A Boundary Integral Formulation for Nonlocal
Electrostatics

C. Fasel, S. Rjasanow, and O. Steinbach

Abstract In the field of protein binding, it is important to gain some knowledge
about the electric field surrounding the concerning biomolecules. Most of the inte-
resting action takes place inside cells where the medium is similar to water, which
is a nonlocal medium. To handle this nonlocal behavior caused by a network of
hydrogen bonds, we formulate an interface problem in terms of a system of cou-
pled partial differential equations involving the Laplace and the Yukawa operator.
Furthermore, we deduce for the system a fundamental solution and an associated
representation formula. We finally derive a boundary integral formulation to deter-
mine the complete Dirichlet and Neumann data.

1 Modelling Nonlocal Electrostatics for Biomolecules in Water

The model given below is a modification of the model as presented in [1, 2]. Before
going into detail, we first introduce some notations. Let Qi C IR? be a bounded
domain where the molecule is located. Let Q¢ = IR \Ql denote the unbounded
domain exterior to Q' which is filled with water. I" = IR*\ (27U Q°) is the interface
between the molecule and water. For x € I' we define the normal vector n(x) as the
unit vector pointing from Q' into Q°. The interior and exterior trace operators are
denoted by ¥ and 15, respectively.
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The starting point for our considerations are the Maxwell equations of electro-
statics which describe the behavior of the electric field E and of the displacement
field D by

curlE(x) = 0, xeQ'UQ’ (1)
divD(x) = p(x), xe€Q'UQ (2)

The charge distribution is modelled as a sum of partial charges located inside Q,
Ne
x) = 2,4;8(x—x)), (3)
j=1

where 0 denotes the Dirac Delta distribution. Furthermore, it is known that — in
absence of surface charges — the tangential component of the electric field and the
normal component of the displacement field are continuous through the interface,

(?’(")"t'E(X) —%"E(x)) xn(x) =0, xeT, “4)
(B¥'D(x) — ¥“D(x),n(x)) =0, xeTl. (5)

One of the main steps in the modelling is the description of the relation between E
and D. Inside the molecule we assume a local relationship, and therefore,

D(x) = goeiE(x), xe€ Q' (6)

where & is the permittivity of vacuum, and £4; is constant inside the molecule. The
description in £2¢ is more complicated due to the nonlocal effects of water. There
are two different facts that influence the relation between the two fields in 2¢. Each
water molecule can be seen as a dipole and thus would normally align itself with
the field and all together would cause a relatively strong shielding effect. On the
other side, water molecules build a network of hydrogen bonds. This network has
energetic advantages and is strongly dependent on the angle of the water molecules
towards each other. The strength of the electric field determines if the water keeps
the bonds or aligns with the field. That is the reason why the electric field in the
neighbourhood of a point x is important for the displacement field in the point in
contrast to the local relationship where only the electric field in the point has to be
taken into account. The nonlocal relationship is taken as

e Kl v\
D(x) = & | &E(x) +1 /mx JE | xe@s @)
where
5 1
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A is the correlation length, and €., and £ge are constants describing the dielectricity
of the material. The scaling of the system is done with respect to the typical length
of an hydrogen bond.

To transfer this system of partial-integro-differential equations into a system of
partial differential equations, we make use of a scalar potential for E,

E(x) = —Vo(x), xcQ'UQ°. ®)

Then, the electric field E is curl-free and with respect to ¢, the material relations
can be written as

D(x) = —£0Vo(x), xc€Q, )

Klx— yl
D(x) = —&.Vo(x) —n /47r|x y| o(y)dy, xeQ°. (10)

Note that the constant & has been eliminated during the process of scaling. Apply-
ing the divergence to (9) and to (10), it follows by the use of (2) and (8) that

—£0iAp(x) = p(x), xe, (11)

e lefy‘

—e.AQ(x) — n°div Vo(y)dy= 0, xe€Q°. (12)

4r|x—y|
Qe

In addition, the transmission condition (4) for the electric field takes the form

o(x) =1"e(x), xeT. (13)

In order to eliminate the volume integral in (12) we introduce an additional unknown
function which we denote by P. It is defined as

e~ Klx— yl

P(x) = — Vo(y)dy, xcQ'uQ°. (14)

4ﬂh yl

P describes the polarisation in Q°¢, but has no physical meaning in Q'. With this,
equation (12) reads

—E.AQ(x)+ndivP(x) =0, x€Q°, (15)

and the transmission condition (5) for the displacement field becomes

e o(x) = &1 o(x) — n(6"P(x),n(x), xeT, (16)
where ymt/ “ denotes the interior and exterior conormal derivative, respectively. To

find a second relation between ¢ and P, we use the Yukawa operator %, = A — K2,
and the fact that the convolution kernel under the integral is its fundamental solution.
Thus, we obtain
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. xEQ°, (17)
. xeQl (18)

Transmission conditions for the field P can be deduced from (14) as

1P() = %"P(x), *'P(x)=%"PQ), xeT. (19)

To complete the system, we include radiation conditions for ¢ and P, where the one
for P can be deduced from the one for ¢,

1

[

0~ o I~y asle] e 20)
The resulting system composed by (11), (13), (15), (16), (17), (18), (19), and (20),
is a system of purely partial differential equations that is equivalent to the mixed

partial-integro-differential system we started from.

2 Analytical and Fundamental Solution

For the special case of only one charge with strength ¢, located in the origin of a
sphere with radius a, we can transfer all differential operators into spherical coordi-
nates. Then we are able to find an analytical solution, namely

) 1 1 —«xa
o) =, 1 +q< -, +B )

 dmeq|x|  4ma\eq, €o 4ma

—x'[x|
ext q 1 e

= B
P 4nsQe<x+ B )

Pi"'(x) _c q (eK\X\(K\x\ -1 Jre*’f\x\(;(\x\ -1 ’
47[89e ‘XP
1 e ¥ xx)
Pext — q B
(x) 4meg, |x|3 <K2 * K2 — K2 .
where 5
2= 2+ n 7
Exs

and the constants B and C are given by

B T](K‘/Zf K.Z)(ercaiefm)ex’a

~efa(k2(kla+ 1)+ k2(ka—1))+e ¥(k2(ka+ 1) — kX(K'a+ 1))’
B nK./Z 1

C .
k2 exa(k2(k'a+ 1)+ k2(ka—1)) +e % (k%(ka+ 1) — kX(k'a+ 1))
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This example also shows that the model contains the local case. In the local case we
have A — 0 which induces Kk — oo, and also k' — e . For k¥’ — 0 the exponential
term in @%" disappears, and we end up with the solution of the local system, namely,

ext — q A« 0
97 () Ameg,|x|’ A

Furthermore, the analytical solution can be used to control future numerical results
with respect to their reliability.

In general, the system derived cannot be solved analytically, instead we have to
use some numerical approach. Since the domain Q' may have a very complicated
boundary I" which is usually given already in a discretized form (see Fig. 1 for the
Solvent Excluded Surface of the neurotransmitter Acetylcholinesterase) the use of a
boundary integral equation approach seems to be favourable. Moreover, the exterior
domain ¢ is unbound, therefore a boundary element method seems to be more
advantageous than a finite element method.

Fig. 1 Solvent excluded surface of Acetylcholinesterase, Source: BALLView [4]

To obtain a boundary integral formulation we first have to consider the interior
and the exterior problem separately.

In the interior domain Q! we have to deal with the Laplace and with the Yukawa
operator, both are well known, for their representation formulae and potentials see
e.g., [3, 5, 6]. Thus we will skip this part here and make use of their results later.

To handle the partial differential equation in the exterior domain ¢ we define

the operator
eor _ [ —EaeA VT
o= (Tt 1) @

which turns out to be elliptic. Because of the first order derivatives involved, the
operator .7 is not self-adjoint and, thus, we need to compute the fundamental
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solution of the adjoint operator to obtain a representation formula for the exterior
problem. Since the coefficients of &/*" are constant, we are able to find the funda-
mental solution by using the Fourier transform and obtain

* _ fl (x_y)TfZ >
b = (Do pndleWern ) @

where

(K_/Z _ K.Z)efkj\xfy| 4 K2

fi= dre.xx—y|

P G B RS

2 4mEL K2 lx—y? ’

i = e~ Kl N e (kx—y|+1) -1 B e P (K —y|+1) — 1
4x)x —y| 4rk2|x —y? 4rk’2x—y]3 ’

o Ry 3] 43) =3

fa= -

4K |x —yP?
e PN (2 e — y|2 +3K)x —y| +3) =3
4mK|x —y|? '

A closer look at the fundamental solution clearly indicates that the only singularities
are included in f; and in the first part of f3. Both are first order singularities.

3 Representation Formula and Boundary Integral Formulation

The representation formula is obtained in the usual way by multiplying the partial
differential equation with an appropriate test function and integrating over the exte-
rior domain. Afterwards we apply the adjoint operator to the test function, multiply
with the solution of the original problem and once again integrate by parts. We end
up with the following representation formula for x € Q¢

. . e, Xty xtP7n Xt
()= [t (S0 TP Nas b [ (1,8 as,
r r
where W is given as

Wit = ey fi+ (%" (x— ) f2n(y)),

Wiz = W5 ((x=y)1f),

Wis = 15 (x—)2/2),

Wis = W5 ((x=)3/),

Wi = e Wy (x—=y)1fa + N7 (fze1 + (x—y)1(x—y) fa),n(y)),
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Wo = Wa(fs+ (x—y)ifa),
Wz = %5 ((x =) 1(x—y)2fa) = Waa,
b = Ny (k= y)1(x—y)afs) = Waa,
W1 = ey (x—=y)afa + Y7 (f3e2+ (x—y)2(x =) fa),m(y)),
3= 10+ (x—y)3fa),
Wa = 15 ((x = )2 (x = )3fa) = Wi,
Wi = &5 (x—y)3f2 + 016" (fres + (x = y)3(x =) fa),n()),
Was = 115(f3 + (x— )3 fa).
To come up with a boundary integral equation, we follow the direct BEM approach
and apply the exterior trace operator 5 to the above representation formula. For the
calculation of the matrix entries in the BEM method, we can separate the integrals
in parts that are those of the Laplace operator and some additional parts that can

be calculated by numerical integration. Mapping properties can be transferred from
the ones for the Laplace operator. We end up with the following boundary integral

equation
(’ﬁ ¢ #fKXP“)>=—;96’“($)+an8"’(1"1), 23)
where
(Vi) (@) =26 [ 2 e )uty) ds, 24)
(Kw) () = lim / W (x,y)w(y) ds, (25)
yelix—y|>e

are the associated single and double layer potential, respectively. In the interior do-
main £2' we obtain by using the particular solution

N. T
C q]
= 0,0,0
up () (jz’l drlx—x;|” 7 >

the boundary integral equation

. 1 . . .
Viee 1" ($> =, i (ﬁ) + Kioe " ($> — %", (26)
where
Vo O 0 0 Kb O 0 0
loveo 0 | 0K.0 0
Viee="1 10 0 v, 0 | ™Koee=1| ¢ ¢k o0
00 0V 0 0 0 K
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Vo and V. denote the single layer potentials of the Laplace and of the Yukawa oper-
ator, while Ky and K denote their double layer potentials. Using the interface con-
ditions (13), (16), and (19), we finally obtain the desired boundary integral equation

€0 11 _1 1 Epi 1
( @ 13)‘/1“ <2I+Kloc‘) _an <_2I+Knl> }/()ll:< @ 13>Vlgc YOup>(27)

where
T T

Tou = (‘)nt(p’ ,y(i)ntP — %xt(p’ ')/gXtP

Note that the Laplace and Yukawa single layer potentials are elliptic and therefore
invertible, and the same holds true for the nonlocal exterior operator. Solving the
boundary integral equation (27) leads to the knowledge of the Dirichlet data ypu on
I'. When knowing this function, we can calculate the interior Neumann data by solv-
ing an associated Dirichlet boundary value problem. The complete Cauchy data of
the interior problem then provides the possibility to calculate the exterior Neumann
data by using the corresponding transmission condition. In this way, we receive the
complete set of Cauchy data for both problems. By the use of the representation
formulae in Q7 and Q¢, we can evaluate the solution everywhere in IR>.

4 Outlook

Based on the boundary integral equation (27) we are going to solve the problem by
using modern boundary element techniques. A good approximation strategy for the
matrices based on fast BEM (cf. [5]) has to be chosen to obtain reasonable results
in a realistic time. Another major task for future work is the numerical analysis of
the approximation scheme.
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