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Abstract An important problem for the management of the screening program for
cervical cancer is collecting the smears for women who live in remote areas. The
issue is to plan the days in which the mobile unit will be used, and its route, such that
the total cost and the testing time for all the eligible women are minimal. This paper
presents a mathematical model for the Health-Economic problem and a Bellman
type theorem for solving this model.

1 The Health-Economics Problem and a Mathematical Model

Screening, in Medicine, is a strategy used to identify diseases in an unsuspecting
population. An important problem of the management of the screening program
for cervical cancer is to take the smears for women from remote areas. For these
women, a mobile unit equipped as a gynecological office is used. The unit goes
in every village and the doctor takes the smears from eligible women who have
been informed and invited. The unit also transports the smears to the cytological
laboratory. The smears are processed and the laboratory provides the results within
a maximum of given days (laboratory response time, usually equal to 21 days). From
the Health Economics point of view, the problem is to plan the days in which the
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mobile unit will be used and its route such as the total cost and the testing time for
all the eligible women to be, both of them, minimum.

Let m be the number of the villages. For every village i ∈ {1, ...m}, we denote by
ni, the eligible number of women from the village i which will be tested. We know:
the mean time interval for taking a smear, tr; the maximum time that the mobile unit
works every day, tz; the total number of slides which can be read by laboratory in
a day, zl; the total number of resting slides that should be read by the laboratory
besides the smears obtained by the mobile unit, z0

l ; the cost/day for the driver of the
mobile unit, cs; the cost/day for the medical doctor which is on the mobile unit, cm;
overhead/day for mobile unit, cu; cost of fuel/ km, cb; mean speed for the mobile
unit, v; the laboratory response time, lr; and the maximum number of the days when
all the tests should be done, nz.

The laboratory receives the slides in the evening of every day and, consequently
has to give the answer in lr−1 days.

We assume that all routes to reach the villages and return to the base O are known.
Let p be the number of these routes. For every route j, j ∈ {1, ..., p}, the length, d j,
of the way and the villages for the mobile unit to pass through are known. In order
to identify the affiliation of one village to one route, we introduce the following p
vectors λ j = (λ j

1 , ...,λ j
m) ∈ Rm, j ∈ {1, ..., p}, where λ j

k = 1, if the route j passes

through the village k, and λ j
k = 0, if the route j does not pass through the village k.

The problem is to plan the days in which the mobile unit will be used and its route
such as the total cost are minimal and, if we have several possibilities, to choose one
for which the testing time for all the eligible women is also minimum.

We notice that in the literature, there is not such an approach for this problem.
That’s why we consider this problem as a dynamic system with finite horizon and
vectorial total utility function. The mathematical model permits to obtain an algo-
rithm which solves our problem. The number of steps of the dynamic system is cho-
sen nz (the maximum days when all the tests should be done). A step corresponds
to a day. In each step h ∈ {1, ...,nz}, the stage of the system will be described by
the vector of state variable sh ∈ Nm+1: the first component, sh

1, gives the number
of slides existing in the laboratory at the end of day h (this number is equal to the
number of slides existing in the evening of the day h− 1 minus the number of the
slides which have been read in day h, plus the number of slides which have been
taken in the day h); the following m components, sh

i , i ∈ {2, ...,m+ 1}, contain the
number of untested women at the end of day h in the village i, respectively.

Considering that the numbers zl , z0
l , ni, i ∈ {1, ...,m}, nz are known, the initial

state of the system is described by the vector

s0 = (z0
l , n1, ..., nm). (1)

Because sh
1 is the number of existing slides at the end of the day h, the maximum

number of the slides which may be taken by laboratory at the end of the day h + 1
is equal to max{0, (lr−1) · zl − sh

1}. Therefore, in the first day it may be taken only
max{0,(lr − 1) · zl − z0

l } slides. In each step h ∈ {1, ...,nz}, the decision will be
described by the decision vector xh ∈ Nm+1: the first component, xh

1, indicates the
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number of the route done in step h (if this number is 0, in that step no movement
exists); the following m components, xh

i , i ∈ {2, ...,m + 1}, contain the number of
women tested in the day h, in village i, respectively. d j/v is the time necessary to
go through the route j. Therefore the decisions set in the stage h ∈ {1, ...,nz}, if the
system is in the state sh−1, is the set Xh(sh−1),

Xh(sh−1) = {0,1, ..., p}× X̃h, (2)

where X̃h is the set of the solutions of the discrete system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
∑

k=2
xh

k ≤ max{0, (lr−1) · zl − sh−1
1 }

tr ·
m+1
∑

k=2
λ xh

1
k−1 · xh

k ≤ tz −
d

xh
1

v

xh
k ≤ λ xh

1
k−1 · sh−1

k · sgn(sh−1
1 ), ∀k ∈ {2, ...,m+ 1}

xh
k ∈ N,∀k ∈ {1, ...,m+ 1}.

(3)

The first inequality indicates that the number of slides taken in day h can
not be greater than the number of slides which can be given to the laboratory
in the evening. In the second inequality, the l.h.s. term gives the time necessary
to take the slides and the r.h.s term gives the available time in a day minus the
time spent on the route. In the third inequality, the l.h.s term gives the number
of slides planed to be taken from village k in day h, which can not be greater
then max{0, the number of slides remained to be taken in village k}. The relation
four indicates that the number of slides has to be a natural number.

The function fC : {1, ...,nz} → R describes the cost for each day. Thus the cost
of day h is

fC(xh) = sgnxh
1 · (cu + cs + cm + cb ·dxh

1
), (4)

where sgn denotes the function given by sgnx = 0, if x = 0, sgnx = 1, if x > 0 and
sgnx = −1, if x < 0.
We remark that the cost is 0, if no movement is done; else it is equal with the sum
of the costs.

The function fT : {1, ...,nz} → R indicates if in the day h, smears have been
taken. Thus

fT (h) = sgnxh
1. (5)

For all h ∈ {1, ...,nz}, the dynamic equations are

sh
1 = max{0, sh−1

1 − zl} +
m+1

∑
i=2

xh
i , sh

i = sh−1
i − xh

i , ∀ i ∈ {2, ...,m+ 1}. (6)

For all h ∈ {1, ...,nz}, the stationary equations are
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sh ∈ Sh = {0,1, ...,(lr−1) · zl}×{0, 1, ...,n1}× ...×{0,1, ...,nm}, (7)

and
xh ∈ {0, 1, ..., p}× X̃h. (8)

The total utility function is additive, having the value equal to the sum of the
values of partial utility effect functions. By denoting this function with F ,
F = (F1,F2) : {0,1, ...,nz} → R2, we have F(0) = (0,0) and F(h) = F(h− 1) +
( fC(h), fT (h))T , ∀ h ∈ {1,2, ...,nz}.

From practical point of view, our purpose is to obtain a plan of taking the smears
such that the function F1 to be minimum and, if we have possibilities to choose
which one assures the minimum for F2, too. Therefore we obtain the following type
of dynamic programming problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
∑nz

h=1 fT (xh), ∑nz
h=1 fC(xh)

) → lex−min

sh
1 = max{0, sh−1

1 − zl} +
m+1
∑

i=2
xh

i , ∀h ∈ {1, ...,nz},
sh

i = sh−1
i − xh

i , ∀ i ∈ {2, ...,m+ 1}, ∀h ∈ {1, ...,nz},
s0 given, sh ∈ Sh, and xh ∈ Xh(sh−1), ∀h ∈ {1, ...,nz},

(9)

where Sh is given by by (7) and Xh(sh−1) by (2) and (3).
By analogy with the definition of lexicographic optimality used in the general

context of vectorial programming problem (see [2]) we call this type of problem as
lexicographic dynamic programming problem.

Remark 1. The subject of dynamic programming problem, when the total utility
function is a vectorial function, is discussed in [4]. In [5] fundamental dynamic
programming recursive equations are extended to the multi-criteria framework. In
that paper, a more detailed procedure for a general recursive solution scheme for the
multi-criteria discrete mathematical programming problem is developed. A short
note about multi-criteria dynamic programming problem is given in [6]. Recently,
multi-criteria dynamic programming is extended for solving variously practical
problem. This implies some sort of generalization of Belman’s theorem . In [3], an
application in Pharmacoeconomics is given. In our paper, we show how the prob-
lem (9) can be solved using dynamic programming. But firstly we have to give a
generalization of Belman’s theorem.

2 Belman’s Theorem for Lexicographical Dynamic
Programming

Let be a discrete finite stages decision problem, with n stages, with the static equa-
tions
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s0 given,
sh ∈ Sh, h ∈ {1, ...,n},
xh ∈ Xh(sh−1), h ∈H = {1, ...,n},

(10)

and the dynamic equations

sh = gh(sh−1,xh), h ∈ H, (11)

with s0 the initial state of the system. Sh denotes the set of the states of system in
the stage h and Xh(sh−1) denotes the set of the decisions which may be taken in the
stage h, if the system is in the state sh−1.

A sequence (x1, ...,xn), where xh ∈ Xj(sh−1), for every h ∈ {1, ...,n}, is called a
policy of the system. The set of all the policies of the system will be denoted by Pol.
In each stage h ∈ H, if we take the decision xh ∈ Xh(sh−1), the obtained utility is
denoted by fh(sh−1,xh). It is a vector in Rp, where p ∈ N, p≥ 1. The total utility is
given by the function F = (F1, ...,Fp) : Pol → Rp.

Analogously to the classical dynamic programming, for the discrete finite dy-
namic system with n stages, having the static equation (10) and dynamic equation
(11), we build the sets

Ŝn := Sn, Ŝh−1 = {s ∈ Sh−1 |∃x ∈ Xh(s) such that gh(s,x) ∈ Ŝh}, (12)

for h = n, h = n− 1,...,h = 1. Again, for h = n, h = n− 1,...,h = 1 and for each
s ∈ Ŝh−1 we build the set

X̂h(s) = {x ∈ Xh(s) |gh(s,x) ∈ Ŝh}. (13)

Using the new notations, the lex-min dynamic problem can be rewritten as:

(DLP)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F(x1, ...,xn) → lex−min
sk = gk(sk−1,xk), k ∈ {1, ...,n},
s0 given,

sk ∈ Ŝk, k ∈ {1, ...,n},
xk ∈ X̂k(sk−1), k ∈ {1, ...,n}.

(14)

If p = 1, a policy x∈ Pol is called optimal, if there is no other policy y∈ Pol such
that F(y) < F(x). For p = 1, an optimal policy can be find using classical Bellman’s
theorem. For every h ∈ {1, ...,n}, let’s consider the problem

(DLPMh)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Fh(sh−1,xh,xh+1, ...,xn) → min
sk = gk(sk−1,xk), k ∈ {h, ...,n},
sh−1 given,

sk ∈ Ŝk, k ∈ {h, ...,n},
xk ∈ X̂k(sk−1), k ∈ {h, ...,n},

(15)
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where Fh denotes the total utility function if the process begins only at the stage
h, the system being in the state sh−1. For all h ∈ {1, ...,n− 1}, let us denote by
Polh(sh−1) the set of the policies of the above problems.

Theorem 1. (Bellman’s theorem [1]). A policy x = (xh−1,xh, ...,xn) ∈ Polh−1 is an
optimal policy of the problem (DLPMh−1) only if (xh, ...,xn) is an optimal policy of
the problem (DLPMh).

For our problem the classical Bellman’s theorem does not work because our
function is a vectorial one and not a scalar function. Therefore we have to give a
generalization of it.

We say that a policy x ∈ Pol is lexicographically minimal if there is no y ∈ Pol
such that F(y) <lex F(x), where <lex denotes the lexicographical ordering.

We remember that if u = (u1, ...,up) and v = (v1, ...,vp) are two points in Rp,
then we set:

u <lex v, if there is i ∈ {1, ..., p} such that ui < vi and,
if i > 1, then u j = v j, ∀ j ∈ {1, ..., i−1}. (16)

We call lex-min dynamic problem, the problem of determining a lexicographi-
cally minimal policy.

Definition 1. The total utility function is said to be lexicographic prospective in-
creasing separable if there are n− 1 vectorial functions αi : Rp × Rp → Rp,
i ∈ {1, ...,n−1}, such that

F(x1, ...,xn)
= α1( f1(s0,x1),α2( f2(s1,x2),α3(...αn−2( fn−2(

sn−1,xn−2),αn−1( fn−1(sn−2,xn−1), fn(sn−1,xn)))...))),
(17)

for all (x1, ...,xn) ∈ Pol, and if for all i ∈ {1, ...,n−1}, the function αi is lexico-
graphic increasing in the second argument:

αi(u,v) <lex αi(u,v′), for all (u,v), (u,v′) ∈ Rp×Rp with v≤ v′. (18)

It is easy to see that if

F(x) =
n

∑
j=1

fh(sh−1,xh), for all x ∈ Pol, (19)

then F is lexicographic prospective increasing separable.
For every h∈{1, ...,n}, by ϕh : (Rm×Rq)n+1−h → Rp we denote a continuously

function which satisfied the condition:
i) if h ∈ {1, ...,n− 1}, then

ϕh(sh−1,xh, ...,sn−1,xn)
= αh( fh(sh−1,xh), αh+1( fh+1,(...(αn−1( fn−1(sn−2,xn−1), fn(sn−1,xn)))...))),

(20)
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for all (sh−1,xh, ...,sn−1,xn) ∈ Ŝh−1× X̂h(sh−1)× ...× Ŝn−1× X̂n(sn−1);
ii) if h = n, then

ϕn(sn−1,xn) = fn(sn−1,xn), for all (sn−1,xn) ∈ Ŝn−1× X̂n(sn−1). (21)

We remark that

ϕh(sh−1,xh, ...,sn−1,xn) = αh( fh(sh−1,xh), ϕh+1(sh,xh+1, ...,sn−1,xn)), (22)

for all (sh−1,xh, ...,sn−1,xn) ∈ Ŝh−1× X̂h(sh−1)× ...× Ŝn−1× X̂n(sn−1). Also, for
every h ∈ {1, ...,n}, we consider the problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕh(sh−1,xh,sh,xh+1, ...,sn−1,xn) → lex−min
sk = gk(sk−1,xk), k ∈ {h, ...,n},
sh−1 given,

sk ∈ Ŝk, k ∈ {h, ...,n},
xk ∈ X̂h(sk−1), k ∈ {h, ...,n}.

(23)

This problem could be rewritten as

(DLPMh)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αh( fh(sh−1,xh), ϕh+1(sh,xh+1, ...,sn−1,xn)) → lex−min
sk = gk(sk−1,xk), k ∈ {h, ...,n},
sh−1 given,

sk ∈ Ŝk, k ∈ {h, ...,n},
xk ∈ X̂h(sk−1), k ∈ {h, ...,n}.

(24)

For all h ∈ {1, ...,n− 1}, let us denote by Polh(sh−1) the set of the policies of
(24).

Theorem 2. If the total utility function F is lexicographic prospective increasing
separable, then the policy (xh−1,xh, ...,xn) ∈ Polh−1 is a lexicographically minimal
policy of the problem (DLPMh−1) only if (xh, ...,xn) is a lexicographically minimal
policy of the problem (DLPMh).

Proof. Let (xh−1,xh, ...,xn) ∈ Polh−1 be a lexicographically minimal policy of the
problem (DLPMh−1). If we suppose that (xh, ...,xn) is not a lexicographically mini-
mal policy of the problem (DLPMh), then there is (yh, ...,yn) ∈ Polh such that

ϕh(sh−1,yh, ...,sn−1yn) <lex ϕh(sh−1,xh, ...,sn−1xn). (25)

As (yh, ...,yn) ∈ Polh and (xh−1,xh, ...,xn) ∈ Polh−1, obviously we have

(xh−1,yh, ...,yn) ∈ Polh−1.

The monotony of the function αh−1 implies

αh−1( fh−1(sh−2,xh−1), ϕh(sh−1,yh, ...,sn−1,yn) <lex

αh−1( fh−1(sh−2,xh−1, ϕh(sh−1,xh, ...,sn−1,xn).
(26)
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This contradicts the hypotheses that (xh−1,xh, ...,xn) ∈ Polh−1 is a lexicographically
minimal policy of the problem (DLPMh−1). ��

3 Practical Approach and Conclusions

Let si be the number of the routes which connect the base O with a village i ∈
{1, ...,m}, and di

j, j ∈ {1, ...,m}, their lengths. If min{di
j/v | j ∈ {1, ...,si}} + tr ≤

tz, then the medical problem has no solution because the time tz is not enough for
the mobile unit to go to village i, to take at least one smears and to come back. In
the following we consider that min{di

j/v | j ∈ {1, ...,si}} + tr > tz, is true for all
i ∈ {1, ...,m}.

In the same way that a classical dynamic programming problem can be solved
using Bellman’s theorem, it is possible to solve the problem (9) using Theorem
2. First we take Gnz+1 equal to the null function and Ŝn = {(snz

1 ,0, ...,0) |snz
1 ∈

{0,1, ...,(lr − 1) · zl − z0
l }}. Then, setting k = nz, k = nz− 1,...,k = 1, we solve,

for each sk−1 ∈ Ŝk−1, the problem

(Pk) {Fk(sk−1,xk)+ Gk+1(gk(sk−1,xk))|xk ∈ X̂k(sk−1)} → lex-min, (27)

where Fk(sk−1,xk) = (∑nz
h=k fT (xh), ∑nz

h=k fC(xh)),

gk(sk−1,xk) = (max{0, sh−1
1 − zl} +

m+1
∑

i=2
xh

i , sh−1
2 − xh

2, ...,s
h−1
m+1 − xh

m+1), and

Gk(sk−1) = lex-min{Fk(sk−1,xk) + Gk+1(gk(sk−1,xk))|xk ∈ X̂k(sk−1)}. An optimal
policy of the problem (9) is (û1(x0), ..., ûnz(xnz−1)), where ûk(xk−1) denotes a lex-
min solution of (Pk), k ∈ {1, ...,knz}.
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