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Abstract We consider a finite element method for a model of bone ingrowth into
a prosthesis. Such a model can be used as a tool for a surgeon to investigate the
bone ingrowth kinetics when positioning a prosthesis. The overall model consists
of two coupled models: the biological part that consists of non-linear diffusion-
reaction equations for the various cell densities and the mechanical part that contains
the equations for poro-elasticity. The two models are coupled and in this paper the
model is presented with some preliminary academic results. The model is used to
carry out a parameter sensitivity analysis of ingrowth kinetics with respect to the
parameters involved.

1 Introduction

In osteoporosis, fracture risk is high, after a hip fracture a joint that replaces the
prosthesis is often the only remedy. In the case of osteoarthritis and rheumatoid
arthritis, the cartilage degrades and moving the joints becomes painfull. Ultimately,
most patients will receive a prosthesis to restore the function of a diseased joint.
Prostheses, which are fixed in the bone by bone ingrowth in a porous layer are
usually put in the bone using a screw, to obtain sufficient initial stability. Bone will
grow into a porous tantalum layer in the course of time, and hence more stability of
the prosthesis is obtained. To investigate the quality and life time of such an artificial
joint, one needs to study the effects of the placement of the prosthesis and of the
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materials that are involved in the joint. At present, these effects are often studied
using large amounts of data of patients. To predict the life span and performance
of artificial joints, numerical simulations are necessary since these simulations give
many qualitative insights by means of parameter sensitivity analysis. These insights
are hard to obtain by experiments.

Several studies have been done to simulate bone-ingrowth or fracture healing
of bones. To list a few of them, we mention the model due to Adam [1], Ament
and Hofer [3], Bailon-Plaza et al. [5], Huiskes et al. [9] and recently by Andreykiv
[4]. The model due to Huiskes et al. and LaCroix et al. [9, 11] will be treated in
more detail, since we expect that this model contains most of the biologically rel-
evant processes, such as cell division and differentiation, tissue regeneration, and
cell mobilility. Many ideas from modeling fracture healing of bones are used in
these models, since bone-ingrowth into a prosthesis resembles the fracture healing
process. In the model due to Huiskes, the influence of the mechanical properties on
the biological processes are incorporated. Further, we note that Huiskes’ model has
been compared to animal experiments.

In this paper, we will see a calibrated existing bone ingrowth model (and its nu-
merical solution) in terms of a system of nonlinearly coupled equations from diffu-
sion, reactions and poro-elasticity. This paper concerns a compilation of preliminary
results, with some data for a shoulder prosthesis.

2 The Model

Huiskes [9] considers the behavior of mesenchymal cells, that originate from the
bone marrow and differentiate into fibroblasts, chondrocytes and osteoblasts. These
newly created cell types respectively generate fibrous tissue, cartilage and bone. In
Huiskes’ model, it is assumed that fibroblasts may differentiate into chondrocytes,
chondrocytes may differentiate into osteoblasts. The differentiation processes are
assumed to be nonreversible. The differentiation pattern has been sketched in Fig-
ure 1. The accumulation at a certain location of all the cell types is determined by
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Fig. 1 The scheme of cell differentiation of mesenchymal cells, fibroblasts, chondrocytes and os-
teoblasts.



A Finite Element Model for Bone Ingrowth into a Prosthesis 101

cell mobility, cell division and cell differentiation. Let cm, cc, c f and cb respectively
denote the cell density of the mesenchymal cells, chondrocytes, fibroblasts and os-
teoblasts, in the poro-elastic tantalum of the prosthesis in which bone ingrowth takes
place, then, the dynamics of the cell densities are described by

∂cm

∂ t
= div Dm grad cm + Pm(1− ctot)cm+

−Ff (1− c f )cm−Fc(1− cc)cm−Fb(1− cb)cm,

∂c f

∂ t
= div Df grad c f + Pf (1− ctot)c f +

−Ff (1− c f )cm−Fc(1− cc)c f −Fb(1− cb)c f ,

(1)

where the diffusivities, Dm and D f , of the mobile cells are determined by the volume
fractions of tissues, being denoted by mc and mb for cartilage and bone respectively,
by

Di = D0
i (1−mc−mb),

Pi = P0
i (1−mc−mb),

i ∈ {m, f}. (2)

The chondrocytes and osteoblasts, respectively producing cartilage and bone, are
assumed to be immobile. Their reaction processes are modeled by

∂cc

∂ t
= Pc(1− ctot)cc + Fc(1− cc)(cm + c f )−Fb(1− cb)cc,

∂cb

∂ t
= Pb(1− ctot)cb + Fb(1− cb)(cm + c f + cc).

(3)

The tissues, fibrous tissue, cartilage and bone are immobile. Let the volume fraction
of fibrous tissue be denoted by m f , then the accumulation of these tissues is modeled
by

∂m f

∂ t
= Q f (1−mtot)c f − (Dbcb + Dccc)m f mtot,

∂mc

∂ t
= Qc(1−mb−mc)cc−Dbcbmcmtot,

∂mb

∂ t
= Qb(1−mb)cb.

(4)

The initial concentrations of all tissues and cell types are zero. As boundary condi-
tions, a Dirichlet condition for the mesemchymal cell density at the bone implant
and homogeneous Neumann conditions at all other boundaries are applied. In the
present paper, the influence of the micromotions is neglected. For the fibroblasts ho-
mogeneous Neumann boundary conditions are imposed for all boundary segments.
The proliferation, differentiation and diffusion parameters depend on the mechani-
cal stimulus. The mechanical stimulus is given by a linear combination of the max-
imum shear strain and the fluid velocity relative to the rate of displacement of the
solid, that is

S =
γ
a

+
ν
β

, (5)
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where γ represents the maximum shear strain and ν denotes the relative fluid/solid
velocity. Here γ := 1

2 (λ1−λ2), where λ1,2 represent the eigenvalues of the strain
tensor. The rates of tissue regeneration and differentiation qualitatively depends on
the mechanical parameters such that:

- Low strain has a stimulatory effect (in relation to no strain) on the fibroblast
proliferation and bone regeneration (if 0 < S < 1);

- For intermediate values of the strain, cartilage formation is more favorable (if
1 < S < 3);

- High strains favor the proliferation of fibrous tissue (if S > 3).

This gives a coupling of the poro-elasticity model to this biological model. The
above set of partial differential equations poses a nonlinearly coupled set of equa-
tions. Standard Galerkin Finite Element methods provide a straightforward method
to obtain solutions. To get the local strains and stresses in the porous tantalum
that are required for the differentiation and mobility characteristics, the equations
for poro-elasticity are solved. The model was derived by Biot originally. We will
give an explanation for two-dimensional domains. In the poro-elastic domain where
u = [u v]T denote the displacement in the x- and y− direction, we have:

−div (μ grad u)− ∂
∂x

((λ + μ) div u)+
∂ p
∂x

= 0,

−div (μ grad v)− ∂
∂y

((λ + μ) div u)+
∂ p
∂y

= 0,

∂
∂ t

(n fβ f p + div u)− div

(
κ
η

grad p

)
= 0.

(6)

Here κ denotes the permeability, η the viscosity, n f the porosity and finally β f

represents the compressibility. Furthermore, μ and λ are the Lamé parameters that
originate from the stiffness and Poisson’s ratio of the material. These parameters
have to be updated as bone grows into the prosthesis. The Rule of Mixtures is ap-
plied to update the mechanical properties (see Lacroix & Prendergast [11]). For
more information on the derivation of the above equations, we refer to Bear [6].

Next, we consider a scaled version of equations (6), in which we draw our atten-
tion to the third equation. In this scaling argument, we assume that the coefficients
in the equations (6) are constant in time and space. Division of this equation by
n fβ f (under the assumption that n f and β f are constant), and using the dimension-
less variables X ,Y := x,y

L , τ := κ
ηβ f n f

t
L2 , and U,V := u,v

L , where L is a characteristic

length. Then equations (6) change into

−∇ · (μ ∇U)− ∂
∂X

((λ + μ) ∇ ·U)+
∂ p
∂X

= 0,

−∇ · (μ ∇ V )− ∂
∂Y

((λ + μ) ∇ ·U)+
∂ p
∂Y

= 0,

∂
∂τ

(∇ · U) = n fβ f

(
Δ p− ∂ p

∂τ

)
.

(7)
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where ∇(.) := 1
L∇(.), Δ (.) := 1

L2 Δ(.) and U := 1
L u. We see that as n fβ f → 0, then,

we reach the incompressible limit, which gives a saddle-point problem where one
has to consider LBB condition satisfying elements or a stabilization. The situation
becomes analogous to the Stokes’ equations.

3 The Method

For a rather recent comprehensive overview of Finite Element methods applied
to solid state mechanics, we refer to the book due to Bræss [7]. The above poro-
elasticity equations are often solved using non-conforming Finite element methods,
such as the Taylor-Hood family: if the pressure is approximated with elements of
polynomials of Pn, then, the displacements are approximated using polynomials of
Pn+1. In the Taylor-Hood elements, one usually uses linear and quadratic basis func-
tions for the pressure and displacements respectively. On the other hand, Crouzeix-
Raviart elements, which are often used for Stokes flow problems, are based on a
discontuity of the pressure. Since p ∈ H1(Ω) ⊂ C(Ω), the Crouzeix-Raviart ele-
ments are not suitable here. As long as the compressibility is sufficiently large, one
can also make use of linear-linear elements for the pressure and displacement. This
was done successfully in the study due to Andreykiv [4]. If β f = 0, which is the
incompressible case, then the issue of oscillations and the use of appropriate ele-
ments or a stabilization becomes more important. For β f = 0, the third equation in
equation (6) reduces to the version that is solved by Aguilar et al. [2].

A Galerkin formulation of the above equation with

p =
m

∑
j=1

p jψ j(x,y) and u =
n

∑
j=1

u jφ j(x,y),

is applied to equations (6). For consistency, we require m ≤ 2n as n fβ f → 0. This
case resembles the classical Stokes’ equations. For the classical Taylor-Hood ele-
ments, we use ψi ∈ P1(Ω) and φi ∈ P2(Ω). Aguilar et al. [2] demonstrate for the
one-dimensional Terzaghi problem by numerical experiments and the argument that
the discretization matrix no longer remains an M-matrix if the time step satisfies
Δ t < h

6 that the numerical solution becomes mildly oscillatory. Aguilar et al. [2] use

a stabilizator term of γ ∂
∂ tΔ p (with γ = σh2

4(λ+2μ) = O(h2), where σ = 1) to suppress
the spurious oscillations. In our application, the stabilization coefficient is given by
γ ≈ 1.2 · 10−18. We, however, think that the incompressible limit is mimiced by
equation (7), and here the boundary conditions for the pressure in the problem of
Aguilar et al. should be removed. Then, the equations can be tackled well with the
LBB condition satisfying [8] Taylor-Hood elements.

In this study, we use linear-linear elements to solve equations (6). We verified
numerically that these elements gave the same results as the Taylor-Hood elements.
A possible reason for this is that for our settings the compressibility term is given
by n fβ f ≈ 2.5 · 10−16, which is larger than the stabilization coefficient γ that was
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introduced by Aguilar et al. [2]. Since this term, and in particular the ∂ p
∂τ -term

(also as Δτ → 0), gives an additional contribution to the diagonal entries of the
discretization matrix, the M-matrix property of the discretization matrix is prob-
ably preserved. Hence, the right hand side of equation (7) stabilizes the solution.
Note that linear-linear elements are always allowable if the stabilization term due to
Aguilar is used. Our approach, which is motivated physically, stabilizes in a similar
way as Aguilar’s term does. We admit that this issue needs more investigation in
mathematical rigor. For the concentrations and densities, linear elements are used
too. The diffusion part of the equations for the mesenchymal cells and fibroblasts
were solved using an IMEX method, where the diffusivities of the mesenchymal
cells and fibroblasts were taken from the previous time step. The reaction parts in
all the equations were treated using an IMEX time integration method too. The
coupling was treated by the use of information from the previous time step. Until
now, no iterative treatment of the coupling has been done in the current preliminary
simulations. A state-of-the-art book on several numerical time integrators for stiff
problems is the work due to Hundsdorfer & Verwer [10].

To determine the stimulus in equation (5), the strain is computed from the spatial
derivatives of the displacements. To determine the strains at the mesh points, we pro-
ceed as follows: consider the equation for εxx, then multiplication by a test-function
gives ∫

Ω
εxxφdΩ =

∫
Ω

∂u
∂x

φdΩ , for φ ∈ H1(Ω), (8)

where εxx ∈H1(Ω). Using the set of basis functions as in our finite element solution,
gives

n

∑
j=1

ε j
xx

∫
Ω
φiφ jdΩ =

n

∑
j=1

u j

∫
Ω

∂φ
∂x

φidΩ , for i ∈ {1, . . . ,n}. (9)

This gives a system of n equations with n unknowns. This is applicable for any
type of element. For piecewise linear basis functions, the mass matrix is diagonal
(lumped) after applying Newton-Cotes’ integration rule. Then, the strains and fluid
velocities are used for the mechanical stimulus at the mesh points for the ordinary
differential equations, which are solved using a time IMEX integrator only.

4 Numerical Experiments

In Figure 4 the distribution of the stimulus, osteoblast density, mesenchymal stem
cell density and the bone fraction in the porous tantalum layer after 100 days have
been plotted. The prosthesis is assumed to consist of two parts: the top part being
the functional part on which an external force is exerted from the outer motion.
The botton part is the porous tantalum, in which bone is allowed to grow in from
the botton layer. The size of the prosthesis is given by 40 × 10 mm, in which the
prosthesis is divided into the top and botton layer of the same size. The upper force
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is given by 165.84 N, corresponding to an arm abduction of 30 degrees. In the top
part of the prosthesis, the elasticity equations are solved. The prosthesis has been
approximated by a two-dimensional geometry, which can be done with the use of
cylindrical co-ordinates. The latter has not been done yet.

It can be seen that the osteoblast density is maximal where the stimulus is max-
imal. This implies that bone develops at the positions where the osteoblast density
and stimulus is maximal. This can be seen clearly from the figures. Furthermore,
the mesenchymal cell density shows a decrease where the cells differentiate into
osteoblasts. The conditions are such that the model only allows the differentiation
into osteoblasts and the development of other cell types and tissues is prohibited.
To have bone ingrowth in the other parts of the tantalum, it is necessary that the up-
per arm moves allowing for the stimulus to increase at various positions within the
tantalum. This has been observed to take place in preliminary simulations that are
not shown in this paper. For arm abductions of 90 degrees, cartilage is also allowed
to develop in the tantalum due to a higher outer force that is exerted on the top of
the prosthesis. It can be seen that bone develops in the high stimulus domain. Bone
remains can only remain at locations where it has been generated. Bone resorption
has been disregarded in the model since its effect seems to be of second order only.

Fig. 2 Some distributions in the porous tantalum after 100 days: Left: The stimulus. Right: The
osteoblasts (bone cells). Bottom-Left: The mesenchymal stemcells. Bottom-Right: The bone den-
sity.
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Some preliminary results reveal that the model is rather insensitive to the diffu-
sion parameters near the current values. There is a high sensitivity with respect to
Fb, and Qb in the present loading regime.

5 Conclusions

A model has been developed for bone-ingrowth into a prosthesis. Parameters that
were used were obtained from literature and animal experiments. For small forces
exerted, bone develops mainly near the interface and close to the applied force. For
large forces, bone develops far away from the interface. For a complete ingrowth,
oscillatory forces are to be applied. Linear-linear (displacement-pressure) elements
are applicable for this two-dimensional problem.
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