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Abstract. This paper presents an application of Colonial Competitive Algo-
rithm (CCA) in game theory and multi-objective optimization problems. The 
recently introduced CCA has proven its excellent capabilities, such as faster 
convergence and better global optimum achievement. In this paper CCA is used 
to find Nash Equilibrium points of nonlinear non-cooperative games. The pro-
posed method can also be used as an alternative approach to solve multi-
objective optimization problems. The effectiveness of the proposed method, in 
comparison to Genetic Algorithm, is proven through several static and dynamic 
example games and also multi-objective problems. 
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1   Introduction 

Game theory is generally considered to have begun with the publication of “The The-
ory of Games and Economic Behaviour”, by von Neumann & Morgenstern in 1944 
[1]. It provided the mathematical analysis of the conflict theory and brought the ter-
minology with which one could analyze it. The development of the “Prisoner’s Di-
lemma” by Tucker and J. Nash’s papers on the definition and existence of equilibrium 
in 1950 laid the foundations of the modern non-cooperative game theory [2, 3]. These 
papers introduced the idea of the decision makers as players in a game and were de-
signed to solve multi-objective optimization problems using game theory. Nash Equi-
librium (NE) defined in [2], is a set of strategies such that no player can improve his 
payoff, given the strategies of all other players in the game, by changing his strategy. 
Nash proved that all non-cooperative games have a NE point.  

Game theory can today be defined as the analysis of rational behaviour under circum-
stances of strategic interaction, when a player's best strategy depends on that of the others 
[4]. The players can be any entities that are able to exhibit strategic behaviour. 

Economics is the most interesting field where game theory has been studied and 
applied. In addition to economics, game theory has been applied to biology, mathe-
matics, political science, management science and even philosophy [5]. 
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There are different kinds of games resulting in different equilibria points. Some of 
these equilibria points are Nash, Cournot, Stackelberg, Correlated and Bayesian equi-
libria. In this paper we will focus on Nash Equilibrium point of nonlinear non-
cooperative games. 

From a point of view, Games are divided into Dynamic and Static games. Dynamic 
Games mathematically model the interaction among different players, controlling a 
dynamical system. Instances of such situations happen in armed conflicts and eco-
nomic competition. These examples are a kind of dynamical systems since the play-
ers’ actions influence the evolution of the state of a system over time. The difficulty 
in deciding what should be the behavior of these players relies on the fact that each 
action a player takes at a given time will influence the reaction of the opponents at 
later time [6]. A precise mathematical framework to find the NE in linear dynamic 
games with quadratic cost is introduced in [7]. There have also been made consider-
able efforts to find the NE Points in nonlinear non-cooperative games. To enhance the 
poor convergence of simple coevolutionary programming, [8] uses hybrid coevolu-
tionary programming to escape local NE traps and to reach the real NE points. The 
method used in this paper removes the need for not only such modifications but also 
the hybrid coevolutionary algorithms themselves. Reference [9] models the behaviour 
of participants in electricity markets. To study the dynamic behaviour of participants 
over many trading intervals a coevolutionary approach is developed. Trading agents 
co-evolve their own populations’ strategies using a Genetic Algorithm (GA). [10] 
proposes a game model based coevolutionary algorithm to solve multi-objective class 
of problems. It tries to find Evolutionary Stable Strategy (ESS) as a solution to multi-
objective problems using game model based coevolutionary algorithm. In [11] effi-
cient approximation algorithms to achieve Nash equilibria in anonymous games, 
games in which the players’ utilities, though different, do not differentiate between 
other players, are introduced. 

In a multi-objective optimization problem including P objectives, there exist P 
players, each optimizing his own criterion. When a player optimizes his own criterion 
he knows all other players’ actions (strategies) and also knows that these strategies are 
fixed during his decision making process. This improvement goes on for all players 
and stops when no player can further improve his criterion. This situation implies  
that the system has reached to an equilibrium point. This point is called the  
Nash Equilibrium of the game. If we assume Y1 as the search space for the first crite-
rion and YP the search space for the last criterion. A strategy set 
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Classical approach to find NE points needs the cost (payoff) function to be concave 
and differentiable. If this condition is satisfied, solving the following set of equations 
simultaneously gives the NE point of the game: 

1 i p
(X , ..., X , ..., X )

0     1, ...,
i

i

J
i p

X

∂
= =

∂
 (3) 

But there are several games in which the payoff function is not differentiable or is 
so nonlinear that the calculation of differentiation is really challenging. In these cases 
the classical approach fails to give the NE point and the use of evolutionary algo-
rithms becomes indispensable. Genetic Algorithms are the most preferred evolution-
ary methods, applied to such problems. [12] uses GA to find NE points. It has  
constructed the chromosomes in such a way that the actions of all players are in-
cluded. Each player updates his own part of chromosomes. This way we can obtain 
NE point of almost all types of games with nonlinearity in cost (payoff) functions. But 
the main problem with GA is its poor convergence rate and also poor global optima 
achievement. In this paper, we apply a newly introduced evolutionary algorithm, 
called CCA, on non-cooperative games with nonlinear cost functions to eliminate 
mentioned drawbacks.  

The recently introduced CCA [13] has been used to solve many optimization prob-
lems in different fields. This global search strategy uses the socio-political competi-
tion among empires as a source of inspiration. Like other evolutionary strategies that 
start with an initial population, CCA begins with initial empires. Any individual of an 
empire is a country. There are two types of countries; colony and imperialist state that 
collectively form empires. Imperialistic competition among these empires along with 
modeled assimilation policy forms the basis of this algorithm. During the imperialistic 
competition, weak empires collapse and powerful ones take possession of their colo-
nies. Imperialistic competition converge to a state in which there exist only one em-
pire and its colonies are in the same position and have the same cost as the imperialist. 
This evolutionary optimization strategy has shown great performance in both conver-
gence rate and better global optima achievement. Nevertheless, its effectiveness,  
limitations and applicability in various domains are currently being extensively inves-
tigated. In [14] it has been used to design an optimal controller which not only decen-
tralizes but also optimally controls an industrial Multi Input Multi Output (MIMO) 
Evaporator system. In [15] CCA is used for reverse analysis of an artificial neural 
network in order to characterize the properties of materials from sharp indentation 
test. In order to find the optimal priorities for each user in recommender systems, [16] 
uses CCA in “Prioritized user-profile” approach to recommender systems, trying to 
implement more personalized recommendation by assigning different priority impor-
tance to each feature of the user-profile in different users. 

The most interesting aspect of the proposed method in this paper is its ability to 
find global Nash Equilibrium more reliably and not stopping at local NE traps. Effec-
tiveness of this method will be shown through several static and dynamic games and 
some multi-objective problems. 
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The structure of rest of the paper is as follows:  
Section 2 studies the idea of Nash Equilibrium search using evolutionary algo-

rithms. In section 3 a brief description of CCA is presented. Simulation results ob-
tained from some examples are presented in section 4. Finally, the conclusion is done 
in section 5. 

2   Evolutionary Algorithms and Nash Equilibrium 

In this section we study the method using with, an evolutionary algorithm can be 
applied to reach Nash Equilibrium. A P-objective game corresponding to P players 
each with one action set is considered here. Let each of Xis in the potential solution of 
the game X={X1, X2, … , Xp} be the action set of players P1 to PP, respectively. Each 
player can optimize and affect only his own set of actions Xi. But his action might 
influence the cost function of other players. 

At each iteration of the payoff optimization process, player Pi optimizes his cost 
function (Ji(X)) knowing that the other players’ have chosen and fixed their action 
sets (Xj, j=1,…,P , j≠i). To start the game, each player randomly chooses his action. 
Then each player optimizes his action with respect to the actions other players have 
preferred. When all the players have optimized their actions once, the first iteration is 
over. Players continue the game using the potential solution of iteration n, i. e., 
Xn

*={X*
1n, X

*
2n, … , X*

pn} as their initial strategies for next iteration. The game stops 
when no player is able to change his action and so the cost function stops changing. 
This stop point is the desired Nash Equilibrium point of the game. Fig. 1 shows dia-
gram of the optimization process used in this paper.  

 

Fig. 1. The strategy scheme used to find Nash Equilibrium 

 



684 R. Rajabioun, E. Atashpaz-Gargari, and C. Lucas 

It might seem that this algorithm is similar to that of parallel GA (PGA) introduced 
in [17]. But it is noteworthy that the principle difference between these two is that 
PGA uses the same cost function whereas the above mentioned method uses different 
criteria, resulting in NE point. In this paper we focus on the use of a novel evolution-
ary algorithm, CCA, to find the NE point of the games. 

3   Brief Description of CCA 

CCA is a novel global heuristic search method that uses imperialism and imperialistic 
competition process as a source of inspiration. Fig. 2 shows the pseudo code for this 
algorithm. This algorithm starts with some initial countries. Some of the best coun-
tries are selected to be the imperialist states and all the other countries form the colo-
nies of these imperialists. The colonies are divided among the mentioned imperialists 
based on their power. 

1) Select some random points on the function and initialize the 
empires. 

2) Move the colonies toward their relevant imperialist 
(Assimilation). 

3) If there is a colony in an empire which has lower cost than 
that of the imperialist, exchange the positions of that 
colony and the imperialist. 

4) Compute the total cost of all empires (Related to the power 
of both the imperialist and its colonies). 

5) Pick the weakest colony (colonies) from the weakest empires 
and give it (them) to the empire that has the most 
likelihood to possess it (Imperialistic competition). 

6) Eliminate the powerless empires. 
7) If there is only one empire left, stop, if not go to 2. 

 

Fig. 2. Pseudo code of the Colonial Competitive Algorithm 

After dividing all colonies among imperialists and creating the initial empires, 
these colonies start moving toward their relevant imperialist state. This movement is a 
simple model of assimilation policy that was pursued by some imperialist states [13]. 
Fig. 2 shows the movement of a colony towards the imperialist. In this movement, θ 
and x are random numbers with uniform distribution as illustrated in (4) and d is the 
distance between colony and the imperialist. 

(0, )

( , )

x U d

U

β

θ γ γ

×

−

∼

∼
 (4) 

where β and γ are arbitrary numbers that modify the area that colonies randomly 
search around the imperialist. In our implementation β and γ are 2 and 0.5 (rad),  
respectively.  
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The total power of an empire depends on both the power of the imperialist country 
and the power of its colonies. In this algorithm, this fact is modeled by defining the 
total power of an empire by the power of imperialist state plus a percentage of the 
mean power of its colonies. 

In imperialistic competition, all empires try to take possession of colonies of other 
empires and control them. This competition gradually brings about a decrease in the 
power of weak empires and an increase in the power of more powerful ones. 

 

Fig. 3. Motion of colonies toward their relevant imperialist 

This competition is modelled by picking some (usually one) of the weakest colo-
nies of the weakest empires and making a competition among all empires to possess 
these (this) colonies. Fig. 3 shows a big picture of the modelled imperialistic competi-
tion. Based on their total power, in this competition, each of empires will have a like-
lihood of taking possession of the mentioned colonies. The more powerful an empire 
is, the more likely it will possess these colonies. In other words these colonies will not 
be certainly possessed by the most powerful empires, but these empires will be more 
likely to possess them. Any empire that is not able to succeed in imperialist competition 
and can not increase its power (or at least prevent decreasing its power) will be eliminated.  

 

 

Fig. 4. Imperialistic competition: The more powerful an empire is, the more likely it will pos-
sess the weakest colony of the weakest empire 
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The imperialistic competition will gradually result in an increase in the power of 
great empires and a decrease in the power of weaker ones. Weak empires will gradu-
ally loose their power and ultimately they will collapse.  

The movement of colonies toward their relevant imperialists along with competi-
tion among empires and also collapse mechanism will hopefully cause all the coun-
tries to converge to a state in which there exist just one empire in the world and all the 
other countries are its colonies. In this ideal new world colonies have the same posi-
tion and power as the imperialist. 

4   Applications and Simulation Results 

In this section we focus on some static and dynamic non-cooperative games with 
nonlinear cost (payoff) functions and also multi-objective problems. Fig. 5 shows a 
big picture of the CCA applied to games in order to produce global NE points. 

4.1   Example of a Simple Nonlinear Static Game 

Consider a two player game with the nonlinear cost functions defined as: 
2 2

1 1 2 1 1 2
( , ) ( 1) ( )f x x x x x= − + −  (5) 

2 2

2 1 2 2 1 2
( , ) ( 3) ( )f x x x x x= − + −  (6) 

The NE point using analytical method can be obtained as: 

1 1 2 *

2 1 1
1

1
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2

2
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        3
( , ) 7

2.33330 2
3

f x x
x x x

x
x

f x x x
x

x

∂
= = − = =∂
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∂ =

= ==
∂

⎧ ⎧⎧⎪ ⎪⎪ ⎪ ⎪
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 (7) 

 

Fig. 5. The flowchart of CCA applied to games for global NE achievement (dashed area is the 
flowchart of CCA) 
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So the NE point of this simple game is (x*
1,x

*
2) = (1.6667,2.3333) with the corre-

sponding payoff values (0.88889, 0.88889). We will use this value to verify the preci-
sion of the answers obtained using both GA and CCA. Fig. 5 and Fig. 6 show the cost 
function convergence for GA and CCA, respectively. 

As it can be seen from Fig. 5 and Fig. 6, even in this simple game CCA has con-
verged in less iterations (5 iterations) compared with GA (8 iterations). Our codes are 
so that if the payoff values are constant, with the tolerance of 0.0001, for 10 iterations 
the optimization process stops. In this simple case both the algorithms could achieve 
the optimal point as computed by analytical method.  

 

5 10 15 20
0

1

2

3

4

iteration

P
ay

o
ff

 V
al

u
es

 

 

f
2
(x

1
,x

2
)

f
1
(x

1
,x

2
)

 
5 10 15 20

0

0.5

1

1.5

2

2.5

3

iteration

P
ay

o
ff

 V
al

u
es

 

 

f
2
(x

1
,x

2
)

f
1
(x

1
,x

2
)

 

Fig. 6. Payoff convergence for GA Fig. 7. Payoff convergence for CCA 

 
In this simulation the Population size of GA was set to 20 together with the Muta-

tion rate of 0.2. On the other hand, Number of Countries was set to 20 together with 
Number of Imperialists to 5 for CCA (meaning that 5 out of 20 countries will be cho-
sen as Imperialists). 

4.2   A Complicated Multi-objective Example 

Deb [18] designed some multi-objective problems which their optimization was a 
challenge for GAs. The following example is one of his. Suppose that there are two 
criterion functions defined as follows: 

1 1 1
( ) 4f x x=  (8) 

2 1 2 2 1 1 2
( , ) ( ). ( ( ), ( ))f x x g x h f x g x=  (9) 
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1

1

1

1 ( )      if  
( , )

0           otherwise

f
f g

h f g g

α− ≤
=
⎧
⎪
⎨
⎪⎩

 

2
0.25 3.75( ( ) 1)g xα = + −  

(11) 

We model this optimization problem using game theory and then find its NE point. 
We suppose that f1, f2 are the payoff functions of two players. And also x1, x2 are the 
actions they can take. An investigation of these functions show that for this problem, 
there is one global Pareto set which is convex and one local Pareto set that is concave. 
Fig. 8 shows the scatter of (f1, f2) for 50000 randomly generated (x1,x2) pairs  in inter-
val [0,1]. 

Now we apply both GA and CCA to this multi-objective problem and obtain the re-
sults. But this time none of the mentioned algorithms could find the NE using previ-
ous settings. So we increased the Population size of GA and also the Number of 
Countries and the Number of imperialists. But, as seen in Fig. 9, even the increase of 
Population size to 200 and also the increase of its optimization iterations, did not help 
GA much to find the NE of this problem precisely. On the other hand, CCA could 
reach the point with Number of Countries equal to 35 and Number of imperialists to 5. 
CCA could achieve a NE point on global Pareto front (0,1) corresponding to (x*

1, 
x*

2)=(0, 0.20002). Fig. 10 shows the payoff values convergence for CCA. 

4.3   An Example of Nonlinear Static Game with Three Players Each with a 
Single Action to Select 

In this example we will focus on a three player static game. There are three market 
players interconnected with three transmission lines. There are no constraints between 
transmission lines. The criteria are the profit functions which are going to be maxi-
mized. The criteria are defined as: 
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Fig. 8. Randomly generated solutions 
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2

1 2 3
( ) ( ( )) (0.5 )  1, 2, 3

i i i i i i i
x x x x x x x iπ θ ρ φ γ η= − + + − + + =  (11) 

This game is in Cournot model format. Connections between the generators are 
shown in Fig. 9. This system and the market data are quoted from [20]. The transmis-
sion lines are assumed to be lossless and have equal reactance [21]. Parameters of the 
mentioned payoff functions are summarized in table 1. Nash equilibrium is first ob-
tained using analytical method. 
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 (12) 

Now that we’ve computed NE point of this game we compare it with the results 
obtained from GA and CCA. Payoff values convergence of GA and CCA are shown 
in Fig. 12 and Fig. 13, respectively. 

 

 

Fig. 9. Sample system for the Cournot model 
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Fig. 10.  Payoff convergence for GA Fig. 11. Payoff convergence for CCA 
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Table 1. Parameters of the profit functions 

 1π  2π  3π  

Φi 0.015718 0.021052 0.012956 
γi 1.360575 -2.07807 8.105354 
ηi 9490.366 11128.95 6821.482 
θ 106.1176 106.1176 106.1176 
ρ 0.0206 0.0206 0.0206 

 
Again CCA wins in convergence rate and NE point preciseness, producing the set 

(x*1,x*2,x*3)=(1107.5865, 1048.2999, 976.72098). This Nash point corresponds to 
the profit values of (25421.6369, 23076.6077, 19010.9858). GA, in this case, con-
verges to (x*1,x*2,x*3)=(1104.9563, 1036.1275, 1016.143) with cost values of 
(25256.0385, 22286.6851, 21137.8527). As it is seen GA could not find the NE ex-
actly. 
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Fig. 12. Payoff convergence for GA Fig. 13. Payoff convergence for CCA 

4.4   An Example of Games with Three Players Each with an Action Set to Select 

In this example we extend the players’ strategy set so that a three player game each 
with 2 actions is obtained. Consider the cost functions of the players to be as follows: 

1 2 1 2 1 2
( , , , , , ) 21  sin(5 )  sin(5 )

A
f x x y y z z x x z y yzπ π= + × + × ×  (13) 

1 2 1 2 1 2
( , , , , , ) 21  sin(5 )  sin(5 )

B
f x x y y z z y y z x xzπ π= + × + × ×  (14) 

1 2 1 2 1 2
( , , , , , ) 21  sin(5 )  sin(5 )

C
f x x y y z z x z x y yxπ π= + × + × ×  (15) 

where x = x1+x2, y = y1+y2 and z = z1+z2 are the actions of the players P1 to P3. Fig. 
14 and Fig. 15 depict the payoff function variations for all three players, using GA 
and CCA. As it can obviously seen from these figures, CCA has converged very 
faster in just 3 iterations where GA converges after 21 iterations. The payoff values 
and the NE points obtained by GA and CCA are summarized in table 2. 
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Fig. 14. Payoff convergence for GA Fig. 15. Payoff convergence for CCA 

 
It can be said that when the players’ action sets increase GA losses its convergence 

speed. 

Table 2. NE and payoff values obtained by GA and CCA 

 NE obtained by CCA NE obtained by GA 
x*

1 9.9748 9.9748 
x*

2                 9.897                9.897 
y*

1   9.97481 9.9748 
y*

2   9.89703                9.897 
z*

1 9.9748 9.9748 
z*

2                 9.897                9.897 
Payoff             134.1276            134.4592 

4.5   An Example of Static Games with Two Players Each with One Action 

In this example a static non-cooperative game is studied. The profit functions of two 
players are defined as follows: 

1
21  sin( )  sin( )x x x y yπ π π= + × + × ×  (16) 

2
21  sin( )  sin( )y y y x xπ π π= + × + × ×  (17) 

Fig. 16 shows these profit functions for different action values that can be chosen by 
each player. As it can be seen there are several local NE traps and just one global NE 
in this game. 

Fig. 17 and Fig. 18 show the profit functions convergence rates and values for both 
GA and CCA. It can be seen that CCA converges to NE of (8.5388, 8.5383) with 
corresponding profit values of (x*, y*) =(101.8558, 101.8426) in just 2 iterations while 
GA has reached this NE in 9 iterations. The population size of GA was set to 30 while 
the Number of Countries and Number of Imperialists of CCA were set to 30 and 5, 
respectively. 
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Fig. 16. Profit function values for different actions 
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Fig. 17. Profit Values convergence for GA Fig. 18. Profit Values convergence for CCA 

4.6   An Example of Games with Three Players Each with an Action Vector of 
Dimension Three 

In this example a game with three players each with three actions is considered and 
studied. The payoff functions of these three players are as follows: 

1 1 2 2

33

21  sin(4 )  1.1 sin(2 )  

       1.2 sin(2 )   sin( )

A
f x freq x x freq x

x freq x z y y zπ

= + × × × + × × × × +

× × × × + × × × ×
 (18) 
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1 1 2 2

33

21  sin(4 )  1.1 sin(2 )  

       1.2 sin(2 )   sin( )

B
f y freq y y freq y

y freq y x z x zπ

= + × × × + × × × × +

× × × × + × × × ×
 (19) 

1 1

3 3

21  sin(4 )  1.1 2 sin(2 2)  

        1.2 sin(2 )   sin( )

C
f z freq z z freq z

z freq z x y x yπ

= + × × × + × × × × +

× × × × + × × × ×
 (20) 

where x=x1+x2+x3, y=y1+y2+y3 z=z1+z2+z3 and freq = 5. The freq. value provides us 
a tool to make the game more or less complicated. The more freq. value is, the more 
complicated the game will be. Payoffs convergence and precision are depicted in Fig. 
19 and Fig. 20. Table 3 shows the achieved NE points together with payoff values 
obtained for three players. Due to the symmetry in game, looking at payoff functions, 
a symmetry is expected in payoff values and also in actions. Looking table 3 it can be 
said that CCA has this symmetry in produced NE point. But GA has not been able to 
converge to such a symmetry. 
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Fig. 19. Payoff Values convergence for GA Fig. 20. Payoff Values convergence for CCA 

 
As stated before when the players’ action sets increase GA losses its convergence 

speed. This fact is again seen in Fig. 19 compared with Fig. 20. 

Table 3. NE and payoff values obtained by GA and CCA 

 NE obtained by CCA NE obtained by GA 
x*

1 8.7182 8.7182 
x*

2 8.6405 8.6405 
x*

3 8.6405 8.6405 
y*

1 8.7182 8.7187 
y*

2 8.6405 8.6403 
y*

3 8.6405 8.6404 
z*

1 8.7182 8.7182 
z*

2 8.6405 8.6405 
z*

3 8.6405 8.6405 
PayoffA -86.8510          -77.8117 
PayoffB -86.7845          -87.0486 
PayoffC -86.7785 -77.5606 
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5   Conclusion 

In this paper CCA was applied to some multi-objective problems and some non-
cooperative games. Better convergence rate and also better optima achievement of 
CCA, when used in different optimization problems, encouraged us to use it in order 
to find the NE of non-cooperative games with nonlinear cost functions. Usage of 
CCA helped to eliminate the drawbacks of GA, such as poor convergence rate and 
poor optima achievement, while not stopping in local Nash Equilibriums. This 
method also removed the need for modification of simple coevolutionary algorithms 
generating hybrid coevolutionary algorithms. 
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