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Abstract Three ingredients constitute mathematical models dependent on param-
eters whose value is uncertain: a compact set Uad of admissible parameters a, a
state problem A(a)u = f (a) with an a-dependent state u ≡ u(a), and a continuous
quantity of interest Ψ (a) = Φ(a,u(a)). In the worst scenario method (WSM), the
maximum of Ψ over Uad is identified. By mastering the WSM and if an adequate
characterization of input uncertainty is available, the analyst can easily step forward
to a more complex uncertainty analysis, namely that based on the Dempster-Shafer
theory or fuzzy set theory. Elements of the above non-stochastic approaches to un-
certainty modeling are presented with the emphasis on uncertain functions appear-
ing in problems driven by differential equations.

1 Introduction

Since uncertainty in input parameters accompanies most, if not all, mathematical
and computational models, its impact on model outputs deserves attention. We will
focus on the worst scenario method (WSM) that can be applied as a stand-alone
method (Subsection 2.1) or used as a fundamental part of other approaches such as
the Dempster-Shafer theory (Subsection 2.2) and fuzzy set theory (Subsection 2.3).
That is, by mastering the WSM, the analyst can easily step forward to a more
complex uncertainty analysis if an adequate characterization of input uncertainty
is available. Attention is paid to uncertain functions appearing in problems driven
by differential equations (Section 3). The goal of this paper is two-fold: (A) to pro-
vide the reader with an insight into non-stochastic uncertainty modeling, and (B) to
show the reader how non-stochastic uncertainty in input functions can be treated.
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and Faculty of Engineering, Czech Technical University, Karlovo nám. 13, 121 35 Praha 2,
Czech Republic, e-mail: chleb@math.cas.cz

3



4 J. Chleboun

Although other sources aiming at (A) can be found in the literature, (B) seems to be
a rather uncommon subject.

The assessment of uncertainty in data is, essentially, equivalent to the weighting
of data. Consequently, as uncertainty propagates through a model, the model outputs
are also weighted and the determination of these weights counts among the analyst’s
ultimate goals. Different weighting approaches result in different methods or even
theories.

Stochastic methods stem from weighting the values of input parameters by the
probability of their occurrence. Stochastic methods can yield strong results but the
analyst should be aware of the fact that they also assume rather strong input informa-
tion such as the probability distribution of uncertain input parameters and a possible
correlation between them, for example. Such information is not always available or
it is itself highly uncertain. If this is the case, other methods of weighting input data
can be more appropriate, reliable, and realistic.

2 Non-Stochastic Methods

Three representatives of non-stochastic methods will be introduced. Let us start with
the basic mathematical framework that will be shared by all the presented methods:

(a) Let the state problem be represented by A(a)u = f (a), an a-dependent equa-
tion where a is an input parameter. The existence and uniqueness of the state solution
u≡ u(a) is assumed for any a considered.

(b) Let the a-dependent solution u(a) be evaluated by Φ(a,u(a)), a real-valued
criterion-functional often called the quantity of interest that can directly depend on
a. Owing to the uniqueness of u(a), the criterion-functional Φ gives rise to the
criterion-functional Ψ(a) = Φ(a,u(a)). It is assumed that both u and Ψ depend
continuously on a.

Both (a) and (b) deserve a few comments. State problems are not limited to equa-
tions; variational inequalities, for instance, are also possible; see [16]. The parameter
a can be a scalar, a vector, a tensor, a function, or an n-tuple of functions.

The criterion-functional can represent quantities such as local temperature, local
stress invariants, potential energy, or the distance between u and an a priori given
function.

To illustrate (a) and (b), let us consider a steady heat flow problem depending
on a thermal conductivity coefficient a; see also (11)-(13). The state equation (to-
gether with relevant boundary conditions) determines the temperature field u(a) in
the problem domain. Let Ψ(a), the a-dependent quantity of interest, be defined as
an average temperature in a small fixed subdomain; see (14). A change in a can
cause a change in u(a) andΨ(a).
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2.1 Worst Scenario Method

It happens quite often that the parameter a cannot be uniquely determined and that
we only know that a belongs to Uad, a set of admissible values. These can originate
from measurements or expert opinions, for instance. In other words, a is uncertain,
so are u(a) andΨ (a).

In the worst scenario method, the input values are not weighted. The significance
of a1 ∈ Uad is equal to the significance of a2 ∈ Uad. Given Uad, the goal of the
method is to find a0 ∈Uad such that

a0 = argmax
a∈Uad

Ψ (a). (1)

Since large values of quantities commonly used in engineering (such as mechanical
stress, displacement, temperature) are usually considered dangerous, the maximum
values correspond to the worst scenario that can happen among all Uad-driven sce-
narios. Problem (1) is also known as anti-optimization; see [8, 9].

A slight modification of (1) leads to the best scenario problem: find a0 ∈ Uad

such that
a0 = argmin

a∈Uad

Ψ(a). (2)

It is not generally guaranteed that such a0 and a0 exist. If Uad is a compact subset
of a Banach space andΨ is continuous, then a0 and a0 exist and, if Uad is connected,
determine IΨ , the range of Ψ |Uad

:

IΨ = [Ψ(a0),Ψ (a0)]. (3)

From the computational standpoint, convex Uad are preferred.
The above assumptions are fulfilled in many engineering problems; see [16] for

examples from heat transfer, elasticity and plasticity theory as well as other fields.
A short survey of mostly PDE-oriented applications of the method appeared in [14].

2.2 Dempster-Shafer Theory

Although the range (3) is useful to know when one analyzes the impact of uncer-
tainty in input parameters on the quantity of interest, the plain range is dissatisfac-
tory in many practical problems where some weights can be attributed to the input
values even if these weights are not probabilistic. Then the analyst should strive for
determining the weights of model outputs.

In the approach stemming from the works of Dempster and Shafer (see [6, 19]),
sets are weighted. Details and examples can also be found in [1, 3], for instance.

Let us confine ourselves to the most essential ideas relevant to our purpose. We
assume that Ui, where i = 1,2, . . . ,k, are given convex and compact subsets (called
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focal elements) of a Banach space. Moreover, let each Ui have an assigned weight
mU(Ui) > 0 such that ∑k

i=1 mU(Ui) = 1. These weights represent the information we
have about Ui. Some Ui, for instance, can originate from less reliable measurements
than the others. This would be indicated by the lower weights of these Ui.

By solving (1) and (2), where Uad =Ui, we obtain the respective scenarios ai
0 and

a0
i . Consequently, see (3), we arrive at intervals Ii

Ψ that will constitute a new family

of focal elements, now in R, the space of real numbers. If it happens that Ii
Ψ = I j

Ψ
for some i �= j, the interval is considered only once; thus a family of k̂ intervals Îl

Ψ
is established, where l = 1,2, . . . , k̂ and 1≤ k̂≤ k.

The extension principle allows for deriving mΨ (Îl
Ψ ), the weight of Îl

Ψ :

mΨ (Îl
Ψ ) = ∑

{ j∈{1,2,...,k}: I j
Ψ=Îl

Ψ }
mU(Uj), l = 1,2, . . . , k̂. (4)

The quantity mΨ (Îl
Ψ ) can be interpreted as a measure of the amount of “likeli-

hood” (the weight) that is assigned to Îl
Ψ ; see [17]. This assignment is determined

by the criterion-functionalΨ and by the “likelihood” assigned to the sets Ui.
Once mΨ (Îl

Ψ ) is determined for l ∈ K = {1,2, . . . , k̂} and mΨ ( /0) = 0 is defined,
two mappings from subsets of R to the interval [0,1] can be introduced. These are
Bel, belief, and Pl, plausibility:

Bel(S) = ∑
{l∈K: Îl

Ψ⊂S}
mΨ (Îl

Ψ ), Pl(S) = ∑
{l∈K| Îl

Ψ∩S �= /0}
mΨ (Îl

Ψ ), S⊂ R. (5)

Referring to [17] again, we can interpret Bel(S) as a lower bound on the like-
lihood of S and Pl(S) as an upper bound on the likelihood of S. According to [1],
Bel(S) (and similarly Pl(S)) can also be interpreted as a lower (upper) limit on the
strength of evidence at hand.

Example 1. Let us consider a loaded cantilever beam with one end fixed and the
other supported by a spring whose stiffness a is uncertain and represented by five
different intervals Ui with respective weights 0.1, 0.4, 0.1, 0.25, and 0.15. Let Ψ
be defined as the displacement of the supported tip of the cantilever. Let [72,82],
[68,74], [73,79], [71,83], and [76,84] be the respective displacement intervals Ii

Ψ
determined by the worst (best) scenario problems (1)–(2) solved for a ∈ Ui, i =
1,2 . . . ,5. Then

mΨ (I1
Ψ ) = mΨ ([72,82]) = 0.1, mΨ (I2

Ψ ) = mΨ ([68,74]) = 0.4, (6)

mΨ (I3
Ψ ) = mΨ ([73,79]) = 0.1, mΨ (I4

Ψ ) = mΨ ([71,83]) = 0.25, (7)

mΨ (I5
Ψ ) = mΨ ([76,84]) = 0.15. (8)

To analyze the uncertainty in Ψ , let us graph Bel([x,x + d]) and Pl([x,x + d]),
where d ∈ {1,2} is fixed and x ∈ [60,90]. In other words, the intervals [x,x + d]
chosen in the space of output data (that is, displacements) will be assessed through
the evidence that we have about the input datasets. Fig. 1 shows the results for
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Fig. 1 Example 1; the vertical axis shows Bel([x,x + d]) and Pl([x,x + d]), the horizontal axis
shows x.

x = 60,61, . . . ,90. Such graphs help the analyst to formulate a conclusion or make a
decision. Thinking of the uncertain displacement magnitude in the above example,
the analyst would hardly overlook the significance of values around 73, for instance.

Although the sets of scalar values were considered in this example, Ui could
be sets of functions as well. Take, for instance, a set of functions representing an
uncertain non-constant thickness of the beam.

2.3 Fuzzy Set Theory

In fuzzy set theory, points are weighted by a membership function with values in the
interval [0,1]; see [1, 3, 7, 20, 21, 22]. For our purposes, a zero membership value
will not indicate that the point does not belong to the (fuzzy) set. Indeed, we assume
that a compact and convex admissible set Uad is given together with a membership
function μUad

: Uad → [0,1]. A non-constant membership function indicates that
not all members of Uad are equally possible. The higher μUad

(a), the higher the
possibility of a. We allow for μUad

(a) to be equal to zero. Typically, μUad
(a) > 0 if

a belongs to the interior of Uad.
Special nested subsets of Uad, called α-cuts, are defined as follows:

U α
ad = {a ∈Uad : μUad

(a)≥ α}, α ∈ [0,1]. (9)

For any α ∈ [0,1], let us assume that the set U α
ad is a convex and compact subset

of Uad; the compactness is guaranteed if, for instance, μUad
is a continuous map.

By determining the best and the worst scenarios in U α
ad , we infer IαΨ , the α-

dependent intervals; cf. (3). These intervals are nothing else than the α-cuts of IΨ ,
the image of Uad under the mapΨ . To characterize the fuzziness of IΨ , the relevant
membership function μΨ is inferred (the extension principle):
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μΨ (y) = max{α : y ∈ IαΨ}, y ∈ IΨ . (10)

The degree of possibility of Ψ (a), the a-dependent quantity of interest, is given by
μΨ (Ψ (a)), a ∈Uad. A computational example will be presented later.

Remark 1. In information-gap decision theory [2], a non-fuzzy approach is intro-
duced (besides other concepts) that also leads to the calculation of α-dependent
worst scenarios. It is assumed there that α controls the amount of uncertainty present
in an admissible set U α

ad (α controls the “size” of the admissible set; the larger the
α , the larger the size of U α

ad). It is also assumed that a valueα exists such thatΨ(a0)
determined by the worst scenario in U α

ad is less than q ∈ R, a given maximum ac-
ceptable value of the quantity of interest.

The goal is to find the maximum αmax ∈ R such that Ψ(a0) ≤ q, where a0 ∈
U αmax

ad maximizes Ψ over U αmax
ad , that is, the maximum acceptable amount of un-

certainty is to be identified.

3 Admissible Sets of Functions

In differential equations and the associated boundary conditions, parameters and
right-hand sides often take the form of functions and are burdened with uncertainty.
To introduce uncertain functions, we will present an approach stemming from the
definition of admissible functions used in shape optimization; see [11].

For illustration, let us consider the following quasilinear PDE defined in Ω , a
bounded domain in R2,

−div(a(u)gradu) = f (x,u), (11)

u|∂Ω = 0, (12)

where a does not directly depend on x ∈Ω but depends on the solution u; the right-
hand side f depends both on the spatial variable x and the solution u. This boundary
value problem can model a nonlinear thermal conductivity problem; we refer to [15]
for a more general setting applied to modeling the temperature field in a transformer.

An admissible set Uad, typical of many applications, can be defined as follows

Uad =
{

a ∈U 0
ad(CL) : amin(t)≤ a(t)≤ amax(t) ∀t ∈R

}
, (13)

U 0
ad(CL) =

{
a ∈C(0),1(R) (i.e., Lipschitz functions on R):

|da/dt| ≤CL a.e. in R, a(t) = const. for t /∈ [T0,T1]
}
,

where amin,amax ∈ Ûad =
{

a ∈U 0
ad(CL) : 0 < a1 ≤ a(t)≤ a2 < +∞ ∀ t ∈R

}
are

given functions and CL, a1, a2, T0, T1 are given constants such that CL > 0, a1 < a2,
and −∞ < T0 < T1 < +∞; see [16, 13, 4].

The criterion-functional
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Ψ(a) = (meas2 G)−1
∫

G
u(a)(x)dx (14)

represents the a-dependent temperature u averaged over a fixed set G⊂Ω .
It can be proved that the worst scenario problem (1) based on (11)–(14) (where

the boundary conditions can be more complex) has at least one solution; see [13, 16].
Two features of the problem are crucial for the proof: (i) Ψ(a) is continuous with
respect to a∈Uad and the standard norm in C(R), the space of functions continuous
on R; and (ii) Uad is compact in C(R) (by virtue of the Arzelà-Ascoli theorem).

Generally speaking, variants of both (i) and (ii) appear in the analysis of other
worst scenario problems with uncertain functions (13) or similar; see [16] for exam-
ples from continuum mechanics (e.g., elasticity or plasticity). In (i), the continuous
dependence of u(a) on a is the most substantial but usually also the most demanding
part of the proof. The solvability of (2) is also ensured by (i)–(ii).

Remark 2. To ensure the compactness of the admissible set Uad, rather strict as-
sumptions are employed in (13). These, however, can be too restrictive in problems
where other families of input functions have to be considered (discontinuous or os-
cillating functions, for instance). Consequently, such an admissible set might not
be compact in a standard space of functions, and its compactification in a special
space is necessary. Such relaxed problems appear and are analyzed in optimization-
oriented modeling (see [18] and the references therein) and could also be considered
in uncertainty modeling.

3.1 Approximation

To solve the state problem A(a)u = f (a) (imagine (11)–(12), for instance, and al-
low an a-dependent f ), one has to resort to a numerical method such as the finite
element method (FEM), the finite difference method, the boundary element method,
etc. These methods deliver an approximate state solution uh defined on a mesh char-
acterized by h > 0, the discretization parameter. Let us note that the uniqueness of
uh may be an open problem in certain situations even if u is unique; see [13, 15].
Non-unique state solutions uh can be handled under some assumptions; see [16,
Chapter II]. The uniqueness of uh is assumed henceforth.

The functions from the admissible set Uad can be approximated by continuous,
piece-wise linear functions controlled by the vertical position of M nodes bound by
possible constraints; see CL, amin, and amax in (13). These functions constitute the
approximate admissible set U M

ad , which is identifiable with a compact subset of RM .
The approximate best and worst scenario problems

aM
0h = argmin

a∈U M
ad

Φ(a,uh(a)) and a0M
h = argmax

a∈U M
ad

Φ(a,uh(a)) (15)

are, in fact, finite dimensional constrained optimization problems.
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The typical relationship between a0M
h and a0 (or aM

0h and a0) is as follows: If
{a0M

h } is a sequence of the solutions to (15) controlled by h→ 0+ and M→∞, then

a subsequence {a0Mk
hk
} exists such that, for k→ ∞,

a0Mk
hk
→ a0, uhk(a

0Mk
hk

)→ u(a0), and Φ(a0Mk
hk

,uhk(a
0Mk
hk

)→ Φ(a0,u(a0)),

where the first and second sequences converge in proper spaces and topologies; see
[10]. Similar convergence results for various worst scenario problems can be found
in [16].

If it happens that more than one admissible set are available for the analyzed
problem, say (11)-(12), and that the analyst can assess each U i

ad by m(U i
ad), the

“likelihood” of U i
ad, then the transition from the WSM to the Dempster-Shafer

approach is straightforward.
Indeed, by finding the worst and the best scenarios, one determines the ranges (3)

for each U i
ad. By identifying Ui with U i

ad and obtaining mΨ (see (4)), the analyst is
ready for the assessment of various sets S⊂R through (5), that is, for the assessment
of the bounds of the likelihood that S is related to the uncertain values ofΨ .

Let us pay more attention to the fuzzy set approach.

3.2 Fuzzification of Uad

Different concepts of fuzziness can be merged with functions see [1, Section 2.4.9].
We will simply retain Uad as a set of crisp functions but we will add a membership
function to Uad. In other words, we will weight a ∈ Uad. Two forms of weighting
will be introduced; see also [5].

The first approach is rather straightforward. It is based on the distance between
a ∈Uad and a given function amid; the details follow.

For illustration, let us recall (13) and define amid(t) = (amin(t)+ amax(t))/2 and
adif(t) = (amax(t)−amin(t))/2, where t ∈R. It is assumed that adif is positive on the
real axis. For α ∈ [0,1], we then define

U α
ad =

{
a ∈U 0

ad(CL) : |a(t)−amid(t)| ≤ (1−α)adif(t) ∀t ∈ R
}
, (16)

that is, we define the α-cuts of Uad. This concept is close to fuzzy functions [1] or to
controlling the amount of uncertainty through α; see [2]. Nevertheless, in (16), we
still consider crisp functions. If α = 1, then U α

ad = {amid}. If α = 0, then U α
ad = Uad.

The membership function value (the weight) of a ∈Uad is defined as

μ(a) = max{α ∈ [0,1] : a ∈U α
ad}. (17)

With this μ , definition (9) leads to U α
ad defined in (16).

If Uad is fuzzy, so is U M
ad . The approximate problems (15) result in optimization

problems with simple bounds (determined by amin and amax) and linear constraints
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(determined by CL). The approximate best and worst scenarios in U M,α
ad , an α-

cut of U M
ad , are again obtained through solving optimization problems with simple

bounds (determined by amin, amax, and α) and linear constraints (determined by CL).
Common optimization software coupled with FEM software can often be applied to
solve such problems.

The other approach to weighting Uad is motivated by the observation described
below. Let a1,a2 ∈ U α

ad and let the inequality in (16) becomes the equality on the
entire set R if a1 is considered, and at a single point t0 ∈ R if a2 is considered.
Moreover, let a2 coincide with amid except for an interval containing t0. These a1

and a2 share the same α-cuts of Uad. In many applications, however, the weight of
a2 would be expected greater than the weight of a1 because a2 is “closer” to amid,
which has the highest degree of possibility.

We will design a membership function able to separate a1 from a2. We first de-
fine an auxiliary continuous function ρ : Q→ [0,1], where Q = {[t,y] ∈ R2 : t ∈
[T0,T1], y ∈ [amin(t),amax(t)]}. It is assumed that ρ(t, ·) is a concave function for
each t ∈ [T0,T1]. The functions ρ(t, ·) can be viewed as auxiliary membership func-
tions (weights) assessing the degree of possibility of a(t) if a ∈Uad. The graph of
ρ(t, ·) is shaped accordingly; it is triangular or trapezoidal, which is common in
fuzzy set theory. The function ρ can be derived from measurements, estimates, or
expert opinions.

We are ready to define μρ : Uad → [0,1], the membership function associated
with Uad:

μρ(a) = (T1−T0)−1
∫ T1

T0

ρ(t,a(t))dt. (18)

It is evident that we can obtain μρ(a1) < μρ(a2) if ρ is properly shaped.
Unlike (16), the identification of all the functions a that comprise a particular

α-cut is not straightforward. This difficulty also appears in the search for the ap-
proximate best and worst scenarios, where, moreover, (18) gives rise to a nonlinear
constraint in the definition of U α

ad . If ρ is nonsmooth, μρ is not differentiable at
some a. This partial lack of differentiability is also observed in μρM , a U M

ad -related
approximation of μρ based on a piece-wise linear auxiliary function ρM that ap-
proximates ρ .

Since the use of nonsmooth (triangular, trapezoidal) ρ(t, ·) is common and the
piece-wise linearity of ρ(t, ·) is advantageous in many respects, nonsmooth op-
timization seems to be unavoidable in solving (15)-like problems on the α-cuts
determined by μρM .

A closer inspection reveals, however, that the approximate (15)-like problems
defined on U M,α

ad , the μρM -based α-cuts of U M
ad , can be decomposed into a finite

sequence of smooth optimization subproblems.
Indeed, aM ∈U M

ad is uniquely determined by the values ai ≡ a(ti) at fixed points
ti, where i = 1,2, . . . ,M. Let us assume that ρM is piece-wise linear and determined
by the continuous functions ρ(ti, ·) that are linear on intervals θi j = [yi, j,yi, j], where
i = 1,2, . . . ,M, j = 1,2, . . . ,N, and yi, j = yi, j+1 if j = 1,2, . . . ,N−1. It is [yi,1,yi,N ] =
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[amin(ti),amax(ti)]. Typically, N = 2 (N = 3) if ρ(t, ·) is triangularly (trapezoidally)
shaped.

As long as ai ∈ θi j for i = 1,2, . . . ,M and for a fixed set J of indices j, μρM

is differentiable (left- and right-differentiable at the ends of θi j) and the related
optimization subproblem is smooth. The differentiability is lost at one point when ai

passes from the current interval θi j to its neighbor θik, k �= j, but it is again restored
if ai ∈ θik and J is updated. The updated set of indices determines a new smooth
optimization subproblem.

The partial derivative of μρM with respect to ai, where i = 1,2, . . . ,M, can be
obtained in a closed form in each of the subproblems. Consequently, the analytic
gradient of μρM exists except for some points and can be employed in the calculation
of ∂Ψ/∂ai, which is important in a gradient-based search for the best and worst
scenarios in U M,α

ad .

Example 2. Let u, the a-dependent solution to the boundary value problem

−(a(x)u′(x))′ = f on Ω = (0,1), u(0) = 0 = u(1),

be evaluated through the criterion-functional (quantity of interest)

Ψ(a) =
∫
Ω

(u(x)− sin(2πx))2 dx.

In the state problem, f is chosen in such a way that if a(x) = 1 + x, then u(x) =
sin(2πx) and, consequently,Ψ (a) = 0.

The parameter a belongs to the admissible set Uad determined by the quadratic
function g(x) = 1.5 + x2 and two constants. In detail,

Uad =
{

a ∈C(0),1([0,1]) : |a(x)− g(x)| ≤ 0.5 and |a′(x)−g′(x)| ≤ 0.8
}

.

The auxiliary function ρ is “triangular”, that is, ρ(x, ·) is determined by the linear
interpolation of the points [x,g(x)− 0.5,0], [x,g(x),1], and [x,g(x)+ 0.5,0], where
x ∈ [0,1]. The membership function μρ is given by (18), where T0 = 0 and T1 = 1.

The goal is to infer μΨ , the membership function of the quantity of interest; see
Subsection 2.3 and (10).

To achieve the goal at least approximately, see Fig. 2, the state equation was
solved by the finite element method with piece-wise linear basis functions, and
Uad was approximated by continuous piece-wise linear functions constituting U M

ad ,
where M = 15. The optimization problems, see (15), were solved on the α-cuts of
U M

ad for α = 0,0.05,0.1, . . . ,1.
The gradient of Ψ was calculated via the adjoint equation technique [12]; an

explicit formula was obtained for the gradient of μρM at the points of differentiabil-
ity. The search for the best and the worst scenarios in the α-cuts was based on the
NAG� Foundation (MATLAB�) Toolbox E04UCF routine for constrained sequen-
tial quadratic programming.
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Fig. 2 Example 2. The
approximation of μΨ in-
ferred from (10), where
α = 0,0.05,0.1, . . .,1. The
horizontal axis shows the
Ψ values, the vertical axis
shows the α values. We
observe that a(x) = 1 + x
belongs to the α-cuts if
α = 0,0.05,0.1, . . .,0.35.
Indeed, for these α , the best
scenario implies the zero
value of Ψ . If α = 1, then
the α-cut comprises only the
function g. 0 0.02 0.07
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4 Conclusions

The worst scenario method is appropriate if we know only the set of admissible
inputs but we do not have information that would enable us to weight the impor-
tance (possibility or likelihood) of input data. Since searching for the best scenario
is mathematically equivalent to the worst scenario search, the WSM eventually de-
livers the range of the quantity of interestΨ induced by the uncertainty in inputs.

If more extensive information on inputs is available (inputs can be weighted in
some sense) and if it complies with the Dempster-Shafer or fuzzy set theory as-
sumptions (which are less demanding than the probability theory assumptions), the
uncertainty in an output quantity of interest can be weighted too. To achieve this,
the WSM has to be repeatedly applied to obtain (3)-like ranges that are pivotal in
the other two approaches for obtaining mΨ and μΨ ; see Subsection 2.2 and (4) as
well as Section 2.3 and (10).

From the computational standpoint, solving (15)-like problems is crucial in all
the above-mentioned methods. In the case of smooth problems, the gradients of both
Ψ and the constraints are available, which can speed up the search for the minimum
(maximum) ofΨ .

If (15) leads to a nonsmooth optimization problem, we can (a) try to decompose
it to smooth subproblems, (b) use a subgradient-based technique, or (c) apply an
evolution strategy that partly or completely avoids the need for the (sub)gradient.

However, it is fair to say that the worst scenario method is computationally chal-
lenging because it asks for solving a global optimization problem. Nevertheless, we
can benefit from theoretical and software tools that have proved themselves well in
optimal design, control theory, parameter identification, and sensitivity analysis.
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