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Abstract The goal of this paper is to combine balanced truncation model reduction
and domain decomposition to derive reduced order models with guaranteed error
bounds for systems of discretized partial differential equations (PDEs) with a spa-
tially localized nonlinearities. Domain decomposition techniques are used to divide
the problem into linear subproblems and small nonlinear subproblems. Balanced
truncation is applied to the linear subproblems with inputs and outputs determined
by the original in- and outputs as well as the interface conditions between the sub-
problems. The potential of this approach is demonstrated for a model problem.

1 Introduction

Model reduction seeks to replace a large-scale system of differential equations by
a system of substantially lower dimension that has nearly the same response char-
acteristics. This paper is concerned with model reduction of systems of discretized
partial differential equations (PDEs) with spatially localized nonlinearities. In par-
ticular, we are interested in constructing reduced order models for which the error
between the input-to-output map of the original system and the input-to-output map
of the reduced order model can be controlled.

Balanced truncation is a particular model reduction technique due to [16], which
for linear time invariant systems leads to reduced order models which approximate
the original input-to-output map with a user controlled error [1, 6]. Although ex-
tensions of balanced truncation to nonlinear systems have been proposed, see, e.g.,
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[9, 14], there are no bounds available for the error between the input-to-output map
of the original system and that of the reduced order model. Proper Orthogonal De-
composition (POD) is often used for model reduction of nonlinear systems. Error
bounds are available for the error between the so-called snapshots and the reduced
order model, see, e.g., [11, 13], but no bounds for the error between the input-to-
output map of the original system and that of the reduced order model, unless the
so-called snapshot set reflects all possible inputs.

Our approach uses domain decomposition techniques to divide the problem into
linear subproblems and small nonlinear subproblems. Balanced truncation is applied
only to the linear subproblems with inputs and outputs determined by the original in-
and outputs as well as the interface conditions between the subproblems. We expect
that this combination of domain decomposition and balanced truncation leads to a
substantial reduction of the original problem if the nonlinearities are localized, i.e.,
the nonlinear subproblems are small relative to the other subdomains, and if the
interfaces between the subproblems are relatively small.

To keep our presentation brief, we consider a model problem which couples the
1D Burgers equation to two heat equations. This is motivated by problems in which
one is primarily interested in a nonlinear PDE which is posed on a subdomain and
which is coupled to linear PDEs on surrounding, larger subdomains. The linear PDE
solution on the surrounding subdomains needs to be computed accurately enough
to provide acceptable boundary conditions for the nonlinear problem on the ‘inner’
subdomain. Such situations arise, e.g., in regional air quality models.

Our work is also related to [4], which is an example paper which discusses the
coupling of linear and nonlinear PDEs, but no dimension reduction is applied. Do-
main decomposition and POD model reduction for flow problems with moving
shocks are discussed in [15]. POD model reduction is applied on the subdomains
away from the shock. The paper [18] discusses a different model reduction tech-
nique for second order dynamical systems with localized nonlinearities. The papers
[2, 5] and [20] discuss different model reduction and substructuring techniques for
second order dynamical systems and model reduction of interconnect systems re-
spectively.

2 The Model Problem

Let Ω =
⋃3

k=1Ω k, where Ω1 = (−10,−1), Ω2 = (−1,1) and Ω3 = (1,10) and let
T > 0 be given. Our model problem is given by

ρk
∂yk

∂ t
(x,t)− μk

∂ 2yk

∂x2 (x,t) = Sk(x,t), (x,t) ∈Ωk× (0,T), (1a)

yk(x,0) = yk0(x), x ∈Ωk, k = 1,3, (1b)

∂y1

∂x
(−10,t) = 0,

∂y3

∂x
(10,t) = 0 t ∈ (0,T ), (1c)
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ρ2
∂y2

∂ t
(x,t)− μ2

∂ 2y2

∂x2 + y2
∂y2

∂x
(x,t) = 0, (x,t) ∈Ω2× (0,T ), (1d)

y2(x,0) = y20(x), x ∈Ω2, (1e)

with the following interface conditions

y1(−1,t) = y2(−1,t), y2(1,t) = y3(1,t), t ∈ (0,T ), (2a)

μ1
∂y1

∂x
(−1,t) = μ2

∂y2

∂x
(−1,t), μ2

∂y2

∂x
(1,t) = μ3

∂y3

∂x
(1,t), t ∈ (0,T ). (2b)

We assume that the forcing functions S1, S3 are given by

Sk =
ns

∑
i=1

bik(x)uik(t), k = 1,3. (3)

To obtain the weak form of (1) and (2), we multiply the differential equations
(1a, d) by test functions vi ∈ H1(Ωi), i = 1,2,3, respectively, integrate over Ωi, and
apply integration by parts. Using the boundary conditions (1c, h) this leads to

ρk
d
dt

∫
Ωk

ykvkdx + μk

∫
Ωk

∂yk

∂x
∂vk

∂x
dx− μk

∂yk

∂x
vk

∣∣∣
∂Ωk

=
∫
Ωk

Skvkdx, k = 1,3, (4a)

ρ2
d
dt

∫
Ω2

y2v2dx + μ2

∫
Ω2

∂y2

∂x
∂v2

∂x
dx +

∫
Ω2

∂y2

∂x
y2v2dx− μ2

∂y2

∂x
v2

∣∣∣1−1
= 0. (4b)

If vk ∈ H1(Ωk), k = 1,3, satisfy v1(−1) = 1, v3(1) = 1, then (1c), (4a) imply

μ1
∂y1(−1)

∂x
=−

∫
Ω1

S1v1dx +ρ1
∂
∂ t

∫
Ω1

y1v1dx + μ1

∫
Ω1

∂y1

∂x
∂v1

∂x
dx, (5a)

μ3
∂y3(1)
∂x

=
∫
Ω3

S3v3dx−ρ3
∂
∂ t

∫
Ω3

y3v3dx− μ3

∫
Ω3

∂y3

∂x
∂v3

∂x
dx. (5b)

If v2 ∈ H1(Ω2) satisfies v2(−1) = 1 and v2(1) = 0, then (4b) implies

μ2
∂y2(−1)

∂x
=−ρ2

∂
∂ t

∫
Ω2

y2v2dx− μ2

∫
Ω2

∂y2

∂x
∂v2

∂x
dx−

∫
Ω2

∂y2

∂x
y2v2dx. (5c)

Finally, if v2 ∈ H1(Ω2) satisfies v2(−1) = 0 and v2(1) = 1, then (4b) implies

μ2
∂y2(1)
∂x

= ρ2
∂
∂ t

∫
Ω2

y2v2dx + μ2

∫
Ω2

∂y2

∂x
∂v2

∂x
dx +

∫
Ω2

∂y2

∂x
y2v2dx. (5d)

The identities (5) are used to enforce the interface conditions (2).
We discretize the differential equations in space using piecewise linear functions.

We subdivide Ω j, j = 1,2,3, into subintervals. Let xi denote the subinterval end-
points and let vi be the piecewise linear basis function with vi(xi) = 1 and vi(x j) = 0
or all j �= i. We define the following index sets
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II
1 = {i : xi ∈ [−10,−1)}, II

2 = {i : xi ∈ (−1,1)}, II
3 = {i : xi ∈ (1,10]},

IΓ12 = {i : xi =−1}, IΓ23 = {i : xi = 1}.

Given yi for i ∈ IΓ12∪ IΓ23, we compute functions

yk(t,x) = ∑
i∈II

k

yi(t)vi(x)+ ∑
i∈IΓ

yi(t)vi(x), k = 1,3, (6a)

y2(t,x) = ∑
i∈II

1

yi(t)vi(x)+ ∑
i∈IΓ12

yi(t)vi(x)+ ∑
i∈IΓ23

yi(t)vi(x), (6b)

where in (6a) we use IΓ = IΓ12 if k = 1 and IΓ = IΓ23 if k = 3, as solutions of

ρk
d
dt

∫
Ωk

ykvidx + μk

∫
Ωk

∂
∂x

yk
d
dx

vidx =
∫
Ωk

Skvidx,i ∈ II
k, k = 1,3,

ρ2
d
dt

∫
Ω2

y2vidx + μ2

∫
Ω2

∂
∂x

y2
d
dx

vidx +
∫
Ω2

∂
∂x

y2y2vidx = 0,i ∈ II
2.

If we set yI
k = (yi)i∈II

k
, k = 1,2,3, yΓjk = (yi)i∈IΓjk

, jk ∈ {12,23}, yΓ = (yΓ12,y
Γ
23)

T ,

and uk = (ui)i=1,...,ns , k = 1,3 (cf. (3)), the previous identities can be written as

MII
1

d
dt

yI
1 + AII

1 yI
1 + MIΓ

1
d
dt

yΓ12 + AIΓ
1 yΓ12 = BI

1u1, (7a)

MII
2

d
dt

yI
2 + AII

2 yI
2 + MIΓ

2
d
dt

yΓ + AIΓ
2 yΓ + NI(yI

2,y
Γ ) = 0, (7b)

MII
3

d
dt

yI
3 + AII

3 yI
3 + MIΓ

3
d
dt

yΓ23 + AIΓ
3 yΓ23 = BI

3u3. (7c)

By construction, the functions y j, j = 1,2,3, in (6) satisfy (2a). To enforce (2b)
we insert the identities (5), (6) into (2b). The resulting conditions can be written as

MΓ I
1

d
dt

yI
1 + AΓ I

1 yI
1 +(MΓΓ

1 + MΓΓ
12 )

d
dt

yΓ12 +(AΓΓ
1 + AΓΓ

12 )yΓ12 (8a)

+MΓ I
12

d
dt

yI
2 + AΓ I

12 yI
2 + NΓ

12(y
I
2,y

Γ
12) = BΓ

1 u1, (8b)

MΓ I
3

d
dt

yI
3 + AΓ I

3 yI
3 +(MΓΓ

3 + MΓΓ
23 )

d
dt

yΓ23 +(AΓΓ
3 + AΓΓ

23 )yΓ23 (8c)

+MΓ I
23

d
dt

yI
2 + AΓ I

23 yI
2 + NΓ

23(y
I
2,y

Γ
23) = BΓ

3 u3. (8d)

To summarize, our discretization of (1) and (2) is given by (7) and (8).
As outputs we are interested in the solution of the PDE at the spatial locations

ξ1 = −5,ξ2 = 0,ξ3 = 5. Thus the output equations are yk(t,ξk) = ∑i∈II
k

yi(t)vi(ξk),
k = 1,2,3, which can be written as

zI
k(t) = CI

jy
I
k(t), where CI

k ∈ R1×|II
k |, k = 1,2,3.
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3 Balanced Truncation Model Reduction

Given E ∈Rn×n symmetric positive definite, A ∈Rn×n, B ∈Rn×m, C ∈Rq×n, and
D ∈ Rq×m, we consider linear time invariant systems in state space form

E
d
dt

y(t) = A y(t)+Bu(t), t ∈ (0,T ), y(0) = y0, (9a)

z(t) = C y(t)+Du(t), t ∈ (0,T ). (9b)

Projection methods for model reduction generally produce n× r matrices V ,W
with r$ n and with W T E V = Ir. One obtains a reduced form of equations (9) by
setting y = V ŷ and projecting (imposing a Galerkin condition) so that

W T [E V
d
dt

ŷ(t)−AV ŷ(t)−Bu(t)] = 0, t ∈ (0,T ).

This leads to a reduced system of order r with matrices Ê = W T E V = Ik, Â =
W T AV , B̂ = W T B, Ĉ = CV , and D̂ = D .

Balanced reduction is a particular techniqe for constructing the projecting matri-
ces V and W , see, e.g., [1, 16]. One first solves the controllability and the observ-
ability Lyapunov equation A PE +E PA T +BBT = 0 and A T QE +E QA +
C T C T = 0, respectively. Under the assumptions of stability, controllability and ob-
servability, the matrices P,Q are both symmetric and positive definite. There exist
methods to compute (approximations of) P = UUT and Q = LLT in factored form.
In the large scale setting the factorization is typically a low rank approximation. See,
e.g., [8, 17].

The balancing transformation is constructed by computing the singular value de-
composition UT E L = ZSYT and then setting W = UZr, V = LYr, where Sr =
diag(σ1,σ2, . . . ,σr) is the r× r submatrix of S = Sn. The singular values σ j are
in decreasing order and r is selected to be the smallest positive integer such that
σr+1 < τσ1 where τ > 0 is a prespecified constant. The matrices Zr,Yr consist of
the corresponding leading k columns of Z,Y.

It is well known [6] that Â must be stable and that for any given input u we have

‖z− ẑ‖L2 ≤ 2‖u‖L2(σr+1 + . . .+σn), (10)

where ẑ is the output (response) of the reduced model. Model reduction techniques
for infinite dimensional systems are reviewed in, e.g., [3].

We want to apply balanced truncation model to the linear subsystems 1 and 3 in
(7) and (8). We need to identify the input-output relations for these subsystems in the
context of the coupled system to ensure that balancing techniques applied to these
subsystems leads to a reduced model for the coupled system with error bounds.

To identify the appropriate input-output relations, we focus on subsystem 1. Ex-
amination of (7a,b) and (8a) shows that MIΓ

1
d
dt yΓ12, AIΓ

1 yΓ12 and BI
1u1 are the inputs

into system 1 and CΓ I
1 yI

1, MΓ I
1

d
dt yI

1 + AΓ I
1 yI

1 are the outputs. Hence, if
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MIΓ
1 = 0 and MΓ I

1 = 0, (11)

then we need to apply model reduction to

MII
1

d
dt

yI
1 =−AII

1 yI
1−AIΓ

1 yΓ12 + BI
1u1 (12a)

zI
1 = CI

1yI
1, zΓ1 = AΓ I

1 yI
1. (12b)

The system (12) is exactly of the form (9) and we can apply balanced truncation
model reduction to obtain

M̂II
1

d
dt

ŷI
1 =−ÂII

1 ŷI
1− ÂIΓ

1 yΓ12 + B̂I
1u1 (13a)

ẑI
1 = ĈI

1ŷI
1, ẑΓ1 = ÂΓ I

1 ŷI
1. (13b)

Subsystem 3 can be reduced analogously. The reduced model for the coupled non-
linear system (7) and (8) is now obtained by replacing the subsystem matrices for
subsystems 1 and 3 by their reduced matrices. Wether the balanced truncation er-
ror bound (10) can be used to derive an error bound between the original coupled
problem (7) and (8) and its reduced model is under investigation.

In our finite element discretization we use mass lumping to obtain (11). However
other discretizations, such as spectral elements or discontinuous Galerkin methods
satisfy (11) directly, see [10, 12].

4 Numerical Results

We subdivide Ω j into equidistant subintervals of length hk = 1/Nk, k = 1,2,3, and
we use piecewise linear basis functions.The size of the system (7), (8) is 9(N1 +
N3)+2N2 +1. The parameters in the PDE are ρk = 1, k = 1,2,3, and μ1 = 0.05, μ2 =
0.1, μ1 = 0.2. For subsystem 1 and 3 we compute low-rank approximate solutions of
the controllability and observability Lyapunov equations using the method described
in [8]. We truncate such that σr+1 < τσ1, where τ = 10−4.

The sizes of the full and of the reduced order models for various discretization
parameters are shown in Table 1. The subsystems 1 and 3 reduce substantially and
the size of the subsystem 2 limits the amount of reduction achieved overall. For
example, for N1 = N3 = 20 the subsystems 1 and 3 are each reduced in size from
180 to 11. The size of the coupled system is reduced from 361 + 2N2 to 23 + 2N2.

Next, we compare the system output given forcing functions S1 = u1(t), S3 =
u3(t) (cf., (3)) with u1(t) = 1

2 sin(3t)(1−0.8t/T), u3(t) = sin(2t)(0.3+0.7t/T) on
(0,T ) = (0,15). The full order model (7), (8) and the corresponding reduced order
model are solved using the modified θ -scheme [7, 19] with (macro) time step Δ t =
T/200. Figure 1 shows the outputs, i.e., the approximate solution of the PDE at ξ1 =
−5,ξ2 = 0,ξ3 = 5. The left plot in Figure 2 shows the solution of the reduced order
discretized PDE. The solution of the discretized PDE is visually indistinguishable
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Table 1 Dimension of the full and of the reduced order models for various discretization parame-
ters N1,N2,N3 and τ = 10−4.

N1 = N3 N2 size of full order model size of reduced order model

10 10 201 41
20 20 401 63
40 40 801 107
20 10 381 43
40 20 761 67

Fig. 1 Outputs 1, 2, 3 of
the full order system corre-
sponding to the discretization
N1 = N2 = N3 = 10 are given
by ∗, ◦ and �, respecitively.
Outputs 1, 2, 3 of the reduced
order system are given by
dotted, dashed and solid lines,
respectively. 0 5 10 15

0

2

4

t

Fig. 2 Solution of the reduced order discretized PDE (left) and error between the solution of the
discretized PDE and the reduced order system (right) for discretization N1 = N2 = N3 = 10.

from the solution of the reduced order discretized PDE, as indicated by the size
of the error shown in the right plot in Figure 2. The error is larger in the right
subdomain because the PDE solution is positive and the advection term in (1d)
advects the solution to the right.

Our numerical results indicate that the coupling of balanced truncation reduction
for linear time variant subsystems with spatially localized nonlinear models leads
to a coupled reduced order model with an error in the input-to-output map that
is comparable to the error due to balanced truncation model reduction applied to
the linear subsystems alone. The efficiency of the approach depends on the size of
the interface and on the size of the localized nonlinearity. Investigations for higher
dimensional problems are underway to explore the overall gains in efficiency.
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