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Abstract Some engineering problems ranging from blood flow to river flow, from
internal combustion engines to electronic devices have been recently modelled
by coupling problems with different space dimensions (geometrical multiscale
method). In this paper we focus on a new approch, where different levels of detail
of the problem at hand stem from a different selection of the dimension of a suitable
function space. The coarse and fine models are thus identified in a straightforward
way. Moreover this approach lends itself to an automatic model adaptive strategy.
The approach is addressed on a 2D linear advection-diffusion reaction problem.

1 Motivations

Many engineering problems of practical interest, even though formulated in 3D,
exhibit a spatial dimension predominant over the others. This is the case, for in-
stance, of river dynamics, blood flow problems or internal combustion engines. In
these cases, it is sometimes possible to resort to downscaled models where only the
dominant space dependence is considered (e.g., the Euler equations come from a
1D approximation of blood flows). Nevertheless the simplifying assumptions at the
basis of these models can fail locally, essentially where “transversal” dynamics are
relevant (e.g., a lake in a river network, an aneurysm in a blood vessel). Ideally, in
correspondence with these configurations, one would like to locally enhance the 1D
approximation via a proper higher-dimensional enrichment. In the so-called geo-
metrical multiscale approach these enrichments consist of 2D or 3D models. Here
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we follow a different strategy. We simplify the reference problem (the full model)
by tackling in a different manner the dependence of the solution on the leading di-
rection and on the transverse ones. The former is spanned by a classical piecewise
polynomial basis. The latter are expanded into a modal basis. We end up with a real
hierarchy of simplified models (the reduced models), distinguishing one another for
the different number of modal transversal functions. From a computational view-
point, independently of the dimension of the full problem, the reduced formulation
leads us to a system of 1D problems (associated with the leading direction), coupled
by the transversal information. In this work we present preliminary results of this
approach applied to a 2D elliptic framework.

A similar approach can be found in [1, 2, 4, 5], though confined to a thin domain
setting. Our proposal is potentially more effective than these approaches, as our
reduced model is a system of 1D (rather than 2D) problems, also for a 3D full
problem.

2 The Full Problem

Let us consider a linear advection diffusion reaction (ADR) problem. For the sake of
simplicity we assume the computational domainΩ in IR2 and homogeneous Dirich-
let boundary conditions.

Let μ ∈ L∞(Ω), with μ ≥ μ0 > 0, the diffusivity coefficient, b = (b1,b2)T ∈
[L∞(Ω)]2 the convective field and σ ∈ L∞(Ω) the reaction coefficient. We assume
∇ ·b ∈ L∞(Ω). Moreover for the well-posedness of the problem we assume − 1

2∇ ·
b +σ ≥ 0 a.e. in Ω . Finally, let f ∈ L2(Ω) be the forcing term. Standard notation
for the Sobolev spaces as well as for the spaces of functions bounded a.e. in Ω is
adopted.

The weak formulation of the problem reads: find u ∈V = H1
0 (Ω) s.t.∫

Ω
μ∇u ·∇vdxdy +

∫
Ω

(
b ·∇u +σu

)
vdxdy =

∫
Ω

f vdxdy ∀v ∈V. (1)

Furthermore we assume that the domainΩ can be represented as a 2D fiber bundle,
i.e.

Ω =
⋃

x∈Ω1D

γx, (2)

whereΩ1D is a supporting one-dimensional domain, while γx ⊂ IR represents the 1D
(transversal) fiber associated with x∈Ω1D. In practice we distinguish inΩ a leading
direction, associated with Ω1D, and a secondary transversal direction, represented
by the fibers γx. This choice finds its justification in the hydrodynamic as well as
haemodynamic applications we are interested in, where the dominant direction is
provided by the blood or the water main stream, respectively (see Fig. 1, left).

We map domain Ω into a reference domain Ω̂ , where the analysis is easier. For
this purpose, for any x∈Ω1D, we introduce the mapψx : γx→ γ̂1 between the generic
fiber γx ⊂ IR and a 1D reference fiber γ̂1. The domain Ω̂ is identified as the rectangle
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Fig. 1 The map ψx

with sides of length |Ω1D| and |γ̂1|. The map ψx thus simply acts on the fiber length
(see Fig. 1). Throughout the paper we denote with z = (x,y) and ẑ = (x̂, ŷ) the
generic point in Ω and the corresponding point in Ω̂ via the map ψx, respectively,
where x≡ x̂ ∈Ω1D while ŷ = ψx(y) ∈ γ̂1, with y ∈ γx.

A predominant role in the applications of our interest is played by the so-called
affine map, given by ŷ = ψx(y) = L(x)−1

[
y− g

]
, where L(x) = |γx| is the length

fiber while g is a suitable shift factor. In particular when L(x) = L = constant, the
physical domain Ω itself coincides with a rectangle.

3 The Reduced Setting

The fiber structure introduced on the domain Ω is the starting point in defining the
dimensional reduction. We resort to different function spaces along the supporting
fiber Ω1D rather than the transversal ones γx, in the spirit of a model anisotropy.
In more detail, we associate with Ω1D the function space V1D ≡ H1

0 (Ω1D), whose
functions account for the homogeneous Dirichlet boundary conditions on ∂Ω1D. On
the transversal reference fiber we introduce a modal basis {ϕk}, with k ∈ IN, where
ϕk : γ̂1 → IR and {ϕk} is assumed L2(γ̂1)-orthonormal. The functions ϕk take into
account the boundary conditions on ∂Ωγ =

⋃
x∈Ω1D

∂γx. The transversal function
space is therefore given by Vγ̂1 = span{ϕk}.

Different choices can be pursued for the modal functions ϕk (see [3], Remark 1).
Here we adopt trigonometric functions, according to a classical Fourier expansion.

By properly combining the space V1D with the modal basis {ϕk}k, we define the
reduced space, for any fixed a priori m ∈ IN,

Vm =
{

vm(x,y) =
m

∑
k=0

ϕk(ψx(y)) ṽk(x), with ṽk ∈V1D

}
. (3)

The L2(γ̂1)-orthogonality of the modal functions implies that the frequency coeffi-
cients ṽk in (3) are
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ṽk(x) =
∫
γ̂1

vm(x,ψ−1
x (ŷ))ϕk(ŷ)dŷ, with k = 0, . . . ,m. (4)

Convergence of an approximation um to (1) stems essentially from the following as-
sumptions: i) the conformity of the reduced space Vm in V , i.e. that Vm ⊂V , ∀m∈ IN;

ii) the spectral approximability of Vm in V , namely that lim
m→+∞

(
inf

vm∈Vm
‖v− vm‖V

)
=

0, for any v∈V . These two requirements basically lead to proper regularity assump-
tions on the mapψx as well as on the spaces V1D and Vγ̂1 (for further details, see [3]).
Throughout the paper we assume that these two hypotheses are fulfilled.

3.1 The ADR Reduced Form

The reduced formulation of the ADR equation (1) entails solving such a problem on
the subspace Vm of V in (3).

Thus, for any m ∈ IN, we can state the so-called ADR reduced problem: find
um ∈Vm such that∫

Ω
μ∇um ·∇vm dxdy +

∫
Ω

(
b ·∇um +σum

)
vm dxdy =

∫
Ω

f vm dxdy ∀vm ∈Vm.

(5)
The well-posedness as well as the strong consistency of this formulation are guar-
anteed by assumption i) above.

Actually the reduced formulation (5) amounts to solving a system of (m + 1)
coupled 1D problems, with coefficients computed on the reference fiber γ̂1. For
this purpose we introduce the Jacobian J (ŷ) =

(
∂ψx(y)/∂y

)|y=ψ−1
x (ŷ) associated

with the map ψx. Moreover we define D(ŷ) =
(
∂ψx(y)/∂x

)|y=ψ−1
x (ŷ), representing

a deformation index of the current domain Ω with respect to the reference one.
Let us exploit in (5) the representation um(x,y) = ∑m

j=0 ũ j(x)ϕ j(ψx(y)) of um as
a function of Vm and identify the test function vm with vm(x,y) = ϑ(x)ϕk(ψx(y)),
for any ϑ ∈V1D and any k = 0, . . . ,m, to get

m

∑
j=0

[ ∫
Ω
μ(x,y)∇

(
ũ j(x)ϕ j(ψx(y))

) ·∇(ϑ(x)ϕk(ψx(y))
)

dxdy (6)

+
∫
Ω

(
b(x,y) ·∇(ũ j(x)ϕ j(ψx(y))

)
+σ(x,y)ũ j(x)ϕ j(ψx(y))

)
ϑ(x)ϕk(ψx(y))dxdy

]
=

∫
Ω

f (x,y)ϑ(x)ϕk(ψx(y))dxdy.

We analyze separately the different terms. Moving from the gradient expansion

∇
(
w(x)ϕs(ψx(y))

)
= ϕs(ψx(y))

[
dw(x)

dx

0

]
+ w(x)ϕ ′s(ψx(y))

⎡⎣ ∂ψx(y)
∂x

∂ψx(y)
∂y

⎤⎦ , (7)
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with ϕ ′s(ψx(y)) = dϕs(ψx(y))/dψx(y), for s = 0, . . . ,m, and w ∈V1D, we rewrite the
diffusive contribution in (6) as the sum of 1D diffusive-, convective-, and reactive-
terms with respect to the unknowns ũ j, since∫
Ω1D

{( ∫
γx
μ(x,y)ϕ j(ψx(y))ϕk(ψx(y)) dy

) dũ j(x)
dx

dϑ(x)
dx

(8)

+
( ∫

γx
μ(x,y)ϕ j(ψx(y))ϕ ′k(ψx(y))

∂ψx(y)
∂x

dy
) dũ j(x)

dx
ϑ(x)

+
( ∫

γx
μ(x,y)ϕ ′j(ψx(y))ϕk(ψx(y))

∂ψx(y)
∂x

dy
)

ũ j(x)
dϑ(x)

dx

+
( ∫

γx
μ(x,y)ϕ ′j(ψx(y))ϕ ′k(ψx(y))

{[∂ψx(y)
∂x

]2
+
[∂ψx(y)

∂y

]2}
dy
)

ũ j(x)ϑ(x)
}

dx.

Similarly, we recast the convective term in (6) as the sum of a 1D convective and a
1D reactive term:∫
Ω1D

{( ∫
γx

b1(x,y)ϕ j(ψx(y))ϕk(ψx(y))dy
) dũ j(x)

dx
ϑ(x) (9)

+
(∫

γx
ϕ ′j(ψx(y))ϕk(ψx(y))

[
b1(x,y)

∂ψx(y)
∂x

+ b2(x,y)
∂ψx(y)
∂y

]
dy
)

ũ j(x)ϑ(x)
}

dx.

Finally the reactive contribution in (6) leads to a reactive term with respect to the
ũ j’s: ∫

Ω1D

( ∫
γx
σ(x,y)ϕ j(ψx(y))ϕk(ψx(y))dy

)
ũ j(x)ϑ(x)dx. (10)

In practice all the integrals above on γx, as well as the forcing term in (6), are com-
puted on the reference fiber γ̂1, by properly exploiting the map ψx (i.e. both the
Jacobian J (ŷ) and the deformation index D(ŷ)). A straightforward arrangement
of the terms in (8), (9) and (10) allows us to reformulate problem (5) as follows: for
j = 0, . . . ,m, find ũ j ∈V1D such that, ∀ϑ ∈V1D,

m

∑
j=0

{ ∫
Ω1D

[
r̂ 1,1

k j (x)
dũ j(x)

dx
dϑ(x)

dx︸ ︷︷ ︸
(I)

+ r̂ 1,0
k j (x)

dũ j(x)
dx

ϑ(x)+ r̂ 0,1
k j (x) ũ j(x)

dϑ(x)
dx︸ ︷︷ ︸

(II)

+ r̂ 0,0
k j (x) ũ j(x)ϑ(x)︸ ︷︷ ︸

(III)

]
dx
}

=
∫
Ω1D

[∫
γ̂1

f (x,ψ−1
x (ŷ))ϕk(ŷ)

∣∣J −1(ŷ)
∣∣dŷ

]
ϑ(x)dx,

(11)

with k = 0, . . . ,m, where

r̂ s,t
k j (x) =

∫
γ̂1

r s,t
k j (x, ŷ)

∣∣J −1(ŷ)
∣∣dŷ, for s,t = 0,1, (12)

and
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r1,1
k j (x, ŷ) = μ

(
x,ψ−1

x (ŷ)
)
ϕ j(ŷ)ϕk(ŷ),

r0,1
k j (x, ŷ) = μ

(
x,ψ−1

x (ŷ)
)
ϕ ′j(ŷ)ϕk(ŷ)D(ŷ),

r1,0
k j (x, ŷ) = μ

(
x,ψ−1

x (ŷ)
)
ϕ j(ŷ)ϕ ′k(ŷ)D(ŷ)+ b1

(
x,ψ−1

x (ŷ)
)
ϕ j(ŷ)ϕk(ŷ),

r0,0
k j (x, ŷ) = μ

(
x,ψ−1

x (ŷ)
)
ϕ ′j(ŷ)ϕ

′
k(ŷ)

{[
D(ŷ)

]2 +
[
J (ŷ)

]2
}

+

σ
(
x,ψ−1

x (ŷ)
)
ϕ j(ŷ)ϕk(ŷ)+ϕ ′j(ŷ)ϕk(ŷ)

{
b1
(
x,ψ−1

x (ŷ)
)
D(ŷ)+ b2

(
x,ψ−1

x (ŷ)
)
J (ŷ)

}
.

Notice that in (11) the dependence of the reduced solution um on the main stream and
on the transversal directions is split: coefficients r̂ s,t

k j essentially collect the transver-
sal contribution to the domainΩ1D. We still recognize in (11) an ADR problem, the
terms (I), (II) and (III) representing the diffusive, convective and reactive contribu-
tion, respectively.

From (8), (9) and (10) it is easy to see that the conversion from the full to the
reduced framework is not one to one. Indeed a purely diffusive (advective) full term
also yields reduced advective-reactive (reactive) contributions. The possible self-
adjointness of the full problem is thus usually lost in the reduced framework. This
property can be preserved in a few cases by a proper choice of the map ψx and of
the reduced space Vm (see [3]).

From a computational viewpoint, solving (11) requires dealing with a small num-
ber of coupled 1D problems, provided that the modal index m is small enough. This
is likely more convenient than solving the full problem (1).

Finally we point out that the computation of the r̂ s,t
k j ’s in (12) simplifies consid-

erably under particular assumptions on the data, e.g. for constant coefficients μ , b,
σ , or when the map ψx is affine (see [3] for the details).

4 Finite Element Approximation of the Reduced Problem

Formulation (11) can be understood as a model semidiscretization of the full prob-
lem (1), the transversal direction being discretized via the modal basis {ϕk}.

With a view to a full discretization of (1), we introduce a partition Th of Ω1D

into sub-intervals Kj = (x j−1,x j) of width h j = x j− x j−1, and set h = max j h j. We
associate with Th a finite element space V h

1D ⊂ V1D, with dim(V h
1D) = Nh, such that

a standard density hypothesis of V h
1D in V1D is guaranteed.

The discrete reduced formulation is thus represented by system (11) solved on
the subspace V h

1D of V1D, the test function ϑ coinciding now with the generic basis
functionϑl of the finite element space, for l = 1, . . . ,Nh. Moreover, by expanding the
unknown coefficients ũh

j in terms of the basis {ϑi}Nh
i=1 itself and by properly varying

the indices k and l, we get a linear system with a (m+1)Nh×(m+1)Nh block matrix
A. All the Nh×Nh-blocks share the sparsity pattern proper of the adopted 1D finite
element approximation, with the consequent benefits both in storing and solving the
associated algebraic system.
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Fig. 2 Full solution u and reduced solutions u2, u4, u6, u8, u9 (top-bottom, left-right)

5 Numerical Assessment

We look for a reliable and sufficiently accurate approximation of the full solution
u to (1) by properly selecting the reduced space Vm in (3), namely the modal index
m. The choice of m represents a crucial issue. It should be a trade-off between the
needs to capture the main features of u and to contain the computational cost.

We adopt here a heuristic strategy where we first fix the index m = 0 and then we
gradually increase such a value, while keeping it constant along the whole domain
Ω1D.

Let us focus on a purely diffusive differential problem exhibiting a hetero-
geneity in the corresponding source term. We solve the Poisson problem on the
domain Ω = (0,2)× (0,1), completed with homogeneous Dirichlet boundary con-
ditions. The forcing term is localized in 3 circular regions of Ω , the function f
in (1) coinciding with the characteristic function χD1∪D2∪D3 , with D1 =

{
(x,y) :

(x−1.5)2 +(y−0.5)2≤ 0.01
}

, D2 =
{
(x,y) : (x−0.5)2 +(y−0.25)2≤ 0.01

}
and

D3 =
{
(x,y) : (x−0.5)2 +(y−0.75)2≤ 0.01

}
. The associated full solution exhibits

a peak in correspondence with each of the areas Di, for i = 1,2,3 (see Fig. 2, top-
left). Figure 2 gathers the reduced solutions corresponding to different choices for
the modal index m. In particular it is evident the expected failure of the reduced solu-
tion u2 (Fig. 2, top-right) to detect the two peaks of u along the straight line x = 0.5.
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On the contrary u2 already matches the exact value in correspondence with the peak
in D1 (notice the different scales). Nevertheless the reliability of um increases as m
gets larger (Fig. 2, middle and bottom row).

These preliminary results confirm the convergence expected from classical
Galerkin theory with the fulfillment of the assumptions i) and ii) in Sect. 3. It is
worth pointing out that, even if a purely diffusive full model leads to an advective-
diffusive-reactive reduced problem, the latter does not seem to suffer from convec-
tive or reactive numerical instabilities if D(ŷ) is small enough, since the convective-
reactive terms are weighted by the diffusive coefficient μ itself (see [3]).

6 Conclusions and Future Developments

The preliminary numerical results in Sect. 5 suggest that the proposed dimensional
reduction could be a reasonable approach for containing computational costs, in
particular when both the domain and the problem at hand exhibit a “main stream di-
rection”. Many aspects deserve to be investigated. First of all the extension of the re-
duced approach to more complex problems (e.g., Oseen, Navier-Stokes equations).
A second issue is the set-up of a mathematically sound procedure for selecting the
proper modal index m. A possible approach could be based on the comparison be-
tween um and um+ , with m+ > m. We investigate extensively this issue in [3]. An
alternative solution is based on a domain decomposition approach, where different
values of m are used in different parts of Ω ([3]): for instance, in the example of
Fig. 2, a smaller value of m could suffice on the right half of the domain but not in
the left half. In perspective this approach is suited to being coupled with a proper a
posteriori modeling error analysis to get an automatic tool able to detect the most
appropriate value m in the different parts of the domain in the spirit of a model
dimension adaptivity.
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