
A Purely Algebraic Approach to Preconditioning
Based on Hierarchical LU Factorizations

M. Bebendorf and T. Fischer

Abstract The efficiency of hierarchical matrices depends on the quality of the block
partition. We describe a nested dissection partitioning of the matrix into blocks that
uses only the matrix graph and requires a logarithmic-linear number of operations.
This block partition allows to compute a hierarchical LU decomposition with small
fill-in. Furthermore, the algebraic approach admits, in contrast to the usual geomet-
ric partitioning, general grids for finite element discretization of elliptic boundary
value problems.

1 Introduction

We consider large-scale finite element matrices A ∈ RI×I , where I is an index set.
Such matrices are usually treated by iterative solvers, which may converge slowly
due to ill-conditioning. In order to accelerate the convergence, the FE system is
preconditioned. We propose a preconditioning technique which is based on an ap-
proximated LU decomposition.

In the last years the structure of hierarchical matrices (H -matrices) [5, 7, 2]
has proved to be able to handle approximations of discrete solution operators of
elliptic partial differential boundary value problems. Hierarchical matrices rely on
low-rank approximations on each block of a partition P of the set of matrix indices
I× I. In order to guarantee the existence of such low-rank approximations, each
block b = t× s ∈ P has to satisfy either the admissibility condition

min{diamXt ,diamXs} ≤ η dist(Xt ,Xs) (1)

Mario Bebendorf and Thomas Fischer
Mathematical Institute, Faculty of Mathematics and Computer Science, University Leipzig, Johan-
nisgasse 26, 04103 Leipzig, e-mail: fischer@math.uni-leipzig.de

135

136 M. Bebendorf and T. Fischer

or min{|t|, |s|} ≤ nmin for given parameters η > 0 and nmin ∈ N. Here, Xt denotes
the support of a cluster t, which is the union of the supports of the basis functions
corresponding to the indices in t:

Xt :=
⋃
i∈t

Xi.

The partition is normally generated by recursive subdivision of I× I. The recursion
stops in blocks which satisfy (1) or which are small enough. For a given partition P
the set of H -matrices with blockwise rank k is defined by

H (P,k) := {M ∈ RI×I : rankMb ≤ k for all b ∈ P}.

In [1] it was proved that the LU decomposition of FE matrices of uniformly elliptic
operators can be approximated by H -matrices with logarithmic-linear complexity.
Up to now it was possible to guarantee logarithmic-linear complexity only for quasi-
uniform discretizations and for some special grids (see [6]), since the generated
cluster trees had to be balanced with respect to both, geometry and cardinality.

This article treats the set up of the approximated factors L and U in the hierarchi-
cal matrix format using only the matrix graph

GA := {(i, j) ∈ I× I : ai j �= 0} (2)

of A. The construction of the partition is described such that instead of the geometric
condition (1) the algebraic admissibility condition

min{diamt,diams} ≤ η dist(t,s). (3)

is satisfied on each large enough block, where

diamt := max
i, j∈t

di j and dist(t,s) := min
i∈t, j∈s

di j.

Here, di j is the shortest path between i and j in the matrix graph.
The power of condition (3) is that it does not involve the geometry of the dis-

cretization. Hence, clustering has to account only for the cardinality of the clusters.
This directly generalizes the theory of H -matrix approximations to arbitrary grids
including adaptively refined ones. Additionally, the algebraic approach allows to
minimize the interface in nested dissection reorderings. Since the size of the inter-
face determines the quality of the partition P, one can expect an acceleration of the
hierarchical LU factorization algorithm. Condition (3), however, involves the dis-
tance dist(t,s) of two clusters t and s in the matrix graph and their diameters diamt
and diams. The efficient (i.e., with complexity of order |t|+ |s|) computation of
these quantities is a challenge. One should, however, keep in mind that for matrix
partitioning it is not required to know their exact values. In this article we will there-
fore present efficient multilevel algorithms for the computation of approximations
of these quantities.

Purely Algebraic Hierarchical LU Factorization 137

The structure of this article is as follows. The algebraic construction of the cluster
tree is presented in the Section 2.1. In the Sections 2.2 and 2.3 we describe the ef-
ficient evaluation of (3). The last section contains numerical results which compare
H -matrix LU factorizations based on geometric and algebraic matrix partitioning
with the direct solver PARDISO [11].

2 Algebraic Matrix Partitioning

To construct a partition one usually generates a cluster tree TI = (VTI ,ETI), which is
a graph satisfying the following conditions:

1. the index set I is the root of TI ,
2. t = ∪t′∈SI(t)t

′ for all t ∈VTI\L (TI) and t ′ are pairwise disjoint,
3. |SI(t)|> 1 for all t ∈VTI\L (TI),

where the elements of the set of sons SI(t) := {t ′ ∈ VTI : (t,t ′) ∈ ETI} are pairwise
disjoint and L (TI) := {t ∈VTI : |SI(t)|= 0} denotes the set of leafs.

Condition (3) does not contain any information about the geometry of the dis-
cretization. Hence, the assumption that the cluster tree TI is geometrically balanced
can be omitted, which allows to treat general grids including adaptively refined ones.
Therefore, we use a cardinality balanced cluster tree and assume that the diameter of
a generated cluster is equivalent to its cardinality in the sense that there are constants
c1,c2 > 0 such that

c1|t| ≤ (diamt)d ≤ c2|t| for all t ∈ TI . (4)

2.1 Algebraic Construction of the Cluster Tree

In order to reduce fill-in during LU factorization, I is decomposed using the nested
dissection method [4]. Nested dissection is based on the matrix graph GA = (V,E).
In each step it partitions the vertex set V into V1,V2,S such that V1,V2 are of approx-
imately equal size and S separates V1,V2 and additionally satisfies |S| $ |V1|. The
vertex sets V1 and V2, corresponding to t1,t2 ⊂ I, are recursively partitioned, and we
achieve a nested dissection cluster tree (see Fig. 1).

Each nested dissection step can be separated in two phases.
(1) The vertices are divided in two disjoint sets V ′1,V

′
2. The bipartition can be com-

puted using spectral bisection based on the Fiedler vector, which is the eigenvector
to the second smallest eigenvalue; see [3]. Since computing eigenvectors of large
matrices is computationally expensive, multilevel ideas have been introduced to ac-
celerate the process [9]. For this purpose the graph GA is coarsened into a sequence
G(1), . . . ,G(κ) such that |V | > |V (1)| > · · · > |V (κ)|. Spectral bisection can then be
applied to the smallest graph G(κ). The resulting partition Pκ is projected back to

138 M. Bebendorf and T. Fischer

GA by going through the intermediate partitions Pκ−1, . . . ,P1. The partition Pi+1 can
be improved by refinement heuristics such as the Kernighan-Lin algorithm [10].

Subdividing V in this manner in some sense minimizes the edge cut C, i.e., a set
of edges C⊂ E such that G′ = (V,E\C) is no longer connected. The size of the edge
cut is in O(|V |1−1/d).

(2) The vertex set S, which separates V1 and V2, is computed. To this end we
consider the boundaries

∂V ′1 := {u ∈V ′1 : ∃v ∈V ′2 and (u,v) ∈ E},
∂V ′2 := {v ∈V ′2 : ∃u ∈V ′1 and (v,u) ∈ E}

of V ′1 and V ′2 and the edge set E12 = {(u,v) ∈ E,u ∈ ∂V ′1,v ∈ ∂V ′2} between ∂V ′1 and
∂V ′2. The bipartite graph

B := (∂V ′1∪∂V ′2,E12)

is constructed which takes O(|V |1−1/d) operations.
In order to get a small separator S, the minimal vertex cover algorithm [8] is

applied to B. A minimal vertex cover for bipartite graphs can be calculated with
complexity O(|V |3/2·(1−1/d)). Finally, the vertices belonging to the minimal vertex
cover are moved out of V ′1 and V ′2 to S to obtain a partition V1,V2,S of V .

Since the partitioning algorithm ensures that the cardinality of each cluster from

the same level in TI is of the same order of magnitude, i.e., |t| ∼ |I|2−� for t ∈ T (�)
I ,

we can guarantee logarithmic depth of TI .
Our algorithm extends the nested dissection cluster tree to ensure that every level

of the cluster tree stores a partition of the index set I. To this end the separator index
set s of the �-th level of TI is copied to the next level of the cluster tree as long as
the cardinality of s is smaller than |I|2−�′ , �′ > �. A sequence s(1),s(2), . . . ,s(�′−�) of
separators is obtained, each containing the same index set but in different levels.
We say s(1),s(2), . . . ,s(�′−�) have the same virtual depth �, the depth of s(1). If |s| ≥
|I|2−�′ , the separator s is recursively partitioned as described in phase one of the
nested dissection algorithm. In Fig. 2 separators s0 and s′0 contain the same index
sets and are in different levels but have the same virtual depth.

t

t1

t3 s1 t4

s0 t2

t5 s2 t6

Fig. 1 nested dissection
cluster tree

t

t1

t3 s1 t4

s0

s′0

t2

t5 s2 t6

Fig. 2 subtree of TI rooted at

t ∈ T (�)
I

Fig. 3 matrix structure after
two nested dissection steps

Purely Algebraic Hierarchical LU Factorization 139

2.2 The Algebraic Admissibility Condition

In this section we present the evaluation of the admissibility condition (3) based on
the cluster tree described in Section 2.1.

Let t ∈ T (�−1)
I be decomposed into t1,t2,s ∈ T (�)

I , where t1 and t2 are separated
by s, using the algorithm described in Section 2.1; see Fig. 2. This means that there
does not exist any edge between t1 and t2. As consequence, ai j = 0 and a ji = 0
for i ∈ t1, j ∈ t2; see Fig. 3. Most of the information of the matrix is contained
in the interface blocks t1× s, t2× s, s× t1, s× t2, and s× s. In order to guarantee
logarithmic-linear complexity, these blocks are decomposed into sub-blocks that
either can be approximated or are small. The systematical search for pairs of index
sets in TI that form a block which can be approximated by a low rank matrix creates
the so called block cluster tree TI×I , where the admissible blocks can be found in
the leafs L (TI×I) of TI×I .

In contrast to the usual definition of TI×I , we define the set of sons

SI×I(t× s) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
/0, if SI(t) = /0 or SI(s) = /0,

/0, if t �= s and neither t nor s are separators,

/0, if t or s are separators and satisfy (3),

SI(t)×SI(s), else.

The block cluster tree is generated by recursively applying SI×I to the root I× I.
The following definition helps to accelerate the admissibility test, i.e., the evaluation
of (3).

Definition 1. Two index sets t1,t2 ⊂ I are denoted as neighbored if there exists an
edge in GA connecting indices of t and t ′, i.e., ∃i ∈ t1,∃ j ∈ t2 such that (i, j) ∈ E .

As cluster t is called contiguous if there are two indices imin and imax such that

t1 = {i : imin ≤ i < imax}.

Note that checking whether two contiguous clusters t1 and t2 are neighbored can be
be done with O(min{|t1|, |t2|}) operations.

If t1,t2 ⊂ I are neighbored, it holds that t1 ∈Nη(t2) and t2 ∈Nη(t1), where

Nη(t) := {t ′ ∈ T (�)
I : diamt > η dist(t,t ′)}

denotes the near-field of t. A block is admissible if t2 /∈Nη (t1) or t1 /∈Nη(t2). If
they are not neighbored, it is necessary to compute the distance dist(t1,t2) between
them. The evaluation of dist(t1,t2) involves the computation of |t1| · |t2| shortest paths
in the matrix graph, each of which takes O(|I|) operations with breadth-first search.
Since our aim is to preserve the logarithmic-linear complexity, it is necessary to
approximate the distance between t1 and t2.

140 M. Bebendorf and T. Fischer

2.3 Approximation of Distance and Diameter

Assume that the father of t1×t2 ∈ T (�)
I×I is not admissible and t1,t2 are not neighbored.

The first step to accelerate the computation of the distance is to calculate all
neighbors of the same level in the cluster tree. Assume that the neighbors in the

level � of the tree TI are known. Obviously, for each cluster t ∈ T (�)
I the pairs (t1,s0)

and (s0,t2) (so-called “a-priori neighbors”) are neighbored, where S(t) = {t1,s0,t2}.
Since two clusters can be neighbored only if their parents are neighbored, we can
restrict the search for neighbors to the set SI(t1)×SI(t2), where t1 and t2 are neigh-
bored clusters in the �-th level.

Example 1. In Fig. 4 a-priorily known neighbors are symbolized by dashed lines.
Computed neighbors are characterized by dotted lines.

In order to compute the approximate distance between t1,t2 ∈ T (�)
I , we construct

a graph GD. There are predecessors pre(t1) and pre(t2) of t1 and t2 such that pre(t1)
and pre(t2) are neighbored. The vertices of GD consist of the descendants of pre(t1)
and pre(t2) in the �-th level of TI . GD contains a weighted edge between two vertices
if and only if the clusters are neighbored. The weight is the difference between � and
the virtual depth of the neighbor node. Since pre(t) and pre(t ′) are neighbored, the
graph GD is connected and it is possible to calculate the approximate distance using
Dijkstra’s algorithm [12]. In a forthcoming article it is proved that the number of
nodes in GD is bounded from above by a constant.

Example 2. In Fig. 4 assume that t7 × s′′0 is not admissible. Therefore, the ad-
missibility of the pair (t15,s′′′0), for instance, is checked. Using pre(t15) = t3 and
pre(s′′′0) = s′0, we obtain the vertex set {t15,s7,t16,s′3,t17,s8,t18,s′′′0 } of GD, which is
depicted in Fig. 5. Dijkstra’s algorithm results in an approximate distance between
t15 and s′′′0 of seven.

This approach can be improved by the following iterative refinement procedure.
Dijkstra’s algorithm not only computes the distance between t1 and t2 but also the
nodes of the shortest path. We construct a new graph consisting of vertices from
level �+ m for some m rooted at the shortest path nodes. Its edges are defined as in
the previous graph GD. The computation of the shortest path between t1 and t2 in
this graph will lead to an improved approximation of dist(t1,t2).

Example 3. Assume in Example 2 that Dijkstra’s algorithm calculated the shortest
path t15,s′3,t18,s′′′0 . The subtrees rooted at the path nodes are depicted in Fig. 6. We
choose vertices of level �+2 and determine the edge set considering the neighbors;
see Fig. 7. Dijkstra’s algorithm is then applied to this refined graph.

It remains to compute an approximation to the diameter of a cluster t. This can be
done by a breadth-first search [12]. The result is bounded from below by the radius
r(t) := mini∈t max j∈t di j of t and bounded from above by diamt.

In a forthcoming article we prove that it is possible to generate the approximate
LU factorization in almost linear time using this matrix.

Purely Algebraic Hierarchical LU Factorization 141

I

t1

t3

t7

t15 s7 t16

s3

s′3

t8

t17 s8 t18

s1

s′1

s′′1

t4

t9

t19 s9 t20

s4

s′4

t10

t21 s10 t22

s0

s′0

s′′0

s′′′0

Fig. 4 cluster tree with neighbors

t16

s7

t15

s′3

t18

s8

t17

s′′′0

1
1

2
2

2

2
2

2

3
3

3

1
1

Fig. 5 GD for computing the approximation for dist(t15, s′′′0)

t15

t31

t63 s31 t64

s15

s′15

t32

t65 s32 t66

s′3
s3′′

s31 s32

t18

t37

t75 s37 t76

s18

s′18

t38

t77 s38 t78

s′′′0

s′′′′0

s01 s02

Fig. 6 subtrees and neighbors between clusters

t63

s31

t64

s′15
t65

s32

t66

s31

s32

t75

s37

t76

s′18
t77

s38 t78 s01

s02

Fig. 7 refined graph

3 Numerical Results

Fig. 8 Computational domain

142 M. Bebendorf and T. Fischer

size algebraic PCG geometric PARDISO
partitioning H -Cholesky H -Cholesky Cholesky

t in s t in s MB #it t in s t in s MB t in s MB
32 429 0.72 0.86 25 18 0.37 1.85 29 0.50 38

101 296 3.06 3.42 77 23 1.62 8.68 105 4.17 198
658 609 25.35 31.38 726 35 19.38 91.61 805 147.81 2659

2 539 954 106.40 158.68 2920 61 142.27 471.54 3507 – –

Table 1 Algebraic H -Cholesky preconditioner, geometric H -Cholesky preconditioner, PAR-
DISO Cholesky factorization

The results shown in Table 1 were obtained for the Laplacian on the compu-
tational domain shown in Fig. 8. The computation were done on an Intel Xeon
3.0 GHz with 16 GB of core memory. The time required to compute the matrix
partition based on the algebraic admissibility condition (1) scales almost linearly
with the number of degrees of freedom. The accuracy of the approximate LU fac-
torization was chosen to δ = 0.5. Compared with the usual geometric approach to
matrix partitioning, the algebraic method leads to a significantly faster computation
of the preconditioner. Additionally, the memory consumption of the approximation
is reduced.

References

1. Bebendorf, M.: Why finite element discretizations can be factored by triangular hierarchical
matrices. SIAM J. Num. Anal. 45(4), 1472–1494 (2007)

2. Bebendorf, M.: Hierarchical matrices: a means to efficiently solve elliptic boundary value
problems, LNCSE, vol. 63. Springer (2008)

3. Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application
to graph theory. Czech. Math. J. 25, 619–633 (1975)

4. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10(2),
345–363 (1973)

5. Hackbusch, W.: A sparse matrix arithmetic based on H -matrices. Part I: Introduction to H -
matrices. Computing 62(2), 89–108 (1999)

6. Hackbusch, W., Khoromskij, B.N.: H -matrix approximation on graded meshes. In: J.R.
Whiteman (ed.) The Mathematics of Finite Elements and Applications X, pp. 307–316. El-
sevier (2000)

7. Hackbusch, W., Khoromskij, B.N.: A sparse H -matrix arithmetic. Part II: Application to
multi-dimensional problems. Computing 64(1), 21–47 (2000)

8. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM Journal on Computing 2(4), 225–231 (1973)

9. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1999)

10. Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. The Bell
System Technical Journal 29 (1970)

11. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PAR-
DISO. Future Gener. Comput. Syst. 20(3), 475–487 (2004)

12. Sedgewick, R.: Part 5, graph algorithms. In: Algorithms in C, 5, 3 edn. Addison-Wesley
(2002)

