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Abstract. A series of extensive numerical experiments indicates that
images, in general, possess a considerable degree of affine self-similarity,
that is, blocks are well approximated by a number of other blocks – at
the same or different scales – when affine greyscale transformations are
employed. We introduce a simple model of affine image self-similarity
which includes the method of fractal image coding (cross-scale, affine
greyscale similarity) and the nonlocal means denoising method (same-
scale, translational similarity) as special cases.

1 Introduction

The term “image self-similarity” is subject to a number of possible interpreta-
tions which are concerned with how well pixel blocks of an image can, in some
way, be approximated by other pixel blocks of the same image. In some appli-
cations, such as nonlocal means denoising [3], self-similarity is understood in
the strict translational sense: Given an image function u and two n × n pixel
blocks Ri and Rj , the two image subblocks u(Ri) and u(Rj) are considered to
be “close” only if u(Ri) ≈ u(Rj), i.e., the distance ‖u(Ri) − u(Rj)‖ is small.

From a visual perspective, however, it may be desirable to work with some-
what relaxed requirements. For example, two image subblocks might be consid-
ered similar if they are close up to a greyscale shift, i.e., u(Ri) ≈ u(Rj) + β.
Consider a picture of a room in which a wall is lit more brightly at one end than
at the other. Image blocks from both ends of the wall could be considered to be
visually similar. Going a little farther, various “flat” regions of an image, e.g., a
wall, a clear sky, a table, could be classed as visually similar.

A further relaxation is afforded by allowing affine greyscale transformations,
i.e., u(Ri) ≈ αu(Rj) + β. For example, in “structured vector quantization using
linear transforms” [7], image blocks are approximated by affinely transformed
codebook blocks. In fractal image coding, one approximates blocks of an image
across scales: u(Ri) ≈ αu(Dj) + β, where Dj is larger than Ri.

In this paper, we introduce a simple model of local affine image self-similarity
that accomodates all of the above examples as special cases. The original motiva-
tion arises from our work in fractal image coding, in particular some recent work
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demonstrating its effectiveness in image denoising [1,10,11]. We have also been
inspired by the increasing interest in nonlocal methods of image processing that
exploit self-similarity, for example, restoration [19], denoising [3,4] and zooming
[6,9] – see also [5].

Our investigation is centered around a series of extensive numerical experi-
ments that examine the distributions of errors in approximating image blocks
u(Ri) by affine greyscale transformations of other image blocks u(Dj). As noise
of increasing variance is added to an image, its domain-range error distribution
will be shifted outward. In the limit of zero-signal-to-noise ratio, the distribution
of the pure noise image can be characterized analytically. These results provide
a partial answer to the following question posed by D.L. Ruderman [18], “In
which ways do natural images differ from random images?”

Images with error distributions that are more concentrated near zero error
may be viewed as possessing greater degrees of self-similarity. This suggests that
relative degrees of self-similarity can be characterized quantitatively in terms of
the means and variances of the error distributions. We present computational
results for some standard test images. Our results provide some explanation of
why self-similar-based methods, including fractal image coding, work so well,
approximating or denoising images quite effectively.

Finally, we show that the error distribution of an image is generally simi-
lar to the distribution of block variances of the image. Since flatter blocks are
more easily approximated, one could argue that “image self-similarity” could be
replaced by the term “image approximability.”

2 A Simple Class of Models for Image Self-similarity

An image I will be represented by an image function u : X → Rg, where Rg ⊂ R
denotes the greyscale range. In the computations presented below, we work with
normalized images, i.e., Rg = [0, 1], converting them to 8 bit-per-pixel images for
display. The support X of an image function u is assumed to be an n1 ×n2-pixel
array. The components of our model are as follows:

1. A set R of n × n-pixel range subblocks Ri, 1 ≤ i ≤ NR such that (i)
Ri ∩ Rj = 0 if i �= j and (ii) X = ∪iRi. In other words, R forms a partition
of X . We let u(Ri) denote the portion of u that is supported on Ri.

2. A set D of m×m-pixel domain subblocks Dj, where m ≥ n. The set of blocks
D should cover X , i.e., ∪jDj = X but they need not be nonoverlapping.

3. The geometric transformations w
(k)
ij that map a domain block Dj to range

block Ri. For simplicity, we consider only affine transformations. Since both
blocks are square, there are 8 possible mappings (four rotations and four
inversions about the center) which are accomodated in the index 1 ≤ k ≤ 8.
In the case that m > n, i.e., Dj is larger than Ri, it is also assumed that the
contractive map wij includes an appropriate pixel decimation operation.

4. Affine greyscale maps φ : Rg → Rg having the form φ(t) = αt + β.

Given an image function u, we examine how well or poorly the subimages u(Ri)
are approximated by subimages u(Dj), to be written symbolically as
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u(Ri) ≈ φij(u(Dj)) = αiju(Dj) + βij , 1 ≤ i ≤ NR, 1 ≤ j ≤ ND, (1)

with the understanding that the relation applies at the single pixel level. (Tech-
nically, the above should be written as u(Ri) ≈ φi(u(w−1

ij (Rj))) · · ·. Note that
we have also omitted the k superscripts for convenience.)

We emphasize that the model formulated above has been made as simple as
possible. As such, we address some potential concerns briefly below:

1. The use of square, nonoverlapping blocks: This was an effort to standardize
the method, with low computational cost. Generally, the same behaviour is
observed for larger numbers of overlapping blocks.

2. The use of range blocks of the same size: Generally, the smaller a block, the
easier it is to approximate it. We are attempting to keep all regions of an
image “on the same playing field.” One may certainly wish to examine the
self-similarity statistics over several scales, i.e., sizes of range blocks.

3. The use of affine greyscale maps φ(t) = αt + β. Such a family of maps
is very simple in form yet, with two parameters, sufficiently flexible. Of
course, better approximations would be accomplished with higher-degree
polynomials but we believe that such similarities would be artificial.

In an effort to characterize how well images may be approximated with this
model, we consider the distribution of errors Δij associated with Eq. (1), i.e.,

Δij = min
α,β∈Π

‖u(Ri) − αu(Dj) − β‖, 1 ≤ i ≤ NR, 1 ≤ j ≤ ND. (2)

Here, ‖ · ‖ denotes the L2(X) norm. In all calculations reported in this paper,
the L2-distance between two n × n image subblocks u(Ri) and v(Ri) will be the
root-mean-square (RMS) distance. Π ⊂ R2 denotes the feasible (α, β) parame-
ter space, restricted so that φ : Rg → Rg.

We consider four particular cases of this self-similarity model:

1. Purely translational: Domain and range blocks have the same size, i.e.,
m = n. As such, the wij are translations and αij = 1, βij = 0. The approxi-
mation error is simply Δij = ‖u(Ri) − u(Dj)‖.

2. Translational + greyscale shift: The wij are again translations. We set
αij = 1 and optimize over β. The approximation error is Δij = |βij | =
[ū(Ri) − ū(Dj)], where the bars denote mean values of the subblocks.

3. Affine, same-scale: The wij are translations and we optimize over α, β.
4. Affine, two-scale: The wij are affine spatial contractions (which involve

decimations in pixel space). We optimize over α, β.

3 Cases 1,2 and 3: Same-Scale Self-similarity

Here, the domain and range blocks have the same size. We naturally expect that
for a given domain-range pairing (Dj , Ri), the approximation errors of Eq. (2)
for Cases 1, 2 and 3 will behave as follows:
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0 ≤ Δ
(Case 3)
ij ≤ Δ

(Case 2)
ij ≤ Δ

(Case 1)
ij , (3)

since one optimizes over more parameters as we move from Case 1 (no param-
eters) to Case 2 (one parameter) to Case 3 (two parameters). In the numerical
experiments reported below, the domain and range blocks were taken from the
same set of nonoverlapping 8 × 8-pixel blocks, i.e., Di = Ri. Fig. 1 summarizes
the results of calculations on the normalized Lena and Mandrill images.
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Fig. 1. Same-scale RMS self-similarity error distributions for normalized Lena and
Mandrill images In all cases, 8 × 8-pixel blocks Ri and Dj were used

The top row shows histogram distributions of the approximation errors for
Case 1, over the interval [0, 1]. These errors are simply the RMSE distances,
Δ

(Case 1)
ij = ‖u(Ri) − u(Rj)‖. At first glance, one may well surmise that these

images are quite similar translationally: Both distributions exhibit significant
peaking at around Δ = 0.15, with the Mandrill image being more pronounced.

The bottom row of Fig. 1, however, shows that enormous reductions in the
approximation error are achieved when one employs greyscale maps, even for
Case 2, where only a greyscale shift β is used – note that the distributions are
plotted over the subinterval [0, 0.5]. The Case 1 Δ-error distributions (shaded)
are included in these plots for comparison.

In Fig. 2 are plotted the histogram distributions of the standard deviations
σ(u(Ri)) of the 8×8 range blocks. There is a noteworthy similarity between these
distributions and the Case 2 distributions of Fig. 1 which can be explained as
follows. The standard deviation of an image block σ(u(Ri)), is the RMSE error
in approximating u(Ri) by its mean value, ū(Ri). This is equivalent to setting
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the greyscale parameter α = 0 and optimizing over β in Eq. (1). Removing the
condition α = 0 will generally produce better approximations, i.e.,

0 ≤ Δ
(Case 2)
ij ≤ σ(u(Ri)). (4)

As such, the Case 2 Δ-error distributions will be shifted perturbations of the
block variance distributions.
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Fig. 2. Distributions of σ(u(Ri)) of 8×8-pixel blocks for normalized Lena and Mandrill
images, over the interval [0, 0.5]. Note the similarity to Case 2 distributions of Fig. 1.

Although there does not seem to be much difference between Lena and Man-
drill in terms of translational similarity (Case 1), a significant difference is pro-
duced when a greyscale shift β is used (Case 2). This can be explained as follows.
Fig. 2 shows that the Lena image contains a significantly higher proportion of
“flatter” image subblocks, i.e., blocks of low variance, than the Mandrill image.
From Eq. (4), the Case 2 Δ-error distribution for Lena will be more concentrated
near zero. Further improvement is expected with Case 3, cf. Eq. (3).

The above discussion, in particular Eq. (4), suggests that the distribution of
block variances is the most important factor in how well subblocks of an image I
may be approximated by other subblocks, i.e., its degree of “self-similarity.” An
extreme example is the constant image u = C. Here, the Δ-error distribution
consists of a single peak at Δ = 0. We return to this idea in a later section.

Application to “nonlocal means denoising”. As is well known, a standard
technique for the reduction of additive white noise is to average over multiple
samples. This is the basis of the very effective “nonlocal-means denoising algo-
rithm” [3], where the multiple samples are provided by the image itself. Very
briefly, each pixel u(i) of a noisy image is replaced by a convex combination of
other pixel values u(j) from the image. The weights λij of this averaging proce-
dure depend upon the similarity between neighbourhoods Ni and Nj centered
about pixels i and j, respectively. Neighbourhoods Nk that do not approximate
Ni very well, i.e., with high L2 error ‖Ni − Nk‖, are assigned low weights. In
essence, the nonlocal-means algorithm relies on the translational self-similarity
of an image, i.e., Case 1.
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It is remarkable that the nonlocal-means denoising method works so well.
Because of the translational symmetry requirement, only a few blocks gener-
ally contribute significantly to the denoising of a given pixel. In some applica-
tions, it would not seem unreasonable to relax this restriction and allow constant
greyscale shifts (Case 2), thereby increasing significantly the number of blocks
that could contribute to the denoising. This slight relaxation of the method is
observed to improve denoising. Moreover, the computational cost is minimal
since the optimal greyscale shifts β are easily computed.

4 Case 4: Two-Scale, Affine Self-similarity

This is the essence of fractal image coding [8,17]. Given a “target” image u, each
subblock u(Ri) is approximated by a geometrically-contracted, affine greyscale-
modified copy of a larger subblock u(Dj). The range-domain assignments (i, j(i))
and associated optimal greyscale parameters (αi, βi) comprise the fractal code
of u that defines a fractal transform operator T . Eq. (1) then becomes

u(x) ≈ (Tu)(x) = αiu(w−1
i,j(i)(x)) + βi, x ∈ Ri, 1 ≤ i ≤ NR. (5)

Under appropriate conditions involving the αi and the contraction factors ci of
the spatial maps wi,j(i), T is contractive in L2(X). Then, from Banach’s Fixed
Point Theorem, there exists a unique fixed point function ū = T ū. Further-
more, ū may be generated by the iteration procedure un+1 = Tun, where u0
is any “seed” image: un → ū as n → ∞. (The convergence is geometric.) By
construction, ū is an approximation to the target image u.

The fractal transform operator T in Eq. (5) is a nonlocal operator since blocks
of an image function u are approximated with modified copies of blocks from
elsewhere in the image. For this reason, fractal coding has often been referred
to as “self-vector quantization”. The connection between fractal coding and vec-
tor quantization was realized many years ago, e.g. [16,15,14,13]. Perhaps it is
more appropriate to consider fractal coding as a “self-structured VQ using lin-
ear transforms,” cf. [7].

The mathematical basis for this method of approximation is provided by the
so-called Collage Theorem [2], a simple consequence of Banach’s Theorem:

‖u − ū‖ ≤ 1
1 − cT

‖u − Tu‖, (6)

where cT is the contraction factor of T . Given a set of range blocks R and domain
blocks D, one tries to make the approximation error ‖u− ū‖ small by minimizing
the collage error ‖u − Tu‖. From Eq. (5), this is done as follows: For each range
block Ri, we search the domain pool D for the block Di,j(i) that yields the lowest
collage error Δij in Eq. (2).

In Fig. 3 is presented the fixed point approximation ū to the standard 512 ×
512-pixel Lena image (8 bits per pixel) obtained using 8 × 8-pixel range blocks.
The domain pool for each range block was the set of 322 = 1024 nonoverlappping
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(a) ū, PSNR = 30.37 dB
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Fig. 3. (a) Fixed point ū approximation to Lena image, as discussed in text. (b)
Distribution of RMS collage errors Δi,j(i) (normalized image) over [0, 0.5] for the 642 =
4096 domain-range pairs defining the fractal transform T .

16 × 16-pixel blocks. (A better approxmation could be obtained with the use of
a larger domain pool, but at the expense of computational search time.) Also
presented in Fig. 3 is the distribution of all RMS collage errors Δi,j(i) between
between range and selected domain blocks used to define the fractal transform
operator T . The significant peak of collage errors near zero error indicates that
a large fraction of range blocks is well approximated by this procedure.

We now examine how well/poorly all range blocks are approximated by all pos-
sible domain blocks. The histogram distribution of all such possible collage errors
Δij for the Lena image is presented in Fig. 4(a). This distribution also demon-
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Fig. 4. RMS collage error distributions over [0, 0.5] for normalized Lena and Mandrill
images. 8 × 8-pixel range blocks.

strates a significant peak near zero, indicating that a majority of domain-range
pairings yield low error. There is also a great similarity between this distribution
and that of the same-scale case (Case 3) in Fig. 1(c). In both same-scale and
cross-scale cases, a given range block is generally well-approximated by a number
of domain blocks.
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Fig. 4 also shows the distribution of collage errors for the Mandrill image.
This distribution is more diffuse than that of the Lena image, indicating that
range blocks of Mandrill are not as well approximated. This is consistent with
our observations in the same-scale case, cf. Fig. 1(d). Note also the similarity
between these two distributions and the distributions of σ-values for 8 × 8-pixel
blocks for the same images in Fig. 2. Recall that such a similarity is to be
expected: The standard deviation σ of an image range block u(Ri) is the error
in approximating it with the constant value ū(Ri), which corresponds to setting
the greyscale parameter α = 0 and optimizing over β.

Historically, most fractal image coding research focussed on its compression
capabilities – obtaining acceptable accuracy with the smallest possible domain
pool. Understandably, these investigations would rarely venture beyond observ-
ing what the “optimal” domain blocks would provide. Our study is not concerned
with the rate-distortion properties of fractal coding, but rather with the degree
of self-similarity in images, as reflected by the redundancy of good domain-range
matchings. That being said, the former is certainly influenced by the latter.

5 Effects of Noise

One expects that the presence of noise in an image will decrease the ability of
its subblocks to be approximated by other subblocks. Because of our primary
interest in fractal coding, results are presented below for the two-scale case (Case
4). Similar behaviour is exhibited for single-scale similarity (Cases 1-3). In what
follows we let I0 denote a noiseless test image, to which zero-mean Gaussian
noise N (0, σ2) is added to produce a noisy image I(σ).

Some simple experiments show that as noise N (0, σ2) of increasing variance
σ2 added to an image, the peak of the distribution of collage errors Δij moves
away from zero. Moreover, the Δ-error distribution becomes more diffuse. These
features are demonstrated in Fig. 5 for the two cases of the normalized Lena
image plus noise with σ values of 0.1 and 0.3 For comparison purposes, we
have also plotted the Δ-error distributions for “pure noise images” of the form
n(σ) = 0.5 + N (0, σ2). (For a given σ value, n(σ) may be considered as a kind
of “zero signal-to-noise limit” of a noisy Lena image.) Note that the Δ-error
distributions of n(σ) are situated roughly at σ. This can be shown analytically:
When we approximate noise blocks with other noise blocks, the optimal values
of the greyscale parameters (at least for infinite block size) are α = 0 and β = σ.
Note also that the width of the distribution also increases with σ.

It is noteworthy that the Δ-error distributions for the noisy Lena images
also peak at the σ values of the added noise, even for the relatively mild case
σ = 0.1. In fact, the Δ-error distribution for Lena + N (0, 0.32) is virtually
identical to that of the pure noise case. Note as well that the distribution for
Lena + N (0, 0.32) is not as concentrated about the peak as the distribution for
the pure noise image n(0.1). At such a low σ-value, the image n(σ) is roughly
constant, or at least more statistically constant than the Lena image. In this
case, n(σ) could therefore be viewed as more self-similar than the Lena image.
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(a) Lena + noise (σ = 0.1)
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(b) Lena + noise (σ = 0.3)
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(c) Pure noise (σ = 0.1)
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Fig. 5. Distributions of collage errors Δij over [0, 0.5] for two cases of Lena image +
zero-mean, Gaussian noise, along with distributions of pure noise images for compari-
son. 8 × 8-pixel range blocks, 16 × 16-pixel range blocks.

The coincidence of the peaks of the noisy Lena images I(σ), e.g. Lena, and
their pure noise counterparts n(σ) actually illustrates a simple and standard
method of estimating the variance σ2 of additive noise in a noisy image: one
simply constructs a histogram of the local block variances and notes the loca-
tion of the peak [12].

Fractal image denoising. As with any lossy compression method, simple frac-
tal coding of a noisy image I(σ) produces some denoising [10,11] . There are two
principal reasons: (i) the affine greyscale fitting between domain and range blocks
causes some variance reduction in the noise, and (ii) the spatial contraction/pixel
decimation involved in mapping domain blocks to range blocks provides further
variance reduction. Additional denoising can be obtained by using estimates of
the noise variance to estimate the fractal code of the noiseless image [10].

The fact that each range block is well approximated by a number of domain
blocks can be exploited to perform denoising by using multiple copies [1], a cross-
scale analog of the nonlocal means denoising method. Space limitations preclude
a more detailed description of this multi-parent fractal transform method.

6 Using Δ-Error Distributions to Assign Relative
Self-similarity

Let us now return to the idea of using collage error distributions to charac-
terize the degree of self-similarity in images. We have computed the Δ-error
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distributions of a large number of test images, to find that they lie across – and
even beyond – the spectrum spanned by the Lena and Mandrill images. The
Δ-error distributions of a few standard (512×512-pixel) images are presented in
Fig. 6. Note that the distributions of San Francisco, Boat, Peppers and Barbara
strongly resemble that of Lena, whereas the Zelda distribution leans much more
toward Mandrill, with that of Goldhill not far behind.

The means and standard deviations of the collage error distributions for the
test images are listed in Table 1. The entries have been arranged in a kind of
“decreasing self-similarity” based upon increasing mean and, to some extent,
increasing width. Estimates of the (natural logarithm) entropies of these distri-
butions have also been presented in this table (third column) – note that with
the exception of San Francisco, they increase as we proceed down the table.

In the final two columns of this table we present the estimates of the means
and standard deviations of the distributions of standard deviations for these
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Fig. 6. RMS collage error distributions over [0, 0.5] for some other (normalized) test
images: 8×8-pixel range blocks. All possible domain-range pairs were considered along
with eight spatial mappings.
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Table 1. Columns 1-3: Means, standard deviations, and entropies of collage error distri-
butions for test images examined in this paper. Columns 4 and 5: Means and standard
deviations of subblock σ-distributions of these images, to show their agreement with
Columns 1 and 2, respectively.

Image Collage errors Range block stddevs
mean stddev entropy mean stddev

Lena 0.043 0.044 2.26 0.046 0.046
San Francisco 0.046 0.057 2.01 0.048 0.059
Peppers 0.047 0.050 2.32 0.049 0.052
Goldhill 0.049 0.034 2.46 0.052 0.036
Boat 0.052 0.052 2.58 0.055 0.055
Barbara 0.060 0.049 2.69 0.064 0.051
Mandrill 0.089 0.048 2.85 0.089 0.048
Zelda 0.126 0.055 3.09 0.141 0.054

images, cf. Fig. 2, to show their excellent agreement with those of the collage
error distributions.

Finally, there may still be a concern that the images examined above do not
form a suitably broad sampling of “natural images.” For this reason, the exper-
iments have been repeated on a much larger set of natural images, 700 images
from 21 datasets in total taken from the University of Washington ‘Groundtruth
Database’. Our findings are qualitatively similar to those reported above.

7 “Self-similarity” vs “Approximability”

At the end of Section 2, we observed that the degree of self-similarity of an image
is determined primarily by the distribution of its block variances. To pursue this
idea further, we have examined numerically how the n × n-pixel blocks of an
image A are approximated, under affine greyscale transformations, by n × n-
pixel blocks of another image B. We find, in general, that the resulting error
distribution is virtually identical to that of approximating blocks of A with other
blocks of A. For example, in the cases A = Lena and B = Mandrill and vice-
versa, we obtain error distributions virtually identical to the Case 3 distributions
of Fig. 1(c) and 1(d), respectively. (We omit the actual plots because of space
limitations.) This phenomenon is also observed for (cross-scale) fractal image
coding: In the cases A = Lena and B = Mandrill and vice-versa, we obtain
collage error distributions that are virtually identical to those of Fig 4.

These observations indicate that the source of domain blocks for an image is
not as important as the ability to approximate the range blocks of the image. We
therefore conclude that the degree of self-similarity of an image is a consequence
of how well its range blocks can be approximated. As we have seen, the latter can
be decided on the basis of the variance distribution of the range blocks.
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