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Abstract The sessile mode of life is widespread in a variety of marine phyla. 
Sessile life requires a stable substratum. On the benthos, motile life stages and ses-
sile adults compete for rigid surfaces making non-living, i.e. inanimate, hard sub-
stratum a limited resource. Epibiosis is a direct consequence of surface limitation 
and results in spatially close associations between two or more living organisms 
belonging to the same or different species. These associations can be specifically 
guided by host chemistry resulting in species-specific symbiotic or pathogenic 
assemblages. Most colonizers, however, are non-specific substratum generalists. 
The ecological consequences for the overgrown host (basibiont) and the colonizer 
(epibiont) can be positive and negative. The predominantly disadvantageous nature 
of epibiosis by microorganisms for the basibiont has resulted in a variety of defence 
mechanisms against microcolonizers, including physical and chemical modes of 
action. Besides antimicrobial effects of secondary metabolites emanating from 
the host, recent studies increasingly demonstrate that epibiotic bacteria associated 
with the host deter growth and attachment of co-occurring bacterial species or new 
epibiotic colonizers competing for the same niche.

   1 Introduction    

 In the marine environment the sessile mode of life is dominant in the majority of 
phyla. Owing to their low specific weight not only microorganisms (e.g. bacteria, 
microalgae) but also the small motile life stages of macroorganisms (e.g. larvae and 
spores) behave like passive propagules in this viscous, hydrodynamically dominated 
environment. Clearly, for these species an attached filter-feeding mode of life is the 
energetically advantageous and favourable state, although the lack of locomotion 
necessitates a variety of new challenging survival strategies, such as reproduction 
and various defence forms against consumers and overgrowth. 
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 Sessile life requires a stable substratum. On the benthos, motile life stages and 
sessile adult forms compete for rigid surfaces making non-living (i.e. inanimate) 
hard substratum a limited resource. Epibiosis (greek  epi  “on top” and  bios  “life”) 
can be considered as a direct consequence of surface limitation and results in spatially 
close associations between two or more living organisms belonging to the same or 
different species. The substrate organism is considered the  basibiont , while the 
organism(s) growing attached to the animate surface is referred to as the  epibiont . 
Epibionts are further subdivided into  epizoans  (animals) and  epiphytes  (plants, 
algae). Epibiotic assemblages are rarely species-specific; on the contrary, numerous 
sessile organisms may live either as basibiont or as epibiont, or both simultaneously 
(Wahl  1997) . Attachment and growth on inanimate surfaces is usually considered 
as  fouling , although this term is frequently used synonymously in an epibiotic context 
in the literature. 

 Epibiosis is a typical aquatic phenomenon although many examples of terrestrial 
epibionts are known (e.g. algae, lichens). Depending on seasonality and location the 
average millilitre of seawater contains 10–100 microscopic larvae and spores, 10 3  
fungal cells, 10 6  bacteria and 10 7  viruses. Thus, the colonization pressure exerted 
by meroplanktonic dispersal stages can be intense on submerged surfaces (Davis 
et al.  1989)  with severe ecological consequences for basibionts and epibionts. 
The distinctive role of water as a food vector for sessile organisms is the main reason 
why surface attachment, fouling and hence epibiotic associations predominate in 
aquatic environments. A large variety of marine phyla have adopted the sessile mode 
of life for at least one ontogenetic phase. The list includes many bacteria, protozoa, 
diatoms, molluscs, tube-building polychaetes; most macroalgae, bryozoans, phoronids, 
cnidarians; some echinoderms, crustaceans; all sponges and tunicates.  

  2 Ecological Consequences for Epibionts  

 Marine fouling is an omnipresent phenomenon and the list of foulers is long. 
The different stages of the fouling process of dispersal stages on solid substrates have 
been described in successional (Davis et al.  1989)  and probalistic models (Clare et al. 
 1992 ; Maki and Mitchell  2002)  and are presented in detail in this volume. Irrespective 
of the fouling sequence, for most meroplanktonic larvae settlement is the ultimate 
prerequisite for successful metamorphosis into sedentary juveniles (Hadfield and 
Paul  2001) . Also, microcolonizers such as bacteria, benthic diatoms and algal spores 
often proliferate more rapidly or sometimes exclusively when fixed to a solid sub-
stratum (Grossart et al.  2003) . Once attached, microcolonizers are challenged by 
other members in the biofilm matrix (Fletcher and Callow  1992 ; Costerton et al. 
 1995) . To successfully compete in biofilms, many representatives of the bacterial 
genus  Pseudoalteromonas  release anti-bacterial products that aid the cells in the 
colonization of host surfaces. Through the production of agarases, toxins, bacteriolytic 
substances and other enzymes, bacterial cells are assisted in their competition for 
nutrients and space as well as in their protection against predators grazing on surfaces 
(Holmström and Kjelleberg  1999) . 
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 In densely populated marine environments where competition for space is high, 
the advantage for colonizers in occupying empty animate surfaces is probably the 
main reason for epibiosis (Wahl  1989 ; Todd and Keough  1994)  although a variety 
of other advantages for the colonizer may support specific host–epibiont associations. 
For instance, settlement on raised or elevated hosts results in a hydrodynamically 
favourable position of the epibiont (Keough  1986)  as flow dynamics increase with 
distance from the benthos (Butman  1987) . Increased flow ensures better supply of 
planktonic nutrients and more efficient removal of toxic excretory products such as 
ammonia. An exposed habitat supports phototrophic epibionts, especially in deeper 
or turbid waters where light penetration is weak (Brouns and Heijs  1986) . While 
filter-feeding epibionts profit from nutrient currents created by the host (Laihonen 
and Furman  1986)  deposit-feeding epibionts benefit from metabolites exuded by the 
basibiont (Harlin  1973) . Regarding the fate of colonizers, epibionts either benefit from 
the host defence against consumers or other colonizers, a phenomenon termed “asso-
ciational defence” (Hay  1986) , or the fates of epibiont and host are closely interlinked 
and shared together, a phenomenon termed “shared doom” (Wahl and Hay  1995) . 

 The predominantly advantageous associations of epibionts with host organisms 
indicate that the mere presence of a surface is often not the only criterion for success-
ful colonization. Numerous colonizers are reported to be guided by specific “cues” 
mediating the suitability of the settlement site (Rodriguez et al.  1993 ; Wieczorek 
and Todd  1998 ; Steinberg et al.  2002) . The recognition of appropriate cues activates 
the genetically scheduled sequence of behavioural and physiological processes during 
settlement (Morse  1990)  and many larvae delay or even avoid settlement in the absence 
of appropriate settlement cues (Coon et al.  1990 ; Qian and Pechenik  1998) .  

  3 Settlement Cues  

 There is clear experimental evidence for physical settlement cues, such as surface 
roughness (Berntsson et al.  2000)  and wettability (Qian et al.  2000) ; environmental 
conditions in direct proximity to the surface, such as irradiation (Maida et al.  1994)  
and microhydrodynamics (Mullineaux and Butman  1991) ; and biogenic chemical 
signals emanating from the basibiont or other epibionts (e.g. bacteria) already 
present on the host surface (Johnson et al.  1991a,b ; Krug and Manzi  1999) . Several 
authors have presented experimental evidence for selective settlement of both gen-
eralist and specialist epibionts in response to invertebrate or plant host cues. In most 
of these studies, the host served as the obligate prey source for larvae or adults. This 
raises the question of how planktonically dispersed larvae locate their patchily 
distributed hosts. Given the large spatial scales that need to be screened by potential 
colonizers, one would expect either strong or very distinct cues that govern such 
host–epibiont associations. To address this question, a number of studies have 
focused on the selective response of sea slugs to host corals. For example, water-
soluble cues from corals induce settlement and metamorphosis in larvae of the 
opisthobranchs  Phestilla sibogae  (Hadfield and Scheuer  1985) ,  Adalaria proxima  
(Lambert and Todd  1997)  and  Alderia modesta  (Krug and Manzi  1999) . Other 
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 well-investigated host plants are coralline algae that govern larval settlement of taxo-
nomically distinct invertebrates such as the sea urchin  Holopneustes purpurascens  
(Williamson et al. 2000), the starfish  Acanthaster planci  (Johnson et al.  1991b ; 
Johnson and Sutton  1994)  and the mollusk  Haliotis  (Morse and Morse  1984 ; Hahn 
 1989) . Other well-studied systems comprise obligate associations that seemingly 
benefit from close proximity of conspecifics to enhance reproductive output, such as 
in oysters (Tamburri et al.  1992 ; Turner et al.  1994)  and barnacles (Clare and 
Matsumura  2000) . However, the settlement cue(s) involved in the establishment of 
these systems were rarely identified at the molecular level. 

 In contrast to the numerous partially characterized inducers, only few settlement 
cues isolated from natural sources were in fact chemically identified, e.g. delta-
tocopherols from  Sargassum tortile  that induce settlement of the hydroid  Coryne 
uchidai  (Kato et al.  1975) ; jacarone isolated from the red alga  Delesseria sanguinea  
that induces settlement of the scallop  Pecten maximus  (Yvin et al.  1985) ; narains 
and anthosamines A and B isolated from marine sponges and lumichrome isolated 
from conspecifics that induce settlement of ascidian larvae (Tsukamoto et al.  1994, 
  1995,   1999) ;  N -acylhomoserine lactone quorum sensing signal molecules that aid 
zoospores of the green macroalgae  Ulva  to exploit a bacterial sensory system and 
select permanent attachment sites by responding to bacteria already present on the 
surface (Joint et al.  2002) . In most cases, the ecological relevance of these compounds 
in situ is not clear, either because the source of the settlement cue is not necessarily 
related to the recruitment patterns of the organism (Yvin et al.  1985 ; Tsukamoto 
et al.  1994,   1995) , or because the availability of the cue to settling larvae has not 
been demonstrated unequivocally (Tsukamoto et al.  1999) . 

 Interestingly, there is a high similarity in host recognition by pathogens in 
marine and terrestrial plants (Kolattukudy et al.  1995) . For example, the pathogenic 
filamentous green alga  Acrochaete operculata  recognized its host, the red alga 
 Chondrus crispus,  by cell wall polysaccharides.  C. crispus  has an isomorphic life 
history, in which the gametophytic and sporophytic generations differ only in minor 
traits, such as sulfate-ester group distribution of their matrix polysaccharides, known 
as  κ - and  λ -carrageenans. Remarkably, the sporophytic generation is highly susceptible 
to infection whereas the gametophytic phase is naturally resistant. The virulence of 
the green algal endophyte is modulated by the presence of  λ -carrageenan, which 
stimulates protein synthesis and elicits the production of specific polypeptides in 
the pathogen (Bouarab et al.  2001) . 

 Only recent years have witnessed some complete characterizations of marine 
invertebrate larval settlement cues. In a series of investigations Matsumura et al.  (1998)  
identified the key molecule responsible for gregarious settlement in the fouling 
barnacle  Balanus amphitrite  as a settlement-inducing protein complex (SIPC). This 
protein complex has now been fully elucidated as a  α  

2
 -macroglobulin-like glycoprotein 

(Dreanno et al.  2006) . Although the SIPC is regarded as an adult cue that is recog-
nized by the cyprid at settlement, it is also expressed in juveniles and in larvae, 
where it may function in larva–larva settlement interactions. In another series of 
investigations the structure and the different sources of coralline algae-derived 
settlement cues for two larval species of sea urchins,  Holopneustes purpurascens  
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and  Heliocidaris erythrogramma,  have been fully elucidated. The biogenic amine 
histamine was isolated from the red alga  Delisea pulchra  by bioassay-guided frac-
tionation and identified as the inducer of settlement of  H. purpurascens  (Swanson 
et al.  2004) . The alga still evoked larval settlement after antibiotic treatments, 
which effectively removed epiphytic bacteria on the algal surface, demonstrating 
that histamine was indeed an alga-derived cue. In contrast, the coralline alga 
 Amphiroa anceps,  which also stimulates larval settlement of  H. purpurascens,  
lacked detectable amounts of histamine. Interestingly, antibacterial treatment of 
 A. anceps  removed the settlement cue, suggesting a bacterial origin of the cue from 
this alga; indeed bacterial films of two isolates from the surface of  A. anceps  
induced settlement of  H. purpurascens  in laboratory assays (Swanson et al.  2006) . 
The role of algae-associated bacteria as producers of settlement cues has been 
examined in more detail for the sea urchin  H. erythrogramma  (Huggett et al.  2006) . 
The hypothesis of a bacterially derived settlement signal was supported by the fact 
that a variety of bacterial isolates from the surface of coralline algae triggered larval 
settlement at levels comparable to those of the positive control of coralline algae. 
One bacterial isolate from  A. anceps, Thallasomonas viridans , is a known hista-
mine producer. Given that larvae of both urchin species settle in response to histamine, 
these findings demonstrate a common settlement cue in coralline algae produced 
by the host alga and/or by associated bacteria.  

  4 Ecological Consequences for Basibionts  

 Any potential basibiont, i.e. the majority of sessile, relatively long-lived organisms, 
must either tolerate epibiosis or employ some sort of defence against this phenomenon. 
While epibiosis entails both benefits and disadvantages for epi- and basibionts the 
investment into defence depends on a finely tuned and often variable energy budget 
of the basibiont (Wahl  1989) . Epibiosis causes a variety of beneficial effects to the 
basibiont, such as the induction of morphogenesis in macroalgae by symbiotic bacteria 
(Tatewaki et al. 1983; Nakanishi  1999) , the interaction between macroalgae and 
nitrogen-fixing bacteria (Thevanathan et al.  2000) , and the protection of seaweed 
surfaces from bacterial colonizers by associated bacteria (Lemos et al.  1985) . 
A well-investigated example of a symbiotic association between host and epibiotic 
bacteria is the embryo of the American lobster,  Homarus americanus , which is 
resistant to the fungus  Lagenidium callinectes , a pathogen of many crustaceans. 
The surfaces of healthy lobster embryos are covered almost exclusively by a single, 
Gram-negative bacterium, which produces the antifungal substance 4-hydroxy-
phenethyl (Gil-Turness and Fenical  1992) . Testing the effects of epibiosis on herbivory 
and predation, research by Wahl and colleagues suggested that epibionts on the blue 
mussel  Mytilus edulis  affected its susceptibility to predation by the shore crab 
 Carcinus maenas  (Wahl et al.  1997) . Similarly, epibiosis by a variety of plants and 
animals altered the host susceptibility of the omnivorous sea urchin  Arbacia 
 punctulata  (Wahl and Hay  1995) . Furthermore, Wahl and Mark  (1999)  investigated 
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the hypothesis that if the effects for epibiont and basibiont were predominantly 
 beneficial then co-evolution would be expected to lead to some sort of associational 
specificity. However, by analyzing over 2000 patterns of epibiotic associations the 
authors concluded that many colonizers are non-specific substratum generalists and 
that epibiosis is predominantly facultative (Wahl and Mark  1999) . 

 The adverse effects of epibiosis on the basibiont often outweigh the beneficial 
ones (Table  1 ). For instance, soft-bodied marine invertebrates and algae are susceptible 
to diseases and tissue necrosis induced by bacteria, fungi and microalgae (Mitchell 
and Chet  1975 ; Bouarab et al.  2001 ; Cooney et al.  2002) . The sometimes drastic 
changes of pH and redox conditions created by microepibionts may attack chemically 
sensitive surfaces of the basibiont (Terry and Edyvean  1981) . Importantly, the adverse 
effects of microbial epibiosis may reach beyond pathogenicity and virulence. Since 
microbial films are important sources of chemical cues for larval settlement in many 
benthic marine invertebrates (Lau et al.  2002 ; Harder et al.  2002) , microbial epibiosis 
may promote subsequent colonization by rigid crustose epibiotic macroorganisms, 
which in turn significantly impair the basibiont’s ability to exchange gases and 
nutrients (Jagels  1973) , damage the tissue by increased weight, rigidity and drag 
(Dixon et al.  1981) , and decrease the growth rate of photosynthetic basibionts by 
cutting surface irradiance levels (Sand-Jensen  1977 ; Silberstein et al.  1986) . From 
a nutritional perspective it is evident that if the host and the epibiont share the 
same trophic requirements then planktonic nutrients reaching the basibiont may 
already be partially depleted after their passage through the epibiotic barrier. As 
epibionts may fall victim to predators of their hosts, so may basibionts suffer from 

 Table 1    Ecological consequences for epibiont and basibiont as a result of epibiotic associations 
(summarized from Wahl  1989)   

   Advantages  Disadvantages 

 Epibiont  Colonization of new substrate 
 New surface due to growth 

of basibiont 
 Nutrient flow from basibiont 
 Favourable hydrodynamic conditions 
 Favourable exposure to light 
 Associational resistance 

 Unstable, non-durable substrate 
 Biologically variable substrate 

 Exposure to detrimental host defence 
 Shared doom     

 Basibiont  Camouflage 
 Insulation against desiccation 
 Nutrient flow from epibiont 
 Associational resistance 
  
  
  
  
  

 Increased weight and drag 
 Decreased elasticity 
 Increased surface roughness 
 Increased deposition of particulate 

material 
 Insulation against exchange of gas and 

waste products 
 Increased mechanical damage 
 Increased chemical damage 
 Decreased nutrient flow through 

epibiotic filter 
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“shared doom”, i.e. damage due to grazers preying on epibionts (Dixon et al.  1981) . 
Table  1  summarizes the advantages and disadvantages of epibiosis for epi- and 
basibionts.      

  5 Defence  

 Many marine invertebrates and plants have evolved a variety of physical and chemical 
defence mechanisms to suppress epibiosis and/or remove epibionts. Epibiont removal 
can be physically achieved by continuous or periodic surface renewal or by means 
of mucus secretion (e.g. in cnidaria, algae, molluscs, echinoderms and tunicates) 
and periodical shedding of the cuticula or epidermis (Sieburth and Tootle  1981 ; 
Littler and Littler  1999 ; Nylund and Pavia  2005)  (see Fig . 1).        

 To create unfavourable or toxic conditions at or immediately above the living 
surface is a wide-spread adaptation of host organisms to cope with epibionts. 

 Fig. 1    Surface of the macroalga  Laminaria digitata  showing sloughing of the cuticle-containing 
bacteria and diatoms to reveal an uncolonized algal surface.  Scale bar : 30  μ m  
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The brown alga  Laminaria digitata  and the red alga  Gracilaria conferta  react with an 
oxidative burst to the presence of either alginate oligosaccharides or agar oligosac-
charides, both of which are degradation products of their own cell walls (Küpper et al. 
 2001) , resulting in the efficient elimination of bacterial epiflora (Weinberger et al. 
 2000) . Moreover, sessile marine organisms feature a variety of chemical defence 
metabolites effective against different phyla of potential epibionts (reviewed by 
Clare  1996 ; Faulkner  2000) . There are numerous studies on the inhibition of micro- 
and macroorganisms by extracts from diverse marine eukaryotes, such as corals, 
sponges, tunicates, ascidians and macrophytes (e.g. Michalek and Bowden  1997 ; 
Jensen et al.  1996 ; Wilsanand  1999 ; Slattery et al.  1995 ; Hellio et al.  2000 ; Dobretsov 
et al.  2006) . Mostly, these investigations were descriptive and did not result in the 
purification and elucidation of inhibitory compounds. It remains unclear whether 
these extracts deter epibiosis at or near surfaces in situ and, if so, at what concentra-
tions these effects are elicited. In this context, one of the better-studied models for 
algal secondary metabolism is the Australian red alga  Delisea pulchra , which produces 
a range of structurally similar halogenated furanones (Steinberg et al.  2001) . These 
metabolites are encapsulated in vesicles in the gland cells of  D. pulchra , which 
provide a delivery mechanism to the surface of the alga at concentrations that deter 
a wide range of prokaryote and eukaryote epibionts (Maximilien et al.  1998) . 
Being structurally related to acylated homoserine lactones (AHLs), halogenated 
furanones inhibit bacterial colonization through direct antagonism of bacterial 
cell-to-cell signalling. The AHL-mediated gene expression of bacteria is inhibited 
when halogenated furanones occupy the AHL-binding site of LuxR-like proteins, 
which represent the transcriptional activators in AHL regulatory systems (Manefield 
et al.  1999) . 

 Information on the localization, identity and surface concentration of 
defence secondary metabolites is rapidly advancing (e.g. Salomon et al.  2001 ; 
Kubanek et al.  2002 ; Nylund et al.  2005 ; Paul et al.  2006)  and the relevance of 
defence metabolites is increasingly discussed in a chemical ecological context. 
Moreover, recent studies on the deterrence of microbial colonization highlight 
that chemical antifouling defences cannot be generalized as broadly bacterio-
static or bactericidal, instead the effects are quite selective and targeted against 
particular microbial species (Maximilien et al.  1998 ; Egan et al.  2000 ; Kubanek 
et al.  2003) . 

 Besides antimicrobial effects of secondary metabolites emanating from the 
host, recent studies have increasingly demonstrated that epibiotic bacteria associated 
with the host deter growth and attachment of co-occurring bacterial species or new 
epibiotic colonizers competing for the same niche (Armstrong et al.  2001 ; Harder 
et al.  2004a) . A well-investigated bacterium in this context is  Pseudoalteromonas 
tunicata , which has been isolated from a tunicate and a green macroalga.  P. tuni-
cata  has been found to produce at least five extracellular compounds that inhibit 
other organisms from establishing themselves in a epibiotic community by inhibit-
ing settlement of invertebrate larvae and algal spores, growth of bacteria and fungi, 
and surface colonization by diatoms (Holmström and Kjelleberg  1999; Holmström 
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et al. 1996) . Thus, in terms of the chemical ecology of host–epibiont associations, 
it seems evident that there is a significant protective role of symbiotic microbial 
epibionts, which in turn release antifouling compounds. However, after more than 
20 years of research there is no experimental evidence demonstrating if and how 
host organisms selectively attract such epibionts. 

 With the advancement of molecular biological tools to analyse the diversity and 
abundance of bacteria in biofilms (Dahllöf  2002) , several studies have demon-
strated that quantitative and qualitative bacterial occurrence on host organisms 
differs significantly from inanimate reference surfaces (Harder et al.  2003,   2004 b; 
Lee and Qian  2004 ; Dobretsov et al.  2006 ; Rao et al.  2005) . These findings firstly 
suggest strong host defence mechanisms against non-culturable epibiotic bacteria but 
also support the notion of potent effects of non-culturable epibiotic bacteria against 
subsequent colonizers of host organisms. It will be interesting to see  follow-up 
studies that utilize advanced molecular biological tools, such as cloning  techniques, 
to directly test the metabolites of non-culturable symbiotic prokaryotes on epibiotic 
eukaryotes.      
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