachable, but finitely
computable, as in the case of Büchi and coBüchi objectives (see Section 4). This

Value Iteration 135

leads to a O(γ2d) value iteration solution for the parity problem on probabilistic
games (recall that γ is such that 16n ∈ O(γ)).

Concurrent games. The value characterization of [17] for deterministic games
can be extended to concurrent games [16]: given a value set with d priorities,
the concurrent game valuation supinf Parity(p) can be defined by a μ-calculus
expression of alternation depth d− 1. The fixpoint expression is very similar to
the expression of [17], except that it uses the concurrent game predecessor opera-
tor supinfPre instead of the deterministic game predecessor operator maxminPre.
However, as explained in Section 3, no bounds are known for the finite approx-
imability of fixpoints even in the very special case of reachability objectives. The
known complexity bounds for the parity problem on concurrent games are the
same as for the reachability problem on concurrent games [4] (see Section 3).
All fixpoints can be defined in the theory of the reals with addition and multi-
plication [16]; however, for parity objectives the reduction to the theory of reals
yields a decision procedure in 3EXPTIME [16].

5.2 Limit-Average Objectives

Deterministic games. A value improvement solution for the limit-average
problem on deterministic games is given in [35]. For measuring complexity, we
consider all values to be rational numbers (rather than reals). Given a reward
function p : S → Q≥0, let p =

∑
s∈S |p(s)|, where |p(s)| denotes the space re-

quired to express the rational p(s) in binary. We run Algorithm 1 with the initial
valuation v0 = p and the improvement function

Imp(v)(s) =

{
p(s) + max{v(s′) | s′ ∈ E(s)} if s ∈ S1;
p(s) + min{v(s′) | s′ ∈ E(s)} if s ∈ S2;

for all valuations v ∈ V . The value improvement fixpoint is not finitely reachable,
but finitely computable. The improvement function is applied k = mn3 · 2p

times. If vi+1 = Imp(vi) for all i ≥ 0, then for every state s ∈ S, the value
sup LimAvg(p)(s) is very close to vk(s)/k. Thus the deterministic game valuation
sup LimAvg(p) can be constructed from the valuation vk by applying a suitable
limit function [35]. The running time of the value improvement algorithm is
pseudo-polynomial. No polynomial-time algorithm is known for the limit-average
problem on deterministic games, which lies in NP ∩ coNP [35].

Graphs. The limit-average problem on graphs can be solved in O(mn) time, by
computing the maximum-mean cycle of a directed graph [23]. The best known
value iteration solution requires O(mn2) time [27].

Probabilistic graphs. The limit-average problem on probabilistic graphs can
be solved in polynomial time by linear programming [18]. Again value iteration,
which requires exponentially many iterations [26,32], is not optimal.

Probabilistic games. The limit-average problem on probabilistic games lies in
NP ∩ coNP [25]. No polynomial-time algorithm is known. We conjecture that the

136 K. Chatterjee and T.A. Henzinger

value improvement solutionof [35],witha suitablemodificationof the improvement
function to account for probabilistic states, can be used to solve the limit-average
problem on probabilistic games, and requires exponentially many iterations.

Concurrent games. A value improvement algorithm to compute the values of
limit-average objectives for concurrent games is, to our knowledge, not known.
The limit-average problem on concurrent games can be solved in EXPTIME [9].
The best known lower bound is PTIME-hardness (by reduction from alternating
reachability), which applies already to deterministic games.

5.3 Relation between Parity and Limit-Average Objectives

The parity and limit-average problems are related. The parity problem on deter-
ministic games can be polynomial-time reduced to the limit-average problem on
deterministic games [20]. The reduction has recently been extended to the case
of probabilistic games [6]. The polynomial-time reducibility of concurrent games
with parity objectives to concurrent games with limit-average objectives remains
an open problem. Since parity objectives lie in Σ3 ∩Π3, while limit-average ob-
jectives are Π3-complete, no Wadge reduction [34], and thus no polynomial-time
reduction, exists from the limit-average problem to the parity problem on a given
class of graphs (e.g., on deterministic games). However, a polynomial-time re-
duction from deterministic games with limit-average objectives to probabilistic
games with reachability objectives is available [35].

6 Concluding Remarks

We briefly mention two topics related to value iteration, which we have not
discussed in this paper.

Strategy improvement. An alternative approach to compute the values of
games is to iterate over strategies rather than over valuations. Given an objec-
tive, a player-1 strategy σ defines a valuation vσ on graphs and probabilistic
graphs, namely, the values that player 1 achieves by following the strategy σ.
On deterministic games, probabilistic games, and concurrent games, let vσ be
the optimal valuation obtainable by player 2 if player 1 follows the strategy σ. A
strategy improvement algorithm iterates over strategies: given a player-1 strat-
egy σ, the algorithm computes vσ and then locally improves the strategy σ to
achieve a better valuation for player 1. This process is repeated until no improve-
ment is possible. In other words, the strategy improvement approach iterates over
local optimizations of strategies instead of over local optimizations of values. For
deterministic games with parity objectives, although the best known bound for
strategy improvement is exponential, the algorithm works well in practice, and it
is an open problem to find a family of examples for which strategy improvement
requires a super-polynomial number of iterations [33]. Strategy improvement al-
gorithms are also known for probabilistic games with reachability objectives [12],
for probabilistic games with parity objectives [7], and for concurrent games with
reachability objectives [5].

Value Iteration 137

Discounted games. An improvement function Imp is contractive if there ex-
ists a real 0 ≤ β < 1 such that for all valuations v1 and v2, we have
diff(Imp(v1), Imp(v2)) ≤ β · diff(v1, v2). For contractive improvement functions,
the value improvement algorithm (Algorithm 1) converges to a fixpoint because
of Banach’s fixpoint theorem. While the improvement functions we discussed in
this paper are not necessarily contractive, in the setting of games with discounted
reward objectives [30], improvement functions are contractive. The analysis of dis-
counted games is therefore simpler [15]: (1) a contractive improvement function
ensures that there is an unique fixpoint, and hence the nested analysis of least and
greatest fixpoints can be avoided; and (2) a contractive improvement function en-
sures the geometric convergence of valuations, guaranteeingfinite approximability
even for concurrent games. Moreover, the values of undiscounted games with par-
ity and limit-average objectives can be obtained as appropriate limits of the values
of certain discounted reward objectives, as the discount factor goes to 1. This was
shown for concurrent games with parity objectives in [15,19], and for concurrent
games with limit-average objectives in [28]. Probabilistic graphs with discounted
reward objectives can be solved in polynomial time [18], but no polynomial-time
algorithm is known for deterministic games with discounted reward objectives.
The problem of computing the values of discounted reward objectives for proba-
bilistic games can be shown to lie in NP ∩ coNP.

Acknowledgment. We thank Laurent Doyen for helpful comments on a draft.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49, 672–713 (2002)

2. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces.
In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003)

3. Chatterjee, K.: Concurrent games with tail objectives. Technical Report EECS-
2005-1385, UC Berkeley (2005)

4. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: The complexity of quantitative
concurrent parity games. In: SODA 2006, pp. 678–687. ACM-SIAM (2006)

5. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: Strategy improvement for concur-
rent reachability games. In: QEST 2006, pp. 291–300. IEEE (2006)

6. Chatterjee, K., Henzinger, T.A.: Reduction of stochastic parity to stochastic mean-
payoff games. Technical Report EECS-2006-140, UC Berkeley (2006)

7. Henzinger, T.A., Chatterjee, K.: Strategy Improvement and Randomized Subex-
ponential Algorithms for Stochastic Parity Games. In: Durand, B., Thomas, W.
(eds.) STACS 2006. LNCS, vol. 3884, pp. 512–523. Springer, Heidelberg (2006)

8. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Quantitative stochastic parity
games. In: SODA 2004, pp. 121–130. ACM-SIAM (2004)

9. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Stochastic limit-average games are
in EXPTIME. Technical Report EECS-2006-143, UC Berkeley (2006)

10. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
11. Condon, A.: The complexity of stochastic games. Information and Computation 96,

203–224 (1992)

138 K. Chatterjee and T.A. Henzinger

12. Condon, A.: On algorithms for simple stochastic games. In: Advances in Compu-
tational Complexity Theory. DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, vol. 13, pp. 51–73. AMS (1993)

13. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification.
Journal of the ACM 42, 857–907 (1995)

14. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University (1997)

15. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems
theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP
2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)

16. de Alfaro, L., Majumdar, R.: Quantitative solution of ω-regular games. Journal of
Computer and System Sciences 68, 374–397 (2004)

17. Emerson, E.A., Jutla, C.: Tree automata, μ-calculus, and determinacy. In: FOCS
1991, pp. 368–377. IEEE (1991)

18. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer (1997)
19. Gimbert, H., Zielonka, W.: Discounting infinite games, but how and why?

ENTCS 119, 3–9 (2005)
20. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ coUP. Information

Processing Letters 68, 119–124 (1998)
21. Jurdziński,M.: SmallProgressMeasures forSolvingParityGames. In:Reichel,H.,Ti-

son, S. (eds.) STACS2000.LNCS, vol. 1770, pp. 290–301. Springer,Heidelberg (2000)
22. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm

for solving parity games. In: SODA 2006, pp. 117–123. ACM-SIAM (2006)
23. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete

Mathematics 23, 309–311 (1978)
24. Vardi, M.Y., Kupferman, O., King, V.: On the Complexity of Parity Word Au-

tomata. In: Honsell, F., Miculan, M. (eds.) ETAPS 2001 and FOSSACS 2001.
LNCS, vol. 2030, pp. 276–286. Springer, Heidelberg (2001)

25. Liggett, T.A., Lippman, S.A.: Stochastic games with perfect information and time
average payoff. SIAM Review 11, 604–607 (1969)

26. Littman, M.L.: Algorithms for Sequential Decision Making. PhD thesis, Brown
University (1996)

27. Madani, O.: Polynomial value iteration algorithms for deterministic MDPs. In:
UAI 2002, pp. 311–318. Morgan Kaufmann (2002)

28. Mertens, J.F., Neyman, A.: Stochastic games. International Journal of Game The-
ory 10, 53–66 (1981)

29. Safra, S.: On the complexity of ω-automata. In: FOCS 1988, pp. 319–327. IEEE
(1988)

30. Shapley, L.S.: Stochastic games. Proceedings of the National Academy of Sci-
ences 39, 1095–1100 (1953)

31. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, vol. 3, pp. 389–455. Springer (1997)

32. Tseng, P.: Solving H-horizon stationary Markov decision problems in time propor-
tional to log(H). Operations Research Letters 9, 287–297 (1990)

33. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving
parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 202–215. Springer, Heidelberg (2000)

34. Wadge, W.W.: Reducibility and Determinateness of Baire Spaces. PhD thesis, UC
Berkeley (1984)

35. Zwick, U., Paterson, M.: The complexity of mean-payoff games on graphs. Theo-
retical Computer Science 158, 343–359 (1996)

O. Grumberg and H. Veith (Eds.): 25MC Festschrift, LNCS 5000, pp. 139–144, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Fifteen Years of Formal Property Verification in Intel

Limor Fix

Intel Research Pittsburgh
Limor.fix@intel.com

Abstract. Model checking technologies have been applied to hardware
verification in the last 15 years. Pioneering work has been conducted in Intel
since 1990 using model checking technologies to build industrial hardware
verification systems. This paper reviews the evolution and the success of these
systems in Intel and in particular it summarizes the many challenges and
learning that have resulted from changing how hardware validation is
performed in Intel to include formal property verification. The paper ends with
a discussion on how the learning from hardware verification can be used to
accelerate the industrial deployment of model-checking technologies for
software verification.

Keywords: Model checking, formal specification, formal property verification.

1 Hardware Verification in Intel

1.1 The First Generation

Since 1995 Intel engineers have been using formal verification tools to verify properties
of hardware designs. The first generation of Intel formal property verification tools [1,
2, 3, 4, 5, 6], called Prover, included an enhanced version of SMV, the BDD-based
model checker developed by Ken McMillan [17], and a specification language, called
FSL, that was a hardware linear temporal language inspired by LTL, the linear temporal
logic proposed by Pnueli [18]. The compiler for FSL translated the linear logic into
automata using algorithms similar to [19]. FSL was used both to specify formal
properties to be verified by the model checker and to specify checkers to be checked
dynamically during simulation of the hardware designs.

Two lead CPU design teams used Prover from 1995 till 1999. Both teams reported
successful usage of the new verification technology and in particular high quality
bugs have been discovered. These bugs were classified as bugs that either would have
been found by other validation tools much later in the design cycle or bugs that might
otherwise would have escaped all the validation tools and reach the silicon. Very
important leanings were generated by the two design teams about how, where, when
and by whom hardware formal verification tools should be used and moreover the
remaining technology challenges were identified.

How - Automated abstraction [1, 4] and modular verification [20] using assume-
guarantee paradigm were used to overcome the limited capacity of the tools.
Properties were developed to capture the intended behavior of the inputs and the

140 L. Fix

outputs of each module. Properties on the outputs of a module were verified using the
assumptions on the inputs of the module. Properties on the output signals of the
module served also as assumptions on the inputs of the neighboring module.

Where - Only selected areas of the CPU were formally verified. These were areas
of high risk in which new complex functionality was added or areas in which the
properties to be proven were obvious. For example, the arithmetic units of the CPU
had both characteristic.

When - The decision on when to use the formal tools was not easy. On the one
hand, using the tools very early in the design cycle even before the entire design was
coded, that is before the RTL simulation can start, was very successful. Bugs were
revealed early and did not even reach the early simulation models. On the other hand,
since at that time the RTL was unstable, changes to the RTL required recoding of the
properties and assumptions again and again. The team ended up using the tools
relatively late in the design cycle and indicated that support for early verification
would be very beneficial.

By Whom - Traditionally, limited validation was done by the RTL designers and
most of the in depth verification was carried out by the validation engineers. We
encouraged both groups, the designers and the validators to use Prover. In terms of
number of users, we had better success with the validation groups. More resources
were devoted in the validation teams to use the new formal property verification
system. The small number of designers that used the tools indicated bigger success in
finding more bugs with less efforts. The designers had an easier task because they
were very familiar with the design and developing appropriate assumptions and
properties was much easier for them.

Among the main challenges that have been identified, it became clear that it was
very difficult to develop good specifications. It was hard for designers to develop high
level properties that do not mimic the details of the implementation, it was hard to
train the designers to use a linear temporal language, it was impossible to know if
enough properties were developed to express the entire desired behavior of the design,
and it was hard to maintain the properties since the design was changing and as a
result the properties had to be changed accordingly.

Other challenges were also identified. One obvious challenge was the limited
capacity of the model checker. As mentioned before, modularization and abstraction
techniques were developed. The design was divided into smaller components and
assumptions were placed on the inputs of the blocks. The introduction of assumptions
created additional challenges: it was hard to know which assumptions were needed, it
was hard to identify circular reasoning, and it was hard to make sure all assumptions
were verified. As for abstraction, semi-manual abstraction techniques were
developed, however, it was impossible to deploy them because whenever the design
changed the abstract model had to be re-built. We ended up focusing on automated
abstraction only [1, 4].

The most important learning from the first deployment of formal property
verification tools in two real complex design projects was the need to either identify
which previously existing validation activity can be omitted and replaced by the
formal verification effort. Or, alternatively, the need to smoothly integrate the formal
verification activity into the rest of the design and validation efforts while minimizing
any additional manual effort by either the designers or the validators.

 Fifteen Years of Formal Property Verification in Intel 141

1.2 The Second Generation

In the following years, Intel formal verification system developed very fast, moving
from a single BDD-based model checking engine to multiple engines. A SAT-based
model checker [21, 7] and a symbolic simulation engine [22, 8] were added. Formal
specification coverage tools were introduced to be able to measure the quality and the
completeness of the set of properties that have been developed [10, 11, 12, 14]. These
tools indicated which parts of the implementation were not specified by the
properties, which properties were vacuously true with respect to the given design and
how one set of properties covers another set of properties. A database of properties
and assumptions was developed to help detect circular reasoning and track the status
of all properties.

With high effort, a new generation of the specification language, called ForSpec
[9, 10], was developed. This language had two versions, a standalone version in
which the properties are developed in a separate file detached from the RTL design
and an embedded version in which properties were developed as assertions embedded
inside the RTL model, that is, as part of the Verilog code. In 2003, Intel donated
ForSpec to Accelera, part of the effort to make ForSpec an IEEE standard for formal
verification language [23]. The resulting IEEE 1850 Standard, has adopted major
parts of ForSpec standalone version. The IEEE standard for SystemVerilog has
adopted major parts of ForSpec embedded version for the SystemVerilog assertions,
also called SVA.

The barrier to moving from a limited deployment to wide spread deployment of
formal property verification in Intel was crossed mainly due to two developments: the
first was the introduction of ForSpec assertions inside the Verilog code, thus allowing
the designers to easily code and maintain the properties (assertions). The second was
the integration of the formal verification activity with other validation efforts. In
particular, the RTL designer had two reasons to annotate his/her code with assertions.
The assertions were always checked during simulation and in addition the assertions
served as assumptions and properties for formal verification. In case an assertion was
too complex to be verified formally it was still very useful as a checker in simulation.

In the last two years we have extended the use of formal verification technology to
other parts of the design. A very successful system has been developed for the
verification of microcode [15].

2 Industrial Deployment of Model Checking for SW Verification

A large body of very successful research already exists in the area of formal software
verification. The goal of using these techniques widely by software developers, has
not been achieved yet. As our experience in hardware verification taught us the
following questions need to be answered: how, where, when and by whom. Below I
present my beliefs that are based only on my hardware experience.

2.1 How

Embedded assertions have been proven very successful in hardware verification, thus,
I believe assertions embedded in programs is a very most promising approach. For

142 L. Fix

assertions to be successful, they need to be dense enough, that is, enough assertions
need to be manually inserted by the programmer or generated automatically by the
compilers. A very successful method to increase the number of assertions is to
develop a library of parameterized assertions that express common requirements for
software correctness.

Once assertions are embedded in the program they need to be utilized for several
purposes, for example, for compiler optimization, for debugging using gdb-like
debuggers and for formal verification. Databases of assertions need to be generated
automatically from the program code for managing the status of the assertions.

2.2 Where

While parallel programming and distributed algorithms were very active research fields
20 years ago but had limited deployment, these days parallel programming becomes a
necessity. Due to the power wall in silicon technology all state of the art computing
devices have multiple processing units and the transition to chip multiprocessors is
happening very fast. New programming paradigms are being developed to combat the
difficulties of parallel programming, e.g., transaction memory programming. This
transition and the need for new programming paradigms and languages create
opportunities for formal verification of software. The new developed parallel pro-
gramming paradigm should include embedded assertions as integral part its design.

An additional area in which formal verification of software should apply to is
security. The problems of viruses, spyware, and worms are growing fast and have
very high costs. Extra efforts to reduce vulnerability of software are likely to be
invested to prevent these costs.

2.3 When

As with hardware, the best person to develop the assertions is the developer
(programmer) himself. Assertions development should become an integral part of
writing software and assertions should be embedded in the code while the code is
generated and they should be as dense as possible. The compilers should also generate
embedded assertions in addition to the ones inserted by the programmer.

2.4 By Whom

In large software companies, just as in hardware companies, large validation groups
are focused on raising the quality of the code by intensive debugging. I believe most
assertions need to be developed by the programmers themselves and should be always
turned on. The validation teams may add more assertions later and most importantly
they need to work with the assertion database to complete the verification of all
assertions.

Acknowledgments. The success of formal verification in Intel was the result of a
great collaboration between industry and academia. Intel formal verification systems
have been developed with intensive collaboration with researchers around the world.

 Fifteen Years of Formal Property Verification in Intel 143

In particular, my team has worked with Moshe Vardi, Amir Pnueli, Orna Grumberg,
Zohar Manna, Ed Clarke, Randy Bryant, David Dill, Sharad Malik, Assaf Schuster,
P.P. Chakrabarti, P. Dasgupta, Scott Hazelhurst, Enrico Giuchilia. It also required
great openness and willingness to take risk from the managers of the design teams and
the managers of Intel internal CAD group.

References

1. Kamhi, G., Weissberg, O., Fix, L., Binyamini, Z., Shtadler, Z.: Automatic data-path
extraction for efficient usage of HDD. In: Grumberg, O. (ed.) CAV 1997. LNCS,
vol. 1254, pp. 95–106. Springer, Heidelberg (1997)

2. Kamhi, G., Fix, L.: Adaptive variable reordering for symbolic model checking. In:
IEEE/ACM International Conference on Computer Aided Design (ICCAD) (1998)

3. Kamhi, G., Fix, L., Binyamini, Z.: Symbolic Model Checking Visualization. In:
Gopalakrishnan, G.C., Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522, pp. 290–302.
Springer, Heidelberg (1998)

4. Mador-Haim, S., Fix, L.: Inputs elimination and data abstraction in model checking. In:
Gopalakrishnan, G.C., Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522. Springer,
Heidelberg (1998)

5. Fraer, R., Kamhi, G., Fix, L., Vardi, M.: Evaluating Semi-Exhaustive Verification
Techniques for Bug Hunting. In: SMC, 1999 (CAV 1999 workshop) (1999)

6. Fraer, R., Kamhi, G., Ziv, B., Vardi, M.Y., Fix, L.: Prioritized Traversal: Efficient
Reachability Analysis for Verification and Falsification. In: CAV (2000)

7. Vardi, M.Y., Giunchiglia, E., Tacchella, A., Kamhi, G., Fix, L., Fraer, R., Copty, F.:
Benefits of Bounded Model Checking at an Industrial Setting. In: Berry, G., Comon, H.,
Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102. Springer, Heidelberg (2001)

8. Hazelhurst, S., Wiessberg, O., Kamhi, G., Fix, L.: A hybrid verification approach: getting
deep into the design. In: DAC 2002 (2002)

9. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-
Haim, S., Singerman, E., Tiemeyer, A., Vardi, M., Zbar, Y.: The ForSpec temporal Logic:
A new Temporal Property Specification Language. In: Katoen, J.-P., Stevens, P. (eds.)
ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 296–311. Springer, Heidelberg
(2002)

10. Vardi, M.Y., Grumberg, O., Armoni, R., Piterman, N., Fix, L., Flaisher, A., Tiemeyer, A.:
Enhanced Vacuity Detection in Linear Temporal Logic. In: Hunt Jr., W.A., Somenzi, F.
(eds.) CAV 2003. LNCS, vol. 2725, pp. 368–380. Springer, Heidelberg (2003)

11. Basu, P., Das, S., Dasgupta, P., Chakrabarti, P.P., Mohan, C.R., Fix, L.: Formal
Verification Coverage: are the RTL-properties covering the design’s architectural intent.
In: DATE 2004, pp. 668–669 (2004)

12. Basu, P., Das, S., Dasgupta, P., Chakrabarti, P.P., Mohan, C.R., Fix, L.: Formal
Verification Coverage: Computing the coverage gap between temporal specifications. In:
ICCAD 2004 (2004)

13. Armoni, R., Fix, L., Fraer, R., Huddleston, S., Piterman, N., Vardi, M.: SAT-based
induction for temporal safety properties. In: BMC workshop at CAV 2004 (2004)

14. Basu, P., Das, S., Dasgupta, P., Chakrabarti, P.P., Mohan, C.R., Fix, L.: Formal methods
for analyzing the completeness of assertions suite against a high level fault model. In:
VLSI Design 2005 conference at Kokata (to be published)

144 L. Fix

15. Arons, T., Elster, E., Fix, L., Mador-Haim, S., Mishaeli, M., Shalev, J., Singerman, E.,
Tiemeyer, A., Vardi, M., Zuck, L.: Formal Verification of Backward compatibility of
Microcode. In: 17th International Conference on Computer Aided Verification, Edinburgh
(July 2005)

16. Fix, L., Grumberg, O., Heyman, T., Schuster, A.: Verifying very large industrial circuits
using 100 processes and beyond. In: Third International Symposium on Automated
Technology for Verification and Analysis (October 2005) Best paper award

17. McMillan, K.L.: Symbolic Model Checking: an approach to the state explosion problem,
PhD Thesis. CMU CS-929131 (1992)

18. Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symposium on
Foundation of Computer Science (1977)

19. Clarke, E., Grumberg, O., Hamaguchi, H.: Another Look at LTL Model Checking. Formal
Methods in System Design 10(1) (February 1997); In: Dill, D.L. (ed.) CAV 1994. LNCS,
vol. 818. Springer, Heidelberg (1994)

20. Pnueli, A.: In Transition from Global to Modular Temporal Reasoning about Programs. In:
Apt, K.R. (ed.) Logics and Models of Concurrent Systems. sub-series F: Computer and
System Science, pp. 123–144. Springer (1985)

21. Clarke, E., Biere, A., Cimatti, A., Zhu, Y.: Symbolic Model Checking without BDDs. In:
Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579. Springer,
Heidelberg (1999)

22. Bryant, R.E., Seger, C.-J.: Formal verification of digital circuits using symbolic ternary
system models. In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531.
Springer (1990)

23. Vardi, M.: From Church and Prior to PSL: Standing on The Shoulders of Giants. This
volume

A View from the Engine Room: Computational
Support for Symbolic Model Checking�

Randal E. Bryant

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Randy.Bryant@cs.cmu.edu

1 Introduction

Symbolic model checking owes much of its success to powerful methods for reasoning
about Boolean functions. The first symbolic model checkers used Ordered Binary Deci-
sion Diagrams (OBDDs) [1] to represent system transition relations and sets of system
states [9]. All of the steps required for checking a model can be expressed as a series
of operations on these representations, without ever enumerating individual states or
transitions. More recently, bounded [3] and unbounded [10,11] model checkers have
been devised that use Boolean satisfiability (SAT) solvers as their core computational
engines. Methods having a SAT solver work on a detailed system model and OBDDs
operate on an abstracted model have shown that the combination of these two reasoning
techniques can be more powerful than either operating on its own [4]. Boolean meth-
ods have enabled model checkers to scale to handle some of the complex verification
problems arising from real-world hardware and software designs.

Given the importance of Boolean reasoning in symbolic checking, we take this op-
portunity to examine the capabilities of SAT solvers and BDD packages. We use several
simple experimental evaluations to illustrate some strengths and weaknesses of current
approaches, and suggest directions for future research.

2 Experiments in (Un)SAT

Verification problems typically use SAT solver to find an error in the design, and hence
the task is to prove that a formula is unsatisfiable. Currently, the Davis-Putnam-
Logemann-Loveland (DPLL) method [5] for solving SAT problems by backtracking
search is heavily favored among complete SAT algorithms. Recent progress in these
solvers has led to remarkable gains in speed and capacity [13], especially in proving
that a formula is unsatisfiable. By contrast, using OBDDs seems like an inefficient ap-
proach to solving SAT problems, since it will generate a representation of all possible
solutions, rather than a single solution. There are some common, and seemingly simple
problems, for which DPLL performs poorly. We illustrate this and compare the perfor-
mance of OBDDs for two sets of benchmarks.
� This research was supported by the Semiconductor Research Corporation, Contract RID

1355.001

O. Grumberg and H. Veith (Eds.): 25MC Festschrift, LNCS 5000, pp. 145–149, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

146 R.E. Bryant

Size Exhaustive LIMMAT ZCHAFF SIEGE MINISAT CUDD

8 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
16 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
24 3.6 10.0 0.6 0.5 0.3 < 0.1
32 TIME TIME 13.0 3.8 3.7 < 0.1
40 TIME TIME TIME 72.0 162.2 < 0.1
48 TIME TIME TIME TIME TIME < 0.1

Fig. 1. SAT Solver Performance on Parity Tree Benchmarks. Each number is the median time
for comparing 16 different random trees to a linear chain. The timeout limit was set to 900
seconds.

Our first set of benchmarks compares functions for computing the parity of a set of
n Boolean values using a tree of exclusive-or operators. Each instance of the problem
compares a randomly generated tree to a linear chain. We generated 16 different trees
for six different values of n, ranging from 8 to 48. The results, run on an 3.2 GHz
Intel Pentium 4 Xeon, are shown in Figure 1. Since SAT solvers times can vary greatly
depending on minor differences in the problem encoding, we report the median time
for the 16 cases for each value of n. We set a timeout limit of 900 seconds for each
instance.

These parity tree problems are known to be difficult cases for DPLL, or in fact any
method based on resolution principle. Zhang and Malik submitted one such problem
for n = 36 as a benchmark for the SAT solver competition held in conjunction with
the SAT 2002 [14]. None of the solvers at the time could solve the problem within the
40-minute time limit on an Intel Pentium III.

We tested six different solution methods:

Exhaustive. Enumerate all 2n possible solutions and test each one.
LIMMAT. The LIMMAT solver by Armin Biere from 2002. This solver uses the inno-

vations introduced by the GRASP [8] and CHAFF solvers [13], but without the level
of tuning found in more recent solvers.

ZCHAFF. The ZCHAFF 2004 solver, carrying on the work by Malik and his students
[13].

SIEGE. The SIEGE version 4 solver, winner of the 2003 SAT competition.
MINISAT. The MINISAT version 1.14 solver, winner of the 2005 SAT competition.
CUDD. An OBDD-based implementation using the CUDD library from the University

of Colorado.

As can be seen from the results of Figure 1, exhaustive evaluation can readily handle
problems up to n = 24, but it becomes impractical very quickly due to the expo-
nential scaling. The LIMMAT solver actually performs slightly worse than exhaustive
evaluation. The other DPLL solvers (ZCHAFF, SIEGE, and MINISAT) can handle all 16
instances for n = 32. Only MINISAT can handle all 16 instances for n = 40, and even
it can solve only 4 of the 16 instances for n = 48. These experiments illustrate that
DPLL solvers have progressed considerably since the 2002 SAT competition, but they
all experience exponential growth for this class of problems.

By contrast, OBDDs can solve parity tree problems with hardly any effort, never
requiring more than 0.1 seconds for any of the instances. Parity functions have OBDD

A View from the Engine Room 147

representations of linear complexity [1], and hence the tree comparison problem can be
solved in worst-case O(n2) time using OBDDs. It would be feasible to solve instances
of this problem for n = 1000 or more.

As a second class of benchmarks, we consider ones that model the bit-level behavior
of arithmetic operations. Consider the problem of proving that integer addition and mul-
tiplication are associative. That is, we wish to show that the following two C functions
always return the value 1:

int assocA(int x, int y, int z)
{

return (x+y)+z == x+(y+z);
}

int assocM(int x, int y, int z)
{

return (x*y)*z == x*(y*z);
}

We created a set of benchmark problems from these C functions, where we varied the
number of bits n in the argument words x, y, and z, up to a maximum of n = 32. Since
there are three arguments, the number of possible argument combinations is 8n.

Problem Exhaustive CUDD MINISAT

Addition 12 > 32 > 32
Multiplication 12 8 5

Fig. 2. Performance in Solving Associativity Problems Numbers indicate the maximum word
size that can be solved in under 900 seconds of CPU time

Figure 2 shows the performance for this benchmark by exhaustive evaluation, OB-
DDs using the CUDD package, and MINISAT (the best DPLL-based approach tested).
In each case, we show the maximum number of argument bits n for which the prob-
lem can be solved within a 900 second time limit. Exhaustive evaluation works up to
n = 12, but then becomes impractical, with each additional bit requiring eight times
more evaluations. Both DPLL and OBDDs can show that addition is associative up to
the maximum value tested. For multiplication, we see that OBDDs outperform DPLL,
but neither does as well as brute-force, exhaustive evaluation. For OBDDs, we know
that the Boolean functions for integer multiplication require OBDDs of exponential
size [2], and hence OBDD-based methods for this problem incur exponential space and
time. Evidently, DPLL-based methods also suffer from exponential time performance.

3 Observations

Our first set of benchmarks illustrates one of the challenges of the Boolean satisfiability
problem. While DPLL works well on many problems, it has severe weaknesses, some

148 R.E. Bryant

of which can be filled by more “niche” approaches, such as OBDDs. Some attempts
have been made to develop SAT solvers that use different combinations of DPLL and
OBDDs, e.g., [7], but none of these has demonstrated consistent improvements over
DPLL. In particular, it seems like the main advantage of current DPLL/OBDD hybrids
is that they can solve problems that are tractable using either DPLL or OBDDs. We
have not seen meaningful examples of them solving problems that cannot be solved by
one of the two approaches operating in isolation.

An additional concern of ours is that the recent success of DPLL methods is having
the effect that the research field is narrowly focusing on this approach to SAT solving.
Researchers have found they can do better in SAT competitions by fine tuning DPLL
solvers rather than trying fundamentally different approaches. While this tuning has
led to remarkable improvements, it is not healthy for the field to narrow the “gene
pool” of SAT techniques. Rather, we should be encouraging researchers to explore new
approaches, even if they only outperform DPLL on small classes of problems, as long
as these classes have practical applications. Steps in this direction include recent work
by Jain, et al [6].

Our arithmetic problems illustrate that, while both DPLL and OBDDs are adequate
for addition and related functions, neither performs well for operations related to integer
multiplication. Indeed, companies that market circuit equivalence checkers have had to
devise ad hoc workarounds for checking circuits containing multipliers. We believe
that the research community should invest more effort in tackling problems that are
well beyond the capability of existing SAT solvers. Examples of challenging problems
arise in the fields of cryptanalysis [12] and combinatorial optimization.

4 Conclusion

2006 marks the twenty-fifth anniversary of model checking, but also the twentieth an-
niversary of powerful tools for Boolean reasoning, first with OBDDs and more recently
with DPLL-based SAT solvers. The field has advanced considerably due to both clever
ideas and careful engineering. Model checking and many other application areas have
directly benefited from these tools. It is important that the research community keeps
pushing ahead with new approaches and new improvements in Boolean reasoning.
There remain many important problems that are beyond the reach of today’s methods.

References

1. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions
on Computers C-35(8), 677–691 (1986)

2. Bryant, R.E.: On the complexity of VLSI implementations and graph representations of
Boolean functions with application to integer multiplication. IEEE Transactions on Com-
puters 40(2), 205–213 (1991)

3. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability
solving. Formal Methods in System Design 19(1), 7–34 (2001)

4. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. JACM 50(5), 752–794 (2003)

A View from the Engine Room 149

5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Com-
muncations of the ACM 5(7), 394–397 (1962)

6. Jain, H., Bartzis, C., Clarke, E.M.: Satisfiability Checking of Non-clausal Formulas Using
General Matings. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 75–89.
Springer, Heidelberg (2006)

7. Jin, H., Somenzi, F.: CirCUs: A Hybrid Satisfiability Solver. In: Hoos, H.H., Mitchell, D.G.
(eds.) SAT 2004. LNCS, vol. 3542, pp. 211–223. Springer, Heidelberg (2005)

8. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfia-
bility. IEEE Transactions on Computers 48(5), 506–521 (1999)

9. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers (1992)
10. McMillan, K.L.: Applying SAT Methods in Unbounded Symbolic Model Checking. In:

Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404. Springer, Heidelberg (2002)
11. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A., Somenzi,

F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)
12. Mironov, I., Zhang, L.: Applications of SAT Solvers to Cryptanalysis of Hash Functions. In:

Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 102–115. Springer, Heidelberg
(2006)

13. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient
SAT solver. In: 38th Design Automation Conference (DAC 2001), pp. 530–535 (2001)

14. Simon, L., Le Berre, D., Hirsch, E.A.: The SAT 2002 competition. Annals of Mathematics
and Artificial Intelligence 43(1–4) (2005)

From Church and Prior to PSL

Moshe Y. Vardi�

Rice University, Department of Computer Science, Rice University,
Houston, TX 77251-1892, U.S.A.

vardi@cs.rice.edu
http://www.cs.rice.edu/∼vardi

Abstract. One of the surprising developments in the area of program verification
is how ideas introduced originally by logicians in the 1950s ended up yielding
by 2003 an industrial-standard property-specification language called PSL. This
development was enabled by the equally unlikely transformation of the mathe-
matical machinery of automata on infinite words, introduced in the early 1960s
for second-order arithmetics, into effective algorithms for model-checking tools.
This paper attempts to trace the tangled threads of this development.

1 Thread I: Classical Logic of Time

1.1 Reasoning about Sequential Circuits

The field of hardware verification seems to have been started in a little known 1957
paper by Alonzo Church, 1903–1995, in which he described the use of logic to specify
sequential circuits [24]. A sequential circuit is a switching circuit whose output depends
not only upon its input, but also on what its input has been in the past. A sequential
circuit is a particular type of finite-state machine, which became a subject of study in
mathematical logic and computer science in the 1950s.

Formally, a sequential circuit C = (I, O, R, f, g, r0) consists of a finite set I of
Boolean input signals, a finite set O of Boolean output signals, a finite set R of Boolean
sequential elements, a transition function f : 2I × 2R → 2R, an output function g :
2R → 2O, and an initial state r0 ∈ 2R. (We refer to elements of I ∪ O ∪ R as circuit
elements, and assume that I , O, and R are disjoint.) Intuitively, a state of the circuit is a
Boolean assignment to the sequential elements. The initial state is r0. In a state r ∈ 2R,
the Boolean assignment to the output signals is g(r). When the circuit is in state r ∈ 2R

and it reads an input assignment i ∈ 2I , it changes its state to f(i, r).
A trace over a set V of Boolean variables is an infinite word over the alphabet 2V ,

i.e., an element of (2V)ω . A trace of the sequential circuit C is a trace over I ∪O ∪R
that satisfies some conditions. Specifically, a sequence τ = (i0, r0,o0), (i1, r1,o1), . . .,
where ij ∈ 2I , oj ∈ 2O, and rj ∈ 2R, is a trace of C if rj+1 = f(ij, rj) and
oj = g(rj), for j ≥ 0. Thus, in modern terminology, Church was following the linear-
time approach [81] (see discussion in Section 2.1). The set of traces of C is denoted by
traces(C).
� Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, and ANI-

0216467, by BSF grant 9800096, and by a gift from the Intel Corporation. The “Y” in the
author’s middle name stands for “Ya’akov”.

O. Grumberg and H. Veith (Eds.): 25MC Festschrift, LNCS 5000, pp. 150–171, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

From Church and Prior to PSL 151

Church observed that we can associate with an infinite word w = a0, a1, . . . over
an alphabet 2V , a relational structure Mw = (IN,≤, V), with the naturals IN as the
domain, ordered by ≤, and extended by the set V of unary predicates, where j ∈ p, for
p ∈ V , precisely when p holds (i.e., is assigned 1) in ai.1 We refer to such structures as
word structures. When we refer to the vocabulary of such a structure, we refer explicitly
only to V , taking ≤ for granted.

We can now specify traces using first-order logic (FO) sentences constructed from
atomic formulas of the form x = y, x ≤ y, and p(x) for p ∈ V = I ∪ R ∪ O.2 For
example, the FO sentence

(∀x)(∃y)(x < y ∧ p(y))

says that p holds infinitely often in the trace. In a follow-up paper in 1963 [25], Church
considered also specifying traces using monadic second-order logic (MSO), where in
addition to first-order quantifiers, which range over the elements of IN , we allow also
monadic second-order quantifiers, ranging over subsets of IN , and atomic formulas of
the form Q(x), where Q is a monadic predicate variable. (This logic is also called S1S,
the “second-order theory of one successor function”.) For example, the MSO sentence,

(∃P)(∀x)(∀y)((((P (x) ∧ y = x + 1)→ (¬P (y)))∧
(((¬P (x)) ∧ y = x + 1)→ P (y)))∧
(x = 0 → P (x)) ∧ (P (x) → q(x))),

where x = 0 is an abbreviation for (¬(∃z)(z < x)) and y = x + 1 is an abbreviation
for (y > x ∧ ¬(∃z)(x < z ∧ z < y)), says that q holds at every even point on the
trace. MSO was introduced in [15,17,43,120].) In effect, Church was proposing to use
classical logic (FO or MSO) as a logic of time, by focusing on word structures. The set
of models of an FO or MSO sentence ϕ is denoted by models(ϕ).

Church posed two problems related to sequential circuits [24]:

– The DECISION problem: Given circuit C and a sentence ϕ, does ϕ hold in all traces
of C? That is, does traces(C) ⊆ models(ϕ) hold?

– The SYNTHESIS problem: Given sets I and O of input and output signals, and a
sentence ϕ over the vocabulary I ∪O, construct, if possible, a sequential circuit C
with input signals I and output signals O such that ϕ holds in all traces of C. That
is, construct C such that traces(C) ⊆ models(ϕ) holds.

In modern terminology, Church’s DECISION problem is precisely the MODEL-
CHECKING problem in the linear-time approach (see Section 2.2). This problem did not
receive much attention after [24,25], until the introduction of model checking in the early
1980s. In contrast, the SYNTHESIS problem has remained a subject of ongoing research;
see [18,75,77,105,119]. One reason that the DECISION problem did not remain a subject
of study, is the easy observation in [25] that the DECISION problem can be reduced to
the VALIDITY problem in the underlying logic (FO or MSO). Given a sequential circuit
C, we can easily generate an FO sentence αC that holds in precisely all structures asso-
ciated with traces of C. Intuitively, the sentence αC simply has to encode the transition

1 We overload notation here and treat p as both a Boolean variable and a predicate.
2 We overload notation here and treat p as both a circuit element and a predicate symbol.

152 M.Y. Vardi

and output functions of C, which are Boolean functions. Then ϕ holds in all traces of
C precisely when αC → ϕ holds in all word structures (of the appropriate vocabulary).
Thus, to solve the DECISION problem we need to solve the VALIDITY problem over
word structures. As we see next, this problem was solved in 1962.

1.2 Reasoning about Words

Church’s DECISION problem was essentially solved in 1962 by Julius Richard Büchi,
1924–1984, who showed that the VALIDITY problem over word structures is decid-
able [16]. Actually, Büchi showed the decidability of the dual problem, which is the
SATISFIABILITY problem for MSO over word structures. Büchi’s approach consisted
of extending the automata-theoretic approach, which was introduced a few years ear-
lier [15, 43, 120] for finite word structures, to (infinite) word structures. To that end,
Büchi extended automata theory to automata on infinite words.

A nondeterministic Büchi automaton on words (NBW) A = (Σ, S, S0, ρ, F) con-
sists of a finite input alphabet Σ, a finite state set S, an initial state set S0 ⊆ S, a
transition relation ρ ⊆ S × Σ × S, and an accepting state set F ⊆ S. An NBW runs
over an infinite input word w = a0, a1, . . . ∈ Σω. A run of A on w is an infinite se-
quence r = s0, s1, . . . of states in S such that s0 ∈ S0, and (si, ai, si+1) ∈ ρ, for i ≥ 0.
The run r is accepting if F is visited by r infinitely often; that is, si ∈ F for infinitely
many i’s. The word w is accepted by A if A has an accepting run on w. The language
of A, denoted L(A), is the set of words accepted by A.

Example 1. We describe graphically an NBW that accepts all words over the alphabet
{0, 1} that contain infinitely many occurrences of 1. The arrow on the left designates
the initial state, and the circle on the right designates an accepting state.

0

1
1

0

The class of languages accepted by NBWs forms the class of ω-regular languages,
which are defined in terms of regular expressions augmented with the ω-power operator
(eω denotes an infinitary iteration of e) [16].

The paradigmatic idea of the automata-theoretic approach is that we can compile
high-level logical specifications into an equivalent low-level finite-state formalism.

Theorem 1. [16] Given an MSO sentence ϕ over a vocabulary V , one can construct
an NBW Aϕ with alphabet 2V such that a word w in (2V)ω is accepted by Aϕ iff ϕ
holds in the associated word structure Mw.

From Church and Prior to PSL 153

The theorem says that models(ϕ) = L(Aϕ). Thus, the class of languages defined by
MSO sentences is precisely the class of ω-regular languages. This result was inspired
by an analogous earlier theorem for MSO over finite words [15,43,120], which showed
that MSO over finite words defines precisely the class of regular languages.

To decide whether sentence ϕ is satisfiable, that is, whether models(ϕ) �= ∅, we
need to check that L(Aϕ) �= ∅. This turns out to be an easy problem. Let A =
(Σ, S, S0, ρ, F) be an NBW. Construct a directed graph GA = (S, EA), with S as
the set of nodes, and EA = {(s, t) : (s, a, t) ∈ ρ for some a ∈ Σ}. The following
lemma is implicit in [16] and more explicit in [121].

Lemma 1. L(A) �= ∅ iff there are states s0 ∈ S0 and t ∈ F such that in GA there is a
path from s0 to t and a path from t to itself.

We thus obtain an algorithm for the SATISFIABILITY problem of MSO over word struc-
tures: given an MSO sentence ϕ, construct the NBW Aϕ and check whether L(A) �= ∅.
Since the DECISION problem can be reduced to the SATISFIABILITY problem, this also
solves the DECISION problem.

Neither Büchi nor Church analyzed the complexity of the DECISION problem. This
had to wait until 1974. Define the function exp(k, n) inductively as follows:
exp(0, n) = n and exp(k + 1, n) = 2exp(k,n). We say that a problem is nonelementary
if it can not be solved by an algorithm whose running time is bounded by exp(k, n)
for some fixed k ≥ 0; that is, the running time cannot be bounded by a tower of expo-
nentials of a fixed height. It is not too difficult to observe that the construction of the
automaton Aϕ in [16] is nonelementary. It was shown in [87,113] that the SATISFIABIL-
ITY problem for MSO is nonelementary. In fact, the problem is already nonelementary
for FO over finite words [113].

2 Thread II: Temporal Logic

2.1 From Aristotle to Kamp

The history of time in logic goes back to ancient times.3 Aristotle pondered how to
interpret sentences such as “Tomorrow there will be a sea fight,” or “Tomorrow there
will not be a sea fight.” Medieval philosophers also pondered the issue of time.4 By the
Renaissance period, philosophical interest in the logic of time seems to have waned.
There were some stirrings of interest in the 19th century, by Boole and Peirce. Peirce
wrote:

3 For a detailed history of temporal logic from ancient times to the modern period, see [91].
4 For example, William of Ockham, 1288–1348, wrote (rather obscurely for the modern reader):

“Wherefore the difference between present tense propositions and past and future tense propo-
sitions is that the predicate in a present tense proposition stands in the same way as the subject,
unless something added to it stops this; but in a past tense and a future tense proposition it
varies, for the predicate does not merely stand for those things concerning which it is truly
predicated in the past and future tense propositions, because in order for such a proposition to
be true, it is not sufficient that that thing of which the predicate is truly predicated (whether by
a verb in the present tense or in the future tense) is that which the subject denotes, although it
is required that the very same predicate is truly predicated of that which the subject denotes,
by means of what is asserted by such a proposition.”

154 M.Y. Vardi

“Time has usually been considered by logicians to be what is called ‘extra-
logical’ matter. I have never shared this opinion. But I have thought that logic
had not yet reached the state of development at which the introduction of tem-
poral modifications of its forms would not result in great confusion; and I am
much of that way of thinking yet.”

There were also some stirrings of interest in the first half of the 20th century, but
the birth of modern temporal logic is unquestionably credited to Arthur Norman Prior,
1914-1969. Prior was a philosopher, who was interested in theological and ethical is-
sues. His own religious path was somewhat convoluted; he was born a Methodist, con-
verted to Presbytarianism, became an atheist, and ended up an agnostic. In 1949, he
published a book titled “Logic and The Basis of Ethics”. He was particularly interested
in the conflict between the assumption of free will (“the future is to some extent, even if
it is only a very small extent, something we can make for ourselves”), foredestination
(“of what will be, it has now been the case that it will be”), and foreknowledge (“there
is a deity who infallibly knows the entire future”). He was also interested in modal
logic [102]. This confluence of interests led Prior to the development of temporal logic.
5 His wife, Mary Prior, recalled after his death:

“I remember his waking me one night [in 1953], coming and sitting on my bed,
. . ., and saying he thought one could make a formalised tense logic.”

Prior lectured on his new work when he was the John Locke Lecturer at the Univer-
sity of Oxford in 1955–6, and published his book “Time and Modality” in 1957 [100].6

In this book, he presented a temporal logic that is propositional logic extended with two
temporal connectives, F and P , corresponding to “sometime in the future” and “some-
time in the past”. A crucial feature of this logic is that it has an implicit notion of “now”,
which is treated as an indexical, that is, it depends on the context of utterance for its
meaning. Both future and past are defined with respect to this implicit “now”.

It is interesting to note that the linear vs. branching time dichotomy, which has been
a subject of some controversy in the computer science literature since 1980 (see [126]),
has been present from the very beginning of temporal-logic development. In Prior’s
early work on temporal logic, he assumed that time was linear. In 1958, he received a
letter from Saul Kripke,7 who wrote

“In an indetermined system, we perhaps should not regard time as a linear se-
ries, as you have done. Given the present moment, there are several possibilities
for what the next moment may be like – and for each possible next moment,
there are several possibilities for the moment after that. Thus the situation takes
the form, not of a linear sequence, but of a ‘tree’.”

5 An earlier term was tense logic; the term temporal logic was introduced in [90]. The technical
distinction between the two terms seems fuzzy.

6 Due to the arcane infix notation of the time, the book may not be too accessible to modern read-
ers, who may have difficulties parsing formulas such as CKMpMqAMKpMqMKqMp.

7 Kripke was a high-school student, not quite 18, in Omaha, Nebraska. Kripke’s interest in modal
logic was inspired by a paper by Prior on this subject [103]. Prior turned out to be the referee
of Kripke’s first paper [74].

From Church and Prior to PSL 155

Prior immediately saw the merit of Kripke’s suggestion: “the determinist sees time as
a line, and the indeterminist sees times as a system of forking paths.” He went on to
develop two theories of branching time, which he called “Ockhamist” and “Peircean”.
(Prior did not use path quantifiers; those were introduced later, in the 1980s. See Sec-
tion 3.2.)

While the introduction of branching time seems quite reasonable in the context of
trying to formalize free will, it is far from being simple philosophically. Prior argued
that the nature of the course of time is branching, while the nature of a course of events
is linear [101]. In contrast, it was argued in [90] that the nature of time is linear, but the
nature of the course of events is branching: “We have ‘branching in time,’ not ‘branch-
ing of time’.”8

During the 1960s, the development of temporal logic continued through both the
linear-time approach and the branching-time approach. There was little connection,
however, between research on temporal logic and research on classical logics, as de-
scribed in Section 1. That changed in 1968, when Johan Anthony Willem (Hans) Kamp
tied together the two threads in his doctoral dissertation.

Theorem 2. [70] Linear temporal logic with past and binary temporal connectives
(“strict until” and “strict since”) has precisely the expressive power of FO over the
ordered naturals (with monadic vocabularies).

It should be noted that Kamp’s Theorem is actually more general and asserts expressive
equivalence of FO and temporal logic over all “Dedekind-closed orders”. The introduc-
tion of binary temporal connectives by Kamp was necessary for reaching the expressive
power of FO; unary linear temporal logic, which has only unary temporal connectives,
is weaker than FO [51]. The theorem refers to FO formulas with one free variable,
which are satisfied at an element of a structure, analogously to temporal logic formulas,
which are satisfied at a point of time.

It should be noted that one direction of Kamp’s Theorem, the translation from tem-
poral logic to FO, is quite straightforward; the hard direction is the translation from FO
to temporal logic. Both directions are algorithmically effective; translating from tempo-
ral logic to FO involves a linear blowup, but translation in the other direction involves
a nonelementary blowup.

If we focus on FO sentences rather than FO formulas, then they define sets of traces
(a sentence ϕ defines models(ϕ)). A characterization of of the expressiveness of FO
sentences over the naturals, in terms of their ability to define sets of traces, was obtained
in 1979.

Theorem 3. [118] FO sentences over naturals have the expressive power of ∗-free
ω-regular expressions.

Recall that MSO defines the class of ω-regular languages. It was already shown in [44]
that FO over the naturals is weaker expressively than MSO over the naturals. Theorem 3
was inspired by an analogous theorem in [86] for finite words.

8 One is reminded of St. Augustin, who said in his Confessions: “What, then, is time? If no one
asks me, I know; but if I wish to explain it to some who should ask me, I do not know.”

156 M.Y. Vardi

2.2 The Temporal Logic of Programs

There were some early observations that temporal logic can be applied to programs.
Prior stated: “There are practical gains to be had from this study too, for example, in the
representation of time-delay in computer circuits” [101]. Also, a discussion of the ap-
plication of temporal logic to processes, which are defined as “programmed sequences
of states, deterministic or stochastic” appeared in [90].

The “big bang” for the application of temporal logic to program correctness oc-
curred with Amir Pnueli’s 1977 paper [93]. In this paper, Pnueli, inspired by [90],
advocated using future linear temporal logic (LTL) as a logic for the specification of
non-terminating programs.

LTL is a temporal logic with two temporal connectives, “next” and “until”.9 In
LTL, formulas are constructed from a set Prop of atomic propositions using the usual
Boolean connectives as well as the unary temporal connective X (“next”), and the bi-
nary temporal connective U (“until”). Additional unary temporal connectives F (“even-
tually”), and G (“always”) can be defined in terms of U . Note that all temporal connec-
tives refer to the future here, in contrast to Kamp’s “strict since” operator, which refers
to the past. Thus, LTL is a future temporal logic. For extensions with past temporal
connectives, see [83, 84, 123].

LTL is interpreted over traces over the set Prop of atomic propositions. For a trace
τ and a point i ∈ IN , the notation τ, i |= ϕ indicates that the formula ϕ holds at the
point i of the trace τ . Thus, the point i is the implicit “now” with respect to which the
formula is interpreted. We have that

– τ, i |= p if p holds at τ(i),
– τ, i |= Xϕ if τ, i + 1 |= ϕ, and
– τ, i |= ϕUψ if for some j ≥ i, we have τ, j |= ψ and for all k, i ≤ k < j, we have

τ, k |= ϕ.

The temporal connectives F and G can be defined in terms of the temporal connective
U ; Fϕ is defined as true Uϕ, and Gϕ is defined as ¬F¬ϕ. We say that τ satisfies a
formula ϕ, denoted τ |= ϕ, iff τ, 0 |= ϕ. We denote by models(ϕ) the set of traces
satisfying ϕ.

As an example, the LTL formula G(request → F grant), which refers to the atomic
propositions request and grant, is true in a trace precisely when every state in the trace
in which request holds is followed by some state in the (non-strict) future in which
grant holds. Also, the LTL formula G(request → (request U grant)) is true in a trace
precisely if, whenever request holds in a state of the trace, it holds until a state in which
grant holds is reached.

The focus on satisfaction at 0, called initial semantics, is motivated by the desire to
specify computations at their starting point. It enables an alternative version of Kamp’s
Theorem, which does not require past temporal connectives, but focuses on initial se-
mantics.

9 Unlike Kamp’s “strict until” (“p strict until q” requires q to hold in the strict future), Pnueli’s
“until” is not strict (“p until q” can be satisfied by q holding now), which is why the “next”
connective is required.

From Church and Prior to PSL 157

Theorem 4. [56] LTL has precisely the expressive power of FO over the ordered nat-
urals (with monadic vocabularies) with respect to initial semantics.

As we saw earlier, FO has the expressive power of star-free ω-regular expressions over
the naturals. Thus, LTL has the expressive power of star-free ω-regular expressions
(see [95]), and is strictly weaker than MSO. An interesting outcome of the above theo-
rem is that it lead to the following assertion regarding LTL [88]: “The corollary due to
Meyer – I have to get in my controversial remark – is that that [Theorem 4] makes it
theoretically uninteresting.” Developments since 1980 have proven this assertion to be
overly pessimistic on the merits of LTL.

Pnueli also discussed the analog of Church’s DECISION problem: given a finite-
state program P and an LTL formula ϕ, decide if ϕ holds in all traces of P . Just like
Church, Pnueli observed that this problem can be solved by reduction to MSO. Rather
than focus on sequential circuits, Pnueli focused on programs, modeled as (labeled)
transition systems [71]. A transition system M = (W, W0, R, V) consists of a set W
of states that the system can be in, a set W0 ⊆ W of initial states, a transition relation
R ⊆W 2 that indicates the allowable state transitions of the system, and an assignment
V : W → 2Prop of truth values to the atomic propositions in each state of the system.
(A transition system is essentially a Kripke structure [10].) A path in M that starts at u
is a possible infinite behavior of the system starting at u, i.e., it is an infinite sequence
u0, u1 . . . of states in W such that u0 = u, and (ui, ui+1) ∈ R for all i ≥ 0. The
sequence V (u0), V (u1) . . . is a trace of M that starts at u. It is the sequence of truth
assignments visited by the path. The language of M , denoted L(M), consists of all
traces of M that start at a state in W0. Note that L(M) is a language of infinite words
over the alphabet 2Prop. The language L(M) can be viewed as an abstract description
of the system M , describing all possible traces. We say that M satisfies an LTL formula
ϕ if all traces in L(M) satisfy ϕ, that is, if L(M) ⊆ models(ϕ). When W is finite, we
have a finite-state system, and can apply algorithmic techniques.

What about the complexity of LTL reasoning? Recall from Section 1 that satis-
fiability of FO over trace structures is nonelementary. In contrast, it was shown in
[60, 61, 108, 109, 110, 132, 133] that LTL SATISFIABILITY is elementary; in fact, it is
PSPACE-complete. It was also shown that the DECISION problem for LTL with respect
to finite transition systems is PSPACE-complete [108, 109, 110]. The basic technique
for proving these elementary upper bounds is the tableau technique, which was adapted
from dynamic logics [98] (see Section 3.1). Thus, even though FO and LTL are expres-
sively equivalent, they have dramatically different computational properties, as LTL
reasoning is in PSPACE, while FO reasoning is nonelementary.

The second “big bang” in the application of temporal logic to program correctness
was the introduction of model checking by Edmund Melson Clarke and Ernest Allen
Emerson [28] and by Jean-Pierre Queille and Joseph Sifakis [104]. The two papers
used two different branching-time logics. Clarke and Emerson used CTL (inspired by
the branching-time logic UB of [9]), which extends LTL with existential and universal
path quantifiers E and A. Queille and Sifakis used a logic introduced by Leslie Lamport
[81], which extends propositional logic with the temporal connectives POT (which
corresponds to the CTL operator EF) and INEV (which corresponds to the CTL
operator AF). The focus in both papers was on model checking, which is essentially

158 M.Y. Vardi

what Church called the DECISION problem: does a given finite-state program, viewed
as a finite transition system, satisfy its given temporal specification. In particular, Clarke
and Emerson showed that model checking transition systems of size m with respect to
formulas of size n can be done in time polynomial in m and n. This was refined later to
O(mn) (even in the presence of fairness constraints, which restrict attention to certain
infinite paths in the underlying transition system) [29,30]. We drop the term “DECISION

problem” from now on, and replace it with the term “MODEL-CHECKING problem”.10

It should be noted that the linear complexity of model checking refers to the size of
the transition system, rather than the size of the program that gave rise to that system.
For sequential circuits, transition-system size is essentially exponential in the size of
the description of the circuit (say, in some Hardware Description Language). This is
referred to as the “state-explosion problem” [31]. In spite of the state-explosion prob-
lem, in the first few years after the publication of the first model-checking papers in
1981-2, Clarke and his students demonstrated that model checking is a highly success-
ful technique for automated program verification [13,33]. By the late 1980s, automated
verification had become a recognized research area. Also by the late 1980s, symbolic
model checking was developed [19,20], and the SMV tool, developed at CMU by Ken-
neth Laughlin McMillan [85], was starting to have an industrial impact. See [27] for
more details.

The detailed complexity analysis in [29] inspired a similar detailed analysis of linear
time model checking. It was shown in [82] that model checking transition systems of
size m with respect to LTL formulas of size n can be done in time m2O(n). (This again
was shown using a tableau-based technique.) While the bound here is exponential in n,
the argument was that n is typically rather small, and therefore an exponential bound is
acceptable.

2.3 Back to Automata

Since LTL can be translated to FO, and FO can be translated to NBW, it is clear that
LTL can be translated to NBW. Going through FO, however, would incur, in general, a
nonelementary blowup. In 1983, Pierre Wolper, Aravinda Prasad Sistla, and I showed
that this nonelementary blowup can be avoided.

Theorem 5. [130, 134] Given an LTL formula ϕ of size n, one can construct an NBW
Aϕ of size 2O(n) such that a trace σ satisfies ϕ if and only if σ is accepted by Aϕ.

It now follows that we can obtain a PSPACE algorithm for LTL SATISFIABILITY: given
an LTL formula ϕ, we construct Aϕ and check that Aϕ �= ∅ using the graph-theoretic
approach described earlier. We can avoid using exponential space, by constructing the
automaton on the fly [130, 134].

What about model checking? We know that a transition system M satisfies an LTL
formula ϕ if L(M) ⊆ models(ϕ). It was then observed in [129] that the following are
equivalent:

10 The model-checking problem is analogous to database query evaluation, where we check the
truth of a logical formula, representing a query, with respect to a database, viewed as a finite
relational structure. Interestingly, the study of the complexity of database query evaluation
started about the same time as that of model checking [122].

From Church and Prior to PSL 159

– M satisfies ϕ
– L(M) ⊆ models(ϕ)
– L(M) ⊆ L(Aϕ)
– L(M) ∩ ((2Prop)ω − L(Aϕ)) = ∅
– L(M) ∩ L(A¬ϕ) = ∅
– L(M ×A¬ϕ) = ∅

Thus, rather than complementing Aϕ using an exponential complementation construc-
tion [16,76,112], we complement the LTL property using logical negation. It is easy to
see that we can now get the same bound as in [82]: model checking programs of size m
with respect to LTL formulas of size n can be done in time m2O(n). Thus, the optimal
bounds for LTL satisfiability and model checking can be obtained without resorting to
ad-hoc tableau-based techniques; the key is the exponential translation of LTL to NBW.

One may wonder whether this theory is practical. Reduction to practice took over a
decade of further research, which saw the development of

– an optimized search algorithm for explicit-state model checking [36, 37],
– a symbolic, BDD-based11 algorithm for NBW nonemptiness [19, 20, 49],
– symbolic algorithms for LTL to NBW translation [19, 20, 32], and
– an optimized explicit algorithm for LTL to NBW translation [58].

By 1995, there were two model-checking tools that implemented LTL model checking
via the automata-theoretic approach: Spin [68] is an explicit-state LTL model checker,
and Cadence’s SMV is a symbolic LTL model checker.12 See [127] for a description
of algorithmic developments since the mid 1990s. Additional tools today are VIS [12],
NuSMV [26], and SPOT [38].

It should be noted that Robert Kurshan developed the automata-theoretic approach
independently, also going back to the 1980s [1, 2, 78]. In his approach (as also in [106,
134]), one uses automata to represent both the system and its specification [79].13 The
first implementation of COSPAN, a model-checking tool that is based on this approach
[62], also goes back to the 1980s; see [80].

2.4 Enhancing Expressiveness

Can the development of LTL model checking [82, 129] be viewed as a satisfactory
solution to Church’s DECISION problem? Almost, but not quite, since, as we observed
earlier, LTL is not as expressive as MSO, which means that LTL is expressively weaker
than NBW. Why do we need the expressive power of NBWs? First, note that once
we add fairness to transitions systems (sse [29, 30]), they can be viewed as variants of
NBWs. Second, there are good reasons to expect the specification language to be as
expressive as the underlying model of programs [94]. Thus, achieving the expressive

11 To be precise, one should use the acronym ROBDD, for Reduced Ordered Binary Decision
Diagrams [14].

12 Cadence’s SMV is also a CTL model checker. See
www.cadence.com/webforms/cbl software/index.aspx.

13 The connection to automata is somewhat difficult to discern in the early papers [1, 2].

160 M.Y. Vardi

power of NBWs, which we refer to as ω-regularity, is a desirable goal. This motivated
efforts since the early 1980s to extend LTL.

The first attempt along this line was made by Wolper [132, 133], who defined ETL
(for Extended Temporal Logic), which is LTL extended with grammar operators. He
showed that ETL is more expressive than LTL, while its SATISFIABILITY problem can
still be solved in exponential time (and even PSPACE [108, 109, 110]). Then, Sistla,
Wolper and I showed how to extend LTL with automata connectives, reaching ω-
regularity, without losing the PSPACE upper bound for the SATISFIABILITY prob-
lem [130, 134]. Actually, three syntactical variations, denoted ETLf , ETLl, and ETLr

were shown to be expressively equivalent and have these properties [130, 134].
Two other ways to achieve ω-regularity were discovered in the 1980s. The first is to

enhance LTL with monadic second-order quantifiers as in MSO, which yields a logic,
QPTL, with a nonelementary SATISFIABILITY problem [111, 112]. The second is to
enhance LTL with least and greatest fixpoints [6, 124], which yields a logic, μLTL,
that achieves ω-regularity, and has a PSPACE upper bound on its SATISFIABILITY and
MODEL-CHECKING problems [124]. For example, the (not too readable) formula

(νP)(μQ)(P ∧X(p ∨Q)),

where ν and μ denote greatest and least fixpoint operators, respectively, is equivalent to
the LTL formula GFp, which says that p holds infinitely often.

3 Thread III: Dynamic and Branching-Time Logics

3.1 Dynamic Logics

In 1976, a year before Pnueli proposed using LTL to specify programs, Vaughan Ronald
Pratt proposed using dynamic logic, an extension of modal logic, to specify programs
[96].14 In modal logic �ϕ means that ϕ holds in all worlds that are possible with respect
to the current world [10]. Thus, �ϕ can be taken to mean that ϕ holds after an execution
of a program step, taking the transition relation of the program to be the possibility
relation of a Kripke structure. Pratt proposed the addition of dynamic modalities [e]ϕ,
where e is a program, which asserts that ϕ holds in all states reachable by an execution
of the program e. Dynamic logic can then be viewed as an extension of Hoare logic,
since ψ → [e]ϕ corresponds to the Hoare triple {ψ}e{ϕ} (see [3]). See [64] for an
extensive coverage of dynamic logic.

In 1977, a propositional version of Pratt’s dynamic logic, called PDL, was proposed,
in which programs are regular expressions over atomic programs [52,53]. It was shown
there that the SATISFIABILITY problem for PDL is in NEXPTIME and EXPTIME-hard.
Pratt then proved an EXPTIME upper bound, adapting tableau techniques from modal
logic [97,98]. (We saw earlier that Wolper then adapted these techniques to linear-time
logic.)

Pratt’s dynamic logic was designed for terminating programs, while Pnueli was in-
terested in nonterminating programs. This motivated various extensions of dynamic

14 See discussion of precursor and related developments, such as [21, 34, 50, 107], in [64].

From Church and Prior to PSL 161

logic to nonterminating programs [67, 115, 114, 116]. Nevertheless, these logics are
much less natural for the specification of ongoing behavior than temporal logic. They
inspired, however, the introduction of the (modal) μ-calculus by Dexter Kozen [72,73].
The μ-calculus is an extension of modal logic with least and greatest fixpoints. It sub-
sumes expressively essentially all dynamic and temporal logics [11]. Kozen’s paper
was inspired by previous papers that showed the usefulness of fixpoints in characteriz-
ing correctness properties of programs [45, 92] (see also [99]). In turn, the μ-calculus
inspired the introduction of μLTL, mentioned earlier. The μ-calculus also played an
important role in the development of symbolic model checking [19, 20, 49].

3.2 Branching-Time Logics

Dynamic logic provided a branching-time approach to reasoning about programs, in
contrast to Pnueli’s linear-time approach. Lamport was the first to study the dichotomy
between linear and branching time in the context of program correctness [81]. This was
followed by the introduction of the branching-time logic UB, which extends unary LTL
(LTL without the temporal connective “until”) with the existential and universal path
quantifiers, E and A [9]. Path quantifiers enable us to quantify over different future
behavior of the system. By adapting Pratt’s tableau-based method for PDL to UB, it
was shown that its SATISFIABILITY problem is in EXPTIME [9]. Clarke and Emerson
then added the temporal connective “until” to UB and obtained CTL [28]. (They did not
focus on the SATISFIABILITY problem for CTL, but, as we saw earlier, on its MODEL-
CHECKING problem; the SATISFIABILITY problem was shown later to be solvable in
EXPTIME [47].) Finally, it was shown that LTL and CTL have incomparable expressive
power, leading to the introduction of the branching-time logic CTL∗, which unifies LTL
and CTL [46, 48].

The key feature of branching-time logics in the 1980s was the introduction of ex-
plicit path quantifiers in [9]. This was an idea that was not discovered by Prior and his
followers in the 1960s and 1970s. Most likely, Prior would have found CTL∗ satisfac-
tory for his philosophical applications and would have seen no need to introduce the
“Ockhamist” and “Peircean” approaches.

3.3 Combining Dynamic and Temporal Logics

By the early 1980s it became clear that temporal logics and dynamic logics provide
two distinct perspectives for specifying programs: the first is state based, while the sec-
ond is action based. Various efforts have been made to combine the two approaches.
These include the introduction of Process Logic [63] (branching time), Yet Another
Process Logic [128] (branching time), Regular Process Logic [66] (linear time), Dy-
namic LTL [59] (linear time), and RCTL [8] (branching time), which ultimately evolved
into Sugar [7]. RCTL/Sugar is unique among these logics in that it did not attempt to
borrow the action-based part of dynamic logic. It is a state-based branching-time logic
with no notion of actions. Rather, what it borrowed from dynamic logic was the use of
regular-expression-based dynamic modalities. Unlike dynamic logic, which uses reg-
ular expressions over program statements, RCTL/Sugar uses regular expressions over

162 M.Y. Vardi

state predicates, analogously to the automata of ETL [130, 134], which run over se-
quences of formulas.

4 Thread IV: From LTL to ForSpec and PSL

In the late 1990s and early 2000s, model checking was having an increasing industrial
impact. That led to the development of two industrial temporal logics based on LTL:
ForSpec, developed by Intel, and PSL, developed by an industrial standards committee.

4.1 From LTL to ForSpec

Intel’s involvement with model checking started in 1990, when Kurshan, spending a sab-
batical year in Israel, conducted a successful feasibility study at the Intel Design Center
(IDC) in Haifa, using COSPAN, which at that point was a prototype tool; see [80]. In
1992, IDC started a pilot project using SMV. By 1995, model checking was used by sev-
eral design projects at Intel, using an internally developed model checker based on SMV.
Intel users have found CTL to be lacking in expressive power and the Design Technol-
ogy group at Intel developed its own specification language, FSL. The FSL language
was a linear-time logic, and it was model checked using the automata-theoretic ap-
proach, but its design was rather ad-hoc, and its expressive power was unclear; see [54].

In 1997, Intel’s Design Technology group at IDC embarked on the development of
a second-generation model-checking technology. The goal was to develop a model-
checking engine from scratch, as well as a new specification language. A BDD-based
model checker was released in 1999 [55], and a SAT-based model checker was released
in 2000 [35].

I got involved in the design of the second-generation specification language in 1997.
That language, ForSpec, was released in 2000 [5]. The first issue to be decided was
whether the language should be linear or branching. This led to an in-depth examination
of this issue [126], and the decision was to pursue a linear-time language. An obvious
candidate was LTL; we saw that by the mid 1990s there were both explicit-state and
symbolic model checkers for LTL, so there was no question of feasibility. I had numer-
ous conversations with Limor Fix, Michael Hadash, Yonit Kesten, and Moshe Sananes
on this issue. The conclusion was that LTL is not expressive enough for industrial us-
age. In particular, many properties that are expressible in FSL are not expressible in
LTL. Thus, it turned out that the theoretical considerations regarding the expressiveness
of LTL, i.e., its lack of ω-regularity, had practical significance. I offered two extensions
of LTL; as we saw earlier both ETL and μLTL achieve ω-regularity and have the same
complexity as LTL. Neither of these proposals was accepted, due to the perceived dif-
ficulty of usage of such logics by Intel validation engineers, who typically have only
basic familiarity with automata theory and logic.

These conversations continued in 1998, now with Avner Landver. Avner also argued
that Intel validation engineers would not be receptive to the automata-based formalism
of ETL. Being familiar with RCTL/Sugar and its dynamic modalities [7,8], he asked me
about regular expressions, and my answer was that regular expressions are equivalent
to automata [69], so the automata of ETLf , which extends LTL with automata on finite

From Church and Prior to PSL 163

words, can be replaced by regular expressions over state predicates. This lead to the
development of RELTL, which is LTL augmented by the dynamic regular modalities of
dynamic logic (interpreted linearly, as in ETL). Instead of the dynamic-logic notation
[e]ϕ, ForSpec uses the more readable (to engineers) (e triggers ϕ), where e is a regular
expression over state predicates (e.g., (p∨q)∗, (p∧q)), and ϕ is a formula. Semantically,
τ, i |= (e triggers ϕ) if, for all j ≥ i, if τ [i, j] (that is, the finite word τ(i), . . . , τ(j))
“matches” e (in the intuitive formal sense), then τ, j |= ϕ; see [22]. Using the ω-
regularity of ETLf , it is now easy to show that RELTL also achieves ω-regularity [5].

While the addition of dynamic modalities to LTL is sufficient to achieve ω-regularity,
we decided to also offer direct support to two specification modes often used by ver-
ification engineers at Intel: clocks and resets. Both clocks and resets are features that
are needed to address the fact that modern semiconductor designs consist of interacting
parallel modules. While clocks and resets have a simple underlying intuition, defining
their semantics formally is quite nontrivial. ForSpec is essentially RELTL, augmented
with features corresponding to clocks and resets, as we now explain.

Today’s semiconductor designs are still dominated by synchronous circuits. In syn-
chronous circuits, clock signals synchronize the sequential logic, providing the designer
with a simple operational model. While the asynchronous approach holds the promise
of greater speed (see [23]), designing asynchronous circuits is significantly harder than
designing synchronous circuits. Current design methodology attempts to strike a com-
promise between the two approaches by using multiple clocks. This results in archi-
tectures that are globally asynchronous but locally synchronous. The temporal-logic
literature mostly ignores the issue of explicitly supporting clocks. ForSpec supports
multiple clocks via the notion of current clock. Specifically, ForSpec has a construct
change on c ϕ, which states that the temporal formula ϕ is to be evaluated with re-

spect to the clock c; that is, the formula ϕ is to be evaluated in the trace defined by the
high phases of the clock c. The key feature of clocks in ForSpec is that each subformula
may advance according to a different clock [5].

Another feature of modern designs’ consisting of interacting parallel modules is the
fact that a process running on one module can be reset by a signal coming from another
module. As noted in [117], reset control has long been a critical aspect of embedded
control design. ForSpec directly supports reset signals. The formula accept on a ϕ
states that the property ϕ should be checked only until the arrival of the reset signal a,
at which point the check is considered to have succeeded. In contrast, reject on r ϕ
states that the property ϕ should be checked only until the arrival of the reset signal r, at
which point the check is considered to have failed. The key feature of resets in ForSpec
is that each subformula may be reset (positively or negatively) by a different reset signal;
for a longer discussion see [5].

ForSpec is an industrial property-specification language that supports hardware-
oriented constructs as well as uniform semantics for formal and dynamic validation,
while at the same time it has a well understood expressiveness (ω-regularity) and com-
putational complexity (SATISFIABILITY and MODEL-CHECKING problems have the
same complexity for ForSpec as for LTL) [5]. The design effort strove to find an
acceptable compromise, with trade-offs clarified by theory, between conflicting de-
mands, such as expressiveness, usability, and implementability. Clocks and resets, both

164 M.Y. Vardi

important to hardware designers, have a clear intuitive semantics, but formalizing this
semantics is nontrivial. The rigorous semantics, however, not only enabled mechani-
cal verification of various theorems about the language, but also served as a reference
document for the implementors. The implementation of model checking for ForSpec
followed the automata-theoretic approach, using alternating automata as advocated
in [125] (see [57]).

4.2 From ForSpec to PSL

In 2000, the Electronic Design Automation Association instituted a standardization
body called Accellera.15 Accellera’s mission is to drive worldwide development and
use of standards required by systems, semiconductor and design tools companies. Ac-
cellera decided that the development of a standard specification language is a require-
ment for formal verification to become an industrial reality (see [80]). Since the focus
was on specifying properties of designs rather than designs themselves, the chosen term
was “property specification language” (PSL). The PSL standard committee solicited in-
dustrial contributions and received four language contributions: CBV, from Motorola,
ForSpec, from Intel, Temporal e, from Verisity [89], and Sugar, from IBM.

The committee’s discussions were quite fierce.16 Ultimately, it became clear that
while technical considerations play an important role, industrial committees’ decisions
are ultimately made for business considerations. In that contention, IBM had the upper
hand, and Accellera chose Sugar as the base language for PSL in 2003. At the same
time, the technical merits of ForSpec were accepted and PSL adopted all the main
features of ForSpec. In essence, PSL (the current version 1.1) is LTL, extended with
dynamic modalities (referred to as the regular layer), clocks, and resets (called aborts).
PSL did inherit the syntax of Sugar, and does include a branching-time extension as an
acknowledgment to Sugar.17

There was some evolution of PSL with respect to ForSpec. After some debate on
the proper way to define resets [4], ForSpec’s approach was essentially accepted after
some reformulation [41]. ForSpec’s fundamental approach to clocks, which is semantic,
was accepted, but modified in some important details [42]. In addition to the dynamic
modalities, borrowed from dynamic logic, PSL also has weak dynamic modalities [40],
which are reminiscent of “looping” modalities in dynamic logic [67, 65]. Today PSL
1.1 is an IEEE Standard 1850–2005, and continues to be refined by the IEEE P1850
PSL Working Group.18

Practical use of ForSpec and PSL has shown that the regular layer (that is, the dy-
namic modalities), is highly popular with verification engineers. Another standardized
property specification language, called SVA (for SystemVerilog Assertions), is based, in
essence, on that regular layer [131].

15 See http://www.accellera.org/.
16 See http://www.eda-stds.org/vfv/.
17 See [39] and language reference manual at
http://www.eda.org/vfv/docs/PSL-v1.1.pdf and

18 See http://www.eda.org/ieee-1850/.

From Church and Prior to PSL 165

5 Contemplation

The evolution of ideas, from Church and Prior to PSL, seems to be an amazing devel-
opment. It reminds me of the medieval period, when building a cathedral spanned more
than a mason’s lifetime. Many masons spend their whole lives working on a cathedral,
never seeing it to completion. We are fortunate to see the completion of this particu-
lar “cathedral”. Just like the medieval masons, our contributions are often smaller than
we’d like to consider them, but even small contributions can have a major impact. Un-
like the medieval cathedrals, the scientific cathedral has no architect; the construction is
driven by a complex process, whose outcome is unpredictable. Much that has been dis-
covered is forgotten and has to be rediscovered. It is hard to fathom what our particular
“cathedral” will look like in 50 years.

Acknowledgments. I am grateful to E. Clarke, A. Emerson, R. Goldblatt, A. Pnueli,
P. Sistla, P. Wolper for helping me trace the many threads of this story, to D. Fisman,
C. Eisner, J. Halpern, D. Harel and T. Wilke for their many useful comments on earlier
drafts of this paper, and to S. Nain, K. Rozier, and D. Tabakov for proofreading earlier
drafts. I’d also like to thank K. Rozier for her help with graphics.

References

1. Aggarwal, S., Kurshan, R.P.: Automated implementation from formal specification. In:
Proc. 4th Int’l Workshop on Protocol Specification, Testing and Verification, pp. 127–136.
North-Holland (1984)

2. Aggarwal, S., Kurshan, R.P., Sharma, D.: A language for the specification and analysis of
protocols. In: Proc. 3rd Int’l Workshop on Protocol Specification, Testing, and Verification,
pp. 35–50. North-Holland (1983)

3. Apt, K., Olderog, E.R.: Verification of Sequential and Concurrent Programs. Springer
(2006)

4. Armoni, R., Bustan, D., Kupferman, O., Vardi, M.Y.: Resets vs. aborts in linear temporal
logic. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619,
pp. 65–80. Springer, Heidelberg (2003)

5. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-
Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The ForSpec temporal logic:
A new temporal property-specification logic. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS
2002 and TACAS 2002. LNCS, vol. 2280, pp. 211–296. Springer, Heidelberg (2002)

6. Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal, B., Barringer,
H., Pnueli, A. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 62–74. Springer,
Heidelberg (1989)

7. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The temporal
logic Sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp.
363–367. Springer, Heidelberg (2001)

8. Beer, I., Ben-David, S., Landver, A.: On-the-fly model checking of RCTL formulas. In: Y.
Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 184–194. Springer, Heidelberg (1998)

9. Ben-Ari, M., Manna, Z., Pnueli, A.: The logic of nexttime. In: Proc. 8th ACM Symp. on
Principles of Programming Languages, pp. 164–176 (1981)

10. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2002)

166 M.Y. Vardi

11. Bradfield, J., Stirling, C.: PDL and modal μ-calculus. In: Blackburn, P., van Benthem, J.,
Wolter, F. (eds.) Handbook of Modal Logic, Elsevier (2006)

12. Brayton, R.K., Hachtel, G.D., Sangiovanni-Vincentelli, A., Somenzi, F., Aziz, A., Cheng,
S.-T., Edwards, S., Khatri, S., Kukimoto, T., Pardo, A., Qadeer, S., Ranjan, R.K., Sarwary,
S., Shiple, T.R., Swamy, G., Villa, T.: VIS: a system for verification and synthesis. In: Alur,
R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg
(1996)

13. Browne, M.C., Clarke, E.M., Dill, D.L., Mishra, B.: Automatic verification of sequential
circuits using temporal logic. IEEE Transactions on Computing C-35, 1035–1044 (1986)

14. Bryant, R.E.: Graph-based algorithms for Boolean-function manipulation. IEEE Transac-
tions on Computing C-35(8), 677–691 (1986)

15. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeit. Math. Logik und
Grundl. Math. 6, 66–92 (1960)

16. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. Int.
Congress on Logic, Method, and Philosophy of Science. 1960, pp. 1–12. Stanford Uni-
versity Press (1962)

17. Büchi, J.R., Elgot, C.C., Wright, J.B.: The non-existence of certain algorithms for finite
automata theory (abstract). Notices Amer. Math. Soc. 5, 98 (1958)

18. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans.
AMS 138, 295–311 (1969)

19. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. In: Proc. 5th IEEE Symp. on Logic in Computer Science, pp.
428–439 (1990)

20. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. Information and Computation 98(2), 142–170 (1992)

21. Burstall, R.M.: Program proving as hand simulation with a little induction. In: Information
Processing 1974, Stockholm, Sweden, pp. 308–312. International Federation for Informa-
tion Processing, North-Holland (1974)

22. Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.Y.: Regular vacuity. In:
Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 191–206. Springer,
Heidelberg (2005)

23. Nowick, S.M., van Berkel, C.H., Josephs, M.B.: Applications of asynchronous circuits.
Proceedings of the IEEE 87(2), 223–233 (1999)

24. Church, A.: Applicaton of recursive arithmetics to the problem of circuit synthesis. In: Sum-
maries of Talks Presented at The Summer Institute for Symbolic Logic. Communications
Research Division, Institute for Defense Analysis, pp. 3–50 (1957)

25. Church, A.: Logic, arithmetics, and automata. In: Proc. Int. Congress of Mathematicians,
1962, Institut Mittag-Leffler, pp. 23–35 (1963)

26. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model checking. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer,
Heidelberg (2002)

27. Clarke, E.M.: The birth of model checking. In: Grumberg, O., Veith, H. (eds.) 25 Years of
Model Checking. LNCS, vol. 5000, pp. 1–26. Springer, Heidelberg (2008, this volume)

28. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs. LNCS, vol. 131,
pp. 52–71. Springer, Heidelberg (1981)

29. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite state concur-
rent systems using temporal logic specifications: A practical approach. In: Proc. 10th ACM
Symp. on Principles of Programming Languages, pp. 117–126 (1983)

From Church and Prior to PSL 167

30. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM Transactions on Programming Lan-
guagues and Systems 8(2), 244–263 (1986)

31. Clarke, E.M., Grumberg, O.: Avoiding the state explosion problem in temporal logic model-
checking algorithms. In: Proc. 16th ACM Symp. on Principles of Distributed Computing,
pp. 294–303 (1987)

32. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking. In: Dill,
D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 415–427. Springer, Heidelberg (1994)

33. Clarke, E.M., Mishra, B.: Hierarchical verification of asynchronous circuits using temporal
logic. Theoretical Computer Science 38, 269–291 (1985)

34. Constable, R.L.: On the theory of programming logics. In: Proc. 9th ACM Symp. on Theory
of Computing, pp. 269–285 (1977)

35. Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi, M.Y.: Benefits
of bounded model checking at an industrial setting. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 436–453. Springer, Heidelberg (2001)

36. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory efficient algorithms
for the verification of temporal properties. In: Clarke, E., Kurshan, R.P. (eds.) CAV 1990.
LNCS, vol. 531, pp. 233–242. Springer, Heidelberg (1991)

37. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory efficient algorithms
for the verification of temporal properties. Formal Methods in System Design 1, 275–288
(1992)

38. Duret-Lutz, A., Poitrenaud, D.: SPOT: An extensible model checking library using
transition-based generalized büchi automata. In: Proc. 12th Int’l Workshop on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems, pp. 76–83. IEEE
Computer Society (2004)

39. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer (2006)
40. Eisner, C., Fisman, D., Havlicek, J.: A topological characterization of weakness. In: Proc.

24th ACM Symp. on Principles of Distributed Computing, pp. 1–8 (2005)
41. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.: Rea-

soning with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV
2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)

42. Eisner, C., Fisman, D., Havlicek, J., McIsaac, A., Van Campenhout, D.: The definition of a
temporal clock operator. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 857–870. Springer, Heidelberg (2003)

43. Elgot, C.: Decision problems of finite-automata design and related arithmetics. Trans. Amer.
Math. Soc. 98, 21–51 (1961)

44. Elgot, C.C., Wright, J.: Quantifier elimination in a problem of logical design. Michigan
Math. J. 6, 65–69 (1959)

45. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel programs
using fixpoints. In: Proc. 7th Int. Colloq. on Automata, Languages, and Programming, pp.
169–181 (1980)

46. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branching versus
linear time. In: Proc. 10th ACM Symp. on Principles of Programming Languages, pp. 127–
140 (1983)

47. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the temporal logic
of branching time. Journal of Computer and Systems Science 30, 1–24 (1985)

48. Emerson, E.A., Halpern, J.Y.: Sometimes and not never revisited: On branching versus
linear time. Journal of the ACM 33(1), 151–178 (1986)

49. Emerson, E.A., Lei, C.-L.: Efficient model checking in fragments of the propositional μ-
calculus. In: Proc. 1st IEEE Symp. on Logic in Computer Science, pp. 267–278 (1986)

168 M.Y. Vardi

50. Engeler, E.: Algorithmic properties of structures. Math. Syst. Theory 1, 183–195 (1967)
51. Etessami, K., Vardi, M.Y., Wilke, T.: First-order logic with two variables and unary temporal

logic. Inf. Comput. 179(2), 279–295 (2002)
52. Fischer, M.J., Ladner, R.E.: Propositional modal logic of programs (extended abstract). In:

Proc. 9th ACM Symp. on Theory of Computing, pp. 286–294 (1977)
53. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of

Computer and Systems Science 18, 194–211 (1979)
54. Fix, L.: Fifteen years of formal property verification at intel. This Volume (2007)
55. Fix, L., Kamhi, G.: Adaptive variable reordering for symbolic model checking. In: Proc.

ACM/IEEE Int’l Conf. on Computer Aided Design, pp. 359–365 (1998)
56. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In: Proc.

7th ACM Symp. on Principles of Programming Languages, pp. 163–173 (1980)
57. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H.,

Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)
58. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of

linear temporal logic. In: Dembiski, P., Sredniawa, M. (eds.) Protocol Specification, Testing,
and Verification, pp. 3–18. Chapman & Hall (1995)

59. Hafer, T., Thomas, W.: Computation tree logic CTL� and path quantifiers in the monadic
theory of the binary tree. In: Ottmann, T. (ed.) Automata, Languages and Programming.
LNCS, vol. 267, pp. 269–279. Springer, Heidelberg (1987)

60. Halpern, J.Y., Reif, J.H.: The propositional dynamic logic of deterministic, well-structured
programs (extended abstract). In: Proc. 22nd IEEE Symp. on Foundations of Computer
Science, pp. 322–334 (1981)

61. Halpern, J.Y., Reif, J.H.: The propositional dynamic logic of deterministic, well-structured
programs. Theor. Comput. Sci. 27, 127–165 (1983)

62. Hardin, R.H., Har’el, Z., Kurshan, R.P.: COSPAN. In: Alur, R., Henzinger, T.A. (eds.) CAV
1996. LNCS, vol. 1102, pp. 423–427. Springer, Heidelberg (1996)

63. Harel, D., Kozen, D., Parikh, R.: Process logic: Expressiveness, decidability, completeness.
J. Comput. Syst. Sci. 25(2), 144–170 (1982)

64. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
65. Harel, D., Peleg, D.: More on looping vs. repeating in dynamic logic. Inf. Process.

Lett. 20(2), 87–90 (1985)
66. Harel, D., Peleg, D.: Process logic with regular formulas. Theoreti. Comp. Sci. 38(2–3),

307–322 (1985)
67. Harel, D., Sherman, R.: Looping vs. repeating in dynamic logic. Inf. Comput. 55(1–3),

175–192 (1982)
68. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engineer-

ing 23(5), 279–295 (1997)
69. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computa-

tion. Addison-Wesley (1979)
70. Kamp, J.A.W.: Tense Logic and the Theory of Order. PhD thesis, UCLA (1968)
71. Keller, R.M.: Formal verification of parallel programs. Communications of the ACM 19,

371–384 (1976)
72. Kozen, D.: Results on the propositional μ-calculus. In: Nielsen, M., Schmidt, E.M. (eds.)

ICALP 1982. LNCS, vol. 140, pp. 348–359. Springer, Heidelberg (1982)
73. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science 27, 333–

354 (1983)
74. Kripke, S.: A completeness theorem in modal logic. Journal of Symbolic Logic 24, 1–14

(1959)
75. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In: Ball, T.,

Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Heidelberg (2006)

From Church and Prior to PSL 169

76. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Transac-
tions on Computational Logic 2(2), 408–429 (2001)

77. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proc. 46th IEEE Symp. on
Foundations of Computer Science, pp. 531–540 (2005)

78. Kurshan, R.P.: Analysis of discrete event coordination. In: de Bakker, J.W., de Roever, W.-
P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 414–453. Springer, Heidelberg
(1990)

79. Kurshan, R.P.: Computer Aided Verification of Coordinating Processes. Princeton Univ.
Press (1994)

80. Kurshan, R.P.: Verification technology transfer. In: Grumberg, O., Veith, H. (eds.) 25 Years
of Model Checking. LNCS, vol. 5000, pp. 46–64. Springer, Heidelberg (2008, this volume)

81. Lamport, L.: “Sometimes” is sometimes “not never” - on the temporal logic of programs.
In: Proc. 7th ACM Symp. on Principles of Programming Languages, pp. 174–185 (1980)

82. Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy their
linear specification. In: Proc. 12th ACM Symp. on Principles of Programming Languages,
pp. 97–107 (1985)

83. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R. (ed.) Logic of
Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985)

84. Markey, N.: Temporal logic with past is exponentially more succinct. EATCS Bulletin 79,
122–128 (2003)

85. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
86. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Pres (1971)
87. Meyer, A.R.: Weak monadic second order theory of successor is not elementary recursive.

In: Proc. Logic Colloquium. Lecture Notes in Mathematics, vol. 453, pp. 132–154. Springer
(1975)

88. Meyer, A.R.: Ten thousand and one logics of programming. Technical report, MIT, MIT-
LCS-TM-150 (1980)

89. Morley, M.J.: Semantics of temporal e. In: Melham, T.F., Moller, F.G. (eds.) Banff 1999
Higher Order Workshop (Formal Methods in Computation), University of Glasgow, De-
partment of Computing Science Technical Report (1999)

90. Urquhart, A., Rescher, N.: Temporal Logic. Springer (1971)
91. Øhrstrøm, P., Hasle, P.F.V.: Temporal Logic: from Ancient Times to Artificial Intelligence.

Studies in Linguistics and Philosophy, vol. 57. Kluwer (1995)
92. Park, D.: Finiteness is μ-ineffable. Theoretical Computer Science 3, 173–181 (1976)
93. Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symp. on Foundations of

Computer Science, pp. 46–57 (1977)
94. Pnueli, A.: Linear and branching structures in the semantics and logics of reactive systems.

In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 15–32. Springer, Heidelberg (1985)
95. Pnueli, A., Zuck, L.: In and out of temporal logic. In: Proc. 8th IEEE Symp. on Logic in

Computer Science, pp. 124–135 (1993)
96. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: Proc. 17th IEEE Symp. on

Foundations of Computer Science, pp. 109–121 (1976)
97. Pratt, V.R.: A practical decision method for propositional dynamic logic: Preliminary report.

In: Proc. 10th Annual ACM Symposium on Theory of Computing, pp. 326–337 (1978)
98. Pratt, V.R.: A near-optimal method for reasoning about action. Journal of Computer and

Systems Science 20(2), 231–254 (1980)
99. Pratt, V.R.: A decidable μ-calculus: preliminary report. In: Proc. 22nd IEEE Symp. on

Foundations of Computer Science, pp. 421–427 (1981)
100. Prior, A.: Time and Modality. Oxford University Press (1957)
101. Prior, A.: Past, Present, and Future. Clarendon Press (1967)

170 M.Y. Vardi

102. Prior, A.N.: Modality de dicto and modality de re. Theoria 18, 174–180 (1952)
103. Prior, A.N.: Modality and quantification in s5. J. Symbolic Logic 21, 60–62 (1956)
104. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in Cesar. In:

Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp. 337–
351. Springer, Heidelberg (1982)

105. Rabin, M.O.: Automata on infinite objects and Church’s problem. Amer. Mathematical So-
ciety (1972)

106. Sabnani, K., Wolper, P., Lapone, A.: An algorithmic technique for protocol verification. In:
Proc. Globecom 1985 (1985)

107. Salwicki, A.: Algorithmic logic: a tool for investigations of programs. In: Butts, R.E., Hin-
tikka, J. (eds.) Logic Foundations of Mathematics and Computability Theory, pp. 281–295.
Reidel (1977)

108. Sistla, A.P.: Theoretical issues in the design of distributed and concurrent systems. PhD
thesis, Harvard University (1983)

109. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. In: Proc.
14th Annual ACM Symposium on Theory of Computing, pp. 159–168 (1982)

110. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logic. Journal of
the ACM 32, 733–749 (1985)

111. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata
with applications to temporal logic. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp.
465–474. Springer, Heidelberg (1985)

112. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata
with applications to temporal logic. Theoretical Computer Science 49, 217–237 (1987)

113. Stockmeyer, L.J.: The complexity of decision procedures in Automata Theory and Logic.
PhD thesis, MIT, Project MAC Technical Report TR-133 (1974)

114. Street, R.S.: Propositional dynamic logic of looping and converse. In: Proc. 13th ACM
Symp. on Theory of Computing, pp. 375–383 (1981)

115. Streett, R.S.: A propositional dynamic logic for reasoning about program divergence. PhD
thesis, M.Sc. Thesis, MIT (1980)

116. Streett, R.S.: Propositional dynamic logic of looping and converse. Information and Con-
trol 54, 121–141 (1982)

117. A comparison of reset control methods: Application note 11, Summit Microelectronics, Inc.
(1999),
http://www.summitmicro.com/tech support/notes/note11.htm

118. Thomas, W.: Star-free regular sets of ω-sequences. Information and Control 42(2), 148–156
(1979)

119. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C.
(eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)

120. Trakhtenbrot, B.: The synthesis of logical nets whose operators are described in terms of
one-place predicate calculus. Doklady Akad. Nauk SSSR 118(4), 646–649 (1958)

121. Trakhtenbrot, B.A., Barzdin, Y.M.: Finite Automata. North Holland (1973)
122. Vardi, M.Y.: The complexity of relational query languages. In: Proc. 14th ACM Symp. on

Theory of Computing, pp. 137–146 (1982)
123. Vardi, M.Y.: A temporal fixpoint calculus. In: Proc. 15th ACM Symp. on Principles of

Programming Languages, pp. 250–259 (1988)
124. Vardi, M.Y.: Unified verification theory. In: Banieqbal, B., Pnueli, A., Barringer, H. (eds.)

Temporal Logic in Specification. LNCS, vol. 398, pp. 202–212. Springer, Heidelberg (1989)
125. Vardi, M.Y.: Nontraditional applications of automata theory. In: Hagiya, M., Mitchell, J.C.

(eds.) TACS 1994. LNCS, vol. 789, pp. 575–597. Springer, Heidelberg (1994)
126. Vardi, M.Y.: Branching vs. linear time: Final showdown. In: Margaria, T., Yi, W. (eds.)

ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001)

http://www.summitmicro.com/tech_support/notes/note11.htm

From Church and Prior to PSL 171

127. Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski, A. (eds.)
VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg (2007)

128. Vardi, M.Y., Wolper, P.: Yet another process logic. In: Clarke, E., Kozen, D. (eds.) Logic of
Programs 1983. LNCS, vol. 164, pp. 501–512. Springer, Heidelberg (1984)

129. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
In: Proc. 1st IEEE Symp. on Logic in Computer Science, pp. 332–344 (1986)

130. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computa-
tion 115(1), 1–37 (1994)

131. Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog Assertions.
Springer (2005)

132. Wolper, P.: Temporal logic can be more expressive. In: Proc. 22nd IEEE Symp. on Founda-
tions of Computer Science, pp. 340–348 (1981)

133. Wolper, P.: Temporal logic can be more expressive. Information and Control 56(1–2), 72–99
(1983)

134. Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation paths. In: Proc.
24th IEEE Symp. on Foundations of Computer Science, pp. 185–194 (1983)

On the Merits of Temporal Testers�

A. Pnueli and A. Zaks

New York University, New York,
{amir,zaks}@cs.nyu.edu

Abstract. The paper discusses the merits of temporal testers, which can serve
as a compositional basis for automata construction corresponding to temporal
formulas in the context of LTL, PSL, and MITL logics. Temporal testers can be
viewed as (non-deterministic) transducers that, at any point, output a boolean
value which is 1 iff the corresponding temporal formula holds starting at the
current position.

The main advantage of testers, compared to acceptors (such as Büchi au-
tomata) is their compositionality. Namely, a tester for a compound formula can
be constructed out of the testers for its sub-formulas. Besides providing the con-
struction of testers for formulas specified in LTL, PSL, and MITL, the paper also
presents a general overview of the tester methodology, and highlights some of the
unique features and applications of transducers including compositional deduc-
tive verification of LTL properties.

1 Introduction

Automata theory plays a central role in formal methods. For example, the classical
way of model checking an LTL property ϕ over a finite-state system S, represented by
the automaton M

S
, is based on the construction of an ω-automaton A¬ϕ that accepts

all sequences that violate the property ϕ. Having both the system and its specification
represented by automata, we may form the product automaton MS × A¬ϕ and check
that it accepts the empty language, implying that there exists no computation of S which
refutes ϕ [24]. For the working of this algorithm, it is sufficient that the automaton
is a proper recognizer for the language L(¬ϕ) specified by the formula ¬ϕ. It is no
surprise that acceptors such as ω-automata is a formalism widely used by researchers
and engineers alike.

However, with the advancements in the field of the formal verification, several draw-
backs of acceptors became noticeable. First of all, modern model checkers may expect
the automaton to be symbolic (BDD-based). Therefore, if one is to use the standard
tableau-based construction, some encoding may be necessary. In addition, new tempo-
ral languages such as PSL [1] have been developed to address the need for formalizing
more elaborate and intricate specifications. In particular, PSL has several features to
support bottom-up construction of complex properties, where lower level properties are
composed to construct more complex properties. Acceptors do not fit into this paradigm
very well since they do not compose. That is, having constructed automataAϕ andAψ

� This research was supported in part by the European community project Prosyd, ONR grant
N00014-99-1-0131, and SRC grant 2004-TJ-1256.

O. Grumberg and H. Veith (Eds.): 25MC Festschrift, LNCS 5000, pp. 172–195, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Merits of Temporal Testers 173

T [pU q]

p

q

T [ϕ]

T [ψ]

Fig. 1. Composition of transducers to form T [ϕU ψ]

for LTL formulas ϕ and ψ, there is no simple recipe for constructing the automaton for
a compound formula that combines ϕ and ψ, such as ϕUψ.

One remedy to this problem is to enhance ω-automata with universal non-
determinism (i.e., alternating ω-automata) [6]. In this approach, there are no special
requirements on the sub-automata, and any two acceptors can be composed using alter-
nation. An orthogonal solution to the problem is to impose the responsibility of being
composable on the sub-automata themselves. In particular, we suggest that an automa-
ton not only tells whether the entire (infinite) input sequence is in the language, but
does so for every suffix of the input word. We call such an automaton a temporal tester,
which has been introduced first in [13]. More formally, a tester for a formula ϕ can be
viewed as a transducer that keeps observing a state sequence σ and, at every position
j ≥ 0, outputs a boolean value which equals 1 iff (σ, j) |= ϕ.

While acceptors, such as the Büchi automata Aϕ, do not easily compose, temporal
testers do. In Fig. 1, we show how transducers for the formulas ϕ, ψ, and pU q can be
composed into a transducer for the formula ϕU ψ.
Below is a summary of several important features of temporal testers that make them
very useful:

• The construction is compositional. Therefore, it is sufficient to specify testers for
the basic temporal formulas. In case of LTL, we only need to consider the formulas
X! p1 and pU q, where p and q are assertions (state formulas). Testers for more
complex formulas can be derived by composition as in Fig. 1.

• The testers for the basic formulas are naturally symbolic. Thus, a general tester,
which is a synchronous parallel composition (automata product) of symbolic mod-
ules can also be easily represented symbolically. As was shown in [21], the basic
processes of model checking and run-time monitoring can be performed directly on
the symbolic representation of the testers. There is no need for partial determiniza-
tion to handle alternation nor conversion from explicit state representation.

• Extensions of an existing logic can be handled by constructing testers only for
the newly introduced basic operators. This feature has been utilized to a great
advantage when a compositional approach to the construction of transducers

1 Inspired by the PSL notation, we write X! p for “next p”.

174 A. Pnueli and A. Zaks

corresponding to LTL formulas [13] has been extended to handle the logics PSL

[21] and MITL [16] which are extensions of LTL.
• In spite of the fact that transducers are more functionally complex than acceptors,

the complexity of constructing a transducer (temporal tester) for an arbitrary LTL,
PSL, or MITL formula is not worse than that of the lower-functionality acceptor. In
its symbolic representation, the size of a tester is linear in the size of the formula.
This implies that the worst-case state complexity is exponential for LTL and PSL

formulas, which is an established lower bound.

Note that we can always regard a temporal tester as an acceptor. Therefore, it is in-
teresting to compare automata construction using temporal testers to other techniques
such as tableau construction for LTL [15] and alternating-automata based construction
for PSL [8]. First, we note that the complexity of all of these techniques as well as that
of the testers approach equally match the established lower bound. Of course, there is
plenty of room for practical considerations and local improvements. Surprisingly, for
LTL, a tableau-based approach [15] yields an automaton identical to the one induced by
the transducer constructed according to [13]. Similarly, for PSL, the tester construction
of [21] induces an acceptor almost identical to the one obtained in [8]. Actually, the two
automata become exactly alike after several optimizations are applied to an alternating
automata based approach, most of the optimizations become much more obvious once
we realize how to build a proper transducer for these operators.

Nevertheless, the testers approach offers a conceptually new methodology, and while
similarities are not accidental and rather striking, the differences are equally remark-
able. Let us again compare temporal testers to tableau construction and alternation
techniques, but now with an emphasis on the process itself rather than on the final
result. The main building blocks of tableau construction are the expansion formulas,
like b1 U b2 ⇐⇒ b2 ∨ (b1 ∧ X ![b1 U b2]). Such expansion formulas, which exist for
all the temporal operators, relate the value of an expression involving the operator at
the current position to the values of its arguments in the current and next position and
to the value of the expression in the next position. For past operators, the expansion
formula relates the value of the expression and its arguments in the current position to
their values in the previous position.

When constructing testers for an operator that has an expansion formula (such as all
the LTL operators), one uses the expansion formula as the core for the transition rela-
tion of the tester. However, when developing testers for more complicated or simply
”unknown” (new) operators, the expansion formula approach may not always be an op-
tion. In such cases, one may use the intuition that treats a tester as a non-deterministic
guesser, the correctness of whose output needs to be confirmed at a later stage. That was
the approach successfully applied for handling PSL and MITL operators. And, while the
tester construction for PSL produced expansion formulas as a nice side effect, there is
no such result for MITL, where reliance on ”guessing” plays a crucial role. When com-
paring testers to an alternating automata, the main philosophical distinction is that an
alternating automata is less structured than a non-deterministic acceptor, while testers,
on the other hand, have more structure than classical acceptors.

The additional support provided by a transducer make them truly plug-and-play
objects, which has several important practical implications. The most straightforward

On the Merits of Temporal Testers 175

illustration of this phenomenon is application of tester towards CTL∗ model checking
[14]. The paper shows how to reduce CTL∗ model checking problem to that of CTL .
Essentially, each path-quantifier free sub-formula is replaced by the corresponding LTL

transducer. We could have performed a similar reduction using acceptors. However,
using testers we have a freedom for each such sub-formula to leave the outer-most tem-
poral operator intact and construct the tester for the remaining part. This results in a
true CTL∗ to CTL reduction, where we may still have temporal operators in the final
CTL formula. The ability to decompose an LTL formula using testers is also crucial for
deductive verification, which we will discuss in a great detail in Section 11.

Another benefit of the plug-and-play nature of testers is the possibility to use differ-
ent algorithms for different parts of the formula. For example, a user can manually build
a highly optimized tester for a sub-formula, and the rest of the formula can be handled
automatically. We can also combine testers with other techniques as was done in [7],
where PSL operators are handled using the tester approach, but the rest of the formula
uses an existing LTL to NBA transformation which, according to the experimental data,
results in the fastest available implementation for PSL to NBA conversion.

2 Accellera PSL

In this section we introduce the property specification language PSL [1]. The construc-
tion of testers for PSL formulas will be presented in Section 8.

In this paper, we only consider a subset of PSL. For brevity, we omit the discussions
of OBE (Optional Branching Extension) formulas that are based on CTL . Note that using
testers we can obtain a model checking algorithm even for CTL∗ branching formulas by
combining PSL testers with the work in [14]. In addition, we do not consider clocked
formulas and formulas with abort operator. This is not a severe limitation since none of
the above add any expressive power to PSL. One can find a rewriting scheme for the @
operator (clock operator) in [10] and for the abort operator in [22]. The rewriting rules
produce a semantically equivalent formula not containing the operators, which is linear
in the size of the original formula.

2.1 Syntax

The logic Accellera PSL is defined with respect to a non-empty set of atomic proposi-
tions P . Let B be the set of boolean expressions over P . We assume that the expressions
true and false belong to B.

Definition 1 (Sequential Extended Regular Expressions (SEREs)) .

– Every boolean expression b ∈ B is a SERE.
– If r, r1, and r2 are SEREs, then the following are SEREs:
• {r} • r1 ; r2 • r1 : r2 • r1 | r2

• [∗0] • r1 && r2 • r[∗]

176 A. Pnueli and A. Zaks

Definition 2 (Formulas of the Foundation Language (FL formulas)) .

– If r is a SERE, then both r and r! are FL formulas.
– If ϕ and ψ are FL formulas, r is a SERE, and b is a boolean expression, then the

following are FL formulas:
• (ϕ) • ¬ϕ • ϕ ∧ ψ • 〈r〉ϕ
•X !ϕ • [ϕU ψ] • ϕ abort b • r �→ ϕ

Definition 3 (Accellera PSL Formulas) .

– Every FL formula is an Accellera PSL formula.

2.2 Semantics

The semantics of FL is defined with respect to finite and infinite words over Σ = 2P ∪
{�,⊥}. We denote a letter from Σ by l and an empty, finite, or infinite word from Σ by
u, v, or w (possibly with subscripts). We denote the length of word v as |v|. An empty
word v = ε has length 0, a finite word v = (l0l1l2 . . . lk) has length k+1, and an infinite
word has length ω. We use i, j, and k to denote non-negative integers. We denote the ith

letter of v by vi−1 (since counting of letters starts at zero). We denote by vi.. the suffix
of v starting at vi. That is, for every i <|v|, vi.. = vivi+1 · · · vn or vi.. = vivi+1 · · · .
We denote by vi..j the finite sequence of letters starting from vi and ending in vj . That
is, for j ≥ i, vi..j = vivi+1 · · · vj and for j < i, vi..j = ε. We use lω to denote an
infinite-length word, each letter of which is l.

We use v̄ to denote the word obtained by replacing every� with a ⊥ and vice versa.
We call v̄ the complement of v.

The semantics of FL formulas over words is defined inductively, using as the base
case the semantics of boolean expressions over letters in Σ. The semantics of a boolean
expression is assumed to be given as a relation ‖= ⊆ Σ × B relating letters in Σ with
boolean expressions in B. If (l, b) ∈ ‖=, we say that the letter l satisfies the boolean
expression b and denote it by l ‖= b. We assume the two special letters � and ⊥
behave as follows: for every boolean expression b, � ‖= b and ⊥ ‖�= b. We assume
that, otherwise, the boolean relation ‖= behaves in the usual manner. In particular, that
for every letter l ∈ 2P , atomic proposition p ∈ P and boolean expressions b, b1, b2 ∈
B, (i) l ‖= p iff p ∈ l, (ii) l ‖= ¬b iff l ‖�= b, and (iii) l ‖= true and l ‖�= false .
Finally, we assume that for every letter l ∈ Σ, l ‖= b1 ∧ b2 iff l ‖= b1 and l ‖= b2.

Semantics of SEREs. SEREs are defined over finite words from the alphabet Σ. The
notation v |≡ r, where r is a SERE and v a finite word means that v tightly models r.
The semantics of unclocked SEREs are defined as follows, where b denotes a boolean
expression, and r, r1, and r2 denote unclocked SEREs.

– v |≡ {r} ⇐⇒ v |≡ r
– v |≡ b ⇐⇒|v|= 1 ∧ v0 ‖= b
– v |≡ r1 ; r2 ⇐⇒ ∃v1, v2 s.t. v = v1v2, v1 |≡ r1 and v2 |≡ r2

– v |≡ r1 : r2 ⇐⇒ ∃v1, v2, and l s.t. v = v1lv2, v1l |≡ r1 and lv2 |≡ r2

– v |≡ r1 | r2 ⇐⇒ v |≡ r1 or v |≡ r2

– v |≡ r1 && r2 ⇐⇒ v |≡ r1 and v |≡ r2

– v |≡ [∗0]⇐⇒ v = ε
– v |≡ r[∗] ⇐⇒ v = ε or ∃v1, v2 s.t. v1 �= ε, v = v1v2 and v1 |≡ r and v2 |≡ r[∗]

On the Merits of Temporal Testers 177

Semantics of FL. Let v be a finite or infinite word, b be a boolean expression, r be a
SERE, and ϕ, ψ be FL formulas. We use � to define the semantics of FL formulas. If
v � ϕ we say that v models (or satisfies) ϕ.

– v � (ϕ) ⇐⇒ v � ϕ
– v � ¬ϕ ⇐⇒ v̄ � ϕ
– v � ϕ ∧ ψ ⇐⇒ v � ϕ and v � ψ
– v � b!⇐⇒|v|> 0 and v0 ‖= b
– v � b ⇐⇒|v|= 0 or v0 ‖= b
– v � r! ⇐⇒ ∃j <|v| s.t. v0..j |≡ r
– v � r ⇐⇒ ∀j <|v|, v0..j�ω � r!
– v � X !ϕ⇐⇒|v|> 1 and v1.. � ϕ
– v � [ϕU ψ] ⇐⇒ ∃k <|v| s.t. vk.. � ψ, and ∀j < k, vj.. � ϕ
– v � [ϕW ψ]⇐⇒ ∃k <|v| s.t. vk.. � ψ, and ∀j < min(k, |v|) vj.. � ϕ
– v � ϕ abort b ⇐⇒ v � ϕ or ∃j <|v| s.t. vj ‖= b and v0..j−1�ω � ϕ
– v � 〈r〉ϕ ⇐⇒ ∃j <|v| s.t. v̄0..j |≡ r, vj.. � ϕ
– v � r �→ ϕ⇐⇒ ∀j <|v| s.t. v̄0..j |≡ r, vj.. � ϕ

2.3 Associating a Regular Grammar with a SERE

Following [12], a grammar G = 〈V , T ,P ,S〉 consists of the following components:

• V : A finite set of variables.
• T : A finite set of terminals. We assume that V and T are disjoint. In our framework,
T consists of boolean expressions and a special terminal ε.

• P : A finite set of productions. We only consider right-linear grammars, so all pro-
ductions are of the form V → aW or V → a, where a is a terminal, and V and W
are variables.

• S: A special variable called a start symbol.

We say that a grammar G is associated with a SERE r if, intuitively, they both define
the same language. While this definition is not accurate, we show a precise construction
of an associated grammar for a given SERE in Appendix A. For example, we associate
the following grammar G with SERE r = (a1b1)[∗] && (a2b2)[∗]

V1 → ε | (a1 ∧ a2)V2

V2 → (b1 ∧ b2)V1

Theorem 1. For every SERE r of length n, there exists an associated grammar G with
the number of productions O(2n). If we restrict SERE’s to the three traditional op-
erators: concatenation (;), union (|), and Kleene closure ([∗]), the number of
productions becomes linear in the size of r.

3 Signals, Their Temporal Logic and Timed Automata

In this section we presented the real-time logic MITL, for which we will present testers
in Section 9. Most of the material in this section and in Section 9 is taken from [16].

178 A. Pnueli and A. Zaks

3.1 Signals

Two basic semantic domains can be used to describe timed behaviors. Time-event
sequences consist of instantaneous events separated by time durations while discrete-
valued signals are functions from time to some discrete domain. The reader may con-
sult the introduction to [5] for more details on the algebraic characterization of these
domains. In this work we use Boolean signals as the semantic domain, which is the
natural choice for MITL.

Let the time domain T be the set R≥0 of non-negative real numbers. A Boolean
signal is a function ξ : T → B

n. We use ξ[t] for the value of the signal at time t and
the notation σt1

1 · σt2
2 · · · for a signal whose value is σ1 at the interval [0, t1), σ2 in the

interval [t1, t1 + t2), etc. For the sake of simplicity we restrict ourselves to such left-
closed right-open signal segments and to timed modalities that use only closed intervals.
As a consequence we prohibit signal with punctual intervals which are meaningless in
the algebraic definition of signals in [5].

3.2 Real-Time Temporal Logic

The syntax of MITL is defined by the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U[a,b]ϕ2 | ϕ1Uϕ2

where p belongs to a set P = {p1, . . . , pn} of propositions and b > a ≥ 0 are rational
numbers (in fact, it is sufficient to consider integer constants). From the basic MITL

operators one can derive other standard Boolean and temporal operators, in particular
the time-constrained eventually and always operators:

� [a,b] ϕ = T U[a,b]ϕ and � [a,b] ϕ = ¬ � [a,b] ¬ϕ

We interpret MITL[a,b] over n-dimensional Boolean signals and define the satisfiability
relation similarly to LTL.

(ξ, t) |= p ↔ p[t] = T

(ξ, t) |= ¬ϕ ↔ (ξ, t) �|= ϕ
(ξ, t) |= ϕ1 ∨ ϕ2 ↔ (ξ, t) |= ϕ1 or (ξ, t) |= ϕ2

(ξ, t) |= ϕ1Uϕ2 ↔ ∃t′ ≥ t (ξ, t′) |= ϕ2 and ∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1U[a,b]ϕ2 ↔ ∃t′ ∈ [t + a, t + b] (ξ, t′) |= ϕ2 and ∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ1

Note that our definition of the semantics of the time-bounded until operator differs
slightly from definition in [3] which requires ϕ1 to hold in the open interval (t′, t).
Hence our definition can be expressed in their terms as ϕ1 ∧ (ϕ1U[a,b](ϕ1 ∧ ϕ2)). A
signal ξ satisfies the formula ϕ iff (ξ, 0) |= ϕ.

3.3 Timed Automata

We use a variant of timed automata which differs slightly from the classical definitions
[2], [23] as it reads multi-dimensional dense-time Boolean signals, hence the alphabet

On the Merits of Temporal Testers 179

letters are associated with states rather than with transitions. We also extend the domain
of clock values to include the special symbol ⊥ indicating that the clock is currently
inactive.2

The set of valuations of a set C = {c1, . . . , cn} of clock variables, each denoted as
v = (v1, . . . , vn), defines the clock space H = (R≥0 ∪ {⊥})n. A configuration of a
timed automaton is a pair of the form (q, v) with q being a discrete state. For a clock
valuation v = (v1, . . . , vn), v + t is the valuation (v′1, . . . , v

′
n) such that v′i = vi if

vi = ⊥ and v′i = vi + t otherwise. A clock constraint is a Boolean combination of
conditions of the forms c ≥ d or c > d for some integer d.

Definition 1 (Timed Automaton). A timed automaton over signals is a tuple A =
(Σ, Q, C, λ, I, Δ, q0, F) where Σ is the input alphabet (Bn in this paper), Q is a finite
set of discrete states and C is a set of clock variables. The labeling function λ : Q→ 2Σ

associates a subset of the alphabet to every state while the staying condition (invariant)
I assigns to every state q a subset Iq of H defined by a conjunction of inequalities of
the form x ≤ d, for some clock x and integer d. The transition relation Δ consists
of elements of the form (q, g, ρ, q′) where q and q′ are discrete states, the transition
guard g is a subset of H defined by a clock constraint and ρ is the update function, a
transformation ofH defined by a assignments of the form c := 0 or c := ⊥. Finally q0

is the initial state and F ⊆ Q is the acceptance condition.

The behavior of the automaton as it reads a signal ξ consists of an alternation between
time progress periods where the automaton stays in a state q as long as ξ[t] ∈ λ(q) and
Iq holds, and discrete instantaneous transitions guarded by clock conditions. Formally,
a step of the automaton is one of the following:

• A time step: (q, v) σt

−→ (q, v + t), t ∈ R+ such that σ ∈ λ(q) and v + t satisfies Iq

(due to the structure of Iq this holds as well for every t′, 0 ≤ t′ < t).

• A discrete step: (q, v) δ−→ (q′, v′), for some transition δ = (q, g, ρ, q′) ∈ Δ, such
that v satisfies g and v′ = ρ(v)

A run of the automaton starting from a configuration (q0, v0) is a finite or infinite se-
quence of alternating time and discrete steps of the form

ξ : (q0, v0)
σ

t1
1−→ (q0, v0 + t1)

δ1−→ (q1, v1)
σ

t2
2−→ (q1, v1 + t2)

δ2−→ · · · ,

such the
∑

ti diverges. A run is accepting if the set of time instants in which it visits
states in F is unbounded. The signal carried by the run is σt1

1 · σt2
2 · · · The language of

the automaton consists of all signals carried by accepting runs.

4 Computational Model

In this section we present the computational model for describing software and hard-
ware systems whose properties we wish to verify.

2 This is a syntactic sugar since clock inactivity in a state can be encoded implicitly by the fact
that in all paths emanating from the state, the clock is reset to zero before being tested [9].

180 A. Pnueli and A. Zaks

4.1 Fair Discrete Systems with Finite Computations

As our computational model We take a just discrete system (JDS), which is a variant
of fair transition system [19], and is a weaker version of the more general fair discrete
system considered in [13]. Under this model, a system D : 〈V, Θ, R,J , F 〉 consists of
the following components:

• V : A finite set of system variables. A state of the system D provides a type-
consistent interpretation of the system variables V . For a state s and a system vari-
able v ∈ V , we denote the value assigned to v by the state s by s[v] .

• Θ: The initial condition. This is an assertion (state formula) characterizing the ini-
tial states. A state is defined to be initial if it satisfies Θ.

• R(V, V ′): The transition relation, which is an assertion that relates the values of
the variables in V interpreted by a state s to the values of the variables V ′ in an
R-successor state s′.

• J : A set of justice (weak fairness) requirements. Each justice requirement is an
assertion. An infinite computation must include infinitely many states satisfying
the assertion.

• F : The termination condition, which is an assertion specifying the set of final states.
Each finite computation must end in a final state.

A computation of a JDS D is a non-empty sequence of states σ : s0, s1, s2, ..., satisfying
the requirements:

• Initiality: s0 is initial.
• Consecution: For each i ∈ [0, |σ|), the state si+1 is a R-successor of state si. That

is, 〈si, si+1〉 ∈ R(V, V ′) where, for each v ∈ V , we interpret v as si[v] and v′ as
si+1[v].

• Justice: If σ is infinite, then for every J ∈ J , σ contains infinitely many occur-
rences of J-states.

• Termination: If σ = s0, s1, s2, ..., sk (i.e., σ is finite), then sk must satisfy F .

Given two JDS’s, D1 and D2, their synchronous parallel composition, D1 ||| D2, is the
JDS whose sets of variables and justice requirements are the unions of the corresponding
sets in the two systems, whose initial and termination conditions are the conjunctions of
the corresponding assertions, and whose transition relation is defined as the conjunction
of the two transition relations. Thus, a step in an execution of the composed system is a
joint step of the systems D1 and D2.

4.2 Interpretation of PSL Formulas over a JDS

We assume that the set of atomic propositions P is a subset of the variables V , so we can
easily evaluate all the propositions at a given state of a JDS. We say that a letter l ∈ 2P

corresponds to a state s if p ∈ l iff s[p] = 1. Similarly, we define a correspondence
between words and computations. We say, that a computation σ models (or satisfies)
PSL formula ϕ, denoted σ � ϕ, if the corresponding word v satisfies PSL formula ϕ.

On the Merits of Temporal Testers 181

5 Temporal Testers

One of the main problems in constructing a Büchi automaton for a PSL formula (or for
that matter any ω-regular language) is that the conventional construction is not com-
positional. In particular, given Büchi automata Aϕ and Aψ for formulas ϕ and ψ, it is
not trivial to build an automaton for ϕU ψ. Compositionality is an important consider-
ation, especially in the context of PSL. It is expected that specifications are written in
a modular way, and PSL has several language constructs to facilitate that. For example,
any property can be given a name, and a more complex property can be built by simply
using a named sub-property instead of an atomic proposition.

One way to achieve compositionality with Büchi automata is to use alternation [6].
Nothing special is required from the Büchi automata to be composed in such man-
ner, but the presence of universal branching in the resulting automaton is undesirable.
Though most model checkers can deal with existential non-determinism directly and
efficiently, universal branching is usually preprocessed at exponential cost.

Our approach is based on the observation that while there is very little room to ma-
neuver during the merging step of two Büchi automata, the construction process of the
sub-components is wide open for a change. In particular, we suggest that each sub-
component assumes the responsibility of being easily composed with other parts. The
hope is that, by requiring that individual parts be more structured than the traditional
Büchi automata, we can significantly simplify the composition process.

Recall that the main property of Büchi automata (as well as any other acceptor) is
to correctly identify a language membership of a given sequence of letters, starting
from the very first letter. It turns out that for composition it is also very useful to know
whether a word is in the language starting from an arbitrary position i. We refer to
this new class of objects as testers. Essentially, testers are transducers that at each step
output whether the suffix of the input sequence is in the language. Of course, the suffix
is not known by the time the decision has to be made, so the testers are inherently
non-deterministic.

Formally, a full tester for a formula ϕ is a JDS Tϕ, which has a distinguished boolean
variable xϕ, such that:

• Soundness: For every computation σ : s0, s1, s2, ... of Tϕ , si[xϕ] = 1 iff (σ, i) |=
ϕ

• Completeness: For every sequence of states σ : s0, s1, s2, ..., there is a correspond-
ing computation of Tϕ σ′ : s′0, s

′
1, s

′
2, ... such that for each i, si and s′i agree on the

interpretation of ϕ-variables.

Intuitively, the second condition requires that a tester must be able to correctly inter-
pret xϕ for an arbitrary input sequence. Otherwise, the first condition can be trivially
satisfied by a JDS that has no computations.

5.1 Positive and Negative Testers

For many applications, such as model checking, a full tester can be too powerful. In-
deed, everywhere where an acceptor suffices, we can use a full tester, but in such case

182 A. Pnueli and A. Zaks

we are really only interested in the very first output value and only when the value is
true. While we still need intermediate output values for compositionality, we can re-
lax the soundness condition to concentrate on the positive values of xϕ. Another way
to look at the problem is the fact that a full tester for a formula ϕ not only implicitly
defines an acceptor for ϕ itself, but also for ¬ϕ. An undesirable consequence of this
fact is that a full tester for a safety property such as � p will have a non trivial justice
requirement since it is also a full tester for � ¬p. To address this issue, we define posi-
tive and negative testers. Formally, a positive tester for a formula ϕ is a JDS T+

ϕ , which
has a distinguished boolean variable xϕ, such that:

• Soundness: For every computation σ : s0, s1, s2, ... of T +
ϕ , if si[xϕ] = 1 then

(σ, i) |= ϕ

• Completeness: For every sequence of states σ : s0, s1, s2, ..., there exists a corre-
sponding T +

ϕ -computation σ′ : s′0, s
′
1, s

′
2, ... such that for each i, si and s′i agree on

the interpretation of ϕ-variables, and si[xϕ] = 1 iff (σ, i) |= ϕ.

The definition of a negative tester is fully analogous.

Theorem 1. A full tester is also a proper positive tester and a negative tester.

Theorem 2. If T +
ϕ a positive tester and T−

ϕ is a negative tester for a formula ϕ that may
only share ϕ-variables, then a full tester can be defined as the composition T +

ϕ |||T−
ϕ ,

whose transition relation is augmented with the following conjunct that defines the out-
put variable xϕ:

(x+
ϕ →xϕ) ∧ (xϕ→x−

ϕ)

From now on, we may refer to a full tester as simply a tester.

6 LTL Testers

We continue the presentation of testers by considering the two basic LTL operators X!
(next) and U (until), which are also part of the PSL logic (being an extension of LTL).
First, we show how to build testers for the two basic formulas X! b and b1 U b2, where
b, b1, and b2 are boolean formulas. Then, we demonstrate the compositionality of the
testers by easily extending the construction to cover full LTL. Note that our construction
for LTL operators is very similar to the one presented in [13].

6.1 A Tester for ϕ = X! b

Let Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 be the tester we wish to construct. The components of
Tϕ are defined as follows:

T (X! b) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Vϕ : Vars(b) ∪ {xϕ}
Θϕ : 1

Rϕ(V, V ′) : xϕ = b′

Jϕ : ∅
Fϕ : ¬xϕ

On the Merits of Temporal Testers 183

The set Vars(b) contains all the propositions on which the boolean formula b depends.
It almost immediately follows from the construction that T (X! b) is indeed a good

tester for X! b. The soundness of the T (X! b) is guaranteed by the transition relation
with the exception that we still have a freedom to incorrectly interpret xϕ at the very
last state. This case is handled separately by insisting that every final state must interpret
xϕ as false . The completeness follows from the fact that we do not restrict the Vars(b)
variables in any way by the transition relation, and we can always interpret xϕ properly,
by either matching b′ or setting it to false in the last state.

6.2 A Tester for ϕ = b1 U b2

The components of Tϕ are defined as follows:

T (b1 U b2) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Vϕ : Vars(b1, b2) ∪ {xϕ}
Θϕ : 1

Rϕ(V, V ′) : xϕ = [b2 ∨ (b1 ∧ x′
ϕ)]

Jϕ : ¬xϕ ∨ b2

Fϕ : xϕ ↔ b2

Unlike the previous tester, T (b1 U b2) has a non-empty justice set. A technical reason
is that the transition relation allows xϕ to be continuously set to true without having a
single state that actually satisfies b2. The situation is ruled out by the justice require-
ment. Another way to look at the problem is that Rϕ represents an expansion formula
for the U (until) operator, namely b1 U b2↔ b2 ∨ (b1 ∧ X![b1 U b2]). In general, start-
ing with an expansion formula is a good first step when building a tester. However, the
expansion formula alone is usually not sufficient for a proper tester. Indeed, consider
the operator W (weak until, unless), which has exactly the same expansion formula,
namely b1W b2↔ b2 ∨ (b1 ∧X![b1W b2]). We use justice to differentiate between the
two operators. Note that the justice is only needed to confirm true output values. There-
fore, a negative tester T−

ϕ for ϕ = b1 U b2 is simpler (no justice) and can be formally
defined as:

T−(b1 U b2) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Vϕ : Vars(b1, b2) ∪ {xϕ}
Θϕ : 1

Rϕ(V, V ′) : b2 ∨ (b1 ∧ x′
ϕ)→xϕ

Jϕ : ∅
Fϕ : b2→xϕ

7 Tester Composition

In Fig. 2, we present a recursive algorithm that builds a tester for an arbitrary LTL

formula ϕ. In Example 1, we illustrate the algorithm by applying the tester construction
for the formula ϕ = true U

(
X![b1 U b2] ∨ (b3 U [b1 U b2])

)
.

184 A. Pnueli and A. Zaks

• Base Case: If ϕ is a basic formula (i.e., ϕ = X! b or ϕ = b1 U b2), use construc-
tion from Section 6. For the trivial case, when the formula ϕ does not contain any
temporal operators, we can use a tester for false U ϕ.

• Induction Step: Let ψ be an innermost basic sub-formula of ϕ, then Tϕ =
Tϕ[ψ/xψ] ||| Tψ, where ϕ[ψ/xψ] denotes the formula ϕ in which each occur-
rence of the sub-formula ψ is replaced with xψ.

Fig. 2. Tester construction for an arbitrary LTL formula ϕ

Example 1. A tester for ϕ = true U
(
X![b1 U b2] ∨ ¬(b3 U [b1 U b2])

)
We start by identifying b1 U b2 to be the innermost basic sub-formula and building the
corresponding tester, Tb1 U b2 . Assume that z is the output variable of the tester Tb1 U b2 .
Let α = ϕ[b1 U b2/z]; after the substitution α = true U

(
X! z ∨ ¬(b3 U z)

)
. Note that

we performed the substitution twice, but there is no need for two testers, which can
result in significant savings. We proceed in similar fashion and build two more testers
TX! z and Tb3 U z with the output variables x and y. After the substitutions, we obtain
β = true U [x∨¬y]. Since x∨¬y is just a boolean expression, the formula satisfies the
condition of the base case, and we can finish the construction with one more step. The
final result can be expressed as:

Tϕ = Tβ |||TX! z |||Tb3 U z |||Tb1 U b2 .

7.1 Composition Rules for Positive and Negative Testers

Definition 4 (Polarity of a sub-formula ψ) Given a formula ϕ, the polarity of a sub-
formula ψ with respect to ϕ is positive if the number of negations enclosing ψ in ϕ is
even and negative otherwise.

To build a positive tester T +
ϕ , we optimize the induction step in Fig. 2 as follows:

• If sub-formula ψ has a positive polarity, then T +
ϕ = T +

ϕ[ψ/xψ] ||| T +
ψ

• If sub-formula ψ has a negative polarity, then T +
ϕ = T +

ϕ[ψ/xψ] ||| T−
ψ

• Otherwise, if sub-formula appears with both positive and negative polarity, then
T +

ϕ = T +
ϕ[ψ/xψ] ||| Tψ

The algorithm for building a negative tester is fully symmetric. To illustrate this con-
struction consider the formula ϕ presented in Example 1. A positive tester is given by:

T +
ϕ = T +

β |||T
+
X! z |||T

−
b3 U z |||Tb1 U b2 .

A negative tester is given by:

T−
ϕ = T−

β |||T
−
X! z |||T

+
b3 U z |||Tb1 U b2 .

Also note that while we assumed that ϕ is an LTL formula, the algorithms described in
this section are applicable for PSL and MITL as well. The only extension necessary is
the ability to deal with additional basic formulas.

On the Merits of Temporal Testers 185

8 PSL Testers

As we have mentioned before, to handle the full PSL it is enough to handle all the
basic PSL formulas. More complicated formulas can be handled via tester composition
according to the algorithm in Fig. 2. There are only two additional PSL basic formulas
that we need to consider, namely ϕ = 〈r〉b and ϕ = r, where r is a SERE and b is a
boolean expression. All other PSL temporal operators can be expressed using those two
and the LTL operators, X ! and U . For example, r! ≡ 〈r〉true , and r �→ b ≡ ¬(〈r〉¬ϕ).

8.1 A Tester for ϕ = 〈r〉b

Let Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 be the tester we wish to construct. Assume that xϕ is
the output variable. Let G = 〈V , T ,P ,S〉 be a grammar associated with r. With no loss
of generality, we assume that G has variables V1, . . . , Vn with V1 being the start symbol.
In addition, each variable Vi, has derivations of the form:

Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

where α1, . . . , αm, β1, . . . , βn are boolean expressions. The case that variable Vi does
not have a particular derivation Vi → βjVj or Vi → αk, is covered by having βj =
false , and similarly, αk = false . Note that by insisting on this specific form, which does
not allow ε productions, we cannot express whether an empty string is in the language.
However since, by definition of the 〈·〉 operator, a prefix that satisfies r must be non-
empty, we do not need to consider this. The tester Tϕ is given by:

Tϕ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vϕ : Vars(r, b) ∪ {xϕ} ∪ {X1, . . . , Xn, Y1, . . . , Yn}
Θϕ : 1
Rϕ : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to ρ the conjunct
Xi = (α1 ∧ b) ∨ · · · ∨ (αm ∧ b) ∨ (β1 ∧X ′

1) ∨ · · · ∨ (βn ∧X ′
n)

and the conjunct
Yi → (α1 ∧ b) ∨ · · · ∨ (αm ∧ b) ∨ (β1 ∧ Y ′

1) ∨ · · · ∨ (βn ∧ Y ′
n)

the output variable is constrained by the conjunct
xϕ = X1

Jϕ : {¬Y1 ∧ · · · ∧ ¬Yn, X1 = Y1 ∧ · · · ∧Xn = Yn}
Fϕ : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to F the conjunct
Xi = (α1 ∧ b) ∨ · · · ∨ (αm ∧ b)

Example 2. A Tester for ϕ = 〈{pq}[∗]〉b.

To illustrate the construction, consider the formula 〈{pq}[∗]〉b. Following the algorithm
from Appendix A and removing ε productions, the associated right-linear grammar for
the SERE {pq}[∗] is given by

V1 → pV2

V2 → q | qV1

186 A. Pnueli and A. Zaks

Consequently, a tester for 〈{pq}[∗]〉b is given by

T (〈{pq}[∗]〉b) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vϕ : {p, q, b, xϕ} ∪ {X1, X2, Y1, Y2}
Θϕ : 1

Rϕ(V, V ′) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(X1 = (p ∧X ′
2)) ∧

(X2 = (q ∧ b) ∨ (q ∧X ′
1)) ∧

(Y1 → (p ∧ Y ′
2)) ∧

(Y2 → (q ∧ b) ∨ (q ∧ Y ′
1)) ∧

xϕ = X1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Jϕ : {¬Y1 ∧ ¬Y2, X1 = Y1 ∧X2 = Y2}
Fϕ : (X1 = false) ∧ (X2 = q ∧ b)

The variables {X1, . . . , Xn, Y1, . . . , Yn} are expected to check that the rest of the
sequence from now on has a prefix satisfying the SERE r. Thus, the subsequence
sj , . . . , sk, . . . � 〈r〉b iff there exists a generation sequence V j = V1, V

j+1, . . . , V k,
such that for each i, j ≤ i < k, there exists a grammar rule V i → βV i+1, where
si ‖= β, V k → α, and sk ‖= (α ∧ b).

The generation sequence is represented in a run of the tester by a sequence of true
valuations for the variables Zj = Z1, Z

j+1, . . . , Zk where Zi ∈ {X i, Y i} for each i ∈
[j..k]. An important element in this checking is to make sure that any such generation
sequence is finite. This is accomplished through the double representation of each Vi

by Xi and Yi. The justice requirement (X1 = Y1) ∧ · · · ∧ (Xn = Yn) guarantees that
that any true Xi is eventually copied into Yi. The justice requirement ¬Y1 ∧ · · · ∧ ¬Yn

guarantees that all true Yi’s are eventually falsified. Together, they guarantee that there
exists no infinite generation sequence. The double representation approach was first
introduced in [20].

8.2 A Tester for ϕ = r

We start the construction exactly the same way as we did for ϕ = 〈r〉b, in Section 8.1.
Let Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 be the tester we wish to construct. Assume that xϕ is
the output variable. Let G = 〈V , T ,P ,S〉 be a grammar associated with r.

The tester Tϕ is given by:

T (r) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vϕ : Vars(r) ∪ {xϕ} ∪ {X1, . . . , Xn, Y1, . . . , Yn}
Θϕ : 1

Rϕ(V, V ′) : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to ρ the conjunct
Xi = α1 ∨ · · · ∨ αm ∨ (β1 ∧X ′

1) ∨ · · · ∨ (βn ∧X ′
n)

and the conjunct
α1 ∨ · · · ∨ αm ∨ (β1 ∧ Y ′

1) ∨ · · · ∨ (βn ∧ Y ′
n)→ Yi

the output variable is constrained by the conjunct
xϕ = X1

Jϕ : {Y1 ∧ · · · ∧ Yn, X1 = Y1 ∧ · · · ∧Xn = Yn}
Fϕ : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to F the conjunct
Xi = α1 ∨ · · · ∨ αm ∨ β1 ∨ · · · ∨ βn

On the Merits of Temporal Testers 187

The variables {X1, . . . , Xn, Y1, . . . , Yn} are expected to check that the rest of the se-
quence from now on has a prefix that does not violate SERE r. We follow a similar
approach as for the tester ϕ = 〈r〉b. However, now we are more concerned with false
values of the variables X1 . . .Xn. The duality comes from the fact that, now, we are
trying to prevent postponing the violation of the formula r forever.

8.3 Complexity of the Construction

Theorem 2. For every PSL formula ϕ of length n, there exists a tester with O(2n)
variables. If we restrict SERE’s to three traditional operators: concatenation (;), union
(|), and Kleene closure ([∗]), the number of variables is linear in the size of ϕ.

To justify the result, we can just count the fresh variables introduced at each step of
the tester construction. There is only linear number of sub-formulas, so there is a linear
number of output variables. The only other variables introduced are the ones that are
used to handle SERE’s. According to Theorem 1, the associated grammars contain at
most O(2n) non-terminals (O(n) - for the restricted case). We conclude by observing
that testers for the formulas ϕ = 〈r〉b and ϕ = r introduce exactly two variables, Xi

and Yi, for each non-terminal Vi.

9 MITL Testers

In this section we show how to build for every MITL formula ϕ a timed tester, which is
a timed automaton Tϕ that accepts a language defined by the formula ϕ ∧�(xϕ ≡ ϕ).
For untimed operators, we can use LTL testers defined in Section 5. In addition, we can
use tester composition algorithm described in Section 7. Therefore, in order to handle
an arbitrary MITL formula, we just need to build one additional tester for ϕ = pU[a,b] q.
Much of the material in this section is taken from [16].

Our construction for timed until would follow the lines for the untimed case, based
on generating predictions for xϕ and aborting when actual values of the signals p and
q show they were wrong. However, working on dense time we have the problem that a-
priori, the set of potential predictions even for a bounded period of time includes signals
with an arbitrary number of switchings between true and false, and such predictions
cannot be memorized by a finite-state timed device. An analogous problem exists with
untimed case also, since, there, we also make an unbounded number of prediction that
should be a checked sometime in the futures. We have resolved the problem for the
untimed case based on the observation that our guesses essentially form a finite number
of equivalence classes, so we only need to memorize finitely many things. For example,
consider untimed until, ϕ = pU q. Assume, that at the current state p is true and q is
false, and we guess that xϕ is true, meaning ϕ holds at the current position. Moreover, at
the next state again p∧¬q is true, and we again predict that xϕ is true. There is no need
to distinguish the prediction done at the current and the previous state, and it is enough
to remember and verify just one of them. The solution for the timed case is completely
different and based on the observation that predictions that switch too frequently cannot
be correct. The following lemma, taken from [16] formalizes this observation:

188 A. Pnueli and A. Zaks

Lemma 1. Let x be a boolean signal satisfying �(x ≡ pU[a,b] q) for some arbitrary
signals p and q. Then, for any factorization x = v · 1r1 · 0r2 · 1r3 · 0r4 · w we have
r2 + r3 > min{a, b− a}.

Proof: The following observations concerning the constraints on the values of x, p and
q at every t follow from the definitions:

1. If x holds at t, p must hold in all the interval [t, t + a];
2. If q holds at t+ b and p holds throughout [t, t+ b] then x holds during [t, t+ b−a].

Let [t1, t2) and [t2, t3) be the corresponding intervals for 0r2 and 1r3 , respectively (see
Fig. 3), and let us show that (t2−t1) < a implies that (t3, t2) ≥ b−a. Since (t2−t1) <
a and x(t1 − ε) = 1, observation 1 implies that p = 1 throughout the interval [t1, t2].
As x(t) = 1 for all t ∈ [t2, t3), it follows that p(t) = 1 for all t ∈ [t1, t3). This
implies that q must start holding at t2 + b and not before that, because otherwise this
will imply that x holds inside the interior of [t1, t2] contrary to our assumptions. It
follows by observation 2 that x holds continuously in [t2, t2 + b − a]. Consequently,
t3 ≥ t2 + b − a, implying that (t3 − t2) ≥ b− a

The importance of this property is that it bounds the variability of any reasonable
prediction and constrains the relation between the logical and metrical length of the
candidate signals. Let d = min{a, b− a} and m = b/d. Each 01 part of x has metric
length of at least d, and an acceptable prediction of the form (01)m · 0 has a metric
length beyond b. Therefore, its initial part can be forgotten and the remaining part has
at most 2m predictions left unverified.

In addition to the above lemma, we are going to use the following equivalence:

pU [a,a+b] q ≡ � a

[
� [0,a] p ∧ (pU [0,b] q)

]
where � a is a “shift by a” operator, a shorthand for � [a,a], and � [0,a] p is a past
analog of the �[a,b]operator. Note that � [a,a]p is not a proper MITL formula since
operator � [a,b] requires that a < b. The formula � [0,a] p is also not in the language,
but it can be added if needed. We define that the formula � [0,a] p is satisfied iff p has
been continuously true for the last a time units.

Thus, assuming that we have constructed testers T [� a p], T [� [0,a] p], and
T [pU [0,b] q] for the corresponding formulas, then T [pU [a,a+b] q] can be given by the
three ways synchronous parallel composition:

T [pU [0,b] q] ||| T [� [0,a] p] ||| T [� a(xp U [0,b] q ∧ x� [0,a] p)].

t1 t2

r2 = t2 − t1

t3

r3 = t3 − t2

Fig. 3. A signal u satisfying �(x ≡ p U[a,b] q)

On the Merits of Temporal Testers 189

4 : pqx
t ≤ b

0 : px

1 : pqx

2 : pqx 3 :
pqx
t ≤ b

t := 0

t := 0

t ≤ b

t ≥ b

Fig. 4. A tester for p U[0,b] q

Next, we are going to present the three remaining testers. By convention, each node
in Fig. 4, Fig. 5, and Fig. 6 has an implicit self-loop; the self-loops are omitted for
sake of clarity. We also assume that all the clocks are initially set to 0. In addition, note
that unlike the untimed case, for the timed testers shown in this paper the validity of
predictions is always resolved in finite time. Therefore, we do not need any conditions
at infinity.

9.1 A Tester for p U [0,b] q

In Fig. 4, we present a tester for this formula.

9.2 A Tester for � [0,a] p

In Fig. 5, we present a tester for the formula � [0,a] p.

9.3 A Tester for � a p

In general, it is impossible to construct a tester for the formula � a p with a bounded
number of clocks. However, if we know that the signal p has bounded variability, then
such a construction is possible. We assume in the following that p has no more than k
changes for each period of length a. This holds in our case since operator� a is only
used as an auxiliary construct to handle U [a,a+b] operator to which Lemma 1 applies.
The tester for � a p can be given by the following parallel composition:

U ||| P ||| ON [0] ||| OFF [0] ||| · · · ||| ON [k−1] ||| OFF [k−1]

In Fig. 6, we present the automata U , P , and generic ON [i] and OFF [i].

t := 00 : px 2 : px

t ≤ a

t ≥ a1 : px
t ≤ a

Fig. 5. A tester for � [0,a] p

190 A. Pnueli and A. Zaks

/xoff
x x

/ xoff

P :

g ≤ a

U :

toff [i] ≤ aton[i] ≤ a

xon / ton[i] := 0 xoff / toff [i] := 0

pon [ton[i] ≥ a] poff [toff [i] ≥ a]

p p

g ≥ a / pon

/pon
g ≥ a / poff

/poff

xoff /xon /

OFF [i] :ON [i] :

/ xon

/xon

Fig. 6. The automata U , P , ON [i], and OFF [i]

10 Using Testers for Model Checking

One of the main advantages of our construction is that all the steps, as well as the final
result – the tester itself, can be represented symbolically. That is particularly handy if
one is to use symbolic model checking [4]. Assume that the formula under consideration
is ϕ, and Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 is the corresponding tester. Let JDS D represent
the system we wish to model check.

We are going to use traditional automata theoretic approach based on synchronous
composition, as in [4]. We perform the following steps:

• ComposeD with T +
ϕ to obtain D |||T +

ϕ .
• Check if D |||T +

ϕ has a (fair) computation, such that s0[xϕ] = 0.
D |||T +

ϕ has such a computation iff D does not satisfy ϕ.

As can be seen, a tester can be used anywhere instead of an automaton. Indeed, we can
always obtain an automaton from a tester by restricting the initial state to interpret xϕ

as true.

11 LTL Deductive Verification

Another important application of testers is deductive verification, which is ultimately
the only approach towards verification of infinite state systems. A complete deductive
proof system for linear-time temporal logic (LTL) has been presented in [17] and fur-
ther elaborated in [18] and [19]. The approach first defines deductive proof rules for

On the Merits of Temporal Testers 191

special form formulas, the most important of which are formulas of the form p ⇒ � q,
p ⇒ � q, and � � p ⇒ � � q, where p and q are arbitrary past formulas, where
ϕ ⇒ ψ is a shorthand for � (¬ϕ ∨ ψ). To deal with arbitrary formulas, [17] invokes a
general canonic-form theorem, according to which every (quantifier-free) LTL formula
is equivalent to a conjunction of formulas of the form � � pi ⇒ � � qi, for some
past formulas pi and qi. While this approach is theoretically adequate, it is not a prac-
tically acceptable solution to the verification of arbitrary LTL formulas. This is because
the best known algorithms for converting an arbitrary LTL formula into canonic form
are at least doubly exponential (e.g., [11] which is actually non-elementary).

The new tester-based approach which has been first introduced in [14], is based on
a successive elimination of temporal operators from a given formula ϕ until we hit a
special form, to which we can apply the predefined rules. Elimination of the temporal
operators is based on the construction of temporal testers, as presented in Section 5. Let
ϕ be a an arbitrary LTL or even PSL formula containing one or more occurrences of the
sub-formula ψ. In Fig. 7, we present the rule that reduces the proof of ϕ with respect to
some system D to the proof of ϕ[ψ/xψ] overD |||T [ϕ], where T [ϕ] is a temporal tester
for ϕ, xϕ is the output variable of T [ϕ], and ϕ[ψ/xψ] denotes the formula ϕ in which
each occurrence of the sub-formula ψ is replaced with xψ.

For an arbitrary PSL formula ϕ and FDS D,

D ||| Tϕ |= ϕ[ψ/xψ]

D |= ϕ

Fig. 7.

We are going to illustrate application of the rule from Fig. 7 on the following example:

1 : p 2 : p0 : p

The property whose validity we wish to establish is � � p. First, we construct a tester
for � p and compose it with our system. The transition relation of the new system
D |||T [ϕ] is presented in Fig. 8.

The justice requirement associated with D |||T [ϕ] is x� ∨ ¬p, and all just states are
depicted using double ovals. The new property under consideration ϕ[� p/x

�
], which

after the substitution is simply � x
�

. This is one of the special form formulas, and we
can apply the deductive proof from Fig. 9. Strictly speaking our original formula also
has a specialized rule, but for the sake of example we ignored it. However, this is not
totally artificial since the rule we are going to apply is simpler. Of course, our system
after composition is more complex. Nevertheless, one can argue that the additional state

192 A. Pnueli and A. Zaks

1 : px
�

2 : px
�

0 : px
�

1 : px
�

2 : px
�

0 : px
�

Fig. 8. System D ||| T [ϕ]

For an FDS D with transition relation ρ and justice set J = {J1, . . . , Jm},
assertions p, q, ϕ1, . . . , ϕm,
well-founded domain (A, �) and a ranking function δ : Σ → A

W1. p ⇒q ∨
m∨

j=1

ϕj

W2. For i = 1, . . . , m

ϕi ∧ ρ ⇒q′ ∨ (¬J ′
i ∧ ϕ′

i ∧ δ = δ′) ∨
(

m∨
j=1

ϕ′
j ∧ (δ � δ′)

)

p ⇒ � q

Fig. 9. Well-founded eventuality under justice

variable x
�

makes thing easier since it essentially provides CTL like statification for
the formula � p, where all fair paths out of a state with x

�
set to true must satisfy � p.

To apply the rule from Fig. 9, we need to define a well-founded domain (A,),
a ranking function δ, and a set of intermediate assertions ϕ1, . . . , ϕm. The function δ
is intended to measure the distance of the current state to a state satisfying the goal
q. Premise W1 states that every p-state satisfies q or one of ϕ1, . . . , ϕm. Premise W2
states that for every i, 1 ≤ i ≤ m, a ϕi-state with rank δ = u is followed by either a
q-state or a ϕi-state that does not satisfy Ji and has the same rank u, or by a ϕj-state
(1 ≤ j ≤ m) with a smaller rank (i.e., u δ). The rule claims that if premise W1,
and the set of m premises W2 are D-valid, then for all (fair) computations a p-state is
eventually followed by q-state. In our case, we take p to be true, δ = 2− state id (e.g.,
δ for the state labeled with [0 : px

�
] is 2− 0 = 2), ϕ1 = x

�
.

References

1. Accellera Organization, Inc. Property Specification Language Reference Manual, Version
1.01 (2003), http://www.accellera.org/

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)

http://www.accellera.org/

On the Merits of Temporal Testers 193

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. In: Symposium on
Principles of Distributed Computing, pp. 139–152 (1991)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (2000)
5. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. Journal of the ACM 49(2), 172–

206 (2002)
6. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of ACM 28(1), 114–133

(1981)
7. Cimatti, A., Roveri, M., Semprini, S., Tonetta, S.: From PSL to NBA: a modular symbolic

encoding, pp. 125–133 (2006)
8. Bustan, D., Fisman, D., Havlicek, J.: Automata Construction for PSL (2005),

http://www.wisdom.weizmann.ac.il/˜dana/publicat/
automta constructionTR.pdf

9. Daws, C., Yovine, S.: Reducing the number of clock variables of timed automata, pp. 73–81
10. Eisner, C., Fisman, D., Havlicek, J., Gordon, M., McIsaac, A., Van Campenhout, D.: Formal

Syntax and Semantics of PSL (2003),
http://www.wisdom.weizmann.ac.il/ dana/publicat/
formal semantics standalone.pdf

11. Gabbay, D.: The declarative past and imperative future. In: Banieqbal, B., Barringer, H.,
Pnueli, A. (eds.) Temporal Logic in Specification, vol. 398, pp. 407–448 (1987)

12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computa-
tion. Addison Wesley, Reading (1979)

13. Kesten, Y., Pnueli, A., Raviv, L.: Algorithmic verification of linear temporal logic specifica-
tions. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
1–16. Springer, Heidelberg (1998)

14. Kesten, Y., Pnueli, A.: A compositional approach to CTL∗ verification. Theoretical Computer
Science 331, 397–428 (2005)

15. Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy their linear
specification. In: POPL 1985: Proceedings of the 12th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pp. 97–107. ACM Press, New York (1985)

16. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer,
P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006)

17. Manna, Z., Pnueli, A.: Completing the temporal picture. Theoretical Computer Sci-
ence 83(1), 97–130 (1991)

18. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specifica-
tion, New York (1991)

19. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer, New
York (1995)

20. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Computer Sci-
ence 32, 321–330 (1984)

21. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In: Misra,
J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586. Springer,
Heidelberg (2006)

22. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. Technical
Report, Dept. of Computer Science, New York University (2006)

23. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for Real-
Time Systems. In: 7th. Symposium of Logics in Computer Science, Santa-Cruz, California,
pp. 394–406. IEEE Computer Scienty Press (1992)

24. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
Proc. First IEEE Symp. Logic in Comp. Sci., 332–344 (1986)

http://www.wisdom.weizmann.ac.il/~dana/publicat/automta_constructionTR.pdf
http://www.wisdom.weizmann.ac.il/~dana/publicat/automta_constructionTR.pdf
http://www.wisdom.weizmann.ac.il/~dana/publicat/formal_semantics_standalone.pdf
http://www.wisdom.weizmann.ac.il/~dana/publicat/formal_semantics_standalone.pdf

194 A. Pnueli and A. Zaks

A Associating a Regular Grammar with a SERE

Let b be a boolean expression, r′, r, r1, r2 be SEREs, and G′,G,G1,G2 the correspond-
ing grammars. Our algorithm is recursive and we assume that G, G1, and G2 have already
been properly constructed. Our goal is to build G′ = 〈V ′, T ′,P ′,S′〉 for the SERE r′.

• r′ = b

− V ′ = {V }
− T ′ = {b}
− P ′ = {V → b}
− S′ = V

• r′ = r1 ; r2

− V ′ = V1 ∪ V2

− T ′ = T1 ∪ T2

− P ′ =

{V → aW | V → aW ∈ P1} ∪
{V → aS2 | V → a ∈ P1, a �= ε} ∪
{V → aS2 | V → aW ∈ P1, W → ε ∈ P1} ∪
P2

− S′ = S1

• r′ = r1 : r2

− V ′ = V1 ∪ V2

− T ′ = T1 ∪ T2

− P ′ =

{V → aW | V → aW ∈ P1} ∪
{V → a ∧ b | V → a ∈ P1,S2 → b ∈ P2} ∪
{V → (a ∧ b)W | V → a ∈ P1,S2 → bW ∈ P2} ∪
P2

where a ∧ b =

⎧⎪⎪⎨
⎪⎪⎩

ε, if a = b = ε
a, if b = ε
b, if a = ε
a ∧ b, otherwise

− S′ = S1

• r′ = r1 | r2

− V ′ = {S′} ∪ V1 ∪ V2

− T ′ = T1 ∪ T2

− P ′ =

{S′ → aW | S1 → aW ∈ P1} ∪
{S′ → aW | S2 → aW ∈ P1} ∪
P1 ∪
P2

− S′ = S′

On the Merits of Temporal Testers 195

• r′ = r1 && r2

− V ′ = V1 × V2

− T ′ = T1 ∪ T2

− P ′ =
{(V, X)→ a ∧ b(W, Y) | V → aW ∈ P1, X → bY ∈ P2} ∪
{(V, X)→ a ∧ b | V → a ∈ P1, X → b ∈ P2}

− S′ = (S1,S2)

• r′ = [∗0]
− V ′ = {V }
− T ′ = {b}
− P ′ = {V → ε}
− S′ = V

• r′ = r[∗]
− V ′ = V
− T ′ = T

− P ′ =
{S → ε} ∪
{V → aS | V → a ∈ P , a �= ε} ∪
{V → aS | V → aW ∈ P , W → ε ∈ P}

− S′ = S

� Originally published in: Kozen, D. (ed.) Logic of Programs. LNCS, vol. 131,
pp. 52-71. Springer, Heidelberg (1982).

c© Springer-Verlag Berlin Heidelberg 2008
O. Grumberg and H. Veith (Eds.): 25MC Festschrift, LNCS 5000, pp. 19 6–215, 2008.

�

DESIGN AND SYNTHESIS OF SYNCHRONIZATION SKELETONS 197

198 E.M. Clarke and E.A. Emerson

DESIGN AND SYNTHESIS OF SYNCHRONIZATION SKELETONS 199

200 E.M. Clarke and E.A. Emerson

DESIGN AND SYNTHESIS OF SYNCHRONIZATION SKELETONS 201

202 E.M. Clarke and E.A. Emerson

DESIGN AND SYNTHESIS OF SYNCHRONIZATION SKELETONS 203

204 E.M. Clarke and E.A. Emerson

DESIGN AND SYNTHESIS OF SYNCHRONIZATION SKELETONS 205

206 E.M. Clarke and E.A. Emerson

DESIGN AND SYNTHESIS OF SYNCHRONIZATION SKELETONS 207

208 E.M. Clarke and E.A. Emerson

DESIGN AND SYNTHESIS OF SYNCHRONIZATION SKELETONS 209

210 E.M. Clarke and E.A. Emerson

DESIGN AND SYNTHESIS OF SYNCHRONIZATION SKELETONS 211

212 E.M. Clarke and E.A. Emerson

DESIGN AND SYNTHESIS OF SYNCHRONIZATION SKELETONS 213

214 E.M. Clarke and E.A. Emerson

DESIGN AND SYNTHESIS OF SYNCHRONIZATION SKELETONS 215

� Originally published in: Dezani-Ciancaglini, M., Montanari, U. (eds.)
International Symposium on Programming. LNCS, vol. 137, pp. 337-351.
Springer, Heidelberg (1982).

O. Grumberg and H. Veith (Eds.): 25MC Festschrift, LNCS 5000, pp. 216–230, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

�

SPECIFICATION AND VERIFICATION OF CONCURRENT SYSTEMS IN CESAR 217

218 J.P. Queille and J. Sifakis

SPECIFICATION AND VERIFICATION OF CONCURRENT SYSTEMS IN CESAR 219

220 J.P. Queille and J. Sifakis

SPECIFICATION AND VERIFICATION OF CONCURRENT SYSTEMS IN CESAR 221

222 J.P. Queille and J. Sifakis

SPECIFICATION AND VERIFICATION OF CONCURRENT SYSTEMS IN CESAR 223

224 J.P. Queille and J. Sifakis

SPECIFICATION AND VERIFICATION OF CONCURRENT SYSTEMS IN CESAR 225

226 J.P. Queille and J. Sifakis

SPECIFICATION AND VERIFICATION OF CONCURRENT SYSTEMS IN CESAR 227

228 J.P. Queille and J. Sifakis

SPECIFICATION AND VERIFICATION OF CONCURRENT SYSTEMS IN CESAR 229

230 J.P. Queille and J. Sifakis

Author Index

Alur, Rajeev 89

Bryant, Randal E. 145

Chatterjee, Krishnendu 107
Clarke, Edmund M. 1, 196

Dill, David L. 77

Emerson, E. Allen 27, 196

Fix, Limor 139

Groce, Alex 65

Henzinger, Thomas A. 107
Holzmann, Gerard J. 65

Joshi, Rajeev 65

Kurshan, R.P. 46

Pnueli, A. 172

Queille, J.P. 216

Sifakis, J. 216

Vardi, Moshe Y. 150

Zaks, A. 172

	Title Page
	Preface
	Table of Contents
	The Birth of Model Checking
	Model Checking
	What Is Model Checking?
	Advantages of Model Checking
	Disadvantages of Model Checking

	Verification Tools Before 1981
	Petri Net Tools
	Bochmann and Protocol Verification
	Holzmann and Protocol Verification

	Fixpoint Theory, Hoare Logic, and Concurrency
	Thesis Research on Hoare Logic
	Program Invariants as Fixed Points
	Data-Flow Analysis
	My Early Research on Concurrency

	Temporal Logic
	Temporal Logic and Program Verification
	Pnueli’s 1977 Paper and Model Checking
	Branching-Time Logics

	Temporal Logic Model Checking
	Clarke and Emerson 1981
	My Eureka Moment
	Queille and Sifakis 1982
	The EMC Model Checker
	LTL and CTL
	Automata Theoretic Techniques and Process Algebra

	Dealing with Very Complex Systems
	Symbolic Model Checking
	Partial Order Reduction
	Special Purpose Techniques

	Big Events Since 1990 and Future Challenges
	References

	The Beginning of Model Checking: A Personal Perspective
	Introduction
	Background of Model Checking
	Temporal Logic
	TheMu-calculus
	The Origin of Model Checking
	Model Checking Today
	Conclusions and Future Trends
	References

	Verification Technology Transfer
	Introduction
	First Projects
	The Catch 22 of Technology Transfer

	Impediments to Change
	Pain and Gain

	False Starts
	A Framework for Technology Transfer
	Formal Functional Verification in Commercial Use Today
	Algorithms
	Future
	Conclusion
	References

	New Challenges in Model Checking
	Introduction
	The New Challenge
	Our Plan
	Constraints
	Verification Challenges

	On Code Structure
	Testing?
	Summary
	References

	A Retrospective on Murφ
	Introduction
	Early Years
	The Motivation for the Project
	The Murφ Description Language Design
	Murφ’s First Major Application
	BDD Research

	Optimizations
	State Reduction
	Reducing the PrimaryMemory Bottleneck

	Lessons Learned
	References

	Model Checking: From Tools to Theory
	Introduction
	History of Verification of Pushdown Systems
	NestedWords
	Revised Formulation of Software Model Checking
	Fixpoints for Local and Global Program Flows
	Modeling and Processing Linear-Hierarchical Data
	References

	Value Iteration
	Introduction
	Graph Models of Systems
	Valued Graphs

	Level-1 Objectives and Alternation-Free Value Iteration
	Maximizing and Minimizing Objectives
	Value Improvement
	Graphs
	Deterministic Games
	Probabilistic Graphs
	Probabilistic Games
	Concurrent Games

	Level-2 Objectives and Depth-1 Value Iteration
	Limsup and liminf Objectives
	Nested Value Improvement
	Graphs
	Deterministic Games
	Probabilistic Graphs
	Probabilistic Games
	Concurrent Games

	Level-3 Objectives
	Parity Objectives
	Limit-Average Objectives
	Relation between Parity and Limit-Average Objectives

	Concluding Remarks
	References

	Fifteen Years of Formal Property Verification in Intel
	Hardware Verification in Intel
	The First Generation
	The Second Generation

	Industrial Deployment of Model Checking for SW Verification
	How
	Where
	When
	By Whom

	References

	A View from the Engine Room: Computational Support for Symbolic Model Checking
	Introduction
	Experiments in (Un)SAT
	Observations
	Conclusion
	References

	From Church and Prior to PSL
	Thread I: Classical Logic of Time
	Reasoning about Sequential Circuits
	Reasoning aboutWords

	Thread II: Temporal Logic
	From Aristotle to Kamp
	The Temporal Logic of Programs
	Back to Automata
	Enhancing Expressiveness

	Thread III: Dynamic and Branching-Time Logics
	Dynamic Logics
	Branching-Time Logics
	Combining Dynamic and Temporal Logics

	Thread IV: From LTL to ForSpec and PSL
	From LTL to ForSpec
	From ForSpec to PSL

	Contemplation
	References

	On the Merits of Temporal Testers
	Introduction
	Accellera PSL
	Syntax
	Semantics
	Associating a Regular Grammar with a SERE

	Signals, Their Temporal Logic and Timed Automata
	Signals
	Real-Time Temporal Logic
	Timed Automata

	Computational Model
	Fair Discrete Systems with Finite Computations
	Interpretation of PSL Formulas over a JDS

	Temporal Testers
	Positive and Negative Testers

	LTL Testers
	A Tester for φ= X!b
	A Tester for φ= b_{1} Ub_{2}

	Tester Composition
	Composition Rules for Positive and Negative Testers

	PSL Testers
	A Tester for φ=$ \langle r \rangle b$
	A Tester for φ = r
	Complexity of the Construction

	MITL Testers
	A Tester for p$U_{[0,b]}q$
	A Tester for \${\opH_{[0,a]}p
	A Tester for \${\myF_{a} p}

	Using Testers for Model Checking
	LTL Deductive Verification
	References

	DESIGN AND SYNTHESIS OF SYNCHRONIZATION SKELETONS USING BRANCHING TIME TEMPORAL LOGIC
	INTRODUCTION
	MODEL OF PARALLEL COMPUTION
	THE SPECIFICATION LANGUAGE
	MODEL CHECKER
	THE DECISION PROCEDURE
	SYNTHESIS ALGORITHM
	CONCLUSION
	BIBLIOGRAPHY

	SPECIFICATION AND VERIFICATION OF CONURRENT SYSTEMS IN CESAR
	INTRODUCTION
	DESCRIPITION IN CEASR
	The descripition language
	Translation of descripition programs into interpreted Petri nets
	Example: The Alternating Bit Protocol

	SPECIFICATION IN CESAR
	The specification language
	Example

	PROVING SPECIFICATION IN CESAR
	The results used by the analyser
	The principle of the verfication method
	Example

	CONCLUSION
	REFERENCES

	Author Index

